Science.gov

Sample records for regulatory factors regulate

  1. Regulation of APC Activity by Phosphorylation and Regulatory Factors

    PubMed Central

    Kotani, Shuji; Tanaka, Hirofumi; Yasuda, Hideyo; Todokoro, Kazuo

    1999-01-01

    Ubiquitin-dependent proteolysis of Cut2/Pds1 and Cyclin B is required for sister chromatid separation and exit from mitosis, respectively. Anaphase-promoting complex/cyclosome (APC) specifically ubiquitinates Cut2/Pds1 at metaphase–anaphase transition, and ubiquitinates Cyclin B in late mitosis and G1 phase. However, the exact regulatory mechanism of substrate-specific activation of mammalian APC with the right timing remains to be elucidated. We found that not only the binding of the activators Cdc20 and Cdh1 and the inhibitor Mad2 to APC, but also the phosphorylation of Cdc20 and Cdh1 by Cdc2-Cyclin B and that of APC by Polo-like kinase and cAMP-dependent protein kinase, regulate APC activity. The cooperation of the phosphorylation/dephosphorylation and the regulatory factors in regulation of APC activity may thus control the precise progression of mitosis. PMID:10459014

  2. Expression regulation of zebrafish interferon regulatory factor 9 by promoter analysis.

    PubMed

    Shi, Jun; Zhang, Yi-Bing; Zhang, Jian-She; Gui, Jian-Fang

    2013-12-01

    We previously showed that a fish interferon (IFN) regulatory factor 9 (IRF9) homologue, crucian carp Carassius auratus IRF9, displays constitutively nuclear localization and involvement in fish IFN-dependent JAK-STAT signaling; however, little is known about the expression regulation of fish IRF9. Here, we characterized the expression of zebrafish IRF9 by promoter analysis. Zebrafish IRF9 gene promoter contained several putative transcription factor binding sites, including one ISRE (IFN-stimulated response element), one GAS (IFN gamma activation sequence) and three GATEs (IFNγ activated transcriptional element, GATE1/2/3). Further sequence analyses revealed that GAS and GATE motifs existed in all promoters of IRF9 from mammals and fishes. Luciferase assays confirmed that zebrafish IRF9 promoter could be activated by zebrafish IFNφs and zebrafish IFNγ2, as well as transcription factors IRF3, IRF7, and combination of IRF9 and STAT2. Treatment of recombinant crucian carp IFN protein or overexpression of zebrafish IFNγ2 both led to significant increase in crucian carp IRF9 mRNA and protein in cultured fish cells. Comparison of IFN-stimulated promoter activity revealed much more significant induction of zebrafish IRF9 by zebrafish IFNγ2 than by zebrafish IFNφs. Mutation analyses showed that the putative GAS and GATE3 contributed to zebrafish IFNγ2-triggered IRF9 expression, whereas the putative ISRE and the other two GATEs were not functional for induction of zebrafish IRF9. These results together indicated that the expression property of IRF9 might be conserved from fish to mammals and that some not yet identified mechanisms could exist in IRF9 gene transcription regulation in response to IFNs.

  3. Muscle regulatory factors regulate T1R3 taste receptor expression.

    PubMed

    Kokabu, Shoichiro; Lowery, Jonathan W; Toyono, Takashi; Seta, Yuji; Hitomi, Suzuro; Sato, Tsuyoshi; Enoki, Yuichiro; Okubo, Masahiko; Fukushima, Yosuke; Yoda, Tetsuya

    2015-12-25

    T1R3 is a T1R class of G protein-coupled receptors, composing subunit of the umami taste receptor when complexed with T1R1. T1R3 was originally discovered in gustatory tissue but is now known to be expressed in a wide variety of tissues and cell types such the intestine, pancreatic β-cells, skeletal muscle, and heart. In addition to taste recognition, the T1R1/T1R3 complex functions as an amino acid sensor and has been proposed to be a control mechanism for the secretion of hormones, such as cholecystokinin, insulin, and duodenal HCO3(-) and activates the mammalian rapamycin complex 1 (MTORC1) to inhibit autophagy. T1R3 knockout mice have increased rate of autophagy in the heart, skeletal muscle and liver. Thus, T1R3 has multiple physiological functions and is widely expressed in vivo. However, the exact mechanisms regulating T1R3 expression are largely unknown. Here, we used comparative genomics and functional analyses to characterize the genomic region upstream of the annotated transcriptional start of human T1R3. This revealed that the T1R3 promoter in human and mouse resides in an evolutionary conserved region (ECR). We also identified a repressive element located upstream of the human T1R3 promoter that has relatively high degree of conservation with rhesus macaque. Additionally, the muscle regulatory factors MyoD and Myogenin regulate T1R3 expression and T1R3 expression increases with skeletal muscle differentiation of murine myoblast C2C12 cells. Taken together, our study raises the possibility that MyoD and Myogenin might control skeletal muscle metabolism and homeostasis through the regulation of T1R3 promoter activity. PMID:26545778

  4. Regulatory factor X1-induced down-regulation of transforming growth factor β2 transcription in human neuroblastoma cells.

    PubMed

    Feng, Chenzhuo; Zuo, Zhiyi

    2012-06-29

    Regulatory factor X (RFX) proteins are transcription factors. Seven mammalian RFX proteins have been identified. RFX1 is the prototype RFX. However, its biological functions are not known. Here, RFX1 overexpression reduced fetal bovine serum-stimulated proliferation of SH-SY5Y cells, a human neuroblastoma cell line. This inhibition is associated with decreased transforming growth factor β2 (TGFβ2) and phospho-extracellular signal-regulated kinase (ERK). Exogenous TGFβ2 increased cell proliferation and phospho-ERK in cells overexpressing RFX1. An anti-TGFβ2 antibody and PD98059, an ERK activation inhibitor, inhibited SH-SY5Y cell proliferation. TGFβ2 promoter activity was decreased in cells overexpressing RFX1. Chromosome immunoprecipitation assay showed that RFX1 bound the TGFβ2 promoter. RFX1 down-regulation increased TGFβ2 in SH-SY5Y and HCN-1A cells, a normal human neuronal cell line. More importantly, TGFβ2 concentrations were negatively correlated with RFX1 levels in human medulloblastoma tissues with a R(2) of 0.464. These results suggest that RFX1 reduces cell proliferation through inhibiting the TGFβ2-ERK signaling pathway. RFX1 blocks TGFβ2 expression through its direct action on TGFβ2 transcription. This effect also appears in human brain tumor tissues. Because TGFβ is known to be involved in cancer development, our results provide initial evidence to suggest that RFX1 may play an important role in human tumor biology.

  5. Gene Regulatory Network Inference of Immunoresponsive Gene 1 (IRG1) Identifies Interferon Regulatory Factor 1 (IRF1) as Its Transcriptional Regulator in Mammalian Macrophages

    PubMed Central

    Tallam, Aravind; Perumal, Thaneer M.; Antony, Paul M.; Jäger, Christian; Fritz, Joëlle V.; Vallar, Laurent; Balling, Rudi; del Sol, Antonio; Michelucci, Alessandro

    2016-01-01

    Immunoresponsive gene 1 (IRG1) is one of the highest induced genes in macrophages under pro-inflammatory conditions. Its function has been recently described: it codes for immune-responsive gene 1 protein/cis-aconitic acid decarboxylase (IRG1/CAD), an enzyme catalysing the production of itaconic acid from cis-aconitic acid, a tricarboxylic acid (TCA) cycle intermediate. Itaconic acid possesses specific antimicrobial properties inhibiting isocitrate lyase, the first enzyme of the glyoxylate shunt, an anaplerotic pathway that bypasses the TCA cycle and enables bacteria to survive on limited carbon conditions. To elucidate the mechanisms underlying itaconic acid production through IRG1 induction in macrophages, we examined the transcriptional regulation of IRG1. To this end, we studied IRG1 expression in human immune cells under different inflammatory stimuli, such as TNFα and IFNγ, in addition to lipopolysaccharides. Under these conditions, as previously shown in mouse macrophages, IRG1/CAD accumulates in mitochondria. Furthermore, using literature information and transcription factor prediction models, we re-constructed raw gene regulatory networks (GRNs) for IRG1 in mouse and human macrophages. We further implemented a contextualization algorithm that relies on genome-wide gene expression data to infer putative cell type-specific gene regulatory interactions in mouse and human macrophages, which allowed us to predict potential transcriptional regulators of IRG1. Among the computationally identified regulators, siRNA-mediated gene silencing of interferon regulatory factor 1 (IRF1) in macrophages significantly decreased the expression of IRG1/CAD at the gene and protein level, which correlated with a reduced production of itaconic acid. Using a synergistic approach of both computational and experimental methods, we here shed more light on the transcriptional machinery of IRG1 expression and could pave the way to therapeutic approaches targeting itaconic acid levels

  6. Ikkepsilon regulates viral-induced interferon regulatory factor-3 activation via a redox-sensitive pathway

    SciTech Connect

    Indukuri, Hemalatha; Castro, Shawn M.; Liao, S.-M.; Feeney, Lee Ann; Dorsch, Marion; Coyle, Anthony J.; Garofalo, Roberto P.; Brasier, Allan R.; Casola, Antonella . E-mail: ancasola@utmb.edu

    2006-09-15

    Respiratory syncytial virus (RSV)-induced chemokine gene expression occurs through the activation of a subset of transcription factors, including Interferon Regulatory Factor (IRF)-3. In this study, we have investigated the signaling pathway leading to RSV-induced IRF-3 activation and whether it is mediated by intracellular reactive oxygen species (ROS) generation. Our results show that RSV infection induces expression and catalytic activity of IKK{epsilon}, a noncanonical IKK-like kinase. Expression of a kinase-inactive IKK{epsilon} blocks RSV-induced IRF-3 serine phosphorylation, nuclear translocation and DNA-binding, leading to inhibition of RANTES gene transcription, mRNA expression and protein synthesis. Treatment of alveolar epithelial cells with antioxidants or with NAD(P)H oxidase inhibitors abrogates RSV-induced chemokine secretion, IRF-3 phosphorylation and IKK{epsilon} induction, indicating that ROS generation plays a fundamental role in the signaling pathway leading to IRF-3 activation, therefore, identifying a novel molecular target for the development of strategies aimed to modify the inflammatory response associated with RSV infection of the lung.

  7. Ubiquitination of Tumor Necrosis Factor Receptor-associated Factor 4 (TRAF4) by Smad Ubiquitination Regulatory Factor 1 (Smurf1) Regulates Motility of Breast Epithelial and Cancer Cells*

    PubMed Central

    Wang, Xiangchun; Jin, Chaoyang; Tang, Yi; Tang, Liu-Ya; Zhang, Ying E.

    2013-01-01

    Smad ubiquitin regulatory factors (Smurfs) are HECT-domain ubiquitin E3 ligases that regulate diverse cellular processes, including normal and tumor cell migration. However, the underlying mechanism of the Smurfs' role in cell migration is not fully understood. Here we show that Smurf1 induces ubiquitination of tumor necrosis factor receptor-associated factor 4 (TRAF4) at K190. Using the K190R mutant of TRAF4, we demonstrate that Smurf1-induced ubiquitination is required for proper localization of TRAF4 to tight junctions in confluent epithelial cells. We further show that TRAF4 is essential for the migration of both normal mammary epithelial and breast cancer cells. The ability of TRAF4 to promote cell migration is also dependent on Smurf1-mediated ubiquitination, which is associated with Rac1 activation by TRAF4. These results reveal a new regulatory circuit for cell migration, consisting of Smurf1-mediated ubiquitination of TRAF4 and Rac1 activation. PMID:23760265

  8. Na+/H+ Exchanger Regulatory Factor 1 (NHERF1) Directly Regulates Osteogenesis*

    PubMed Central

    Liu, Li; Alonso, Veronica; Guo, Lida; Tourkova, Irina; Henderson, Sarah E.; Almarza, Alejandro J.; Friedman, Peter A.; Blair, Harry C.

    2012-01-01

    Bone formation requires synthesis, secretion, and mineralization of matrix. Deficiencies in these processes produce bone defects. The absence of the PDZ domain protein Na+/H+ exchange regulatory factor 1 (NHERF1) in mice, or its mutation in humans, causes osteomalacia believed to reflect renal phosphate wasting. We show that NHERF1 is expressed by mineralizing osteoblasts and organizes Na+/H+ exchangers (NHEs) and the PTH receptor. NHERF1-null mice display reduced bone formation and wide mineralizing fronts despite elimination of phosphate wasting by dietary supplementation. Bone mass was normal, reflecting coordinated reduction of bone resorption and formation. NHERF1-null bone had decreased strength, consistent with compromised matrix quality. Mesenchymal stem cells from NHERF1-null mice showed limited osteoblast differentiation but enhanced adipocyte differentiation. PTH signaling and Na+/H+ exchange were dysregulated in these cells. Osteoclast differentiation from monocytes was unaffected. Thus, NHERF1 is required for normal osteoblast differentiation and matrix synthesis. In its absence, compensatory mechanisms maintain bone mass, but bone strength is reduced. PMID:23109343

  9. Zinc regulates a key transcriptional pathway for epileptogenesis via metal-regulatory transcription factor 1

    PubMed Central

    van Loo, Karen M. J.; Schaub, Christina; Pitsch, Julika; Kulbida, Rebecca; Opitz, Thoralf; Ekstein, Dana; Dalal, Adam; Urbach, Horst; Beck, Heinz; Yaari, Yoel; Schoch, Susanne; Becker, Albert J.

    2015-01-01

    Temporal lobe epilepsy (TLE) is the most common focal seizure disorder in adults. In many patients, transient brain insults, including status epilepticus (SE), are followed by a latent period of epileptogenesis, preceding the emergence of clinical seizures. In experimental animals, transcriptional upregulation of CaV3.2 T-type Ca2+-channels, resulting in an increased propensity for burst discharges of hippocampal neurons, is an important trigger for epileptogenesis. Here we provide evidence that the metal-regulatory transcription factor 1 (MTF1) mediates the increase of CaV3.2 mRNA and intrinsic excitability consequent to a rise in intracellular Zn2+ that is associated with SE. Adeno-associated viral (rAAV) transfer of MTF1 into murine hippocampi leads to increased CaV3.2 mRNA. Conversely, rAAV-mediated expression of a dominant-negative MTF1 abolishes SE-induced CaV3.2 mRNA upregulation and attenuates epileptogenesis. Finally, data from resected human hippocampi surgically treated for pharmacoresistant TLE support the Zn2+-MTF1-CaV3.2 cascade, thus providing new vistas for preventing and treating TLE. PMID:26498180

  10. Regulation of the germinal center gene program by interferon (IFN) regulatory factor 8/IFN consensus sequence-binding protein

    PubMed Central

    Lee, Chang Hoon; Melchers, Mark; Wang, Hongsheng; Torrey, Ted A.; Slota, Rebecca; Qi, Chen-Feng; Kim, Ji Young; Lugar, Patricia; Kong, Hee Jeong; Farrington, Lila; van der Zouwen, Boris; Zhou, Jeff X.; Lougaris, Vassilios; Lipsky, Peter E.; Grammer, Amrie C.; Morse, Herbert C.

    2006-01-01

    Interferon (IFN) consensus sequence-binding protein/IFN regulatory factor 8 (IRF8) is a transcription factor that regulates the differentiation and function of macrophages, granulocytes, and dendritic cells through activation or repression of target genes. Although IRF8 is also expressed in lymphocytes, its roles in B cell and T cell maturation or function are ill defined, and few transcriptional targets are known. Gene expression profiling of human tonsillar B cells and mouse B cell lymphomas showed that IRF8 transcripts were expressed at highest levels in centroblasts, either from secondary lymphoid tissue or transformed cells. In addition, staining for IRF8 was most intense in tonsillar germinal center (GC) dark-zone centroblasts. To discover B cell genes regulated by IRF8, we transfected purified primary tonsillar B cells with enhanced green fluorescent protein–tagged IRF8, generated small interfering RNA knockdowns of IRF8 expression in a mouse B cell lymphoma cell line, and examined the effects of a null mutation of IRF8 on B cells. Each approach identified activation-induced cytidine deaminase (AICDA) and BCL6 as targets of transcriptional activation. Chromatin immunoprecipitation studies demonstrated in vivo occupancy of 5′ sequences of both genes by IRF8 protein. These results suggest previously unappreciated roles for IRF8 in the transcriptional regulation of B cell GC reactions that include direct regulation of AICDA and BCL6. PMID:16380510

  11. Regulation of the germinal center gene program by interferon (IFN) regulatory factor 8/IFN consensus sequence-binding protein.

    PubMed

    Lee, Chang Hoon; Melchers, Mark; Wang, Hongsheng; Torrey, Ted A; Slota, Rebecca; Qi, Chen-Feng; Kim, Ji Young; Lugar, Patricia; Kong, Hee Jeong; Farrington, Lila; van der Zouwen, Boris; Zhou, Jeff X; Lougaris, Vassilios; Lipsky, Peter E; Grammer, Amrie C; Morse, Herbert C

    2006-01-23

    Interferon (IFN) consensus sequence-binding protein/IFN regulatory factor 8 (IRF8) is a transcription factor that regulates the differentiation and function of macrophages, granulocytes, and dendritic cells through activation or repression of target genes. Although IRF8 is also expressed in lymphocytes, its roles in B cell and T cell maturation or function are ill defined, and few transcriptional targets are known. Gene expression profiling of human tonsillar B cells and mouse B cell lymphomas showed that IRF8 transcripts were expressed at highest levels in centroblasts, either from secondary lymphoid tissue or transformed cells. In addition, staining for IRF8 was most intense in tonsillar germinal center (GC) dark-zone centroblasts. To discover B cell genes regulated by IRF8, we transfected purified primary tonsillar B cells with enhanced green fluorescent protein-tagged IRF8, generated small interfering RNA knockdowns of IRF8 expression in a mouse B cell lymphoma cell line, and examined the effects of a null mutation of IRF8 on B cells. Each approach identified activation-induced cytidine deaminase (AICDA) and BCL6 as targets of transcriptional activation. Chromatin immunoprecipitation studies demonstrated in vivo occupancy of 5' sequences of both genes by IRF8 protein. These results suggest previously unappreciated roles for IRF8 in the transcriptional regulation of B cell GC reactions that include direct regulation of AICDA and BCL6.

  12. Basolateral Na+/HCO3– cotransport activity is regulated by the dissociable Na+/H+ exchanger regulatory factor

    PubMed Central

    Bernardo, Angelito A.; Kear, Felicidad T.; Santos, Anna V.P.; Ma, Jianfei; Steplock, Debra; Robey, R. Brooks; Weinman, Edward J.

    1999-01-01

    In the renal proximal tubule, the activities of the basolateral Na+/HCO3– cotransporter (NBC) and the apical Na+/H+ exchanger (NHE3) uniformly vary in parallel, suggesting that they are coordinately regulated. PKA-mediated inhibition of NHE3 is mediated by a PDZ motif–containing protein, the Na+/H+ exchanger regulatory factor (NHE-RF). Given the common inhibition of these transporters after protein kinase A (PKA) activation, we sought to determine whether NHE-RF also plays a role in PKA-regulated NBC activity. Renal cortex immunoblot analysis using anti-peptide antibodies directed against rabbit NHE-RF demonstrated the presence of this regulatory factor in both brush-border membranes (BBMs) and basolateral membranes (BLMs). Using a reconstitution assay, we found that limited trypsin digestion of detergent solubilized rabbit renal BLM preparations resulted in NBC activity that was unaffected by PKA activation. Co-reconstitution of these trypsinized preparations with a recombinant protein corresponding to wild-type rabbit NHE-RF restored the inhibitory effect of PKA on NBC activity in a concentration-dependent manner. NBC activity was inhibited 60% by 10–8M NHE-RF; this effect was not observed in the absence of PKA. Reconstitution with heat-denatured NHE-RF also failed to attenuate NBC activity. To establish further a physiologic role for NHE-RF in NBC regulation, the renal epithelial cell line B-SC-1, which lacks detectable endogenous NHE-RF expression, was engineered to express stably an NHE-RF transgene. NHE-RF–expressing B-SC-1 cells (B-SC-RF) exhibited markedly lower basal levels of NBC activity than did wild-type controls. Inhibition of NBC activity in B-SC-RF cells was enhanced after 10 μM of forskolin treatment, consistent with a postulated role for NHE-RF in mediating the inhibition of NBC activity by PKA. These findings not only suggest NHE-RF involvement in PKA-regulated NBC activity, but also provide a unique molecular mechanism whereby

  13. Three novel acetylation sites in the Foxp3 transcription factor regulate the suppressive activity of regulatory T cells

    PubMed Central

    Kwon, Hye-Sook; Lim, Hyung W.; Wu, Jessica; Schnoelzer, Martina; Verdin, Eric; Ott, Melanie

    2012-01-01

    The Foxp3 transcription factor is the master regulator of regulatory T cell (Treg) differentiation and function. Its activity is regulated by reversible acetylation. Using mass spectrometry of immunoprecipitated proteins, we identify three novel acetylation sites in murine Foxp3 (K31, K262, and K267) and the corresponding sites in human FoxP3 proteins. Newly raised modification-specific antibodies against acetylated K31 and K267 confirm acetylation of these residues in murine Tregs. Mutant Foxp3 proteins carrying arginine substitutions at the three acetylation sites (3KR) accumulate in T cells to higher levels than wildtype Foxp3 and exert better suppressive activity in co-culture experiments. Acetylation and stability of wildtype, but not mutant, Foxp3 is enhanced when cells are treated with Ex-527, an inhibitor of the NAD+-dependent deacetylase SIRT1. Treatment with Ex-527 promotes Foxp3 expression during induced Treg differentiation, enhances Foxp3 levels in natural Tregs, and prevents loss of Foxp3 expression in adoptively transferred Tregs in mice. Our data identify SIRT1 as a negative regulator of Treg function via deacetylation of three novel target sites in Foxp3. SIRT1 inhibitors strengthen the suppressive activity of Tregs and may be useful in enhancing Treg-based therapeutic approaches to autoimmune diseases or graft rejections. PMID:22312127

  14. Virulence factor regulation and regulatory networks in Streptococcus pyogenes and their impact on pathogen-host interactions.

    PubMed

    Kreikemeyer, Bernd; McIver, Kevin S; Podbielski, Andreas

    2003-05-01

    Streptococcus pyogenes (group A streptococcus, GAS) is a very important human pathogen with remarkable adaptation capabilities. Survival within the harsh host surroundings requires sensing potential on the bacterial side, which leads in particular to coordinately regulated virulence factor expression. GAS 'stand-alone' response regulators (RRs) and two-component signal transduction systems (TCSs) link the signals from the host environment with adaptive responses of the bacterial cell. Numerous putative regulatory systems emerged from GAS genome sequences. Only three RRs [Mga, RofA-like protein (RALP) and Rgg/RopB] and three TCSs (CsrRS/CovRS, FasBCAX and Ihk/Irr) have been studied in some detail with respect to their growth-phase-dependent activity and their influence on GAS-host cell interaction. In particular, the Mga-, RALP- and Rgg/RopB-regulated pathways display interconnected activities that appear to influence GAS colonization, persistence and spreading mechanisms, in a growth-phase-related fashion. Here, we have summarized our current knowledge about these RRs and TCSs to highlight the questions that should be addressed in future research on GAS pathogenicity.

  15. Interferon regulatory factor 3 is a key regulation factor for inducing the expression of SAMHD1 in antiviral innate immunity

    PubMed Central

    Yang, Shen; Zhan, Yuan; Zhou, Yanjun; Jiang, Yifeng; Zheng, Xuchen; Yu, Lingxue; Tong, Wu; Gao, Fei; Li, Liwei; Huang, Qinfeng; Ma, Zhiyong; Tong, Guangzhi

    2016-01-01

    SAMHD1 is a type I interferon (IFN) inducible host innate immunity restriction factor that inhibits an early step of the viral life cycle. The underlying mechanisms of SAMHD1 transcriptional regulation remains elusive. Here, we report that inducing SAMHD1 upregulation is part of an early intrinsic immune response via TLR3 and RIG-I/MDA5 agonists that ultimately induce the nuclear translocation of the interferon regulation factor 3 (IRF3) protein. Further studies show that IRF3 plays a major role in upregulating endogenous SAMHD1 expression in a mechanism that is independent of the classical IFN-induced JAK-STAT pathway. Both overexpression and activation of IRF3 enhanced the SAMHD1 promoter luciferase activity, and activated IRF3 was necessary for upregulating SAMHD1 expression in a type I IFN cascade. We also show that the SAMHD1 promoter is a direct target of IRF3 and an IRF3 binding site is sufficient to render this promoter responsive to stimulation. Collectively, these findings indicate that upregulation of endogenous SAMHD1 expression is attributed to the phosphorylation and nuclear translocation of IRF3 and we suggest that type I IFN induction and induced SAMHD1 expression are coordinated. PMID:27411355

  16. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor X (RFX) transcription factors through X-box promoter motifs

    PubMed Central

    Tammimies, Kristiina; Bieder, Andrea; Lauter, Gilbert; Sugiaman-Trapman, Debora; Torchet, Rachel; Hokkanen, Marie-Estelle; Burghoorn, Jan; Castrén, Eero; Kere, Juha; Tapia-Páez, Isabel; Swoboda, Peter

    2016-01-01

    DYX1C1, DCDC2, and KIAA0319 are three of the most replicated dyslexia candidate genes (DCGs). Recently, these DCGs were implicated in functions at the cilium. Here, we investigate the regulation of these DCGs by Regulatory Factor X transcription factors (RFX TFs), a gene family known for transcriptionally regulating ciliary genes. We identify conserved X-box motifs in the promoter regions of DYX1C1, DCDC2, and KIAA0319 and demonstrate their functionality, as well as the ability to recruit RFX TFs using reporter gene and electrophoretic mobility shift assays. Furthermore, we uncover a complex regulation pattern between RFX1, RFX2, and RFX3 and their significant effect on modifying the endogenous expression of DYX1C1 and DCDC2 in a human retinal pigmented epithelial cell line immortalized with hTERT (hTERT-RPE1). In addition, induction of ciliogenesis increases the expression of RFX TFs and DCGs. At the protein level, we show that endogenous DYX1C1 localizes to the base of the cilium, whereas DCDC2 localizes along the entire axoneme of the cilium, thereby validating earlier localization studies using overexpression models. Our results corroborate the emerging role of DCGs in ciliary function and characterize functional noncoding elements, X-box promoter motifs, in DCG promoter regions, which thus can be targeted for mutation screening in dyslexia and ciliopathies associated with these genes.—Tammimies, K., Bieder, A., Lauter, G., Sugiaman-Trapman, D., Torchet, R., Hokkanen, M.-E., Burghoorn, J., Castrén, E., Kere, J., Tapia-Páez, I., Swoboda, P. Ciliary dyslexia candidate genes DYX1C1 and DCDC2 are regulated by Regulatory Factor (RF) X transcription factors through X-box promoter motifs. PMID:27451412

  17. Evaluation of transcription factor that regulates T helper 17 and regulatory T cells function in periodontal health and disease

    PubMed Central

    Karthikeyan, B.; Talwar; Arun, K. V.; Kalaivani, S.

    2015-01-01

    Background: The differentiation of naοve T helper (Th) cells towards Th17 and regulatory T cells (Treg) is regulated by the transcription factors retinoic acid related orphan receptor gamma transcription (RORYt) and Forkhead box p3 (Foxp3), respectively. An imbalance in the activity of these transcription factors could result in the dysregulation of Th17/Treg response. Materials and Methods: Total RNA was isolated from gingival tissue obtained from 10 patients, each from periodontally healthy and diseased groups. The gene expression of RORYt and Foxp3 was measured by real-time reverse transcription polymerization chain reaction using total RNA isolates from gingival tissues group when compared to the healthy group, while Foxp3 demonstrated a 6.68 ± 0.03 fold decrease of expression in diseased group when compared to healthy group. Conclusion: Our results indicate a functional imbalance in the Th17/Treg response in periodontal disease group when compared to the periodontally healthy group. PMID:26538941

  18. The PDZ Protein Na+/H+ Exchanger Regulatory Factor-1 (NHERF1) Regulates Planar Cell Polarity and Motile Cilia Organization

    PubMed Central

    Stolz, Donna B.; Tsang, Michael; Friedman, Peter A.; Romero, Guillermo

    2016-01-01

    Directional flow of the cerebrospinal fluid requires coordinated movement of the motile cilia of the ependymal epithelium that lines the cerebral ventricles. Here we report that mice lacking the Na+/H+ Exchanger Regulatory Factor 1 (NHERF1/Slc9a3r1, also known as EBP50) develop profound communicating hydrocephalus associated with fewer and disorganized ependymal cilia. Knockdown of NHERF1/slc9a3r1 in zebrafish embryos also causes severe hydrocephalus of the hindbrain and impaired ciliogenesis in the otic vesicle. Ultrastructural analysis did not reveal defects in the shape or organization of individual cilia. Similar phenotypes have been described in animals with deficiencies in Wnt signaling and the Planar Cell Polarity (PCP) pathway. We show that NHERF1 binds the PCP core genes Frizzled (Fzd) and Vangl. We further show that NHERF1 assembles a ternary complex with Fzd4 and Vangl2 and promotes translocation of Vangl2 to the plasma membrane, in particular to the apical surface of ependymal cells. Taken together, these results strongly support an important role for NHERF1 in the regulation of PCP signaling and the development of functional motile cilia. PMID:27055101

  19. Iron- and Quorum-sensing Signals Converge on Small Quorum-regulatory RNAs for Coordinated Regulation of Virulence Factors in Vibrio vulnificus.

    PubMed

    Wen, Yancheng; Kim, In Hwang; Kim, Kun-Soo

    2016-07-01

    Vibrio vulnificus is a marine bacterium that causes human infections resulting in high mortality. This pathogen harbors five quorum-regulatory RNAs (Qrr1-5) that affect the expression of pathogenicity genes by modulating the expression of the master regulator SmcR. The qrr genes are activated by phosphorylated LuxO to different degrees; qrr2 is strongly activated; qrr3 and qrr5 are moderately activated, and qrr1 and qrr4 are marginally activated and are the only two that do not respond to cell density-dependent regulation. Qrrs function redundantly to inhibit SmcR at low cell density and fully repress when all five are activated. In this study, we found that iron inhibits qrr expression in three distinct ways. First, the iron-ferric uptake regulator (Fur) complex directly binds to qrr promoter regions, inhibiting LuxO activation by competing with LuxO for cis-acting DNA elements. Second, qrr transcription is repressed by iron independently of Fur. Third, LuxO expression is repressed by iron independently of Fur. We also found that, under iron-limiting conditions, the five Qrrs functioned additively, not redundantly, to repress SmcR, suggesting that cells lacking iron enter a high cell density mode earlier and could thereby modulate expression of virulence factors sooner. This study suggests that iron and quorum sensing, along with their cognate regulatory circuits, are linked together in the coordinated expression of virulence factors.

  20. Regulation of Peroxisome Proliferator-Activated Receptor γ Expression by Adipocyte Differentiation and Determination Factor 1/Sterol Regulatory Element Binding Protein 1: Implications for Adipocyte Differentiation and Metabolism

    PubMed Central

    Fajas, Lluis; Schoonjans, Kristina; Gelman, Laurent; Kim, Jae B.; Najib, Jamila; Martin, Genevieve; Fruchart, Jean-Charles; Briggs, Michael; Spiegelman, Bruce M.; Auwerx, Johan

    1999-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor implicated in adipocyte differentiation and insulin sensitivity. We investigated whether PPARγ expression is dependent on the activity of adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1 (ADD-1/SREBP-1), another transcription factor associated with both adipocyte differentiation and cholesterol homeostasis. Ectopic expression of ADD-1/SREBP-1 in 3T3-L1 and HepG2 cells induced endogenous PPARγ mRNA levels. The related transcription factor SREBP-2 likewise induced PPARγ expression. In addition, cholesterol depletion, a condition known to result in proteolytic activation of transcription factors of the SREBP family, induced PPARγ expression and improved PPRE-driven transcription. The effect of the SREBPs on PPARγ expression was mediated through the PPARγ1 and -3 promoters. Both promoters contain a consensus E-box motif that mediates the regulation of the PPARγ gene by ADD-1/SREBP-1 and SREBP-2. These results suggest that PPARγ expression can be controlled by the SREBP family of transcription factors and demonstrate new interactions between transcription factors that can regulate different pathways of lipid metabolism. PMID:10409739

  1. The Regulatory T Cell Lineage Factor Foxp3 Regulates Gene Expression through Several Distinct Mechanisms Mostly Independent of Direct DNA Binding

    PubMed Central

    Andersen, Kristian G.; Hebenstreit, Daniel; Teichmann, Sarah A.; Betz, Alexander G.

    2015-01-01

    The lineage factor Foxp3 is essential for the development and maintenance of regulatory T cells, but little is known about the mechanisms involved. Here, we demonstrate that an N-terminal proline-rich interaction region is crucial for Foxp3’s function. Subdomains within this key region link Foxp3 to several independent mechanisms of transcriptional regulation. Our study suggests that Foxp3, even in the absence of its DNA-binding forkhead domain, acts as a bridge between DNA-binding interaction partners and proteins with effector function permitting it to regulate a large number of genes. We show that, in one such mechanism, Foxp3 recruits class I histone deacetylases to the promoters of target genes, counteracting activation-induced histone acetylation and thereby suppressing their expression. PMID:26107960

  2. Ubiquitin-associated Domain-containing Ubiquitin Regulatory X (UBX) Protein UBXN1 Is a Negative Regulator of Nuclear Factor κB (NF-κB) Signaling*

    PubMed Central

    Wang, Yu-Bo; Tan, Bo; Mu, Rui; Chang, Yan; Wu, Min; Tu, Hai-Qing; Zhang, Yu-Cheng; Guo, Sai-Sai; Qin, Xuan-He; Li, Tao; Li, Wei-Hua; Li, Ai-Ling; Zhang, Xue-Min; Li, Hui-Yan

    2015-01-01

    Excessive nuclear factor κB (NF-κB) activation should be precisely controlled as it contributes to multiple immune and inflammatory diseases. However, the negative regulatory mechanisms of NF-κB activation still need to be elucidated. Various types of polyubiquitin chains have proved to be involved in the process of NF-κB activation. Many negative regulators linked to ubiquitination, such as A20 and CYLD, inhibit IκB kinase activation in the NF-κB signaling pathway. To find new NF-κB signaling regulators linked to ubiquitination, we used a small scale siRNA library against 51 ubiquitin-associated domain-containing proteins and screened out UBXN1, which contained both ubiquitin-associated and ubiquitin regulatory X (UBX) domains as a negative regulator of TNFα-triggered NF-κB activation. Overexpression of UBXN1 inhibited TNFα-triggered NF-κB activation, although knockdown of UBXN1 had the opposite effect. UBX domain-containing proteins usually act as valosin-containing protein (VCP)/p97 cofactors. However, knockdown of VCP/p97 barely affected UBXN1-mediated NF-κB inhibition. At the same time, we found that UBXN1 interacted with cellular inhibitors of apoptosis proteins (cIAPs), E3 ubiquitin ligases of RIP1 in the TNFα receptor complex. UBXN1 competitively bound to cIAP1, blocked cIAP1 recruitment to TNFR1, and sequentially inhibited RIP1 polyubiquitination in response to TNFα. Therefore, our findings demonstrate that UBXN1 is an important negative regulator of the TNFα-triggered NF-κB signaling pathway by mediating cIAP recruitment independent of VCP/p97. PMID:25681446

  3. Fas-Associated Factor 1 Negatively Regulates the Antiviral Immune Response by Inhibiting Translocation of Interferon Regulatory Factor 3 to the Nucleus

    PubMed Central

    Song, Soonhwa; Lee, Jae-Jin; Kim, Hee-Jung; Lee, Jeong Yoon; Chang, Jun

    2016-01-01

    This study is designed to examine the cellular functions of human Fas-associated factor 1 (FAF1) containing multiple ubiquitin-related domains. Microarray analyses revealed that interferon-stimulated genes related to the antiviral response are significantly increased in FAF1-knockdown HeLa cells. Silencing FAF1 enhanced the poly(I·C)- and respiratory syncytial virus (RSV)-induced production of type I interferons (IFNs), the target genes of interferon regulator factor 3 (IRF3). IRF3 is a key transcription factor in IFN-β signaling responsible for the host innate immune response. This study also found that FAF1 and IRF3 physically associate with IPO5/importin-β3 and that overexpression of FAF1 reduces the interaction between IRF3 and IPO5/importin-β3. These findings suggest that FAF1 negatively regulates IRF3-mediated IFN-β production and the antiviral innate immune response by regulating nuclear translocation of IRF3. We conclude that FAF1 plays a novel role in negatively regulating virus-induced IFN-β production and the antiviral response by inhibiting the translocation of active, phosphorylated IRF3 from the cytosol to the nucleus. PMID:26811330

  4. Contributions of Two-Component Regulatory Systems, Alternative σ Factors, and Negative Regulators to Listeria monocytogenes Cold Adaptation and Cold Growth

    PubMed Central

    Chan, Yvonne C.; Hu, Yuewei; Chaturongakul, Soraya; Files, Kali D.; Bowen, Barbara M.; Boor, Kathryn J.; Wiedmann, Martin

    2011-01-01

    The ability of Listeria monocytogenes to grow at refrigeration temperatures is critical for transmission of this foodborne pathogen. We evaluated the contributions of different transcriptional regulators and two-component regulatory systems to L. monocytogenes cold adaptation and cold growth. L. monocytogenes parent strain 10403S and selected isogenic null mutants in genes encoding four alternative σ factors (sigB, sigH, sigC, and sigL), two regulators of σB (rsbT and rsbV), two negative regulators (ctsR and hrcA), and 15 two-component response regulators were grown in brain heart infusion broth at 4°C with (i) a high-concentration starting inoculum (108 CFU/ml), (ii) a low-concentration starting inoculum (102 CFU/ml), and (iii) a high-concentration starting inoculum of cold-adapted cells. With a starting inoculum of 108 CFU/ml, null mutants in genes encoding selected alternative σ factors (ΔsigH, ΔsigC, and ΔsigL), a negative regulator (ΔctsR), regulators of σB (ΔrsbT and ΔrsbV), and selected two-component response regulators (ΔlisR, Δlmo1172, and Δlmo1060) had significantly reduced growth (P < 0.05) compared with the parent strain after 12 days at 4°C. The growth defect for ΔsigL was limited and was not confirmed by optical density (OD600) measurement data. With a starting inoculum of 102 CFU/ml and after monitoring growth at 4°C over 84 days, only the ΔctsR strain had a consistent but limited growth defect; the other mutant strains had either no growth defects or limited growth defects apparent at only one or two of the nine sampling points evaluated during the 84-day growth period (ΔsigB, ΔsigC, and Δlmo1172). With a 108 CFU/ml starting inoculum of cold-adapted cells, none of the mutant strains that had a growth defect when inoculation was performed with cells pregrown at 37°C had reduced growth as compared with the parent strain after 12 days at 4°C, suggesting a specific defect in the ability of these mutant strains to adapt to 4

  5. Dissection of the regulatory mechanism of a heat-shock responsive promoter in Haloarchaea: a new paradigm for general transcription factor directed archaeal gene regulation

    PubMed Central

    Lu, Qiuhe; Han, Jing; Zhou, Ligang; Coker, James A.; DasSarma, Priya; DasSarma, Shiladitya; Xiang, Hua

    2008-01-01

    Multiple general transcription factors (GTFs), TBP and TFB, are present in many haloarchaea, and are deemed to accomplish global gene regulation. However, details and the role of GTF-directed transcriptional regulation in stress response are still not clear. Here, we report a comprehensive investigation of the regulatory mechanism of a heat-induced gene (hsp5) from Halobacterium salinarum. We demonstrated by mutation analysis that the sequences 5′ and 3′ to the core elements (TATA box and BRE) of the hsp5 promoter (Phsp5) did not significantly affect the basal and heat-induced gene expression, as long as the transcription initiation site was not altered. Moreover, the BRE and TATA box of Phsp5 were sufficient to render a nonheat-responsive promoter heat-inducible, in both Haloferax volcanii and Halobacterium sp. NRC-1. DNA–protein interactions revealed that two heat-inducible GTFs, TFB2 from H. volcanii and TFBb from Halobacterium sp. NRC-1, could specifically bind to Phsp5 likely in a temperature-dependent manner. Taken together, the heat-responsiveness of Phsp5 was mainly ascribed to the core promoter elements that were efficiently recognized by specific heat-induced GTFs at elevated temperature, thus providing a new paradigm for GTF-directed gene regulation in the domain of Archaea. PMID:18390887

  6. Differential Regulation of Interferon Regulatory Factor (IRF)-7 and IRF-9 Gene Expression in the Central Nervous System during Viral Infection

    PubMed Central

    Ousman, Shalina S.; Wang, Jianping; Campbell, Iain L.

    2005-01-01

    Interferon regulatory factors (IRFs) are a family of transcription factors involved in the regulation of the interferons (IFNs) and other genes that may have an essential role in antiviral defense in the central nervous system, although this is currently not well defined. Therefore, we examined the regulation of IRF gene expression in the brain during viral infection. Several IRF genes (IRF-2, -3, -5, -7, and -9) were expressed at low levels in the brain of uninfected mice. Following intracranial infection with lymphocytic choriomeningitis virus (LCMV), expression of the IRF-7 and IRF-9 genes increased significantly by day 2. IRF-7 and IRF-9 gene expression in the brain was widespread at sites of LCMV infection, with the highest levels in infiltrating mononuclear cells, microglia/macrophages, and neurons. IRF-7 and IRF-9 gene expression was increased in LCMV-infected brain from IFN-γ knockout (KO) but not IFN-α/βR KO animals. In the brain, spleen, and liver or cultured glial and spleen cells, IRF-7 but not IRF-9 gene expression increased with delayed kinetics in the absence of STAT1 but not STAT2 following LCMV infection or IFN-α treatment, respectively. The stimulation of IRF-7 gene expression by IFN-α in glial cell culture was prevented by cycloheximide. Thus, (i) many of the IRF genes were expressed constitutively in the mouse brain; (ii) the IRF-7 and IRF-9 genes were upregulated during viral infection, a process dependent on IFN-α/β but not IFN-γ; and (iii) IRF-7 but not IRF-9 gene expression can be stimulated in a STAT1-independent but STAT2-dependent fashion via unidentified indirect pathways coupled to the activation of the IFN-α/β receptor. PMID:15919906

  7. The Pseudomonas aeruginosa PAO1 Two-Component Regulator CarSR Regulates Calcium Homeostasis and Calcium-Induced Virulence Factor Production through Its Regulatory Targets CarO and CarP

    PubMed Central

    Guragain, Manita; King, Michelle M.; Williamson, Kerry S.; Pérez-Osorio, Ailyn C.; Akiyama, Tatsuya; Khanam, Sharmily

    2016-01-01

    ABSTRACT Pseudomonas aeruginosa is an opportunistic human pathogen that causes severe, life-threatening infections in patients with cystic fibrosis (CF), endocarditis, wounds, or artificial implants. During CF pulmonary infections, P. aeruginosa often encounters environments where the levels of calcium (Ca2+) are elevated. Previously, we showed that P. aeruginosa responds to externally added Ca2+ through enhanced biofilm formation, increased production of several secreted virulence factors, and by developing a transient increase in the intracellular Ca2+ level, followed by its removal to the basal submicromolar level. However, the molecular mechanisms responsible for regulating Ca2+-induced virulence factor production and Ca2+ homeostasis are not known. Here, we characterized the genome-wide transcriptional response of P. aeruginosa to elevated [Ca2+] in both planktonic cultures and biofilms. Among the genes induced by CaCl2 in strain PAO1 was an operon containing the two-component regulator PA2656-PA2657 (here called carS and carR), while the closely related two-component regulators phoPQ and pmrAB were repressed by CaCl2 addition. To identify the regulatory targets of CarSR, we constructed a deletion mutant of carR and performed transcriptome analysis of the mutant strain at low and high [Ca2+]. Among the genes regulated by CarSR in response to CaCl2 are the predicted periplasmic OB-fold protein, PA0320 (here called carO), and the inner membrane-anchored five-bladed β-propeller protein, PA0327 (here called carP). Mutations in both carO and carP affected Ca2+ homeostasis, reducing the ability of P. aeruginosa to export excess Ca2+. In addition, a mutation in carP had a pleotropic effect in a Ca2+-dependent manner, altering swarming motility, pyocyanin production, and tobramycin sensitivity. Overall, the results indicate that the two-component system CarSR is responsible for sensing high levels of external Ca2+ and responding through its regulatory targets that

  8. Factors associated with regulatory action involving investigation of illnesses associated with Shiga toxin-producing Escherichia coli in products regulated by the Food Safety and Inspection Service.

    PubMed

    Green, Alice L; Seys, Scott; Douris, Aphrodite; Levine, Jeoff; Robertson, Kis

    2014-07-01

    We described characteristics of the Escherichia coli O157 and Escherichia coli non-O157 illness investigations conducted by the United States Department of Agriculture's Food Safety and Inspection Service (FSIS) during the 5-year period from 2006 through 2010. We created a multivariable logistic regression model to determine characteristics of these investigations that were associated with FSIS regulatory action, which was defined as having occurred if a product recall occurred or if FSIS personnel performed an environmental health assessment (Food Safety Assessment) at the implicated establishment. During this period, FSIS took regulatory action in 38 of 88 (43%) investigations. Illness investigations in which FoodNet states were involved were more likely to result in regulatory action. Illness investigations in which state and local traceback, or FSIS traceback occurred were more likely to result in regulatory action. Reasons for lack of action included evidence of cross-contamination after the product left a regulated establishment, delayed notification, lack of epidemiological information, and insufficient product information. PMID:24826872

  9. Circuitry and dynamics of human transcription factor regulatory networks

    PubMed Central

    Neph, Shane; Stergachis, Andrew B.; Reynolds, Alex; Sandstrom, Richard; Borenstein, Elhanan; Stamatoyannopoulos, John A.

    2012-01-01

    SUMMARY The combinatorial cross-regulation of hundreds of sequence-specific transcription factors defines a regulatory network that underlies cellular identity and function. Here we use genome-wide maps of in vivo DNaseI footprints to assemble an extensive core human regulatory network comprising connections among 475 sequence-specific transcription factors, and to analyze the dynamics of these connections across 41 diverse cell and tissue types. We find that human transcription factor networks are highly cell-selective and are driven by cohorts of factors that include regulators with previously unrecognized roles in control of cellular identity. Moreover, we identify many widely expressed factors that impact transcriptional regulatory networks in a cell-selective manner. Strikingly, in spite of their inherent diversity, all cell type regulatory networks independently converge on a common architecture that closely resembles the topology of living neuronal networks. Together, our results provide the first description of the circuitry, dynamics, and organizing principles of the human transcription factor regulatory network. PMID:22959076

  10. Transcription factor trapping by RNA in gene regulatory elements.

    PubMed

    Sigova, Alla A; Abraham, Brian J; Ji, Xiong; Molinie, Benoit; Hannett, Nancy M; Guo, Yang Eric; Jangi, Mohini; Giallourakis, Cosmas C; Sharp, Phillip A; Young, Richard A

    2015-11-20

    Transcription factors (TFs) bind specific sequences in promoter-proximal and -distal DNA elements to regulate gene transcription. RNA is transcribed from both of these DNA elements, and some DNA binding TFs bind RNA. Hence, RNA transcribed from regulatory elements may contribute to stable TF occupancy at these sites. We show that the ubiquitously expressed TF Yin-Yang 1 (YY1) binds to both gene regulatory elements and their associated RNA species across the entire genome. Reduced transcription of regulatory elements diminishes YY1 occupancy, whereas artificial tethering of RNA enhances YY1 occupancy at these elements. We propose that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive-feedback loop that contributes to the stability of gene expression programs.

  11. Regulatory coding of lymphoid lineage choice by hematopoietic transcription factors

    NASA Technical Reports Server (NTRS)

    Warren, Luigi A.; Rothenberg, Ellen V.

    2003-01-01

    During lymphopoiesis, precursor cells negotiate a complex regulatory space, defined by the levels of several competing and cross-regulating transcription factors, before arriving at stable states of commitment to the B-, T- and NK-specific developmental programs. Recent perturbation experiments provide evidence that this space has three major axes, corresponding to the PU.1 versus GATA-1 balance, the intensity of Notch signaling through the CSL pathway, and the ratio of E-box transcription factors to their Id protein antagonists.

  12. Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs.

    PubMed

    Kashyap, Vasundhra; Rezende, Naira C; Scotland, Kymora B; Shaffer, Sebastian M; Persson, Jenny Liao; Gudas, Lorraine J; Mongan, Nigel P

    2009-09-01

    Coordinated transcription factor networks have emerged as the master regulatory mechanisms of stem cell pluripotency and differentiation. Many stem cell-specific transcription factors, including the pluripotency transcription factors, OCT4, NANOG, and SOX2 function in combinatorial complexes to regulate the expression of loci, which are involved in embryonic stem (ES) cell pluripotency and cellular differentiation. This review will address how these pathways form a reciprocal regulatory circuit whereby the equilibrium between stem cell self-renewal, proliferation, and differentiation is in perpetual balance. We will discuss how distinct epigenetic repressive pathways involving polycomb complexes, DNA methylation, and microRNAs cooperate to reduce transcriptional noise and to prevent stochastic and aberrant induction of differentiation. We will provide a brief overview of how these networks cooperate to modulate differentiation along hematopoietic and neuronal lineages. Finally, we will describe how aberrant functioning of components of the stem cell regulatory network may contribute to malignant transformation of adult stem cells and the establishment of a "cancer stem cell" phenotype and thereby underlie multiple types of human malignancies.

  13. The cellular distribution of Na+/H+ exchanger regulatory factor 1 is determined by the PDZ-I domain and regulates the malignant progression of breast cancer

    PubMed Central

    Du, Guifang; Gu, Yanan; Hao, Chengcheng; Yuan, Zhu; He, Junqi; Jiang, Wen G.; Cheng, Shan

    2016-01-01

    The oncogenic role of ectopic expression of Na+/H+ exchanger regulatory factor 1 (NHERF1) was recently suggested. Here, we show that NHERF1 was upregulated in high grades compared with low grades. Increased NHERF1 expression was correlated with poor prognosis and poor survival. NHERF1 expression was higher in the nucleus of cancer cells than in contiguous non- mammary epithelial cells. A novel mutation, namely NHERF1 Y24S, was identified in human breast cancer tissues and shown to correspond to a conserved residue in the PDZ-I domain of NHERF1. Truncation and mutation of the PDZ-I domain of NHERF1 increased the nuclear distribution of the NHERF1 protein, and this redistribution was associated with the malignant phenotype of breast cancer cells, including growth, migration, and adhesion. The present results suggest a role for NHERF1 in the progression of breast cancer mediated by the nuclear distribution of the NHERF1 protein, as determined by the truncation or key site mutation of the PDZ-I domain. PMID:27097111

  14. Uncovering Transcriptional Regulatory Networks by Sparse Bayesian Factor Model

    NASA Astrophysics Data System (ADS)

    Meng, Jia; Zhang, Jianqiu(Michelle); Qi, Yuan(Alan); Chen, Yidong; Huang, Yufei

    2010-12-01

    The problem of uncovering transcriptional regulation by transcription factors (TFs) based on microarray data is considered. A novel Bayesian sparse correlated rectified factor model (BSCRFM) is proposed that models the unknown TF protein level activity, the correlated regulations between TFs, and the sparse nature of TF-regulated genes. The model admits prior knowledge from existing database regarding TF-regulated target genes based on a sparse prior and through a developed Gibbs sampling algorithm, a context-specific transcriptional regulatory network specific to the experimental condition of the microarray data can be obtained. The proposed model and the Gibbs sampling algorithm were evaluated on the simulated systems, and results demonstrated the validity and effectiveness of the proposed approach. The proposed model was then applied to the breast cancer microarray data of patients with Estrogen Receptor positive ([InlineEquation not available: see fulltext.]) status and Estrogen Receptor negative ([InlineEquation not available: see fulltext.]) status, respectively.

  15. Expression profile of carp IFN correlate with the up-regulation of interferon regulatory factor-1 (IRF-1) in vivo and in vitro: the pivotal molecules in antiviral defense.

    PubMed

    Shan, Shijuan; Qi, Chenchen; Zhu, Yaoyao; Li, Hua; An, Liguo; Yang, Guiwen

    2016-05-01

    Interferon regulatory factors (IRFs) are a family of transcription factors that mediate the transcriptional regulation of interferon (IFN) genes and IFN-inducible genes. In this study, IRF-1 gene is cloned from the common carp, Cyprinus carpio L., named CcIRF-1. The full-length cDNA of CcIRF-1 is 1427 bp, including an open reading frame of 861 bp encoding a protein of 286 amino acids. The putative CcIRF-1 is characterized by a conserved DNA-binding domain and includes a signature of six conserved tryptophan residues. The genomic sequence of CcIRF-1 is described, which consists of 9 exons and 8 introns. The sequence analysis shows that CcIRF-1 is clustered into IRF-1 subfamily, and has the closest relationship with the zebrafish IRF-1. CcIRF-1 is found constitutively expressed in different organs of healthy common carp. The main findings are that CcIRF-1 is up-regulated following stimulation with poly(I:C) in all tested tissues. Moreover, the downstream gene of IRF-1 - IFN is found to be correlated with the up-regulation of IRF-1 after injection with poly(I:C). Furthermore, we also isolate the peripheral blood leukocytes (PBLs) and find that there is a relevance between the expression profile of CcIRF-1 and IFN in poly(I:C) stimulated PBLs. PMID:26993613

  16. 76 FR 8940 - Regulatory Review of Existing DOT Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-16

    ... regulation and regulatory review (76 FR 3821, 1/21/11). Executive Order 13563 reaffirms and builds upon... Planning and Review,'' (58 FR 51735, 10/4/1993), by requiring Federal agencies to design cost- effective... accordance with the Department's 1979 Regulatory Policies and Procedures (44 FR 11034, 2/26/1979),...

  17. Bayesian non-negative factor analysis for reconstructing transcription factor mediated regulatory networks

    PubMed Central

    2011-01-01

    Background Transcriptional regulation by transcription factor (TF) controls the time and abundance of mRNA transcription. Due to the limitation of current proteomics technologies, large scale measurements of protein level activities of TFs is usually infeasible, making computational reconstruction of transcriptional regulatory network a difficult task. Results We proposed here a novel Bayesian non-negative factor model for TF mediated regulatory networks. Particularly, the non-negative TF activities and sample clustering effect are modeled as the factors from a Dirichlet process mixture of rectified Gaussian distributions, and the sparse regulatory coefficients are modeled as the loadings from a sparse distribution that constrains its sparsity using knowledge from database; meantime, a Gibbs sampling solution was developed to infer the underlying network structure and the unknown TF activities simultaneously. The developed approach has been applied to simulated system and breast cancer gene expression data. Result shows that, the proposed method was able to systematically uncover TF mediated transcriptional regulatory network structure, the regulatory coefficients, the TF protein level activities and the sample clustering effect. The regulation target prediction result is highly coordinated with the prior knowledge, and sample clustering result shows superior performance over previous molecular based clustering method. Conclusions The results demonstrated the validity and effectiveness of the proposed approach in reconstructing transcriptional networks mediated by TFs through simulated systems and real data. PMID:22166063

  18. Regulations.gov Federal Regulatory Portal

    ERIC Educational Resources Information Center

    Ashlin, John; Davis, Richard; Dalecky, Selene; Grasso, Richard; LaPlant, Lisa; Morales, Oscar; Nelson, Jennifer; White, Michael; Whitt, Sharon A.

    2004-01-01

    The Regulations.gov Online Rulemaking Project is 1 of the 24 e-Government Initiatives on the President's Management Agenda (PMA), which was announced by the White House in 2001. The Regulations.gov Web site is the central electronic rulemaking portal for the federal government. Through a single Web site, citizens can search, view, and comment on…

  19. Factors regulating cheese shreddability.

    PubMed

    Childs, J L; Daubert, C R; Stefanski, L; Foegeding, E A

    2007-05-01

    Two sets of cheeses were evaluated to determine factors that affect shred quality. The first set of cheeses was made up of 3 commercial cheeses, Monterey Jack, Mozzarella, and process. The second set of cheeses was made up of 3 Mozzarella cheeses with varying levels of protein and fat at a constant moisture content. A shred distribution of long shreds, short shreds, and fines was obtained by shredding blocks of cheese in a food processor. A probe tack test was used to directly measure adhesion of the cheese to a stainless-steel surface. Surface energy was determined based on the contact angles of standard liquids, and rheological characterization was done by a creep and recovery test. Creep and recovery data were used to calculate the maximum and initial compliance and retardation time. Shredding defects of fines and adhesion to the blade were observed in commercial cheeses. Mozzarella did not adhere to the blade but did produce the most fines. Both Monterey Jack and process cheeses adhered to the blade and produced fines. Furthermore, adherence to the blade was correlated positively with tack energy and negatively with retardation time. Mozzarella cheese, with the highest fat and lowest protein contents, produced the most fines but showed little adherence to the blade, even though tack energy increased with fat content. Surface energy was not correlated with shredding defects in either group of cheese. Rheological properties and tack energy appeared to be the key factors involved in shredding defects. PMID:17430914

  20. Regulation of the interferon regulatory factor-8 (IRF-8) tumor suppressor gene by the signal transducer and activator of transcription 5 (STAT5) transcription factor in chronic myeloid leukemia.

    PubMed

    Waight, Jeremy D; Banik, Debarati; Griffiths, Elizabeth A; Nemeth, Michael J; Abrams, Scott I

    2014-05-30

    Tyrosine kinase inhibitors such as imatinib can effectively target the BCR-ABL oncoprotein in a majority of patients with chronic myeloid leukemia (CML). Unfortunately, some patients are resistant primarily to imatinib and others develop drug resistance, prompting interest in the discovery of new drug targets. Although much of this resistance can be explained by the presence of mutations within the tyrosine kinase domain of BCR-ABL, such mutations are not universally identified. Interferon regulatory factor-8 (IRF-8) is a transcription factor that is essential for myelopoiesis. Depressed IRF-8 levels are observed in a majority of CML patients and Irf-8(-/-) mice exhibit a CML-like disease. The underlying mechanisms of IRF-8 loss in CML are unknown. We hypothesized that BCR-ABL suppresses transcription of IRF-8 through STAT5, a proximal BCR-ABL target. Treatment of primary cells from newly diagnosed CML patients in chronic phase as well as BCR-ABL(+) cell lines with imatinib increased IRF-8 transcription. Furthermore, IRF-8 expression in cell line models was necessary for imatinib-induced antitumor responses. We have demonstrated that IRF-8 is a direct target of STAT5 and that silencing of STAT5 induced IRF-8 expression. Conversely, activating STAT5 suppressed IRF-8 transcription. Finally, we showed that STAT5 blockade using a recently discovered antagonist increased IRF-8 expression in patient samples. These data reveal a previously unrecognized BCR-ABL-STAT5-IRF-8 network, which widens the repertoire of potentially new anti-CML targets.

  1. Autoimmunity: regulatory B cells--IL-35 and IL-21 regulate the regulators.

    PubMed

    Tedder, Thomas F; Leonard, Warren J

    2014-08-01

    IL-21 regulates the activity and number of IL-10-producing regulatory B cells (B10 cells) that modulate immune responses and limit diverse autoimmune diseases. A new study demonstrates that IL-35 has a similar function. Identifying regulatory circuits that control B10-cell function in vivo might open the door to future treatments for autoimmune diseases.

  2. Innovative farmers and regulatory gatekeepers: Genetically modified crops regulation and adoption in developing countries.

    PubMed

    Sinebo, Woldeyesus; Maredia, Karim

    2016-01-01

    The regulation of genetically modified (GM) crops is a topical issue in agriculture and environment over the past 2 decades. The objective of this paper is to recount regulatory and adoption practices in some developing countries that have successfully adopted GM crops so that aspiring countries may draw useful lessons and best practices for their biosafatey regulatory regimes. The first 11 mega-GM crops growing countries each with an area of more than one million hectares in 2014 were examined. Only five out of the 11 countries had smooth and orderly adoption of these crops as per the regulatory requirement of each country. In the remaining 6 countries (all developing countries), GM crops were either introduced across borders without official authorization, released prior to regulatory approval or unapproved seeds were sold along with the approved ones in violation to the existing regulations. Rapid expansion of transgenic crops over the past 2 decades in the developing world was a result of an intense desire by farmers to adopt these crops irrespective of regulatory roadblocks. Lack of workable biosafety regulatory system and political will to support GM crops encouraged unauthorized access to GM crop varieties. In certain cases, unregulated access in turn appeared to result in the adoption of substandard or spurious technology which undermined performance and productivity. An optimal interaction among the national agricultural innovation systems, biosafety regulatory bodies, biotech companies and high level policy makers is vital in making a workable regulated progress in the adoption of GM crops. Factoring forgone opportunities to farmers to benefit from GM crops arising from overregulation into biosafety risk analysis and decision making is suggested. Building functional biosafety regulatory systems that balances the needs of farmers to access and utilize the GM technology with the regulatory imperatives to ensure adequate safety to the environment and human

  3. Innovative farmers and regulatory gatekeepers: Genetically modified crops regulation and adoption in developing countries.

    PubMed

    Sinebo, Woldeyesus; Maredia, Karim

    2016-01-01

    The regulation of genetically modified (GM) crops is a topical issue in agriculture and environment over the past 2 decades. The objective of this paper is to recount regulatory and adoption practices in some developing countries that have successfully adopted GM crops so that aspiring countries may draw useful lessons and best practices for their biosafatey regulatory regimes. The first 11 mega-GM crops growing countries each with an area of more than one million hectares in 2014 were examined. Only five out of the 11 countries had smooth and orderly adoption of these crops as per the regulatory requirement of each country. In the remaining 6 countries (all developing countries), GM crops were either introduced across borders without official authorization, released prior to regulatory approval or unapproved seeds were sold along with the approved ones in violation to the existing regulations. Rapid expansion of transgenic crops over the past 2 decades in the developing world was a result of an intense desire by farmers to adopt these crops irrespective of regulatory roadblocks. Lack of workable biosafety regulatory system and political will to support GM crops encouraged unauthorized access to GM crop varieties. In certain cases, unregulated access in turn appeared to result in the adoption of substandard or spurious technology which undermined performance and productivity. An optimal interaction among the national agricultural innovation systems, biosafety regulatory bodies, biotech companies and high level policy makers is vital in making a workable regulated progress in the adoption of GM crops. Factoring forgone opportunities to farmers to benefit from GM crops arising from overregulation into biosafety risk analysis and decision making is suggested. Building functional biosafety regulatory systems that balances the needs of farmers to access and utilize the GM technology with the regulatory imperatives to ensure adequate safety to the environment and human

  4. When are studies adequate for regulatory purposes? View of one regulated.

    PubMed Central

    Bundy, M

    1981-01-01

    The question of adequacy of studies for regulatory purposes has been debated for years. Nine questions need answers to determine adequacy: (1) Does the study deal with a defined problem or a defined segment of it? (2) Do the study data justify the conclusions drawn? (3) Were appropriate statistical analyses used? Is there evidence of bias versus objectivity in the collection or analysis of data? (4) Does the study support, supplement (or complement) or refute information in the literature? Is the study truly new information? (5) Does the study conform to the Interagency Regulatory Liaison Group (IRLG) guidelines for documentation of Epidemiologic Studies? (6) Does the study stand up to peer review? (7) Have other investigators been able to confirm the findings by duplicating the study? (8) Is the study acceptable or can it be made acceptable for publication in a reputable scientific journal? (9) Is the problem of such magnitude or significance that regulation is required? Because there is no such thing as a risk-free environment or absolute safety and there is no definitive "yes" answer to each of the questions, the regulated would hope--yes, insist--that the regulators exercise judgement with great skill in promulgation of rules or regulations. The application of safety factors and the determination of acceptable levels of risk should be social decisions. A discussion of instances where the "regulated" believes that studies have not been adequate, or others habe been ignored, or misinterpreted for regulatory purposes in included.A method of settling controversial questions to eliminate the litigation route is proposed. Judgment which is so often eliminated by regulation needs to find its way back into the regulatory process. The regulated recognize the need for regulations. However, when these regulations are based on less than good scientific judgment, harm will be done to the regulatory process itself in the long run. PMID:7333262

  5. Anti-Sigma Factors in E. coli: Common Regulatory Mechanisms Controlling Sigma Factors Availability

    PubMed Central

    Treviño-Quintanilla, Luis Gerardo; Freyre-González, Julio Augusto; Martínez-Flores, Irma

    2013-01-01

    In bacteria, transcriptional regulation is a key step in cellular gene expression. All bacteria contain a core RNA polymerase that is catalytically competent but requires an additional σ factor for specific promoter recognition and correct transcriptional initiation. The RNAP core is not able to selectively bind to a given σ factor. In contrast, different σ factors have different affinities for the RNAP core. As a consequence, the concentration of alternate σ factors requires strict regulation in order to properly control the delicate interplay among them, which favors the competence for the RNAP core. This control is archived by different σ/anti-σ controlling mechanisms that shape complex regulatory networks and cascades, and enable the response to sudden environmental cues, whose global understanding is a current challenge for systems biology. Although there have been a number of excellent studies on each of these σ/anti-σ post-transcriptional regulatory systems, no comprehensive comparison of these mechanisms in a single model organism has been conducted. Here, we survey all these systems in E. coli dissecting and analyzing their inner workings and highlightin their differences. Then, following an integral approach, we identify their commonalities and outline some of the principles exploited by the cell to effectively and globally reprogram the transcriptional machinery. These principles provide guidelines for developing biological synthetic circuits enabling an efficient and robust response to sudden stimuli. PMID:24396271

  6. Na+/H+ exchanger regulatory factor 1 overexpression-dependent increase of cytoskeleton organization is fundamental in the rescue of F508del cystic fibrosis transmembrane conductance regulator in human airway CFBE41o- cells.

    PubMed

    Favia, Maria; Guerra, Lorenzo; Fanelli, Teresa; Cardone, Rosa Angela; Monterisi, Stefania; Di Sole, Francesca; Castellani, Stefano; Chen, Mingmin; Seidler, Ursula; Reshkin, Stephan Joel; Conese, Massimo; Casavola, Valeria

    2010-01-01

    We have demonstrated that Na(+)/H(+) exchanger regulatory factor 1 (NHERF1) overexpression in CFBE41o- cells induces a significant redistribution of F508del cystic fibrosis transmembrane conductance regulator (CFTR) from the cytoplasm to the apical membrane and rescues CFTR-dependent chloride secretion. Here, we observe that CFBE41o- monolayers displayed substantial disassembly of actin filaments and that overexpression of wild-type (wt) NHERF1 but not NHERF1-Delta Ezrin-Radixin-Moesin (ERM) increased F-actin assembly and organization. Furthermore, the dominant-negative band Four-point one, Ezrin, Radixin, Moesin homology (FERM) domain of ezrin reversed the wt NHERF1 overexpression-induced increase in both F-actin and CFTR-dependent chloride secretion. wt NHERF1 overexpression enhanced the interaction between NHERF1 and both CFTR and ezrin and between ezrin and actin and the overexpression of wt NHERF1, but not NHERF1-DeltaERM, also increased the phosphorylation of ezrin in the apical region of the cell monolayers. Furthermore, wt NHERF1 increased RhoA activity and transfection of constitutively active RhoA in CFBE41o- cells was sufficient to redistribute phospho-ezrin to the membrane fraction and rescue both the F-actin content and the CFTR-dependent chloride efflux. Rho kinase (ROCK) inhibition, in contrast, reversed the wt NHERF1 overexpression-induced increase of membrane phospho-ezrin, F-actin content, and CFTR-dependent secretion. We conclude that NHERF1 overexpression in CFBE41o- rescues CFTR-dependent chloride secretion by forming the multiprotein complex RhoA-ROCK-ezrin-actin that, via actin cytoskeleton reorganization, tethers F508del CFTR to the cytoskeleton stabilizing it on the apical membrane.

  7. Na+/H+ Exchanger Regulatory Factor 1 Overexpression-dependent Increase of Cytoskeleton Organization Is Fundamental in the Rescue of F508del Cystic Fibrosis Transmembrane Conductance Regulator in Human Airway CFBE41o- Cells

    PubMed Central

    Favia, Maria; Guerra, Lorenzo; Fanelli, Teresa; Cardone, Rosa Angela; Monterisi, Stefania; Di Sole, Francesca; Castellani, Stefano; Chen, Mingmin; Seidler, Ursula; Reshkin, Stephan Joel; Conese, Massimo

    2010-01-01

    We have demonstrated that Na+/H+ exchanger regulatory factor 1 (NHERF1) overexpression in CFBE41o- cells induces a significant redistribution of F508del cystic fibrosis transmembrane conductance regulator (CFTR) from the cytoplasm to the apical membrane and rescues CFTR-dependent chloride secretion. Here, we observe that CFBE41o- monolayers displayed substantial disassembly of actin filaments and that overexpression of wild-type (wt) NHERF1 but not NHERF1-Δ Ezrin-Radixin-Moesin (ERM) increased F-actin assembly and organization. Furthermore, the dominant-negative band Four-point one, Ezrin, Radixin, Moesin homology (FERM) domain of ezrin reversed the wt NHERF1 overexpression-induced increase in both F-actin and CFTR-dependent chloride secretion. wt NHERF1 overexpression enhanced the interaction between NHERF1 and both CFTR and ezrin and between ezrin and actin and the overexpression of wt NHERF1, but not NHERF1-ΔERM, also increased the phosphorylation of ezrin in the apical region of the cell monolayers. Furthermore, wt NHERF1 increased RhoA activity and transfection of constitutively active RhoA in CFBE41o- cells was sufficient to redistribute phospho-ezrin to the membrane fraction and rescue both the F-actin content and the CFTR-dependent chloride efflux. Rho kinase (ROCK) inhibition, in contrast, reversed the wt NHERF1 overexpression-induced increase of membrane phospho-ezrin, F-actin content, and CFTR-dependent secretion. We conclude that NHERF1 overexpression in CFBE41o- rescues CFTR-dependent chloride secretion by forming the multiprotein complex RhoA-ROCK-ezrin-actin that, via actin cytoskeleton reorganization, tethers F508del CFTR to the cytoskeleton stabilizing it on the apical membrane. PMID:19889841

  8. Foxo transcription factors control regulatory T cell development and function

    PubMed Central

    Kerdiles, Yann M.; Stone, Erica L.; Beisner, Daniel L.; McGargill, Maureen A.; Ch'en, Irene L.; Stockmann, Christian; Katayama, Carol D.; Hedrick, Stephen M.

    2010-01-01

    SUMMARY Foxo transcription factors integrate extrinsic signals to regulate cell division, differentiation and survival, and specific functions of lymphoid and myeloid cells. Here we showed the absence of Foxo1 severely curtailed the development of Foxp3+ regulatory T (Treg) cells, and those that developed were nonfunctional in vivo. The loss of function included diminished CTLA-4 receptor expression as the Ctla4 gene was a direct target of Foxo1. T cell specific loss of Foxo1 resulted in exocrine pancreatitis, hind limb paralysis, multi-organ lymphocyte infiltration, anti-nuclear antibodies and expanded germinal centers. Foxo-mediated control over Treg cell specification was further revealed by the inability of TGF-β cytokine to suppress T-bet transcription factor in the absence of Foxo1, resulting in IFN-γ-secretion. In addition the absence of Foxo3 exacerbated the effects of the loss of Foxo1. Thus, Foxo transcription factors guide the contingencies of T cell differentiation and specific functions of effector cell populations. PMID:21167754

  9. Asymmetric Regulation of Peripheral Genes by Two Transcriptional Regulatory Networks

    PubMed Central

    Li, Jing-Ru; Suzuki, Takahiro; Nishimura, Hajime; Kishima, Mami; Maeda, Shiori; Suzuki, Harukazu

    2016-01-01

    Transcriptional regulatory network (TRN) reconstitution and deconstruction occur simultaneously during reprogramming; however, it remains unclear how the starting and targeting TRNs regulate the induction and suppression of peripheral genes. Here we analyzed the regulation using direct cell reprogramming from human dermal fibroblasts to monocytes as the platform. We simultaneously deconstructed fibroblastic TRN and reconstituted monocytic TRN; monocytic and fibroblastic gene expression were analyzed in comparison with that of fibroblastic TRN deconstruction only or monocytic TRN reconstitution only. Global gene expression analysis showed cross-regulation of TRNs. Detailed analysis revealed that knocking down fibroblastic TRN positively affected half of the upregulated monocytic genes, indicating that intrinsic fibroblastic TRN interfered with the expression of induced genes. In contrast, reconstitution of monocytic TRN showed neutral effects on the majority of fibroblastic gene downregulation. This study provides an explicit example that demonstrates how two networks together regulate gene expression during cell reprogramming processes and contributes to the elaborate exploration of TRNs. PMID:27483142

  10. Biosynthesis of nitric oxide activates iron regulatory factor in macrophages.

    PubMed

    Drapier, J C; Hirling, H; Wietzerbin, J; Kaldy, P; Kühn, L C

    1993-09-01

    Biosynthesis of nitric oxide (NO) from L-arginine modulates activity of iron-dependent enzymes, including mitochondrial acontiase, an [Fe-S] protein. We examined the effect of NO on the activity of iron regulatory factor (IRF), a cytoplasmic protein which modulates both ferritin mRNA translation and transferrin receptor mRNA stability by binding to specific mRNA sequences called iron responsive elements (IREs). Murine macrophages were activated with interferon-gamma and lipopolysaccharide to induce NO synthase activity and cultured in the presence or absence of NG-substituted analogues of L-arginine which served as selective inhibitors of NO synthesis. Measurement of the nitrite concentration in the culture medium was taken as an index of NO production. Mitochondria-free cytosols were then prepared and aconitase activity as well as IRE binding activity and induction of IRE binding activity were correlated and depended on NO synthesis after IFN-gamma and/or LPS stimulation. Authentic NO gas as well as the NO-generating compound 3-morpholinosydnonimine (SIN-1) also conversely modulated aconitase and IRE binding activities of purified recombinant IRF. These results provide evidence that endogenously produced NO may modulate the post-transcriptional regulation of genes involved in iron homeostasis and support the hypothesis that the [Fe-S] cluster of IRF mediates iron-dependent regulation. PMID:7504626

  11. 21 CFR 16.24 - Regulatory hearing required by the act or a regulation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... regulation. 16.24 Section 16.24 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....24 Regulatory hearing required by the act or a regulation. (a) A regulatory hearing required by the act or a regulation under § 16.1(b) will be initiated in the same manner as other regulatory...

  12. 21 CFR 16.24 - Regulatory hearing required by the act or a regulation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... regulation. 16.24 Section 16.24 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....24 Regulatory hearing required by the act or a regulation. (a) A regulatory hearing required by the act or a regulation under § 16.1(b) will be initiated in the same manner as other regulatory...

  13. Statistical inference of regulatory networks for circadian regulation.

    PubMed

    Aderhold, Andrej; Husmeier, Dirk; Grzegorczyk, Marco

    2014-06-01

    We assess the accuracy of various state-of-the-art statistics and machine learning methods for reconstructing gene and protein regulatory networks in the context of circadian regulation. Our study draws on the increasing availability of gene expression and protein concentration time series for key circadian clock components in Arabidopsis thaliana. In addition, gene expression and protein concentration time series are simulated from a recently published regulatory network of the circadian clock in A. thaliana, in which protein and gene interactions are described by a Markov jump process based on Michaelis-Menten kinetics. We closely follow recent experimental protocols, including the entrainment of seedlings to different light-dark cycles and the knock-out of various key regulatory genes. Our study provides relative network reconstruction accuracy scores for a critical comparative performance evaluation, and sheds light on a series of highly relevant questions: it quantifies the influence of systematically missing values related to unknown protein concentrations and mRNA transcription rates, it investigates the dependence of the performance on the network topology and the degree of recurrency, it provides deeper insight into when and why non-linear methods fail to outperform linear ones, it offers improved guidelines on parameter settings in different inference procedures, and it suggests new hypotheses about the structure of the central circadian gene regulatory network in A. thaliana. PMID:24864301

  14. Statistical inference of regulatory networks for circadian regulation.

    PubMed

    Aderhold, Andrej; Husmeier, Dirk; Grzegorczyk, Marco

    2014-06-01

    We assess the accuracy of various state-of-the-art statistics and machine learning methods for reconstructing gene and protein regulatory networks in the context of circadian regulation. Our study draws on the increasing availability of gene expression and protein concentration time series for key circadian clock components in Arabidopsis thaliana. In addition, gene expression and protein concentration time series are simulated from a recently published regulatory network of the circadian clock in A. thaliana, in which protein and gene interactions are described by a Markov jump process based on Michaelis-Menten kinetics. We closely follow recent experimental protocols, including the entrainment of seedlings to different light-dark cycles and the knock-out of various key regulatory genes. Our study provides relative network reconstruction accuracy scores for a critical comparative performance evaluation, and sheds light on a series of highly relevant questions: it quantifies the influence of systematically missing values related to unknown protein concentrations and mRNA transcription rates, it investigates the dependence of the performance on the network topology and the degree of recurrency, it provides deeper insight into when and why non-linear methods fail to outperform linear ones, it offers improved guidelines on parameter settings in different inference procedures, and it suggests new hypotheses about the structure of the central circadian gene regulatory network in A. thaliana.

  15. Roles of Interferon Regulatory Factors in Chronic Myeloid Leukemia.

    PubMed

    Manzella, Livia; Tirrò, Elena; Pennisi, Maria Stella; Massimino, Michele; Stella, Stefania; Romano, Chiara; Vitale, Silvia Rita; Vigneri, Paolo

    2016-01-01

    The Interferon Regulatory Factor (IRF) family consists of multiple transcription factors involved in the regulation of a variety of biological processes. Originally identified as transcriptional regulators of the type I interferon system, IRFs play a pivotal role in adaptive immunity, cell growth, differentiation and tumorigenesis. Hence, understanding IRF biology has important implications in the host response to cancer development and progression. Many lines of evidence suggest that different IRFs are involved in the pathogenesis of Chronic Myeloid Leukemia (CML), a myeloproliferative disorder caused by the BCR-ABL oncoprotein. BCR-ABL displays constitutive tyrosine kinase activity that favors cell proliferation, inhibits apoptosis and allows cell survival even in the absence of proper adhesion to the extracellular matrix. Different BCR-ABL tyrosine kinase inhibitors are currently available for CML treatment. These drugs are able to generate eight year CML-specific overall survival rates >90%, only a minority of patients will achieve molecular responses compatible with drug discontinuation. Thus, there is an unmet need for additional therapeutic targets that may lead to the cure of most patients diagnosed with CML. A growing body of evidence has suggested a role for both IRF4 and IRF8 in the pathogenesis of CML. Furthermore, IRF1 is consistently deleted at one or both alleles in patients with leukemia and myelodysplasia. Finally, we have recently demonstrated that IRF5 is a target of BCR-ABL kinase activity and reduces CML cell proliferation. In this article, we provide an update on the current knowledge of the role of the IRFs in CML. PMID:26728039

  16. Deciphering Cis-Regulatory Element Mediated Combinatorial Regulation in Rice under Blast Infected Condition

    PubMed Central

    Deb, Arindam; Kundu, Sudip

    2015-01-01

    Combinations of cis-regulatory elements (CREs) present at the promoters facilitate the binding of several transcription factors (TFs), thereby altering the consequent gene expressions. Due to the eminent complexity of the regulatory mechanism, the combinatorics of CRE-mediated transcriptional regulation has been elusive. In this work, we have developed a new methodology that quantifies the co-occurrence tendencies of CREs present in a set of promoter sequences; these co-occurrence scores are filtered in three consecutive steps to test their statistical significance; and the significantly co-occurring CRE pairs are presented as networks. These networks of co-occurring CREs are further transformed to derive higher order of regulatory combinatorics. We have further applied this methodology on the differentially up-regulated gene-sets of rice tissues under fungal (Magnaporthe) infected conditions to demonstrate how it helps to understand the CRE-mediated combinatorial gene regulation. Our analysis includes a wide spectrum of biologically important results. The CRE pairs having a strong tendency to co-occur often exhibit very similar joint distribution patterns at the promoters of rice. We couple the network approach with experimental results of plant gene regulation and defense mechanisms and find evidences of auto and cross regulation among TF families, cross-talk among multiple hormone signaling pathways, similarities and dissimilarities in regulatory combinatorics between different tissues, etc. Our analyses have pointed a highly distributed nature of the combinatorial gene regulation facilitating an efficient alteration in response to fungal attack. All together, our proposed methodology could be an important approach in understanding the combinatorial gene regulation. It can be further applied to unravel the tissue and/or condition specific combinatorial gene regulation in other eukaryotic systems with the availability of annotated genomic sequences and suitable

  17. Deciphering Cis-Regulatory Element Mediated Combinatorial Regulation in Rice under Blast Infected Condition.

    PubMed

    Deb, Arindam; Kundu, Sudip

    2015-01-01

    Combinations of cis-regulatory elements (CREs) present at the promoters facilitate the binding of several transcription factors (TFs), thereby altering the consequent gene expressions. Due to the eminent complexity of the regulatory mechanism, the combinatorics of CRE-mediated transcriptional regulation has been elusive. In this work, we have developed a new methodology that quantifies the co-occurrence tendencies of CREs present in a set of promoter sequences; these co-occurrence scores are filtered in three consecutive steps to test their statistical significance; and the significantly co-occurring CRE pairs are presented as networks. These networks of co-occurring CREs are further transformed to derive higher order of regulatory combinatorics. We have further applied this methodology on the differentially up-regulated gene-sets of rice tissues under fungal (Magnaporthe) infected conditions to demonstrate how it helps to understand the CRE-mediated combinatorial gene regulation. Our analysis includes a wide spectrum of biologically important results. The CRE pairs having a strong tendency to co-occur often exhibit very similar joint distribution patterns at the promoters of rice. We couple the network approach with experimental results of plant gene regulation and defense mechanisms and find evidences of auto and cross regulation among TF families, cross-talk among multiple hormone signaling pathways, similarities and dissimilarities in regulatory combinatorics between different tissues, etc. Our analyses have pointed a highly distributed nature of the combinatorial gene regulation facilitating an efficient alteration in response to fungal attack. All together, our proposed methodology could be an important approach in understanding the combinatorial gene regulation. It can be further applied to unravel the tissue and/or condition specific combinatorial gene regulation in other eukaryotic systems with the availability of annotated genomic sequences and suitable

  18. Deciphering Cis-Regulatory Element Mediated Combinatorial Regulation in Rice under Blast Infected Condition.

    PubMed

    Deb, Arindam; Kundu, Sudip

    2015-01-01

    Combinations of cis-regulatory elements (CREs) present at the promoters facilitate the binding of several transcription factors (TFs), thereby altering the consequent gene expressions. Due to the eminent complexity of the regulatory mechanism, the combinatorics of CRE-mediated transcriptional regulation has been elusive. In this work, we have developed a new methodology that quantifies the co-occurrence tendencies of CREs present in a set of promoter sequences; these co-occurrence scores are filtered in three consecutive steps to test their statistical significance; and the significantly co-occurring CRE pairs are presented as networks. These networks of co-occurring CREs are further transformed to derive higher order of regulatory combinatorics. We have further applied this methodology on the differentially up-regulated gene-sets of rice tissues under fungal (Magnaporthe) infected conditions to demonstrate how it helps to understand the CRE-mediated combinatorial gene regulation. Our analysis includes a wide spectrum of biologically important results. The CRE pairs having a strong tendency to co-occur often exhibit very similar joint distribution patterns at the promoters of rice. We couple the network approach with experimental results of plant gene regulation and defense mechanisms and find evidences of auto and cross regulation among TF families, cross-talk among multiple hormone signaling pathways, similarities and dissimilarities in regulatory combinatorics between different tissues, etc. Our analyses have pointed a highly distributed nature of the combinatorial gene regulation facilitating an efficient alteration in response to fungal attack. All together, our proposed methodology could be an important approach in understanding the combinatorial gene regulation. It can be further applied to unravel the tissue and/or condition specific combinatorial gene regulation in other eukaryotic systems with the availability of annotated genomic sequences and suitable

  19. Reconstruction and topological characterization of the sigma factor regulatory network of Mycobacterium tuberculosis.

    PubMed

    Chauhan, Rinki; Ravi, Janani; Datta, Pratik; Chen, Tianlong; Schnappinger, Dirk; Bassler, Kevin E; Balázsi, Gábor; Gennaro, Maria Laura

    2016-03-31

    Accessory sigma factors, which reprogram RNA polymerase to transcribe specific gene sets, activate bacterial adaptive responses to noxious environments. Here we reconstruct the complete sigma factor regulatory network of the human pathogen Mycobacterium tuberculosis by an integrated approach. The approach combines identification of direct regulatory interactions between M. tuberculosis sigma factors in an E. coli model system, validation of selected links in M. tuberculosis, and extensive literature review. The resulting network comprises 41 direct interactions among all 13 sigma factors. Analysis of network topology reveals (i) a three-tiered hierarchy initiating at master regulators, (ii) high connectivity and (iii) distinct communities containing multiple sigma factors. These topological features are likely associated with multi-layer signal processing and specialized stress responses involving multiple sigma factors. Moreover, the identification of overrepresented network motifs, such as autoregulation and coregulation of sigma and anti-sigma factor pairs, provides structural information that is relevant for studies of network dynamics.

  20. Reconstruction and topological characterization of the sigma factor regulatory network of Mycobacterium tuberculosis

    PubMed Central

    Chauhan, Rinki; Ravi, Janani; Datta, Pratik; Chen, Tianlong; Schnappinger, Dirk; Bassler, Kevin E.; Balázsi, Gábor; Gennaro, Maria Laura

    2016-01-01

    Accessory sigma factors, which reprogram RNA polymerase to transcribe specific gene sets, activate bacterial adaptive responses to noxious environments. Here we reconstruct the complete sigma factor regulatory network of the human pathogen Mycobacterium tuberculosis by an integrated approach. The approach combines identification of direct regulatory interactions between M. tuberculosis sigma factors in an E. coli model system, validation of selected links in M. tuberculosis, and extensive literature review. The resulting network comprises 41 direct interactions among all 13 sigma factors. Analysis of network topology reveals (i) a three-tiered hierarchy initiating at master regulators, (ii) high connectivity and (iii) distinct communities containing multiple sigma factors. These topological features are likely associated with multi-layer signal processing and specialized stress responses involving multiple sigma factors. Moreover, the identification of overrepresented network motifs, such as autoregulation and coregulation of sigma and anti-sigma factor pairs, provides structural information that is relevant for studies of network dynamics. PMID:27029515

  1. Identification of a cis-regulatory element by transient analysis of co-ordinately regulated genes

    PubMed Central

    Dare, Andrew P; Schaffer, Robert J; Lin-Wang, Kui; Allan, Andrew C; Hellens, Roger P

    2008-01-01

    Background Transcription factors (TFs) co-ordinately regulate target genes that are dispersed throughout the genome. This co-ordinate regulation is achieved, in part, through the interaction of transcription factors with conserved cis-regulatory motifs that are in close proximity to the target genes. While much is known about the families of transcription factors that regulate gene expression in plants, there are few well characterised cis-regulatory motifs. In Arabidopsis, over-expression of the MYB transcription factor PAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT 1) leads to transgenic plants with elevated anthocyanin levels due to the co-ordinated up-regulation of genes in the anthocyanin biosynthetic pathway. In addition to the anthocyanin biosynthetic genes, there are a number of un-associated genes that also change in expression level. This may be a direct or indirect consequence of the over-expression of PAP1. Results Oligo array analysis of PAP1 over-expression Arabidopsis plants identified genes co-ordinately up-regulated in response to the elevated expression of this transcription factor. Transient assays on the promoter regions of 33 of these up-regulated genes identified eight promoter fragments that were transactivated by PAP1. Bioinformatic analysis on these promoters revealed a common cis-regulatory motif that we showed is required for PAP1 dependent transactivation. Conclusion Co-ordinated gene regulation by individual transcription factors is a complex collection of both direct and indirect effects. Transient transactivation assays provide a rapid method to identify direct target genes from indirect target genes. Bioinformatic analysis of the promoters of these direct target genes is able to locate motifs that are common to this sub-set of promoters, which is impossible to identify with the larger set of direct and indirect target genes. While this type of analysis does not prove a direct interaction between protein and DNA, it does provide a tool to

  2. Transcription factor networks regulating hepatic fatty acid metabolism.

    PubMed

    Karagianni, Panagiota; Talianidis, Iannis

    2015-01-01

    Tight regulation of lipid levels is critical for cellular and organismal homeostasis, not only in terms of energy utilization and storage, but also to prevent potential toxicity. The liver utilizes a set of hepatic transcription factors to regulate the expression of genes implicated in all aspects of lipid metabolism including catabolism, transport, and synthesis. In this article, we will review the main transcriptional mechanisms regulating the expression of genes involved in hepatic lipid metabolism. The principal regulatory pathways are composed of simple modules of transcription factor crosstalks, which correspond to building blocks of more complex regulatory networks. These transcriptional networks contribute to the regulation of proper lipid homeostasis in parallel to posttranslational mechanisms and end product-mediated modulation of lipid metabolizing enzymes. This article is part of a Special Issue entitled Linking transcription to physiology in lipodomics.

  3. HANFORD REGULATORY EXPERIENCE REGULATION AT HANFORD A CASE STUDY

    SciTech Connect

    HAWKINS AR

    2007-09-24

    Hanford has played a pivotal role in the United States' defense for more than 60 years, beginning with the Manhattan Project in the 1940s. During its history, the Hanford Site has had nine reactors producing plutonium for the United States' nuclear weapons program. All the reactors were located next to the Columbia River and all had associated low-level radioactive and hazardous waste releases. Site cleanup, which formally began in 1989 with the signing of the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement, involves more than 1,600 waste sites and burial grounds, and the demolition of more than 1,500buildings and structures, Cleanup is scheduled to be complete by 2035. Regulatory oversight of the cleanup is being performed by the U.S. Environmental Protection Agency (EPA) and the Washington State Department of Ecology(Ecology) under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Revised Code of Washington, 'Hazardous Waste Management.' Cleanup of the waste sites and demolition of the many buildings and structures generates large volumes of contaminated soil, equipment, demolition debris, and other wastes that must be disposed of in a secure manner to prevent further environmental degradation. From a risk perspective, it is essential the cleanup waste be moved to a disposal facility located well away from the Columbia River. The solution was to construct very large engineered landfill that meets all technical regulatory requirements, on the Hanford Site Central Plateau approximately 10kilometers from the river and 100metersabovegroundwater. This landfill, called the Environmental Restoration Disposal Facility or ERDF is a series of cells, each 150x 300 meters wide at the bottom and 20 meters deep. This paper looks at the substantive environmental regulations applied to ERDF, and how the facility is designed to protect the environment and meet regulatory requirements. The paper

  4. Molecular characterization of interferon regulatory factor 1 in Bubalus bubalis.

    PubMed

    Stafuzza, N B; Borges, M M; Amaral-Trusty, M E J

    2015-01-01

    Interferon regulatory factor 1 (IRF1) is functionally diverse in the regulation of immune response and is considered to be an important candidate gene for studying disease susceptibility in mammals. In this paper, we characterized the whole sequence of the IRF1 gene in river buffalo (Bubalus bubalis) and compared genomic and the amino acid sequences between different species. The buffalo IRF1 gene was 7099 bp long and organized into 10 exons and nine introns. Its molecular structure showed exactly the same number of exons (10) and introns (nine) in bovids, mice, horses, humans, and chickens. However, rats did not have exon 5, but had the largest exon 4, which suggests that exon 5 was incorporated into exon 4. The coding and the amino acid sequences of the gene showed that identity varied from 73 to 99% at the coding sequence level and from 61 to 100% at the amino acid level when compared with other mammals and chickens. Comparative analysis of the gene sequence between two different buffalo breeds, Murrah and Mediterranean, revealed six potential SNPs that are primarily located in the 5' and 3'UTRs. PMID:26400319

  5. Altered oncomodules underlie chromatin regulatory factors driver mutations.

    PubMed

    Frigola, Joan; Iturbide, Ane; Lopez-Bigas, Nuria; Peiro, Sandra; Gonzalez-Perez, Abel

    2016-05-24

    Chromatin regulatory factors (CRFs), are known to be involved in tumorigenesis in several cancer types. Nevertheless, the molecular mechanisms through which driver alterations of CRFs cause tumorigenesis remain unknown. Here, we developed a CRFs Oncomodules Discovery approach, which mines several sources of cancer genomics and perturbaomics data. The approach prioritizes sets of genes significantly miss-regulated in primary tumors (oncomodules) bearing mutations of driver CRFs. We applied the approach to eleven TCGA tumor cohorts and uncovered oncomodules potentially associated to mutations of five driver CRFs in three cancer types. Our results revealed, for example, the potential involvement of the mTOR pathway in the development of tumors with loss-of-function mutations of MLL2 in head and neck squamous cell carcinomas. The experimental validation that MLL2 loss-of-function increases the sensitivity of cancer cell lines to mTOR inhibition lends further support to the validity of our approach. The potential oncogenic modules detected by our approach may guide experiments proposing ways to indirectly target driver mutations of CRFs. PMID:27095575

  6. Duplication of a promiscuous transcription factor drives the emergence of a new regulatory network.

    PubMed

    Pougach, Ksenia; Voet, Arnout; Kondrashov, Fyodor A; Voordeckers, Karin; Christiaens, Joaquin F; Baying, Bianka; Benes, Vladimir; Sakai, Ryo; Aerts, Jan; Zhu, Bo; Van Dijck, Patrick; Verstrepen, Kevin J

    2014-01-01

    The emergence of new genes throughout evolution requires rewiring and extension of regulatory networks. However, the molecular details of how the transcriptional regulation of new gene copies evolves remain largely unexplored. Here we show how duplication of a transcription factor gene allowed the emergence of two independent regulatory circuits. Interestingly, the ancestral transcription factor was promiscuous and could bind different motifs in its target promoters. After duplication, one paralogue evolved increased binding specificity so that it only binds one type of motif, whereas the other copy evolved a decreased activity so that it only activates promoters that contain multiple binding sites. Interestingly, only a few mutations in both the DNA-binding domains and in the promoter binding sites were required to gradually disentangle the two networks. These results reveal how duplication of a promiscuous transcription factor followed by concerted cis and trans mutations allows expansion of a regulatory network.

  7. Duplication of a promiscuous transcription factor drives the emergence of a new regulatory network

    PubMed Central

    Pougach, Ksenia; Voet, Arnout; Kondrashov, Fyodor A.; Voordeckers, Karin; Christiaens, Joaquin F.; Baying, Bianka; Benes, Vladimir; Sakai, Ryo; Aerts, Jan; Zhu, Bo; Van Dijck, Patrick; Verstrepen, Kevin J.

    2014-01-01

    The emergence of new genes throughout evolution requires rewiring and extension of regulatory networks. However, the molecular details of how the transcriptional regulation of new gene copies evolves remain largely unexplored. Here we show how duplication of a transcription factor gene allowed the emergence of two independent regulatory circuits. Interestingly, the ancestral transcription factor was promiscuous and could bind different motifs in its target promoters. After duplication, one paralogue evolved increased binding specificity so that it only binds one type of motif, whereas the other copy evolved a decreased activity so that it only activates promoters that contain multiple binding sites. Interestingly, only a few mutations in both the DNA-binding domains and in the promoter binding sites were required to gradually disentangle the two networks. These results reveal how duplication of a promiscuous transcription factor followed by concerted cis and trans mutations allows expansion of a regulatory network. PMID:25204769

  8. Transcription factor binding at enhancers: shaping a genomic regulatory landscape in flux

    PubMed Central

    Palstra, Robert-Jan; Grosveld, Frank

    2012-01-01

    The mammalian genome is packed tightly in the nucleus of the cell. This packing is primarily facilitated by histone proteins and results in an ordered organization of the genome in chromosome territories that can be roughly divided in heterochromatic and euchromatic domains. On top of this organization several distinct gene regulatory elements on the same chromosome or other chromosomes are thought to dynamically communicate via chromatin looping. Advances in genome-wide technologies have revealed the existence of a plethora of these regulatory elements in various eukaryotic genomes. These regulatory elements are defined by particular in vitro assays as promoters, enhancers, insulators, and boundary elements. However, recent studies indicate that the in vivo distinction between these elements is often less strict. Regulatory elements are bound by a mixture of common and lineage-specific transcription factors which mediate the long-range interactions between these elements. Inappropriate modulation of the binding of these transcription factors can alter the interactions between regulatory elements, which in turn leads to aberrant gene expression with disease as an ultimate consequence. Here we discuss the bi-modal behavior of regulatory elements that act in cis (with a focus on enhancers), how their activity is modulated by transcription factor binding and the effect this has on gene regulation. PMID:23060900

  9. Decreased Transcription Factor Binding Levels Nearby Primate Pseudogenes Suggest Regulatory Degeneration

    PubMed Central

    Douglas, Gavin M.; Wilson, Michael D.; Moses, Alan M.

    2016-01-01

    Characteristics of pseudogene degeneration at the coding level are well-known, such as a shift toward neutral rates of nonsynonymous substitutions and gain of frameshift mutations. In contrast, degeneration of pseudogene transcriptional regulation is not well understood. Here, we test two predictions of regulatory degeneration along a pseudogenized lineage: 1) Decreased transcription factor (TF) binding and 2) accelerated evolution in putative cis-regulatory regions. We find evidence for decreased TF binding levels nearby two primate pseudogenes compared with functional liver genes. However, the majority of TF-bound sequences nearby pseudogenes do not show evidence for lineage-specific accelerated rates of evolution. We conclude that decreases in TF binding level could be a marker for regulatory degeneration, while sequence degeneration in primate cis-regulatory modules may be obscured by background rates of TF binding site turnover. PMID:26882985

  10. Identification of tissue-specific cis-regulatory modules based on interactions between transcription factors

    PubMed Central

    Yu, Xueping; Lin, Jimmy; Zack, Donald J; Qian, Jiang

    2007-01-01

    Background Evolutionary conservation has been used successfully to help identify cis-acting DNA regions that are important in regulating tissue-specific gene expression. Motivated by increasing evidence that some DNA regulatory regions are not evolutionary conserved, we have developed an approach for cis-regulatory region identification that does not rely upon evolutionary sequence conservation. Results The conservation-independent approach is based on an empirical potential energy between interacting transcription factors (TFs). In this analysis, the potential energy is defined as a function of the number of TF interactions in a genomic region and the strength of the interactions. By identifying sets of interacting TFs, the analysis locates regions enriched with the binding sites of these interacting TFs. We applied this approach to 30 human tissues and identified 6232 putative cis-regulatory modules (CRMs) regulating 2130 tissue-specific genes. Interestingly, some genes appear to be regulated by different CRMs in different tissues. Known regulatory regions are highly enriched in our predicted CRMs. In addition, DNase I hypersensitive sites, which tend to be associated with active regulatory regions, significantly overlap with the predicted CRMs, but not with more conserved regions. We also find that conserved and non-conserved CRMs regulate distinct gene groups. Conserved CRMs control more essential genes and genes involved in fundamental cellular activities such as transcription. In contrast, non-conserved CRMs, in general, regulate more non-essential genes, such as genes related to neural activity. Conclusion These results demonstrate that identifying relevant sets of binding motifs can help in the mapping of DNA regulatory regions, and suggest that non-conserved CRMs play an important role in gene regulation. PMID:17996093

  11. From System-Wide Differential Gene Expression to Perturbed Regulatory Factors: A Combinatorial Approach.

    PubMed

    Mahajan, Gaurang; Mande, Shekhar C

    2015-01-01

    High-throughput experiments such as microarrays and deep sequencing provide large scale information on the pattern of gene expression, which undergoes extensive remodeling as the cell dynamically responds to varying environmental cues or has its function disrupted under pathological conditions. An important initial step in the systematic analysis and interpretation of genome-scale expression alteration involves identification of a set of perturbed transcriptional regulators whose differential activity can provide a proximate hypothesis to account for these transcriptomic changes. In the present work, we propose an unbiased and logically natural approach to transcription factor enrichment. It involves overlaying a list of experimentally determined differentially expressed genes on a background regulatory network coming from e.g. literature curation or computational motif scanning, and identifying that subset of regulators whose aggregated target set best discriminates between the altered and the unaffected genes. In other words, our methodology entails testing of all possible regulatory subnetworks, rather than just the target sets of individual regulators as is followed in most standard approaches. We have proposed an iterative search method to efficiently find such a combination, and benchmarked it on E. coli microarray and regulatory network data available in the public domain. Comparative analysis carried out on artificially generated differential expression profiles, as well as empirical factor overexpression data for M. tuberculosis, shows that our methodology provides marked improvement in accuracy of regulatory inference relative to the standard method that involves evaluating factor enrichment in an individual manner. PMID:26562430

  12. From System-Wide Differential Gene Expression to Perturbed Regulatory Factors: A Combinatorial Approach.

    PubMed

    Mahajan, Gaurang; Mande, Shekhar C

    2015-01-01

    High-throughput experiments such as microarrays and deep sequencing provide large scale information on the pattern of gene expression, which undergoes extensive remodeling as the cell dynamically responds to varying environmental cues or has its function disrupted under pathological conditions. An important initial step in the systematic analysis and interpretation of genome-scale expression alteration involves identification of a set of perturbed transcriptional regulators whose differential activity can provide a proximate hypothesis to account for these transcriptomic changes. In the present work, we propose an unbiased and logically natural approach to transcription factor enrichment. It involves overlaying a list of experimentally determined differentially expressed genes on a background regulatory network coming from e.g. literature curation or computational motif scanning, and identifying that subset of regulators whose aggregated target set best discriminates between the altered and the unaffected genes. In other words, our methodology entails testing of all possible regulatory subnetworks, rather than just the target sets of individual regulators as is followed in most standard approaches. We have proposed an iterative search method to efficiently find such a combination, and benchmarked it on E. coli microarray and regulatory network data available in the public domain. Comparative analysis carried out on artificially generated differential expression profiles, as well as empirical factor overexpression data for M. tuberculosis, shows that our methodology provides marked improvement in accuracy of regulatory inference relative to the standard method that involves evaluating factor enrichment in an individual manner.

  13. Conserved cis-regulatory elements for DNA-binding-with-one-finger and homeo-domain-leucine-zipper transcription factors regulate companion cell-specific expression of the Arabidopsis thaliana SUCROSE TRANSPORTER 2 gene.

    PubMed

    Schneidereit, Alexander; Imlau, Astrid; Sauer, Norbert

    2008-09-01

    The transition from young carbon-importing sink leaves of higher plants to mature carbon-exporting source leaves is paralleled by a complete reversal of phloem function. While sink-leaf phloem mediates the influx of reduced carbon from older source leaves and the release of this imported carbon to the sink-leaf mesophyll, source-leaf phloem catalyzes the uptake of photoassimilates into companion cells (CCs) and sieve elements (SEs) and the net carbon export from the leaf. Phloem loading in source leaves with sucrose, the main or exclusive transport form for fixed carbon in most higher plants, is catalyzed by plasma membrane-localized sucrose transporters. Consistent with the described physiological switch from sink to source, the promoter of the Arabidopsis AtSUC2 gene is active only in source-leaf CCs of Arabidopsis or of transgenic tobacco (Nicotiana tabacum). For the identification of regulatory elements involved in this companion cell-specific and source-specific gene expression, we performed detailed analyses of the AtSUC2 promoter by truncation and mutagenesis. A 126-bp promoter fragment was identified, which seems to contain these fragments and which drives AtSUC2-typical expression when combined with a 35S minimal promoter. Within this fragment, linker-scanning analyses revealed two cis-regulatory elements that were further characterized as putative binding sites for transcription factors of the DNA-binding-with-one-finger or the homeo-domain-leucine-zipper families. Similar or identical binding sites are found in other genes and in different plant species, suggesting an ancient regulatory mechanism for this important physiological switch. PMID:18551303

  14. Identification of Neurodegenerative Factors Using Translatome-Regulatory Network Analysis

    PubMed Central

    Brichta, Lars; Shin, William; Jackson-Lewis, Vernice; Blesa, Javier; Yap, Ee-Lynn; Walker, Zachary; Zhang, Jack; Roussarie, Jean-Pierre; Alvarez, Mariano J.; Califano, Andrea; Przedborski, Serge; Greengard, Paul

    2016-01-01

    For degenerative disorders of the central nervous system, the major obstacle to therapeutic advancement has been the challenge of identifying the key molecular mechanisms underlying neuronal loss. We developed a combinatorial approach including translational profiling and brain regulatory network analysis to search for key determinants of neuronal survival or death. Following the generation of transgenic mice for cell type-specific profiling of midbrain dopaminergic neurons, we established and compared translatome libraries reflecting the molecular signature of these cells at baseline or under degenerative stress. Analysis of these libraries by interrogating a context-specific brain regulatory network led to the identification of a repertoire of intrinsic upstream regulators that drive the dopaminergic stress response. The altered activity of these regulators was not associated with changes in their expression levels. This strategy can be generalized for the elucidation of novel molecular determinants involved in the degeneration of other classes of neurons. PMID:26214373

  15. Characterizing the interplay betwen mulitple levels of organization within bacterial sigma factor regulatory networks

    SciTech Connect

    Yu, Qiu; Nagarajan, Harish; Embree, Mallory; Shieu, Wendy; Abate, Elisa; Juarez, Katy; Cho, Byung-Kwan; Elkins, James G; Nevin, Kelly P.; Barrett, Christian; Lovley, Derek; Palsson, Bernhard O.; Zengler, Karsten

    2013-01-01

    Bacteria contain multiple sigma factors, each targeting diverse, but often overlapping sets of promoters, thereby forming a complex network. The layout and deployment of such a sigma factor network directly impacts global transcriptional regulation and ultimately dictates the phenotype. Here we integrate multi-omic data sets to determine the topology, the operational, and functional states of the sigma factor network in Geobacter sulfurreducens, revealing a unique network topology of interacting sigma factors. Analysis of the operational state of the sigma factor network shows a highly modular structure with sN being the major regulator of energy metabolism. Surprisingly, the functional state of the network during the two most divergent growth conditions is nearly static, with sigma factor binding profiles almost invariant to environmental stimuli. This first comprehensive elucidation of the interplay between different levels of the sigma factor network organization is fundamental to characterize transcriptional regulatory mechanisms in bacteria.

  16. Functional analysis of microRNA and transcription factor synergistic regulatory network based on identifying regulatory motifs in non-small cell lung cancer

    PubMed Central

    2013-01-01

    Background Lung cancer, especially non-small cell lung cancer, is a leading cause of malignant tumor death worldwide. Understanding the mechanisms employed by the main regulators, such as microRNAs (miRNAs) and transcription factors (TFs), still remains elusive. The patterns of their cooperation and biological functions in the synergistic regulatory network have rarely been studied. Results Here, we describe the first miRNA-TF synergistic regulation network in human lung cancer. We identified important regulators (MYC, NFKB1, miR-590, and miR-570) and significant miRNA-TF synergistic regulatory motifs by random simulations. The two most significant motifs were the co-regulation of miRNAs and TFs, and TF-mediated cascade regulation. We also developed an algorithm to uncover the biological functions of the human lung cancer miRNA-TF synergistic regulatory network (regulation of apoptosis, cellular protein metabolic process, and cell cycle), and the specific functions of each miRNA-TF synergistic subnetwork. We found that the miR-17 family exerted important effects in the regulation of non-small cell lung cancer, such as in proliferation and cell cycle regulation by targeting the retinoblastoma protein (RB1) and forming a feed forward loop with the E2F1 TF. We proposed a model for the miR-17 family, E2F1, and RB1 to demonstrate their potential roles in the occurrence and development of non-small cell lung cancer. Conclusions This work will provide a framework for constructing miRNA-TF synergistic regulatory networks, function analysis in diseases, and identification of the main regulators and regulatory motifs, which will be useful for understanding the putative regulatory motifs involving miRNAs and TFs, and for predicting new targets for cancer studies. PMID:24200043

  17. The effect of hyperammonemia on myostatin and myogenic regulatory factor gene expression in broiler embryos

    PubMed Central

    Stern, R.A.; Ashwell, C.M.; Dasarathy, S.; Mozdziak, P.E.

    2015-01-01

    Myogenesis is facilitated by four myogenic regulatory factors and is significantly inhibited by myostatin. The objective of the current study was to examine embryonic gene regulation of myostatin/myogenic regulatory factors, and subsequent manipulations of protein synthesis, in broiler embryos under induced hyperammonemia. Broiler eggs were injected with ammonium acetate solution four times over 48 hours beginning on either embryonic day (ED) 15 or 17. Serum ammonia concentration was significantly higher (P < 0.05) in ammonium acetate injected embryos for both ED17 and ED19 collected samples when compared to sham-injected controls. Expression of mRNA, extracted from pectoralis major of experimental and control embryos, was measured using real-time quantitative PCR for myostatin, myogenic regulatory factors myogenic factor 5, myogenic determination factor 1, myogenin, myogenic regulatory factor 4, and paired box 7. A significantly lower (P < 0.01) myostatin expression was accompanied by a higher serum ammonia concentration in both ED17 and ED19 collected samples. Myogenic factor 5 expression was higher (P < 0.05) in ED17 collected samples administered ammonium acetate. In both ED17 and ED19 collected samples, myogenic regulatory factor 4 was lower (P ≤ 0.05) in ammonium acetate injected embryos. No significant difference was seen in myogenic determination factor 1, myogenin, or paired box 7 expression between treatment groups for either age of sample collection. Additionally, there was no significant difference in BrdU staining of histological samples taken from treated and control embryos. Myostatin protein levels were evaluated by Western blot analysis, and also showed lower myostatin expression (P < 0.05). Overall, it appears possible to inhibit myostatin expression through hyperammonemia, which is expected to have a positive effect on embryonic myogenesis and postnatal muscle growth. PMID:25689990

  18. Transcriptional up-regulation of inhibitory PAS domain protein gene expression by hypoxia-inducible factor 1 (HIF-1): a negative feedback regulatory circuit in HIF-1-mediated signaling in hypoxic cells.

    PubMed

    Makino, Yuichi; Uenishi, Rie; Okamoto, Kensaku; Isoe, Tsubasa; Hosono, Osamu; Tanaka, Hirotoshi; Kanopka, Arvydas; Poellinger, Lorenz; Haneda, Masakazu; Morimoto, Chikao

    2007-05-11

    The inhibitory PAS (Per/Arnt/Sim) domain protein (IPAS), a dominant negative regulator of hypoxia-inducible transcription factors (HIFs), is potentially implicated in negative regulation of angiogenesis in such tissues as the avascular cornea of the eye. We have previously shown IPAS mRNA expression is up-regulated in hypoxic tissues, which at least in part involves hypoxia-dependent alternative splicing of the transcripts from the IPAS/HIF-3alpha locus. In the present study, we demonstrate that a hypoxia-driven transcriptional mechanism also plays a role in augmentation of IPAS gene expression. Isolation and analyses of the promoter region flanking to the first exon of IPAS gene revealed a functional hypoxia response element at position -834 to -799, whereas the sequence upstream of the HIF-3alpha first exon scarcely responded to hypoxic stimuli. A transient transfection experiment demonstrated that HIF-1alpha mediates IPAS promoter activation via the functional hypoxia response element under hypoxic conditions and that a constitutively active form of HIF-1alpha is sufficient for induction of the promoter in normoxic cells. Moreover, chromatin immunoprecipitation and electrophoretic mobility shift assays showed binding of the HIF-1 complex to the element in a hypoxia-dependent manner. Taken together, HIF-1 directly up-regulates IPAS gene expression through a mechanism distinct from RNA splicing, providing a further level of negative feedback gene regulation in adaptive responses to hypoxic/ischemic conditions. PMID:17355974

  19. Special regulatory T-cell review: FOXP3 biochemistry in regulatory T cells – how diverse signals regulate suppression

    PubMed Central

    Li, Bin; Greene, Mark I

    2008-01-01

    FOXP3 is an acetylated and phosphorylated protein active in human regulatory T cells and forms oligomers which then associate with an even larger molecular complex. FOXP3 actively regulates transcription by recruiting enzymatic co-repressors and/or co-activators. FOXP3 complex ensembles are dynamically regulated by physiological stimuli such as T-cell receptor, IL-2 and proinflammation cytokine signals. Understanding the post-translational modifications of FOXP3 regulated by diverse signals and the biochemistry and structural chemistry of enzymatic proteins in the FOXP3 complex is critical for therapeutically modulating regulatory T cell function. PMID:18154614

  20. 7 CFR 4284.906 - State laws, local laws, regulatory commission regulations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false State laws, local laws, regulatory commission...-Added Producer Grant Program General § 4284.906 State laws, local laws, regulatory commission regulations. If there are conflicts between this subpart and State or local laws or regulatory...

  1. 7 CFR 4284.906 - State laws, local laws, regulatory commission regulations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false State laws, local laws, regulatory commission...-Added Producer Grant Program General § 4284.906 State laws, local laws, regulatory commission regulations. If there are conflicts between this subpart and State or local laws or regulatory...

  2. 7 CFR 4284.906 - State laws, local laws, regulatory commission regulations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false State laws, local laws, regulatory commission...-Added Producer Grant Program General § 4284.906 State laws, local laws, regulatory commission regulations. If there are conflicts between this subpart and State or local laws or regulatory...

  3. Nitrogen-source regulation of yeast gamma-glutamyl transpeptidase synthesis involves the regulatory network including the GATA zinc-finger factors Gln3, Nil1/Gat1 and Gzf3.

    PubMed Central

    Springael, Jean-Yves; Penninckx, Michel J

    2003-01-01

    In Saccharomyces cerevisiae, the CIS2 gene encodes gamma-glutamyl transpeptidase (gamma-GT; EC 2.3.2.2), the main GSH-degrading enzyme. The promoter region of CIS2 contains one stress-response element (CCCCT) and eight GAT(T/A)A core sequences, probably involved in nitrogen-regulated transcription. We show in the present study that expression of CIS2 is indeed regulated according to the nature of the nitrogen source. Expression is highest in cells growing on a poor nitrogen source such as urea. Under these conditions, the GATA zinc-finger transcription factors Nil1 and Gln3 are both required for CIS2 expression, Nil1 appearing as the more important factor. We further show that Gzf3, another GATA zinc-finger protein, acts as a negative regulator in nitrogen-source control of CIS2 expression. During growth on a preferred nitrogen source like NH(4)(+), CIS2 expression is repressed through a mechanism involving (at least) the Gln3-binding protein Ure2/GdhCR. Induction of CIS2 expression during nitrogen starvation is dependent on Gln3 and Nil1. Furthermore, rapamycin causes similar CIS2 activation, indicating that the target of rapamycin signalling pathway controls CIS2 expression via Gln3 and Nil1 in nitrogen-starved cells. Finally, our results show that CIS2 expression is induced mainly by nitrogen starvation but apparently not by other types of stress. PMID:12529169

  4. Crossover localisation is regulated by the neddylation posttranslational regulatory pathway.

    PubMed

    Jahns, Marina Tagliaro; Vezon, Daniel; Chambon, Aurélie; Pereira, Lucie; Falque, Matthieu; Martin, Olivier C; Chelysheva, Liudmila; Grelon, Mathilde

    2014-08-01

    Crossovers (COs) are at the origin of genetic variability, occurring across successive generations, and they are also essential for the correct segregation of chromosomes during meiosis. Their number and position are precisely controlled, however the mechanisms underlying these controls are poorly understood. Neddylation/rubylation is a regulatory pathway of posttranslational protein modification that is required for numerous cellular processes in eukaryotes, but has not yet been linked to homologous recombination. In a screen for meiotic recombination-defective mutants, we identified several axr1 alleles, disrupting the gene encoding the E1 enzyme of the neddylation complex in Arabidopsis. Using genetic and cytological approaches we found that axr1 mutants are characterised by a shortage in bivalent formation correlated with strong synapsis defects. We determined that the bivalent shortage in axr1 is not due to a general decrease in CO formation but rather due to a mislocalisation of class I COs. In axr1, as in wild type, COs are still under the control of the ZMM group of proteins. However, in contrast to wild type, they tend to cluster together and no longer follow the obligatory CO rule. Lastly, we showed that this deregulation of CO localisation is likely to be mediated by the activity of a cullin 4 RING ligase, known to be involved in DNA damage sensing during somatic DNA repair and mouse spermatogenesis. In conclusion, we provide evidence that the neddylation/rubylation pathway of protein modification is a key regulator of meiotic recombination. We propose that rather than regulating the number of recombination events, this pathway regulates their localisation, through the activation of cullin 4 RING ligase complexes. Possible targets for these ligases are discussed. PMID:25116939

  5. Crossover Localisation Is Regulated by the Neddylation Posttranslational Regulatory Pathway

    PubMed Central

    Jahns, Marina Tagliaro; Vezon, Daniel; Chambon, Aurélie; Pereira, Lucie; Falque, Matthieu; Martin, Olivier C.; Chelysheva, Liudmila; Grelon, Mathilde

    2014-01-01

    Crossovers (COs) are at the origin of genetic variability, occurring across successive generations, and they are also essential for the correct segregation of chromosomes during meiosis. Their number and position are precisely controlled, however the mechanisms underlying these controls are poorly understood. Neddylation/rubylation is a regulatory pathway of posttranslational protein modification that is required for numerous cellular processes in eukaryotes, but has not yet been linked to homologous recombination. In a screen for meiotic recombination-defective mutants, we identified several axr1 alleles, disrupting the gene encoding the E1 enzyme of the neddylation complex in Arabidopsis. Using genetic and cytological approaches we found that axr1 mutants are characterised by a shortage in bivalent formation correlated with strong synapsis defects. We determined that the bivalent shortage in axr1 is not due to a general decrease in CO formation but rather due to a mislocalisation of class I COs. In axr1, as in wild type, COs are still under the control of the ZMM group of proteins. However, in contrast to wild type, they tend to cluster together and no longer follow the obligatory CO rule. Lastly, we showed that this deregulation of CO localisation is likely to be mediated by the activity of a cullin 4 RING ligase, known to be involved in DNA damage sensing during somatic DNA repair and mouse spermatogenesis. In conclusion, we provide evidence that the neddylation/rubylation pathway of protein modification is a key regulator of meiotic recombination. We propose that rather than regulating the number of recombination events, this pathway regulates their localisation, through the activation of cullin 4 RING ligase complexes. Possible targets for these ligases are discussed. PMID:25116939

  6. Crossover localisation is regulated by the neddylation posttranslational regulatory pathway.

    PubMed

    Jahns, Marina Tagliaro; Vezon, Daniel; Chambon, Aurélie; Pereira, Lucie; Falque, Matthieu; Martin, Olivier C; Chelysheva, Liudmila; Grelon, Mathilde

    2014-08-01

    Crossovers (COs) are at the origin of genetic variability, occurring across successive generations, and they are also essential for the correct segregation of chromosomes during meiosis. Their number and position are precisely controlled, however the mechanisms underlying these controls are poorly understood. Neddylation/rubylation is a regulatory pathway of posttranslational protein modification that is required for numerous cellular processes in eukaryotes, but has not yet been linked to homologous recombination. In a screen for meiotic recombination-defective mutants, we identified several axr1 alleles, disrupting the gene encoding the E1 enzyme of the neddylation complex in Arabidopsis. Using genetic and cytological approaches we found that axr1 mutants are characterised by a shortage in bivalent formation correlated with strong synapsis defects. We determined that the bivalent shortage in axr1 is not due to a general decrease in CO formation but rather due to a mislocalisation of class I COs. In axr1, as in wild type, COs are still under the control of the ZMM group of proteins. However, in contrast to wild type, they tend to cluster together and no longer follow the obligatory CO rule. Lastly, we showed that this deregulation of CO localisation is likely to be mediated by the activity of a cullin 4 RING ligase, known to be involved in DNA damage sensing during somatic DNA repair and mouse spermatogenesis. In conclusion, we provide evidence that the neddylation/rubylation pathway of protein modification is a key regulator of meiotic recombination. We propose that rather than regulating the number of recombination events, this pathway regulates their localisation, through the activation of cullin 4 RING ligase complexes. Possible targets for these ligases are discussed.

  7. Regulatory or regulating publics? The European Union's regulation of emerging health technologies and citizen participation.

    PubMed

    Flear, Mark L; Pickersgill, Martyn D

    2013-01-01

    'Citizen participation' includes various participatory techniques and is frequently viewed as an unproblematic and important social good when used as part of the regulation of the innovation and implementation of science and technology. This is perhaps especially evident in debates around 'anticipatory governance' or 'upstream engagement'. Here, we interrogate this thesis using the example of the European Union's regulation of emerging health technologies (such as nanotechnology). In this case, citizen participation in regulatory debate is concerned with innovative objects for medical application that are considered to be emergent or not yet concrete. Through synthesising insights from law, regulatory studies, critical theory, and science and technology studies, we seek to cast new light on the promises, paradoxes, and pitfalls of citizen participation as a tool or technology of regulation in itself. As such we aim to generate a new vantage point from which to view the values and sociotechnical imaginaries that are both 'designed-in' and 'designed-out' of citizen participation. In so doing, we show not only how publics (do not) regulate technologies, but also how citizens themselves are regulated through the techniques of participation. PMID:23222171

  8. REGULATORY OR REGULATING PUBLICS? THE EUROPEAN UNION'S REGULATION OF EMERGING HEALTH TECHNOLOGIES AND CITIZEN PARTICIPATION

    PubMed Central

    Flear, Mark L.; Pickersgill, Martyn D.

    2013-01-01

    ‘Citizen participation’ includes various participatory techniques and is frequently viewed as an unproblematic and important social good when used as part of the regulation of the innovation and implementation of science and technology. This is perhaps especially evident in debates around ‘anticipatory governance’ or ‘upstream engagement’. Here, we interrogate this thesis using the example of the European Union's regulation of emerging health technologies (such as nanotechnology). In this case, citizen participation in regulatory debate is concerned with innovative objects for medical application that are considered to be emergent or not yet concrete. Through synthesising insights from law, regulatory studies, critical theory, and science and technology studies, we seek to cast new light on the promises, paradoxes, and pitfalls of citizen participation as a tool or technology of regulation in itself. As such we aim to generate a new vantage point from which to view the values and sociotechnical imaginaries that are both ‘designed-in’ and ‘designed-out’ of citizen participation. In so doing, we show not only how publics (do not) regulate technologies, but also how citizens themselves are regulated through the techniques of participation. PMID:23222171

  9. Unity power factor switching regulator

    NASA Technical Reports Server (NTRS)

    Rippel, Wally E. (Inventor)

    1983-01-01

    A single or multiphase boost chopper regulator operating with unity power factor, for use such as to charge a battery is comprised of a power section for converting single or multiphase line energy into recharge energy including a rectifier (10), one inductor (L.sub.1) and one chopper (Q.sub.1) for each chopper phase for presenting a load (battery) with a current output, and duty cycle control means (16) for each chopper to control the average inductor current over each period of the chopper, and a sensing and control section including means (20) for sensing at least one load parameter, means (22) for producing a current command signal as a function of said parameter, means (26) for producing a feedback signal as a function of said current command signal and the average rectifier voltage output over each period of the chopper, means (28) for sensing current through said inductor, means (18) for comparing said feedback signal with said sensed current to produce, in response to a difference, a control signal applied to the duty cycle control means, whereby the average inductor current is proportionate to the average rectifier voltage output over each period of the chopper, and instantaneous line current is thereby maintained proportionate to the instantaneous line voltage, thus achieving a unity power factor. The boost chopper is comprised of a plurality of converters connected in parallel and operated in staggered phase. For optimal harmonic suppression, the duty cycles of the switching converters are evenly spaced, and by negative coupling between pairs 180.degree. out-of-phase, peak currents through the switches can be reduced while reducing the inductor size and mass.

  10. Putative Regulatory Factors Associated with Intramuscular Fat Content

    PubMed Central

    Cesar, Aline S. M.; Regitano, Luciana C. A.; Koltes, James E.; Fritz-Waters, Eric R.; Lanna, Dante P. D.; Gasparin, Gustavo; Mourão, Gerson B.; Oliveira, Priscila S. N.; Reecy, James M.; Coutinho, Luiz L.

    2015-01-01

    Intramuscular fat (IMF) content is related to insulin resistance, which is an important prediction factor for disorders, such as cardiovascular disease, obesity and type 2 diabetes in human. At the same time, it is an economically important trait, which influences the sensorial and nutritional value of meat. The deposition of IMF is influenced by many factors such as sex, age, nutrition, and genetics. In this study Nellore steers (Bos taurus indicus subspecies) were used to better understand the molecular mechanisms involved in IMF content. This was accomplished by identifying differentially expressed genes (DEG), biological pathways and putative regulatory factors. Animals included in this study had extreme genomic estimated breeding value (GEBV) for IMF. RNA-seq analysis, gene set enrichment analysis (GSEA) and co-expression network methods, such as partial correlation coefficient with information theory (PCIT), regulatory impact factor (RIF) and phenotypic impact factor (PIF) were utilized to better understand intramuscular adipogenesis. A total of 16,101 genes were analyzed in both groups (high (H) and low (L) GEBV) and 77 DEG (FDR 10%) were identified between the two groups. Pathway Studio software identified 13 significantly over-represented pathways, functional classes and small molecule signaling pathways within the DEG list. PCIT analyses identified genes with a difference in the number of gene-gene correlations between H and L group and detected putative regulatory factors involved in IMF content. Candidate genes identified by PCIT include: ANKRD26, HOXC5 and PPAPDC2. RIF and PIF analyses identified several candidate genes: GLI2 and IGF2 (RIF1), MPC1 and UBL5 (RIF2) and a host of small RNAs, including miR-1281 (PIF). These findings contribute to a better understanding of the molecular mechanisms that underlie fat content and energy balance in muscle and provide important information for the production of healthier beef for human consumption. PMID:26042666

  11. Putative regulatory factors associated with intramuscular fat content.

    PubMed

    Cesar, Aline S M; Regitano, Luciana C A; Koltes, James E; Fritz-Waters, Eric R; Lanna, Dante P D; Gasparin, Gustavo; Mourão, Gerson B; Oliveira, Priscila S N; Reecy, James M; Coutinho, Luiz L

    2015-01-01

    Intramuscular fat (IMF) content is related to insulin resistance, which is an important prediction factor for disorders, such as cardiovascular disease, obesity and type 2 diabetes in human. At the same time, it is an economically important trait, which influences the sensorial and nutritional value of meat. The deposition of IMF is influenced by many factors such as sex, age, nutrition, and genetics. In this study Nellore steers (Bos taurus indicus subspecies) were used to better understand the molecular mechanisms involved in IMF content. This was accomplished by identifying differentially expressed genes (DEG), biological pathways and putative regulatory factors. Animals included in this study had extreme genomic estimated breeding value (GEBV) for IMF. RNA-seq analysis, gene set enrichment analysis (GSEA) and co-expression network methods, such as partial correlation coefficient with information theory (PCIT), regulatory impact factor (RIF) and phenotypic impact factor (PIF) were utilized to better understand intramuscular adipogenesis. A total of 16,101 genes were analyzed in both groups (high (H) and low (L) GEBV) and 77 DEG (FDR 10%) were identified between the two groups. Pathway Studio software identified 13 significantly over-represented pathways, functional classes and small molecule signaling pathways within the DEG list. PCIT analyses identified genes with a difference in the number of gene-gene correlations between H and L group and detected putative regulatory factors involved in IMF content. Candidate genes identified by PCIT include: ANKRD26, HOXC5 and PPAPDC2. RIF and PIF analyses identified several candidate genes: GLI2 and IGF2 (RIF1), MPC1 and UBL5 (RIF2) and a host of small RNAs, including miR-1281 (PIF). These findings contribute to a better understanding of the molecular mechanisms that underlie fat content and energy balance in muscle and provide important information for the production of healthier beef for human consumption.

  12. Comparative analysis of the transcription-factor gene regulatory networks of E. coli and S. cerevisiae

    PubMed Central

    Guzmán-Vargas, Lev; Santillán, Moisés

    2008-01-01

    Background The regulatory interactions between transcription factors (TF) and regulated genes (RG) in a species genome can be lumped together in a single directed graph. The TF's and RG's conform the nodes of this graph, while links are drawn whenever a transcription factor regulates a gene's expression. Projections onto TF nodes can be constructed by linking every two nodes regulating a common gene. Similarly, projections onto RG nodes can be made by linking every two regulated genes sharing at least one common regulator. Recent studies of the connectivity pattern in the transcription-factor regulatory network of many organisms have revealed some interesting properties. However, the differences between TF and RG nodes have not been widely explored. Results After analysing the RG and TF projections of the transcription-factor gene regulatory networks of Escherichia coli and Saccharomyces cerevisiae, we found several common characteristic as well as some noticeable differences. To better understand these differences, we compared the properties of the E. coli and S. cerevisiae RG- and TF-projected networks with those of the corresponding projections built from randomized versions of the original bipartite networks. These last results indicate that the observed differences are mostly due to the very different ratios of TF to RG counts of the E. coli and S. cerevisiae bipartite networks, rather than to their having different connectivity patterns. Conclusion Since E. coli is a prokaryotic organism while S. cerevisiae is eukaryotic, there are important differences between them concerning processing of mRNA before translation, DNA packing, amount of junk DNA, and gene regulation. From the results in this paper we conclude that the most important effect such differences have had on the development of the corresponding transcription-factor gene regulatory networks is their very different ratios of TF to RG numbers. This ratio is more than three times larger in S

  13. Cytokinin response factors regulate PIN-FORMED auxin transporters.

    PubMed

    Šimášková, Mária; O'Brien, José Antonio; Khan, Mamoona; Van Noorden, Giel; Ötvös, Krisztina; Vieten, Anne; De Clercq, Inge; Van Haperen, Johanna Maria Adriana; Cuesta, Candela; Hoyerová, Klára; Vanneste, Steffen; Marhavý, Peter; Wabnik, Krzysztof; Van Breusegem, Frank; Nowack, Moritz; Murphy, Angus; Friml, Jiří; Weijers, Dolf; Beeckman, Tom; Benková, Eva

    2015-11-06

    Auxin and cytokinin are key endogenous regulators of plant development. Although cytokinin-mediated modulation of auxin distribution is a developmentally crucial hormonal interaction, its molecular basis is largely unknown. Here we show a direct regulatory link between cytokinin signalling and the auxin transport machinery uncovering a mechanistic framework for cytokinin-auxin cross-talk. We show that the CYTOKININ RESPONSE FACTORS (CRFs), transcription factors downstream of cytokinin perception, transcriptionally control genes encoding PIN-FORMED (PIN) auxin transporters at a specific PIN CYTOKININ RESPONSE ELEMENT (PCRE) domain. Removal of this cis-regulatory element effectively uncouples PIN transcription from the CRF-mediated cytokinin regulation and attenuates plant cytokinin sensitivity. We propose that CRFs represent a missing cross-talk component that fine-tunes auxin transport capacity downstream of cytokinin signalling to control plant development.

  14. Coordinated Regulatory Variation Associated with Gestational Hyperglycemia Regulates Expression of the Novel Hexokinase HKDC1

    PubMed Central

    Guo, Cong; Ludvik, Anton E.; Arlotto, Michelle E.; Hayes, M. Geoffrey; Armstrong, Loren L.; Scholtens, Denise M.; Brown, Christopher D.; Newgard, Christopher B.; Becker, Thomas C.; Layden, Brian T.; Lowe, William L.; Reddy, Timothy E.

    2014-01-01

    Maternal glucose levels during pregnancy impact the developing fetus, affecting metabolic health early and later in life. Both genetic and environmental factors influence maternal metabolism, but little is known about the genetic mechanisms that alter glucose metabolism during pregnancy. Here we report that haplotypes previously associated with gestational hyperglycemia in the third trimester disrupt regulatory element activity and reduce expression of the nearby HKDC1 gene. We further find that experimentally reducing or increasing HKDC1 expression reduces or increases hexokinase activity, respectively, in multiple cellular models; and that purified HKDC1 protein has hexokinase activity in vitro. Together, these results suggest a novel mechanism of gestational glucose regulation in which the effects of genetic variants in multiple regulatory elements alter glucose homeostasis by coordinately reducing expression of the novel hexokinase HKDC1. PMID:25648650

  15. Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state.

    PubMed

    Verfaillie, Annelien; Imrichova, Hana; Atak, Zeynep Kalender; Dewaele, Michael; Rambow, Florian; Hulselmans, Gert; Christiaens, Valerie; Svetlichnyy, Dmitry; Luciani, Flavie; Van den Mooter, Laura; Claerhout, Sofie; Fiers, Mark; Journe, Fabrice; Ghanem, Ghanem-Elias; Herrmann, Carl; Halder, Georg; Marine, Jean-Christophe; Aerts, Stein

    2015-04-09

    Transcriptional reprogramming of proliferative melanoma cells into a phenotypically distinct invasive cell subpopulation is a critical event at the origin of metastatic spreading. Here we generate transcriptome, open chromatin and histone modification maps of melanoma cultures; and integrate this data with existing transcriptome and DNA methylation profiles from tumour biopsies to gain insight into the mechanisms underlying this key reprogramming event. This shows thousands of genomic regulatory regions underlying the proliferative and invasive states, identifying SOX10/MITF and AP-1/TEAD as regulators, respectively. Knockdown of TEADs shows a previously unrecognized role in the invasive gene network and establishes a causative link between these transcription factors, cell invasion and sensitivity to MAPK inhibitors. Using regulatory landscapes and in silico analysis, we show that transcriptional reprogramming underlies the distinct cellular states present in melanoma. Furthermore, it reveals an essential role for the TEADs, linking it to clinically relevant mechanisms such as invasion and resistance.

  16. Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state

    PubMed Central

    Verfaillie, Annelien; Imrichova, Hana; Atak, Zeynep Kalender; Dewaele, Michael; Rambow, Florian; Hulselmans, Gert; Christiaens, Valerie; Svetlichnyy, Dmitry; Luciani, Flavie; Van den Mooter, Laura; Claerhout, Sofie; Fiers, Mark; Journe, Fabrice; Ghanem, Ghanem-Elias; Herrmann, Carl; Halder, Georg; Marine, Jean-Christophe; Aerts, Stein

    2015-01-01

    Transcriptional reprogramming of proliferative melanoma cells into a phenotypically distinct invasive cell subpopulation is a critical event at the origin of metastatic spreading. Here we generate transcriptome, open chromatin and histone modification maps of melanoma cultures; and integrate this data with existing transcriptome and DNA methylation profiles from tumour biopsies to gain insight into the mechanisms underlying this key reprogramming event. This shows thousands of genomic regulatory regions underlying the proliferative and invasive states, identifying SOX10/MITF and AP-1/TEAD as regulators, respectively. Knockdown of TEADs shows a previously unrecognized role in the invasive gene network and establishes a causative link between these transcription factors, cell invasion and sensitivity to MAPK inhibitors. Using regulatory landscapes and in silico analysis, we show that transcriptional reprogramming underlies the distinct cellular states present in melanoma. Furthermore, it reveals an essential role for the TEADs, linking it to clinically relevant mechanisms such as invasion and resistance. PMID:25865119

  17. Dysregulated T helper cell differentiation in the absence of interferon regulatory factor 4.

    PubMed

    Lohoff, Michael; Mittrücker, Hans-Willi; Prechtl, Stefan; Bischof, Susi; Sommer, Frank; Kock, Sonja; Ferrick, David A; Duncan, Gordon S; Gessner, Andre; Mak, Tak W

    2002-09-01

    Certain IFN regulatory factor (IRF) transcription factors indirectly influence T helper (Th) cell differentiation by regulating the production of IL-12. Here, we show that IRF4 directly regulates Th cell differentiation in vitro and in vivo during murine leishmaniasis. In the absence of IRF4, IL-12-induced Th1 cell differentiation was compromised, while IL-4 failed to induce Th2 cell differentiation. Instead, IL-4 tended to induce Th1 cells, defined by production of IFN-gamma and TNF. Although early IL-4 signaling was normal in IRF4(-/-) Th cells, the protein GATA-3, a transcription factor critical for Th2 development, was not up-regulated following IL-4 treatment. Retroviral overexpression of GATA-3 rescued Th2 differentiation. Therefore, IRF4 deficiency manifests itself as severely dysregulated Th cell differentiation.

  18. Tumor suppressor properties of the splicing regulatory factor RBM10

    PubMed Central

    Hernández, Jordi; Bechara, Elias; Schlesinger, Doerte; Delgado, Javier; Serrano, Luis; Valcárcel, Juan

    2016-01-01

    ABSTRACT RBM10 is an RNA binding protein and alternative splicing regulator frequently mutated in lung adenocarcinomas. Recent results indicate that RBM10 inhibits proliferation of lung cancer cells by promoting skipping of exon 9 of the gene NUMB, a frequent alternative splicing change in lung cancer generating a negative regulator of Notch signaling. Complementing these observations, we show that knock down of RBM10 in human cancer cells enhances growth of mouse tumor xenografts, confirming that RBM10 acts as a tumor suppressor, while knock down of an oncogenic mutant version of RBM10 reduces xenograft tumor growth. A RBM10 mutation found in lung cancer cells, V354E, disrupts RBM10-mediated regulation of NUMB alternative splicing, inducing the cell proliferation-promoting isoform. We now show that 2 natural RBM10 isoforms that differ by the presence or absence of V354 in the second RNA Recognition Motif (RRM2), display similar regulatory effects on NUMB alternative splicing, suggesting that V354E actively disrupts RBM10 activity. Structural modeling localizes V354 in the outside surface of one α-helix opposite to the RNA binding surface of RBM10, and we show that the mutation does not compromise binding of the RRM2 domain to NUMB RNA regulatory sequences. We further show that other RBM10 mutations found in lung adenocarcinomas also compromise regulation of NUMB exon 9. Collectively, our previous and current results reveal that RBM10 is a tumor suppressor that represses Notch signaling and cell proliferation through the regulation of NUMB alternative splicing. PMID:26853560

  19. Arabidopsis Ensemble Reverse-Engineered Gene Regulatory Network Discloses Interconnected Transcription Factors in Oxidative Stress[W

    PubMed Central

    Vermeirssen, Vanessa; De Clercq, Inge; Van Parys, Thomas; Van Breusegem, Frank; Van de Peer, Yves

    2014-01-01

    The abiotic stress response in plants is complex and tightly controlled by gene regulation. We present an abiotic stress gene regulatory network of 200,014 interactions for 11,938 target genes by integrating four complementary reverse-engineering solutions through average rank aggregation on an Arabidopsis thaliana microarray expression compendium. This ensemble performed the most robustly in benchmarking and greatly expands upon the availability of interactions currently reported. Besides recovering 1182 known regulatory interactions, cis-regulatory motifs and coherent functionalities of target genes corresponded with the predicted transcription factors. We provide a valuable resource of 572 abiotic stress modules of coregulated genes with functional and regulatory information, from which we deduced functional relationships for 1966 uncharacterized genes and many regulators. Using gain- and loss-of-function mutants of seven transcription factors grown under control and salt stress conditions, we experimentally validated 141 out of 271 predictions (52% precision) for 102 selected genes and mapped 148 additional transcription factor-gene regulatory interactions (49% recall). We identified an intricate core oxidative stress regulatory network where NAC13, NAC053, ERF6, WRKY6, and NAC032 transcription factors interconnect and function in detoxification. Our work shows that ensemble reverse-engineering can generate robust biological hypotheses of gene regulation in a multicellular eukaryote that can be tested by medium-throughput experimental validation. PMID:25549671

  20. 3 CFR 13579 - Executive Order 13579 of July 11, 2011. Regulation and Independent Regulatory Agencies

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 3 The President 1 2012-01-01 2012-01-01 false Executive Order 13579 of July 11, 2011. Regulation and Independent Regulatory Agencies 13579 Order 13579 Presidential Documents Executive Orders Executive Order 13579 of July 11, 2011 EO 13579 Regulation and Independent Regulatory Agencies By the authority vested in me as President by the...

  1. Transcriptional Regulation in Saccharomyces cerevisiae: Transcription Factor Regulation and Function, Mechanisms of Initiation, and Roles of Activators and Coactivators

    PubMed Central

    Hahn, Steven; Young, Elton T.

    2011-01-01

    Here we review recent advances in understanding the regulation of mRNA synthesis in Saccharomyces cerevisiae. Many fundamental gene regulatory mechanisms have been conserved in all eukaryotes, and budding yeast has been at the forefront in the discovery and dissection of these conserved mechanisms. Topics covered include upstream activation sequence and promoter structure, transcription factor classification, and examples of regulated transcription factor activity. We also examine advances in understanding the RNA polymerase II transcription machinery, conserved coactivator complexes, transcription activation domains, and the cooperation of these factors in gene regulatory mechanisms. PMID:22084422

  2. The regulation and regulatory role of collagenase in bone

    NASA Technical Reports Server (NTRS)

    Partridge, N. C.; Walling, H. W.; Bloch, S. R.; Omura, T. H.; Chan, P. T.; Pearman, A. T.; Chou, W. Y.

    1996-01-01

    Interstitial collagenase plays an important role in both the normal and pathological remodeling of collagenous extracellular matrices, including skeletal tissues. The enzyme is a member of the family of matrix metalloproteinases. Only one rodent interstitial collagenase has been found but there are two human enzymes, human collagenase-1 and -3, the latter being the homologue of the rat enzyme. In developing rat and mouse bone, collagenase is expressed by hypertrophic chondrocytes, osteoblasts, and osteocytes, a situation that is replicated in a fracture callus. Cultured osteoblasts derived from neonatal rat calvariae show greater amounts of collagenase transcripts late in differentiation. These levels can be regulated by parathyroid hormone (PTH), retinoic acid, and insulin-like growth factors, as well as the degree of matrix mineralization. Much of the work on collagenase in bone has been derived from studies on the rat osteosarcoma cell line, UMR 106-01. All bone-resorbing agents stimulate these cells to produce collagenase mRNA and protein, with PTH being the most potent stimulator. Determination of secreted levels of collagenase has been difficult because UMR cells, normal rat osteoblasts, and rat fibroblasts possess a scavenger receptor that removes the enzyme from the extracellular space, internalizes and degrades it, thus imposing another level of control. PTH can also regulate the abundance of the receptor as well as the expression and synthesis of the enzyme. Regulation of the collagenase gene by PTH appears to involve the cAMP pathway as well as a primary response gene, possibly Fos, which then contributes to induction of the collagenase gene. The rat collagenase gene contains an activator protein-1 sequence that is necessary for basal expression, but other promoter regions may also participate in PTH regulation. Thus, there are many levels of regulation of collagenase in bone perhaps constraining what would otherwise be a rampant enzyme.

  3. Interaction of Trypanosoma cruzi adenylate cyclase with liver regulatory factors.

    PubMed Central

    Eisenschlos, C; Flawiá, M M; Torruella, M; Torres, H N

    1986-01-01

    Trypanosoma cruzi adenylate cyclase catalytic subunits may interact with regulatory factors from rat liver membranes, reconstituting heterologous systems which are catalytically active in assay mixtures containing MgATP. The systems show stimulatory responses to glucagon and guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) or fluoride. Reconstitution was obtained by three different methods: fusion of rat liver membranes (pretreated with N-ethylmaleimide) to T. cruzi membranes; interaction of detergent extracts of rat liver membranes with T. cruzi membranes; or interaction of purified preparations of T. cruzi adenylate cyclase and of liver membrane factors in phospholipid vesicles. The liver factors responsible for the guanine nucleotide effect were characterized as the NS protein. Data also indicate that reconstitution requires the presence of a membrane substrate. PMID:2947568

  4. [ASSESSMENT OF EXTREME FACTORS OF SHIFT WORK IN ARCTIC CONDITIONS BY WORKERS WITH DIFFERENT REGULATORY PROCESSES].

    PubMed

    Korneeva, Ya A; Simonova, N N

    2016-01-01

    A man working on a shift basis in the Arctic, every day is under the influence of various extreme factors which are inevitable for oil and gas indudtry. To adapt to shift work employees use various resources of the individual. The purpose of research is the determination of personal resources of shift workers to overcome the adverse factors of the environment in the Arctic. The study involved 191 builder of main gas pipelines, working in shifts in the Tyumen region (the length of the shift 52 days of arrival) at the age of 23 to 59 (mean age 34.9 ± 8.1) years. Methods: psychological testing, questioning, observation, descriptive statistics, discriminant step by step analysis. There was revealed the correlation between the subjective assessment of the majority of adverse climatic factors in the regulatory process "assessment of results"; production factors--regulatory processes such as flexibility, autonomy, simulation, and the general level of self-regulation; social factors are more associated with the severity of such regulatory processes, flexibility and evaluation of results. PMID:27430072

  5. How microRNA and transcription factor co-regulatory networks affect osteosarcoma cell proliferation.

    PubMed

    Poos, Kathrin; Smida, Jan; Nathrath, Michaela; Maugg, Doris; Baumhoer, Daniel; Korsching, Eberhard

    2013-01-01

    Osteosarcomas (OS) are complex bone tumors with various genomic alterations. These alterations affect the expression and function of several genes due to drastic changes in the underlying gene regulatory network. However, we know little about critical gene regulators and their functional consequences on the pathogenesis of OS. Therefore, we aimed to determine microRNA and transcription factor (TF) co-regulatory networks in OS cell proliferation. Cell proliferation is an essential part in the pathogenesis of OS and deeper understanding of its regulation might help to identify potential therapeutic targets. Based on expression data of OS cell lines divided according to their proliferative activity, we obtained 12 proliferation-related microRNAs and corresponding target genes. Therewith, microRNA and TF co-regulatory networks were generated and analyzed regarding their structure and functional influence. We identified key co-regulators comprising the microRNAs miR-9-5p, miR-138, and miR-214 and the TFs SP1 and MYC in the derived networks. These regulators are implicated in NFKB- and RB1-signaling and focal adhesion processes based on their common or interacting target genes (e.g., CDK6, CTNNB1, E2F4, HES1, ITGA6, NFKB1, NOTCH1, and SIN3A). Thus, we proposed a model of OS cell proliferation which is primarily co-regulated through the interactions of the mentioned microRNA and TF combinations. This study illustrates the benefit of systems biological approaches in the analysis of complex diseases. We integrated experimental data with publicly available information to unravel the coordinated (post)-transcriptional control of microRNAs and TFs to identify potential therapeutic targets in OS. The resulting microRNA and TF co-regulatory networks are publicly available for further exploration to generate or evaluate own hypotheses of the pathogenesis of OS (http://www.complex-systems.uni-muenster.de/co_networks.html).

  6. What explains regulatory failure? Analysing the architecture of health care regulation in two Indian states.

    PubMed

    Sheikh, Kabir; Saligram, Prasanna S; Hort, Krishna

    2015-02-01

    Regulating health care is a pre-eminent policy challenge in many low- and middle-income countries (LMIC), particularly those with a strong private health sector. Yet, the regulatory approaches instituted in these countries have often been reported to be ineffective-India being exemplary. There is limited empirical research on the architecture and processes of health care regulation in LMIC that would explain these regulatory failures. We undertook a research study in two Indian states, with the aims of (1) mapping the organizations engaged with, and the written policies focused on health care regulation, (2) identifying gaps in the design and implementation of policies for health care regulation and (3) investigating underlying reasons for the identified gaps. We adopted a stepped research approach and applied a framework of basic regulatory functions for health care, to assess prevailing gaps in policy design and implementation. Qualitative research methods were employed including in-depth interviews with 32 representatives of regulatory organizations and document review. Several gaps in policy design were observed across both states, with a number of basic regulatory functions not underwritten in law, nor assigned to a regulatory organization to enact. In some instances the contents of regulatory policies had been weakened or diluted, rendering them less effective. Implementation gaps were also extensively reported in both states. Regulatory gaps were underpinned by human resource constraints, ambivalence in the roles of regulatory organizations, ineffective co-ordination between regulatory groups and extensive contestation of regulatory policies by private stakeholders. The findings are instructive that prevailing arrangements for health care regulation are ill equipped to enact several basic functions, and further that the performance of regulatory organizations is subject to pressures and distortions similar to those characterizing the wider health system

  7. Ethylene Response Factors: A Key Regulatory Hub in Hormone and Stress Signaling.

    PubMed

    Müller, Maren; Munné-Bosch, Sergi

    2015-09-01

    Ethylene is essential for many developmental processes and a key mediator of biotic and abiotic stress responses in plants. The ethylene signaling and response pathway includes Ethylene Response Factors (ERFs), which belong to the transcription factor family APETALA2/ERF. It is well known that ERFs regulate molecular response to pathogen attack by binding to sequences containing AGCCGCC motifs (the GCC box), a cis-acting element. However, recent studies suggest that several ERFs also bind to dehydration-responsive elements and act as a key regulatory hub in plant responses to abiotic stresses. Here, we review some of the recent advances in our understanding of the ethylene signaling and response pathway, with emphasis on ERFs and their role in hormone cross talk and redox signaling under abiotic stresses. We conclude that ERFs act as a key regulatory hub, integrating ethylene, abscisic acid, jasmonate, and redox signaling in the plant response to a number of abiotic stresses.

  8. Interaction between Major Nitrogen Regulatory Protein NIT2 and Pathway-Specific Regulatory Factor NIT4 Is Required for Their Synergistic Activation of Gene Expression in Neurospora crassa

    PubMed Central

    Feng, Bo; Marzluf, George A.

    1998-01-01

    In Neurospora crassa, the major nitrogen regulatory protein, NIT2, a member of the GATA family of transcription factors, controls positively the expression of numerous genes which specify nitrogen catabolic enzymes. Expression of the highly regulated structural gene nit-3, which encodes nitrate reductase, is dependent upon a synergistic interaction of NIT2 with a pathway-specific control protein, NIT4, a member of the GAL4 family of fungal regulatory factors. The NIT2 and NIT4 proteins both bind at specific recognition elements in the nit-3 promoter, but, in addition, we show that a direct protein-protein interaction between NIT2 and NIT4 is essential for optimal expression of the nit-3 structural gene. Neurospora possesses at least five different GATA factors which control different areas of cellular function, but which have a similar DNA binding specificity. Significantly, only NIT2, of the several Neurospora GATA factors examined, interacts with NIT4. We propose that protein-protein interactions of the individual GATA factors with additional pathway-specific regulatory factors determine each of their specific regulatory functions. PMID:9632783

  9. Regulation by transcription factors in bacteria: beyond description.

    PubMed

    Balleza, Enrique; López-Bojorquez, Lucia N; Martínez-Antonio, Agustino; Resendis-Antonio, Osbaldo; Lozada-Chávez, Irma; Balderas-Martínez, Yalbi I; Encarnación, Sergio; Collado-Vides, Julio

    2009-01-01

    Transcription is an essential step in gene expression and its understanding has been one of the major interests in molecular and cellular biology. By precisely tuning gene expression, transcriptional regulation determines the molecular machinery for developmental plasticity, homeostasis and adaptation. In this review, we transmit the main ideas or concepts behind regulation by transcription factors and give just enough examples to sustain these main ideas, thus avoiding a classical ennumeration of facts. We review recent concepts and developments: cis elements and trans regulatory factors, chromosome organization and structure, transcriptional regulatory networks (TRNs) and transcriptomics. We also summarize new important discoveries that will probably affect the direction of research in gene regulation: epigenetics and stochasticity in transcriptional regulation, synthetic circuits and plasticity and evolution of TRNs. Many of the new discoveries in gene regulation are not extensively tested with wetlab approaches. Consequently, we review this broad area in Inference of TRNs and Dynamical Models of TRNs. Finally, we have stepped backwards to trace the origins of these modern concepts, synthesizing their history in a timeline schema. PMID:19076632

  10. Regulation by transcription factors in bacteria: beyond description

    PubMed Central

    Balleza, Enrique; López-Bojorquez, Lucia N; Martínez-Antonio, Agustino; Resendis-Antonio, Osbaldo; Lozada-Chávez, Irma; Balderas-Martínez, Yalbi I; Encarnación, Sergio; Collado-Vides, Julio

    2009-01-01

    Transcription is an essential step in gene expression and its understanding has been one of the major interests in molecular and cellular biology. By precisely tuning gene expression, transcriptional regulation determines the molecular machinery for developmental plasticity, homeostasis and adaptation. In this review, we transmit the main ideas or concepts behind regulation by transcription factors and give just enough examples to sustain these main ideas, thus avoiding a classical ennumeration of facts. We review recent concepts and developments: cis elements and trans regulatory factors, chromosome organization and structure, transcriptional regulatory networks (TRNs) and transcriptomics. We also summarize new important discoveries that will probably affect the direction of research in gene regulation: epigenetics and stochasticity in transcriptional regulation, synthetic circuits and plasticity and evolution of TRNs. Many of the new discoveries in gene regulation are not extensively tested with wetlab approaches. Consequently, we review this broad area in Inference of TRNs and Dynamical Models of TRNs. Finally, we have stepped backwards to trace the origins of these modern concepts, synthesizing their history in a timeline schema. PMID:19076632

  11. Transcription factor abundance controlled by an auto-regulatory mechanism involving a transcription start site switch

    PubMed Central

    Ngondo, Richard Patryk; Carbon, Philippe

    2014-01-01

    A transcriptional feedback loop is the simplest and most direct means for a transcription factor to provide an increased stability of gene expression. In this work performed in human cells, we reveal a new negative auto-regulatory mechanism involving an alternative transcription start site (TSS) usage. Using the activating transcription factor ZNF143 as a model, we show that the ZNF143 low-affinity binding sites, located downstream of its canonical TSS, play the role of protein sensors to induce the up- or down-regulation of ZNF143 gene expression. We uncovered that the TSS switch that mediates this regulation implies the differential expression of two transcripts with an opposite protein production ability due to their different 5′ untranslated regions. Moreover, our analysis of the ENCODE data suggests that this mechanism could be used by other transcription factors to rapidly respond to their own aberrant expression level. PMID:24234445

  12. Transcription factor MITF and remodeller BRG1 define chromatin organisation at regulatory elements in melanoma cells.

    PubMed

    Laurette, Patrick; Strub, Thomas; Koludrovic, Dana; Keime, Céline; Le Gras, Stéphanie; Seberg, Hannah; Van Otterloo, Eric; Imrichova, Hana; Siddaway, Robert; Aerts, Stein; Cornell, Robert A; Mengus, Gabrielle; Davidson, Irwin

    2015-03-24

    Microphthalmia-associated transcription factor (MITF) is the master regulator of the melanocyte lineage. To understand how MITF regulates transcription, we used tandem affinity purification and mass spectrometry to define a comprehensive MITF interactome identifying novel cofactors involved in transcription, DNA replication and repair, and chromatin organisation. We show that MITF interacts with a PBAF chromatin remodelling complex comprising BRG1 and CHD7. BRG1 is essential for melanoma cell proliferation in vitro and for normal melanocyte development in vivo. MITF and SOX10 actively recruit BRG1 to a set of MITF-associated regulatory elements (MAREs) at active enhancers. Combinations of MITF, SOX10, TFAP2A, and YY1 bind between two BRG1-occupied nucleosomes thus defining both a signature of transcription factors essential for the melanocyte lineage and a specific chromatin organisation of the regulatory elements they occupy. BRG1 also regulates the dynamics of MITF genomic occupancy. MITF-BRG1 interplay thus plays an essential role in transcription regulation in melanoma.

  13. Transcription factor MITF and remodeller BRG1 define chromatin organisation at regulatory elements in melanoma cells

    PubMed Central

    Laurette, Patrick; Strub, Thomas; Koludrovic, Dana; Keime, Céline; Le Gras, Stéphanie; Seberg, Hannah; Van Otterloo, Eric; Imrichova, Hana; Siddaway, Robert; Aerts, Stein; Cornell, Robert A; Mengus, Gabrielle; Davidson, Irwin

    2015-01-01

    Microphthalmia-associated transcription factor (MITF) is the master regulator of the melanocyte lineage. To understand how MITF regulates transcription, we used tandem affinity purification and mass spectrometry to define a comprehensive MITF interactome identifying novel cofactors involved in transcription, DNA replication and repair, and chromatin organisation. We show that MITF interacts with a PBAF chromatin remodelling complex comprising BRG1 and CHD7. BRG1 is essential for melanoma cell proliferation in vitro and for normal melanocyte development in vivo. MITF and SOX10 actively recruit BRG1 to a set of MITF-associated regulatory elements (MAREs) at active enhancers. Combinations of MITF, SOX10, TFAP2A, and YY1 bind between two BRG1-occupied nucleosomes thus defining both a signature of transcription factors essential for the melanocyte lineage and a specific chromatin organisation of the regulatory elements they occupy. BRG1 also regulates the dynamics of MITF genomic occupancy. MITF-BRG1 interplay thus plays an essential role in transcription regulation in melanoma. DOI: http://dx.doi.org/10.7554/eLife.06857.001 PMID:25803486

  14. Regulating transgenic crops: a comparative analysis of different regulatory processes.

    PubMed

    Jaffe, Gregory

    2004-02-01

    Transgenic crops have the potential to benefit both developed and developing countries. To ensure safe crops to humans and the environment, a strong, but not stifling, regulatory system needs to be established and properly implemented. This paper explores some essential components of a strong regulatory structure for transgenic crops. First, five different regulatory systems for transgenic crops--the United States, the European Union, South Africa, Taiwan, and Argentina--are described and explained. The major components of those systems are then compared to components necessary to a regulatory system that ensures safe products and engenders public trust. The key components discussed include: (1) mandatory pre-market approval; (2) established safety standards; (3) transparency; (4) public participation; (5) use of outside scientists for expert scientific advice; (6) independent agency decisions; (7) post-approval activities; and (8) enforcement authority and resources. Although no one of the existing systems analyzed adequately achieves all the necessary components of a strong regulatory system, those systems serve as models for deciding which regulatory procedures should be emulated and which should be avoided. A mandatory pre-market approval system that applies established safety standards in procedures that are transparent and allows for public participation with no pre-conceived notions or biases will best achieve both safe products and consumer trust.

  15. Individual interferon regulatory factor-3 thiol residues are not critical for its activation following virus infection.

    PubMed

    Zucchini, Nicolas; Williams, Virginie; Grandvaux, Nathalie

    2012-09-01

    The interferon regulatory factor (IRF)-3 transcription factor plays a central role in the capacity of the host to mount an efficient innate antiviral immune defense, mainly through the regulation of type I Interferon genes. A tight regulation of IRF-3 is crucial for an adapted intensity and duration of the response. Redox-dependent processes are now well known to regulate signaling cascades. Recent reports have revealed that signaling molecules upstream of IRF-3, including the mitochondrial antiviral-signalling protein (MAVS) and the TNF receptor associated factors (TRAFs) adaptors, are sensitive to redox regulation. In the present study, we assessed whether redox regulation of thiol residues contained in IRF-3, which are priviledged redox sensors, play a role in its regulation following Sendai virus infection, using a combination of mutation of Cysteine (Cys) residues into Alanine and thiols alkylation using N-ethyl maleimide. Alkylation of IRF-3 on Cys289 appears to destabilize IRF-3 dimer in vitro. However, a detailed analysis of IRF-3 phosphorylation, dimerization, nuclear accumulation, and induction of target gene promoter in vivo led us to conclude that IRF-3 specific, individual Cys residues redox status does not play an essential role in its activation in vivo.

  16. Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors

    PubMed Central

    Ishihama, Akira; Shimada, Tomohiro; Yamazaki, Yukiko

    2016-01-01

    Bacterial genomes are transcribed by DNA-dependent RNA polymerase (RNAP), which achieves gene selectivity through interaction with sigma factors that recognize promoters, and transcription factors (TFs) that control the activity and specificity of RNAP holoenzyme. To understand the molecular mechanisms of transcriptional regulation, the identification of regulatory targets is needed for all these factors. We then performed genomic SELEX screenings of targets under the control of each sigma factor and each TF. Here we describe the assembly of 156 SELEX patterns of a total of 116 TFs performed in the presence and absence of effector ligands. The results reveal several novel concepts: (i) each TF regulates more targets than hitherto recognized; (ii) each promoter is regulated by more TFs than hitherto recognized; and (iii) the binding sites of some TFs are located within operons and even inside open reading frames. The binding sites of a set of global regulators, including cAMP receptor protein, LeuO and Lrp, overlap with those of the silencer H-NS, suggesting that certain global regulators play an anti-silencing role. To facilitate sharing of these accumulated SELEX datasets with the research community, we compiled a database, ‘Transcription Profile of Escherichia coli’ (www.shigen.nig.ac.jp/ecoli/tec/). PMID:26843427

  17. Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors.

    PubMed

    Ishihama, Akira; Shimada, Tomohiro; Yamazaki, Yukiko

    2016-03-18

    Bacterial genomes are transcribed by DNA-dependent RNA polymerase (RNAP), which achieves gene selectivity through interaction with sigma factors that recognize promoters, and transcription factors (TFs) that control the activity and specificity of RNAP holoenzyme. To understand the molecular mechanisms of transcriptional regulation, the identification of regulatory targets is needed for all these factors. We then performed genomic SELEX screenings of targets under the control of each sigma factor and each TF. Here we describe the assembly of 156 SELEX patterns of a total of 116 TFs performed in the presence and absence of effector ligands. The results reveal several novel concepts: (i) each TF regulates more targets than hitherto recognized; (ii) each promoter is regulated by more TFs than hitherto recognized; and (iii) the binding sites of some TFs are located within operons and even inside open reading frames. The binding sites of a set of global regulators, including cAMP receptor protein, LeuO and Lrp, overlap with those of the silencer H-NS, suggesting that certain global regulators play an anti-silencing role. To facilitate sharing of these accumulated SELEX datasets with the research community, we compiled a database, 'Transcription Profile of Escherichia coli' (www.shigen.nig.ac.jp/ecoli/tec/). PMID:26843427

  18. TMREC: A Database of Transcription Factor and MiRNA Regulatory Cascades in Human Diseases

    PubMed Central

    Wang, Shuyuan; Li, Wei; Lian, Baofeng; Liu, Xinyi; Zhang, Yan; Dai, Enyu; Yu, Xuexin; Meng, Fanlin; Jiang, Wei; Li, Xia

    2015-01-01

    Over the past decades, studies have reported that the combinatorial regulation of transcription factors (TFs) and microRNAs (miRNAs) is essential for the appropriate execution of biological events and developmental processes. Dysregulations of these regulators often cause diseases. However, there are no available resources on the regulatory cascades of TFs and miRNAs in the context of human diseases. To fulfill this vacancy, we established the TMREC database in this study. First, we integrated curated transcriptional and post-transcriptional regulations to construct the TF and miRNA regulatory network. Next, we identified all linear paths using the Breadth First Search traversal method. Finally, we used known disease-related genes and miRNAs to measure the strength of association between cascades and diseases. Currently, TMREC consists of 74,248 cascades and 25,194 cascade clusters, involving in 412 TFs, 266 miRNAs and 545 diseases. With the expanding of experimental support regulation data, we will regularly update the database. TMREC aims to help experimental biologists to comprehensively analyse gene expression regulation, to understand the aetiology and to predict novel therapeutic targets.TMREC is freely available at http://bioinfo.hrbmu.edu.cn/TMREC/. PMID:25932650

  19. A validated gene regulatory network and GWAS identifies early regulators of T cell-associated diseases.

    PubMed

    Gustafsson, Mika; Gawel, Danuta R; Alfredsson, Lars; Baranzini, Sergio; Björkander, Janne; Blomgran, Robert; Hellberg, Sandra; Eklund, Daniel; Ernerudh, Jan; Kockum, Ingrid; Konstantinell, Aelita; Lahesmaa, Riita; Lentini, Antonio; Liljenström, H Robert I; Mattson, Lina; Matussek, Andreas; Mellergård, Johan; Mendez, Melissa; Olsson, Tomas; Pujana, Miguel A; Rasool, Omid; Serra-Musach, Jordi; Stenmarker, Margaretha; Tripathi, Subhash; Viitala, Miro; Wang, Hui; Zhang, Huan; Nestor, Colm E; Benson, Mikael

    2015-11-11

    Early regulators of disease may increase understanding of disease mechanisms and serve as markers for presymptomatic diagnosis and treatment. However, early regulators are difficult to identify because patients generally present after they are symptomatic. We hypothesized that early regulators of T cell-associated diseases could be found by identifying upstream transcription factors (TFs) in T cell differentiation and by prioritizing hub TFs that were enriched for disease-associated polymorphisms. A gene regulatory network (GRN) was constructed by time series profiling of the transcriptomes and methylomes of human CD4(+) T cells during in vitro differentiation into four helper T cell lineages, in combination with sequence-based TF binding predictions. The TFs GATA3, MAF, and MYB were identified as early regulators and validated by ChIP-seq (chromatin immunoprecipitation sequencing) and small interfering RNA knockdowns. Differential mRNA expression of the TFs and their targets in T cell-associated diseases supports their clinical relevance. To directly test if the TFs were altered early in disease, T cells from patients with two T cell-mediated diseases, multiple sclerosis and seasonal allergic rhinitis, were analyzed. Strikingly, the TFs were differentially expressed during asymptomatic stages of both diseases, whereas their targets showed altered expression during symptomatic stages. This analytical strategy to identify early regulators of disease by combining GRNs with genome-wide association studies may be generally applicable for functional and clinical studies of early disease development. PMID:26560356

  20. Using graphical adaptive lasso approach to construct transcription factor and microRNA's combinatorial regulatory network in breast cancer.

    PubMed

    Su, Naifang; Dai, Ding; Deng, Chao; Qian, Minping; Deng, Minghua

    2014-06-01

    Discovering the regulation of cancer-related gene is of great importance in cancer biology. Transcription factors and microRNAs are two kinds of crucial regulators in gene expression, and they compose a combinatorial regulatory network with their target genes. Revealing the structure of this network could improve the authors' understanding of gene regulation, and further explore the molecular pathway in cancer. In this article, the authors propose a novel approach graphical adaptive lasso (GALASSO) to construct the regulatory network in breast cancer. GALASSO use a Gaussian graphical model with adaptive lasso penalties to integrate the sequence information as well as gene expression profiles. The simulation study and the experimental profiles verify the accuracy of the authors' approach. The authors further reveal the structure of the regulatory network, and explore the role of feedforward loops in gene regulation. In addition, the authors discuss the combinatorial regulatory effect between transcription factors and microRNAs, and select miR-155 for detailed analysis of microRNA's role in cancer. The proposed GALASSO approach is an efficient method to construct the combinatorial regulatory network. It also provides a new way to integrate different data sources and could find more applications in meta-analysis problem.

  1. Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice

    PubMed Central

    Smita, Shuchi; Katiyar, Amit; Chinnusamy, Viswanathan; Pandey, Dev M.; Bansal, Kailash C.

    2015-01-01

    MYB transcription factor (TF) is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by “top-down” and “guide-gene” approaches. More than 50% of OsMYBs were strongly correlated under 50 experimental conditions with 51 hub genes via “top-down” approach. Further, clusters were identified using Markov Clustering (MCL). To maximize the clustering performance, parameter evaluation of the MCL inflation score (I) was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by “guide-gene” approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought

  2. Clinical trials in "emerging markets": regulatory considerations and other factors.

    PubMed

    Singh, Romi; Wang, Ouhong

    2013-11-01

    Clinical studies are being placed in emerging markets as part of global drug development programs to access large pool of eligible patients and to benefit from a cost effective structure. However, over the last few years, the definition of "emerging markets" is being revisited, especially from a regulatory perspective. For purposes of this article, countries outside US, EU and the traditional "western countries" are discussed. Multiple factors are considered for placement of clinical studies such as adherence to Good Clinical Practice (GCP), medical infrastructure & standard of care, number of eligible patients, etc. This article also discusses other quantitative factors such as country's GDP, patent applications, healthcare expenditure, healthcare infrastructure, corruption, innovation, etc. These different factors and indexes are correlated to the number of clinical studies ongoing in the "emerging markets". R&D, healthcare expenditure, technology infrastructure, transparency, and level of innovation, show a significant correlation with the number of clinical trials being conducted in these countries. This is the first analysis of its kind to evaluate and correlate the various other factors to the number of clinical studies in a country. PMID:24070788

  3. Clinical trials in "emerging markets": regulatory considerations and other factors.

    PubMed

    Singh, Romi; Wang, Ouhong

    2013-11-01

    Clinical studies are being placed in emerging markets as part of global drug development programs to access large pool of eligible patients and to benefit from a cost effective structure. However, over the last few years, the definition of "emerging markets" is being revisited, especially from a regulatory perspective. For purposes of this article, countries outside US, EU and the traditional "western countries" are discussed. Multiple factors are considered for placement of clinical studies such as adherence to Good Clinical Practice (GCP), medical infrastructure & standard of care, number of eligible patients, etc. This article also discusses other quantitative factors such as country's GDP, patent applications, healthcare expenditure, healthcare infrastructure, corruption, innovation, etc. These different factors and indexes are correlated to the number of clinical studies ongoing in the "emerging markets". R&D, healthcare expenditure, technology infrastructure, transparency, and level of innovation, show a significant correlation with the number of clinical trials being conducted in these countries. This is the first analysis of its kind to evaluate and correlate the various other factors to the number of clinical studies in a country.

  4. Genome-wide transcription factor binding: beyond direct target regulation.

    PubMed

    MacQuarrie, Kyle L; Fong, Abraham P; Morse, Randall H; Tapscott, Stephen J

    2011-04-01

    The binding of transcription factors to specific DNA target sequences is the fundamental basis of gene regulatory networks. Chromatin immunoprecipitation combined with DNA tiling arrays or high-throughput sequencing (ChIP-chip and ChIP-seq, respectively) has been used in many recent studies that detail the binding sites of various transcription factors. Surprisingly, data from a variety of model organisms and tissues have demonstrated that transcription factors vary greatly in their number of genomic binding sites, and that binding events can significantly exceed the number of known or possible direct gene targets. Thus, current understanding of transcription factor function must expand to encompass what role, if any, binding might have outside of direct transcriptional target regulation. In this review, we discuss the biological significance of genome-wide binding of transcription factors and present models that can account for this phenomenon.

  5. Regulatory network analysis reveals novel regulators of seed desiccation tolerance in Arabidopsis thaliana.

    PubMed

    González-Morales, Sandra Isabel; Chávez-Montes, Ricardo A; Hayano-Kanashiro, Corina; Alejo-Jacuinde, Gerardo; Rico-Cambron, Thelma Y; de Folter, Stefan; Herrera-Estrella, Luis

    2016-08-30

    Desiccation tolerance (DT) is a remarkable process that allows seeds in the dry state to remain viable for long periods of time that in some instances exceed 1,000 y. It has been postulated that seed DT evolved by rewiring the regulatory and signaling networks that controlled vegetative DT, which itself emerged as a crucial adaptive trait of early land plants. Understanding the networks that regulate seed desiccation tolerance in model plant systems would provide the tools to understand an evolutionary process that played a crucial role in the diversification of flowering plants. In this work, we used an integrated approach that included genomics, bioinformatics, metabolomics, and molecular genetics to identify and validate molecular networks that control the acquisition of DT in Arabidopsis seeds. Two DT-specific transcriptional subnetworks were identified related to storage of reserve compounds and cellular protection mechanisms that act downstream of the embryo development master regulators LEAFY COTYLEDON 1 and 2, FUSCA 3, and ABSCICIC ACID INSENSITIVE 3. Among the transcription factors identified as major nodes in the DT regulatory subnetworks, PLATZ1, PLATZ2, and AGL67 were confirmed by knockout mutants and overexpression in a desiccation-intolerant mutant background to play an important role in seed DT. Additionally, we found that constitutive expression of PLATZ1 in WT plants confers partial DT in vegetative tissues. PMID:27551092

  6. Regulatory network analysis reveals novel regulators of seed desiccation tolerance in Arabidopsis thaliana

    PubMed Central

    González-Morales, Sandra Isabel; Chávez-Montes, Ricardo A.; Hayano-Kanashiro, Corina; Alejo-Jacuinde, Gerardo; Rico-Cambron, Thelma Y.; de Folter, Stefan; Herrera-Estrella, Luis

    2016-01-01

    Desiccation tolerance (DT) is a remarkable process that allows seeds in the dry state to remain viable for long periods of time that in some instances exceed 1,000 y. It has been postulated that seed DT evolved by rewiring the regulatory and signaling networks that controlled vegetative DT, which itself emerged as a crucial adaptive trait of early land plants. Understanding the networks that regulate seed desiccation tolerance in model plant systems would provide the tools to understand an evolutionary process that played a crucial role in the diversification of flowering plants. In this work, we used an integrated approach that included genomics, bioinformatics, metabolomics, and molecular genetics to identify and validate molecular networks that control the acquisition of DT in Arabidopsis seeds. Two DT-specific transcriptional subnetworks were identified related to storage of reserve compounds and cellular protection mechanisms that act downstream of the embryo development master regulators LEAFY COTYLEDON 1 and 2, FUSCA 3, and ABSCICIC ACID INSENSITIVE 3. Among the transcription factors identified as major nodes in the DT regulatory subnetworks, PLATZ1, PLATZ2, and AGL67 were confirmed by knockout mutants and overexpression in a desiccation-intolerant mutant background to play an important role in seed DT. Additionally, we found that constitutive expression of PLATZ1 in WT plants confers partial DT in vegetative tissues. PMID:27551092

  7. Regulatory impact analysis of the proposed acid-rain implementation regulations

    SciTech Connect

    Not Available

    1991-09-16

    This regulatory impact analysis (RIA) was developed in response to Executive Order (EO) 12291, which requires Federal Agencies to assess the costs, benefits, and impacts of all 'major' regulations. In compliance with EO 12291, this RIA assesses costs, benefits and impacts for the important provisions of Title IV. EPA divided its analysis of the Acid Rain Program into two parts. First, EPA analyzed the effects of the statute in the absence of any implementation regulations. In the second part of the analysis, EPA examined a 'regulatory' case that included both the SO2 reductions and the implementation regulations. By comparing costs under the regulatory case to those under the absent regulations case, EPA was able to isolate the incremental savings provided by the regulations. At the same time, by combining the two parts of the analysis, EPA was able to show the total costs imposed by the Acid Rain Program (the statute and the regulations) as a whole.

  8. Direct regulation of knot gene expression by Ultrabithorax and the evolution of cis-regulatory elements in Drosophila.

    PubMed

    Hersh, Bradley M; Carroll, Sean B

    2005-04-01

    The regulation of development by Hox proteins is important in the evolution of animal morphology, but how the regulatory sequences of Hox-regulated target genes function and evolve is unclear. To understand the regulatory organization and evolution of a Hox target gene, we have identified a wing-specific cis-regulatory element controlling the knot gene, which is expressed in the developing Drosophila wing but not the haltere. This regulatory element contains a single binding site that is crucial for activation by the transcription factor Cubitus interruptus (Ci), and a cluster of binding sites for repression by the Hox protein Ultrabithorax (UBX). The negative and positive control regions are physically separable, demonstrating that UBX does not repress by competing for occupancy of Ci-binding sites. Although knot expression is conserved among Drosophila species, this cluster of UBX binding sites is not. We isolated the knot wing cis-regulatory element from D. pseudoobscura, which contains a cluster of UBX-binding sites that is not homologous to the functionally defined D. melanogaster cluster. It is, however, homologous to a second D. melanogaster region containing a cluster of UBX sites that can also function as a repressor element. Thus, the knot regulatory region in D. melanogaster has two apparently functionally redundant blocks of sequences for repression by UBX, both of which are widely separated from activator sequences. This redundancy suggests that the complete evolutionary unit of regulatory control is larger than the minimal experimentally defined control element. The span of regulatory sequences upon which selection acts may, in general, be more expansive and less modular than functional studies of these elements have previously indicated.

  9. 76 FR 15891 - Improving Regulation and Regulatory Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... Office in its mission to foster innovation and competitiveness through providing high quality and timely... policy, and delivering intellectual property information and education worldwide. The Office is asking... improve, the actual results of regulatory requirements. E.O. 13563, 76 FR 3281, at Section 1(a)....

  10. Evolution of context dependent regulation by expansion of feast/famine regulatory proteins

    SciTech Connect

    Plaisier, Christopher L.; Lo, Fang -Yin; Ashworth, Justin; Brooks, Aaron N.; Beer, Karlyn D.; Kaur, Amardeep; Pan, Min; Reiss, David J.; Facciotti, Marc T.; Baliga, Nitin S.

    2014-11-14

    Expansion of transcription factors is believed to have played a crucial role in evolution of all organisms by enabling them to deal with dynamic environments and colonize new environments. We investigated how the expansion of the Feast/Famine Regulatory Protein (FFRP) or Lrp-like proteins into an eight-member family in Halobacterium salinarum NRC-1 has aided in niche-adaptation of this archaeon to a complex and dynamically changing hypersaline environment. We mapped genome-wide binding locations for all eight FFRPs, investigated their preference for binding different effector molecules, and identified the contexts in which they act by analyzing transcriptional responses across 35 growth conditions that mimic different environmental and nutritional conditions this organism is likely to encounter in the wild. Integrative analysis of these data constructed an FFRP regulatory network with conditionally active states that reveal how interrelated variations in DNA-binding domains, effector-molecule preferences, and binding sites in target gene promoters have tuned the functions of each FFRP to the environments in which they act. We demonstrate how conditional regulation of similar genes by two FFRPs, AsnC (an activator) and VNG1237C (a repressor), have striking environment-specific fitness consequences for oxidative stress management and growth, respectively. This study provides a systems perspective into the evolutionary process by which gene duplication within a transcription factor family contributes to environment-specific adaptation of an organism.

  11. Evolution of context dependent regulation by expansion of feast/famine regulatory proteins

    DOE PAGESBeta

    Plaisier, Christopher L.; Lo, Fang -Yin; Ashworth, Justin; Brooks, Aaron N.; Beer, Karlyn D.; Kaur, Amardeep; Pan, Min; Reiss, David J.; Facciotti, Marc T.; Baliga, Nitin S.

    2014-11-14

    Expansion of transcription factors is believed to have played a crucial role in evolution of all organisms by enabling them to deal with dynamic environments and colonize new environments. We investigated how the expansion of the Feast/Famine Regulatory Protein (FFRP) or Lrp-like proteins into an eight-member family in Halobacterium salinarum NRC-1 has aided in niche-adaptation of this archaeon to a complex and dynamically changing hypersaline environment. We mapped genome-wide binding locations for all eight FFRPs, investigated their preference for binding different effector molecules, and identified the contexts in which they act by analyzing transcriptional responses across 35 growth conditions thatmore » mimic different environmental and nutritional conditions this organism is likely to encounter in the wild. Integrative analysis of these data constructed an FFRP regulatory network with conditionally active states that reveal how interrelated variations in DNA-binding domains, effector-molecule preferences, and binding sites in target gene promoters have tuned the functions of each FFRP to the environments in which they act. We demonstrate how conditional regulation of similar genes by two FFRPs, AsnC (an activator) and VNG1237C (a repressor), have striking environment-specific fitness consequences for oxidative stress management and growth, respectively. This study provides a systems perspective into the evolutionary process by which gene duplication within a transcription factor family contributes to environment-specific adaptation of an organism.« less

  12. Chromatin properties of regulatory DNA probed by manipulation of transcription factors.

    PubMed

    Sharov, Alexei A; Nishiyama, Akira; Qian, Yong; Dudekula, Dawood B; Longo, Dan L; Schlessinger, David; Ko, Minoru S H

    2014-08-01

    Transcription factors (TFs) bind to DNA and regulate the transcription of nearby genes. However, only a small fraction of TF binding sites have such regulatory effects. Here we search for the predictors of functional binding sites by carrying out a systematic computational screening of a variety of contextual factors (histone modifications, nuclear lamin-bindings, and cofactor bindings). We used regression analysis to test if contextual factors are associated with upregulation or downregulation of neighboring genes following the induction or knockdown of the 9 TFs in mouse embryonic stem (ES) cells. Functional TF binding sites appeared to be either active (i.e., bound by P300, CHD7, mediator, cohesin, and SWI/SNF) or repressed (i.e., with H3K27me3 histone marks and bound by Polycomb factors). Active binding sites mediated the downregulation of nearby genes upon knocking down the activating TFs or inducing repressors. Repressed TF binding sites mediated the upregulation of nearby genes (e.g., poised developmental regulators) upon inducing TFs. In addition, repressed binding sites mediated repressive effects of TFs, identified by the downregulation of target genes after the induction of TFs or by the upregulation of target genes after the knockdown of TFs. The contextual factors associated with functions of DNA-bound TFs were used to improve the identification of candidate target genes regulated by TFs.

  13. Cleavage factor Im (CFIm) as a regulator of alternative polyadenylation.

    PubMed

    Hardy, Jessica G; Norbury, Chris J

    2016-08-15

    Most mammalian protein coding genes are subject to alternative cleavage and polyadenylation (APA), which can generate distinct mRNA 3'UTRs with differing regulatory potential. Although this process has been intensely studied in recent years, it remains unclear how and to what extent cleavage site selection is regulated under different physiological conditions. The cleavage factor Im (CFIm) complex is a core component of the mammalian cleavage machinery, and the observation that its depletion causes transcriptome-wide changes in cleavage site use makes it a key candidate regulator of APA. This review aims to summarize current knowledge of the CFIm complex, and explores the evidence surrounding its potential contribution to regulation of APA. PMID:27528751

  14. Regulation of plant growth and development by the GROWTH-REGULATING FACTOR and GRF-INTERACTING FACTOR duo.

    PubMed

    Hoe Kim, Jeong; Tsukaya, Hirokazu

    2015-10-01

    Transcription factors are key regulators of gene expression and play pivotal roles in all aspects of living organisms. Therefore, identification and functional characterization of transcription factors is a prerequisite step toward understanding life. This article reviews molecular and biological functions of the two transcription regulator families, GROWTH-REGULATING FACTOR (GRF) and GRF-INTERACTING FACTOR (GIF), which have only recently been recognized. A myriad of experimental evidence clearly illustrates that GRF and GIF are bona fide partner proteins and form a plant-specific transcriptional complex. One of the most conspicuous outcomes from this research field is that the GRF-GIF duo endows the primordial cells of vegetative and reproductive organs with a meristematic specification state, guaranteeing the supply of cells for organogenesis and successful reproduction. It has recently been shown that GIF1 proteins, also known as ANGUSTIFOLIA3, recruit chromatin remodelling complexes to target genes, and that AtGRF expression is directly activated by the floral identity factors, APETALA1 and SEPALLATA3, providing an important insight into understanding of the action of GRF-GIF. Moreover, GRF genes are extensively subjected to post-transcriptional control by microRNA396, revealing the presence of a complex regulatory circuit in regulation of plant growth and development by the GRF-GIF duo.

  15. The Regulatory Repertoire of Pseudomonas aeruginosa AmpC ß-Lactamase Regulator AmpR Includes Virulence Genes

    PubMed Central

    Balasubramanian, Deepak; Schneper, Lisa; Merighi, Massimo; Smith, Roger; Narasimhan, Giri; Lory, Stephen; Mathee, Kalai

    2012-01-01

    In Enterobacteriaceae, the transcriptional regulator AmpR, a member of the LysR family, regulates the expression of a chromosomal β-lactamase AmpC. The regulatory repertoire of AmpR is broader in Pseudomonas aeruginosa, an opportunistic pathogen responsible for numerous acute and chronic infections including cystic fibrosis. In addition to regulating ampC, P. aeruginosa AmpR regulates the sigma factor AlgT/U and production of some quorum sensing (QS)-regulated virulence factors. In order to better understand the ampR regulon, we compared the transcriptional profile generated using DNA microarrays of the prototypic P. aeruginosa PAO1 strain with its isogenic ampR deletion mutant, PAOΔampR. Transcriptome analysis demonstrates that the AmpR regulon is much more extensive than previously thought, with the deletion of ampR influencing the differential expression of over 500 genes. In addition to regulating resistance to β-lactam antibiotics via AmpC, AmpR also regulates non-β-lactam antibiotic resistance by modulating the MexEF-OprN efflux pump. Other virulence mechanisms including biofilm formation and QS-regulated acute virulence factors are AmpR-regulated. Real-time PCR and phenotypic assays confirmed the microarray data. Further, using a Caenorhabditis elegans model, we demonstrate that a functional AmpR is required for P. aeruginosa pathogenicity. AmpR, a member of the core genome, also regulates genes in the regions of genome plasticity that are acquired by horizontal gene transfer. Further, we show differential regulation of other transcriptional regulators and sigma factors by AmpR, accounting for the extensive AmpR regulon. The data demonstrates that AmpR functions as a global regulator in P. aeruginosa and is a positive regulator of acute virulence while negatively regulating biofilm formation, a chronic infection phenotype. Unraveling this complex regulatory circuit will provide a better understanding of the bacterial response to antibiotics and how the

  16. Pesticide regulations for agriculture: Chemically flawed regulatory practice.

    PubMed

    Gamble, Donald S; Bruccoleri, Aldo G

    2016-08-01

    Two categories of pesticide soil models now exist. Government regulatory agencies use pesticide fate and transport hydrology models, including versions of PRZM.gw. They have good descriptions of pesticide transport by water flow. Their descriptions of chemical mechanisms are unrealistic, having been postulated using the universally accepted but incorrect pesticide soil science. The objective of this work is to report experimental tests of a pesticide soil model in use by regulatory agencies and to suggest possible improvements. Tests with experimentally based data explain why PRZM.gw predictions can be wrong by orders of magnitude. Predictive spreadsheet models are the other category. They are experimentally based, with chemical stoichiometry applied to integral kinetic rate laws for sorption, desorption, intra-particle diffusion, and chemical reactions. They do not account for pesticide transport through soils. Each category of models therefore lacks what the other could provide. They need to be either harmonized or replaced. Some preliminary tests indicate that an experimental mismatch between the categories of models will have to be resolved. Reports of pesticides in the environment and the medical problems that overlap geographically indicate that government regulatory practice needs to account for chemical kinetics and mechanisms. Questions about possible cause and effect links could then be investigated. PMID:27166991

  17. Uncovering MicroRNA and Transcription Factor Mediated Regulatory Networks in Glioblastoma.

    PubMed

    Sun, Jingchun; Gong, Xue; Purow, Benjamin; Zhao, Zhongming

    2012-01-01

    Glioblastoma multiforme (GBM) is the most common and lethal brain tumor in humans. Recent studies revealed that patterns of microRNA (miRNA) expression in GBM tissue samples are different from those in normal brain tissues, suggesting that a number of miRNAs play critical roles in the pathogenesis of GBM. However, little is yet known about which miRNAs play central roles in the pathology of GBM and their regulatory mechanisms of action. To address this issue, in this study, we systematically explored the main regulation format (feed-forward loops, FFLs) consisting of miRNAs, transcription factors (TFs) and their impacting GBM-related genes, and developed a computational approach to construct a miRNA-TF regulatory network. First, we compiled GBM-related miRNAs, GBM-related genes, and known human TFs. We then identified 1,128 3-node FFLs and 805 4-node FFLs with statistical significance. By merging these FFLs together, we constructed a comprehensive GBM-specific miRNA-TF mediated regulatory network. Then, from the network, we extracted a composite GBM-specific regulatory network. To illustrate the GBM-specific regulatory network is promising for identification of critical miRNA components, we specifically examined a Notch signaling pathway subnetwork. Our follow up topological and functional analyses of the subnetwork revealed that six miRNAs (miR-124, miR-137, miR-219-5p, miR-34a, miR-9, and miR-92b) might play important roles in GBM, including some results that are supported by previous studies. In this study, we have developed a computational framework to construct a miRNA-TF regulatory network and generated the first miRNA-TF regulatory network for GBM, providing a valuable resource for further understanding the complex regulatory mechanisms in GBM. The observation of critical miRNAs in the Notch signaling pathway, with partial verification from previous studies, demonstrates that our network-based approach is promising for the identification of new and important

  18. Retinoic acid exerts dual regulatory actions on the expression and nuclear localization of interferon regulatory factor-1.

    PubMed

    Luo, Xin M; Ross, A Catharine

    2006-05-01

    Interferon regulatory factor-1 (IRF-1), a transcription factor and tumor suppressor involved in cell growth regulation and immune responses, has been shown to be induced by all-trans retinoic acid (ATRA). However, the factors controlling the cellular location and activity of IRF-1 are not well understood. In this study, we examined the expression of IRF-1 and its nuclear localization, DNA-binding activity, and target gene expression in human mammary epithelial MCF10A cells, a model of breast epithelial cell differentiation and carcinogenesis. Following initial treatment with ATRA, IRF-1 mRNA and protein were induced within 2 hrs, reached a peak (>30-fold induction) at 8 hrs, and declined afterwards. IRF-1 protein was predominantly cytoplasmic during this treatment. Although a second dose of ATRA or Am580 (a related retinoid selective for retinoic acid receptor-alpha [RARalpha]), given 16 hrs after the first dose, restimulated IRF-1 mRNA and protein levels to a similar level to that obtained by the first dose, IRF-1 was predominantly concentrated in the nucleus after restimulation. ATRA and Am580 also increased nuclear RARalpha, whereas retinoid X receptor-alpha (RXRalpha)--a dimerization partner for RARalpha, was localized to the nucleus upon second exposure to ATRA. However, ATRA and Am580 did not regulate the expression or activation of signal transducer and activator of transcription-1 (STAT-1), a transcription factor capable of inducing the expression of IRF-1, indicating an STAT-1-independent mechanism of regulation by ATRA and Am580. The increase in nuclear IRF-1 after retinoid restimulation was accompanied by enhanced binding to an IRF-E DNA response element, and elevated expression of an IRF-1 target gene, 2',5'-oligoadenylate synthetase-2. The dual effect of retinoids in increasing IRF-1 mRNA and protein and in augmenting the nuclear localization of IRF-1 protein may be essential for maximizing the tumor suppressor activity and the immunosurveillance

  19. Intracellular Concentrations of 65 Species of Transcription Factors with Known Regulatory Functions in Escherichia coli

    PubMed Central

    Kori, Ayako; Koshio, Etsuko; Yamada, Kayoko; Maeda, Hiroto; Shimada, Tomohiro; Makinoshima, Hideki; Iwata, Akira; Fujita, Nobuyuki

    2014-01-01

    The expression pattern of the Escherichia coli genome is controlled in part by regulating the utilization of a limited number of RNA polymerases among a total of its approximately 4,600 genes. The distribution pattern of RNA polymerase changes from modulation of two types of protein-protein interactions: the interaction of core RNA polymerase with seven species of the sigma subunit for differential promoter recognition and the interaction of RNA polymerase holoenzyme with about 300 different species of transcription factors (TFs) with regulatory functions. We have been involved in the systematic search for the target promoters recognized by each sigma factor and each TF using the newly developed Genomic SELEX system. In parallel, we developed the promoter-specific (PS)-TF screening system for identification of the whole set of TFs involved in regulation of each promoter. Understanding the regulation of genome transcription also requires knowing the intracellular concentrations of the sigma subunits and TFs under various growth conditions. This report describes the intracellular levels of 65 species of TF with known function in E. coli K-12 W3110 at various phases of cell growth and at various temperatures. The list of intracellular concentrations of the sigma factors and TFs provides a community resource for understanding the transcription regulation of E. coli under various stressful conditions in nature. PMID:24837290

  20. Current Regulation of Private Police: Regulatory Agency Experience and Views.

    ERIC Educational Resources Information Center

    Kakalik, James S.; Wildhorn, Sorrel

    This report is the third in a series of five describing a 16-month study of the nature and extent of the private police industry in the United States, its problems, present regulation, and the laws impinging on it. Licensing and regulation of the industry in every state and several cities are described in this volume. Extensive tables present the…

  1. Growth factor transgenes interactively regulate articular chondrocytes.

    PubMed

    Shi, Shuiliang; Mercer, Scott; Eckert, George J; Trippel, Stephen B

    2013-04-01

    Adult articular chondrocytes lack an effective repair response to correct damage from injury or osteoarthritis. Polypeptide growth factors that stimulate articular chondrocyte proliferation and cartilage matrix synthesis may augment this response. Gene transfer is a promising approach to delivering such factors. Multiple growth factor genes regulate these cell functions, but multiple growth factor gene transfer remains unexplored. We tested the hypothesis that multiple growth factor gene transfer selectively modulates articular chondrocyte proliferation and matrix synthesis. We tested the hypothesis by delivering combinations of the transgenes encoding insulin-like growth factor I (IGF-I), fibroblast growth factor-2 (FGF-2), transforming growth factor beta1 (TGF-β1), bone morphogenetic protein-2 (BMP-2), and bone morphogenetic protien-7 (BMP-7) to articular chondrocytes and measured changes in the production of DNA, glycosaminoglycan, and collagen. The transgenes differentially regulated all these chondrocyte activities. In concert, the transgenes interacted to generate widely divergent responses from the cells. These interactions ranged from inhibitory to synergistic. The transgene pair encoding IGF-I and FGF-2 maximized cell proliferation. The three-transgene group encoding IGF-I, BMP-2, and BMP-7 maximized matrix production and also optimized the balance between cell proliferation and matrix production. These data demonstrate an approach to articular chondrocyte regulation that may be tailored to stimulate specific cell functions, and suggest that certain growth factor gene combinations have potential value for cell-based articular cartilage repair.

  2. Medusa structure of the gene regulatory network: dominance of transcription factors in cancer subtype classification.

    PubMed

    Guo, Yuchun; Feng, Ying; Trivedi, Niraj S; Huang, Sui

    2011-05-01

    Gene expression profiles consisting of ten thousands of transcripts are used for clustering of tissue, such as tumors, into subtypes, often without considering the underlying reason that the distinct patterns of expression arise because of constraints in the realization of gene expression profiles imposed by the gene regulatory network. The topology of this network has been suggested to consist of a regulatory core of genes represented most prominently by transcription factors (TFs) and microRNAs, that influence the expression of other genes, and of a periphery of 'enslaved' effector genes that are regulated but not regulating. This 'medusa' architecture implies that the core genes are much stronger determinants of the realized gene expression profiles. To test this hypothesis, we examined the clustering of gene expression profiles into known tumor types to quantitatively demonstrate that TFs, and even more pronounced, microRNAs, are much stronger discriminators of tumor type specific gene expression patterns than a same number of randomly selected or metabolic genes. These findings lend support to the hypothesis of a medusa architecture and of the canalizing nature of regulation by microRNAs. They also reveal the degree of freedom for the expression of peripheral genes that are less stringently associated with a tissue type specific global gene expression profile.

  3. Childcare Regulations: Regulatory Enforcement in Ireland. What Happens When the Inspector Calls?

    ERIC Educational Resources Information Center

    Moloney, Mary

    2016-01-01

    Childcare regulations ensure children's rights to Early Childhood Care and Education settings that protect them from harm and promote their healthy development. To ensure that settings comply, power is vested with regulatory bodies that are tasked with enforcing regulations. Using a qualitative methodology, 43 interviews were undertaken with Early…

  4. Splicing regulation: From a parts list of regulatory elements to an integrated splicing code

    PubMed Central

    Wang, Zefeng; Burge, Christopher B.

    2008-01-01

    Alternative splicing of pre-mRNAs is a major contributor to both proteomic diversity and control of gene expression levels. Splicing is tightly regulated in different tissues and developmental stages, and its disruption can lead to a wide range of human diseases. An important long-term goal in the splicing field is to determine a set of rules or “code” for splicing that will enable prediction of the splicing pattern of any primary transcript from its sequence. Outside of the core splice site motifs, the bulk of the information required for splicing is thought to be contained in exonic and intronic cis-regulatory elements that function by recruitment of sequence-specific RNA-binding protein factors that either activate or repress the use of adjacent splice sites. Here, we summarize the current state of knowledge of splicing cis-regulatory elements and their context-dependent effects on splicing, emphasizing recent global/genome-wide studies and open questions. PMID:18369186

  5. Scientists versus regulators: precaution, novelty & regulatory oversight as predictors of perceived risks of engineered nanomaterials.

    PubMed

    Beaudrie, Christian E H; Satterfield, Terre; Kandlikar, Milind; Harthorn, Barbara H

    2014-01-01

    Engineered nanoscale materials (ENMs) present a difficult challenge for risk assessors and regulators. Continuing uncertainty about the potential risks of ENMs means that expert opinion will play an important role in the design of policies to minimize harmful implications while supporting innovation. This research aims to shed light on the views of 'nano experts' to understand which nanomaterials or applications are regarded as more risky than others, to characterize the differences in risk perceptions between expert groups, and to evaluate the factors that drive these perceptions. Our analysis draws from a web-survey (N = 404) of three groups of US and Canadian experts: nano-scientists and engineers, nano-environmental health and safety scientists, and regulatory scientists and decision-makers. Significant differences in risk perceptions were found across expert groups; differences found to be driven by underlying attitudes and perceptions characteristic of each group. Nano-scientists and engineers at the upstream end of the nanomaterial life cycle perceived the lowest levels of risk, while those who are responsible for assessing and regulating risks at the downstream end perceived the greatest risk. Perceived novelty of nanomaterial risks, differing preferences for regulation (i.e. the use of precaution versus voluntary or market-based approaches), and perceptions of the risk of technologies in general predicted variation in experts' judgments of nanotechnology risks. Our findings underscore the importance of involving a diverse selection of experts, particularly those with expertise at different stages along the nanomaterial lifecycle, during policy development. PMID:25222742

  6. A role for interferon regulatory factor 4 in receptor editing.

    PubMed

    Pathak, Simanta; Ma, Shibin; Trinh, Long; Lu, Runqing

    2008-04-01

    Receptor editing is the primary means through which B cells revise antigen receptors and maintain central tolerance. Previous studies have demonstrated that interferon regulatory factor 4 (IRF-4) and IRF-8 promote immunoglobulin light-chain rearrangement and transcription at the pre-B stage. Here, the roles of IRF-4 and -8 in receptor editing were analyzed. Our results show that secondary rearrangement was impaired in IRF-4 but not IRF-8 mutant mice, suggesting that receptor editing is defective in the absence of IRF-4. The role of IRF-4 in receptor editing was further examined in B-cell-receptor (BCR) transgenic mice. Our results show that secondary rearrangement triggered by membrane-bound antigen was defective in the IRF-4-deficient mice. Our results further reveal that the defect in secondary rearrangement is more severe at the immunoglobulin lambda locus than at the kappa locus, indicating that IRF-4 is more critical for the lambda rearrangement. We provide evidence demonstrating that the expression of IRF-4 in immature B cells is rapidly induced by self-antigen and that the reconstitution of IRF-4 expression in the IRF-4 mutant immature B cells promotes secondary rearrangement. Thus, our studies identify IRF-4 as a nuclear effector of a BCR signaling pathway that promotes secondary rearrangement at the immature B-cell stage.

  7. Discovering transcription factor regulatory targets using gene expression and binding data

    PubMed Central

    Maienschein-Cline, Mark; Zhou, Jie; White, Kevin P.; Sciammas, Roger; Dinner, Aaron R.

    2012-01-01

    Motivation: Identifying the target genes regulated by transcription factors (TFs) is the most basic step in understanding gene regulation. Recent advances in high-throughput sequencing technology, together with chromatin immunoprecipitation (ChIP), enable mapping TF binding sites genome wide, but it is not possible to infer function from binding alone. This is especially true in mammalian systems, where regulation often occurs through long-range enhancers in gene-rich neighborhoods, rather than proximal promoters, preventing straightforward assignment of a binding site to a target gene. Results: We present EMBER (Expectation Maximization of Binding and Expression pRofiles), a method that integrates high-throughput binding data (e.g. ChIP-chip or ChIP-seq) with gene expression data (e.g. DNA microarray) via an unsupervised machine learning algorithm for inferring the gene targets of sets of TF binding sites. Genes selected are those that match overrepresented expression patterns, which can be used to provide information about multiple TF regulatory modes. We apply the method to genome-wide human breast cancer data and demonstrate that EMBER confirms a role for the TFs estrogen receptor alpha, retinoic acid receptors alpha and gamma in breast cancer development, whereas the conventional approach of assigning regulatory targets based on proximity does not. Additionally, we compare several predicted target genes from EMBER to interactions inferred previously, examine combinatorial effects of TFs on gene regulation and illustrate the ability of EMBER to discover multiple modes of regulation. Availability: All code used for this work is available at http://dinner-group.uchicago.edu/downloads.html Contact: dinner@uchicago.edu Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:22084256

  8. External and internal factors regulating photosynthesis

    SciTech Connect

    Teskey, R.O.; Sheriff, D.W.; Hollinger, D.Y.; Thomas, R.B.

    1995-07-01

    Photosynthesis is simultaneously regulated by many factors. Environmental factors, consisting primarily of light, water, heat, carbon dioxide, and other gases, can have direct effects on photosynthesis when they alter rates of chemical processes in the photosynthetic pathway. Environmental factors, along with nutrients and sink demands for carbohydrates, may also have indirect effects on photosynthesis. Indirect effects are the result of changes in nonphotosynthetic processes that, in turn, alter the rate of photosynthesis. A final category of regulators, photosynthetic framework, consists of substances that compose the physiologically active compounds and structures that form the basis of the light and dark reactions responsible for photosynthesis. The framework determines the photosynthetic capacity of a plant or organ, i.e., the rate of photosynthesis achievable when direct and indirect effects are nonlimiting. In this chapter we have divided the discussion of factors that regulate photosynthesis in conifers into these three categories, framework, direct effects, and indirect effects, because of an expanding appreciation in the field of environmental physiology that external and internal factors can simultaneously regulate photosynthesis by both direct and indirect means. We offer this outline as a logical way of presenting and discussing these issues.

  9. Tissue-specific targeting of cell fate regulatory genes by E2f factors.

    PubMed

    Julian, L M; Liu, Y; Pakenham, C A; Dugal-Tessier, D; Ruzhynsky, V; Bae, S; Tsai, S-Y; Leone, G; Slack, R S; Blais, A

    2016-04-01

    Cell cycle proteins are important regulators of diverse cell fate decisions, and in this capacity have pivotal roles in neurogenesis and brain development. The mechanisms by which cell cycle regulation is integrated with cell fate control in the brain and other tissues are poorly understood, and an outstanding question is whether the cell cycle machinery regulates fate decisions directly or instead as a secondary consequence of proliferative control. Identification of the genes targeted by E2 promoter binding factor (E2f) transcription factors, effectors of the pRb/E2f cell cycle pathway, will provide essential insights into these mechanisms. We identified the promoter regions bound by three neurogenic E2f factors in neural precursor cells in a genome-wide manner. Through bioinformatic analyses and integration of published genomic data sets we uncovered hundreds of transcriptionally active E2f-bound promoters corresponding to genes that control cell fate processes, including key transcriptional regulators and members of the Notch, fibroblast growth factor, Wnt and Tgf-β signaling pathways. We also demonstrate a striking enrichment of the CCCTC binding factor transcription factor (Ctcf) at E2f3-bound nervous system-related genes, suggesting a potential regulatory co-factor for E2f3 in controlling differentiation. Finally, we provide the first demonstration of extensive tissue specificity among E2f target genes in mammalian cells, whereby E2f3 promoter binding is well conserved between neural and muscle precursors at genes associated with cell cycle processes, but is tissue-specific at differentiation-associated genes. Our findings implicate the cell cycle pathway as a widespread regulator of cell fate genes, and suggest that E2f3 proteins control cell type-specific differentiation programs by regulating unique sets of target genes. This work significantly enhances our understanding of how the cell cycle machinery impacts cell fate and differentiation, and will

  10. Regulatory T Cells: Molecular Actions on Effector Cells in Immune Regulation

    PubMed Central

    Arce-Sillas, Asiel; Álvarez-Luquín, Diana Denisse; Tamaya-Domínguez, Beatriz; Gomez-Fuentes, Sandra; Trejo-García, Abel; Melo-Salas, Marlene; Cárdenas, Graciela; Rodríguez-Ramírez, Juan; Adalid-Peralta, Laura

    2016-01-01

    T regulatory cells play a key role in the control of the immune response, both in health and during illness. While the mechanisms through which T regulatory cells exert their function have been extensively described, their molecular effects on effector cells have received little attention. Thus, this revision is aimed at summarizing our current knowledge on those regulation mechanisms on the target cells from a molecular perspective. PMID:27298831

  11. A guide to integrating transcriptional regulatory and metabolic networks using PROM (probabilistic regulation of metabolism).

    PubMed

    Simeonidis, Evangelos; Chandrasekaran, Sriram; Price, Nathan D

    2013-01-01

    The integration of transcriptional regulatory and metabolic networks is a crucial step in the process of predicting metabolic behaviors that emerge from either genetic or environmental changes. Here, we present a guide to PROM (probabilistic regulation of metabolism), an automated method for the construction and simulation of integrated metabolic and transcriptional regulatory networks that enables large-scale phenotypic predictions for a wide range of model organisms.

  12. Interferon regulatory factors: at the crossroads of immunity, metabolism, and disease.

    PubMed

    Zhao, Guang-Nian; Jiang, Ding-Sheng; Li, Hongliang

    2015-02-01

    The interferon-regulatory factor (IRF) family comprises nine members in mammals. Although this transcription factor family was originally thought to function primarily in the immune system, contributing to both the innate immune response and the development of immune cells, recent advances have revealed that IRFs plays critical roles in other biological processes, such as metabolism. Accordingly, abnormalities in the expression and/or function of IRFs have increasingly been linked to disease. Herein, we provide an update on the recent progress regarding the regulation of immune responses and immune cell development associated with IRFs. Additionally, we discuss the relationships between IRFs and immunity, metabolism, and disease, with a particular focus on the role of IRFs as stress sensors. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.

  13. Regulatory focus and generalized trust: the impact of prevention-focused self-regulation on trusting others

    PubMed Central

    Keller, Johannes; Mayo, Ruth; Greifeneder, Rainer; Pfattheicher, Stefan

    2015-01-01

    The current research suggests that taking self-regulatory mechanisms into account provides insights regarding individuals’ responses to threats in social interactions. In general, based on the notion that a prevention-focused orientation of self-regulation is associated with a need for security and a vigilant tendency to avoid losses and other types of negative events we advocate that a prevention-focused orientation, both as a disposition as well as a situationally induced state, lowers generalized trust, thus hindering cooperation within social interactions that entail threats. Specifically, we found that the more individuals’ habitual self-regulatory orientation is dominated by a prevention focus, the less likely they are to score high on a self-report measure of generalized trust (Study 1), and to express trust in a trust game paradigm as manifested in lower sums of transferred money (Studies 2 and 3). Similar findings were found when prevention focus was situationally manipulated (Study 4). Finally, one possible factor underlying the impact of prevention-focused self-regulation on generalized trust was demonstrated as individuals with a special sensitivity to negative information were significantly affected by a subtle prevention focus manipulation (versus control condition) in that they reacted with reduced trust in the trust game (Study 5). In sum, the current findings document the crucial relevance of self-regulatory orientations as conceptualized in regulatory focus theory regarding generalized trust and responses to threats within a social interaction. The theoretical and applied implications of the findings are discussed. PMID:25852585

  14. Regulatory focus and generalized trust: the impact of prevention-focused self-regulation on trusting others.

    PubMed

    Keller, Johannes; Mayo, Ruth; Greifeneder, Rainer; Pfattheicher, Stefan

    2015-01-01

    The current research suggests that taking self-regulatory mechanisms into account provides insights regarding individuals' responses to threats in social interactions. In general, based on the notion that a prevention-focused orientation of self-regulation is associated with a need for security and a vigilant tendency to avoid losses and other types of negative events we advocate that a prevention-focused orientation, both as a disposition as well as a situationally induced state, lowers generalized trust, thus hindering cooperation within social interactions that entail threats. Specifically, we found that the more individuals' habitual self-regulatory orientation is dominated by a prevention focus, the less likely they are to score high on a self-report measure of generalized trust (Study 1), and to express trust in a trust game paradigm as manifested in lower sums of transferred money (Studies 2 and 3). Similar findings were found when prevention focus was situationally manipulated (Study 4). Finally, one possible factor underlying the impact of prevention-focused self-regulation on generalized trust was demonstrated as individuals with a special sensitivity to negative information were significantly affected by a subtle prevention focus manipulation (versus control condition) in that they reacted with reduced trust in the trust game (Study 5). In sum, the current findings document the crucial relevance of self-regulatory orientations as conceptualized in regulatory focus theory regarding generalized trust and responses to threats within a social interaction. The theoretical and applied implications of the findings are discussed.

  15. Regulatory role of the respiratory supercomplex factors in Saccharomyces cerevisiae

    PubMed Central

    Rydström Lundin, Camilla; Ott, Martin; Ädelroth, Pia; Brzezinski, Peter

    2016-01-01

    The respiratory supercomplex factors (Rcf) 1 and 2 mediate supramolecular interactions between mitochondrial complexes III (ubiquinol-cytochrome c reductase; cyt. bc1) and IV (cytochrome c oxidase; CytcO). In addition, removal of these polypeptides results in decreased activity of CytcO, but not of cyt. bc1. In the present study, we have investigated the kinetics of ligand binding, the single-turnover reaction of CytcO with O2, and the linked cyt. bc1-CytcO quinol oxidation-oxygen-reduction activities in mitochondria in which Rcf1 or Rcf2 were removed genetically (strains rcf1Δ and rcf2Δ, respectively). The data show that in the rcf1Δ and rcf2Δ strains, in a significant fraction of the population, ligand binding occurs over a time scale that is ∼100-fold faster (τ ≅ 100 μs) than observed with the wild-type mitochondria (τ ≅ 10 ms), indicating structural changes. This effect is specific to removal of Rcf and not dissociation of the cyt. bc1–CytcO supercomplex. Furthermore, in the rcf1Δ and rcf2Δ strains, the single-turnover reaction of CytcO with O2 was incomplete. This observation indicates that the lower activity of CytcO is caused by a fraction of inactive CytcO rather than decreased CytcO activity of the entire population. Furthermore, the data suggest that the Rcf1 polypeptide mediates formation of an electron-transfer bridge from cyt. bc1 to CytcO via a tightly bound cyt. c. We discuss the significance of the proposed regulatory mechanism of Rcf1 and Rcf2 in the context of supramolecular interactions between cyt. bc1 and CytcO. PMID:27432958

  16. Construction and analysis of dynamic transcription factor regulatory networks in the progression of glioma.

    PubMed

    Li, Yongsheng; Shao, Tingting; Jiang, Chunjie; Bai, Jing; Wang, Zishan; Zhang, Jinwen; Zhang, Lili; Zhao, Zheng; Xu, Juan; Li, Xia

    2015-11-03

    The combinatorial cross-regulation of transcription factors (TFs) plays an important role in cellular identity and function; however, the dynamic regulation of TFs during glioma progression remains largely unknown. Here, we used the genome-wide expression of TFs to construct an extensive human TF network comprising interactions among 513 TFs and to analyse the dynamics of the TF-TF network during glioma progression. We found that the TF regulatory networks share a common architecture and that the topological structures are conserved. Strikingly, despite the conservation of the network architecture, TF regulatory networks are highly grade specific, and TF circuitry motifs are dynamically rewired during glioma progression. In addition, the most frequently observed structure in the grade-specific TF networks was the feedforward loop (FFL). We described applications that show how investigating the behaviour of FFLs in glioblastoma can reveal FFLs (such as RARG-NR1I2-CDX2) that are associated with prognosis. We constructed comprehensive TF-TF networks and systematically analysed the circuitry, dynamics, and topological principles of the networks during glioma progression, which will further enhance our understanding of the functions of TFs in glioma.

  17. Regulation of the Nanog Gene by Both Positive and Negative cis-Regulatory Elements in Embryonal Carcinoma Cells and Embryonic Stem Cells

    PubMed Central

    Boer, Brian; Cox, Jesse L.; Claassen, David; Mallanna, Sunil Kumar; Desler, Michelle; Rizzino, Angie

    2008-01-01

    The transcription factor Nanog is essential for mammalian embryogenesis, as well as the pluripotency of embryonic stem (ES) cells. Work with ES cells and embryonal carcinoma (EC) cells previously identified positive and negative cis-regulatory elements that influence the activity of the Nanog promoter, including adjacent cis-regulatory elements that bind Sox2 and Oct-3/4. Given the importance of Nanog during mammalian development, we examined the cis-regulatory elements required for Nanog promoter activity more closely. In this study, we demonstrate that two positive cis-regulatory elements previously shown to be active in F9 EC cells are also active in ES cells. We also identify a novel negative regulatory region that is located in close proximity to two other positive Nanog cis-regulatory elements. Although this negative regulatory region is active in F9 EC cells and ES cells, it is inactive in P19 EC cells. Furthermore, we demonstrate that one of the positive cis-regulatory elements active in F9 EC cells and ES cells is inactive in P19 EC cells. Together, these and other studies suggest that Nanog transcription is regulated by the interplay of positive and negative cis-regulatory elements. Given that P19 appears to be more closely related to a later developmental stage of mammalian development than F9 and ES cells, differential utilization of cis-regulatory elements may reflect mechanisms used during development to achieve the correct level of Nanog expression as embryogenesis unfolds. PMID:18537119

  18. Problems caused by regulatory delays and lack of regulation

    NASA Astrophysics Data System (ADS)

    Reamer, Lynne A.

    1994-12-01

    An FDA perspective on some of the problems encountered during the device review process is described. Emphasis is placed on the need for communication and teamwork among all parties to make the system work. Manufacturers are encouraged to `Do it right the first time.' Pertinent questions are asked of the manufacturers and proposed solutions are presented. Day to day reality at FDA is described and document workload is revealed. Lack of regulation, or more appropriately, when less regulation is appropriate is discussed. FDA has distributed to manufacturers a new draft guidance document to help in the decisionmaking process and when to submit a 510(k) when modifications are made to a device. This and other mechanisms are in place at the FDA to streamline the review process. Manufacturers are cautioned about their decisions and to seek advice from qualified persons. FDA emphasizes that help is available and that when in doubt, call.

  19. Tissue factor activation: is disulfide bond switching a regulatory mechanism?

    PubMed Central

    Ghosh, Samit; Mandal, Samir K.

    2007-01-01

    A majority of tissue factor (TF) on cell surfaces exists in a cryptic form (ie, coagulation function inactive) but retains its functionality in cell signaling. Recent studies have suggested that cryptic TF contains unpaired cysteine thiols and that activation involves the formation of the disulfide bond Cys186-Cys 209 and that protein disulfide isomerase (PDI) regulates TF coagulant and signaling activities by targeting this disulfide bond. This study was carried out to investigate the validity of this novel concept. Although treatment of MDA 231 tumor cells, fibroblasts, and stimulated endothelial cells with the oxidizing agent HgCl2 markedly increased the cell-surface TF coagulant activity, the increase is associated with increased anionic phospholipids at the cell surface. Annexin V, which binds to anionic phospholipids, attenuated the increased TF coagulant activity. It is noteworthy that treatment of cells with reducing agents also increased the cell surface TF activity. No evidence was found for either detectable expression of PDI at the cell surface or association of TF with PDI. Furthermore, reduction of PDI with the gene silencing had no effect on either TF coagulant or cell signaling functions. Overall, the present data undermine the recently proposed hypothesis that PDI-mediated disulfide exchange plays a role in regulating TF procoagulant and cell signaling functions. PMID:17726162

  20. Screening for transcription factors and their regulatory small molecules involved in regulating the functions of CL1-5 cancer cells under the effects of macrophage-conditioned medium.

    PubMed

    Xue, Dongbo; Lu, Ming; Gao, Bo; Qiao, Xin; Zhang, Yingmei

    2014-03-01

    Many reports have inferred that macrophages can interact with tumor cells in the tumor microenvironment (TME) in a vicious cycle of tumor development; however, the changes in gene expression in tumor cells under the effects of macrophages are still largely unknown. The present study was carried out to illustrate the changes in the gene expression profile in lung cancer cells under the effects of macrophage-conditioned medium. Gene expression profile data were derived from the GEO database GSE9315. The GSM234968 sample was derived from a highly invasive human pulmonary adenocarcinoma cell line, CL1-5, and was treated with conditioned medium (supernatant of a culture solution of human monocyte THP-1). The GSM234967 sample that was not treated with the conditioned medium was used as a control. GO and KEGG enrichment analyses were carried out using DAVID software, and visualization networks were constructed using Cytoscape software. The results showed that 40 differentially expressed genes were annotated. Five differentially expressed transcription factors were identified, EIF2B4, EIF2B5, JUNB, GNG11 and HMGB2, which were all related to 'stress' and 'responses'. The gene cluster of JUNB was mainly enriched in cancer-related pathways, 'Wnt signaling pathway' and 'MAPK signaling pathway'. Finally, 10 small molecules, thioridazine, resveratrol, astemizole, ciclopirox, calmidazolium, etoposide, anisomycin, pyrvinium, azacyclonol and terfenadine, which may act on transcription factors, were identified using the CMap database. In conclusion, we identified transcription factors playing key roles in tumor cells under the effects of macrophages in order to provide new clues for blocking this vicious cycle of tumor development. PMID:24366584

  1. Endotoxin regulates the maturation of sterol regulatory element binding protein-1 through the induction of cytokines.

    PubMed

    Diomede, L; Albani, D; Bianchi, M; Salmona, M

    2001-01-01

    Endotoxin (LPS), by raising the levels of cytokines, markedly influences lipid metabolism. To clarify the molecular mechanism of this effect, we examined the action of endotoxin in vitro and in vivo on the regulation of sterol regulatory element binding protein-1 (SREBP-1). In HepG2 cells stimulated with LPS, a dose-dependent increase in the level of the mature form of SREBP-1 was observed. For in vivo studies, endotoxin was administered intraperitoneally to CD1 mice fed with a standard or a cholesterol-enriched diet to increase the basal levels of circulating and liver cholesterol. Endotoxin raised cholesterol levels and stimulated the maturation of hepatic SREBP-1 in both normal and cholesterol-fed mice, indicating that the lipogenic effect of LPS was independent of endogenous sterol levels. To assess whether the lipogenic effect of endotoxin was linked to cytokine production, we administered LPS to C57Bl/6J endotoxin-sensitive and to C3H/HeJ endotoxin-resistant mice, which do not produce tumor necrosis factor in response to LPS. Significant induction of cholesterol levels and SREBP-1 activation was observed only in C57Bl/6J mice, indicating that cytokine production is crucial for the regulation of SREBP-1, and that the transcriptional activation of cholesterol biosynthesis may be part of the acute-phase response.

  2. Understanding the regulation of Group B Streptococcal virulence factors

    PubMed Central

    Rajagopal, Lakshmi

    2009-01-01

    Bacterial infections remain a significant threat to the health of newborns and adults. Group B Streptococci (GBS) are Gram-positive bacteria that are common asymptomatic colonizers of healthy adults. However, this opportunistic organism can also subvert suboptimal host defenses to cause severe invasive disease and tissue damage. The increasing emergence of antibiotic-resistant GBS raises more concerns for sustained measures in treatment of the disease. A number of factors that are important for virulence of GBS have been identified. This review summarizes the functions of some well-characterized virulence factors, with an emphasis on how GBS regulates their expression. Regulatory and signaling molecules are attractive drug targets in the treatment of bacterial infections. Consequently, understanding signaling responses of GBS is essential for elucidation of pathogenesis of GBS infection and for the identification of novel therapeutic agents. PMID:19257847

  3. Identification and functional analysis of interferon regulatory factor 3 in Lateolabrax maculatus.

    PubMed

    Chen, Xiao-Wu; Wei, Qun; Wang, Zhi-Peng; Wang, Chun-Lei; Bi, Yan-Hui; Gu, Yi-Feng

    2016-10-01

    The interferon (IFN) regulatory factor 3 (IRF3) is a member of the IFN regulatory transcription factor family, which binds to the IFN-stimulated response element (ISRE) within the promoter of IFN genes and IFN-stimulated genes. In this study, the IRF3 cDNA of sea perch Lateolabrax maculatus (SpIRF3) was identified, which contained 1781 bp with an open reading frame of 1398 bp that coded a 465 amino acid protein. The SpIRF3 protein shared conserved characterizations with its homologues and displayed the conserved DNA-binding domain, IRF association domain, serine-rich C-terminal domain, and tryptophan residue cluster. Phylogenetic analysis illustrated that SpIRF3 belonged to the IRF3 subfamily. Subcellular localization analysis showed that SpIRF3 mainly resided in the cytoplasm without stimuli but translocated into nuclei in the presence of poly I:C. Real-time PCR data indicated that SpIRF3 was transcriptionally up-regulated by poly I:C stimulation in various organs. Moreover, reporter assay revealed that SpIRF3 functioned as a modulator in triggering the IFN response by inducing the activity of IFN and ISRE-containing promoter. These data revealed that SpIRF3 was a potential molecule in the IFN immune defense system against viral infection. PMID:27181713

  4. Expression of myogenic regulatory factors and myo-endothelial remodeling in sporadic inclusion body myositis

    PubMed Central

    Wanschitz, Julia V.; Dubourg, Odile; Lacene, Emmanuelle; Fischer, Michael B.; Höftberger, Romana; Budka, Herbert; Romero, Norma B.; Eymard, Bruno; Herson, Serge; Butler-Browne, Gillian S.; Voit, Thomas; Benveniste, Olivier

    2013-01-01

    Muscle repair relies on coordinated activation and differentiation of satellite cells, a process that is unable to counterbalance progressive degeneration in sporadic inclusion body myositis (s-IBM). To explore features of myo regeneration, the expression of myogenic regulatory factors Pax7, MyoD and Myogenin and markers of regenerating fibers was analyzed by immunohistochemistry in s-IBM muscle compared with polymyositis, dermatomyositis, muscular dystrophy and age-matched controls. In addition, the capillary density and number of interstitial CD34+ hematopoietic progenitor cells was determined by double-immunoflourescence staining. Satellite cells and regenerating fibers were significantly increased in s-IBM similar to other inflammatory myopathies and correlated with the intensity of inflammation (R > 0.428). Expression of MyoD, visualizing activated satellite cells and proliferating myoblasts, was lower in s-IBM compared to polymyosits. In contrast, Myogenin a marker of myogenic cell differentiation was strongly up-regulated in s-IBM muscle. The microvascular architecture in s-IBM was distorted, although the capillary density was normal. Notably, CD34+ hematopoietic cells were significantly increased in the interstitial compartment. Our findings indicate profound myo-endothelial remodeling of s-IBM muscle concomitant to inflammation. An altered expression of myogenic regulatory factors involved in satellite cell activation and differentiation, however, might reflect perturbations of muscle repair in s-IBM. PMID:23058947

  5. Regulation of the transforming growth factor β pathway by reversible ubiquitylation.

    PubMed

    Al-Salihi, Mazin A; Herhaus, Lina; Sapkota, Gopal P

    2012-05-01

    The transforming growth factor β (TGFβ) signalling pathway plays a central role during embryonic development and in adult tissue homeostasis. It regulates gene transcription through a signalling cascade from cell surface receptors to intracellular SMAD transcription factors and their nuclear cofactors. The extent, duration and potency of signalling in response to TGFβ cytokines are intricately regulated by complex biochemical processes. The corruption of these regulatory processes results in aberrant TGFβ signalling and leads to numerous human diseases, including cancer. Reversible ubiquitylation of pathway components is a key regulatory process that plays a critical role in ensuring a balanced response to TGFβ signals. Many studies have investigated the mechanisms by which various E3 ubiquitin ligases regulate the turnover and activity of TGFβ pathway components by ubiquitylation. Moreover, recent studies have shed new light into their regulation by deubiquitylating enzymes. In this report, we provide an overview of current understanding of the regulation of TGFβ signalling by E3 ubiquitin ligases and deubiquitylases.

  6. Transcription Factor Hepatocyte Nuclear Factor-1β Regulates Renal Cholesterol Metabolism.

    PubMed

    Aboudehen, Karam; Kim, Min Soo; Mitsche, Matthew; Garland, Kristina; Anderson, Norma; Noureddine, Lama; Pontoglio, Marco; Patel, Vishal; Xie, Yang; DeBose-Boyd, Russell; Igarashi, Peter

    2016-08-01

    HNF-1β is a tissue-specific transcription factor that is expressed in the kidney and other epithelial organs. Humans with mutations in HNF-1β develop kidney cysts, and HNF-1β regulates the transcription of several cystic disease genes. However, the complete spectrum of HNF-1β-regulated genes and pathways is not known. Here, using chromatin immunoprecipitation/next generation sequencing and gene expression profiling, we identified 1545 protein-coding genes that are directly regulated by HNF-1β in murine kidney epithelial cells. Pathway analysis predicted that HNF-1β regulates cholesterol metabolism. Expression of dominant negative mutant HNF-1β or kidney-specific inactivation of HNF-1β decreased the expression of genes that are essential for cholesterol synthesis, including sterol regulatory element binding factor 2 (Srebf2) and 3-hydroxy-3-methylglutaryl-CoA reductase (Hmgcr). HNF-1β mutant cells also expressed lower levels of cholesterol biosynthetic intermediates and had a lower rate of cholesterol synthesis than control cells. Additionally, depletion of cholesterol in the culture medium mitigated the inhibitory effects of mutant HNF-1β on the proteins encoded by Srebf2 and Hmgcr, and HNF-1β directly controlled the renal epithelial expression of proprotein convertase subtilisin-like kexin type 9, a key regulator of cholesterol uptake. These findings reveal a novel role of HNF-1β in a transcriptional network that regulates intrarenal cholesterol metabolism. PMID:26712526

  7. Protein Synthesis Initiation Factors: Phosphorylation and Regulation

    SciTech Connect

    Karen S. Browning

    2009-06-15

    The initiation of the synthesis of proteins is a fundamental process shared by all living organisms. Each organism has both shared and unique mechanisms for regulation of this vital process. Higher plants provide for a major amount of fixation of carbon from the environment and turn this carbon into food and fuel sources for our use. However, we have very little understanding of how plants regulate the synthesis of the proteins necessary for these metabolic processes. The research carried out during the grant period sought to address some of these unknowns in the regulation of protein synthesis initiation. Our first goal was to determine if phosphorylation plays a significant role in plant initiation of protein synthesis. The role of phosphorylation, although well documented in mammalian protein synthesis regulation, is not well studied in plants. We showed that several of the factors necessary for the initiation of protein synthesis were targets of plant casein kinase and showed differential phosphorylation by the plant specific isoforms of this kinase. In addition, we identified and confirmed the phosphorylation sites in five of the plant initiation factors. Further, we showed that phosphorylation of one of these factors, eIF5, affected the ability of the factor to participate in the initiation process. Our second goal was to develop a method to make initiation factor 3 (eIF3) using recombinant methods. To date, we successfully cloned and expressed 13/13 subunits of wheat eIF3 in E. coli using de novo gene construction methods. The final step in this process is to place the subunits into three different plasmid operons for co-expression. Successful completion of expression of eIF3 will be an invaluable tool to the plant translation community.

  8. MoD Tools: regulatory motif discovery in nucleotide sequences from co-regulated or homologous genes.

    PubMed

    Pavesi, Giulio; Mereghetti, Paolo; Zambelli, Federico; Stefani, Marco; Mauri, Giancarlo; Pesole, Graziano

    2006-07-01

    Understanding the complex mechanisms regulating gene expression at the transcriptional and post-transcriptional levels is one of the greatest challenges of the post-genomic era. The MoD (MOtif Discovery) Tools web server comprises a set of tools for the discovery of novel conserved sequence and structure motifs in nucleotide sequences, motifs that in turn are good candidates for regulatory activity. The server includes the following programs: Weeder, for the discovery of conserved transcription factor binding sites (TFBSs) in nucleotide sequences from co-regulated genes; WeederH, for the discovery of conserved TFBSs and distal regulatory modules in sequences from homologous genes; RNAProfile, for the discovery of conserved secondary structure motifs in unaligned RNA sequences whose secondary structure is not known. In this way, a given gene can be compared with other co-regulated genes or with its homologs, or its mRNA can be analyzed for conserved motifs regulating its post-transcriptional fate. The web server thus provides researchers with different strategies and methods to investigate the regulation of gene expression, at both the transcriptional and post-transcriptional levels. Available at http://www.pesolelab.it/modtools/ and http://www.beacon.unimi.it/modtools/.

  9. Human CHAC1 Protein Degrades Glutathione, and mRNA Induction Is Regulated by the Transcription Factors ATF4 and ATF3 and a Bipartite ATF/CRE Regulatory Element*

    PubMed Central

    Crawford, Rebecca R.; Prescott, Eugenia T.; Sylvester, Charity F.; Higdon, Ashlee N.; Shan, Jixiu; Kilberg, Michael S.; Mungrue, Imran N.

    2015-01-01

    Using an unbiased systems genetics approach, we previously predicted a role for CHAC1 in the endoplasmic reticulum stress pathway, linked functionally to activating transcription factor 4 (ATF4) following treatment with oxidized phospholipids, a model for atherosclerosis. Mouse and yeast CHAC1 homologs have been shown to degrade glutathione in yeast and a cell-free system. In this report, we further defined the ATF4-CHAC1 interaction by cloning the human CHAC1 promoter upstream of a luciferase reporter system for in vitro assays in HEK293 and U2OS cells. Mutation and deletion analyses defined two major cis DNA elements necessary and sufficient for CHAC1 promoter-driven luciferase transcription under conditions of ER stress or ATF4 coexpression: the −267 ATF/cAMP response element (CRE) site and a novel −248 ATF/CRE modifier (ACM) element. We also examined the ability of the CHAC1 ATF/CRE and ACM sequences to bind ATF4 and ATF3 using immunoblot-EMSA and confirmed ATF4, ATF3, and CCAAT/enhancer-binding protein β binding at the human CHAC1 promoter in the proximity of the ATF/CRE and ACM using ChIP. To further validate the function of CHAC1 in a human cell model, we measured glutathione levels in HEK293 cells with enhanced CHAC1 expression. Overexpression of CHAC1 led to a robust depletion of glutathione, which was alleviated in a CHAC1 catalytic mutant. These results suggest an important role for CHAC1 in oxidative stress and apoptosis with implications for human health and disease. PMID:25931127

  10. Inferring regulatory element landscapes and transcription factor networks from cancer methylomes.

    PubMed

    Yao, Lijing; Shen, Hui; Laird, Peter W; Farnham, Peggy J; Berman, Benjamin P

    2015-05-21

    Recent studies indicate that DNA methylation can be used to identify transcriptional enhancers, but no systematic approach has been developed for genome-wide identification and analysis of enhancers based on DNA methylation. We describe ELMER (Enhancer Linking by Methylation/Expression Relationships), an R-based tool that uses DNA methylation to identify enhancers and correlates enhancer state with expression of nearby genes to identify transcriptional targets. Transcription factor motif analysis of enhancers is coupled with expression analysis of transcription factors to infer upstream regulators. Using ELMER, we investigated more than 2,000 tumor samples from The Cancer Genome Atlas. We identified networks regulated by known cancer drivers such as GATA3 and FOXA1 (breast cancer), SOX17 and FOXA2 (endometrial cancer), and NFE2L2, SOX2, and TP63 (squamous cell lung cancer). We also identified novel networks with prognostic associations, including RUNX1 in kidney cancer. We propose ELMER as a powerful new paradigm for understanding the cis-regulatory interface between cancer-associated transcription factors and their functional target genes.

  11. Machine learning for regulatory analysis and transcription factor target prediction in yeast

    PubMed Central

    Holloway, Dustin T.; Kon, Mark

    2006-01-01

    High throughput technologies, including array-based chromatin immunoprecipitation, have rapidly increased our knowledge of transcriptional maps—the identity and location of regulatory binding sites within genomes. Still, the full identification of sites, even in lower eukaryotes, remains largely incomplete. In this paper we develop a supervised learning approach to site identification using support vector machines (SVMs) to combine 26 different data types. A comparison with the standard approach to site identification using position specific scoring matrices (PSSMs) for a set of 104 Saccharomyces cerevisiae regulators indicates that our SVM-based target classification is more sensitive (73 vs. 20%) when specificity and positive predictive value are the same. We have applied our SVM classifier for each transcriptional regulator to all promoters in the yeast genome to obtain thousands of new targets, which are currently being analyzed and refined to limit the risk of classifier over-fitting. For the purpose of illustration we discuss several results, including biochemical pathway predictions for Gcn4 and Rap1. For both transcription factors SVM predictions match well with the known biology of control mechanisms, and possible new roles for these factors are suggested, such as a function for Rap1 in regulating fermentative growth. We also examine the promoter melting temperature curves for the targets of YJR060W, and show that targets of this TF have potentially unique physical properties which distinguish them from other genes. The SVM output automatically provides the means to rank dataset features to identify important biological elements. We use this property to rank classifying k-mers, thereby reconstructing known binding sites for several TFs, and to rank expression experiments, determining the conditions under which Fhl1, the factor responsible for expression of ribosomal protein genes, is active. We can see that targets of Fhl1 are differentially expressed in

  12. Epigenetic Regulation of Individual Modules of the immunoglobulin heavy chain locus 3′ Regulatory Region

    PubMed Central

    Birshtein, Barbara K.

    2014-01-01

    The Igh locus undergoes an amazing array of DNA rearrangements and modifications during B cell development. During early stages, the variable region gene is constructed from constituent variable (V), diversity (D), and joining (J) segments (VDJ joining). B cells that successfully express an antibody can be activated, leading to somatic hypermutation (SHM) focused on the variable region, and class switch recombination (CSR), which substitutes downstream constant region genes for the originally used Cμ constant region gene. Many investigators, ourselves included, have sought to understand how these processes specifically target the Igh locus and avoid other loci and potential deleterious consequences of malignant transformation. Our laboratory has concentrated on a complex regulatory region (RR) that is located downstream of Cα, the most 3′ of the Igh constant region genes. The ~40 kb 3′ RR, which is predicted to serve as a downstream major regulator of the Igh locus, contains two distinct segments: an ~28 kb region comprising four enhancers, and an adjacent ~12 kb region containing multiple CTCF and Pax5 binding sites. Analysis of targeted mutations in mice by a number of investigators has concluded that the entire 3′ RR enhancer region is essential for SHM and CSR (but not for VDJ joining) and for high levels of expression of multiple isotypes. The CTCF/Pax5 binding region is a candidate for influencing VDJ joining early in B cell development and serving as a potential insulator of the Igh locus. Components of the 3′ RR are subject to a variety of epigenetic changes during B cell development, i.e., DNAse I hypersensitivity, histone modifications, and DNA methylation, in association with transcription factor binding. I propose that these changes provide a foundation by which regulatory elements in modules of the 3′ RR function by interacting with each other and with target sequences of the Igh locus. PMID:24795714

  13. Epigenetic Regulation of Individual Modules of the immunoglobulin heavy chain locus 3' Regulatory Region.

    PubMed

    Birshtein, Barbara K

    2014-01-01

    The Igh locus undergoes an amazing array of DNA rearrangements and modifications during B cell development. During early stages, the variable region gene is constructed from constituent variable (V), diversity (D), and joining (J) segments (VDJ joining). B cells that successfully express an antibody can be activated, leading to somatic hypermutation (SHM) focused on the variable region, and class switch recombination (CSR), which substitutes downstream constant region genes for the originally used Cμ constant region gene. Many investigators, ourselves included, have sought to understand how these processes specifically target the Igh locus and avoid other loci and potential deleterious consequences of malignant transformation. Our laboratory has concentrated on a complex regulatory region (RR) that is located downstream of Cα, the most 3' of the Igh constant region genes. The ~40 kb 3' RR, which is predicted to serve as a downstream major regulator of the Igh locus, contains two distinct segments: an ~28 kb region comprising four enhancers, and an adjacent ~12 kb region containing multiple CTCF and Pax5 binding sites. Analysis of targeted mutations in mice by a number of investigators has concluded that the entire 3' RR enhancer region is essential for SHM and CSR (but not for VDJ joining) and for high levels of expression of multiple isotypes. The CTCF/Pax5 binding region is a candidate for influencing VDJ joining early in B cell development and serving as a potential insulator of the Igh locus. Components of the 3' RR are subject to a variety of epigenetic changes during B cell development, i.e., DNAse I hypersensitivity, histone modifications, and DNA methylation, in association with transcription factor binding. I propose that these changes provide a foundation by which regulatory elements in modules of the 3' RR function by interacting with each other and with target sequences of the Igh locus.

  14. 3 CFR 13563 - Executive Order 13563 of January 18, 2011. Improving Regulation and Regulatory Review

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... agency must, among other things: (1) propose or adopt a regulation only upon a reasoned determination... regulatory objectives, taking into account, among other things, and to the extent practicable, the costs of... shall afford the public a meaningful opportunity to comment through the Internet on any...

  15. 78 FR 60695 - Regulatory Reorganization; Administrative Changes to Regulations Due to the Consolidation of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... Fiscal Service Bureau of the Fiscal Service 31 CFR Chapter II, Parts 202-391 RIN 1510-AB31 Regulatory Reorganization; Administrative Changes to Regulations Due to the Consolidation of the Financial Management Service and the Bureau of the Public Debt Into the Bureau of the Fiscal Service AGENCY: Bureau of...

  16. 76 FR 50433 - Regulatory Guidance: Applicability of the Federal Motor Carrier Safety Regulations to Operators...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... the Federal Motor Carrier Safety Regulations to Operators of Certain Farm Vehicles and Off-Road... vehicles (76 FR 31279). Recognizing that changes in regulatory guidance (if implemented by a State) could... generally local--5 to 10 miles--on rural roads with little traffic. They stated that FMCSA has...

  17. Regulation of cardiac metabolism and function by lipogenic factors.

    PubMed

    Bednarski, Tomasz; Pyrkowska, Aleksandra; Opasińska, Agnieszka; Dobrzyń, Paweł

    2016-01-01

    The heart has a limited capacity for lipogenesis and de novo lipid synthesis. However, expression of lipogenic genes in cardiomyocytes is unexpectedly high. Recent studies showed that lipogenic genes are important factors regulating cardiac metabolism and function. Long chain fatty acids are a major source of ATP required for proper heart function, and under aerobic conditions, the heart derives 60-90% of the energy necessary for contractile function from fatty acid oxidation. On the other hand, cardiac lipid over-accumulation (e.g. ceramides, diacylglycerols) leads to heart dysfunction. Downregulation of the lipogenic genes' expression (e.g. sterol regulatory element binding protein 1, stearoyl-CoA desaturase, acetyl-CoA kwacarboxylase) decreased heart steatosis and cardiomyocyte apoptosis, improving systolic and diastolic function of the left ventricle. Lipogenic factors also regulate fatty acids and glucose utilization in the heart, underlining their important role in maintaining energetic homeostasis in pathological states. Fatty acid synthase, the enzyme catalyzing fatty acids de novo synthesis, affects cardiac calcium signaling through regulation of L-type calcium channel activity. Thus, a growing body of evidence suggests that the role of lipogenic genes in cardiomyocytes may be distinct from other tissues. Here, we review recent advances made in understanding the role of lipogenic genes in the control of heart metabolism and its involvement in the pathogenesis of lipotoxic cardiomyopathy. PMID:27333934

  18. An integrated approach to characterize transcription factor and microRNA regulatory networks involved in Schwann cell response to peripheral nerve injury

    PubMed Central

    2013-01-01

    Background The regenerative response of Schwann cells after peripheral nerve injury is a critical process directly related to the pathophysiology of a number of neurodegenerative diseases. This SC injury response is dependent on an intricate gene regulatory program coordinated by a number of transcription factors and microRNAs, but the interactions among them remain largely unknown. Uncovering the transcriptional and post-transcriptional regulatory networks governing the Schwann cell injury response is a key step towards a better understanding of Schwann cell biology and may help develop novel therapies for related diseases. Performing such comprehensive network analysis requires systematic bioinformatics methods to integrate multiple genomic datasets. Results In this study we present a computational pipeline to infer transcription factor and microRNA regulatory networks. Our approach combined mRNA and microRNA expression profiling data, ChIP-Seq data of transcription factors, and computational transcription factor and microRNA target prediction. Using mRNA and microRNA expression data collected in a Schwann cell injury model, we constructed a regulatory network and studied regulatory pathways involved in Schwann cell response to injury. Furthermore, we analyzed network motifs and obtained insights on cooperative regulation of transcription factors and microRNAs in Schwann cell injury recovery. Conclusions This work demonstrates a systematic method for gene regulatory network inference that may be used to gain new information on gene regulation by transcription factors and microRNAs. PMID:23387820

  19. Hydrogen peroxide sensing, signaling and regulation of transcription factors

    PubMed Central

    Marinho, H. Susana; Real, Carla; Cyrne, Luísa; Soares, Helena; Antunes, Fernando

    2014-01-01

    The regulatory mechanisms by which hydrogen peroxide (H2O2) modulates the activity of transcription factors in bacteria (OxyR and PerR), lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4) and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1) are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1) synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii) stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii) cytoplasm–nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and (iv) DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M−1 s−1 and ≥1.3 × 103 M−1 s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for highly

  20. Autoimmune regulator (AIRE)-deficient CD8+CD28low regulatory T lymphocytes fail to control experimental colitis.

    PubMed

    Pomié, Céline; Vicente, Rita; Vuddamalay, Yirajen; Lundgren, Brita Ardesjö; van der Hoek, Mark; Enault, Geneviève; Kagan, Jérémy; Fazilleau, Nicolas; Scott, Hamish S; Romagnoli, Paola; van Meerwijk, Joost P M

    2011-07-26

    Mutations in the gene encoding the transcription factor autoimmune regulator (AIRE) are responsible for autoimmune polyendocrinopathy candidiasis ectodermal dystrophy syndrome. AIRE directs expression of tissue-restricted antigens in the thymic medulla and in lymph node stromal cells and thereby substantially contributes to induction of immunological tolerance to self-antigens. Data from experimental mouse models showed that AIRE deficiency leads to impaired deletion of autospecific T-cell precursors. However, a potential role for AIRE in the function of regulatory T-cell populations, which are known to play a central role in prevention of immunopathology, has remained elusive. Regulatory T cells of CD8(+)CD28(low) phenotype efficiently control immune responses in experimental autoimmune and colitis models in mice. Here we show that CD8(+)CD28(low) regulatory T lymphocytes from AIRE-deficient mice are transcriptionally and phenotypically normal and exert efficient suppression of in vitro immune responses, but completely fail to prevent experimental colitis in vivo. Our data therefore demonstrate that AIRE plays an important role in the in vivo function of a naturally occurring regulatory T-cell population.

  1. Molecular characterization of interferon regulatory factor 2 (IRF-2) homolog in pearl oyster Pinctada fucata.

    PubMed

    Huang, Xian-De; Liu, Wen-Guang; Wang, Qi; Zhao, Mi; Wu, Shan-Zeng; Guan, Yun-Yan; Shi, Yu; He, Mao-Xian

    2013-05-01

    Interferon regulatory factors (IRFs) control many facets of the innate and adaptive immune responses, regulate the development of the immune system itself and involve in reproduction and morphogenesis. In the present study, the IRF-2 homology gene, PfIRF-2 from pearl oyster Pinctada fucata was cloned and its genomic structure and promoter were analyzed. PfIRF-2 encodes a putative protein of 350 amino acids, and contains a highly conserved N-terminal DNA-binding domain and a variable C-terminal regulatory domain. Comparison and phylogenetic analysis revealed that PfIRF-2 shared a relatively higher identity with other mollusk but relatively lower identity with vertebrate IRF-2, and was clustered with IRF-1 subfamily composed of IRF-2 and IRF-1. Furthermore, gene expression analysis revealed that PfIRF-2 involved in the immune response to LPS and poly(I:C) stimulation. Immunofluorescence assay showed that the expressed PfIRF-2 was translocated into the nucleus and dual-luciferase reporter assays indicated that PfIRF-2 could involved and activate interferon signaling or NF-κB signal pathway in HEK293 cells. The study of PfIRF-2 may help better understand the innate immune in mollusk.

  2. A novel processing system of sterol regulatory element-binding protein-1c regulated by polyunsaturated fatty acid.

    PubMed

    Nakakuki, Masanori; Kawano, Hiroyuki; Notsu, Tatsuto; Imada, Kazunori; Mizuguchi, Kiyoshi; Shimano, Hitoshi

    2014-05-01

    The proteolytic cascade is the key step in transactivation of sterol regulatory element-binding proteins (SREBPs), a transcriptional factor of lipid synthesis. Proteolysis of SREBP-2 is strictly regulated by sterols, but that of SREBP-1c was not strongly sterol-regulated, but inhibited by polyunsaturated fatty acids (PUFAs). In this study, the proteolytic processing of SREBP-1 and -2 was examined by transfection studies of cDNA-encoding mutants in which all the known cleavage sites were disrupted. In cultured cells, sterol-regulated SREBP-2 processing was completely eliminated by mutation of cleavage sites. In contrast, the corresponding SREBP-1c mutants as well as wild type exhibited large amounts of cleaved products in the nuclear extracts from culture cells and murine liver in vivo. The nuclear form of the mutant SREBP-1c was induced by delipidated condition and suppressed by eicosapentaenoic acid, an n-3 PUFA, but not by sterols. This novel processing mechanism was affected by neither SREBP cleavage-activating protein (SCAP) nor insulin-induced gene (Insig)-1, unlike SREBP-2, but abolished by a serine protease inhibitor. Through analysis of deletion mutant, a site-2 protease recognition sequence (DRSR) was identified to be involved in this novel processing. These findings suggest that SREBP-1c cleavage could be subjected to a novel PUFA-regulated cleavage system in addition to the sterol-regulatory SCAP/Insig system.

  3. Stress-induced Start Codon Fidelity Regulates Arsenite-inducible Regulatory Particle-associated Protein (AIRAP) Translation*

    PubMed Central

    Zach, Lolita; Braunstein, Ilana; Stanhill, Ariel

    2014-01-01

    Initial steps in protein synthesis are highly regulated processes as they define the reading frame of the translation machinery. Eukaryotic translation initiation is a process facilitated by numerous factors (eIFs), aimed to form a “scanning” mechanism toward the initiation codon. Translation initiation of the main open reading frame (ORF) in an mRNA transcript has been reported to be regulated by upstream open reading frames (uORFs) in a manner of re-initiation. This mode of regulation is governed by the phosphorylation status of eIF2α and controlled by cellular stresses. Another mode of translational initiation regulation is leaky scanning, and this regulatory process has not been extensively studied. We have identified arsenite-inducible regulatory particle-associated protein (AIRAP) transcript to be translationally induced during arsenite stress conditions. AIRAP transcript contains a single uORF in a poor-kozak context. AIRAP translation induction is governed by means of leaky scanning and not re-initiation. This induction of AIRAP is solely dependent on eIF1 and the uORF kozak context. We show that eIF1 is phosphorylated under specific conditions that induce protein misfolding and have biochemically characterized this site of phosphorylation. Our data indicate that leaky scanning like re-initiation is responsive to stress conditions and that leaky scanning can induce ORF translation by bypassing poor kozak context of a single uORF transcript. PMID:24898249

  4. Specific detection of interferon regulatory factor 5 (IRF5): A case of antibody inequality

    PubMed Central

    Li, Dan; De, Saurav; Li, Dan; Song, Su; Matta, Bharati; Barnes, Betsy J.

    2016-01-01

    Interferon regulatory factor 5 (IRF5) is a member of the IRF family of transcription factors. IRF5 was first identified and characterized as a transcriptional regulator of type I interferon expression after virus infection. In addition to its critical role(s) in the regulation and development of host immunity, subsequent studies revealed important roles for IRF5 in autoimmunity, cancer, obesity, pain, cardiovascular disease, and metabolism. Based on these important disease-related findings, a large number of commercial antibodies have become available to study the expression and function of IRF5. Here we validate a number of these antibodies for the detection of IRF5 by immunoblot, flow cytometry, and immunofluorescence or immunohistochemistry using well-established positive and negative controls. Somewhat surprising, the majority of commercial antibodies tested were unable to specifically recognize human or mouse IRF5. We present data on antibodies that do specifically recognize human or mouse IRF5 in a particular application. These findings reiterate the importance of proper controls and molecular weight standards for the analysis of protein expression. Given that dysregulated IRF5 expression has been implicated in the pathogenesis of numerous diseases, including autoimmune and cancer, results indicate that caution should be used in the evaluation and interpretation of IRF5 expression analysis. PMID:27481535

  5. Origin of a novel regulatory module by duplication and degeneration of an ancient plant transcription factor.

    PubMed

    Floyd, Sandra K; Ryan, Joseph G; Conway, Stephanie J; Brenner, Eric; Burris, Kellie P; Burris, Jason N; Chen, Tao; Edger, Patrick P; Graham, Sean W; Leebens-Mack, James H; Pires, J Chris; Rothfels, Carl J; Sigel, Erin M; Stevenson, Dennis W; Neal Stewart, C; Wong, Gane Ka-Shu; Bowman, John L

    2014-12-01

    It is commonly believed that gene duplications provide the raw material for morphological evolution. Both the number of genes and size of gene families have increased during the diversification of land plants. Several small proteins that regulate transcription factors have recently been identified in plants, including the LITTLE ZIPPER (ZPR) proteins. ZPRs are post-translational negative regulators, via heterodimerization, of class III Homeodomain Leucine Zipper (C3HDZ) proteins that play a key role in directing plant form and growth. We show that ZPR genes originated as a duplication of a C3HDZ transcription factor paralog in the common ancestor of euphyllophytes (ferns and seed plants). The ZPRs evolved by degenerative mutations resulting in loss all of the C3HDZ functional domains, except the leucine zipper that modulates dimerization. ZPRs represent a novel regulatory module of the C3HDZ network unique to the euphyllophyte lineage, and their origin correlates to a period of rapid morphological changes and increased complexity in land plants. The origin of the ZPRs illustrates the significance of gene duplications in creating developmental complexity during land plant evolution that likely led to morphological evolution. PMID:25263420

  6. Factors Regulating Soil Organic Matter Chlorination

    NASA Astrophysics Data System (ADS)

    Svensson, T.; Gustavsson, M.; Reyier, H.; Rietz, K.; Karlsson, S.; Göransson, C.; Andersson, M.; Öberg, G.; Bastviken, D.

    2013-12-01

    Natural chlorination of organic matter is a common process in various soils. Despite the widespread abundance of soil organic chlorine, knowledge on the processes and regulation of soil organic matter chlorination are modest. The purpose of this study is to elucidate how environmental factors may influence chlorination of organic matter in soil. Four factors were chosen for this study; water content, and nitrogen, organic carbon, and chloride concentrations. The variables are all known in different ways as important for microbes and transformation of chlorine in soil. The soil was collected from 5-15 cm depth in a coniferous forest southeast of Sweden. To test how the selected factors influenced chlorination of organic matter, we used soil laboratory incubations using 36Cl-chloride as a radioisotopic marker. A multivariate factorial design with two levels of i) soil moisture, ii) chloride amendment, iii) nitrogen amendment, and iv) glucose and maltose addition was used to simultaneously test for possible combination effects for all factors. A known radioactivity of 36chloride was added to the soil samples and incubated with four different factor treatments during an incubation period of 15 and 60 days. This presentation will discuss the results of this study including what combination of factors enhanced or hampered chlorination and thereby discuss previous observed variability of organic chlorine and chloride in soil.

  7. Modulation of interferon regulatory factor 5 activities by the Kaposi sarcoma-associated herpesvirus-encoded viral interferon regulatory factor 3 contributes to immune evasion and lytic induction.

    PubMed

    Bi, Xiaohui; Yang, Lisong; Mancl, Margo E; Barnes, Betsy J

    2011-04-01

    Multiple Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded proteins with potential roles in KSHV-associated neoplasms have been identified. KSHV encodes 4 genes with homology to transcription factors of the interferon (IFN) regulatory factor (IRF) family. Viral IRF3 (vIRF3) is expressed in latently KSHV-infected primary effusion lymphoma (PEL) cells and was recently shown to be essential for the survival of PEL cells. The focus of this study was to determine the mechanism(s) of vIRF3 oncogenic activity contributing to KSHV-associated lymphoma. We report that vIRF3 interacts with the amino-terminal DNA binding domain of human IRF5, leading to a complex manipulation of IRF5 function. vIRF3 associated with both exogenous and endogenous IRF5, thereby inhibiting IRF5-mediated IFN promoter activation and the synthesis of biologically active type I IFNs by blocking its binding to endogenous IFNA promoters. The function of this interaction was not limited to the IFN system as IRF5-mediated cell growth regulation was significantly altered by overexpression of vIRF3 in B cells. vIRF3 prevented IRF5-mediated growth inhibition and G2/M cell cycle arrest. Important, IRF5 was upregulated by the protein kinase C agonist 12-O-tetradecanoyl-phorbol-13-acetate in BCBL1 PEL cells and interaction with vIRF3 was observed at the endogenous p21 promoter in response to 12-O-tetradecanoyl-phorbol-13-acetate, suggesting that these 2 proteins cooperate in the regulation of lytic cycle-induced G1 arrest, which is an important early step for the reactivation of KSHV. In conclusion, cellular IRF5 and vIRF3 interact, leading to the functional modulation of IRF5-mediated type I IFN expression and cell cycle regulation. These findings support an important role for vIRF3 in immune evasion and cell proliferation that likely contribute to the survival of PEL cells.

  8. Are regulatory strategies necessary in the regulation of accuracy? The effect of direct-access answers.

    PubMed

    Luna, Karlos; Martín-Luengo, Beatriz; Brewer, Neil

    2015-11-01

    Previous studies have shown that, when people asked to retrieve something from memory have the chance to regulate memory accuracy, the accuracy of their final report increases. Such regulation of accuracy can be made through one of several strategies: the report option, the grain-size option, or the plurality option. However, sometimes an answer can be directly accessed and reported without resorting to such strategies. The direct-access answers are expected to be fast, have high accuracy, and be rated with high probabilities of being correct. Thus, direct-access answers alone could explain the increase of accuracy that has been considered the outcome of regulatory strategies. If so, regulatory strategies may not be needed to explain the previous results. In two experiments, we disentangled the effects of direct-access answers and regulatory strategies in the increase of accuracy. We identified a subset of direct-access answers, and then examined the regulation of accuracy with the plurality option when they were removed. Participants answered questions with six (Exp. 1) or five (Exp. 2) alternatives. Their task was, first, to select as many alternatives as they wanted and, second, to select only two or four alternatives. The results showed that the direct-access answer affected the regulation of accuracy and made it easier. However, the results also showed that regulatory strategies, in this case the plurality option, are needed to explain why the accuracy of final report increases after successful regulation. This research highlighted the relevance of taking direct-access answers into account in the study of the regulation of accuracy.

  9. Antiviral factors and type I/III interferon expression associated with regulatory factors in the oral epithelial cells from HIV-1-serodiscordant couples

    PubMed Central

    Cervantes, Cesar A. C.; Oliveira, Luanda M. S.; Manfrere, Kelly C. G.; Lima, Josenilson F.; Pereira, Natalli Z.; Duarte, Alberto J. S.; Sato, Maria N.

    2016-01-01

    Individuals who remain HIV-seronegative despite repeated unprotected exposure to the virus are defined as exposed seronegative (ESN) individuals. Innate and adaptive immunity, as well as genetic factors, provide ESNs with important advantages that allow for low infection susceptibility. The majority of HIV-1-infected individuals undergo antiretroviral therapy, which can decrease the level of HIV-1 exposure in ESNs. We analyzed type I interferon (IFN)-related antiviral and regulatory factors in peripheral blood mononuclear cells (PBMCs) and oral epithelial cells from serodiscordant couples. Our findings revealed that ESNs did not induce the expression of antiviral factors (APOBEC-3G, TRIM5-α, SAMDH1, STING, TBk1) or regulatory factors (Trex, Foxo3, Socs3, IL-10) in PBMCs, unlike their HIV-1-infected partners. In contrast, ESNs upregulated APOBEC-3G and type I/III IFNs (IFNs-α,-β/-λ) in oral mucosal epithelial cells similar to their HIV-infected partners. The serodiscordant groups exhibited an increased expression of type I IFN-induced regulators, such as Trex and Foxo3, in oral epithelial cells. TLR7, TLR8 and TLR9 were expressed in oral epithelial cells of both ESNs and HIV-1-infected subjects. These findings revealed evidence of antiviral factors, type I/III interferon and regulatory factor expression only in the oral mucosal compartment of ESNs, while HIV-1-infected partners systemically and oral mucosal expressed the antiviral profile. PMID:27168019

  10. Ultraviolet B Regulation of Transcription Factor Families

    PubMed Central

    Cooper, S.J.; Bowden, G.T.

    2008-01-01

    Prolonged and repeated exposure of the skin to ultraviolet light (UV) leads not only to aging of the skin but also increases the incidence of non-melanoma skin cancer (NMSC). Damage of cells induced by ultraviolet B (UVB) light both at the DNA level and molecular level initiates the activation of transcription factor pathways, which in turn regulate the expression of a number of genes termed the “UV response genes”. Two such transcription factor families that are activated in this way are those of the nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) families. These two transcription factor families have been identified to be involved in the processes of cell proliferation, cell differentiation and cell survival and therefore play important roles in tumorigenesis. The study of these two transcription factor pathways and the cross-talk between them in response to UVB exposure may help with the development of new chemopreventive strategies for the prevention of UVB-induced skin carcinogenesis. PMID:17979627

  11. Extracellular Superoxide Dismutase Regulates the Expression of Small GTPase Regulatory Proteins GEFs, GAPs, and GDI

    PubMed Central

    Laukkanen, Mikko O.; Cammarota, Francesca; Esposito, Tiziana; Salvatore, Marco; Castellone, Maria D.

    2015-01-01

    Extracellular superoxide dismutase (SOD3), which catalyzes the dismutation of superoxide anions to hydrogen peroxide at the cell membranes, regulates the cellular growth in a dose-dependent manner. This enzyme induces primary cell proliferation and immortalization at low expression levels whereas it activates cancer barrier signaling through the p53-p21 pathway at high expression levels, causing growth arrest, senescence, and apoptosis. Because previous reports suggested that the SOD3–induced reduction in the rates of cellular growth and migration also occurred in the absence of functional p53 signaling, in the current study we investigated the SOD3-induced growth-suppressive mechanisms in anaplastic thyroid cancer cells. Based on our data, the robust over-expression of SOD3 increased the level of phosphorylation of the EGFR, ERBB2, RYK, ALK, FLT3, and EPHA10 receptor tyrosine kinases with the consequent downstream activation of the SRC, FYN, YES, HCK, and LYN kinases. However, pull-down experiments focusing on the small GTPase RAS, RAC, CDC42, and RHO revealed a reduced level of growth and migration signal transduction, such as the lack of stimulation of the mitogen pathway, in the SOD3 over-expressing cells, which was confirmed by MEK1/2 and ERK1/2 Western blotting analysis. Interestingly, the mRNA expression analyses indicated that SOD3 regulated the expression of guanine nucleotide-exchange factors (RHO GEF16, RAL GEF RGL1), GTPase-activating proteins (ARFGAP ADAP2, RAS GAP RASAL1, RGS4), and a Rho guanine nucleotide-disassociation inhibitor (RHO GDI 2) in a dose dependent manner, thus controlling signaling through the small G protein GTPases. Therefore, our current data may suggest the occurrence of dose-dependent SOD3–driven control of the GTP loading of small G proteins indicating a novel growth regulatory mechanism of this enzyme. PMID:25751262

  12. Genome-wide survey of tissue-specific microRNA and transcription factor regulatory networks in 12 tissues.

    PubMed

    Guo, Zhiyun; Maki, Miranda; Ding, Ruofan; Yang, Yalan; Zhang, Bao; Xiong, Lili

    2014-06-03

    Tissue-specific miRNAs (TS miRNA) specifically expressed in particular tissues play an important role in tissue identity, differentiation and function. However, transcription factor (TF) and TS miRNA regulatory networks across multiple tissues have not been systematically studied. Here, we manually extracted 116 TS miRNAs and systematically investigated the regulatory network of TF-TS miRNA in 12 human tissues. We identified 2,347 TF-TS miRNA regulatory relations and revealed that most TF binding sites tend to enrich close to the transcription start site of TS miRNAs. Furthermore, we found TS miRNAs were regulated widely by non-tissue specific TFs and the tissue-specific expression level of TF have a close relationship with TF-genes regulation. Finally, we describe TSmiR (http://bioeng.swjtu.edu.cn/TSmiR), a novel and web-searchable database that houses interaction maps of TF-TS miRNA in 12 tissues. Taken together, these observations provide a new suggestion to better understand the regulatory network and mechanisms of TF-TS miRNAs underlying different tissues.

  13. MicroRNA and transcription factor mediated regulatory network for ovarian cancer: regulatory network of ovarian cancer.

    PubMed

    Ying, Huanchun; Lv, Jing; Ying, Tianshu; Li, Jun; Yang, Qing; Ma, Yuan

    2013-10-01

    A better understanding on the regulatory interactions of microRNA (miRNA) target genes and transcription factor (TF) target genes in ovarian cancer may be conducive for developing early diagnosis strategy. Thus, gene expression data and miRNA expression data were downloaded from The Cancer Genome Atlas in this study. Differentially expressed genes and miRNAs were selected out with t test, and Gene Ontology enrichment analysis was performed with DAVID tools. Regulatory interactions were retrieved from miRTarBase, TRED, and TRANSFAC, and then networks for miRNA target genes and TF target genes were constructed to globally present the mechanisms. As a result, a total of 1,939 differentially expressed genes were identified, and they were enriched in 28 functions, among which cell cycle was affected to the most degree. Besides, 213 differentially expressed miRNAs were identified. Two regulatory networks for miRNA target genes and TF target genes were established and then both were combined, in which E2F transcription factor 1, cyclin-dependent kinase inhibitor 1A, cyclin E1, and miR-16 were the hub genes. These genes may be potential biomarkers for ovarian cancer.

  14. Autophagy Regulatory Network - a systems-level bioinformatics resource for studying the mechanism and regulation of autophagy.

    PubMed

    Türei, Dénes; Földvári-Nagy, László; Fazekas, Dávid; Módos, Dezső; Kubisch, János; Kadlecsik, Tamás; Demeter, Amanda; Lenti, Katalin; Csermely, Péter; Vellai, Tibor; Korcsmáros, Tamás

    2015-01-01

    Autophagy is a complex cellular process having multiple roles, depending on tissue, physiological, or pathological conditions. Major post-translational regulators of autophagy are well known, however, they have not yet been collected comprehensively. The precise and context-dependent regulation of autophagy necessitates additional regulators, including transcriptional and post-transcriptional components that are listed in various datasets. Prompted by the lack of systems-level autophagy-related information, we manually collected the literature and integrated external resources to gain a high coverage autophagy database. We developed an online resource, Autophagy Regulatory Network (ARN; http://autophagy-regulation.org), to provide an integrated and systems-level database for autophagy research. ARN contains manually curated, imported, and predicted interactions of autophagy components (1,485 proteins with 4,013 interactions) in humans. We listed 413 transcription factors and 386 miRNAs that could regulate autophagy components or their protein regulators. We also connected the above-mentioned autophagy components and regulators with signaling pathways from the SignaLink 2 resource. The user-friendly website of ARN allows researchers without computational background to search, browse, and download the database. The database can be downloaded in SQL, CSV, BioPAX, SBML, PSI-MI, and in a Cytoscape CYS file formats. ARN has the potential to facilitate the experimental validation of novel autophagy components and regulators. In addition, ARN helps the investigation of transcription factors, miRNAs and signaling pathways implicated in the control of the autophagic pathway. The list of such known and predicted regulators could be important in pharmacological attempts against cancer and neurodegenerative diseases.

  15. Autophagy Regulatory Network - a systems-level bioinformatics resource for studying the mechanism and regulation of autophagy.

    PubMed

    Türei, Dénes; Földvári-Nagy, László; Fazekas, Dávid; Módos, Dezső; Kubisch, János; Kadlecsik, Tamás; Demeter, Amanda; Lenti, Katalin; Csermely, Péter; Vellai, Tibor; Korcsmáros, Tamás

    2015-01-01

    Autophagy is a complex cellular process having multiple roles, depending on tissue, physiological, or pathological conditions. Major post-translational regulators of autophagy are well known, however, they have not yet been collected comprehensively. The precise and context-dependent regulation of autophagy necessitates additional regulators, including transcriptional and post-transcriptional components that are listed in various datasets. Prompted by the lack of systems-level autophagy-related information, we manually collected the literature and integrated external resources to gain a high coverage autophagy database. We developed an online resource, Autophagy Regulatory Network (ARN; http://autophagy-regulation.org), to provide an integrated and systems-level database for autophagy research. ARN contains manually curated, imported, and predicted interactions of autophagy components (1,485 proteins with 4,013 interactions) in humans. We listed 413 transcription factors and 386 miRNAs that could regulate autophagy components or their protein regulators. We also connected the above-mentioned autophagy components and regulators with signaling pathways from the SignaLink 2 resource. The user-friendly website of ARN allows researchers without computational background to search, browse, and download the database. The database can be downloaded in SQL, CSV, BioPAX, SBML, PSI-MI, and in a Cytoscape CYS file formats. ARN has the potential to facilitate the experimental validation of novel autophagy components and regulators. In addition, ARN helps the investigation of transcription factors, miRNAs and signaling pathways implicated in the control of the autophagic pathway. The list of such known and predicted regulators could be important in pharmacological attempts against cancer and neurodegenerative diseases. PMID:25635527

  16. Gravity, an Regulation Factor in BMSCs Differentiation to osteoblasts

    NASA Astrophysics Data System (ADS)

    Yan, Huang; Yinghui, Li; Fen, Yang; Zhongquan, Dai

    PURPOSE Most studies of regulatory mechanisms of adult stem cell differentiation are concentrated in chemical factors but few efforts are put into physical factors Recent space life science studies indicate mechanical factors participate in the differentiation of cells The aim of this study is to investigate the effects of simulated microgravity or hypergravity on the osteogenic differentiation of rat bone marrow mesenchymal stem cells BMSCs METHODOLOGY The BMSCs at day 7 were added osteogenic inducer 10nM dexamethasone 10mM beta -glycerophosphate and 50 mu M asorbic acid-2-phosphate for 7 days and cultured under simulated microgravity or hypergravity 2g for 1 day 3 days 5 days or 7 days RESULTS After treating BMSCs with osteogenic inducer and hypergravity the cells expressed more ColIA1 Cbfa1 and ALP than in single steogenic inducer treatment Reversely the cells treated with osteogenic inducer and simulated microgravity expressed less ColIA1 Cbfa1 and ALP CONCLUSIONS Our study suggests that hypergravity promotes the osteogenic differentiation of BMSCs and simulated microgravity inhibits this process Gravity is an important regulation factor in BMSCs differentiation to osteoblasts

  17. Creating and validating cis-regulatory maps of tissue-specific gene expression regulation

    PubMed Central

    O'Connor, Timothy R.; Bailey, Timothy L.

    2014-01-01

    Predicting which genomic regions control the transcription of a given gene is a challenge. We present a novel computational approach for creating and validating maps that associate genomic regions (cis-regulatory modules–CRMs) with genes. The method infers regulatory relationships that explain gene expression observed in a test tissue using widely available genomic data for ‘other’ tissues. To predict the regulatory targets of a CRM, we use cross-tissue correlation between histone modifications present at the CRM and expression at genes within 1 Mbp of it. To validate cis-regulatory maps, we show that they yield more accurate models of gene expression than carefully constructed control maps. These gene expression models predict observed gene expression from transcription factor binding in the CRMs linked to that gene. We show that our maps are able to identify long-range regulatory interactions and improve substantially over maps linking genes and CRMs based on either the control maps or a ‘nearest neighbor’ heuristic. Our results also show that it is essential to include CRMs predicted in multiple tissues during map-building, that H3K27ac is the most informative histone modification, and that CAGE is the most informative measure of gene expression for creating cis-regulatory maps. PMID:25200088

  18. Regulation of gonadotropins by corticotropin-releasing factor and urocortin.

    PubMed

    Kageyama, Kazunori

    2013-01-01

    While stress activates the hypothalamic-pituitary-adrenal (HPA) axis, it suppresses the hypothalamic-pituitary-gonadal (HPG) axis. Corticotropin-releasing factor (CRF) is a major regulatory peptide in the HPA axis during stress. Urocortin 1 (Ucn1), a member of the CRF family of peptides, has a variety of physiological functions and both CRF and Ucn1 contribute to the stress response via G protein-coupled seven transmembrane receptors. Ucn2 and Ucn3, which belong to a separate paralogous lineage from CRF, are highly selective for the CRF type 2 receptor (CRF(2) receptor). The HPA and HPG axes interact with each other, and gonadal function and reproduction are suppressed in response to various stressors. In this review, we focus on the regulation of gonadotropins by CRF and Ucn2 in pituitary gonadotrophs and of gonadotropin-releasing hormone (GnRH) via CRF receptors in the hypothalamus. In corticotrophs, stress-induced increases in CRF stimulate Ucn2 production, which leads to the inhibition of gonadotropin secretion via the CRF(2) receptor in the pituitary. GnRH in the hypothalamus is regulated by a variety of stress conditions. CRF is also involved in the suppression of the HPG axis, especially the GnRH pulse generator, via CRF receptors in the hypothalamus. Thus, complicated regulation of GnRH in the hypothalamus and gonadotropins in the pituitary via CRF receptors contributes to stress responses and adaptation of gonadal functions.

  19. A WRKY Transcription Factor Regulates Fe Translocation under Fe Deficiency.

    PubMed

    Yan, Jing Ying; Li, Chun Xiao; Sun, Li; Ren, Jiang Yuan; Li, Gui Xin; Ding, Zhong Jie; Zheng, Shao Jian

    2016-07-01

    Iron (Fe) deficiency affects plant growth and development, leading to reduction of crop yields and quality. Although the regulation of Fe uptake under Fe deficiency has been well studied in the past decade, the regulatory mechanism of Fe translocation inside the plants remains unknown. Here, we show that a WRKY transcription factor WRKY46 is involved in response to Fe deficiency. Lack of WRKY46 (wrky46-1 and wrky46-2 loss-of-function mutants) significantly affects Fe translocation from root to shoot and thus causes obvious chlorosis on the new leaves under Fe deficiency. Gene expression analysis reveals that expression of a nodulin-like gene (VACUOLAR IRON TRANSPORTER1-LIKE1 [VITL1]) is dramatically increased in wrky46-1 mutant. VITL1 expression is inhibited by Fe deficiency, while the expression of WRKY46 is induced in the root stele. Moreover, down-regulation of VITL1 expression can restore the chlorosis phenotype on wrky46-1 under Fe deficiency. Further yeast one-hybrid and chromatin immunoprecipitation experiments indicate that WRKY46 is capable of binding to the specific W-boxes present in the VITL1 promoter. In summary, our results demonstrate that WRKY46 plays an important role in the control of root-to-shoot Fe translocation under Fe deficiency condition via direct regulation of VITL1 transcript levels. PMID:27208259

  20. Multiple Ets factors and interferon regulatory factor-4 modulate CD68 expression in a cell type-specific manner.

    PubMed

    O'Reilly, Dawn; Quinn, Carmel M; El-Shanawany, Tariq; Gordon, Siamon; Greaves, David R

    2003-06-13

    CD68 is a transmembrane glycoprotein expressed in all cells of the mononuclear phagocyte lineage including monocytes and tissue resident macrophages. Deletion analysis of the 5'-flanking sequences of the gene demonstrated that the proximal -150-bp sequence of the CD68 promoter exhibits high level promoter activity in macrophages. Mutations that abolish Ets factor binding at positions -106 and -89 reduce promoter activity in macrophages to 12 and 30%, respectively. Band shift experiments show that PU.1 associates with the -89 site whereas, Elf-1 preferentially binds the -106 Ets binding site and enhances CD68 activity in vitro. Furthermore, chromatin immunoprecipitation experiments confirm that Elf-1 and PU.1 associate with the CD68 proximal promoter in vivo in THP-1 cells. PU.1 does not bind to the CD68 promoter alone but instead forms heterocomplexes with members of the interferon regulatory factor family (IRF) including IRF-4 and IRF-8. IRF-4 and IRF-8 typically mediate transcriptional activation when associated with PU.1 on composite elements. However, our data show that PU.1/IRF-4 and IRF-8 heterocomplexes down-regulate CD68 promoter activity in macrophages and repression is dependent on the integrity of both the IRF and PU.1 half-sites of this composite element. Chromatin immunoprecipitation data reveal that neither IRF-4 nor IRF-8 associate with the CD68 proximal promoter in macrophages in vivo but IRF-4 is associated with the promoter in B lymphocytes. We propose that expression of CD68 in myeloid cells requires the Ets transcription factors Elf-1 and PU.1 and CD68 expression is down-regulated in lymphoid cells by combinatorial interactions between PU.1 and IRF-4.

  1. Regulatory architecture determines optimal regulation of gene expression in metabolic pathways.

    PubMed

    Chubukov, Victor; Zuleta, Ignacio A; Li, Hao

    2012-03-27

    In response to environmental changes, the connections ("arrows") in gene regulatory networks determine which genes modulate their expression, but the quantitative parameters of the network ("the numbers on the arrows") are equally important in determining the resulting phenotype. What are the objectives and constraints by which evolution determines these parameters? We explore these issues by analyzing gene expression changes in a number of yeast metabolic pathways in response to nutrient depletion. We find that a striking pattern emerges that couples the regulatory architecture of the pathway to the gene expression response. In particular, we find that pathways controlled by the intermediate metabolite activation (IMA) architecture, in which an intermediate metabolite activates transcription of pathway genes, exhibit the following response: the enzyme immediately downstream of the regulatory metabolite is under the strongest transcriptional control, whereas the induction of the enzymes upstream of the regulatory intermediate is relatively weak. This pattern of responses is absent in pathways not controlled by an IMA architecture. The observation can be explained by the constraint imposed by the fundamental feedback structure of the network, which places downstream enzymes under a negative feedback loop and upstream ones under a positive feedback loop. This general design principle for transcriptional control of a metabolic pathway can be derived from a simple cost/benefit model of gene expression, in which the observed pattern is an optimal solution. Our results suggest that the parameters regulating metabolic enzyme expression are optimized by evolution, under the strong constraint of the underlying regulatory architecture.

  2. Altered expression of hypoxia-inducible factor-1α (HIF-1α) and its regulatory genes in gastric cancer tissues.

    PubMed

    Wang, Jihan; Ni, Zhaohui; Duan, Zipeng; Wang, Guoqing; Li, Fan

    2014-01-01

    Tissue hypoxia induces reprogramming of cell metabolism and may result in normal cell transformation and cancer progression. Hypoxia-inducible factor 1-alpha (HIF-1α), the key transcription factor, plays an important role in gastric cancer development and progression. This study aimed to investigate the underlying regulatory signaling pathway in gastric cancer using gastric cancer tissue specimens. The integration of gene expression profile and transcriptional regulatory element database (TRED) was pursued to identify HIF-1α ↔ NFκB1 → BRCA1 → STAT3 ← STAT1 gene pathways and their regulated genes. The data showed that there were 82 differentially expressed genes that could be regulated by these five transcription factors in gastric cancer tissues and these genes formed 95 regulation modes, among which seven genes (MMP1, TIMP1, TLR2, FCGR3A, IRF1, FAS, and TFF3) were hub molecules that are regulated at least by two of these five transcription factors simultaneously and were associated with hypoxia, inflammation, and immune disorder. Real-Time PCR and western blot showed increasing of HIF-1α in mRNA and protein levels as well as TIMP1, TFF3 in mRNA levels in gastric cancer tissues. The data are the first study to demonstrate HIF-1α-regulated transcription factors and their corresponding network genes in gastric cancer. Further study with a larger sample size and more functional experiments is needed to confirm these data and then translate into clinical biomarker discovery and treatment strategy for gastric cancer.

  3. Altered Expression of Hypoxia-Inducible Factor-1α (HIF-1α) and Its Regulatory Genes in Gastric Cancer Tissues

    PubMed Central

    Wang, Jihan; Ni, Zhaohui; Duan, Zipeng; Wang, Guoqing; Li, Fan

    2014-01-01

    Tissue hypoxia induces reprogramming of cell metabolism and may result in normal cell transformation and cancer progression. Hypoxia-inducible factor 1-alpha (HIF-1α), the key transcription factor, plays an important role in gastric cancer development and progression. This study aimed to investigate the underlying regulatory signaling pathway in gastric cancer using gastric cancer tissue specimens. The integration of gene expression profile and transcriptional regulatory element database (TRED) was pursued to identify HIF-1α ↔ NFκB1 → BRCA1 → STAT3 ← STAT1 gene pathways and their regulated genes. The data showed that there were 82 differentially expressed genes that could be regulated by these five transcription factors in gastric cancer tissues and these genes formed 95 regulation modes, among which seven genes (MMP1, TIMP1, TLR2, FCGR3A, IRF1, FAS, and TFF3) were hub molecules that are regulated at least by two of these five transcription factors simultaneously and were associated with hypoxia, inflammation, and immune disorder. Real-Time PCR and western blot showed increasing of HIF-1α in mRNA and protein levels as well as TIMP1, TFF3 in mRNA levels in gastric cancer tissues. The data are the first study to demonstrate HIF-1α-regulated transcription factors and their corresponding network genes in gastric cancer. Further study with a larger sample size and more functional experiments is needed to confirm these data and then translate into clinical biomarker discovery and treatment strategy for gastric cancer. PMID:24927122

  4. Identification of the Staphylococcus aureus vfrAB Operon, a Novel Virulence Factor Regulatory Locus

    PubMed Central

    Daly, Seth M.; Hall, Pamela R.; Bayles, Kenneth W.

    2014-01-01

    During a screen of the Nebraska Transposon Mutant Library, we identified 71 mutations in the Staphylococcus aureus genome that altered hemolysis on blood agar medium. Although many of these mutations disrupted genes known to affect the production of alpha-hemolysin, two of them were associated with an apparent operon, designated vfrAB, that had not been characterized previously. Interestingly, a ΔvfrB mutant exhibited only minor effects on the transcription of the hla gene, encoding alpha-hemolysin, when grown in broth, as well as on RNAIII, a posttranscriptional regulatory RNA important for alpha-hemolysin translation, suggesting that VfrB may function at the posttranscriptional level. Indeed, a ΔvfrB mutant had increased aur and sspAB protease expression under these conditions. However, disruption of the known secreted proteases in the ΔvfrB mutant did not restore hemolytic activity in the ΔvfrB mutant on blood agar. Further analysis revealed that, in contrast to the minor effects of VfrB on hla transcription when strains were cultured in liquid media, the level of hla transcription was decreased 50-fold in the absence of VfrB on solid media. These results demonstrate that while VfrB represses protease expression when strains are grown in broth, hla regulation is highly responsive to factors associated with growth on solid media. Intriguingly, the ΔvfrB mutant displayed increased pathogenesis in a model of S. aureus dermonecrosis, further highlighting the complexity of VfrB-dependent virulence regulation. The results of this study describe a phenotype associated with a class of highly conserved yet uncharacterized proteins found in Gram-positive bacteria, and they shed new light on the regulation of virulence factors necessary for S. aureus pathogenesis. PMID:24549328

  5. Identification of the Staphylococcus aureus vfrAB operon, a novel virulence factor regulatory locus.

    PubMed

    Bose, Jeffrey L; Daly, Seth M; Hall, Pamela R; Bayles, Kenneth W

    2014-05-01

    During a screen of the Nebraska Transposon Mutant Library, we identified 71 mutations in the Staphylococcus aureus genome that altered hemolysis on blood agar medium. Although many of these mutations disrupted genes known to affect the production of alpha-hemolysin, two of them were associated with an apparent operon, designated vfrAB, that had not been characterized previously. Interestingly, a ΔvfrB mutant exhibited only minor effects on the transcription of the hla gene, encoding alpha-hemolysin, when grown in broth, as well as on RNAIII, a posttranscriptional regulatory RNA important for alpha-hemolysin translation, suggesting that VfrB may function at the posttranscriptional level. Indeed, a ΔvfrB mutant had increased aur and sspAB protease expression under these conditions. However, disruption of the known secreted proteases in the ΔvfrB mutant did not restore hemolytic activity in the ΔvfrB mutant on blood agar. Further analysis revealed that, in contrast to the minor effects of VfrB on hla transcription when strains were cultured in liquid media, the level of hla transcription was decreased 50-fold in the absence of VfrB on solid media. These results demonstrate that while VfrB represses protease expression when strains are grown in broth, hla regulation is highly responsive to factors associated with growth on solid media. Intriguingly, the ΔvfrB mutant displayed increased pathogenesis in a model of S. aureus dermonecrosis, further highlighting the complexity of VfrB-dependent virulence regulation. The results of this study describe a phenotype associated with a class of highly conserved yet uncharacterized proteins found in Gram-positive bacteria, and they shed new light on the regulation of virulence factors necessary for S. aureus pathogenesis. PMID:24549328

  6. [Virulence factors in Pseudomonas aeruginosa: mechanisms and modes of regulation].

    PubMed

    Ben Haj Khalifa, Anis; Moissenet, Didier; Vu Thien, Hoang; Khedher, Mohamed

    2011-01-01

    Pseudomonas aeruginosa is a bacterium responsible for severe nosocomial infections, life-threatening infections in immunocompromised persons, and chronic infections in cystic fibrosis patients. The bacterium's virulence depends on a large number of cell-associated and extracellular factors. The virulence factors play an important pathological role in the colonization, the survival of the bacteria and the invasion of tissues. There are two types of virulence factors: (1) factors involved in the acute infection: these factors are either on the surface of P. aeruginosa, either secreted. The pili allow adherence to the epithelium. The exoenzyme S and other adhesins reinforce the adherence to epithelial cells. The exotoxin A is responsible of tissue necrosis. Phospholipase C is a thermolabile haemolysin. The pathogenic role of exoenzyme S is attributable to the disruption of normal cytoskeletal organization, the destruction of immunoglobulin G and A, leads to depolymerization of actin filaments and contributes to the resistance to macrophages. P. aeruginosa produces at least four proteases causing bleeding and tissue necrosis; (2) factors involved in the chronic infection: siderophores (pyoverdin and pyochelin), allow the bacteria to multiply in the absence of ferrous ions. The strains isolated from patients with cystic fibrosis have a pseudocapsule of alginate that protects the bacterium from phagocytosis, dehydration and antibiotics. Moreover, it improves adherence to epithelial cells forming a biofilm. Two different types of regulation systems control the expression of the majority of these virulence factors: the two-component transcriptional regulatory system and the quorum sensing system. These two mechanisms are necessary to the survival and the proliferation of this microorganism in the host. PMID:21896403

  7. Differential roles of epigenetic changes and Foxp3 expression in regulatory T cell-specific transcriptional regulation

    PubMed Central

    Morikawa, Hiromasa; Ohkura, Naganari; Vandenbon, Alexis; Itoh, Masayoshi; Nagao-Sato, Sayaka; Kawaji, Hideya; Lassmann, Timo; Carninci, Piero; Hayashizaki, Yoshihide; Forrest, Alistair R. R.; Standley, Daron M.; Date, Hiroshi; Sakaguchi, Shimon; Forrest, Alistair R.R.; Kawaji, Hideya; Rehli, Michael; Baillie, J. Kenneth; de Hoon, Michiel J.L.; Haberle, Vanja; Lassmann, Timo; Kulakovskiy, Ivan V.; Lizio, Marina; Itoh, Masayoshi; Andersson, Robin; Mungall, Christopher J.; Meehan, Terrence F.; Schmeier, Sebastian; Bertin, Nicolas; Jørgensen, Mette; Dimont, Emmanuel; Arner, Erik; Schmidl, Christian; Schaefer, Ulf; Medvedeva, Yulia A.; Plessy, Charles; Vitezic, Morana; Severin, Jessica; Semple, Colin A.; Ishizu, Yuri; Francescatto, Margherita; Alam, Intikhab; Albanese, Davide; Altschuler, Gabriel M.; Archer, John A.C.; Arner, Peter; Babina, Magda; Baker, Sarah; Balwierz, Piotr J.; Beckhouse, Anthony G.; Pradhan-Bhatt, Swati; Blake, Judith A.; Blumenthal, Antje; Bodega, Beatrice; Bonetti, Alessandro; Briggs, James; Brombacher, Frank; Burroughs, A. Maxwell; Califano, Andrea; Cannistraci, Carlo V.; Carbajo, Daniel; Chen, Yun; Chierici, Marco; Ciani, Yari; Clevers, Hans C.; Dalla, Emiliano; Davis, Carrie A.; Deplancke, Bart; Detmar, Michael; Diehl, Alexander D.; Dohi, Taeko; Drabløs, Finn; Edge, Albert S.B.; Edinger, Matthias; Ekwall, Karl; Endoh, Mitsuhiro; Enomoto, Hideki; Fagiolini, Michela; Fairbairn, Lynsey; Fang, Hai; Farach-Carson, Mary C.; Faulkner, Geoffrey J.; Favorov, Alexander V.; Fisher, Malcolm E.; Frith, Martin C.; Fujita, Rie; Fukuda, Shiro; Furlanello, Cesare; Furuno, Masaaki; Furusawa, Jun-ichi; Geijtenbeek, Teunis B.; Gibson, Andrew; Gingeras, Thomas; Goldowitz, Daniel; Gough, Julian; Guhl, Sven; Guler, Reto; Gustincich, Stefano; Ha, Thomas J.; Hamaguchi, Masahide; Hara, Mitsuko; Harbers, Matthias; Harshbarger, Jayson; Hasegawa, Akira; Hasegawa, Yuki; Hashimoto, Takehiro; Herlyn, Meenhard; Hitchens, Kelly J.; Sui, Shannan J. Ho; Hofmann, Oliver M.; Hoof, Ilka; Hori, Fumi; Huminiecki, Lukasz; Iida, Kei; Ikawa, Tomokatsu; Jankovic, Boris R.; Jia, Hui; Joshi, Anagha; Jurman, Giuseppe; Kaczkowski, Bogumil; Kai, Chieko; Kaida, Kaoru; Kaiho, Ai; Kajiyama, Kazuhiro; Kanamori-Katayama, Mutsumi; Kasianov, Artem S.; Kasukawa, Takeya; Katayama, Shintaro; Kato, Sachi; Kawaguchi, Shuji; Kawamoto, Hiroshi; Kawamura, Yuki I.; Kawashima, Tsugumi; Kempfle, Judith S.; Kenna, Tony J.; Kere, Juha; Khachigian, Levon M.; Kitamura, Toshio; Klinken, S. Peter; Knox, Alan J.; Kojima, Miki; Kojima, Soichi; Kondo, Naoto; Koseki, Haruhiko; Koyasu, Shigeo; Krampitz, Sarah; Kubosaki, Atsutaka; Kwon, Andrew T.; Laros, Jeroen F.J.; Lee, Weonju; Lennartsson, Andreas; Li, Kang; Lilje, Berit; Lipovich, Leonard; Mackay-sim, Alan; Manabe, Ri-ichiroh; Mar, Jessica C.; Marchand, Benoit; Mathelier, Anthony; Mejhert, Niklas; Meynert, Alison; Mizuno, Yosuke; Morais, David A. de Lima; Morikawa, Hiromasa; Morimoto, Mitsuru; Moro, Kazuyo; Motakis, Efthymios; Motohashi, Hozumi; Mummery, Christine L.; Murata, Mitsuyoshi; Nagao-Sato, Sayaka; Nakachi, Yutaka; Nakahara, Fumio; Nakamura, Toshiyuki; Nakamura, Yukio; Nakazato, Kenichi; van Nimwegen, Erik; Ninomiya, Noriko; Nishiyori, Hiromi; Noma, Shohei; Nozaki, Tadasuke; Ogishima, Soichi; Ohkura, Naganari; Ohmiya, Hiroko; Ohno, Hiroshi; Ohshima, Mitsuhiro; Okada-Hatakeyama, Mariko; Okazaki, Yasushi; Orlando, Valerio; Ovchinnikov, Dmitry A.; Pain, Arnab; Passier, Robert; Patrikakis, Margaret; Persson, Helena; Piazza, Silvano; Prendergast, James G.D.; Rackham, Owen J.L.; Ramilowski, Jordan A.; Rashid, Mamoon; Ravasi, Timothy; Rizzu, Patrizia; Roncador, Marco; Roy, Sugata; Rye, Morten B.; Saijyo, Eri; Sajantila, Antti; Saka, Akiko; Sakaguchi, Shimon; Sakai, Mizuho; Sato, Hiroki; Satoh, Hironori; Savvi, Suzana; Saxena, Alka; Schneider, Claudio; Schultes, Erik A.; Schulze-Tanzil, Gundula G.; Schwegmann, Anita; Sengstag, Thierry; Sheng, Guojun; Shimoji, Hisashi; Shimoni, Yishai; Shin, Jay W.; Simon, Christophe; Sugiyama, Daisuke; Sugiyama, Takaaki; Suzuki, Masanori; Swoboda, Rolf K.; 't Hoen, Peter A.C.; Tagami, Michihira; Takahashi, Naoko; Takai, Jun; Tanaka, Hiroshi; Tatsukawa, Hideki; Tatum, Zuotian; Thompson, Mark; Toyoda, Hiroo; Toyoda, Tetsuro; Valen, Eivind; van de Wetering, Marc; van den Berg, Linda M.; Verardo, Roberto; Vijayan, Dipti; Vorontsov, Ilya E.; Wasserman, Wyeth W.; Watanabe, Shoko; Wells, Christine A.; Winteringham, Louise N.; Wolvetang, Ernst; Wood, Emily J.; Yamaguchi, Yoko; Yamamoto, Masayuki; Yoneda, Misako; Yonekura, Yohei; Yoshida, Shigehiro; Zabierowski, Suzan E.; Zhang, Peter G.; Zhao, Xiaobei; Zucchelli, Silvia; Summers, Kim M.; Suzuki, Harukazu; Daub, Carsten O.; Kawai, Jun; Heutink, Peter; Hide, Winston; Freeman, Tom C.; Lenhard, Boris; Bajic, Vladimir B.; Taylor, Martin S.; Makeev, Vsevolod J.; Sandelin, Albin; Hume, David A.; Carninci, Piero; Hayashizaki, Yoshihide

    2014-01-01

    Naturally occurring regulatory T (Treg) cells, which specifically express the transcription factor forkhead box P3 (Foxp3), are engaged in the maintenance of immunological self-tolerance and homeostasis. By transcriptional start site cluster analysis, we assessed here how genome-wide patterns of DNA methylation or Foxp3 binding sites were associated with Treg-specific gene expression. We found that Treg-specific DNA hypomethylated regions were closely associated with Treg up-regulated transcriptional start site clusters, whereas Foxp3 binding regions had no significant correlation with either up- or down-regulated clusters in nonactivated Treg cells. However, in activated Treg cells, Foxp3 binding regions showed a strong correlation with down-regulated clusters. In accordance with these findings, the above two features of activation-dependent gene regulation in Treg cells tend to occur at different locations in the genome. The results collectively indicate that Treg-specific DNA hypomethylation is instrumental in gene up-regulation in steady state Treg cells, whereas Foxp3 down-regulates the expression of its target genes in activated Treg cells. Thus, the two events seem to play distinct but complementary roles in Treg-specific gene expression. PMID:24706905

  8. Inverse regulation of human ERBB2 and epidermal growth factor receptors by tumor necrosis factor alpha.

    PubMed

    Kalthoff, H; Roeder, C; Gieseking, J; Humburg, I; Schmiegel, W

    1993-10-01

    Recombinant human tumor necrosis factor (TNF) alpha decreased the expression of ERBB2 mRNA by stimulating p55 TNF receptors of pancreatic tumor cells. This decrease contrasts with an increase in epidermal growth factor receptor (EGFR) mRNA. Both effects were selectively achieved by TNF-alpha or -beta, whereas interferon alpha or gamma or transforming growth factor beta showed no such effects. The inverse regulatory effects of TNF on ERBB2 and EGFR mRNA levels were evoked by different signaling pathways of p55 TNF receptors. The TNF-mediated ERBB2 mRNA decrease was followed by a reduction in protein. Four of five pancreatic tumor cell lines exhibited this down-regulation. This decrease of ERBB2 is a singular example of a modulation of this growth factor receptor by TNF. Overexpression of ERBB2 has been reported to cause resistance to TNF and other cytotoxic cytokines. In our study we show that the TNF-mediated down-regulation of ERBB2 in pancreatic tumor cells is accompanied by an increase in growth inhibition at low doses of TNF. The simultaneous alteration of the ERBB2/EGFR balance by TNF represents a striking model of cytokine receptor transregulation in the growth control of malignant pancreatic epithelial cells.

  9. Inverse regulation of human ERBB2 and epidermal growth factor receptors by tumor necrosis factor alpha.

    PubMed Central

    Kalthoff, H; Roeder, C; Gieseking, J; Humburg, I; Schmiegel, W

    1993-01-01

    Recombinant human tumor necrosis factor (TNF) alpha decreased the expression of ERBB2 mRNA by stimulating p55 TNF receptors of pancreatic tumor cells. This decrease contrasts with an increase in epidermal growth factor receptor (EGFR) mRNA. Both effects were selectively achieved by TNF-alpha or -beta, whereas interferon alpha or gamma or transforming growth factor beta showed no such effects. The inverse regulatory effects of TNF on ERBB2 and EGFR mRNA levels were evoked by different signaling pathways of p55 TNF receptors. The TNF-mediated ERBB2 mRNA decrease was followed by a reduction in protein. Four of five pancreatic tumor cell lines exhibited this down-regulation. This decrease of ERBB2 is a singular example of a modulation of this growth factor receptor by TNF. Overexpression of ERBB2 has been reported to cause resistance to TNF and other cytotoxic cytokines. In our study we show that the TNF-mediated down-regulation of ERBB2 in pancreatic tumor cells is accompanied by an increase in growth inhibition at low doses of TNF. The simultaneous alteration of the ERBB2/EGFR balance by TNF represents a striking model of cytokine receptor transregulation in the growth control of malignant pancreatic epithelial cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8105469

  10. Cross-talk between a regulatory small RNA, cyclic-di-GMP signalling and flagellar regulator FlhDC for virulence and bacterial behaviours.

    PubMed

    Yuan, Xiaochen; Khokhani, Devanshi; Wu, Xiaogang; Yang, Fenghuan; Biener, Gabriel; Koestler, Benjamin J; Raicu, Valerica; He, Chenyang; Waters, Christopher M; Sundin, George W; Tian, Fang; Yang, Ching-Hong

    2015-11-01

    Dickeya dadantii is a globally dispersed phytopathogen which causes diseases on a wide range of host plants. This pathogen utilizes the type III secretion system (T3SS) to suppress host defense responses, and secretes pectate lyase (Pel) to degrade the plant cell wall. Although the regulatory small RNA (sRNA) RsmB, cyclic diguanylate monophosphate (c-di-GMP) and flagellar regulator have been reported to affect the regulation of these two virulence factors or multiple cell behaviours such as motility and biofilm formation, the linkage between these regulatory components that coordinate the cell behaviours remain unclear. Here, we revealed a sophisticated regulatory network that connects the sRNA, c-di-GMP signalling and flagellar master regulator FlhDC. We propose multi-tiered regulatory mechanisms that link the FlhDC to the T3SS through three distinct pathways including the FlhDC-FliA-YcgR3937 pathway; the FlhDC-EcpC-RpoN-HrpL pathway; and the FlhDC-rsmB-RsmA-HrpL pathway. Among these, EcpC is the most dominant factor for FlhDC to positively regulate T3SS expression. PMID:26462993

  11. Cross-talk between a regulatory small RNA, cyclic-di-GMP signalling and flagellar regulator FlhDC for virulence and bacterial behaviours.

    PubMed

    Yuan, Xiaochen; Khokhani, Devanshi; Wu, Xiaogang; Yang, Fenghuan; Biener, Gabriel; Koestler, Benjamin J; Raicu, Valerica; He, Chenyang; Waters, Christopher M; Sundin, George W; Tian, Fang; Yang, Ching-Hong

    2015-11-01

    Dickeya dadantii is a globally dispersed phytopathogen which causes diseases on a wide range of host plants. This pathogen utilizes the type III secretion system (T3SS) to suppress host defense responses, and secretes pectate lyase (Pel) to degrade the plant cell wall. Although the regulatory small RNA (sRNA) RsmB, cyclic diguanylate monophosphate (c-di-GMP) and flagellar regulator have been reported to affect the regulation of these two virulence factors or multiple cell behaviours such as motility and biofilm formation, the linkage between these regulatory components that coordinate the cell behaviours remain unclear. Here, we revealed a sophisticated regulatory network that connects the sRNA, c-di-GMP signalling and flagellar master regulator FlhDC. We propose multi-tiered regulatory mechanisms that link the FlhDC to the T3SS through three distinct pathways including the FlhDC-FliA-YcgR3937 pathway; the FlhDC-EcpC-RpoN-HrpL pathway; and the FlhDC-rsmB-RsmA-HrpL pathway. Among these, EcpC is the most dominant factor for FlhDC to positively regulate T3SS expression.

  12. Extending the dynamic range of transcription factor action by translational regulation

    NASA Astrophysics Data System (ADS)

    Sokolowski, Thomas R.; Walczak, Aleksandra M.; Bialek, William; Tkačik, Gašper

    2016-02-01

    A crucial step in the regulation of gene expression is binding of transcription factor (TF) proteins to regulatory sites along the DNA. But transcription factors act at nanomolar concentrations, and noise due to random arrival of these molecules at their binding sites can severely limit the precision of regulation. Recent work on the optimization of information flow through regulatory networks indicates that the lower end of the dynamic range of concentrations is simply inaccessible, overwhelmed by the impact of this noise. Motivated by the behavior of homeodomain proteins, such as the maternal morphogen Bicoid in the fruit fly embryo, we suggest a scheme in which transcription factors also act as indirect translational regulators, binding to the mRNA of other regulatory proteins. Intuitively, each mRNA molecule acts as an independent sensor of the input concentration, and averaging over these multiple sensors reduces the noise. We analyze information flow through this scheme and identify conditions under which it outperforms direct transcriptional regulation. Our results suggest that the dual role of homeodomain proteins is not just a historical accident, but a solution to a crucial physics problem in the regulation of gene expression.

  13. Cofunctional Subpathways Were Regulated by Transcription Factor with Common Motif, Common Family, or Common Tissue

    PubMed Central

    Su, Fei; Shang, Desi; Xu, Yanjun; Feng, Li; Yang, Haixiu; Liu, Baoquan; Su, Shengyang; Chen, Lina; Li, Xia

    2015-01-01

    Dissecting the characteristics of the transcription factor (TF) regulatory subpathway is helpful for understanding the TF underlying regulatory function in complex biological systems. To gain insight into the influence of TFs on their regulatory subpathways, we constructed a global TF-subpathways network (TSN) to analyze systematically the regulatory effect of common-motif, common-family, or common-tissue TFs on subpathways. We performed cluster analysis to show that the common-motif, common-family, or common-tissue TFs that regulated the same pathway classes tended to cluster together and contribute to the same biological function that led to disease initiation and progression. We analyzed the Jaccard coefficient to show that the functional consistency of subpathways regulated by the TF pairs with common motif, common family, or common tissue was significantly greater than the random TF pairs at the subpathway level, pathway level, and pathway class level. For example, HNF4A (hepatocyte nuclear factor 4, alpha) and NR1I3 (nuclear receptor subfamily 1, group I, member 3) were a pair of TFs with common motif, common family, and common tissue. They were involved in drug metabolism pathways and were liver-specific factors required for physiological transcription. In short, we inferred that the cofunctional subpathways were regulated by common-motif, common-family, or common-tissue TFs. PMID:26688819

  14. Interferon Regulatory Factor 4 controls TH1 cell effector function and metabolism

    PubMed Central

    Mahnke, Justus; Schumacher, Valéa; Ahrens, Stefanie; Käding, Nadja; Feldhoff, Lea Marie; Huber, Magdalena; Rupp, Jan; Raczkowski, Friederike; Mittrücker, Hans-Willi

    2016-01-01

    The transcription factor Interferon Regulatory Factor 4 (IRF4) is essential for TH2 and TH17 cell formation and controls peripheral CD8+ T cell differentiation. We used Listeria monocytogenes infection to characterize the function of IRF4 in TH1 responses. IRF4−/− mice generated only marginal numbers of listeria-specific TH1 cells. After transfer into infected mice, IRF4−/− CD4+ T cells failed to differentiate into TH1 cells as indicated by reduced T-bet and IFN-γ expression, and showed limited proliferation. Activated IRF4−/− CD4+ T cells exhibited diminished uptake of the glucose analog 2-NBDG, limited oxidative phosphorylation and strongly reduced aerobic glycolysis. Insufficient metabolic adaptation contributed to the limited proliferation and TH1 differentiation of IRF4−/− CD4+ T cells. Our study identifies IRF4 as central regulator of TH1 responses and cellular metabolism. We propose that this function of IRF4 is fundamental for the initiation and maintenance of all TH cell responses. PMID:27762344

  15. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control TH2 responses

    PubMed Central

    Zheng, Ye; Chaudhry, Ashutosh; Kas, Arnold; deRoos, Paul; Kim, Jeong M.; Chu, Tin-Tin; Corcoran, Lynn; Treuting, Piper; Klein, Ulf; Rudensky, Alexander Y.

    2010-01-01

    In the course of infection or autoimmunity, particular transcription factors orchestrate the differentiation of TH1, TH2 or TH17 effector cells, the responses of which are limited by a distinct lineage of suppressive regulatory T cells (Treg). Treg cell differentiation and function are guided by the transcription factor Foxp3, and their deficiency due to mutations in Foxp3 results in aggressive fatal autoimmune disease associated with sharply augmented TH1 and TH2 cytokine production1–3. Recent studies suggested that Foxp3 regulates the bulk of the Foxp3-dependent transcriptional program indirectly through a set of transcriptional regulators serving as direct Foxp3 targets4,5. Here we show that in mouse Treg cells, high amounts of interferon regulatory factor-4 (IRF4), a transcription factor essential for TH2 effector cell differentiation, is dependent on Foxp3 expression. We proposed that IRF4 expression endows Treg cells with the ability to suppress TH2 responses. Indeed, ablation of a conditional Irf4 allele in Treg cells resulted in selective dysregulation of TH2 responses, IL4-dependent immunoglobulin isotype production, and tissue lesions with pronounced plasma cell infiltration, in contrast to the mononuclear-cell-dominated pathology typical of mice lacking Treg cells. Our results indicate that Treg cells use components of the transcriptional machinery, promoting a particular type of effector CD4+ T cell differentiation, to efficiently restrain the corresponding type of the immune response. PMID:19182775

  16. Fibroblast Growth Factor Signaling in Metabolic Regulation.

    PubMed

    Nies, Vera J M; Sancar, Gencer; Liu, Weilin; van Zutphen, Tim; Struik, Dicky; Yu, Ruth T; Atkins, Annette R; Evans, Ronald M; Jonker, Johan W; Downes, Michael Robert

    2015-01-01

    The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions.

  17. Enhancement of alkaloid production in opium and California poppy by transactivation using heterologous regulatory factors.

    PubMed

    Apuya, Nestor R; Park, Joon-Hyun; Zhang, Liping; Ahyow, Maurice; Davidow, Patricia; Van Fleet, Jennifer; Rarang, Joel C; Hippley, Matthew; Johnson, Thomas W; Yoo, Hye-Dong; Trieu, Anthony; Krueger, Shannon; Wu, Chuan-yin; Lu, Yu-ping; Flavell, Richard B; Bobzin, Steven C

    2008-02-01

    Genes encoding regulatory factors isolated from Arabidopsis, soybean and corn have been screened to identify those that modulate the expression of genes encoding for enzymes involved in the biosynthesis of morphinan alkaloids in opium poppy (Papaver somniferum) and benzophenanthridine alkaloids in California poppy (Eschscholzia californica). In opium poppy, the over-expression of selected regulatory factors increased the levels of PsCOR (codeinone reductase), Ps4'OMT (S-adenosyl-l-methionine:3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase) and Ps6OMT [(R,S)-norcoclaurine 6-O-methyltransferase] transcripts by 10- to more than 100-fold. These transcriptional activations translated into an enhancement of alkaloid production in opium poppy of up to at least 10-fold. In California poppy, the transactivation effect of regulatory factor WRKY1 resulted in an increase of up to 60-fold in the level of EcCYP80B1 [(S)-N-methylcoclaurine 3'-hydroxylase] and EcBBE (berberine bridge enzyme) transcripts. As a result, the accumulations of selected alkaloid intermediates were enhanced up to 30-fold. The transactivation effects of other regulatory factors led to the accumulation of the same intermediates. These regulatory factors also led to the production of new alkaloids in California poppy callus culture.

  18. Enhancement of alkaloid production in opium and California poppy by transactivation using heterologous regulatory factors.

    PubMed

    Apuya, Nestor R; Park, Joon-Hyun; Zhang, Liping; Ahyow, Maurice; Davidow, Patricia; Van Fleet, Jennifer; Rarang, Joel C; Hippley, Matthew; Johnson, Thomas W; Yoo, Hye-Dong; Trieu, Anthony; Krueger, Shannon; Wu, Chuan-yin; Lu, Yu-ping; Flavell, Richard B; Bobzin, Steven C

    2008-02-01

    Genes encoding regulatory factors isolated from Arabidopsis, soybean and corn have been screened to identify those that modulate the expression of genes encoding for enzymes involved in the biosynthesis of morphinan alkaloids in opium poppy (Papaver somniferum) and benzophenanthridine alkaloids in California poppy (Eschscholzia californica). In opium poppy, the over-expression of selected regulatory factors increased the levels of PsCOR (codeinone reductase), Ps4'OMT (S-adenosyl-l-methionine:3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase) and Ps6OMT [(R,S)-norcoclaurine 6-O-methyltransferase] transcripts by 10- to more than 100-fold. These transcriptional activations translated into an enhancement of alkaloid production in opium poppy of up to at least 10-fold. In California poppy, the transactivation effect of regulatory factor WRKY1 resulted in an increase of up to 60-fold in the level of EcCYP80B1 [(S)-N-methylcoclaurine 3'-hydroxylase] and EcBBE (berberine bridge enzyme) transcripts. As a result, the accumulations of selected alkaloid intermediates were enhanced up to 30-fold. The transactivation effects of other regulatory factors led to the accumulation of the same intermediates. These regulatory factors also led to the production of new alkaloids in California poppy callus culture. PMID:17961129

  19. Imbalanced signal transduction in regulatory T cells expressing the transcription factor FoxP3

    PubMed Central

    Yan, Dapeng; Farache, Julia; Mingueneau, Michael; Mathis, Diane; Benoist, Christophe

    2015-01-01

    FoxP3+ T regulatory (Treg) cells have a fundamental role in immunological tolerance, with transcriptional and functional phenotypes that demarcate them from conventional CD4+ T cells (Tconv). Differences between these two lineages in the signaling downstream of T-cell receptor-triggered activation have been reported, and there are different requirements for some signaling factors. Seeking a comprehensive view, we found that Treg cells have a broadly dampened activation of several pathways and signaling nodes upon TCR-mediated activation, with low phosphorylation of CD3ζ, SLP76, Erk1/2, AKT, or S6 and lower calcium flux. In contrast, STAT phosphorylation triggered by interferons, IL2 or IL6, showed variations between Treg and Tconv in magnitude or choice of preferential STAT activation but no general Treg signaling defect. Much, but not all, of the Treg/Tconv difference in TCR-triggered responses could be attributed to lower responsiveness of antigen-experienced cells with CD44hi or CD62Llo phenotypes, which form a greater proportion of the Treg pool. Candidate regulators were tested, but the Treg/Tconv differential could not be explained by overexpression in Treg cells of the signaling modulator CD5, the coinhibitors PD-1 and CTLA4, or the regulatory phosphatase DUSP4. However, transcriptome profiling in Dusp4-deficient mice showed that DUSP4 enhances the expression of a segment of the canonical Treg transcriptional signature, which partially overlaps with the TCR-dependent Treg gene set. Thus, Treg cells, likely because of their intrinsically higher reactivity to self, tune down TCR signals but seem comparatively more attuned to cytokines or other intercellular signals. PMID:26627244

  20. Molecular cloning and characterization of interferon regulatory factor 9 (IRF9) in Japanese flounder, Paralichthys olivaceus.

    PubMed

    Hu, Guo-Bin; Zhao, Ming-Yu; Lin, Jing-Yun; Liu, Qiu-Ming; Zhang, Shi-Cui

    2014-08-01

    Interferon regulatory factor 9 (IRF9) in mammals is known to be involved in antiviral response. In this study, we studied the structure, mRNA tissue distribution and regulation of IRF9 from Japanese flounder, Paralichthys olivaceus. The cDNA sequence of IRF9 is 3305 bp long, containing an open reading frame (ORF) of 1308 bp that encodes a peptide of 435 amino acids. The predicted protein sequence shares 33.7-72.0% identity to other fish IRF9s. Japanese flounder IRF9 possesses a DNA-binding domain (DBD), an IRF association domain (IAD), two nuclear localization signals (NLSs) and a proline-rich domain (PRD). The IRF9 transcripts were detectable in all examined tissues of healthy Japanese flounders, with higher levels in the head kidney, kidney, liver and spleen. The IRF9 mRNA levels were up-regulated in the gills, head kidney, spleen and muscle when challenged with polyinosinic:polycytidylic acid (poly I:C) or lymphocystis disease virus (LCDV). The up-regulations were stronger and arose earlier in the case of poly I:C treatment in most tested organs in a 7-day time course, with maximum increases ranging from 1.37- to 8.59-fold and peak time points from 3 h to 3 d post injection depending on different organs, relative to those in the case of LCDV treatment which ranged from 1.32- to 3.21-fold and from 18 h to 3 d post injection, respectively. The highest and earliest inductions were detected in the spleen in both challenge cases, while the inductions by LCDV in the muscle were quite faint. These results demonstrate a role of Japanese flounder IRF9 in the host's antiviral responses. PMID:24837327

  1. LEAFY COTYLEDON1-CASEIN KINASE I-TCP15-PHYTOCHROME INTERACTING FACTOR4 Network Regulates Somatic Embryogenesis by Regulating Auxin Homeostasis1[OPEN

    PubMed Central

    Min, Ling; Hu, Qin; Li, Yaoyao; Xu, Jiao; Ma, Yizan; Zhu, Longfu; Yang, Xiyan; Zhang, Xianlong

    2015-01-01

    Somatic embryogenesis (SE) is an efficient tool for the propagation of plant species and also, a useful model for studying the regulatory networks in embryo development. However, the regulatory networks underlying the transition from nonembryogenic callus to somatic embryos during SE remain poorly understood. Here, we describe an upland cotton (Gossypium hirsutum) CASEIN KINASE I gene, GhCKI, which is a unique key regulatory factor that strongly affects SE. Overexpressing GhCKI halted the formation of embryoids and plant regeneration because of a block in the transition from nonembryogenic callus to somatic embryos. In contrast, defective GhCKI in plants facilitated SE. To better understand the mechanism by which GhCKI regulates SE, the regulatory network was analyzed. A direct upstream negative regulator protein, cotton LEAFY COTYLEDON1, was identified to be targeted to a cis-element, CTTTTC, in the promoter of GhCKI. Moreover, GhCKI interacted with and phosphorylated cotton CINCINNATA-like TEOSINTE BRANCHED1-CYCLOIDEA-PCF transcription factor15 by coordinately regulating the expression of cotton PHYTOCHROME INTERACTING FACTOR4, finally disrupting auxin homeostasis, which led to increased cell proliferation and aborted somatic embryo formation in GhCKI-overexpressing somatic cells. Our results show a complex process of SE that is negatively regulated by GhCKI through a complex regulatory network. PMID:26491146

  2. Scientific foundation of regulating ionizing radiation: application of metrics for evaluation of regulatory science information.

    PubMed

    Moghissi, A Alan; Gerraa, Vikrham Kumar; McBride, Dennis K; Swetnam, Michael

    2014-11-01

    This paper starts by describing the historical evolution of assessment of biologic effects of ionizing radiation leading to the linear non-threshold (LNT) system currently used to regulate exposure to ionizing radiation. The paper describes briefly the concept of Best Available Science (BAS) and Metrics for Evaluation of Scientific Claims (MESC) derived for BAS. It identifies three phases of regulatory science consisting of the initial phase, when the regulators had to develop regulations without having the needed scientific information; the exploratory phase, when relevant tools were developed; and the standard operating phase, when the tools were applied to regulations. Subsequently, an attempt is made to apply the BAS/MESC system to various stages of LNT. This paper then compares the exposure limits imposed by regulatory agencies and also compares them with naturally occurring radiation at several cities. Controversies about LNT are addressed, including judgments of the U.S. National Academies and their French counterpart. The paper concludes that, based on the BAS/MESC system, there is no disagreement between the two academies on the scientific foundation of LNT; instead, the disagreement is based on their judgment or speculation.

  3. Automaticity of exercise self-regulatory efficacy beliefs in adults with high and low experience in exercise self-regulation.

    PubMed

    Buckley, Jude; Cameron, Linda D

    2011-06-01

    Guided by social cognitive theory (SCT), we investigated whether exercise self-regulatory efficacy beliefs can be activated nonconsciously in individuals experienced and inexperienced in exercise self-regulation, and whether these beliefs are automatically associated with exercise self-regulation processes. The study used a 2 (Exercise Self-Regulation Experience Group) × 3 (Prime Condition) between-subjects design in which individuals experienced and inexperienced in exercise self-regulation were randomly assigned to receive subliminal, supraliminal, or no priming of exercise self-regulatory efficacy beliefs. Participants completed hypothetical diary entries, which were assessed for exercise self-regulatory efficacy and self-regulation expressions using content analyses with a SCT coding system and the Linguistic Inquiry and Word Count (LIWC) text analysis program. For both exercise self-regulation experience groups, self-efficacy priming led to more expressions of low exercise self-regulatory efficacy and dysfunctional exercise self-regulation strategies compared with the control prime. For participants experienced in exercise self-regulation, supraliminal priming (vs. control priming) led to more expressions of high exercise self-regulatory efficacy and functional exercise self-regulation strategies. For the experienced groups, priming led to automaticity of exercise expressions compared with the control condition. For inexperienced participants in the subliminal prime condition, priming led to automaticity of self-regulatory efficacy beliefs and work-related goals compared with the control condition. Automatic activation of exercise self-regulatory efficacy and exercise self-regulation processes suggests that self-regulation of exercise behavior can occur nonconsciously.

  4. Fibroblast Growth Factor Signaling in Metabolic Regulation

    PubMed Central

    Nies, Vera J. M.; Sancar, Gencer; Liu, Weilin; van Zutphen, Tim; Struik, Dicky; Yu, Ruth T.; Atkins, Annette R.; Evans, Ronald M.; Jonker, Johan W.; Downes, Michael Robert

    2016-01-01

    The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions. PMID:26834701

  5. [Genetic diagnostics as a legislation project. Regulatory initiatives and main areas of regulation].

    PubMed

    Damm, Reinhard

    2007-02-01

    The legislation project of a law on genetic diagnostics appears to have come to a standstill; however, it should be taken up again. The national and international discussion underlines the need for regulation. This assessment is based on the dynamic developments in the field of biological and medical sciences and the resulting problems for medical practice, the healthcare system, commercial in terests and, not least, patients, volunteers and clients. The German legislators cannot only build on the preparatory work of political advisory institutions and commissions; besides current legislation in neighbouring countries, several regulatory drafts have been prepared in Germany, which provide important normative material for legislative work. However, these drafts also reflect the conflicts of interest and assessment arising from such a project. Legislation on genetic diagnostics is not only concerned with differing focal points of regulation and numerous questions of detail but also with decisions on fundamental normative orientations and principles of regulation.

  6. [Genetic diagnostics as a legislation project. Regulatory initiatives and main areas of regulation].

    PubMed

    Damm, Reinhard

    2007-02-01

    The legislation project of a law on genetic diagnostics appears to have come to a standstill; however, it should be taken up again. The national and international discussion underlines the need for regulation. This assessment is based on the dynamic developments in the field of biological and medical sciences and the resulting problems for medical practice, the healthcare system, commercial in terests and, not least, patients, volunteers and clients. The German legislators cannot only build on the preparatory work of political advisory institutions and commissions; besides current legislation in neighbouring countries, several regulatory drafts have been prepared in Germany, which provide important normative material for legislative work. However, these drafts also reflect the conflicts of interest and assessment arising from such a project. Legislation on genetic diagnostics is not only concerned with differing focal points of regulation and numerous questions of detail but also with decisions on fundamental normative orientations and principles of regulation. PMID:17225988

  7. Discovery of transcription factors and regulatory regions driving in vivo tumor development by ATAC-seq and FAIRE-seq open chromatin profiling.

    PubMed

    Davie, Kristofer; Jacobs, Jelle; Atkins, Mardelle; Potier, Delphine; Christiaens, Valerie; Halder, Georg; Aerts, Stein

    2015-02-01

    Genomic enhancers regulate spatio-temporal gene expression by recruiting specific combinations of transcription factors (TFs). When TFs are bound to active regulatory regions, they displace canonical nucleosomes, making these regions biochemically detectable as nucleosome-depleted regions or accessible/open chromatin. Here we ask whether open chromatin profiling can be used to identify the entire repertoire of active promoters and enhancers underlying tissue-specific gene expression during normal development and oncogenesis in vivo. To this end, we first compare two different approaches to detect open chromatin in vivo using the Drosophila eye primordium as a model system: FAIRE-seq, based on physical separation of open versus closed chromatin; and ATAC-seq, based on preferential integration of a transposon into open chromatin. We find that both methods reproducibly capture the tissue-specific chromatin activity of regulatory regions, including promoters, enhancers, and insulators. Using both techniques, we screened for regulatory regions that become ectopically active during Ras-dependent oncogenesis, and identified 3778 regions that become (over-)activated during tumor development. Next, we applied motif discovery to search for candidate transcription factors that could bind these regions and identified AP-1 and Stat92E as key regulators. We validated the importance of Stat92E in the development of the tumors by introducing a loss of function Stat92E mutant, which was sufficient to rescue the tumor phenotype. Additionally we tested if the predicted Stat92E responsive regulatory regions are genuine, using ectopic induction of JAK/STAT signaling in developing eye discs, and observed that similar chromatin changes indeed occurred. Finally, we determine that these are functionally significant regulatory changes, as nearby target genes are up- or down-regulated. In conclusion, we show that FAIRE-seq and ATAC-seq based open chromatin profiling, combined with motif

  8. Auxin Response Factor SlARF2 Is an Essential Component of the Regulatory Mechanism Controlling Fruit Ripening in Tomato.

    PubMed

    Hao, Yanwei; Hu, Guojian; Breitel, Dario; Liu, Mingchun; Mila, Isabelle; Frasse, Pierre; Fu, Yongyao; Aharoni, Asaph; Bouzayen, Mondher; Zouine, Mohamed

    2015-12-01

    Ethylene is the main regulator of climacteric fruit ripening, by contrast the putative role of other phytohormones in this process remains poorly understood. The present study brings auxin signaling components into the mechanism regulating tomato fruit ripening through the functional characterization of Auxin Response Factor2 (SlARF2) which encodes a downstream component of auxin signaling. Two paralogs, SlARF2A and SlARF2B, are found in the tomato genome, both displaying a marked ripening-associated expression but distinct responsiveness to ethylene and auxin. Down-regulation of either SlARF2A or SlARF2B resulted in ripening defects while simultaneous silencing of both genes led to severe ripening inhibition suggesting a functional redundancy among the two ARFs. Tomato fruits under-expressing SlARF2 produced less climacteric ethylene and exhibited a dramatic down-regulation of the key ripening regulators RIN, CNR, NOR and TAGL1. Ethylene treatment failed to reverse the non-ripening phenotype and the expression of ethylene signaling and biosynthesis genes was strongly altered in SlARF2 down-regulated fruits. Although both SlARF proteins are transcriptional repressors the data indicate they work as positive regulators of tomato fruit ripening. Altogether, the study defines SlARF2 as a new component of the regulatory network controlling the ripening process in tomato. PMID:26716451

  9. Auxin Response Factor SlARF2 Is an Essential Component of the Regulatory Mechanism Controlling Fruit Ripening in Tomato

    PubMed Central

    Hao, Yanwei; Hu, Guojian; Breitel, Dario; Liu, Mingchun; Mila, Isabelle; Frasse, Pierre; Fu, Yongyao; Aharoni, Asaph; Bouzayen, Mondher; Zouine, Mohamed

    2015-01-01

    Ethylene is the main regulator of climacteric fruit ripening, by contrast the putative role of other phytohormones in this process remains poorly understood. The present study brings auxin signaling components into the mechanism regulating tomato fruit ripening through the functional characterization of Auxin Response Factor2 (SlARF2) which encodes a downstream component of auxin signaling. Two paralogs, SlARF2A and SlARF2B, are found in the tomato genome, both displaying a marked ripening-associated expression but distinct responsiveness to ethylene and auxin. Down-regulation of either SlARF2A or SlARF2B resulted in ripening defects while simultaneous silencing of both genes led to severe ripening inhibition suggesting a functional redundancy among the two ARFs. Tomato fruits under-expressing SlARF2 produced less climacteric ethylene and exhibited a dramatic down-regulation of the key ripening regulators RIN, CNR, NOR and TAGL1. Ethylene treatment failed to reverse the non-ripening phenotype and the expression of ethylene signaling and biosynthesis genes was strongly altered in SlARF2 down-regulated fruits. Although both SlARF proteins are transcriptional repressors the data indicate they work as positive regulators of tomato fruit ripening. Altogether, the study defines SlARF2 as a new component of the regulatory network controlling the ripening process in tomato. PMID:26716451

  10. Auxin Response Factor SlARF2 Is an Essential Component of the Regulatory Mechanism Controlling Fruit Ripening in Tomato.

    PubMed

    Hao, Yanwei; Hu, Guojian; Breitel, Dario; Liu, Mingchun; Mila, Isabelle; Frasse, Pierre; Fu, Yongyao; Aharoni, Asaph; Bouzayen, Mondher; Zouine, Mohamed

    2015-12-01

    Ethylene is the main regulator of climacteric fruit ripening, by contrast the putative role of other phytohormones in this process remains poorly understood. The present study brings auxin signaling components into the mechanism regulating tomato fruit ripening through the functional characterization of Auxin Response Factor2 (SlARF2) which encodes a downstream component of auxin signaling. Two paralogs, SlARF2A and SlARF2B, are found in the tomato genome, both displaying a marked ripening-associated expression but distinct responsiveness to ethylene and auxin. Down-regulation of either SlARF2A or SlARF2B resulted in ripening defects while simultaneous silencing of both genes led to severe ripening inhibition suggesting a functional redundancy among the two ARFs. Tomato fruits under-expressing SlARF2 produced less climacteric ethylene and exhibited a dramatic down-regulation of the key ripening regulators RIN, CNR, NOR and TAGL1. Ethylene treatment failed to reverse the non-ripening phenotype and the expression of ethylene signaling and biosynthesis genes was strongly altered in SlARF2 down-regulated fruits. Although both SlARF proteins are transcriptional repressors the data indicate they work as positive regulators of tomato fruit ripening. Altogether, the study defines SlARF2 as a new component of the regulatory network controlling the ripening process in tomato.

  11. Activation of Vago by interferon regulatory factor (IRF) suggests an interferon system-like antiviral mechanism in shrimp.

    PubMed

    Li, Chaozheng; Li, Haoyang; Chen, Yixiao; Chen, Yonggui; Wang, Sheng; Weng, Shao-Ping; Xu, Xiaopeng; He, Jianguo

    2015-01-01

    There is a debate on whether invertebrates possess an antiviral immunity similar to the interferon (IFN) system of vertebrates. The Vago gene from arthropods encodes a viral-activated secreted peptide that restricts virus infection through activating the JAK-STAT pathway and is considered to be a cytokine functionally similar to IFN. In this study, the first crustacean IFN regulatory factor (IRF)-like gene was identified in Pacific white shrimp, Litopenaeus vannamei. The L. vannamei IRF showed similar protein nature to mammalian IRFs and could be activated during virus infection. As a transcriptional regulatory factor, L. vannamei IRF could activate the IFN-stimulated response element (ISRE)-containing promoter to regulate the expression of mammalian type I IFNs and initiate an antiviral state in mammalian cells. More importantly, IRF could bind the 5'-untranslated region of L. vannamei Vago4 gene and activate its transcription, suggesting that shrimp Vago may be induced in a similar manner to that of IFNs and supporting the opinion that Vago might function as an IFN-like molecule in invertebrates. These suggested that shrimp might possess an IRF-Vago-JAK/STAT regulatory axis, which is similar to the IRF-IFN-JAK/STAT axis of vertebrates, indicating that invertebrates might possess an IFN system-like antiviral mechanism.

  12. Activation of Vago by interferon regulatory factor (IRF) suggests an interferon system-like antiviral mechanism in shrimp

    PubMed Central

    Li, Chaozheng; Li, Haoyang; Chen, Yixiao; Chen, Yonggui; Wang, Sheng; Weng, Shao-Ping; Xu, Xiaopeng; He, Jianguo

    2015-01-01

    There is a debate on whether invertebrates possess an antiviral immunity similar to the interferon (IFN) system of vertebrates. The Vago gene from arthropods encodes a viral-activated secreted peptide that restricts virus infection through activating the JAK-STAT pathway and is considered to be a cytokine functionally similar to IFN. In this study, the first crustacean IFN regulatory factor (IRF)-like gene was identified in Pacific white shrimp, Litopenaeus vannamei. The L. vannamei IRF showed similar protein nature to mammalian IRFs and could be activated during virus infection. As a transcriptional regulatory factor, L. vannamei IRF could activate the IFN-stimulated response element (ISRE)-containing promoter to regulate the expression of mammalian type I IFNs and initiate an antiviral state in mammalian cells. More importantly, IRF could bind the 5′-untranslated region of L. vannamei Vago4 gene and activate its transcription, suggesting that shrimp Vago may be induced in a similar manner to that of IFNs and supporting the opinion that Vago might function as an IFN-like molecule in invertebrates. These suggested that shrimp might possess an IRF-Vago-JAK/STAT regulatory axis, which is similar to the IRF-IFN-JAK/STAT axis of vertebrates, indicating that invertebrates might possess an IFN system-like antiviral mechanism. PMID:26459861

  13. FootprintDB: Analysis of Plant Cis-Regulatory Elements, Transcription Factors, and Binding Interfaces.

    PubMed

    Contreras-Moreira, Bruno; Sebastian, Alvaro

    2016-01-01

    FootprintDB is a database and search engine that compiles regulatory sequences from open access libraries of curated DNA cis-elements and motifs, and their associated transcription factors (TFs). It systematically annotates the binding interfaces of the TFs by exploiting protein-DNA complexes deposited in the Protein Data Bank. Each entry in footprintDB is thus a DNA motif linked to the protein sequence of the TF(s) known to recognize it, and in most cases, the set of predicted interface residues involved in specific recognition. This chapter explains step-by-step how to search for DNA motifs and protein sequences in footprintDB and how to focus the search to a particular organism. Two real-world examples are shown where this software was used to analyze transcriptional regulation in plants. Results are described with the aim of guiding users on their interpretation, and special attention is given to the choices users might face when performing similar analyses. PMID:27557773

  14. Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein.

    PubMed

    Talon, J; Horvath, C M; Polley, R; Basler, C F; Muster, T; Palese, P; García-Sastre, A

    2000-09-01

    We present a novel mechanism by which viruses may inhibit the alpha/beta interferon (IFN-alpha/beta) cascade. The double-stranded RNA (dsRNA) binding protein NS1 of influenza virus is shown to prevent the potent antiviral interferon response by inhibiting the activation of interferon regulatory factor 3 (IRF-3), a key regulator of IFN-alpha/beta gene expression. IRF-3 activation and, as a consequence, IFN-beta mRNA induction are inhibited in wild-type (PR8) influenza virus-infected cells but not in cells infected with an isogenic virus lacking the NS1 gene (delNS1 virus). Furthermore, NS1 is shown to be a general inhibitor of the interferon signaling pathway. Inhibition of IRF-3 activation can be achieved by the expression of wild-type NS1 in trans, not only in delNS1 virus-infected cells but also in cells infected with a heterologous RNA virus (Newcastle disease virus). We propose that inhibition of IRF-3 activation by a dsRNA binding protein significantly contributes to the virulence of influenza A viruses and possibly to that of other viruses.

  15. Interferon Regulatory Factor 6 Has a Protective Role in the Host Response to Endotoxic Shock

    PubMed Central

    Volk, Paige; Moreland, Jessica G.; Dunnwald, Martine

    2016-01-01

    Interferon Regulatory Factor (IRF) 6, a member of the IRF family, is essential for epidermal and orofacial embryonic development. Irf6 is strongly expressed in keratinocytes, in which it regulates epidermal proliferation, differentiation, and migration. A recent role for Irf6 in Toll-like receptor 2-dependent chemokine gene expression was also reported in an epithelial cell line. However, a function for Irf6 in innate immune cells was not previously reported. In the present study, we investigated the expression and function of Irf6 in bone marrow-derived neutrophils and macrophages. We show here, using a conditional knockout of Irf6 in lysosymeM expressing cells, that Irf6 is required for resistance to LPS-induced endotoxic shock. In addition, Irf6-deficient bone marrow-derived neutrophils exhibited increased chemotactic index and velocity compared with wild-type cells in vitro. TLR4-specific KC and IL6 secretions were upregulated in Irf6-deficient bone marrow-derived macrophages in vitro. These cells also exhibited an increased level of phosphorylated IkBa. Collectively, our findings suggest a role for Irf6 in the resistance to endotoxic shock due to NFk-B-mediated alteration of cytokine production. PMID:27035130

  16. Factors regulating ovarian function in pigs.

    PubMed

    Madej, A; Lang, A; Brandt, Y; Kindahl, H; Madsen, M T; Einarsson, S

    2005-08-01

    The hormonal interactions of the hypothalamic-pituitary-ovarian-uterine axis are accountable for a normal reproduction in female pigs. It is of importance to have knowledge of estrous symptoms and hormonal profiles around ovulation. The introduction of the transrectal ultrasonography in sows has given us the possibility to study ovarian activity in conscious animals and relate the timing of estrus to ovulation. Combining this technique with measuring of several hormones like luteinizing hormone (LH), follicle-stimulating hormone (FSH), inhibin, estradiol, progesterone, insulin-like growth hormone I (IGF-I), prostaglandin F2alpha (PGF2alpha) metabolite, oxytocin, facilitate our knowledge about the sequence of ovarian events. Evidence suggests that activation of the hypothalamic-pituitary-adrenal axis may hamper the normal gonadotropin secretion and in consequence, the ovarian function. The metabolic status during lactation, weaning of piglets and social stress might affect onset of ovarian activity and the related estrous behavior. The role of seminal plasma, artificial insemination and presence of the boar might also be included as factors regulating the temporal kinetics of ovulation, corpus luteum development, uterine function and steroid production in the ovary. Studies using a simulated stress by means of adrenocorticotrophic hormone (ACTH) administration or food deprivation are tools in understanding how the ovary is susceptible to impairment. The intention of this paper is to review current knowledge concerning the endocrine aspects of normal and stress-influenced ovarian function in pigs.

  17. RpoN Regulates Virulence Factors of Pseudomonas aeruginosa via Modulating the PqsR Quorum Sensing Regulator.

    PubMed

    Cai, Zhao; Liu, Yang; Chen, Yicai; Yam, Joey Kuok Hoong; Chew, Su Chuen; Chua, Song Lin; Wang, Ke; Givskov, Michael; Yang, Liang

    2015-11-30

    The alternative sigma factor RpoN regulates many cell functions, such as motility, quorum sensing, and virulence in the opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa). P. aeruginosa often evolves rpoN-negative variants during the chronic infection in cystic fibrosis patients. It is unclear how RpoN interacts with other regulatory mechanisms to control virulence of P. aeruginosa. In this study, we show that RpoN modulates the function of PqsR, a quorum sensing receptor regulating production of virulence factors including the phenazine pyocyanin. The ∆rpoN mutant is able to synthesize 4-quinolone signal molecule HHQ but unable to activate PqsR and Pseudomonas quinolone signal (pqs) quorum sensing. The ∆rpoN mutant produces minimal level of pyocyanin and is unable to produce the anti-staphylococcal agents. Providing pqsR in trans in the ∆rpoN mutant restores its pqs quorum sensing and virulence factor production to the wild-type level. Our study provides evidence that RpoN has a regulatory effect on P. aeruginosa virulence through modulating the function of the PqsR quorum sensing regulator.

  18. Regulation of human PTCH1b expression by different 5' untranslated region cis-regulatory elements.

    PubMed

    Ozretić, Petar; Bisio, Alessandra; Musani, Vesna; Trnski, Diana; Sabol, Maja; Levanat, Sonja; Inga, Alberto

    2015-01-01

    PTCH1 gene codes for a 12-pass transmembrane receptor with a negative regulatory role in the Hedgehog-Gli signaling pathway. PTCH1 germline mutations cause Gorlin syndrome, a disorder characterized by developmental abnormalities and tumor susceptibility. The autosomal dominant inheritance, and the evidence for PTCH1 haploinsufficiency, suggests that fine-tuning systems of protein patched homolog 1 (PTC1) levels exist to properly regulate the pathway. Given the role of 5' untranslated region (5'UTR) in protein expression, our aim was to thoroughly explore cis-regulatory elements in the 5'UTR of PTCH1 transcript 1b. The (CGG)n polymorphism was the main potential regulatory element studied so far but with inconsistent results and no clear association between repeat number and disease risk. Using luciferase reporter constructs in human cell lines here we show that the number of CGG repeats has no strong impact on gene expression, both at mRNA and protein levels. We observed variability in the length of 5'UTR and changes in abundance of the associated transcripts after pathway activation. We show that upstream AUG codons (uAUGs) present only in longer 5'UTRs could negatively regulate the amount of PTC1 isoform L (PTC1-L). The existence of an internal ribosome entry site (IRES) observed using different approaches and mapped in the region comprising the CGG repeats, would counteract the effect of the uAUGs and enable synthesis of PTC1-L under stressful conditions, such as during hypoxia. Higher relative translation efficiency of PTCH1b mRNA in HEK 293T cultured hypoxia was observed by polysomal profiling and Western blot analyses. All our results point to an exceptionally complex and so far unexplored role of 5'UTR PTCH1b cis-element features in the regulation of the Hedgehog-Gli signaling pathway. PMID:25826662

  19. Regulatory SNPs and transcriptional factor binding sites in ADRBK1, AKT3, ATF3, DIO2, TBXA2R and VEGFA

    PubMed Central

    Buroker, Norman E

    2014-01-01

    Abstract Regulatory single nucleotide polymorphisms (rSNPs) which change the transcriptional factor binding sites (TFBS) for transcriptional factors (TFs) to bind DNA were reviewed for the ADRBK1 (GRK2), AKT3, ATF3, DIO2, TBXA2R and VEGFA genes. Changes in the TFBS where TFs attach to regulate these genes may result in human sickness and disease. The highlights of this previous work were reviewed for these genes. PMID:25483406

  20. Up- and down-regulation of daily emotion: an experience sampling study of Chinese adolescents' regulatory tendency and effects.

    PubMed

    Deng, Xinmei; Sang, Biao; Luan, Ziyan

    2013-10-01

    The present study examined Chinese adolescents' emotion regulatory tendency and its effect, using an Experience Sampling Method. Participants comprised 72 Chinese adolescents (M age = 15.2 yr., SD = 1.7; 36 girls). Momentary emotional experience and regulation was assessed up to 5 or 6 times each day for two weeks. Results showed that participants tended to use up-regulation when they experienced positive emotion and habitually regulated their negative emotion by down-regulation. Also, adolescents who utilized down-regulation in a certain sampling moment reported higher positive emotion at the subsequent sampling moment. Moreover, adolescents who utilized down-regulation more frequently reported higher positive emotion at the subsequent sampling moment. Overall, down-regulation seemed to be a more adaptive regulatory strategy than up-regulation in Chinese adolescents' emotional lives.

  1. Systematic genetic analysis of transcription factors to map the fission yeast transcription-regulatory network.

    PubMed

    Chua, Gordon

    2013-12-01

    Mapping transcriptional-regulatory networks requires the identification of target genes, binding specificities and signalling pathways of transcription factors. However, the characterization of each transcription factor sufficiently for deciphering such networks remains laborious. The recent availability of overexpression and deletion strains for almost all of the transcription factor genes in the fission yeast Schizosaccharomyces pombe provides a valuable resource to better investigate transcription factors using systematic genetics. In the present paper, I review and discuss the utility of these strain collections combined with transcriptome profiling and genome-wide chromatin immunoprecipitation to identify the target genes of transcription factors.

  2. A Csr-type regulatory system, including small non-coding RNAs, regulates the global virulence regulator RovA of Yersinia pseudotuberculosis through RovM.

    PubMed

    Heroven, Ann Kathrin; Böhme, Katja; Rohde, Manfred; Dersch, Petra

    2008-06-01

    The MarR-type regulator RovA controls expression of virulence genes of Yersinia pseudotuberculosis in response to environmental signals. Using a genetic strategy to discover components that influence rovA expression, we identified new regulatory factors with homology to components of the carbon storage regulator system (Csr). We showed that overexpression of a CsrB- or a CsrC-type RNA activates rovA, whereas a CsrA-like protein represses RovA synthesis. We further demonstrate that influence of the Csr system on rovA is indirect and occurs through control of the LysR regulator RovM, which inhibits rovA transcription. The CsrA protein had also a major influence on the motility of Yersinia, which was independent of RovM. The CsrB and CsrC RNAs are differentially expressed in Yersinia. CsrC is highly induced in complex but not in minimal media, indicating that medium-dependent rovM expression is mediated through CsrC. CsrB synthesis is generally very low. However, overexpression of the response regulator UvrY was found to activate CsrB production, which in turn represses CsrC synthesis independent of the growth medium. In summary, the post-transcriptional Csr-type components were shown to be key regulators in the co-ordinated environmental control of physiological processes and virulence factors, which are crucial for the initiation of Yersinia infections.

  3. Modulation of Mitochondrial Antiviral Signaling by Human Herpesvirus 8 Interferon Regulatory Factor 1

    PubMed Central

    Hwang, Keun Young

    2015-01-01

    ABSTRACT Mitochondrial lipid raft-like microdomains, experimentally also termed mitochondrial detergent-resistant membrane fractions (mDRM), play a role as platforms for recruiting signaling molecules involved in antiviral responses such as apoptosis and innate immunity. Viruses can modulate mitochondrial functions for their own survival and replication. However, viral regulation of the antiviral responses via mDRM remains incompletely understood. Here, we report that human herpesvirus 8 (HHV-8) gene product viral interferon regulatory factor 1 (vIRF-1) is targeted to mDRM during virus replication and negatively regulates the mitochondrial antiviral signaling protein (MAVS)-mediated antiviral responses. The N-terminal region of vIRF-1 interacts directly with membrane lipids, including cardiolipin. In addition, a GxRP motif within the N terminus of vIRF-1, conserved in the mDRM-targeting region of mitochondrial proteins, including PTEN-induced putative kinase 1 (PINK1) and MAVS, was found to be important for vIRF-1 association with mitochondria. Furthermore, MAVS, which has the potential to promote vIRF-1 targeting to mDRM possibly by inducing cardiolipin exposure on the outer membrane of mitochondria, interacts with vIRF-1, which, in turn, inhibits MAVS-mediated antiviral signaling. Consistent with these results, vIRF-1 targeting to mDRM contributes to promotion of HHV-8 productive replication and inhibition of associated apoptosis. Combined, our results suggest novel molecular mechanisms for negative-feedback regulation of MAVS by vIRF-1 during virus replication. IMPORTANCE Successful virus replication is in large part achieved by the ability of viruses to counteract apoptosis and innate immune responses elicited by infection of host cells. Recently, mitochondria have emerged to play a central role in antiviral signaling. In particular, mitochondrial lipid raft-like microdomains appear to function as platforms in cell apoptosis signaling. However, viral regulation

  4. Characterization of the microRNA pool and the factors affecting its regulatory potential.

    PubMed

    Cui, Kai; Lyu, Qing; Xu, Naihan; Liu, Qing; Zhang, Jiarong; Xing, Wei; Bai, Linfu; Liao, Meijian; He, Jie; Yuan, Bo; Chen, Deheng; Xie, Weidong; Zhang, Yaou

    2014-12-01

    The regulation of gene expression by microRNAs (miRNAs) is complex due to a number of variables involved. The potential for one miRNA to target many genes, the presence of multiple miRNA response elements (MREs) in one mRNA molecule and the interplay between RNAs that share common MREs each add a layer of complexity to the process; making it difficult to determine how regulation of gene expression by miRNAs works within the context of the system as a whole. In this study, we used luciferase report vectors inserted with different 3'UTR fragments as probes to detect the repressive effect of the miRNA pool on gene expression and uncovered some essential characteristics of gene regulation mediated by the miRNA pool, such as the nonlinear correlative relationship between the regulatory potential of a miRNA pool and the number of potential MREs, the buffering effect and the saturating effect of the miRNA pool, and the restrictive effect caused by the density of MREs. Through expressing gradient concentration of 3'UTR fragments, we indirectly detected the regulatory potential of the competing endogenous RNA (ceRNA) pool and analysed its effect on the regulatory potential of the miRNA pool. Our results provide some new insights into miRNA pool mediated gene regulation.

  5. A trans-acting Variant within the Transcription Factor RIM101 Interacts with Genetic Background to Determine its Regulatory Capacity.

    PubMed

    Read, Timothy; Richmond, Phillip A; Dowell, Robin D

    2016-01-01

    Most genetic variants associated with disease occur within regulatory regions of the genome, underscoring the importance of defining the mechanisms underlying differences in regulation of gene expression between individuals. We discovered a pair of co-regulated, divergently oriented transcripts, AQY2 and ncFRE6, that are expressed in one strain of Saccharomyces cerevisiae, ∑1278b, but not in another, S288c. By combining classical genetics techniques with high-throughput sequencing, we identified a trans-acting single nucleotide polymorphism within the transcription factor RIM101 that causes the background-dependent expression of both transcripts. Subsequent RNA-seq experiments revealed that RIM101 regulates many more targets in S288c than in ∑1278b and that deletion of RIM101 in both backgrounds abrogates the majority of differential expression between the strains. Strikingly, only three transcripts undergo a significant change in expression after swapping RIM101 alleles between backgrounds, implying that the differences in the RIM101 allele lead to a remarkably focused transcriptional response. However, hundreds of RIM101-dependent targets undergo a subtle but consistent shift in expression in the S288c RIM101-swapped strain, but not its ∑1278b counterpart. We conclude that ∑1278b may harbor a variant(s) that buffers against widespread transcriptional dysregulation upon introduction of a non-native RIM101 allele, emphasizing the importance of accounting for genetic background when assessing the impact of a regulatory variant.

  6. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants

    PubMed Central

    Nuruzzaman, Mohammed; Sharoni, Akhter M.; Kikuchi, Shoshi

    2013-01-01

    NAC transcription factors are one of the largest families of transcriptional regulators in plants, and members of the NAC gene family have been suggested to play important roles in the regulation of the transcriptional reprogramming associated with plant stress responses. A phylogenetic analysis of NAC genes, with a focus on rice and Arabidopsis, was performed. Herein, we present an overview of the regulation of the stress responsive NAC SNAC/(IX) group of genes that are implicated in the resistance to different stresses. SNAC factors have important roles for the control of biotic and abiotic stresses tolerance and that their overexpression can improve stress tolerance via biotechnological approaches. We also review the recent progress in elucidating the roles of NAC transcription factors in plant biotic and abiotic stresses. Modification of the expression pattern of transcription factor genes and/or changes in their activity contribute to the elaboration of various signaling pathways and regulatory networks. However, a single NAC gene often responds to several stress factors, and their protein products may participate in the regulation of several seemingly disparate processes as negative or positive regulators. Additionally, the NAC proteins function via auto-regulation or cross-regulation is extensively found among NAC genes. These observations assist in the understanding of the complex mechanisms of signaling and transcriptional reprogramming controlled by NAC proteins. PMID:24058359

  7. Insights into the Interferon Regulatory Factor Activation from the Crystal Structure of Dimeric IRF5

    SciTech Connect

    Chen, W.; Lam, S; Srinath, H; Jiang, Z; Correia, J; Schiffer, C; Fitzgerald, K; Lin, K; Royer, Jr., W

    2008-01-01

    The interferon regulatory factors (IRFs) are involved in the innate immune response and are activated by phosphorylation. The structure of a pseudophosphorylated IRF5 activation domain now reveals structural changes in the activated form that would turn an autoinhibitory region into a dimerization interface. In vivo analysis supports the relevance of such a dimer to transcriptional activation.

  8. Characterization of Amphioxus IFN Regulatory Factor Family Reveals an Archaic Signaling Framework for Innate Immune Response.

    PubMed

    Yuan, Shaochun; Zheng, Tingting; Li, Peiyi; Yang, Rirong; Ruan, Jie; Huang, Shengfeng; Wu, Zhenxin; Xu, Anlong

    2015-12-15

    The IFN regulatory factor (IRF) family encodes transcription factors that play important roles in immune defense, stress response, reproduction, development, and carcinogenesis. Although the origin of the IRF family has been dated back to multicellular organisms, invertebrate IRFs differ from vertebrate IRFs in genomic structure and gene synteny, and little is known about their functions. Through comparison of multiple amphioxus genomes, in this study we suggested that amphioxus contains nine IRF members, whose orthologs are supposed to be shared among three amphioxus species. As the orthologs to the vertebrate IRF1 and IRF4 subgroups, Branchiostoma belcheri tsingtauense (bbt)IRF1 and bbtIRF8 bind the IFN-stimulated response element (ISRE) and were upregulated when amphioxus intestinal cells were stimulated with poly(I:C). As amphioxus-specific IRFs, both bbtIRF3 and bbtIRF7 bind ISRE. When activated, they can be phosphorylated by bbtTBK1 and then translocate into nucleus for target gene transcription. As transcriptional repressors, bbtIRF2 and bbtIRF4 can inhibit the transcriptional activities of bbtIRF1, 3, 7, and 8 by competing for the binding of ISRE. Interestingly, amphioxus IRF2, IRF8, and Rel were identified as target genes of bbtIRF1, bbtIRF7, and bbtIRF3, respectively, suggesting a dynamic feedback regulation among amphioxus IRF and NF-κB. Collectively, to our knowledge we present for the first time an archaic IRF signaling framework in a basal chordate, shedding new insights into the origin and evolution of vertebrate IFN-based antiviral networks.

  9. Contribution of Ser386 and Ser396 to activation of interferon regulatory factor 3.

    PubMed

    Chen, Weijun; Srinath, Hema; Lam, Suvana S; Schiffer, Celia A; Royer, William E; Lin, Kai

    2008-05-30

    IRF-3, a member of the interferon regulatory factor (IRF) family of transcription factors, functions in innate immune defense against viral infection. Upon infection, host cell IRF-3 is activated by phosphorylation at its seven C-terminal Ser/Thr residues: (385)SSLENTVDLHISNSHPLSLTS(405). This phosphoactivation triggers IRF-3 to react with the coactivators, CREB-binding protein (CBP)/p300, to form a complex that activates target genes in the nucleus. However, the role of each phosphorylation site for IRF-3 phosphoactivation remains unresolved. To address this issue, all seven Ser/Thr potential phosphorylation sites were screened by mutational studies, size-exclusion chromatography, and isothermal titration calorimetry. Using purified proteins, we show that CBP (amino acid residues 2067-2112) interacts directly with IRF-3 (173-427) and six of its single-site mutants to form heterodimers, but when CBP interacts with IRF-3 S396D, oligomerization is evident. CBP also interacts in vitro with IRF-3 double-site mutants to form different levels of oligomerization. Among all the single-site mutants, IRF-3 S396D showed the strongest binding to CBP. Although IRF-3 S386D alone did not interact as strongly with CBP as did other mutants, it strengthened the interaction and oligomerization of IRF-3 S396D with CBP. In contrast, IRF-3 S385D weakened the interaction and oligomerization of IRF-3 S396D and S386/396D with CBP. Thus, it appears that Ser385 and Ser386 serve antagonistic functions in regulating IRF-3 phosphoactivation. These results indicate that Ser386 and Ser396 are critical for IRF-3 activation, and support a phosphorylation-oligomerization model for IRF-3 activation.

  10. Characterization of Amphioxus IFN Regulatory Factor Family Reveals an Archaic Signaling Framework for Innate Immune Response.

    PubMed

    Yuan, Shaochun; Zheng, Tingting; Li, Peiyi; Yang, Rirong; Ruan, Jie; Huang, Shengfeng; Wu, Zhenxin; Xu, Anlong

    2015-12-15

    The IFN regulatory factor (IRF) family encodes transcription factors that play important roles in immune defense, stress response, reproduction, development, and carcinogenesis. Although the origin of the IRF family has been dated back to multicellular organisms, invertebrate IRFs differ from vertebrate IRFs in genomic structure and gene synteny, and little is known about their functions. Through comparison of multiple amphioxus genomes, in this study we suggested that amphioxus contains nine IRF members, whose orthologs are supposed to be shared among three amphioxus species. As the orthologs to the vertebrate IRF1 and IRF4 subgroups, Branchiostoma belcheri tsingtauense (bbt)IRF1 and bbtIRF8 bind the IFN-stimulated response element (ISRE) and were upregulated when amphioxus intestinal cells were stimulated with poly(I:C). As amphioxus-specific IRFs, both bbtIRF3 and bbtIRF7 bind ISRE. When activated, they can be phosphorylated by bbtTBK1 and then translocate into nucleus for target gene transcription. As transcriptional repressors, bbtIRF2 and bbtIRF4 can inhibit the transcriptional activities of bbtIRF1, 3, 7, and 8 by competing for the binding of ISRE. Interestingly, amphioxus IRF2, IRF8, and Rel were identified as target genes of bbtIRF1, bbtIRF7, and bbtIRF3, respectively, suggesting a dynamic feedback regulation among amphioxus IRF and NF-κB. Collectively, to our knowledge we present for the first time an archaic IRF signaling framework in a basal chordate, shedding new insights into the origin and evolution of vertebrate IFN-based antiviral networks. PMID:26573836

  11. Myogenic regulatory factor (MRF) expression is affected by exercise in postnatal chicken skeletal muscles.

    PubMed

    Yin, Huadong; Li, Diyan; Wang, Yan; Zhao, Xiaoling; Liu, Yiping; Yang, Zhiqin; Zhu, Qing

    2015-05-01

    The MyoD1, MyoG, Myf5, and Mrf4 proteins belong to the family of muscle regulatory factors (MRFs) and play important roles in skeletal muscle hyperplasia and hypertrophy. We hypothesized that exercise would affect MRF mRNA and protein abundance in postnatal chicken skeletal muscle driving molecular changes that could ultimately lead to increased muscle fiber diameter. At day (d) 43, twelve hundred chickens with similar body weight were randomly assigned to cage, pen, and free-range groups. The MRF mRNA abundance was measured in the pectoralis major and thigh muscle at d56, d70, and d84, and the protein levels of MRFs were determined from the thigh muscle at d84. The results showed no significant difference in mRNA of the MRFs among the three groups at d56 (P>0.05). At d84, chicken in the pen and free-range group showed higher MyoD1, MyoG, Myf5, and Mrf4 mRNA abundance compared to the caged chickens (P<0.05). Free-range chickens had higher Mrf4 and MyoG expression than those in penned ones (P<0.05). Protein abundances of all four factors were lowest in the caged group, and Mrf4 and MyoG protein quantities were greatest in free-range chickens (P<0.05), but Myf5 and MyoD1 protein abundance did not differ between penned and caged groups. The results suggested that exercise up-regulated MRF expression in the postnatal skeletal muscles, which led to an increase in muscle fiber diameter, and eventually affected the meat quality of the skeletal muscles in adult chickens.

  12. Myelin inhibits oligodendroglial maturation and regulates oligodendrocytic transcription factor expression.

    PubMed

    Plemel, Jason R; Manesh, Sohrab B; Sparling, Joseph S; Tetzlaff, Wolfram

    2013-09-01

    Myelin loss is a hallmark of multiple sclerosis (MS) and promoting central nervous system myelin repair has become a major therapeutic target. Despite the presence of oligodendrocytes precursors cells (OPCs) in chronic lesions of MS, remyelination often fails. The mechanism underlying this failure of remyelination remains unknown, but it is hypothesized that environmental cues act to inhibit the maturation/differentiation of oligodendroglia, preventing remyelination. The rate of CNS remyelination is correlated to the speed of phagocytosis of myelin debris, which is present following demyelination and trauma. Thus, myelin debris could inhibit CNS remyelination. Here, we demonstrate that OPCs cultured on myelin were robustly inhibited in their maturation, as characterized by the decreased expression of immature and mature oligodendrocytes markers, the impaired production of myelin gene products, as well as their stalled morphological complexity relative to OPCs cultured on a control substrate. OPCs in contact with myelin stopped proliferating and decreased the expression of OPC markers to a comparable degree as cells grown on a control substrate. The expression of two transcription factors known to prevent OPC differentiation and maturation were increased in cells that were in contact with myelin: inhibitor of differentiation family (ID) members 2 and 4. Overexpression of ID2 and ID4 in OPCs was previously reported to decrease the percentage of cells expressing mature oligodendrocyte markers. However, knockdown of ID2 and/or ID4 in OPCs did not increase oligodendroglial maturation on or off of myelin, suggesting that contact with myelin regulates additional regulatory elements.

  13. Fur homolog regulates Porphyromonas gingivalis virulence under low-iron/heme conditions through a complex regulatory network.

    PubMed

    Ciuraszkiewicz, J; Smiga, M; Mackiewicz, P; Gmiterek, A; Bielecki, M; Olczak, M; Olczak, T

    2014-12-01

    Porphyromonas gingivalis is a key pathogen responsible for initiation and progression of chronic periodontitis. Little is known about the regulatory mechanisms of iron and heme uptake that allow P. gingivalis to express virulence factors and survive in the hostile environment of the oral cavity, so we initiated characterization of a P. gingivalis Fur homolog (PgFur). Many Fur paralogs found in microbial genomes, including Bacteroidetes, confirm that Fur proteins have a tendency to be subjected to a sub- or even neofunctionalization process. PgFur revealed extremely high sequence divergence, which could be associated with its functional dissimilarity in comparison with other Fur homologs. A fur mutant strain constructed by insertional inactivation exhibited retarded growth during the early growth phase and a significantly lower tendency to form a homotypic biofilm on abiotic surfaces. The mutant also showed significantly weaker adherence and invasion to epithelial cells and macrophages. Transcripts of many differentially regulated genes identified in the fur mutant strain were annotated as hypothetical proteins, suggesting that PgFur can play a novel role in the regulation of gene expression. Inactivation of the fur gene resulted in decreased hmuY gene expression, increased expression of other hmu components and changes in the expression of genes encoding hemagglutinins and proteases (mainly gingipains), HtrA, some extracytoplasmic sigma factors and two-component systems. Our data suggest that PgFur can influence in vivo growth and virulence, at least in part by affecting iron/heme acquisition, allowing efficient infection through a complex regulatory network.

  14. Regulation of Cell Fate Determination by Single-Repeat R3 MYB Transcription Factors in Arabidopsis

    SciTech Connect

    Wang, Shucai; Chen, Jay

    2014-01-01

    MYB transcription factors regulate multiple aspects of plant growth and development. Among the large family of MYB transcription factors, single-repeat R3 MYB are characterized by their short sequence (<120 amino acids) consisting largely of the single MYB DNA-binding repeat. In the model plant Arabidopsis, R3 MYBs mediate lateral inhibition during epidermal patterning and are best characterized for their regulatory roles in trichome and root hair development. R3 MYBs act as negative regulators for trichome formation but as positive regulators for root hair development. In this article, we provide a comprehensive review on the role of R3 MYBs in the regulation of cell type specification in the model plant Arabidopsis.

  15. Regulation of cell fate determination by single-repeat R3 MYB transcription factors in Arabidopsis

    PubMed Central

    Wang, Shucai; Chen, Jin-Gui

    2014-01-01

    MYB transcription factors regulate multiple aspects of plant growth and development. Among the large family of MYB transcription factors, single-repeat R3 MYBs are characterized by their short sequence (<120 amino acids) consisting largely of the single MYB DNA-binding repeat. In the model plant Arabidopsis, R3 MYBs mediate lateral inhibition during epidermal patterning and are best characterized for their regulatory roles in trichome and root hair development. R3 MYBs act as negative regulators for trichome formation but as positive regulators for root hair development. In this article, we provide a comprehensive review on the role of R3 MYBs in the regulation of cell type specification in the model plant Arabidopsis. PMID:24782874

  16. Regulatory advice and drug development--a case study in negotiating with regulators.

    PubMed

    Seldrup, Jørgen

    2011-06-15

    Regulatory guidance on the development of drugs has existed for well over half a century in some territories. As drug development grew to become global so was born the need for harmonization. Beginning in the 1990 s, the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) developed guidelines which were adopted by the Food and Drug Administration (FDA) in the U.S.A., the European Medicines Agency (EMA) in the European Union and the Pharmaceuticals and Medical Devices Agency (PMDA) in Japan. These guidelines are generally not disease specific. A visit to the web sites of any of the aforementioned Agencies or, for that matter other regulatory agencies outside of these, will witness a plethora of additional/separate guidances, some of which are disease specific. In addition to such written guidances, more specific advice (for example, on a drug development program at the end of Phase II) may be requested from the Regulator. Despite the harmonization efforts expressed through ICH, the actual advice given by different regulatory authorities in practical situations, however, may be inconsistent. This paper will describe a case of seeking advice on a Phase III programme from the FDA and the EMA, obtaining different opinions and developing an innovative solution to satisfy both Authorities without necessarily extending development time significantly. The case is chronic kidney disease; the issues concern study design (non-inferiority, margin, etc.); the solution required a non-traditional design and associated sample size considerations. We conclude with some general advice on 'talking to the regulator'. This work was originally presented as a Poster at the Statistical Methods in Biopharmacy, 6th International Meeting, Paris, 21-22 September 2009. PMID:21365671

  17. Regulation of Interferon Gamma Signaling by Suppressors of Cytokine Signaling and Regulatory T Cells

    PubMed Central

    Larkin, Joseph; Ahmed, Chulbul M.; Wilson, Tenisha D.; Johnson, Howard M.

    2013-01-01

    Regulatory T cells (Tregs) play an indispensable role in the prevention of autoimmune disease, as interferon gamma (IFNγ) mediated, lethal auto-immunity occurs (in both mice and humans) in their absence. In addition, Tregs have been implicated in preventing the onset of autoimmune and auto-inflammatory conditions associated with aberrant IFNγ signaling such as type 1 diabetes, lupus, and lipopolysaccharide (LPS) mediated endotoxemia. Notably, suppressor of cytokine signaling-1 deficient (SOCS1−/−) mice also succumb to a lethal auto-inflammatory disease, dominated by excessive IFNγ signaling and bearing similar disease course kinetics to Treg deficient mice. Moreover SOCS1 deficiency has been implicated in lupus progression, and increased susceptibility to LPS mediated endotoxemia. Although it has been established that Tregs and SOCS1 play a critical role in the regulation of IFNγ signaling, and the prevention of lethal auto-inflammatory disease, the role of Treg/SOCS1 cross-talk in the regulation of IFNγ signaling has been essentially unexplored. This is especially pertinent as recent publications have implicated a role of SOCS1 in the stability of peripheral Tregs. This review will examine the emerging research findings implicating a critical role of the intersection of the SOCS1 and Treg regulatory pathways in the control of IFN gamma signaling and immune system function. PMID:24391643

  18. Self-perceived successful weight regulators are less affected by self-regulatory depletion in the domain of eating behavior.

    PubMed

    Friese, Malte; Engeler, Michèle; Florack, Arnd

    2015-01-01

    Weight loss and maintenance goals are highly prevalent in many affluent societies, but many weight regulators are not successful in the long term. Research started to reveal psychological mechanisms that help successful weight regulators in being successful. In the present study, we tested the assumption that these mechanisms facilitate successful self-regulation particularly under conditions of self-regulatory depletion. Participants exerted or did not exert self-control in a first task before engaging in a taste test of a tempting but unhealthy food. Participants who had initially exerted self-control ate more than participants in the control condition. This effect was reduced in self-perceived successful weight regulators as compared to perceived unsuccessful self-regulators. A reduced susceptibility to self-regulatory depletion may be an important contributor to long-term weight regulation success in successful weight regulators.

  19. PcFKH1, a novel regulatory factor from the forkhead family, controls the biosynthesis of penicillin in Penicillium chrysogenum.

    PubMed

    Domínguez-Santos, Rebeca; García-Estrada, Carlos; Kosalková, Katarina; Prieto, Carlos; Santamarta, Irene; Martín, Juan-Francisco

    2015-08-01

    Penicillin biosynthesis in Penicillium chrysogenum (re-identified as Penicillium rubens) is a good example of a biological process subjected to complex global regulatory networks and serves as a model to study fungal secondary metabolism. The winged-helix family of transcription factors recently described, which includes the forkhead type of proteins, is a key type of regulatory proteins involved in this process. In yeasts and humans, forkhead transcription factors are involved in different processes (cell cycle regulation, cell death control, pre-mRNA processing and morphogenesis); one member of this family of proteins has been identified in the P. chrysogenum genome (Pc18g00430). In this work, we have characterized this novel transcription factor (named PcFKH1) by generating knock-down mutants and overexpression strains. Results clearly indicate that PcFKH1 positively controls antibiotic biosynthesis through the specific interaction with the promoter region of the penDE gene, thus regulating penDE mRNA levels. PcFKH1 also binds to the pcbC promoter, but with low affinity. In addition, it also controls other ancillary genes of the penicillin biosynthetic process, such as phlA (encoding phenylacetyl CoA ligase) and ppt (encoding phosphopantetheinyl transferase). PcFKH1 also plays a role in conidiation and spore pigmentation, but it does not seem to be involved in hyphal morphology or cell division in the improved laboratory reference strain Wisconsin 54-1255. A genome-wide analysis of processes putatively coregulated by PcFKH1 and PcRFX1 (another winged-helix transcription factor) in P. chrysogenum provided evidence of the global effect of these transcription factors in P. chrysogenum metabolism.

  20. Cis elements and trans-acting factors affecting regulation of a nonphotosynthetic light-regulated gene for chloroplast glutamine synthetase.

    PubMed Central

    Tjaden, G; Edwards, J W; Coruzzi, G M

    1995-01-01

    The glutamine synthetase (GS) gene family in pea (Pisum sativum) consists of four nuclear genes encoding distinct isoenzymes. Molecular studies have show that the GS2 gene encoding chloroplast-localized GS is expected in specific cell types and is regulated by diverse factors such as light and photorespiration. Here, we present the nucleotide sequence of the pea GS2 gene promoter. To identify the elements involved in regulation of GS2 expression, GS2 promoter-deletion analyses were performed using GS2-GUS fusions in tobacco (Nicotiana tabacum). This analysis revealed that the GS2 transit peptide is not required for mesophyll cell-specific expression of beta-glucuronidase (GUS). GUS activity was induced 2- to 4-fold in light-grown versus etiolated T1 seedlings. However, high levels of GUS activity were observed in etiolated seedlings. This observation demonstrated that regulation of expression of GS2, a nonphotosynthetic light-regulated gene, involves additional factors. A 323-bp GS2 promoter sequence is sufficient to confer light regulation to the GUS reporter gene in leaves of mature transgenic tobacco. Light-regulated expression of this pea gene promoter is observed in both tobacco and Arabidopsis, suggesting that the regulatory elements are conserved. Gel-shift analysis detected DNA-protein complexes formed with potential transcription elements within this short, light-responsive GS2 promoter fragment. PMID:7630938

  1. Overexpression of E2F mRNAs associated with gastric cancer progression identified by the transcription factor and miRNA co-regulatory network analysis.

    PubMed

    Zhang, XiaoTian; Ni, ZhaoHui; Duan, ZiPeng; Xin, ZhuoYuan; Wang, HuaiDong; Tan, JiaYi; Wang, GuoQing; Li, Fan

    2015-01-01

    Gene expression is regulated at the transcription and translation levels; thus, both transcription factors (TFs) and microRNAs (miRNA) play roles in regulation of gene expression. This study profiled differentially expressed mRNAs and miRNAs in gastric cancer tissues to construct a TF and miRNA co-regulatory network in order to identify altered genes in gastric cancer progression. A total of 70 cases gastric cancer and paired adjacent normal tissues were subjected to cDNA and miRNA microarray analyses. We obtained 887 up-regulated and 93 down-regulated genes and 41 down-regulated and 4 up-regulated miRNAs in gastric cancer tissues. Using the Transcriptional Regulatory Element Database, we obtained 105 genes that are regulated by the E2F family of genes and using Targetscan, miRanda, miRDB and miRWalk tools, we predicted potential targeting genes of these 45 miRNAs. We then built up the E2F-related TF and miRNA co-regulatory gene network and identified 9 hub-genes. Furthermore, we found that levels of E2F1, 2, 3, 4, 5, and 7 mRNAs associated with gastric cancer cell invasion capacity, and has associated with tumor differentiation. These data showed Overexpression of E2F mRNAs associated with gastric cancer progression.

  2. An Sp1 Modulated Regulatory Region Unique to Higher Primates Regulates Human Androgen Receptor Promoter Activity in Prostate Cancer Cells.

    PubMed

    Hay, Colin W; Hunter, Irene; MacKenzie, Alasdair; McEwan, Iain J

    2015-01-01

    Androgen receptor (AR) mediated signalling is necessary for normal development of the prostate gland and also drives prostate cancer (PCa) cell growth and survival, with many studies showing a correlation between increased receptor levels and therapy resistance with progression to fatal castrate recurrent PCa (CRPC). Although it has been held for some time that the transcription factor Sp1 is the main stimulator of AR gene transcription, comprehensive knowledge of the regulation of the AR gene remains incomplete. Here we describe and characterise in detail two novel active regulatory elements in the 5'UTR of the human AR gene. Both of these elements contain overlapping binding sites for the positive transcription factor Sp1 and the repressor protein pur-α. Aberrant cell signalling is characteristic of PCa and the transcriptional activity of the AR promoter in PCa cells is dependent upon the relative amounts of the two transcription factors. Together with our corroboration of the dominant role of Sp1, the findings support the rationale of targeting this transcription factor to inhibit tumour progression. This should be of particular therapeutic relevance in CRPC where the levels of the repressor pur-α are reduced. PMID:26448047

  3. metagene Profiles Analyses Reveal Regulatory Element’s Factor-Specific Recruitment Patterns

    PubMed Central

    Samb, Rawane; Lemaçon, Audrey; Bilodeau, Steve; Droit, Arnaud

    2016-01-01

    ChIP-Sequencing (ChIP-Seq) provides a vast amount of information regarding the localization of proteins across the genome. The aggregation of ChIP-Seq enrichment signal in a metagene plot is an approach commonly used to summarize data complexity and to obtain a high level visual representation of the general occupancy pattern of a protein. Here we present the R package metagene, the graphical interface Imetagene and the companion package similaRpeak. Together, they provide a framework to integrate, summarize and compare the ChIP-Seq enrichment signal from complex experimental designs. Those packages identify and quantify similarities or dissimilarities in patterns between large numbers of ChIP-Seq profiles. We used metagene to investigate the differential occupancy of regulatory factors at noncoding regulatory regions (promoters and enhancers) in relation to transcriptional activity in GM12878 B-lymphocytes. The relationships between occupancy patterns and transcriptional activity suggest two different mechanisms of action for transcriptional control: i) a “gradient effect” where the regulatory factor occupancy levels follow transcription and ii) a “threshold effect” where the regulatory factor occupancy levels max out prior to reaching maximal transcription. metagene, Imetagene and similaRpeak are implemented in R under the Artistic license 2.0 and are available on Bioconductor. PMID:27538250

  4. metagene Profiles Analyses Reveal Regulatory Element's Factor-Specific Recruitment Patterns.

    PubMed

    Joly Beauparlant, Charles; Lamaze, Fabien C; Deschênes, Astrid; Samb, Rawane; Lemaçon, Audrey; Belleau, Pascal; Bilodeau, Steve; Droit, Arnaud

    2016-08-01

    ChIP-Sequencing (ChIP-Seq) provides a vast amount of information regarding the localization of proteins across the genome. The aggregation of ChIP-Seq enrichment signal in a metagene plot is an approach commonly used to summarize data complexity and to obtain a high level visual representation of the general occupancy pattern of a protein. Here we present the R package metagene, the graphical interface Imetagene and the companion package similaRpeak. Together, they provide a framework to integrate, summarize and compare the ChIP-Seq enrichment signal from complex experimental designs. Those packages identify and quantify similarities or dissimilarities in patterns between large numbers of ChIP-Seq profiles. We used metagene to investigate the differential occupancy of regulatory factors at noncoding regulatory regions (promoters and enhancers) in relation to transcriptional activity in GM12878 B-lymphocytes. The relationships between occupancy patterns and transcriptional activity suggest two different mechanisms of action for transcriptional control: i) a "gradient effect" where the regulatory factor occupancy levels follow transcription and ii) a "threshold effect" where the regulatory factor occupancy levels max out prior to reaching maximal transcription. metagene, Imetagene and similaRpeak are implemented in R under the Artistic license 2.0 and are available on Bioconductor. PMID:27538250

  5. Impacts of Pretranscriptional DNA Methylation, Transcriptional Transcription Factor, and Posttranscriptional microRNA Regulations on Protein Evolutionary Rate

    PubMed Central

    Chuang, Trees-Juen; Chiang, Tai-Wei

    2014-01-01

    Gene expression is largely regulated by DNA methylation, transcription factor (TF), and microRNA (miRNA) before, during, and after transcription, respectively. Although the evolutionary effects of TF/miRNA regulations have been widely studied, evolutionary analysis of simultaneously accounting for DNA methylation, TF, and miRNA regulations and whether promoter methylation and gene body (coding regions) methylation have different effects on the rate of gene evolution remain uninvestigated. Here, we compared human–macaque and human–mouse protein evolutionary rates against experimentally determined single base-resolution DNA methylation data, revealing that promoter methylation level is positively correlated with protein evolutionary rates but negatively correlated with TF/miRNA regulations, whereas the opposite was observed for gene body methylation level. Our results showed that the relative importance of these regulatory factors in determining the rate of mammalian protein evolution is as follows: Promoter methylation ≈ miRNA regulation > gene body methylation > TF regulation, and further indicated that promoter methylation and miRNA regulation have a significant dependent effect on protein evolutionary rates. Although the mechanisms underlying cooperation between DNA methylation and TFs/miRNAs in gene regulation remain unclear, our study helps to not only illuminate the impact of these regulatory factors on mammalian protein evolution but also their intricate interaction within gene regulatory networks. PMID:24923326

  6. Up-regulation of miR-98 and unraveling regulatory mechanisms in gestational diabetes mellitus

    PubMed Central

    Cao, Jing-Li; Zhang, Lu; Li, Jian; Tian, Shi; Lv, Xiao-Dan; Wang, Xue-Qin; Su, Xing; Li, Ying; Hu, Yi; Ma, Xu; Xia, Hong-Fei

    2016-01-01

    MiR-98 expression was up-regulated in kidney in response to early diabetic nephropathy in mouse and down-regulated in muscle in type 2 diabetes in human. However, the expression prolife and functional role of miR-98 in human gestational diabetes mellitus (GDM) remained unclear. Here, we investigated its expression and function in placental tissues from GDM patients and the possible molecular mechanisms. The results showed that miR-98 was up-regulated in placentas from GDM patients compared with normal placentas. MiR-98 over-expression increased global DNA methylational level and miR-98 knockdown reduced global DNA methylational level. Further investigation revealed that miR-98 could inhibit Mecp2 expression by binding the 3′-untranslated region (UTR) of methyl CpG binding protein 2 (Mecp2), and then led to the expression dysregulation of canonical transient receptor potential 3 (Trpc3), a glucose uptake related gene. More importantly, in vivo analysis found that the expression level of Mecp2 and Trpc3 in placental tissues from GDM patients, relative to the increase of miR-98, was diminished, especially for GDM patients over the age of 35 years. Collectively, up-regulation of miR-98 in the placental tissues of human GDM is linked to the global DNA methylation via targeting Mecp2, which may imply a novel regulatory mechanism in GDM. PMID:27573367

  7. Regulatory role of the 90-kDa-heat-shock protein (Hsp90) and associated factors on gene expression.

    PubMed

    Erlejman, Alejandra G; Lagadari, Mariana; Toneatto, Judith; Piwien-Pilipuk, Graciela; Galigniana, Mario D

    2014-02-01

    The term molecular chaperone was first used to describe the ability of nucleoplasmin to prevent the aggregation of histones with DNA during the assembly of nucleosomes. Subsequently, the name was extended to proteins that mediate the post-translational assembly of oligomeric complexes protecting them from denaturation and/or aggregation. Hsp90 is a 90-kDa molecular chaperone that represents the major soluble protein of the cell. In contrast to most conventional chaperones, Hsp90 functions as a refined sensor of protein function and its principal role in the cell is to facilitate biological activity to properly folded client proteins that already have a preserved tertiary structure. Consequently, Hsp90 is related to basic cell functions such as cytoplasmic transport of soluble proteins, translocation of client proteins to organelles, and regulation of the biological activity of key signaling factors such as protein kinases, ubiquitin ligases, steroid receptors, cell cycle regulators, and transcription factors. A growing amount of evidence links the protective action of this molecular chaperone to mechanisms related to posttranslational modifications of soluble nuclear factors as well as histones. In this article, we discuss some aspects of the regulatory action of Hsp90 on transcriptional regulation and how this effect could have impacted genetic assimilation mechanism in some organisms.

  8. Transcription factors GAF and HSF act at distinct regulatory steps to modulate stress-induced gene activation

    PubMed Central

    Fuda, Nicholas J.; Mahat, Dig B.; Core, Leighton J.; Guertin, Michael J.

    2016-01-01

    The coordinated regulation of gene expression at the transcriptional level is fundamental to development and homeostasis. Inducible systems are invaluable when studying transcription because the regulatory process can be triggered instantaneously, allowing the tracking of ordered mechanistic events. Here, we use precision run-on sequencing (PRO-seq) to examine the genome-wide heat shock (HS) response in Drosophila and the function of two key transcription factors on the immediate transcription activation or repression of all genes regulated by HS. We identify the primary HS response genes and the rate-limiting steps in the transcription cycle that GAGA-associated factor (GAF) and HS factor (HSF) regulate. We demonstrate that GAF acts upstream of promoter-proximally paused RNA polymerase II (Pol II) formation (likely at the step of chromatin opening) and that GAF-facilitated Pol II pausing is critical for HS activation. In contrast, HSF is dispensable for establishing or maintaining Pol II pausing but is critical for the release of paused Pol II into the gene body at a subset of highly activated genes. Additionally, HSF has no detectable role in the rapid HS repression of thousands of genes. PMID:27492368

  9. Regulatory role of the 90-kDa-heat-shock protein (Hsp90) and associated factors on gene expression.

    PubMed

    Erlejman, Alejandra G; Lagadari, Mariana; Toneatto, Judith; Piwien-Pilipuk, Graciela; Galigniana, Mario D

    2014-02-01

    The term molecular chaperone was first used to describe the ability of nucleoplasmin to prevent the aggregation of histones with DNA during the assembly of nucleosomes. Subsequently, the name was extended to proteins that mediate the post-translational assembly of oligomeric complexes protecting them from denaturation and/or aggregation. Hsp90 is a 90-kDa molecular chaperone that represents the major soluble protein of the cell. In contrast to most conventional chaperones, Hsp90 functions as a refined sensor of protein function and its principal role in the cell is to facilitate biological activity to properly folded client proteins that already have a preserved tertiary structure. Consequently, Hsp90 is related to basic cell functions such as cytoplasmic transport of soluble proteins, translocation of client proteins to organelles, and regulation of the biological activity of key signaling factors such as protein kinases, ubiquitin ligases, steroid receptors, cell cycle regulators, and transcription factors. A growing amount of evidence links the protective action of this molecular chaperone to mechanisms related to posttranslational modifications of soluble nuclear factors as well as histones. In this article, we discuss some aspects of the regulatory action of Hsp90 on transcriptional regulation and how this effect could have impacted genetic assimilation mechanism in some organisms. PMID:24389346

  10. Regulated tissue-specific alternative splicing of enhanced green fluorescent protein transgenes conferred by alpha-tropomyosin regulatory elements in transgenic mice.

    PubMed

    Ellis, Peter D; Smith, Christopher W J; Kemp, Paul

    2004-08-27

    The mutually exclusive exons 2 and 3 of alpha-tropomyosin (alphaTM) have been used as a model system for strictly regulated alternative splicing. Exon 2 inclusion is only observed at high levels in smooth muscle (SM) tissues, whereas striated muscle and non-muscle cells use predominantly exon 3. Experiments in cell culture have shown that exon 2 selection results from repression of exon 3 and that this repression is mediated by regulatory elements flanking exon 3. We have now tested the cell culture-derived model in transgenic mice. We show that by harnessing the intronic splicing regulatory elements, expression of an enhanced green fluorescent protein transgene with a constitutively active promoter can be restricted to SM cells. Splicing of both endogenous alphaTM and a series of transgenes carrying regulatory element mutations was analyzed by reverse transcriptasePCR. These studies indicated that although SM-rich tissues are equipped to regulate splicing of high levels of endogenous or transgene alphaTM RNA, other non-SM tissues such as spleen, which express lower amounts of alphaTM, also splice significant proportions of exon 2, and this splicing pattern can be recapitulated by transgenes expressed at low levels. We confirm the importance in vivo of the negatively acting regulatory elements for regulated skipping of exon 3. Moreover, we provide evidence that some of the regulatory factors responsible for exon 3 skipping appear to be titratable, with loss of regulated splicing sometimes being associated with high transgene expression levels. PMID:15194683

  11. Two new monoclonal antibodies for biochemical and flow cytometric analyses of human interferon regulatory factor-3 activation, turnover, and depletion.

    PubMed

    Rustagi, Arjun; Doehle, Brian P; McElrath, M Juliana; Gale, Michael

    2013-02-01

    Interferon regulatory factor-3 (IRF-3) is a master transcription factor that drives the host intracellular innate immune response to virus infection. The importance of IRF-3 in innate immune responses is highlighted by the fact that pathogenic viruses have developed strategies for antagonism of IRF-3. Several tools exist for evaluation of viral regulation of IRF-3 activation and function, but high-quality monoclonal antibodies that mark the differential activation states of human IRF-3 are lacking. To study IRF-3 activation, turnover, and depletion in a high-throughput manner in the context of virus infection, we have developed two new monoclonal antibodies to human IRF-3. These antibodies detect IRF-3 in virus-infected cells in a wide variety of assays and provide a new tool to study virus-host interactions and innate immune signaling.

  12. Two new monoclonal antibodies for biochemical and flow cytometric analyses of human interferon regulatory factor-3 activation, turnover, and depletion

    PubMed Central

    Rustagi, Arjun; Doehle, Brian P.; McElrath, M. Juliana; Gale, Michael

    2012-01-01

    Interferon regulatory factor-3 (IRF-3) is a master transcription factor that drives the host intracellular innate immune response to virus infection. The importance of IRF-3 in innate immune responses is highlighted by the fact that pathogenic viruses have developed strategies for antagonism of IRF-3. Several tools exist for evaluation of viral regulation of IRF-3 activation and function, but high-quality monoclonal antibodies that mark the differential activation states of human IRF-3 are lacking. To study IRF-3 activation, turnover, and depletion in a high-throughput manner in the context of virus infection, we have developed two new monoclonal antibodies to human IRF-3. These antibodies detect IRF-3 in virus-infected cells in a wide variety of assays and provide a new tool to study virus-host interactions and innate immune signaling. PMID:22705311

  13. The transcription factor GATA-6 regulates pathological cardiac hypertrophy

    PubMed Central

    van Berlo, Jop H.; Elrod, John W.; van den Hoogenhof, Maarten M.G.; York, Allen J.; Aronow, Bruce J.; Duncan, Stephen A.; Molkentin, Jeffery D.

    2010-01-01

    Rationale The transcriptional code that programs maladaptive cardiac hypertrophy involves the zinc finger-containing DNA binding factor GATA-4. The highly related transcription factor GATA-6 is also expressed in the adult heart, although its role in controlling the hypertrophic program is unknown. Objective To determine the role of GATA-6 in cardiac hypertrophy and homeostasis. Methods and Results Here we performed a cardiomyocyte-specific conditional gene targeting approach for Gata6, as well as a transgenic approach to overexpress GATA-6 in the mouse heart. Deletion of Gata6-loxP with Nkx2.5-cre produced late embryonic lethality with heart defects, while deletion with β-myosin heavy chain-cre (βMHC-cre) produced viable adults with greater than 95% loss of GATA-6 protein in the heart. These later mice were subjected to pressure overload induced hypertrophy for 2 and 6 weeks, which showed a significant reduction in cardiac hypertrophy similar to that observed Gata4 heart-specific deleted mice. Gata6-deleted mice subjected to pressure overload also developed heart failure while control mice maintained proper cardiac function. Gata6-deleted mice also developed less cardiac hypertrophy following 2 weeks of angiotensin II/phenylephrine infusion. Controlled GATA-6 overexpression in the heart induced hypertrophy with aging and predisposed to greater hypertrophy with pressure overload stimulation. Combinatorial deletion of Gata4 and Gata6 from the adult heart resulted in dilated cardiomyopathy and lethality by 16 weeks of age. Mechanistically, deletion of Gata6 from the heart resulted in fundamental changes in the levels of key regulatory genes and myocyte differentiation-specific genes. Conclusions These results indicate that GATA-6 is both necessary and sufficient for regulating the cardiac hypertrophic response and differentiated gene expression, both alone and in coordination with GATA-4. PMID:20705924

  14. Protecting the public or setting the bar too high? Understanding the causes and consequences of regulatory actions of front-line regulators and specialized drug shop operators in Kenya.

    PubMed

    Wafula, Francis; Molyneux, Catherine; Mackintosh, Maureen; Goodman, Catherine

    2013-11-01

    The problem of poor regulatory compliance has been widely reported across private health providers in developing countries. Less known are the underlying reasons for poor compliance, especially with regards to the roles played by front-line regulatory staff, and the regulatory institution as a whole. We designed a qualitative study to address this gap, with the study questions and tools drawing on a conceptual framework informed by theoretical literature on regulation. Data were collected from specialized drug shops (SDSs) in two rural districts in Western Kenya in 2011 through eight focus group discussions, and from regulatory staff from organizations governing the pharmaceutical sector through a total of 24 in-depth interviews. We found that relationships between front-line regulators and SDS operators were a strong influence on regulatory behaviour, often resulting in non-compliance and perverse outcomes such as corruption. It emerged that separate regulatory streams operated in urban and rural locations, based mainly on differing relationships between the front-line regulators and SDS operators, and on broader factors such as the competition environment and community expectations. Effective incentive structures for regulatory staff were either absent, or poorly linked to performance in regulatory organizations, resulting in divergences between the purposes of the regulatory organization and activities of front-line staff. Given the rural-urban differences in the practice environment, the introduction of lower retail practice requirements for rural SDSs could be considered. This would allow illegally operated shops to be brought within the regulatory framework, facilitating good quality provision of essential commodities to marginalized areas, without lowering the practice requirements for the better complying urban SDSs. In addition, regulatory organizations need to devise incentives that better link the level of effort to rewards such as professional

  15. Protecting the public or setting the bar too high? Understanding the causes and consequences of regulatory actions of front-line regulators and specialized drug shop operators in Kenya

    PubMed Central

    Wafula, Francis; Molyneux, Catherine; Mackintosh, Maureen; Goodman, Catherine

    2013-01-01

    The problem of poor regulatory compliance has been widely reported across private health providers in developing countries. Less known are the underlying reasons for poor compliance, especially with regards to the roles played by front-line regulatory staff, and the regulatory institution as a whole. We designed a qualitative study to address this gap, with the study questions and tools drawing on a conceptual framework informed by theoretical literature on regulation. Data were collected from specialized drug shops (SDSs) in two rural districts in Western Kenya in 2011 through eight focus group discussions, and from regulatory staff from organizations governing the pharmaceutical sector through a total of 24 in-depth interviews. We found that relationships between front-line regulators and SDS operators were a strong influence on regulatory behaviour, often resulting in non-compliance and perverse outcomes such as corruption. It emerged that separate regulatory streams operated in urban and rural locations, based mainly on differing relationships between the front-line regulators and SDS operators, and on broader factors such as the competition environment and community expectations. Effective incentive structures for regulatory staff were either absent, or poorly linked to performance in regulatory organizations, resulting in divergences between the purposes of the regulatory organization and activities of front-line staff. Given the rural-urban differences in the practice environment, the introduction of lower retail practice requirements for rural SDSs could be considered. This would allow illegally operated shops to be brought within the regulatory framework, facilitating good quality provision of essential commodities to marginalized areas, without lowering the practice requirements for the better complying urban SDSs. In addition, regulatory organizations need to devise incentives that better link the level of effort to rewards such as professional

  16. Protecting the public or setting the bar too high? Understanding the causes and consequences of regulatory actions of front-line regulators and specialized drug shop operators in Kenya.

    PubMed

    Wafula, Francis; Molyneux, Catherine; Mackintosh, Maureen; Goodman, Catherine

    2013-11-01

    The problem of poor regulatory compliance has been widely reported across private health providers in developing countries. Less known are the underlying reasons for poor compliance, especially with regards to the roles played by front-line regulatory staff, and the regulatory institution as a whole. We designed a qualitative study to address this gap, with the study questions and tools drawing on a conceptual framework informed by theoretical literature on regulation. Data were collected from specialized drug shops (SDSs) in two rural districts in Western Kenya in 2011 through eight focus group discussions, and from regulatory staff from organizations governing the pharmaceutical sector through a total of 24 in-depth interviews. We found that relationships between front-line regulators and SDS operators were a strong influence on regulatory behaviour, often resulting in non-compliance and perverse outcomes such as corruption. It emerged that separate regulatory streams operated in urban and rural locations, based mainly on differing relationships between the front-line regulators and SDS operators, and on broader factors such as the competition environment and community expectations. Effective incentive structures for regulatory staff were either absent, or poorly linked to performance in regulatory organizations, resulting in divergences between the purposes of the regulatory organization and activities of front-line staff. Given the rural-urban differences in the practice environment, the introduction of lower retail practice requirements for rural SDSs could be considered. This would allow illegally operated shops to be brought within the regulatory framework, facilitating good quality provision of essential commodities to marginalized areas, without lowering the practice requirements for the better complying urban SDSs. In addition, regulatory organizations need to devise incentives that better link the level of effort to rewards such as professional

  17. A Positive Regulatory Loop between a Wnt-Regulated Non-coding RNA and ASCL2 Controls Intestinal Stem Cell Fate.

    PubMed

    Giakountis, Antonis; Moulos, Panagiotis; Zarkou, Vasiliki; Oikonomou, Christina; Harokopos, Vaggelis; Hatzigeorgiou, Artemis G; Reczko, Martin; Hatzis, Pantelis

    2016-06-21

    The canonical Wnt pathway plays a central role in stem cell maintenance, differentiation, and proliferation in the intestinal epithelium. Constitutive, aberrant activity of the TCF4/β-catenin transcriptional complex is the primary transforming factor in colorectal cancer. We identify a nuclear long non-coding RNA, termed WiNTRLINC1, as a direct target of TCF4/β-catenin in colorectal cancer cells. WiNTRLINC1 positively regulates the expression of its genomic neighbor ASCL2, a transcription factor that controls intestinal stem cell fate. WiNTRLINC1 interacts with TCF4/β-catenin to mediate the juxtaposition of its promoter with the regulatory regions of ASCL2. ASCL2, in turn, regulates WiNTRLINC1 transcriptionally, closing a feedforward regulatory loop that controls stem cell-related gene expression. This regulatory circuitry is highly amplified in colorectal cancer and correlates with increased metastatic potential and decreased patient survival. Our results uncover the interplay between non-coding RNA-mediated regulation and Wnt signaling and point to the diagnostic and therapeutic potential of WiNTRLINC1. PMID:27292638

  18. Scientific and regulatory standards for assessing product performance using the similarity factor, f2.

    PubMed

    Stevens, Ruth E; Gray, Vivian; Dorantes, Angelica; Gold, Lynn; Pham, Loan

    2015-03-01

    The similarity factor, f2, measures the sameness of dissolution profiles. The following commentary is an overview of discussions and presentations from a group of industry and US regulatory experts that have integrated the science and regulatory research and practice for assessing product performance, particularly for modified-release (MR) dosage forms, using f2. For a drug development sponsor or applicant with an orally complex dosage formulation, it is critical to understand dissolution methods and the similarity factor and how and/or when to apply it in their NDA, ANDA, or PMA submission. As part of any regulatory submission, it is critical to justify that the product performance has not been impacted by any change in the manufacturing process and/or the delayed and/or prolonged drug release characteristics compared to a similar conventional or another orally complex dosage form. The purposes of this document are (1) to provide a description of appropriate dissolution methods, how is the f2 calculated and how it can be used to justify product performance similarity, or not; (2) to provide an overview of alternative methods available for dissolution profile comparisons, and (3) to illustrate how applying these concepts in a focused way supports approval of submissions and regulatory dossiers and aligns them with on-going science and regulatory initiatives. A case study will be used as an example to demonstrate how dissolution testing and the f2 calculation results can impact regulatory outcomes from an NDA (505(b)(1)), NDA (505(b)(2)), ANDA (505(j)), supplemental NDAs/ANDAs, or PMA perspective.

  19. Hepatic PCSK9 expression is regulated by nutritional status via insulin and sterol regulatory element-binding protein 1c.

    PubMed

    Costet, Philippe; Cariou, Bertrand; Lambert, Gilles; Lalanne, Florent; Lardeux, Bernard; Jarnoux, Anne-Laure; Grefhorst, Aldo; Staels, Bart; Krempf, Michel

    2006-03-10

    Familial autosomal dominant hypercholesterolemia is associated with high risk for cardiovascular accidents and is related to mutations in the low density lipoprotein receptor or its ligand apolipoprotein B (apoB). Mutations in a third gene, proprotein convertase subtilisin kexin 9 (PCSK9), were recently associated to this disease. PCSK9 acts as a natural inhibitor of the low density lipoprotein receptor pathway, and both genes are regulated by depletion of cholesterol cell content and statins, via sterol regulatory element-binding protein (SREBP). Here we investigated the regulation of PCSK9 gene expression during nutritional changes. We showed that PCSK9 mRNA quantity is decreased by 73% in mice after 24 h of fasting, leading to a 2-fold decrease in protein level. In contrast PCSK9 expression was restored upon high carbohydrate refeeding. PCSK9 mRNA increased by 4-5-fold in presence of insulin in rodent primary hepatocytes, whereas glucose had no effect. Moreover, insulin up-regulated hepatic PCSK9 expression in vivo during a hyperinsulinemic-euglycemic clamp in mice. Adenoviral mediated overexpression of a dominant or negative form of SREBP-1c confirmed the implication of this transcription factor in insulin-mediated stimulation of PCSK9 expression. Liver X receptor agonist T0901317 also regulated PCSK9 expression via this same pathway (a 2-fold increase in PCSK9 mRNA of primary hepatocytes cultured for 24 h in presence of 1 microm T0901317). As our last investigation, we isolated PCSK9 proximal promoter and verified the functionality of a SREBP-1c responsive element located from 335 bp to 355 bp upstream of the ATG. Together, these results show that PCSK9 expression is regulated by nutritional status and insulinemia. PMID:16407292

  20. Structure of the regulatory domain of the LysR family regulator NMB2055 (MetR-like protein) from Neisseria meningitidis

    PubMed Central

    Sainsbury, Sarah; Ren, Jingshan; Saunders, Nigel J.; Stuart, David I.; Owens, Raymond J.

    2012-01-01

    The crystal structure of the regulatory domain of NMB2055, a putative MetR regulator from Neisseria meningitidis, is reported at 2.5 Å resolution. The structure revealed that there is a disulfide bond inside the predicted effector-binding pocket of the regulatory domain. Mutation of the cysteines (Cys103 and Cys106) that form the disulfide bond to serines resulted in significant changes to the structure of the effector pocket. Taken together with the high degree of conservation of these cysteine residues within MetR-related transcription factors, it is suggested that the Cys103 and Cys106 residues play an important role in the function of MetR regulators. PMID:22750853

  1. Transcription factors and microRNA-co-regulated genes in gastric cancer invasion in ex vivo.

    PubMed

    Shi, Yue; Wang, Jihan; Xin, Zhuoyuan; Duan, Zipeng; Wang, Guoqing; Li, Fan

    2015-01-01

    Aberrant miRNA expression abnormally modulates gene expression in cells and can contribute to tumorigenesis in humans. This study identified functionally relevant differentially expressed genes using the transcription factors and miRNA-co-regulated network analysis for gastric cancer. The TF-miRNA co-regulatory network was constructed based on data obtained from cDNA microarray and miRNA expression profiling of gastric cancer tissues. The network along with their co-regulated genes was analyzed using Database for Annotation, Visualization and Integrated Discovery (DAVID) and Transcriptional Regulatory Element Database (TRED). We found eighteen (17 up-regulated and 1 down-regulated) differentially expressed genes that were co-regulated by transcription factors and miRNAs. KEGG pathway analysis revealed that these genes were part of the extracellular matrix-receptor interaction and focal adhesion signaling pathways. In addition, qRT- PCR and Western blot data showed an increase in COL1A1 and decrease in NCAM1 mRNA and protein levels in gastric cancer tissues. Thus, these data provided the first evidence to illustrate that altered gene network was associated with gastric cancer invasion. Further study with a large sample size and more functional experiments is needed to confirm these data and contribute to diagnostic and treatment strategies for gastric cancer.

  2. Transcription Factors and microRNA-Co-Regulated Genes in Gastric Cancer Invasion in Ex Vivo

    PubMed Central

    Shi, Yue; Wang, Jihan; Xin, Zhuoyuan; Duan, Zipeng; Wang, Guoqing; Li, Fan

    2015-01-01

    Aberrant miRNA expression abnormally modulates gene expression in cells and can contribute to tumorigenesis in humans. This study identified functionally relevant differentially expressed genes using the transcription factors and miRNA-co-regulated network analysis for gastric cancer. The TF-miRNA co-regulatory network was constructed based on data obtained from cDNA microarray and miRNA expression profiling of gastric cancer tissues. The network along with their co-regulated genes was analyzed using Database for Annotation, Visualization and Integrated Discovery (DAVID) and Transcriptional Regulatory Element Database (TRED). We found eighteen (17 up-regulated and 1 down-regulated) differentially expressed genes that were co-regulated by transcription factors and miRNAs. KEGG pathway analysis revealed that these genes were part of the extracellular matrix-receptor interaction and focal adhesion signaling pathways. In addition, qRT- PCR and Western blot data showed an increase in COL1A1 and decrease in NCAM1 mRNA and protein levels in gastric cancer tissues. Thus, these data provided the first evidence to illustrate that altered gene network was associated with gastric cancer invasion. Further study with a large sample size and more functional experiments is needed to confirm these data and contribute to diagnostic and treatment strategies for gastric cancer. PMID:25860484

  3. Activation of Sterol Regulatory Element Binding Factors by Fenofibrate and Gemfibrozil Stimulates Myelination in Zebrafish.

    PubMed

    Ashikawa, Yoshifumi; Nishimura, Yuhei; Okabe, Shiko; Sasagawa, Shota; Murakami, Soichiro; Yuge, Mizuki; Kawaguchi, Koki; Kawase, Reiko; Tanaka, Toshio

    2016-01-01

    Oligodendrocytes are major myelin-producing cells and play essential roles in the function of a healthy nervous system. However, they are also one of the most vulnerable neural cell types in the central nervous system (CNS), and myelin abnormalities in the CNS are found in a wide variety of neurological disorders, including multiple sclerosis, adrenoleukodystrophy, and schizophrenia. There is an urgent need to identify small molecular weight compounds that can stimulate myelination. In this study, we performed comparative transcriptome analysis to identify pharmacodynamic effects common to miconazole and clobetasol, which have been shown to stimulate myelination by mouse oligodendrocyte progenitor cells (OPCs). Of the genes differentially expressed in both miconazole- and clobetasol-treated mouse OPCs compared with untreated cells, we identified differentially expressed genes (DEGs) common to both drug treatments. Gene ontology analysis revealed that these DEGs are significantly associated with the sterol biosynthetic pathway, and further bioinformatics analysis suggested that sterol regulatory element binding factors (SREBFs) might be key upstream regulators of the DEGs. In silico screening of a public database for chemicals associated with SREBF activation identified fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, as a drug that increases the expression of known SREBF targets, raising the possibility that fenofibrate may also stimulate myelination. To test this, we performed in vivo imaging of zebrafish expressing a fluorescent reporter protein under the control of the myelin basic protein (mbp) promoter. Treatment of zebrafish with fenofibrate significantly increased expression of the fluorescent reporter compared with untreated zebrafish. This increase was attenuated by co-treatment with fatostatin, a specific inhibitor of SREBFs, confirming that the fenofibrate effect was mediated via SREBFs. Furthermore, incubation of zebrafish

  4. Regulatory mechanisms underlying sepsis progression in patients with tumor necrosis factor-α genetic variations

    PubMed Central

    LIU, YANGZHOU; HAN, NING; LI, QINCHUAN; LI, ZENGCHUN

    2016-01-01

    The present study aimed to investigate the regulatory mechanisms underlying sepsis progression in patients with tumor necrosis factor (TNF)-α genetic variations. The GSE5760 expression profile data, which was downloaded from the Gene Expression Omnibus database, contained 30 wild-type (WT) and 28 mutation (MUT) samples. Differentially expressed genes (DEGs) between the two types of samples were identified using the Student's t-test, and the corresponding microRNAs (miRNAs) were screened using WebGestalt software. An integrated miRNA-DEG network was constructed using the Cytoscape software, based on the interactions between the DEGs, as identified using the Search Tool for the Retrieval of Interacting Genes/Proteins database, and the correlation between miRNAs and their target genes. Furthermore, Gene Ontology and pathway enrichment analyses were conducted for the DEGs using the Database for Annotation, Visualization and Integrated Discovery and the KEGG Orthology Based Annotation System, respectively. A total of 390 DEGS between the WT and MUT samples, along with 11 -associated miRNAs, were identified. The integrated miRNA-DEG network consisted of 38 DEGs and 11 miRNAs. Within this network, COPS2 was found to be associated with transcriptional functions, while FUS was found to be involved in mRNA metabolic processes. Other DEGs, including FBXW7 and CUL3, were enriched in the ubiquitin-mediated proteolysis pathway. In addition, miR-15 was predicted to target COPS2 and CUL3. The results of the present study suggested that COPS2, FUS, FBXW7 and CUL3 may be associated with sepsis in patients with TNF-α genetic variations. In the progression of sepsis, FBXW7 and CUL3 may participate in the ubiquitin-mediated proteolysis pathway, whereas COPS2 may regulate the phosphorylation and ubiquitination of the FUS protein. Furthermore, COPS2 and CUL3 may be novel targets of miR-15. PMID:27347057

  5. Activation of Sterol Regulatory Element Binding Factors by Fenofibrate and Gemfibrozil Stimulates Myelination in Zebrafish

    PubMed Central

    Ashikawa, Yoshifumi; Nishimura, Yuhei; Okabe, Shiko; Sasagawa, Shota; Murakami, Soichiro; Yuge, Mizuki; Kawaguchi, Koki; Kawase, Reiko; Tanaka, Toshio

    2016-01-01

    Oligodendrocytes are major myelin-producing cells and play essential roles in the function of a healthy nervous system. However, they are also one of the most vulnerable neural cell types in the central nervous system (CNS), and myelin abnormalities in the CNS are found in a wide variety of neurological disorders, including multiple sclerosis, adrenoleukodystrophy, and schizophrenia. There is an urgent need to identify small molecular weight compounds that can stimulate myelination. In this study, we performed comparative transcriptome analysis to identify pharmacodynamic effects common to miconazole and clobetasol, which have been shown to stimulate myelination by mouse oligodendrocyte progenitor cells (OPCs). Of the genes differentially expressed in both miconazole- and clobetasol-treated mouse OPCs compared with untreated cells, we identified differentially expressed genes (DEGs) common to both drug treatments. Gene ontology analysis revealed that these DEGs are significantly associated with the sterol biosynthetic pathway, and further bioinformatics analysis suggested that sterol regulatory element binding factors (SREBFs) might be key upstream regulators of the DEGs. In silico screening of a public database for chemicals associated with SREBF activation identified fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, as a drug that increases the expression of known SREBF targets, raising the possibility that fenofibrate may also stimulate myelination. To test this, we performed in vivo imaging of zebrafish expressing a fluorescent reporter protein under the control of the myelin basic protein (mbp) promoter. Treatment of zebrafish with fenofibrate significantly increased expression of the fluorescent reporter compared with untreated zebrafish. This increase was attenuated by co-treatment with fatostatin, a specific inhibitor of SREBFs, confirming that the fenofibrate effect was mediated via SREBFs. Furthermore, incubation of zebrafish

  6. Activation of Sterol Regulatory Element Binding Factors by Fenofibrate and Gemfibrozil Stimulates Myelination in Zebrafish.

    PubMed

    Ashikawa, Yoshifumi; Nishimura, Yuhei; Okabe, Shiko; Sasagawa, Shota; Murakami, Soichiro; Yuge, Mizuki; Kawaguchi, Koki; Kawase, Reiko; Tanaka, Toshio

    2016-01-01

    Oligodendrocytes are major myelin-producing cells and play essential roles in the function of a healthy nervous system. However, they are also one of the most vulnerable neural cell types in the central nervous system (CNS), and myelin abnormalities in the CNS are found in a wide variety of neurological disorders, including multiple sclerosis, adrenoleukodystrophy, and schizophrenia. There is an urgent need to identify small molecular weight compounds that can stimulate myelination. In this study, we performed comparative transcriptome analysis to identify pharmacodynamic effects common to miconazole and clobetasol, which have been shown to stimulate myelination by mouse oligodendrocyte progenitor cells (OPCs). Of the genes differentially expressed in both miconazole- and clobetasol-treated mouse OPCs compared with untreated cells, we identified differentially expressed genes (DEGs) common to both drug treatments. Gene ontology analysis revealed that these DEGs are significantly associated with the sterol biosynthetic pathway, and further bioinformatics analysis suggested that sterol regulatory element binding factors (SREBFs) might be key upstream regulators of the DEGs. In silico screening of a public database for chemicals associated with SREBF activation identified fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, as a drug that increases the expression of known SREBF targets, raising the possibility that fenofibrate may also stimulate myelination. To test this, we performed in vivo imaging of zebrafish expressing a fluorescent reporter protein under the control of the myelin basic protein (mbp) promoter. Treatment of zebrafish with fenofibrate significantly increased expression of the fluorescent reporter compared with untreated zebrafish. This increase was attenuated by co-treatment with fatostatin, a specific inhibitor of SREBFs, confirming that the fenofibrate effect was mediated via SREBFs. Furthermore, incubation of zebrafish

  7. Cloning and expression analysis of interferon regulatory factor 7 in the Pacific cod, Gadus macrocephalus.

    PubMed

    Sun, Hang; Jiang, Zhiqiang; Mao, Mingguang; Huo, Yuan; Han, Yuzhe; Zhang, Saisai

    2016-02-01

    Interferon regulatory factor 7 (IRF7) plays an important role in regulating the response of type I interferon (IFN) to viral infection. To understand the mechanisms underlying immune reactions in the Pacific cod, Gadus macrocephalus, the gene encoding G. macrocephalus IRF7 was cloned and characterized. The cDNA of G. macrocephalus IRF7 was also cloned and sequenced. A cDNA sequence of 2032 bp was assembled using polymerase chain reaction (PCR) products. It contains an open reading frame of 1323 bp in length, which encoded a 440-amino acid polypeptide that comprised a DNA-binding domain (DBD), an IRF association domain (IAD), and a serine-rich domain (SRD). In the DBD, the tryptophan cluster consisted of only four tryptophans, which is a unique characteristic in fish IRF7. The mRNA of IRF7 was detected in various tissues, including in the spleen, thymus, kidney, intestine, and gills, using relative quantification PCR (R-qPCR). Dynamic expression of IRF7 was observed in larvae throughout post-hatching (ph) development, with the highest level detected at day of ph (dph) 25. Response to immune stimulation was examined by challenging larvae with polyriboinosinic polyribocytidylic acid (pIC) to mimic viral infection and elicit an immune reaction. R-qPCR revealed that the expression of IRF7 significantly increased in pIC-treated groups relative to that in the control groups, in a time-dependent manner, with peak responses at 48 and 72 h after pIC-treatment. These results show that IRF7 is expressed in various tissues of adult fish and larvae and is sensitive to viral infection, suggesting that it plays a role in antiviral immune defense in G. macrocephalus. PMID:26702560

  8. Dynamic regulation of Gata factor levels is more important than their identity.

    PubMed

    Ferreira, Rita; Wai, Albert; Shimizu, Ritsuko; Gillemans, Nynke; Rottier, Robbert; von Lindern, Marieke; Ohneda, Kinuko; Grosveld, Frank; Yamamoto, Masayuki; Philipsen, Sjaak

    2007-06-15

    Three Gata transcription factors (Gata1, -2, and -3) are essential for hematopoiesis. These factors are thought to play distinct roles because they do not functionally replace each other. For instance, Gata2 messenger RNA (mRNA) expression is highly elevated in Gata1-null erythroid cells, yet this does not rescue the defect. Here, we test whether Gata2 and -3 transgenes rescue the erythroid defect of Gata1-null mice, if expressed in the appropriate spatiotemporal pattern. Gata1, -2, and -3 transgenes driven by beta-globin regulatory elements, directing expression to late stages of differentiation, fail to rescue erythropoiesis in Gata1-null mutants. In contrast, when controlled by Gata1 regulatory elements, directing expression to the early stages of differentiation, Gata1, -2, and -3 do rescue the Gata1-null phenotype. The dramatic increase of endogenous Gata2 mRNA in Gata1-null progenitors is not reflected in Gata2 protein levels, invoking translational regulation. Our data show that the dynamic spatiotemporal regulation of Gata factor levels is more important than their identity and provide a paradigm for developmental control mechanisms that are hard-wired in cis-regulatory elements. PMID:17327407

  9. Extensive cross-regulation of post-transcriptional regulatory networks in Drosophila

    DOE PAGESBeta

    Stoiber, Marcus H.; Olson, Sara; May, Gemma E.; Duff, Michael O.; Manent, Jan; Obar, Robert; Guruharsha, K. G.; Bickel, Peter J.; Artavanis-Tsakonas, Spyros; Brown, James B.; et al

    2015-08-20

    In eukaryotic cells, RNAs exist as ribonucleoprotein particles (RNPs). Despite the importance of these complexes in many biological processes, including splicing, polyadenylation, stability, transportation, localization, and translation, their compositions are largely unknown. We affinity-purified 20 distinct RNA-binding proteins (RBPs) from cultured Drosophila melanogaster cells under native conditions and identified both the RNA and protein compositions of these RNP complexes. We identified “high occupancy target” (HOT) RNAs that interact with the majority of the RBPs we surveyed. HOT RNAs encode components of the nonsense-mediated decay and splicing machinery, as well as RNA-binding and translation initiation proteins. The RNP complexes contain proteinsmore » and mRNAs involved in RNA binding and post-transcriptional regulation. Genes with the capacity to produce hundreds of mRNA isoforms, ultracomplex genes, interact extensively with heterogeneous nuclear ribonuclear proteins (hnRNPs). Our data are consistent with a model in which subsets of RNPs include mRNA and protein products from the same gene, indicating the widespread existence of auto-regulatory RNPs. Lastly, from the simultaneous acquisition and integrative analysis of protein and RNA constituents of RNPs, we identify extensive cross-regulatory and hierarchical interactions in post-transcriptional control.« less

  10. Extensive cross-regulation of post-transcriptional regulatory networks in Drosophila

    SciTech Connect

    Stoiber, Marcus H.; Olson, Sara; May, Gemma E.; Duff, Michael O.; Manent, Jan; Obar, Robert; Guruharsha, K. G.; Bickel, Peter J.; Artavanis-Tsakonas, Spyros; Brown, James B.; Graveley, Brenton R.; Celniker, Susan E.

    2015-08-20

    In eukaryotic cells, RNAs exist as ribonucleoprotein particles (RNPs). Despite the importance of these complexes in many biological processes, including splicing, polyadenylation, stability, transportation, localization, and translation, their compositions are largely unknown. We affinity-purified 20 distinct RNA-binding proteins (RBPs) from cultured Drosophila melanogaster cells under native conditions and identified both the RNA and protein compositions of these RNP complexes. We identified “high occupancy target” (HOT) RNAs that interact with the majority of the RBPs we surveyed. HOT RNAs encode components of the nonsense-mediated decay and splicing machinery, as well as RNA-binding and translation initiation proteins. The RNP complexes contain proteins and mRNAs involved in RNA binding and post-transcriptional regulation. Genes with the capacity to produce hundreds of mRNA isoforms, ultracomplex genes, interact extensively with heterogeneous nuclear ribonuclear proteins (hnRNPs). Our data are consistent with a model in which subsets of RNPs include mRNA and protein products from the same gene, indicating the widespread existence of auto-regulatory RNPs. Lastly, from the simultaneous acquisition and integrative analysis of protein and RNA constituents of RNPs, we identify extensive cross-regulatory and hierarchical interactions in post-transcriptional control.

  11. SIRT3 regulates cellular iron metabolism and cancer growth by repressing iron regulatory protein 1.

    PubMed

    Jeong, S M; Lee, J; Finley, L W S; Schmidt, P J; Fleming, M D; Haigis, M C

    2015-04-16

    Iron metabolism is essential for many cellular processes, including oxygen transport, respiration and DNA synthesis, and many cancer cells exhibit dysregulation in iron metabolism. Maintenance of cellular iron homeostasis is regulated by iron regulatory proteins (IRPs), which control the expression of iron-related genes by binding iron-responsive elements (IREs) of target mRNAs. Here, we report that mitochondrial SIRT3 regulates cellular iron metabolism by modulating IRP1 activity. SIRT3 loss increases reactive oxygen species production, leading to elevated IRP1 binding to IREs. As a consequence, IRP1 target genes, such as the transferrin receptor (TfR1), a membrane-associated glycoprotein critical for iron uptake and cell proliferation, are controlled by SIRT3. Importantly, SIRT3 deficiency results in a defect in cellular iron homeostasis. SIRT3 null cells contain high levels of iron and lose iron-dependent TfR1 regulation. Moreover, SIRT3 null mice exhibit higher levels of iron and TfR1 expression in the pancreas. We found that the regulation of iron uptake and TfR1 expression contribute to the tumor-suppressive activity of SIRT3. Indeed, SIRT3 expression is negatively correlated with TfR1 expression in human pancreatic cancers. SIRT3 overexpression decreases TfR1 expression by inhibiting IRP1 and represses proliferation in pancreatic cancer cells. Our data uncover a novel role of SIRT3 in cellular iron metabolism through IRP1 regulation and suggest that SIRT3 functions as a tumor suppressor, in part, by modulating cellular iron metabolism. PMID:24909164

  12. Notch1 regulated autophagy controls survival and suppressor activity of activated murine T-regulatory cells

    PubMed Central

    Marcel, Nimi; Sarin, Apurva

    2016-01-01

    Cell survival is one of several processes regulated by the Notch pathway in mammalian cells. Here we report functional outcomes of non-nuclear Notch signaling to activate autophagy, a conserved cellular response to nutrient stress, regulating survival in murine natural T-regulatory cells (Tregs), an immune subset controlling tolerance and inflammation. Induction of autophagy required ligand-dependent, Notch intracellular domain (NIC) activity, which controlled mitochondrial organization and survival of activated Tregs. Consistently, NIC immune-precipitated Beclin and Atg14, constituents of the autophagy initiation complex. Further, ectopic expression of an effector of autophagy (Atg3) or recombinant NIC tagged to a nuclear export signal (NIC-NES), restored autophagy and suppressor function in Notch1-/- Tregs. Furthermore, Notch1 deficiency in the Treg lineage resulted in immune hyperactivity, implicating Notch activity in Treg homeostasis. Notch1 integration with autophagy, revealed in these experiments, holds implications for Notch regulated cell-fate decisions governing differentiation. DOI: http://dx.doi.org/10.7554/eLife.14023.001 PMID:27267497

  13. Type One Protein Phosphatase 1 and Its Regulatory Protein Inhibitor 2 Negatively Regulate ABA Signaling

    PubMed Central

    Zhao, Yang; Xie, Shaojun; Batelli, Giorgia; Wang, Bangshing; Duan, Cheng-Guo; Wang, Xingang; Xing, Lu; Lei, Mingguang; Yan, Jun; Zhu, Xiaohong; Zhu, Jian-Kang

    2016-01-01

    The phytohormone abscisic acid (ABA) regulates plant growth, development and responses to biotic and abiotic stresses. The core ABA signaling pathway consists of three major components: ABA receptor (PYR1/PYLs), type 2C Protein Phosphatase (PP2C) and SNF1-related protein kinase 2 (SnRK2). Nevertheless, the complexity of ABA signaling remains to be explored. To uncover new components of ABA signal transduction pathways, we performed a yeast two-hybrid screen for SnRK2-interacting proteins. We found that Type One Protein Phosphatase 1 (TOPP1) and its regulatory protein, At Inhibitor-2 (AtI-2), physically interact with SnRK2s and also with PYLs. TOPP1 inhibited the kinase activity of SnRK2.6, and this inhibition could be enhanced by AtI-2. Transactivation assays showed that TOPP1 and AtI-2 negatively regulated the SnRK2.2/3/6-mediated activation of the ABA responsive reporter gene RD29B, supporting a negative role of TOPP1 and AtI-2 in ABA signaling. Consistent with these findings, topp1 and ati-2 mutant plants displayed hypersensitivities to ABA and salt treatments, and transcriptome analysis of TOPP1 and AtI-2 knockout plants revealed an increased expression of multiple ABA-responsive genes in the mutants. Taken together, our results uncover TOPP1 and AtI-2 as negative regulators of ABA signaling. PMID:26943172

  14. AMPK regulates mitotic spindle orientation through phosphorylation of myosin regulatory light chain.

    PubMed

    Thaiparambil, Jose T; Eggers, Carrie M; Marcus, Adam I

    2012-08-01

    The proper orientation of the mitotic spindle is essential for mitosis; however, how these events unfold at the molecular level is not well understood. AMP-activated protein kinase (AMPK) regulates energy homeostasis in eukaryotes, and AMPK-null Drosophila mutants have spindle defects. We show that threonine(172) phosphorylated AMPK localizes to the mitotic spindle poles and increases when cells enter mitosis. AMPK depletion causes a mitotic delay with misoriented spindles relative to the normal division plane and a reduced number and length of astral microtubules. AMPK-depleted cells contain mitotic actin bundles, which prevent astral microtubule-actin cortex attachments. Since myosin regulatory light chain (MRLC) is an AMPK downstream target and mediates actin function, we investigated whether AMPK signals through MRLC to control spindle orientation. Mitotic levels of serine(19) phosphorylated MRLC (pMRLC(ser19)) and spindle pole-associated pMRLC(ser19) are abolished when AMPK function is compromised, indicating that AMPK is essential for pMRLC(ser19) spindle pole activity. Phosphorylation of AMPK and MRLC in the mitotic spindle is dependent upon calcium/calmodulin-dependent protein kinase kinase (CamKK) activity in LKB1-deficient cells, suggesting that CamKK regulates this pathway when LKB1 function is compromised. Taken together, these data indicate that AMPK mediates spindle pole-associated pMRLC(ser19) to control spindle orientation via regulation of actin cortex-astral microtubule attachments.

  15. The kinase DYRK1A reciprocally regulates the differentiation of Th17 and regulatory T cells.

    PubMed

    Khor, Bernard; Gagnon, John D; Goel, Gautam; Roche, Marly I; Conway, Kara L; Tran, Khoa; Aldrich, Leslie N; Sundberg, Thomas B; Paterson, Alison M; Mordecai, Scott; Dombkowski, David; Schirmer, Melanie; Tan, Pauline H; Bhan, Atul K; Roychoudhuri, Rahul; Restifo, Nicholas P; O'Shea, John J; Medoff, Benjamin D; Shamji, Alykhan F; Schreiber, Stuart L; Sharpe, Arlene H; Shaw, Stanley Y; Xavier, Ramnik J

    2015-01-01

    The balance between Th17 and T regulatory (Treg) cells critically modulates immune homeostasis, with an inadequate Treg response contributing to inflammatory disease. Using an unbiased chemical biology approach, we identified a novel role for the dual specificity tyrosine-phosphorylation-regulated kinase DYRK1A in regulating this balance. Inhibition of DYRK1A enhances Treg differentiation and impairs Th17 differentiation without affecting known pathways of Treg/Th17 differentiation. Thus, DYRK1A represents a novel mechanistic node at the branch point between commitment to either Treg or Th17 lineages. Importantly, both Treg cells generated using the DYRK1A inhibitor harmine and direct administration of harmine itself potently attenuate inflammation in multiple experimental models of systemic autoimmunity and mucosal inflammation. Our results identify DYRK1A as a physiologically relevant regulator of Treg cell differentiation and suggest a broader role for other DYRK family members in immune homeostasis. These results are discussed in the context of human diseases associated with dysregulated DYRK activity. PMID:25998054

  16. Mitochondrial Fusion and ERK Activity Regulate Steroidogenic Acute Regulatory Protein Localization in Mitochondria

    PubMed Central

    Duarte, Alejandra; Castillo, Ana Fernanda; Podestá, Ernesto J.; Poderoso, Cecilia

    2014-01-01

    The rate-limiting step in the biosynthesis of steroid hormones, known as the transfer of cholesterol from the outer to the inner mitochondrial membrane, is facilitated by StAR, the Steroidogenic Acute Regulatory protein. We have described that mitochondrial ERK1/2 phosphorylates StAR and that mitochondrial fusion, through the up-regulation of a fusion protein Mitofusin 2, is essential during steroidogenesis. Here, we demonstrate that mitochondrial StAR together with mitochondrial active ERK and PKA are necessary for maximal steroid production. Phosphorylation of StAR by ERK is required for the maintenance of this protein in mitochondria, observed by means of over-expression of a StAR variant lacking the ERK phosphorylation residue. Mitochondrial fusion regulates StAR levels in mitochondria after hormone stimulation. In this study, Mitofusin 2 knockdown and mitochondrial fusion inhibition in MA-10 Leydig cells diminished StAR mRNA levels and concomitantly mitochondrial StAR protein. Together our results unveil the requirement of mitochondrial fusion in the regulation of the localization and mRNA abundance of StAR. We here establish the relevance of mitochondrial phosphorylation events in the correct localization of this key protein to exert its action in specialized cells. These discoveries highlight the importance of mitochondrial fusion and ERK phosphorylation in cholesterol transport by means of directing StAR to the outer mitochondrial membrane to achieve a large number of steroid molecules per unit of StAR. PMID:24945345

  17. The kinase DYRK1A reciprocally regulates the differentiation of Th17 and regulatory T cells

    PubMed Central

    Khor, Bernard; Gagnon, John D; Goel, Gautam; Roche, Marly I; Conway, Kara L; Tran, Khoa; Aldrich, Leslie N; Sundberg, Thomas B; Paterson, Alison M; Mordecai, Scott; Dombkowski, David; Schirmer, Melanie; Tan, Pauline H; Bhan, Atul K; Roychoudhuri, Rahul; Restifo, Nicholas P; O'Shea, John J; Medoff, Benjamin D; Shamji, Alykhan F; Schreiber, Stuart L; Sharpe, Arlene H; Shaw, Stanley Y; Xavier, Ramnik J

    2015-01-01

    The balance between Th17 and T regulatory (Treg) cells critically modulates immune homeostasis, with an inadequate Treg response contributing to inflammatory disease. Using an unbiased chemical biology approach, we identified a novel role for the dual specificity tyrosine-phosphorylation-regulated kinase DYRK1A in regulating this balance. Inhibition of DYRK1A enhances Treg differentiation and impairs Th17 differentiation without affecting known pathways of Treg/Th17 differentiation. Thus, DYRK1A represents a novel mechanistic node at the branch point between commitment to either Treg or Th17 lineages. Importantly, both Treg cells generated using the DYRK1A inhibitor harmine and direct administration of harmine itself potently attenuate inflammation in multiple experimental models of systemic autoimmunity and mucosal inflammation. Our results identify DYRK1A as a physiologically relevant regulator of Treg cell differentiation and suggest a broader role for other DYRK family members in immune homeostasis. These results are discussed in the context of human diseases associated with dysregulated DYRK activity. DOI: http://dx.doi.org/10.7554/eLife.05920.001 PMID:25998054

  18. Integration of the Transcription Factor-Regulated and Epigenetic Mechanisms in the Control of Keratinocyte Differentiation

    PubMed Central

    Botchkarev, Vladimir A.

    2016-01-01

    The epidermal differentiation program is regulated at several levels including signaling pathways, lineage-specific transcription factors, and epigenetic regulators that establish well-coordinated process of terminal differentiation resulting in formation of the epidermal barrier. The epigenetic regulatory machinery operates at several levels including modulation of covalent DNA/histone modifications, as well as through higher-order chromatin remodeling to establish long-range topological interactions between the genes and their enhancer elements. Epigenetic regulators exhibit both activating and repressive effects on chromatin in keratinocytes (KCs): whereas some of them promote terminal differentiation, the others stimulate proliferation of progenitor cells, as well as inhibit premature activation of terminal differentiation-associated genes. Transcription factor-regulated and epigenetic mechanisms are highly connected, and the p63 transcription factor has an important role in the higher-order chromatin remodeling of the KC-specific gene loci via direct control of the genome organizer Satb1 and ATP-dependent chromatin remodeler Brg1. However, additional efforts are required to fully understand the complexity of interactions between distinct transcription factors and epigenetic regulators in the control of KC differentiation. Further understanding of these interactions and their alterations in different pathological skin conditions will help to progress toward the development of novel approaches for the treatment of skin disorders by targeting epigenetic regulators and modulating chromatin organization in KCs. PMID:26551942

  19. The interplay between regulatory T cells and metabolism in immune regulation

    PubMed Central

    Zeng, Hu; Chi, Hongbo

    2013-01-01

    Regulatory T cells (Tregs) are crucial for peripheral tolerance and are intimately involved in immunological diseases and cancer. Recent studies have highlighted a key role for Tregs in metabolic disorders, for instance as they accumulate in the adipose tissue to protect against obesity-related inflammation and insulin resistance. Conversely, the generation and immunosuppressive functions of Tregs are influenced by both systemic and cellular metabolism. The nutritional status as well as metabolic cues such as those provided by leptin impinge upon the proliferation of Tregs. In addition, the mTOR-dependent lipid metabolism has a crucial role in programming the activity of Tregs under steady-state conditions as well as upon activation. This review discusses the intricate interaction between Tregs and metabolism, focusing on the roles of Tregs in systemic and local metabolic circuitries as well as on the regulation of Treg abundance and function by metabolic signals. PMID:24404429

  20. Puffs and gene regulation--molecular insights into the Drosophila ecdysone regulatory hierarchy.

    PubMed

    Thummel, C S

    1990-12-01

    Sixteen years ago, Michael Ashburner and his colleagues proposed a hierarchical model for the genetic control of polytene chromosome puffing by the steroid hormone ecdysone. The recent molecular isolation and characterization of three early ecdysone-inducible genes has confirmed many aspects of this model--these genes are directly induced by ecdysone, repressed by ecdysone-induced proteins, and appear to encode DNA binding regulatory proteins. The three early genes are also remarkably similar in structure. They are all unusually long and complex, with multiple transcripts that direct the synthesis of several related proteins from each locus. Proteins encoded by two of the early genes bind to both early and late ecdysone-induced puffs, implying that they are key regulators in the hierarchy. PMID:2127884

  1. Genomic analysis of host - Peste des petits ruminants vaccine viral transcriptome uncovers transcription factors modulating immune regulatory pathways.

    PubMed

    Manjunath, Siddappa; Kumar, Gandham Ravi; Mishra, Bishnu Prasad; Mishra, Bina; Sahoo, Aditya Prasad; Joshi, Chaitanya G; Tiwari, Ashok K; Rajak, Kaushal Kishore; Janga, Sarath Chandra

    2015-01-01

    Peste des petits ruminants (PPR), is an acute transboundary viral disease of economic importance, affecting goats and sheep. Mass vaccination programs around the world resulted in the decline of PPR outbreaks. Sungri 96 is a live attenuated vaccine, widely used in Northern India against PPR. This vaccine virus, isolated from goat works efficiently both in sheep and goat. Global gene expression changes under PPR vaccine virus infection are not yet well defined. Therefore, in this study we investigated the host-vaccine virus interactions by infecting the peripheral blood mononuclear cells isolated from goat with PPRV (Sungri 96 vaccine virus), to quantify the global changes in the transcriptomic signature by RNA-sequencing. Viral genome of Sungri 96 vaccine virus was assembled from the PPRV infected transcriptome confirming the infection and demonstrating the feasibility of building a complete non-host genome from the blood transcriptome. Comparison of infected transcriptome with control transcriptome revealed 985 differentially expressed genes. Functional analysis showed enrichment of immune regulatory pathways under PPRV infection. Key genes involved in immune system regulation, spliceosomal and apoptotic pathways were identified to be dysregulated. Network analysis revealed that the protein - protein interaction network among differentially expressed genes is significantly disrupted in infected state. Several genes encoding TFs that govern immune regulatory pathways were identified to co-regulate the differentially expressed genes. These data provide insights into the host - PPRV vaccine virus interactome for the first time. Our findings suggested dysregulation of immune regulatory pathways and genes encoding Transcription Factors (TFs) that govern these pathways in response to viral infection. PMID:25827022

  2. Pervasive variation of transcription factor orthologs contributes to regulatory network evolution.

    PubMed

    Nadimpalli, Shilpa; Persikov, Anton V; Singh, Mona

    2015-03-01

    Differences in transcriptional regulatory networks underlie much of the phenotypic variation observed across organisms. Changes to cis-regulatory elements are widely believed to be the predominant means by which regulatory networks evolve, yet examples of regulatory network divergence due to transcription factor (TF) variation have also been observed. To systematically ascertain the extent to which TFs contribute to regulatory divergence, we analyzed the evolution of the largest class of metazoan TFs, Cys2-His2 zinc finger (C2H2-ZF) TFs, across 12 Drosophila species spanning ~45 million years of evolution. Remarkably, we uncovered that a significant fraction of all C2H2-ZF 1-to-1 orthologs in flies exhibit variations that can affect their DNA-binding specificities. In addition to loss and recruitment of C2H2-ZF domains, we found diverging DNA-contacting residues in ~44% of domains shared between D. melanogaster and the other fly species. These diverging DNA-contacting residues, found in ~70% of the D. melanogaster C2H2-ZF genes in our analysis and corresponding to ~26% of all annotated D. melanogaster TFs, show evidence of functional constraint: they tend to be conserved across phylogenetic clades and evolve slower than other diverging residues. These same variations were rarely found as polymorphisms within a population of D. melanogaster flies, indicating their rapid fixation. The predicted specificities of these dynamic domains gradually change across phylogenetic distances, suggesting stepwise evolutionary trajectories for TF divergence. Further, whereas proteins with conserved C2H2-ZF domains are enriched in developmental functions, those with varying domains exhibit no functional enrichments. Our work suggests that a subset of highly dynamic and largely unstudied TFs are a likely source of regulatory variation in Drosophila and other metazoans.

  3. Calcium Regulation of Calmodulin Binding to and Dissociation from the Myo1c Regulatory Domain†

    PubMed Central

    Manceva, Slobodanka; Lin, Tianming; Pham, Huy; Lewis, John H.; Goldman, Yale E.; Ostap, E. Michael

    2008-01-01

    Myo1c is an unconventional myosin involved in cell signaling and membrane dynamics. Calcium binding to the regulatory-domain-associated calmodulin affects myo1c motor properties, but the kinetic details of this regulation are not fully understood. We performed actin gliding assays, ATPase measurements, fluorescence spectroscopy, and stopped-flow kinetics to determine the biochemical parameters that define the calmodulin-regulatory-domain interaction. We found calcium moderately increases the actin-activated ATPase activity, and completely inhibits actin gliding. Addition of exogenous calmodulin in the presence of calcium fully restores the actin gliding rate. A fluorescently labeled calmodulin mutant (N111C) binds to recombinant peptides containing the myo1c IQ motifs at a diffusion limited rate in the presence and absence of calcium. Measurements of calmodulin dissociation from the IQ motifs in the absence of calcium show that the calmodulin bound to the IQ motif adjacent to the motor domain (IQ1) has the slowest dissociation rate (0.0007 s−1), and the IQ motif adjacent to the tail domain (IQ3) has the fastest dissociation rate (0.5 s−1). When the complex is equilibrated with calcium, calmodulin dissociates most rapidly from IQ1 (60 s−1). However, this increased rate of dissociation is limited by a slow calcium-induced conformational change (3 s−1). Fluorescence anisotropy decay of fluorescently labeled N111C bound to myo1c did not depend appreciably on Ca2+. Our data suggest that the calmodulin bound to the IQ motif adjacent to the motor domain is rapidly exchangeable in the presence of calcium and is responsible for regulation of myo1c ATPase and motile activity. PMID:17910470

  4. The function and regulation of the GATA factor ELT-2 in the C. elegans endoderm.

    PubMed

    Wiesenfahrt, Tobias; Berg, Janette Y; Osborne Nishimura, Erin; Robinson, Adam G; Goszczynski, Barbara; Lieb, Jason D; McGhee, James D

    2016-02-01

    ELT-2 is the major regulator of genes involved in differentiation, maintenance and function of C. elegans intestine from the early embryo to mature adult. elt-2 responds to overexpression of the GATA transcription factors END-1 and END-3, which specify the intestine, as well as to overexpression of the two GATA factors that are normally involved in intestinal differentiation, ELT-7 and ELT-2 itself. Little is known about the molecular mechanisms underlying these interactions, how ELT-2 levels are maintained throughout development or how such systems respond to developmental perturbations. Here, we analyse elt-2 gene regulation through transgenic reporter assays, ELT-2 ChIP and characterisation of in vitro DNA-protein interactions. Our results indicate that elt-2 is controlled by three discrete regulatory regions conserved between C. elegans and C. briggsae that span >4 kb of 5' flanking sequence. These regions are superficially interchangeable but have quantitatively different enhancer properties, and their combined activities indicate inter-region synergies. Their regulatory activity is mediated by a small number of conserved TGATAA sites that are largely interchangeable and interact with different endodermal GATA factors with only modest differences in affinity. The redundant molecular mechanism that forms the elt-2 regulatory network is robust and flexible, as loss of end-3 halves ELT-2 levels in the early embryo but levels fully recover by the time of hatching. When ELT-2 is expressed under the control of end-1 regulatory elements, in addition to its own endogenous promoter, it can replace the complete set of endoderm-specific GATA factors: END-1, END-3, ELT-7 and (the probably non-functional) ELT-4. Thus, in addition to controlling gene expression during differentiation, ELT-2 is capable of specifying the entire C. elegans endoderm.

  5. Cell Cycle and Apoptosis Regulatory Protein (CARP)-1 is Expressed inOsteoblasts and Regulated by PTH

    SciTech Connect

    Sharma, Sonali; Mahalingam, Chandrika D.; Das, Varsha; Levi, Edi; Rishi, Arun K.; Datta, Nabanita S.

    2013-07-12

    Highlights: •CARP-1 is identified for the first time in bone cells. •PTH downregulates CARP-1 expression in differentiated osteoblasts. •PTH displaces CARP-1 from nucleus to the cytoplasm in differentiated osteoblasts. •Downregulation of CARP-1 by PTH involves PKA, PKC and P-p38 MAPK pathways. -- Abstract: Bone mass is dependent on osteoblast proliferation, differentiation and life-span of osteoblasts. Parathyroid hormone (PTH) controls osteoblast cell cycle regulatory proteins and suppresses mature osteoblasts apoptosis. Intermittent administration of PTH increases bone mass but the mechanism of action are complex and incompletely understood. Cell Cycle and Apoptosis Regulatory Protein (CARP)-1 (aka CCAR1) is a novel transducer of signaling by diverse agents including cell growth and differentiation factors. To gain further insight into the molecular mechanism, we investigated involvement of CARP-1 in PTH signaling in osteoblasts. Immunostaining studies revealed presence of CARP-1 in osteoblasts and osteocytes, while a minimal to absent levels were noted in the chondrocytes of femora from 10 to 12-week old mice. Treatment of 7-day differentiated MC3T3-E1 clone-4 (MC-4) mouse osteoblastic cells and primary calvarial osteoblasts with PTH for 30 min to 5 h followed by Western blot analysis showed 2- to 3-fold down-regulation of CARP-1 protein expression in a dose- and time-dependent manner compared to the respective vehicle treated control cells. H-89, a Protein Kinase A (PKA) inhibitor, suppressed PTH action on CARP-1 protein expression indicating PKA-dependent mechanism. PMA, a Protein Kinase C (PKC) agonist, mimicked PTH action, and the PKC inhibitor, GF109203X, partially blocked PTH-dependent downregulation of CARP-1, implying involvement of PKC. U0126, a Mitogen-Activated Protein Kinase (MAPK) Kinase (MEK) inhibitor, failed to interfere with CARP-1 suppression by PTH. In contrast, SB203580, p38 inhibitor, attenuated PTH down-regulation of CARP-1

  6. Methionine enkephalin (MENK) inhibits tumor growth through regulating CD4+Foxp3+ regulatory T cells (Tregs) in mice.

    PubMed

    Li, Xuan; Meng, Yiming; Plotnikoff, Nicolas P; Youkilis, Gene; Griffin, Noreen; Wang, Enhua; Lu, Changlong; Shan, Fengping

    2015-01-01

    Methionine enkephalin (MENK), an endogenous neuropeptide, plays an crucial role in both neuroendocrine and immune systems. CD4+Foxp3+ regulatory T cells (Tregs) are identified as a major subpopulation of T lymphocytes in suppressing immune system to keep balanced immunity. The aim of this research work was to elucidate the mechanisms via which MENK interacts with Tregs in cancer situation. The influence of MENK on transforming growth factor-β (TGF-β) mediated conversion from naïve CD4+CD25- T cells to CD4+CD25+ Tregs was determined and the data from flow cytometry (FCM) analysis indicated that MENK effectively inhibited the expression of Foxp3 during the process of TGF-βinduction. Furthermore, this inhibiting process was accompanied by diminishing phosphorylation and nuclear translocation of Smad2/3, confirmed by western blot (WB) analysis and immunofluorescence (IF) at molecular level. We established sarcoma mice model with S180 to investigate whether MENK could modulate Tregs in tumor circumstance. Our findings showed that MENK delayed the development of tumor in S180 tumor bearing mice and down-regulated level of Tregs. Together, these novel findings reached a conclusion that MENK could inhibit Tregs activity directly and retard tumor development through down-regulating Tregs in mice. This work advances the deepening understanding of the influence of MENK on Tregs in cancer situation, and relation of MENK with immune system, supporting the implication of MENK as a new strategy for cancer immunotherapy.

  7. Methionine Enkephalin (MENK) Inhibits tumor growth through regulating CD4+Foxp3+ Regulatory T cells (Tregs) in mice

    PubMed Central

    Li, Xuan; Meng, Yiming; Plotnikoff, Nicolas P; Youkilis, Gene; Griffin, Noreen; Wang, Enhua; Lu, Changlong; Shan, Fengping

    2015-01-01

    Methionine enkephalin (MENK), an endogenous neuropeptide, plays an crucial role in both neuroendocrine and immune systems. CD4+Foxp3+ regulatory T cells (Tregs) are identified as a major subpopulation of T lymphocytes in suppressing immune system to keep balanced immunity. The aim of this research work was to elucidate the mechanisms via which MENK interacts with Tregs in cancer situation. The influence of MENK on transforming growth factor-β (TGF-β) mediated conversion from naïve CD4+CD25- T cells to CD4+CD25+ Tregs was determined and the data from flow cytometry (FCM) analysis indicated that MENK effectively inhibited the expression of Foxp3 during the process of TGF-βinduction. Furthermore, this inhibiting process was accompanied by diminishing phosphorylation and nuclear translocation of Smad2/3, confirmed by western blot (WB) analysis and immunofluorescence (IF) at molecular level. We established sarcoma mice model with S180 to investigate whether MENK could modulate Tregs in tumor circumstance. Our findings showed that MENK delayed the development of tumor in S180 tumor bearing mice and down-regulated level of Tregs. Together, these novel findings reached a conclusion that MENK could inhibit Tregs activity directly and retard tumor development through down-regulating Tregs in mice. This work advances the deepening understanding of the influence of MENK on Tregs in cancer situation, and relation of MENK with immune system, supporting the implication of MENK as a new strategy for cancer immunotherapy. PMID:25701137

  8. Mining 3D genome structure populations identifies major factors governing the stability of regulatory communities

    PubMed Central

    Dai, Chao; Li, Wenyuan; Tjong, Harianto; Hao, Shengli; Zhou, Yonggang; Li, Qingjiao; Chen, Lin; Zhu, Bing; Alber, Frank; Jasmine Zhou, Xianghong

    2016-01-01

    Three-dimensional (3D) genome structures vary from cell to cell even in an isogenic sample. Unlike protein structures, genome structures are highly plastic, posing a significant challenge for structure-function mapping. Here we report an approach to comprehensively identify 3D chromatin clusters that each occurs frequently across a population of genome structures, either deconvoluted from ensemble-averaged Hi-C data or from a collection of single-cell Hi-C data. Applying our method to a population of genome structures (at the macrodomain resolution) of lymphoblastoid cells, we identify an atlas of stable inter-chromosomal chromatin clusters. A large number of these clusters are enriched in binding of specific regulatory factors and are therefore defined as ‘Regulatory Communities.' We reveal two major factors, centromere clustering and transcription factor binding, which significantly stabilize such communities. Finally, we show that the regulatory communities differ substantially from cell to cell, indicating that expression variability could be impacted by genome structures. PMID:27240697

  9. Sterol regulatory element-binding proteins are transcriptional regulators of the thyroglobulin gene in thyroid cells.

    PubMed

    Wen, Gaiping; Eder, Klaus; Ringseis, Robert

    2016-08-01

    The genes encoding sodium/iodide symporter (NIS) and thyroid peroxidase (TPO), both of which are essential for thyroid hormone (TH) synthesis, were shown to be regulated by sterol regulatory element-binding proteins (SREBP)-1c and -2. In the present study we tested the hypothesis that transcription of a further gene essential for TH synthesis, the thyroglobulin (TG) gene, is under the control of SREBP. To test this hypothesis, we studied the influence of inhibition of SREBP maturation and SREBP knockdown on TG expression in FRTL-5 thyrocytes and explored transcriptional regulation of the TG promoter by reporter gene experiments in FRTL-5 and HepG2 cells, gel shift assays and chromatin immunoprecipitation. Inhibition of SREBP maturation by 25-hydroxycholesterol and siRNA-mediated knockdown of either SREBP-1c or SREBP-2 decreased mRNA and protein levels of TG in FRTL-5 thyrocytes. Reporter gene assays with wild-type and mutated TG promoter reporter truncation constructs revealed that the rat TG promoter is transcriptionally activated by nSREBP-1c and nSREBP-2. DNA-binding assays and chromatin immunoprecipitation assays showed that both nSREBP-1c and nSREBP-2 bind to a SREBP binding motif with characteristics of an E-box SRE at position -63 in the rat TG promoter. In connection with recent findings that NIS and TPO are regulated by SREBP in thyrocytes the present findings support the view that SREBP are regulators of essential steps of TH synthesis in the thyroid gland such as iodide uptake, iodide oxidation and iodination of tyrosyl residues of TG. This moreover suggests that SREBP may be molecular targets for pharmacological modulation of TH synthesis. PMID:27321819

  10. A Mathematical Model of the Immune and Neuroendocrine Systems Mutual Regulation under the Technogenic Chemical Factors Impact

    PubMed Central

    Zaitseva, N. V.; Kiryanov, D. A.; Lanin, D. V.; Chigvintsev, V. M.

    2014-01-01

    The concept of the triad regulatory metasystem, which includes the neuroendocrine and immune regulation systems, is currently generally accepted. Changes occurring in each of the regulatory systems in response to the impact of technogenic chemical factors are also well known. This paper presents mathematical models of the immune and neuroendocrine system functioning, using the interaction between these systems in response to bacterial invasion as an example, and changes in their performance under exposure to chemical factors, taking into account the stage of functional disorders in a producing organ, using the performance of the bone marrow as an example. PMID:24872840

  11. MAGIA²: from miRNA and genes expression data integrative analysis to microRNA-transcription factor mixed regulatory circuits (2012 update).

    PubMed

    Bisognin, Andrea; Sales, Gabriele; Coppe, Alessandro; Bortoluzzi, Stefania; Romualdi, Chiara

    2012-07-01

    MAGIA(2) (http://gencomp.bio.unipd.it/magia2) is an update, extension and evolution of the MAGIA web tool. It is dedicated to the integrated analysis of in silico target prediction, microRNA (miRNA) and gene expression data for the reconstruction of post-transcriptional regulatory networks. miRNAs are fundamental post-transcriptional regulators of several key biological and pathological processes. As miRNAs act prevalently through target degradation, their expression profiles are expected to be inversely correlated to those of the target genes. Low specificity of target prediction algorithms makes integration approaches an interesting solution for target prediction refinement. MAGIA(2) performs this integrative approach supporting different association measures, multiple organisms and almost all target predictions algorithms. Nevertheless, miRNAs activity should be viewed as part of a more complex scenario where regulatory elements and their interactors generate a highly connected network and where gene expression profiles are the result of different levels of regulation. The updated MAGIA(2) tries to dissect this complexity by reconstructing mixed regulatory circuits involving either miRNA or transcription factor (TF) as regulators. Two types of circuits are identified: (i) a TF that regulates both a miRNA and its target and (ii) a miRNA that regulates both a TF and its target.

  12. MAGIA2: from miRNA and genes expression data integrative analysis to microRNA–transcription factor mixed regulatory circuits (2012 update)

    PubMed Central

    Bisognin, Andrea; Sales, Gabriele; Coppe, Alessandro; Bortoluzzi, Stefania; Romualdi, Chiara

    2012-01-01

    MAGIA2 (http://gencomp.bio.unipd.it/magia2) is an update, extension and evolution of the MAGIA web tool. It is dedicated to the integrated analysis of in silico target prediction, microRNA (miRNA) and gene expression data for the reconstruction of post-transcriptional regulatory networks. miRNAs are fundamental post-transcriptional regulators of several key biological and pathological processes. As miRNAs act prevalently through target degradation, their expression profiles are expected to be inversely correlated to those of the target genes. Low specificity of target prediction algorithms makes integration approaches an interesting solution for target prediction refinement. MAGIA2 performs this integrative approach supporting different association measures, multiple organisms and almost all target predictions algorithms. Nevertheless, miRNAs activity should be viewed as part of a more complex scenario where regulatory elements and their interactors generate a highly connected network and where gene expression profiles are the result of different levels of regulation. The updated MAGIA2 tries to dissect this complexity by reconstructing mixed regulatory circuits involving either miRNA or transcription factor (TF) as regulators. Two types of circuits are identified: (i) a TF that regulates both a miRNA and its target and (ii) a miRNA that regulates both a TF and its target. PMID:22618880

  13. Sterol regulatory element binding protein-1 (SREBP-1)c promoter: Characterization and transcriptional regulation by mature SREBP-1 and liver X receptor α in goat mammary epithelial cells.

    PubMed

    Xu, H F; Luo, J; Wang, H P; Wang, H; Zhang, T Y; Tian, H B; Yao, D W; Loor, J J

    2016-02-01

    Sterol regulatory element binding protein-1 (SREBP-1) is a key transcription factor that regulates lipogenesis in rodent liver. Two isoforms (SREBP-1a and SREBP-1c) of SREBP-1 are transcribed by an alternative promoter on the same gene (SREBF1), and the isoforms differ only in their first exon. Although the regulatory effects of SREBP-1 on lipid and milk fat synthesis have received much attention in ruminants, SREBP-1c promoter and its regulatory mechanisms have not been characterized in the goat. In the present study, we cloned and sequenced a 2,012-bp fragment of the SREBP-1c 5'-flanking region from goat genomic DNA. A luciferase reporter assay revealed that SREBP-1c is transcriptionally activated by the liver X receptor α (LXRα) agonist T0901317, and is decreased by SREBP-1 small interfering (si)RNA. A 5' deletion analysis revealed a core promoter region located -395 to +1 bp upstream of the transcriptional start site (TSS). Site-directed mutagenesis of LXRα binding elements (LXRE1 and LXRE2) and sterol regulatory elements (SRE1 and SRE2) revealed that the full effects of T 4506585 require the presence of both LXRE and SRE. We also characterized a new SRE (SRE1) and demonstrated a direct role of SREBP-1 (auto-loop regulation) in maintaining its basal transcription activity. Results suggest that goat SREBP-1c gene is transcriptionally regulated by mature SREBP-1 (auto-loop circuit regulation) and LXRα in goat mammary epithelial cells. PMID:26709176

  14. Regulation of Airway Inflammation by G-protein Regulatory Motif Peptides of AGS3 protein.

    PubMed

    Choi, Il-Whan; Ahn, Do Whan; Choi, Jang-Kyu; Cha, Hee-Jae; Ock, Mee Sun; You, EunAe; Rhee, SangMyung; Kim, Kwang Chul; Choi, Yung Hyun; Song, Kyoung Seob

    2016-01-01

    Respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), and lung infections have critical consequences on mortality and morbidity in humans. The aims of the present study were to examine the mechanisms by which CXCL12 affects MUC1 transcription and airway inflammation, which depend on activator of G-protein signaling (AGS) 3 and to identify specific molecules that suppress CXCL12-induced airway inflammation by acting on G-protein-coupled receptors. Herein, AGS3 suppresses CXCL12-mediated upregulation of MUC1 and TNFα by regulating Gαi. We found that the G-protein regulatory (GPR) motif peptide in AGS3 binds to Gαi and downregulates MUC1 expression; in contrast, this motif upregulates TNFα expression. Mutated GPR Q34A peptide increased the expression of MUC1 and TGFβ but decreased the expression of TNFα and IL-6. Moreover, CXCR4-induced dendritic extensions in 2D and 3D matrix cultures were inhibited by the GPR Q34A peptide compared with a wild-type GPR peptide. The GPR Q34A peptide also inhibited CXCL12-induced morphological changes and inflammatory cell infiltration in the mouse lung, and production of inflammatory cytokines in bronchoalveolar lavage (BAL) fluid and the lungs. Our data indicate that the GPR motif of AGS3 is critical for regulating MUC1/Muc1 expression and cytokine production in the inflammatory microenvironment. PMID:27270970

  15. Regulation of Airway Inflammation by G-protein Regulatory Motif Peptides of AGS3 protein

    PubMed Central

    Choi, IL-Whan; Ahn, Do Whan; Choi, Jang-Kyu; Cha, Hee-Jae; Ock, Mee Sun; You, EunAe; Rhee, SangMyung; Kim, Kwang Chul; Choi, Yung Hyun; Song, Kyoung Seob

    2016-01-01

    Respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), and lung infections have critical consequences on mortality and morbidity in humans. The aims of the present study were to examine the mechanisms by which CXCL12 affects MUC1 transcription and airway inflammation, which depend on activator of G-protein signaling (AGS) 3 and to identify specific molecules that suppress CXCL12-induced airway inflammation by acting on G-protein-coupled receptors. Herein, AGS3 suppresses CXCL12-mediated upregulation of MUC1 and TNFα by regulating Gαi. We found that the G-protein regulatory (GPR) motif peptide in AGS3 binds to Gαi and downregulates MUC1 expression; in contrast, this motif upregulates TNFα expression. Mutated GPR Q34A peptide increased the expression of MUC1 and TGFβ but decreased the expression of TNFα and IL-6. Moreover, CXCR4-induced dendritic extensions in 2D and 3D matrix cultures were inhibited by the GPR Q34A peptide compared with a wild-type GPR peptide. The GPR Q34A peptide also inhibited CXCL12-induced morphological changes and inflammatory cell infiltration in the mouse lung, and production of inflammatory cytokines in bronchoalveolar lavage (BAL) fluid and the lungs. Our data indicate that the GPR motif of AGS3 is critical for regulating MUC1/Muc1 expression and cytokine production in the inflammatory microenvironment. PMID:27270970

  16. Insights on regulation and function of the iron regulatory protein 1 (IRP1).

    PubMed

    Wang, Jian; Chen, Guohua; Filebeen, Carine; Pantopoulos, Kostas

    2008-01-01

    Iron regulatory protein 1 (IRP1) controls the translation or stability of several mRNAs by binding to iron responsive elements (IREs) within their untranslated regions. Its activity is regulated by an unusual iron-sulfur cluster (ICS) switch. Thus, in iron-replete cells, IRP1 assembles a cubane [4Fe-4S] cluster that prevents RNA-binding activity and renders the protein to cytosolic aconitase. We show that wild type or mutant forms of IRP1 that fail to assemble a [4Fe-4S] cluster are sensitized for iron-dependent degradation by the ubiquitin-proteasome pathway. The regulation of IRP1 abundance poses an alternative mechanism to prevent accumulation of inappropriately high IRE-binding activity when the ICS assembly pathway is impaired. To study functional aspects of IRP1, we overexpressed wild type or mutant forms of the protein in human H1299 lung cancer cells in a tetracycline-inducible fashion, and analyzed how this affects cell growth. While the induction of IRP1 did not affect cell proliferation in culture, it dramatically reduced the capacity of the cells to form solid tumor xenografts in nude mice. These data provide a first link between IRP1 and cancer.

  17. Arabidopsis TRANSPARENT TESTA GLABRA2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of GLABRA2 transcription in epidermal differentiation.

    PubMed

    Ishida, Tetsuya; Hattori, Sayoko; Sano, Ryosuke; Inoue, Kayoko; Shirano, Yumiko; Hayashi, Hiroaki; Shibata, Daisuke; Sato, Shusei; Kato, Tomohiko; Tabata, Satoshi; Okada, Kiyotaka; Wada, Takuji

    2007-08-01

    Arabidopsis thaliana TRANSPARENT TESTA GLABRA2 (TTG2) encodes a WRKY transcription factor and is expressed in young leaves, trichomes, seed coats, and root hairless cells. An examination of several trichome and root hair mutants indicates that MYB and bHLH genes regulate TTG2 expression. Two MYB binding sites in the TTG2 5' regulatory region act as cis regulatory elements and as direct targets of R2R3 MYB transcription factors such as WEREWOLF, GLABRA1, and TRANSPARENT TESTA2. Mutations in TTG2 cause phenotypic defects in trichome development and seed color pigmentation. Transgenic plants expressing a chimeric repressor version of the TTG2 protein (TTG2:SRDX) showed defects in trichome formation, anthocyanin accumulation, seed color pigmentation, and differentiation of root hairless cells. GLABRA2 (GL2) expression was markedly reduced in roots of ProTTG2:TTG2:SRDX transgenic plants, suggesting that TTG2 is involved in the regulation of GL2 expression, although GL2 expression in the ttg2 mutant was similar to that in the wild type. Our analysis suggests a new step in a regulatory cascade of epidermal differentiation, in which complexes containing R2R3 MYB and bHLH transcription factors regulate the expression of TTG2, which then regulates GL2 expression with complexes containing R2R3 MYB and bHLH in the differentiation of trichomes and root hairless cells.

  18. Hypoxia inducible factor 1 alpha down-regulates type i collagen through Sp3 transcription factor in human chondrocytes.

    PubMed

    Duval, Elise; Bouyoucef, Mouloud; Leclercq, Sylvain; Baugé, Catherine; Boumédiene, Karim

    2016-09-01

    Cartilage engineering is one challenging issue in regenerative medicine. Low oxygen tension or hypoxia inducible factor-1 (HIF-1α) gene therapy are promising strategies in the field of cartilage repair. Previously, we showed that hypoxia and its mediator HIF-1 regulate matrix genes expression (collagens and aggrecan). Here, we investigated the molecular mechanism involved in the regulation of type I collagen (COL1A1) by HIF-1 in human articular chondrocytes. We show that HIF-1α reduces COL1A1 transcription, through a distal promoter (-2300 to -1816 bp upstream transcription initiation site), containing two GC boxes that bind Sp transcription factors (Sp1/Sp3). Sp1 acts as a positive regulator but is not induced by HIF-1. COL1A1 inhibition caused by HIF-1 implies only Sp3, which accumulates and competes Sp1 binding on COL1A1 promoter. Additionally, Sp3 ectopic expression inhibits COL1A1, while Sp3 knockdown counteracts the downregulation of COL1A1 induced by HIF-1. In conclusion, we established a new regulatory model of COL1A1 regulation by HIF-1, and bring out its relationship with Sp3 transcription factor. In a fundamental level, these findings give insights in the mechanisms controlling COL1A1 gene expression. This may be helpful to improve strategies to impair type I collagen expression during chondrocyte differentiation for cartilage engineering. © 2016 IUBMB Life, 68(9):756-763, 2016. PMID:27521280

  19. Environmental factors regulating soil organic matter chlorination

    NASA Astrophysics Data System (ADS)

    Svensson, Teresia; Montelius, Malin; Reyier, Henrik; Rietz, Karolina; Karlsson, Susanne; Lindberg, Cecilia; Andersson, Malin; Danielsson, Åsa; Bastviken, David

    2016-04-01

    Natural chlorination of organic matter is common in soils. Despite the widespread abundance of soil chlorinated soil organic matter (SOM), frequently exceeding soil chloride abundance in surface soils, and a common ability of microorganisms to produce chlorinated SOM, we lack fundamental knowledge about dominating processes and organisms responsible for the chlorination. To take one step towards resolving the terrestrial chlorine (Cl) puzzle, this study aims to analyse how environmental factors influence chlorination of SOM. Four factors were chosen for this study: soil moisture (W), nitrogen (N), chloride (Cl) and organic matter quality (C). These factors are all known to be important for soil processes. Laboratory incubations with 36Cl as a Cl tracer were performed in a two soil incubation experiments. It was found that addition of chloride and nitrogen seem to hamper the chlorination. For the C treatment, on the other hand, the results show that chlorination is enhanced by increased availability of labile organic matter (glucose and maltose). Even higher chlorination was observed when nitrogen and water were added in combination with labile organic matter. The effect that more labile organic matter strongly stimulated the chlorination rates was confirmed by the second separate experiment. These results indicate that chlorination was not primarily a way to cut refractory organic matter into digestible molecules, representing one previous hypothesis, but is related with microbial metabolism in other ways that will be further discussed in our presentation.

  20. Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development

    PubMed Central

    2014-01-01

    Background Development of eukaryotic organisms is controlled by transcription factors that trigger specific and global changes in gene expression programs. In plants, MADS-domain transcription factors act as master regulators of developmental switches and organ specification. However, the mechanisms by which these factors dynamically regulate the expression of their target genes at different developmental stages are still poorly understood. Results We characterized the relationship of chromatin accessibility, gene expression, and DNA binding of two MADS-domain proteins at different stages of Arabidopsis flower development. Dynamic changes in APETALA1 and SEPALLATA3 DNA binding correlated with changes in gene expression, and many of the target genes could be associated with the developmental stage in which they are transcriptionally controlled. We also observe dynamic changes in chromatin accessibility during flower development. Remarkably, DNA binding of APETALA1 and SEPALLATA3 is largely independent of the accessibility status of their binding regions and it can precede increases in DNA accessibility. These results suggest that APETALA1 and SEPALLATA3 may modulate chromatin accessibility, thereby facilitating access of other transcriptional regulators to their target genes. Conclusions Our findings indicate that different homeotic factors regulate partly overlapping, yet also distinctive sets of target genes in a partly stage-specific fashion. By combining the information from DNA-binding and gene expression data, we are able to propose models of stage-specific regulatory interactions, thereby addressing dynamics of regulatory networks throughout flower development. Furthermore, MADS-domain TFs may regulate gene expression by alternative strategies, one of which is modulation of chromatin accessibility. PMID:24581456

  1. 76 FR 40038 - Improving Government Regulations; Unified Agenda of Federal Regulatory and Deregulatory Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... minimal. Timetable: ] Action Date FR Cite NPRM 06/00/11 Regulatory Flexibility Analysis Required: Yes... be minimal. Timetable: Action Date FR Cite NPRM 06/00/11 Regulatory Flexibility Analysis Required.... Timetable: Action Date FR Cite NPRM 06/00/11 Regulatory Flexibility Analysis Required: Yes. Agency...

  2. Regulatory development of the interim and revised regulations for radioactivity in drinking water--past and present issues and problems.

    PubMed

    Lappenbusch, W L; Cothern, C R

    1985-05-01

    Developing the Revised Regulations for Radioactivity in Drinking Water under the Safe Drinking Water Act requires information from all related areas and disciplines. As one step in the regulatory process, the background and history of that process as it applies to radioactivity in drinking water is described. The issues involved in developing the revised regulations are as follows: monitoring and sources of exposure, dose evaluation, health effects, engineering, economics and general policy development. PMID:3988521

  3. Evolution of DNA specificity in a transcription factor family produced a new gene regulatory module.

    PubMed

    McKeown, Alesia N; Bridgham, Jamie T; Anderson, Dave W; Murphy, Michael N; Ortlund, Eric A; Thornton, Joseph W

    2014-09-25

    Complex gene regulatory networks require transcription factors (TFs) to bind distinct DNA sequences. To understand how novel TF specificity evolves, we combined phylogenetic, biochemical, and biophysical approaches to interrogate how DNA recognition diversified in the steroid hormone receptor (SR) family. After duplication of the ancestral SR, three mutations in one copy radically weakened binding to the ancestral estrogen response element (ERE) and improved binding to a new set of DNA sequences (steroid response elements, SREs). They did so by establishing unfavorable interactions with ERE and abolishing unfavorable interactions with SRE; also required were numerous permissive substitutions, which nonspecifically improved cooperativity and affinity of DNA binding. Our findings indicate that negative determinants of binding play key roles in TFs' DNA selectivity and-with our prior work on the evolution of SR ligand specificity during the same interval-show how a specific new gene regulatory module evolved without interfering with the integrity of the ancestral module. PMID:25259920

  4. Using RSAT to scan genome sequences for transcription factor binding sites and cis-regulatory modules.

    PubMed

    Turatsinze, Jean-Valery; Thomas-Chollier, Morgane; Defrance, Matthieu; van Helden, Jacques

    2008-01-01

    This protocol shows how to detect putative cis-regulatory elements and regions enriched in such elements with the regulatory sequence analysis tools (RSAT) web server (http://rsat.ulb.ac.be/rsat/). The approach applies to known transcription factors, whose binding specificity is represented by position-specific scoring matrices, using the program matrix-scan. The detection of individual binding sites is known to return many false predictions. However, results can be strongly improved by estimating P value, and by searching for combinations of sites (homotypic and heterotypic models). We illustrate the detection of sites and enriched regions with a study case, the upstream sequence of the Drosophila melanogaster gene even-skipped. This protocol is also tested on random control sequences to evaluate the reliability of the predictions. Each task requires a few minutes of computation time on the server. The complete protocol can be executed in about one hour.

  5. Self-Regulation in Early Adolescence: Relations with Mother-Son Relationship Quality and Maternal Regulatory Support and Antagonism

    ERIC Educational Resources Information Center

    Moilanen, Kristin L.; Shaw, Daniel S.; Fitzpatrick, Amber

    2010-01-01

    The purpose of the current investigation was to examine relations among maternal regulatory support, maternal antagonism, and mother-son relationship quality in relation to boys' self-regulation during early adolescence. As part of a larger longitudinal study on 263 low-income, ethnically diverse boys, multiple informants and methods were used to…

  6. Regulatory Teaching and Self-Regulated Learning in College Students: Confirmatory Validation Study of the IATLP Scales

    ERIC Educational Resources Information Center

    de la Fuente, Jesus; Zapata, Lucia; Martinez-Vicente, J. M.; Cardelle-Elawar, Maria; Sander, Paul; Justicia, Fernando; Pichardo, M. C.; Garcia-Belen, A. B.

    2012-01-01

    Introduction: The purpose of this study was to empirically confirm two conceptual interactions proposed by the IATLP Scales: (1) the combination of the teacher's regulatory teaching and the student's self-regulated learning, in order to produce satisfaction with learning; (2) the relationship of this interaction with students' prior…

  7. A Minimal Regulatory Network of Extrinsic and Intrinsic Factors Recovers Observed Patterns of CD4+ T Cell Differentiation and Plasticity

    PubMed Central

    Martinez-Sanchez, Mariana Esther; Mendoza, Luis; Villarreal, Carlos; Alvarez-Buylla, Elena R.

    2015-01-01

    CD4+ T cells orchestrate the adaptive immune response in vertebrates. While both experimental and modeling work has been conducted to understand the molecular genetic mechanisms involved in CD4+ T cell responses and fate attainment, the dynamic role of intrinsic (produced by CD4+ T lymphocytes) versus extrinsic (produced by other cells) components remains unclear, and the mechanistic and dynamic understanding of the plastic responses of these cells remains incomplete. In this work, we studied a regulatory network for the core transcription factors involved in CD4+ T cell-fate attainment. We first show that this core is not sufficient to recover common CD4+ T phenotypes. We thus postulate a minimal Boolean regulatory network model derived from a larger and more comprehensive network that is based on experimental data. The minimal network integrates transcriptional regulation, signaling pathways and the micro-environment. This network model recovers reported configurations of most of the characterized cell types (Th0, Th1, Th2, Th17, Tfh, Th9, iTreg, and Foxp3-independent T regulatory cells). This transcriptional-signaling regulatory network is robust and recovers mutant configurations that have been reported experimentally. Additionally, this model recovers many of the plasticity patterns documented for different T CD4+ cell types, as summarized in a cell-fate map. We tested the effects of various micro-environments and transient perturbations on such transitions among CD4+ T cell types. Interestingly, most cell-fate transitions were induced by transient activations, with the opposite behavior associated with transient inhibitions. Finally, we used a novel methodology was used to establish that T-bet, TGF-β and suppressors of cytokine signaling proteins are keys to recovering observed CD4+ T cell plastic responses. In conclusion, the observed CD4+ T cell-types and transition patterns emerge from the feedback between the intrinsic or intracellular regulatory core

  8. Inhibitor of apoptosis proteins (IAPs) as regulatory factors of hepatic apoptosis.

    PubMed

    Wang, Kewei; Lin, Bingliang

    2013-10-01

    IAPs are a group of regulatory proteins that are structurally related. Their conserved homologues have been identified in various organisms. In human, eight IAP members have been recognized based on baculoviral IAP repeat (BIR) domains. IAPs are key regulators of apoptosis, cytokinesis and signal transduction. The antiapoptotic property of IAPs depends on their professional role for caspases. IAPs are functionally non-equivalent and regulate effector caspases through distinct mechanisms. IAPs impede apoptotic process via membrane receptor-dependent (extrinsic) cascade and mitochondrial dependent (intrinsic) pathway. IAP-mediated apoptosis affects the progression of liver diseases. Therapeutic options of liver diseases may depend on the understanding toward mechanisms of the IAP-mediated apoptosis.

  9. A direct regulatory interaction between chaperonin TRiC and stress-responsive transcription factor HSF1.

    PubMed

    Neef, Daniel W; Jaeger, Alex M; Gomez-Pastor, Rocio; Willmund, Felix; Frydman, Judith; Thiele, Dennis J

    2014-11-01

    Heat shock transcription factor 1 (HSF1) is an evolutionarily conserved transcription factor that protects cells from protein-misfolding-induced stress and apoptosis. The mechanisms by which cytosolic protein misfolding leads to HSF1 activation have not been elucidated. Here, we demonstrate that HSF1 is directly regulated by TRiC/CCT, a central ATP-dependent chaperonin complex that folds cytosolic proteins. A small-molecule activator of HSF1, HSF1A, protects cells from stress-induced apoptosis, binds TRiC subunits in vivo and in vitro, and inhibits TRiC activity without perturbation of ATP hydrolysis. Genetic inactivation or depletion of the TRiC complex results in human HSF1 activation, and HSF1A inhibits the direct interaction between purified TRiC and HSF1 in vitro. These results demonstrate a direct regulatory interaction between the cytosolic chaperone machine and a critical transcription factor that protects cells from proteotoxicity, providing a mechanistic basis for signaling perturbations in protein folding to a stress-protective transcription factor. PMID:25437552

  10. Identification of trans-acting factors regulating SamDC expression in Oryza sativa

    SciTech Connect

    Basu, Supratim; Roychoudhury, Aryadeep; Sengupta, Dibyendu N.

    2014-03-07

    Highlights: • Identification of cis elements responsible for SamDC expression by in silico analysis. • qPCR analysis of SamDC expression to abiotic and biotic stress treatments. • Detection of SamDC regulators using identified cis-elements as probe by EMSA. • Southwestern Blot analysis to predict the size of the trans-acting factors. - Abstract: Abiotic stress affects the growth and productivity of crop plants; to cope with the adverse environmental conditions, plants have developed efficient defense machinery comprising of antioxidants like phenolics and flavonoids, and osmolytes like polyamines. SamDC is a key enzyme in the polyamine biosynthesis pathway in plants. In our present communication we have done in silico analysis of the promoter region of SamDC to look for the presence of different cis-regulatory elements contributing to its expression. Based on the presence of different cis-regulatory elements we completed comparative analysis of SamDC gene expression in rice lamina of IR-29 and Nonabokra by qPCR in response to the abiotic stress treatments of salinity, drought, cold and the biotic stress treatments of ABA and light. Additionally, to explore the role of the cis-regulatory elements in regulating the expression of SamDC gene in plants we comparatively analyzed the binding of rice nuclear proteins prepared from IR-29 and Nonabokra undergoing various stress treatments. The intensity of the complex formed was low and inducible in IR-29 in contrast to Nonabokra. Southwestern blot analysis helped in predicting the size of the trans-acting factors binding to these cis-elements. To our knowledge this is the first report on the comprehensive analysis of SamDC gene expression in rice and identification of the trans-acting factors regulating its expression.

  11. Translation regulatory factor RBM3 is a proto-oncogene that prevents mitotic catastrophe

    PubMed Central

    Sureban, SM; Ramalingam, S; Natarajan, G; May, R; Subramaniam, D; Bishnupuri, KS; Morrison, AR; Dieckgraefe, BK; Brackett, DJ; Postier, RG; Houchen, CW; Anant, S

    2009-01-01

    RNA-binding proteins play a key role in post-transcriptional regulation of mRNA stability and translation. We have identified that RBM3, a translation regulatory protein, is significantly upregulated in human tumors, including a stage-dependent increase in colorectal tumors. Forced RBM3 overexpression in NIH3T3 mouse fibro-blasts and SW480 human colon epithelial cells increases cell proliferation and development of compact multicellular spheroids in soft agar suggesting the ability to induce anchorage-independent growth. In contrast, down-regulating RBM3 in HCT116 colon cancer cells with specific siRNA decreases cell growth in culture, which was partially overcome when treated with prostaglandin E2, a product of cyclooxygenase (COX)-2 enzyme activity. Knockdown also resulted in the growth arrest of tumor xenografts. We have also identified that RBM3 knockdown increases caspase-mediated apoptosis coupled with nuclear cyclin B1, and phosphorylated Cdc25c, Chk1 and Chk2 kinases, implying that under conditions of RBM3 downregulation, cells undergo mitotic catastrophe. RBM3 enhances COX-2, IL-8 and VEGF mRNA stability and translation. Conversely, RBM3 knockdown results in loss in the translation of these transcripts. These data demonstrate that the RNA stabilizing and translation regulatory protein RBM3 is a novel proto-oncogene that induces transformation when overexpressed and is essential for cells to progress through mitosis. PMID:18427544

  12. Transcriptional Regulation of BK Virus by Nuclear Factor of Activated T Cells▿

    PubMed Central

    Jordan, Joslynn A.; Manley, Kate; Dugan, Aisling S.; O'Hara, Bethany A.; Atwood, Walter J.

    2010-01-01

    The human polyomavirus BK virus (BKV) is a common virus for which 80 to 90% of the adult population is seropositive. BKV reactivation in immunosuppressed patients or renal transplant patients is the primary cause of polyomavirus-associated nephropathy (PVN). Using the Dunlop strain of BKV, we found that nuclear factor of activated T cells (NFAT) plays an important regulatory role in BKV infection. Luciferase reporter assays and chromatin immunoprecipitation assays demonstrated that NFAT4 bound to the viral promoter and regulated viral transcription and infection. The mutational analysis of the NFAT binding sites demonstrated complex functional interactions between NFAT, c-fos, c-jun, and the p65 subunit of NF-κB that together influence promoter activity and viral growth. These data indicate that NFAT is required for BKV infection and is involved in a complex regulatory network that both positively and negatively influences promoter activity and viral infection. PMID:19955309

  13. The role of personal self-regulation and regulatory teaching to predict motivational-affective variables, achievement, and satisfaction: a structural model

    PubMed Central

    De la Fuente, Jesus; Zapata, Lucía; Martínez-Vicente, Jose M.; Sander, Paul; Cardelle-Elawar, María

    2014-01-01

    The present investigation examines how personal self-regulation (presage variable) and regulatory teaching (process variable of teaching) relate to learning approaches, strategies for coping with stress, and self-regulated learning (process variables of learning) and, finally, how they relate to performance and satisfaction with the learning process (product variables). The objective was to clarify the associative and predictive relations between these variables, as contextualized in two different models that use the presage-process-product paradigm (the Biggs and DEDEPRO models). A total of 1101 university students participated in the study. The design was cross-sectional and retrospective with attributional (or selection) variables, using correlations and structural analysis. The results provide consistent and significant empirical evidence for the relationships hypothesized, incorporating variables that are part of and influence the teaching–learning process in Higher Education. Findings confirm the importance of interactive relationships within the teaching–learning process, where personal self-regulation is assumed to take place in connection with regulatory teaching. Variables that are involved in the relationships validated here reinforce the idea that both personal factors and teaching and learning factors should be taken into consideration when dealing with a formal teaching–learning context at university. PMID:25964764

  14. Interplay Between Transcription Factors and MicroRNAs Regulating Epithelial-Mesenchymal Transitions in Colorectal Cancer.

    PubMed

    Kaller, Markus; Hermeking, Heiko

    2016-01-01

    The epithelial-mesenchymal-transition (EMT) represents a morphogenetic program involved in developmental processes such as gastrulation and neural crest formation. The EMT program is co-opted by epithelial tumor cells and endows them with features necessary for spreading to distant sites, such as invasion, migration, apoptosis resistance and stemness. Thereby, EMT facilitates metastasis formation and therapy resistance. A growing number of transcription factors has been implicated in the regulation of EMT. These include EMT-inducing transcription factors (EMT-TFs), the most prominent being SNAIL, SLUG, ZEB1, ZEB2 and TWIST, and negative regulators of EMT, such as p53. Furthermore, a growing number of microRNAs, such as members of the miR-200 and miR-34 family, have been characterized as negative regulators of EMT. EMT-TFs and microRNAs, such as ZEB1/2 and miR-200 or SNAIL and miR-34, are often engaged in double-negative feedback loops forming bistable switches controlling the transitions from epithelial to the mesenchymal cell states. Within this chapter, we will provide a comprehensive overview over the transcription factors and microRNAs that have been implicated in the regulation of EMT in colorectal cancer. Furthermore, we will highlight the regulatory connections between EMT-TFs and miRNAs to illustrate common principles of their interaction that regulate EMTs. PMID:27573895

  15. Transcription factor p63 bookmarks and regulates dynamic enhancers during epidermal differentiation

    PubMed Central

    Kouwenhoven, Evelyn N; Oti, Martin; Niehues, Hanna; van Heeringen, Simon J; Schalkwijk, Joost; Stunnenberg, Hendrik G; van Bokhoven, Hans; Zhou, Huiqing

    2015-01-01

    The transcription factor p63 plays a pivotal role in keratinocyte proliferation and differentiation in the epidermis. However, how p63 regulates epidermal genes during differentiation is not yet clear. Using epigenome profiling of differentiating human primary epidermal keratinocytes, we characterized a catalog of dynamically regulated genes and p63-bound regulatory elements that are relevant for epithelial development and related diseases. p63-bound regulatory elements occur as single or clustered enhancers, and remarkably, only a subset is active as defined by the co-presence of the active enhancer mark histone modification H3K27ac in epidermal keratinocytes. We show that the dynamics of gene expression correlates with the activity of p63-bound enhancers rather than with p63 binding itself. The activity of p63-bound enhancers is likely determined by other transcription factors that cooperate with p63. Our data show that inactive p63-bound enhancers in epidermal keratinocytes may be active during the development of other epithelial-related structures such as limbs and suggest that p63 bookmarks genomic loci during the commitment of the epithelial lineage and regulates genes through temporal- and spatial-specific active enhancers. PMID:26034101

  16. Regulation of oncogenic KRAS signaling via a novel KRAS-integrin-linked kinase-hnRNPA1 regulatory loop in human pancreatic cancer cells.

    PubMed

    Chu, P-C; Yang, M-C; Kulp, S K; Salunke, S B; Himmel, L E; Fang, C-S; Jadhav, A M; Shan, Y-S; Lee, C-T; Lai, M-D; Shirley, L A; Bekaii-Saab, T; Chen, C-S

    2016-07-28

    Integrin-linked kinase (ILK) is a mediator of aggressive phenotype in pancreatic cancer. On the basis of our finding that knockdown of either KRAS or ILK has a reciprocal effect on the other's expression, we hypothesized the presence of an ILK-KRAS regulatory loop that enables pancreatic cancer cells to regulate KRAS expression. This study aimed to elucidate the mechanism by which this regulatory circuitry is regulated and to investigate the translational potential of targeting ILK to suppress oncogenic KRAS signaling in pancreatic cancer. Interplay between KRAS and ILK and the roles of E2F1, c-Myc and heterogeneous nuclear ribonucleoprotein as intermediary effectors in this feedback loop was interrogated by genetic manipulations through small interfering RNA/short hairpin RNA knockdown and ectopic expression, western blotting, PCR, promoter-luciferase reporter assays, chromatin immunoprecipitation and pull-down analyses. In vivo efficacy of ILK inhibition was evaluated in two murine xenograft models. Our data show that KRAS regulated the expression of ILK through E2F1-mediated transcriptional activation, which, in turn, controlled KRAS gene expression via hnRNPA1-mediated destabilization of the G-quadruplex on the KRAS promoter. Moreover, ILK inhibition blocked KRAS-driven epithelial-mesenchymal transition and growth factor-stimulated KRAS expression. The knockdown or pharmacological inhibition of ILK suppressed pancreatic tumor growth, in part, by suppressing KRAS signaling. These studies suggest that this KRAS-E2F1-ILK-hnRNPA1 regulatory loop enables pancreatic cancer cells to promote oncogenic KRAS signaling and to interact with the tumor microenvironment to promote aggressive phenotypes. This regulatory loop provides a mechanistic rationale for targeting ILK to suppress oncogenic KRAS signaling, which might foster new therapeutic strategies for pancreatic cancer.

  17. Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs).

    PubMed

    Moons, Ann

    2005-01-01

    for phytohormones (i.e., ABA and JA) in these processes are being anticipated as well. Finally, indications are emerging that NO may regulate the activity of specific plant GSTs. In this review, the current knowledge on the regulatory and functional interactions of phytohormones and plant GSTs are covered. We refer to a previous extensive review on plant GSTs (Marrs, 1996) for most earlier work. An introduction on the classification and roles of plant GSTs is included here, but these topics are more extensively discussed in other reviews (Dixon et al., 2002a; Edwards et al., 2000; Frova, 2003).

  18. Regulation of specialized metabolism by WRKY transcription factors.

    PubMed

    Schluttenhofer, Craig; Yuan, Ling

    2015-02-01

    WRKY transcription factors (TFs) are well known for regulating plant abiotic and biotic stress tolerance. However, much less is known about how WRKY TFs affect plant-specialized metabolism. Analysis of WRKY TFs regulating the production of specialized metabolites emphasizes the values of the family outside of traditionally accepted roles in stress tolerance. WRKYs with conserved roles across plant species seem to be essential in regulating specialized metabolism. Overall, the WRKY family plays an essential role in regulating the biosynthesis of important pharmaceutical, aromatherapy, biofuel, and industrial components, warranting considerable attention in the forthcoming years.

  19. Regulation of specialized metabolism by WRKY transcription factors.

    PubMed

    Schluttenhofer, Craig; Yuan, Ling

    2015-02-01

    WRKY transcription factors (TFs) are well known for regulating plant abiotic and biotic stress tolerance. However, much less is known about how WRKY TFs affect plant-specialized metabolism. Analysis of WRKY TFs regulating the production of specialized metabolites emphasizes the values of the family outside of traditionally accepted roles in stress tolerance. WRKYs with conserved roles across plant species seem to be essential in regulating specialized metabolism. Overall, the WRKY family plays an essential role in regulating the biosynthesis of important pharmaceutical, aromatherapy, biofuel, and industrial components, warranting considerable attention in the forthcoming years. PMID:25501946

  20. Two classes of regulatory subunits coassemble in the same BK channel and independently regulate gating

    NASA Astrophysics Data System (ADS)

    Gonzalez-Perez, Vivian; Xia, Xiao-Ming; Lingle, Christopher J.

    2015-09-01

    High resolution proteomics increasingly reveals that most native ion channels are assembled in macromolecular complexes. However, whether different partners have additive or cooperative functional effects, or whether some combinations of proteins may preclude assembly of others are largely unexplored topics. The large conductance Ca2+-and-voltage activated potassium channel (BK) is well-suited to discern nuanced differences in regulation arising from combinations of subunits. Here we examine whether assembly of two different classes of regulatory proteins, β and γ, in BK channels is exclusive or independent. Our results show that both γ1 and up to four β2-subunits can coexist in the same functional BK complex, with the gating shift caused by β2-subunits largely additive with that produced by the γ1-subunit(s). The multiplicity of β:γ combinations that can participate in a BK complex therefore allow a range of BK channels with distinct functional properties tuned by the specific stoichiometry of the contributing subunits.

  1. Retinoid regulated macrophage cholesterol efflux involves the steroidogenic acute regulatory protein

    PubMed Central

    Manna, Pulak R.

    2016-01-01

    Elimination of excess cholesteryl esters from macrophage-derived foam cells is known to be a key process in limiting plaque stability and progression of atherosclerotic lesions. We have recently demonstrated that regulation of retinoid mediated cholesterol efflux is influenced by liver X receptor (LXR) signaling in mouse macrophages (Manna, P.R. et al., 2015, Biochem. Biophys. Res. Commun., 464:312-317). The data presented in this article evaluate the importance of the steroidogenic acute regulatory protein (StAR) in retinoid mediated macrophage cholesterol efflux. Overexpression of StAR in mouse RAW 264.7 macrophages increased the effects of both all-trans retinoic acid (atRA) and 9-cis RA on cholesterol efflux, suggesting StAR enhances the efficacy of retinoic acid receptor (RAR) and/or retinoid X receptor (RXR) ligands. Additional data revealed that atRA enhances (Bu)2cAMP induced StAR and ATP-binding cassette transporter A1 protein levels. Treatment of macrophages transfected with an LXRE reporter plasmid (pLXREx3-Luc) was found to induce the effects of RAR and RXR analogs on LXR activity. PMID:27081671

  2. Selection of terrestrial transfer factors for radioecological assessment models and regulatory guides

    SciTech Connect

    Ng, Y.C.; Hoffman, F.O.

    1983-01-01

    A parameter value for a radioecological assessment model is not a single value but a distribution of values about a central value. The sources that contribute to the variability of transfer factors to predict foodchain transport of radionuclides are enumerated. Knowledge of these sources, judgement in interpreting the available data, consideration of collateral information, and established criteria that specify the desired level of conservatism in the resulting predictions are essential elements when selecting appropriate parameter values for radioecological assessment models and regulatory guides. 39 references, 4 figures, 5 tables.

  3. Mining regulatory network connections by ranking transcription factor target genes using time series expression data.

    PubMed

    Honkela, Antti; Rattray, Magnus; Lawrence, Neil D

    2013-01-01

    Reverse engineering the gene regulatory network is challenging because the amount of available data is very limited compared to the complexity of the underlying network. We present a technique addressing this problem through focussing on a more limited problem: inferring direct targets of a transcription factor from short expression time series. The method is based on combining Gaussian process priors and ordinary differential equation models allowing inference on limited potentially unevenly sampled data. The method is implemented as an R/Bioconductor package, and it is demonstrated by ranking candidate targets of the p53 tumour suppressor.

  4. Direct lineage reprogramming via pioneer factors; a detour through developmental gene regulatory networks.

    PubMed

    Morris, Samantha A

    2016-08-01

    Although many approaches have been employed to generate defined fate in vitro, the resultant cells often appear developmentally immature or incompletely specified, limiting their utility. Growing evidence suggests that current methods of direct lineage conversion may rely on the transition through a developmental intermediate. Here, I hypothesize that complete conversion between cell fates is more probable and feasible via reversion to a developmentally immature state. I posit that this is due to the role of pioneer transcription factors in engaging silent, unmarked chromatin and activating hierarchical gene regulatory networks responsible for embryonic patterning. Understanding these developmental contexts will be essential for the precise engineering of cell identity. PMID:27486230

  5. A Novel Extracytoplasmic Function (ECF) Sigma Factor Regulates Virulence in Pseudomonas aeruginosa

    PubMed Central

    Llamas, María A.; van der Sar, Astrid; Chu, Byron C. H.; Sparrius, Marion; Vogel, Hans J.; Bitter, Wilbert

    2009-01-01

    Next to the two-component and quorum sensing systems, cell-surface signaling (CSS) has been recently identified as an important regulatory system in Pseudomonas aeruginosa. CSS systems sense signals from outside the cell and transmit them into the cytoplasm. They generally consist of a TonB-dependent outer membrane receptor, a sigma factor regulator (or anti-sigma factor) in the cytoplasmic membrane, and an extracytoplasmic function (ECF) sigma factor. Upon perception of the extracellular signal by the receptor the ECF sigma factor is activated and promotes the transcription of a specific set of gene(s). Although most P. aeruginosa CSS systems are involved in the regulation of iron uptake, we have identified a novel system involved in the regulation of virulence. This CSS system, which has been designated PUMA3, has a number of unusual characteristics. The most obvious difference is the receptor component which is considerably smaller than that of other CSS outer membrane receptors and lacks a β-barrel domain. Homology modeling of PA0674 shows that this receptor is predicted to be a bilobal protein, with an N-terminal domain that resembles the N-terminal periplasmic signaling domain of CSS receptors, and a C-terminal domain that resembles the periplasmic C-terminal domains of the TolA/TonB proteins. Furthermore, the sigma factor regulator both inhibits the function of the ECF sigma factor and is required for its activity. By microarray analysis we show that PUMA3 regulates the expression of a number of genes encoding potential virulence factors, including a two-partner secretion (TPS) system. Using zebrafish (Danio rerio) embryos as a host we have demonstrated that the P. aeruginosa PUMA3-induced strain is more virulent than the wild-type. PUMA3 represents the first CSS system dedicated to the transcriptional activation of virulence functions in a human pathogen. PMID:19730690

  6. Identification of High-Impact cis-Regulatory Mutations Using Transcription Factor Specific Random Forest Models

    PubMed Central

    Svetlichnyy, Dmitry; Imrichova, Hana; Fiers, Mark; Kalender Atak, Zeynep; Aerts, Stein

    2015-01-01

    Cancer genomes contain vast amounts of somatic mutations, many of which are passenger mutations not involved in oncogenesis. Whereas driver mutations in protein-coding genes can be distinguished from passenger mutations based on their recurrence, non-coding mutations are usually not recurrent at the same position. Therefore, it is still unclear how to identify cis-regulatory driver mutations, particularly when chromatin data from the same patient is not available, thus relying only on sequence and expression information. Here we use machine-learning methods to predict functional regulatory regions using sequence information alone, and compare the predicted activity of the mutated region with the reference sequence. This way we define the Predicted Regulatory Impact of a Mutation in an Enhancer (PRIME). We find that the recently identified driver mutation in the TAL1 enhancer has a high PRIME score, representing a “gain-of-target” for MYB, whereas the highly recurrent TERT promoter mutation has a surprisingly low PRIME score. We trained Random Forest models for 45 cancer-related transcription factors, and used these to score variations in the HeLa genome and somatic mutations across more than five hundred cancer genomes. Each model predicts only a small fraction of non-coding mutations with a potential impact on the function of the encompassing regulatory region. Nevertheless, as these few candidate driver mutations are often linked to gains in chromatin activity and gene expression, they may contribute to the oncogenic program by altering the expression levels of specific oncogenes and tumor suppressor genes. PMID:26562774

  7. Increments and duplication events of enzymes and transcription factors influence metabolic and regulatory diversity in prokaryotes.

    PubMed

    Martínez-Núñez, Mario Alberto; Poot-Hernandez, Augusto Cesar; Rodríguez-Vázquez, Katya; Perez-Rueda, Ernesto

    2013-01-01

    In this work, the content of enzymes and DNA-binding transcription factors (TFs) in 794 non-redundant prokaryotic genomes was evaluated. The identification of enzymes was based on annotations deposited in the KEGG database as well as in databases of functional domains (COG and PFAM) and structural domains (Superfamily). For identifications of the TFs, hidden Markov profiles were constructed based on well-known transcriptional regulatory families. From these analyses, we obtained diverse and interesting results, such as the negative rate of incremental changes in the number of detected enzymes with respect to the genome size. On the contrary, for TFs the rate incremented as the complexity of genome increased. This inverse related performance shapes the diversity of metabolic and regulatory networks and impacts the availability of enzymes and TFs. Furthermore, the intersection of the derivatives between enzymes and TFs was identified at 9,659 genes, after this point, the regulatory complexity grows faster than metabolic complexity. In addition, TFs have a low number of duplications, in contrast to the apparent high number of duplications associated with enzymes. Despite the greater number of duplicated enzymes versus TFs, the increment by which duplicates appear is higher in TFs. A lower proportion of enzymes among archaeal genomes (22%) than in the bacterial ones (27%) was also found. This low proportion might be compensated by the interconnection between the metabolic pathways in Archaea. A similar proportion was also found for the archaeal TFs, for which the formation of regulatory complexes has been proposed. Finally, an enrichment of multifunctional enzymes in Bacteria, as a mechanism of ecological adaptation, was detected. PMID:23922780

  8. Increments and Duplication Events of Enzymes and Transcription Factors Influence Metabolic and Regulatory Diversity in Prokaryotes

    PubMed Central

    Martínez-Núñez, Mario Alberto; Poot-Hernandez, Augusto Cesar; Rodríguez-Vázquez, Katya; Perez-Rueda, Ernesto

    2013-01-01

    In this work, the content of enzymes and DNA-binding transcription factors (TFs) in 794 non-redundant prokaryotic genomes was evaluated. The identification of enzymes was based on annotations deposited in the KEGG database as well as in databases of functional domains (COG and PFAM) and structural domains (Superfamily). For identifications of the TFs, hidden Markov profiles were constructed based on well-known transcriptional regulatory families. From these analyses, we obtained diverse and interesting results, such as the negative rate of incremental changes in the number of detected enzymes with respect to the genome size. On the contrary, for TFs the rate incremented as the complexity of genome increased. This inverse related performance shapes the diversity of metabolic and regulatory networks and impacts the availability of enzymes and TFs. Furthermore, the intersection of the derivatives between enzymes and TFs was identified at 9,659 genes, after this point, the regulatory complexity grows faster than metabolic complexity. In addition, TFs have a low number of duplications, in contrast to the apparent high number of duplications associated with enzymes. Despite the greater number of duplicated enzymes versus TFs, the increment by which duplicates appear is higher in TFs. A lower proportion of enzymes among archaeal genomes (22%) than in the bacterial ones (27%) was also found. This low proportion might be compensated by the interconnection between the metabolic pathways in Archaea. A similar proportion was also found for the archaeal TFs, for which the formation of regulatory complexes has been proposed. Finally, an enrichment of multifunctional enzymes in Bacteria, as a mechanism of ecological adaptation, was detected. PMID:23922780

  9. Increments and duplication events of enzymes and transcription factors influence metabolic and regulatory diversity in prokaryotes.

    PubMed

    Martínez-Núñez, Mario Alberto; Poot-Hernandez, Augusto Cesar; Rodríguez-Vázquez, Katya; Perez-Rueda, Ernesto

    2013-01-01

    In this work, the content of enzymes and DNA-binding transcription factors (TFs) in 794 non-redundant prokaryotic genomes was evaluated. The identification of enzymes was based on annotations deposited in the KEGG database as well as in databases of functional domains (COG and PFAM) and structural domains (Superfamily). For identifications of the TFs, hidden Markov profiles were constructed based on well-known transcriptional regulatory families. From these analyses, we obtained diverse and interesting results, such as the negative rate of incremental changes in the number of detected enzymes with respect to the genome size. On the contrary, for TFs the rate incremented as the complexity of genome increased. This inverse related performance shapes the diversity of metabolic and regulatory networks and impacts the availability of enzymes and TFs. Furthermore, the intersection of the derivatives between enzymes and TFs was identified at 9,659 genes, after this point, the regulatory complexity grows faster than metabolic complexity. In addition, TFs have a low number of duplications, in contrast to the apparent high number of duplications associated with enzymes. Despite the greater number of duplicated enzymes versus TFs, the increment by which duplicates appear is higher in TFs. A lower proportion of enzymes among archaeal genomes (22%) than in the bacterial ones (27%) was also found. This low proportion might be compensated by the interconnection between the metabolic pathways in Archaea. A similar proportion was also found for the archaeal TFs, for which the formation of regulatory complexes has been proposed. Finally, an enrichment of multifunctional enzymes in Bacteria, as a mechanism of ecological adaptation, was detected.

  10. MicroRNA-7/NF-κB signaling regulatory feedback circuit regulates gastric carcinogenesis

    PubMed Central

    Zhao, Xiao-Di; Lu, Yuan-Yuan; Guo, Hao; Xie, Hua-Hong; He, Li-Jie; Shen, Gao-Fei; Zhou, Jin-Feng; Li, Ting; Hu, Si-Jun; Zhou, Lin; Han, Ya-Nan; Liang, Shu-Li; Wang, Xin; Wu, Kai-Chun; Shi, Yong-Quan; Nie, Yong-Zhan

    2015-01-01

    MicroRNAs play essential roles in gene expression regulation during carcinogenesis. Here, we investigated the role of miR-7 and the mechanism by which it is dysregulated in gastric cancer (GC). We used genome-wide screenings and identified RELA and FOS as novel targets of miR-7. Overexpression of miR-7 repressed RELA and FOS expression and prevented GC cell proliferation and tumorigenesis. These effects were clinically relevant, as low miR-7 expression was correlated with high RELA and FOS expression and poor survival in GC patients. Intriguingly, we found that miR-7 indirectly regulated RELA activation by targeting the IκB kinase IKKε. Furthermore, IKKε and RELA can repress miR-7 transcription, which forms a feedback circuit between miR-7 and nuclear factor κB (NF-κB) signaling. Additionally, we demonstrate that down-regulation of miR-7 may occur as a result of the aberrant activation of NF-κB signaling by Helicobacter pylori infection. These findings suggest that miR-7 may serve as an important regulator in GC development and progression. PMID:26261179

  11. Regulatory immune cells in regulation of intestinal inflammatory response to microbiota

    PubMed Central

    Cong, Y; Liu, Z

    2015-01-01

    The intestinal lumen harbors nearly 100 trillion commensal bacteria that exert crucial function for health. An elaborate balance between immune responses and tolerance to intestinal microbiota is required to maintain intestinal homeostasis. This process depends on diverse regulatory mechanisms, including both innate and adaptive immunity. Dysregulation of the homeostasis between intestinal immune systems and microbiota has been shown to be associated with the development of inflammatory bowel diseases (IBD) in genetically susceptible populations. In this review, we discuss the recent progress reported in studies of distinct types of regulatory immune cells in the gut, including intestinal intraepithelial lymphocytes, Foxp3+ regulatory T cells, regulatory B cells, alternatively activated macrophages, dendritic cells, and innate lymphoid cells, and how dysfunction of this immune regulatory system contributes to intestinal diseases such as IBD. Moreover, we discuss the manipulation of these regulatory immune cells as a potential therapeutic method for management of intestinal inflammatory disorders. PMID:26080708

  12. Suppression of preoptic sleep-regulatory neuronal activity during corticotropin-releasing factor-induced sleep disturbance.

    PubMed

    Gvilia, Irma; Suntsova, Natalia; Kumar, Sunil; McGinty, Dennis; Szymusiak, Ronald

    2015-11-01

    Corticotropin releasing factor (CRF) is implicated in sleep and arousal regulation. Exogenous CRF causes sleep suppression that is associated with activation of at least two important arousal systems: pontine noradrenergic and hypothalamic orexin/hypocretin neurons. It is not known whether CRF also impacts sleep-promoting neuronal systems. We hypothesized that CRF-mediated changes in wake and sleep involve decreased activity of hypothalamic sleep-regulatory neurons localized in the preoptic area. To test this hypothesis, we examined the effects of intracerebroventricular administration of CRF on sleep-wake measures and c-Fos expression in GABAergic neurons in the median preoptic nucleus (MnPN) and ventrolateral preoptic area (VLPO) in different experimental conditions. Administration of CRF (0.1 nmol) during baseline rest phase led to delayed sleep onset and decreases in total amount and mean duration of non-rapid eye movement (NREM) sleep. Administration of CRF during acute sleep deprivation (SD) resulted in suppression of recovery sleep and decreased c-Fos expression in MnPN/VLPO GABAergic neurons. Compared with vehicle controls, intracerebroventricular CRF potentiated disturbances of both NREM and REM sleep in rats exposed to a species-specific psychological stressor, the dirty cage of a male conspecific. The number of MnPN/VLPO GABAergic neurons expressing c-Fos was reduced in the CRF-treated group of dirty cage-exposed rats. These findings confirm the involvement of CRF in wake-sleep cycle regulation and suggest that increased CRF signaling in the brain 1) negatively affects homeostatic responses to sleep loss, 2) exacerbates stress-induced disturbances of sleep, and 3) suppresses the activity of sleep-regulatory neurons of the MnPN and VLPO. PMID:26333784

  13. Cell-penetrable mouse forkhead box protein 3 alleviates experimental arthritis in mice by up-regulating regulatory T cells.

    PubMed

    Liu, Xia; Ji, Baoju; Sun, Mengyi; Wu, Weijiang; Huang, Lili; Sun, Aihua; Zong, Yangyong; Xia, Sheng; Shi, Liyun; Qian, Hui; Xu, Wenrong; Shao, Qixiang

    2015-07-01

    Regulatory T cells (T(regs)) have potential applications in clinical disease therapy, such as autoimmune diseases and transplant rejection. However, their numbers are limited. Forkhead box protein 3 (FoxP3) is a key transcription factor that controls T(reg) development and function. Here, we generated a cell-permeable fusion protein, protein transduction domain (PTD)-conjugated mouse FoxP3 protein (PTD-mFoxP3), and evaluated whether PTD-mFoxp3 can alleviate rheumatoid arthritis (RA) in the collagen-induced arthritis (CIA) mouse model. As expected, PTD-mFoxP3 was transduced into cells effectively, and inhibited T cell activation and attenuated the cell proliferation. It decreased interleukin (IL) 2 and interferon (IFN)-γ expression, and increased IL-10 expression in activated CD4(+)CD25(-) T cells. PTD-mFoxP3-transduced CD4(+)CD25(-) T cells attenuated proliferation of activated CD4(+)CD25(-) T cells. In addition, PTD-mFoxP3 blocked the Th17 differentiation programme in vitro and down-regulated IL-17 production from T cells by modulating induction and levels of retinoid-related orphan receptor gamma t (RORγt). Intra-articular delivery of PTD-mFoxP3 delayed disease incidence remarkably and alleviated autoimmune symptoms of CIA mice. Moreover, protective effects of PTD-mFoxP3 were associated with regulating the balance of T helper type 17 (Th17) and T(regs). These results suggest that PTD-mFoxP3 may be a candidate for RA therapy. PMID:25809415

  14. Cell-penetrable mouse forkhead box protein 3 alleviates experimental arthritis in mice by up-regulating regulatory T cells.

    PubMed

    Liu, Xia; Ji, Baoju; Sun, Mengyi; Wu, Weijiang; Huang, Lili; Sun, Aihua; Zong, Yangyong; Xia, Sheng; Shi, Liyun; Qian, Hui; Xu, Wenrong; Shao, Qixiang

    2015-07-01

    Regulatory T cells (T(regs)) have potential applications in clinical disease therapy, such as autoimmune diseases and transplant rejection. However, their numbers are limited. Forkhead box protein 3 (FoxP3) is a key transcription factor that controls T(reg) development and function. Here, we generated a cell-permeable fusion protein, protein transduction domain (PTD)-conjugated mouse FoxP3 protein (PTD-mFoxP3), and evaluated whether PTD-mFoxp3 can alleviate rheumatoid arthritis (RA) in the collagen-induced arthritis (CIA) mouse model. As expected, PTD-mFoxP3 was transduced into cells effectively, and inhibited T cell activation and attenuated the cell proliferation. It decreased interleukin (IL) 2 and interferon (IFN)-γ expression, and increased IL-10 expression in activated CD4(+)CD25(-) T cells. PTD-mFoxP3-transduced CD4(+)CD25(-) T cells attenuated proliferation of activated CD4(+)CD25(-) T cells. In addition, PTD-mFoxP3 blocked the Th17 differentiation programme in vitro and down-regulated IL-17 production from T cells by modulating induction and levels of retinoid-related orphan receptor gamma t (RORγt). Intra-articular delivery of PTD-mFoxP3 delayed disease incidence remarkably and alleviated autoimmune symptoms of CIA mice. Moreover, protective effects of PTD-mFoxP3 were associated with regulating the balance of T helper type 17 (Th17) and T(regs). These results suggest that PTD-mFoxP3 may be a candidate for RA therapy.

  15. Regulatory roles for Tiam1, a guanine nucleotide exchange factor for Rac1, in glucose-stimulated insulin secretion in pancreatic beta-cells.

    PubMed

    Veluthakal, Rajakrishnan; Madathilparambil, Suresh Vasu; McDonald, Phillip; Olson, Lawrence Karl; Kowluru, Anjaneyulu

    2009-01-01

    Using various biochemical, pharmacological and molecular biological approaches, we have recently reported regulatory roles for Rac1, a small G-protein, in glucose-stimulated insulin secretion (GSIS). However, little is understood with respect to localization of, and regulation by, specific regulatory factors of Rac1 in GSIS. Herein, we investigated regulatory roles for Tiam1, a specific nucleotide exchange factor (GEF) for Rac1, in GSIS in pancreatic beta-cells. Western blot analysis indicated that Tiam1 is predominantly cytosolic in distribution. NSC23766, a specific inhibitor of Tiam1-mediated activation of Rac1, markedly attenuated glucose-induced, but not KCl-induced insulin secretion in INS 832/13 cells and normal rat islets. Further, NSC23766 significantly reduced glucose-induced activation (i.e. GTP-bound form) and membrane association of Rac1 in INS 832/13 cells and rat islets. Moreover, siRNA-mediated knock-down of Tiam1 markedly inhibited glucose-induced membrane trafficking and activation of Rac1 in INS 832/13 cells. Interestingly, however, in contrast to the inhibitory effects of NSC23766, Tiam1 gene depletion potentiated GSIS in these cells; such a potentiation of GSIS was sensitive to extracellular calcium. Together, our studies present the first evidence for a regulatory role for Tiam1/Rac1-sensitive signaling step in GSIS. They also provide evidence for the existence of a potential Rac1/Tiam1-independent, but calcium-sensitive component for GSIS in these cells.

  16. Signals and myogenic regulatory factors restrict pax3 and pax7 expression to dermomyotome-like tissue in zebrafish

    PubMed Central

    Hammond, Christina L.; Hinits, Yaniv; Osborn, Daniel P.S.; Minchin, James E.N.; Tettamanti, Gianluca; Hughes, Simon M.

    2014-01-01

    Pax3/7 paired homeodomain transcription factors are important markers of muscle stem cells. Pax3 is required upstream of myod for lateral dermomyotomal cells in the amniote somite to form particular muscle cells. Later Pax3/7-dependent cells generate satellite cells and most body muscle. Here we analyse early myogenesis from, and regulation of, a population of Pax3-expressing dermomyotome-like cells in the zebrafish. Zebrafish pax3 is widely expressed in the lateral somite and, along with pax7, becomes restricted anteriorly and then to the external cells on the lateral somite surface. Midline-derived Hedgehog signals appear to act directly on lateral somite cells to repress Pax3/7. Both Hedgehog and Fgf8, signals that induce muscle formation within the somite, suppress Pax3/7 and promote expression of myogenic regulatory factors (MRFs) myf5 and myod in specific muscle precursor cell populations. Loss of MRF function leads to loss of myogenesis by specific populations of muscle fibres, with parallel up-regulation of Pax3/7. Myod is required for lateral fast muscle differentiation from pax3-expressing cells. In contrast, either Myf5 or Myod is sufficient to promote slow muscle formation from adaxial cells. Thus, myogenic signals act to drive somite cells to a myogenic fate through up-regulation of distinct combinations of MRFs. Our data show that the relationship between Pax3/7 genes and myogenesis is evolutionarily ancient, but that changes in the MRF targets for particular signals contribute to myogenic differences between species. PMID:17094960

  17. Dynamic control of gene regulatory logic by seemingly redundant transcription factors

    PubMed Central

    AkhavanAghdam, Zohreh; Sinha, Joydeb; Tabbaa, Omar P; Hao, Nan

    2016-01-01

    Many transcription factors co-express with their homologs to regulate identical target genes, however the advantages of such redundancies remain elusive. Using single-cell imaging and microfluidics, we study the yeast general stress response transcription factor Msn2 and its seemingly redundant homolog Msn4. We find that gene regulation by these two factors is analogous to logic gate systems. Target genes with fast activation kinetics can be fully induced by either factor, behaving as an 'OR' gate. In contrast, target genes with slow activation kinetics behave as an 'AND' gate, requiring distinct contributions from both factors, upon transient stimulation. Furthermore, such genes become an 'OR' gate when the input duration is prolonged, suggesting that the logic gate scheme is not static but rather dependent on the input dynamics. Therefore, Msn2 and Msn4 enable a time-based mode of combinatorial gene regulation that might be applicable to homologous transcription factors in other organisms. DOI: http://dx.doi.org/10.7554/eLife.18458.001 PMID:27690227

  18. Regulation of Virulence of Entamoeba histolytica by the URE3-BP Transcription Factor.

    PubMed

    Gilchrist, Carol A; Moore, Ellyn S; Zhang, Yan; Bousquet, Christina B; Lannigan, Joanne A; Mann, Barbara J; Petri, William A

    2010-05-18

    It is not understood why only some infections with Entamoeba histolytica result in disease. The calcium-regulated transcription factor upstream regulatory element 3-binding protein (URE3-BP) was initially identified by virtue of its role in regulating the expression of two amebic virulence genes, the Gal/GalNac lectin and ferredoxin. Here we tested whether this transcription factor has a broader role in regulating virulence. A comparison of in vivo to in vitro parasite gene expression demonstrated that 39% of in vivo regulated transcripts contained the URE3 motif recognized by URE3-BP, compared to 23% of all promoters (P < 0.0001). Amebae induced to express a dominant positive mutant form of URE3-BP had an increase in an elongated morphology (30% +/- 6% versus 14% +/- 5%; P = 0.001), a 2-fold competitive advantage at invading the intestinal epithelium (P = 0.017), and a 3-fold increase in liver abscess size (0.1 +/- 0.1 g versus 0.036 +/- 0.1 g; P = 0.03). These results support a role for URE3-BP in virulence regulation.

  19. Molecular identification and functional characterisation of the interferon regulatory factor 1 in the blunt snout bream (Megalobrama amblycephala).

    PubMed

    Zhan, Fan-Bin; Liu, Han; Lai, Rui-Fang; Jakovlić, Ivan; Wang, Wen-Bin; Wang, Wei-Min

    2016-07-01

    Interferon regulatory factors (IRFs) play a key role in mediating the host response against pathogen infection and other important biological processes. This is the first report of an IRF family member in blunt snout bream Megalobrama amblycephala. The complete cDNA of M. amblycephala (Ma) IRF1 gene has 1422 nucleotides (nt.), with an open reading frame of 858 nt, encoding a polypeptide of 285 amino acids. The putative MaIRF1 polypeptide shared significant structural homology with known IRF1 homologs: a conserved IRF domain was found at the N-terminal and an IRF association domain 2 at the C-terminal. Phylogenetic analysis showed that MaIRF1 amino acid sequence clustered with other teleost IRF1s, with a grass carp ortholog exhibiting the highest similarity. MaIRF1 mRNA expression patterns were studied using quantitative real-time PCR in healthy fish tissues and after a challenge with Aeromonas hydrophila bacterium. It was constitutively expressed in all examined tissues: the highest in blood, the lowest in muscle. The expression after A. hydrophila challenge was up-regulated in liver, spleen and kidney, but down-regulated in intestine and gills. At the protein level, similar expression patterns were observed in liver and gills. Patterns differed in intestine (up-regulation), spleen (down-regulation) and kidney (expression mostly unchanged). This study indicates that MaIRF1 gene plays an important role in the blunt snout bream immune system, hence providing an important base for further studies. PMID:27150048

  20. [Butanol as a regulatory factor of ompC gene expression in E. coli cells].

    PubMed

    Seregina, T A; Shakulov, R S; Mironov, A S

    2012-11-01

    The influence of butanol on the expression of ompC gene encoding synthesis of OmpC porin in the MG 1655 strain of E. coli and butanol-tolerant mutant ButR was studied. It was shown that in the case of wild bacteria, the addition of butanol to the growth medium results in an increased level of ompC transcription. However, OmpC porin is not detected in the membrane fraction of cells. ButR mutant exhibits a higher level of ompC gene expression. A direct correlation is observed between the level of OmpC porin expression and its content in the membrane fraction of ButR mutant cells. In the regulatory region of the ompC gene of the ButR mutant, three nucleotide substitutions located in the binding sites of OmpR and CpxR activator proteins were identified. It was shown that mutations in the regulatory region of the ompC gene in the ButR mutant are responsible for the decreased level of OmpC porin expression under normal growth conditions. However, these mutations lead to an increased level of OmpC porin synthesis in the presence of butanol. These data suggest an additional mechanism of ompC gene regulation with the participation of butanol as a positive transcription effector.

  1. Oxidative Stress-Related Transcription Factors in the Regulation of Secondary Metabolism

    PubMed Central

    Hong, Sung-Yong; Roze, Ludmila V.; Linz, John E.

    2013-01-01

    There is extensive and unequivocal evidence that secondary metabolism in filamentous fungi and plants is associated with oxidative stress. In support of this idea, transcription factors related to oxidative stress response in yeast, plants, and fungi have been shown to participate in controlling secondary metabolism. Aflatoxin biosynthesis, one model of secondary metabolism, has been demonstrated to be triggered and intensified by reactive oxygen species buildup. An oxidative stress-related bZIP transcription factor AtfB is a key player in coordinate expression of antioxidant genes and genes involved in aflatoxin biosynthesis. Recent findings from our laboratory provide strong support for a regulatory network comprised of at least four transcription factors that bind in a highly coordinated and timely manner to promoters of the target genes and regulate their expression. In this review, we will focus on transcription factors involved in co-regulation of aflatoxin biosynthesis with oxidative stress response in aspergilli, and we will discuss the relationship of known oxidative stress-associated transcription factors and secondary metabolism in other organisms. We will also talk about transcription factors that are involved in oxidative stress response, but have not yet been demonstrated to be affiliated with secondary metabolism. The data support the notion that secondary metabolism provides a secondary line of defense in cellular response to oxidative stress. PMID:23598564

  2. Analysis of the Salmonella regulatory network suggests involvement of SsrB and H-NS in σ(E)-regulated SPI-2 gene expression.

    PubMed

    Li, Jie; Overall, Christopher C; Nakayasu, Ernesto S; Kidwai, Afshan S; Jones, Marcus B; Johnson, Rudd C; Nguyen, Nhu T; McDermott, Jason E; Ansong, Charles; Heffron, Fred; Cambronne, Eric D; Adkins, Joshua N

    2015-01-01

    The extracytoplasmic functioning sigma factor σ(E) is known to play an essential role for Salmonella enterica serovar Typhimurium to survive and proliferate in macrophages and mice. However, its regulatory network is not well-characterized, especially during infection. Here we used microarray to identify genes regulated by σ(E) in Salmonella grown in three conditions: a nutrient-rich condition and two others that mimic early and late intracellular infection. We found that in each condition σ(E) regulated different sets of genes, and notably, several global regulators. When comparing nutrient-rich and infection-like conditions, large changes were observed in the expression of genes involved in Salmonella pathogenesis island (SPI)-1 type-three secretion system (TTSS), SPI-2 TTSS, protein synthesis, and stress responses. In total, the expression of 58% of Salmonella genes was affected by σ(E) in at least one of the three conditions. An important finding is that σ(E) up-regulates SPI-2 genes, which are essential for Salmonella intracellular survival, by up-regulating SPI-2 activator ssrB expression at the early stage of infection and down-regulating SPI-2 repressor hns expression at a later stage. Moreover, σ(E) is capable of countering the silencing of H-NS, releasing the expression of SPI-2 genes. This connection between σ(E) and SPI-2 genes, combined with the global regulatory effect of σ(E), may account for the lethality of rpoE-deficient Salmonella in murine infection.

  3. Analysis of the Salmonella regulatory network suggests involvement of SsrB and H-NS in σE-regulated SPI-2 gene expression

    DOE PAGESBeta

    Li, Jie; Overall, Christopher C.; Nakayasu, Ernesto S.; Kidwai, Afshan S.; Jones, Marcus B.; Johnson, Rudd; Nguyen, Nhu T.; McDermott, Jason E.; Ansong, Charles; Heffron, Fred; et al

    2015-02-10

    The extracytoplasmic functioning sigma factor σE is known to play an essential role for Salmonella enterica serovar Typhimurium to survive and proliferate in macrophages and mice. However, its regulatory network is not well characterized, especially during infection. Here we used microarray to identify genes regulated by σE in Salmonella grown in three conditions: a nutrient-rich condition and two others that mimic early and late intracellular infection. We found that in each condition σE regulated different sets of genes, and notably, several global regulators. When comparing nutrient-rich and infection-like conditions, large changes were observed in the expression of genes involved inmore » Salmonella pathogenesis island (SPI)-1 type-three secretion system (TTSS), SPI-2 TTSS, protein synthesis, and stress responses. In total, the expression of 58% of Salmonella genes was affected by σE in at least one of the three conditions. An important finding is that σE up-regulates SPI-2 genes, which are essential for Salmonella intracellular survival, by up-regulating SPI-2 activator ssrB expression at the early stage of infection and down-regulating SPI-2 repressor hns expression at a later stage. Moreover, σE is capable of countering the silencing of H-NS, releasing the expression of SPI-2 genes. This connection between σE and SPI-2 genes, combined with the global regulatory effect of σE, may account for the lethality of rpoE-deficient Salmonella in murine infection.« less

  4. Analysis of the Salmonella regulatory network suggests involvement of SsrB and H-NS in σE-regulated SPI-2 gene expression

    SciTech Connect

    Li, Jie; Overall, Christopher C.; Nakayasu, Ernesto S.; Kidwai, Afshan S.; Jones, Marcus B.; Johnson, Rudd; Nguyen, Nhu T.; McDermott, Jason E.; Ansong, Charles; Heffron, Fred; Cambronne, Eric; Adkins, Joshua N.

    2015-02-10

    The extracytoplasmic functioning sigma factor σE is known to play an essential role for Salmonella enterica serovar Typhimurium to survive and proliferate in macrophages and mice. However, its regulatory network is not well characterized, especially during infection. Here we used microarray to identify genes regulated by σE in Salmonella grown in three conditions: a nutrient-rich condition and two others that mimic early and late intracellular infection. We found that in each condition σE regulated different sets of genes, and notably, several global regulators. When comparing nutrient-rich and infection-like conditions, large changes were observed in the expression of genes involved in Salmonella pathogenesis island (SPI)-1 type-three secretion system (TTSS), SPI-2 TTSS, protein synthesis, and stress responses. In total, the expression of 58% of Salmonella genes was affected by σE in at least one of the three conditions. An important finding is that σE up-regulates SPI-2 genes, which are essential for Salmonella intracellular survival, by up-regulating SPI-2 activator ssrB expression at the early stage of infection and down-regulating SPI-2 repressor hns expression at a later stage. Moreover, σE is capable of countering the silencing of H-NS, releasing the expression of SPI-2 genes. This connection between σE and SPI-2 genes, combined with the global regulatory effect of σE, may account for the lethality of rpoE-deficient Salmonella in murine infection.

  5. Analysis of the Salmonella regulatory network suggests involvement of SsrB and H-NS in σE-regulated SPI-2 gene expression

    PubMed Central

    Li, Jie; Overall, Christopher C.; Nakayasu, Ernesto S.; Kidwai, Afshan S.; Jones, Marcus B.; Johnson, Rudd C.; Nguyen, Nhu T.; McDermott, Jason E.; Ansong, Charles; Heffron, Fred; Cambronne, Eric D.; Adkins, Joshua N.

    2015-01-01

    The extracytoplasmic functioning sigma factor σE is known to play an essential role for Salmonella enterica serovar Typhimurium to survive and proliferate in macrophages and mice. However, its regulatory network is not well-characterized, especially during infection. Here we used microarray to identify genes regulated by σE in Salmonella grown in three conditions: a nutrient-rich condition and two others that mimic early and late intracellular infection. We found that in each condition σE regulated different sets of genes, and notably, several global regulators. When comparing nutrient-rich and infection-like conditions, large changes were observed in the expression of genes involved in Salmonella pathogenesis island (SPI)-1 type-three secretion system (TTSS), SPI-2 TTSS, protein synthesis, and stress responses. In total, the expression of 58% of Salmonella genes was affected by σE in at least one of the three conditions. An important finding is that σE up-regulates SPI-2 genes, which are essential for Salmonella intracellular survival, by up-regulating SPI-2 activator ssrB expression at the early stage of infection and down-regulating SPI-2 repressor hns expression at a later stage. Moreover, σE is capable of countering the silencing of H-NS, releasing the expression of SPI-2 genes. This connection between σE and SPI-2 genes, combined with the global regulatory effect of σE, may account for the lethality of rpoE-deficient Salmonella in murine infection. PMID:25713562

  6. Beclin 1 regulates growth factor receptor signaling in breast cancer.

    PubMed

    Rohatgi, R A; Janusis, J; Leonard, D; Bellvé, K D; Fogarty, K E; Baehrecke, E H; Corvera, S; Shaw, L M

    2015-10-16

    Beclin 1 is a haploinsufficient tumor suppressor that is decreased in many human tumors. The function of beclin 1 in cancer has been attributed primarily to its role in the degradative process of macroautophagy. However, beclin 1 is a core component of the vacuolar protein sorting 34 (Vps34)/class III phosphatidylinositoI-3 kinase (PI3KC3) and Vps15/p150 complex that regulates multiple membrane-trafficking events. In the current study, we describe an alternative mechanism of action for beclin 1 in breast cancer involving its control of growth factor receptor signaling. We identify a specific stage of early endosome maturation that is regulated by beclin 1, the transition of APPL1-containing phosphatidyIinositol 3-phosphate-negative (PI3P(-)) endosomes to PI3P(+) endosomes. Beclin 1 regulates PI3P production in response to growth factor stimulation to control the residency time of growth factor receptors in the PI3P(-)/APPL(+)-signaling-competent compartment. As a result, suppression of BECN1 sustains growth factor-stimulated AKT and ERK activation resulting in increased breast carcinoma cell invasion. In human breast tumors, beclin 1 expression is inversely correlated with AKT and ERK phosphorylation. Our data identify a novel role for beclin 1 in regulating growth factor signaling and reveal a mechanism by which loss of beclin 1 expression would enhance breast cancer progression.

  7. Comparative analysis of transcription factor gene families from Papaver somniferum: identification of regulatory factors involved in benzylisoquinoline alkaloid biosynthesis.

    PubMed

    Agarwal, Parul; Pathak, Sumya; Lakhwani, Deepika; Gupta, Parul; Asif, Mehar Hasan; Trivedi, Prabodh Kumar

    2016-05-01

    Opium poppy (Papaver somniferum L.), known for biosynthesis of several therapeutically important benzylisoquinoline alkaloids (BIAs), has emerged as the premier organism to study plant alkaloid metabolism. The most prominent molecules produced in opium poppy include narcotic analgesic morphine, the cough suppressant codeine, the muscle relaxant papaverine and the anti-microbial agent sanguinarine and berberine. Despite several health benefits, biosynthesis of some of these molecules is very low due to tight temporal and spatial regulation of the genes committed to their biosynthesis. Transcription factors, one of the prime regulators of secondary plant product biosynthesis, might be involved in controlled biosynthesis of BIAs in P. somniferum. In this study, identification of members of different transcription factor gene families using transcriptome datasets of 10 cultivars of P. somniferum with distinct chemoprofile has been carried out. Analysis suggests that most represented transcription factor gene family in all the poppy cultivars is WRKY. Comparative transcriptome analysis revealed differential expression pattern of the members of a set of transcription factor gene families among 10 cultivars. Through analysis, two members of WRKY and one member of C3H gene family were identified as potential candidates which might regulate thebaine and papaverine biosynthesis, respectively, in poppy.

  8. Comparative analysis of transcription factor gene families from Papaver somniferum: identification of regulatory factors involved in benzylisoquinoline alkaloid biosynthesis.

    PubMed

    Agarwal, Parul; Pathak, Sumya; Lakhwani, Deepika; Gupta, Parul; Asif, Mehar Hasan; Trivedi, Prabodh Kumar

    2016-05-01

    Opium poppy (Papaver somniferum L.), known for biosynthesis of several therapeutically important benzylisoquinoline alkaloids (BIAs), has emerged as the premier organism to study plant alkaloid metabolism. The most prominent molecules produced in opium poppy include narcotic analgesic morphine, the cough suppressant codeine, the muscle relaxant papaverine and the anti-microbial agent sanguinarine and berberine. Despite several health benefits, biosynthesis of some of these molecules is very low due to tight temporal and spatial regulation of the genes committed to their biosynthesis. Transcription factors, one of the prime regulators of secondary plant product biosynthesis, might be involved in controlled biosynthesis of BIAs in P. somniferum. In this study, identification of members of different transcription factor gene families using transcriptome datasets of 10 cultivars of P. somniferum with distinct chemoprofile has been carried out. Analysis suggests that most represented transcription factor gene family in all the poppy cultivars is WRKY. Comparative transcriptome analysis revealed differential expression pattern of the members of a set of transcription factor gene families among 10 cultivars. Through analysis, two members of WRKY and one member of C3H gene family were identified as potential candidates which might regulate thebaine and papaverine biosynthesis, respectively, in poppy. PMID:26108744

  9. A Consensus Network of Gene Regulatory Factors in the Human Frontal Lobe.

    PubMed

    Berto, Stefano; Perdomo-Sabogal, Alvaro; Gerighausen, Daniel; Qin, Jing; Nowick, Katja

    2016-01-01

    Cognitive abilities, such as memory, learning, language, problem solving, and planning, involve the frontal lobe and other brain areas. Not much is known yet about the molecular basis of cognitive abilities, but it seems clear that cognitive abilities are determined by the interplay of many genes. One approach for analyzing the genetic networks involved in cognitive functions is to study the coexpression networks of genes with known importance for proper cognitive functions, such as genes that have been associated with cognitive disorders like intellectual disability (ID) or autism spectrum disorders (ASD). Because many of these genes are gene regulatory factors (GRFs) we aimed to provide insights into the gene regulatory networks active in the human frontal lobe. Using genome wide human frontal lobe expression data from 10 independent data sets, we first derived 10 individual coexpression networks for all GRFs including their potential target genes. We observed a high level of variability among these 10 independently derived networks, pointing out that relying on results from a single study can only provide limited biological insights. To instead focus on the most confident information from these 10 networks we developed a method for integrating such independently derived networks into a consensus network. This consensus network revealed robust GRF interactions that are conserved across the frontal lobes of different healthy human individuals. Within this network, we detected a strong central module that is enriched for 166 GRFs known to be involved in brain development and/or cognitive disorders. Interestingly, several hubs of the consensus network encode for GRFs that have not yet been associated with brain functions. Their central role in the network suggests them as excellent new candidates for playing an essential role in the regulatory network of the human frontal lobe, which should be investigated in future studies. PMID:27014338

  10. A Consensus Network of Gene Regulatory Factors in the Human Frontal Lobe

    PubMed Central

    Berto, Stefano; Perdomo-Sabogal, Alvaro; Gerighausen, Daniel; Qin, Jing; Nowick, Katja

    2016-01-01

    Cognitive abilities, such as memory, learning, language, problem solving, and planning, involve the frontal lobe and other brain areas. Not much is known yet about the molecular basis of cognitive abilities, but it seems clear that cognitive abilities are determined by the interplay of many genes. One approach for analyzing the genetic networks involved in cognitive functions is to study the coexpression networks of genes with known importance for proper cognitive functions, such as genes that have been associated with cognitive disorders like intellectual disability (ID) or autism spectrum disorders (ASD). Because many of these genes are gene regulatory factors (GRFs) we aimed to provide insights into the gene regulatory networks active in the human frontal lobe. Using genome wide human frontal lobe expression data from 10 independent data sets, we first derived 10 individual coexpression networks for all GRFs including their potential target genes. We observed a high level of variability among these 10 independently derived networks, pointing out that relying on results from a single study can only provide limited biological insights. To instead focus on the most confident information from these 10 networks we developed a method for integrating such independently derived networks into a consensus network. This consensus network revealed robust GRF interactions that are conserved across the frontal lobes of different healthy human individuals. Within this network, we detected a strong central module that is enriched for 166 GRFs known to be involved in brain development and/or cognitive disorders. Interestingly, several hubs of the consensus network encode for GRFs that have not yet been associated with brain functions. Their central role in the network suggests them as excellent new candidates for playing an essential role in the regulatory network of the human frontal lobe, which should be investigated in future studies. PMID:27014338

  11. HIV-1, interferon and the interferon regulatory factor system: an interplay between induction, antiviral responses and viral evasion.

    PubMed

    Marsili, Giulia; Remoli, Anna Lisa; Sgarbanti, Marco; Perrotti, Edvige; Fragale, Alessandra; Battistini, Angela

    2012-01-01

    Thirty years after the first isolation of the etiological agent of AIDS, the virus HIV-1 is still a major threat worldwide with millions of individuals currently infected. Although current combination therapies allow viral replication to be controlled, HIV-1 is not eradicated and persists in drug- and immune system-insensitive reservoirs and a cure is still lacking. Pathogens such as HIV-1 that cause chronic infections are able to adapt to the host in a manner that ensures long term residence and survival, via the evolution of numerous mechanisms that evade various aspects of the innate and adaptive immune response. One such mechanism is targeted to members of the interferon (IFN) regulatory factor (IRF) family of proteins. These transcription factors regulate a variety of biological processes including interferon induction, immune cell activation and downstream pattern recognition receptors (PRRs). HIV-1 renders IRFs harmless and hijacks them to its own advantage in order to facilitate its replication and evasion of immune responses. Type I interferon (IFN), the canonical antiviral innate response, can be induced in both acute and chronic HIV-1 infection in vivo, but in the majority of individuals this initial response is not protective and can contribute to disease progression. Type I IFN expression is largely inhibited in T cells and macrophages in order to successfully establish productive infection, whereas sustained IFN production by plasmacytoid dendritic cells is considered an important source of chronic immune activation, a hallmark to AIDS progression.

  12. Superoxide dismutase 1 acts as a nuclear transcription factor to regulate oxidative stress resistance

    PubMed Central

    Tsang, Chi Kwan; Liu, Yuan; Thomas, Janice; Zhang, Yanjie; Zheng, X. F. Steven

    2015-01-01

    Summary Superoxide dismutase 1 (Sod1) has been known for nearly half a century for catalysis of superoxide to hydrogen peroxide. Here we report a new Sod1 function in oxidative signaling: in response to elevated endogenous and exogenous reactive oxygen species (ROS), Sod1 rapidly relocates into the nucleus, which is important for maintaining genomic stability. Interestingly, H2O2 is sufficient to promote Sod1 nuclear localization, indicating that it is responding to general ROS rather than Sod1 substrate superoxide. ROS signaling is mediated by Mec1/ATM and its effector Dun1/Cds1 kinase, through Dun1 interaction with Sod1 and regulation of Sod1 by phosphorylation at S60, 99. In the nucleus, Sod1 binds to the promoters and regulates the expression of oxidative resistance and repair genes. Altogether, our study unravels an unorthodox function of Sod1 as a transcription factor and elucidates the regulatory mechanism for its localization. PMID:24647101

  13. CYLD negatively regulates transforming growth factor-β-signalling via deubiquitinating Akt

    PubMed Central

    Lim, Jae Hyang; Jono, Hirofumi; Komatsu, Kensei; Woo, Chang-Hoon; Lee, Jiyun; Miyata, Masanori; Matsuno, Takashi; Xu, Xiangbin; Huang, Yuxian; Zhang, Wenhong; Park, Soo Hyun; Kim, Yu-Il; Choi, Yoo-Duk; Shen, Huahao; Heo, Kyung-Sun; Xu, Haodong; Bourne, Patricia; Koga, Tomoaki; Xu, Haidong; Yan, Chen; Wang, Binghe; Chen, Lin-Feng; Feng, Xin-Hua; Li, Jian-Dong

    2012-01-01

    Lung injury, whether induced by infection or caustic chemicals, initiates a series of complex wound-healing responses. If uncontrolled, these responses may lead to fibrotic lung diseases and loss of function. Thus, resolution of lung injury must be tightly regulated. The key regulatory proteins required for tightly controlling the resolution of lung injury have yet to be identified. Here we show that loss of deubiquitinase CYLD led to the development of lung fibrosis in mice after infection with Streptococcus pneumoniae. CYLD inhibited transforming growth factor-β-signalling and prevented lung fibrosis by decreasing the stability of Smad3 in an E3 ligase carboxy terminus of Hsc70-interacting protein-dependent manner. Moreover, CYLD decreases Smad3 stability by deubiquitinating K63-polyubiquitinated Akt. Together, our results unveil a role for CYLD in tightly regulating the resolution of lung injury and preventing fibrosis by deubiquitinating Akt. These studies may help develop new therapeutic strategies for preventing lung fibrosis. PMID:22491319

  14. A synopsis of factors regulating beta cell development and beta cell mass.

    PubMed

    Prasadan, Krishna; Shiota, Chiyo; Xiangwei, Xiao; Ricks, David; Fusco, Joseph; Gittes, George

    2016-10-01

    The insulin-secreting beta cells in the endocrine pancreas regulate blood glucose levels, and loss of functional beta cells leads to insulin deficiency, hyperglycemia (high blood glucose) and diabetes mellitus. Current treatment strategies for type-1 (autoimmune) diabetes are islet transplantation, which has significant risks and limitations, or normalization of blood glucose with insulin injections, which is clearly not ideal. The type-1 patients can lack insulin counter-regulatory mechanism; therefore, hypoglycemia is a potential risk. Hence, a cell-based therapy offers a better alternative for the treatment of diabetes. Past research was focused on attempting to generate replacement beta cells from stem cells; however, recently there has been an increasing interest in identifying mechanisms that will lead to the conversion of pre-existing differentiated endocrine cells into beta cells. The goal of this review is to provide an overview of several of the key factors that regulate new beta cell formation (neogenesis) and beta cell proliferation. PMID:27105622

  15. Understanding the molecular mechanism of transcriptional regulation of banana Sucrose phosphate synthase (SPS) gene during fruit ripening: an insight into the functions of various cis-acting regulatory elements.

    PubMed

    Choudhury, Swarup Roy; Roy, Sujit; Singh, Sanjay Kumar; Sengupta, Dibyendu N

    2010-05-01

    Recently, we have reported the characterization of promoter region of Sucrose phosphate synthase (SPS) gene in banana and investigated the role of some cis-elements/motifs, present in the promoter of SPS, in the transcriptional regulation of the gene. DNA-protein interaction studies have demonstrated the presence of specific trans-acting factors which showed specific interactions with ethylene, auxin, low temperature and light responsive elements in regulating SPS transcription. Transient expression analyses have demonstrated the functional significance of the various cis-acting regulatory elements present in banana SPS promoter in regulating SPS expression during ripening. (1) Here, we have further discussed the possible role of these regulatory sequences in the regulation of transcriptional network and comment on their function in relation to sucrose metabolism during banana fruit ripening. PMID:20139735

  16. Regulatory elements responsible for inducible expression of the granulocyte colony-stimulating factor gene in macrophages.

    PubMed Central

    Nishizawa, M; Nagata, S

    1990-01-01

    Granulocyte colony-stimulating factor (G-CSF) plays an essential role in granulopoiesis during bacterial infection. Macrophages produce G-CSF in response to bacterial endotoxins such as lipopolysaccharide (LPS). To elucidate the mechanism of the induction of G-CSF gene in macrophages or macrophage-monocytes, we have examined regulatory cis elements in the promoter of mouse G-CSF gene. Analyses of linker-scanning and internal deletion mutants of the G-CSF promoter by the chloramphenicol acetyltransferase assay have indicated that at least three regulatory elements are indispensable for the LPS-induced expression of the G-CSF gene in macrophages. When one of the three elements was reiterated and placed upstream of the TATA box of the G-CSF promoter, it mediated inducibility as a tissue-specific and orientation-independent enhancer. Although this element contains a conserved NF-kappa B-like binding site, the gel retardation assay and DNA footprint analysis with nuclear extracts from macrophage cell lines demonstrated that nuclear proteins bind to the DNA sequence downstream of the NF-kappa B-like element, but not to the conserved element itself. The DNA sequence of the binding site was found to have some similarities to the LPS-responsive element which was recently identified in the promoter of the mouse class II major histocompatibility gene. Images PMID:1691438

  17. Nerve growth factor regulates gene expression by several distinct mechanisms

    SciTech Connect

    Cho, K.O.; Skarnes, W.C. ); Minsk, B.; Palmier, S. ); Jackson-Grusby, L.; Wagner, J.A. . Dept. of Biological Chemistry)

    1989-01-01

    To help elucidate the mechanisms by which nerve growth factor (NGF) regulates gene expression, the authors have identified and studied four genes (a-2, d-2, d-4, and d-5) that are positively regulated by NGF in PC12 cells, including one (d-2) which has previously been identified as a putative transcription factor (NGF I-A). Three of these genes, including d-2, were induced very rapidly at the transcriptional level, but the relative time courses of transcription and mRNA accumulation of each of these three genes were distinct. The fourth gene (d-4) displayed no apparent increase in transcription that corresponded to the increase in its mRNA, suggesting that NGF may regulate its expression at a posttranscriptional level. Thus NGF positively regulates gene expression by more than one mechanism. The study of the regulation of the expression of these and other NGF-inducible genes should provide valuable new information concerning how NGF and other growth factors cause neural differentiation.

  18. Below regulatory concern; New NRC policy provides vehicle for exempting some radioactive wastes from regulation

    SciTech Connect

    Quinn, P.

    1990-10-01

    This paper discusses how a new policy governing disposal of certain low-level radioactive wastes could affect the hazardous waste industry dramatically. A policy statement issued by the Nuclear Regulatory Commission (NRC) formalizes guidelines that would allow it to declare radioactive materials and waste streams generated by certain practices below regulatory concern (BRC), or exempt from regulatory oversight. Once a petition is approved, the exemption will apply to similarly generated wastes at nuclear facilities nationwide. According to an NRC statement issued with the policy, the exemptions would affect materials with levels of radioactivity so low that they do not warrant the same regulatory controls to ensure proper protection of the public and the environment as do higher levels of radioactive materials.

  19. Coordinated regulation of biosynthetic and regulatory genes coincides with anthocyanin accumulation in developing eggplant fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Violet to black pigmentation of eggplant (Solanum melongena) fruit is attributed to anthocyanin accumulation. Model systems support the interaction of biosynthetic and regulatory genes for anthocyanin biosynthesis. Anthocyanin structural gene transcription requires the expression of at least one m...

  20. Overview of Variable Renewable Energy Regulatory Issues: A Clean Energy Regulators Initiative Report

    SciTech Connect

    Miller, M.; Cox, S.

    2014-05-01

    This CERI report aims to provide an introductory overview of key regulatory issues associated with the deployment of renewable energy -- particularly variable renewable energy (VRE) sources such wind and solar power. The report draws upon the research and experiences from various international contexts, and identifies key ideas that have emerged from the growing body of VRE deployment experience and regulatory knowledge. The report assumes basic familiarity with regulatory concepts, and although it is not written for a technical audience, directs the reader to further reading when available. VRE deployment generates various regulatory issues: substantive, procedural, and public interest issues, and the report aims to provide an empirical and technical grounding for all three types of questions as appropriate.

  1. The Transcription Factor Interferon Regulatory Factor 1 Is Expressed after Cerebral Ischemia and Contributes to Ischemic Brain Injury

    PubMed Central

    Iadecola, Costantino; Salkowski, Cindy A.; Zhang, Fangyi; Aber, Tracy; Nagayama, Masao; Vogel, Stefanie N.; Elizabeth Ross, M.

    1999-01-01

    The transcription factor interferon regulatory factor 1 (IRF-1) is involved in the molecular mechanisms of inflammation and apoptosis, processes that contribute to ischemic brain injury. In this study, the induction of IRF-1 in response to cerebral ischemia and its role in ischemic brain injury were investigated. IRF-1 gene expression was markedly upregulated within 12 h of occlusion of the middle cerebral artery in C57BL/6 mice. The expression reached a peak 4 d after ischemia (6.0 ± 1.8-fold; P < 0.001) and was restricted to the ischemic regions of the brain. The volume of ischemic injury was reduced by 23 ± 3% in IRF-1+/− and by 46 ± 9% in IRF-1−/− mice (P < 0.05). The reduction in infarct volume was paralleled by a substantial attenuation in neurological deficits. Thus, IRF-1 is the first nuclear transacting factor demonstrated to contribute directly to cerebral ischemic damage and may be a novel therapeutic target in ischemic stroke. PMID:9989987

  2. REGULATORY STRATEGIES TO MINIMIZE GENERATION OF REGULATED WASTES FROM CLEANUP, CONTINUED USE OR DECOMMISSIONING OF NUCLEAR FACILITIES CONTAMINATED WITH POLYCHLORINATED BIPHENYLS (PCBS) - 11198

    SciTech Connect

    Lowry, N.

    2010-11-05

    Disposal costs for liquid PCB radioactive waste are among the highest of any category of regulated waste. The high cost is driven by the fact that disposal options are extremely limited. Toxic Substances Control Act (TSCA) regulations require most liquids with PCBs at concentration of {ge} 50 parts-per-million to be disposed by incineration or equivalent destructive treatment. Disposal fees can be as high as $200 per gallon. This figure does not include packaging and the cost to transport the waste to the disposal facility, or the waste generator's labor costs for managing the waste prior to shipment. Minimizing the generation of liquid radioactive PCB waste is therefore a significant waste management challenge. PCB spill cleanups often generate large volumes of waste. That is because the removal of PCBs typically requires the liberal use of industrial solvents followed by a thorough rinsing process. In a nuclear facility, the cleanup process may be complicated by the presence of radiation and other occupational hazards. Building design and construction features, e.g., the presence of open grating or trenches, may also complicate cleanup. In addition to the technical challenges associated with spill cleanup, selection of the appropriate regulatory requirements and approach may be challenging. The TSCA regulations include three different sections relating to the cleanup of PCB contamination or spills. EPA has also promulgated a separate guidance policy for fresh PCB spills that is published as Subpart G of 40 CFR 761 although it is not an actual regulation. Applicability is based on the circumstances of each contamination event or situation. Other laws or regulations may also apply. Identification of the allowable regulatory options is important. Effective communication with stakeholders, particularly regulators, is just as important. Depending on the regulatory path that is taken, cleanup may necessitate the generation of large quantities of regulated waste

  3. Possible dual regulatory circuits involving AtS6K1 in the regulation of plant cell cycle and growth.

    PubMed

    Shin, Yun-jeong; Kim, Sunghan; Du, Hui; Choi, Soonyoung; Verma, Desh Pal S; Cheon, Choong-Ill

    2012-05-01

    The role of Arabidopsis S6 Kinase 1 (AtS6K1), a downstream target of TOR kinase, in controlling plant growth and ribosome biogenesis was characterized after generating transgenic plants expressing AtS6K1 under auxin-inducible promoter. Down regulation of selected cell cycle regulatory genes upon auxin treatment was observed in the transgenic plants, confirming the negative regulatory role of AtS6K1 in the plant cell cycle progression reported earlier. Callus tissues established from these transgenic plants grew to larger cell masses with more number of enlarged cells than untransformed control, demonstrating functional implication of AtS6K1 in the control of plant cell size. The observed negative correlation between the expression of AtS6K1 and the cell cycle regulatory genes, however, was completely reversed in protoplasts generated from the transgenic plants expressing AtS6K1, suggesting a possible existence of dual regulatory mechanism of the plant cell cycle regulation mediated by AtS6K1. An alternative method of kinase assay, termed "substrate-mediated kinase pull down", was employed to examine the additional phosphorylation on other domains of AtS6K1 and verified the phosphorylation of both amino- and carboxy-terminal domains, which is a novel finding regarding the phosphorylation target sites on plant S6Ks by upstream regulatory kinases. In addition, this kinase assay under the stress conditions revealed the salt- and sugar-dependencies of AtS6K1 phosphorylations.

  4. Zinc Finger Transcription Factors Displaced SREBP Proteins as the Major Sterol Regulators during Saccharomycotina Evolution

    PubMed Central

    Maguire, Sarah L.; Wang, Can; Holland, Linda M.; Brunel, François; Neuvéglise, Cécile; Nicaud, Jean-Marc; Zavrel, Martin; White, Theodore C.; Wolfe, Kenneth H.; Butler, Geraldine

    2014-01-01

    In most eukaryotes, including the majority of fungi, expression of sterol biosynthesis genes is regulated by Sterol-Regulatory Element Binding Proteins (SREBPs), which are basic helix-loop-helix transcription activators. However, in yeasts such as Saccharomyces cerevisiae and Candida albicans sterol synthesis is instead regulated by Upc2, an unrelated transcription factor with a Gal4-type zinc finger. The SREBPs in S. cerevisiae (Hms1) and C. albicans (Cph2) have lost a domain, are not major regulators of sterol synthesis, and instead regulate filamentous growth. We report here that rewiring of the sterol regulon, with Upc2 taking over from SREBP, likely occurred in the common ancestor of all Saccharomycotina. Yarrowia lipolytica, a deep-branching species, is the only genome known to contain intact and full-length orthologs of both SREBP (Sre1) and Upc2. Deleting YlUPC2, but not YlSRE1, confers susceptibility to azole drugs. Sterol levels are significantly reduced in the YlUPC2 deletion. RNA-seq analysis shows that hypoxic regulation of sterol synthesis genes in Y. lipolytica is predominantly mediated by Upc2. However, YlSre1 still retains a role in hypoxic regulation; growth of Y. lipolytica in hypoxic conditions is reduced in a Ylupc2 deletion and is abolished in a Ylsre1/Ylupc2 double deletion, and YlSre1 regulates sterol gene expression during hypoxia adaptation. We show that YlSRE1, and to a lesser extent YlUPC2, are required for switching from yeast to filamentous growth in hypoxia. Sre1 appears to have an ancestral role in the regulation of filamentation, which became decoupled from its role in sterol gene regulation by the arrival of Upc2 in the Saccharomycotina. PMID:24453983

  5. Rice ASR1 and ASR5 are complementary transcription factors regulating aluminium responsive genes.

    PubMed

    Arenhart, Rafael Augusto; Schunemann, Mariana; Bucker Neto, Lauro; Margis, Rogerio; Wang, Zhi-Yong; Margis-Pinheiro, Marcia

    2016-03-01

    Rice is the most tolerant staple crop to aluminium (Al) toxicity, which is a limiting stress for grain production worldwide. This Al tolerance is the result of combined mechanisms that are triggered in part by the transcription factor ASR5. ASRs are dual target proteins that participate as chaperones in the cytoplasm and as transcription factors in the nucleus. Moreover, these proteins respond to biotic and abiotic stresses, including salt, drought and Al. Rice plants with silenced ASR genes are highly sensitive to Al. ASR5, a well-characterized protein, binds to specific cis elements in Al responsive genes and regulates their expression. Because the Al sensitive phenotype found in silenced rice plants could be due to the mutual silencing of ASR1 and ASR5, we investigated the effect of the specific silencing of ASR5. Plants with artificial microRNA silencing of ASR5 present a non-transformed phenotype in response to Al because of the induction of ASR1. ASR1 has the same subcellular localization as ASR5, binds to ASR5 cis-regulatory elements, regulates ASR5 regulated genes in a non-preferential manner and might replace ASR5 under certain conditions. Our results indicate that ASR1 and ASR5 act in concert and complementarily to regulate gene expression in response to Al.

  6. Rice ASR1 and ASR5 are complementary transcription factors regulating aluminium responsive genes.

    PubMed

    Arenhart, Rafael Augusto; Schunemann, Mariana; Bucker Neto, Lauro; Margis, Rogerio; Wang, Zhi-Yong; Margis-Pinheiro, Marcia

    2016-03-01

    Rice is the most tolerant staple crop to aluminium (Al) toxicity, which is a limiting stress for grain production worldwide. This Al tolerance is the result of combined mechanisms that are triggered in part by the transcription factor ASR5. ASRs are dual target proteins that participate as chaperones in the cytoplasm and as transcription factors in the nucleus. Moreover, these proteins respond to biotic and abiotic stresses, including salt, drought and Al. Rice plants with silenced ASR genes are highly sensitive to Al. ASR5, a well-characterized protein, binds to specific cis elements in Al responsive genes and regulates their expression. Because the Al sensitive phenotype found in silenced rice plants could be due to the mutual silencing of ASR1 and ASR5, we investigated the effect of the specific silencing of ASR5. Plants with artificial microRNA silencing of ASR5 present a non-transformed phenotype in response to Al because of the induction of ASR1. ASR1 has the same subcellular localization as ASR5, binds to ASR5 cis-regulatory elements, regulates ASR5 regulated genes in a non-preferential manner and might replace ASR5 under certain conditions. Our results indicate that ASR1 and ASR5 act in concert and complementarily to regulate gene expression in response to Al. PMID:26476017

  7. Regulatory domains of the A-Myb transcription factor and its interaction with the CBP/p300 adaptor molecules.

    PubMed Central

    Facchinetti, V; Loffarelli, L; Schreek, S; Oelgeschläger, M; Lüscher, B; Introna, M; Golay, J

    1997-01-01

    The A-Myb transcription factor belongs to the Myb family of oncoproteins and is likely to be involved in the regulation of proliferation and/or differentiation of normal B cells and Burkitt's lymphoma cells. To characterize in detail the domains of A-Myb that regulate its function, we have generated a series of deletion mutants and have investigated their trans-activation potential as well as their DNA-binding activity. Our results have allowed us to delineate the trans-activation domain as well as two separate regulatory regions. The boundaries of the trans-activation domain (amino acid residues 218-319) are centred on a sequence rich in charged amino acids (residues 259-281). A region (residues 320-482) localized immediately downstream of the trans-activation domain and containing a newly identified conserved stretch of 48 residues markedly inhibits specific DNA binding. Finally the last 110 residues of A-Myb (residues 643-752), which include a sequence conserved in all mammalian myb genes (region III), negatively regulate the maximal trans-activation potential of A-Myb. We have also investigated the functional interaction between A-Myb and the nuclear adaptor molecule CBP [cAMP response element-binding protein (CREB)-binding protein]. We demonstrate that CBP synergizes with A-Myb in a dose-dependent fashion, and that this co-operative effect can be inhibited by E1A and can also be observed with the CBP homologue p300. We show that this functional synergism requires the presence of the A-Myb charged sequence and that it involves physical interaction between A-Myb and the CREB-binding domain of CBP. PMID:9210395

  8. Impact of Environmental Factors on the Regulation of Cyanotoxin Production

    PubMed Central

    Boopathi, Thangavelu; Ki, Jang-Seu

    2014-01-01

    Cyanobacteria are capable of thriving in almost all environments. Recent changes in climatic conditions due to increased human activities favor the occurrence and severity of harmful cyanobacterial bloom all over the world. Knowledge of the regulation of cyanotoxins by the various environmental factors is essential for effective management of toxic cyanobacterial bloom. In recent years, progress in the field of molecular mechanisms involved in cyanotoxin production has paved the way for assessing the role of various factors on the cyanotoxin production. In this review, we present an overview of the influence of various environmental factors on the production of major group of cyanotoxins, including microcystins, nodularin, cylindrospermopsin, anatoxins and saxitoxins. PMID:24967641

  9. Vpu Mediates Depletion of Interferon Regulatory Factor 3 during HIV Infection by a Lysosome-Dependent Mechanism

    PubMed Central

    Doehle, Brian P.; Chang, Kristina; Rustagi, Arjun; McNevin, John; McElrath, M. Juliana

    2012-01-01

    HIV has evolved sophisticated mechanisms to avoid restriction by intracellular innate immune defenses that otherwise serve to control acute viral infection and virus dissemination. Innate defenses are triggered when pattern recognition receptor (PRR) proteins of the host cell engage pathogen-associated molecule patterns (PAMPs) present in viral products. Interferon regulatory factor 3 (IRF3) plays a central role in PRR signaling of innate immunity to drive the expression of type I interferon (IFN) and interferon-stimulated genes (ISGs), including a variety of HIV restriction factors, that serve to limit viral replication directly and/or program adaptive immunity. Productive infection of T cells by HIV is dependent upon the targeted proteolysis of IRF3 that occurs through a virus-directed mechanism that results in suppression of innate immune defenses. However, the mechanisms by which HIV controls innate immune signaling and IRF3 function are not defined. Here, we examined the innate immune response induced by HIV strains identified through their differential control of PRR signaling. We identified viruses that, unlike typical circulating HIV strains, lack the ability to degrade IRF3. Our studies show that IRF3 regulation maps specifically to the HIV accessory protein Vpu. We define a molecular interaction between Vpu and IRF3 that redirects IRF3 to the endolysosome for proteolytic degradation, thus allowing HIV to avoid the innate antiviral immune response. Our studies reveal that Vpu is an important IRF3 regulator that supports acute HIV infection through innate immune suppression. These observations define the Vpu-IRF3 interface as a novel target for therapeutic strategies aimed at enhancing the immune response to HIV. PMID:22593165

  10. Vpu mediates depletion of interferon regulatory factor 3 during HIV infection by a lysosome-dependent mechanism.

    PubMed

    Doehle, Brian P; Chang, Kristina; Rustagi, Arjun; McNevin, John; McElrath, M Juliana; Gale, Michael

    2012-08-01

    HIV has evolved sophisticated mechanisms to avoid restriction by intracellular innate immune defenses that otherwise serve to control acute viral infection and virus dissemination. Innate defenses are triggered when pattern recognition receptor (PRR) proteins of the host cell engage pathogen-associated molecule patterns (PAMPs) present in viral products. Interferon regulatory factor 3 (IRF3) plays a central role in PRR signaling of innate immunity to drive the expression of type I interferon (IFN) and interferon-stimulated genes (ISGs), including a variety of HIV restriction factors, that serve to limit viral replication directly and/or program adaptive immunity. Productive infection of T cells by HIV is dependent upon the targeted proteolysis of IRF3 that occurs through a virus-directed mechanism that results in suppression of innate immune defenses. However, the mechanisms by which HIV controls innate immune signaling and IRF3 function are not defined. Here, we examined the innate immune response induced by HIV strains identified through their differential control of PRR signaling. We identified viruses that, unlike typical circulating HIV strains, lack the ability to degrade IRF3. Our studies show that IRF3 regulation maps specifically to the HIV accessory protein Vpu. We define a molecular interaction between Vpu and IRF3 that redirects IRF3 to the endolysosome for proteolytic degradation, thus allowing HIV to avoid the innate antiviral immune response. Our studies reveal that Vpu is an important IRF3 regulator that supports acute HIV infection through innate immune suppression. These observations define the Vpu-IRF3 interface as a novel target for therapeutic strategies aimed at enhancing the immune response to HIV.

  11. Somite subdomains, muscle cell origins, and the four muscle regulatory factor proteins

    PubMed Central

    1994-01-01

    We show by immunohistology that distinct expression patterns of the four muscle regulatory factor (MRF) proteins identify subdomains of mouse somites. Myf-5 and MyoD are, at specific stages, each expressed in both myotome and dermatome cells. Myf-5 expression is initially restricted to dorsal cells in all somites, as is MyoD expression in neck somites. In trunk somites, however, MyoD is initially expressed in ventral cells. Myogenin and MRF4 are restricted to myotome cells, though the MRF4-expressing cells are initially less widely distributed than the myogenin-expressing cells, which are at all stages found throughout the myotome. All somitic myocytes express one or more MRFs. The transiently distinct expression patterns of the four MRF proteins identify dorsal and ventral subdomains of somites, and suggest that skeletal muscle cells in somites originate at multiple sites and via multiple molecular pathways. PMID:7929574

  12. Mangiferin inhibits macrophage classical activation via downregulating interferon regulatory factor 5 expression.

    PubMed

    Wei, Zhiquan; Yan, Li; Chen, Yixin; Bao, Chuanhong; Deng, Jing; Deng, Jiagang

    2016-08-01

    Mangiferin is a natural polyphenol and the predominant effective component of Mangifera indica Linn. leaves. For hundreds of years, Mangifera indica Linn. leaf has been used as an ingredient in numerous traditional Chinese medicine preparations for the treatment of bronchitis. However, the pharmacological mechanism of mangiferin in the treatment of bronchitis remains to be elucidated. Macrophage classical activation is important role in the process of bronchial airway inflammation, and interferon regulatory factor 5 (IRF5) has been identified as a key regulatory factor for macrophage classical activation. The present study used the THP‑1 human monocyte cell line to investigate whether mangiferin inhibits macrophage classical activation via suppressing IRF5 expression in vitro. THP‑1 cells were differentiated to macrophages by phorbol 12‑myristate 13‑acetate. Macrophages were polarized to M1 macrophages following stimulation with lipopolysaccharide (LPS)/interferon‑γ (IFN‑γ). Flow cytometric analysis was conducted to detect the M1 macrophages. Reverse transcription‑quantitative polymerase chain reaction was used to investigate cellular IRF5 gene expression. Levels of proinflammatory cytokines and IRF5 were assessed following cell culture and cellular homogenization using enzyme‑linked immunosorbent assay. IRF5 protein and nuclei co‑localization was performed in macrophages with laser scanning confocal microscope immunofluorescence analysis. The results of the present study demonstrated that mangiferin significantly inhibits LPS/IFN‑γ stimulation‑induced classical activation of macrophages in vitro and markedly decreases proinflammatory cytokine release. In addition, cellular IRF5 expression was markedly downregulated. These results suggest that the inhibitory effect of mangiferin on classical activation of macrophages may be exerted via downregulation of cellular IRF5 expression levels. PMID:27277156

  13. Mangiferin inhibits macrophage classical activation via downregulating interferon regulatory factor 5 expression

    PubMed Central

    Wei, Zhiquan; Yan, Li; Chen, Yixin; Bao, Chuanhong; Deng, Jing; Deng, Jiagang

    2016-01-01

    Mangiferin is a natural polyphenol and the predominant effective component of Mangifera indica Linn. leaves. For hundreds of years, Mangifera indica Linn. leaf has been used as an ingredient in numerous traditional Chinese medicine preparations for the treatment of bronchitis. However, the pharmacological mechanism of mangiferin in the treatment of bronchitis remains to be elucidated. Macrophage classical activation is important role in the process of bronchial airway inflammation, and interferon regulatory factor 5 (IRF5) has been identified as a key regulatory factor for macrophage classical activation. The present study used the THP-1 human monocyte cell line to investigate whether mangiferin inhibits macrophage classical activation via suppressing IRF5 expression in vitro. THP-1 cells were differentiated to macrophages by phorbol 12-myristate 13-acetate. Macrophages were polarized to M1 macrophages following stimulation with lipopolysaccharide (LPS)/interferon-γ (IFN-γ). Flow cytometric analysis was conducted to detect the M1 macrophages. Reverse transcription-quantitative polymerase chain reaction was used to investigate cellular IRF5 gene expression. Levels of proinflammatory cytokines and IRF5 were assessed following cell culture and cellular homogenization using enzyme-linked immunosorbent assay. IRF5 protein and nuclei co-localization was performed in macrophages with laser scanning confocal microscope immunofluorescence analysis. The results of the present study demonstrated that mangiferin significantly inhibits LPS/IFN-γ stimulation-induced classical activation of macrophages in vitro and markedly decreases proinflammatory cytokine release. In addition, cellular IRF5 expression was markedly downregulated. These results suggest that the inhibitory effect of mangiferin on classical activation of macrophages may be exerted via downregulation of cellular IRF5 expression levels. PMID:27277156

  14. Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors.

    PubMed

    Mercer, Andrew C; Gaj, Thomas; Sirk, Shannon J; Lamb, Brian M; Barbas, Carlos F

    2014-10-17

    The construction of increasingly sophisticated synthetic biological circuits is dependent on the development of extensible tools capable of providing specific control of gene expression in eukaryotic cells. Here, we describe a new class of synthetic transcription factors that activate gene expression in response to extracellular chemical stimuli. These inducible activators consist of customizable transcription activator-like effector (TALE) proteins combined with steroid hormone receptor ligand-binding domains. We demonstrate that these ligand-responsive TALE transcription factors allow for tunable and conditional control of gene activation and can be used to regulate the expression of endogenous genes in human cells. Since TALEs can be designed to recognize any contiguous DNA sequence, the conditional gene regulatory system described herein will enable the design of advanced synthetic gene networks.

  15. Autoimmune manifestations in human myelodysplasia: a positive correlation with interferon regulatory factor-1 (IRF-1) expression

    PubMed Central

    Giannouli, S; Tzoanopoulos, D; Ritis, K; Kartalis, G; Moutsopoulos, H; Voulgarelis, M

    2004-01-01

    Background: Patients with myelodysplasia may have autoimmune manifestations (AIM). Interferon regulatory factor-1 (IRF-1) is a transcription factor involved in interferon signalling, leukaemogenesis, and the development of the immune system. Objectives: To determine whether IRF-1 is implicated in the pathophysiology of AIM in myelodysplasia. Methods: 14 patients with myelodysplasia were studied, seven with AIM and seven without. Five patients with vasculitis and seven normal subjects served as controls. The expression of IRF-1 was studied in bone marrow mononuclear cells taken from patients and controls, using a relative quantitative reverse transcriptase polymerase chain reaction. Results: A 10-fold reduction in full length IRF-1 mRNA was detected in the myelodysplasia patients without AIM compared with the normal controls. In contrast, the group with AIM had increased IRF-1 transcripts, to a level almost equal to that observed in patients with vasculitis and normal controls. Conclusions: Myelodysplasia patients without IRF-1 expression had a decreased incidence of AIM. Thus the absence of IRF-1 transcription factor appears to protect against the development of autoimmunity in myelodysplasia. PMID:15082491

  16. Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors.

    PubMed

    Erbel-Sieler, Claudia; Dudley, Carol; Zhou, Yudong; Wu, Xinle; Estill, Sandi Jo; Han, Tina; Diaz-Arrastia, Ramon; Brunskill, Eric W; Potter, S Steven; McKnight, Steven L

    2004-09-14

    Laboratory mice bearing inactivating mutations in the genes encoding the NPAS1 and NPAS3 transcription factors have been shown to exhibit a spectrum of behavioral and neurochemical abnormalities. Behavioral abnormalities included diminished startle response, as measured by prepulse inhibition, and impaired social recognition. NPAS1/NPAS3-deficient mice also exhibited stereotypic darting behavior at weaning and increased locomotor activity. Immunohistochemical staining assays showed that the NPAS1 and NPAS3 proteins are expressed in inhibitory interneurons and that the viability and anatomical distribution of these neurons are unaffected by the absence of either transcription factor. Adult brain tissues from NPAS3- and NPAS1/NPAS3-deficient mice exhibited a distinct reduction in reelin, a large, secreted protein whose expression has been reported to be attenuated in the postmortem brain tissue of patients with schizophrenia. These observations raise the possibility that a regulatory program controlled in inhibitory interneurons by the NPAS1 and NPAS3 transcription factors may be either substantively or tangentially relevant to psychosis.

  17. Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors.

    PubMed

    Erbel-Sieler, Claudia; Dudley, Carol; Zhou, Yudong; Wu, Xinle; Estill, Sandi Jo; Han, Tina; Diaz-Arrastia, Ramon; Brunskill, Eric W; Potter, S Steven; McKnight, Steven L

    2004-09-14

    Laboratory mice bearing inactivating mutations in the genes encoding the NPAS1 and NPAS3 transcription factors have been shown to exhibit a spectrum of behavioral and neurochemical abnormalities. Behavioral abnormalities included diminished startle response, as measured by prepulse inhibition, and impaired social recognition. NPAS1/NPAS3-deficient mice also exhibited stereotypic darting behavior at weaning and increased locomotor activity. Immunohistochemical staining assays showed that the NPAS1 and NPAS3 proteins are expressed in inhibitory interneurons and that the viability and anatomical distribution of these neurons are unaffected by the absence of either transcription factor. Adult brain tissues from NPAS3- and NPAS1/NPAS3-deficient mice exhibited a distinct reduction in reelin, a large, secreted protein whose expression has been reported to be attenuated in the postmortem brain tissue of patients with schizophrenia. These observations raise the possibility that a regulatory program controlled in inhibitory interneurons by the NPAS1 and NPAS3 transcription factors may be either substantively or tangentially relevant to psychosis. PMID:15347806

  18. Abnormal skin, limb and craniofacial morphogenesis in mice deficient for interferon regulatory factor 6 (Irf6)

    PubMed Central

    Ingraham, Christopher R; Kinoshita, Akira; Kondo, Shinji; Yang, Baoli; Sajan, Samin; Trout, Kurt J; Malik, Margaret I; Dunnwald, Martine; Goudy, Stephen L; Lovett, Michael; Murray, Jeffrey C; Schutte, Brian C

    2007-01-01

    Transcription factor paralogs may share a common role in staged or overlapping expression in specific tissues, as in the Hox family. In other cases, family members have distinct roles in a range of embryologic, differentiation or response pathways (as in the Tbx and Pax families). For the interferon regulatory factor (IRF) family of transcription factors, mice deficient in Irf1, Irf2, Irf3, Irf4, Irf5, Irf7, Irf8 or Irf9 have defects in the immune response but show no embryologic abnormalities1–7. Mice deficient for Irf6 have not been reported, but in humans, mutations in IRF6 cause two mendelian orofacial clefting syndromes8–10, and genetic variation in IRF6 confers risk for isolated cleft lip and palate11–15. Here we report that mice deficient for Irf6 have abnormal skin, limb and craniofacial development. Histological and gene expression analyses indicate that the primary defect is in keratinocyte differentiation and proliferation. This study describes a new role for an IRF family member in epidermal development. PMID:17041601

  19. A novel tumor necrosis factor-responsive transcription factor which recognizes a regulatory element in hemopoietic growth factor genes

    SciTech Connect

    Shannon, M.F.; Pell, L.M.; Kuczek, E.S.; Occhiodoro, F.S.; Dunn, S.M.; Vadas, M.A. ); Lenardo, M.J. )

    1990-06-01

    A conserved DNA sequence element, termed cytokine 1 (CK-1), is found in the promoter regions of many hemopoietic growth factor (HGF) genes. Mutational analyses and modification interference experiments show that this sequence specifically binds a nuclear transcription factor, NF-GMa, which is a protein with a molecular mass of 43 kilodaltons. It interacts with different affinities with the CK-1-like sequence from a number of HGF genes, including granulocyte macrophage colony-stimulating factor (GM-CSF), granulocyte (G)-CSF, interleukin 3 (IL-3), and IL-5. The authors show that the level of NF-GMa binding is induced in embryonic fibroblasts by tumor necrosis factor {alpha} (TNF-{alpha}) treatment and that the CK-1 sequence from the G-CSF gene is a TNF-{alpha}-responsive enhancer in these cells.

  20. The F-box protein Ppa is a common regulator of core EMT factors Twist, Snail, Slug, and Sip1.

    PubMed

    Lander, Rachel; Nordin, Kara; LaBonne, Carole

    2011-07-11

    A small group of core transcription factors, including Twist, Snail, Slug, and Sip1, control epithelial-mesenchymal transitions (EMTs) during both embryonic development and tumor metastasis. However, little is known about how these factors are coordinately regulated to mediate the requisite behavioral and fate changes. It was recently shown that a key mechanism for regulating Snail proteins is by modulating their stability. In this paper, we report that the stability of Twist is also regulated by the ubiquitin-proteasome system. We found that the same E3 ubiquitin ligase known to regulate Snail family proteins, Partner of paired (Ppa), also controlled Twist stability and did so in a manner dependent on the Twist WR-rich domain. Surprisingly, Ppa could also target the third core EMT regulatory factor Sip1 for proteasomal degradation. Together, these results indicate that despite the structural diversity of the core transcriptional regulatory factors implicated in EMT, a common mechanism has evolved for controlling their stability and therefore their function.

  1. 76 FR 10527 - Regulatory Flexibility Act: Section 610 Review of National Organic Program Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ... regulations implementing the National Organic Program (NOP) were published December 21, 2000 (65 FR 80548... FR 14827), its schedule to review certain regulations, including the NOP regulations, under criteria... Organic Program Regulations AGENCY: Agricultural Marketing Service, USDA. ACTION: Review and request...

  2. Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator.

    PubMed Central

    Poulsen, J H; Fischer, H; Illek, B; Machen, T E

    1994-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial Cl- channel regulated by protein kinase A. The most common mutation in cystic fibrosis (CF), deletion of Phe-508 (delta F508-CFTR), reduces Cl- secretion, but the fatal consequences of CF have been difficult to rationalize solely in terms of this defect. The aim of this study was to determine the role of CFTR in HCO3- transport across cell membranes. HCO3- permeability was assessed from measurements of intracellular pH [pHi; from spectrofluorimetry of the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5-(and -6)carboxyfluorescein] and of channel activity (patch clamp; cell attached and isolated, inside-out patches) on NIH 3T3 fibroblasts and C127 mammary epithelial cells transfected with wild-type CFTR (WT-CFTR) or delta F508-CFTR, and also on mock-transfected cells. When WT-CFTR-transfected cells were acidified (pulsed with NH4Cl) and incubated in Na(+)-free (N-methyl-D-glucamine substitution) solutions (to block Na(+)-dependent pHi regulatory mechanisms), pHi remained acidic (pH approximately 6.5) until the cells were treated with 20 microM forskolin (increases cellular [cAMP]); pHi then increased toward (but not completely to) control level (pHi 7.2) at a rate of 0.055 pH unit/min. Forskolin had no effect on rate of pHi recovery in delta F508 and mock-transfected cells. This Na(+)-independent, forskolin-dependent pHi recovery was not observed in HCO3-/CO2-free medium. Forskolin-treated WT-CFTR-transfected (but not delta F508-CFTR or mock-transfected) cells in Cl(-)-containing, HCO3(-)-free solutions showed Cl- channels with a linear I/V relationship and a conductance of 10.4 +/- 0.5 pS in symmetrical 150 mM Cl-. When channels were incubated with different [Cl-] and [HCO3-] on the inside and outside, the Cl-/HCO3- permeability ratio (determined from reversal potentials of I/V curves) was 3.8 +/- 1.0 (mean +/- SEM; n = 9); the ratio of conductances was 3.9 +/- 0.5 (at 150 mM Cl- and 127 m

  3. Interferon-Regulatory Factor 5-Dependent Signaling Restricts Orthobunyavirus Dissemination to the Central Nervous System

    PubMed Central

    Proenca-Modena, Jose Luiz; Hyde, Jennifer L.; Sesti-Costa, Renata; Lucas, Tiffany; Pinto, Amelia K.; Richner, Justin M.; Gorman, Matthew J.; Lazear, Helen M.

    2015-01-01

    ABSTRACT Interferon (IFN)-regulatory factor 5 (IRF-5) is a transcription factor that induces inflammatory responses after engagement and signaling by pattern recognition receptors. To define the role of IRF-5 during bunyavirus infection, we evaluated Oropouche virus (OROV) and La Crosse virus (LACV) pathogenesis and immune responses in primary cells and in mice with gene deletions in Irf3, Irf5, and Irf7 or in Irf5 alone. Deletion of Irf3, Irf5, and Irf7 together resulted in uncontrolled viral replication in the liver and spleen, hypercytokinemia, extensive liver injury, and an early-death phenotype. Remarkably, deletion of Irf5 alone resulted in meningoencephalitis and death on a more protracted timeline, 1 to 2 weeks after initial OROV or LACV infection. The clinical signs in OROV-infected Irf5−/− mice were associated with abundant viral antigen and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL)-positive cells in several regions of the brain. Circulating dendritic cell (DC) subsets in Irf5−/− mice had higher levels of OROV RNA in vivo yet produced lower levels of type I IFN than wild-type (WT) cells. This result was supported by data obtained in vitro, since a deficiency of IRF-5 resulted in enhanced OROV infection and diminished type I IFN production in bone marrow-derived DCs. Collectively, these results indicate a key role for IRF-5 in modulating the host antiviral response in peripheral organs that controls bunyavirus neuroinvasion in mice. IMPORTANCE Oropouche virus (OROV) and La Crosse virus (LACV) are orthobunyaviruses that are transmitted by insects and cause meningitis and encephalitis in subsets of individuals in the Americas. Recently, we demonstrated that components of the type I interferon (IFN) induction pathway, particularly the regulatory transcription factors IRF-3 and IRF-7, have key protective roles during OROV infection. However, the lethality in Irf3−/− Irf7−/− (DKO) mice infected with OROV

  4. Regulatory analysis for amendments to regulations for the environmental review for renewal of nuclear power plant operating licenses. Final report

    SciTech Connect

    1996-05-01

    This regulatory analysis provides the supporting information for a proposed rule that will amend the Nuclear Regulatory Commission`s environmental review requirements for applications for renewal of nuclear power plant operating licenses. The objective of the proposed rulemaking is to improve regulatory efficiency by providing for the generic evaluation of certain environmental impacts associated with nuclear plant license renewal. After considering various options, the staff identified and analyzed two major alternatives. With Alternative A, the existing regulations would not be amended. This option requires that environmental reviews be performed under the existing regulations. Alternative B is to assess, on a generic basis, the environmental impacts of renewing the operating license of individual nuclear power plants, and define the issues that will need to be further analyzed on a case-by-case basis. In addition, Alternative B removes from NRC`s review certain economics-related issues. The findings of this assessment are to be codified in 10 CFR 51. The staff has selected Alternative B as the preferred alternative.

  5. Effects of Goal Relations on Self-Regulated Learning in Multiple Goal Pursuits: Performance, the Self-Regulatory Process, and Task Enjoyment

    ERIC Educational Resources Information Center

    Lee, Hyunjoo

    2012-01-01

    The purpose of this study was to investigate the effects of goal relations on self-regulation in the pursuit of multiple goals, focusing on self-regulated performance, the self-regulatory process, and task enjoyment. The effect of multiple goal relations on self-regulation was explored in a set of three studies. Goal relations were divided into…

  6. Crystal Structure of the Pseudomonas aeruginosa Virulence Factor Regulator

    SciTech Connect

    Cordes, Timothy J.; Worzalla, Gregory A.; Ginster, Aaron M.; Forest, Katrina T.

    2012-09-07

    Virulence factor regulator (Vfr) enhances Pseudomonas aeruginosa pathogenicity through its role as a global transcriptional regulator. The crystal structure of Vfr shows that it is a winged-helix DNA-binding protein like its homologue cyclic AMP receptor protein (CRP). In addition to an expected primary cyclic AMP-binding site, a second ligand-binding site is nestled between the N-terminal domain and the C-terminal helix-turn-helix domain. Unlike CRP, Vfr is a symmetric dimer in the absence of DNA. Removal of seven disordered N-terminal residues of Vfr prvents the growth of P. aeruginosa.

  7. Methylation-dependent regulation of hypoxia inducible factor-1 alpha gene expression by the transcription factor Kaiso.

    PubMed

    Pierre, Christina C; Longo, Joseph; Bassey-Archibong, Blessing I; Hallett, Robin M; Milosavljevic, Snezana; Beatty, Laura; Hassell, John A; Daniel, Juliet M

    2015-12-01

    Low oxygen tension (hypoxia) is a common characteristic of solid tumors and strongly correlates with poor prognosis and resistance to treatment. In response to hypoxia, cells initiate a cascade of transcriptional events regulated by the hypoxia inducible factor-1 (HIF-1) heterodimer. Since the oxygen-sensitive HIF-1α subunit is stabilized during hypoxia, it functions as the regulatory subunit of the protein. To date, while the mechanisms governing HIF-1α protein stabilization and function have been well studied, those governing HIF1A gene expression are not fully understood. However, recent studies have suggested that methylation of a HIF-1 binding site in the HIF1A promoter prevents its autoregulation. Here we report that the POZ-ZF transcription factor Kaiso modulates HIF1A gene expression by binding to the methylated HIF1A promoter in a region proximal to the autoregulatory HIF-1 binding site. Interestingly, Kaiso's regulation of HIF1A occurs primarily during hypoxia, which is consistent with the finding that Kaiso protein levels peak after 4 h of hypoxic incubation and return to normoxic levels after 24 h. Our data thus support a role for Kaiso in fine-tuning HIF1A gene expression after extended periods of hypoxia.

  8. Interleukin-2 transcription is regulated in vivo at the level of coordinated binding of both constitutive and regulated factors.

    PubMed Central

    Garrity, P A; Chen, D; Rothenberg, E V; Wold, B J

    1994-01-01

    Interleukin-2 (IL-2) transcription is developmentally restricted to T cells and physiologically dependent on specific stimuli such as antigen recognition. Prior studies have shown that this stringent two-tiered regulation is mediated through a transcriptional promoter/enhancer DNA segment which is composed of diverse recognition elements. Factors binding to some of these elements are present constitutively in many cell types, while others are signal dependent, T cell specific, or both. This raises several questions about the molecular mechanism by which IL-2 expression is regulated. Is the developmental commitment of T cells reflected molecularly by stable interaction between available factors and the IL-2 enhancer prior to signal-dependent induction? At which level, factor binding to DNA or factor activity once bound, are individual regulatory elements within the native enhancer regulated? By what mechanism is developmental and physiological specificity enforced, given the participation of many relatively nonspecific elements? To answer these questions, we have used in vivo footprinting to determine and compare patterns of protein-DNA interactions at the native IL-2 locus in cell environments, including EL4 T-lymphoma cells and 32D clone 5 premast cells, which express differing subsets of IL-2 DNA-binding factors. We also used the immunosuppressant cyclosporin A as a pharmacological agent to further dissect the roles played by cyclosporin A-sensitive factors in the assembly and maintenance of protein-DNA complexes. Occupancy of all site types was observed exclusively in T cells and then only upon excitation of signal transduction pathways. This was true even though partially overlapping subsets of IL-2-binding activities were shown to be present in 32D clone 5 premast cells. This observation was especially striking in 32D cells because, upon signal stimulation, they mobilized a substantial set of IL-2 DNA-binding activities, as measured by in vitro assays using

  9. Class IA PI3Kinase Regulatory Subunit, p85α, Mediates Mast Cell Development through Regulation of Growth and Survival Related Genes

    PubMed Central

    Krishnan, Subha; Mali, Raghuveer Singh; Koehler, Karl R.; Vemula, Sasidhar; Chatterjee, Anindya; Ghosh, Joydeep; Ramdas, Baskar; Ma, Peilin; Hashino, Eri; Kapur, Reuben

    2012-01-01

    Stem cell factor (SCF) mediated KIT receptor activation plays a pivotal role in mast cell growth, maturation and survival. However, the signaling events downstream from KIT are poorly understood. Mast cells express multiple regulatory subunits of class 1A PI3Kinase (PI3K) including p85α, p85β, p50α, and p55α. While it is known that PI3K plays an essential role in mast cells; the precise mechanism by which these regulatory subunits impact specific mast cell functions including growth, survival and cycling are not known. We show that loss of p85α impairs the growth, survival and cycling of mast cell progenitors (MCp). To delineate the molecular mechanism (s) by which p85α regulates mast cell growth, survival and cycling, we performed microarray analyses to compare the gene expression profile of MCps derived from WT and p85α-deficient mice in response to SCF stimulation. We identified 151 unique genes exhibiting altered expression in p85α-deficient cells in response to SCF stimulation compared to WT cells. Functional categorization based on DAVID bioinformatics tool and Ingenuity Pathway Analysis (IPA) software relates the altered genes due to lack of p85α to transcription, cell cycle, cell survival, cell adhesion, cell differentiation, and signal transduction. Our results suggest that p85α is involved in mast cell development through regulation of expression of growth, survival and cell cycle related genes. PMID:22238586

  10. Clustered Transcription Factor Genes Regulate Nicotine Biosynthesis in Tobacco[W][OA

    PubMed Central

    Shoji, Tsubasa; Kajikawa, Masataka; Hashimoto, Takashi

    2010-01-01

    Tobacco (Nicotiana tabacum) synthesizes nicotine and related pyridine alkaloids in the root, and their synthesis increases upon herbivory on the leaf via a jasmonate-mediated signaling cascade. Regulatory NIC loci that positively regulate nicotine biosynthesis have been genetically identified, and their mutant alleles have been used to breed low-nicotine tobacco varieties. Here, we report that the NIC2 locus, originally called locus B, comprises clustered transcription factor genes of an ethylene response factor (ERF) subfamily; in the nic2 mutant, at least seven ERF genes are deleted altogether. Overexpression, suppression, and dominant repression experiments using transgenic tobacco roots showed both functional redundancy and divergence among the NIC2-locus ERF genes. These transcription factors recognized a GCC-box element in the promoter of a nicotine pathway gene and specifically activated all known structural genes in the pathway. The NIC2-locus ERF genes are expressed in the root and upregulated by jasmonate with kinetics that are distinct among the members. Thus, gene duplication events generated a cluster of highly homologous transcription factor genes with transcriptional and functional diversity. The NIC2-locus ERFs are close homologs of ORCA3, a jasmonate-responsive transcriptional activator of indole alkaloid biosynthesis in Catharanthus roseus, indicating that the NIC2/ORCA3 ERF subfamily was recruited independently to regulate jasmonate-inducible secondary metabolism in distinct plant lineages. PMID:20959558

  11. Regulation of platelet activating factor receptor coupled phosphoinositide-specific phospholipase C activity

    SciTech Connect

    Morrison, W.J.

    1988-01-01

    The major objectives of this study were two-fold. The first was to establish whether binding of platelet activating factor (PAF) to its receptor was integral to the stimulation of polyphosphoinositide-specific phospholipase C (PLC) in rabbit platelets. The second was to determine regulatory features of this receptor-coupled mechanism. ({sup 3}H)PAF binding demonstrated two binding sites, a high affinity site with a inhibitory constant (Ki) of 2.65 nM and a low affinity site with a Ki of 0.80 {mu}M. PAF receptor coupled activation of phosphoinositide-specific PLC was studied in platelets which were made refractory, by short term pretreatments, to either PAF or thrombin. Saponin-permeabilized rabbit platelets continue to regulate the mechanism(s) coupling PAF receptors to PLC stimulation. However, TRP{gamma}S and GDP{beta}S, which affect guanine nucleotide regulatory protein functions, were unable to modulate the PLC activity to any appreciable extent as compared to PAF. The possible involvement of protein kinase C (PKC) activation in regulating PAF-stimulated PLC activity was studied in rabbit platelets pretreated with staurosporine followed by pretreatments with PAF or phorbol 12-myristate 13-acetate (PMA).

  12. Role of Sodium Bicarbonate Cotransporters in Intracellular pH Regulation and Their Regulatory Mechanisms in Human Submandibular Glands.

    PubMed

    Namkoong, Eun; Shin, Yong-Hwan; Bae, Jun-Seok; Choi, Seulki; Kim, Minkyoung; Kim, Nahyun; Hwang, Sung-Min; Park, Kyungpyo

    2015-01-01

    Sodium bicarbonate cotransporters (NBCs) are involved in the pH regulation of salivary glands. However, the roles and regulatory mechanisms among different NBC isotypes have not been rigorously evaluated. We investigated the roles of two different types of NBCs, electroneutral (NBCn1) and electrogenic NBC (NBCe1), with respect to pH regulation and regulatory mechanisms using human submandibular glands (hSMGs) and HSG cells. Intracellular pH (pHi) was measured and the pHi recovery rate from cell acidification induced by an NH4Cl pulse was recorded. Subcellular localization and protein phosphorylation were determined using immunohistochemistry and co-immunoprecipitation techniques. We determined that NBCn1 is expressed on the basolateral side of acinar cells and the apical side of duct cells, while NBCe1 is exclusively expressed on the apical membrane of duct cells. The pHi recovery rate in hSMG acinar cells, which only express NBCn1, was not affected by pre-incubation with 5 μM PP2, an Src tyrosine kinase inhibitor. However, in HSG cells, which express both NBCe1 and NBCn1, the pHi recovery rate was inhibited by PP2. The apparent difference in regulatory mechanisms for NBCn1 and NBCe1 was evaluated by artificial overexpression of NBCn1 or NBCe1 in HSG cells, which revealed that the pHi recovery rate was only inhibited by PP2 in cells overexpressing NBCe1. Furthermore, only NBCe1 was significantly phosphorylated and translocated by NH4Cl, which was inhibited by PP2. Our results suggest that both NBCn1 and NBCe1 play a role in pHi regulation in hSMG acinar cells, and also that Src kinase does not regulate the activity of NBCn1.

  13. A Regulatory Circuit Composed of a Transcription Factor, IscR, and a Regulatory RNA, RyhB, Controls Fe-S Cluster Delivery

    PubMed Central

    Chareyre, Sylvia; Barras, Frédéric

    2016-01-01

    ABSTRACT Fe-S clusters are cofactors conserved through all domains of life. Once assembled by dedicated ISC and/or SUF scaffolds, Fe-S clusters are conveyed to their apo-targets via A-type carrier proteins (ATCs). Escherichia coli possesses four such ATCs. ErpA is the only ATC essential under aerobiosis. Recent studies reported a possible regulation of the erpA mRNA by the small RNA (sRNA) RyhB, which controls the expression of many genes under iron starvation. Surprisingly, erpA has not been identified in recent transcriptomic analysis of the iron starvation response, thus bringing into question the actual physiological significance of the putative regulation of erpA by RyhB. Using an sRNA library, we show that among 26 sRNAs, only RyhB represses the expression of an erpA-lacZ translational fusion. We further demonstrate that this repression occurs during iron starvation. Using mutational analysis, we show that RyhB base pairs to the erpA mRNA, inducing its disappearance. In addition, IscR, the master regulator of Fe-S homeostasis, represses expression of erpA at the transcriptional level when iron is abundant, but depleting iron from the medium alleviates this repression. The conjunction of transcriptional derepression by IscR and posttranscriptional repression by RyhB under Fe-limiting conditions is best described as an incoherent regulatory circuit. This double regulation allows full expression of erpA at iron concentrations for which Fe-S biogenesis switches from the ISC to the SUF system. We further provide evidence that this regulatory circuit coordinates ATC usage to iron availability. PMID:27651365

  14. Regulatory skill as a resilience factor for adults with a history of foster care: a pilot study.

    PubMed

    Johnson, Angela J; Tottenham, Nim

    2015-01-01

    Individuals with a history of foster care (FC) are at elevated risk for emotion regulation-related mental illness. The purpose of the current study was to characterize regulatory function in a group of adults with a history of FC (N = 26) relative to those without a history of FC (N = 27) and how regulatory function moderates adverse caregiving-related outcomes (daily cortisol production and trait anxiety). Self-report items (anxiety, emotion regulation strategies, inhibitory control, caregiving history) were collected along with more objective measures (computerized task and salivary cortisol). Inhibitory control was assessed via self-report and a computerized task (emotional face go/nogo). Results showed that for adults with a history of FC, higher levels of inhibitory control were associated with higher accuracy on the emotional face go/nogo task and greater reported use of the emotion regulation strategy cognitive reappraisal. Greater use of cognitive reappraisal in turn was associated with healthier stress-related outcomes (decreased trait anxiety and steeper sloped cortisol production throughout the day). Dose-response associations were observed between self-reported regulatory skills and FC experiences (i.e., number of placements and age when exited foster care). These findings suggest that adverse caregiving can have long-term influences on mental health that extend into adulthood; however, individual differences in regulatory skills moderate these outcomes and may be an important target for intervention following caregiving adversity. PMID:25270099

  15. Exocytosis of CTLA-4 is dependent on phospholipase D and ADP ribosylation factor-1 and stimulated during activation of regulatory T cells.

    PubMed

    Mead, Karen I; Zheng, Yong; Manzotti, Claire N; Perry, Laura C A; Liu, Michael K P; Burke, Fiona; Powner, Dale J; Wakelam, Michael J O; Sansom, David M

    2005-04-15

    CTLA-4 is an essential protein in the regulation of T cell responses that interacts with two ligands found on the surface of APCs (CD80 and CD86). CTLA-4 is itself poorly expressed on the T cell surface and is predominantly localized to intracellular compartments. We have studied the mechanisms involved in the delivery of CTLA-4 to the cell surface using a model Chinese hamster ovary cell system and compared this with activated and regulatory human T cells. We have shown that expression of CTLA-4 at the plasma membrane (PM) is controlled by exocytosis of CTLA-4-containing vesicles and followed by rapid endocytosis. Using selective inhibitors and dominant negative mutants, we have shown that exocytosis of CTLA-4 is dependent on the activity of the GTPase ADP ribosylation factor-1 and on phospholipase D activity. CTLA-4 was identified in a perinuclear compartment overlapping with the cis-Golgi marker GM-130 but did not colocalize strongly with lysosomal markers such as CD63 and lysosome-associated membrane protein. In regulatory T cells, activation of phospholipase D was sufficient to trigger release of CTLA-4 to the PM but did not inhibit endocytosis. Taken together, these data suggest that CTLA-4 may be stored in a specialized compartment in regulatory T cells that can be triggered rapidly for deployment to the PM in a phospholipase D- and ADP ribosylation factor-1-dependent manner.

  16. Interferon Regulatory Factor-1 Mediates Alveolar Macrophage Pyroptosis During LPS-Induced Acute Lung Injury in Mice

    PubMed Central

    Wu, Dongdong; Pan, Pinhua; Su, Xiaoli; Zhang, Lemeng; Qin, Qingwu; Tan, Hongyi; Huang, Li; Li, Yuanyuan

    2016-01-01

    ABSTRACT Previously, we demonstrated that pyroptosis in alveolar macrophages (AMs) plays an essential role in lipopolysaccharide (LPS)-induced acute lung injury. However, the underlying mechanism remains largely unclear. Here, we show that the absence of interferon regulatory factor 1 (IRF-1) in genetic knock-out mice strongly abrogates pyroptosis in AMs and alleviates the LPS-induced lung injury and systemic inflammation. Our study demonstrates that IRF-1 contributes to caspase-1 activation and apoptosis-associated speck-like protein containing a caspase activation and recruitment domain pyroptosome formation in AMs and leads to downstream inflammatory cytokine release, including that of IL-1β, IL-18, and HMGB1. The nuclear translocation of IRF-1 is linked to the presence of toll-like receptor 4 (TLR4). Our findings suggest that pyroptosis and the downstream inflammatory response in AMs induced by LPS is a process that is dependent on TLR4-mediated up-regulation of IRF-1. In summary, IRF-1 plays a key role in controlling caspase-1-dependent pyroptosis and inflammation. PMID:26939040

  17. Asynchronous combinatorial action of four regulatory factors activates Bcl11b for T cell commitment.

    PubMed

    Kueh, Hao Yuan; Yui, Mary A; Ng, Kenneth K H; Pease, Shirley S; Zhang, Jingli A; Damle, Sagar S; Freedman, George; Siu, Sharmayne; Bernstein, Irwin D; Elowitz, Michael B; Rothenberg, Ellen V

    2016-08-01

    During T cell development, multipotent progenitors relinquish competence for other fates and commit to the T cell lineage by turning on Bcl11b, which encodes a transcription factor. To clarify lineage commitment mechanisms, we followed developing T cells at the single-cell level using Bcl11b knock-in fluorescent reporter mice. Notch signaling and Notch-activated transcription factors collaborate to activate Bcl11b expression irrespectively of Notch-dependent proliferation. These inputs work via three distinct, asynchronous mechanisms: an early locus 'poising' function dependent on TCF-1 and GATA-3, a stochastic-permissivity function dependent on Notch signaling, and a separate amplitude-control function dependent on Runx1, a factor already present in multipotent progenitors. Despite their necessity for Bcl11b expression, these inputs act in a stage-specific manner, providing a multitiered mechanism for developmental gene regulation. PMID:27376470

  18. Restricted maternal nutrition alters myogenic regulatory factor expression in satellite cells of ovine offspring.

    PubMed

    Raja, J S; Hoffman, M L; Govoni, K E; Zinn, S A; Reed, S A

    2016-07-01

    Poor maternal nutrition inhibits muscle development and postnatal muscle growth. Satellite cells are myogenic precursor cells that contribute to postnatal muscle growth, and their activity can be evaluated by the expression of several transcription factors. Paired-box (Pax)7 is expressed in quiescent and active satellite cells. MyoD is expressed in activated and proliferating satellite cells and myogenin is expressed in terminally differentiating cells. Disruption in the expression pattern or timing of expression of myogenic regulatory factors negatively affects muscle development and growth. We hypothesized that poor maternal nutrition during gestation would alter the in vitro temporal expression of MyoD and myogenin in satellite cells from offspring at birth and 3 months of age. Ewes were fed 100% or 60% of NRC requirements from day 31±1.3 of gestation. Lambs from control-fed (CON) or restricted-fed (RES) ewes were euthanized within 24 h of birth (birth; n=5) or were fed a control diet until 3 months of age (n=5). Satellite cells isolated from the semitendinosus muscle were used for gene expression analysis or cultured for 24, 48 or 72 h and immunostained for Pax7, MyoD or myogenin. Fusion index was calculated from a subset of cells allowed to differentiate. Compared with CON, temporal expression of MyoD and myogenin was altered in cultured satellite cells isolated from RES lambs at birth. The percent of cells expressing MyoD was greater in RES than CON (P=0.03) after 24 h in culture. After 48 h of culture, there was a greater percent of cells expressing myogenin in RES compared with CON (P0.05). In satellite cells from RES lambs at 3 months of age, the percent of cells expressing MyoD and myogenin were greater than CON after 72 h in culture (P<0.05). Fusion index was reduced in RES lambs at 3 months of age compared with CON (P<0.001). Restricted nutrition during gestation alters the temporal expression of myogenic regulatory factors in satellite cells of the

  19. Modeling the effector - regulatory T cell cross-regulation reveals the intrinsic character of relapses in Multiple Sclerosis

    PubMed Central

    2011-01-01

    Background The relapsing-remitting dynamics is a hallmark of autoimmune diseases such as Multiple Sclerosis (MS). Although current understanding of both cellular and molecular mechanisms involved in the pathogenesis of autoimmune diseases is significant, how their activity generates this prototypical dynamics is not understood yet. In order to gain insight about the mechanisms that drive these relapsing-remitting dynamics, we developed a computational model using such biological knowledge. We hypothesized that the relapsing dynamics in autoimmunity can arise through the failure in the mechanisms controlling cross-regulation between regulatory and effector T cells with the interplay of stochastic events (e.g. failure in central tolerance, activation by pathogens) that are able to trigger the immune system. Results The model represents five concepts: central tolerance (T-cell generation by the thymus), T-cell activation, T-cell memory, cross-regulation (negative feedback) between regulatory and effector T-cells and tissue damage. We enriched the model with reversible and irreversible tissue damage, which aims to provide a comprehensible link between autoimmune activity and clinical relapses and active lesions in the magnetic resonances studies in patients with Multiple Sclerosis. Our analysis shows that the weakness in this negative feedback between effector and regulatory T-cells, allows the immune system to generate the characteristic relapsing-remitting dynamics of autoimmune diseases, without the need of additional environmental triggers. The simulations show that the timing at which relapses appear is highly unpredictable. We also introduced targeted perturbations into the model that mimicked immunotherapies that modulate effector and regulatory populations. The effects of such therapies happened to be highly dependent on the timing and/or dose, and on the underlying dynamic of the immune system. Conclusion The relapsing dynamic in MS derives from the emergent

  20. Antiviral Activity of Porcine Interferon Regulatory Factor 1 against Swine Viruses in Cell Culture.

    PubMed

    Li, Yongtao; Chang, Hongtao; Yang, Xia; Zhao, Yongxiang; Chen, Lu; Wang, Xinwei; Liu, Hongying; Wang, Chuanqing; Zhao, Jun

    2015-11-17

    Interferon regulatory factor 1 (IRF1), as an important transcription factor, is abundantly induced upon virus infections and participates in host antiviral immune responses. However, the roles of porcine IRF1 (poIRF1) in host antiviral defense remain poorly understood. In this study, we determined that poIRF1 was upregulated upon infection with viruses and distributed in nucleus in porcine PK-15 cells. Subsequently, we tested the antiviral activities of poIRF1 against several swine viruses in cells. Overexpression of poIRF1 can efficiently suppress the replication of viruses, and knockdown of poIRF1 promotes moderately viral replication. Interestingly, overexpression of poIRF1 enhances dsRNA-induced IFN-β and IFN-stimulated response element (ISRE) promoter activation, whereas knockdown of poIRF1 cannot significantly affect the activation of IFN-β promoter induced by RNA viruses. This study suggests that poIRF1 plays a significant role in cellular antiviral response against swine viruses, but might be dispensable for IFN-β induction triggered by RNA viruses in PK-15 cells. Given these results, poIRF1 plays potential roles in cellular antiviral responses against swine viruses.

  1. Aberrant expression of interferon regulatory factor 3 in human lung cancer

    SciTech Connect

    Tokunaga, Takayuki; Naruke, Yuki; Shigematsu, Sayuri; Kohno, Tomoko; Yasui, Kiyoshi; Ma, Yuhua; Chua, Koon Jiew; Katayama, Ikuo; Nakamura, Takashi; Hishikawa, Yoshitaka; Koji, Takehiko; Yatabe, Yasushi; Nagayasu, Takeshi; Fujita, Takashi; Matsuyama, Toshifumi; and others

    2010-06-25

    We analyzed the subcellular distributions and gene structures of interferon regulatory factor 3 (IRF3) transcription factor in 50 cases of human primary lung cancer. The immunohistochemical analyses revealed substantially aberrant IRF3 expression specific to the cancer lesions (2 and 6 tumors with nuclear staining, and 4 and 5 tumors with negative staining, in adenocarcinoma and squamous cell carcinoma, respectively), while the morphologically normal region around the tumors exhibited only cytoplasmic staining. In addition, we determined the sequence of the entire IRF3 coding region, and found two novel variants with the amino acid changes (S{sup 175}(AGC) {yields} R{sup 175}(CGC) and A{sup 208}(GCC) {yields} D{sup 208}(GAC)). The R{sup 175} variant was also detected in a morphologically normal region around the nuclear staining squamous cell carcinoma, and exhibited almost the same functions as the wild type IRF3. On the other hand, the D{sup 208} variant, found in the negative staining squamous cell carcinoma cases, reduced the nuclear translocation in response to I{kappa}B kinase {epsilon} stimulation, as compared to the wild type IRF3, but the same variant was detected in the surrounding morphologically normal region. The aberrant expression of IRF3 and the novel D{sup 208} variant may provide clues to elucidate the etiology of primary lung cancer.

  2. 76 FR 40282 - Proposed Generic Communications; Draft NRC Regulatory Issue Summary 2011-XX; NRC Regulation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-08

    ..., ``Requirements for Expanded Definition of Byproduct Material'' (72 FR 55864; October 1, 2007), (hereinafter... Material'' (72 FR 55864; October 1, 2007). The RIS describes regulatory approaches to implement NRC's.... See NARM Rule (72 FR 55864; October 1, 2007). Additionally, NRC established a definition for the...

  3. 75 FR 4305 - Regulatory Guidance Concerning the Applicability of the Federal Motor Carrier Safety Regulations...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... message on cell phone,'' \\2\\ with an odds ratio of 23.2. This means that the odds of being involved in a... technology. The regulatory guidance below should also not be construed to prohibit the use of cell phones for...-texting cell phone use, or any other similar traffic offenses, a violation of the State or local...

  4. 75 FR 79751 - Improving Government Regulations; Unified Agenda of Federal Regulatory and Deregulatory Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-20

    ...--Definition and Administration (DFARS Case 2009-D038) 0750-AG58 297 Warranty Tracking of Serialized Items... manner similar to the domestic source restriction of the Buy American Act. Timetable: Action Date FR Cite NPRM 05/07/10 75 FR 25167 NPRM Comment Period End 07/06/10 Final Action 12/00/10 Regulatory...

  5. Compound mouse mutants of bZIP transcription factors Mafg and Mafk reveal a regulatory network of non-crystallin genes associated with cataract.

    PubMed

    Agrawal, Smriti A; Anand, Deepti; Siddam, Archana D; Kakrana, Atul; Dash, Soma; Scheiblin, David A; Dang, Christine A; Terrell, Anne M; Waters, Stephanie M; Singh, Abhyudai; Motohashi, Hozumi; Yamamoto, Masayuki; Lachke, Salil A

    2015-07-01

    Although majority of the genes linked to early-onset cataract exhibit lens fiber cell-enriched expression, our understanding of gene regulation in these cells is limited to function of just eight transcription factors and largely in the context of crystallins. We report on small Maf transcription factors Mafg and Mafk as regulators of several non-crystallin human cataract-associated genes in fiber cells and establish their significance to this disease. We applied a bioinformatics tool for cataract gene discovery iSyTE to identify Mafg and its co-regulators in the lens, and generated various null-allelic combinations of Mafg:Mafk mouse mutants for phenotypic and molecular analysis. By age 4 months, Mafg-/-:Mafk+/- mutants exhibit lens defects that progressively develop into cataract. High-resolution phenotypic characterization of Mafg-/-:Mafk+/- mouse lens reveals severely disorganized fiber cells, while microarray-based expression profiling identifies 97 differentially regulated genes (DRGs). Integrative analysis of Mafg-/-:Mafk+/- lens-DRGs with (1) binding motifs and genomic targets of small Mafs and their regulatory partners, (2) iSyTE lens expression data, and (3) interactions between DRGs in the String database, unravel a detailed small Maf regulatory network in the lens, several nodes of which are linked to cataract. This approach identifies 36 high-priority candidates from the original 97 DRGs. Significantly, 8/36 (22%) DRGs are associated with cataracts in human (GSTO1, MGST1, SC4MOL, UCHL1) or mouse (Aldh3a1, Crygf, Hspb1, Pcbd1), suggesting a multifactorial etiology that includes oxidative stress and misregulation of sterol synthesis. These data identify Mafg and Mafk as new cataract-associated candidates and define their function in regulating largely non-crystallin genes linked to human cataract. PMID:25896808

  6. Changes in cis-regulatory elements of a key floral regulator are associated with divergence of inflorescence architectures.

    PubMed

    Kusters, Elske; Della Pina, Serena; Castel, Rob; Souer, Erik; Koes, Ronald

    2015-08-15

    Higher plant species diverged extensively with regard to the moment (flowering time) and position (inflorescence architecture) at which flowers are formed. This seems largely caused by variation in the expression patterns of conserved genes that specify floral meristem identity (FMI), rather than changes in the encoded proteins. Here, we report a functional comparison of the promoters of homologous FMI genes from Arabidopsis, petunia, tomato and Antirrhinum. Analysis of promoter-reporter constructs in petunia and Arabidopsis, as well as complementation experiments, showed that the divergent expression of leafy (LFY) and the petunia homolog aberrant leaf and flower (ALF) results from alterations in the upstream regulatory network rather than cis-regulatory changes. The divergent expression of unusual floral organs (UFO) from Arabidopsis, and the petunia homolog double top (DOT), however, is caused by the loss or gain of cis-regulatory promoter elements, which respond to trans-acting factors that are expressed in similar patterns in both species. Introduction of pUFO:UFO causes no obvious defects in Arabidopsis, but in petunia it causes the precocious and ectopic formation of flowers. This provides an example of how a change in a cis-regulatory region can account for a change in the plant body plan. PMID:26220938

  7. Changes in cis-regulatory elements of a key floral regulator are associated with divergence of inflorescence architectures.

    PubMed

    Kusters, Elske; Della Pina, Serena; Castel, Rob; Souer, Erik; Koes, Ronald

    2015-08-15

    Higher plant species diverged extensively with regard to the moment (flowering time) and position (inflorescence architecture) at which flowers are formed. This seems largely caused by variation in the expression patterns of conserved genes that specify floral meristem identity (FMI), rather than changes in the encoded proteins. Here, we report a functional comparison of the promoters of homologous FMI genes from Arabidopsis, petunia, tomato and Antirrhinum. Analysis of promoter-reporter constructs in petunia and Arabidopsis, as well as complementation experiments, showed that the divergent expression of leafy (LFY) and the petunia homolog aberrant leaf and flower (ALF) results from alterations in the upstream regulatory network rather than cis-regulatory changes. The divergent expression of unusual floral organs (UFO) from Arabidopsis, and the petunia homolog double top (DOT), however, is caused by the loss or gain of cis-regulatory promoter elements, which respond to trans-acting factors that are expressed in similar patterns in both species. Introduction of pUFO:UFO causes no obvious defects in Arabidopsis, but in petunia it causes the precocious and ectopic formation of flowers. This provides an example of how a change in a cis-regulatory region can account for a change in the plant body plan.

  8. Enhancing Interferon Regulatory Factor 7 Mediated Antiviral Responses and Decreasing Nuclear Factor Kappa B Expression Limit HIV-1 Replication in Cervical Tissues

    PubMed Central

    Rollenhage, Christiane; Macura, Sherrill L.; Lathrop, Melissa J.; Mackenzie, Todd A.; Doncel, Gustavo F.; Asin, Susana N.

    2015-01-01

    Establishment of a productive HIV-1 infection in the female reproductive tract likely depends on the balance between anti-viral and pro-inflammatory responses leading to activation and proliferation of HIV target cells. Immune modulators that boost anti-viral and depress pro-inflammatory immune responses may decrease HIV-1 infection or replication. Polyinosinic:polycytidylic [Poly (I:C)] has been reported to down-regulate HIV-1 replication in immune cell subsets and lymphoid tissues, yet the scope and mechanisms of poly (I:C) regulation of HIV-1 replication in the cervicovaginal mucosa, the main portal of viral entry in women remain unknown. Using a relevant, underexplored ex vivo cervical tissue model, we demonstrated that poly (I:C) enhanced Interferon Regulatory Factor (IRF)7 mediated antiviral responses and decreased tissue Nuclear Factor Kappa B (NFκB) RNA expression. This pattern of cellular transcription factor expression correlated with decreased HIV-1 transcription and viral release. Reducing IRF7 expression up-regulated HIV-1 and NFκB transcription, providing proof of concept for the critical involvement of IRF7 in cervical tissues. By combining poly (I:C) with a suboptimal concentration of tenofovir, the leading anti-HIV prophylactic microbicide candidate, we demonstrated an earlier and greater decrease in HIV replication in poly (I:C)/tenofovir treated tissues compared with tissues treated with tenofovir alone, indicating overall improved efficacy. Poly (I:C) decreases HIV-1 replication by stimulating IRF7 mediated antiviral responses while reducing NFκB expression. Early during the infection, poly (I:C) improved the anti-HIV-1 activity of suboptimal concentrations of tenofovir likely to be present during periods of poor adherence i.e. inconsistent or inadequate drug use. Understanding interactions between anti-viral and pro-inflammatory immune responses in the genital mucosa will provide crucial insights for the identification of targets that can be

  9. The GATA transcription factor GtaC regulates early developmental gene expression dynamics in Dictyostelium

    PubMed Central

    Santhanam, Balaji; Cai, Huaqing; Devreotes, Peter N.; Shaulsky, Gad; Katoh-Kurasawa, Mariko

    2015-01-01

    In many systems, including the social amoeba Dictyostelium discoideum, development is often marked by dynamic morphological and transcriptional changes orchestrated by key transcription factors. However, efforts to examine sequential genome-wide changes of gene regulation in developmental processes have been fairly limited. Here we report the developmental regulatory dynamics of GtaC, a GATA-type zinc-finger transcription factor, through the analyses of serial ChIP- and RNA-sequencing data. GtaC is essential for developmental progression, decoding extracellular cAMP pulses during early development and may play a role in mediating cell-type differentiation at later stages. We find that GtaC exhibits temporally distinctive DNA-binding patterns concordant with each developmental stage. We identify direct GtaC targets and observe cotemporaneous GtaC-binding and developmental expression regulation. Our results suggest that GtaC regulates multiple physiological processes as Dictyostelium transitions from a group of unicellular amoebae to an integrated multicellular organism. PMID:26144553

  10. Regulation of the human LAT gene by the Elf-1 transcription factor

    PubMed Central

    Finco, Timothy S; Justice-Healy, Geri E; Patel, Shivani J; Hamilton, Victoria E

    2006-01-01

    Background The LAT gene encodes an intracellular adaptor protein that links cell-surface receptor engagement to numerous downstream signalling events, and thereby plays an integral role in the function of cell types that express the gene, including T cells, mast cells, natural killer cells, and platelets. To date, the mechanisms responsible for the transcriptional regulation of this gene have not been investigated. Results In this study we have mapped the transcriptional start sites for the human LAT gene and localized the 5' and 3' boundaries of the proximal promoter. We find that the promoter contains both positive and negative regulatory regions, and that two binding sites for the Ets family of transcription factors have a strong, positive effect on gene expression. Each site binds the Ets family member Elf-1, and overexpression of Elf-1 augments LAT promoter activity. The promoter also contains a Runx binding site adjacent to one of the Ets sites. This site, which is shown to bind Runx-1, has an inhibitory effect on gene expression. Finally, data is also presented indicating that the identified promoter may regulate cell-type specific expression. Conclusion Collectively, these results provide the first insights into the transcriptional regulation of the LAT gene, including the discovery that the Ets transcription factor Elf-1 may play a central role in its expression. PMID:16464244

  11. A response regulator promotes Francisella tularensis intramacrophage growth by repressing an anti-virulence factor.

    PubMed

    Ramsey, Kathryn M; Dove, Simon L

    2016-08-01

    The orphan response regulator PmrA is essential for the intramacrophage growth and survival of Francisella tularensis. PmrA was thought to promote intramacrophage growth by binding directly to promoters on the Francisella Pathogenicity Island (FPI) and positively regulating the expression of FPI genes, which encode a Type VI secretion system required for intramacrophage growth. Using both ChIP-Seq and RNA-Seq we identify those regions of the F. tularensis chromosome occupied by PmrA and those genes that are regulated by PmrA. We find that PmrA associates with 252 distinct regions of the F. tularensis chromosome, but exerts regulatory effects at only a few of these locations. Rather than by functioning directly as an activator of FPI gene expression we present evidence that PmrA promotes intramacrophage growth by repressing the expression of a single target gene we refer to as priM (PmrA-repressed inhibitor of intramacrophage growth). Our findings thus indicate that the role of PmrA in facilitating intracellular growth is to repress a previously unknown anti-virulence factor. PriM is the first bacterially encoded factor to be described that can interfere with the intramacrophage growth and survival of F. tularensis. PMID:27169554

  12. Transcription factors of Lotus: regulation of isoflavonoid biosynthesis requires coordinated changes in transcription factor activity.

    PubMed

    Shelton, Dale; Stranne, Maria; Mikkelsen, Lisbeth; Pakseresht, Nima; Welham, Tracey; Hiraka, Hideki; Tabata, Satoshi; Sato, Shusei; Paquette, Suzanne; Wang, Trevor L; Martin, Cathie; Bailey, Paul

    2012-06-01

    Isoflavonoids are a class of phenylpropanoids made by legumes, and consumption of dietary isoflavonoids confers benefits to human health. Our aim is to understand the regulation of isoflavonoid biosynthesis. Many studies have shown the importance of transcription factors in regulating the transcription of one or more genes encoding enzymes in phenylpropanoid metabolism. In this study, we coupled bioinformatics and coexpression analysis to identify candidate genes encoding transcription factors involved in regulating isoflavonoid biosynthesis in Lotus (Lotus japonicus). Genes encoding proteins belonging to 39 of the main transcription factor families were examined by microarray analysis of RNA from leaf tissue that had been elicited with glutathione. Phylogenetic analyses of each transcription factor family were used to identify subgroups of proteins that were specific to L. japonicus or closely related to known regulators of the phenylpropanoid pathway in other species. R2R3MYB subgroup 2 genes showed increased expression after treatment with glutathione. One member of this subgroup, LjMYB14, was constitutively overexpressed in L. japonicus and induced the expression of at least 12 genes that encoded enzymes in the general phenylpropanoid and isoflavonoid pathways. A distinct set of six R2R3MYB subgroup 2-like genes was identified. We suggest that these subgroup 2 sister group proteins and those belonging to the main subgroup 2 have roles in inducing isoflavonoid biosynthesis. The induction of isoflavonoid production in L. japonicus also involves the coordinated down-regulation of competing biosynthetic pathways by changing the expression of other transcription factors. PMID:22529285

  13. Conserved Gene Regulatory Function of the Carboxy-Terminal Domain of Dictyostelid C-Module-Binding Factor

    PubMed Central

    Schmith, Anika; Groth, Marco; Ratka, Josephine; Gatz, Sara; Spaller, Thomas; Siol, Oliver; Glöckner, Gernot

    2013-01-01

    C-module-binding factor A (CbfA) is a jumonji-type transcription regulator that is important for maintaining the expression and mobility of the retrotransposable element TRE5-A in the social amoeba Dictyostelium discoideum. CbfA-deficient cells have lost TRE5-A retrotransposition, are impaired in the ability to feed on bacteria, and do not enter multicellular development because of a block in cell aggregation. In this study, we performed Illumina RNA-seq of growing CbfA mutant cells to obtain a list of CbfA-regulated genes. We demonstrate that the carboxy-terminal domain of CbfA alone is sufficient to mediate most CbfA-dependent gene expression. The carboxy-terminal domain of CbfA from the distantly related social amoeba Polysphondylium pallidum restored the expression of CbfA-dependent genes in the D. discoideum CbfA mutant, indicating a deep conservation in the gene regulatory function of this domain in the dictyostelid clade. The CbfA-like protein CbfB displays ∼25% sequence identity with CbfA in the amino-terminal region, which contains a JmjC domain and two zinc finger regions and is thought to mediate chromatin-remodeling activity. In contrast to CbfA proteins, where the carboxy-terminal domains are strictly conserved in all dictyostelids, CbfB proteins have completely unrelated carboxy-terminal domains. Outside the dictyostelid clade, CbfA-like proteins with the CbfA-archetypical JmjC/zinc finger arrangement and individual carboxy-terminal domains are prominent in filamentous fungi but are not found in yeasts, plants, and metazoans. Our data suggest that two functional regions of the CbfA-like proteins evolved at different rates to allow the occurrence of species-specific adaptation processes during genome evolution. PMID:23355006

  14. Postnatal developmental expression of the PDZ scaffolds Na+-H+ exchanger regulatory factors 1 and 2 in the rat cochlea

    PubMed Central

    Kanjhan, Refik; Hryciw, Deanne H.; Bellingham, Mark C.; Poronnik, Philip; Yun, C. Chris

    2006-01-01

    Sensory transduction in the mammalian cochlea requires the maintenance of specialized fluid compartments with distinct ionic compositions. This is achieved by the concerted action of diverse ion channels and transporters, some of which can interact with the PDZ scaffolds, Na+-H+ exchanger regulatory factors 1 and 2 (NHERF-1, NHERF-2). Here, we report that NHERF-1 and NHERF-2 are widely expressed in the rat cochlea, and that their expression is developmentally regulated. Reverse transcription/polymerase chain reaction (RT-PCR) and Western blotting initially confirmed the RNA and protein expression of NHERFs. We then performed immunohistochemistry on cochlea during various stages of postnatal development. Prior to the onset of hearing (P8), NHERF-1 immunolabeling was prominently polarized to the apical membrane of cells lining the endolymphatic compartment, including the stereocilia and cuticular plates of the inner and outer hair cells, marginal cells of the stria vascularis, Reissner’s epithelia, and tectorial membrane. With maturation (P21, P70), NHERF-1 immunolabeling was reduced in the above structures, whereas labeling increased in the apical membrane of the interdental cells of the spiral limbus and the inner and outer sulcus cells, Hensen’s cells, the inner and outer pillar cells, Deiters cells, the inner border cells, spiral ligament fibrocytes, and spiral ganglion neurons (particularly type II). NHERF-1 expression in strial basal and intermediate cells was persistent. NHERF-2 immunolabeling was similar to that for NHERF-1 during postnatal development, with the exception of expression in the synaptic regions beneath the outer hair cells. NHERF-1 and NHERF-2 co-localized with glial fibrillary acidic protein and vimentin in glia. The cochlear localization of NHERF scaffolds suggests that they play important roles in the developmental regulation of ion transport, homeostasis, and auditory neurotransmission. PMID:16160858

  15. The transcription factor Zeb2 regulates signaling in mast cells.

    PubMed

    Barbu, Emilia Alina; Zhang, Juan; Berenstein, Elsa H; Groves, Jacqueline R; Parks, Lauren M; Siraganian, Reuben P

    2012-06-15

    Mast cell activation results in the release of stored and newly synthesized inflammatory mediators. We found that Zeb2 (also named Sip1, Zfhx1b), a zinc finger transcription factor, regulates both early and late mast cell responses. Transfection with small interfering RNA (siRNA) reduced Zeb2 expression and resulted in decreased FcεRI-mediated degranulation, with a parallel reduction in receptor-induced activation of NFAT and NF-κB transcription factors, but an enhanced response to the LPS-mediated activation of NF-κB. There was variable and less of a decrease in the Ag-mediated release of the cytokines TNF-α, IL-13, and CCL-4. This suggests that low Zeb2 expression differentially regulates signaling pathways in mast cells. Multiple phosphorylation events were impaired that affected molecules both at early and late events in the signaling pathway. The Zeb2 siRNA-treated mast cells had altered cell cycle progression, as well as decreased expression of several molecules including cell surface FcεRI and its β subunit, Gab2, phospholipase-Cγ1, and phospholipase-Cγ2, all of which are required for receptor-induced signal transduction. The results indicate that the transcription factor Zeb2 controls the expression of molecules thereby regulating signaling in mast cells.

  16. Nurse migration in an increasingly interconnected world: the case for internationalization of regulation of nurses and nursing regulatory bodies.

    PubMed

    Cutcliffe, John R; Bajkay, Renay; Forster, Stu; Small, Rudy; Travale, Rodger

    2011-10-01

    Psychiatric/Mental Health nursing has a long history of professional self-regulation; nevertheless, interest in how governments protect consumers of health care from poor or dangerous practice(s) is on the increase. Correspondingly, there have been calls, in several parts of the world, for greater watchfulness and due diligence from regulatory bodies. Mindful of the concept of "globalization" and the unequivocal data regarding the significant increase in the migration of nurses, it is difficult to ignore/deny the reality of an increasingly mobile and connected international nursing workforce. However, the extant literature also indicates the existence of significant disparities between countries and even states/provinces within countries as to the enforcement of professional regulation. What this means is that decisions made by one regulatory body can have a direct impact on the standard(s) of nursing quality and practice in a country on the opposite side of the world. As a result, the authors attempt to advance the debate that there is a clear need to reconcile these positions, and they introduce the argument for the creation of an international oversight body. Using case study material, the relevant theoretical and policy literature in this area (such as it is), and by drawing on examples of analogous oversight bodies from other areas, we draw attention to the need to create a genuinely international body for the oversight of nurse regulation.

  17. Identification of sigma S-regulated genes in Salmonella typhimurium: complementary regulatory interactions between sigma S and cyclic AMP receptor protein.

    PubMed

    Fang, F C; Chen, C Y; Guiney, D G; Xu, Y

    1996-09-01

    sigma S (RpoS)-regulated lacZ transcriptional fusions in Salmonella typhimurium were identified from a MudJ transposon library by placing the rpoS gene under the control of the araBAD promoter and detecting lacZ expression in the presence or absence of arabinose supplementation. Western blot (immunoblot) analysis of bacteria carrying PBAD::rpoS demonstrated arabinose-dependent rpoS expression during all phases of growth. sigma S-dependent gene expression of individual gene fusions was confirmed by P22-mediated transduction of the MudJ insertions into wild-type or rpoS backgrounds. Analysis of six insertions revealed the known sigma S-regulated gene otsA, as well as five novel loci. Each of these genes is maximally expressed in stationary phase, and all but one show evidence of cyclic AMP receptor protein-dependent repression during logarithmic growth which is relieved in stationary phase. For these genes, as well as for the sigma S-regulated spvB plasmid virulence gene, a combination of rpoS overexpression and crp inactivation can result in high-level expression during logarithmic growth. The approach used to identify sigma S-regulated genes in this study provides a general method for the identification of genes controlled by trans-acting regulatory factors.

  18. The female-specific doublesex isoform regulates pleiotropic transcription factors to pattern genital development in Drosophila.

    PubMed

    Chatterjee, Sujash S; Uppendahl, Locke D; Chowdhury, Moinuddin A; Ip, Pui-Leng; Siegal, Mark L

    2011-03-01

    Regulatory networks driving morphogenesis of animal genitalia must integrate sexual identity and positional information. Although the genetic hierarchy that controls somatic sexual identity in the fly Drosophila melanogaster is well understood, there are very few cases in which the mechanism by which it controls tissue-specific gene activity is known. In flies, the sex-determination hierarchy terminates in the doublesex (dsx) gene, which produces sex-specific transcription factors via alternative splicing of its transcripts. To identify sex-specifically expressed genes downstream of dsx that drive the sexually dimorphic development of the genitalia, we performed genome-wide transcriptional profiling of dissected genital imaginal discs of each sex at three time points during early morphogenesis. Using a stringent statistical threshold, we identified 23 genes that have sex-differential transcript levels at all three time points, of which 13 encode transcription factors, a significant enrichment. We focus here on three sex-specifically expressed transcription factors encoded by lozenge (lz), Drop (Dr) and AP-2. We show that, in female genital discs, Dsx activates lz and represses Dr and AP-2. We further show that the regulation of Dr by Dsx mediates the previously identified expression of the fibroblast growth factor Branchless in male genital discs. The phenotypes we observe upon loss of lz or Dr function in genital discs explain the presence or absence of particular structures in dsx mutant flies and thereby clarify previously puzzling observations. Our time course of expression data also lays the foundation for elucidating the regulatory networks downstream of the sex-specifically deployed transcription factors. PMID:21343364

  19. Dynamics of Elongation Factor 2 Kinase Regulation in Cortical Neurons in Response to Synaptic Activity

    PubMed Central

    Kenney, Justin W.; Sorokina, Oksana; Genheden, Maja; Sorokin, Anatoly

    2015-01-01

    The rapid regulation of cell signaling in response to calcium in neurons is essential for real-time processing of large amounts of information in the brain. A vital regulatory component, and one of the most energy-intensive biochemical processes in cells, is the elongation phase of mRNA translation, which is controlled by the Ca2+/CaM-dependent elongation factor 2 kinase (eEF2K). However, little is known about the dynamics of eEF2K regulation in neurons despite its established role in learning and synaptic plasticity. To explore eEF2K dynamics in depth, we stimulated synaptic activity in mouse primary cortical neurons. We find that synaptic activity results in a rapid, but transient, increase in eEF2K activity that is regulated by a combination of AMPA and NMDA-type glutamate receptors and the mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin complex 1 (mTORC1) pathways. We then used computational modeling to test the hypothesis that considering Ca2+-coordinated MEK/ERK, mTORC1, and eEF2k activation is sufficient to describe the observed eEF2K dynamics. Although such a model could partially fit the empirical findings, it also suggested that a crucial positive regulator of eEF2K was also necessary. Through additional modeling and empirical evidence, we demonstrate that AMP kinase (AMPK) is also an important regulator of synaptic activity-driven eEF2K dynamics in neurons. Our combined modeling and experimental findings provide the first evidence that it is necessary to consider the combined interactions of Ca2+ with MEK/ERK, mTORC1, and AMPK to adequately explain eEF2K regulation in neurons. PMID:25698741

  20. CDK8 kinase phosphorylates transcription factor STAT1 to selectively regulate the interferon response.

    PubMed

    Bancerek, Joanna; Poss, Zachary C; Steinparzer, Iris; Sedlyarov, Vitaly; Pfaffenwimmer, Thaddäus; Mikulic, Ivana; Dölken, Lars; Strobl, Birgit; Müller, Mathias; Taatjes, Dylan J; Kovarik, Pavel

    2013-02-21

    Gene regulation by cytokine-activated transcription factors of the signal transducer and activator of transcription (STAT) family requires serine phosphorylation within the transactivation domain (TAD). STAT1 and STAT3 TAD phosphorylation occurs upon promoter binding by an unknown kinase. Here, we show that the cyclin-dependent kinase 8 (CDK8) module of the Mediator complex phosphorylated regulatory sites within the TADs of STAT1, STAT3, and STAT5, including S727 within the STAT1 TAD in the interferon (IFN) signaling pathway. We also observed a CDK8 requirement for IFN-γ-inducible antiviral responses. Microarray analyses revealed that CDK8-mediated STAT1 phosphorylation positively or negatively regulated over 40% of IFN-γ-responsive genes, and RNA polymerase II occupancy correlated with gene expression changes. This divergent regulation occurred despite similar CDK8 occupancy at both S727 phosphorylation-dependent and -independent genes. These data identify CDK8 as a key regulator of STAT1 and antiviral responses and suggest a general role for CDK8 in STAT-mediated transcription. As such, CDK8 represents a promising target for therapeutic manipulation of cytokine responses.

  1. Characterization of the Methylation Status of Pax7 and Myogenic Regulator Factors in Cell Myogenic Differentiation.

    PubMed

    Chao, Zhe; Zheng, Xin-Li; Sun, Rui-Ping; Liu, Hai-Long; Huang, Li-Li; Cao, Zong-Xi; Deng, Chang-Yan; Wang, Feng

    2016-07-01

    Epigenetic processes in the development of skeletal muscle have been appreciated for over a decade. DNA methylation is a major epigenetic modification important for regulating gene expression and suppressing spurious transcription. Up to now, the importance of epigenetic marks in the regulation of Pax7 and myogenic regulatory factors (MRFs) expression is far less explored. In the present study, semi-quantitative the real-time polymerase chain reaction (RT-PCR) analyses showed MyoD and Myf5 were expressed in activated and quiescent C2C12 cells. MyoG was expressed in a later stage of myogenesis. Pax7 was weakly expressed in differentiated C2C12 cells. To further understand the regulation of expression of these genes, the DNA methylation status of Pax7, MyoD, and Myf5 was determined by bisulfite sequencing PCR. During the C2C12 myoblasts fusion process, the changes of promoter and exon 1 methylation of Pax7, MyoD, and Myf5 genes were observed. In addition, an inverse relationship of low methylation and high expression was found. These results suggest that DNA methylation may be an important mechanism regulating Pax7 and MRFs transcription in cell myogenic differentiation. PMID:26954143

  2. WRKY Transcription Factors: Molecular Regulation and Stress Responses in Plants

    PubMed Central

    Phukan, Ujjal J.; Jeena, Gajendra S.; Shukla, Rakesh K.

    2016-01-01

    Plants in their natural habitat have to face multiple stresses simultaneously. Evolutionary adaptation of developmental, physiological, and biochemical parameters give advantage over a single window of stress but not multiple. On the other hand transcription factors like WRKY can regulate diverse responses through a complicated network of genes. So molecular orchestration of WRKYs in plant may provide the most anticipated outcome of simultaneous multiple responses. Activation or repression through W-box and W-box like sequences is regulated at transcriptional, translational, and domain level. Because of the tight regulation involved in specific recognition and binding of WRKYs to downstream promoters, they have become promising candidate for crop improvement. Epigenetic, retrograde and proteasome mediated regulation enable WRKYs to attain the dynamic cellular homeostatic reprograming. Overexpression of several WRKYs face the paradox of having several beneficial affects but with some unwanted traits. These overexpression-associated undesirable phenotypes need to be identified and removed for proper growth, development and yeild. Taken together, we have highlighted the diverse regulation and multiple stress response of WRKYs in plants along with the future prospects in this field of research. PMID:27375634

  3. The regulatory role of serum response factor pathway in neutrophil inflammatory response

    PubMed Central

    Taylor, Ashley; Halene, Stephanie

    2015-01-01

    Purpose of review Neutrophils rapidly migrate to sites of injury and infection. Egress of neutrophils from the circulation into tissues is a highly regulated process involving several distinct steps. Cell–cell interactions mediated by selectins and integrins and reorganization of the actin cytoskeleton are key mechanisms facilitating appropriate neutrophil recruitment. Neutrophil function is impaired in inherited and acquired disorders, such as leukocyte adhesion deficiency and myelodysplasia. Since the discovery that deletion of all or part of chromosome 5 is the most common genetic aberration in myelodysplasia, the roles of several of the deleted genes have been investigated in hematopoiesis. Several genes encoding proteins of the serum response factor (SRF) pathway are located on 5q. This review focuses, in particular, on the role of SRF in myeloid maturation and neutrophil function. Recent findings SRF and its pathway fulfill multiple complex roles in the regulation of the innate and adaptive immune system. Loss of SRF leads to defects in B-cell and T-cell development. SRF-deficient macrophages fail to spread, transmigrate, and phagocytose bacteria, and SRF-deficient neutrophils show defective chemotaxis in vitro and in vivo with failure of inside-out activation and trafficking of the Mac1 integrin complex. Loss of the formin mammalian Diaphanous 1, a regulator of linear actin polymerization and mediator of Ras homolog family member A signaling to SRF, results in aberrant myeloid differentiation and hyperactivity of the immune system. Summary SRF is an essential transcription factor in hematopoiesis and mature myeloid cell function. SRF regulates neutrophil migration, integrin activation, and trafficking. Disruption of the SRF pathway results in myelodysplasia and immune dysfunction. PMID:25402621

  4. Regulation of RE1 protein silencing transcription factor (REST) expression by HIP1 protein interactor (HIPPI).

    PubMed

    Datta, Moumita; Bhattacharyya, Nitai P

    2011-09-30

    Earlier we have shown that the proapoptotic protein HIPPI (huntingtin interacting protein 1 (HIP1) protein interactor) along with its molecular partner HIP1 could regulate transcription of the caspase-1 gene. Here we report that RE1-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) is a new transcriptional target of HIPPI. HIPPI could bind to the promoter of REST and increased its expression in neuronal as well as non-neuronal cells. Such activation of REST down-regulated expression of REST target genes, such as brain-derived neurotrophic factor (BDNF) or proenkephalin (PENK). The ability of HIPPI to activate REST gene transcription was dependent on HIP1, the nuclear transporter of HIPPI. Using a Huntington disease cell model, we have demonstrated that feeble interaction of HIP1 with mutant huntingtin protein resulted in increased nuclear accumulation of HIPPI and HIP1, leading to higher occupancy of HIPPI at the REST promoter, triggering its transcriptional activation and consequent repression of REST target genes. This novel transcription regulatory mechanism of REST by HIPPI may contribute to the deregulation of transcription observed in the cell model of Huntington disease. PMID:21832040

  5. DELLA-mediated gibberellin signalling regulates Nod factor signalling and rhizobial infection

    PubMed Central

    Fonouni-Farde, Camille; Tan, Sovanna; Baudin, Maël; Brault, Mathias; Wen, Jiangqi; Mysore, Kirankumar S.; Niebel, Andreas; Frugier, Florian; Diet, Anouck

    2016-01-01

    Legumes develop symbiotic interactions with rhizobial bacteria to form nitrogen-fixing nodules. Bacterial Nod factors (NFs) and plant regulatory pathways modulating NF signalling control rhizobial infections and nodulation efficiency. Here we show that gibberellin (GA) signalling mediated by DELLA proteins inhibits rhizobial infections and controls the NF induction of the infection marker ENOD11 in Medicago truncatula. Ectopic expression of a constitutively active DELLA protein in the epidermis is sufficient to promote ENOD11 expression in the absence of symbiotic signals. We show using heterologous systems that DELLA proteins can interact with the nodulation signalling pathway 2 (NSP2) and nuclear factor-YA1 (NF-YA1) transcription factors that are essential for the activation of NF responses. Furthermore, MtDELLA1 can bind the ERN1 (ERF required for nodulation 1) promoter and positively transactivate its expression. Overall, we propose that GA-dependent action of DELLA proteins may directly regulate the NSP1/NSP2 and NF-YA1 activation of ERN1 transcription to regulate rhizobial infections. PMID:27586842

  6. Transcription factor KLF7 regulates differentiation of neuroectodermal and mesodermal cell lineages

    SciTech Connect

    Caiazzo, Massimiliano; Colucci-D'Amato, Luca; Esposito, Maria T.; Parisi, Silvia; Stifani, Stefano; Ramirez, Francesco; Porzio, Umberto di

    2010-08-15

    Previous gene targeting studies in mice have implicated the nuclear protein Krueppel-like factor 7 (KLF7) in nervous system development while cell culture assays have documented its involvement in cell cycle regulation. By employing short hairpin RNA (shRNA)-mediated gene silencing, here we demonstrate that murine Klf7 gene expression is required for in vitro differentiation of neuroectodermal and mesodermal cells. Specifically, we show a correlation of Klf7 silencing with down-regulation of the neuronal marker microtubule-associated protein 2 (Map2) and the nerve growth factor (NGF) tyrosine kinase receptor A (TrkA) using the PC12 neuronal cell line. Similarly, KLF7 inactivation in Klf7-null mice decreases the expression of the neurogenic marker brain lipid-binding protein/fatty acid-binding protein 7 (BLBP/FABP7) in neural stem cells (NSCs). We also report that Klf7 silencing is detrimental to neuronal and cardiomyocytic differentiation of embryonic stem cells (ESCs), in addition to altering the adipogenic and osteogenic potential of mouse embryonic fibroblasts (MEFs). Finally, our results suggest that genes that are key for self-renewal of undifferentiated ESCs repress Klf7 expression in ESCs. Together with previous findings, these results provide evidence that KLF7 has a broad spectrum of regulatory functions, which reflect the discrete cellular and molecular contexts in which this transcription factor operates.

  7. DELLA-mediated gibberellin signalling regulates Nod factor signalling and rhizobial infection.

    PubMed

    Fonouni-Farde, Camille; Tan, Sovanna; Baudin, Maël; Brault, Mathias; Wen, Jiangqi; Mysore, Kirankumar S; Niebel, Andreas; Frugier, Florian; Diet, Anouck

    2016-01-01

    Legumes develop symbiotic interactions with rhizobial bacteria to form nitrogen-fixing nodules. Bacterial Nod factors (NFs) and plant regulatory pathways modulating NF signalling control rhizobial infections and nodulation efficiency. Here we show that gibberellin (GA) signalling mediated by DELLA proteins inhibits rhizobial infections and controls the NF induction of the infection marker ENOD11 in Medicago truncatula. Ectopic expression of a constitutively active DELLA protein in the epidermis is sufficient to promote ENOD11 expression in the absence of symbiotic signals. We show using heterologous systems that DELLA proteins can interact with the nodulation signalling pathway 2 (NSP2) and nuclear factor-YA1 (NF-YA1) transcription factors that are essential for the activation of NF responses. Furthermore, MtDELLA1 can bind the ERN1 (ERF required for nodulation 1) promoter and positively transactivate its expression. Overall, we propose that GA-dependent action of DELLA proteins may directly regulate the NSP1/NSP2 and NF-YA1 activation of ERN1 transcription to regulate rhizobial infections. PMID:27586842

  8. Food Reformulation, Responsive Regulation, and "Regulatory Scaffolding": Strengthening Performance of Salt Reduction Programs in Australia and the United Kingdom.

    PubMed

    Magnusson, Roger; Reeve, Belinda

    2015-06-30

    Strategies to reduce excess salt consumption play an important role in preventing cardiovascular disease, which is the largest contributor to global mortality from non-communicable diseases. In many countries, voluntary food reformulation programs seek to reduce salt levels across selected product categories, guided by aspirational targets to be achieved progressively over time. This paper evaluates the industry-led salt reduction programs that operate in the United Kingdom and Australia. Drawing on theoretical concepts from the field of regulatory studies, we propose a step-wise or "responsive" approach that introduces regulatory "scaffolds" to progressively increase levels of government oversight and control in response to industry inaction or under-performance. Our model makes full use of the food industry's willingness to reduce salt levels in products to meet reformulation targets, but recognizes that governments remain accountable for addressing major diet-related health risks. Creative regulatory strategies can assist governments to fulfill their public health obligations, including in circumstances where there are political barriers to direct, statutory regulation of the food industry.

  9. Hepatocyte nuclear factor-1β: A regulator of kidney development and cystogenesis

    PubMed Central

    Singh, V.; Singla, S. K.; Jha, V.; Puri, V.; Puri, S.

    2015-01-01

    The understanding of the genomics of the renal tissue has gathered a considerable interest and is making rapid progress. The molecular mechanisms as well as the precise function of the associated molecular components toward renal pathophysiology have recently been realized. For the cystic kidney disease, the regulation of gene expression affecting epithelial cells proliferation, apoptosis as well as process of differentiation/de-differentiation represent key molecular targets. For the cystic disorders, molecular targets have been identified, which besides lending heterogeneity to cysts may also provide tools to unravel their functional importance to understand the renal tissue homeostasis. This review focuses on providing comprehensive information about the transcriptional regulatory role of hepatocyte nuclear factor-1β, a homeoprotein, as well as its interacting partners in renal tissue development and pathophysiology. PMID:25838642

  10. Affinity Density: a novel genomic approach to the identification of transcription factor regulatory targets

    PubMed Central

    Hazelett, Dennis J.; Lakeland, Daniel L.; Weiss, Joseph B.

    2009-01-01

    Methods: A new method was developed for identifying novel transcription factor regulatory targets based on calculating Local Affinity Density. Techniques from the signal-processing field were used, in particular the Hann digital filter, to calculate the relative binding affinity of different regions based on previously published in vitro binding data. To illustrate this approach, the complete genomes of Drosophila melanogaster and D.pseudoobscura were analyzed for binding sites of the homeodomain proteinc Tinman, an essential heart development gene in both Drosophila and Mouse. The significant binding regions were identified relative to genomic background and assigned to putative target genes. Valid candidates common to both species of Drosophila were selected as a test of conservation. Results: The new method was more sensitive than cluster searches for conserved binding motifs with respect to positive identification of known Tinman targets. Our Local Affinity Density method also identified a significantly greater proportion of Tinman-coexpressed genes than equivalent, optimized cluster searching. In addition, this new method predicted a significantly greater than expected number of genes with previously published RNAi phenotypes in the heart. Availability: Algorithms were implemented in Python, LISP, R and maxima, using MySQL to access locally mirrored sequence data from Ensembl (D.melanogaster release 4.3) and flybase (D.pseudoobscura). All code is licensed under GPL and freely available at http://www.ohsu.edu/cellbio/dev_biol_prog/affinitydensity/. Contact: hazelett@ohsu.edu PMID:19401399

  11. Are good ideas enough? The impact of socio-economic and regulatory factors on GMO commercialisation.

    PubMed

    Vàzquez-Salat, Núria

    2013-01-01

    In recent years scientific literature has seen an increase in publications describing new transgenic applications. Although technically-sound, these promising developments might not necessarily translate into products available to the consumer. This article highlights the impact of external factors on the commercial viability of Genetically Modified (GM) animals in the pharmaceutical and food sectors. Through the division of the production chain into three Policy Domains -Science, Market and Public- I present an overview of the broad range of regulatory and socio-economic components that impacts on the path towards commercialisation of GM animals. To further illustrate the unique combination of forces that influence each application, I provide an in-depth analysis of two real cases: GM rabbits producing human polyclonal antibodies (pharmaceutical case study) and GM cows producing recombinant human lactoferrin (food case study). The inability to generalise over the commercial success of a given transgenic application should encourage researchers to perform these type of exercises early in the R & D process. Furthermore, through the analysis of these case studies we can observe a change in the biopolitics of Genetically Modified Organisms (GMOs). Contrary to the GM plant biopolitical landscape, developing states such as China and Argentina are placing themselves as global leaders in GM animals. The pro-GM attitude of these states is likely to cause a shift in the political evolution of global GMO governance. PMID:24510133

  12. Are good ideas enough? The impact of socio-economic and regulatory factors on GMO commercialisation.

    PubMed

    Vàzquez-Salat, Núria

    2013-01-01

    In recent years scientific literature has seen an increase in publications describing new transgenic applications. Although technically-sound, these promising developments might not necessarily translate into products available to the consumer. This article highlights the impact of external factors on the commercial viability of Genetically Modified (GM) animals in the pharmaceutical and food sectors. Through the division of the production chain into three Policy Domains -Science, Market and Public- I present an overview of the broad range of regulatory and socio-economic components that impacts on the path towards commercialisation of GM animals. To further illustrate the unique combination of forces that influence each application, I provide an in-depth analysis of two real cases: GM rabbits producing human polyclonal antibodies (pharmaceutical case study) and GM cows producing recombinant human lactoferrin (food case study). The inability to generalise over the commercial success of a given transgenic application should encourage researchers to perform these type of exercises early in the R & D process. Furthermore, through the analysis of these case studies we can observe a change in the biopolitics of Genetically Modified Organisms (GMOs). Contrary to the GM plant biopolitical landscape, developing states such as China and Argentina are placing themselves as global leaders in GM animals. The pro-GM attitude of these states is likely to cause a shift in the political evolution of global GMO governance.

  13. Multiple signaling pathways leading to the activation of interferon regulatory factor 3.

    PubMed

    Servant, Marc J; Grandvaux, Nathalie; Hiscott, John

    2002-09-01

    Virus infection of susceptible cells activates multiple signaling pathways that orchestrate the activation of genes, such as cytokines, involved in the antiviral and innate immune response. Among the kinases induced are the mitogen-activated protein (MAP) kinases, Jun-amino terminal kinases (JNK) and p38, the IkappaB kinase (IKK) and DNA-PK. In addition, virus infection also activates an uncharacterized VAK responsible for the C-terminal phosphorylation and subsequent activation of interferon regulatory factor 3 (IRF-3). Virus-mediated activation of IRF-3 through VAK is dependent on viral entry and transcription, since replication deficient virus failed to induce IRF-3 activity. The pathways leading to VAK activation are not well characterized, but IRF-3 appears to represent a novel cellular detection pathway that recognizes viral nucleocapsid (N) structure. Recently, the range of inducers responsible for IRF-3 activation has increased. In addition to virus infection, recognition of bacterial infection mediated through lipopolysaccharide by Toll-like receptor 4 has also been reported. Furthermore, MAP kinase kinase kinase (MAP KKK)-related pathways and DNA-PK induce N-terminal phosphorylation of IRF-3. This review summarizes recent observations in the identification of novel signaling pathways leading to IRF-3 activation.

  14. Interferon regulatory factor-1 polymorphisms are associated with the control of Plasmodium falciparum infection

    PubMed Central

    Mangano, Valentina D; Luoni, Gaia; Rockett, Kirk A; Sirima, Bienvenu S; Konaté, Amadou; Forton, Julian; Clark, Taane; Bancone, Germana; Akha, Elham Sadighi; Kwiatkowski, Dominic P; Modiano, David

    2010-01-01

    We describe the haplotypic structure of the Interferon Regulatory Factor-1 (IRF-1) locus in two West African ethnic groups, Fulani and Mossi, that differ in their susceptibility and immune response to Plasmodium falciparum malaria. Both populations showed significant associations between IRF-1 polymorphisms and carriage of P. falciparum infection, with different patterns of association that may reflect their different haplotypic architecture. Genetic variation at this locus does not therefore account for the Fulani-specific resistance to malaria while it could contribute to parasite clearance's ability in populations living in endemic areas. We then conducted a case-control study of three haplotype-tagging Single Nucleotide Polymorphisms (htSNPs) in 370 hospitalized malaria patients (160 severe and 210 uncomplicated) and 410 healthy population controls, all from the Mos