Science.gov

Sample records for regulatory network architecture

  1. Interplay between gene expression noise and regulatory network architecture

    PubMed Central

    Chalancon, Guilhem; Ravarani, Charles; Balaji, S.; Martinez-Arias, Alfonso; Aravind, L.; Jothi, Raja; Babu, M. Madan

    2012-01-01

    Complex regulatory networks orchestrate most cellular processes in biological systems. Genes in such networks are subject to expression noise, resulting in isogenic cell populations exhibiting cell-to-cell variation in protein levels. Increasing evidence suggests that cells have evolved regulatory strategies to limit, tolerate, or amplify expression noise. In this context, fundamental questions arise: how can the architecture of gene regulatory networks generate, make use of, or be constrained by expression noise? Here, we discuss the interplay between expression noise and gene regulatory network at different levels of organization, ranging from a single regulatory interaction to entire regulatory networks. We then consider how this interplay impacts a variety of phenomena such as pathogenicity, disease, adaptation to changing environments, differential cell-fate outcome and incomplete or partial penetrance effects. Finally, we highlight recent technological developments that permit measurements at the single-cell level, and discuss directions for future research. PMID:22365642

  2. Establishing the Architecture of Plant Gene Regulatory Networks.

    PubMed

    Yang, F; Ouma, W Z; Li, W; Doseff, A I; Grotewold, E

    2016-01-01

    Gene regulatory grids (GRGs) encompass the space of all the possible transcription factor (TF)-target gene interactions that regulate gene expression, with gene regulatory networks (GRNs) representing a temporal and spatial manifestation of a portion of the GRG, essential for the specification of gene expression. Thus, understanding GRG architecture provides a valuable tool to explain how genes are expressed in an organism, an important aspect of synthetic biology and essential toward the development of the "in silico" cell. Progress has been made in some unicellular model systems (eg, yeast), but significant challenges remain in more complex multicellular organisms such as plants. Key to understanding the organization of GRGs is therefore identifying the genes that TFs bind to, and control. The application of sensitive and high-throughput methods to investigate genome-wide TF-target gene interactions is providing a wealth of information that can be linked to important agronomic traits. We describe here the methods and resources that have been developed to investigate the architecture of plant GRGs and GRNs. We also provide information regarding where to obtain clones or other resources necessary for synthetic biology or metabolic engineering. PMID:27480690

  3. Level architecture in genetic regulatory networks and the role of microRNAs

    NASA Astrophysics Data System (ADS)

    Schwarz, J. M.

    2008-03-01

    It is well known that genes that code for proteins regulate the expression of each other through protein-mediated interactions. With the discovery of microRNAs^1 (miRNAs), it has been conjectured that there are many such regulatory miRNAs in the cell that are never transcribed into proteins but are important for regulation and, hence, could explain the nature of the non-coding (or junk) DNA.^2 Furthermore, miRNAs are highly conserved molecules. So, just as genes that code for proteins form regulatory networks, we conjecture that miRNAs form a higher-level regulatory network amongst themselves as mediated by the genes-coding-for-proteins regulatory network to form a complex organism. We investigate this conjecture within the framework of random Boolean networks where the two-level architecture is modelled via two coupled random Boolean networks with one network taking precedence over the other for various input/output values. Aspects of the evolution of the lower-level network will also be addressed. ^1 D. P. Bartel, Cell 116, 281 (2004). ^2 J. S. Mattick, Sci. Amer. 291, 60 (2004).

  4. Developmental gene regulatory network architecture across 500 million years of echinoderm evolution.

    PubMed

    Hinman, Veronica F; Nguyen, Albert T; Cameron, R Andrew; Davidson, Eric H

    2003-11-11

    Evolutionary change in morphological features must depend on architectural reorganization of developmental gene regulatory networks (GRNs), just as true conservation of morphological features must imply retention of ancestral developmental GRN features. Key elements of the provisional GRN for embryonic endomesoderm development in the sea urchin are here compared with those operating in embryos of a distantly related echinoderm, a starfish. These animals diverged from their common ancestor 520-480 million years ago. Their endomesodermal fate maps are similar, except that sea urchins generate a skeletogenic cell lineage that produces a prominent skeleton lacking entirely in starfish larvae. A relevant set of regulatory genes was isolated from the starfish Asterina miniata, their expression patterns determined, and effects on the other genes of perturbing the expression of each were demonstrated. A three-gene feedback loop that is a fundamental feature of the sea urchin GRN for endoderm specification is found in almost identical form in the starfish: a detailed element of GRN architecture has been retained since the Cambrian Period in both echinoderm lineages. The significance of this retention is highlighted by the observation of numerous specific differences in the GRN connections as well. A regulatory gene used to drive skeletogenesis in the sea urchin is used entirely differently in the starfish, where it responds to endomesodermal inputs that do not affect it in the sea urchin embryo. Evolutionary changes in the GRNs since divergence are limited sharply to certain cis-regulatory elements, whereas others have persisted unaltered.

  5. Developmental gene regulatory network architecture across 500 million years of echinoderm evolution

    NASA Technical Reports Server (NTRS)

    Hinman, Veronica F.; Nguyen, Albert T.; Cameron, R. Andrew; Davidson, Eric H.

    2003-01-01

    Evolutionary change in morphological features must depend on architectural reorganization of developmental gene regulatory networks (GRNs), just as true conservation of morphological features must imply retention of ancestral developmental GRN features. Key elements of the provisional GRN for embryonic endomesoderm development in the sea urchin are here compared with those operating in embryos of a distantly related echinoderm, a starfish. These animals diverged from their common ancestor 520-480 million years ago. Their endomesodermal fate maps are similar, except that sea urchins generate a skeletogenic cell lineage that produces a prominent skeleton lacking entirely in starfish larvae. A relevant set of regulatory genes was isolated from the starfish Asterina miniata, their expression patterns determined, and effects on the other genes of perturbing the expression of each were demonstrated. A three-gene feedback loop that is a fundamental feature of the sea urchin GRN for endoderm specification is found in almost identical form in the starfish: a detailed element of GRN architecture has been retained since the Cambrian Period in both echinoderm lineages. The significance of this retention is highlighted by the observation of numerous specific differences in the GRN connections as well. A regulatory gene used to drive skeletogenesis in the sea urchin is used entirely differently in the starfish, where it responds to endomesodermal inputs that do not affect it in the sea urchin embryo. Evolutionary changes in the GRNs since divergence are limited sharply to certain cis-regulatory elements, whereas others have persisted unaltered.

  6. FTS2000 network architecture

    NASA Technical Reports Server (NTRS)

    Klenart, John

    1991-01-01

    The network architecture of FTS2000 is graphically depicted. A map of network A topology is provided, with interservice nodes. Next, the four basic element of the architecture is laid out. Then, the FTS2000 time line is reproduced. A list of equipment supporting FTS2000 dedicated transmissions is given. Finally, access alternatives are shown.

  7. A genomic regulatory network for development

    NASA Technical Reports Server (NTRS)

    Davidson, Eric H.; Rast, Jonathan P.; Oliveri, Paola; Ransick, Andrew; Calestani, Cristina; Yuh, Chiou-Hwa; Minokawa, Takuya; Amore, Gabriele; Hinman, Veronica; Arenas-Mena, Cesar; Otim, Ochan; Brown, C. Titus; Livi, Carolina B.; Lee, Pei Yun; Revilla, Roger; Rust, Alistair G.; Pan, Zheng jun; Schilstra, Maria J.; Clarke, Peter J C.; Arnone, Maria I.; Rowen, Lee; Cameron, R. Andrew; McClay, David R.; Hood, Leroy; Bolouri, Hamid

    2002-01-01

    Development of the body plan is controlled by large networks of regulatory genes. A gene regulatory network that controls the specification of endoderm and mesoderm in the sea urchin embryo is summarized here. The network was derived from large-scale perturbation analyses, in combination with computational methodologies, genomic data, cis-regulatory analysis, and molecular embryology. The network contains over 40 genes at present, and each node can be directly verified at the DNA sequence level by cis-regulatory analysis. Its architecture reveals specific and general aspects of development, such as how given cells generate their ordained fates in the embryo and why the process moves inexorably forward in developmental time.

  8. MSAT network architecture

    NASA Technical Reports Server (NTRS)

    Davies, N. G.; Skerry, B.

    1990-01-01

    The Mobile Satellite (MSAT) communications system will support mobile voice and data services using circuit switched and packet switched facilities with interconnection to the public switched telephone network and private networks. Control of the satellite network will reside in a Network Control System (NCS) which is being designed to be extremely flexible to provide for the operation of the system initially with one multi-beam satellite, but with capability to add additional satellites which may have other beam configurations. The architecture of the NCS is described. The signalling system must be capable of supporting the protocols for the assignment of circuits for mobile public telephone and private network calls as well as identifying packet data networks. The structure of a straw-man signalling system is discussed.

  9. Apprehending multicellularity: regulatory networks, genomics and evolution

    PubMed Central

    Aravind, L.; Anantharaman, Vivek; Venancio, Thiago M.

    2009-01-01

    The genomic revolution has provided the first glimpses of the architecture of regulatory networks. Combined with evolutionary information, the “network view” of life processes leads to remarkable insights into how biological systems have been shaped by various forces. This understanding is critical because biological systems, including regulatory networks, are not products of engineering but of historical contingencies. In this light, we attempt a synthetic overview of the natural history of regulatory networks operating in the development and differentiation of multicellular organisms. We first introduce regulatory networks and their organizational principles as can be deduced using ideas from the graph theory. We then discuss findings from comparative genomics to illustrate the effects of lineage-specific expansions, gene-loss, and non-protein-coding DNA on the architecture of networks. We consider the interaction between expansions of transcription factors, and cis regulatory and more general chromatin state stabilizing elements in the emergence of morphological complexity. Finally, we consider a case study of the Notch sub-network, which is present throughout Metazoa, to examine how such a regulatory system has been pieced together in evolution from new innovations and pre-existing components that were originally functionally distinct. PMID:19530132

  10. Parallel architectures and neural networks

    SciTech Connect

    Calianiello, E.R. )

    1989-01-01

    This book covers parallel computer architectures and neural networks. Topics include: neural modeling, use of ADA to simulate neural networks, VLSI technology, implementation of Boltzmann machines, and analysis of neural nets.

  11. Evolving Robust Gene Regulatory Networks

    PubMed Central

    Noman, Nasimul; Monjo, Taku; Moscato, Pablo; Iba, Hitoshi

    2015-01-01

    Design and implementation of robust network modules is essential for construction of complex biological systems through hierarchical assembly of ‘parts’ and ‘devices’. The robustness of gene regulatory networks (GRNs) is ascribed chiefly to the underlying topology. The automatic designing capability of GRN topology that can exhibit robust behavior can dramatically change the current practice in synthetic biology. A recent study shows that Darwinian evolution can gradually develop higher topological robustness. Subsequently, this work presents an evolutionary algorithm that simulates natural evolution in silico, for identifying network topologies that are robust to perturbations. We present a Monte Carlo based method for quantifying topological robustness and designed a fitness approximation approach for efficient calculation of topological robustness which is computationally very intensive. The proposed framework was verified using two classic GRN behaviors: oscillation and bistability, although the framework is generalized for evolving other types of responses. The algorithm identified robust GRN architectures which were verified using different analysis and comparison. Analysis of the results also shed light on the relationship among robustness, cooperativity and complexity. This study also shows that nature has already evolved very robust architectures for its crucial systems; hence simulation of this natural process can be very valuable for designing robust biological systems. PMID:25616055

  12. Airport Surface Network Architecture Definition

    NASA Technical Reports Server (NTRS)

    Nguyen, Thanh C.; Eddy, Wesley M.; Bretmersky, Steven C.; Lawas-Grodek, Fran; Ellis, Brenda L.

    2006-01-01

    Currently, airport surface communications are fragmented across multiple types of systems. These communication systems for airport operations at most airports today are based dedicated and separate architectures that cannot support system-wide interoperability and information sharing. The requirements placed upon the Communications, Navigation, and Surveillance (CNS) systems in airports are rapidly growing and integration is urgently needed if the future vision of the National Airspace System (NAS) and the Next Generation Air Transportation System (NGATS) 2025 concept are to be realized. To address this and other problems such as airport surface congestion, the Space Based Technologies Project s Surface ICNS Network Architecture team at NASA Glenn Research Center has assessed airport surface communications requirements, analyzed existing and future surface applications, and defined a set of architecture functions that will help design a scalable, reliable and flexible surface network architecture to meet the current and future needs of airport operations. This paper describes the systems approach or methodology to networking that was employed to assess airport surface communications requirements, analyze applications, and to define the surface network architecture functions as the building blocks or components of the network. The systems approach used for defining these functions is relatively new to networking. It is viewing the surface network, along with its environment (everything that the surface network interacts with or impacts), as a system. Associated with this system are sets of services that are offered by the network to the rest of the system. Therefore, the surface network is considered as part of the larger system (such as the NAS), with interactions and dependencies between the surface network and its users, applications, and devices. The surface network architecture includes components such as addressing/routing, network management, network

  13. Regulatory gene networks and the properties of the developmental process

    NASA Technical Reports Server (NTRS)

    Davidson, Eric H.; McClay, David R.; Hood, Leroy

    2003-01-01

    Genomic instructions for development are encoded in arrays of regulatory DNA. These specify large networks of interactions among genes producing transcription factors and signaling components. The architecture of such networks both explains and predicts developmental phenomenology. Although network analysis is yet in its early stages, some fundamental commonalities are already emerging. Two such are the use of multigenic feedback loops to ensure the progressivity of developmental regulatory states and the prevalence of repressive regulatory interactions in spatial control processes. Gene regulatory networks make it possible to explain the process of development in causal terms and eventually will enable the redesign of developmental regulatory circuitry to achieve different outcomes.

  14. Regulatory dynamics of network architecture and function in tristable genetic circuit of Leishmania: a mathematical biology approach.

    PubMed

    Mandlik, Vineetha; Gurav, Mayuri; Singh, Shailza

    2015-01-01

    The emerging field of synthetic biology has led to the design of tailor-made synthetic circuits for several therapeutic applications. Biological networks can be reprogramed by designing synthetic circuits that modulate the expression of target proteins. IPCS (inositol phosphorylceramide synthase) has been an attractive target in the sphingolipid metabolism of the parasite Leishmania. In this study, we have constructed a tristable circuit for the IPCS protein. The circuit has been validated and its long-term behavior has been assessed. The robustness and evolvability of the circuit has been estimated using evolutionary algorithms. The tristable synthetic circuit has been specifically designed to improve the rate of production of phosphatidylcholine: ceramide cholinephosphotransferase 4 (SLS4 protein). Site-specific delivery of the circuit into the parasite-infected macrophages could serve as a possible therapeutic intervention of the infectious disease 'Leishmaniasis'.

  15. Data center networks and network architecture

    NASA Astrophysics Data System (ADS)

    Esaki, Hiroshi

    2014-02-01

    This paper discusses and proposes the architectural framework, which is for data center networks. The data center networks require new technical challenges, and it would be good opportunity to change the functions, which are not need in current and future networks. Based on the observation and consideration on data center networks, this paper proposes; (i) Broadcast-free layer 2 network (i.e., emulation of broadcast at the end-node), (ii) Full-mesh point-to-point pipes, and (iii) IRIDES (Invitation Routing aDvertisement for path Engineering System).

  16. Transcriptional Regulatory Networks in Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Lee, Tong Ihn; Rinaldi, Nicola J.; Robert, François; Odom, Duncan T.; Bar-Joseph, Ziv; Gerber, Georg K.; Hannett, Nancy M.; Harbison, Christopher T.; Thompson, Craig M.; Simon, Itamar; Zeitlinger, Julia; Jennings, Ezra G.; Murray, Heather L.; Gordon, D. Benjamin; Ren, Bing; Wyrick, John J.; Tagne, Jean-Bosco; Volkert, Thomas L.; Fraenkel, Ernest; Gifford, David K.; Young, Richard A.

    2002-10-01

    We have determined how most of the transcriptional regulators encoded in the eukaryote Saccharomyces cerevisiae associate with genes across the genome in living cells. Just as maps of metabolic networks describe the potential pathways that may be used by a cell to accomplish metabolic processes, this network of regulator-gene interactions describes potential pathways yeast cells can use to regulate global gene expression programs. We use this information to identify network motifs, the simplest units of network architecture, and demonstrate that an automated process can use motifs to assemble a transcriptional regulatory network structure. Our results reveal that eukaryotic cellular functions are highly connected through networks of transcriptional regulators that regulate other transcriptional regulators.

  17. Regulatory modules controlling maize inflorescence architecture.

    PubMed

    Eveland, Andrea L; Goldshmidt, Alexander; Pautler, Michael; Morohashi, Kengo; Liseron-Monfils, Christophe; Lewis, Michael W; Kumari, Sunita; Hiraga, Susumu; Yang, Fang; Unger-Wallace, Erica; Olson, Andrew; Hake, Sarah; Vollbrecht, Erik; Grotewold, Erich; Ware, Doreen; Jackson, David

    2014-03-01

    Genetic control of branching is a primary determinant of yield, regulating seed number and harvesting ability, yet little is known about the molecular networks that shape grain-bearing inflorescences of cereal crops. Here, we used the maize (Zea mays) inflorescence to investigate gene networks that modulate determinacy, specifically the decision to allow branch growth. We characterized developmental transitions by associating spatiotemporal expression profiles with morphological changes resulting from genetic perturbations that disrupt steps in a pathway controlling branching. Developmental dynamics of genes targeted in vivo by the transcription factor RAMOSA1, a key regulator of determinacy, revealed potential mechanisms for repressing branches in distinct stem cell populations, including interactions with KNOTTED1, a master regulator of stem cell maintenance. Our results uncover discrete developmental modules that function in determining grass-specific morphology and provide a basis for targeted crop improvement and translation to other cereal crops with comparable inflorescence architectures.

  18. Modeling DNA sequence-based cis-regulatory gene networks.

    PubMed

    Bolouri, Hamid; Davidson, Eric H

    2002-06-01

    Gene network analysis requires computationally based models which represent the functional architecture of regulatory interactions, and which provide directly testable predictions. The type of model that is useful is constrained by the particular features of developmentally active cis-regulatory systems. These systems function by processing diverse regulatory inputs, generating novel regulatory outputs. A computational model which explicitly accommodates this basic concept was developed earlier for the cis-regulatory system of the endo16 gene of the sea urchin. This model represents the genetically mandated logic functions that the system executes, but also shows how time-varying kinetic inputs are processed in different circumstances into particular kinetic outputs. The same basic design features can be utilized to construct models that connect the large number of cis-regulatory elements constituting developmental gene networks. The ultimate aim of the network models discussed here is to represent the regulatory relationships among the genomic control systems of the genes in the network, and to state their functional meaning. The target site sequences of the cis-regulatory elements of these genes constitute the physical basis of the network architecture. Useful models for developmental regulatory networks must represent the genetic logic by which the system operates, but must also be capable of explaining the real time dynamics of cis-regulatory response as kinetic input and output data become available. Most importantly, however, such models must display in a direct and transparent manner fundamental network design features such as intra- and intercellular feedback circuitry; the sources of parallel inputs into each cis-regulatory element; gene battery organization; and use of repressive spatial inputs in specification and boundary formation. Successful network models lead to direct tests of key architectural features by targeted cis-regulatory analysis. PMID

  19. Information transmission in genetic regulatory networks: a review.

    PubMed

    Tkačik, Gašper; Walczak, Aleksandra M

    2011-04-20

    Genetic regulatory networks enable cells to respond to changes in internal and external conditions by dynamically coordinating their gene expression profiles. Our ability to make quantitative measurements in these biochemical circuits has deepened our understanding of what kinds of computations genetic regulatory networks can perform, and with what reliability. These advances have motivated researchers to look for connections between the architecture and function of genetic regulatory networks. Transmitting information between a network's inputs and outputs has been proposed as one such possible measure of function, relevant in certain biological contexts. Here we summarize recent developments in the application of information theory to gene regulatory networks. We first review basic concepts in information theory necessary for understanding recent work. We then discuss the functional complexity of gene regulation, which arises from the molecular nature of the regulatory interactions. We end by reviewing some experiments that support the view that genetic networks responsible for early development of multicellular organisms might be maximizing transmitted 'positional information'.

  20. Evolution of splicing regulatory networks in Drosophila

    PubMed Central

    McManus, C. Joel; Coolon, Joseph D.; Eipper-Mains, Jodi; Wittkopp, Patricia J.; Graveley, Brenton R.

    2014-01-01

    The proteome expanding effects of alternative pre-mRNA splicing have had a profound impact on eukaryotic evolution. The events that create this diversity can be placed into four major classes: exon skipping, intron retention, alternative 5′ splice sites, and alternative 3′ splice sites. Although the regulatory mechanisms and evolutionary pressures among alternative splicing classes clearly differ, how these differences affect the evolution of splicing regulation remains poorly characterized. We used RNA-seq to investigate splicing differences in D. simulans, D. sechellia, and three strains of D. melanogaster. Regulation of exon skipping and tandem alternative 3′ splice sites (NAGNAGs) were more divergent than other splicing classes. Splicing regulation was most divergent in frame-preserving events and events in noncoding regions. We further determined the contributions of cis- and trans-acting changes in splicing regulatory networks by comparing allele-specific splicing in F1 interspecific hybrids, because differences in allele-specific splicing reflect changes in cis-regulatory element activity. We find that species-specific differences in intron retention and alternative splice site usage are primarily attributable to changes in cis-regulatory elements (median ∼80% cis), whereas species-specific exon skipping differences are driven by both cis- and trans-regulatory divergence (median ∼50% cis). These results help define the mechanisms and constraints that influence splicing regulatory evolution and show that networks regulating the four major classes of alternative splicing diverge through different genetic mechanisms. We propose a model in which differences in regulatory network architecture among classes of alternative splicing affect the evolution of splicing regulation. PMID:24515119

  1. Sensor Network Architectures for Monitoring Underwater Pipelines

    PubMed Central

    Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren

    2011-01-01

    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (Radio Frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring. PMID:22346669

  2. Sensor network architectures for monitoring underwater pipelines.

    PubMed

    Mohamed, Nader; Jawhar, Imad; Al-Jaroodi, Jameela; Zhang, Liren

    2011-01-01

    This paper develops and compares different sensor network architecture designs that can be used for monitoring underwater pipeline infrastructures. These architectures are underwater wired sensor networks, underwater acoustic wireless sensor networks, RF (radio frequency) wireless sensor networks, integrated wired/acoustic wireless sensor networks, and integrated wired/RF wireless sensor networks. The paper also discusses the reliability challenges and enhancement approaches for these network architectures. The reliability evaluation, characteristics, advantages, and disadvantages among these architectures are discussed and compared. Three reliability factors are used for the discussion and comparison: the network connectivity, the continuity of power supply for the network, and the physical network security. In addition, the paper also develops and evaluates a hierarchical sensor network framework for underwater pipeline monitoring.

  3. The architectural design of networks of protein domain architectures.

    PubMed

    Hsu, Chia-Hsin; Chen, Chien-Kuo; Hwang, Ming-Jing

    2013-08-23

    Protein domain architectures (PDAs), in which single domains are linked to form multiple-domain proteins, are a major molecular form used by evolution for the diversification of protein functions. However, the design principles of PDAs remain largely uninvestigated. In this study, we constructed networks to connect domain architectures that had grown out from the same single domain for every single domain in the Pfam-A database and found that there are three main distinctive types of these networks, which suggests that evolution can exploit PDAs in three different ways. Further analysis showed that these three different types of PDA networks are each adopted by different types of protein domains, although many networks exhibit the characteristics of more than one of the three types. Our results shed light on nature's blueprint for protein architecture and provide a framework for understanding architectural design from a network perspective.

  4. Bipartite memory network architectures for parallel processing

    SciTech Connect

    Smith, W.; Kale, L.V. . Dept. of Computer Science)

    1990-01-01

    Parallel architectures are boradly classified as either shared memory or distributed memory architectures. In this paper, the authors propose a third family of architectures, called bipartite memory network architectures. In this architecture, processors and memory modules constitute a bipartite graph, where each processor is allowed to access a small subset of the memory modules, and each memory module allows access from a small set of processors. The architecture is particularly suitable for computations requiring dynamic load balancing. The authors explore the properties of this architecture by examining the Perfect Difference set based topology for the graph. Extensions of this topology are also suggested.

  5. Plant Evolution: Evolving Antagonistic Gene Regulatory Networks.

    PubMed

    Cooper, Endymion D

    2016-06-20

    Developing a structurally complex phenotype requires a complex regulatory network. A new study shows how gene duplication provides a potential source of antagonistic interactions, an important component of gene regulatory networks. PMID:27326708

  6. Plant Evolution: Evolving Antagonistic Gene Regulatory Networks.

    PubMed

    Cooper, Endymion D

    2016-06-20

    Developing a structurally complex phenotype requires a complex regulatory network. A new study shows how gene duplication provides a potential source of antagonistic interactions, an important component of gene regulatory networks.

  7. Regulatory architecture determines optimal regulation of gene expression in metabolic pathways.

    PubMed

    Chubukov, Victor; Zuleta, Ignacio A; Li, Hao

    2012-03-27

    In response to environmental changes, the connections ("arrows") in gene regulatory networks determine which genes modulate their expression, but the quantitative parameters of the network ("the numbers on the arrows") are equally important in determining the resulting phenotype. What are the objectives and constraints by which evolution determines these parameters? We explore these issues by analyzing gene expression changes in a number of yeast metabolic pathways in response to nutrient depletion. We find that a striking pattern emerges that couples the regulatory architecture of the pathway to the gene expression response. In particular, we find that pathways controlled by the intermediate metabolite activation (IMA) architecture, in which an intermediate metabolite activates transcription of pathway genes, exhibit the following response: the enzyme immediately downstream of the regulatory metabolite is under the strongest transcriptional control, whereas the induction of the enzymes upstream of the regulatory intermediate is relatively weak. This pattern of responses is absent in pathways not controlled by an IMA architecture. The observation can be explained by the constraint imposed by the fundamental feedback structure of the network, which places downstream enzymes under a negative feedback loop and upstream ones under a positive feedback loop. This general design principle for transcriptional control of a metabolic pathway can be derived from a simple cost/benefit model of gene expression, in which the observed pattern is an optimal solution. Our results suggest that the parameters regulating metabolic enzyme expression are optimized by evolution, under the strong constraint of the underlying regulatory architecture.

  8. The NASA Space Communications Data Networking Architecture

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Hooke, Adrian J.; Freeman, Kenneth; Rush, John J.

    2006-01-01

    The NASA Space Communications Architecture Working Group (SCAWG) has recently been developing an integrated agency-wide space communications architecture in order to provide the necessary communication and navigation capabilities to support NASA's new Exploration and Science Programs. A critical element of the space communications architecture is the end-to-end Data Networking Architecture, which must provide a wide range of services required for missions ranging from planetary rovers to human spaceflight, and from sub-orbital space to deep space. Requirements for a higher degree of user autonomy and interoperability between a variety of elements must be accommodated within an architecture that necessarily features minimum operational complexity. The architecture must also be scalable and evolvable to meet mission needs for the next 25 years. This paper will describe the recommended NASA Data Networking Architecture, present some of the rationale for the recommendations, and will illustrate an application of the architecture to example NASA missions.

  9. Genetic flexibility of regulatory networks.

    PubMed

    Hunziker, Alexander; Tuboly, Csaba; Horváth, Péter; Krishna, Sandeep; Semsey, Szabolcs

    2010-07-20

    Gene regulatory networks are based on simple building blocks such as promoters, transcription factors (TFs) and their binding sites on DNA. But how diverse are the functions that can be obtained by different arrangements of promoters and TF binding sites? In this work we constructed synthetic regulatory regions using promoter elements and binding sites of two noninteracting TFs, each sensing a single environmental input signal. We show that simply by combining these three kinds of elements, we can obtain 11 of the 16 Boolean logic gates that integrate two environmental signals in vivo. Further, we demonstrate how combination of logic gates can result in new logic functions. Our results suggest that simple elements of transcription regulation form a highly flexible toolbox that can generate diverse functions under natural selection.

  10. Boolean Modelingof Genetic Regulatory Networks

    NASA Astrophysics Data System (ADS)

    Albert, Réka

    Biological systems form complex networks of interaction on several scales, ranging from the molecular to the ecosystem level. On the subcellular scale, interaction between genes and gene products (mRNAs, proteins) forms the basis of essential processes like signal transduction, cell metabolism or embryonic development. Recent experimental advances helped uncover the qualitative structure of many gene control networks, creating a surge of interest in the quantitative description of gene regulation. We give a brief description of the main frameworks and methods used in modeling gene regulatory networks, then focus on a recent model of the segment polarity genes of the fruit fly Drosophila melanogaster. The basis of this model is the known interactions between the products of the segment polarity genes, and the network topology these interactions form. The interactions between mRNAs and proteins are described as logical (Boolean) functions. The success in reproducing both wild type and mutant gene expression patterns suggests that the kinetic details of the interactions are not essential as long as the network of interactions is unperturbed. The model predicts the gene patterns for cases that were not yet studied experimentally, and implies a remarkable robustness toward changes in internal parameters, initial conditions and even some mutations.

  11. Robustness and Accuracy in Sea Urchin Developmental Gene Regulatory Networks

    PubMed Central

    Ben-Tabou de-Leon, Smadar

    2016-01-01

    Developmental gene regulatory networks robustly control the timely activation of regulatory and differentiation genes. The structure of these networks underlies their capacity to buffer intrinsic and extrinsic noise and maintain embryonic morphology. Here I illustrate how the use of specific architectures by the sea urchin developmental regulatory networks enables the robust control of cell fate decisions. The Wnt-βcatenin signaling pathway patterns the primary embryonic axis while the BMP signaling pathway patterns the secondary embryonic axis in the sea urchin embryo and across bilateria. Interestingly, in the sea urchin in both cases, the signaling pathway that defines the axis controls directly the expression of a set of downstream regulatory genes. I propose that this direct activation of a set of regulatory genes enables a uniform regulatory response and a clear cut cell fate decision in the endoderm and in the dorsal ectoderm. The specification of the mesodermal pigment cell lineage is activated by Delta signaling that initiates a triple positive feedback loop that locks down the pigment specification state. I propose that the use of compound positive feedback circuitry provides the endodermal cells enough time to turn off mesodermal genes and ensures correct mesoderm vs. endoderm fate decision. Thus, I argue that understanding the control properties of repeatedly used regulatory architectures illuminates their role in embryogenesis and provides possible explanations to their resistance to evolutionary change. PMID:26913048

  12. Regulatory modules controlling maize inflorescence architecture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic control of branching is a primary determinant of yield, regulating seed number and harvesting ability, yet little is known about the molecular networks that shape grain-bearing inflorescences of cereal crops. Here, we used the maize (Zea mays) inflorescence to investigate gene networks that...

  13. The architectural organization of human stem cell cycle regulatory machinery.

    PubMed

    Stein, Gary S; Stein, Janet L; van J Wijnen, Andre; Lian, Jane B; Montecino, Martin; Medina, Ricardo; Kapinas, Kristie; Ghule, Prachi; Grandy, Rodrigo; Zaidi, Sayyed K; Becker, Klaus A

    2012-01-01

    Two striking features of human embryonic stem cells that support biological activity are an abbreviated cell cycle and reduced complexity to nuclear organization. The potential implications for rapid proliferation of human embryonic stem cells within the context of sustaining pluripotency, suppressing phenotypic gene expression and linkage to simplicity in the architectural compartmentalization of regulatory machinery in nuclear microenvironments is explored. Characterization of the molecular and architectural commitment steps that license human embryonic stem cells to initiate histone gene expression is providing understanding of the principal regulatory mechanisms that control the G1/S phase transition in primitive pluripotent cells. From both fundamental regulatory and clinical perspectives, further understanding of the pluripotent cell cycle in relation to compartmentalization of regulatory machinery in nuclear microenvironments is relevant to applications of stem cells for regenerative medicine and new dimensions to therapy where traditional drug discovery strategies have been minimally effective.

  14. ATMTN: a telemammography network architecture.

    PubMed

    Sheybani, Ehsan O; Sankar, Ravi

    2002-12-01

    One of the goals of the National Cancer Institute (NCI) to reach more than 80% of eligible women in mammography screening by the year 2000 yet remains as a challenge. In fact, a recent medical report reveals that while other types of cancer are experiencing negative growth, breast cancer has been the only one with a positive growth rate over the last few years. This is primarily due to the fact that 1) examination process is a complex and lengthy one and 2) it is not available to the majority of women who live in remote sites. Currently for mammography screening, women have to go to doctors or cancer centers/hospitals annually while high-risk patients may have to visit more often. One way to resolve these problems is by the use of advanced networking technologies and signal processing algorithms. On one hand, software modules can help detect, with high precision, true negatives (TN), while marking true positives (TP) for further investigation. Unavoidably, in this process some false negatives (FN) will be generated that are potentially life threatening; however, inclusion of the detection software improves the TP detection and, hence, reduces FNs drastically. Since TNs are the majority of examinations on a randomly selected population, this first step reduces the load on radiologists by a tremendous amount. On the other hand, high-speed networking equipment can accelerate the required clinic-lab connection and make detection, segmentation, and image enhancement algorithms readily available to the radiologists. This will bring the breast cancer care, caregiver, and the facilities to the patients and expand diagnostics and treatment to the remote sites. This research describes asynchronous transfer mode telemammography network (ATMTN) architecture for real-time, online screening, detection and diagnosis of breast cancer. ATMTN is a unique high-speed network integrated with automatic robust computer-assisted diagnosis-detection/digital signal processing (CAD

  15. Hybrid architecture for building secure sensor networks

    NASA Astrophysics Data System (ADS)

    Owens, Ken R., Jr.; Watkins, Steve E.

    2012-04-01

    Sensor networks have various communication and security architectural concerns. Three approaches are defined to address these concerns for sensor networks. The first area is the utilization of new computing architectures that leverage embedded virtualization software on the sensor. Deploying a small, embedded virtualization operating system on the sensor nodes that is designed to communicate to low-cost cloud computing infrastructure in the network is the foundation to delivering low-cost, secure sensor networks. The second area focuses on securing the sensor. Sensor security components include developing an identification scheme, and leveraging authentication algorithms and protocols that address security assurance within the physical, communication network, and application layers. This function will primarily be accomplished through encrypting the communication channel and integrating sensor network firewall and intrusion detection/prevention components to the sensor network architecture. Hence, sensor networks will be able to maintain high levels of security. The third area addresses the real-time and high priority nature of the data that sensor networks collect. This function requires that a quality-of-service (QoS) definition and algorithm be developed for delivering the right data at the right time. A hybrid architecture is proposed that combines software and hardware features to handle network traffic with diverse QoS requirements.

  16. Circuitry and dynamics of human transcription factor regulatory networks

    PubMed Central

    Neph, Shane; Stergachis, Andrew B.; Reynolds, Alex; Sandstrom, Richard; Borenstein, Elhanan; Stamatoyannopoulos, John A.

    2012-01-01

    SUMMARY The combinatorial cross-regulation of hundreds of sequence-specific transcription factors defines a regulatory network that underlies cellular identity and function. Here we use genome-wide maps of in vivo DNaseI footprints to assemble an extensive core human regulatory network comprising connections among 475 sequence-specific transcription factors, and to analyze the dynamics of these connections across 41 diverse cell and tissue types. We find that human transcription factor networks are highly cell-selective and are driven by cohorts of factors that include regulators with previously unrecognized roles in control of cellular identity. Moreover, we identify many widely expressed factors that impact transcriptional regulatory networks in a cell-selective manner. Strikingly, in spite of their inherent diversity, all cell type regulatory networks independently converge on a common architecture that closely resembles the topology of living neuronal networks. Together, our results provide the first description of the circuitry, dynamics, and organizing principles of the human transcription factor regulatory network. PMID:22959076

  17. Advancements in metro optical network architectures

    NASA Astrophysics Data System (ADS)

    Paraschis, Loukas

    2005-02-01

    This paper discusses the innovation in network architectures, and optical transport, that enables metropolitan networks to cost-effectively scale to hundreds Gb/s of capacity, and to hundreds km of reach, and to also meet the diverse service needs of enterprise and residential applications. A converged metro network, where Ethernet/IP services, and traditional TDM traffic operate over an intelligent WDM transport layer is increasingly becoming the most attractive architecture addressing the primary need of network operators for significantly improved capital and operational network cost. At the same time, this converged network has to leverage advanced technology, and introduce intelligence in order to significantly improve the deployment and manageability of WDM transport. The most important system advancements and the associated technology innovations that enhance the cost-effectiveness of metropolitan optical networks are being reviewed.

  18. Network architecture functional description and design

    SciTech Connect

    Stans, L.; Bencoe, M.; Brown, D.; Kelly, S.; Pierson, L.; Schaldach, C.

    1989-05-25

    This report provides a top level functional description and design for the development and implementation of the central network to support the next generation of SNL, Albuquerque supercomputer in a UNIX{reg sign} environment. It describes the network functions and provides an architecture and topology.

  19. Satellite ATM Networks: Architectures and Guidelines Developed

    NASA Technical Reports Server (NTRS)

    vonDeak, Thomas C.; Yegendu, Ferit

    1999-01-01

    An important element of satellite-supported asynchronous transfer mode (ATM) networking will involve support for the routing and rerouting of active connections. Work published under the auspices of the Telecommunications Industry Association (http://www.tiaonline.org), describes basic architectures and routing protocol issues for satellite ATM (SATATM) networks. The architectures and issues identified will serve as a basis for further development of technical specifications for these SATATM networks. Three ATM network architectures for bent pipe satellites and three ATM network architectures for satellites with onboard ATM switches were developed. The architectures differ from one another in terms of required level of mobility, supported data rates, supported terrestrial interfaces, and onboard processing and switching requirements. The documentation addresses low-, middle-, and geosynchronous-Earth-orbit satellite configurations. The satellite environment may require real-time routing to support the mobility of end devices and nodes of the ATM network itself. This requires the network to be able to reroute active circuits in real time. In addition to supporting mobility, rerouting can also be used to (1) optimize network routing, (2) respond to changing quality-of-service requirements, and (3) provide a fault tolerance mechanism. Traffic management and control functions are necessary in ATM to ensure that the quality-of-service requirements associated with each connection are not violated and also to provide flow and congestion control functions. Functions related to traffic management were identified and described. Most of these traffic management functions will be supported by on-ground ATM switches, but in a hybrid terrestrial-satellite ATM network, some of the traffic management functions may have to be supported by the onboard satellite ATM switch. Future work is planned to examine the tradeoffs of placing traffic management functions onboard a satellite as

  20. Routing architecture and security for airborne networks

    NASA Astrophysics Data System (ADS)

    Deng, Hongmei; Xie, Peng; Li, Jason; Xu, Roger; Levy, Renato

    2009-05-01

    Airborne networks are envisioned to provide interconnectivity for terrestial and space networks by interconnecting highly mobile airborne platforms. A number of military applications are expected to be used by the operator, and all these applications require proper routing security support to establish correct route between communicating platforms in a timely manner. As airborne networks somewhat different from traditional wired and wireless networks (e.g., Internet, LAN, WLAN, MANET, etc), security aspects valid in these networks are not fully applicable to airborne networks. Designing an efficient security scheme to protect airborne networks is confronted with new requirements. In this paper, we first identify a candidate routing architecture, which works as an underlying structure for our proposed security scheme. And then we investigate the vulnerabilities and attack models against routing protocols in airborne networks. Based on these studies, we propose an integrated security solution to address routing security issues in airborne networks.

  1. A security architecture for health information networks.

    PubMed

    Kailar, Rajashekar; Muralidhar, Vinod

    2007-10-11

    Health information network security needs to balance exacting security controls with practicality, and ease of implementation in today's healthcare enterprise. Recent work on 'nationwide health information network' architectures has sought to share highly confidential data over insecure networks such as the Internet. Using basic patterns of health network data flow and trust models to support secure communication between network nodes, we abstract network security requirements to a core set to enable secure inter-network data sharing. We propose a minimum set of security controls that can be implemented without needing major new technologies, but yet realize network security and privacy goals of confidentiality, integrity and availability. This framework combines a set of technology mechanisms with environmental controls, and is shown to be sufficient to counter commonly encountered network security threats adequately.

  2. Architecture and Connectivity Govern Actin Network Contractility.

    PubMed

    Ennomani, Hajer; Letort, Gaëlle; Guérin, Christophe; Martiel, Jean-Louis; Cao, Wenxiang; Nédélec, François; De La Cruz, Enrique M; Théry, Manuel; Blanchoin, Laurent

    2016-03-01

    Actomyosin contractility plays a central role in a wide range of cellular processes, including the establishment of cell polarity, cell migration, tissue integrity, and morphogenesis during development. The contractile response is variable and depends on actomyosin network architecture and biochemical composition. To determine how this coupling regulates actomyosin-driven contraction, we used a micropatterning method that enables the spatial control of actin assembly. We generated a variety of actin templates and measured how defined actin structures respond to myosin-induced forces. We found that the same actin filament crosslinkers either enhance or inhibit the contractility of a network, depending on the organization of actin within the network. Numerical simulations unified the roles of actin filament branching and crosslinking during actomyosin contraction. Specifically, we introduce the concept of "network connectivity" and show that the contractions of distinct actin architectures are described by the same master curve when considering their degree of connectivity. This makes it possible to predict the dynamic response of defined actin structures to transient changes in connectivity. We propose that, depending on the connectivity and the architecture, network contraction is dominated by either sarcomeric-like or buckling mechanisms. More generally, this study reveals how actin network contractility depends on its architecture under a defined set of biochemical conditions.

  3. A Security Architecture for Health Information Networks

    PubMed Central

    Kailar, Rajashekar

    2007-01-01

    Health information network security needs to balance exacting security controls with practicality, and ease of implementation in today’s healthcare enterprise. Recent work on ‘nationwide health information network’ architectures has sought to share highly confidential data over insecure networks such as the Internet. Using basic patterns of health network data flow and trust models to support secure communication between network nodes, we abstract network security requirements to a core set to enable secure inter-network data sharing. We propose a minimum set of security controls that can be implemented without needing major new technologies, but yet realize network security and privacy goals of confidentiality, integrity and availability. This framework combines a set of technology mechanisms with environmental controls, and is shown to be sufficient to counter commonly encountered network security threats adequately. PMID:18693862

  4. Integrated Network Architecture for NASA's Orion Missions

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Hayden, Jeffrey L.; Sartwell, Thomas; Miller, Ronald A.; Hudiburg, John J.

    2008-01-01

    NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. The series of missions will begin with a new crew exploration vehicle (called Orion) that will initially provide crew exchange and cargo supply support to the International Space Station (ISS) and then become a human conveyance for travel to the Moon. The Orion vehicle will be mounted atop the Ares I launch vehicle for a series of pre-launch tests and then launched and inserted into low Earth orbit (LEO) for crew exchange missions to the ISS. The Orion and Ares I comprise the initial vehicles in the Constellation system of systems that later includes Ares V, Earth departure stage, lunar lander, and other lunar surface systems for the lunar exploration missions. These key systems will enable the lunar surface exploration missions to be initiated in 2018. The complexity of the Constellation system of systems and missions will require a communication and navigation infrastructure to provide low and high rate forward and return communication services, tracking services, and ground network services. The infrastructure must provide robust, reliable, safe, sustainable, and autonomous operations at minimum cost while maximizing the exploration capabilities and science return. The infrastructure will be based on a network of networks architecture that will integrate NASA legacy communication, modified elements, and navigation systems. New networks will be added to extend communication, navigation, and timing services for the Moon missions. Internet protocol (IP) and network management systems within the networks will enable interoperability throughout the Constellation system of systems. An integrated network architecture has developed based on the emerging Constellation requirements for Orion missions. The architecture, as presented in this paper, addresses the early Orion missions to the ISS with communication, navigation, and network services over five

  5. Improving neural network performance on SIMD architectures

    NASA Astrophysics Data System (ADS)

    Limonova, Elena; Ilin, Dmitry; Nikolaev, Dmitry

    2015-12-01

    Neural network calculations for the image recognition problems can be very time consuming. In this paper we propose three methods of increasing neural network performance on SIMD architectures. The usage of SIMD extensions is a way to speed up neural network processing available for a number of modern CPUs. In our experiments, we use ARM NEON as SIMD architecture example. The first method deals with half float data type for matrix computations. The second method describes fixed-point data type for the same purpose. The third method considers vectorized activation functions implementation. For each method we set up a series of experiments for convolutional and fully connected networks designed for image recognition task.

  6. Architecture of optimal transport networks

    NASA Astrophysics Data System (ADS)

    Durand, Marc

    2006-01-01

    We analyze the structure of networks minimizing the global resistance to flow (or dissipative energy) with respect to two different constraints: fixed total channel volume and fixed total channel surface area. First, we show that channels must be straight and have uniform cross-sectional areas in such optimal networks. We then establish a relation between the cross-sectional areas of adjoining channels at each junction. Indeed, this relation is a generalization of Murray’s law, originally established in the context of local optimization. We establish a relation too between angles and cross-sectional areas of adjoining channels at each junction, which can be represented as a vectorial force balance equation, where the force weight depends on the channel cross-sectional area. A scaling law between the minimal resistance value and the total volume or surface area value is also derived from the analysis. Furthermore, we show that no more than three or four channels meet at each junction of optimal bidimensional networks, depending on the flow profile (e.g., Poiseuille-like or pluglike) and the considered constraint (fixed volume or surface area). In particular, we show that sources are directly connected to wells, without intermediate junctions, for minimal resistance networks preserving the total channel volume in case of plug flow regime. Finally, all these results are compared with the structure of natural networks.

  7. Propagation of genetic variation in gene regulatory networks.

    PubMed

    Plahte, Erik; Gjuvsland, Arne B; Omholt, Stig W

    2013-08-01

    A future quantitative genetics theory should link genetic variation to phenotypic variation in a causally cohesive way based on how genes actually work and interact. We provide a theoretical framework for predicting and understanding the manifestation of genetic variation in haploid and diploid regulatory networks with arbitrary feedback structures and intra-locus and inter-locus functional dependencies. Using results from network and graph theory, we define propagation functions describing how genetic variation in a locus is propagated through the network, and show how their derivatives are related to the network's feedback structure. Similarly, feedback functions describe the effect of genotypic variation of a locus on itself, either directly or mediated by the network. A simple sign rule relates the sign of the derivative of the feedback function of any locus to the feedback loops involving that particular locus. We show that the sign of the phenotypically manifested interaction between alleles at a diploid locus is equal to the sign of the dominant feedback loop involving that particular locus, in accordance with recent results for a single locus system. Our results provide tools by which one can use observable equilibrium concentrations of gene products to disclose structural properties of the network architecture. Our work is a step towards a theory capable of explaining the pleiotropy and epistasis features of genetic variation in complex regulatory networks as functions of regulatory anatomy and functional location of the genetic variation.

  8. GREAT: a web portal for Genome Regulatory Architecture Tools.

    PubMed

    Bouyioukos, Costas; Bucchini, François; Elati, Mohamed; Képès, François

    2016-07-01

    GREAT (Genome REgulatory Architecture Tools) is a novel web portal for tools designed to generate user-friendly and biologically useful analysis of genome architecture and regulation. The online tools of GREAT are freely accessible and compatible with essentially any operating system which runs a modern browser. GREAT is based on the analysis of genome layout -defined as the respective positioning of co-functional genes- and its relation with chromosome architecture and gene expression. GREAT tools allow users to systematically detect regular patterns along co-functional genomic features in an automatic way consisting of three individual steps and respective interactive visualizations. In addition to the complete analysis of regularities, GREAT tools enable the use of periodicity and position information for improving the prediction of transcription factor binding sites using a multi-view machine learning approach. The outcome of this integrative approach features a multivariate analysis of the interplay between the location of a gene and its regulatory sequence. GREAT results are plotted in web interactive graphs and are available for download either as individual plots, self-contained interactive pages or as machine readable tables for downstream analysis. The GREAT portal can be reached at the following URL https://absynth.issb.genopole.fr/GREAT and each individual GREAT tool is available for downloading.

  9. GREAT: a web portal for Genome Regulatory Architecture Tools

    PubMed Central

    Bouyioukos, Costas; Bucchini, François; Elati, Mohamed; Képès, François

    2016-01-01

    GREAT (Genome REgulatory Architecture Tools) is a novel web portal for tools designed to generate user-friendly and biologically useful analysis of genome architecture and regulation. The online tools of GREAT are freely accessible and compatible with essentially any operating system which runs a modern browser. GREAT is based on the analysis of genome layout -defined as the respective positioning of co-functional genes- and its relation with chromosome architecture and gene expression. GREAT tools allow users to systematically detect regular patterns along co-functional genomic features in an automatic way consisting of three individual steps and respective interactive visualizations. In addition to the complete analysis of regularities, GREAT tools enable the use of periodicity and position information for improving the prediction of transcription factor binding sites using a multi-view machine learning approach. The outcome of this integrative approach features a multivariate analysis of the interplay between the location of a gene and its regulatory sequence. GREAT results are plotted in web interactive graphs and are available for download either as individual plots, self-contained interactive pages or as machine readable tables for downstream analysis. The GREAT portal can be reached at the following URL https://absynth.issb.genopole.fr/GREAT and each individual GREAT tool is available for downloading. PMID:27151196

  10. Effect of Regulatory Architecture on Broad versus Narrow Sense Heritability

    PubMed Central

    Wang, Yunpeng; Vik, Jon Olav; Omholt, Stig W.; Gjuvsland, Arne B.

    2013-01-01

    Additive genetic variance (VA) and total genetic variance (VG) are core concepts in biomedical, evolutionary and production-biology genetics. What determines the large variation in reported VA/VG ratios from line-cross experiments is not well understood. Here we report how the VA/VG ratio, and thus the ratio between narrow and broad sense heritability (h2/H2), varies as a function of the regulatory architecture underlying genotype-to-phenotype (GP) maps. We studied five dynamic models (of the cAMP pathway, the glycolysis, the circadian rhythms, the cell cycle, and heart cell dynamics). We assumed genetic variation to be reflected in model parameters and extracted phenotypes summarizing the system dynamics. Even when imposing purely linear genotype to parameter maps and no environmental variation, we observed quite low VA/VG ratios. In particular, systems with positive feedback and cyclic dynamics gave more non-monotone genotype-phenotype maps and much lower VA/VG ratios than those without. The results show that some regulatory architectures consistently maintain a transparent genotype-to-phenotype relationship, whereas other architectures generate more subtle patterns. Our approach can be used to elucidate these relationships across a whole range of biological systems in a systematic fashion. PMID:23671414

  11. GREAT: a web portal for Genome Regulatory Architecture Tools.

    PubMed

    Bouyioukos, Costas; Bucchini, François; Elati, Mohamed; Képès, François

    2016-07-01

    GREAT (Genome REgulatory Architecture Tools) is a novel web portal for tools designed to generate user-friendly and biologically useful analysis of genome architecture and regulation. The online tools of GREAT are freely accessible and compatible with essentially any operating system which runs a modern browser. GREAT is based on the analysis of genome layout -defined as the respective positioning of co-functional genes- and its relation with chromosome architecture and gene expression. GREAT tools allow users to systematically detect regular patterns along co-functional genomic features in an automatic way consisting of three individual steps and respective interactive visualizations. In addition to the complete analysis of regularities, GREAT tools enable the use of periodicity and position information for improving the prediction of transcription factor binding sites using a multi-view machine learning approach. The outcome of this integrative approach features a multivariate analysis of the interplay between the location of a gene and its regulatory sequence. GREAT results are plotted in web interactive graphs and are available for download either as individual plots, self-contained interactive pages or as machine readable tables for downstream analysis. The GREAT portal can be reached at the following URL https://absynth.issb.genopole.fr/GREAT and each individual GREAT tool is available for downloading. PMID:27151196

  12. Satellite Networks: Architectures, Applications, and Technologies

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul (Compiler)

    1998-01-01

    Since global satellite networks are moving to the forefront in enhancing the national and global information infrastructures due to communication satellites' unique networking characteristics, a workshop was organized to assess the progress made to date and chart the future. This workshop provided the forum to assess the current state-of-the-art, identify key issues, and highlight the emerging trends in the next-generation architectures, data protocol development, communication interoperability, and applications. Presentations on overview, state-of-the-art in research, development, deployment and applications and future trends on satellite networks are assembled.

  13. A Layered Approach To Pacs Network Architecture

    NASA Astrophysics Data System (ADS)

    Hegde, Shankar S.; Prewitt, Judith M.

    1984-08-01

    Although the functions performed by the different nodes on the PACS network are many, it is possible to formulate a minimum set of service primitives such that the application software residing at the nodes can utilize those primitives to perform the functions. These primitives define the framework for the communication interface. The question of how these primitives fit into the concept of a layered network architecture is explored in this paper. The OSI model as applicable to the PACS network is described, the areas that need standardization are briefly mentioned, and the ongoing standardization efforts are addressed from the OSI perspective.

  14. Architecture for networked electronic patient record systems.

    PubMed

    Takeda, H; Matsumura, Y; Kuwata, S; Nakano, H; Sakamoto, N; Yamamoto, R

    2000-11-01

    There have been two major approaches to the development of networked electronic patient record (EPR) architecture. One uses object-oriented methodologies for constructing the model, which include the GEHR project, Synapses, HL7 RIM and so on. The second approach uses document-oriented methodologies, as applied in examples of HL7 PRA. It is practically beneficial to take the advantages of both approaches and to add solution technologies for network security such as PKI. In recognition of the similarity with electronic commerce, a certificate authority as a trusted third party will be organised for establishing networked EPR system. This paper describes a Japanese functional model that has been developed, and proposes a document-object-oriented architecture, which is-compared with other existing models. PMID:11154967

  15. Fast notification architecture for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Hahk

    2013-03-01

    In an emergency, since it is vital to transmit the message to the users immediately after analysing the data to prevent disaster, this article presents the deployment of a fast notification architecture for a wireless sensor network. The sensor nodes of the proposed architecture can monitor an emergency situation periodically and transmit the sensing data, immediately to the sink node. We decide on the grade of fire situation according to the decision rule using the sensing values of temperature, CO, smoke density and temperature increasing rate. On the other hand, to estimate the grade of air pollution, the sensing data, such as dust, formaldehyde, NO2, CO2, is applied to the given knowledge model. Since the sink node in the architecture has a ZigBee interface, it can transmit the alert messages in real time according to analysed results received from the host server to the terminals equipped with a SIM card-type ZigBee module. Also, the host server notifies the situation to the registered users who have cellular phone through short message service server of the cellular network. Thus, the proposed architecture can adapt an emergency situation dynamically compared to the conventional architecture using video processing. In the testbed, after generating air pollution and fire data, the terminal receives the message in less than 3 s. In the test results, this system can also be applied to buildings and public areas where many people gather together, to prevent unexpected disasters in urban settings.

  16. Propagation of genetic variation in gene regulatory networks

    PubMed Central

    Plahte, Erik; Gjuvsland, Arne B.; Omholt, Stig W.

    2013-01-01

    A future quantitative genetics theory should link genetic variation to phenotypic variation in a causally cohesive way based on how genes actually work and interact. We provide a theoretical framework for predicting and understanding the manifestation of genetic variation in haploid and diploid regulatory networks with arbitrary feedback structures and intra-locus and inter-locus functional dependencies. Using results from network and graph theory, we define propagation functions describing how genetic variation in a locus is propagated through the network, and show how their derivatives are related to the network’s feedback structure. Similarly, feedback functions describe the effect of genotypic variation of a locus on itself, either directly or mediated by the network. A simple sign rule relates the sign of the derivative of the feedback function of any locus to the feedback loops involving that particular locus. We show that the sign of the phenotypically manifested interaction between alleles at a diploid locus is equal to the sign of the dominant feedback loop involving that particular locus, in accordance with recent results for a single locus system. Our results provide tools by which one can use observable equilibrium concentrations of gene products to disclose structural properties of the network architecture. Our work is a step towards a theory capable of explaining the pleiotropy and epistasis features of genetic variation in complex regulatory networks as functions of regulatory anatomy and functional location of the genetic variation. PMID:23997378

  17. Advanced HF anti-jam network architecture

    NASA Astrophysics Data System (ADS)

    Jackson, E. M.; Horner, Robert W.; Cai, Khiem V.

    The Hughes HF2000 system was developed using a flexible architecture which utilizes a wideband RF front-end and extensive digital signal processing. The HF2000 antijamming (AJ) mode was field tested via an HF skywave path between Fullerton, CA and Carlsbad, CA (about 100 miles), and it was shown that reliable fast frequency-hopping data transmission is feasible at 2400 b/s without adaptive equalization. The necessary requirements of an HF communication network are discussed, and how the HF2000 AJ mode can be used to support those requirements is shown. The Hughes HF2000 AJ mode system architecture is presented.

  18. Autonomous Boolean modeling of gene regulatory networks

    NASA Astrophysics Data System (ADS)

    Socolar, Joshua; Sun, Mengyang; Cheng, Xianrui

    2014-03-01

    In cases where the dynamical properties of gene regulatory networks are important, a faithful model must include three key features: a network topology; a functional response of each element to its inputs; and timing information about the transmission of signals across network links. Autonomous Boolean network (ABN) models are efficient representations of these elements and are amenable to analysis. We present an ABN model of the gene regulatory network governing cell fate specification in the early sea urchin embryo, which must generate three bands of distinct tissue types after several cell divisions, beginning from an initial condition with only two distinct cell types. Analysis of the spatial patterning problem and the dynamics of a network constructed from available experimental results reveals that a simple mechanism is at work in this case. Supported by NSF Grant DMS-10-68602

  19. LINCS: Livermore's network architecture. [Octopus computing network

    SciTech Connect

    Fletcher, J.G.

    1982-01-01

    Octopus, a local computing network that has been evolving at the Lawrence Livermore National Laboratory for over fifteen years, is currently undergoing a major revision. The primary purpose of the revision is to consolidate and redefine the variety of conventions and formats, which have grown up over the years, into a single standard family of protocols, the Livermore Interactive Network Communication Standard (LINCS). This standard treats the entire network as a single distributed operating system such that access to a computing resource is obtained in a single way, whether that resource is local (on the same computer as the accessing process) or remote (on another computer). LINCS encompasses not only communication but also such issues as the relationship of customer to server processes and the structure, naming, and protection of resources. The discussion includes: an overview of the Livermore user community and computing hardware, the functions and structure of each of the seven layers of LINCS protocol, the reasons why we have designed our own protocols and why we are dissatisfied by the directions that current protocol standards are taking.

  20. Architectures of fiber optic network in telecommunications

    NASA Astrophysics Data System (ADS)

    Vasile, Irina B.; Vasile, Alexandru; Filip, Luminita E.

    2005-08-01

    The operators of telecommunications have targeted their efforts towards realizing applications using broad band fiber optics systems in the access network. Thus, a new concept related to the implementation of fiber optic transmission systems, named FITL (Fiber In The Loop) has appeared. The fiber optic transmission systems have been extensively used for realizing the transport and intercommunication of the public telecommunication network, as well as for assuring the access to the telecommunication systems of the great corporations. Still, the segment of the residential users and small corporations did not benefit on large scale of this technology implementation. For the purpose of defining fiber optic applications, more types of architectures were conceived, like: bus, ring, star, tree. In the case of tree-like networks passive splitters (that"s where the name of PON comes from - Passive Optical Network-), which reduce significantly the costs of the fiber optic access, by separating the costs of the optical electronic components. That's why the passive fiber optics architectures (PON represent a viable solution for realizing the access at the user's loop. The main types of fiber optics architectures included in this work are: FTTC (Fiber To The Curb); FTTB (Fiber To The Building); FTTH (Fiber To The Home).

  1. Re-engineering Nascom's network management architecture

    NASA Technical Reports Server (NTRS)

    Drake, Brian C.; Messent, David

    1994-01-01

    The development of Nascom systems for ground communications began in 1958 with Project Vanguard. The low-speed systems (rates less than 9.6 Kbs) were developed following existing standards; but, there were no comparable standards for high-speed systems. As a result, these systems were developed using custom protocols and custom hardware. Technology has made enormous strides since the ground support systems were implemented. Standards for computer equipment, software, and high-speed communications exist and the performance of current workstations exceeds that of the mainframes used in the development of the ground systems. Nascom is in the process of upgrading its ground support systems and providing additional services. The Message Switching System (MSS), Communications Address Processor (CAP), and Multiplexer/Demultiplexer (MDM) Automated Control System (MACS) are all examples of Nascom systems developed using standards such as, X-windows, Motif, and Simple Network Management Protocol (SNMP). Also, the Earth Observing System (EOS) Communications (Ecom) project is stressing standards as an integral part of its network. The move towards standards has produced a reduction in development, maintenance, and interoperability costs, while providing operational quality improvement. The Facility and Resource Manager (FARM) project has been established to integrate the Nascom networks and systems into a common network management architecture. The maximization of standards and implementation of computer automation in the architecture will lead to continued cost reductions and increased operational efficiency. The first step has been to derive overall Nascom requirements and identify the functionality common to all the current management systems. The identification of these common functions will enable the reuse of processes in the management architecture and promote increased use of automation throughout the Nascom network. The MSS, CAP, MACS, and Ecom projects have indicated

  2. Genetic architecture of regulatory variation in Arabidopsis thaliana.

    PubMed

    Zhang, Xu; Cal, Andrew J; Borevitz, Justin O

    2011-05-01

    Studying the genetic regulation of expression variation is a key method to dissect complex phenotypic traits. To examine the genetic architecture of regulatory variation in Arabidopsis thaliana, we performed genome-wide association (GWA) mapping of gene expression in an F(1) hybrid diversity panel. At a genome-wide false discovery rate (FDR) of 0.2, an associated single nucleotide polymorphism (SNP) explains >38% of trait variation. In comparison with SNPs that are distant from the genes to which they were associated, locally associated SNPs are preferentially found in regions with extended linkage disequilibrium (LD) and have distinct population frequencies of the derived alleles (where Arabidopsis lyrata has the ancestral allele), suggesting that different selective forces are acting. Locally associated SNPs tend to have additive inheritance, whereas distantly associated SNPs are primarily dominant. In contrast to results from mapping of expression quantitative trait loci (eQTL) in linkage studies, we observe extensive allelic heterogeneity for local regulatory loci in our diversity panel. By association mapping of allele-specific expression (ASE), we detect a significant enrichment for cis-acting variation in local regulatory variation. In addition to gene expression variation, association mapping of splicing variation reveals both local and distant genetic regulation for intron and exon level traits. Finally, we identify candidate genes for 59 diverse phenotypic traits that were mapped to eQTL. PMID:21467266

  3. Genetic architecture of regulatory variation in Arabidopsis thaliana.

    PubMed

    Zhang, Xu; Cal, Andrew J; Borevitz, Justin O

    2011-05-01

    Studying the genetic regulation of expression variation is a key method to dissect complex phenotypic traits. To examine the genetic architecture of regulatory variation in Arabidopsis thaliana, we performed genome-wide association (GWA) mapping of gene expression in an F(1) hybrid diversity panel. At a genome-wide false discovery rate (FDR) of 0.2, an associated single nucleotide polymorphism (SNP) explains >38% of trait variation. In comparison with SNPs that are distant from the genes to which they were associated, locally associated SNPs are preferentially found in regions with extended linkage disequilibrium (LD) and have distinct population frequencies of the derived alleles (where Arabidopsis lyrata has the ancestral allele), suggesting that different selective forces are acting. Locally associated SNPs tend to have additive inheritance, whereas distantly associated SNPs are primarily dominant. In contrast to results from mapping of expression quantitative trait loci (eQTL) in linkage studies, we observe extensive allelic heterogeneity for local regulatory loci in our diversity panel. By association mapping of allele-specific expression (ASE), we detect a significant enrichment for cis-acting variation in local regulatory variation. In addition to gene expression variation, association mapping of splicing variation reveals both local and distant genetic regulation for intron and exon level traits. Finally, we identify candidate genes for 59 diverse phenotypic traits that were mapped to eQTL.

  4. Conservation of trans-acting networks during mammalian regulatory evolution

    PubMed Central

    Stergachis, Andrew B.; Neph, Shane; Sandstrom, Richard; Haugen, Eric; Reynolds, Alex P.; Zhang, Miaohua; Byron, Rachel; Canfield, Theresa; Stelhing-Sun, Sandra; Lee, Kristen; Thurman, Robert E.; Vong, Shinny; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Giste, Erika; Dunn, Douglas; Hansen, R. Scott; Johnson, Audra K.; Sabo, Peter J.; Wilken, Matthew S.; Reh, Thomas A.; Treuting, Piper M.; Kaul, Rajinder; Groudine, Mark; Bender, M.A.; Borenstein, Elhanan; Stamatoyannopoulos, John A.

    2014-01-01

    The fundamental body plan and major physiological axes have been highly conserved during mammalian evolution, despite constraint of only a fraction of the human genome sequence. To quantify cis- vs. trans-regulatory contributions to mammalian regulatory evolution, we performed genomic DNase I footprinting of the mouse genome across 25 cell and tissue types, collectively defining >8.6 million TF occupancy sites at nucleotide resolution. Here we show that mouse TF footprints encode a regulatory lexicon of >600 motifs that is >95% similar with that recognized in vivo by human TFs. However, only ~20% of mouse TF footprints have human orthologues. Despite substantial turnover of the cis-regulatory landscape around each TF gene, nearly half of all pairwise regulatory interactions connecting mouse TF genes have been maintained in orthologous human cell types through evolutionary innovation of TF recognition sequences. Strikingly, the higher-level organization of mouse TF-to-TF connections into cellular network architectures is nearly identical with human. Our results suggest that evolutionary selection on mammalian gene regulation is targeted chiefly at the level of trans-regulatory circuitry. PMID:25409825

  5. Navigation Architecture for a Space Mobile Network

    NASA Technical Reports Server (NTRS)

    Valdez, Jennifer E.; Ashman, Benjamin; Gramling, Cheryl; Heckler, Gregory W.; Carpenter, Russell

    2016-01-01

    The Tracking and Data Relay Satellite System (TDRSS) Augmentation Service for Satellites (TASS) is a proposed beacon service to provide a global, space based GPS augmentation service based on the NASA Global Differential GPS (GDGPS) System. The TASS signal will be tied to the GPS time system and usable as an additional ranging and Doppler radiometric source. Additionally, it will provide data vital to autonomous navigation in the near Earth regime, including space weather information, TDRS ephemerides, Earth Orientation Parameters (EOP), and forward commanding capability. TASS benefits include enhancing situational awareness, enabling increased autonomy, and providing near real-time command access for user platforms. As NASA Headquarters' Space Communication and Navigation Office (SCaN) begins to move away from a centralized network architecture and towards a Space Mobile Network (SMN) that allows for user initiated services, autonomous navigation will be a key part of such a system. This paper explores how a TASS beacon service enables the Space Mobile Networking paradigm, what a typical user platform would require, and provides an in-depth analysis of several navigation scenarios and operations concepts. This paper provides an overview of the TASS beacon and its role within the SMN and user community. Supporting navigation analysis is presented for two user mission scenarios: an Earth observing spacecraft in low earth orbit (LEO), and a highly elliptical spacecraft in a lunar resonance orbit. These diverse flight scenarios indicate the breadth of applicability of the TASS beacon for upcoming users within the current network architecture and in the SMN.

  6. NATO Human View Architecture and Human Networks

    NASA Technical Reports Server (NTRS)

    Handley, Holly A. H.; Houston, Nancy P.

    2010-01-01

    The NATO Human View is a system architectural viewpoint that focuses on the human as part of a system. Its purpose is to capture the human requirements and to inform on how the human impacts the system design. The viewpoint contains seven static models that include different aspects of the human element, such as roles, tasks, constraints, training and metrics. It also includes a Human Dynamics component to perform simulations of the human system under design. One of the static models, termed Human Networks, focuses on the human-to-human communication patterns that occur as a result of ad hoc or deliberate team formation, especially teams distributed across space and time. Parameters of human teams that effect system performance can be captured in this model. Human centered aspects of networks, such as differences in operational tempo (sense of urgency), priorities (common goal), and team history (knowledge of the other team members), can be incorporated. The information captured in the Human Network static model can then be included in the Human Dynamics component so that the impact of distributed teams is represented in the simulation. As the NATO militaries transform to a more networked force, the Human View architecture is an important tool that can be used to make recommendations on the proper mix of technological innovations and human interactions.

  7. Genome-wide inference of regulatory networks in Streptomyces coelicolor

    PubMed Central

    2010-01-01

    Background The onset of antibiotics production in Streptomyces species is co-ordinated with differentiation events. An understanding of the genetic circuits that regulate these coupled biological phenomena is essential to discover and engineer the pharmacologically important natural products made by these species. The availability of genomic tools and access to a large warehouse of transcriptome data for the model organism, Streptomyces coelicolor, provides incentive to decipher the intricacies of the regulatory cascades and develop biologically meaningful hypotheses. Results In this study, more than 500 samples of genome-wide temporal transcriptome data, comprising wild-type and more than 25 regulatory gene mutants of Streptomyces coelicolor probed across multiple stress and medium conditions, were investigated. Information based on transcript and functional similarity was used to update a previously-predicted whole-genome operon map and further applied to predict transcriptional networks constituting modules enriched in diverse functions such as secondary metabolism, and sigma factor. The predicted network displays a scale-free architecture with a small-world property observed in many biological networks. The networks were further investigated to identify functionally-relevant modules that exhibit functional coherence and a consensus motif in the promoter elements indicative of DNA-binding elements. Conclusions Despite the enormous experimental as well as computational challenges, a systems approach for integrating diverse genome-scale datasets to elucidate complex regulatory networks is beginning to emerge. We present an integrated analysis of transcriptome data and genomic features to refine a whole-genome operon map and to construct regulatory networks at the cistron level in Streptomyces coelicolor. The functionally-relevant modules identified in this study pose as potential targets for further studies and verification. PMID:20955611

  8. The architecture of complex weighted networks

    PubMed Central

    Barrat, A.; Barthélemy, M.; Pastor-Satorras, R.; Vespignani, A.

    2004-01-01

    Networked structures arise in a wide array of different contexts such as technological and transportation infrastructures, social phenomena, and biological systems. These highly interconnected systems have recently been the focus of a great deal of attention that has uncovered and characterized their topological complexity. Along with a complex topological structure, real networks display a large heterogeneity in the capacity and intensity of the connections. These features, however, have mainly not been considered in past studies where links are usually represented as binary states, i.e., either present or absent. Here, we study the scientific collaboration network and the world-wide air-transportation network, which are representative examples of social and large infrastructure systems, respectively. In both cases it is possible to assign to each edge of the graph a weight proportional to the intensity or capacity of the connections among the various elements of the network. We define appropriate metrics combining weighted and topological observables that enable us to characterize the complex statistical properties and heterogeneity of the actual strength of edges and vertices. This information allows us to investigate the correlations among weighted quantities and the underlying topological structure of the network. These results provide a better description of the hierarchies and organizational principles at the basis of the architecture of weighted networks. PMID:15007165

  9. Autonomous Boolean Models of Regulatory Networks

    NASA Astrophysics Data System (ADS)

    Sun, Mengyang; Cheng, Xianrui; Socolar, Joshua

    2013-03-01

    Autonomous Boolean network (ABN) models have been developed to represent directly the connectivity, logic, and timing of updates in regulatory networks. An ABN is a Boolean network in which the sequence of updates of nodes is determined internally by time delay parameters associated with each link. We propose a method to convert a given ODE model into an ABN that is applicable when the ODE dynamics produces clearly separated high and low values at each node. The ODE parameters are mapped into ABN logic and delay parameters using only local information about each link. Using the example of Ingolia's ODE model of the regulatory network that maintains segment boundaries in the Drosophila embryo, we show that the resulting ABN model captures both the biologically relevant outcomes and the transient dynamics of the ODE model, and that the ABN framework provides direct insights into the mechanism supporting the biological function.

  10. Deep Space Network information system architecture study

    NASA Technical Reports Server (NTRS)

    Beswick, C. A.; Markley, R. W. (Editor); Atkinson, D. J.; Cooper, L. P.; Tausworthe, R. C.; Masline, R. C.; Jenkins, J. S.; Crowe, R. A.; Thomas, J. L.; Stoloff, M. J.

    1992-01-01

    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control.

  11. Probabilistic logic modeling of network reliability for hybrid network architectures

    SciTech Connect

    Wyss, G.D.; Schriner, H.K.; Gaylor, T.R.

    1996-10-01

    Sandia National Laboratories has found that the reliability and failure modes of current-generation network technologies can be effectively modeled using fault tree-based probabilistic logic modeling (PLM) techniques. We have developed fault tree models that include various hierarchical networking technologies and classes of components interconnected in a wide variety of typical and atypical configurations. In this paper we discuss the types of results that can be obtained from PLMs and why these results are of great practical value to network designers and analysts. After providing some mathematical background, we describe the `plug-and-play` fault tree analysis methodology that we have developed for modeling connectivity and the provision of network services in several current- generation network architectures. Finally, we demonstrate the flexibility of the method by modeling the reliability of a hybrid example network that contains several interconnected ethernet, FDDI, and token ring segments. 11 refs., 3 figs., 1 tab.

  12. Phenotypic switching in gene regulatory networks.

    PubMed

    Thomas, Philipp; Popović, Nikola; Grima, Ramon

    2014-05-13

    Noise in gene expression can lead to reversible phenotypic switching. Several experimental studies have shown that the abundance distributions of proteins in a population of isogenic cells may display multiple distinct maxima. Each of these maxima may be associated with a subpopulation of a particular phenotype, the quantification of which is important for understanding cellular decision-making. Here, we devise a methodology which allows us to quantify multimodal gene expression distributions and single-cell power spectra in gene regulatory networks. Extending the commonly used linear noise approximation, we rigorously show that, in the limit of slow promoter dynamics, these distributions can be systematically approximated as a mixture of Gaussian components in a wide class of networks. The resulting closed-form approximation provides a practical tool for studying complex nonlinear gene regulatory networks that have thus far been amenable only to stochastic simulation. We demonstrate the applicability of our approach in a number of genetic networks, uncovering previously unidentified dynamical characteristics associated with phenotypic switching. Specifically, we elucidate how the interplay of transcriptional and translational regulation can be exploited to control the multimodality of gene expression distributions in two-promoter networks. We demonstrate how phenotypic switching leads to birhythmical expression in a genetic oscillator, and to hysteresis in phenotypic induction, thus highlighting the ability of regulatory networks to retain memory. PMID:24782538

  13. The Regulatory Network of Pseudomonas aeruginosa

    PubMed Central

    2011-01-01

    Background Pseudomonas aeruginosa is an important bacterial model due to its metabolic and pathogenic abilities, which allow it to interact and colonize a wide range of hosts, including plants and animals. In this work we compile and analyze the structure and organization of an experimentally supported regulatory network in this bacterium. Results The regulatory network consists of 690 genes and 1020 regulatory interactions between their products (12% of total genes: 54% sigma and 16% of transcription factors). This complex interplay makes the third largest regulatory network of those reported in bacteria. The entire network is enriched for activating interactions and, peculiarly, self-activation seems to occur more prominent for transcription factors (TFs), which contrasts with other biological networks where self-repression is dominant. The network contains a giant component of 650 genes organized into 11 hierarchies, encompassing important biological processes, such as, biofilms formation, production of exopolysaccharide alginate and several virulence factors, and of the so-called quorum sensing regulons. Conclusions The study of gene regulation in P. aeruginosa is biased towards pathogenesis and virulence processes, all of which are interconnected. The network shows power-law distribution -input degree -, and we identified the top ten global regulators, six two-element cycles, the longest paths have ten steps, six biological modules and the main motifs containing three and four elements. We think this work can provide insights for the design of further studies to cover the many gaps in knowledge of this important bacterial model, and for the design of systems strategies to combat this bacterium. PMID:22587778

  14. A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures.

    PubMed

    Kentzoglanakis, Kyriakos; Poole, Matthew

    2012-01-01

    In this paper, we investigate the problem of reverse engineering the topology of gene regulatory networks from temporal gene expression data. We adopt a computational intelligence approach comprising swarm intelligence techniques, namely particle swarm optimization (PSO) and ant colony optimization (ACO). In addition, the recurrent neural network (RNN) formalism is employed for modeling the dynamical behavior of gene regulatory systems. More specifically, ACO is used for searching the discrete space of network architectures and PSO for searching the corresponding continuous space of RNN model parameters. We propose a novel solution construction process in the context of ACO for generating biologically plausible candidate architectures. The objective is to concentrate the search effort into areas of the structure space that contain architectures which are feasible in terms of their topological resemblance to real-world networks. The proposed framework is initially applied to the reconstruction of a small artificial network that has previously been studied in the context of gene network reverse engineering. Subsequently, we consider an artificial data set with added noise for reconstructing a subnetwork of the genetic interaction network of S. cerevisiae (yeast). Finally, the framework is applied to a real-world data set for reverse engineering the SOS response system of the bacterium Escherichia coli. Results demonstrate the relative advantage of utilizing problem-specific knowledge regarding biologically plausible structural properties of gene networks over conducting a problem-agnostic search in the vast space of network architectures. PMID:21576756

  15. Modeling Emergence in Neuroprotective Regulatory Networks

    SciTech Connect

    Sanfilippo, Antonio P.; Haack, Jereme N.; McDermott, Jason E.; Stevens, S.L.; Stenzel-Poore, Mary

    2013-01-05

    The use of predictive modeling in the analysis of gene expression data can greatly accelerate the pace of scientific discovery in biomedical research by enabling in silico experimentation to test disease triggers and potential drug therapies. Techniques that focus on modeling emergence, such as agent-based modeling and multi-agent simulations, are of particular interest as they support the discovery of pathways that may have never been observed in the past. Thus far, these techniques have been primarily applied at the multi-cellular level, or have focused on signaling and metabolic networks. We present an approach where emergence modeling is extended to regulatory networks and demonstrate its application to the discovery of neuroprotective pathways. An initial evaluation of the approach indicates that emergence modeling provides novel insights for the analysis of regulatory networks that can advance the discovery of acute treatments for stroke and other diseases.

  16. Scalable Architecture for Multihop Wireless ad Hoc Networks

    NASA Technical Reports Server (NTRS)

    Arabshahi, Payman; Gray, Andrew; Okino, Clayton; Yan, Tsun-Yee

    2004-01-01

    A scalable architecture for wireless digital data and voice communications via ad hoc networks has been proposed. Although the details of the architecture and of its implementation in hardware and software have yet to be developed, the broad outlines of the architecture are fairly clear: This architecture departs from current commercial wireless communication architectures, which are characterized by low effective bandwidth per user and are not well suited to low-cost, rapid scaling in large metropolitan areas. This architecture is inspired by a vision more akin to that of more than two dozen noncommercial community wireless networking organizations established by volunteers in North America and several European countries.

  17. Gene regulatory networks and the underlying biology of developmental toxicity

    EPA Science Inventory

    Embryonic cells are specified by large-scale networks of functionally linked regulatory genes. Knowledge of the relevant gene regulatory networks is essential for understanding phenotypic heterogeneity that emerges from disruption of molecular functions, cellular processes or sig...

  18. A parallel attractor-finding algorithm based on Boolean satisfiability for genetic regulatory networks.

    PubMed

    Guo, Wensheng; Yang, Guowu; Wu, Wei; He, Lei; Sun, Mingyu

    2014-01-01

    In biological systems, the dynamic analysis method has gained increasing attention in the past decade. The Boolean network is the most common model of a genetic regulatory network. The interactions of activation and inhibition in the genetic regulatory network are modeled as a set of functions of the Boolean network, while the state transitions in the Boolean network reflect the dynamic property of a genetic regulatory network. A difficult problem for state transition analysis is the finding of attractors. In this paper, we modeled the genetic regulatory network as a Boolean network and proposed a solving algorithm to tackle the attractor finding problem. In the proposed algorithm, we partitioned the Boolean network into several blocks consisting of the strongly connected components according to their gradients, and defined the connection between blocks as decision node. Based on the solutions calculated on the decision nodes and using a satisfiability solving algorithm, we identified the attractors in the state transition graph of each block. The proposed algorithm is benchmarked on a variety of genetic regulatory networks. Compared with existing algorithms, it achieved similar performance on small test cases, and outperformed it on larger and more complex ones, which happens to be the trend of the modern genetic regulatory network. Furthermore, while the existing satisfiability-based algorithms cannot be parallelized due to their inherent algorithm design, the proposed algorithm exhibits a good scalability on parallel computing architectures.

  19. Deep Space Network information system architecture study

    NASA Technical Reports Server (NTRS)

    Beswick, C. A.; Markley, R. W. (Editor); Atkinson, D. J.; Cooper, L. P.; Tausworthe, R. C.; Masline, R. C.; Jenkins, J. S.; Crowe, R. A.; Thomas, J. L.; Stoloff, M. J.

    1992-01-01

    The purpose of this article is to describe an architecture for the DSN information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990's. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies--i.e., computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control.

  20. Inference of Gene Regulatory Network Based on Local Bayesian Networks.

    PubMed

    Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Wei, Ze-Gang; Chen, Luonan

    2016-08-01

    The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce

  1. Networks: A Review of Their Technology, Architecture, and Implementation.

    ERIC Educational Resources Information Center

    Learn, Larry L.

    1988-01-01

    This overview of network-related technologies covers network elements, analog and digital signals, transmission media and their characteristics, equipment certification, multiplexing, network types, access technologies, network architectures local-area network technologies and attributes, protocols, internetworking, fiber optics versus satellites,…

  2. The OCLC Network: Its Architecture, Application, and Operation.

    ERIC Educational Resources Information Center

    Learn, Larry L.; Carpenter, George L.

    1988-01-01

    This overview of the OCLC telecommunications network discusses: its scope and applications, user demographics, the system architecture, access, costs, protocols, maintenance, vendor relationships, performance data, and network engineering. (13 references) (MES)

  3. Establishment of a Spaceport Network Architecture

    NASA Technical Reports Server (NTRS)

    Larson, Wiley J.; Gill, Tracy R.; Mueller, Robert P.; Brink, Jeffrey S.

    2012-01-01

    Since the beginning of the space age, the main actors in space exploration have been governmental agencies, enabling a privileged access to space, but with very restricted and rare missions. The last decade has seen the rise of space tourism, and the founding of ambitious private space mining companies, showing the beginnings of a new exploration era, that is based on a more generalized and regular access to space and which is not limited to the Earth's vicinity. However, the cost of launching sufficient mass into orbit to sustain these inspiring challenges is prohibitive, and the necessary infrastructures to support these missions is still lacking. To provide easy and affordable access into orbital and deep space destinations, there is the need to create a network of spaceports via specific waypoint locations coupled with the use of natural resources, or In Situ Resource Utilization (ISRU), to provide a more economical solution. As part of the International Space University Space Studies Program 2012, the international and intercultural team of Operations and Service Infrastructure for Space (OASIS) proposes an interdisciplinary answer to the problem of economical space access and transportation. This paper presents a summary of a detailed report [1] of the different phases of a project for developing a network of spaceports throughout the Solar System in a timeframe of 50 years. The requirements, functions, critical technologies and mission architecture of this network of spaceports are outlined in a roadmap of the important steps and phases. The economic and financial aspects are emphasized in order to allow a sustainable development of the network in a public-private partnership via the formation of an International Spaceport Authority (ISPA). The approach includes engineering, scientific, financial, legal, policy, and societal aspects. Team OASIS intends to provide guidelines to make the development of space transportation via a spaceports logistics network

  4. Regulatory Snapshots: integrative mining of regulatory modules from expression time series and regulatory networks.

    PubMed

    Gonçalves, Joana P; Aires, Ricardo S; Francisco, Alexandre P; Madeira, Sara C

    2012-01-01

    Explaining regulatory mechanisms is crucial to understand complex cellular responses leading to system perturbations. Some strategies reverse engineer regulatory interactions from experimental data, while others identify functional regulatory units (modules) under the assumption that biological systems yield a modular organization. Most modular studies focus on network structure and static properties, ignoring that gene regulation is largely driven by stimulus-response behavior. Expression time series are key to gain insight into dynamics, but have been insufficiently explored by current methods, which often (1) apply generic algorithms unsuited for expression analysis over time, due to inability to maintain the chronology of events or incorporate time dependency; (2) ignore local patterns, abundant in most interesting cases of transcriptional activity; (3) neglect physical binding or lack automatic association of regulators, focusing mainly on expression patterns; or (4) limit the discovery to a predefined number of modules. We propose Regulatory Snapshots, an integrative mining approach to identify regulatory modules over time by combining transcriptional control with response, while overcoming the above challenges. Temporal biclustering is first used to reveal transcriptional modules composed of genes showing coherent expression profiles over time. Personalized ranking is then applied to prioritize prominent regulators targeting the modules at each time point using a network of documented regulatory associations and the expression data. Custom graphics are finally depicted to expose the regulatory activity in a module at consecutive time points (snapshots). Regulatory Snapshots successfully unraveled modules underlying yeast response to heat shock and human epithelial-to-mesenchymal transition, based on regulations documented in the YEASTRACT and JASPAR databases, respectively, and available expression data. Regulatory players involved in functionally enriched

  5. MSAT signalling and network management architectures

    NASA Technical Reports Server (NTRS)

    Garland, Peter; Keelty, J. Malcolm

    1989-01-01

    Spar Aerospace has been active in the design and definition of Mobile Satellite Systems since the mid 1970's. In work sponsored by the Canadian Department of Communications, various payload configurations have evolved. In addressing the payload configuration, the requirements of the mobile user, the service provider and the satellite operator have always been the most important consideration. The current Spar 11 beam satellite design is reviewed, and its capabilities to provide flexibility and potential for network growth within the WARC87 allocations are explored. To enable the full capabilities of the payload to be realized, a large amount of ground based Switching and Network Management infrastructure will be required, when space segment becomes available. Early indications were that a single custom designed Demand Assignment Multiple Access (DAMA) switch should be implemented to provide efficient use of the space segment. As MSAT has evolved into a multiple service concept, supporting many service providers, this architecture should be reviewed. Some possible signalling and Network Management solutions are explored.

  6. Navigation Architecture For A Space Mobile Network

    NASA Technical Reports Server (NTRS)

    Valdez, Jennifer E.; Ashman, Benjamin; Gramling, Cheryl; Heckler, Gregory W.; Carpenter, Russell

    2016-01-01

    The Tracking and Data Relay Satellite System (TDRSS) Augmentation Service for Satellites (TASS) is a proposed beacon service to provide a global, space-based GPS augmentation service based on the NASA Global Differential GPS (GDGPS) System. The TASS signal will be tied to the GPS time system and usable as an additional ranging and Doppler radiometric source. Additionally, it will provide data vital to autonomous navigation in the near Earth regime, including space weather information, TDRS ephemerides, Earth Orientation Parameters (EOP), and forward commanding capability. TASS benefits include enhancing situational awareness, enabling increased autonomy, and providing near real-time command access for user platforms. As NASA Headquarters Space Communication and Navigation Office (SCaN) begins to move away from a centralized network architecture and towards a Space Mobile Network (SMN) that allows for user initiated services, autonomous navigation will be a key part of such a system. This paper explores how a TASS beacon service enables the Space Mobile Networking paradigm, what a typical user platform would require, and provides an in-depth analysis of several navigation scenarios and operations concepts.

  7. A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo

    NASA Technical Reports Server (NTRS)

    Davidson, Eric H.; Rast, Jonathan P.; Oliveri, Paola; Ransick, Andrew; Calestani, Cristina; Yuh, Chiou-Hwa; Minokawa, Takuya; Amore, Gabriele; Hinman, Veronica; Arenas-Mena, Cesar; Otim, Ochan; Brown, C. Titus; Livi, Carolina B.; Lee, Pei Yun; Revilla, Roger; Schilstra, Maria J.; Clarke, Peter J C.; Rust, Alistair G.; Pan, Zhengjun; Arnone, Maria I.; Rowen, Lee; Cameron, R. Andrew; McClay, David R.; Hood, Leroy; Bolouri, Hamid

    2002-01-01

    We present the current form of a provisional DNA sequence-based regulatory gene network that explains in outline how endomesodermal specification in the sea urchin embryo is controlled. The model of the network is in a continuous process of revision and growth as new genes are added and new experimental results become available; see http://www.its.caltech.edu/mirsky/endomeso.htm (End-mes Gene Network Update) for the latest version. The network contains over 40 genes at present, many newly uncovered in the course of this work, and most encoding DNA-binding transcriptional regulatory factors. The architecture of the network was approached initially by construction of a logic model that integrated the extensive experimental evidence now available on endomesoderm specification. The internal linkages between genes in the network have been determined functionally, by measurement of the effects of regulatory perturbations on the expression of all relevant genes in the network. Five kinds of perturbation have been applied: (1) use of morpholino antisense oligonucleotides targeted to many of the key regulatory genes in the network; (2) transformation of other regulatory factors into dominant repressors by construction of Engrailed repressor domain fusions; (3) ectopic expression of given regulatory factors, from genetic expression constructs and from injected mRNAs; (4) blockade of the beta-catenin/Tcf pathway by introduction of mRNA encoding the intracellular domain of cadherin; and (5) blockade of the Notch signaling pathway by introduction of mRNA encoding the extracellular domain of the Notch receptor. The network model predicts the cis-regulatory inputs that link each gene into the network. Therefore, its architecture is testable by cis-regulatory analysis. Strongylocentrotus purpuratus and Lytechinus variegatus genomic BAC recombinants that include a large number of the genes in the network have been sequenced and annotated. Tests of the cis-regulatory predictions of

  8. Adaptation by Plasticity of Genetic Regulatory Networks

    NASA Astrophysics Data System (ADS)

    Brenner, Naama

    2007-03-01

    Genetic regulatory networks have an essential role in adaptation and evolution of cell populations. This role is strongly related to their dynamic properties over intermediate-to-long time scales. We have used the budding yeast as a model Eukaryote to study the long-term dynamics of the genetic regulatory system and its significance in evolution. A continuous cell growth technique (chemostat) allows us to monitor these systems over long times under controlled condition, enabling a quantitative characterization of dynamics: steady states and their stability, transients and relaxation. First, we have demonstrated adaptive dynamics in the GAL system, a classic model for a Eukaryotic genetic switch, induced and repressed by different carbon sources in the environment. We found that both induction and repression are only transient responses; over several generations, the system converges to a single robust steady state, independent of external conditions. Second, we explored the functional significance of such plasticity of the genetic regulatory network in evolution. We used genetic engineering to mimic the natural process of gene recruitment, placing the gene HIS3 under the regulation of the GAL system. Such genetic rewiring events are important in the evolution of gene regulation, but little is known about the physiological processes supporting them and the dynamics of their assimilation in a cell population. We have shown that cells carrying the rewired genome adapted to a demanding change of environment and stabilized a population, maintaining the adaptive state for hundreds of generations. Using genome-wide expression arrays we showed that underlying the observed adaptation is a global transcriptional programming that allowed tuning expression of the recruited gene to demands. Our results suggest that non-specific properties reflecting the natural plasticity of the regulatory network support adaptation of cells to novel challenges and enhance their evolvability.

  9. Population Dynamics of Genetic Regulatory Networks

    NASA Astrophysics Data System (ADS)

    Braun, Erez

    2005-03-01

    Unlike common objects in physics, a biological cell processes information. The cell interprets its genome and transforms the genomic information content, through the action of genetic regulatory networks, into proteins which in turn dictate its metabolism, functionality and morphology. Understanding the dynamics of a population of biological cells presents a unique challenge. It requires to link the intracellular dynamics of gene regulation, through the mechanism of cell division, to the level of the population. We present experiments studying adaptive dynamics of populations of genetically homogeneous microorganisms (yeast), grown for long durations under steady conditions. We focus on population dynamics that do not involve random genetic mutations. Our experiments follow the long-term dynamics of the population distributions and allow to quantify the correlations among generations. We focus on three interconnected issues: adaptation of genetically homogeneous populations following environmental changes, selection processes on the population and population variability and expression distributions. We show that while the population exhibits specific short-term responses to environmental inputs, it eventually adapts to a robust steady-state, largely independent of external conditions. Cycles of medium-switch show that the adapted state is imprinted in the population and that this memory is maintained for many generations. To further study population adaptation, we utilize the process of gene recruitment whereby a gene naturally regulated by a specific promoter is placed under a different regulatory system. This naturally occurring process has been recognized as a major driving force in evolution. We have recruited an essential gene to a foreign regulatory network and followed the population long-term dynamics. Rewiring of the regulatory network allows us to expose their complex dynamics and phase space structure.

  10. Generation of oscillating gene regulatory network motifs

    NASA Astrophysics Data System (ADS)

    van Dorp, M.; Lannoo, B.; Carlon, E.

    2013-07-01

    Using an improved version of an evolutionary algorithm originally proposed by François and Hakim [Proc. Natl. Acad. Sci. USAPNASA60027-842410.1073/pnas.0304532101 101, 580 (2004)], we generated small gene regulatory networks in which the concentration of a target protein oscillates in time. These networks may serve as candidates for oscillatory modules to be found in larger regulatory networks and protein interaction networks. The algorithm was run for 105 times to produce a large set of oscillating modules, which were systematically classified and analyzed. The robustness of the oscillations against variations of the kinetic rates was also determined, to filter out the least robust cases. Furthermore, we show that the set of evolved networks can serve as a database of models whose behavior can be compared to experimentally observed oscillations. The algorithm found three smallest (core) oscillators in which nonlinearities and number of components are minimal. Two of those are two-gene modules: the mixed feedback loop, already discussed in the literature, and an autorepressed gene coupled with a heterodimer. The third one is a single gene module which is competitively regulated by a monomer and a dimer. The evolutionary algorithm also generated larger oscillating networks, which are in part extensions of the three core modules and in part genuinely new modules. The latter includes oscillators which do not rely on feedback induced by transcription factors, but are purely of post-transcriptional type. Analysis of post-transcriptional mechanisms of oscillation may provide useful information for circadian clock research, as recent experiments showed that circadian rhythms are maintained even in the absence of transcription.

  11. Inference of Gene Regulatory Network Based on Local Bayesian Networks.

    PubMed

    Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Wei, Ze-Gang; Chen, Luonan

    2016-08-01

    The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce

  12. Inference of Gene Regulatory Network Based on Local Bayesian Networks

    PubMed Central

    Liu, Fei; Zhang, Shao-Wu; Guo, Wei-Feng; Chen, Luonan

    2016-01-01

    The inference of gene regulatory networks (GRNs) from expression data can mine the direct regulations among genes and gain deep insights into biological processes at a network level. During past decades, numerous computational approaches have been introduced for inferring the GRNs. However, many of them still suffer from various problems, e.g., Bayesian network (BN) methods cannot handle large-scale networks due to their high computational complexity, while information theory-based methods cannot identify the directions of regulatory interactions and also suffer from false positive/negative problems. To overcome the limitations, in this work we present a novel algorithm, namely local Bayesian network (LBN), to infer GRNs from gene expression data by using the network decomposition strategy and false-positive edge elimination scheme. Specifically, LBN algorithm first uses conditional mutual information (CMI) to construct an initial network or GRN, which is decomposed into a number of local networks or GRNs. Then, BN method is employed to generate a series of local BNs by selecting the k-nearest neighbors of each gene as its candidate regulatory genes, which significantly reduces the exponential search space from all possible GRN structures. Integrating these local BNs forms a tentative network or GRN by performing CMI, which reduces redundant regulations in the GRN and thus alleviates the false positive problem. The final network or GRN can be obtained by iteratively performing CMI and local BN on the tentative network. In the iterative process, the false or redundant regulations are gradually removed. When tested on the benchmark GRN datasets from DREAM challenge as well as the SOS DNA repair network in E.coli, our results suggest that LBN outperforms other state-of-the-art methods (ARACNE, GENIE3 and NARROMI) significantly, with more accurate and robust performance. In particular, the decomposition strategy with local Bayesian networks not only effectively reduce

  13. Transformation of legacy network management system to service oriented architecture

    NASA Astrophysics Data System (ADS)

    Sathyan, Jithesh; Shenoy, Krishnananda

    2007-09-01

    Service providers today are facing the challenge of operating and maintaining multiple networks, based on multiple technologies. Network Management System (NMS) solutions are being used to manage these networks. However the NMS is tightly coupled with Element or the Core network components. Hence there are multiple NMS solutions for heterogeneous networks. Current network management solutions are targeted at a variety of independent networks. The wide spread popularity of IP Multimedia Subsystem (IMS) is a clear indication that all of these independent networks will be integrated into a single IP-based infrastructure referred to as Next Generation Networks (NGN) in the near future. The services, network architectures and traffic pattern in NGN will dramatically differ from the current networks. The heterogeneity and complexity in NGN including concepts like Fixed Mobile Convergence will bring a number of challenges to network management. The high degree of complexity accompanying the network element technology necessitates network management systems (NMS) which can utilize this technology to provide more service interfaces while hiding the inherent complexity. As operators begin to add new networks and expand existing networks to support new technologies and products, the necessity of scalable, flexible and functionally rich NMS systems arises. Another important factor influencing NMS architecture is mergers and acquisitions among the key vendors. Ease of integration is a key impediment in the traditional hierarchical NMS architecture. These requirements trigger the need for an architectural framework that will address the NGNM (Next Generation Network Management) issues seamlessly. This paper presents a unique perspective of bringing service orientated architecture (SOA) to legacy network management systems (NMS). It advocates a staged approach in transforming a legacy NMS to SOA. The architecture at each stage is detailed along with the technical advantages and

  14. The airborne network definition project: a network architecture effort for future battlefield networks that enable network-centric warfare

    NASA Astrophysics Data System (ADS)

    Ganguly, Bishwaroop; Finn, Steven; McLamb, Jeffrey; Bynoe, Wayne; Veytser, Leonid; Pedan, Igor; Mineweaser, Jeremy; Davidson, Steven

    2007-04-01

    The Airborne Network Definition (AND) project had the goal of creating and testing a robust, efficient network architecture networking all elements of the battlefield. This effort has since been generalized to fit the goals of the Mobile Edge Network System Architecture (MENSA) effort. The network is designed to be self-contained, attaching to fixed backbone infrastructure whenever possible. The fundamental building block of the architecture is the Small Combat Network (SCN), which integrates heterogeneous ground and air platforms, facilitating collaborative applications such as Blue Force Tracking, Cooperative Sensing and Targeting. The architecture uses the concept of an IP core to network unlike domains (radio types) and to connect the SCN to the backbone and the Global Information Grid (GIG). This paper describes the requirements of the network and outlines the technical design of the SCN architecture. We present step-by-step descriptions of a communication on the SCN which highlights some of the key features of the architecture. We present results of a simulation that applies our proposed architecture to realistic warfighting scenarios. Results show that the architecture enables cooperative applications and point to future work that will design and evaluate a deployable AN network architecture.

  15. Genetic Regulatory Networks in Embryogenesis and Evolution

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The article introduces a series of papers that were originally presented at a workshop titled Genetic Regulatory Network in Embryogenesis and Evaluation. Contents include the following: evolution of cleavage programs in relationship to axial specification and body plan evolution, changes in cell lineage specification elucidate evolutionary relations in spiralia, axial patterning in the leech: developmental mechanisms and evolutionary implications, hox genes in arthropod development and evolution, heterochronic genes in development and evolution, a common theme for LIM homeobox gene function across phylogeny, and mechanisms of specification in ascidian embryos.

  16. Eric Davidson: Steps to a gene regulatory network for development.

    PubMed

    Rothenberg, Ellen V

    2016-04-15

    Eric Harris Davidson was a unique and creative intellectual force who grappled with the diversity of developmental processes used by animal embryos and wrestled them into an intelligible set of principles, then spent his life translating these process elements into molecularly definable terms through the architecture of gene regulatory networks. He took speculative risks in his theoretical writing but ran a highly organized, rigorous experimental program that yielded an unprecedentedly full characterization of a developing organism. His writings created logical order and a framework for mechanism from the complex phenomena at the heart of advanced multicellular organism development. This is a reminiscence of intellectual currents in his work as observed by the author through the last 30-35 years of Davidson's life. PMID:26825392

  17. Novel genes dramatically alter regulatory network topology in amphioxus

    PubMed Central

    Zhang, Qing; Zmasek, Christian M; Dishaw, Larry J; Mueller, M Gail; Ye, Yuzhen; Litman, Gary W; Godzik, Adam

    2008-01-01

    Background Regulation in protein networks often utilizes specialized domains that 'join' (or 'connect') the network through specific protein-protein interactions. The innate immune system, which provides a first and, in many species, the only line of defense against microbial and viral pathogens, is regulated in this way. Amphioxus (Branchiostoma floridae), whose genome was recently sequenced, occupies a unique position in the evolution of innate immunity, having diverged within the chordate lineage prior to the emergence of the adaptive immune system in vertebrates. Results The repertoire of several families of innate immunity proteins is expanded in amphioxus compared to both vertebrates and protostome invertebrates. Part of this expansion consists of genes encoding proteins with unusual domain architectures, which often contain both upstream receptor and downstream activator domains, suggesting a potential role for direct connections (shortcuts) that bypass usual signal transduction pathways. Conclusion Domain rearrangements can potentially alter the topology of protein-protein interaction (and regulatory) networks. The extent of such arrangements in the innate immune network of amphioxus suggests that domain shuffling, which is an important mechanism in the evolution of multidomain proteins, has also shaped the development of immune systems. PMID:18680598

  18. Chaotic motifs in gene regulatory networks.

    PubMed

    Zhang, Zhaoyang; Ye, Weiming; Qian, Yu; Zheng, Zhigang; Huang, Xuhui; Hu, Gang

    2012-01-01

    Chaos should occur often in gene regulatory networks (GRNs) which have been widely described by nonlinear coupled ordinary differential equations, if their dimensions are no less than 3. It is therefore puzzling that chaos has never been reported in GRNs in nature and is also extremely rare in models of GRNs. On the other hand, the topic of motifs has attracted great attention in studying biological networks, and network motifs are suggested to be elementary building blocks that carry out some key functions in the network. In this paper, chaotic motifs (subnetworks with chaos) in GRNs are systematically investigated. The conclusion is that: (i) chaos can only appear through competitions between different oscillatory modes with rivaling intensities. Conditions required for chaotic GRNs are found to be very strict, which make chaotic GRNs extremely rare. (ii) Chaotic motifs are explored as the simplest few-node structures capable of producing chaos, and serve as the intrinsic source of chaos of random few-node GRNs. Several optimal motifs causing chaos with atypically high probability are figured out. (iii) Moreover, we discovered that a number of special oscillators can never produce chaos. These structures bring some advantages on rhythmic functions and may help us understand the robustness of diverse biological rhythms. (iv) The methods of dominant phase-advanced driving (DPAD) and DPAD time fraction are proposed to quantitatively identify chaotic motifs and to explain the origin of chaotic behaviors in GRNs.

  19. Space Mobile Network: A Near Earth Communication and Navigation Architecture

    NASA Technical Reports Server (NTRS)

    Israel, Dave J.; Heckler, Greg; Menrad, Robert J.

    2016-01-01

    This paper describes a Space Mobile Network architecture, the result of a recently completed NASA study exploring architectural concepts to produce a vision for the future Near Earth communications and navigation systems. The Space Mobile Network (SMN) incorporates technologies, such as Disruption Tolerant Networking (DTN) and optical communications, and new operations concepts, such as User Initiated Services, to provide user services analogous to a terrestrial smartphone user. The paper will describe the SMN Architecture, envisioned future operations concepts, opportunities for industry and international collaboration and interoperability, and technology development areas and goals.

  20. Design Principles of Regulatory Networks: Searching for the Molecular Algorithms of the Cell

    PubMed Central

    Lim, Wendell A.; Lee, Connie M.; Tang, Chao

    2013-01-01

    A challenge in biology is to understand how complex molecular networks in the cell execute sophisticated regulatory functions. Here we explore the idea that there are common and general principles that link network structures to biological functions, principles that constrain the design solutions that evolution can converge upon for accomplishing a given cellular task. We describe approaches for classifying networks based on abstract architectures and functions, rather than on the specific molecular components of the networks. For any common regulatory task, can we define the space of all possible molecular solutions? Such inverse approaches might ultimately allow the assembly of a design table of core molecular algorithms that could serve as a guide for building synthetic networks and modulating disease networks. PMID:23352241

  1. Security Aspects of an Enterprise-Wide Network Architecture.

    ERIC Educational Resources Information Center

    Loew, Robert; Stengel, Ingo; Bleimann, Udo; McDonald, Aidan

    1999-01-01

    Presents an overview of two projects that concern local area networks and the common point between networks as they relate to network security. Discusses security architectures based on firewall components, packet filters, application gateways, security-management components, an intranet solution, user registration by Web form, and requests for…

  2. Predicate calculus for an architecture of multiple neural networks

    NASA Astrophysics Data System (ADS)

    Consoli, Robert H.

    1990-08-01

    Future projects with neural networks will require multiple individual network components. Current efforts along these lines are ad hoc. This paper relates the neural network to a classical device and derives a multi-part architecture from that model. Further it provides a Predicate Calculus variant for describing the location and nature of the trainings and suggests Resolution Refutation as a method for determining the performance of the system as well as the location of needed trainings for specific proofs. 2. THE NEURAL NETWORK AND A CLASSICAL DEVICE Recently investigators have been making reports about architectures of multiple neural networksL234. These efforts are appearing at an early stage in neural network investigations they are characterized by architectures suggested directly by the problem space. Touretzky and Hinton suggest an architecture for processing logical statements1 the design of this architecture arises from the syntax of a restricted class of logical expressions and exhibits syntactic limitations. In similar fashion a multiple neural netword arises out of a control problem2 from the sequence learning problem3 and from the domain of machine learning. 4 But a general theory of multiple neural devices is missing. More general attempts to relate single or multiple neural networks to classical computing devices are not common although an attempt is made to relate single neural devices to a Turing machines and Sun et a!. develop a multiple neural architecture that performs pattern classification.

  3. A modular architecture for wireless sensor network nodes

    NASA Astrophysics Data System (ADS)

    Davis, Jesse; Berry, Nina

    2004-09-01

    The system level hardware architecture of individual nodes in a wireless distributed sensor network has not received adequate attention. A large portion of the development work in wireless sensor networks has been devoted to the networking layer or the network communications, but considering the tight integration required between the hardware and software on each node can result in major benefits in power, performance, and usability as well. A novel hardware architecture based on the concept of task specific modular computing provides both the high flexibility and power efficiency required for effective distributed sensing solutions. A comparative power analysis with a traditional, centralized architecture gives a justifying motivation for pursuing the modular architecture. Finally, three decentralized module self-control mechanisms developed to minimize total system power will be presented and explained in detail.

  4. Topological origin of global attractors in gene regulatory networks

    NASA Astrophysics Data System (ADS)

    Zhang, YunJun; Ouyang, Qi; Geng, Zhi

    2015-02-01

    Fixed-point attractors with global stability manifest themselves in a number of gene regulatory networks. This property indicates the stability of regulatory networks against small state perturbations and is closely related to other complex dynamics. In this paper, we aim to reveal the core modules in regulatory networks that determine their global attractors and the relationship between these core modules and other motifs. This work has been done via three steps. Firstly, inspired by the signal transmission in the regulation process, we extract the model of chain-like network from regulation networks. We propose a module of "ideal transmission chain (ITC)", which is proved sufficient and necessary (under certain condition) to form a global fixed-point in the context of chain-like network. Secondly, by examining two well-studied regulatory networks (i.e., the cell-cycle regulatory networks of Budding yeast and Fission yeast), we identify the ideal modules in true regulation networks and demonstrate that the modules have a superior contribution to network stability (quantified by the relative size of the biggest attraction basin). Thirdly, in these two regulation networks, we find that the double negative feedback loops, which are the key motifs of forming bistability in regulation, are connected to these core modules with high network stability. These results have shed new light on the connection between the topological feature and the dynamic property of regulatory networks.

  5. Architectures, stability and optimization for clock distribution networks

    NASA Astrophysics Data System (ADS)

    Carareto, Rodrigo; Orsatti, Fernando M.; Piqueira, José Roberto C.

    2012-12-01

    Synchronous telecommunication networks, distributed control systems and integrated circuits have its accuracy of operation dependent on the existence of a reliable time basis signal extracted from the line data stream and acquirable to each node. In this sense, the existence of a sub-network (inside the main network) dedicated to the distribution of the clock signals is crucially important. There are different solutions for the architecture of the time distribution sub-network and choosing one of them depends on cost, precision, reliability and operational security. In this work we expose: (i) the possible time distribution networks and their usual topologies and arrangements. (ii) How parameters of the network nodes can affect the reachability and stability of the synchronous state of a network. (iii) Optimizations methods for synchronous networks which can provide low cost architectures with operational precision, reliability and security.

  6. NASA Integrated Network Monitor and Control Software Architecture

    NASA Technical Reports Server (NTRS)

    Shames, Peter; Anderson, Michael; Kowal, Steve; Levesque, Michael; Sindiy, Oleg; Donahue, Kenneth; Barnes, Patrick

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Space Communications and Navigation office (SCaN) has commissioned a series of trade studies to define a new architecture intended to integrate the three existing networks that it operates, the Deep Space Network (DSN), Space Network (SN), and Near Earth Network (NEN), into one integrated network that offers users a set of common, standardized, services and interfaces. The integrated monitor and control architecture utilizes common software and common operator interfaces that can be deployed at all three network elements. This software uses state-of-the-art concepts such as a pool of re-programmable equipment that acts like a configurable software radio, distributed hierarchical control, and centralized management of the whole SCaN integrated network. For this trade space study a model-based approach using SysML was adopted to describe and analyze several possible options for the integrated network monitor and control architecture. This model was used to refine the design and to drive the costing of the four different software options. This trade study modeled the three existing self standing network elements at point of departure, and then described how to integrate them using variations of new and existing monitor and control system components for the different proposed deployments under consideration. This paper will describe the trade space explored, the selected system architecture, the modeling and trade study methods, and some observations on useful approaches to implementing such model based trade space representation and analysis.

  7. Modeling Evolution of Regulatory Networks in Artificial Organisms

    NASA Astrophysics Data System (ADS)

    Sánchez-Dehesa, Yolanda; Beslon, Guillaume; Peña, José-María

    2007-09-01

    Regulatory networks are not randomly connected. They are modular, scale-free networks and some motifs distribution is clearly different from random distribution. However, the evolutionary causes and consequences of this specific connectivity are mainly unknown. In this paper we propose Raevol, an integrative model to study the evolution of regulatory networks. While most existing models consider direct evolution of the regulatory network, Raevol integrates a realistic genotype-phenotype mapping where the genome undergo mutations that indirectly modify the genetic network. Moreover, the organisms are selected at the phenotype level (which is produced by the genome via the regulation network). Thus, in Raevol, the network only indirectly evolve and it can only be selected if its activity influences the phenotype. We plan to use this model to better understand the network evolution and to study the influence of networks topology on evolution.

  8. Learning About Gene Regulatory Networks From Gene Deletion Experiments

    PubMed Central

    Brazma, Alvis

    2002-01-01

    Gene regulatory networks are a major focus of interest in molecular biology. A crucial question is how complex regulatory systems are encoded and controlled by the genome. Three recent publications have raised the question of what can be learned about gene regulatory networks from microarray experiments on gene deletion mutants. Using this indirect approach, topological features such as connectivity and modularity have been studied. PMID:18629255

  9. Using qualitative probability in reverse-engineering gene regulatory networks.

    PubMed

    Ibrahim, Zina M; Ngom, Alioune; Tawfik, Ahmed Y

    2011-01-01

    This paper demonstrates the use of qualitative probabilistic networks (QPNs) to aid Dynamic Bayesian Networks (DBNs) in the process of learning the structure of gene regulatory networks from microarray gene expression data. We present a study which shows that QPNs define monotonic relations that are capable of identifying regulatory interactions in a manner that is less susceptible to the many sources of uncertainty that surround gene expression data. Moreover, we construct a model that maps the regulatory interactions of genetic networks to QPN constructs and show its capability in providing a set of candidate regulators for target genes, which is subsequently used to establish a prior structure that the DBN learning algorithm can use and which 1) distinguishes spurious correlations from true regulations, 2) enables the discovery of sets of coregulators of target genes, and 3) results in a more efficient construction of gene regulatory networks. The model is compared to the existing literature using the known gene regulatory interactions of Drosophila Melanogaster.

  10. Metabolic constraint-based refinement of transcriptional regulatory networks.

    PubMed

    Chandrasekaran, Sriram; Price, Nathan D

    2013-01-01

    There is a strong need for computational frameworks that integrate different biological processes and data-types to unravel cellular regulation. Current efforts to reconstruct transcriptional regulatory networks (TRNs) focus primarily on proximal data such as gene co-expression and transcription factor (TF) binding. While such approaches enable rapid reconstruction of TRNs, the overwhelming combinatorics of possible networks limits identification of mechanistic regulatory interactions. Utilizing growth phenotypes and systems-level constraints to inform regulatory network reconstruction is an unmet challenge. We present our approach Gene Expression and Metabolism Integrated for Network Inference (GEMINI) that links a compendium of candidate regulatory interactions with the metabolic network to predict their systems-level effect on growth phenotypes. We then compare predictions with experimental phenotype data to select phenotype-consistent regulatory interactions. GEMINI makes use of the observation that only a small fraction of regulatory network states are compatible with a viable metabolic network, and outputs a regulatory network that is simultaneously consistent with the input genome-scale metabolic network model, gene expression data, and TF knockout phenotypes. GEMINI preferentially recalls gold-standard interactions (p-value = 10(-172)), significantly better than using gene expression alone. We applied GEMINI to create an integrated metabolic-regulatory network model for Saccharomyces cerevisiae involving 25,000 regulatory interactions controlling 1597 metabolic reactions. The model quantitatively predicts TF knockout phenotypes in new conditions (p-value = 10(-14)) and revealed potential condition-specific regulatory mechanisms. Our results suggest that a metabolic constraint-based approach can be successfully used to help reconstruct TRNs from high-throughput data, and highlights the potential of using a biochemically-detailed mechanistic framework to

  11. Metabolic constraint-based refinement of transcriptional regulatory networks.

    PubMed

    Chandrasekaran, Sriram; Price, Nathan D

    2013-01-01

    There is a strong need for computational frameworks that integrate different biological processes and data-types to unravel cellular regulation. Current efforts to reconstruct transcriptional regulatory networks (TRNs) focus primarily on proximal data such as gene co-expression and transcription factor (TF) binding. While such approaches enable rapid reconstruction of TRNs, the overwhelming combinatorics of possible networks limits identification of mechanistic regulatory interactions. Utilizing growth phenotypes and systems-level constraints to inform regulatory network reconstruction is an unmet challenge. We present our approach Gene Expression and Metabolism Integrated for Network Inference (GEMINI) that links a compendium of candidate regulatory interactions with the metabolic network to predict their systems-level effect on growth phenotypes. We then compare predictions with experimental phenotype data to select phenotype-consistent regulatory interactions. GEMINI makes use of the observation that only a small fraction of regulatory network states are compatible with a viable metabolic network, and outputs a regulatory network that is simultaneously consistent with the input genome-scale metabolic network model, gene expression data, and TF knockout phenotypes. GEMINI preferentially recalls gold-standard interactions (p-value = 10(-172)), significantly better than using gene expression alone. We applied GEMINI to create an integrated metabolic-regulatory network model for Saccharomyces cerevisiae involving 25,000 regulatory interactions controlling 1597 metabolic reactions. The model quantitatively predicts TF knockout phenotypes in new conditions (p-value = 10(-14)) and revealed potential condition-specific regulatory mechanisms. Our results suggest that a metabolic constraint-based approach can be successfully used to help reconstruct TRNs from high-throughput data, and highlights the potential of using a biochemically-detailed mechanistic framework to

  12. On-board processing satellite network architectures for broadband ISDN

    NASA Technical Reports Server (NTRS)

    Inukai, Thomas; Faris, Faris; Shyy, Dong-Jye

    1992-01-01

    Onboard baseband processing architectures for future satellite broadband integrated services digital networks (B-ISDN's) are addressed. To assess the feasibility of implementing satellite B-ISDN services, critical design issues, such as B-ISDN traffic characteristics, transmission link design, and a trade-off between onboard circuit and fast packet switching, are analyzed. Examples of the two types of switching mechanisms and potential onboard network control functions are presented. A sample network architecture is also included to illustrate a potential onboard processing system.

  13. Construction and analysis of dynamic transcription factor regulatory networks in the progression of glioma.

    PubMed

    Li, Yongsheng; Shao, Tingting; Jiang, Chunjie; Bai, Jing; Wang, Zishan; Zhang, Jinwen; Zhang, Lili; Zhao, Zheng; Xu, Juan; Li, Xia

    2015-11-03

    The combinatorial cross-regulation of transcription factors (TFs) plays an important role in cellular identity and function; however, the dynamic regulation of TFs during glioma progression remains largely unknown. Here, we used the genome-wide expression of TFs to construct an extensive human TF network comprising interactions among 513 TFs and to analyse the dynamics of the TF-TF network during glioma progression. We found that the TF regulatory networks share a common architecture and that the topological structures are conserved. Strikingly, despite the conservation of the network architecture, TF regulatory networks are highly grade specific, and TF circuitry motifs are dynamically rewired during glioma progression. In addition, the most frequently observed structure in the grade-specific TF networks was the feedforward loop (FFL). We described applications that show how investigating the behaviour of FFLs in glioblastoma can reveal FFLs (such as RARG-NR1I2-CDX2) that are associated with prognosis. We constructed comprehensive TF-TF networks and systematically analysed the circuitry, dynamics, and topological principles of the networks during glioma progression, which will further enhance our understanding of the functions of TFs in glioma.

  14. Delay-independent stability of genetic regulatory networks.

    PubMed

    Wu, Fang-Xiang

    2011-11-01

    Genetic regulatory networks can be described by nonlinear differential equations with time delays. In this paper, we study both locally and globally delay-independent stability of genetic regulatory networks, taking messenger ribonucleic acid alternative splicing into consideration. Based on nonnegative matrix theory, we first develop necessary and sufficient conditions for locally delay-independent stability of genetic regulatory networks with multiple time delays. Compared to the previous results, these conditions are easy to verify. Then we develop sufficient conditions for global delay-independent stability for genetic regulatory networks. Compared to the previous results, this sufficient condition is less conservative. To illustrate theorems developed in this paper, we analyze delay-independent stability of two genetic regulatory networks: a real-life repressilatory network with three genes and three proteins, and a synthetic gene regulatory network with five genes and seven proteins. The simulation results show that the theorems developed in this paper can effectively determine the delay-independent stability of genetic regulatory networks.

  15. Differential network analysis reveals dysfunctional regulatory networks in gastric carcinogenesis.

    PubMed

    Cao, Mu-Shui; Liu, Bing-Ya; Dai, Wen-Tao; Zhou, Wei-Xin; Li, Yi-Xue; Li, Yuan-Yuan

    2015-01-01

    Gastric Carcinoma is one of the most common cancers in the world. A large number of differentially expressed genes have been identified as being associated with gastric cancer progression, however, little is known about the underlying regulatory mechanisms. To address this problem, we developed a differential networking approach that is characterized by including a nascent methodology, differential coexpression analysis (DCEA), and two novel quantitative methods for differential regulation analysis. We first applied DCEA to a gene expression dataset of gastric normal mucosa, adenoma and carcinoma samples to identify gene interconnection changes during cancer progression, based on which we inferred normal, adenoma, and carcinoma-specific gene regulation networks by using linear regression model. It was observed that cancer genes and drug targets were enriched in each network. To investigate the dynamic changes of gene regulation during carcinogenesis, we then designed two quantitative methods to prioritize differentially regulated genes (DRGs) and gene pairs or links (DRLs) between adjacent stages. It was found that known cancer genes and drug targets are significantly higher ranked. The top 4% normal vs. adenoma DRGs (36 genes) and top 6% adenoma vs. carcinoma DRGs (56 genes) proved to be worthy of further investigation to explore their association with gastric cancer. Out of the 16 DRGs involved in two top-10 DRG lists of normal vs. adenoma and adenoma vs. carcinoma comparisons, 15 have been reported to be gastric cancer or cancer related. Based on our inferred differential networking information and known signaling pathways, we generated testable hypotheses on the roles of GATA6, ESRRG and their signaling pathways in gastric carcinogenesis. Compared with established approaches which build genome-scale GRNs, or sub-networks around differentially expressed genes, the present one proved to be better at enriching cancer genes and drug targets, and prioritizing

  16. The architecture of a network level intrusion detection system

    SciTech Connect

    Heady, R.; Luger, G.; Maccabe, A.; Servilla, M.

    1990-08-15

    This paper presents the preliminary architecture of a network level intrusion detection system. The proposed system will monitor base level information in network packets (source, destination, packet size, and time), learning the normal patterns and announcing anomalies as they occur. The goal of this research is to determine the applicability of current intrusion detection technology to the detection of network level intrusions. In particular, the authors are investigating the possibility of using this technology to detect and react to worm programs.

  17. An intelligent service-based network architecture for wearable robots.

    PubMed

    Lee, Ka Keung; Zhang, Ping; Xu, Yangsheng; Liang, Bin

    2004-08-01

    We are developing a novel robot concept called the wearable robot. Wearable robots are mobile information devices capable of supporting remote communication and intelligent interaction between networked entities. In this paper, we explore the possible functions of such a robotic network and will present a distributed network architecture based on service components. In order to support the interaction and communication between the components in the wearable robot system, we have developed an intelligent network architecture. This service-based architecture involves three major mechanisms. The first mechanism involves the use of a task coordinator service such that the execution of the services can be managed using a priority queue. The second mechanism enables the system to automatically push the required service proxy to the client intelligently based on certain system-related conditions. In the third mechanism, we allow the system to automatically deliver services based on contextual information. Using a fuzzy-logic-based decision making system, the matching service can determine whether the service should be automatically delivered utilizing the information provided by the service, client, lookup service, and context sensors. An application scenario has been implemented to demonstrate the feasibility of this distributed service-based robot architecture. The architecture is implemented as extensions to the Jini network model.

  18. Regulatory networks contributing to psoriasis susceptibility.

    PubMed

    Szabó, Kornélia; Bata-Csörgő, Zsuzsanna; Dallos, Attila; Bebes, Attila; Francziszti, László; Dobozy, Attila; Kemény, Lajos; Széll, Márta

    2014-07-01

    The non-involved, healthy-looking skin of psoriatic patients displays inherent characteristics that make it prone to develop typical psoriatic symptoms. Our primary aim was to identify genes and proteins that are differentially regulated in the non-involved psoriatic and the normal epidermis, and to discover regulatory networks responsible for these differences. A cDNA microarray experiment was performed to compare the gene expression profiles of 4 healthy and 4 psoriatic non-involved epidermis samples in response to T-cell lymphokine induction in organotypic cultures. We identified 61 annotated genes and another 11 expressed transcripts that were differentially regulated in the psoriatic tissues. Bioinformatics analysis suggested that the regulation of cell morphology, development and cell death is abnormal, and that the metabolism of small molecules and lipids is differentially regulated in psoriatic epidermis. Our results indicate that one of the early steps of psoriasis pathogenesis may be the abnormal regulation of IL-23A and IL-1B genes in psoriatic keratinocytes.

  19. Learning, memory, and the role of neural network architecture.

    PubMed

    Hermundstad, Ann M; Brown, Kevin S; Bassett, Danielle S; Carlson, Jean M

    2011-06-01

    The performance of information processing systems, from artificial neural networks to natural neuronal ensembles, depends heavily on the underlying system architecture. In this study, we compare the performance of parallel and layered network architectures during sequential tasks that require both acquisition and retention of information, thereby identifying tradeoffs between learning and memory processes. During the task of supervised, sequential function approximation, networks produce and adapt representations of external information. Performance is evaluated by statistically analyzing the error in these representations while varying the initial network state, the structure of the external information, and the time given to learn the information. We link performance to complexity in network architecture by characterizing local error landscape curvature. We find that variations in error landscape structure give rise to tradeoffs in performance; these include the ability of the network to maximize accuracy versus minimize inaccuracy and produce specific versus generalizable representations of information. Parallel networks generate smooth error landscapes with deep, narrow minima, enabling them to find highly specific representations given sufficient time. While accurate, however, these representations are difficult to generalize. In contrast, layered networks generate rough error landscapes with a variety of local minima, allowing them to quickly find coarse representations. Although less accurate, these representations are easily adaptable. The presence of measurable performance tradeoffs in both layered and parallel networks has implications for understanding the behavior of a wide variety of natural and artificial learning systems.

  20. Efficient VLSI Architecture for Training Radial Basis Function Networks

    PubMed Central

    Fan, Zhe-Cheng; Hwang, Wen-Jyi

    2013-01-01

    This paper presents a novel VLSI architecture for the training of radial basis function (RBF) networks. The architecture contains the circuits for fuzzy C-means (FCM) and the recursive Least Mean Square (LMS) operations. The FCM circuit is designed for the training of centers in the hidden layer of the RBF network. The recursive LMS circuit is adopted for the training of connecting weights in the output layer. The architecture is implemented by the field programmable gate array (FPGA). It is used as a hardware accelerator in a system on programmable chip (SOPC) for real-time training and classification. Experimental results reveal that the proposed RBF architecture is an effective alternative for applications where fast and efficient RBF training is desired. PMID:23519346

  1. Efficient VLSI architecture for training radial basis function networks.

    PubMed

    Fan, Zhe-Cheng; Hwang, Wen-Jyi

    2013-03-19

    This paper presents a novel VLSI architecture for the training of radial basis function (RBF) networks. The architecture contains the circuits for fuzzy C-means (FCM) and the recursive Least Mean Square (LMS) operations. The FCM circuit is designed for the training of centers in the hidden layer of the RBF network. The recursive LMS circuit is adopted for the training of connecting weights in the output layer. The architecture is implemented by the field programmable gate array (FPGA). It is used as a hardware accelerator in a system on programmable chip (SOPC) for real-time training and classification. Experimental results reveal that the proposed RBF architecture is an effective alternative for applications where fast and efficient RBF training is desired.

  2. Operational Concepts for a Generic Space Exploration Communication Network Architecture

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Vaden, Karl R.; Jones, Robert E.; Roberts, Anthony M.

    2015-01-01

    This document is one of three. It describes the Operational Concept (OpsCon) for a generic space exploration communication architecture. The purpose of this particular document is to identify communication flows and data types. Two other documents accompany this document, a security policy profile and a communication architecture document. The operational concepts should be read first followed by the security policy profile and then the architecture document. The overall goal is to design a generic space exploration communication network architecture that is affordable, deployable, maintainable, securable, evolvable, reliable, and adaptable. The architecture should also require limited reconfiguration throughout system development and deployment. System deployment includes: subsystem development in a factory setting, system integration in a laboratory setting, launch preparation, launch, and deployment and operation in space.

  3. Transcriptome Sequencing from Diverse Human Populations Reveals Differentiated Regulatory Architecture

    PubMed Central

    Lappalainen, Tuuli; Henn, Brenna M.; Kidd, Jeffrey M.; Yee, Muh-Ching; Grubert, Fabian; Cann, Howard M.; Snyder, Michael; Montgomery, Stephen B.; Bustamante, Carlos D.

    2014-01-01

    Large-scale sequencing efforts have documented extensive genetic variation within the human genome. However, our understanding of the origins, global distribution, and functional consequences of this variation is far from complete. While regulatory variation influencing gene expression has been studied within a handful of populations, the breadth of transcriptome differences across diverse human populations has not been systematically analyzed. To better understand the spectrum of gene expression variation, alternative splicing, and the population genetics of regulatory variation in humans, we have sequenced the genomes, exomes, and transcriptomes of EBV transformed lymphoblastoid cell lines derived from 45 individuals in the Human Genome Diversity Panel (HGDP). The populations sampled span the geographic breadth of human migration history and include Namibian San, Mbuti Pygmies of the Democratic Republic of Congo, Algerian Mozabites, Pathan of Pakistan, Cambodians of East Asia, Yakut of Siberia, and Mayans of Mexico. We discover that approximately 25.0% of the variation in gene expression found amongst individuals can be attributed to population differences. However, we find few genes that are systematically differentially expressed among populations. Of this population-specific variation, 75.5% is due to expression rather than splicing variability, and we find few genes with strong evidence for differential splicing across populations. Allelic expression analyses indicate that previously mapped common regulatory variants identified in eight populations from the International Haplotype Map Phase 3 project have similar effects in our seven sampled HGDP populations, suggesting that the cellular effects of common variants are shared across diverse populations. Together, these results provide a resource for studies analyzing functional differences across populations by estimating the degree of shared gene expression, alternative splicing, and regulatory genetics

  4. An OSI architecture for the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Heuser, W. R.

    1992-01-01

    This article presents an Open Systems Interconnection (OSI) architecture developed for the Deep Space Network. An historical review is provided to establish the context for current United States Government policy on interprocessor communication standards. An introduction to the OSI architecture, its seven-layer approach, and an overview of application service entities are furnished as a tutorial. Finally, the results of a prototype system developed for monitor and control of a Deep Space Station are also presented.

  5. Architectural and Markovian factors of echo state networks.

    PubMed

    Gallicchio, Claudio; Micheli, Alessio

    2011-06-01

    Echo State Networks (ESNs) constitute an emerging approach for efficiently modeling Recurrent Neural Networks (RNNs). In this paper we investigate some of the main aspects that can be accounted for the success and limitations of this class of models. In particular, we propose complementary classes of factors related to contractivity and architecture of reservoirs and we study their relative relevance. First, we show the existence of a class of tasks for which ESN performance is independent of the architectural design. The effect of the Markovian factor, characterizing a significant class within these cases, is shown by introducing instances of easy/hard tasks for ESNs featured by contractivity of reservoir dynamics. In the complementary cases, for which architectural design is effective, we investigate and decompose the aspects of network design that allow a larger reservoir to progressively improve the predictive performance. In particular, we introduce four key architectural factors: input variability, multiple time-scales dynamics, non-linear interactions among units and regression in an augmented feature space. To investigate the quantitative effects of the different architectural factors within this class of tasks successfully approached by ESNs, variants of the basic ESN model are proposed and tested on instances of datasets of different nature and difficulty. Experimental evidences confirm the role of the Markovian factor and show that all the identified key architectural factors have a major role in determining ESN performances.

  6. Neural network based architectures for aerospace applications

    NASA Technical Reports Server (NTRS)

    Ricart, Richard

    1987-01-01

    A brief history of the field of neural networks research is given and some simple concepts are described. In addition, some neural network based avionics research and development programs are reviewed. The need for the United States Air Force and NASA to assume a leadership role in supporting this technology is stressed.

  7. Hierarchical sensor network architecture for stationary smart node supervision

    NASA Astrophysics Data System (ADS)

    Jin, Ming-Hui; Wu, Wen-Jong; Chen, Chun-Kuang; Chen, Yih-Fan; Wen, Chih-Min; Kao, Cheng-Yan; Yu, Shih-An; Lin, Yun-Han; Huang, Jhen-Gang; Rao, Herman; Hsu, Ching-Hsiang; Lee, Chih-Kung

    2004-07-01

    Most wireless sensor networks base their design on an ad hoc (multi-hop) network technology that focus on organizing and maintaining a network formed by a group of moving objects with a communication device in an area with no fixed base stations or access points. Although ad hoc network technologies are capable of constructing a sensor network, the design and implementation of sensor networks for monitoring stationary nodes such as construction sites and nature-disaster-prone areas can be furthered simplified to reduce power consumption and overhead. Based on the nature of immobile nodes, a hierarchical sensor network architecture and its associated communication protocols are proposed in this paper. In this proposed architecture, most elements in the sensor network are designed to be equipped with no functions for message forwarding or channel scheduling. The local control center uses a centralized communication protocol to communicate with each sensor node. The local control center can also use ad hoc network technology to relay the data between each of the sensors. This approach not only minimizes the complexity of the sensor nodes implemented but also significantly reduces the cost, size and power consumption of each sensor node. In addition, the benefit of using ad-hoc network technology is that the local controller retains its routing capabilities. Therefore, power efficiency and communication reliability can be both achieved and maximized by this type of hierarchical sensor network.

  8. On-board processing satellite network architecture and control study

    NASA Technical Reports Server (NTRS)

    Campanella, S. Joseph; Pontano, Benjamin A.; Chalmers, Harvey

    1987-01-01

    The market for telecommunications services needs to be segmented into user classes having similar transmission requirements and hence similar network architectures. Use of the following transmission architecture was considered: satellite switched TDMA; TDMA up, TDM down; scanning (hopping) beam TDMA; FDMA up, TDM down; satellite switched MF/TDMA; and switching Hub earth stations with double hop transmission. A candidate network architecture will be selected that: comprises multiple access subnetworks optimized for each user; interconnects the subnetworks by means of a baseband processor; and optimizes the marriage of interconnection and access techniques. An overall network control architecture will be provided that will serve the needs of the baseband and satellite switched RF interconnected subnetworks. The results of the studies shall be used to identify elements of network architecture and control that require the greatest degree of technology development to realize an operational system. This will be specified in terms of: requirements of the enabling technology; difference from the current available technology; and estimate of the development requirements needed to achieve an operational system. The results obtained for each of these tasks are presented.

  9. Convolutional neural network architectures for predicting DNA–protein binding

    PubMed Central

    Zeng, Haoyang; Edwards, Matthew D.; Liu, Ge; Gifford, David K.

    2016-01-01

    Motivation: Convolutional neural networks (CNN) have outperformed conventional methods in modeling the sequence specificity of DNA–protein binding. Yet inappropriate CNN architectures can yield poorer performance than simpler models. Thus an in-depth understanding of how to match CNN architecture to a given task is needed to fully harness the power of CNNs for computational biology applications. Results: We present a systematic exploration of CNN architectures for predicting DNA sequence binding using a large compendium of transcription factor datasets. We identify the best-performing architectures by varying CNN width, depth and pooling designs. We find that adding convolutional kernels to a network is important for motif-based tasks. We show the benefits of CNNs in learning rich higher-order sequence features, such as secondary motifs and local sequence context, by comparing network performance on multiple modeling tasks ranging in difficulty. We also demonstrate how careful construction of sequence benchmark datasets, using approaches that control potentially confounding effects like positional or motif strength bias, is critical in making fair comparisons between competing methods. We explore how to establish the sufficiency of training data for these learning tasks, and we have created a flexible cloud-based framework that permits the rapid exploration of alternative neural network architectures for problems in computational biology. Availability and Implementation: All the models analyzed are available at http://cnn.csail.mit.edu. Contact: gifford@mit.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307608

  10. Power, Avionics and Software Communication Network Architecture

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Sands, Obed S.; Bakula, Casey J.; Oldham, Daniel R.; Wright, Ted; Bradish, Martin A.; Klebau, Joseph M.

    2014-01-01

    This document describes the communication architecture for the Power, Avionics and Software (PAS) 2.0 subsystem for the Advanced Extravehicular Mobile Unit (AEMU). The following systems are described in detail: Caution Warn- ing and Control System, Informatics, Storage, Video, Audio, Communication, and Monitoring Test and Validation. This document also provides some background as well as the purpose and goals of the PAS project at Glenn Research Center (GRC).

  11. Future Service Adaptive Access/Aggregation Network Architecture

    NASA Astrophysics Data System (ADS)

    Ikeda, Hiroki; Takeshita, Hidetoshi; Okamoto, Satoru

    The emergence of new services in the cloud computing era has made smooth service migration an important issue in access networks. However, different types of equipment are typically used for the different services due to differences in service requirements. This leads to an increase in not only capital expenditures but also operational expenditures. Here we propose using a service adaptive approach as a solution to this problem. We analyze the requirements of a future access network in terms of service, network, and node. We discuss available access network technologies including the passive optical network, single star network. Finally, we present a future service adaptive access/aggregation network and its architecture along with a programmable optical line terminal and optical network unit, discuss its benefit, and describe example services that it would support.

  12. Computational discovery of gene modules and regulatory networks.

    PubMed

    Bar-Joseph, Ziv; Gerber, Georg K; Lee, Tong Ihn; Rinaldi, Nicola J; Yoo, Jane Y; Robert, François; Gordon, D Benjamin; Fraenkel, Ernest; Jaakkola, Tommi S; Young, Richard A; Gifford, David K

    2003-11-01

    We describe an algorithm for discovering regulatory networks of gene modules, GRAM (Genetic Regulatory Modules), that combines information from genome-wide location and expression data sets. A gene module is defined as a set of coexpressed genes to which the same set of transcription factors binds. Unlike previous approaches that relied primarily on functional information from expression data, the GRAM algorithm explicitly links genes to the factors that regulate them by incorporating DNA binding data, which provide direct physical evidence of regulatory interactions. We use the GRAM algorithm to describe a genome-wide regulatory network in Saccharomyces cerevisiae using binding information for 106 transcription factors profiled in rich medium conditions data from over 500 expression experiments. We also present a genome-wide location analysis data set for regulators in yeast cells treated with rapamycin, and use the GRAM algorithm to provide biological insights into this regulatory network

  13. Nitrogen modulation of legume root architecture signaling pathways involves phytohormones and small regulatory molecules.

    PubMed

    Mohd-Radzman, Nadiatul A; Djordjevic, Michael A; Imin, Nijat

    2013-01-01

    Nitrogen, particularly nitrate is an important yield determinant for crops. However, current agricultural practice with excessive fertilizer usage has detrimental effects on the environment. Therefore, legumes have been suggested as a sustainable alternative for replenishing soil nitrogen. Legumes can uniquely form nitrogen-fixing nodules through symbiotic interaction with specialized soil bacteria. Legumes possess a highly plastic root system which modulates its architecture according to the nitrogen availability in the soil. Understanding how legumes regulate root development in response to nitrogen availability is an important step to improving root architecture. The nitrogen-mediated root development pathway starts with sensing soil nitrogen level followed by subsequent signal transduction pathways involving phytohormones, microRNAs and regulatory peptides that collectively modulate the growth and shape of the root system. This review focuses on the current understanding of nitrogen-mediated legume root architecture including local and systemic regulations by different N-sources and the modulations by phytohormones and small regulatory molecules.

  14. Network architectures in support of digital subscriber line (DSL) deployment

    NASA Astrophysics Data System (ADS)

    Peuch, Bruno

    1998-09-01

    DSL technology enables very high bandwidth transmission in a point-to-point fashion from a customer's premises to a central office (CO), wiring center, or other logical point of traffic aggregation. Unlike many technologies that enable broadband Internet access, DSL technology does not determine a specific architecture to be deployed at either the customer's premises or in the service/access provider's network. In fact, DSL technology can be used in conjunction with a variety of network architectures. While being agnostic regarding to higher-layer protocols, there are still several critical 'protocol specific' issues that need to be addressed when deploying DSL as a solution for IP (Internet/intrAnet) access. This paper will address these issues and present a range of network architectures that incorporate DSL technology. This paper will only focus on those architectures that enable IP access. These architectures are divided into three categories: Traditional Dialled Model (TDM), frame-based (Frame Relay/Ethernet), and cell-based (ATM).

  15. Hubs of Anticorrelation in High-Resolution Resting-State Functional Connectivity Network Architecture.

    PubMed

    Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Cabanban, Romeo; Crosson, Bruce A

    2015-06-01

    A major focus of brain research recently has been to map the resting-state functional connectivity (rsFC) network architecture of the normal brain and pathology through functional magnetic resonance imaging. However, the phenomenon of anticorrelations in resting-state signals between different brain regions has not been adequately examined. The preponderance of studies on resting-state fMRI (rsFMRI) have either ignored anticorrelations in rsFC networks or adopted methods in data analysis, which have rendered anticorrelations in rsFC networks uninterpretable. The few studies that have examined anticorrelations in rsFC networks using conventional methods have found anticorrelations to be weak in strength and not very reproducible across subjects. Anticorrelations in rsFC network architecture could reflect mechanisms that subserve a number of important brain processes. In this preliminary study, we examined the properties of anticorrelated rsFC networks by systematically focusing on negative cross-correlation coefficients (CCs) among rsFMRI voxel time series across the brain with graph theory-based network analysis. A number of methods were implemented to enhance the neuronal specificity of resting-state functional connections that yield negative CCs, although at the cost of decreased sensitivity. Hubs of anticorrelation were seen in a number of cortical and subcortical brain regions. Examination of the anticorrelation maps of these hubs indicated that negative CCs in rsFC network architecture highlight a number of regulatory interactions between brain networks and regions, including reciprocal modulations, suppression, inhibition, and neurofeedback.

  16. DIVE: a scaleable network architecture for distributed virtual environments

    NASA Astrophysics Data System (ADS)

    Frécon, Emmanuel; Stenius, Mårten

    1998-09-01

    We introduce the network software architecture of the distributed interactive virtual environment platform. The platform is designed to scale with a large number of simultaneous participants, while ensuring maximum interaction at each site. Scalability is achieved by making extensive use of multicast techniques and by partitioning the virtual space into smaller regions. We also present an application-level backbone that can connect islands of multicast-aware networks together.

  17. An OSI architecture for the deep space network

    NASA Technical Reports Server (NTRS)

    Heuser, W. Randy; Cooper, Lynne P.

    1993-01-01

    The flexibility and robustness of a monitor and control system are a direct result of the underlying inter-processor communications architecture. A new architecture for monitor & Control at the Deep Space Network Communications Complexes has been developed based on the Open System Interconnection (OSI) standards. The suitability of OSI standards for DSN M&C has been proven in the laboratory. The laboratory success has resulted in choosing an OSI-based architecture for DSS-13 M&C. DSS-13 is the DSN experimental station and is not part of the 'operational' DSN; it's role is to provide an environment to test new communications concepts can be tested and conduct unique science experiments. Therefore, DSS-13 must be robust enough to support operational activities, while also being flexible enough to enable experimentation. This paper describes the M&C architecture developed for DSS-13 and the results from system and operational testing.

  18. Biologically relevant neural network architectures for support vector machines.

    PubMed

    Jändel, Magnus

    2014-01-01

    Neural network architectures that implement support vector machines (SVM) are investigated for the purpose of modeling perceptual one-shot learning in biological organisms. A family of SVM algorithms including variants of maximum margin, 1-norm, 2-norm and ν-SVM is considered. SVM training rules adapted for neural computation are derived. It is found that competitive queuing memory (CQM) is ideal for storing and retrieving support vectors. Several different CQM-based neural architectures are examined for each SVM algorithm. Although most of the sixty-four scanned architectures are unconvincing for biological modeling four feasible candidates are found. The seemingly complex learning rule of a full ν-SVM implementation finds a particularly simple and natural implementation in bisymmetric architectures. Since CQM-like neural structures are thought to encode skilled action sequences and bisymmetry is ubiquitous in motor systems it is speculated that trainable pattern recognition in low-level perception has evolved as an internalized motor programme.

  19. Network control architecture for solid state lighting

    NASA Astrophysics Data System (ADS)

    Ducharme, Alfred D.; Morgan, Fritz

    2001-12-01

    At the current time most of the attention in the solid-state lighting field has been placed on the blue and white light emitting diodes (LEDs). It has and will continue to be extremely important to concentrate on increasing the efficiencies of these devices. However, one of the most overlooked benefits of LEDs is that they are intrinsically simple to control. In this paper, the authors will discuss a technology that is currently being developed to enable fixtures incorporating LED light engines to be connected to a digital lighting network. A description of such a network enabling device and the results from a technology demonstration of a prototype system are provided.

  20. A fraud management system architecture for next-generation networks.

    PubMed

    Bihina Bella, M A; Eloff, J H P; Olivier, M S

    2009-03-10

    This paper proposes an original architecture for a fraud management system (FMS) for convergent. Next-generation networks (NGNs), which are based on the Internet protocol (IP). The architecture has the potential to satisfy the requirements of flexibility and application-independency for effective fraud detection in NGNs that cannot be met by traditional FMSs. The proposed architecture has a thorough four-stage detection process that analyses billing records in IP detail record (IPDR) format - an emerging IP-based billing standard - for signs of fraud. Its key feature is its usage of neural networks in the form of self-organising maps (SOMs) to help uncover unknown NGN fraud scenarios. A prototype was implemented to test the effectiveness of using a SOM for fraud detection and is also described in the paper.

  1. MANET: tracing evolution of protein architecture in metabolic networks

    PubMed Central

    Kim, Hee Shin; Mittenthal, Jay E; Caetano-Anollés, Gustavo

    2006-01-01

    Background Cellular metabolism can be characterized by networks of enzymatic reactions and transport processes capable of supporting cellular life. Our aim is to find evolutionary patterns and processes embedded in the architecture and function of modern metabolism, using information derived from structural genomics. Description The Molecular Ancestry Network (MANET) project traces evolution of protein architecture in biomolecular networks. We describe metabolic MANET, a database that links information in the Structural Classification of Proteins (SCOP), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and phylogenetic reconstructions depicting the evolution of protein fold architecture. Metabolic MANET literally 'paints' the ancestries of enzymes derived from rooted phylogenomic trees directly onto over one hundred metabolic subnetworks, enabling the study of evolutionary patterns at global and local levels. An initial analysis of painted subnetworks reveals widespread enzymatic recruitment and an early origin of amino acid metabolism. Conclusion MANET maps evolutionary relationships directly and globally onto biological networks, and can generate and test hypotheses related to evolution of metabolism. We anticipate its use in the study of other networks, such as signaling and other protein-protein interaction networks. PMID:16854231

  2. Integrated network architecture for sustained human and robotic exploration

    NASA Technical Reports Server (NTRS)

    Noreen, Gary K.; Cesarone, Robert; Deutsch, Leslie; Edwards, Charlie; Soloff, Jason; Ely, Todd; Cook, Brian; Morabito, David; Hemmati, Hamid; Piazzolla, Sabino; Hastrup, Rolf; Abraham, Douglas

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate is planning a series of human and robotic missions to the Earth's moon and to Mars. These missions will require telecommunication and navigation services. This paper sets forth presumed requirements for such services and presents strawman lunar and Mars telecommunications network architectures to satisfy the presumed requirements.

  3. Large-Scale Networked Virtual Environments: Architecture and Applications

    ERIC Educational Resources Information Center

    Lamotte, Wim; Quax, Peter; Flerackers, Eddy

    2008-01-01

    Purpose: Scalability is an important research topic in the context of networked virtual environments (NVEs). This paper aims to describe the ALVIC (Architecture for Large-scale Virtual Interactive Communities) approach to NVE scalability. Design/methodology/approach: The setup and results from two case studies are shown: a 3-D learning environment…

  4. Convergence Analysis of a Cascade Architecture Neural Network

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A.; Stubberub, Allen R.; Daud, Taher; Thakoor, Anil

    1997-01-01

    In this paper, we present a mathematical foundation, including a convergence analysis, for cascading architecture neural networks. From this, a mathematical foundation for the casade correlation learning algorithm can also be found. Furthermore, it becomes apparent that the cascade correlation scheme is a special case of an efficient hardware learning algorithm called Cascade Error Projection.

  5. A neural-network architecture for syntax analysis.

    PubMed

    Chen, C H; Honavar, V

    1999-01-01

    Artificial neural networks (ANN's), due to their inherent parallelism, offer an attractive paradigm for implementation of symbol processing systems for applications in computer science and artificial intelligence. This paper explores systematic synthesis of modular neural-network architectures for syntax analysis using a prespecified grammar--a prototypical symbol processing task which finds applications in programming language interpretation, syntax analysis of symbolic expressions, and high-performance compilers. The proposed architecture is assembled from ANN components for lexical analysis, stack, parsing and parse tree construction. Each of these modules takes advantage of parallel content-based pattern matching using a neural associative memory. The proposed neural-network architecture for syntax analysis provides a relatively efficient and high performance alternative to current computer systems for applications that involve parsing of LR grammars which constitute a widely used subset of deterministic context-free grammars. Comparison of quantitatively estimated performance of such a system [implemented using current CMOS very large scale integration (VLSI) technology] with that of conventional computers demonstrates the benefits of massively parallel neural-network architectures for symbol processing applications. PMID:18252507

  6. The network motif architecture of dominance hierarchies.

    PubMed

    Shizuka, Daizaburo; McDonald, David B

    2015-04-01

    The widespread existence of dominance hierarchies has been a central puzzle in social evolution, yet we lack a framework for synthesizing the vast empirical data on hierarchy structure in animal groups. We applied network motif analysis to compare the structures of dominance networks from data published over the past 80 years. Overall patterns of dominance relations, including some aspects of non-interactions, were strikingly similar across disparate group types. For example, nearly all groups exhibited high frequencies of transitive triads, whereas cycles were very rare. Moreover, pass-along triads were rare, and double-dominant triads were common in most groups. These patterns did not vary in any systematic way across taxa, study settings (captive or wild) or group size. Two factors significantly affected network motif structure: the proportion of dyads that were observed to interact and the interaction rates of the top-ranked individuals. Thus, study design (i.e. how many interactions were observed) and the behaviour of key individuals in the group could explain much of the variations we see in social hierarchies across animals. Our findings confirm the ubiquity of dominance hierarchies across all animal systems, and demonstrate that network analysis provides new avenues for comparative analyses of social hierarchies. PMID:25762649

  7. The network motif architecture of dominance hierarchies.

    PubMed

    Shizuka, Daizaburo; McDonald, David B

    2015-04-01

    The widespread existence of dominance hierarchies has been a central puzzle in social evolution, yet we lack a framework for synthesizing the vast empirical data on hierarchy structure in animal groups. We applied network motif analysis to compare the structures of dominance networks from data published over the past 80 years. Overall patterns of dominance relations, including some aspects of non-interactions, were strikingly similar across disparate group types. For example, nearly all groups exhibited high frequencies of transitive triads, whereas cycles were very rare. Moreover, pass-along triads were rare, and double-dominant triads were common in most groups. These patterns did not vary in any systematic way across taxa, study settings (captive or wild) or group size. Two factors significantly affected network motif structure: the proportion of dyads that were observed to interact and the interaction rates of the top-ranked individuals. Thus, study design (i.e. how many interactions were observed) and the behaviour of key individuals in the group could explain much of the variations we see in social hierarchies across animals. Our findings confirm the ubiquity of dominance hierarchies across all animal systems, and demonstrate that network analysis provides new avenues for comparative analyses of social hierarchies.

  8. Electricity distribution networks: Changing regulatory approaches

    NASA Astrophysics Data System (ADS)

    Cambini, Carlo

    2016-09-01

    Increasing the penetration of distributed generation and smart grid technologies requires substantial investments. A study proposes an innovative approach that combines four regulatory tools to provide economic incentives for distribution system operators to facilitate these innovative practices.

  9. What explains regulatory failure? Analysing the architecture of health care regulation in two Indian states.

    PubMed

    Sheikh, Kabir; Saligram, Prasanna S; Hort, Krishna

    2015-02-01

    Regulating health care is a pre-eminent policy challenge in many low- and middle-income countries (LMIC), particularly those with a strong private health sector. Yet, the regulatory approaches instituted in these countries have often been reported to be ineffective-India being exemplary. There is limited empirical research on the architecture and processes of health care regulation in LMIC that would explain these regulatory failures. We undertook a research study in two Indian states, with the aims of (1) mapping the organizations engaged with, and the written policies focused on health care regulation, (2) identifying gaps in the design and implementation of policies for health care regulation and (3) investigating underlying reasons for the identified gaps. We adopted a stepped research approach and applied a framework of basic regulatory functions for health care, to assess prevailing gaps in policy design and implementation. Qualitative research methods were employed including in-depth interviews with 32 representatives of regulatory organizations and document review. Several gaps in policy design were observed across both states, with a number of basic regulatory functions not underwritten in law, nor assigned to a regulatory organization to enact. In some instances the contents of regulatory policies had been weakened or diluted, rendering them less effective. Implementation gaps were also extensively reported in both states. Regulatory gaps were underpinned by human resource constraints, ambivalence in the roles of regulatory organizations, ineffective co-ordination between regulatory groups and extensive contestation of regulatory policies by private stakeholders. The findings are instructive that prevailing arrangements for health care regulation are ill equipped to enact several basic functions, and further that the performance of regulatory organizations is subject to pressures and distortions similar to those characterizing the wider health system

  10. Mapping the Regulatory Network for Salmonella enterica Serovar Typhimurium Invasion

    PubMed Central

    Smith, Carol; Stringer, Anne M.; Mao, Chunhong; Palumbo, Michael J.

    2016-01-01

    ABSTRACT Salmonella enterica pathogenicity island 1 (SPI-1) encodes proteins required for invasion of gut epithelial cells. The timing of invasion is tightly controlled by a complex regulatory network. The transcription factor (TF) HilD is the master regulator of this process and senses environmental signals associated with invasion. HilD activates transcription of genes within and outside SPI-1, including six other TFs. Thus, the transcriptional program associated with host cell invasion is controlled by at least 7 TFs. However, very few of the regulatory targets are known for these TFs, and the extent of the regulatory network is unclear. In this study, we used complementary genomic approaches to map the direct regulatory targets of all 7 TFs. Our data reveal a highly complex and interconnected network that includes many previously undescribed regulatory targets. Moreover, the network extends well beyond the 7 TFs, due to the inclusion of many additional TFs and noncoding RNAs. By comparing gene expression profiles of regulatory targets for the 7 TFs, we identified many uncharacterized genes that are likely to play direct roles in invasion. We also uncovered cross talk between SPI-1 regulation and other regulatory pathways, which, in turn, identified gene clusters that likely share related functions. Our data are freely available through an intuitive online browser and represent a valuable resource for the bacterial research community. PMID:27601571

  11. Robust Networking Architecture and Secure Communication Scheme for Heterogeneous Wireless Sensor Networks

    ERIC Educational Resources Information Center

    McNeal, McKenzie, III.

    2012-01-01

    Current networking architectures and communication protocols used for Wireless Sensor Networks (WSNs) have been designed to be energy efficient, low latency, and long network lifetime. One major issue that must be addressed is the security in data communication. Due to the limited capabilities of low cost and small sized sensor nodes, designing…

  12. Changes in cis-regulatory elements of a key floral regulator are associated with divergence of inflorescence architectures.

    PubMed

    Kusters, Elske; Della Pina, Serena; Castel, Rob; Souer, Erik; Koes, Ronald

    2015-08-15

    Higher plant species diverged extensively with regard to the moment (flowering time) and position (inflorescence architecture) at which flowers are formed. This seems largely caused by variation in the expression patterns of conserved genes that specify floral meristem identity (FMI), rather than changes in the encoded proteins. Here, we report a functional comparison of the promoters of homologous FMI genes from Arabidopsis, petunia, tomato and Antirrhinum. Analysis of promoter-reporter constructs in petunia and Arabidopsis, as well as complementation experiments, showed that the divergent expression of leafy (LFY) and the petunia homolog aberrant leaf and flower (ALF) results from alterations in the upstream regulatory network rather than cis-regulatory changes. The divergent expression of unusual floral organs (UFO) from Arabidopsis, and the petunia homolog double top (DOT), however, is caused by the loss or gain of cis-regulatory promoter elements, which respond to trans-acting factors that are expressed in similar patterns in both species. Introduction of pUFO:UFO causes no obvious defects in Arabidopsis, but in petunia it causes the precocious and ectopic formation of flowers. This provides an example of how a change in a cis-regulatory region can account for a change in the plant body plan. PMID:26220938

  13. Changes in cis-regulatory elements of a key floral regulator are associated with divergence of inflorescence architectures.

    PubMed

    Kusters, Elske; Della Pina, Serena; Castel, Rob; Souer, Erik; Koes, Ronald

    2015-08-15

    Higher plant species diverged extensively with regard to the moment (flowering time) and position (inflorescence architecture) at which flowers are formed. This seems largely caused by variation in the expression patterns of conserved genes that specify floral meristem identity (FMI), rather than changes in the encoded proteins. Here, we report a functional comparison of the promoters of homologous FMI genes from Arabidopsis, petunia, tomato and Antirrhinum. Analysis of promoter-reporter constructs in petunia and Arabidopsis, as well as complementation experiments, showed that the divergent expression of leafy (LFY) and the petunia homolog aberrant leaf and flower (ALF) results from alterations in the upstream regulatory network rather than cis-regulatory changes. The divergent expression of unusual floral organs (UFO) from Arabidopsis, and the petunia homolog double top (DOT), however, is caused by the loss or gain of cis-regulatory promoter elements, which respond to trans-acting factors that are expressed in similar patterns in both species. Introduction of pUFO:UFO causes no obvious defects in Arabidopsis, but in petunia it causes the precocious and ectopic formation of flowers. This provides an example of how a change in a cis-regulatory region can account for a change in the plant body plan.

  14. Building and measuring a high performance network architecture

    SciTech Connect

    Kramer, William T.C.; Toole, Timothy; Fisher, Chuck; Dugan, Jon; Wheeler, David; Wing, William R; Nickless, William; Goddard, Gregory; Corbato, Steven; Love, E. Paul; Daspit, Paul; Edwards, Hal; Mercer, Linden; Koester, David; Decina, Basil; Dart, Eli; Paul Reisinger, Paul; Kurihara, Riki; Zekauskas, Matthew J; Plesset, Eric; Wulf, Julie; Luce, Douglas; Rogers, James; Duncan, Rex; Mauth, Jeffery

    2001-04-20

    Once a year, the SC conferences present a unique opportunity to create and build one of the most complex and highest performance networks in the world. At SC2000, large-scale and complex local and wide area networking connections were demonstrated, including large-scale distributed applications running on different architectures. This project was designed to use the unique opportunity presented at SC2000 to create a testbed network environment and then use that network to demonstrate and evaluate high performance computational and communication applications. This testbed was designed to incorporate many interoperable systems and services and was designed for measurement from the very beginning. The end results were key insights into how to use novel, high performance networking technologies and to accumulate measurements that will give insights into the networks of the future.

  15. Strong associations between microbe phenotypes and their network architecture

    NASA Astrophysics Data System (ADS)

    Roy, Soumen; Filkov, Vladimir

    2009-10-01

    Understanding the dependence and interplay between architecture and function in biological networks has great relevance to disease progression, biological fabrication, and biological systems in general. We propose methods to assess the association of various microbe characteristics and phenotypes with the topology of their networks. We adopt an automated approach to characterize metabolic networks of 32 microbial species using 11 topological metrics from complex networks. Clustering allows us to extract the indispensable, independent, and informative metrics. Using hierarchical linear modeling, we identify relevant subgroups of these metrics and establish that they associate with microbial phenotypes surprisingly well. This work can serve as a stepping stone to cataloging biologically relevant topological properties of networks and toward better modeling of phenotypes. The methods we use can also be applied to networks from other disciplines.

  16. Neural network architectures to analyze OPAD data

    NASA Technical Reports Server (NTRS)

    Whitaker, Kevin W.

    1992-01-01

    A prototype Optical Plume Anomaly Detection (OPAD) system is now installed on the space shuttle main engine (SSME) Technology Test Bed (TTB) at MSFC. The OPAD system requirements dictate the need for fast, efficient data processing techniques. To address this need of the OPAD system, a study was conducted into how artificial neural networks could be used to assist in the analysis of plume spectral data.

  17. The development of brain network architecture.

    PubMed

    Wierenga, Lara M; van den Heuvel, Martijn P; van Dijk, Sarai; Rijks, Yvonne; de Reus, Marcel A; Durston, Sarah

    2016-02-01

    Brain connectivity shows protracted development throughout childhood and adolescence, and, as such, the topology of brain networks changes during this period. The complexity of these changes with development is reflected by regional differences in maturation. This study explored age-related changes in network topology and regional developmental patterns during childhood and adolescence. We acquired two sets of Diffusion Weighted Imaging-scans and anatomical T1-weighted scans. The first dataset included 85 typically developing individuals (53 males; 32 females), aged between 7 and 23 years and was acquired on a Philips Achieva 1.5 Tesla scanner. A second dataset (N = 38) was acquired on a different (but identical) 1.5 T scanner and was used for independent replication of our results. We reconstructed whole brain networks using tractography. We operationalized fiber tract development as changes in mean diffusivity and radial diffusivity with age. Most fibers showed maturational changes in mean and radial diffusivity values throughout childhood and adolescence, likely reflecting increasing white matter integrity. The largest age-related changes were observed in association fibers within and between the frontal and parietal lobes. Furthermore, there was a simultaneous age-related decrease in average path length (P < 0.0001), increase in node strength (P < 0.0001) as well as network clustering (P = 0.001), which may reflect fine-tuning of topological organization. These results suggest a sequential maturational model where connections between unimodal regions strengthen in childhood, followed by connections from these unimodal regions to association regions, while adolescence is characterized by the strengthening of connections between association regions within the frontal and parietal cortex. Hum Brain Mapp 37:717-729, 2016. © 2015 Wiley Periodicals, Inc.

  18. High-speed parallel-processing networks for advanced architectures

    SciTech Connect

    Morgan, D.R.

    1988-06-01

    This paper describes various parallel-processing architecture networks that are candidates for eventual airborne use. An attempt at projecting which type of network is suitable or optimum for specific metafunction or stand-alone applications is made. However, specific algorithms will need to be developed and bench marks executed before firm conclusions can be drawn. Also, a conceptual projection of how these processors can be built in small, flyable units through the use of wafer-scale integration is offered. The use of the PAVE PILLAR system architecture to provide system level support for these tightly coupled networks is described. The author concludes that: (1) extremely high processing speeds implemented in flyable hardware is possible through parallel-processing networks if development programs are pursued; (2) dramatic speed enhancements through parallel processing requires an excellent match between the algorithm and computer-network architecture; (3) matching several high speed parallel oriented algorithms across the aircraft system to a limited set of hardware modules may be the most cost-effective approach to achieving speed enhancements; and (4) software-development tools and improved operating systems will need to be developed to support efficient parallel-processor use.

  19. An optimization methodology for neural network weights and architectures.

    PubMed

    Ludermir, Teresa B; Yamazaki, Akio; Zanchettin, Cleber

    2006-11-01

    This paper introduces a methodology for neural network global optimization. The aim is the simultaneous optimization of multilayer perceptron (MLP) network weights and architectures, in order to generate topologies with few connections and high classification performance for any data sets. The approach combines the advantages of simulated annealing, tabu search and the backpropagation training algorithm in order to generate an automatic process for producing networks with high classification performance and low complexity. Experimental results obtained with four classification problems and one prediction problem has shown to be better than those obtained by the most commonly used optimization techniques.

  20. Towards a predictive theory for genetic regulatory networks

    NASA Astrophysics Data System (ADS)

    Tkacik, Gasper

    When cells respond to changes in the environment by regulating the expression levels of their genes, we often draw parallels between these biological processes and engineered information processing systems. One can go beyond this qualitative analogy, however, by analyzing information transmission in biochemical ``hardware'' using Shannon's information theory. Here, gene regulation is viewed as a transmission channel operating under restrictive constraints set by the resource costs and intracellular noise. We present a series of results demonstrating that a theory of information transmission in genetic regulatory circuits feasibly yields non-trivial, testable predictions. These predictions concern strategies by which individual gene regulatory elements, e.g., promoters or enhancers, read out their signals; as well as strategies by which small networks of genes, independently or in spatially coupled settings, respond to their inputs. These predictions can be quantitatively compared to the known regulatory networks and their function, and can elucidate how reproducible biological processes, such as embryonic development, can be orchestrated by networks built out of noisy components. Preliminary successes in the gap gene network of the fruit fly Drosophila indicate that a full ab initio theoretical prediction of a regulatory network is possible, a feat that has not yet been achieved for any real regulatory network. We end by describing open challenges on the path towards such a prediction.

  1. Development of the network architecture of the Canadian MSAT system

    NASA Technical Reports Server (NTRS)

    Davies, N. George; Shoamanesh, Alireza; Leung, Victor C. M.

    1988-01-01

    A description is given of the present concept for the Canadian Mobile Satellite (MSAT) System and the development of the network architecture which will accommodate the planned family of three categories of service: a mobile radio service (MRS), a mobile telephone service (MTS), and a mobile data service (MDS). The MSAT satellite will have cross-strapped L-band and Ku-band transponders to provide communications services between L-band mobile terminals and fixed base stations supporting dispatcher-type MRS, gateway stations supporting MTS interconnections to the public telephone network, data hub stations supporting the MDS, and the network control center. The currently perceived centralized architecture with demand assignment multiple access for the circuit switched MRS, MTS and permanently assigned channels for the packet switched MDS is discussed.

  2. Neural network architecture for solving the algebraic matrix Riccati equation

    NASA Astrophysics Data System (ADS)

    Ham, Fredric M.; Collins, Emmanuel G.

    1996-03-01

    This paper presents a neurocomputing approach for solving the algebraic matrix Riccati equation. This approach is able to utilize a good initial condition to reduce the computation time in comparison to standard methods for solving the Riccati equation. The repeated solutions of closely related Riccati equations appears in homotopy algorithms to solve certain problems in fixed-architecture control. Hence, the new approach has the potential to significantly speed-up these algorithms. It also has potential applications in adaptive control. The structured neural network architecture is trained using error backpropagation based on a steepest-descent learning rule. An example is given which illustrates the advantage of utilizing a good initial condition (i.e., initial setting of the neural network synaptic weight matrix) in the structured neural network.

  3. Actin network architecture can determine myosin motor activity.

    PubMed

    Reymann, Anne-Cécile; Boujemaa-Paterski, Rajaa; Martiel, Jean-Louis; Guérin, Christophe; Cao, Wenxiang; Chin, Harvey F; De La Cruz, Enrique M; Théry, Manuel; Blanchoin, Laurent

    2012-06-01

    The organization of actin filaments into higher-ordered structures governs eukaryotic cell shape and movement. Global actin network size and architecture are maintained in a dynamic steady state through regulated assembly and disassembly. Here, we used experimentally defined actin structures in vitro to investigate how the activity of myosin motors depends on network architecture. Direct visualization of filaments revealed myosin-induced actin network deformation. During this reorganization, myosins selectively contracted and disassembled antiparallel actin structures, while parallel actin bundles remained unaffected. The local distribution of nucleation sites and the resulting orientation of actin filaments appeared to regulate the scalability of the contraction process. This "orientation selection" mechanism for selective contraction and disassembly suggests how the dynamics of the cellular actin cytoskeleton can be spatially controlled by actomyosin contractility.

  4. Time-Delayed Models of Gene Regulatory Networks

    PubMed Central

    Parmar, K.; Blyuss, K. B.; Kyrychko, Y. N.; Hogan, S. J.

    2015-01-01

    We discuss different mathematical models of gene regulatory networks as relevant to the onset and development of cancer. After discussion of alternative modelling approaches, we use a paradigmatic two-gene network to focus on the role played by time delays in the dynamics of gene regulatory networks. We contrast the dynamics of the reduced model arising in the limit of fast mRNA dynamics with that of the full model. The review concludes with the discussion of some open problems. PMID:26576197

  5. Phenotype accessibility and noise in random threshold gene regulatory networks.

    PubMed

    Pinho, Ricardo; Garcia, Victor; Feldman, Marcus W

    2014-01-01

    Evolution requires phenotypic variation in a population of organisms for selection to function. Gene regulatory processes involved in organismal development affect the phenotypic diversity of organisms. Since only a fraction of all possible phenotypes are predicted to be accessed by the end of development, organisms may evolve strategies to use environmental cues and noise-like fluctuations to produce additional phenotypic diversity, and hence to enhance the speed of adaptation. We used a generic model of organismal development --gene regulatory networks-- to investigate how different levels of noise on gene expression states (i.e. phenotypes) may affect access to new, unique phenotypes, thereby affecting phenotypic diversity. We studied additional strategies that organisms might adopt to attain larger phenotypic diversity: either by augmenting their genome or the number of gene expression states. This was done for different types of gene regulatory networks that allow for distinct levels of regulatory influence on gene expression or are more likely to give rise to stable phenotypes. We found that if gene expression is binary, increasing noise levels generally decreases phenotype accessibility for all network types studied. If more gene expression states are considered, noise can moderately enhance the speed of discovery if three or four gene expression states are allowed, and if there are enough distinct regulatory networks in the population. These results were independent of the network types analyzed, and were robust to different implementations of noise. Hence, for noise to increase the number of accessible phenotypes in gene regulatory networks, very specific conditions need to be satisfied. If the number of distinct regulatory networks involved in organismal development is large enough, and the acquisition of more genes or fine tuning of their expression states proves costly to the organism, noise can be useful in allowing access to more unique phenotypes

  6. Phenotype Accessibility and Noise in Random Threshold Gene Regulatory Networks

    PubMed Central

    Feldman, Marcus W.

    2015-01-01

    Evolution requires phenotypic variation in a population of organisms for selection to function. Gene regulatory processes involved in organismal development affect the phenotypic diversity of organisms. Since only a fraction of all possible phenotypes are predicted to be accessed by the end of development, organisms may evolve strategies to use environmental cues and noise-like fluctuations to produce additional phenotypic diversity, and hence to enhance the speed of adaptation. We used a generic model of organismal development --gene regulatory networks-- to investigate how different levels of noise on gene expression states (i.e. phenotypes) may affect access to new, unique phenotypes, thereby affecting phenotypic diversity. We studied additional strategies that organisms might adopt to attain larger phenotypic diversity: either by augmenting their genome or the number of gene expression states. This was done for different types of gene regulatory networks that allow for distinct levels of regulatory influence on gene expression or are more likely to give rise to stable phenotypes. We found that if gene expression is binary, increasing noise levels generally decreases phenotype accessibility for all network types studied. If more gene expression states are considered, noise can moderately enhance the speed of discovery if three or four gene expression states are allowed, and if there are enough distinct regulatory networks in the population. These results were independent of the network types analyzed, and were robust to different implementations of noise. Hence, for noise to increase the number of accessible phenotypes in gene regulatory networks, very specific conditions need to be satisfied. If the number of distinct regulatory networks involved in organismal development is large enough, and the acquisition of more genes or fine tuning of their expression states proves costly to the organism, noise can be useful in allowing access to more unique phenotypes

  7. Systems Approaches to Identifying Gene Regulatory Networks in Plants

    PubMed Central

    Long, Terri A.; Brady, Siobhan M.; Benfey, Philip N.

    2009-01-01

    Complex gene regulatory networks are composed of genes, noncoding RNAs, proteins, metabolites, and signaling components. The availability of genome-wide mutagenesis libraries; large-scale transcriptome, proteome, and metabalome data sets; and new high-throughput methods that uncover protein interactions underscores the need for mathematical modeling techniques that better enable scientists to synthesize these large amounts of information and to understand the properties of these biological systems. Systems biology approaches can allow researchers to move beyond a reductionist approach and to both integrate and comprehend the interactions of multiple components within these systems. Descriptive and mathematical models for gene regulatory networks can reveal emergent properties of these plant systems. This review highlights methods that researchers are using to obtain large-scale data sets, and examples of gene regulatory networks modeled with these data. Emergent properties revealed by the use of these network models and perspectives on the future of systems biology are discussed. PMID:18616425

  8. A Review of Modeling Techniques for Genetic Regulatory Networks

    PubMed Central

    Yaghoobi, Hanif; Haghipour, Siyamak; Hamzeiy, Hossein; Asadi-Khiavi, Masoud

    2012-01-01

    Understanding the genetic regulatory networks, the discovery of interactions between genes and understanding regulatory processes in a cell at the gene level are the major goals of system biology and computational biology. Modeling gene regulatory networks and describing the actions of the cells at the molecular level are used in medicine and molecular biology applications such as metabolic pathways and drug discovery. Modeling these networks is also one of the important issues in genomic signal processing. After the advent of microarray technology, it is possible to model these networks using time–series data. In this paper, we provide an extensive review of methods that have been used on time–series data and represent the features, advantages and disadvantages of each. Also, we classify these methods according to their nature. A parallel study of these methods can lead to the discovery of new synthetic methods or improve previous methods. PMID:23493097

  9. Network architecture in a converged optical + IP network

    NASA Astrophysics Data System (ADS)

    Wakim, Walid; Zottmann, Harald

    2012-01-01

    As demands on Provider Networks continue to grow at exponential rates, providers are forced to evaluate how to continue to grow the network while increasing service velocity, enhancing resiliency while decreasing the total cost of ownership (TCO). The bandwidth growth that networks are experiencing is in the form packet based multimedia services such as video, video conferencing, gaming, etc... mixed with Over the Top (OTT) content providers such as Netflix, and the customer's expectations that best effort is not enough you end up with a situation that forces the provider to analyze how to gain more out of the network with less cost. In this paper we will discuss changes in the network that are driving us to a tighter integration between packet and optical layers and how to improve on today's multi - layer inefficiencies to drive down network TCO and provide for a fully integrated and dynamic network that will decrease time to revenue.

  10. A fault-tolerant network architecture for integrated avionics

    NASA Technical Reports Server (NTRS)

    Butler, Bryan; Adams, Stuart

    1991-01-01

    The Army Fault-Tolerant Architecture (AFTA) under construction at the Charles Stark Draper Laboratory is an example of a highly integrated critical avionics system. The AFTA system must connect to other redundant and nonredundant systems, as well as to input/output devices. A fault-tolerant data bus (FTDB) is being developed to provide highly reliable communication between the AFTA computer and other network stations. The FTDB is being designed for Byzantine resilience and is probably capable of tolerating any single arbitrary fault. The author describes a prototype architecture for the fault-tolerant data bus.

  11. A network architecture for Petaflops supercomputers.

    SciTech Connect

    DeBenedictis, Erik P.

    2003-09-01

    If we are to build a supercomputer with a speed of 10{sup 15} floating operations per second (1 PetaFLOPS), interconnect technology will need to be improved considerably over what it is today. In this report, we explore one possible interconnect design for such a network. The guiding principle in this design is the optimization of all components for the finiteness of the speed of light. To achieve a linear speedup in time over well-tested supercomputers of todays' designs will require scaling up of processor power and bandwidth and scaling down of latency. Latency scaling is the most challenging: it requires a 100 ns user-to-user latency for messages traveling the full diameter of the machine. To meet this constraint requires simultaneously minimizing wire length through 3D packaging, new low-latency electrical signaling mechanisms, extremely fast routers, and new network interfaces. In this report, we outline approaches and implementations that will meet the requirements when implemented as a system. No technology breakthroughs are required.

  12. Efficient Reverse-Engineering of a Developmental Gene Regulatory Network

    PubMed Central

    Cicin-Sain, Damjan; Ashyraliyev, Maksat; Jaeger, Johannes

    2012-01-01

    Understanding the complex regulatory networks underlying development and evolution of multi-cellular organisms is a major problem in biology. Computational models can be used as tools to extract the regulatory structure and dynamics of such networks from gene expression data. This approach is called reverse engineering. It has been successfully applied to many gene networks in various biological systems. However, to reconstitute the structure and non-linear dynamics of a developmental gene network in its spatial context remains a considerable challenge. Here, we address this challenge using a case study: the gap gene network involved in segment determination during early development of Drosophila melanogaster. A major problem for reverse-engineering pattern-forming networks is the significant amount of time and effort required to acquire and quantify spatial gene expression data. We have developed a simplified data processing pipeline that considerably increases the throughput of the method, but results in data of reduced accuracy compared to those previously used for gap gene network inference. We demonstrate that we can infer the correct network structure using our reduced data set, and investigate minimal data requirements for successful reverse engineering. Our results show that timing and position of expression domain boundaries are the crucial features for determining regulatory network structure from data, while it is less important to precisely measure expression levels. Based on this, we define minimal data requirements for gap gene network inference. Our results demonstrate the feasibility of reverse-engineering with much reduced experimental effort. This enables more widespread use of the method in different developmental contexts and organisms. Such systematic application of data-driven models to real-world networks has enormous potential. Only the quantitative investigation of a large number of developmental gene regulatory networks will allow us to

  13. Motifs emerge from function in model gene regulatory networks

    PubMed Central

    Burda, Z.; Krzywicki, A.; Martin, O. C.; Zagorski, M.

    2011-01-01

    Gene regulatory networks allow the control of gene expression patterns in living cells. The study of network topology has revealed that certain subgraphs of interactions or “motifs” appear at anomalously high frequencies. We ask here whether this phenomenon may emerge because of the functions carried out by these networks. Given a framework for describing regulatory interactions and dynamics, we consider in the space of all regulatory networks those that have prescribed functional capabilities. Markov Chain Monte Carlo sampling is then used to determine how these functional networks lead to specific motif statistics in the interactions. In the case where the regulatory networks are constrained to exhibit multistability, we find a high frequency of gene pairs that are mutually inhibitory and self-activating. In contrast, networks constrained to have periodic gene expression patterns (mimicking for instance the cell cycle) have a high frequency of bifan-like motifs involving four genes with at least one activating and one inhibitory interaction. PMID:21960444

  14. Modular genetic regulatory networks increase organization during pattern formation.

    PubMed

    Mohamadlou, Hamid; Podgorski, Gregory J; Flann, Nicholas S

    2016-08-01

    Studies have shown that genetic regulatory networks (GRNs) consist of modules that are densely connected subnetworks that function quasi-autonomously. Modules may be recognized motifs that comprise of two or three genes with particular regulatory functions and connectivity or be purely structural and identified through connection density. It is unclear what evolutionary and developmental advantages modular structure and in particular motifs provide that have led to this enrichment. This study seeks to understand how modules within developmental GRNs influence the complexity of multicellular patterns that emerge from the dynamics of the regulatory networks. We apply an algorithmic complexity to measure the organization of the patterns. A computational study was performed by creating Boolean intracellular networks within a simulated epithelial field of embryonic cells, where each cell contains the same network and communicates with adjacent cells using contact-mediated signaling. Intracellular networks with random connectivity were compared to those with modular connectivity and with motifs. Results show that modularity effects network dynamics and pattern organization significantly. In particular: (1) modular connectivity alone increases complexity in network dynamics and patterns; (2) bistable switch motifs simplify both the pattern and network dynamics; (3) all other motifs with feedback loops increase multicellular pattern complexity while simplifying the network dynamics; (4) negative feedback loops affect the dynamics complexity more significantly than positive feedback loops.

  15. Architectural Exploration and Design Methodologies of Photonic Interconnection Networks

    NASA Astrophysics Data System (ADS)

    Chan, Jong Wu

    Photonic technology is becoming an increasingly attractive solution to the problems facing today's electronic chip-scale interconnection networks. Recent progress in silicon photonics research has enabled the demonstration of all the necessary optical building blocks for creating extremely high-bandwidth density and energy-efficient links for on- and off-chip communications. From the feasibility and architecture perspective however, photonics represents a dramatic paradigm shift from traditional electronic network designs due to fundamental differences in how electronics and photonics function and behave. As a result of these differences, new modeling and analysis methods must be employed in order to properly realize a functional photonic chip-scale interconnect design. In this work, we present a methodology for characterizing and modeling fundamental photonic building blocks which can subsequently be combined to form full photonic network architectures. We also describe a set of tools which can be utilized to assess the physical-layer and system-level performance properties of a photonic network. The models and tools are integrated in a novel open-source design and simulation environment called PhoenixSim. Next, we leverage PhoenixSim for the study of chip-scale photonic networks. We examine several photonic networks through the synergistic study of both physical-layer metrics and system-level metrics. This holistic analysis method enables us to provide deeper insight into architecture scalability since it considers insertion loss, crosstalk, and power dissipation. In addition to these novel physical-layer metrics, traditional system-level metrics of bandwidth and latency are also obtained. Lastly, we propose a novel routing architecture known as wavelength-selective spatial routing. This routing architecture is analogous to electronic virtual channels since it enables the transmission of multiple logical optical channels through a single physical plane (i.e. the

  16. Gene regulatory networks modelling using a dynamic evolutionary hybrid

    PubMed Central

    2010-01-01

    Background Inference of gene regulatory networks is a key goal in the quest for understanding fundamental cellular processes and revealing underlying relations among genes. With the availability of gene expression data, computational methods aiming at regulatory networks reconstruction are facing challenges posed by the data's high dimensionality, temporal dynamics or measurement noise. We propose an approach based on a novel multi-layer evolutionary trained neuro-fuzzy recurrent network (ENFRN) that is able to select potential regulators of target genes and describe their regulation type. Results The recurrent, self-organizing structure and evolutionary training of our network yield an optimized pool of regulatory relations, while its fuzzy nature avoids noise-related problems. Furthermore, we are able to assign scores for each regulation, highlighting the confidence in the retrieved relations. The approach was tested by applying it to several benchmark datasets of yeast, managing to acquire biologically validated relations among genes. Conclusions The results demonstrate the effectiveness of the ENFRN in retrieving biologically valid regulatory relations and providing meaningful insights for better understanding the dynamics of gene regulatory networks. The algorithms and methods described in this paper have been implemented in a Matlab toolbox and are available from: http://bioserver-1.bioacademy.gr/DataRepository/Project_ENFRN_GRN/. PMID:20298548

  17. Integrating non-coding RNAs in JAK-STAT regulatory networks.

    PubMed

    Witte, Steven; Muljo, Stefan A

    2014-01-01

    Being a well-characterized pathway, JAK-STAT signaling serves as a valuable paradigm for studying the architecture of gene regulatory networks. The discovery of untranslated or non-coding RNAs, namely microRNAs and long non-coding RNAs, provides an opportunity to elucidate their roles in such networks. In principle, these regulatory RNAs can act as downstream effectors of the JAK-STAT pathway and/or affect signaling by regulating the expression of JAK-STAT components. Examples of interactions between signaling pathways and non-coding RNAs have already emerged in basic cell biology and human diseases such as cancer, and can potentially guide the identification of novel biomarkers or drug targets for medicine.

  18. Inferring slowly-changing dynamic gene-regulatory networks.

    PubMed

    Wit, Ernst C; Abbruzzo, Antonino

    2015-01-01

    Dynamic gene-regulatory networks are complex since the interaction patterns between their components mean that it is impossible to study parts of the network in separation. This holistic character of gene-regulatory networks poses a real challenge to any type of modelling. Graphical models are a class of models that connect the network with a conditional independence relationships between random variables. By interpreting these random variables as gene activities and the conditional independence relationships as functional non-relatedness, graphical models have been used to describe gene-regulatory networks. Whereas the literature has been focused on static networks, most time-course experiments are designed in order to tease out temporal changes in the underlying network. It is typically reasonable to assume that changes in genomic networks are few, because biological systems tend to be stable. We introduce a new model for estimating slow changes in dynamic gene-regulatory networks, which is suitable for high-dimensional data, e.g. time-course microarray data. Our aim is to estimate a dynamically changing genomic network based on temporal activity measurements of the genes in the network. Our method is based on the penalized likelihood with l1-norm, that penalizes conditional dependencies between genes as well as differences between conditional independence elements across time points. We also present a heuristic search strategy to find optimal tuning parameters. We re-write the penalized maximum likelihood problem into a standard convex optimization problem subject to linear equality constraints. We show that our method performs well in simulation studies. Finally, we apply the proposed model to a time-course T-cell dataset.

  19. Inferring slowly-changing dynamic gene-regulatory networks

    PubMed Central

    2015-01-01

    Dynamic gene-regulatory networks are complex since the interaction patterns between their components mean that it is impossible to study parts of the network in separation. This holistic character of gene-regulatory networks poses a real challenge to any type of modelling. Graphical models are a class of models that connect the network with a conditional independence relationships between random variables. By interpreting these random variables as gene activities and the conditional independence relationships as functional non-relatedness, graphical models have been used to describe gene-regulatory networks. Whereas the literature has been focused on static networks, most time-course experiments are designed in order to tease out temporal changes in the underlying network. It is typically reasonable to assume that changes in genomic networks are few, because biological systems tend to be stable. We introduce a new model for estimating slow changes in dynamic gene-regulatory networks, which is suitable for high-dimensional data, e.g. time-course microarray data. Our aim is to estimate a dynamically changing genomic network based on temporal activity measurements of the genes in the network. Our method is based on the penalized likelihood with ℓ1-norm, that penalizes conditional dependencies between genes as well as differences between conditional independence elements across time points. We also present a heuristic search strategy to find optimal tuning parameters. We re-write the penalized maximum likelihood problem into a standard convex optimization problem subject to linear equality constraints. We show that our method performs well in simulation studies. Finally, we apply the proposed model to a time-course T-cell dataset. PMID:25917062

  20. Evolution of network architecture in a granular material under compression

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Lia; Puckett, James G.; Daniels, Karen E.; Bassett, Danielle S.

    2016-09-01

    As a granular material is compressed, the particles and forces within the system arrange to form complex and heterogeneous collective structures. Force chains are a prime example of such structures, and are thought to constrain bulk properties such as mechanical stability and acoustic transmission. However, capturing and characterizing the evolving nature of the intrinsic inhomogeneity and mesoscale architecture of granular systems can be challenging. A growing body of work has shown that graph theoretic approaches may provide a useful foundation for tackling these problems. Here, we extend the current approaches by utilizing multilayer networks as a framework for directly quantifying the progression of mesoscale architecture in a compressed granular system. We examine a quasi-two-dimensional aggregate of photoelastic disks, subject to biaxial compressions through a series of small, quasistatic steps. Treating particles as network nodes and interparticle forces as network edges, we construct a multilayer network for the system by linking together the series of static force networks that exist at each strain step. We then extract the inherent mesoscale structure from the system by using a generalization of community detection methods to multilayer networks, and we define quantitative measures to characterize the changes in this structure throughout the compression process. We separately consider the network of normal and tangential forces, and find that they display a different progression throughout compression. To test the sensitivity of the network model to particle properties, we examine whether the method can distinguish a subsystem of low-friction particles within a bath of higher-friction particles. We find that this can be achieved by considering the network of tangential forces, and that the community structure is better able to separate the subsystem than a purely local measure of interparticle forces alone. The results discussed throughout this study

  1. Elastic Optical Path Network Architecture: Framework for Spectrally-Efficient and Scalable Future Optical Networks

    NASA Astrophysics Data System (ADS)

    Jinno, Masahiko; Takara, Hidehiko; Sone, Yoshiaki; Yonenaga, Kazushige; Hirano, Akira

    This paper presents an elastic optical path network architecture as a novel networking framework to address the looming capacity crunch problem in internet protocol (IP) and optical networks. The basic idea is to introduce elasticity and adaptation into the optical domain to yield spectrally-efficient optical path accommodation, heightened network scalability through IP traffic offloading to the elastic optical layer, and enhanced survivability for serious disasters.

  2. The Network Architecture of the Saccharomyces cerevisiae Genome

    PubMed Central

    Hoang, Stephen A.; Bekiranov, Stefan

    2013-01-01

    We propose a network-based approach for surmising the spatial organization of genomes from high-throughput interaction data. Our strategy is based on methods for inferring architectural features of networks. Specifically, we employ a community detection algorithm to partition networks of genomic interactions. These community partitions represent an intuitive interpretation of genomic organization from interaction data. Furthermore, they are able to recapitulate known aspects of the spatial organization of the Saccharomyces cerevisiae genome, such as the rosette conformation of the genome, the clustering of centromeres, as well as tRNAs, and telomeres. We also demonstrate that simple architectural features of genomic interaction networks, such as cliques, can give meaningful insight into the functional role of the spatial organization of the genome. We show that there is a correlation between inter-chromosomal clique size and replication timing, as well as cohesin enrichment. Together, our network-based approach represents an effective and intuitive framework for interpreting high-throughput genomic interaction data. Importantly, there is a great potential for this strategy, given the rich literature and extensive set of existing tools in the field of network analysis. PMID:24349163

  3. Stability Depends on Positive Autoregulation in Boolean Gene Regulatory Networks

    PubMed Central

    Pinho, Ricardo; Garcia, Victor; Irimia, Manuel; Feldman, Marcus W.

    2014-01-01

    Network motifs have been identified as building blocks of regulatory networks, including gene regulatory networks (GRNs). The most basic motif, autoregulation, has been associated with bistability (when positive) and with homeostasis and robustness to noise (when negative), but its general importance in network behavior is poorly understood. Moreover, how specific autoregulatory motifs are selected during evolution and how this relates to robustness is largely unknown. Here, we used a class of GRN models, Boolean networks, to investigate the relationship between autoregulation and network stability and robustness under various conditions. We ran evolutionary simulation experiments for different models of selection, including mutation and recombination. Each generation simulated the development of a population of organisms modeled by GRNs. We found that stability and robustness positively correlate with autoregulation; in all investigated scenarios, stable networks had mostly positive autoregulation. Assuming biological networks correspond to stable networks, these results suggest that biological networks should often be dominated by positive autoregulatory loops. This seems to be the case for most studied eukaryotic transcription factor networks, including those in yeast, flies and mammals. PMID:25375153

  4. High-performance, scalable optical network-on-chip architectures

    NASA Astrophysics Data System (ADS)

    Tan, Xianfang

    The rapid advance of technology enables a large number of processing cores to be integrated into a single chip which is called a Chip Multiprocessor (CMP) or a Multiprocessor System-on-Chip (MPSoC) design. The on-chip interconnection network, which is the communication infrastructure for these processing cores, plays a central role in a many-core system. With the continuously increasing complexity of many-core systems, traditional metallic wired electronic networks-on-chip (NoC) became a bottleneck because of the unbearable latency in data transmission and extremely high energy consumption on chip. Optical networks-on-chip (ONoC) has been proposed as a promising alternative paradigm for electronic NoC with the benefits of optical signaling communication such as extremely high bandwidth, negligible latency, and low power consumption. This dissertation focus on the design of high-performance and scalable ONoC architectures and the contributions are highlighted as follow: 1. A micro-ring resonator (MRR)-based Generic Wavelength-routed Optical Router (GWOR) is proposed. A method for developing any sized GWOR is introduced. GWOR is a scalable non-blocking ONoC architecture with simple structure, low cost and high power efficiency compared to existing ONoC designs. 2. To expand the bandwidth and improve the fault tolerance of the GWOR, a redundant GWOR architecture is designed by cascading different type of GWORs into one network. 3. The redundant GWOR built with MRR-based comb switches is proposed. Comb switches can expand the bandwidth while keep the topology of GWOR unchanged by replacing the general MRRs with comb switches. 4. A butterfly fat tree (BFT)-based hybrid optoelectronic NoC (HONoC) architecture is developed in which GWORs are used for global communication and electronic routers are used for local communication. The proposed HONoC uses less numbers of electronic routers and links than its counterpart of electronic BFT-based NoC. It takes the advantages of

  5. Bayesian Nonlinear Model Selection for Gene Regulatory Networks

    PubMed Central

    Ni, Yang; Stingo, Francesco C.; Baladandayuthapani, Veerabhadran

    2015-01-01

    Summary Gene regulatory networks represent the regulatory relationships between genes and their products and are important for exploring and defining the underlying biological processes of cellular systems. We develop a novel framework to recover the structure of nonlinear gene regulatory networks using semiparametric spline-based directed acyclic graphical models. Our use of splines allows the model to have both flexibility in capturing nonlinear dependencies as well as control of overfitting via shrinkage, using mixed model representations of penalized splines. We propose a novel discrete mixture prior on the smoothing parameter of the splines that allows for simultaneous selection of both linear and nonlinear functional relationships as well as inducing sparsity in the edge selection. Using simulation studies, we demonstrate the superior performance of our methods in comparison with several existing approaches in terms of network reconstruction and functional selection. We apply our methods to a gene expression dataset in glioblastoma multiforme, which reveals several interesting and biologically relevant nonlinear relationships. PMID:25854759

  6. Advancing reversible shape memory by tuning the polymer network architecture

    DOE PAGES

    Li, Qiaoxi; Zhou, Jing; Vatankhah-Varnoosfaderani, Mohammad; Nykypanchuk, Dmytro; Gang, Oleg; Sheiko, Sergei S.

    2016-02-02

    Because of counteraction of a chemical network and a crystalline scaffold, semicrystalline polymer networks exhibit a peculiar behavior—reversible shape memory (RSM), which occurs naturally without applying any external force and particular structural design. There are three RSM properties: (i) range of reversible strain, (ii) rate of strain recovery, and (iii) decay of reversibility with time, which can be improved by tuning the architecture of the polymer network. Different types of poly(octylene adipate) networks were synthesized, allowing for control of cross-link density and network topology, including randomly cross-linked network by free-radical polymerization, thiol–ene clicked network with enhanced mesh uniformity, and loosemore » network with deliberately incorporated dangling chains. It is shown that the RSM properties are controlled by average cross-link density and crystal size, whereas topology of a network greatly affects its extensibility. In conclusion, we have achieved 80% maximum reversible range, 15% minimal decrease in reversibility, and fast strain recovery rate up to 0.05 K–1, i.e., ca. 5% per 10 s at a cooling rate of 5 K/min.« less

  7. Underwater Sensor Networks: A New Energy Efficient and Robust Architecture

    PubMed Central

    Climent, Salvador; Capella, Juan Vicente; Meratnia, Nirvana; Serrano, Juan José

    2012-01-01

    The specific characteristics of underwater environments introduce new challenges for networking protocols. In this paper, a specialized architecture for underwater sensor networks (UWSNs) is proposed and evaluated. Experiments are conducted in order to analyze the suitability of this protocol for the subaquatic transmission medium. Moreover, different scheduling techniques are applied to the architecture in order to study their performance. In addition, given the harsh conditions of the underwater medium, different retransmission methods are combined with the scheduling techniques. Finally, simulation results illustrate the performance achievements of the proposed protocol in end-to-end delay, packet delivery ratio and energy consumption, showing that this protocol can be very suitable for the underwater medium. PMID:22368492

  8. Insights into the organization of biochemical regulatory networks using graph theory analyses.

    PubMed

    Ma'ayan, Avi

    2009-02-27

    Graph theory has been a valuable mathematical modeling tool to gain insights into the topological organization of biochemical networks. There are two types of insights that may be obtained by graph theory analyses. The first provides an overview of the global organization of biochemical networks; the second uses prior knowledge to place results from multivariate experiments, such as microarray data sets, in the context of known pathways and networks to infer regulation. Using graph analyses, biochemical networks are found to be scale-free and small-world, indicating that these networks contain hubs, which are proteins that interact with many other molecules. These hubs may interact with many different types of proteins at the same time and location or at different times and locations, resulting in diverse biological responses. Groups of components in networks are organized in recurring patterns termed network motifs such as feedback and feed-forward loops. Graph analysis revealed that negative feedback loops are less common and are present mostly in proximity to the membrane, whereas positive feedback loops are highly nested in an architecture that promotes dynamical stability. Cell signaling networks have multiple pathways from some input receptors and few from others. Such topology is reminiscent of a classification system. Signaling networks display a bow-tie structure indicative of funneling information from extracellular signals and then dispatching information from a few specific central intracellular signaling nexuses. These insights show that graph theory is a valuable tool for gaining an understanding of global regulatory features of biochemical networks.

  9. Insights into the organization of biochemical regulatory networks using graph theory analyses.

    PubMed

    Ma'ayan, Avi

    2009-02-27

    Graph theory has been a valuable mathematical modeling tool to gain insights into the topological organization of biochemical networks. There are two types of insights that may be obtained by graph theory analyses. The first provides an overview of the global organization of biochemical networks; the second uses prior knowledge to place results from multivariate experiments, such as microarray data sets, in the context of known pathways and networks to infer regulation. Using graph analyses, biochemical networks are found to be scale-free and small-world, indicating that these networks contain hubs, which are proteins that interact with many other molecules. These hubs may interact with many different types of proteins at the same time and location or at different times and locations, resulting in diverse biological responses. Groups of components in networks are organized in recurring patterns termed network motifs such as feedback and feed-forward loops. Graph analysis revealed that negative feedback loops are less common and are present mostly in proximity to the membrane, whereas positive feedback loops are highly nested in an architecture that promotes dynamical stability. Cell signaling networks have multiple pathways from some input receptors and few from others. Such topology is reminiscent of a classification system. Signaling networks display a bow-tie structure indicative of funneling information from extracellular signals and then dispatching information from a few specific central intracellular signaling nexuses. These insights show that graph theory is a valuable tool for gaining an understanding of global regulatory features of biochemical networks. PMID:18940806

  10. Asymptotic stability of delayed stochastic genetic regulatory networks with impulses

    NASA Astrophysics Data System (ADS)

    Sakthivel, R.; Raja, R.; Anthoni, S. Marshal

    2010-11-01

    In this paper, the asymptotic stability analysis problem is considered for a class of delayed stochastic genetic regulatory networks with impulses. Based on the Lyapunov stability technique and stochastic analysis theory, stability criteria are proposed in terms of linear matrix inequalities (LMI). It is shown that the addressed stochastic genetic regulatory networks are globally asymptotically stable if four LMIs are feasible, where the feasibility of LMIs can be readily checked by Matlab LMI toolbox. Finally, a numerical example is given to demonstrate the usefulness of the proposed result.

  11. A multi-agent system architecture for sensor networks.

    PubMed

    Fuentes-Fernández, Rubén; Guijarro, María; Pajares, Gonzalo

    2009-01-01

    The design of the control systems for sensor networks presents important challenges. Besides the traditional problems about how to process the sensor data to obtain the target information, engineers need to consider additional aspects such as the heterogeneity and high number of sensors, and the flexibility of these networks regarding topologies and the sensors in them. Although there are partial approaches for resolving these issues, their integration relies on ad hoc solutions requiring important development efforts. In order to provide an effective approach for this integration, this paper proposes an architecture based on the multi-agent system paradigm with a clear separation of concerns. The architecture considers sensors as devices used by an upper layer of manager agents. These agents are able to communicate and negotiate services to achieve the required functionality. Activities are organized according to roles related with the different aspects to integrate, mainly sensor management, data processing, communication and adaptation to changes in the available devices and their capabilities. This organization largely isolates and decouples the data management from the changing network, while encouraging reuse of solutions. The use of the architecture is facilitated by a specific modelling language developed through metamodelling. A case study concerning a generic distributed system for fire fighting illustrates the approach and the comparison with related work. PMID:22303172

  12. A Multi-Agent System Architecture for Sensor Networks

    PubMed Central

    Fuentes-Fernández, Rubén; Guijarro, María; Pajares, Gonzalo

    2009-01-01

    The design of the control systems for sensor networks presents important challenges. Besides the traditional problems about how to process the sensor data to obtain the target information, engineers need to consider additional aspects such as the heterogeneity and high number of sensors, and the flexibility of these networks regarding topologies and the sensors in them. Although there are partial approaches for resolving these issues, their integration relies on ad hoc solutions requiring important development efforts. In order to provide an effective approach for this integration, this paper proposes an architecture based on the multi-agent system paradigm with a clear separation of concerns. The architecture considers sensors as devices used by an upper layer of manager agents. These agents are able to communicate and negotiate services to achieve the required functionality. Activities are organized according to roles related with the different aspects to integrate, mainly sensor management, data processing, communication and adaptation to changes in the available devices and their capabilities. This organization largely isolates and decouples the data management from the changing network, while encouraging reuse of solutions. The use of the architecture is facilitated by a specific modelling language developed through metamodelling. A case study concerning a generic distributed system for fire fighting illustrates the approach and the comparison with related work. PMID:22303172

  13. Integrated Network Architecture for Sustained Human and Robotic Exploration

    NASA Technical Reports Server (NTRS)

    Noreen, Gary; Cesarone, Robert; Deutsch, Leslie; Edwards, Charles; Soloff, Jason; Ely, Todd; Cook, Brian; Morabito, David; Hemmati, Hamid; Piazolla, Sabino; Hastrup, Rolf; Abraham, Douglas; Miles, Sue; Manshadi, Farzin

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Exploration Systems Enterprise is planning a series of human and robotic missions to the Earth's moon and to Mars. These missions will require communication and navigation services. This paper1 sets forth presumed requirements for such services and concepts for lunar and Mars telecommunications network architectures to satisfy the presumed requirements. The paper suggests that an inexpensive ground network would suffice for missions to the near-side of the moon. A constellation of three Lunar Telecommunications Orbiters connected to an inexpensive ground network could provide continuous redundant links to a polar lunar base and its vicinity. For human and robotic missions to Mars, a pair of areostationary satellites could provide continuous redundant links between Earth and a mid-latitude Mars base in conjunction with the Deep Space Network augmented by large arrays of 12-m antennas on Earth.

  14. Fiber-Optic Network Architectures for Onboard Avionics Applications Investigated

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Ngo, Duc H.

    2003-01-01

    This project is part of a study within the Advanced Air Transportation Technologies program undertaken at the NASA Glenn Research Center. The main focus of the program is the improvement of air transportation, with particular emphasis on air transportation safety. Current and future advances in digital data communications between an aircraft and the outside world will require high-bandwidth onboard communication networks. Radiofrequency (RF) systems, with their interconnection network based on coaxial cables and waveguides, increase the complexity of communication systems onboard modern civil and military aircraft with respect to weight, power consumption, and safety. In addition, safety and reliability concerns from electromagnetic interference between the RF components embedded in these communication systems exist. A simple, reliable, and lightweight network that is free from the effects of electromagnetic interference and capable of supporting the broadband communications needs of future onboard digital avionics systems cannot be easily implemented using existing coaxial cable-based systems. Fiber-optical communication systems can meet all these challenges of modern avionics applications in an efficient, cost-effective manner. The objective of this project is to present a number of optical network architectures for onboard RF signal distribution. Because of the emergence of a number of digital avionics devices requiring high-bandwidth connectivity, fiber-optic RF networks onboard modern aircraft will play a vital role in ensuring a low-noise, highly reliable RF communication system. Two approaches are being used for network architectures for aircraft onboard fiber-optic distribution systems: a hybrid RF-optical network and an all-optical wavelength division multiplexing (WDM) network.

  15. Statistical inference of regulatory networks for circadian regulation.

    PubMed

    Aderhold, Andrej; Husmeier, Dirk; Grzegorczyk, Marco

    2014-06-01

    We assess the accuracy of various state-of-the-art statistics and machine learning methods for reconstructing gene and protein regulatory networks in the context of circadian regulation. Our study draws on the increasing availability of gene expression and protein concentration time series for key circadian clock components in Arabidopsis thaliana. In addition, gene expression and protein concentration time series are simulated from a recently published regulatory network of the circadian clock in A. thaliana, in which protein and gene interactions are described by a Markov jump process based on Michaelis-Menten kinetics. We closely follow recent experimental protocols, including the entrainment of seedlings to different light-dark cycles and the knock-out of various key regulatory genes. Our study provides relative network reconstruction accuracy scores for a critical comparative performance evaluation, and sheds light on a series of highly relevant questions: it quantifies the influence of systematically missing values related to unknown protein concentrations and mRNA transcription rates, it investigates the dependence of the performance on the network topology and the degree of recurrency, it provides deeper insight into when and why non-linear methods fail to outperform linear ones, it offers improved guidelines on parameter settings in different inference procedures, and it suggests new hypotheses about the structure of the central circadian gene regulatory network in A. thaliana. PMID:24864301

  16. Statistical inference of regulatory networks for circadian regulation.

    PubMed

    Aderhold, Andrej; Husmeier, Dirk; Grzegorczyk, Marco

    2014-06-01

    We assess the accuracy of various state-of-the-art statistics and machine learning methods for reconstructing gene and protein regulatory networks in the context of circadian regulation. Our study draws on the increasing availability of gene expression and protein concentration time series for key circadian clock components in Arabidopsis thaliana. In addition, gene expression and protein concentration time series are simulated from a recently published regulatory network of the circadian clock in A. thaliana, in which protein and gene interactions are described by a Markov jump process based on Michaelis-Menten kinetics. We closely follow recent experimental protocols, including the entrainment of seedlings to different light-dark cycles and the knock-out of various key regulatory genes. Our study provides relative network reconstruction accuracy scores for a critical comparative performance evaluation, and sheds light on a series of highly relevant questions: it quantifies the influence of systematically missing values related to unknown protein concentrations and mRNA transcription rates, it investigates the dependence of the performance on the network topology and the degree of recurrency, it provides deeper insight into when and why non-linear methods fail to outperform linear ones, it offers improved guidelines on parameter settings in different inference procedures, and it suggests new hypotheses about the structure of the central circadian gene regulatory network in A. thaliana.

  17. Cardiac gene regulatory networks in Drosophila

    PubMed Central

    Bryantsev, Anton L.; Cripps, Richard M.

    2009-01-01

    The Drosophila system has proven a powerful tool to help unlock the regulatory processes that occur during specification and differentiation of the embryonic heart. In this review, we focus upon a temporal analysis of the molecular events that result in heart formation in Drosophila, with a particular emphasis upon how genomic and other cuttingedge approaches are being brought to bear upon the subject. We anticipate that systemslevel approaches will contribute greatly to our comprehension of heart development and disease in the animal kingdom. PMID:18849017

  18. Random Evolution of Idiotypic Networks: Dynamics and Architecture

    NASA Astrophysics Data System (ADS)

    Brede, Markus; Behn, Ulrich

    The paper deals with modelling a subsystem of the immune system, the so-called idiotypic network (INW). INWs, conceived by N.K. Jerne in 1974, are functional networks of interacting antibodies and B cells. In principle, Jernes' framework provides solutions to many issues in immunology, such as immunological memory, mechanisms for antigen recognition and self/non-self discrimination. Explaining the interconnection between the elementary components, local dynamics, network formation and architecture, and possible modes of global system function appears to be an ideal playground of statistical mechanics. We present a simple cellular automaton model, based on a graph representation of the system. From a simplified description of idiotypic interactions, rules for the random evolution of networks of occupied and empty sites on these graphs are derived. In certain biologically relevant parameter ranges the resultant dynamics leads to stationary states. A stationary state is found to correspond to a specific pattern of network organization. It turns out that even these very simple rules give rise to a multitude of different kinds of patterns. We characterize these networks by classifying `static' and `dynamic' network-patterns. A type of `dynamic' network is found to display many features of real INWs.

  19. Approaches to modeling gene regulatory networks: a gentle introduction.

    PubMed

    Schlitt, Thomas

    2013-01-01

    This chapter is split into two main sections; first, I will present an introduction to gene networks. Second, I will discuss various approaches to gene network modeling which will include some examples for using different data sources. Computational modeling has been used for many different biological systems and many approaches have been developed addressing the different needs posed by the different application fields. The modeling approaches presented here are not limited to gene regulatory networks and occasionally I will present other examples. The material covered here is an update based on several previous publications by Thomas Schlitt and Alvis Brazma (FEBS Lett 579(8),1859-1866, 2005; Philos Trans R Soc Lond B Biol Sci 361(1467), 483-494, 2006; BMC Bioinformatics 8(suppl 6), S9, 2007) that formed the foundation for a lecture on gene regulatory networks at the In Silico Systems Biology workshop series at the European Bioinformatics Institute in Hinxton. PMID:23715978

  20. Architecture, Infrastructure, and Broadband Civic Network Design: An Institutional View

    NASA Astrophysics Data System (ADS)

    Venkatesh, Murali; Chango, Mawaki

    Cultural values frame architectures, and architectures motivate infrastructures — by which we mean the foundational telecommunications and Internet access services that software applications depend on. Design is the social process that realizes architectural elements in an infrastructure. This process is often a conflicted one where transformative visions confront the realities of entrenched power, where innovation confronts pressure from institutionalized interests and practices working to resist change and reproduce the status quo in the design outcome. We use this viewpoint to discuss design aspects of the Urban-net, a broadband civic networking case. Civic networks are embodiments of distinctive technological configurations and forms of social order. In choosing some technological configurations over others, designers are favoring some social structural configurations over alternatives. To the extent that a civic network sets out to reconfigure the prevailing social order (as was the case in the Urban-net project considered here), the design process becomes the arena where challengers of the prevailing order encounter its defenders. In this case, the defenders prevailed and the design that emerged was conservative and reproduced the status quo. What steps can stakeholders take so that the project’s future development is in line with the original aim of structural change? We outline two strategies. We argue the importance of articulating cultural desiderata in an architecture that stakeholders can use to open up the infrastructure to new constituents and incremental change. Next, we argue the importance of designing the conditions of design. The climate in which social interactions occur can powerfully shape design outcomes, but this does not usually figure in stakeholders’ design concerns.

  1. Dynamical properties of gene regulatory networks involved in long-term potentiation

    PubMed Central

    Nido, Gonzalo S.; Ryan, Margaret M.; Benuskova, Lubica; Williams, Joanna M.

    2015-01-01

    The long-lasting enhancement of synaptic effectiveness known as long-term potentiation (LTP) is considered to be the cellular basis of long-term memory. LTP elicits changes at the cellular and molecular level, including temporally specific alterations in gene networks. LTP can be seen as a biological process in which a transient signal sets a new homeostatic state that is “remembered” by cellular regulatory systems. Previously, we have shown that early growth response (Egr) transcription factors are of fundamental importance to gene networks recruited early after LTP induction. From a systems perspective, we hypothesized that these networks will show less stable architecture, while networks recruited later will exhibit increased stability, being more directly related to LTP consolidation. Using random Boolean network (RBN) simulations we found that the network derived at 24 h was markedly more stable than those derived at 20 min or 5 h post-LTP. This temporal effect on the vulnerability of the networks is mirrored by what is known about the vulnerability of LTP and memory itself. Differential gene co-expression analysis further highlighted the importance of the Egr family and found a rapid enrichment in connectivity at 20 min, followed by a systematic decrease, providing a potential explanation for the down-regulation of gene expression at 24 h documented in our preceding studies. We also found that the architecture exhibited by a control and the 24 h LTP co-expression networks fit well to a scale-free distribution, known to be robust against perturbations. By contrast the 20 min and 5 h networks showed more truncated distributions. These results suggest that a new homeostatic state is achieved 24 h post-LTP. Together, these data present an integrated view of the genomic response following LTP induction by which the stability of the networks regulated at different times parallel the properties observed at the synapse. PMID:26300724

  2. Software Defined Networking (SDN) controlled all optical switching networks with multi-dimensional switching architecture

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Ji, Yuefeng; Zhang, Jie; Li, Hui; Xiong, Qianjin; Qiu, Shaofeng

    2014-08-01

    Ultrahigh throughout capacity requirement is challenging the current optical switching nodes with the fast development of data center networks. Pbit/s level all optical switching networks need to be deployed soon, which will cause the high complexity of node architecture. How to control the future network and node equipment together will become a new problem. An enhanced Software Defined Networking (eSDN) control architecture is proposed in the paper, which consists of Provider NOX (P-NOX) and Node NOX (N-NOX). With the cooperation of P-NOX and N-NOX, the flexible control of the entire network can be achieved. All optical switching network testbed has been experimentally demonstrated with efficient control of enhanced Software Defined Networking (eSDN). Pbit/s level all optical switching nodes in the testbed are implemented based on multi-dimensional switching architecture, i.e. multi-level and multi-planar. Due to the space and cost limitation, each optical switching node is only equipped with four input line boxes and four output line boxes respectively. Experimental results are given to verify the performance of our proposed control and switching architecture.

  3. Modeling genomic regulatory networks with big data.

    PubMed

    Bolouri, Hamid

    2014-05-01

    High-throughput sequencing, large-scale data generation projects, and web-based cloud computing are changing how computational biology is performed, who performs it, and what biological insights it can deliver. I review here the latest developments in available data, methods, and software, focusing on the modeling and analysis of the gene regulatory interactions in cells. Three key findings are: (i) although sophisticated computational resources are increasingly available to bench biologists, tailored ongoing education is necessary to avoid the erroneous use of these resources. (ii) Current models of the regulation of gene expression are far too simplistic and need updating. (iii) Integrative computational analysis of large-scale datasets is becoming a fundamental component of molecular biology. I discuss current and near-term opportunities and challenges related to these three points.

  4. Cortical network architecture for context processing in primate brain

    PubMed Central

    Chao, Zenas C; Nagasaka, Yasuo; Fujii, Naotaka

    2015-01-01

    Context is information linked to a situation that can guide behavior. In the brain, context is encoded by sensory processing and can later be retrieved from memory. How context is communicated within the cortical network in sensory and mnemonic forms is unknown due to the lack of methods for high-resolution, brain-wide neuronal recording and analysis. Here, we report the comprehensive architecture of a cortical network for context processing. Using hemisphere-wide, high-density electrocorticography, we measured large-scale neuronal activity from monkeys observing videos of agents interacting in situations with different contexts. We extracted five context-related network structures including a bottom-up network during encoding and, seconds later, cue-dependent retrieval of the same network with the opposite top-down connectivity. These findings show that context is represented in the cortical network as distributed communication structures with dynamic information flows. This study provides a general methodology for recording and analyzing cortical network neuronal communication during cognition. DOI: http://dx.doi.org/10.7554/eLife.06121.001 PMID:26416139

  5. An organ boundary-enriched gene regulatory network uncovers regulatory hierarchies underlying axillary meristem initiation

    PubMed Central

    Tian, Caihuan; Zhang, Xiaoni; He, Jun; Yu, Haopeng; Wang, Ying; Shi, Bihai; Han, Yingying; Wang, Guoxun; Feng, Xiaoming; Zhang, Cui; Wang, Jin; Qi, Jiyan; Yu, Rong; Jiao, Yuling

    2014-01-01

    Gene regulatory networks (GRNs) control development via cell type-specific gene expression and interactions between transcription factors (TFs) and regulatory promoter regions. Plant organ boundaries separate lateral organs from the apical meristem and harbor axillary meristems (AMs). AMs, as stem cell niches, make the shoot a ramifying system. Although AMs have important functions in plant development, our knowledge of organ boundary and AM formation remains rudimentary. Here, we generated a cellular-resolution genomewide gene expression map for low-abundance Arabidopsis thaliana organ boundary cells and constructed a genomewide protein–DNA interaction map focusing on genes affecting boundary and AM formation. The resulting GRN uncovers transcriptional signatures, predicts cellular functions, and identifies promoter hub regions that are bound by many TFs. Importantly, further experimental studies determined the regulatory effects of many TFs on their targets, identifying regulators and regulatory relationships in AM initiation. This systems biology approach thus enhances our understanding of a key developmental process. PMID:25358340

  6. Noise Control in Gene Regulatory Networks with Negative Feedback.

    PubMed

    Hinczewski, Michael; Thirumalai, D

    2016-07-01

    Genes and proteins regulate cellular functions through complex circuits of biochemical reactions. Fluctuations in the components of these regulatory networks result in noise that invariably corrupts the signal, possibly compromising function. Here, we create a practical formalism based on ideas introduced by Wiener and Kolmogorov (WK) for filtering noise in engineered communications systems to quantitatively assess the extent to which noise can be controlled in biological processes involving negative feedback. Application of the theory, which reproduces the previously proven scaling of the lower bound for noise suppression in terms of the number of signaling events, shows that a tetracycline repressor-based negative-regulatory gene circuit behaves as a WK filter. For the class of Hill-like nonlinear regulatory functions, this type of filter provides the optimal reduction in noise. Our theoretical approach can be readily combined with experimental measurements of response functions in a wide variety of genetic circuits, to elucidate the general principles by which biological networks minimize noise.

  7. Compartmentalized gene regulatory network of the pathogenic fungus Fusarium graminearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Head blight caused by Fusarium graminearum (Fg) is a major limiting factor of wheat production with both yield loss and mycotoxin contamination. Here we report a model for global Fg gene regulatory networks (GRNs) inferred from a large collection of transcriptomic data using a machine-learning appro...

  8. Columnar architecture improves noise robustness in a model cortical network.

    PubMed

    Bush, Paul C; Mainen, Zachary F

    2015-01-01

    Cortical columnar architecture was discovered decades ago yet there is no agreed upon explanation for its function. Indeed, some have suggested that it has no function, it is simply an epiphenomenon of developmental processes. To investigate this problem we have constructed a computer model of one square millimeter of layer 2/3 of the primary visual cortex (V1) of the cat. Model cells are connected according to data from recent paired cell studies, in particular the connection probability between pyramidal cells is inversely proportional both to the distance separating the cells and to the distance between the preferred parameters (features) of the cells. We find that these constraints, together with a columnar architecture, produce more tightly clustered populations of cells when compared to the random architecture seen in, for example, rodents. This causes the columnar network to converge more quickly and accurately on the pattern representing a particular stimulus in the presence of noise, suggesting that columnar connectivity functions to improve pattern recognition in cortical circuits. The model also suggests that synaptic failure, a phenomenon exhibited by weak synapses, may conserve metabolic resources by reducing transmitter release at these connections that do not contribute to network function.

  9. SDN architecture for optical packet and circuit integrated networks

    NASA Astrophysics Data System (ADS)

    Furukawa, Hideaki; Miyazawa, Takaya

    2016-02-01

    We have been developing an optical packet and circuit integrated (OPCI) network, which realizes dynamic optical path, high-density packet multiplexing, and flexible wavelength resource allocation. In the OPCI networks, a best-effort service and a QoS-guaranteed service are provided by employing optical packet switching (OPS) and optical circuit switching (OCS) respectively, and users can select these services. Different wavelength resources are assigned for OPS and OCS links, and the amount of their wavelength resources are dynamically changed in accordance with the service usage conditions. To apply OPCI networks into wide-area (core/metro) networks, we have developed an OPCI node with a distributed control mechanism. Moreover, our OPCI node works with a centralized control mechanism as well as a distributed one. It is therefore possible to realize SDN-based OPCI networks, where resource requests and a centralized configuration are carried out. In this paper, we show our SDN architecture for an OPS system that configures mapping tables between IP addresses and optical packet addresses and switching tables according to the requests from multiple users via a web interface. While OpenFlow-based centralized control protocol is coming into widespread use especially for single-administrative, small-area (LAN/data-center) networks. Here, we also show an interworking mechanism between OpenFlow-based networks (OFNs) and the OPCI network for constructing a wide-area network, and a control method of wavelength resource selection to automatically transfer diversified flows from OFNs to the OPCI network.

  10. The architecture of functional interaction networks in the retina.

    PubMed

    Ganmor, Elad; Segev, Ronen; Schneidman, Elad

    2011-02-23

    Sensory information is represented in the brain by the joint activity of large groups of neurons. Recent studies have shown that, although the number of possible activity patterns and underlying interactions is exponentially large, pairwise-based models give a surprisingly accurate description of neural population activity patterns. We explored the architecture of maximum entropy models of the functional interaction networks underlying the response of large populations of retinal ganglion cells, in adult tiger salamander retina, responding to natural and artificial stimuli. We found that we can further simplify these pairwise models by neglecting weak interaction terms or by relying on a small set of interaction strengths. Comparing network interactions under different visual stimuli, we show the existence of local network motifs in the interaction map of the retina. Our results demonstrate that the underlying interaction map of the retina is sparse and dominated by local overlapping interaction modules.

  11. Resting State Networks' Corticotopy: The Dual Intertwined Rings Architecture

    PubMed Central

    Mesmoudi, Salma; Perlbarg, Vincent; Rudrauf, David; Messe, Arnaud; Pinsard, Basile; Hasboun, Dominique; Cioli, Claudia; Marrelec, Guillaume; Toro, Roberto; Benali, Habib; Burnod, Yves

    2013-01-01

    How does the brain integrate multiple sources of information to support normal sensorimotor and cognitive functions? To investigate this question we present an overall brain architecture (called “the dual intertwined rings architecture”) that relates the functional specialization of cortical networks to their spatial distribution over the cerebral cortex (or “corticotopy”). Recent results suggest that the resting state networks (RSNs) are organized into two large families: 1) a sensorimotor family that includes visual, somatic, and auditory areas and 2) a large association family that comprises parietal, temporal, and frontal regions and also includes the default mode network. We used two large databases of resting state fMRI data, from which we extracted 32 robust RSNs. We estimated: (1) the RSN functional roles by using a projection of the results on task based networks (TBNs) as referenced in large databases of fMRI activation studies; and (2) relationship of the RSNs with the Brodmann Areas. In both classifications, the 32 RSNs are organized into a remarkable architecture of two intertwined rings per hemisphere and so four rings linked by homotopic connections. The first ring forms a continuous ensemble and includes visual, somatic, and auditory cortices, with interspersed bimodal cortices (auditory-visual, visual-somatic and auditory-somatic, abbreviated as VSA ring). The second ring integrates distant parietal, temporal and frontal regions (PTF ring) through a network of association fiber tracts which closes the ring anatomically and ensures a functional continuity within the ring. The PTF ring relates association cortices specialized in attention, language and working memory, to the networks involved in motivation and biological regulation and rhythms. This “dual intertwined architecture” suggests a dual integrative process: the VSA ring performs fast real-time multimodal integration of sensorimotor information whereas the PTF ring performs multi

  12. Disrupted Brain Functional Network Architecture in Chronic Tinnitus Patients

    PubMed Central

    Chen, Yu-Chen; Feng, Yuan; Xu, Jin-Jing; Mao, Cun-Nan; Xia, Wenqing; Ren, Jun; Yin, Xindao

    2016-01-01

    Purpose: Resting-state functional magnetic resonance imaging (fMRI) studies have demonstrated the disruptions of multiple brain networks in tinnitus patients. Nonetheless, several studies found no differences in network processing between tinnitus patients and healthy controls (HCs). Its neural bases are poorly understood. To identify aberrant brain network architecture involved in chronic tinnitus, we compared the resting-state fMRI (rs-fMRI) patterns of tinnitus patients and HCs. Materials and Methods: Chronic tinnitus patients (n = 24) with normal hearing thresholds and age-, sex-, education- and hearing threshold-matched HCs (n = 22) participated in the current study and underwent the rs-fMRI scanning. We used degree centrality (DC) to investigate functional connectivity (FC) strength of the whole-brain network and Granger causality to analyze effective connectivity in order to explore directional aspects involved in tinnitus. Results: Compared to HCs, we found significantly increased network centrality in bilateral superior frontal gyrus (SFG). Unidirectionally, the left SFG revealed increased effective connectivity to the left middle orbitofrontal cortex (OFC), left posterior lobe of cerebellum (PLC), left postcentral gyrus, and right middle occipital gyrus (MOG) while the right SFG exhibited enhanced effective connectivity to the right supplementary motor area (SMA). In addition, the effective connectivity from the bilateral SFG to the OFC and SMA showed positive correlations with tinnitus distress. Conclusions: Rs-fMRI provides a new and novel method for identifying aberrant brain network architecture. Chronic tinnitus patients have disrupted FC strength and causal connectivity mostly in non-auditory regions, especially the prefrontal cortex (PFC). The current findings will provide a new perspective for understanding the neuropathophysiological mechanisms in chronic tinnitus. PMID:27458377

  13. Global analysis of photosynthesis transcriptional regulatory networks.

    PubMed

    Imam, Saheed; Noguera, Daniel R; Donohue, Timothy J

    2014-12-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis.

  14. Sequence-based model of gap gene regulatory network

    PubMed Central

    2014-01-01

    Background The detailed analysis of transcriptional regulation is crucially important for understanding biological processes. The gap gene network in Drosophila attracts large interest among researches studying mechanisms of transcriptional regulation. It implements the most upstream regulatory layer of the segmentation gene network. The knowledge of molecular mechanisms involved in gap gene regulation is far less complete than that of genetics of the system. Mathematical modeling goes beyond insights gained by genetics and molecular approaches. It allows us to reconstruct wild-type gene expression patterns in silico, infer underlying regulatory mechanism and prove its sufficiency. Results We developed a new model that provides a dynamical description of gap gene regulatory systems, using detailed DNA-based information, as well as spatial transcription factor concentration data at varying time points. We showed that this model correctly reproduces gap gene expression patterns in wild type embryos and is able to predict gap expression patterns in Kr mutants and four reporter constructs. We used four-fold cross validation test and fitting to random dataset to validate the model and proof its sufficiency in data description. The identifiability analysis showed that most model parameters are well identifiable. We reconstructed the gap gene network topology and studied the impact of individual transcription factor binding sites on the model output. We measured this impact by calculating the site regulatory weight as a normalized difference between the residual sum of squares error for the set of all annotated sites and for the set with the site of interest excluded. Conclusions The reconstructed topology of the gap gene network is in agreement with previous modeling results and data from literature. We showed that 1) the regulatory weights of transcription factor binding sites show very weak correlation with their PWM score; 2) sites with low regulatory weight are

  15. Gap Gene Regulatory Dynamics Evolve along a Genotype Network.

    PubMed

    Crombach, Anton; Wotton, Karl R; Jiménez-Guri, Eva; Jaeger, Johannes

    2016-05-01

    Developmental gene networks implement the dynamic regulatory mechanisms that pattern and shape the organism. Over evolutionary time, the wiring of these networks changes, yet the patterning outcome is often preserved, a phenomenon known as "system drift." System drift is illustrated by the gap gene network-involved in segmental patterning-in dipteran insects. In the classic model organism Drosophila melanogaster and the nonmodel scuttle fly Megaselia abdita, early activation and placement of gap gene expression domains show significant quantitative differences, yet the final patterning output of the system is essentially identical in both species. In this detailed modeling analysis of system drift, we use gene circuits which are fit to quantitative gap gene expression data in M. abdita and compare them with an equivalent set of models from D. melanogaster. The results of this comparative analysis show precisely how compensatory regulatory mechanisms achieve equivalent final patterns in both species. We discuss the larger implications of the work in terms of "genotype networks" and the ways in which the structure of regulatory networks can influence patterns of evolutionary change (evolvability).

  16. A solution for parallel network architectures applied to network defense appliances and sensors

    NASA Astrophysics Data System (ADS)

    Naber, Eric C.; Velez, Paul G.; Johal, Amanpreet S.

    2012-06-01

    Network defense has more technologies available for purchase today than ever before. As the number of threats increase, organizations are deploying multiple defense technologies to defend their networks. For instance, an enterprise network boundary often implements multiple network defense appliances, some with overlapping capabilities (e.g., firewalls, IDS/IPS, DNS Defense). These appliances are applied in a serial fashion to create a chain of network processing specifically designed to drop bad traffic from the network. In these architectures, once a packet is dropped by an appliance subsequent appliances do not process it. This introduces significant limitations; (1) Stateful appliances will maintain an internal state which differs from network reality; (2) The network manager cannot determine, or unit test, how each appliance would have treated each packet; (3) The appliance "votes" cannot be combined to achieve higherlevel functionality. To address these limitations, we have developed a novel, backwards-compatible Parallel Architecture for Network Defense Appliances (PANDA). Our approach allows every appliance to process all network traffic and cast a vote to drop or allow each packet. This "crowd-sourcing" approach allows the network designer to take full advantage of each appliance, understand how each appliance is behaving, and achieve new collaborative appliance behavior.

  17. Implicit methods for qualitative modeling of gene regulatory networks.

    PubMed

    Garg, Abhishek; Mohanram, Kartik; De Micheli, Giovanni; Xenarios, Ioannis

    2012-01-01

    Advancements in high-throughput technologies to measure increasingly complex biological phenomena at the genomic level are rapidly changing the face of biological research from the single-gene single-protein experimental approach to studying the behavior of a gene in the context of the entire genome (and proteome). This shift in research methodologies has resulted in a new field of network biology that deals with modeling cellular behavior in terms of network structures such as signaling pathways and gene regulatory networks. In these networks, different biological entities such as genes, proteins, and metabolites interact with each other, giving rise to a dynamical system. Even though there exists a mature field of dynamical systems theory to model such network structures, some technical challenges are unique to biology such as the inability to measure precise kinetic information on gene-gene or gene-protein interactions and the need to model increasingly large networks comprising thousands of nodes. These challenges have renewed interest in developing new computational techniques for modeling complex biological systems. This chapter presents a modeling framework based on Boolean algebra and finite-state machines that are reminiscent of the approach used for digital circuit synthesis and simulation in the field of very-large-scale integration (VLSI). The proposed formalism enables a common mathematical framework to develop computational techniques for modeling different aspects of the regulatory networks such as steady-state behavior, stochasticity, and gene perturbation experiments.

  18. Network architecture underlying maximal separation of neuronal representations

    PubMed Central

    Jortner, Ron A.

    2011-01-01

    One of the most basic and general tasks faced by all nervous systems is extracting relevant information from the organism's surrounding world. While physical signals available to sensory systems are often continuous, variable, overlapping, and noisy, high-level neuronal representations used for decision-making tend to be discrete, specific, invariant, and highly separable. This study addresses the question of how neuronal specificity is generated. Inspired by experimental findings on network architecture in the olfactory system of the locust, I construct a highly simplified theoretical framework which allows for analytic solution of its key properties. For generalized feed-forward systems, I show that an intermediate range of connectivity values between source- and target-populations leads to a combinatorial explosion of wiring possibilities, resulting in input spaces which are, by their very nature, exquisitely sparsely populated. In particular, connection probability ½, as found in the locust antennal-lobe–mushroom-body circuit, serves to maximize separation of neuronal representations across the target Kenyon cells (KCs), and explains their specific and reliable responses. This analysis yields a function expressing response specificity in terms of lower network parameters; together with appropriate gain control this leads to a simple neuronal algorithm for generating arbitrarily sparse and selective codes and linking network architecture and neural coding. I suggest a straightforward way to construct ecologically meaningful representations from this code. PMID:23316159

  19. Network architecture underlying maximal separation of neuronal representations.

    PubMed

    Jortner, Ron A

    2012-01-01

    One of the most basic and general tasks faced by all nervous systems is extracting relevant information from the organism's surrounding world. While physical signals available to sensory systems are often continuous, variable, overlapping, and noisy, high-level neuronal representations used for decision-making tend to be discrete, specific, invariant, and highly separable. This study addresses the question of how neuronal specificity is generated. Inspired by experimental findings on network architecture in the olfactory system of the locust, I construct a highly simplified theoretical framework which allows for analytic solution of its key properties. For generalized feed-forward systems, I show that an intermediate range of connectivity values between source- and target-populations leads to a combinatorial explosion of wiring possibilities, resulting in input spaces which are, by their very nature, exquisitely sparsely populated. In particular, connection probability ½, as found in the locust antennal-lobe-mushroom-body circuit, serves to maximize separation of neuronal representations across the target Kenyon cells (KCs), and explains their specific and reliable responses. This analysis yields a function expressing response specificity in terms of lower network parameters; together with appropriate gain control this leads to a simple neuronal algorithm for generating arbitrarily sparse and selective codes and linking network architecture and neural coding. I suggest a straightforward way to construct ecologically meaningful representations from this code.

  20. Global Analysis of Photosynthesis Transcriptional Regulatory Networks

    PubMed Central

    Imam, Saheed; Noguera, Daniel R.; Donohue, Timothy J.

    2014-01-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis. PMID:25503406

  1. Multivariate analysis of noise in genetic regulatory networks.

    PubMed

    Tomioka, Ryota; Kimura, Hidenori; J Kobayashi, Tetsuya; Aihara, Kazuyuki

    2004-08-21

    Stochasticity is an intrinsic property of genetic regulatory networks due to the low copy numbers of the major molecular species, such as, DNA, mRNA, and regulatory proteins. Therefore, investigation of the mechanisms that reduce the stochastic noise is essential in understanding the reproducible behaviors of real organisms and is also a key to design synthetic genetic regulatory networks that can reliably work. We use an analytical and systematic method, the linear noise approximation of the chemical master equation along with the decoupling of a stoichiometric matrix. In the analysis of fluctuations of multiple molecular species, the covariance is an important measure of noise. However, usually the representation of a covariance matrix in the natural coordinate system, i.e. the copy numbers of the molecular species, is intractably complicated because reactions change copy numbers of more than one molecular species simultaneously. Decoupling of a stoichiometric matrix, which is a transformation of variables, significantly simplifies the representation of a covariance matrix and elucidates the mechanisms behind the observed fluctuations in the copy numbers. We apply our method to three types of fundamental genetic regulatory networks, that is, a single-gene autoregulatory network, a two-gene autoregulatory network, and a mutually repressive network. We have found that there are multiple noise components differently originating. Each noise component produces fluctuation in the characteristic direction. The resulting fluctuations in the copy numbers of the molecular species are the sum of these fluctuations. In the examples, the limitation of the negative feedback in noise reduction and the trade-off of fluctuations in multiple molecular species are clearly explained. The analytical representations show the full parameter dependence. Additionally, the validity of our method is tested by stochastic simulations. PMID:15246787

  2. Gene Regulatory Networks Elucidating Huanglongbing Disease Mechanisms

    PubMed Central

    Martinelli, Federico; Reagan, Russell L.; Uratsu, Sandra L.; Phu, My L.; Albrecht, Ute; Zhao, Weixiang; Davis, Cristina E.; Bowman, Kim D.; Dandekar, Abhaya M.

    2013-01-01

    Next-generation sequencing was exploited to gain deeper insight into the response to infection by Candidatus liberibacter asiaticus (CaLas), especially the immune disregulation and metabolic dysfunction caused by source-sink disruption. Previous fruit transcriptome data were compared with additional RNA-Seq data in three tissues: immature fruit, and young and mature leaves. Four categories of orchard trees were studied: symptomatic, asymptomatic, apparently healthy, and healthy. Principal component analysis found distinct expression patterns between immature and mature fruits and leaf samples for all four categories of trees. A predicted protein – protein interaction network identified HLB-regulated genes for sugar transporters playing key roles in the overall plant responses. Gene set and pathway enrichment analyses highlight the role of sucrose and starch metabolism in disease symptom development in all tissues. HLB-regulated genes (glucose-phosphate-transporter, invertase, starch-related genes) would likely determine the source-sink relationship disruption. In infected leaves, transcriptomic changes were observed for light reactions genes (downregulation), sucrose metabolism (upregulation), and starch biosynthesis (upregulation). In parallel, symptomatic fruits over-expressed genes involved in photosynthesis, sucrose and raffinose metabolism, and downregulated starch biosynthesis. We visualized gene networks between tissues inducing a source-sink shift. CaLas alters the hormone crosstalk, resulting in weak and ineffective tissue-specific plant immune responses necessary for bacterial clearance. Accordingly, expression of WRKYs (including WRKY70) was higher in fruits than in leaves. Systemic acquired responses were inadequately activated in young leaves, generally considered the sites where most new infections occur. PMID:24086326

  3. Differential Regulatory Analysis Based on Coexpression Network in Cancer Research

    PubMed Central

    2016-01-01

    With rapid development of high-throughput techniques and accumulation of big transcriptomic data, plenty of computational methods and algorithms such as differential analysis and network analysis have been proposed to explore genome-wide gene expression characteristics. These efforts are aiming to transform underlying genomic information into valuable knowledges in biological and medical research fields. Recently, tremendous integrative research methods are dedicated to interpret the development and progress of neoplastic diseases, whereas differential regulatory analysis (DRA) based on gene coexpression network (GCN) increasingly plays a robust complement to regular differential expression analysis in revealing regulatory functions of cancer related genes such as evading growth suppressors and resisting cell death. Differential regulatory analysis based on GCN is prospective and shows its essential role in discovering the system properties of carcinogenesis features. Here we briefly review the paradigm of differential regulatory analysis based on GCN. We also focus on the applications of differential regulatory analysis based on GCN in cancer research and point out that DRA is necessary and extraordinary to reveal underlying molecular mechanism in large-scale carcinogenesis studies.

  4. Differential Regulatory Analysis Based on Coexpression Network in Cancer Research

    PubMed Central

    2016-01-01

    With rapid development of high-throughput techniques and accumulation of big transcriptomic data, plenty of computational methods and algorithms such as differential analysis and network analysis have been proposed to explore genome-wide gene expression characteristics. These efforts are aiming to transform underlying genomic information into valuable knowledges in biological and medical research fields. Recently, tremendous integrative research methods are dedicated to interpret the development and progress of neoplastic diseases, whereas differential regulatory analysis (DRA) based on gene coexpression network (GCN) increasingly plays a robust complement to regular differential expression analysis in revealing regulatory functions of cancer related genes such as evading growth suppressors and resisting cell death. Differential regulatory analysis based on GCN is prospective and shows its essential role in discovering the system properties of carcinogenesis features. Here we briefly review the paradigm of differential regulatory analysis based on GCN. We also focus on the applications of differential regulatory analysis based on GCN in cancer research and point out that DRA is necessary and extraordinary to reveal underlying molecular mechanism in large-scale carcinogenesis studies. PMID:27597964

  5. Differential Regulatory Analysis Based on Coexpression Network in Cancer Research.

    PubMed

    Li, Junyi; Li, Yi-Xue; Li, Yuan-Yuan

    2016-01-01

    With rapid development of high-throughput techniques and accumulation of big transcriptomic data, plenty of computational methods and algorithms such as differential analysis and network analysis have been proposed to explore genome-wide gene expression characteristics. These efforts are aiming to transform underlying genomic information into valuable knowledges in biological and medical research fields. Recently, tremendous integrative research methods are dedicated to interpret the development and progress of neoplastic diseases, whereas differential regulatory analysis (DRA) based on gene coexpression network (GCN) increasingly plays a robust complement to regular differential expression analysis in revealing regulatory functions of cancer related genes such as evading growth suppressors and resisting cell death. Differential regulatory analysis based on GCN is prospective and shows its essential role in discovering the system properties of carcinogenesis features. Here we briefly review the paradigm of differential regulatory analysis based on GCN. We also focus on the applications of differential regulatory analysis based on GCN in cancer research and point out that DRA is necessary and extraordinary to reveal underlying molecular mechanism in large-scale carcinogenesis studies. PMID:27597964

  6. Cross-fertilization between connectionist networks and highly parallel architectures

    NASA Technical Reports Server (NTRS)

    Barnden, John; Srinivas, Kankanahalli

    1989-01-01

    The theoretical and practical connections between connectionist schemes such as neural-network computers and traditional symbolic processing architectures involving a high degree of parallelism are explored, reviewing the results of recent investigations. Topics addressed include data flow, data structure, and control flow; conventional pointers; associative addressing; hashing and reduced representations; the problem of binding values to variables; and levels of parallelism. It is concluded that connectionism is more closely related to traditional computer science and technology than is generally admitted; more cooperation between followers of the two approaches is recommended.

  7. A gene regulatory network armature for T-lymphocyte specification

    SciTech Connect

    Fung, Elizabeth-sharon

    2008-01-01

    Choice of a T-lymphoid fate by hematopoietic progenitor cells depends on sustained Notch-Delta signaling combined with tightly-regulated activities of multiple transcription factors. To dissect the regulatory network connections that mediate this process, we have used high-resolution analysis of regulatory gene expression trajectories from the beginning to the end of specification; tests of the short-term Notchdependence of these gene expression changes; and perturbation analyses of the effects of overexpression of two essential transcription factors, namely PU.l and GATA-3. Quantitative expression measurements of >50 transcription factor and marker genes have been used to derive the principal components of regulatory change through which T-cell precursors progress from primitive multipotency to T-lineage commitment. Distinct parts of the path reveal separate contributions of Notch signaling, GATA-3 activity, and downregulation of PU.l. Using BioTapestry, the results have been assembled into a draft gene regulatory network for the specification of T-cell precursors and the choice of T as opposed to myeloid dendritic or mast-cell fates. This network also accommodates effects of E proteins and mutual repression circuits of Gfil against Egr-2 and of TCF-l against PU.l as proposed elsewhere, but requires additional functions that remain unidentified. Distinctive features of this network structure include the intense dose-dependence of GATA-3 effects; the gene-specific modulation of PU.l activity based on Notch activity; the lack of direct opposition between PU.l and GATA-3; and the need for a distinct, late-acting repressive function or functions to extinguish stem and progenitor-derived regulatory gene expression.

  8. The nucleosome landscape of Plasmodium falciparum reveals chromatin architecture and dynamics of regulatory sequences

    PubMed Central

    Kensche, Philip Reiner; Hoeijmakers, Wieteke Anna Maria; Toenhake, Christa Geeke; Bras, Maaike; Chappell, Lia; Berriman, Matthew; Bártfai, Richárd

    2016-01-01

    In eukaryotes, the chromatin architecture has a pivotal role in regulating all DNA-associated processes and it is central to the control of gene expression. For Plasmodium falciparum, a causative agent of human malaria, the nucleosome positioning profile of regulatory regions deserves particular attention because of their extreme AT-content. With the aid of a highly controlled MNase-seq procedure we reveal how positioning of nucleosomes provides a structural and regulatory framework to the transcriptional unit by demarcating landmark sites (transcription/translation start and end sites). In addition, our analysis provides strong indications for the function of positioned nucleosomes in splice site recognition. Transcription start sites (TSSs) are bordered by a small nucleosome-depleted region, but lack the stereotypic downstream nucleosome arrays, highlighting a key difference in chromatin organization compared to model organisms. Furthermore, we observe transcription-coupled eviction of nucleosomes on strong TSSs during intraerythrocytic development and demonstrate that nucleosome positioning and dynamics can be predictive for the functionality of regulatory DNA elements. Collectively, the strong nucleosome positioning over splice sites and surrounding putative transcription factor binding sites highlights the regulatory capacity of the nucleosome landscape in this deadly human pathogen. PMID:26578577

  9. The nucleosome landscape of Plasmodium falciparum reveals chromatin architecture and dynamics of regulatory sequences.

    PubMed

    Kensche, Philip Reiner; Hoeijmakers, Wieteke Anna Maria; Toenhake, Christa Geeke; Bras, Maaike; Chappell, Lia; Berriman, Matthew; Bártfai, Richárd

    2016-03-18

    In eukaryotes, the chromatin architecture has a pivotal role in regulating all DNA-associated processes and it is central to the control of gene expression. For Plasmodium falciparum, a causative agent of human malaria, the nucleosome positioning profile of regulatory regions deserves particular attention because of their extreme AT-content. With the aid of a highly controlled MNase-seq procedure we reveal how positioning of nucleosomes provides a structural and regulatory framework to the transcriptional unit by demarcating landmark sites (transcription/translation start and end sites). In addition, our analysis provides strong indications for the function of positioned nucleosomes in splice site recognition. Transcription start sites (TSSs) are bordered by a small nucleosome-depleted region, but lack the stereotypic downstream nucleosome arrays, highlighting a key difference in chromatin organization compared to model organisms. Furthermore, we observe transcription-coupled eviction of nucleosomes on strong TSSs during intraerythrocytic development and demonstrate that nucleosome positioning and dynamics can be predictive for the functionality of regulatory DNA elements. Collectively, the strong nucleosome positioning over splice sites and surrounding putative transcription factor binding sites highlights the regulatory capacity of the nucleosome landscape in this deadly human pathogen.

  10. A hybrid 802.16/802.11 network architecture for a United States coastal area network

    NASA Astrophysics Data System (ADS)

    Burbank, Jack L.; Kasch, William T.; Andrusenko, Julia; Haberman, Brian K.; Nichols, Robert; Zheng, Harold

    2007-04-01

    This paper presents a concept for a United States Coastal Area Network (U-SCAN) that is comprised of IEEE 802.11, 802.16, and satellite communications technologies. The Office of Naval Research (ONR) on behalf of the National Oceanographic Partnership Program (NOPP) has tasked The Johns Hopkins University Applied Physics Laboratory (JHU/APL) to perform an architectural study into the establishment of a United States Coastal Area Network (U-SCAN). The goal of this study is to define a wireless network architecture that can be deployed to enable contiguous coastal area network coverage for scientific, commercial, and homeland security (e.g. Coast Guard) applications within the United States Exclusive Economic Zone (EEZ), in a manner that is flexible, manageable, and affordable. The JHU/APL study will ultimately provide recommendations to NOPP regarding potential network architectures and technologies that could provide the desired capability, with a particular focus on commercial (both existing and emerging) technologies. This paper presents the envisioned U-SCAN architecture, and presents the envisioned technical capabilities and shortcomings of the component candidate technologies.

  11. Medusa structure of the gene regulatory network: dominance of transcription factors in cancer subtype classification.

    PubMed

    Guo, Yuchun; Feng, Ying; Trivedi, Niraj S; Huang, Sui

    2011-05-01

    Gene expression profiles consisting of ten thousands of transcripts are used for clustering of tissue, such as tumors, into subtypes, often without considering the underlying reason that the distinct patterns of expression arise because of constraints in the realization of gene expression profiles imposed by the gene regulatory network. The topology of this network has been suggested to consist of a regulatory core of genes represented most prominently by transcription factors (TFs) and microRNAs, that influence the expression of other genes, and of a periphery of 'enslaved' effector genes that are regulated but not regulating. This 'medusa' architecture implies that the core genes are much stronger determinants of the realized gene expression profiles. To test this hypothesis, we examined the clustering of gene expression profiles into known tumor types to quantitatively demonstrate that TFs, and even more pronounced, microRNAs, are much stronger discriminators of tumor type specific gene expression patterns than a same number of randomly selected or metabolic genes. These findings lend support to the hypothesis of a medusa architecture and of the canalizing nature of regulation by microRNAs. They also reveal the degree of freedom for the expression of peripheral genes that are less stringently associated with a tissue type specific global gene expression profile.

  12. Guidance for Data Collection and Computational Modelling of Regulatory Networks

    PubMed Central

    Palmer, Adam Christopher; Shearwin, Keith Edward

    2010-01-01

    Many model regulatory networks are approaching the depth of characterisation of bacteriophage λ, wherein the vast majority of individual components and interactions are identified, and research can focus on understanding whole network function and the role of interactions within that broader context. In recent years, the study of the system-wide behaviour of phage λ’s genetic regulatory network has been greatly assisted by the combination of quantitative measurements with theoretical and computational analyses. Such research has demonstrated the value of a number of general principles and guidelines for making use of the interplay between experiments and modelling. In this chapter we discuss these guidelines and provide illustration through reference to case studies from phage λ biology. In our experience, computational modelling is best facilitated with a large and diverse set of quantitative, in vivo data, preferably obtained from standardised measurements and expressed as absolute units rather than relative units. Isolation of subsets of regulatory networks may render a system amenable to ‘bottom-up’ modelling, providing a valuable tool to the experimental molecular biologist. Decoupling key components and rendering their concentration or activity an independent experimental variable provide excellent information for model building, though conclusions drawn from isolated and/or decoupled systems should be checked against studies in the full physiological context; discrepancies are informative. The construction of a model makes possible in silico experiments, which are valuable tools for both the data analysis and the design of wet experiments. PMID:19381541

  13. Exploring the miRNA Regulatory Network Using Evolutionary Correlations

    PubMed Central

    Obermayer, Benedikt; Levine, Erel

    2014-01-01

    Post-transcriptional regulation by miRNAs is a widespread and highly conserved phenomenon in metazoans, with several hundreds to thousands of conserved binding sites for each miRNA, and up to two thirds of all genes under miRNA regulation. At the same time, the effect of miRNA regulation on mRNA and protein levels is usually quite modest and associated phenotypes are often weak or subtle. This has given rise to the notion that the highly interconnected miRNA regulatory network exerts its function less through any individual link and more via collective effects that lead to a functional interdependence of network links. We present a Bayesian framework to quantify conservation of miRNA target sites using vertebrate whole-genome alignments. The increased statistical power of our phylogenetic model allows detection of evolutionary correlation in the conservation patterns of site pairs. Such correlations could result from collective functions in the regulatory network. For instance, co-conservation of target site pairs supports a selective benefit of combinatorial regulation by multiple miRNAs. We find that some miRNA families are under pronounced co-targeting constraints, indicating a high connectivity in the regulatory network, while others appear to function in a more isolated way. By analyzing coordinated targeting of different curated gene sets, we observe distinct evolutionary signatures for protein complexes and signaling pathways that could reflect differences in control strategies. Our method is easily scalable to analyze upcoming larger data sets, and readily adaptable to detect high-level selective constraints between other genomic loci. We thus provide a proof-of-principle method to understand regulatory networks from an evolutionary perspective. PMID:25299225

  14. Additive functions in boolean models of gene regulatory network modules.

    PubMed

    Darabos, Christian; Di Cunto, Ferdinando; Tomassini, Marco; Moore, Jason H; Provero, Paolo; Giacobini, Mario

    2011-01-01

    Gene-on-gene regulations are key components of every living organism. Dynamical abstract models of genetic regulatory networks help explain the genome's evolvability and robustness. These properties can be attributed to the structural topology of the graph formed by genes, as vertices, and regulatory interactions, as edges. Moreover, the actual gene interaction of each gene is believed to play a key role in the stability of the structure. With advances in biology, some effort was deployed to develop update functions in boolean models that include recent knowledge. We combine real-life gene interaction networks with novel update functions in a boolean model. We use two sub-networks of biological organisms, the yeast cell-cycle and the mouse embryonic stem cell, as topological support for our system. On these structures, we substitute the original random update functions by a novel threshold-based dynamic function in which the promoting and repressing effect of each interaction is considered. We use a third real-life regulatory network, along with its inferred boolean update functions to validate the proposed update function. Results of this validation hint to increased biological plausibility of the threshold-based function. To investigate the dynamical behavior of this new model, we visualized the phase transition between order and chaos into the critical regime using Derrida plots. We complement the qualitative nature of Derrida plots with an alternative measure, the criticality distance, that also allows to discriminate between regimes in a quantitative way. Simulation on both real-life genetic regulatory networks show that there exists a set of parameters that allows the systems to operate in the critical region. This new model includes experimentally derived biological information and recent discoveries, which makes it potentially useful to guide experimental research. The update function confers additional realism to the model, while reducing the complexity

  15. Additive Functions in Boolean Models of Gene Regulatory Network Modules

    PubMed Central

    Darabos, Christian; Di Cunto, Ferdinando; Tomassini, Marco; Moore, Jason H.; Provero, Paolo; Giacobini, Mario

    2011-01-01

    Gene-on-gene regulations are key components of every living organism. Dynamical abstract models of genetic regulatory networks help explain the genome's evolvability and robustness. These properties can be attributed to the structural topology of the graph formed by genes, as vertices, and regulatory interactions, as edges. Moreover, the actual gene interaction of each gene is believed to play a key role in the stability of the structure. With advances in biology, some effort was deployed to develop update functions in Boolean models that include recent knowledge. We combine real-life gene interaction networks with novel update functions in a Boolean model. We use two sub-networks of biological organisms, the yeast cell-cycle and the mouse embryonic stem cell, as topological support for our system. On these structures, we substitute the original random update functions by a novel threshold-based dynamic function in which the promoting and repressing effect of each interaction is considered. We use a third real-life regulatory network, along with its inferred Boolean update functions to validate the proposed update function. Results of this validation hint to increased biological plausibility of the threshold-based function. To investigate the dynamical behavior of this new model, we visualized the phase transition between order and chaos into the critical regime using Derrida plots. We complement the qualitative nature of Derrida plots with an alternative measure, the criticality distance, that also allows to discriminate between regimes in a quantitative way. Simulation on both real-life genetic regulatory networks show that there exists a set of parameters that allows the systems to operate in the critical region. This new model includes experimentally derived biological information and recent discoveries, which makes it potentially useful to guide experimental research. The update function confers additional realism to the model, while reducing the complexity

  16. On-board processing satellite network architecture and control study

    NASA Technical Reports Server (NTRS)

    Campanella, S. Joseph; Pontano, B.; Chalmers, H.

    1987-01-01

    For satellites to remain a vital part of future national and international communications, system concepts that use their inherent advantages to the fullest must be created. Network architectures that take maximum advantage of satellites equipped with onboard processing are explored. Satellite generations must accommodate various services for which satellites constitute the preferred vehicle of delivery. Such services tend to be those that are widely dispersed and present thin to medium loads to the system. Typical systems considered are thin and medium route telephony, maritime, land and aeronautical radio, VSAT data, low bit rate video teleconferencing, and high bit rate broadcast of high definition video. Delivery of services by TDMA and FDMA multiplexing techniques and combinations of the two for individual and mixed service types are studied. The possibilities offered by onboard circuit switched and packet switched architectures are examined and the results strongly support a preference for the latter. A detailed design architecture encompassing the onboard packet switch and its control, the related demand assigned TDMA burst structures, and destination packet protocols for routing traffic are presented. Fundamental onboard hardware requirements comprising speed, memory size, chip count, and power are estimated. The study concludes with identification of key enabling technologies and identifies a plan to develop a POC model.

  17. Architectural approach for quality and safety aware healthcare social networks.

    PubMed

    López, Diego M; Blobel, Bernd; González, Carolina

    2012-01-01

    Quality of information and privacy and safety issues are frequently identified as main limitations to make most benefit from social media in healthcare. The objective of the paper is to contribute to the analysis of healthcare social networks (SN), and online healthcare social network services (SNS) by proposing a formal architectural analysis of healthcare SN and SNS, considering the complexity of both systems, but stressing on quality, safety and usability aspects. Quality policies are necessary to control the quality of content published by experts and consumers. Privacy and safety policies protect against inappropriate use of information and users responsibility for sharing information. After the policies are established and documented, a proof of concept online SNS supporting primary healthcare promotion is presented in the paper.

  18. An architecture for designing fuzzy logic controllers using neural networks

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1991-01-01

    Described here is an architecture for designing fuzzy controllers through a hierarchical process of control rule acquisition and by using special classes of neural network learning techniques. A new method for learning to refine a fuzzy logic controller is introduced. A reinforcement learning technique is used in conjunction with a multi-layer neural network model of a fuzzy controller. The model learns by updating its prediction of the plant's behavior and is related to the Sutton's Temporal Difference (TD) method. The method proposed here has the advantage of using the control knowledge of an experienced operator and fine-tuning it through the process of learning. The approach is applied to a cart-pole balancing system.

  19. A micro-payment architecture for P2P networks

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Zhao, Zheng; Xiong, Xiao; Shi, Qingwei

    2007-09-01

    An important goal in P2P networks is that all peers provide resources. However, free riding and tragedy of common are real issues in P2P networks. To resolve these problems, most of the existing work is concerning probabilistic estimation to evaluate the trustworthiness or mechanism design to provide incentive. Instead of design a protocol to solve free riding, we build a micro-payment architecture for these existing protocols using virtual currency which can be more precisely measured and easily be replaced by reputation or other tokens. Our system can avoid from long-term trust learning interactions and high cost of collecting and analyzing reputation information. It can also provide peers incentive to truly report their connection type and security to malicious attacks.

  20. Cis-regulatory architecture of a brain-signaling center predates the origin of chordates

    PubMed Central

    Yao, Yao; Minor, Paul J.; Zhao, Ying-Tao; Jeong, Yongsu; Pani, Ariel M.; King, Anna N.; Symmons, Orsolya; Gan, Lin; Cardoso, Wellington V.; Spitz, François; Lowe, Christopher J.; Epstein, Douglas J.

    2016-01-01

    Genomic approaches have predicted hundreds of thousands of tissue specific cis-regulatory sequences, but the determinants critical to their function and evolutionary history are mostly unknown1–4. Here, we systematically decode a set of brain enhancers active in the zona limitans intrathalamica (zli), a signaling center essential for vertebrate forebrain development via the secreted morphogen, Sonic hedgehog (Shh)5,6. We apply a de novo motif analysis tool to identify six position-independent sequence motifs together with their cognate transcription factors that are essential for zli enhancer activity and Shh expression in the mouse embryo. Using knowledge of this regulatory lexicon, we discover novel Shh zli enhancers in mice, and a functionally equivalent element in hemichordates, indicating an ancient origin of the Shh zli regulatory network that predates the chordate phylum. These findings support a strategy for delineating functionally conserved enhancers in the absence of overt sequence homologies, and over extensive evolutionary distances. PMID:27064252

  1. Space Mobile Network: A Near Earth Communications and Navigation Architecture

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Heckler, Gregory W.; Menrad, Robert J.

    2016-01-01

    This paper shares key findings of NASA's Earth Regime Network Evolution Study (ERNESt) team resulting from its 18-month effort to define a wholly new architecture-level paradigm for the exploitation of space by civil space and commercial sector organizations. Since the launch of Sputnik in October 1957 spaceflight missions have remained highly scripted activities from launch through disposal. The utilization of computer technology has enabled dramatic increases in mission complexity; but, the underlying premise that the diverse actions necessary to meet mission goals requires minute-by-minute scripting, defined weeks in advance of execution, for the life of the mission has remained. This archetype was appropriate for a "new frontier" but now risks overtly constraining the potential market-based opportunities for the innovation considered necessary to efficiently address the complexities associated with meeting communications and navigation requirements projected to be characteristics of the next era of space exploration: a growing number of missions in simultaneous execution, increased variance of mission types and growth in location/orbital regime diversity. The resulting ERNESt architectural cornerstone - the Space Mobile Network (SMN) - was envisioned as critical to creating an environment essential to meeting these future challenges in political, programmatic, technological and budgetary terms. The SMN incorporates technologies such as: Disruption Tolerant Networking (DTN) and optical communications, as well as new operations concepts such as User Initiated Services (UIS) to provide user services analogous to today's terrestrial mobile network user. Results developed in collaboration with NASA's Space Communications and Navigation (SCaN) Division and field centers are reported on. Findings have been validated via briefings to external focus groups and initial ground-based demonstrations. The SMN opens new niches for exploitation by the marketplace of mission

  2. Identification of Neurodegenerative Factors Using Translatome-Regulatory Network Analysis

    PubMed Central

    Brichta, Lars; Shin, William; Jackson-Lewis, Vernice; Blesa, Javier; Yap, Ee-Lynn; Walker, Zachary; Zhang, Jack; Roussarie, Jean-Pierre; Alvarez, Mariano J.; Califano, Andrea; Przedborski, Serge; Greengard, Paul

    2016-01-01

    For degenerative disorders of the central nervous system, the major obstacle to therapeutic advancement has been the challenge of identifying the key molecular mechanisms underlying neuronal loss. We developed a combinatorial approach including translational profiling and brain regulatory network analysis to search for key determinants of neuronal survival or death. Following the generation of transgenic mice for cell type-specific profiling of midbrain dopaminergic neurons, we established and compared translatome libraries reflecting the molecular signature of these cells at baseline or under degenerative stress. Analysis of these libraries by interrogating a context-specific brain regulatory network led to the identification of a repertoire of intrinsic upstream regulators that drive the dopaminergic stress response. The altered activity of these regulators was not associated with changes in their expression levels. This strategy can be generalized for the elucidation of novel molecular determinants involved in the degeneration of other classes of neurons. PMID:26214373

  3. Evolution of the mammalian embryonic pluripotency gene regulatory network.

    PubMed

    Fernandez-Tresguerres, Beatriz; Cañon, Susana; Rayon, Teresa; Pernaute, Barbara; Crespo, Miguel; Torroja, Carlos; Manzanares, Miguel

    2010-11-16

    Embryonic pluripotency in the mouse is established and maintained by a gene-regulatory network under the control of a core set of transcription factors that include octamer-binding protein 4 (Oct4; official name POU domain, class 5, transcription factor 1, Pou5f1), sex-determining region Y (SRY)-box containing gene 2 (Sox2), and homeobox protein Nanog. Although this network is largely conserved in eutherian mammals, very little information is available regarding its evolutionary conservation in other vertebrates. We have compared the embryonic pluripotency networks in mouse and chick by means of expression analysis in the pregastrulation chicken embryo, genomic comparisons, and functional assays of pluripotency-related regulatory elements in ES cells and blastocysts. We find that multiple components of the network are either novel to mammals or have acquired novel expression domains in early developmental stages of the mouse. We also find that the downstream action of the mouse core pluripotency factors is mediated largely by genomic sequence elements nonconserved with chick. In the case of Sox2 and Fgf4, we find that elements driving expression in embryonic pluripotent cells have evolved by a small number of nucleotide changes that create novel binding sites for core factors. Our results show that the network in charge of embryonic pluripotency is an evolutionary novelty of mammals that is related to the comparatively extended period during which mammalian embryonic cells need to be maintained in an undetermined state before engaging in early differentiation events.

  4. Firewall Architectures for High-Speed Networks: Final Report

    SciTech Connect

    Errin W. Fulp

    2007-08-20

    Firewalls are a key component for securing networks that are vital to government agencies and private industry. They enforce a security policy by inspecting and filtering traffic arriving or departing from a secure network. While performing these critical security operations, firewalls must act transparent to legitimate users, with little or no effect on the perceived network performance (QoS). Packets must be inspected and compared against increasingly complex rule sets and tables, which is a time-consuming process. As a result, current firewall systems can introduce significant delays and are unable to maintain QoS guarantees. Furthermore, firewalls are susceptible to Denial of Service (DoS) attacks that merely overload/saturate the firewall with illegitimate traffic. Current firewall technology only offers a short-term solution that is not scalable; therefore, the \\textbf{objective of this DOE project was to develop new firewall optimization techniques and architectures} that meet these important challenges. Firewall optimization concerns decreasing the number of comparisons required per packet, which reduces processing time and delay. This is done by reorganizing policy rules via special sorting techniques that maintain the original policy integrity. This research is important since it applies to current and future firewall systems. Another method for increasing firewall performance is with new firewall designs. The architectures under investigation consist of multiple firewalls that collectively enforce a security policy. Our innovative distributed systems quickly divide traffic across different levels based on perceived threat, allowing traffic to be processed in parallel (beyond current firewall sandwich technology). Traffic deemed safe is transmitted to the secure network, while remaining traffic is forwarded to lower levels for further examination. The result of this divide-and-conquer strategy is lower delays for legitimate traffic, higher throughput

  5. An algebra-based method for inferring gene regulatory networks

    PubMed Central

    2014-01-01

    Background The inference of gene regulatory networks (GRNs) from experimental observations is at the heart of systems biology. This includes the inference of both the network topology and its dynamics. While there are many algorithms available to infer the network topology from experimental data, less emphasis has been placed on methods that infer network dynamics. Furthermore, since the network inference problem is typically underdetermined, it is essential to have the option of incorporating into the inference process, prior knowledge about the network, along with an effective description of the search space of dynamic models. Finally, it is also important to have an understanding of how a given inference method is affected by experimental and other noise in the data used. Results This paper contains a novel inference algorithm using the algebraic framework of Boolean polynomial dynamical systems (BPDS), meeting all these requirements. The algorithm takes as input time series data, including those from network perturbations, such as knock-out mutant strains and RNAi experiments. It allows for the incorporation of prior biological knowledge while being robust to significant levels of noise in the data used for inference. It uses an evolutionary algorithm for local optimization with an encoding of the mathematical models as BPDS. The BPDS framework allows an effective representation of the search space for algebraic dynamic models that improves computational performance. The algorithm is validated with both simulated and experimental microarray expression profile data. Robustness to noise is tested using a published mathematical model of the segment polarity gene network in Drosophila melanogaster. Benchmarking of the algorithm is done by comparison with a spectrum of state-of-the-art network inference methods on data from the synthetic IRMA network to demonstrate that our method has good precision and recall for the network reconstruction task, while also

  6. Phase transitions in the evolution of gene regulatory networks

    NASA Astrophysics Data System (ADS)

    Skanata, Antun; Kussell, Edo

    The role of gene regulatory networks is to respond to environmental conditions and optimize growth of the cell. A typical example is found in bacteria, where metabolic genes are activated in response to nutrient availability, and are subsequently turned off to conserve energy when their specific substrates are depleted. However, in fluctuating environmental conditions, regulatory networks could experience strong evolutionary pressures not only to turn the right genes on and off, but also to respond optimally under a wide spectrum of fluctuation timescales. The outcome of evolution is predicted by the long-term growth rate, which differentiates between optimal strategies. Here we present an analytic computation of the long-term growth rate in randomly fluctuating environments, by using mean-field and higher order expansion in the environmental history. We find that optimal strategies correspond to distinct regions in the phase space of fluctuations, separated by first and second order phase transitions. The statistics of environmental randomness are shown to dictate the possible evolutionary modes, which either change the structure of the regulatory network abruptly, or gradually modify and tune the interactions between its components.

  7. Gap Gene Regulatory Dynamics Evolve along a Genotype Network

    PubMed Central

    Crombach, Anton; Wotton, Karl R.; Jiménez-Guri, Eva; Jaeger, Johannes

    2016-01-01

    Developmental gene networks implement the dynamic regulatory mechanisms that pattern and shape the organism. Over evolutionary time, the wiring of these networks changes, yet the patterning outcome is often preserved, a phenomenon known as “system drift.” System drift is illustrated by the gap gene network—involved in segmental patterning—in dipteran insects. In the classic model organism Drosophila melanogaster and the nonmodel scuttle fly Megaselia abdita, early activation and placement of gap gene expression domains show significant quantitative differences, yet the final patterning output of the system is essentially identical in both species. In this detailed modeling analysis of system drift, we use gene circuits which are fit to quantitative gap gene expression data in M. abdita and compare them with an equivalent set of models from D. melanogaster. The results of this comparative analysis show precisely how compensatory regulatory mechanisms achieve equivalent final patterns in both species. We discuss the larger implications of the work in terms of “genotype networks” and the ways in which the structure of regulatory networks can influence patterns of evolutionary change (evolvability). PMID:26796549

  8. ARACNe-based inference, using curated microarray data, of Arabidopsis thaliana root transcriptional regulatory networks

    PubMed Central

    2014-01-01

    Background Uncovering the complex transcriptional regulatory networks (TRNs) that underlie plant and animal development remains a challenge. However, a vast amount of data from public microarray experiments is available, which can be subject to inference algorithms in order to recover reliable TRN architectures. Results In this study we present a simple bioinformatics methodology that uses public, carefully curated microarray data and the mutual information algorithm ARACNe in order to obtain a database of transcriptional interactions. We used data from Arabidopsis thaliana root samples to show that the transcriptional regulatory networks derived from this database successfully recover previously identified root transcriptional modules and to propose new transcription factors for the SHORT ROOT/SCARECROW and PLETHORA pathways. We further show that these networks are a powerful tool to integrate and analyze high-throughput expression data, as exemplified by our analysis of a SHORT ROOT induction time-course microarray dataset, and are a reliable source for the prediction of novel root gene functions. In particular, we used our database to predict novel genes involved in root secondary cell-wall synthesis and identified the MADS-box TF XAL1/AGL12 as an unexpected participant in this process. Conclusions This study demonstrates that network inference using carefully curated microarray data yields reliable TRN architectures. In contrast to previous efforts to obtain root TRNs, that have focused on particular functional modules or tissues, our root transcriptional interactions provide an overview of the transcriptional pathways present in Arabidopsis thaliana roots and will likely yield a plethora of novel hypotheses to be tested experimentally. PMID:24739361

  9. Identifying gene regulatory network rewiring using latent differential graphical models.

    PubMed

    Tian, Dechao; Gu, Quanquan; Ma, Jian

    2016-09-30

    Gene regulatory networks (GRNs) are highly dynamic among different tissue types. Identifying tissue-specific gene regulation is critically important to understand gene function in a particular cellular context. Graphical models have been used to estimate GRN from gene expression data to distinguish direct interactions from indirect associations. However, most existing methods estimate GRN for a specific cell/tissue type or in a tissue-naive way, or do not specifically focus on network rewiring between different tissues. Here, we describe a new method called Latent Differential Graphical Model (LDGM). The motivation of our method is to estimate the differential network between two tissue types directly without inferring the network for individual tissues, which has the advantage of utilizing much smaller sample size to achieve reliable differential network estimation. Our simulation results demonstrated that LDGM consistently outperforms other Gaussian graphical model based methods. We further evaluated LDGM by applying to the brain and blood gene expression data from the GTEx consortium. We also applied LDGM to identify network rewiring between cancer subtypes using the TCGA breast cancer samples. Our results suggest that LDGM is an effective method to infer differential network using high-throughput gene expression data to identify GRN dynamics among different cellular conditions.

  10. Identifying gene regulatory network rewiring using latent differential graphical models

    PubMed Central

    Tian, Dechao; Gu, Quanquan; Ma, Jian

    2016-01-01

    Gene regulatory networks (GRNs) are highly dynamic among different tissue types. Identifying tissue-specific gene regulation is critically important to understand gene function in a particular cellular context. Graphical models have been used to estimate GRN from gene expression data to distinguish direct interactions from indirect associations. However, most existing methods estimate GRN for a specific cell/tissue type or in a tissue-naive way, or do not specifically focus on network rewiring between different tissues. Here, we describe a new method called Latent Differential Graphical Model (LDGM). The motivation of our method is to estimate the differential network between two tissue types directly without inferring the network for individual tissues, which has the advantage of utilizing much smaller sample size to achieve reliable differential network estimation. Our simulation results demonstrated that LDGM consistently outperforms other Gaussian graphical model based methods. We further evaluated LDGM by applying to the brain and blood gene expression data from the GTEx consortium. We also applied LDGM to identify network rewiring between cancer subtypes using the TCGA breast cancer samples. Our results suggest that LDGM is an effective method to infer differential network using high-throughput gene expression data to identify GRN dynamics among different cellular conditions. PMID:27378774

  11. Stochastic S-system modeling of gene regulatory network.

    PubMed

    Chowdhury, Ahsan Raja; Chetty, Madhu; Evans, Rob

    2015-10-01

    Microarray gene expression data can provide insights into biological processes at a system-wide level and is commonly used for reverse engineering gene regulatory networks (GRN). Due to the amalgamation of noise from different sources, microarray expression profiles become inherently noisy leading to significant impact on the GRN reconstruction process. Microarray replicates (both biological and technical), generated to increase the reliability of data obtained under noisy conditions, have limited influence in enhancing the accuracy of reconstruction . Therefore, instead of the conventional GRN modeling approaches which are deterministic, stochastic techniques are becoming increasingly necessary for inferring GRN from noisy microarray data. In this paper, we propose a new stochastic GRN model by investigating incorporation of various standard noise measurements in the deterministic S-system model. Experimental evaluations performed for varying sizes of synthetic network, representing different stochastic processes, demonstrate the effect of noise on the accuracy of genetic network modeling and the significance of stochastic modeling for GRN reconstruction . The proposed stochastic model is subsequently applied to infer the regulations among genes in two real life networks: (1) the well-studied IRMA network, a real-life in-vivo synthetic network constructed within the Saccharomyces cerevisiae yeast, and (2) the SOS DNA repair network in Escherichia coli.

  12. An Open Distributed Architecture for Sensor Networks for Risk Management

    PubMed Central

    Douglas, John; Usländer, Thomas; Schimak, Gerald; Esteban, J. Fernando; Denzer, Ralf

    2008-01-01

    Sensors provide some of the basic input data for risk management of natural and man-made hazards. Here the word ‘sensors’ covers everything from remote sensing satellites, providing invaluable images of large regions, through instruments installed on the Earth's surface to instruments situated in deep boreholes and on the sea floor, providing highly-detailed point-based information from single sites. Data from such sensors is used in all stages of risk management, from hazard, vulnerability and risk assessment in the pre-event phase, information to provide on-site help during the crisis phase through to data to aid in recovery following an event. Because data from sensors play such an important part in improving understanding of the causes of risk and consequently in its mitigation, considerable investment has been made in the construction and maintenance of highly-sophisticated sensor networks. In spite of the ubiquitous need for information from sensor networks, the use of such data is hampered in many ways. Firstly, information about the presence and capabilities of sensor networks operating in a region is difficult to obtain due to a lack of easily available and usable meta-information. Secondly, once sensor networks have been identified their data it is often difficult to access due to a lack of interoperability between dissemination and acquisition systems. Thirdly, the transfer and processing of information from sensors is limited, again by incompatibilities between systems. Therefore, the current situation leads to a lack of efficiency and limited use of the available data that has an important role to play in risk mitigation. In view of this situation, the European Commission (EC) is funding a number of Integrated Projects within the Sixth Framework Programme concerned with improving the accessibility of data and services for risk management. Two of these projects: ‘Open Architecture and Spatial Data Infrastructure for Risk Management’ (ORCHESTRA

  13. Minimum network constraint on reverse engineering to develop biological regulatory networks.

    PubMed

    Shao, Bin; Wu, Jiayi; Tian, Binghui; Ouyang, Qi

    2015-09-01

    Reconstructing the topological structure of biological regulatory networks from microarray expression data or data of protein expression profiles is one of major tasks in systems biology. In recent years, various mathematical methods have been developed to meet this task. Here, based on our previously reported reverse engineering method, we propose a new constraint, i.e., the minimum network constraint, to facilitate the reconstruction of biological networks. Three well studied regulatory networks (the budding yeast cell cycle network, the fission yeast cell cycle network, and the SOS network of Escherichia coli) were used as the test sets to verify the performance of this method. Numerical results show that the biological networks prefer to use the minimal networks to fulfill their functional tasks, making it possible to apply minimal network criteria in the network reconstruction process. Two scenarios were considered in the reconstruction process: generating data using different initial conditions; and generating data from knock out and over-expression experiments. In both cases, network structures are revealed faithfully in a few steps using our approach.

  14. Reveal, A General Reverse Engineering Algorithm for Inference of Genetic Network Architectures

    NASA Technical Reports Server (NTRS)

    Liang, Shoudan; Fuhrman, Stefanie; Somogyi, Roland

    1998-01-01

    Given the immanent gene expression mapping covering whole genomes during development, health and disease, we seek computational methods to maximize functional inference from such large data sets. Is it possible, in principle, to completely infer a complex regulatory network architecture from input/output patterns of its variables? We investigated this possibility using binary models of genetic networks. Trajectories, or state transition tables of Boolean nets, resemble time series of gene expression. By systematically analyzing the mutual information between input states and output states, one is able to infer the sets of input elements controlling each element or gene in the network. This process is unequivocal and exact for complete state transition tables. We implemented this REVerse Engineering ALgorithm (REVEAL) in a C program, and found the problem to be tractable within the conditions tested so far. For n = 50 (elements) and k = 3 (inputs per element), the analysis of incomplete state transition tables (100 state transition pairs out of a possible 10(exp 15)) reliably produced the original rule and wiring sets. While this study is limited to synchronous Boolean networks, the algorithm is generalizable to include multi-state models, essentially allowing direct application to realistic biological data sets. The ability to adequately solve the inverse problem may enable in-depth analysis of complex dynamic systems in biology and other fields.

  15. Reveal, a general reverse engineering algorithm for inference of genetic network architectures.

    PubMed

    Liang, S; Fuhrman, S; Somogyi, R

    1998-01-01

    Given the immanent gene expression mapping covering whole genomes during development, health and disease, we seek computational methods to maximize functional inference from such large data sets. Is it possible, in principle, to completely infer a complex regulatory network architecture from input/output patterns of its variables? We investigated this possibility using binary models of genetic networks. Trajectories, or state transition tables of Boolean nets, resemble time series of gene expression. By systematically analyzing the mutual information between input states and output states, one is able to infer the sets of input elements controlling each element or gene in the network. This process is unequivocal and exact for complete state transition tables. We implemented this REVerse Engineering ALgorithm (REVEAL) in a C program, and found the problem to be tractable within the conditions tested so far. For n = 50 (elements) and k = 3 (inputs per element), the analysis of incomplete state transition tables (100 state transition pairs out of a possible 10(15)) reliably produced the original rule and wiring sets. While this study is limited to synchronous Boolean networks, the algorithm is generalizable to include multi-state models, essentially allowing direct application to realistic biological data sets. The ability to adequately solve the inverse problem may enable in-depth analysis of complex dynamic systems in biology and other fields.

  16. Non-coding RNAs and a layered architecture of genetic networks

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2010-12-01

    In eukaryotic cells, protein-coding sequences constitute a relatively small part of the genome. The rest of the genome is transcribed to non-coding RNAs (ncRNAs). Such RNAs form the cornerstone of a regulatory network that operates in parallel with the protein network. Their biological functions are based primarily on the ability to pair with and deactivate target messenger RNAs (mRNAs). To clarify the likely role of ncRNAs in complex genetic networks, we present and comprehensively analyze a kinetic model of one of the key counterparts of the network architectures. Specifically, the genes transcribed to ncRNAs are considered to interplay with a hierarchical two-layer set of genes transcribed to mRNAs. The genes forming the bottom layer are regulated from the top and negatively self-regulated. If the former regulation is positive, the dependence of the RNA populations on the governing parameters is found to be often non-monotonous. Specifically, the model predicts bistability. If the regulation is negative, the dependence of the RNA populations on the governing parameters is monotonous. In particular, the population of the mRNAs, corresponding to the genes forming the bottom layer, is nearly constant.

  17. Innovation and robustness in complex regulatory gene networks

    PubMed Central

    Ciliberti, S.; Martin, O. C.; Wagner, A.

    2007-01-01

    The history of life involves countless evolutionary innovations, a steady stream of ingenuity that has been flowing for more than 3 billion years. Very little is known about the principles of biological organization that allow such innovation. Here, we examine these principles for evolutionary innovation in gene expression patterns. To this end, we study a model for the transcriptional regulation networks that are at the heart of embryonic development. A genotype corresponds to a regulatory network of a given topology, and a phenotype corresponds to a steady-state gene expression pattern. Networks with the same phenotype form a connected graph in genotype space, where two networks are immediate neighbors if they differ by one regulatory interaction. We show that an evolutionary search on this graph can reach genotypes that are as different from each other as if they were chosen at random in genotype space, allowing evolutionary access to different kinds of innovation while staying close to a viable phenotype. Thus, although robustness to mutations may hinder innovation in the short term, we conclude that long-term innovation in gene expression patterns can only emerge in the presence of the robustness caused by connected genotype graphs. PMID:17690244

  18. Negative Feedback and Transcriptional Overshooting in a Regulatory Network for Horizontal Gene Transfer

    PubMed Central

    Fernandez-Lopez, Raul; del Campo, Irene; Revilla, Carlos; Cuevas, Ana; de la Cruz, Fernando

    2014-01-01

    Horizontal gene transfer (HGT) is a major force driving bacterial evolution. Because of their ability to cross inter-species barriers, bacterial plasmids are essential agents for HGT. This ability, however, poses specific requisites on plasmid physiology, in particular the need to overcome a multilevel selection process with opposing demands. We analyzed the transcriptional network of plasmid R388, one of the most promiscuous plasmids in Proteobacteria. Transcriptional analysis by fluorescence expression profiling and quantitative PCR revealed a regulatory network controlled by six transcriptional repressors. The regulatory network relied on strong promoters, which were tightly repressed in negative feedback loops. Computational simulations and theoretical analysis indicated that this architecture would show a transcriptional burst after plasmid conjugation, linking the magnitude of the feedback gain with the intensity of the transcriptional burst. Experimental analysis showed that transcriptional overshooting occurred when the plasmid invaded a new population of susceptible cells. We propose that transcriptional overshooting allows genome rebooting after horizontal gene transfer, and might have an adaptive role in overcoming the opposing demands of multilevel selection. PMID:24586200

  19. A recursive network approach can identify constitutive regulatory circuits in gene expression data

    NASA Astrophysics Data System (ADS)

    Blasi, Monica Francesca; Casorelli, Ida; Colosimo, Alfredo; Blasi, Francesco Simone; Bignami, Margherita; Giuliani, Alessandro

    2005-03-01

    The activity of the cell is often coordinated by the organisation of proteins into regulatory circuits that share a common function. Genome-wide expression profiles might contain important information on these circuits. Current approaches for the analysis of gene expression data include clustering the individual expression measurements and relating them to biological functions as well as modelling and simulation of gene regulation processes by additional computer tools. The identification of the regulative programmes from microarray experiments is limited, however, by the intrinsic difficulty of linear methods to detect low-variance signals and by the sensitivity of the different approaches. Here we face the problem of recognising invariant patterns of correlations among gene expression reminiscent of regulation circuits. We demonstrate that a recursive neural network approach can identify genetic regulation circuits from expression data for ribosomal and genome stability genes. The proposed method, by greatly enhancing the sensitivity of microarray studies, allows the identification of important aspects of genetic regulation networks and might be useful for the discrimination of the different players involved in regulation circuits. Our results suggest that the constitutive regulatory networks involved in the generic organisation of the cell display a high degree of clustering depending on a modular architecture.

  20. Network architectures and protocols for the integration of ACTS and ISDN

    NASA Technical Reports Server (NTRS)

    Chitre, D. M.; Lowry, P. A.

    1992-01-01

    A close integration of satellite networks and the integrated services digital network (ISDN) is essential for satellite networks to carry ISDN traffic effectively. This also shows how a given (pre-ISDN) satellite network architecture can be enhanced to handle ISDN signaling and provide ISDN services. It also describes the functional architecture and high-level protocols that could be implemented in the NASA Advanced Communications Technology Satellite (ACTS) low burst rate communications system to provide ISDN services.

  1. Dynamical modeling and analysis of large cellular regulatory networks

    NASA Astrophysics Data System (ADS)

    Bérenguier, D.; Chaouiya, C.; Monteiro, P. T.; Naldi, A.; Remy, E.; Thieffry, D.; Tichit, L.

    2013-06-01

    The dynamical analysis of large biological regulatory networks requires the development of scalable methods for mathematical modeling. Following the approach initially introduced by Thomas, we formalize the interactions between the components of a network in terms of discrete variables, functions, and parameters. Model simulations result in directed graphs, called state transition graphs. We are particularly interested in reachability properties and asymptotic behaviors, which correspond to terminal strongly connected components (or "attractors") in the state transition graph. A well-known problem is the exponential increase of the size of state transition graphs with the number of network components, in particular when using the biologically realistic asynchronous updating assumption. To address this problem, we have developed several complementary methods enabling the analysis of the behavior of large and complex logical models: (i) the definition of transition priority classes to simplify the dynamics; (ii) a model reduction method preserving essential dynamical properties, (iii) a novel algorithm to compact state transition graphs and directly generate compressed representations, emphasizing relevant transient and asymptotic dynamical properties. The power of an approach combining these different methods is demonstrated by applying them to a recent multilevel logical model for the network controlling CD4+ T helper cell response to antigen presentation and to a dozen cytokines. This model accounts for the differentiation of canonical Th1 and Th2 lymphocytes, as well as of inflammatory Th17 and regulatory T cells, along with many hybrid subtypes. All these methods have been implemented into the software GINsim, which enables the definition, the analysis, and the simulation of logical regulatory graphs.

  2. Evo–Devo in the Era of Gene Regulatory Networks

    PubMed Central

    Fischer, Antje H. L.; Smith, Joel

    2012-01-01

    Advanced genomics tools enable powerful new strategies for understanding complex biological processes, including development. By extension, we should be able to use these methods in a comparative fashion to capture evolutionary mechanisms. This requires a capacity to go deep and broad, to analyze developmental gene regulatory networks in many organisms, especially nontraditional models. As we usher in a new era of next-generation GRN (gene regulatory network) analysis, it is important to ask how to evaluate the evolution of network interactions. Particularly problematic, as always, is defining “independence”: Are two character traits found together because they are functionally linked or because of historical accident? The same basic question applies to understanding developmental GRN evolution. However, the essential difference here is that a GRN defines a causal chain of events. An understanding of causal relations—how Genes A and B work in concert to drive expression of Genes C and D to create a new Territory E—gives hope for establishing “trait independence” in a way that purely correlative arguments—the association of the expression of Gene D in Territory E—never could. Insight into causality provides the key to interpretation, as seen in this simplified scenario. Real-world networks bring new degrees of complexity, but the elucidation of causal relations remains the same. Has the day arrived when a single laboratory has the wherewithal to conduct multiorganism gene network projects in parallel? No. However, we argue that day is closer than one might suppose. We describe how a speedboat GRN project in one’s favorite nonmodel organism(s) might look and provide a framework for comparative network analysis. PMID:22927135

  3. Controlled architecture for improved macromolecular memory within polymer networks.

    PubMed

    DiPasquale, Stephen A; Byrne, Mark E

    2016-08-01

    This brief review analyzes recent developments in the field of living/controlled polymerization and the potential of this technique for creating imprinted polymers with highly structured architecture with macromolecular memory. As a result, it is possible to engineer polymers at the molecular level with increased homogeneity relating to enhanced template binding and transport. Only recently has living/controlled polymerization been exploited to decrease heterogeneity and substantially improve the efficiency of the imprinting process for both highly and weakly crosslinked imprinted polymers. Living polymerization can be utilized to create imprinted networks that are vastly more efficient than similar polymers produced using conventional free radical polymerization, and these improvements increase the role that macromolecular memory can play in the design and engineering of new drug delivery and sensing platforms. PMID:27322505

  4. Regulatory Compliance in Multi-Tier Supplier Networks

    NASA Technical Reports Server (NTRS)

    Goossen, Emray R.; Buster, Duke A.

    2014-01-01

    Over the years, avionics systems have increased in complexity to the point where 1st tier suppliers to an aircraft OEM find it financially beneficial to outsource designs of subsystems to 2nd tier and at times to 3rd tier suppliers. Combined with challenging schedule and budgetary pressures, the environment in which safety-critical systems are being developed introduces new hurdles for regulatory agencies and industry. This new environment of both complex systems and tiered development has raised concerns in the ability of the designers to ensure safety considerations are fully addressed throughout the tier levels. This has also raised questions about the sufficiency of current regulatory guidance to ensure: proper flow down of safety awareness, avionics application understanding at the lower tiers, OEM and 1st tier oversight practices, and capabilities of lower tier suppliers. Therefore, NASA established a research project to address Regulatory Compliance in a Multi-tier Supplier Network. This research was divided into three major study efforts: 1. Describe Modern Multi-tier Avionics Development 2. Identify Current Issues in Achieving Safety and Regulatory Compliance 3. Short-term/Long-term Recommendations Toward Higher Assurance Confidence This report presents our findings of the risks, weaknesses, and our recommendations. It also includes a collection of industry-identified risks, an assessment of guideline weaknesses related to multi-tier development of complex avionics systems, and a postulation of potential modifications to guidelines to close the identified risks and weaknesses.

  5. Genomic reconstruction of the transcriptional regulatory network in Bacillus subtilis.

    PubMed

    Leyn, Semen A; Kazanov, Marat D; Sernova, Natalia V; Ermakova, Ekaterina O; Novichkov, Pavel S; Rodionov, Dmitry A

    2013-06-01

    The adaptation of microorganisms to their environment is controlled by complex transcriptional regulatory networks (TRNs), which are still only partially understood even for model species. Genome scale annotation of regulatory features of genes and TRN reconstruction are challenging tasks of microbial genomics. We used the knowledge-driven comparative-genomics approach implemented in the RegPredict Web server to infer TRN in the model Gram-positive bacterium Bacillus subtilis and 10 related Bacillales species. For transcription factor (TF) regulons, we combined the available information from the DBTBS database and the literature with bioinformatics tools, allowing inference of TF binding sites (TFBSs), comparative analysis of the genomic context of predicted TFBSs, functional assignment of target genes, and effector prediction. For RNA regulons, we used known RNA regulatory motifs collected in the Rfam database to scan genomes and analyze the genomic context of new RNA sites. The inferred TRN in B. subtilis comprises regulons for 129 TFs and 24 regulatory RNA families. First, we analyzed 66 TF regulons with previously known TFBSs in B. subtilis and projected them to other Bacillales genomes, resulting in refinement of TFBS motifs and identification of novel regulon members. Second, we inferred motifs and described regulons for 28 experimentally studied TFs with previously unknown TFBSs. Third, we discovered novel motifs and reconstructed regulons for 36 previously uncharacterized TFs. The inferred collection of regulons is available in the RegPrecise database (http://regprecise.lbl.gov/) and can be used in genetic experiments, metabolic modeling, and evolutionary analysis.

  6. Distributed Prognostics and Health Management with a Wireless Network Architecture

    NASA Technical Reports Server (NTRS)

    Goebel, Kai; Saha, Sankalita; Sha, Bhaskar

    2013-01-01

    A heterogeneous set of system components monitored by a varied suite of sensors and a particle-filtering (PF) framework, with the power and the flexibility to adapt to the different diagnostic and prognostic needs, has been developed. Both the diagnostic and prognostic tasks are formulated as a particle-filtering problem in order to explicitly represent and manage uncertainties in state estimation and remaining life estimation. Current state-of-the-art prognostic health management (PHM) systems are mostly centralized in nature, where all the processing is reliant on a single processor. This can lead to a loss in functionality in case of a crash of the central processor or monitor. Furthermore, with increases in the volume of sensor data as well as the complexity of algorithms, traditional centralized systems become for a number of reasons somewhat ungainly for successful deployment, and efficient distributed architectures can be more beneficial. The distributed health management architecture is comprised of a network of smart sensor devices. These devices monitor the health of various subsystems or modules. They perform diagnostics operations and trigger prognostics operations based on user-defined thresholds and rules. The sensor devices, called computing elements (CEs), consist of a sensor, or set of sensors, and a communication device (i.e., a wireless transceiver beside an embedded processing element). The CE runs in either a diagnostic or prognostic operating mode. The diagnostic mode is the default mode where a CE monitors a given subsystem or component through a low-weight diagnostic algorithm. If a CE detects a critical condition during monitoring, it raises a flag. Depending on availability of resources, a networked local cluster of CEs is formed that then carries out prognostics and fault mitigation by efficient distribution of the tasks. It should be noted that the CEs are expected not to suspend their previous tasks in the prognostic mode. When the

  7. Dynamic Gene Regulatory Networks Drive Hematopoietic Specification and Differentiation.

    PubMed

    Goode, Debbie K; Obier, Nadine; Vijayabaskar, M S; Lie-A-Ling, Michael; Lilly, Andrew J; Hannah, Rebecca; Lichtinger, Monika; Batta, Kiran; Florkowska, Magdalena; Patel, Rahima; Challinor, Mairi; Wallace, Kirstie; Gilmour, Jane; Assi, Salam A; Cauchy, Pierre; Hoogenkamp, Maarten; Westhead, David R; Lacaud, Georges; Kouskoff, Valerie; Göttgens, Berthold; Bonifer, Constanze

    2016-03-01

    Metazoan development involves the successive activation and silencing of specific gene expression programs and is driven by tissue-specific transcription factors programming the chromatin landscape. To understand how this process executes an entire developmental pathway, we generated global gene expression, chromatin accessibility, histone modification, and transcription factor binding data from purified embryonic stem cell-derived cells representing six sequential stages of hematopoietic specification and differentiation. Our data reveal the nature of regulatory elements driving differential gene expression and inform how transcription factor binding impacts on promoter activity. We present a dynamic core regulatory network model for hematopoietic specification and demonstrate its utility for the design of reprogramming experiments. Functional studies motivated by our genome-wide data uncovered a stage-specific role for TEAD/YAP factors in mammalian hematopoietic specification. Our study presents a powerful resource for studying hematopoiesis and demonstrates how such data advance our understanding of mammalian development. PMID:26923725

  8. Dynamic Gene Regulatory Networks Drive Hematopoietic Specification and Differentiation

    PubMed Central

    Goode, Debbie K.; Obier, Nadine; Vijayabaskar, M.S.; Lie-A-Ling, Michael; Lilly, Andrew J.; Hannah, Rebecca; Lichtinger, Monika; Batta, Kiran; Florkowska, Magdalena; Patel, Rahima; Challinor, Mairi; Wallace, Kirstie; Gilmour, Jane; Assi, Salam A.; Cauchy, Pierre; Hoogenkamp, Maarten; Westhead, David R.; Lacaud, Georges; Kouskoff, Valerie; Göttgens, Berthold; Bonifer, Constanze

    2016-01-01

    Summary Metazoan development involves the successive activation and silencing of specific gene expression programs and is driven by tissue-specific transcription factors programming the chromatin landscape. To understand how this process executes an entire developmental pathway, we generated global gene expression, chromatin accessibility, histone modification, and transcription factor binding data from purified embryonic stem cell-derived cells representing six sequential stages of hematopoietic specification and differentiation. Our data reveal the nature of regulatory elements driving differential gene expression and inform how transcription factor binding impacts on promoter activity. We present a dynamic core regulatory network model for hematopoietic specification and demonstrate its utility for the design of reprogramming experiments. Functional studies motivated by our genome-wide data uncovered a stage-specific role for TEAD/YAP factors in mammalian hematopoietic specification. Our study presents a powerful resource for studying hematopoiesis and demonstrates how such data advance our understanding of mammalian development. PMID:26923725

  9. Large Scale Comparative Visualisation of Regulatory Networks with TRNDiff

    SciTech Connect

    Chua, Xin-Yi; Buckingham, Lawrence; Hogan, James M.; Novichkov, Pavel

    2015-06-01

    The advent of Next Generation Sequencing (NGS) technologies has seen explosive growth in genomic datasets, and dense coverage of related organisms, supporting study of subtle, strain-specific variations as a determinant of function. Such data collections present fresh and complex challenges for bioinformatics, those of comparing models of complex relationships across hundreds and even thousands of sequences. Transcriptional Regulatory Network (TRN) structures document the influence of regulatory proteins called Transcription Factors (TFs) on associated Target Genes (TGs). TRNs are routinely inferred from model systems or iterative search, and analysis at these scales requires simultaneous displays of multiple networks well beyond those of existing network visualisation tools [1]. In this paper we describe TRNDiff, an open source system supporting the comparative analysis and visualization of TRNs (and similarly structured data) from many genomes, allowing rapid identification of functional variations within species. The approach is demonstrated through a small scale multiple TRN analysis of the Fur iron-uptake system of Yersinia, suggesting a number of candidate virulence factors; and through a larger study exploiting integration with the RegPrecise database (http://regprecise.lbl.gov; [2]) - a collection of hundreds of manually curated and predicted transcription factor regulons drawn from across the entire spectrum of prokaryotic organisms.

  10. Large Scale Comparative Visualisation of Regulatory Networks with TRNDiff

    DOE PAGES

    Chua, Xin-Yi; Buckingham, Lawrence; Hogan, James M.; Novichkov, Pavel

    2015-06-01

    The advent of Next Generation Sequencing (NGS) technologies has seen explosive growth in genomic datasets, and dense coverage of related organisms, supporting study of subtle, strain-specific variations as a determinant of function. Such data collections present fresh and complex challenges for bioinformatics, those of comparing models of complex relationships across hundreds and even thousands of sequences. Transcriptional Regulatory Network (TRN) structures document the influence of regulatory proteins called Transcription Factors (TFs) on associated Target Genes (TGs). TRNs are routinely inferred from model systems or iterative search, and analysis at these scales requires simultaneous displays of multiple networks well beyond thosemore » of existing network visualisation tools [1]. In this paper we describe TRNDiff, an open source system supporting the comparative analysis and visualization of TRNs (and similarly structured data) from many genomes, allowing rapid identification of functional variations within species. The approach is demonstrated through a small scale multiple TRN analysis of the Fur iron-uptake system of Yersinia, suggesting a number of candidate virulence factors; and through a larger study exploiting integration with the RegPrecise database (http://regprecise.lbl.gov; [2]) - a collection of hundreds of manually curated and predicted transcription factor regulons drawn from across the entire spectrum of prokaryotic organisms.« less

  11. Deciphering the importance of the palindromic architecture of the immunoglobulin heavy-chain 3' regulatory region.

    PubMed

    Saintamand, Alexis; Vincent-Fabert, Christelle; Garot, Armand; Rouaud, Pauline; Oruc, Zeliha; Magnone, Virginie; Cogné, Michel; Denizot, Yves

    2016-01-01

    The IgH 3' regulatory region (3'RR) controls class switch recombination (CSR) and somatic hypermutation (SHM) in B cells. The mouse 3'RR contains four enhancer elements with hs1,2 flanked by inverted repeated sequences and the centre of a 25-kb palindrome bounded by two hs3 enhancer inverted copies (hs3a and hs3b). hs4 lies downstream of the palindrome. In mammals, evolution maintained this unique palindromic arrangement, suggesting that it is functionally significant. Here we report that deconstructing the palindromic IgH 3'RR strongly affects its function even when enhancers are preserved. CSR and IgH transcription appear to be poorly dependent on the 3'RR architecture and it is more or less preserved, provided 3'RR enhancers are present. By contrast, a 'palindromic effect' significantly lowers VH germline transcription, AID recruitment and SHM. In conclusion, this work indicates that the IgH 3'RR does not simply pile up enhancer units but also optimally exposes them into a functional architecture of crucial importance. PMID:26883548

  12. Deciphering the importance of the palindromic architecture of the immunoglobulin heavy-chain 3' regulatory region.

    PubMed

    Saintamand, Alexis; Vincent-Fabert, Christelle; Garot, Armand; Rouaud, Pauline; Oruc, Zeliha; Magnone, Virginie; Cogné, Michel; Denizot, Yves

    2016-02-17

    The IgH 3' regulatory region (3'RR) controls class switch recombination (CSR) and somatic hypermutation (SHM) in B cells. The mouse 3'RR contains four enhancer elements with hs1,2 flanked by inverted repeated sequences and the centre of a 25-kb palindrome bounded by two hs3 enhancer inverted copies (hs3a and hs3b). hs4 lies downstream of the palindrome. In mammals, evolution maintained this unique palindromic arrangement, suggesting that it is functionally significant. Here we report that deconstructing the palindromic IgH 3'RR strongly affects its function even when enhancers are preserved. CSR and IgH transcription appear to be poorly dependent on the 3'RR architecture and it is more or less preserved, provided 3'RR enhancers are present. By contrast, a 'palindromic effect' significantly lowers VH germline transcription, AID recruitment and SHM. In conclusion, this work indicates that the IgH 3'RR does not simply pile up enhancer units but also optimally exposes them into a functional architecture of crucial importance.

  13. Deciphering the importance of the palindromic architecture of the immunoglobulin heavy-chain 3' regulatory region

    PubMed Central

    Saintamand, Alexis; Vincent-Fabert, Christelle; Garot, Armand; Rouaud, Pauline; Oruc, Zeliha; Magnone, Virginie; Cogné, Michel; Denizot, Yves

    2016-01-01

    The IgH 3' regulatory region (3'RR) controls class switch recombination (CSR) and somatic hypermutation (SHM) in B cells. The mouse 3'RR contains four enhancer elements with hs1,2 flanked by inverted repeated sequences and the centre of a 25-kb palindrome bounded by two hs3 enhancer inverted copies (hs3a and hs3b). hs4 lies downstream of the palindrome. In mammals, evolution maintained this unique palindromic arrangement, suggesting that it is functionally significant. Here we report that deconstructing the palindromic IgH 3'RR strongly affects its function even when enhancers are preserved. CSR and IgH transcription appear to be poorly dependent on the 3'RR architecture and it is more or less preserved, provided 3'RR enhancers are present. By contrast, a ‘palindromic effect' significantly lowers VH germline transcription, AID recruitment and SHM. In conclusion, this work indicates that the IgH 3'RR does not simply pile up enhancer units but also optimally exposes them into a functional architecture of crucial importance. PMID:26883548

  14. SAGA: a hybrid search algorithm for Bayesian Network structure learning of transcriptional regulatory networks.

    PubMed

    Adabor, Emmanuel S; Acquaah-Mensah, George K; Oduro, Francis T

    2015-02-01

    Bayesian Networks have been used for the inference of transcriptional regulatory relationships among genes, and are valuable for obtaining biological insights. However, finding optimal Bayesian Network (BN) is NP-hard. Thus, heuristic approaches have sought to effectively solve this problem. In this work, we develop a hybrid search method combining Simulated Annealing with a Greedy Algorithm (SAGA). SAGA explores most of the search space by undergoing a two-phase search: first with a Simulated Annealing search and then with a Greedy search. Three sets of background-corrected and normalized microarray datasets were used to test the algorithm. BN structure learning was also conducted using the datasets, and other established search methods as implemented in BANJO (Bayesian Network Inference with Java Objects). The Bayesian Dirichlet Equivalence (BDe) metric was used to score the networks produced with SAGA. SAGA predicted transcriptional regulatory relationships among genes in networks that evaluated to higher BDe scores with high sensitivities and specificities. Thus, the proposed method competes well with existing search algorithms for Bayesian Network structure learning of transcriptional regulatory networks.

  15. MicroRNA and transcription factor mediated regulatory network for ovarian cancer: regulatory network of ovarian cancer.

    PubMed

    Ying, Huanchun; Lv, Jing; Ying, Tianshu; Li, Jun; Yang, Qing; Ma, Yuan

    2013-10-01

    A better understanding on the regulatory interactions of microRNA (miRNA) target genes and transcription factor (TF) target genes in ovarian cancer may be conducive for developing early diagnosis strategy. Thus, gene expression data and miRNA expression data were downloaded from The Cancer Genome Atlas in this study. Differentially expressed genes and miRNAs were selected out with t test, and Gene Ontology enrichment analysis was performed with DAVID tools. Regulatory interactions were retrieved from miRTarBase, TRED, and TRANSFAC, and then networks for miRNA target genes and TF target genes were constructed to globally present the mechanisms. As a result, a total of 1,939 differentially expressed genes were identified, and they were enriched in 28 functions, among which cell cycle was affected to the most degree. Besides, 213 differentially expressed miRNAs were identified. Two regulatory networks for miRNA target genes and TF target genes were established and then both were combined, in which E2F transcription factor 1, cyclin-dependent kinase inhibitor 1A, cyclin E1, and miR-16 were the hub genes. These genes may be potential biomarkers for ovarian cancer.

  16. Analysis of gene regulatory networks in the mammalian circadian rhythm.

    PubMed

    Yan, Jun; Wang, Haifang; Liu, Yuting; Shao, Chunxuan

    2008-10-01

    Circadian rhythm is fundamental in regulating a wide range of cellular, metabolic, physiological, and behavioral activities in mammals. Although a small number of key circadian genes have been identified through extensive molecular and genetic studies in the past, the existence of other key circadian genes and how they drive the genomewide circadian oscillation of gene expression in different tissues still remains unknown. Here we try to address these questions by integrating all available circadian microarray data in mammals. We identified 41 common circadian genes that showed circadian oscillation in a wide range of mouse tissues with a remarkable consistency of circadian phases across tissues. Comparisons across mouse, rat, rhesus macaque, and human showed that the circadian phases of known key circadian genes were delayed for 4-5 hours in rat compared to mouse and 8-12 hours in macaque and human compared to mouse. A systematic gene regulatory network for the mouse circadian rhythm was constructed after incorporating promoter analysis and transcription factor knockout or mutant microarray data. We observed the significant association of cis-regulatory elements: EBOX, DBOX, RRE, and HSE with the different phases of circadian oscillating genes. The analysis of the network structure revealed the paths through which light, food, and heat can entrain the circadian clock and identified that NR3C1 and FKBP/HSP90 complexes are central to the control of circadian genes through diverse environmental signals. Our study improves our understanding of the structure, design principle, and evolution of gene regulatory networks involved in the mammalian circadian rhythm.

  17. Overview of the Smart Network Element Architecture and Recent Innovations

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.; Mata, Carlos T.; Oostdyk, Rebecca L.

    2008-01-01

    In industrial environments, system operators rely on the availability and accuracy of sensors to monitor processes and detect failures of components and/or processes. The sensors must be networked in such a way that their data is reported to a central human interface, where operators are tasked with making real-time decisions based on the state of the sensors and the components that are being monitored. Incorporating health management functions at this central location aids the operator by automating the decision-making process to suggest, and sometimes perform, the action required by current operating conditions. Integrated Systems Health Management (ISHM) aims to incorporate data from many sources, including real-time and historical data and user input, and extract information and knowledge from that data to diagnose failures and predict future failures of the system. By distributing health management processing to lower levels of the architecture, there is less bandwidth required for ISHM, enhanced data fusion, make systems and processes more robust, and improved resolution for the detection and isolation of failures in a system, subsystem, component, or process. The Smart Network Element (SNE) has been developed at NASA Kennedy Space Center to perform intelligent functions at sensors and actuators' level in support of ISHM.

  18. Hybrid Network Architectures for the Next Generation NAS

    NASA Technical Reports Server (NTRS)

    Madubata, Christian

    2003-01-01

    To meet the needs of the 21st Century NAS, an integrated, network-centric infrastructure is essential that is characterized by secure, high bandwidth, digital communication systems that support precision navigation capable of reducing position errors for all aircraft to within a few meters. This system will also require precision surveillance systems capable of accurately locating all aircraft, and automatically detecting any deviations from an approved path within seconds and be able to deliver high resolution weather forecasts - critical to create 4- dimensional (space and time) profiles for up to 6 hours for all atmospheric conditions affecting aviation, including wake vortices. The 21st Century NAS will be characterized by highly accurate digital data bases depicting terrain, obstacle, and airport information no matter what visibility conditions exist. This research task will be to perform a high-level requirements analysis of the applications, information and services required by the next generation National Airspace System. The investigation and analysis is expected to lead to the development and design of several national network-centric communications architectures that would be capable of supporting the Next Generation NAS.

  19. Constructive role of noise in p53 regulatory network

    NASA Astrophysics Data System (ADS)

    Hung, Yao-Chen; Hu, Chin-Kun

    2011-01-01

    We study the effect of noise on p53 regulatory network, the core of a cell's modulator for switching between survival and apoptosis. We find that the fluctuations, originating from stochastic expression of p53-responsive genes, introduce marked advantages for the system to sense external stimuli and sustain the function of switches. The coherence between a stimulus and the system's response undergoes a maximum with the raise of noise level, indicating the occurrence of stochastic resonance. The biological significance of our results is discussed.

  20. Control of metastatic progression by microRNA regulatory networks.

    PubMed

    Pencheva, Nora; Tavazoie, Sohail F

    2013-06-01

    Aberrant microRNA (miRNA) expression is a defining feature of human malignancy. Specific miRNAs have been identified as promoters or suppressors of metastatic progression. miRNAs control metastasis through divergent or convergent regulation of metastatic gene pathways. Some miRNA regulatory networks govern cell-autonomous cancer phenotypes, whereas others modulate the cell-extrinsic composition of the metastatic microenvironment. The use of small RNAs as probes into the molecular and cellular underpinnings of metastasis holds promise for the identification of candidate genes for potential therapeutic intervention.

  1. Control of Metastatic Progression by microRNA Regulatory Networks

    PubMed Central

    Pencheva, Nora; Tavazoie, Sohail F.

    2015-01-01

    Aberrant microRNA (miRNA) expression is a defining feature of human malignancy. Specific miRNAs have been identified as promoters or suppressors of metastatic progression. These miRNAs control metastasis through divergent or convergent regulation of metastatic gene pathways. Some miRNA regulatory networks govern cell-autonomous cancer phenotypes, while others modulate the cell-extrinsic composition of the metastatic microenvironment. The use of small RNAs as probes into the molecular and cellular underpinnings of metastasis holds promise for the identification of candidate genes for potential therapeutic intervention. PMID:23728460

  2. Regulatory network rewiring for secondary metabolism in Arabidopsis thaliana under various conditions

    PubMed Central

    2014-01-01

    Background Plant secondary metabolites are critical to various biological processes. However, the regulations of these metabolites are complex because of regulatory rewiring or crosstalk. To unveil how regulatory behaviors on secondary metabolism reshape biological processes, we constructed and analyzed a dynamic regulatory network of secondary metabolic pathways in Arabidopsis. Results The dynamic regulatory network was constructed through integrating co-expressed gene pairs and regulatory interactions. Regulatory interactions were either predicted by conserved transcription factor binding sites (TFBSs) or proved by experiments. We found that integrating two data (co-expression and predicted regulatory interactions) enhanced the number of highly confident regulatory interactions by over 10% compared with using single data. The dynamic changes of regulatory network systematically manifested regulatory rewiring to explain the mechanism of regulation, such as in terpenoids metabolism, the regulatory crosstalk of RAV1 (AT1G13260) and ATHB1 (AT3G01470) on HMG1 (hydroxymethylglutaryl-CoA reductase, AT1G76490); and regulation of RAV1 on epoxysqualene biosynthesis and sterol biosynthesis. Besides, we investigated regulatory rewiring with expression, network topology and upstream signaling pathways. Regulatory rewiring was revealed by the variability of genes’ expression: pathway genes and transcription factors (TFs) were significantly differentially expressed under different conditions (such as terpenoids biosynthetic genes in tissue experiments and E2F/DP family members in genotype experiments). Both network topology and signaling pathways supported regulatory rewiring. For example, we discovered correlation among the numbers of pathway genes, TFs and network topology: one-gene pathways (such as δ-carotene biosynthesis) were regulated by a fewer TFs, and were not critical to metabolic network because of their low degrees in topology. Upstream signaling pathways of 50

  3. The exploration of network motifs as potential drug targets from post-translational regulatory networks.

    PubMed

    Zhang, Xiao-Dong; Song, Jiangning; Bork, Peer; Zhao, Xing-Ming

    2016-02-08

    Phosphorylation and proteolysis are among the most common post-translational modifications (PTMs), and play critical roles in various biological processes. More recent discoveries imply that the crosstalks between these two PTMs are involved in many diseases. In this work, we construct a post-translational regulatory network (PTRN) consists of phosphorylation and proteolysis processes, which enables us to investigate the regulatory interplays between these two PTMs. With the PTRN, we identify some functional network motifs that are significantly enriched with drug targets, some of which are further found to contain multiple proteins targeted by combinatorial drugs. These findings imply that the network motifs may be used to predict targets when designing new drugs. Inspired by this, we propose a novel computational approach called NetTar for predicting drug targets using the identified network motifs. Benchmarking results on real data indicate that our approach can be used for accurate prediction of novel proteins targeted by known drugs.

  4. DAX1 regulatory networks unveil conserved and potentially new functions.

    PubMed

    Martins, Rute S T; Power, Deborah M; Fuentes, Juan; Deloffre, Laurence A M; Canário, Adelino V M

    2013-11-01

    DAX1 is an orphan nuclear receptor with actions in mammalian sex determination, regulation of steroidogenesis, embryonic development and neural differentiation. Conserved patterns of DAX1 gene expression from mammals to fish have been taken to suggest conserved function. In the present study, the European sea bass, Dicentrarchus labrax, DAX1 promoter was isolated and its conserved features compared to other fish and mammalian DAX1 promoters in order to derive common regulators and functional gene networks. Fish and mammalian DAX1 promoters share common sets of transcription factor frameworks which were also present in the promoter region of another 127 genes. Pathway analysis clustered these into candidate gene networks associated with the fish and mammalian DAX1. The networks identified are concordant with described functions for DAX1 in embryogenesis, regulation of transcription, endocrine development and steroid production. Novel candidate gene network partners were also identified, which implicate DAX1 in ion homeostasis and transport, lipid transport and skeletal development. Experimental evidence is provided supporting roles for DAX1 in steroid signalling and osmoregulation in fish. These results highlight the usefulness of the in silico comparative approach to analyse gene regulation for hypothesis generation. Conserved promoter architecture can be used also to predict potentially new gene functions. The approach reported can be applied to genes from model and non-model species.

  5. DAX1 regulatory networks unveil conserved and potentially new functions.

    PubMed

    Martins, Rute S T; Power, Deborah M; Fuentes, Juan; Deloffre, Laurence A M; Canário, Adelino V M

    2013-11-01

    DAX1 is an orphan nuclear receptor with actions in mammalian sex determination, regulation of steroidogenesis, embryonic development and neural differentiation. Conserved patterns of DAX1 gene expression from mammals to fish have been taken to suggest conserved function. In the present study, the European sea bass, Dicentrarchus labrax, DAX1 promoter was isolated and its conserved features compared to other fish and mammalian DAX1 promoters in order to derive common regulators and functional gene networks. Fish and mammalian DAX1 promoters share common sets of transcription factor frameworks which were also present in the promoter region of another 127 genes. Pathway analysis clustered these into candidate gene networks associated with the fish and mammalian DAX1. The networks identified are concordant with described functions for DAX1 in embryogenesis, regulation of transcription, endocrine development and steroid production. Novel candidate gene network partners were also identified, which implicate DAX1 in ion homeostasis and transport, lipid transport and skeletal development. Experimental evidence is provided supporting roles for DAX1 in steroid signalling and osmoregulation in fish. These results highlight the usefulness of the in silico comparative approach to analyse gene regulation for hypothesis generation. Conserved promoter architecture can be used also to predict potentially new gene functions. The approach reported can be applied to genes from model and non-model species. PMID:23954228

  6. Criteria for Evaluating Alternative Network and Link Layer Protocols for the NASA Constellation Program Communication Architecture

    NASA Technical Reports Server (NTRS)

    Benbenek, Daniel; Soloff, Jason; Lieb, Erica

    2010-01-01

    Selecting a communications and network architecture for future manned space flight requires an evaluation of the varying goals and objectives of the program, development of communications and network architecture evaluation criteria, and assessment of critical architecture trades. This paper uses Cx Program proposed exploration activities as a guideline; lunar sortie, outpost, Mars, and flexible path options are described. A set of proposed communications network architecture criteria are proposed and described. They include: interoperability, security, reliability, and ease of automating topology changes. Finally a key set of architecture options are traded including (1) multiplexing data at a common network layer vs. at the data link layer, (2) implementing multiple network layers vs. a single network layer, and (3) the use of a particular network layer protocol, primarily IPv6 vs. Delay Tolerant Networking (DTN). In summary, the protocol options are evaluated against the proposed exploration activities and their relative performance with respect to the criteria are assessed. An architectural approach which includes (a) the capability of multiplexing at both the network layer and the data link layer and (b) a single network layer for operations at each program phase, as these solutions are best suited to respond to the widest array of program needs and meet each of the evaluation criteria.

  7. Asymmetric Regulation of Peripheral Genes by Two Transcriptional Regulatory Networks

    PubMed Central

    Li, Jing-Ru; Suzuki, Takahiro; Nishimura, Hajime; Kishima, Mami; Maeda, Shiori; Suzuki, Harukazu

    2016-01-01

    Transcriptional regulatory network (TRN) reconstitution and deconstruction occur simultaneously during reprogramming; however, it remains unclear how the starting and targeting TRNs regulate the induction and suppression of peripheral genes. Here we analyzed the regulation using direct cell reprogramming from human dermal fibroblasts to monocytes as the platform. We simultaneously deconstructed fibroblastic TRN and reconstituted monocytic TRN; monocytic and fibroblastic gene expression were analyzed in comparison with that of fibroblastic TRN deconstruction only or monocytic TRN reconstitution only. Global gene expression analysis showed cross-regulation of TRNs. Detailed analysis revealed that knocking down fibroblastic TRN positively affected half of the upregulated monocytic genes, indicating that intrinsic fibroblastic TRN interfered with the expression of induced genes. In contrast, reconstitution of monocytic TRN showed neutral effects on the majority of fibroblastic gene downregulation. This study provides an explicit example that demonstrates how two networks together regulate gene expression during cell reprogramming processes and contributes to the elaborate exploration of TRNs. PMID:27483142

  8. Advanced optical network architecture for integrated digital avionics

    NASA Astrophysics Data System (ADS)

    Morgan, D. Reed

    1996-12-01

    For the first time in the history of avionics, the network designer now has a choice in selecting the media that interconnects the sources and sinks of digital data on aircraft. Electrical designs are already giving way to photonics in application areas where the data rate times distance product is large or where special design requirements such as low weight or EMI considerations are critical. Future digital avionic architectures will increasingly favor the use of photonic interconnects as network data rates of one gigabit/second and higher are needed to support real-time operation of high-speed integrated digital processing. As the cost of optical network building blocks is reduced and as temperature-rugged laser sources are matured, metal interconnects will be forced to retreat to applications spanning shorter and shorter distances. Although the trend is already underway, the widespread use of digital optics will first occur at the system level, where gigabit/second, real-time interconnects between sensors, processors, mass memories and displays separated by a least of few meters will be required. The application of photonic interconnects for inter-printed wiring board signalling across the backplane will eventually find application for gigabit/second applications since signal degradation over copper traces occurs before one gigabit/second and 0.5 meters are reached. For the foreseeable future however, metal interconnects will continue to be used to interconnect devices on printed wiring boards since 5 gigabit/second signals can be sent over metal up to around 15 centimeters. Current-day applications of optical interconnects at the system level are described and a projection of how advanced optical interconnect technology will be driven by the use of high speed integrated digital processing on future aircraft is presented. The recommended advanced network for application in the 2010 time frame is a fiber-based system with a signalling speed of around 2

  9. Systems biology approaches to defining transcription regulatory networks in halophilic archaea.

    PubMed

    Darnell, Cynthia L; Schmid, Amy K

    2015-09-15

    To survive complex and changing environmental conditions, microorganisms use gene regulatory networks (GRNs) composed of interacting regulatory transcription factors (TFs) to control the timing and magnitude of gene expression. Genome-wide datasets; such as transcriptomics and protein-DNA interactions; and experiments such as high throughput growth curves; facilitate the construction of GRNs and provide insight into TF interactions occurring under stress. Systems biology approaches integrate these datasets into models of GRN architecture as well as statistical and/or dynamical models to understand the function of networks occurring in cells. Previously, these types of studies have focused on traditional model organisms (e.g. Escherichia coli, yeast). However, recent advances in archaeal genetics and other tools have enabled a systems approach to understanding GRNs in these relatively less studied archaeal model organisms. In this report, we outline a systems biology workflow for generating and integrating data focusing on the TF regulator. We discuss experimental design, outline the process of data collection, and provide the tools required to produce high confidence regulons for the TFs of interest. We provide a case study as an example of this workflow, describing the construction of a GRN centered on multi-TF coordinate control of gene expression governing the oxidative stress response in the hypersaline-adapted archaeon Halobacterium salinarum.

  10. Neural network architecture for cognitive navigation in dynamic environments.

    PubMed

    Villacorta-Atienza, José Antonio; Makarov, Valeri A

    2013-12-01

    Navigation in time-evolving environments with moving targets and obstacles requires cognitive abilities widely demonstrated by even simplest animals. However, it is a long-standing challenging problem for artificial agents. Cognitive autonomous robots coping with this problem must solve two essential tasks: 1) understand the environment in terms of what may happen and how I can deal with this and 2) learn successful experiences for their further use in an automatic subconscious way. The recently introduced concept of compact internal representation (CIR) provides the ground for both the tasks. CIR is a specific cognitive map that compacts time-evolving situations into static structures containing information necessary for navigation. It belongs to the class of global approaches, i.e., it finds trajectories to a target when they exist but also detects situations when no solution can be found. Here we extend the concept of situations with mobile targets. Then using CIR as a core, we propose a closed-loop neural network architecture consisting of conscious and subconscious pathways for efficient decision-making. The conscious pathway provides solutions to novel situations if the default subconscious pathway fails to guide the agent to a target. Employing experiments with roving robots and numerical simulations, we show that the proposed architecture provides the robot with cognitive abilities and enables reliable and flexible navigation in realistic time-evolving environments. We prove that the subconscious pathway is robust against uncertainty in the sensory information. Thus if a novel situation is similar but not identical to the previous experience (because of, e.g., noisy perception) then the subconscious pathway is able to provide an effective solution. PMID:24805224

  11. Neural network architecture for cognitive navigation in dynamic environments.

    PubMed

    Villacorta-Atienza, José Antonio; Makarov, Valeri A

    2013-12-01

    Navigation in time-evolving environments with moving targets and obstacles requires cognitive abilities widely demonstrated by even simplest animals. However, it is a long-standing challenging problem for artificial agents. Cognitive autonomous robots coping with this problem must solve two essential tasks: 1) understand the environment in terms of what may happen and how I can deal with this and 2) learn successful experiences for their further use in an automatic subconscious way. The recently introduced concept of compact internal representation (CIR) provides the ground for both the tasks. CIR is a specific cognitive map that compacts time-evolving situations into static structures containing information necessary for navigation. It belongs to the class of global approaches, i.e., it finds trajectories to a target when they exist but also detects situations when no solution can be found. Here we extend the concept of situations with mobile targets. Then using CIR as a core, we propose a closed-loop neural network architecture consisting of conscious and subconscious pathways for efficient decision-making. The conscious pathway provides solutions to novel situations if the default subconscious pathway fails to guide the agent to a target. Employing experiments with roving robots and numerical simulations, we show that the proposed architecture provides the robot with cognitive abilities and enables reliable and flexible navigation in realistic time-evolving environments. We prove that the subconscious pathway is robust against uncertainty in the sensory information. Thus if a novel situation is similar but not identical to the previous experience (because of, e.g., noisy perception) then the subconscious pathway is able to provide an effective solution.

  12. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence

    PubMed Central

    Balasubramanian, Deepak; Schneper, Lisa; Kumari, Hansi; Mathee, Kalai

    2013-01-01

    Pseudomonas aeruginosa is a metabolically versatile bacterium that is found in a wide range of biotic and abiotic habitats. It is a major human opportunistic pathogen causing numerous acute and chronic infections. The critical traits contributing to the pathogenic potential of P. aeruginosa are the production of a myriad of virulence factors, formation of biofilms and antibiotic resistance. Expression of these traits is under stringent regulation, and it responds to largely unidentified environmental signals. This review is focused on providing a global picture of virulence gene regulation in P. aeruginosa. In addition to key regulatory pathways that control the transition from acute to chronic infection phenotypes, some regulators have been identified that modulate multiple virulence mechanisms. Despite of a propensity for chaotic behaviour, no chaotic motifs were readily observed in the P. aeruginosa virulence regulatory network. Having a ‘birds-eye’ view of the regulatory cascades provides the forum opportunities to pose questions, formulate hypotheses and evaluate theories in elucidating P. aeruginosa pathogenesis. Understanding the mechanisms involved in making P. aeruginosa a successful pathogen is essential in helping devise control strategies. PMID:23143271

  13. Protecting the privacy of patient information in clinical networks: regulatory effectiveness analysis.

    PubMed

    Brannigan, V M

    1992-12-17

    Patient privacy is one of the major issues in the development of modern clinical information system networks. Such networks will have to demonstrate an appropriate concern for privacy as a precondition of operation. Regulatory effectiveness analysis is a novel technique for measuring compliance with a technological regulatory system. By examining the public policies, legal structures, and technical tools involved in the regulatory system, it is possible to discover discontinuities that may result in noncompliance with the regulatory system.

  14. Quantum perceptron over a field and neural network architecture selection in a quantum computer.

    PubMed

    da Silva, Adenilton José; Ludermir, Teresa Bernarda; de Oliveira, Wilson Rosa

    2016-04-01

    In this work, we propose a quantum neural network named quantum perceptron over a field (QPF). Quantum computers are not yet a reality and the models and algorithms proposed in this work cannot be simulated in actual (or classical) computers. QPF is a direct generalization of a classical perceptron and solves some drawbacks found in previous models of quantum perceptrons. We also present a learning algorithm named Superposition based Architecture Learning algorithm (SAL) that optimizes the neural network weights and architectures. SAL searches for the best architecture in a finite set of neural network architectures with linear time over the number of patterns in the training set. SAL is the first learning algorithm to determine neural network architectures in polynomial time. This speedup is obtained by the use of quantum parallelism and a non-linear quantum operator. PMID:26878722

  15. Quantum perceptron over a field and neural network architecture selection in a quantum computer.

    PubMed

    da Silva, Adenilton José; Ludermir, Teresa Bernarda; de Oliveira, Wilson Rosa

    2016-04-01

    In this work, we propose a quantum neural network named quantum perceptron over a field (QPF). Quantum computers are not yet a reality and the models and algorithms proposed in this work cannot be simulated in actual (or classical) computers. QPF is a direct generalization of a classical perceptron and solves some drawbacks found in previous models of quantum perceptrons. We also present a learning algorithm named Superposition based Architecture Learning algorithm (SAL) that optimizes the neural network weights and architectures. SAL searches for the best architecture in a finite set of neural network architectures with linear time over the number of patterns in the training set. SAL is the first learning algorithm to determine neural network architectures in polynomial time. This speedup is obtained by the use of quantum parallelism and a non-linear quantum operator.

  16. A regulatory network controls nephrocan expression and midgut patterning

    PubMed Central

    Hou, Juan; Wei, Wei; Saund, Ranajeet S.; Xiang, Ping; Cunningham, Thomas J.; Yi, Yuyin; Alder, Olivia; Lu, Daphne Y. D.; Savory, Joanne G. A.; Krentz, Nicole A. J.; Montpetit, Rachel; Cullum, Rebecca; Hofs, Nicole; Lohnes, David; Humphries, R. Keith; Yamanaka, Yojiro; Duester, Gregg; Saijoh, Yukio; Hoodless, Pamela A.

    2014-01-01

    Although many regulatory networks involved in defining definitive endoderm have been identified, the mechanisms through which these networks interact to pattern the endoderm are less well understood. To explore the mechanisms involved in midgut patterning, we dissected the transcriptional regulatory elements of nephrocan (Nepn), the earliest known midgut specific gene in mice. We observed that Nepn expression is dramatically reduced in Sox17−/− and Raldh2−/− embryos compared with wild-type embryos. We further show that Nepn is directly regulated by Sox17 and the retinoic acid (RA) receptor via two enhancer elements located upstream of the gene. Moreover, Nepn expression is modulated by Activin signaling, with high levels inhibiting and low levels enhancing RA-dependent expression. In Foxh1−/− embryos in which Nodal signaling is reduced, the Nepn expression domain is expanded into the anterior gut region, confirming that Nodal signaling can modulate its expression in vivo. Together, Sox17 is required for Nepn expression in the definitive endoderm, while RA signaling restricts expression to the midgut region. A balance of Nodal/Activin signaling regulates the anterior boundary of the midgut expression domain. PMID:25209250

  17. A Bayesian approach for structure learning in oscillating regulatory networks

    PubMed Central

    Trejo Banos, Daniel; Millar, Andrew J.; Sanguinetti, Guido

    2015-01-01

    Motivation: Oscillations lie at the core of many biological processes, from the cell cycle, to circadian oscillations and developmental processes. Time-keeping mechanisms are essential to enable organisms to adapt to varying conditions in environmental cycles, from day/night to seasonal. Transcriptional regulatory networks are one of the mechanisms behind these biological oscillations. However, while identifying cyclically expressed genes from time series measurements is relatively easy, determining the structure of the interaction network underpinning the oscillation is a far more challenging problem. Results: Here, we explicitly leverage the oscillatory nature of the transcriptional signals and present a method for reconstructing network interactions tailored to this special but important class of genetic circuits. Our method is based on projecting the signal onto a set of oscillatory basis functions using a Discrete Fourier Transform. We build a Bayesian Hierarchical model within a frequency domain linear model in order to enforce sparsity and incorporate prior knowledge about the network structure. Experiments on real and simulated data show that the method can lead to substantial improvements over competing approaches if the oscillatory assumption is met, and remains competitive also in cases it is not. Availability: DSS, experiment scripts and data are available at http://homepages.inf.ed.ac.uk/gsanguin/DSS.zip. Contact: d.trejo-banos@sms.ed.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26177966

  18. A genetic regulatory network for Xenopus mesendoderm formation.

    PubMed

    Loose, Matthew; Patient, Roger

    2004-07-15

    We have constructed a genetic regulatory network (GRN) summarising the functional relationships between the transcription factors (TFs) and embryonic signals involved in Xenopus mesendoderm formation. It is supported by a relational database containing the experimental evidence and both are available in interactive form via the World Wide Web. This network highlights areas for further study and provides a framework for systematic interrogation of new data. Comparison with the equivalent network for the sea urchin identifies conserved features of the deuterostome ancestral pathway, including positive feedback loops, GATA factors, SoxB, Brachyury and a previously underemphasised role for beta-catenin. In contrast, some features central to one species have not yet been found in the other, for example, Krox and Otx in sea urchin, and Mix and Nodal in Xenopus. Such differences may represent evolved features or may eventually be resolved. For example, in Xenopus, Nodal-related genes are positively regulated by beta-catenin and at least one of them is repressed by Sox3, as is the uncharacterised early signal (ES) inducing endomesoderm in the sea urchin, suggesting that ES may be a Nodal-like TGF-beta. Wider comparisons of such networks will inform our understanding of developmental evolution.

  19. How difficult is inference of mammalian causal gene regulatory networks?

    PubMed

    Djordjevic, Djordje; Yang, Andrian; Zadoorian, Armella; Rungrugeecharoen, Kevin; Ho, Joshua W K

    2014-01-01

    Gene regulatory networks (GRNs) play a central role in systems biology, especially in the study of mammalian organ development. One key question remains largely unanswered: Is it possible to infer mammalian causal GRNs using observable gene co-expression patterns alone? We assembled two mouse GRN datasets (embryonic tooth and heart) and matching microarray gene expression profiles to systematically investigate the difficulties of mammalian causal GRN inference. The GRNs were assembled based on > 2,000 pieces of experimental genetic perturbation evidence from manually reading > 150 primary research articles. Each piece of perturbation evidence records the qualitative change of the expression of one gene following knock-down or over-expression of another gene. Our data have thorough annotation of tissue types and embryonic stages, as well as the type of regulation (activation, inhibition and no effect), which uniquely allows us to estimate both sensitivity and specificity of the inference of tissue specific causal GRN edges. Using these unprecedented datasets, we found that gene co-expression does not reliably distinguish true positive from false positive interactions, making inference of GRN in mammalian development very difficult. Nonetheless, if we have expression profiling data from genetic or molecular perturbation experiments, such as gene knock-out or signalling stimulation, it is possible to use the set of differentially expressed genes to recover causal regulatory relationships with good sensitivity and specificity. Our result supports the importance of using perturbation experimental data in causal network reconstruction. Furthermore, we showed that causal gene regulatory relationship can be highly cell type or developmental stage specific, suggesting the importance of employing expression profiles from homogeneous cell populations. This study provides essential datasets and empirical evidence to guide the development of new GRN inference methods for

  20. Critical Dynamics in Genetic Regulatory Networks: Examples from Four Kingdoms

    PubMed Central

    Balleza, Enrique; Alvarez-Buylla, Elena R.; Chaos, Alvaro; Kauffman, Stuart; Shmulevich, Ilya; Aldana, Maximino

    2008-01-01

    The coordinated expression of the different genes in an organism is essential to sustain functionality under the random external perturbations to which the organism might be subjected. To cope with such external variability, the global dynamics of the genetic network must possess two central properties. (a) It must be robust enough as to guarantee stability under a broad range of external conditions, and (b) it must be flexible enough to recognize and integrate specific external signals that may help the organism to change and adapt to different environments. This compromise between robustness and adaptability has been observed in dynamical systems operating at the brink of a phase transition between order and chaos. Such systems are termed critical. Thus, criticality, a precise, measurable, and well characterized property of dynamical systems, makes it possible for robustness and adaptability to coexist in living organisms. In this work we investigate the dynamical properties of the gene transcription networks reported for S. cerevisiae, E. coli, and B. subtilis, as well as the network of segment polarity genes of D. melanogaster, and the network of flower development of A. thaliana. We use hundreds of microarray experiments to infer the nature of the regulatory interactions among genes, and implement these data into the Boolean models of the genetic networks. Our results show that, to the best of the current experimental data available, the five networks under study indeed operate close to criticality. The generality of this result suggests that criticality at the genetic level might constitute a fundamental evolutionary mechanism that generates the great diversity of dynamically robust living forms that we observe around us. PMID:18560561

  1. T-SDN architecture for space and ground integrated optical transport network

    NASA Astrophysics Data System (ADS)

    Nie, Kunkun; Hu, Wenjing; Gao, Shenghua; Chang, Chengwu

    2015-11-01

    Integrated optical transport network is the development trend of the future space information backbone network. The space and ground integrated optical transport network(SGIOTN) may contain a variety of equipment and systems. Changing the network or meeting some innovation missions in the network will be an expensive implement. Software Defined Network(SDN) provides a good solution to flexibly adding process logic, timely control states and resources of the whole network, as well as shielding the differences of heterogeneous equipment and so on. According to the characteristics of SGIOTN, we propose an transport SDN architecture for it, with hierarchical control plane and data plane composed of packet networks and optical transport networks.

  2. Potential unsatisfiability of cyclic constraints on stochastic biological networks biases selection towards hierarchical architectures

    PubMed Central

    Smith, Cameron; Pechuan, Ximo; Puzio, Raymond S.; Biro, Daniel; Bergman, Aviv

    2015-01-01

    Constraints placed upon the phenotypes of organisms result from their interactions with the environment. Over evolutionary time scales, these constraints feed back onto smaller molecular subnetworks comprising the organism. The evolution of biological networks is studied by considering a network of a few nodes embedded in a larger context. Taking into account this fact that any network under study is actually embedded in a larger context, we define network architecture, not on the basis of physical interactions alone, but rather as a specification of the manner in which constraints are placed upon the states of its nodes. We show that such network architectures possessing cycles in their topology, in contrast to those that do not, may be subjected to unsatisfiable constraints. This may be a significant factor leading to selection biased against those network architectures where such inconsistent constraints are more likely to arise. We proceed to quantify the likelihood of inconsistency arising as a function of network architecture finding that, in the absence of sampling bias over the space of possible constraints and for a given network size, networks with a larger number of cycles are more likely to have unsatisfiable constraints placed upon them. Our results identify a constraint that, at least in isolation, would contribute to a bias in the evolutionary process towards more hierarchical -modular versus completely connected network architectures. Together, these results highlight the context dependence of the functionality of biological networks. PMID:26040595

  3. Visual pattern recognition network: its training algorithm and its optoelectronic architecture

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Liu, Liren

    1996-07-01

    A visual pattern recognition network and its training algorithm are proposed. The network constructed of a one-layer morphology network and a two-layer modified Hamming net. This visual network can implement invariant pattern recognition with respect to image translation and size projection. After supervised learning takes place, the visual network extracts image features and classifies patterns much the same as living beings do. Moreover we set up its optoelectronic architecture for real-time pattern recognition.

  4. RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse.

    PubMed

    Liu, Zhi-Ping; Wu, Canglin; Miao, Hongyu; Wu, Hulin

    2015-01-01

    Transcriptional and post-transcriptional regulation of gene expression is of fundamental importance to numerous biological processes. Nowadays, an increasing amount of gene regulatory relationships have been documented in various databases and literature. However, to more efficiently exploit such knowledge for biomedical research and applications, it is necessary to construct a genome-wide regulatory network database to integrate the information on gene regulatory relationships that are widely scattered in many different places. Therefore, in this work, we build a knowledge-based database, named 'RegNetwork', of gene regulatory networks for human and mouse by collecting and integrating the documented regulatory interactions among transcription factors (TFs), microRNAs (miRNAs) and target genes from 25 selected databases. Moreover, we also inferred and incorporated potential regulatory relationships based on transcription factor binding site (TFBS) motifs into RegNetwork. As a result, RegNetwork contains a comprehensive set of experimentally observed or predicted transcriptional and post-transcriptional regulatory relationships, and the database framework is flexibly designed for potential extensions to include gene regulatory networks for other organisms in the future. Based on RegNetwork, we characterized the statistical and topological properties of genome-wide regulatory networks for human and mouse, we also extracted and interpreted simple yet important network motifs that involve the interplays between TF-miRNA and their targets. In summary, RegNetwork provides an integrated resource on the prior information for gene regulatory relationships, and it enables us to further investigate context-specific transcriptional and post-transcriptional regulatory interactions based on domain-specific experimental data. Database URL: http://www.regnetworkweb.org.

  5. Transittability of complex networks and its applications to regulatory biomolecular networks.

    PubMed

    Wu, Fang-Xiang; Wu, Lin; Wang, Jianxin; Liu, Juan; Chen, Luonan

    2014-01-01

    We have often observed unexpected state transitions of complex systems. We are thus interested in how to steer a complex system from an unexpected state to a desired state. Here we introduce the concept of transittability of complex networks, and derive a new sufficient and necessary condition for state transittability which can be efficiently verified. We define the steering kernel as a minimal set of steering nodes to which control signals must directly be applied for transition between two specific states of a network, and propose a graph-theoretic algorithm to identify the steering kernel of a network for transition between two specific states. We applied our algorithm to 27 real complex networks, finding that sizes of steering kernels required for transittability are much less than those for complete controllability. Furthermore, applications to regulatory biomolecular networks not only validated our method but also identified the steering kernel for their phenotype transitions.

  6. Transittability of complex networks and its applications to regulatory biomolecular networks

    PubMed Central

    Wu, Fang-Xiang; Wu, Lin; Wang, Jianxin; Liu, Juan; Chen, Luonan

    2014-01-01

    We have often observed unexpected state transitions of complex systems. We are thus interested in how to steer a complex system from an unexpected state to a desired state. Here we introduce the concept of transittability of complex networks, and derive a new sufficient and necessary condition for state transittability which can be efficiently verified. We define the steering kernel as a minimal set of steering nodes to which control signals must directly be applied for transition between two specific states of a network, and propose a graph-theoretic algorithm to identify the steering kernel of a network for transition between two specific states. We applied our algorithm to 27 real complex networks, finding that sizes of steering kernels required for transittability are much less than those for complete controllability. Furthermore, applications to regulatory biomolecular networks not only validated our method but also identified the steering kernel for their phenotype transitions. PMID:24769565

  7. The middleware architecture supports heterogeneous network systems for module-based personal robot system

    NASA Astrophysics Data System (ADS)

    Choo, Seongho; Li, Vitaly; Choi, Dong Hee; Jung, Gi Deck; Park, Hong Seong; Ryuh, Youngsun

    2005-12-01

    On developing the personal robot system presently, the internal architecture is every module those occupy separated functions are connected through heterogeneous network system. This module-based architecture supports specialization and division of labor at not only designing but also implementation, as an effect of this architecture, it can reduce developing times and costs for modules. Furthermore, because every module is connected among other modules through network systems, we can get easy integrations and synergy effect to apply advanced mutual functions by co-working some modules. In this architecture, one of the most important technologies is the network middleware that takes charge communications among each modules connected through heterogeneous networks systems. The network middleware acts as the human nerve system inside of personal robot system; it relays, transmits, and translates information appropriately between modules that are similar to human organizations. The network middleware supports various hardware platform, heterogeneous network systems (Ethernet, Wireless LAN, USB, IEEE 1394, CAN, CDMA-SMS, RS-232C). This paper discussed some mechanisms about our network middleware to intercommunication and routing among modules, methods for real-time data communication and fault-tolerant network service. There have designed and implemented a layered network middleware scheme, distributed routing management, network monitoring/notification technology on heterogeneous networks for these goals. The main theme is how to make routing information in our network middleware. Additionally, with this routing information table, we appended some features. Now we are designing, making a new version network middleware (we call 'OO M/W') that can support object-oriented operation, also are updating program sources itself for object-oriented architecture. It is lighter, faster, and can support more operation systems and heterogeneous network systems, but other general

  8. Molecular Evolution of the Neural Crest Regulatory Network in Ray-Finned Fish.

    PubMed

    Kratochwil, Claudius F; Geissler, Laura; Irisarri, Iker; Meyer, Axel

    2015-11-01

    Gene regulatory networks (GRN) are central to developmental processes. They are composed of transcription factors and signaling molecules orchestrating gene expression modules that tightly regulate the development of organisms. The neural crest (NC) is a multipotent cell population that is considered a key innovation of vertebrates. Its derivatives contribute to shaping the astounding morphological diversity of jaws, teeth, head skeleton, or pigmentation. Here, we study the molecular evolution of the NC GRN by analyzing patterns of molecular divergence for a total of 36 genes in 16 species of bony fishes. Analyses of nonsynonymous to synonymous substitution rate ratios (dN/dS) support patterns of variable selective pressures among genes deployed at different stages of NC development, consistent with the developmental hourglass model. Model-based clustering techniques of sequence features support the notion of extreme conservation of NC-genes across the entire network. Our data show that most genes are under strong purifying selection that is maintained throughout ray-finned fish evolution. Late NC development genes reveal a pattern of increased constraints in more recent lineages. Additionally, seven of the NC-genes showed signs of relaxation of purifying selection in the famously species-rich lineage of cichlid fishes. This suggests that NC genes might have played a role in the adaptive radiation of cichlids by granting flexibility in the development of NC-derived traits-suggesting an important role for NC network architecture during the diversification in vertebrates. PMID:26475317

  9. Temperature-Related Reaction Norms of Gene Expression: Regulatory Architecture and Functional Implications.

    PubMed

    Chen, Jun; Nolte, Viola; Schlötterer, Christian

    2015-09-01

    The environment has profound effects on the expression of many traits and reaction norms describe the expression dynamics of a trait across a broad range of environmental conditions. Here, we analyze gene expression in Drosophila melanogaster across four different developmental temperatures (13-29 °C). Gene expression is highly plastic with 83.3% of the genes being differentially expressed. We distinguished three components of plasticity: 1) Dynamics of gene expression intensity (sum of change), 2) direction of change, and 3) curvature of the reaction norm (linear vs. quadratic). Studying their regulatory architecture we found that all three plasticity components were most strongly affected by the number of different transcription factors (TFs) binding to the target gene. More TFs were found in genes with less expression changes across temperatures. Although the effect of microRNAs was weaker, we consistently noted a trend in the opposite direction. The most plastic genes were regulated by fewer TFs and more microRNAs than less plastic genes. Different patterns of plasticity were also reflected by their functional characterization based on gene ontology. Our results suggest that reaction norms provide an important key to understand the functional requirements of natural populations exposed to variable environmental conditions.

  10. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions.

    PubMed

    Schep, Alicia N; Buenrostro, Jason D; Denny, Sarah K; Schwartz, Katja; Sherlock, Gavin; Greenleaf, William J

    2015-11-01

    Transcription factors canonically bind nucleosome-free DNA, making the positioning of nucleosomes within regulatory regions crucial to the regulation of gene expression. Using the assay of transposase accessible chromatin (ATAC-seq), we observe a highly structured pattern of DNA fragment lengths and positions around nucleosomes in Saccharomyces cerevisiae, and use this distinctive two-dimensional nucleosomal "fingerprint" as the basis for a new nucleosome-positioning algorithm called NucleoATAC. We show that NucleoATAC can identify the rotational and translational positions of nucleosomes with up to base-pair resolution and provide quantitative measures of nucleosome occupancy in S. cerevisiae, Schizosaccharomyces pombe, and human cells. We demonstrate the application of NucleoATAC to a number of outstanding problems in chromatin biology, including analysis of sequence features underlying nucleosome positioning, promoter chromatin architecture across species, identification of transient changes in nucleosome occupancy and positioning during a dynamic cellular response, and integrated analysis of nucleosome occupancy and transcription factor binding.

  11. A hybrid behavioural rule of adaptation and drift explains the emergent architecture of antagonistic networks

    PubMed Central

    Nuwagaba, S.; Zhang, F.; Hui, C.

    2015-01-01

    Ecological processes that can realistically account for network architectures are central to our understanding of how species assemble and function in ecosystems. Consumer species are constantly selecting and adjusting which resource species are to be exploited in an antagonistic network. Here we incorporate a hybrid behavioural rule of adaptive interaction switching and random drift into a bipartite network model. Predictions are insensitive to the model parameters and the initial network structures, and agree extremely well with the observed levels of modularity, nestedness and node-degree distributions for 61 real networks. Evolutionary and community assemblage histories only indirectly affect network structure by defining the size and complexity of ecological networks, whereas adaptive interaction switching and random drift carve out the details of network architecture at the faster ecological time scale. The hybrid behavioural rule of both adaptation and drift could well be the key processes for structure emergence in real ecological networks. PMID:25925104

  12. Intrinsic and task-evoked network architectures of the human brain

    PubMed Central

    Cole, Michael W.; Bassett, Danielle S.; Power, Jonathan D.; Braver, Todd S.; Petersen, Steven E.

    2014-01-01

    Summary Many functional network properties of the human brain have been identified during rest and task states, yet it remains unclear how the two relate. We identified a whole-brain network architecture present across dozens of task states that was highly similar to the resting-state network architecture. The most frequent functional connectivity strengths across tasks closely matched the strengths observed at rest, suggesting this is an “intrinsic”, standard architecture of functional brain organization. Further, a set of small but consistent changes common across tasks suggests the existence of a task-general network architecture distinguishing task states from rest. These results indicate the brain’s functional network architecture during task performance is shaped primarily by an intrinsic network architecture that is also present during rest, and secondarily by evoked task-general and task-specific network changes. This establishes a strong relationship between resting-state functional connectivity and task-evoked functional connectivity – areas of neuroscientific inquiry typically considered separately. PMID:24991964

  13. Uncovering Transcriptional Regulatory Networks by Sparse Bayesian Factor Model

    NASA Astrophysics Data System (ADS)

    Meng, Jia; Zhang, Jianqiu(Michelle); Qi, Yuan(Alan); Chen, Yidong; Huang, Yufei

    2010-12-01

    The problem of uncovering transcriptional regulation by transcription factors (TFs) based on microarray data is considered. A novel Bayesian sparse correlated rectified factor model (BSCRFM) is proposed that models the unknown TF protein level activity, the correlated regulations between TFs, and the sparse nature of TF-regulated genes. The model admits prior knowledge from existing database regarding TF-regulated target genes based on a sparse prior and through a developed Gibbs sampling algorithm, a context-specific transcriptional regulatory network specific to the experimental condition of the microarray data can be obtained. The proposed model and the Gibbs sampling algorithm were evaluated on the simulated systems, and results demonstrated the validity and effectiveness of the proposed approach. The proposed model was then applied to the breast cancer microarray data of patients with Estrogen Receptor positive ([InlineEquation not available: see fulltext.]) status and Estrogen Receptor negative ([InlineEquation not available: see fulltext.]) status, respectively.

  14. An Arabidopsis Gene Regulatory Network for Secondary Cell Wall Synthesis

    PubMed Central

    Taylor-Teeples, M; Lin, L; de Lucas, M; Turco, G; Toal, TW; Gaudinier, A; Young, NF; Trabucco, GM; Veling, MT; Lamothe, R; Handakumbura, PP; Xiong, G; Wang, C; Corwin, J; Tsoukalas, A; Zhang, L; Ware, D; Pauly, M; Kliebenstein, DJ; Dehesh, K; Tagkopoulos, I; Breton, G; Pruneda-Paz, JL; Ahnert, SE; Kay, SA; Hazen, SP; Brady, SM

    2014-01-01

    Summary The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptional regulation of synthesis for each polymer is complex and vital to cell function. A regulatory hierarchy of developmental switches has been proposed, although the full complement of regulators remains unknown. Here, we present a protein-DNA network between Arabidopsis transcription factors and secondary cell wall metabolic genes with gene expression regulated by a series of feed-forward loops. This model allowed us to develop and validate new hypotheses about secondary wall gene regulation under abiotic stress. Distinct stresses are able to perturb targeted genes to potentially promote functional adaptation. These interactions will serve as a foundation for understanding the regulation of a complex, integral plant component. PMID:25533953

  15. Integrated Approach to Reconstruction of Microbial Regulatory Networks

    SciTech Connect

    Rodionov, Dmitry A; Novichkov, Pavel S

    2013-11-04

    This project had the goal(s) of development of integrated bioinformatics platform for genome-scale inference and visualization of transcriptional regulatory networks (TRNs) in bacterial genomes. The work was done in Sanford-Burnham Medical Research Institute (SBMRI, P.I. D.A. Rodionov) and Lawrence Berkeley National Laboratory (LBNL, co-P.I. P.S. Novichkov). The developed computational resources include: (1) RegPredict web-platform for TRN inference and regulon reconstruction in microbial genomes, and (2) RegPrecise database for collection, visualization and comparative analysis of transcriptional regulons reconstructed by comparative genomics. These analytical resources were selected as key components in the DOE Systems Biology KnowledgeBase (SBKB). The high-quality data accumulated in RegPrecise will provide essential datasets of reference regulons in diverse microbes to enable automatic reconstruction of draft TRNs in newly sequenced genomes. We outline our progress toward the three aims of this grant proposal, which were: Develop integrated platform for genome-scale regulon reconstruction; Infer regulatory annotations in several groups of bacteria and building of reference collections of microbial regulons; and Develop KnowledgeBase on microbial transcriptional regulation.

  16. RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse

    PubMed Central

    Liu, Zhi-Ping; Wu, Canglin; Miao, Hongyu; Wu, Hulin

    2015-01-01

    Transcriptional and post-transcriptional regulation of gene expression is of fundamental importance to numerous biological processes. Nowadays, an increasing amount of gene regulatory relationships have been documented in various databases and literature. However, to more efficiently exploit such knowledge for biomedical research and applications, it is necessary to construct a genome-wide regulatory network database to integrate the information on gene regulatory relationships that are widely scattered in many different places. Therefore, in this work, we build a knowledge-based database, named ‘RegNetwork’, of gene regulatory networks for human and mouse by collecting and integrating the documented regulatory interactions among transcription factors (TFs), microRNAs (miRNAs) and target genes from 25 selected databases. Moreover, we also inferred and incorporated potential regulatory relationships based on transcription factor binding site (TFBS) motifs into RegNetwork. As a result, RegNetwork contains a comprehensive set of experimentally observed or predicted transcriptional and post-transcriptional regulatory relationships, and the database framework is flexibly designed for potential extensions to include gene regulatory networks for other organisms in the future. Based on RegNetwork, we characterized the statistical and topological properties of genome-wide regulatory networks for human and mouse, we also extracted and interpreted simple yet important network motifs that involve the interplays between TF-miRNA and their targets. In summary, RegNetwork provides an integrated resource on the prior information for gene regulatory relationships, and it enables us to further investigate context-specific transcriptional and post-transcriptional regulatory interactions based on domain-specific experimental data. Database URL: http://www.regnetworkweb.org PMID:26424082

  17. Graphlet Based Metrics for the Comparison of Gene Regulatory Networks

    PubMed Central

    Martin, Alberto J. M.; Dominguez, Calixto; Contreras-Riquelme, Sebastián; Holmes, David S.; Perez-Acle, Tomas

    2016-01-01

    Understanding the control of gene expression remains one of the main challenges in the post-genomic era. Accordingly, a plethora of methods exists to identify variations in gene expression levels. These variations underlay almost all relevant biological phenomena, including disease and adaptation to environmental conditions. However, computational tools to identify how regulation changes are scarce. Regulation of gene expression is usually depicted in the form of a gene regulatory network (GRN). Structural changes in a GRN over time and conditions represent variations in the regulation of gene expression. Like other biological networks, GRNs are composed of basic building blocks called graphlets. As a consequence, two new metrics based on graphlets are proposed in this work: REConstruction Rate (REC) and REC Graphlet Degree (RGD). REC determines the rate of graphlet similarity between different states of a network and RGD identifies the subset of nodes with the highest topological variation. In other words, RGD discerns how th GRN was rewired. REC and RGD were used to compare the local structure of nodes in condition-specific GRNs obtained from gene expression data of Escherichia coli, forming biofilms and cultured in suspension. According to our results, most of the network local structure remains unaltered in the two compared conditions. Nevertheless, changes reported by RGD necessarily imply that a different cohort of regulators (i.e. transcription factors (TFs)) appear on the scene, shedding light on how the regulation of gene expression occurs when E. coli transits from suspension to biofilm. Consequently, we propose that both metrics REC and RGD should be adopted as a quantitative approach to conduct differential analyses of GRNs. A tool that implements both metrics is available as an on-line web server (http://dlab.cl/loto). PMID:27695050

  18. Architectures for optoelectronic analogs of self-organizing neural networks.

    PubMed

    Farhat, N H

    1987-06-01

    Architectures for partitioning optoelectronic analogs of neural nets into input-output and internal groups to form a multilayered net capable of self-organization, self-programming, and learning are described. The architectures and implementation ideas given describe a class of optoelectronic neural net modules that, when interfaced to a conventional computer controller, can impart to it artificial intelligence attributes.

  19. Structures and properties of PAX linked regulatory networks architecting and pacing the emergence of neuronal diversity.

    PubMed

    Curto, Gloria G; Gard, Chris; Ribes, Vanessa

    2015-08-01

    Over the past two decades, Pax proteins have received a lot of attention from researchers working on the generation and assembly of neural circuits during vertebrate development. Through tissue or cell based phenotypic analyses, or more recently using genome-wide approaches, they have highlighted the pleiotropic functions of Pax proteins during neurogenesis. This review discusses the wide range of molecular and cellular mechanisms by which these transcription factors control in time and space the number and identity of neurons produced during development. We first focus on the position of Pax proteins within gene regulatory networks that generate patterns of cellular differentiation within the central nervous system. Next, the architecture of Pax-linked regulatory loops that provide a tempo of differentiation to progenitor cells is presented. Finally, we examine the molecular foundations providing a "multitasking" property to Pax proteins. Amongst the Pax factors that are expressed within the developing nervous system, Pax6 is the most extensively studied and thus holds a dominant position in this article.

  20. Layers of epistasis: genome-wide regulatory networks and network approaches to genome-wide association studies

    PubMed Central

    Cowper-Sal·lari, Richard; Cole, Michael D.; Karagas, Margaret R.; Lupien, Mathieu; Moore, Jason H.

    2010-01-01

    The conceptual foundation of the genome-wide association study (GWAS) has advanced unchecked since its conception. A revision might seem premature as the potential of GWAS has not been fully realized. Multiple technical and practical limitations need to be overcome before GWAS can be fairly criticized. But with the completion of hundreds of studies and a deeper understanding of the genetic architecture of disease, warnings are being raised. The results compiled to date indicate that risk-associated variants lie predominantly in non-coding regions of the genome. Additionally, alternative methodologies are uncovering large and heterogeneous sets of rare variants underlying disease. The fear is that, even in its fulfilment, the current GWAS paradigm might be incapable of dissecting all kinds of phenotypes. In the following text we review several initiatives that aim to overcome these limitations. The overarching theme of these studies is the inclusion of biological knowledge to both the analysis and interpretation of genotyping data. GWAS is uninformed of biology by design and although there is some virtue in its simplicity it is also its most conspicuous deficiency. We propose a framework in which to integrate these novel approaches, both empirical and theoretical, in the form of a genome-wide regulatory network (GWRN). By processing experimental data into networks, emerging data types based on chromatin-immunoprecipitation are made computationally tractable. This will give GWAS re-analysis efforts the most current and relevant substrates, and root them firmly on our knowledge of human disease. PMID:21197657

  1. Modeling of a 3DTV service in the software-defined networking architecture

    NASA Astrophysics Data System (ADS)

    Wilczewski, Grzegorz

    2014-11-01

    In this article a newly developed concept towards modeling of a multimedia service offering stereoscopic motion imagery is presented. Proposed model is based on the approach of utilization of Software-defined Networking or Software Defined Networks architecture (SDN). The definition of 3D television service spanning SDN concept is identified, exposing basic characteristic of a 3DTV service in a modern networking organization layout. Furthermore, exemplary functionalities of the proposed 3DTV model are depicted. It is indicated that modeling of a 3DTV service in the Software-defined Networking architecture leads to multiplicity of improvements, especially towards flexibility of a service supporting heterogeneity of end user devices.

  2. Complex Dynamic Behavior in Simple Gene Regulatory Networks

    NASA Astrophysics Data System (ADS)

    Santillán Zerón, Moisés

    2007-02-01

    Knowing the complete genome of a given species is just a piece of the puzzle. To fully unveil the systems behavior of an organism, an organ, or even a single cell, we need to understand the underlying gene regulatory dynamics. Given the complexity of the whole system, the ultimate goal is unattainable for the moment. But perhaps, by analyzing the most simple genetic systems, we may be able to develop the mathematical techniques and procedures required to tackle more complex genetic networks in the near future. In the present work, the techniques for developing mathematical models of simple bacterial gene networks, like the tryptophan and lactose operons are introduced. Despite all of the underlying assumptions, such models can provide valuable information regarding gene regulation dynamics. Here, we pay special attention to robustness as an emergent property. These notes are organized as follows. In the first section, the long historical relation between mathematics, physics, and biology is briefly reviewed. Recently, the multidisciplinary work in biology has received great attention in the form of systems biology. The main concepts of this novel science are discussed in the second section. A very slim introduction to the essential concepts of molecular biology is given in the third section. In the fourth section, a brief introduction to chemical kinetics is presented. Finally, in the fifth section, a mathematical model for the lactose operon is developed and analyzed..

  3. Data Integration for Microarrays: Enhanced Inference for Gene Regulatory Networks

    PubMed Central

    Sîrbu, Alina; Crane, Martin; Ruskin, Heather J.

    2015-01-01

    Microarray technologies have been the basis of numerous important findings regarding gene expression in the few last decades. Studies have generated large amounts of data describing various processes, which, due to the existence of public databases, are widely available for further analysis. Given their lower cost and higher maturity compared to newer sequencing technologies, these data continue to be produced, even though data quality has been the subject of some debate. However, given the large volume of data generated, integration can help overcome some issues related, e.g., to noise or reduced time resolution, while providing additional insight on features not directly addressed by sequencing methods. Here, we present an integration test case based on public Drosophila melanogaster datasets (gene expression, binding site affinities, known interactions). Using an evolutionary computation framework, we show how integration can enhance the ability to recover transcriptional gene regulatory networks from these data, as well as indicating which data types are more important for quantitative and qualitative network inference. Our results show a clear improvement in performance when multiple datasets are integrated, indicating that microarray data will remain a valuable and viable resource for some time to come.

  4. Comprehensive Mapping of the Escherichia coli Flagellar Regulatory Network

    PubMed Central

    Fitzgerald, Devon M.; Bonocora, Richard P.; Wade, Joseph T.

    2014-01-01

    Flagellar synthesis is a highly regulated process in all motile bacteria. In Escherichia coli and related species, the transcription factor FlhDC is the master regulator of a multi-tiered transcription network. FlhDC activates transcription of a number of genes, including some flagellar genes and the gene encoding the alternative Sigma factor FliA. Genes whose expression is required late in flagellar assembly are primarily transcribed by FliA, imparting temporal regulation of transcription and coupling expression to flagellar assembly. In this study, we use ChIP-seq and RNA-seq to comprehensively map the E. coli FlhDC and FliA regulons. We define a surprisingly restricted FlhDC regulon, including two novel regulated targets and two binding sites not associated with detectable regulation of surrounding genes. In contrast, we greatly expand the known FliA regulon. Surprisingly, 30 of the 52 FliA binding sites are located inside genes. Two of these intragenic promoters are associated with detectable noncoding RNAs, while the others either produce highly unstable RNAs or are inactive under these conditions. Together, our data redefine the E. coli flagellar regulatory network, and provide new insight into the temporal orchestration of gene expression that coordinates the flagellar assembly process. PMID:25275371

  5. Regulatory Networks Controlling Plant Cold Acclimation or Low Temperature Regulatory Networks Controlling Cold Acclimation in Arabidopsis (2011 JGI User Meeting)

    ScienceCinema

    Thomashow, Mike

    2016-07-12

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Mike Thomashow of Michigan State University gives a presentation on on "Low Temperature Regulatory Networks Controlling Cold Acclimation in Arabidopsis" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011. «

  6. A genomic portrait of the genetic architecture and regulatory impact of microRNA expression in response to infection.

    PubMed

    Siddle, Katherine J; Deschamps, Matthieu; Tailleux, Ludovic; Nédélec, Yohann; Pothlichet, Julien; Lugo-Villarino, Geanncarlo; Libri, Valentina; Gicquel, Brigitte; Neyrolles, Olivier; Laval, Guillaume; Patin, Etienne; Barreiro, Luis B; Quintana-Murci, Lluís

    2014-05-01

    MicroRNAs (miRNAs) are critical regulators of gene expression, and their role in a wide variety of biological processes, including host antimicrobial defense, is increasingly well described. Consistent with their diverse functional effects, miRNA expression is highly context dependent and shows marked changes upon cellular activation. However, the genetic control of miRNA expression in response to external stimuli and the impact of such perturbations on miRNA-mediated regulatory networks at the population level remain to be determined. Here we assessed changes in miRNA expression upon Mycobacterium tuberculosis infection and mapped expression quantitative trait loci (eQTL) in dendritic cells from a panel of healthy individuals. Genome-wide expression profiling revealed that ∼40% of miRNAs are differentially expressed upon infection. We find that the expression of 3% of miRNAs is controlled by proximate genetic factors, which are enriched in a promoter-specific histone modification associated with active transcription. Notably, we identify two infection-specific response eQTLs, for miR-326 and miR-1260, providing an initial assessment of the impact of genotype-environment interactions on miRNA molecular phenotypes. Furthermore, we show that infection coincides with a marked remodeling of the genome-wide relationships between miRNA and mRNA expression levels. This observation, supplemented by experimental data using the model of miR-29a, sheds light on the role of a set of miRNAs in cellular responses to infection. Collectively, this study increases our understanding of the genetic architecture of miRNA expression in response to infection, and highlights the wide-reaching impact of altering miRNA expression on the transcriptional landscape of a cell.

  7. Rearrangements of the transcriptional regulatory networks of metabolic pathways in fungi.

    PubMed

    Lavoie, Hugo; Hogues, Hervé; Whiteway, Malcolm

    2009-12-01

    Growing evidence suggests that transcriptional regulatory networks in many organisms are highly flexible. Here, we discuss the evolution of transcriptional regulatory networks governing the metabolic machinery of sequenced ascomycetes. In particular, recent work has shown that transcriptional rewiring is common in regulons controlling processes such as production of ribosome components and metabolism of carbohydrates and lipids. We note that dramatic rearrangements of the transcriptional regulatory components of metabolic functions have occurred among ascomycetes species.

  8. Regulatory component analysis: a semi-blind extraction approach to infer gene regulatory networks with imperfect biological knowledge.

    PubMed

    Wang, Chen; Xuan, Jianhua; Shih, Ie-Ming; Clarke, Robert; Wang, Yue

    2012-08-01

    With the advent of high-throughput biotechnology capable of monitoring genomic signals, it becomes increasingly promising to understand molecular cellular mechanisms through systems biology approaches. One of the active research topics in systems biology is to infer gene transcriptional regulatory networks using various genomic data; this inference problem can be formulated as a linear model with latent signals associated with some regulatory proteins called transcription factors (TFs). As common statistical assumptions may not hold for genomic signals, typical latent variable algorithms such as independent component analysis (ICA) are incapable to reveal underlying true regulatory signals. Liao et al. [1] proposed to perform inference using an approach named network component analysis (NCA), the optimization of which is achieved by a least-squares fitting approach with biological knowledge constraints. However, the incompleteness of biological knowledge and its inconsistency with gene expression data are not considered in the original NCA solution, which could greatly affect the inference accuracy. To overcome these limitations, we propose a linear extraction scheme, namely regulatory component analysis (RCA), to infer underlying regulatory signals even with partial biological knowledge. Numerical simulations show a significant improvement of our proposed RCA over NCA, not only when signal-to-noise-ratio (SNR) is low, but also when the given biological knowledge is incomplete and inconsistent to gene expression data. Furthermore, real biological experiments on E. coli are performed for regulatory network inference in comparison with several typical linear latent variable methods, which again demonstrates the effectiveness and improved performance of the proposed algorithm.

  9. Space Network IP Services (SNIS): An Architecture for Supporting Low Earth Orbiting IP Satellite Missions

    NASA Technical Reports Server (NTRS)

    Israel, David J.

    2005-01-01

    The NASA Space Network (SN) supports a variety of missions using the Tracking and Data Relay Satellite System (TDRSS), which includes ground stations in White Sands, New Mexico and Guam. A Space Network IP Services (SNIS) architecture is being developed to support future users with requirements for end-to-end Internet Protocol (IP) communications. This architecture will support all IP protocols, including Mobile IP, over TDRSS Single Access, Multiple Access, and Demand Access Radio Frequency (RF) links. This paper will describe this architecture and how it can enable Low Earth Orbiting IP satellite missions.

  10. Architectural and operational considerations emerging from hybrid RF-optical network loading simulations

    NASA Astrophysics Data System (ADS)

    Chen, Yijiang; Abraham, Douglas S.; Heckman, David P.; Kwok, Andrew; MacNeal, Bruce E.; Tran, Kristy; Wu, Janet P.

    2016-03-01

    A technology demonstration of free space optical communication at interplanetary distances is planned via one or more future NASA deep-space missions. Such demonstrations will "pave the way" for operational use of optical communications on future robotic/potential Human missions. Hence, the Deep Space Network architecture will need to evolve. Preliminary attempts to model the anticipated future mission set and simulate how well it loads onto assumed architectures with combinations of RF and optical apertures have been evaluated. This paper discusses the results of preliminary loading simulations for hybrid RF-optical network architectures and highlights key mission and ground infrastructure considerations that emerge.

  11. Integrating Transcriptomic and Proteomic Data Using Predictive Regulatory Network Models of Host Response to Pathogens

    PubMed Central

    Chasman, Deborah; Walters, Kevin B.; Lopes, Tiago J. S.; Eisfeld, Amie J.; Kawaoka, Yoshihiro; Roy, Sushmita

    2016-01-01

    Mammalian host response to pathogenic infections is controlled by a complex regulatory network connecting regulatory proteins such as transcription factors and signaling proteins to target genes. An important challenge in infectious disease research is to understand molecular similarities and differences in mammalian host response to diverse sets of pathogens. Recently, systems biology studies have produced rich collections of omic profiles measuring host response to infectious agents such as influenza viruses at multiple levels. To gain a comprehensive understanding of the regulatory network driving host response to multiple infectious agents, we integrated host transcriptomes and proteomes using a network-based approach. Our approach combines expression-based regulatory network inference, structured-sparsity based regression, and network information flow to infer putative physical regulatory programs for expression modules. We applied our approach to identify regulatory networks, modules and subnetworks that drive host response to multiple influenza infections. The inferred regulatory network and modules are significantly enriched for known pathways of immune response and implicate apoptosis, splicing, and interferon signaling processes in the differential response of viral infections of different pathogenicities. We used the learned network to prioritize regulators and study virus and time-point specific networks. RNAi-based knockdown of predicted regulators had significant impact on viral replication and include several previously unknown regulators. Taken together, our integrated analysis identified novel module level patterns that capture strain and pathogenicity-specific patterns of expression and helped identify important regulators of host response to influenza infection. PMID:27403523

  12. A neural network architecture for implementation of expert systems for real time monitoring

    NASA Technical Reports Server (NTRS)

    Ramamoorthy, P. A.

    1991-01-01

    Since neural networks have the advantages of massive parallelism and simple architecture, they are good tools for implementing real time expert systems. In a rule based expert system, the antecedents of rules are in the conjunctive or disjunctive form. We constructed a multilayer feedforward type network in which neurons represent AND or OR operations of rules. Further, we developed a translator which can automatically map a given rule base into the network. Also, we proposed a new and powerful yet flexible architecture that combines the advantages of both fuzzy expert systems and neural networks. This architecture uses the fuzzy logic concepts to separate input data domains into several smaller and overlapped regions. Rule-based expert systems for time critical applications using neural networks, the automated implementation of rule-based expert systems with neural nets, and fuzzy expert systems vs. neural nets are covered.

  13. Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) Technology Infrastructure for a Distributed Data Network

    PubMed Central

    Schilling, Lisa M.; Kwan, Bethany M.; Drolshagen, Charles T.; Hosokawa, Patrick W.; Brandt, Elias; Pace, Wilson D.; Uhrich, Christopher; Kamerick, Michael; Bunting, Aidan; Payne, Philip R.O.; Stephens, William E.; George, Joseph M.; Vance, Mark; Giacomini, Kelli; Braddy, Jason; Green, Mika K.; Kahn, Michael G.

    2013-01-01

    Introduction: Distributed Data Networks (DDNs) offer infrastructure solutions for sharing electronic health data from across disparate data sources to support comparative effectiveness research. Data sharing mechanisms must address technical and governance concerns stemming from network security and data disclosure laws and best practices, such as HIPAA. Methods: The Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) deploys TRIAD grid technology, a common data model, detailed technical documentation, and custom software for data harmonization to facilitate data sharing in collaboration with stakeholders in the care of safety net populations. Data sharing partners host TRIAD grid nodes containing harmonized clinical data within their internal or hosted network environments. Authorized users can use a central web-based query system to request analytic data sets. Discussion: SAFTINet DDN infrastructure achieved a number of data sharing objectives, including scalable and sustainable systems for ensuring harmonized data structures and terminologies and secure distributed queries. Initial implementation challenges were resolved through iterative discussions, development and implementation of technical documentation, governance, and technology solutions. PMID:25848567

  14. Architecture and System Engineering Development Study of Space-Based Satellite Networks for NASA Missions

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    2003-01-01

    Traditional NASA missions, both near Earth and deep space, have been stovepipe in nature and point-to-point in architecture. Recently, NASA and others have conceptualized missions that required space-based networking. The notion of networks in space is a drastic shift in thinking and requires entirely new architectures, radio systems (antennas, modems, and media access), and possibly even new protocols. A full system engineering approach for some key mission architectures will occur that considers issues such as the science being performed, stationkeeping, antenna size, contact time, data rates, radio-link power requirements, media access techniques, and appropriate networking and transport protocols. This report highlights preliminary architecture concepts and key technologies that will be investigated.

  15. Event Building in Future Daq Architectures Using ATM Networks

    NASA Astrophysics Data System (ADS)

    Doughty, David C.; Game, David; Holt, Stephanie; Mitchell, Lisa; Banta, Paul; Heyes, Graham; Putnam, Theodore; Watson, W. A.

    ATM switches and links have been investigated for use as the event building fabric for future data acquisition architectures and will be used in CEBAF's CLAS detector. To avoid contention problems and cell-loss, a linked dual token passing algorithm has been devised, with two different types of tokens being passed through the switch. This algorithm leads to a `barrel shifter' type of parallel data transfer. We describe the hardware architecture and the dual token algorithm, and present simulation and test results.

  16. Autonomous Boolean models for logic, timing, and stability in regulatory networks

    NASA Astrophysics Data System (ADS)

    Socolar, Joshua E. S.

    2011-03-01

    The dynamics of gene expression in a cell is controlled by a dizzying array of biochemical processes. Natural selection, however, has created regulatory systems with a level of logical organization that can be modeled without detailed knowledge of the biochemistry. In cases where graded responses are not relevant, autonomous Boolean network (ABN) models can effectively represent the logic of gene regulation. These are models in which Boolean logic governs the output value of each node and the timing of updates is determined according to delay parameters associated with each link. An advantage of ABNs over synchronous or random asynchronous Boolean networks is that noise associated with molecular concentrations or transport times can be represented through fluctuations in the timing of updates. We have used ABN models to investigate the stability of oscillations in a model of transcriptional oscillations in yeast and the parameter constraints in a model of segment polarity maintenance in the fly embryo, and also to characterize chaotic dynamics observed in a free--running digital electronic circuit. The yeast study highlights architectural and dynamical features of oscillators that rely on pulse transmission rather than a frustrated feedback loop; the fly study reveals timing constraints that are hidden in ODE models; and the electronics study shows that Boolean chaos can occur if and only if time delays are history dependent. Joint work with V. Sevim, X. Gong, X. Cheng, M. Sun, D. Gauthier, H. Cavalcante, and R. Zhang. Supported by NSF Grant PHY-0417372 and NIH Grant P50-GM081883.

  17. An efficient approach of attractor calculation for large-scale Boolean gene regulatory networks.

    PubMed

    He, Qinbin; Xia, Zhile; Lin, Bin

    2016-11-01

    Boolean network models provide an efficient way for studying gene regulatory networks. The main dynamics of a Boolean network is determined by its attractors. Attractor calculation plays a key role for analyzing Boolean gene regulatory networks. An approach of attractor calculation was proposed in this study, which improved the predecessor-based approach. Furthermore, the proposed approach combined with the identification of constant nodes and simplified Boolean networks to accelerate attractor calculation. The proposed algorithm is effective to calculate all attractors for large-scale Boolean gene regulatory networks. If the average degree of the network is not too large, the algorithm can get all attractors of a Boolean network with dozens or even hundreds of nodes.

  18. C+L band wavelength division multiplexing access network with distributed-controlled protection architecture

    NASA Astrophysics Data System (ADS)

    Yeh, Chien Hung; Chow, Chi Wai

    2011-12-01

    In this work, we propose and experimentally demonstrate a novel distributed-controlled protection architecture for automatic and fast network restoration in wavelength division multiplexing-passive optical network (WDM-PON). The proposed scheme can support both C and L bands. Besides, duplication of network equipments, such as optical networking unit (ONU) or optical line terminal, is not required. In this distributed-controlled system, each ONU can always keep track of the network status. Hence, this can facilitate the network manage by removing the work loads from the central office. Besides, the proposed scheme can tolerate simultaneous fiber cuts in the feeder and distributed fibers.

  19. Sieve-based relation extraction of gene regulatory networks from biological literature

    PubMed Central

    2015-01-01

    Background Relation extraction is an essential procedure in literature mining. It focuses on extracting semantic relations between parts of text, called mentions. Biomedical literature includes an enormous amount of textual descriptions of biological entities, their interactions and results of related experiments. To extract them in an explicit, computer readable format, these relations were at first extracted manually from databases. Manual curation was later replaced with automatic or semi-automatic tools with natural language processing capabilities. The current challenge is the development of information extraction procedures that can directly infer more complex relational structures, such as gene regulatory networks. Results We develop a computational approach for extraction of gene regulatory networks from textual data. Our method is designed as a sieve-based system and uses linear-chain conditional random fields and rules for relation extraction. With this method we successfully extracted the sporulation gene regulation network in the bacterium Bacillus subtilis for the information extraction challenge at the BioNLP 2013 conference. To enable extraction of distant relations using first-order models, we transform the data into skip-mention sequences. We infer multiple models, each of which is able to extract different relationship types. Following the shared task, we conducted additional analysis using different system settings that resulted in reducing the reconstruction error of bacterial sporulation network from 0.73 to 0.68, measured as the slot error rate between the predicted and the reference network. We observe that all relation extraction sieves contribute to the predictive performance of the proposed approach. Also, features constructed by considering mention words and their prefixes and suffixes are the most important features for higher accuracy of extraction. Analysis of distances between different mention types in the text shows that our choice

  20. A pan-cancer modular regulatory network analysis to identify common and cancer-specific network components.

    PubMed

    Knaack, Sara A; Siahpirani, Alireza Fotuhi; Roy, Sushmita

    2014-01-01

    Many human diseases including cancer are the result of perturbations to transcriptional regulatory networks that control context-specific expression of genes. A comparative approach across multiple cancer types is a powerful approach to illuminate the common and specific network features of this family of diseases. Recent efforts from The Cancer Genome Atlas (TCGA) have generated large collections of functional genomic data sets for multiple types of cancers. An emerging challenge is to devise computational approaches that systematically compare these genomic data sets across different cancer types that identify common and cancer-specific network components. We present a module- and network-based characterization of transcriptional patterns in six different cancers being studied in TCGA: breast, colon, rectal, kidney, ovarian, and endometrial. Our approach uses a recently developed regulatory network reconstruction algorithm, modular regulatory network learning with per gene information (MERLIN), within a stability selection framework to predict regulators for individual genes and gene modules. Our module-based analysis identifies a common theme of immune system processes in each cancer study, with modules statistically enriched for immune response processes as well as targets of key immune response regulators from the interferon regulatory factor (IRF) and signal transducer and activator of transcription (STAT) families. Comparison of the inferred regulatory networks from each cancer type identified a core regulatory network that included genes involved in chromatin remodeling, cell cycle, and immune response. Regulatory network hubs included genes with known roles in specific cancer types as well as genes with potentially novel roles in different cancer types. Overall, our integrated module and network analysis recapitulated known themes in cancer biology and additionally revealed novel regulatory hubs that suggest a complex interplay of immune response, cell

  1. A Pan-Cancer Modular Regulatory Network Analysis to Identify Common and Cancer-Specific Network Components

    PubMed Central

    Knaack, Sara A; Siahpirani, Alireza Fotuhi; Roy, Sushmita

    2014-01-01

    Many human diseases including cancer are the result of perturbations to transcriptional regulatory networks that control context-specific expression of genes. A comparative approach across multiple cancer types is a powerful approach to illuminate the common and specific network features of this family of diseases. Recent efforts from The Cancer Genome Atlas (TCGA) have generated large collections of functional genomic data sets for multiple types of cancers. An emerging challenge is to devise computational approaches that systematically compare these genomic data sets across different cancer types that identify common and cancer-specific network components. We present a module- and network-based characterization of transcriptional patterns in six different cancers being studied in TCGA: breast, colon, rectal, kidney, ovarian, and endometrial. Our approach uses a recently developed regulatory network reconstruction algorithm, modular regulatory network learning with per gene information (MERLIN), within a stability selection framework to predict regulators for individual genes and gene modules. Our module-based analysis identifies a common theme of immune system processes in each cancer study, with modules statistically enriched for immune response processes as well as targets of key immune response regulators from the interferon regulatory factor (IRF) and signal transducer and activator of transcription (STAT) families. Comparison of the inferred regulatory networks from each cancer type identified a core regulatory network that included genes involved in chromatin remodeling, cell cycle, and immune response. Regulatory network hubs included genes with known roles in specific cancer types as well as genes with potentially novel roles in different cancer types. Overall, our integrated module and network analysis recapitulated known themes in cancer biology and additionally revealed novel regulatory hubs that suggest a complex interplay of immune response, cell

  2. Neural networks as a possible architecture for the distributed control of space systems

    NASA Technical Reports Server (NTRS)

    Fiesler, E.; Choudry, A.

    1987-01-01

    Researchers attempted to identify the features essential for large, complex, multi-modular multi-functional systems possessing a high level of interconnectivity. These features were studied in the context of neural networks with the aim of arriving at a possible architecture of the distributed control system-specific features of the neural networks and their applicability in space systems.

  3. In silico Transcriptional Regulatory Networks Involved in Tomato Fruit Ripening

    PubMed Central

    Arhondakis, Stilianos; Bita, Craita E.; Perrakis, Andreas; Manioudaki, Maria E.; Krokida, Afroditi; Kaloudas, Dimitrios; Kalaitzis, Panagiotis

    2016-01-01

    Tomato fruit ripening is a complex developmental programme partly mediated by transcriptional regulatory networks. Several transcription factors (TFs) which are members of gene families such as MADS-box and ERF were shown to play a significant role in ripening through interconnections into an intricate network. The accumulation of large datasets of expression profiles corresponding to different stages of tomato fruit ripening and the availability of bioinformatics tools for their analysis provide an opportunity to identify TFs which might regulate gene clusters with similar co-expression patterns. We identified two TFs, a SlWRKY22-like and a SlER24 transcriptional activator which were shown to regulate modules by using the LeMoNe algorithm for the analysis of our microarray datasets representing four stages of fruit ripening, breaker, turning, pink and red ripe. The WRKY22-like module comprised a subgroup of six various calcium sensing transcripts with similar to the TF expression patterns according to real time PCR validation. A promoter motif search identified a cis acting element, the W-box, recognized by WRKY TFs that was present in the promoter region of all six calcium sensing genes. Moreover, publicly available microarray datasets of similar ripening stages were also analyzed with LeMoNe resulting in TFs such as SlERF.E1, SlERF.C1, SlERF.B2, SLERF.A2, SlWRKY24, SLWRKY37, and MADS-box/TM29 which might also play an important role in regulation of ripening. These results suggest that the SlWRKY22-like might be involved in the coordinated regulation of expression of the six calcium sensing genes. Conclusively the LeMoNe tool might lead to the identification of putative TF targets for further physiological analysis as regulators of tomato fruit ripening. PMID:27625653

  4. In silico Transcriptional Regulatory Networks Involved in Tomato Fruit Ripening

    PubMed Central

    Arhondakis, Stilianos; Bita, Craita E.; Perrakis, Andreas; Manioudaki, Maria E.; Krokida, Afroditi; Kaloudas, Dimitrios; Kalaitzis, Panagiotis

    2016-01-01

    Tomato fruit ripening is a complex developmental programme partly mediated by transcriptional regulatory networks. Several transcription factors (TFs) which are members of gene families such as MADS-box and ERF were shown to play a significant role in ripening through interconnections into an intricate network. The accumulation of large datasets of expression profiles corresponding to different stages of tomato fruit ripening and the availability of bioinformatics tools for their analysis provide an opportunity to identify TFs which might regulate gene clusters with similar co-expression patterns. We identified two TFs, a SlWRKY22-like and a SlER24 transcriptional activator which were shown to regulate modules by using the LeMoNe algorithm for the analysis of our microarray datasets representing four stages of fruit ripening, breaker, turning, pink and red ripe. The WRKY22-like module comprised a subgroup of six various calcium sensing transcripts with similar to the TF expression patterns according to real time PCR validation. A promoter motif search identified a cis acting element, the W-box, recognized by WRKY TFs that was present in the promoter region of all six calcium sensing genes. Moreover, publicly available microarray datasets of similar ripening stages were also analyzed with LeMoNe resulting in TFs such as SlERF.E1, SlERF.C1, SlERF.B2, SLERF.A2, SlWRKY24, SLWRKY37, and MADS-box/TM29 which might also play an important role in regulation of ripening. These results suggest that the SlWRKY22-like might be involved in the coordinated regulation of expression of the six calcium sensing genes. Conclusively the LeMoNe tool might lead to the identification of putative TF targets for further physiological analysis as regulators of tomato fruit ripening.

  5. In silico Transcriptional Regulatory Networks Involved in Tomato Fruit Ripening.

    PubMed

    Arhondakis, Stilianos; Bita, Craita E; Perrakis, Andreas; Manioudaki, Maria E; Krokida, Afroditi; Kaloudas, Dimitrios; Kalaitzis, Panagiotis

    2016-01-01

    Tomato fruit ripening is a complex developmental programme partly mediated by transcriptional regulatory networks. Several transcription factors (TFs) which are members of gene families such as MADS-box and ERF were shown to play a significant role in ripening through interconnections into an intricate network. The accumulation of large datasets of expression profiles corresponding to different stages of tomato fruit ripening and the availability of bioinformatics tools for their analysis provide an opportunity to identify TFs which might regulate gene clusters with similar co-expression patterns. We identified two TFs, a SlWRKY22-like and a SlER24 transcriptional activator which were shown to regulate modules by using the LeMoNe algorithm for the analysis of our microarray datasets representing four stages of fruit ripening, breaker, turning, pink and red ripe. The WRKY22-like module comprised a subgroup of six various calcium sensing transcripts with similar to the TF expression patterns according to real time PCR validation. A promoter motif search identified a cis acting element, the W-box, recognized by WRKY TFs that was present in the promoter region of all six calcium sensing genes. Moreover, publicly available microarray datasets of similar ripening stages were also analyzed with LeMoNe resulting in TFs such as SlERF.E1, SlERF.C1, SlERF.B2, SLERF.A2, SlWRKY24, SLWRKY37, and MADS-box/TM29 which might also play an important role in regulation of ripening. These results suggest that the SlWRKY22-like might be involved in the coordinated regulation of expression of the six calcium sensing genes. Conclusively the LeMoNe tool might lead to the identification of putative TF targets for further physiological analysis as regulators of tomato fruit ripening.

  6. In silico Transcriptional Regulatory Networks Involved in Tomato Fruit Ripening.

    PubMed

    Arhondakis, Stilianos; Bita, Craita E; Perrakis, Andreas; Manioudaki, Maria E; Krokida, Afroditi; Kaloudas, Dimitrios; Kalaitzis, Panagiotis

    2016-01-01

    Tomato fruit ripening is a complex developmental programme partly mediated by transcriptional regulatory networks. Several transcription factors (TFs) which are members of gene families such as MADS-box and ERF were shown to play a significant role in ripening through interconnections into an intricate network. The accumulation of large datasets of expression profiles corresponding to different stages of tomato fruit ripening and the availability of bioinformatics tools for their analysis provide an opportunity to identify TFs which might regulate gene clusters with similar co-expression patterns. We identified two TFs, a SlWRKY22-like and a SlER24 transcriptional activator which were shown to regulate modules by using the LeMoNe algorithm for the analysis of our microarray datasets representing four stages of fruit ripening, breaker, turning, pink and red ripe. The WRKY22-like module comprised a subgroup of six various calcium sensing transcripts with similar to the TF expression patterns according to real time PCR validation. A promoter motif search identified a cis acting element, the W-box, recognized by WRKY TFs that was present in the promoter region of all six calcium sensing genes. Moreover, publicly available microarray datasets of similar ripening stages were also analyzed with LeMoNe resulting in TFs such as SlERF.E1, SlERF.C1, SlERF.B2, SLERF.A2, SlWRKY24, SLWRKY37, and MADS-box/TM29 which might also play an important role in regulation of ripening. These results suggest that the SlWRKY22-like might be involved in the coordinated regulation of expression of the six calcium sensing genes. Conclusively the LeMoNe tool might lead to the identification of putative TF targets for further physiological analysis as regulators of tomato fruit ripening. PMID:27625653

  7. Framewise phoneme classification with bidirectional LSTM and other neural network architectures.

    PubMed

    Graves, Alex; Schmidhuber, Jürgen

    2005-01-01

    In this paper, we present bidirectional Long Short Term Memory (LSTM) networks, and a modified, full gradient version of the LSTM learning algorithm. We evaluate Bidirectional LSTM (BLSTM) and several other network architectures on the benchmark task of framewise phoneme classification, using the TIMIT database. Our main findings are that bidirectional networks outperform unidirectional ones, and Long Short Term Memory (LSTM) is much faster and also more accurate than both standard Recurrent Neural Nets (RNNs) and time-windowed Multilayer Perceptrons (MLPs). Our results support the view that contextual information is crucial to speech processing, and suggest that BLSTM is an effective architecture with which to exploit it.

  8. Network-centric MFA tracking architecture based on soft-level data association

    NASA Astrophysics Data System (ADS)

    Novoselov, Roman; Gadaleta, Sabino; Poore, Aubrey

    2005-09-01

    This work presents a new network centric architecture for multiple frame assignment (MFA) tracking. The architecture improves on earlier network tracking schemes by allowing trackers to broadcast decisions about their local soft-level associations, via the Soft Associated Measurement Reports (SAMRs). The SAMR may be followed by an "Oops" message, if the soft association was incorrect and must be revoked. We show, however, that such revocations are very rare in most scenarios. This paper discusses the implementation of the new algorithm and presents simulation results. Considerable improvements in the consistency of the air picture are demonstrated, owing to the the reduced latency in transmission of measurement-to-track associations. The earlier network architectures, namely, the Centralized MFA, the Replicated Centralized MFA, and the Network MFA on Local and All Data, are also discussed in this work, as they form the foundation for the "Oops" algorithm.

  9. Transcriptional regulatory network during development in the olfactory epithelium

    PubMed Central

    Im, SeungYeong; Moon, Cheil

    2015-01-01

    Regeneration, a process of reconstitution of the entire tissue, occurs throughout life in the olfactory epithelium (OE). Regeneration of OE consists of several stages: proliferation of progenitors, cell fate determination between neuronal and non-neuronal lineages, their differentiation and maturation. How the differentiated cell types that comprise the OE are regenerated, is one of the central questions in olfactory developmental neurobiology. The past decade has witnessed considerable progress regarding the regulation of transcription factors (TFs) involved in the remarkable regenerative potential of OE. Here, we review current state of knowledge of the transcriptional regulatory networks that are powerful modulators of the acquisition and maintenance of developmental stages during regeneration in the OE. Advance in our understanding of regeneration will not only shed light on the basic principles of adult plasticity of cell identity, but may also lead to new approaches for using stem cells and reprogramming after injury or degenerative neurological diseases. [BMB Reports 2015; 48(11): 599-608] PMID:26303973

  10. Signaling Pathways and Gene Regulatory Networks in Cardiomyocyte Differentiation

    PubMed Central

    Parikh, Abhirath; Wu, Jincheng; Blanton, Robert M.

    2015-01-01

    Strategies for harnessing stem cells as a source to treat cell loss in heart disease are the subject of intense research. Human pluripotent stem cells (hPSCs) can be expanded extensively in vitro and therefore can potentially provide sufficient quantities of patient-specific differentiated cardiomyocytes. Although multiple stimuli direct heart development, the differentiation process is driven in large part by signaling activity. The engineering of hPSCs to heart cell progeny has extensively relied on establishing proper combinations of soluble signals, which target genetic programs thereby inducing cardiomyocyte specification. Pertinent differentiation strategies have relied as a template on the development of embryonic heart in multiple model organisms. Here, information on the regulation of cardiomyocyte development from in vivo genetic and embryological studies is critically reviewed. A fresh interpretation is provided of in vivo and in vitro data on signaling pathways and gene regulatory networks (GRNs) underlying cardiopoiesis. The state-of-the-art understanding of signaling pathways and GRNs presented here can inform the design and optimization of methods for the engineering of tissues for heart therapies. PMID:25813860

  11. Design mobile satellite system architecture as an integral part of the cellular access digital network

    NASA Technical Reports Server (NTRS)

    Chien, E. S. K.; Marinho, J. A.; Russell, J. E., Sr.

    1988-01-01

    The Cellular Access Digital Network (CADN) is the access vehicle through which cellular technology is brought into the mainstream of the evolving integrated telecommunications network. Beyond the integrated end-to-end digital access and per call network services provisioning of the Integrated Services Digital Network (ISDN), the CADN engenders the added capability of mobility freedom via wireless access. One key element of the CADN network architecture is the standard user to network interface that is independent of RF transmission technology. Since the Mobile Satellite System (MSS) is envisioned to not only complement but also enhance the capabilities of the terrestrial cellular telecommunications network, compatibility and interoperability between terrestrial cellular and mobile satellite systems are vitally important to provide an integrated moving telecommunications network of the future. From a network standpoint, there exist very strong commonalities between the terrestrial cellular system and the mobile satellite system. Therefore, the MSS architecture should be designed as an integral part of the CADN. This paper describes the concept of the CADN, the functional architecture of the MSS, and the user-network interface signaling protocols.

  12. An integrated architecture of adaptive neural network control for dynamic systems

    SciTech Connect

    Ke, Liu; Tokar, R.; Mcvey, B.

    1994-07-01

    In this study, an integrated neural network control architecture for nonlinear dynamic systems is presented. Most of the recent emphasis in the neural network control field has no error feedback as the control input which rises the adaptation problem. The integrated architecture in this paper combines feed forward control and error feedback adaptive control using neural networks. The paper reveals the different internal functionality of these two kinds of neural network controllers for certain input styles, e.g., state feedback and error feedback. Feed forward neural network controllers with state feedback establish fixed control mappings which can not adapt when model uncertainties present. With error feedbacks, neural network controllers learn the slopes or the gains respecting to the error feedbacks, which are error driven adaptive control systems. The results demonstrate that the two kinds of control scheme can be combined to realize their individual advantages. Testing with disturbances added to the plant shows good tracking and adaptation.

  13. Impact of Transcription Units rearrangement on the evolution of the regulatory network of gamma-proteobacteria

    PubMed Central

    González Pérez, Abel D; González González, Evelyn; Espinosa Angarica, Vladimir; Vasconcelos, Ana Tereza R; Collado-Vides, Julio

    2008-01-01

    Background In the past years, several studies begun to unravel the structure, dynamical properties, and evolution of transcriptional regulatory networks. However, even those comparative studies that focus on a group of closely related organisms are limited by the rather scarce knowledge on regulatory interactions outside a few model organisms, such as E. coli among the prokaryotes. Results In this paper we used the information annotated in Tractor_DB (a database of regulatory networks in gamma-proteobacteria) to calculate a normalized Site Orthology Score (SOS) that quantifies the conservation of a regulatory link across thirty genomes of this subclass. Then we used this SOS to assess how regulatory connections have evolved in this group, and how the variation of basic regulatory connection is reflected on the structure of the chromosome. We found that individual regulatory interactions shift between different organisms, a process that may be described as rewiring the network. At this evolutionary scale (the gamma-proteobacteria subclass) this rewiring process may be an important source of variation of regulatory incoming interactions for individual networks. We also noticed that the regulatory links that form feed forward motifs are conserved in a better correlated manner than triads of random regulatory interactions or pairs of co-regulated genes. Furthermore, the rewiring process that takes place at the most basic level of the regulatory network may be linked to rearrangements of genetic material within bacterial chromosomes, which change the structure of Transcription Units and therefore the regulatory connections between Transcription Factors and structural genes. Conclusion The rearrangements that occur in bacterial chromosomes-mostly inversion or horizontal gene transfer events – are important sources of variation of gene regulation at this evolutionary scale. PMID:18366643

  14. Fiber linked distributed data acquisition in an open network architecture

    SciTech Connect

    Pawelski, F.J.

    1995-03-01

    Flexible and easily expanded process control systems can be achieved through the use of an open and distributed architecture. This paper discusses how to achieve a truly open and distributed process control system as well as some of the goals, concerns and advantages of such a system.

  15. A Cluster-Based Architecture to Structure the Topology of Parallel Wireless Sensor Networks

    PubMed Central

    Lloret, Jaime; Garcia, Miguel; Bri, Diana; Diaz, Juan R.

    2009-01-01

    A wireless sensor network is a self-configuring network of mobile nodes connected by wireless links where the nodes have limited capacity and energy. In many cases, the application environment requires the design of an exclusive network topology for a particular case. Cluster-based network developments and proposals in existence have been designed to build a network for just one type of node, where all nodes can communicate with any other nodes in their coverage area. Let us suppose a set of clusters of sensor nodes where each cluster is formed by different types of nodes (e.g., they could be classified by the sensed parameter using different transmitting interfaces, by the node profile or by the type of device: laptops, PDAs, sensor etc.) and exclusive networks, as virtual networks, are needed with the same type of sensed data, or the same type of devices, or even the same type of profiles. In this paper, we propose an algorithm that is able to structure the topology of different wireless sensor networks to coexist in the same environment. It allows control and management of the topology of each network. The architecture operation and the protocol messages will be described. Measurements from a real test-bench will show that the designed protocol has low bandwidth consumption and also demonstrates the viability and the scalability of the proposed architecture. Our ccluster-based algorithm is compared with other algorithms reported in the literature in terms of architecture and protocol measurements. PMID:22303185

  16. Data- and knowledge-based modeling of gene regulatory networks: an update

    PubMed Central

    Linde, Jörg; Schulze, Sylvie; Henkel, Sebastian G.; Guthke, Reinhard

    2015-01-01

    Gene regulatory network inference is a systems biology approach which predicts interactions between genes with the help of high-throughput data. In this review, we present current and updated network inference methods focusing on novel techniques for data acquisition, network inference assessment, network inference for interacting species and the integration of prior knowledge. After the advance of Next-Generation-Sequencing of cDNAs derived from RNA samples (RNA-Seq) we discuss in detail its application to network inference. Furthermore, we present progress for large-scale or even full-genomic network inference as well as for small-scale condensed network inference and review advances in the evaluation of network inference methods by crowdsourcing. Finally, we reflect the current availability of data and prior knowledge sources and give an outlook for the inference of gene regulatory networks that reflect interacting species, in particular pathogen-host interactions. PMID:27047314

  17. Data- and knowledge-based modeling of gene regulatory networks: an update.

    PubMed

    Linde, Jörg; Schulze, Sylvie; Henkel, Sebastian G; Guthke, Reinhard

    2015-01-01

    Gene regulatory network inference is a systems biology approach which predicts interactions between genes with the help of high-throughput data. In this review, we present current and updated network inference methods focusing on novel techniques for data acquisition, network inference assessment, network inference for interacting species and the integration of prior knowledge. After the advance of Next-Generation-Sequencing of cDNAs derived from RNA samples (RNA-Seq) we discuss in detail its application to network inference. Furthermore, we present progress for large-scale or even full-genomic network inference as well as for small-scale condensed network inference and review advances in the evaluation of network inference methods by crowdsourcing. Finally, we reflect the current availability of data and prior knowledge sources and give an outlook for the inference of gene regulatory networks that reflect interacting species, in particular pathogen-host interactions.

  18. Construction of Gene Regulatory Networks Using Recurrent Neural Networks and Swarm Intelligence

    PubMed Central

    Khan, Abhinandan; Mandal, Sudip; Pal, Rajat Kumar; Saha, Goutam

    2016-01-01

    We have proposed a methodology for the reverse engineering of biologically plausible gene regulatory networks from temporal genetic expression data. We have used established information and the fundamental mathematical theory for this purpose. We have employed the Recurrent Neural Network formalism to extract the underlying dynamics present in the time series expression data accurately. We have introduced a new hybrid swarm intelligence framework for the accurate training of the model parameters. The proposed methodology has been first applied to a small artificial network, and the results obtained suggest that it can produce the best results available in the contemporary literature, to the best of our knowledge. Subsequently, we have implemented our proposed framework on experimental (in vivo) datasets. Finally, we have investigated two medium sized genetic networks (in silico) extracted from GeneNetWeaver, to understand how the proposed algorithm scales up with network size. Additionally, we have implemented our proposed algorithm with half the number of time points. The results indicate that a reduction of 50% in the number of time points does not have an effect on the accuracy of the proposed methodology significantly, with a maximum of just over 15% deterioration in the worst case. PMID:27298752

  19. Construction of Gene Regulatory Networks Using Recurrent Neural Networks and Swarm Intelligence.

    PubMed

    Khan, Abhinandan; Mandal, Sudip; Pal, Rajat Kumar; Saha, Goutam

    2016-01-01

    We have proposed a methodology for the reverse engineering of biologically plausible gene regulatory networks from temporal genetic expression data. We have used established information and the fundamental mathematical theory for this purpose. We have employed the Recurrent Neural Network formalism to extract the underlying dynamics present in the time series expression data accurately. We have introduced a new hybrid swarm intelligence framework for the accurate training of the model parameters. The proposed methodology has been first applied to a small artificial network, and the results obtained suggest that it can produce the best results available in the contemporary literature, to the best of our knowledge. Subsequently, we have implemented our proposed framework on experimental (in vivo) datasets. Finally, we have investigated two medium sized genetic networks (in silico) extracted from GeneNetWeaver, to understand how the proposed algorithm scales up with network size. Additionally, we have implemented our proposed algorithm with half the number of time points. The results indicate that a reduction of 50% in the number of time points does not have an effect on the accuracy of the proposed methodology significantly, with a maximum of just over 15% deterioration in the worst case.

  20. A Study of Artificial Neural Network Architectures for Othello Evaluation Functions

    NASA Astrophysics Data System (ADS)

    Binkley, Kevin J.; Seehart, Ken; Hagiwara, Masafumi

    In this study, we use temporal difference learning (TDL) to investigate the ability of 20 different artificial neural network (ANN) architectures to learn othello game board evaluation functions. The ANN evaluation functions are applied to create a strong othello player using only 1-ply search. In addition to comparing many of the ANN architectures seen in the literature, we introduce several new architectures that consider the game board symmetry. Both embedding the game board symmetry into the network architecture through weight sharing and the outright removal of symmetry through symmetry removal are explored. Experiments varying the number of inputs per game board square from one to three, the number of hidden nodes, and number of hidden layers are also performed. We found it advantageous to consider game board symmetry in the form of symmetry by weight sharing; and that an input encoding of three inputs per square outperformed the one input per square encoding that is commonly seen in the literature. Furthermore, architectures with only one hidden layer were strongly outperformed by architectures with multiple hidden layers. A standard weighted-square board heuristic evaluation function from the literature was used to evaluate the quality of the trained ANN othello players. One of the ANN architectures introduced in this study, an ANN implementing weight sharing and consisting of three hidden layers, using only a 1-ply search, outperformed a weighted-square test heuristic player using a 6-ply minimax search.

  1. Mining Gene Regulatory Networks by Neural Modeling of Expression Time-Series.

    PubMed

    Rubiolo, Mariano; Milone, Diego H; Stegmayer, Georgina

    2015-01-01

    Discovering gene regulatory networks from data is one of the most studied topics in recent years. Neural networks can be successfully used to infer an underlying gene network by modeling expression profiles as times series. This work proposes a novel method based on a pool of neural networks for obtaining a gene regulatory network from a gene expression dataset. They are used for modeling each possible interaction between pairs of genes in the dataset, and a set of mining rules is applied to accurately detect the subjacent relations among genes. The results obtained on artificial and real datasets confirm the method effectiveness for discovering regulatory networks from a proper modeling of the temporal dynamics of gene expression profiles.

  2. Large scale gene regulatory network inference with a multi-level strategy.

    PubMed

    Wu, Jun; Zhao, Xiaodong; Lin, Zongli; Shao, Zhifeng

    2016-02-01

    Transcriptional regulation is a basis of many crucial molecular processes and an accurate inference of the gene regulatory network is a helpful and essential task to understand cell functions and gain insights into biological processes of interest in systems biology. Inspired by the Dialogue for Reverse Engineering Assessments and Methods (DREAM) projects, many excellent gene regulatory network inference algorithms have been proposed. However, it is still a challenging problem to infer a gene regulatory network from gene expression data on a large scale. In this paper, we propose a gene regulatory network inference method based on a multi-level strategy (GENIMS), which can give results that are more accurate and robust than the state-of-the-art methods. The proposed method mainly consists of three levels, which are an original feature selection step based on guided regularized random forest, normalization of individual feature selection and the final refinement step according to the topological property of the gene regulatory network. To prove the accuracy and robustness of our method, we compare our method with the state-of-the-art methods on the DREAM4 and DREAM5 benchmark networks and the results indicate that the proposed method can significantly improve the performance of gene regulatory network inference. Additionally, we also discuss the influence of the selection of different parameters in our method. PMID:26687446

  3. Shadow Enhancers Are Pervasive Features of Developmental Regulatory Networks

    PubMed Central

    Cannavò, Enrico; Khoueiry, Pierre; Garfield, David A.; Geeleher, Paul; Zichner, Thomas; Gustafson, E. Hilary; Ciglar, Lucia; Korbel, Jan O.; Furlong, Eileen E.M.

    2016-01-01

    Summary Embryogenesis is remarkably robust to segregating mutations and environmental variation; under a range of conditions, embryos of a given species develop into stereotypically patterned organisms. Such robustness is thought to be conferred, in part, through elements within regulatory networks that perform similar, redundant tasks. Redundant enhancers (or “shadow” enhancers), for example, can confer precision and robustness to gene expression, at least at individual, well-studied loci. However, the extent to which enhancer redundancy exists and can thereby have a major impact on developmental robustness remains unknown. Here, we systematically assessed this, identifying over 1,000 predicted shadow enhancers during Drosophila mesoderm development. The activity of 23 elements, associated with five genes, was examined in transgenic embryos, while natural structural variation among individuals was used to assess their ability to buffer against genetic variation. Our results reveal three clear properties of enhancer redundancy within developmental systems. First, it is much more pervasive than previously anticipated, with 64% of loci examined having shadow enhancers. Their spatial redundancy is often partial in nature, while the non-overlapping function may explain why these enhancers are maintained within a population. Second, over 70% of loci do not follow the simple situation of having only two shadow enhancers—often there are three (rols), four (CadN and ade5), or five (Traf1), at least one of which can be deleted with no obvious phenotypic effects. Third, although shadow enhancers can buffer variation, patterns of segregating variation suggest that they play a more complex role in development than generally considered. PMID:26687625

  4. The architecture of dynamic reservoir in the echo state network

    NASA Astrophysics Data System (ADS)

    Cui, Hongyan; Liu, Xiang; Li, Lixiang

    2012-09-01

    Echo state network (ESN) has recently attracted increasing interests because of its superior capability in modeling nonlinear dynamic systems. In the conventional echo state network model, its dynamic reservoir (DR) has a random and sparse topology, which is far from the real biological neural networks from both structural and functional perspectives. We hereby propose three novel types of echo state networks with new dynamic reservoir topologies based on complex network theory, i.e., with a small-world topology, a scale-free topology, and a mixture of small-world and scale-free topologies, respectively. We then analyze the relationship between the dynamic reservoir structure and its prediction capability. We utilize two commonly used time series to evaluate the prediction performance of the three proposed echo state networks and compare them to the conventional model. We also use independent and identically distributed time series to analyze the short-term memory and prediction precision of these echo state networks. Furthermore, we study the ratio of scale-free topology and the small-world topology in the mixed-topology network, and examine its influence on the performance of the echo state networks. Our simulation results show that the proposed echo state network models have better prediction capabilities, a wider spectral radius, but retain almost the same short-term memory capacity as compared to the conventional echo state network model. We also find that the smaller the ratio of the scale-free topology over the small-world topology, the better the memory capacities.

  5. The architecture of dynamic reservoir in the echo state network.

    PubMed

    Cui, Hongyan; Liu, Xiang; Li, Lixiang

    2012-09-01

    Echo state network (ESN) has recently attracted increasing interests because of its superior capability in modeling nonlinear dynamic systems. In the conventional echo state network model, its dynamic reservoir (DR) has a random and sparse topology, which is far from the real biological neural networks from both structural and functional perspectives. We hereby propose three novel types of echo state networks with new dynamic reservoir topologies based on complex network theory, i.e., with a small-world topology, a scale-free topology, and a mixture of small-world and scale-free topologies, respectively. We then analyze the relationship between the dynamic reservoir structure and its prediction capability. We utilize two commonly used time series to evaluate the prediction performance of the three proposed echo state networks and compare them to the conventional model. We also use independent and identically distributed time series to analyze the short-term memory and prediction precision of these echo state networks. Furthermore, we study the ratio of scale-free topology and the small-world topology in the mixed-topology network, and examine its influence on the performance of the echo state networks. Our simulation results show that the proposed echo state network models have better prediction capabilities, a wider spectral radius, but retain almost the same short-term memory capacity as compared to the conventional echo state network model. We also find that the smaller the ratio of the scale-free topology over the small-world topology, the better the memory capacities.

  6. The architecture of dynamic reservoir in the echo state network.

    PubMed

    Cui, Hongyan; Liu, Xiang; Li, Lixiang

    2012-09-01

    Echo state network (ESN) has recently attracted increasing interests because of its superior capability in modeling nonlinear dynamic systems. In the conventional echo state network model, its dynamic reservoir (DR) has a random and sparse topology, which is far from the real biological neural networks from both structural and functional perspectives. We hereby propose three novel types of echo state networks with new dynamic reservoir topologies based on complex network theory, i.e., with a small-world topology, a scale-free topology, and a mixture of small-world and scale-free topologies, respectively. We then analyze the relationship between the dynamic reservoir structure and its prediction capability. We utilize two commonly used time series to evaluate the prediction performance of the three proposed echo state networks and compare them to the conventional model. We also use independent and identically distributed time series to analyze the short-term memory and prediction precision of these echo state networks. Furthermore, we study the ratio of scale-free topology and the small-world topology in the mixed-topology network, and examine its influence on the performance of the echo state networks. Our simulation results show that the proposed echo state network models have better prediction capabilities, a wider spectral radius, but retain almost the same short-term memory capacity as compared to the conventional echo state network model. We also find that the smaller the ratio of the scale-free topology over the small-world topology, the better the memory capacities. PMID:23020466

  7. Modulation of the brain's functional network architecture in the transition from wake to sleep.

    PubMed

    Larson-Prior, Linda J; Power, Jonathan D; Vincent, Justin L; Nolan, Tracy S; Coalson, Rebecca S; Zempel, John; Snyder, Abraham Z; Schlaggar, Bradley L; Raichle, Marcus E; Petersen, Steven E

    2011-01-01

    The transition from quiet wakeful rest to sleep represents a period over which attention to the external environment fades. Neuroimaging methodologies have provided much information on the shift in neural activity patterns in sleep, but the dynamic restructuring of human brain networks in the transitional period from wake to sleep remains poorly understood. Analysis of electrophysiological measures and functional network connectivity of these early transitional states shows subtle shifts in network architecture that are consistent with reduced external attentiveness and increased internal and self-referential processing. Further, descent to sleep is accompanied by the loss of connectivity in anterior and posterior portions of the default-mode network and more locally organized global network architecture. These data clarify the complex and dynamic nature of the transitional period between wake and sleep and suggest the need for more studies investigating the dynamics of these processes.

  8. Utilising eduroam[TM] Architecture in Building Wireless Community Networks

    ERIC Educational Resources Information Center

    Huhtanen, Karri; Vatiainen, Heikki; Keski-Kasari, Sami; Harju, Jarmo

    2008-01-01

    Purpose: eduroam[TM] has already been proved to be a scalable, secure and feasible way for universities and research institutions to connect their wireless networks into a WLAN roaming community, but the advantages of eduroam[TM] have not yet been fully discovered in the wireless community networks aimed at regular consumers. This aim of this…

  9. Network-Attached Solid-State Recorder Architecture

    NASA Technical Reports Server (NTRS)

    Cox, Brian

    2008-01-01

    A document discusses placing memory modules on the high-speed serial interconnect, which is used by a spacecraft s computer elements for inter-processor communications, to allow all multiple computer system architectures to access the spacecraft data storage at the same time. Each memory board is identical electrically and receives its bus ID upon connection to the system. The computer elements are configured in a similar fashion. The architecture allows for multiple memory boards to be accessed simultaneously by different computer elements, and results in a scalable, strong, fault-tolerant system. The IEEE-1393 ring bus can be routed so that multiple card failures can occur and the mass memory storage will still function.

  10. Experiments on neural network architectures for fuzzy logic

    NASA Technical Reports Server (NTRS)

    Keller, James M.

    1991-01-01

    The use of fuzzy logic to model and manage uncertainty in a rule-based system places high computational demands on an inference engine. In an earlier paper, the authors introduced a trainable neural network structure for fuzzy logic. These networks can learn and extrapolate complex relationships between possibility distributions for the antecedents and consequents in the rules. Here, the power of these networks is further explored. The insensitivity of the output to noisy input distributions (which are likely if the clauses are generated from real data) is demonstrated as well as the ability of the networks to internalize multiple conjunctive clause and disjunctive clause rules. Since different rules with the same variables can be encoded in a single network, this approach to fuzzy logic inference provides a natural mechanism for rule conflict resolution.

  11. Dependence of physical and mechanical properties on polymer architecture for model polymer networks

    NASA Astrophysics Data System (ADS)

    Guo, Ruilan

    Effect of architecture at nanoscale on the macroscopic properties of polymer materials has long been a field of major interest, as evidenced by inhomogeneities in networks, multimodal network topologies, etc. The primary purpose of this research is to establish the architecture-property relationship of polymer networks by studying the physical and mechanical responses of a series of topologically different PTHF networks. Monodispersed allyl-tenninated PTHF precursors were synthesized through "living" cationic polymerization and functional end-capping. Model networks of various crosslink densities and inhomogeneities levels (unimodal, bimodal and clustered) were prepared by endlinking precursors via thiol-ene reaction. Thermal characteristics, i.e., glass transition, melting point, and heat of fusion, of model PTHF networks were investigated as functions of crosslink density and inhomogeneities, which showed different dependence on these two architectural parameters. Study of freezing point depression (FPD) of solvent confined in swollen networks indicated that the size of solvent microcrystals is comparable to the mesh size formed by intercrosslink chains depending on crosslink density and inhomogeneities. Relationship between crystal size and FPD provided a good reflection of the existing architecture facts in the networks. Mechanical responses of elastic chains to uniaxial strains were studied through SANS. Spatial inhomogeneities in bimodal and clustered networks gave rise to "abnormal butterfly patterns", which became more pronounced as elongation ratio increases. Radii of gyration of chains were analyzed at directions parallel and perpendicular to stretching axis. Dependence of Rg on lambda was compared to three rubber elasticity models and the molecular deformation mechanisms for unimodal, bimodal and clustered networks were explored. The thesis focused its last part on the investigation of evolution of free volume distribution of linear polymer (PE

  12. RNA regulatory networks diversified through curvature of the PUF protein scaffold

    DOE PAGES

    Wilinski, Daniel; Qiu, Chen; Lapointe, Christopher P.; Nevil, Markus; Campbell, Zachary T.; Tanaka Hall, Traci M.; Wickens, Marvin

    2015-09-14

    Proteins bind and control mRNAs, directing their localization, translation and stability. Members of the PUF family of RNA-binding proteins control multiple mRNAs in a single cell, and play key roles in development, stem cell maintenance and memory formation. Here we identified the mRNA targets of a S. cerevisiae PUF protein, Puf5p, by ultraviolet-crosslinking-affinity purification and high-throughput sequencing (HITS-CLIP). The binding sites recognized by Puf5p are diverse, with variable spacer lengths between two specific sequences. Each length of site correlates with a distinct biological function. Crystal structures of Puf5p–RNA complexes reveal that the protein scaffold presents an exceptionally flat and extendedmore » interaction surface relative to other PUF proteins. In complexes with RNAs of different lengths, the protein is unchanged. A single PUF protein repeat is sufficient to induce broadening of specificity. Changes in protein architecture, such as alterations in curvature, may lead to evolution of mRNA regulatory networks.« less

  13. RNA regulatory networks diversified through curvature of the PUF protein scaffold

    SciTech Connect

    Wilinski, Daniel; Qiu, Chen; Lapointe, Christopher P.; Nevil, Markus; Campbell, Zachary T.; Tanaka Hall, Traci M.; Wickens, Marvin

    2015-09-14

    Proteins bind and control mRNAs, directing their localization, translation and stability. Members of the PUF family of RNA-binding proteins control multiple mRNAs in a single cell, and play key roles in development, stem cell maintenance and memory formation. Here we identified the mRNA targets of a S. cerevisiae PUF protein, Puf5p, by ultraviolet-crosslinking-affinity purification and high-throughput sequencing (HITS-CLIP). The binding sites recognized by Puf5p are diverse, with variable spacer lengths between two specific sequences. Each length of site correlates with a distinct biological function. Crystal structures of Puf5p–RNA complexes reveal that the protein scaffold presents an exceptionally flat and extended interaction surface relative to other PUF proteins. In complexes with RNAs of different lengths, the protein is unchanged. A single PUF protein repeat is sufficient to induce broadening of specificity. Changes in protein architecture, such as alterations in curvature, may lead to evolution of mRNA regulatory networks.

  14. RNA regulatory networks diversified through curvature of the PUF protein scaffold

    PubMed Central

    Wilinski, Daniel; Qiu, Chen; Lapointe, Christopher P.; Nevil, Markus; Campbell, Zachary T.; Tanaka Hall, Traci M.; Wickens, Marvin

    2015-01-01

    Proteins bind and control mRNAs, directing their localization, translation and stability. Members of the PUF family of RNA-binding proteins control multiple mRNAs in a single cell, and play key roles in development, stem cell maintenance and memory formation. Here we identified the mRNA targets of a S. cerevisiae PUF protein, Puf5p, by ultraviolet-crosslinking-affinity purification and high-throughput sequencing (HITS-CLIP). The binding sites recognized by Puf5p are diverse, with variable spacer lengths between two specific sequences. Each length of site correlates with a distinct biological function. Crystal structures of Puf5p–RNA complexes reveal that the protein scaffold presents an exceptionally flat and extended interaction surface relative to other PUF proteins. In complexes with RNAs of different lengths, the protein is unchanged. A single PUF protein repeat is sufficient to induce broadening of specificity. Changes in protein architecture, such as alterations in curvature, may lead to evolution of mRNA regulatory networks. PMID:26364903

  15. Design and Implementation of Hybrid MAC-Based Robust Architecture for Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Shon, Taeshik; Kim, Eui-Jik; in, Jeongsik; Park, Yongsuk

    In this letter, we propose an energy efficient hybrid architecture, the Hybrid MAC-based Robust Architecture (HMR), for wireless sensor networks focusing on MAC layer's scheduling and adaptive security suite as a security sub layer. A hybrid MAC layer with TDMA and CSMA scheduling is designed to prolong network life time, and the multi-channel TDMA based active/sleep scheduling is presented. We also present the security related functionalities needed to employ a flexible security suite to packets dynamically. Implementation and testbed of the proposed framework based on IEEE 802.15.4 are shown as well.

  16. A Novel Approach to Noise-Filtering Based on a Gain-Scheduling Neural Network Architecture

    NASA Technical Reports Server (NTRS)

    Troudet, T.; Merrill, W.

    1994-01-01

    A gain-scheduling neural network architecture is proposed to enhance the noise-filtering efficiency of feedforward neural networks, in terms of both nominal performance and robustness. The synergistic benefits of the proposed architecture are demonstrated and discussed in the context of the noise-filtering of signals that are typically encountered in aerospace control systems. The synthesis of such a gain-scheduled neurofiltering provides the robustness of linear filtering, while preserving the nominal performance advantage of conventional nonlinear neurofiltering. Quantitative performance and robustness evaluations are provided for the signal processing of pitch rate responses to typical pilot command inputs for a modern fighter aircraft model.

  17. One hub-one process: a tool based view on regulatory network topology

    PubMed Central

    Axelsen, Jacob Bock; Bernhardsson, Sebastian; Sneppen, Kim

    2008-01-01

    Background The relationship between the regulatory design and the functionality of molecular networks is a key issue in biology. Modules and motifs have been associated to various cellular processes, thereby providing anecdotal evidence for performance based localization on molecular networks. Results To quantify structure-function relationship we investigate similarities of proteins which are close in the regulatory network of the yeast Saccharomyces Cerevisiae. We find that the topology of the regulatory network only show weak remnants of its history of network reorganizations, but strong features of co-regulated proteins associated to similar tasks. These functional correlations decreases strongly when one consider proteins separated by more than two steps in the regulatory network. The network topology primarily reflects the processes that is orchestrated by each individual hub, whereas there is nearly no remnants of the history of protein duplications. Conclusion Our results suggests that local topological features of regulatory networks, including broad degree distributions, emerge as an implicit result of matching a number of needed processes to a finite toolbox of proteins. PMID:18318890

  18. A Highly Coupled Network of Tertiary Interactions in the SAM-I Riboswitch and Their Role in Regulatory Tuning.

    PubMed

    Wostenberg, Christopher; Ceres, Pablo; Polaski, Jacob T; Batey, Robert T

    2015-11-01

    RNA folding in vivo is significantly influenced by transcription, which is not necessarily recapitulated by Mg(2+)-induced folding of the corresponding full-length RNA in vitro. Riboswitches that regulate gene expression at the transcriptional level are an ideal system for investigating this aspect of RNA folding as ligand-dependent termination is obligatorily co-transcriptional, providing a clear readout of the folding outcome. The folding of representative members of the SAM-I family of riboswitches has been extensively analyzed using approaches focusing almost exclusively upon Mg(2+) and/or S-adenosylmethionine (SAM)-induced folding of full-length transcripts of the ligand binding domain. To relate these findings to co-transcriptional regulatory activity, we have investigated a set of structure-guided mutations of conserved tertiary architectural elements of the ligand binding domain using an in vitro single-turnover transcriptional termination assay, complemented with phylogenetic analysis and isothermal titration calorimetry data. This analysis revealed a conserved internal loop adjacent to the SAM binding site that significantly affects ligand binding and regulatory activity. Conversely, most single point mutations throughout key conserved features in peripheral tertiary architecture supporting the SAM binding pocket have relatively little impact on riboswitch activity. Instead, a secondary structural element in the peripheral subdomain appears to be the key determinant in observed differences in regulatory properties across the SAM-I family. These data reveal a highly coupled network of tertiary interactions that promote high-fidelity co-transcriptional folding of the riboswitch but are only indirectly linked to regulatory tuning. PMID:26343759

  19. A guide to integrating transcriptional regulatory and metabolic networks using PROM (probabilistic regulation of metabolism).

    PubMed

    Simeonidis, Evangelos; Chandrasekaran, Sriram; Price, Nathan D

    2013-01-01

    The integration of transcriptional regulatory and metabolic networks is a crucial step in the process of predicting metabolic behaviors that emerge from either genetic or environmental changes. Here, we present a guide to PROM (probabilistic regulation of metabolism), an automated method for the construction and simulation of integrated metabolic and transcriptional regulatory networks that enables large-scale phenotypic predictions for a wide range of model organisms.

  20. Harnessing Diversity towards the Reconstructing of Large Scale Gene Regulatory Networks

    PubMed Central

    Yamanaka, Ryota; Kitano, Hiroaki

    2013-01-01

    Elucidating gene regulatory network (GRN) from large scale experimental data remains a central challenge in systems biology. Recently, numerous techniques, particularly consensus driven approaches combining different algorithms, have become a potentially promising strategy to infer accurate GRNs. Here, we develop a novel consensus inference algorithm, TopkNet that can integrate multiple algorithms to infer GRNs. Comprehensive performance benchmarking on a cloud computing framework demonstrated that (i) a simple strategy to combine many algorithms does not always lead to performance improvement compared to the cost of consensus and (ii) TopkNet integrating only high-performance algorithms provide significant performance improvement compared to the best individual algorithms and community prediction. These results suggest that a priori determination of high-performance algorithms is a key to reconstruct an unknown regulatory network. Similarity among gene-expression datasets can be useful to determine potential optimal algorithms for reconstruction of unknown regulatory networks, i.e., if expression-data associated with known regulatory network is similar to that with unknown regulatory network, optimal algorithms determined for the known regulatory network can be repurposed to infer the unknown regulatory network. Based on this observation, we developed a quantitative measure of similarity among gene-expression datasets and demonstrated that, if similarity between the two expression datasets is high, TopkNet integrating algorithms that are optimal for known dataset perform well on the unknown dataset. The consensus framework, TopkNet, together with the similarity measure proposed in this study provides a powerful strategy towards harnessing the wisdom of the crowds in reconstruction of unknown regulatory networks. PMID:24278007

  1. An Architectural Concept for Intrusion Tolerance in Air Traffic Networks

    NASA Technical Reports Server (NTRS)

    Maddalon, Jeffrey M.; Miner, Paul S.

    2003-01-01

    The goal of an intrusion tolerant network is to continue to provide predictable and reliable communication in the presence of a limited num ber of compromised network components. The behavior of a compromised network component ranges from a node that no longer responds to a nod e that is under the control of a malicious entity that is actively tr ying to cause other nodes to fail. Most current data communication ne tworks do not include support for tolerating unconstrained misbehavio r of components in the network. However, the fault tolerance communit y has developed protocols that provide both predictable and reliable communication in the presence of the worst possible behavior of a limited number of nodes in the system. One may view a malicious entity in a communication network as a node that has failed and is behaving in an arbitrary manner. NASA/Langley Research Center has developed one such fault-tolerant computing platform called SPIDER (Scalable Proces sor-Independent Design for Electromagnetic Resilience). The protocols and interconnection mechanisms of SPIDER may be adapted to large-sca le, distributed communication networks such as would be required for future Air Traffic Management systems. The predictability and reliabi lity guarantees provided by the SPIDER protocols have been formally v erified. This analysis can be readily adapted to similar network stru ctures.

  2. Robustness in Regulatory Interaction Networks. A Generic Approach with Applications at Different Levels: Physiologic, Metabolic and Genetic

    PubMed Central

    Demongeot, Jacques; Ben Amor, Hedi; Elena, Adrien; Gillois, Pierre; Noual, Mathilde; Sené, Sylvain

    2009-01-01

    Regulatory interaction networks are often studied on their dynamical side (existence of attractors, study of their stability). We focus here also on their robustness, that is their ability to offer the same spatiotemporal patterns and to resist to external perturbations such as losses of nodes or edges in the networks interactions architecture, changes in their environmental boundary conditions as well as changes in the update schedule (or updating mode) of the states of their elements (e.g., if these elements are genes, their synchronous coexpression mode versus their sequential expression). We define the generic notions of boundary, core, and critical vertex or edge of the underlying interaction graph of the regulatory network, whose disappearance causes dramatic changes in the number and nature of attractors (e.g., passage from a bistable behaviour to a unique periodic regime) or in the range of their basins of stability. The dynamic transition of states will be presented in the framework of threshold Boolean automata rules. A panorama of applications at different levels will be given: brain and plant morphogenesis, bulbar cardio-respiratory regulation, glycolytic/oxidative metabolic coupling, and eventually cell cycle and feather morphogenesis genetic control. PMID:20057955

  3. Form and function in gene regulatory networks: the structure of network motifs determines fundamental properties of their dynamical state space.

    PubMed

    Ahnert, S E; Fink, T M A

    2016-07-01

    Network motifs have been studied extensively over the past decade, and certain motifs, such as the feed-forward loop, play an important role in regulatory networks. Recent studies have used Boolean network motifs to explore the link between form and function in gene regulatory networks and have found that the structure of a motif does not strongly determine its function, if this is defined in terms of the gene expression patterns the motif can produce. Here, we offer a different, higher-level definition of the 'function' of a motif, in terms of two fundamental properties of its dynamical state space as a Boolean network. One is the basin entropy, which is a complexity measure of the dynamics of Boolean networks. The other is the diversity of cyclic attractor lengths that a given motif can produce. Using these two measures, we examine all 104 topologically distinct three-node motifs and show that the structural properties of a motif, such as the presence of feedback loops and feed-forward loops, predict fundamental characteristics of its dynamical state space, which in turn determine aspects of its functional versatility. We also show that these higher-level properties have a direct bearing on real regulatory networks, as both basin entropy and cycle length diversity show a close correspondence with the prevalence, in neural and genetic regulatory networks, of the 13 connected motifs without self-interactions that have been studied extensively in the literature. PMID:27440255

  4. Form and function in gene regulatory networks: the structure of network motifs determines fundamental properties of their dynamical state space

    PubMed Central

    Ahnert, S. E.; Fink, T. M. A.

    2016-01-01

    Network motifs have been studied extensively over the past decade, and certain motifs, such as the feed-forward loop, play an important role in regulatory networks. Recent studies have used Boolean network motifs to explore the link between form and function in gene regulatory networks and have found that the structure of a motif does not strongly determine its function, if this is defined in terms of the gene expression patterns the motif can produce. Here, we offer a different, higher-level definition of the ‘function’ of a motif, in terms of two fundamental properties of its dynamical state space as a Boolean network. One is the basin entropy, which is a complexity measure of the dynamics of Boolean networks. The other is the diversity of cyclic attractor lengths that a given motif can produce. Using these two measures, we examine all 104 topologically distinct three-node motifs and show that the structural properties of a motif, such as the presence of feedback loops and feed-forward loops, predict fundamental characteristics of its dynamical state space, which in turn determine aspects of its functional versatility. We also show that these higher-level properties have a direct bearing on real regulatory networks, as both basin entropy and cycle length diversity show a close correspondence with the prevalence, in neural and genetic regulatory networks, of the 13 connected motifs without self-interactions that have been studied extensively in the literature. PMID:27440255

  5. Form and function in gene regulatory networks: the structure of network motifs determines fundamental properties of their dynamical state space.

    PubMed

    Ahnert, S E; Fink, T M A

    2016-07-01

    Network motifs have been studied extensively over the past decade, and certain motifs, such as the feed-forward loop, play an important role in regulatory networks. Recent studies have used Boolean network motifs to explore the link between form and function in gene regulatory networks and have found that the structure of a motif does not strongly determine its function, if this is defined in terms of the gene expression patterns the motif can produce. Here, we offer a different, higher-level definition of the 'function' of a motif, in terms of two fundamental properties of its dynamical state space as a Boolean network. One is the basin entropy, which is a complexity measure of the dynamics of Boolean networks. The other is the diversity of cyclic attractor lengths that a given motif can produce. Using these two measures, we examine all 104 topologically distinct three-node motifs and show that the structural properties of a motif, such as the presence of feedback loops and feed-forward loops, predict fundamental characteristics of its dynamical state space, which in turn determine aspects of its functional versatility. We also show that these higher-level properties have a direct bearing on real regulatory networks, as both basin entropy and cycle length diversity show a close correspondence with the prevalence, in neural and genetic regulatory networks, of the 13 connected motifs without self-interactions that have been studied extensively in the literature.

  6. Quantum cryptography on multi-user network architectures

    NASA Astrophysics Data System (ADS)

    Kumavor, Patrick D.; Beal, Alan C.; Yelin, Susanne; Donkor, Eric; Wang, Bing C.

    2006-05-01

    Quantum cryptography applies the uncertainty principle and the no-cloning theorem to allow to parties to share a secret key over an ultra-secure link. Present quantum cryptography technologies provide encryption key distribution only between two users. However, practical implementations of encryption key distribution schemes require establishing secure quantum communications amongst multiple users. This paper looks at some of the advantages and drawbacks of some common network topologies that could be used in sending cryptographic keys across a network consisting of multiple users. These topologies are the star, ring, and bus networks. Their performances are compared and analyzed using quantum bit error rate analysis. The paper also presents an experimental demonstration of a six-user quantum key distribution network implemented on a bus topology.

  7. Architectural Design for the Global Legal Information Network

    NASA Technical Reports Server (NTRS)

    Kalpakis, Konstantinos

    1999-01-01

    In this report, we provide a summary of our activities regarding the goals, requirements analysis, design, and prototype implementation for the Global Legal Information Network, a joint effort between the Law Library of Congress and NASA.

  8. Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function

    NASA Astrophysics Data System (ADS)

    Martin, O. C.; Krzywicki, A.; Zagorski, M.

    2016-07-01

    Living cells can maintain their internal states, react to changing environments, grow, differentiate, divide, etc. All these processes are tightly controlled by what can be called a regulatory program. The logic of the underlying control can sometimes be guessed at by examining the network of influences amongst genetic components. Some associated gene regulatory networks have been studied in prokaryotes and eukaryotes, unveiling various structural features ranging from broad distributions of out-degrees to recurrent "motifs", that is small subgraphs having a specific pattern of interactions. To understand what factors may be driving such structuring, a number of groups have introduced frameworks to model the dynamics of gene regulatory networks. In that context, we review here such in silico approaches and show how selection for phenotypes, i.e., network function, can shape network structure.

  9. Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function.

    PubMed

    Martin, O C; Krzywicki, A; Zagorski, M

    2016-07-01

    Living cells can maintain their internal states, react to changing environments, grow, differentiate, divide, etc. All these processes are tightly controlled by what can be called a regulatory program. The logic of the underlying control can sometimes be guessed at by examining the network of influences amongst genetic components. Some associated gene regulatory networks have been studied in prokaryotes and eukaryotes, unveiling various structural features ranging from broad distributions of out-degrees to recurrent "motifs", that is small subgraphs having a specific pattern of interactions. To understand what factors may be driving such structuring, a number of groups have introduced frameworks to model the dynamics of gene regulatory networks. In that context, we review here such in silico approaches and show how selection for phenotypes, i.e., network function, can shape network structure. PMID:27365153

  10. The Zebrafish as Model for Deciphering the Regulatory Architecture of Vertebrate Genomes.

    PubMed

    Rastegar, S; Strähle, U

    2016-01-01

    Despite enormous progress to map cis-regulatory modules (CRMs), like enhancers and promoters in genomes, elucidation of the regulatory landscape of the developing embryo remains a challenge. The zebrafish embryo with its experimental virtues has a great potential to contribute to this endeavor. However, so far progress remained behind expectation. We discuss here available methods and their limitations and how the zebrafish embryo could contribute in the future to unravel the wiring of the vertebrate genome. PMID:27503358

  11. Reconstruction of the Regulatory Network for Bacillus subtilis and Reconciliation with Gene Expression Data

    PubMed Central

    Faria, José P.; Overbeek, Ross; Taylor, Ronald C.; Conrad, Neal; Vonstein, Veronika; Goelzer, Anne; Fromion, Vincent; Rocha, Miguel; Rocha, Isabel; Henry, Christopher S.

    2016-01-01

    We introduce a manually constructed and curated regulatory network model that describes the current state of knowledge of transcriptional regulation of Bacillus subtilis. The model corresponds to an updated and enlarged version of the regulatory model of central metabolism originally proposed in 2008. We extended the original network to the whole genome by integration of information from DBTBS, a compendium of regulatory data that includes promoters, transcription factors (TFs), binding sites, motifs, and regulated operons. Additionally, we consolidated our network with all the information on regulation included in the SporeWeb and Subtiwiki community-curated resources on B. subtilis. Finally, we reconciled our network with data from RegPrecise, which recently released their own less comprehensive reconstruction of the regulatory network for B. subtilis. Our model describes 275 regulators and their target genes, representing 30 different mechanisms of regulation such as TFs, RNA switches, Riboswitches, and small regulatory RNAs. Overall, regulatory information is included in the model for ∼2500 of the ∼4200 genes in B. subtilis 168. In an effort to further expand our knowledge of B. subtilis regulation, we reconciled our model with expression data. For this process, we reconstructed the Atomic Regulons (ARs) for B. subtilis, which are the sets of genes that share the same “ON” and “OFF” gene expression profiles across multiple samples of experimental data. We show how ARs for B. subtilis are able to capture many sets of genes corresponding to regulated operons in our manually curated network. Additionally, we demonstrate how ARs can be used to help expand or validate the knowledge of the regulatory networks by looking at highly correlated genes in the ARs for which regulatory information is lacking. During this process, we were also able to infer novel stimuli for hypothetical genes by exploring the genome expression metadata relating to experimental

  12. Reconstruction of the Regulatory Network for Bacillus subtilis and Reconciliation with Gene Expression Data.

    PubMed

    Faria, José P; Overbeek, Ross; Taylor, Ronald C; Conrad, Neal; Vonstein, Veronika; Goelzer, Anne; Fromion, Vincent; Rocha, Miguel; Rocha, Isabel; Henry, Christopher S

    2016-01-01

    We introduce a manually constructed and curated regulatory network model that describes the current state of knowledge of transcriptional regulation of Bacillus subtilis. The model corresponds to an updated and enlarged version of the regulatory model of central metabolism originally proposed in 2008. We extended the original network to the whole genome by integration of information from DBTBS, a compendium of regulatory data that includes promoters, transcription factors (TFs), binding sites, motifs, and regulated operons. Additionally, we consolidated our network with all the information on regulation included in the SporeWeb and Subtiwiki community-curated resources on B. subtilis. Finally, we reconciled our network with data from RegPrecise, which recently released their own less comprehensive reconstruction of the regulatory network for B. subtilis. Our model describes 275 regulators and their target genes, representing 30 different mechanisms of regulation such as TFs, RNA switches, Riboswitches, and small regulatory RNAs. Overall, regulatory information is included in the model for ∼2500 of the ∼4200 genes in B. subtilis 168. In an effort to further expand our knowledge of B. subtilis regulation, we reconciled our model with expression data. For this process, we reconstructed the Atomic Regulons (ARs) for B. subtilis, which are the sets of genes that share the same "ON" and "OFF" gene expression profiles across multiple samples of experimental data. We show how ARs for B. subtilis are able to capture many sets of genes corresponding to regulated operons in our manually curated network. Additionally, we demonstrate how ARs can be used to help expand or validate the knowledge of the regulatory networks by looking at highly correlated genes in the ARs for which regulatory information is lacking. During this process, we were also able to infer novel stimuli for hypothetical genes by exploring the genome expression metadata relating to experimental conditions

  13. SANDS: A Service-Oriented Architecture for Clinical Decision Support in a National Health Information Network

    PubMed Central

    Wright, Adam; Sittig, Dean F.

    2008-01-01

    In this paper we describe and evaluate a new distributed architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support), which leverages current health information exchange efforts and is based on the principles of a service-oriented architecture. The architecture allows disparate clinical information systems and clinical decision support systems to be seamlessly integrated over a network according to a set of interfaces and protocols described in this paper. The architecture described is fully defined and developed, and six use cases have been developed and tested using a prototype electronic health record which links to one of the existing prototype National Health Information Networks (NHIN): drug interaction checking, syndromic surveillance, diagnostic decision support, inappropriate prescribing in older adults, information at the point of care and a simple personal health record. Some of these use cases utilize existing decision support systems, which are either commercially or freely available at present, and developed outside of the SANDS project, while other use cases are based on decision support systems developed specifically for the project. Open source code for many of these components is available, and an open source reference parser is also available for comparison and testing of other clinical information systems and clinical decision support systems that wish to implement the SANDS architecture. PMID:18434256

  14. Reverse Engineering of Genome-wide Gene Regulatory Networks from Gene Expression Data.

    PubMed

    Liu, Zhi-Ping

    2015-02-01

    Transcriptional regulation plays vital roles in many fundamental biological processes. Reverse engineering of genome-wide regulatory networks from high-throughput transcriptomic data provides a promising way to characterize the global scenario of regulatory relationships between regulators and their targets. In this review, we summarize and categorize the main frameworks and methods currently available for inferring transcriptional regulatory networks from microarray gene expression profiling data. We overview each of strategies and introduce representative methods respectively. Their assumptions, advantages, shortcomings, and possible improvements and extensions are also clarified and commented.

  15. Evolution of regulatory networks towards adaptability and stability in a changing environment

    NASA Astrophysics Data System (ADS)

    Lee, Deok-Sun

    2014-11-01

    Diverse biological networks exhibit universal features distinguished from those of random networks, calling much attention to their origins and implications. Here we propose a minimal evolution model of Boolean regulatory networks, which evolve by selectively rewiring links towards enhancing adaptability to a changing environment and stability against dynamical perturbations. We find that sparse and heterogeneous connectivity patterns emerge, which show qualitative agreement with real transcriptional regulatory networks and metabolic networks. The characteristic scaling behavior of stability reflects the balance between robustness and flexibility. The scaling of fluctuation in the perturbation spread shows a dynamic crossover, which is analyzed by investigating separately the stochasticity of internal dynamics and the network structure differences depending on the evolution pathways. Our study delineates how the ambivalent pressure of evolution shapes biological networks, which can be helpful for studying general complex systems interacting with environments.

  16. Advancing Reversible Shape Memory by Tuning Network Architecture

    NASA Astrophysics Data System (ADS)

    Li, Qiaoxi; Zhou, Jing; Vatankhah Varnosfaderani, Mohammad; Nykypanchuk, Dmytro; Gang, Oleg; Sheiko, Sergei; University of north carolina at chapel hill Collaboration; Brookhaven National Lab-CFN Collaboration

    Recently, reversible shape memory (RSM) has been realized in conventional semi-crystalline elastomers without applying any external force and synthetic programming. The mechanism is ascribed to counteraction between thermodynamically driven relaxation of a strained polymer network and kinetically preferred self-seeding recrystallization of constrained network strands. In order to maximize RSM's performance in terms of (i) range of reversible strain, (ii) rate of strain recovery, and (iii) relaxation time of reversibility, we have designed a systematic series of networks with different topologies and crosslinking densities, including purposely introduced dangling chains and irregular meshes. Within a broad range of crosslink density ca. 50-1000 mol/m3, we have demonstrated that the RSM's properties improve significantly with increasing crosslink density, regardless of network topology. Actually, one of the most irregular networks with densest crosslinking allowed achieving up to 80% of the programmed strain being fully reversible, fast recovery rate up to 0.05 K-1, and less than 15% decrease of reversibility after hours of annealing at partial melt state. With this understanding and optimization of RSM, we pursue an idea of shape control through self-assembly of shape-memory particles. For this purpose, 3D printing has been employed to prepare large assemblies of particles possessing specific shapes and morphologies.

  17. Self-growing neural network architecture using crisp and fuzzy entropy

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.

    1992-01-01

    The paper briefly describes the self-growing neural network algorithm, CID3, which makes decision trees equivalent to hidden layers of a neural network. The algorithm generates a feedforward architecture using crisp and fuzzy entropy measures. The results for a real-life recognition problem of distinguishing defects in a glass ribbon, and for a benchmark problen of telling two spirals apart are shown and discussed.

  18. Self-growing neural network architecture using crisp and fuzzy entropy

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.

    1992-01-01

    The paper briefly describes the self-growing neural network algorithm, CID2, which makes decision trees equivalent to hidden layers of a neural network. The algorithm generates a feedforward architecture using crisp and fuzzy entropy measures. The results of a real-life recognition problem of distinguishing defects in a glass ribbon and of a benchmark problem of differentiating two spirals are shown and discussed.

  19. Contrasting methods for symbolic analysis of biological regulatory networks

    NASA Astrophysics Data System (ADS)

    Wilds, Roy; Glass, Leon

    2009-12-01

    Symbolic dynamics offers a powerful technique to relate the structure and dynamics of complex networks. We contrast the predictions of two methods of symbolic dynamics for the analysis of monotonic networks suggested by models of genetic control systems.

  20. The P-Mesh: A Commodity-based Scalable Network Architecture for Clusters

    NASA Technical Reports Server (NTRS)

    Nitzberg, Bill; Kuszmaul, Chris; Stockdale, Ian; Becker, Jeff; Jiang, John; Wong, Parkson; Tweten, David (Technical Monitor)

    1998-01-01

    We designed a new network architecture, the P-Mesh which combines the scalability and fault resilience of a torus with the performance of a switch. We compare the scalability, performance, and cost of the hub, switch, torus, tree, and P-Mesh architectures. The latter three are capable of scaling to thousands of nodes, however, the torus has severe performance limitations with that many processors. The tree and P-Mesh have similar latency, bandwidth, and bisection bandwidth, but the P-Mesh outperforms the switch architecture (a lower bound for tree performance) on 16-node NAB Parallel Benchmark tests by up to 23%, and costs 40% less. Further, the P-Mesh has better fault resilience characteristics. The P-Mesh architecture trades increased management overhead for lower cost, and is a good bridging technology while the price of tree uplinks is expensive.

  1. The role of genome and gene regulatory network canalization in the evolution of multi-trait polymorphisms and sympatric speciation

    PubMed Central

    2009-01-01

    Background Sexual reproduction has classically been considered as a barrier to the buildup of discrete phenotypic differentiation. This notion has been confirmed by models of sympatric speciation in which a fixed genetic architecture and a linear genotype phenotype mapping were assumed. In this paper we study the influence of a flexible genetic architecture and non-linear genotype phenotype map on differentiation under sexual reproduction. We use an individual based model in which organisms have a genome containing genes and transcription factor binding sites. Mutations involve single genes or binding sites or stretches of genome. The genome codes for a regulatory network that determines the gene expression pattern and hence the phenotype of the organism, resulting in a non-linear genotype phenotype map. The organisms compete in a multi-niche environment, imposing selection for phenotypic differentiation. Results We find as a generic outcome the evolution of discrete clusters of organisms adapted to different niches, despite random mating. Organisms from different clusters are distinct on the genotypic, the network and the phenotypic level. However, the genome and network differences are constrained to a subset of the genome locations, a process we call genotypic canalization. We demonstrate how this canalization leads to an increased robustness to recombination and increasing hybrid fitness. Finally, in case of assortative mating, we explain how this canalization increases the effectiveness of assortativeness. Conclusion We conclude that in case of a flexible genetic architecture and a non-linear genotype phenotype mapping, sexual reproduction does not constrain phenotypic differentiation, but instead constrains the genotypic differences underlying it. We hypothesize that, as genotypic canalization enables differentiation despite random mating and increases the effectiveness of assortative mating, sympatric speciation is more likely than is commonly suggested

  2. Phase transition of the microvascular network architecture in human pathologies.

    PubMed

    Bianciardi, Giorgio; Traversi, Claudio; Cattaneo, Ruggero; De Felice, Claudia; Monaco, Annalisa; Tosi, Gianmarco; Parrini, Stefano; Latini, Giuseppe

    2012-01-01

    We have investigated the microvascular pattern in acquired or genetic diseases in humans. The lower gingival and vestibular oral mucosa, as well as the optic nerve head, was chosen to characterize the vascular pattern complexity due to the simple accessibility and visibility Local fractal dimensions, fractal dimension of the minimum path and Lempel-Ziv complexity have been used as operational numerical tools to characterize the microvascular networks. In the normal healthy subjects microvascular networks show nonlinear values corresponding to the complexity of a diffusion limited aggregation (DLA) model, while in several acquired or genetic diseases they are approaching the ones of an invasion percolation model. PMID:23193796

  3. Architectures and economics for pervasive broadband satellite networks

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Harvey, R. L.

    1979-01-01

    The size of a satellite network necessary to provide pervasive high-data-rate business communications is estimated, and one possible configuration is described which could interconnect most organizations in the United States. Within an order of magnitude, such a network might reasonably have a capacity equivalent to 10,000 simultaneous 3-Mbps channels, and rely primarily upon a cluster of approximately 3-5 satellites in a single orbital slot. Nominal prices for 3-6 Mbps video conference services might then be approximately $2000 monthly lease charge plus perhaps 70 cents per minute one way.

  4. Reconfigurable middleware architectures for large scale sensor networks

    SciTech Connect

    Brennan, Sean M.

    2010-03-01

    Wireless sensor networks, in an e ffort to be energy efficient, typically lack the high-level abstractions of advanced programming languages. Though strong, the dichotomy between these two paradigms can be overcome. The SENSIX software framework, described in this dissertation, uniquely integrates constraint-dominated wireless sensor networks with the flexibility of object-oriented programming models, without violating the principles of either. Though these two computing paradigms are contradictory in many ways, SENSIX bridges them to yield a dynamic middleware abstraction unifying low-level resource-aware task recon figuration and high-level object recomposition.

  5. WDS Knowledge Network Architecture in Support of International Science

    NASA Astrophysics Data System (ADS)

    Mokrane, M.; Minster, J. B. H.; Hugo, W.

    2014-12-01

    ICSU (International Council for Science) created the World Data System (WDS) as an interdisciplinary body at its General Assembly in Maputo in 2008, and since then the membership of the WDS has grown to include 86 members, of whom 56 are institutions or data centers focused on providing quality-assured data and services to the scientific community, and 10 more are entire networks of such data facilities and services. In addition to its objective of providing universal and equitable access to scientific data and services, WDS is also active in promoting stewardship, standards and conventions, and improved access to products derived from data and services. Whereas WDS is in process of aggregating and harmonizing the metadata collections of its membership, it is clear that additional benefits can be obtained by supplementing such traditional metadata sources with information about members, authors, and the coverages of the data, as well as metrics such as citation indices, quality indicators, and usability. Moreover, the relationships between the actors and systems that populate this metadata landscape can be seen as a knowledge network that describes a subset of global scientific endeavor. Such a knowledge network is useful in many ways, supporting both machine-based and human requests for contextual information related to a specific data set, institution, author, topic, or other entities in the network. Specific use cases that can be realized include decision and policy support for funding agencies, identification of collaborators, ranking of data sources, availability of data for specific coverages, and many more. The paper defines the scope of and conceptual background to such a knowledge network, discusses some initial work done by WDS to establish the network, and proposes an implementation model for rapid operationalization. In this model, established interests such as DataCite, ORCID, and CrossRef have well-defined roles, and the standards, services, and

  6. A network architecture supporting consistent rich behavior in collaborative interactive applications.

    PubMed

    Marsh, James; Glencross, Mashhuda; Pettifer, Steve; Hubbold, Roger

    2006-01-01

    Network architectures for collaborative virtual reality have traditionally been dominated by client-server and peer-to-peer approaches, with peer-to-peer strategies typically being favored where minimizing latency is a priority, and client-server where consistency is key. With increasingly sophisticated behavior models and the demand for better support for haptics, we argue that neither approach provides sufficient support for these scenarios and, thus, a hybrid architecture is required. We discuss the relative performance of different distribution strategies in the face of real network conditions and illustrate the problems they face. Finally, we present an architecture that successfully meets many of these challenges and demonstrate its use in a distributed virtual prototyping application which supports simultaneous collaboration for assembly, maintenance, and training applications utilizing haptics. PMID:16640254

  7. An experimentally supported model of the Bacillus subtilis global transcriptional regulatory network.

    PubMed

    Arrieta-Ortiz, Mario L; Hafemeister, Christoph; Bate, Ashley Rose; Chu, Timothy; Greenfield, Alex; Shuster, Bentley; Barry, Samantha N; Gallitto, Matthew; Liu, Brian; Kacmarczyk, Thadeous; Santoriello, Francis; Chen, Jie; Rodrigues, Christopher D A; Sato, Tsutomu; Rudner, David Z; Driks, Adam; Bonneau, Richard; Eichenberger, Patrick

    2015-11-01

    Organisms from all domains of life use gene regulation networks to control cell growth, identity, function, and responses to environmental challenges. Although accurate global regulatory models would provide critical evolutionary and functional insights, they remain incomplete, even for the best studied organisms. Efforts to build comprehensive networks are confounded by challenges including network scale, degree of connectivity, complexity of organism-environment interactions, and difficulty of estimating the activity of regulatory factors. Taking advantage of the large number of known regulatory interactions in Bacillus subtilis and two transcriptomics datasets (including one with 38 separate experiments collected specifically for this study), we use a new combination of network component analysis and model selection to simultaneously estimate transcription factor activities and learn a substantially expanded transcriptional regulatory network for this bacterium. In total, we predict 2,258 novel regulatory interactions and recall 74% of the previously known interactions. We obtained experimental support for 391 (out of 635 evaluated) novel regulatory edges (62% accuracy), thus significantly increasing our understanding of various cell processes, such as spore formation. PMID:26577401

  8. Gene regulatory network inference using fused LASSO on multiple data sets.

    PubMed

    Omranian, Nooshin; Eloundou-Mbebi, Jeanne M O; Mueller-Roeber, Bernd; Nikoloski, Zoran

    2016-02-11

    Devising computational methods to accurately reconstruct gene regulatory networks given gene expression data is key to systems biology applications. Here we propose a method for reconstructing gene regulatory networks by simultaneous consideration of data sets from different perturbation experiments and corresponding controls. The method imposes three biologically meaningful constraints: (1) expression levels of each gene should be explained by the expression levels of a small number of transcription factor coding genes, (2) networks inferred from different data sets should be similar with respect to the type and number of regulatory interactions, and (3) relationships between genes which exhibit similar differential behavior over the considered perturbations should be favored. We demonstrate that these constraints can be transformed in a fused LASSO formulation for the proposed method. The comparative analysis on transcriptomics time-series data from prokaryotic species, Escherichia coli and Mycobacterium tuberculosis, as well as a eukaryotic species, mouse, demonstrated that the proposed method has the advantages of the most recent approaches for regulatory network inference, while obtaining better performance and assigning higher scores to the true regulatory links. The study indicates that the combination of sparse regression techniques with other biologically meaningful constraints is a promising framework for gene regulatory network reconstructions.

  9. Gene regulatory network inference using fused LASSO on multiple data sets

    PubMed Central

    Omranian, Nooshin; Eloundou-Mbebi, Jeanne M. O.; Mueller-Roeber, Bernd; Nikoloski, Zoran

    2016-01-01

    Devising computational methods to accurately reconstruct gene regulatory networks given gene expression data is key to systems biology applications. Here we propose a method for reconstructing gene regulatory networks by simultaneous consideration of data sets from different perturbation experiments and corresponding controls. The method imposes three biologically meaningful constraints: (1) expression levels of each gene should be explained by the expression levels of a small number of transcription factor coding genes, (2) networks inferred from different data sets should be similar with respect to the type and number of regulatory interactions, and (3) relationships between genes which exhibit similar differential behavior over the considered perturbations should be favored. We demonstrate that these constraints can be transformed in a fused LASSO formulation for the proposed method. The comparative analysis on transcriptomics time-series data from prokaryotic species, Escherichia coli and Mycobacterium tuberculosis, as well as a eukaryotic species, mouse, demonstrated that the proposed method has the advantages of the most recent approaches for regulatory network inference, while obtaining better performance and assigning higher scores to the true regulatory links. The study indicates that the combination of sparse regression techniques with other biologically meaningful constraints is a promising framework for gene regulatory network reconstructions. PMID:26864687

  10. Habitat loss alters the architecture of plant--pollinator interaction networks.

    PubMed

    Spiesman, Brian J; Inouye, Brian D

    2013-12-01

    Habitat loss can have a negative effect on the number, abundance, and composition of species in plant-pollinator communities. Although we have a general understanding of the negative consequences of habitat loss for biodiversity, much less is known about the resulting effects on the pattern of interactions in mutualistic networks. Ecological networks formed by mutualistic interactions often exhibit a highly nested architecture with low modularity, especially in comparison with antagonistic networks. These patterns of interaction are thought to confer stability on mutualistic communities. With the growing threat of environmental change, it is important to expand our understanding of the factors that affect biodiversity and the stability of the communities that provide critical ecosystem functions and services. We studied the effects of habitat loss on plant--pollinator network architecture and found that regional habitat loss contributes directly to species loss and indirectly to the reorganization of interspecific interactions in a local community. Networks became more highly connected and more modular with habitat loss. Species richness and abundance were the primary drivers of variation in network architecture, though species compositi n affected modularity. Theory suggests that an increase in modularity with habitat loss will threaten community stability, which may contribute to an extinction debt in communities already affected by habitat loss.

  11. BioNetLink - an architecture for working with network data.

    PubMed

    Klapperstück, Matthias; Schreiber, Falk

    2014-01-01

    The visualization of biological data gained increasing importance in the last years. There is a large number of methods and software tools available that visualize biological data including the combination of measured experimental data and biological networks. With growing size of networks their handling and exploration becomes a challenging task for the user. In addition, scientists also have an interest in not just investigating a single kind of network, but on the combination of different types of networks, such as metabolic, gene regulatory and protein interaction networks. Therefore, fast access, abstract and dynamic views, and intuitive exploratory methods should be provided to search and extract information from the networks. This paper will introduce a conceptual framework for handling and combining multiple network sources that enables abstract viewing and exploration of large data sets including additional experimental data. It will introduce a three-tier structure that links network data to multiple network views, discuss a proof of concept implementation, and shows a specific visualization method for combining metabolic and gene regulatory networks in an example. PMID:24980619

  12. An architecture for performance optimization in a collaborative knowledge-based approach for wireless sensor networks.

    PubMed

    Gadeo-Martos, Manuel Angel; Fernandez-Prieto, Jose Angel; Canada-Bago, Joaquin; Velasco, Juan Ramon

    2011-01-01

    Over the past few years, Intelligent Spaces (ISs) have received the attention of many Wireless Sensor Network researchers. Recently, several studies have been devoted to identify their common capacities and to set up ISs over these networks. However, little attention has been paid to integrating Fuzzy Rule-Based Systems into collaborative Wireless Sensor Networks for the purpose of implementing ISs. This work presents a distributed architecture proposal for collaborative Fuzzy Rule-Based Systems embedded in Wireless Sensor Networks, which has been designed to optimize the implementation of ISs. This architecture includes the following: (a) an optimized design for the inference engine; (b) a visual interface; (c) a module to reduce the redundancy and complexity of the knowledge bases; (d) a module to evaluate the accuracy of the new knowledge base; (e) a module to adapt the format of the rules to the structure used by the inference engine; and (f) a communications protocol. As a real-world application of this architecture and the proposed methodologies, we show an application to the problem of modeling two plagues of the olive tree: prays (olive moth, Prays oleae Bern.) and repilo (caused by the fungus Spilocaea oleagina). The results show that the architecture presented in this paper significantly decreases the consumption of resources (memory, CPU and battery) without a substantial decrease in the accuracy of the inferred values.

  13. Dynamic Adaptive Neural Network Arrays: A Neuromorphic Architecture

    SciTech Connect

    Disney, Adam; Reynolds, John

    2015-01-01

    Dynamic Adaptive Neural Network Array (DANNA) is a neuromorphic hardware implementation. It differs from most other neuromorphic projects in that it allows for programmability of structure, and it is trained or designed using evolutionary optimization. This paper describes the DANNA structure, how DANNA is trained using evolutionary optimization, and an application of DANNA to a very simple classification task.

  14. Shaping Networked Theatre: Experience Architectures, Behaviours and Creative Pedagogies

    ERIC Educational Resources Information Center

    Sutton, Paul

    2012-01-01

    Since 2006 the UK based applied theatre company C&T has been using its experience and expertise in mixing drama, learning and digital media to create a new online utility for shaping collaborative educational drama experiences. C&T describes this practice as "Networked Theatre". This article describes both the motivations for C&T's development of…

  15. Signatures of Arithmetic Simplicity in Metabolic Network Architecture

    PubMed Central

    Riehl, William J.; Krapivsky, Paul L.; Redner, Sidney; Segrè, Daniel

    2010-01-01

    Metabolic networks perform some of the most fundamental functions in living cells, including energy transduction and building block biosynthesis. While these are the best characterized networks in living systems, understanding their evolutionary history and complex wiring constitutes one of the most fascinating open questions in biology, intimately related to the enigma of life's origin itself. Is the evolution of metabolism subject to general principles, beyond the unpredictable accumulation of multiple historical accidents? Here we search for such principles by applying to an artificial chemical universe some of the methodologies developed for the study of genome scale models of cellular metabolism. In particular, we use metabolic flux constraint-based models to exhaustively search for artificial chemistry pathways that can optimally perform an array of elementary metabolic functions. Despite the simplicity of the model employed, we find that the ensuing pathways display a surprisingly rich set of properties, including the existence of autocatalytic cycles and hierarchical modules, the appearance of universally preferable metabolites and reactions, and a logarithmic trend of pathway length as a function of input/output molecule size. Some of these properties can be derived analytically, borrowing methods previously used in cryptography. In addition, by mapping biochemical networks onto a simplified carbon atom reaction backbone, we find that properties similar to those predicted for the artificial chemistry hold also for real metabolic networks. These findings suggest that optimality principles and arithmetic simplicity might lie beneath some aspects of biochemical complexity. PMID:20369010

  16. Regulatory Aspects of Smart Water Networks in the U.S.

    EPA Science Inventory

    The presentation addresses regulatory aspects of smart water networks in the U.S. It will be presented at the Smart Water Networks Forum (SWAN) annual conference in London, England from April 29-30, 2015. The conference will bring together key voices in the smart water space f...

  17. Knowledge Network Architecture in Support of International Science

    NASA Astrophysics Data System (ADS)

    Hugo, Wim

    2015-04-01

    ICSU (The International Council for Science) created the World Data System (WDS) as an interdisciplinary body at its General Assembly in Maputo in 2008, and since then the membership of the WDS has grown to include 86 members, of whom 56 are institutions or data centres focused on providing quality-assured data and services to the scientific community. In addition to its objective of providing universal and equitable access to such data and services, WDS is also active in promoting stewardship, standards and conventions, and improved access to products derived from data and services. Whereas WDS is in process of aggregating and harmonizing the meta-data collections of its membership, it is clear that additional benefits can be obtained by supplementing such traditional meta-data sources with information about members, authors, and the coverages of the data, as well as metrics such as citation indices, quality indicators, and usability. Moreover, the relationships between the actors and systems that populate this meta-data landscape can be seen as a knowledge network that describes a sub-set of global scientific endeavor. Such a knowledge network is useful in many ways, supporting both machine-based and human requests for contextual information related to a specific data set, institution, author, topic, or other entities in the network. Specific use cases that can be realised include decision and policy support for funding agencies, identification of collaborators, ranking of data sources, availability of data for specific coverages, and many more. The paper defines the scope of and conceptual background to such a knowledge network, discusses some initial work done by WDS to establish the network, and proposes an implementation model for rapid operationalisation. In this model, established interests such as DataCITE, ORCID, and CrossRef have well-defined roles, and the standards, services, and registries required to build a community-maintained, scalable knowledge

  18. Inferring gene regulatory networks via nonlinear state-space models and exploiting sparsity.

    PubMed

    Noor, Amina; Serpedin, Erchin; Nounou, Mohamed; Nounou, Hazem N

    2012-01-01

    This paper considers the problem of learning the structure of gene regulatory networks from gene expression time series data. A more realistic scenario when the state space model representing a gene network evolves nonlinearly is considered while a linear model is assumed for the microarray data. To capture the nonlinearity, a particle filter-based state estimation algorithm is considered instead of the contemporary linear approximation-based approaches. The parameters characterizing the regulatory relations among various genes are estimated online using a Kalman filter. Since a particular gene interacts with a few other genes only, the parameter vector is expected to be sparse. The state estimates delivered by the particle filter and the observed microarray data are then subjected to a LASSO-based least squares regression operation which yields a parsimonious and efficient description of the regulatory network by setting the irrelevant coefficients to zero. The performance of the aforementioned algorithm is compared with the extended Kalman filter (EKF) and Unscented Kalman Filter (UKF) employing the Mean Square Error (MSE) as the fidelity criterion in recovering the parameters of gene regulatory networks from synthetic data and real biological data. Extensive computer simulations illustrate that the proposed particle filter-based network inference algorithm outperforms EKF and UKF, and therefore, it can serve as a natural framework for modeling gene regulatory networks with nonlinear and sparse structure. PMID:22350207

  19. An ancient yet flexible cis-regulatory architecture allows localized Hedgehog tuning by patched/Ptch1.

    PubMed

    Lorberbaum, David S; Ramos, Andrea I; Peterson, Kevin A; Carpenter, Brandon S; Parker, David S; De, Sandip; Hillers, Lauren E; Blake, Victoria M; Nishi, Yuichi; McFarlane, Matthew R; Chiang, Ason Cy; Kassis, Judith A; Allen, Benjamin L; McMahon, Andrew P; Barolo, Scott

    2016-01-01

    The Hedgehog signaling pathway is part of the ancient developmental-evolutionary animal toolkit. Frequently co-opted to pattern new structures, the pathway is conserved among eumetazoans yet flexible and pleiotropic in its effects. The Hedgehog receptor, Patched, is transcriptionally activated by Hedgehog, providing essential negative feedback in all tissues. Our locus-wide dissections of the cis-regulatory landscapes of fly patched and mouse Ptch1 reveal abundant, diverse enhancers with stage- and tissue-specific expression patterns. The seemingly simple, constitutive Hedgehog response of patched/Ptch1 is driven by a complex regulatory architecture, with batteries of context-specific enhancers engaged in promoter-specific interactions to tune signaling individually in each tissue, without disturbing patterning elsewhere. This structure-one of the oldest cis-regulatory features discovered in animal genomes-explains how patched/Ptch1 can drive dramatic adaptations in animal morphology while maintaining its essential core function. It may also suggest a general model for the evolutionary flexibility of conserved regulators and pathways. PMID:27146892

  20. An ancient yet flexible cis-regulatory architecture allows localized Hedgehog tuning by patched/Ptch1

    PubMed Central

    Lorberbaum, David S; Ramos, Andrea I; Peterson, Kevin A; Carpenter, Brandon S; Parker, David S; De, Sandip; Hillers, Lauren E; Blake, Victoria M; Nishi, Yuichi; McFarlane, Matthew R; Chiang, Ason CY; Kassis, Judith A; Allen, Benjamin L; McMahon, Andrew P; Barolo, Scott

    2016-01-01

    The Hedgehog signaling pathway is part of the ancient developmental-evolutionary animal toolkit. Frequently co-opted to pattern new structures, the pathway is conserved among eumetazoans yet flexible and pleiotropic in its effects. The Hedgehog receptor, Patched, is transcriptionally activated by Hedgehog, providing essential negative feedback in all tissues. Our locus-wide dissections of the cis-regulatory landscapes of fly patched and mouse Ptch1 reveal abundant, diverse enhancers with stage- and tissue-specific expression patterns. The seemingly simple, constitutive Hedgehog response of patched/Ptch1 is driven by a complex regulatory architecture, with batteries of context-specific enhancers engaged in promoter-specific interactions to tune signaling individually in each tissue, without disturbing patterning elsewhere. This structure—one of the oldest cis-regulatory features discovered in animal genomes—explains how patched/Ptch1 can drive dramatic adaptations in animal morphology while maintaining its essential core function. It may also suggest a general model for the evolutionary flexibility of conserved regulators and pathways. DOI: http://dx.doi.org/10.7554/eLife.13550.001 PMID:27146892

  1. Extended evolution: A conceptual framework for integrating regulatory networks and niche construction.

    PubMed

    Laubichler, Manfred D; Renn, Jürgen

    2015-11-01

    This paper introduces a conceptual framework for the evolution of complex systems based on the integration of regulatory network and niche construction theories. It is designed to apply equally to cases of biological, social and cultural evolution. Within the conceptual framework we focus especially on the transformation of complex networks through the linked processes of externalization and internalization of causal factors between regulatory networks and their corresponding niches and argue that these are an important part of evolutionary explanations. This conceptual framework extends previous evolutionary models and focuses on several challenges, such as the path-dependent nature of evolutionary change, the dynamics of evolutionary innovation and the expansion of inheritance systems.

  2. Anticipated Ethics and Regulatory Challenges in PCORnet: The National Patient-Centered Clinical Research Network.

    PubMed

    Ali, Joseph; Califf, Robert; Sugarman, Jeremy

    2016-01-01

    PCORnet, the National Patient-Centered Clinical Research Network, seeks to establish a robust national health data network for patient-centered comparative effectiveness research. This article reports the results of a PCORnet survey designed to identify the ethics and regulatory challenges anticipated in network implementation. A 12-item online survey was developed by leadership of the PCORnet Ethics and Regulatory Task Force; responses were collected from the 29 PCORnet networks. The most pressing ethics issues identified related to informed consent, patient engagement, privacy and confidentiality, and data sharing. High priority regulatory issues included IRB coordination, privacy and confidentiality, informed consent, and data sharing. Over 150 IRBs and five different approaches to managing multisite IRB review were identified within PCORnet. Further empirical and scholarly work, as well as practical and policy guidance, is essential if important initiatives that rely on comparative effectiveness research are to move forward.

  3. Modelling and analysis of gene regulatory network using feedback control theory

    NASA Astrophysics Data System (ADS)

    El-Samad, H.; Khammash, M.

    2010-01-01

    Molecular pathways are a part of a remarkable hierarchy of regulatory networks that operate at all levels of organisation. These regulatory networks are responsible for much of the biological complexity within the cell. The dynamic character of these pathways and the prevalence of feedback regulation strategies in their operation make them amenable to systematic mathematical analysis using the same tools that have been used with success in analysing and designing engineering control systems. In this article, we aim at establishing this strong connection through various examples where the behaviour exhibited by gene networks is explained in terms of their underlying control strategies. We complement our analysis by a survey of mathematical techniques commonly used to model gene regulatory networks and analyse their dynamic behaviour.

  4. Community Structure Reveals Biologically Functional Modules in MEF2C Transcriptional Regulatory Network

    PubMed Central

    Alcalá-Corona, Sergio A.; Velázquez-Caldelas, Tadeo E.; Espinal-Enríquez, Jesús; Hernández-Lemus, Enrique

    2016-01-01

    Gene regulatory networks are useful to understand the activity behind the complex mechanisms in transcriptional regulation. A main goal in contemporary biology is using such networks to understand the systemic regulation of gene expression. In this work, we carried out a systematic study of a transcriptional regulatory network derived from a comprehensive selection of all potential transcription factor interactions downstream from MEF2C, a human transcription factor master regulator. By analyzing the connectivity structure of such network, we were able to find different biologically functional processes and specific biochemical pathways statistically enriched in communities of genes into the network, such processes are related to cell signaling, cell cycle and metabolism. In this way we further support the hypothesis that structural properties of biological networks encode an important part of their functional behavior in eukaryotic cells. PMID:27252657

  5. Community Structure Reveals Biologically Functional Modules in MEF2C Transcriptional Regulatory Network.

    PubMed

    Alcalá-Corona, Sergio A; Velázquez-Caldelas, Tadeo E; Espinal-Enríquez, Jesús; Hernández-Lemus, Enrique

    2016-01-01

    Gene regulatory networks are useful to understand the activity behind the complex mechanisms in transcriptional regulation. A main goal in contemporary biology is using such networks to understand the systemic regulation of gene expression. In this work, we carried out a systematic study of a transcriptional regulatory network derived from a comprehensive selection of all potential transcription factor interactions downstream from MEF2C, a human transcription factor master regulator. By analyzing the connectivity structure of such network, we were able to find different biologically functional processes and specific biochemical pathways statistically enriched in communities of genes into the network, such processes are related to cell signaling, cell cycle and metabolism. In this way we further support the hypothesis that structural properties of biological networks encode an important part of their functional behavior in eukaryotic cells. PMID:27252657

  6. Intelligent Middle-Ware Architecture for Mobile Networks

    NASA Astrophysics Data System (ADS)

    Rayana, Rayene Ben; Bonnin, Jean-Marie

    Recent advances in electronic and automotive industries as well as in wireless telecommunication technologies have drawn a new picture where each vehicle became “fully networked”. Multiple stake-holders (network operators, drivers, car manufacturers, service providers, etc.) will participate in this emerging market, which could grow following various models. To free the market from technical constraints, it is important to return to the basics of the Internet, i.e., providing embarked devices with a fully operational Internet connectivity (IPv6).

  7. Selection Shapes Transcriptional Logic and Regulatory Specialization in Genetic Networks

    PubMed Central

    Fogelmark, Karl; Peterson, Carsten; Troein, Carl

    2016-01-01

    Background Living organisms need to regulate their gene expression in response to environmental signals and internal cues. This is a computational task where genes act as logic gates that connect to form transcriptional networks, which are shaped at all scales by evolution. Large-scale mutations such as gene duplications and deletions add and remove network components, whereas smaller mutations alter the connections between them. Selection determines what mutations are accepted, but its importance for shaping the resulting networks has been debated. Methodology To investigate the effects of selection in the shaping of transcriptional networks, we derive transcriptional logic from a combinatorially powerful yet tractable model of the binding between DNA and transcription factors. By evolving the resulting networks based on their ability to function as either a simple decision system or a circadian clock, we obtain information on the regulation and logic rules encoded in functional transcriptional networks. Comparisons are made between networks evolved for different functions, as well as with structurally equivalent but non-functional (neutrally evolved) networks, and predictions are validated against the transcriptional network of E. coli. Principal Findings We find that the logic rules governing gene expression depend on the function performed by the network. Unlike the decision systems, the circadian clocks show strong cooperative binding and negative regulation, which achieves tight temporal control of gene expression. Furthermore, we find that transcription factors act preferentially as either activators or repressors, both when binding multiple sites for a single target gene and globally in the transcriptional networks. This separation into positive and negative regulators requires gene duplications, which highlights the interplay between mutation and selection in shaping the transcriptional networks. PMID:26927540

  8. Synchronization in heterogeneous FitzHugh-Nagumo networks with hierarchical architecture

    NASA Astrophysics Data System (ADS)

    Plotnikov, S. A.; Lehnert, J.; Fradkov, A. L.; Schöll, E.

    2016-07-01

    We study synchronization in heterogeneous FitzHugh-Nagumo networks. It is well known that heterogeneities in the nodes hinder synchronization when becoming too large. Here we develop a controller to counteract the impact of these heterogeneities. We first analyze the stability of the equilibrium point in a ring network of heterogeneous nodes. We then derive a sufficient condition for synchronization in the absence of control. Based on these results we derive the controller providing synchronization for parameter values where synchronization without control is absent. We demonstrate our results in networks with different topologies. Particular attention is given to hierarchical (fractal) topologies, which are relevant for the architecture of the brain.

  9. Synchronization in heterogeneous FitzHugh-Nagumo networks with hierarchical architecture.

    PubMed

    Plotnikov, S A; Lehnert, J; Fradkov, A L; Schöll, E

    2016-07-01

    We study synchronization in heterogeneous FitzHugh-Nagumo networks. It is well known that heterogeneities in the nodes hinder synchronization when becoming too large. Here we develop a controller to counteract the impact of these heterogeneities. We first analyze the stability of the equilibrium point in a ring network of heterogeneous nodes. We then derive a sufficient condition for synchronization in the absence of control. Based on these results we derive the controller providing synchronization for parameter values where synchronization without control is absent. We demonstrate our results in networks with different topologies. Particular attention is given to hierarchical (fractal) topologies, which are relevant for the architecture of the brain. PMID:27575119

  10. A proposed architecture for a satellite-based mobile communications network - The lowest three layers

    NASA Technical Reports Server (NTRS)

    Yan, T. Y.; Naderi, F. M.

    1986-01-01

    Architecture for a commercial mobile satellite network is proposed. The mobile satellite system (MSS) is composed of a network management center, mobile terminals, base stations, and gateways; the functions of each component are described. The satellite is a 'bent pipe' that performs frequency translations, and it has multiple UHF beams. The development of the MSS design based on the seven-layer open system interconnection model is examined. Consideration is given to the functions of the physical, data link, and network layers and the integrated adaptive mobile access protocol.

  11. Architectural impact of FDDI network on scheduling hard real-time traffic

    NASA Technical Reports Server (NTRS)

    Agrawal, Gopal; Chen, Baio; Zhao, Wei; Davari, Sadegh

    1991-01-01

    The architectural impact on guaranteeing synchronous message deadlines in FDDI (Fiber Distributed Data Interface) token ring networks is examined. The FDDI network does not have facility to support (global) priority arbitration which is a useful facility for scheduling hard real time activities. As a result, it was found that the worst case utilization of synchronous traffic in an FDDI network can be far less than that in a centralized single processor system. Nevertheless, it is proposed and analyzed that a scheduling method can guarantee deadlines of synchronous messages having traffic utilization up to 33 pct., the highest to date.

  12. Design and architecture of the Mars relay network planning and analysis framework

    NASA Technical Reports Server (NTRS)

    Cheung, K. M.; Lee, C. H.

    2002-01-01

    In this paper we describe the design and architecture of the Mars Network planning and analysis framework that supports generation and validation of efficient planning and scheduling strategy. The goals are to minimize the transmitting time, minimize the delaying time, and/or maximize the network throughputs. The proposed framework would require (1) a client-server architecture to support interactive, batch, WEB, and distributed analysis and planning applications for the relay network analysis scheme, (2) a high-fidelity modeling and simulation environment that expresses link capabilities between spacecraft to spacecraft and spacecraft to Earth stations as time-varying resources, and spacecraft activities, link priority, Solar System dynamic events, the laws of orbital mechanics, and other limiting factors as spacecraft power and thermal constraints, (3) an optimization methodology that casts the resource and constraint models into a standard linear and nonlinear constrained optimization problem that lends itself to commercial off-the-shelf (COTS)planning and scheduling algorithms.

  13. Planning assistance for the NASA 30/20 GHz program. Network control architecture study.

    NASA Technical Reports Server (NTRS)

    Inukai, T.; Bonnelycke, B.; Strickland, S.

    1982-01-01

    Network Control Architecture for a 30/20 GHz flight experiment system operating in the Time Division Multiple Access (TDMA) was studied. Architecture development, identification of processing functions, and performance requirements for the Master Control Station (MCS), diversity trunking stations, and Customer Premises Service (CPS) stations are covered. Preliminary hardware and software processing requirements as well as budgetary cost estimates for the network control system are given. For the trunking system control, areas covered include on board SS-TDMA switch organization, frame structure, acquisition and synchronization, channel assignment, fade detection and adaptive power control, on board oscillator control, and terrestrial network timing. For the CPS control, they include on board processing and adaptive forward error correction control.

  14. Large-scale modeling of condition-specific gene regulatory networks by information integration and inference

    PubMed Central

    Ellwanger, Daniel Christian; Leonhardt, Jörn Florian; Mewes, Hans-Werner

    2014-01-01

    Understanding how regulatory networks globally coordinate the response of a cell to changing conditions, such as perturbations by shifting environments, is an elementary challenge in systems biology which has yet to be met. Genome-wide gene expression measurements are high dimensional as these are reflecting the condition-specific interplay of thousands of cellular components. The integration of prior biological knowledge into the modeling process of systems-wide gene regulation enables the large-scale interpretation of gene expression signals in the context of known regulatory relations. We developed COGERE (http://mips.helmholtz-muenchen.de/cogere), a method for the inference of condition-specific gene regulatory networks in human and mouse. We integrated existing knowledge of regulatory interactions from multiple sources to a comprehensive model of prior information. COGERE infers condition-specific regulation by evaluating the mutual dependency between regulator (transcription factor or miRNA) and target gene expression using prior information. This dependency is scored by the non-parametric, nonlinear correlation coefficient η2 (eta squared) that is derived by a two-way analysis of variance. We show that COGERE significantly outperforms alternative methods in predicting condition-specific gene regulatory networks on simulated data sets. Furthermore, by inferring the cancer-specific gene regulatory network from the NCI-60 expression study, we demonstrate the utility of COGERE to promote hypothesis-driven clinical research.

  15. Large-scale modeling of condition-specific gene regulatory networks by information integration and inference.

    PubMed

    Ellwanger, Daniel Christian; Leonhardt, Jörn Florian; Mewes, Hans-Werner

    2014-12-01

    Understanding how regulatory networks globally coordinate the response of a cell to changing conditions, such as perturbations by shifting environments, is an elementary challenge in systems biology which has yet to be met. Genome-wide gene expression measurements are high dimensional as these are reflecting the condition-specific interplay of thousands of cellular components. The integration of prior biological knowledge into the modeling process of systems-wide gene regulation enables the large-scale interpretation of gene expression signals in the context of known regulatory relations. We developed COGERE (http://mips.helmholtz-muenchen.de/cogere), a method for the inference of condition-specific gene regulatory networks in human and mouse. We integrated existing knowledge of regulatory interactions from multiple sources to a comprehensive model of prior information. COGERE infers condition-specific regulation by evaluating the mutual dependency between regulator (transcription factor or miRNA) and target gene expression using prior information. This dependency is scored by the non-parametric, nonlinear correlation coefficient η(2) (eta squared) that is derived by a two-way analysis of variance. We show that COGERE significantly outperforms alternative methods in predicting condition-specific gene regulatory networks on simulated data sets. Furthermore, by inferring the cancer-specific gene regulatory network from the NCI-60 expression study, we demonstrate the utility of COGERE to promote hypothesis-driven clinical research.

  16. An Object-Oriented Network-Centric Software Architecture for Physical Computing

    NASA Astrophysics Data System (ADS)

    Palmer, Richard

    1997-08-01

    Recent developments in object-oriented computer languages and infrastructure such as the Internet, Web browsers, and the like provide an opportunity to define a more productive computational environment for scientific programming that is based more closely on the underlying mathematics describing physics than traditional programming languages such as FORTRAN or C++. In this talk I describe an object-oriented software architecture for representing physical problems that includes classes for such common mathematical objects as geometry, boundary conditions, partial differential and integral equations, discretization and numerical solution methods, etc. In practice, a scientific program written using this architecture looks remarkably like the mathematics used to understand the problem, is typically an order of magnitude smaller than traditional FORTRAN or C++ codes, and hence easier to understand, debug, describe, etc. All objects in this architecture are ``network-enabled,'' which means that components of a software solution to a physical problem can be transparently loaded from anywhere on the Internet or other global network. The architecture is expressed as an ``API,'' or application programmers interface specification, with reference embeddings in Java, Python, and C++. A C++ class library for an early version of this API has been implemented for machines ranging from PC's to the IBM SP2, meaning that phidentical codes run on all architectures.

  17. Inferring regulatory networks by combining perturbation screens and steady state gene expression profiles.

    PubMed

    Shojaie, Ali; Jauhiainen, Alexandra; Kallitsis, Michael; Michailidis, George

    2014-01-01

    Reconstructing transcriptional regulatory networks is an important task in functional genomics. Data obtained from experiments that perturb genes by knockouts or RNA interference contain useful information for addressing this reconstruction problem. However, such data can be limited in size and/or are expensive to acquire. On the other hand, observational data of the organism in steady state (e.g., wild-type) are more readily available, but their informational content is inadequate for the task at hand. We develop a computational approach to appropriately utilize both data sources for estimating a regulatory network. The proposed approach is based on a three-step algorithm to estimate the underlying directed but cyclic network, that uses as input both perturbation screens and steady state gene expression data. In the first step, the algorithm determines causal orderings of the genes that are consistent with the perturbation data, by combining an exhaustive search method with a fast heuristic that in turn couples a Monte Carlo technique with a fast search algorithm. In the second step, for each obtained causal ordering, a regulatory network is estimated using a penalized likelihood based method, while in the third step a consensus network is constructed from the highest scored ones. Extensive computational experiments show that the algorithm performs well in reconstructing the underlying network and clearly outperforms competing approaches that rely only on a single data source. Further, it is established that the algorithm produces a consistent estimate of the regulatory network. PMID:24586224

  18. Inferring Regulatory Networks by Combining Perturbation Screens and Steady State Gene Expression Profiles

    PubMed Central

    Michailidis, George

    2014-01-01

    Reconstructing transcriptional regulatory networks is an important task in functional genomics. Data obtained from experiments that perturb genes by knockouts or RNA interference contain useful information for addressing this reconstruction problem. However, such data can be limited in size and/or are expensive to acquire. On the other hand, observational data of the organism in steady state (e.g., wild-type) are more readily available, but their informational content is inadequate for the task at hand. We develop a computational approach to appropriately utilize both data sources for estimating a regulatory network. The proposed approach is based on a three-step algorithm to estimate the underlying directed but cyclic network, that uses as input both perturbation screens and steady state gene expression data. In the first step, the algorithm determines causal orderings of the genes that are consistent with the perturbation data, by combining an exhaustive search method with a fast heuristic that in turn couples a Monte Carlo technique with a fast search algorithm. In the second step, for each obtained causal ordering, a regulatory network is estimated using a penalized likelihood based method, while in the third step a consensus network is constructed from the highest scored ones. Extensive computational experiments show that the algorithm performs well in reconstructing the underlying network and clearly outperforms competing approaches that rely only on a single data source. Further, it is established that the algorithm produces a consistent estimate of the regulatory network. PMID:24586224

  19. Robust inference of the context specific structure and temporal dynamics of gene regulatory network

    PubMed Central

    2010-01-01

    Background Response of cells to changing endogenous or exogenous conditions is governed by intricate molecular interactions, or regulatory networks. To lead to appropriate responses, regulatory network should be 1) context-specific, i.e., its constituents and topology depend on the phonotypical and experimental context including tissue types and cell conditions, such as damage, stress, macroenvironments of cell, etc. and 2) time varying, i.e., network elements and their regulatory roles change actively over time to control the endogenous cell states e.g. different stages in a cell cycle. Results A novel network model PathRNet and a reconstruction approach PATTERN are proposed for reconstructing the context specific time varying regulatory networks by integrating microarray gene expression profiles and existing knowledge of pathways and transcription factors. The nodes of the PathRNet are Transcription Factors (TFs) and pathways, and edges represent the regulation between pathways and TFs. The reconstructed PathRNet for Kaposi's sarcoma-associated herpesvirus infection of human endothelial cells reveals the complicated dynamics of the underlying regulatory mechanisms that govern this intricate process. All the related materials including source code are available at http://compgenomics.utsa.edu/tvnet.html. Conclusions The proposed PathRNet provides a system level landscape of the dynamics of gene regulatory circuitry. The inference approach PATTERN enables robust reconstruction of the temporal dynamics of pathway-centric regulatory networks. The proposed approach for the first time provides a dynamic perspective of pathway, TF regulations, and their interaction related to specific endogenous and exogenous conditions. PMID:21143778

  20. Regulatory Enhancements, Infrastructure Modernization, and Connecticut's Interactive, Distance Learning Network.

    ERIC Educational Resources Information Center

    Pietras, Jesse John

    This paper presents an overview of the regulatory, technological, and economic status of interactive distance learning in Connecticut as it relates to the current and future provisioning of services by the telecommunications and cable television industries. The review is predicated upon the following questions: (1) What obligations should the…

  1. Invited Paper A flexible B-ISDN Network Architecture

    NASA Astrophysics Data System (ADS)

    Domann, G.; Matt, H. J.; Stannard, R.

    1986-07-01

    The situation of communication and distribution services in Germany is shortly reviewed and an outline of the plans for the introduction of an integrated broadband digital network is given. We further present a detailed concept of such a system that includes all the required major components: broadband switching modules, multiplexers, line coders, optical transmission system, home communication system and terminals. The system is characterized by having a high modularity, thus enabling a flexible implementation to satisfy the different needs of a variety of subscribers, and allowing for a selection of new services that will eventually be available in the future.

  2. Hidden Markov induced Dynamic Bayesian Network for recovering time evolving gene regulatory networks

    NASA Astrophysics Data System (ADS)

    Zhu, Shijia; Wang, Yadong

    2015-12-01

    Dynamic Bayesian Networks (DBN) have been widely used to recover gene regulatory relationships from time-series data in computational systems biology. Its standard assumption is ‘stationarity’, and therefore, several research efforts have been recently proposed to relax this restriction. However, those methods suffer from three challenges: long running time, low accuracy and reliance on parameter settings. To address these problems, we propose a novel non-stationary DBN model by extending each hidden node of Hidden Markov Model into a DBN (called HMDBN), which properly handles the underlying time-evolving networks. Correspondingly, an improved structural EM algorithm is proposed to learn the HMDBN. It dramatically reduces searching space, thereby substantially improving computational efficiency. Additionally, we derived a novel generalized Bayesian Information Criterion under the non-stationary assumption (called BWBIC), which can help significantly improve the reconstruction accuracy and largely reduce over-fitting. Moreover, the re-estimation formulas for all parameters of our model are derived, enabling us to avoid reliance on parameter settings. Compared to the state-of-the-art methods, the experimental evaluation of our proposed method on both synthetic and real biological data demonstrates more stably high prediction accuracy and significantly improved computation efficiency, even with no prior knowledge and parameter settings.

  3. Bayesian non-negative factor analysis for reconstructing transcription factor mediated regulatory networks

    PubMed Central

    2011-01-01

    Background Transcriptional regulation by transcription factor (TF) controls the time and abundance of mRNA transcription. Due to the limitation of current proteomics technologies, large scale measurements of protein level activities of TFs is usually infeasible, making computational reconstruction of transcriptional regulatory network a difficult task. Results We proposed here a novel Bayesian non-negative factor model for TF mediated regulatory networks. Particularly, the non-negative TF activities and sample clustering effect are modeled as the factors from a Dirichlet process mixture of rectified Gaussian distributions, and the sparse regulatory coefficients are modeled as the loadings from a sparse distribution that constrains its sparsity using knowledge from database; meantime, a Gibbs sampling solution was developed to infer the underlying network structure and the unknown TF activities simultaneously. The developed approach has been applied to simulated system and breast cancer gene expression data. Result shows that, the proposed method was able to systematically uncover TF mediated transcriptional regulatory network structure, the regulatory coefficients, the TF protein level activities and the sample clustering effect. The regulation target prediction result is highly coordinated with the prior knowledge, and sample clustering result shows superior performance over previous molecular based clustering method. Conclusions The results demonstrated the validity and effectiveness of the proposed approach in reconstructing transcriptional networks mediated by TFs through simulated systems and real data. PMID:22166063

  4. Research on mixed network architecture collaborative application model

    NASA Astrophysics Data System (ADS)

    Jing, Changfeng; Zhao, Xi'an; Liang, Song

    2009-10-01

    When facing complex requirements of city development, ever-growing spatial data, rapid development of geographical business and increasing business complexity, collaboration between multiple users and departments is needed urgently, however conventional GIS software (such as Client/Server model or Browser/Server model) are not support this well. Collaborative application is one of the good resolutions. Collaborative application has four main problems to resolve: consistency and co-edit conflict, real-time responsiveness, unconstrained operation, spatial data recoverability. In paper, application model called AMCM is put forward based on agent and multi-level cache. AMCM can be used in mixed network structure and supports distributed collaborative. Agent is an autonomous, interactive, initiative and reactive computing entity in a distributed environment. Agent has been used in many fields such as compute science and automation. Agent brings new methods for cooperation and the access for spatial data. Multi-level cache is a part of full data. It reduces the network load and improves the access and handle of spatial data, especially, in editing the spatial data. With agent technology, we make full use of its characteristics of intelligent for managing the cache and cooperative editing that brings a new method for distributed cooperation and improves the efficiency.

  5. Fungal Genes in Context: Genome Architecture Reflects Regulatory Complexity and Function

    PubMed Central

    Noble, Luke M.; Andrianopoulos, Alex

    2013-01-01

    Gene context determines gene expression, with local chromosomal environment most influential. Comparative genomic analysis is often limited in scope to conserved or divergent gene and protein families, and fungi are well suited to this approach with low functional redundancy and relatively streamlined genomes. We show here that one aspect of gene context, the amount of potential upstream regulatory sequence maintained through evolution, is highly predictive of both molecular function and biological process in diverse fungi. Orthologs with large upstream intergenic regions (UIRs) are strongly enriched in information processing functions, such as signal transduction and sequence-specific DNA binding, and, in the genus Aspergillus, include the majority of experimentally studied, high-level developmental and metabolic transcriptional regulators. Many uncharacterized genes are also present in this class and, by implication, may be of similar importance. Large intergenic regions also share two novel sequence characteristics, currently of unknown significance: they are enriched for plus-strand polypyrimidine tracts and an information-rich, putative regulatory motif that was present in the last common ancestor of the Pezizomycotina. Systematic consideration of gene UIR in comparative genomics, particularly for poorly characterized species, could help reveal organisms’ regulatory priorities. PMID:23699226

  6. A new approach to dynamic fuzzy modeling of genetic regulatory networks.

    PubMed

    Sun, Yonghui; Feng, Gang; Cao, Jinde

    2010-12-01

    In this paper, the dynamic fuzzy modeling approach is applied for modeling genetic regulatory networks from gene expression data. The parameters of the dynamic fuzzy model and the optimal number of fuzzy rules for the fuzzy gene network can be obtained via the proposed modeling approach from the measured gene expression data. One of the main features of the proposed approach is that the prior qualitative knowledge on the network structure can be easily incorporated in the proposed identification algorithm, so that the faster learning convergence of the algorithm can be achieved. Two sets of data, one the synthetic data, and the other the experimental SOS DNA repair network data with structural knowledge, have been used to validate the proposed modeling approach. It is shown that the proposed approach is effective in modeling genetic regulatory networks. PMID:21041161

  7. Reconstruction and topological characterization of the sigma factor regulatory network of Mycobacterium tuberculosis.

    PubMed

    Chauhan, Rinki; Ravi, Janani; Datta, Pratik; Chen, Tianlong; Schnappinger, Dirk; Bassler, Kevin E; Balázsi, Gábor; Gennaro, Maria Laura

    2016-03-31

    Accessory sigma factors, which reprogram RNA polymerase to transcribe specific gene sets, activate bacterial adaptive responses to noxious environments. Here we reconstruct the complete sigma factor regulatory network of the human pathogen Mycobacterium tuberculosis by an integrated approach. The approach combines identification of direct regulatory interactions between M. tuberculosis sigma factors in an E. coli model system, validation of selected links in M. tuberculosis, and extensive literature review. The resulting network comprises 41 direct interactions among all 13 sigma factors. Analysis of network topology reveals (i) a three-tiered hierarchy initiating at master regulators, (ii) high connectivity and (iii) distinct communities containing multiple sigma factors. These topological features are likely associated with multi-layer signal processing and specialized stress responses involving multiple sigma factors. Moreover, the identification of overrepresented network motifs, such as autoregulation and coregulation of sigma and anti-sigma factor pairs, provides structural information that is relevant for studies of network dynamics.

  8. Reconstruction and topological characterization of the sigma factor regulatory network of Mycobacterium tuberculosis

    PubMed Central

    Chauhan, Rinki; Ravi, Janani; Datta, Pratik; Chen, Tianlong; Schnappinger, Dirk; Bassler, Kevin E.; Balázsi, Gábor; Gennaro, Maria Laura

    2016-01-01

    Accessory sigma factors, which reprogram RNA polymerase to transcribe specific gene sets, activate bacterial adaptive responses to noxious environments. Here we reconstruct the complete sigma factor regulatory network of the human pathogen Mycobacterium tuberculosis by an integrated approach. The approach combines identification of direct regulatory interactions between M. tuberculosis sigma factors in an E. coli model system, validation of selected links in M. tuberculosis, and extensive literature review. The resulting network comprises 41 direct interactions among all 13 sigma factors. Analysis of network topology reveals (i) a three-tiered hierarchy initiating at master regulators, (ii) high connectivity and (iii) distinct communities containing multiple sigma factors. These topological features are likely associated with multi-layer signal processing and specialized stress responses involving multiple sigma factors. Moreover, the identification of overrepresented network motifs, such as autoregulation and coregulation of sigma and anti-sigma factor pairs, provides structural information that is relevant for studies of network dynamics. PMID:27029515

  9. Coupling root architecture and pore network modeling - an attempt towards better understanding root-soil interactions

    NASA Astrophysics Data System (ADS)

    Leitner, Daniel; Bodner, Gernot; Raoof, Amir

    2013-04-01

    Understanding root-soil interactions is of high importance for environmental and agricultural management. Root uptake is an essential component in water and solute transport modeling. The amount of groundwater recharge and solute leaching significantly depends on the demand based plant extraction via its root system. Plant uptake however not only responds to the potential demand, but in most situations is limited by supply form the soil. The ability of the plant to access water and solutes in the soil is governed mainly by root distribution. Particularly under conditions of heterogeneous distribution of water and solutes in the soil, it is essential to capture the interaction between soil and roots. Root architecture models allow studying plant uptake from soil by describing growth and branching of root axes in the soil. Currently root architecture models are able to respond dynamically to water and nutrient distribution in the soil by directed growth (tropism), modified branching and enhanced exudation. The porous soil medium as rooting environment in these models is generally described by classical macroscopic water retention and sorption models, average over the pore scale. In our opinion this simplified description of the root growth medium implies several shortcomings for better understanding root-soil interactions: (i) It is well known that roots grow preferentially in preexisting pores, particularly in more rigid/dry soil. Thus the pore network contributes to the architectural form of the root system; (ii) roots themselves can influence the pore network by creating preferential flow paths (biopores) which are an essential element of structural porosity with strong impact on transport processes; (iii) plant uptake depend on both the spatial location of water/solutes in the pore network as well as the spatial distribution of roots. We therefore consider that for advancing our understanding in root-soil interactions, we need not only to extend our root models

  10. A Consensus Network of Gene Regulatory Factors in the Human Frontal Lobe.

    PubMed

    Berto, Stefano; Perdomo-Sabogal, Alvaro; Gerighausen, Daniel; Qin, Jing; Nowick, Katja

    2016-01-01

    Cognitive abilities, such as memory, learning, language, problem solving, and planning, involve the frontal lobe and other brain areas. Not much is known yet about the molecular basis of cognitive abilities, but it seems clear that cognitive abilities are determined by the interplay of many genes. One approach for analyzing the genetic networks involved in cognitive functions is to study the coexpression networks of genes with known importance for proper cognitive functions, such as genes that have been associated with cognitive disorders like intellectual disability (ID) or autism spectrum disorders (ASD). Because many of these genes are gene regulatory factors (GRFs) we aimed to provide insights into the gene regulatory networks active in the human frontal lobe. Using genome wide human frontal lobe expression data from 10 independent data sets, we first derived 10 individual coexpression networks for all GRFs including their potential target genes. We observed a high level of variability among these 10 independently derived networks, pointing out that relying on results from a single study can only provide limited biological insights. To instead focus on the most confident information from these 10 networks we developed a method for integrating such independently derived networks into a consensus network. This consensus network revealed robust GRF interactions that are conserved across the frontal lobes of different healthy human individuals. Within this network, we detected a strong central module that is enriched for 166 GRFs known to be involved in brain development and/or cognitive disorders. Interestingly, several hubs of the consensus network encode for GRFs that have not yet been associated with brain functions. Their central role in the network suggests them as excellent new candidates for playing an essential role in the regulatory network of the human frontal lobe, which should be investigated in future studies. PMID:27014338

  11. A Consensus Network of Gene Regulatory Factors in the Human Frontal Lobe

    PubMed Central

    Berto, Stefano; Perdomo-Sabogal, Alvaro; Gerighausen, Daniel; Qin, Jing; Nowick, Katja

    2016-01-01

    Cognitive abilities, such as memory, learning, language, problem solving, and planning, involve the frontal lobe and other brain areas. Not much is known yet about the molecular basis of cognitive abilities, but it seems clear that cognitive abilities are determined by the interplay of many genes. One approach for analyzing the genetic networks involved in cognitive functions is to study the coexpression networks of genes with known importance for proper cognitive functions, such as genes that have been associated with cognitive disorders like intellectual disability (ID) or autism spectrum disorders (ASD). Because many of these genes are gene regulatory factors (GRFs) we aimed to provide insights into the gene regulatory networks active in the human frontal lobe. Using genome wide human frontal lobe expression data from 10 independent data sets, we first derived 10 individual coexpression networks for all GRFs including their potential target genes. We observed a high level of variability among these 10 independently derived networks, pointing out that relying on results from a single study can only provide limited biological insights. To instead focus on the most confident information from these 10 networks we developed a method for integrating such independently derived networks into a consensus network. This consensus network revealed robust GRF interactions that are conserved across the frontal lobes of different healthy human individuals. Within this network, we detected a strong central module that is enriched for 166 GRFs known to be involved in brain development and/or cognitive disorders. Interestingly, several hubs of the consensus network encode for GRFs that have not yet been associated with brain functions. Their central role in the network suggests them as excellent new candidates for playing an essential role in the regulatory network of the human frontal lobe, which should be investigated in future studies. PMID:27014338

  12. PNNI routing support for ad hoc mobile networking: A flat architecture

    SciTech Connect

    Martinez, L.; Sholander, P.; Tolendino, L.

    1997-12-01

    This contribution extends the Outside Nodal Hierarchy List (ONHL) procedures described in ATM Form Contribution 97-0766. These extensions allow multiple mobile networks to form either an ad hoc network or an extension of a fixed PNNI infrastructure. This contribution covers the simplest case where the top-most Logical Group Nodes (LGNs), in those mobile networks, all reside at the same level in a PNNI hierarchy. Future contributions will cover the general case where those top-most LGNs reside at different hierarchy levels. This contribution considers a flat ad hoc network architecture--in the sense that each mobile network always participates in the PNNI hierarchy at the preconfigured level of its top-most LGN.

  13. A comprehensive gene regulatory network for the diauxic shift in Saccharomyces cerevisiae.

    PubMed

    Geistlinger, Ludwig; Csaba, Gergely; Dirmeier, Simon; Küffner, Robert; Zimmer, Ralf

    2013-10-01

    Existing machine-readable resources for large-scale gene regulatory networks usually do not provide context information characterizing the activating conditions for a regulation and how targeted genes are affected. Although this information is essentially required for data interpretation, available networks are often restricted to not condition-dependent, non-quantitative, plain binary interactions as derived from high-throughput screens. In this article, we present a comprehensive Petri net based regulatory network that controls the diauxic shift in Saccharomyces cerevisiae. For 100 specific enzymatic genes, we collected regulations from public databases as well as identified and manually curated >400 relevant scientific articles. The resulting network consists of >300 multi-input regulatory interactions providing (i) activating conditions for the regulators; (ii) semi-quantitative effects on their targets; and (iii) classification of the experimental evidence. The diauxic shift network compiles widespread distributed regulatory information and is available in an easy-to-use machine-readable form. Additionally, we developed a browsable system organizing the network into pathway maps, which allows to inspect and trace the evidence for each annotated regulation in the model. PMID:23873954

  14. Novel insights into the regulatory architecture of CD4+ T cells in rheumatoid arthritis.

    PubMed

    Aterido, Adrià; Palacio, Carlos; Marsal, Sara; Avila, Gabriela; Julià, Antonio

    2014-01-01

    Rheumatoid arthritis (RA) is the most frequent autoimmune chronic inflammatory disease of the joints and it is characterized by the inflammation of the synovial membrane and the subsequent destruction of the joints. In RA, CD4+ T cells are the main drivers of disease initiation and the perpetuation of the damaging inflammatory process. To date, however, the genetic regulatory mechanisms of CD4+ T cells associated with RA etiology are poorly understood. The genome-wide analysis of expression quantitative trait loci (eQTL) in disease-relevant cell types is a recent genomic integration approach that is providing significant insights into the genetic regulatory mechanisms of many human pathologies. The objective of the present study was to analyze, for the first time, the genome-wide genetic regulatory mechanisms associated with the gene expression of CD4+ T cells in RA. Whole genome gene expression profiling of CD4+ T cells and the genome-wide genotyping (598,258 SNPs) of 29 RA patients with an active disease were performed. In order to avoid the excessive burden of multiple testing associated with genome-wide trans-eQTL analysis, we developed and implemented a novel systems genetics approach. Finally, we compared the genomic regulation pattern of CD4+ T cells in RA with the genomic regulation observed in reference lymphoblastoid cell lines (LCLs). We identified a genome-wide significant cis-eQTL associated with the expression of FAM66C gene (P = 6.51e-9). Using our new systems genetics approach we identified six statistically significant trans-eQTLs associated with the expression of KIAA0101 (P<7.4e-8) and BIRC5 (P = 5.35e-8) genes. Finally, comparing the genomic regulation profiles between RA CD4+ T cells and control LCLs we found 20 genes showing differential regulatory patterns between both cell types. The present genome-wide eQTL analysis has identified new genetic regulatory elements that are key to the activity of CD4+ T cells in RA.

  15. Novel Insights into the Regulatory Architecture of CD4+ T Cells in Rheumatoid Arthritis

    PubMed Central

    Aterido, Adrià; Palacio, Carlos; Marsal, Sara; Ávila, Gabriela; Julià, Antonio

    2014-01-01

    Rheumatoid arthritis (RA) is the most frequent autoimmune chronic inflammatory disease of the joints and it is characterized by the inflammation of the synovial membrane and the subsequent destruction of the joints. In RA, CD4+ T cells are the main drivers of disease initiation and the perpetuation of the damaging inflammatory process. To date, however, the genetic regulatory mechanisms of CD4+ T cells associated with RA etiology are poorly understood. The genome-wide analysis of expression quantitative trait loci (eQTL) in disease-relevant cell types is a recent genomic integration approach that is providing significant insights into the genetic regulatory mechanisms of many human pathologies. The objective of the present study was to analyze, for the first time, the genome-wide genetic regulatory mechanisms associated with the gene expression of CD4+ T cells in RA. Whole genome gene expression profiling of CD4+ T cells and the genome-wide genotyping (598,258 SNPs) of 29 RA patients with an active disease were performed. In order to avoid the excessive burden of multiple testing associated with genome-wide trans-eQTL analysis, we developed and implemented a novel systems genetics approach. Finally, we compared the genomic regulation pattern of CD4+ T cells in RA with the genomic regulation observed in reference lymphoblastoid cell lines (LCLs). We identified a genome-wide significant cis-eQTL associated with the expression of FAM66C gene (P = 6.51e−9). Using our new systems genetics approach we identified six statistically significant trans-eQTLs associated with the expression of KIAA0101 (P<7.4e−8) and BIRC5 (P = 5.35e−8) genes. Finally, comparing the genomic regulation profiles between RA CD4+ T cells and control LCLs we found 20 genes showing differential regulatory patterns between both cell types. The present genome-wide eQTL analysis has identified new genetic regulatory elements that are key to the activity of CD4+ T cells in RA. PMID:24959711

  16. Principles of dynamical modularity in biological regulatory networks

    PubMed Central

    Deritei, Dávid; Aird, William C.; Ercsey-Ravasz, Mária; Regan, Erzsébet Ravasz

    2016-01-01

    Intractable diseases such as cancer are associated with breakdown in multiple individual functions, which conspire to create unhealthy phenotype-combinations. An important challenge is to decipher how these functions are coordinated in health and disease. We approach this by drawing on dynamical systems theory. We posit that distinct phenotype-combinations are generated by interactions among robust regulatory switches, each in control of a discrete set of phenotypic outcomes. First, we demonstrate the advantage of characterizing multi-switch regulatory systems in terms of their constituent switches by building a multiswitch cell cycle model which points to novel, testable interactions critical for early G2/M commitment to division. Second, we define quantitative measures of dynamical modularity, namely that global cell states are discrete combinations of switch-level phenotypes. Finally, we formulate three general principles that govern the way coupled switches coordinate their function. PMID:26979940

  17. Survivable architectures for time and wavelength division multiplexed passive optical networks

    NASA Astrophysics Data System (ADS)

    Wong, Elaine

    2014-08-01

    The increased network reach and customer base of next-generation time and wavelength division multiplexed PON (TWDM-PONs) have necessitated rapid fault detection and subsequent restoration of services to its users. However, direct application of existing solutions for conventional PONs to TWDM-PONs is unsuitable as these schemes rely on the loss of signal (LOS) of upstream transmissions to trigger protection switching. As TWDM-PONs are required to potentially use sleep/doze mode optical network units (ONU), the loss of upstream transmission from a sleeping or dozing ONU could erroneously trigger protection switching. Further, TWDM-PONs require its monitoring modules for fiber/device fault detection to be more sensitive than those typically deployed in conventional PONs. To address the above issues, three survivable architectures that are compliant with TWDM-PON specifications are presented in this work. These architectures combine rapid detection and protection switching against multipoint failure, and most importantly do not rely on upstream transmissions for LOS activation. Survivability analyses as well as evaluations of the additional costs incurred to achieve survivability are performed and compared to the unprotected TWDM-PON. Network parameters that impact the maximum achievable network reach, maximum split ratio, connection availability, fault impact, and the incremental reliability costs for each proposed survivable architecture are highlighted.

  18. Duplication of a promiscuous transcription factor drives the emergence of a new regulatory network.

    PubMed

    Pougach, Ksenia; Voet, Arnout; Kondrashov, Fyodor A; Voordeckers, Karin; Christiaens, Joaquin F; Baying, Bianka; Benes, Vladimir; Sakai, Ryo; Aerts, Jan; Zhu, Bo; Van Dijck, Patrick; Verstrepen, Kevin J

    2014-01-01

    The emergence of new genes throughout evolution requires rewiring and extension of regulatory networks. However, the molecular details of how the transcriptional regulation of new gene copies evolves remain largely unexplored. Here we show how duplication of a transcription factor gene allowed the emergence of two independent regulatory circuits. Interestingly, the ancestral transcription factor was promiscuous and could bind different motifs in its target promoters. After duplication, one paralogue evolved increased binding specificity so that it only binds one type of motif, whereas the other copy evolved a decreased activity so that it only activates promoters that contain multiple binding sites. Interestingly, only a few mutations in both the DNA-binding domains and in the promoter binding sites were required to gradually disentangle the two networks. These results reveal how duplication of a promiscuous transcription factor followed by concerted cis and trans mutations allows expansion of a regulatory network.

  19. Duplication of a promiscuous transcription factor drives the emergence of a new regulatory network

    PubMed Central

    Pougach, Ksenia; Voet, Arnout; Kondrashov, Fyodor A.; Voordeckers, Karin; Christiaens, Joaquin F.; Baying, Bianka; Benes, Vladimir; Sakai, Ryo; Aerts, Jan; Zhu, Bo; Van Dijck, Patrick; Verstrepen, Kevin J.

    2014-01-01

    The emergence of new genes throughout evolution requires rewiring and extension of regulatory networks. However, the molecular details of how the transcriptional regulation of new gene copies evolves remain largely unexplored. Here we show how duplication of a transcription factor gene allowed the emergence of two independent regulatory circuits. Interestingly, the ancestral transcription factor was promiscuous and could bind different motifs in its target promoters. After duplication, one paralogue evolved increased binding specificity so that it only binds one type of motif, whereas the other copy evolved a decreased activity so that it only activates promoters that contain multiple binding sites. Interestingly, only a few mutations in both the DNA-binding domains and in the promoter binding sites were required to gradually disentangle the two networks. These results reveal how duplication of a promiscuous transcription factor followed by concerted cis and trans mutations allows expansion of a regulatory network. PMID:25204769

  20. LncReg: a reference resource for lncRNA-associated regulatory networks

    PubMed Central

    Zhou, Zhong; Shen, Yi; Khan, Muhammad Riaz; Li, Ao

    2015-01-01

    Long non-coding RNAs (lncRNAs) are critical in the regulation of various biological processes. In recent years, plethora of lncRNAs have been identified in mammalian genomes through different approaches, and the researchers are constantly reporting the regulatory roles of these lncRNAs, which leads to complexity of literature about particular lncRNAs. Therefore, for the convenience of the researchers, we collected regulatory relationships of the lncRNAs and built a database called ‘LncReg’. This database is developed by collecting 1081 validated lncRNA-associated regulatory entries, including 258 non-redundant lncRNAs and 571 non-redundant genes. With regulatory relationships information, LncReg can provide overall perspectives of regulatory networks of lncRNAs and comprehensive data for bioinformatics research, which is useful for understanding the functional roles of lncRNAs. Database URL: http://bioinformatics.ustc.edu.cn/lncreg/ PMID:26363021

  1. Regulog Analysis: Detection of Conserved Regulatory Networks Across Bacteria: Application to Staphylococcus aureus

    PubMed Central

    Alkema, Wynand B.L.; Lenhard, Boris; Wasserman, Wyeth W.

    2004-01-01

    A transcriptional regulatory network encompasses sets of genes (regulons) whose expression states are directly altered in response to an activating signal, mediated by trans-acting regulatory proteins and cis-acting regulatory sequences. Enumeration of these network components is an essential step toward the creation of a framework for systems-based analysis of biological processes. Profile-based methods for the detection of cis-regulatory elements are often applied to predict regulon members, but they suffer from poor specificity. In this report we describe Regulogger, a novel computational method that uses comparative genomics to eliminate spurious members of predicted gene regulons. Regulogger produces regulogs, sets of coregulated genes for which the regulatory sequence has been conserved across multiple organisms. The quantitative method assigns a confidence score to each predicted regulog member on the basis of the degree of conservation of protein sequence and regulatory mechanisms. When applied to a reference collection of regulons from Escherichia coli, Regulogger increased the specificity of predictions up to 25-fold over methods that use cis-element detection in isolation. The enhanced specificity was observed across a wide range of biologically meaningful parameter combinations, indicating a robust and broad utility for the method. The power of computational pattern discovery methods coupled with Regulogger to unravel transcriptional networks was demonstrated in an analysis of the genome of Staphylococcus aureus. A total of 125 regulogs were found in this organism, including both well-defined functional groups and a subset with unknown functions. PMID:15231752

  2. A TDMA Broadcast Satellite/Ground Architecture for the Aeronautical Telecommunications Network

    NASA Technical Reports Server (NTRS)

    Shamma, Mohammed A.; Raghavan, Rajesh S.

    2003-01-01

    An initial evaluation of a TDMA satellite broadcast architecture with an integrated ground network is proposed in this study as one option for the Aeronautical Telecommunications Network (ATN). The architecture proposed consists of a ground based network that is dedicated to the reception and transmissions of Automatic Dependent Surveillance Broadcast (ADS-B) messages from Mode-S or UAT type systems, along with tracks from primary and secondary surveillance radars. Additionally, the ground network could contain VHF Digital Link Mode 2, 3 or 4 transceivers for the reception and transmissions of Controller-Pilot Data Link Communications (CPDLC) messages and for voice. The second part of the ATN network consists of a broadcast satellite based system that is mainly dedicated for the transmission of surveillance data as well as En-route Flight Information Service Broadcast (FIS-B) to all aircraft. The system proposed integrates those two network to provide a nation wide comprehensive service utilizing near term or existing technologies and hence keeping the economic factor in prospective. The next few sections include a background introduction, the ground subnetwork, the satellite subnetwork, modeling and simulations, and conclusion and recommendations.

  3. Teledesic Global Wireless Broadband Network: Space Infrastructure Architecture, Design Features and Technologies

    NASA Technical Reports Server (NTRS)

    Stuart, James R.

    1995-01-01

    The Teledesic satellites are a new class of small satellites which demonstrate the important commercial benefits of using technologies developed for other purposes by U.S. National Laboratories. The Teledesic satellite architecture, subsystem design features, and new technologies are described. The new Teledesic satellite manufacturing, integration, and test approaches which use modern high volume production techniques and result in surprisingly low space segment costs are discussed. The constellation control and management features and attendant software architecture features are addressed. After briefly discussing the economic and technological impact on the USA commercial space industries of the space communications revolution and such large constellation projects, the paper concludes with observations on the trend toward future system architectures using networked groups of much smaller satellites.

  4. Identification of regulatory network hubs that control lipid metabolism in Chlamydomonas reinhardtii.

    PubMed

    Gargouri, Mahmoud; Park, Jeong-Jin; Holguin, F Omar; Kim, Min-Jeong; Wang, Hongxia; Deshpande, Rahul R; Shachar-Hill, Yair; Hicks, Leslie M; Gang, David R

    2015-08-01

    Microalgae-based biofuels are promising sources of alternative energy, but improvements throughout the production process are required to establish them as economically feasible. One of the most influential improvements would be a significant increase in lipid yields, which could be achieved by altering the regulation of lipid biosynthesis and accumulation. Chlamydomonas reinhardtii accumulates oil (triacylglycerols, TAG) in response to nitrogen (N) deprivation. Although a few important regulatory genes have been identified that are involved in controlling this process, a global understanding of the larger regulatory network has not been developed. In order to uncover this network in this species, a combined omics (transcriptomic, proteomic and metabolomic) analysis was applied to cells grown in a time course experiment after a shift from N-replete to N-depleted conditions. Changes in transcript and protein levels of 414 predicted transcription factors (TFs) and transcriptional regulators (TRs) were monitored relative to other genes. The TF and TR genes were thus classified by two separate measures: up-regulated versus down-regulated and early response versus late response relative to two phases of polar lipid synthesis (before and after TAG biosynthesis initiation). Lipidomic and primary metabolite profiling generated compound accumulation levels that were integrated with the transcript dataset and TF profiling to produce a transcriptional regulatory network. Evaluation of this proposed regulatory network led to the identification of several regulatory hubs that control many aspects of cellular metabolism, from N assimilation and metabolism, to central metabolism, photosynthesis and lipid metabolism.

  5. Identification of regulatory network hubs that control lipid metabolism in Chlamydomonas reinhardtii

    PubMed Central

    Gargouri, Mahmoud; Park, Jeong-Jin; Holguin, F. Omar; Kim, Min-Jeong; Wang, Hongxia; Deshpande, Rahul R.; Shachar-Hill, Yair; Hicks, Leslie M.; Gang, David R.

    2015-01-01

    Microalgae-based biofuels are promising sources of alternative energy, but improvements throughout the production process are required to establish them as economically feasible. One of the most influential improvements would be a significant increase in lipid yields, which could be achieved by altering the regulation of lipid biosynthesis and accumulation. Chlamydomonas reinhardtii accumulates oil (triacylglycerols, TAG) in response to nitrogen (N) deprivation. Although a few important regulatory genes have been identified that are involved in controlling this process, a global understanding of the larger regulatory network has not been developed. In order to uncover this network in this species, a combined omics (transcriptomic, proteomic and metabolomic) analysis was applied to cells grown in a time course experiment after a shift from N-replete to N-depleted conditions. Changes in transcript and protein levels of 414 predicted transcription factors (TFs) and transcriptional regulators (TRs) were monitored relative to other genes. The TF and TR genes were thus classified by two separate measures: up-regulated versus down-regulated and early response versus late response relative to two phases of polar lipid synthesis (before and after TAG biosynthesis initiation). Lipidomic and primary metabolite profiling generated compound accumulation levels that were integrated with the transcript dataset and TF profiling to produce a transcriptional regulatory network. Evaluation of this proposed regulatory network led to the identification of several regulatory hubs that control many aspects of cellular metabolism, from N assimilation and metabolism, to central metabolism, photosynthesis and lipid metabolism. PMID:26022256

  6. Kolmogorov complexity of epithelial pattern formation: the role of regulatory network configuration.

    PubMed

    Flann, Nicholas S; Mohamadlou, Hamid; Podgorski, Gregory J

    2013-05-01

    The tissues of multicellular organisms are made of differentiated cells arranged in organized patterns. This organization emerges during development from the coupling of dynamic intra- and intercellular regulatory networks. This work applies the methods of information theory to understand how regulatory network structure both within and between cells relates to the complexity of spatial patterns that emerge as a consequence of network operation. A computational study was performed in which undifferentiated cells were arranged in a two dimensional lattice, with gene expression in each cell regulated by identical intracellular randomly generated Boolean networks. Cell-cell contact signalling between embryonic cells is modeled as coupling among intracellular networks so that gene expression in one cell can influence the expression of genes in adjacent cells. In this system, the initially identical cells differentiate and form patterns of different cell types. The complexity of network structure, temporal dynamics and spatial organization is quantified through the Kolmogorov-based measures of normalized compression distance and set complexity. Results over sets of random networks that operate in the ordered, critical and chaotic domains demonstrate that: (1) ordered and critical networks tend to create the most information-rich patterns; (2) signalling configurations in which cell-to-cell communication is non-directional mostly produce simple patterns irrespective of the internal network domain; and (3) directional signalling configurations, similar to those that function in planar cell polarity, produce the most complex patterns, but only when the intracellular networks function in non-chaotic domains.

  7. Uncovering MicroRNA and Transcription Factor Mediated Regulatory Networks in Glioblastoma.

    PubMed

    Sun, Jingchun; Gong, Xue; Purow, Benjamin; Zhao, Zhongming

    2012-01-01

    Glioblastoma multiforme (GBM) is the most common and lethal brain tumor in humans. Recent studies revealed that patterns of microRNA (miRNA) expression in GBM tissue samples are different from those in normal brain tissues, suggesting that a number of miRNAs play critical roles in the pathogenesis of GBM. However, little is yet known about which miRNAs play central roles in the pathology of GBM and their regulatory mechanisms of action. To address this issue, in this study, we systematically explored the main regulation format (feed-forward loops, FFLs) consisting of miRNAs, transcription factors (TFs) and their impacting GBM-related genes, and developed a computational approach to construct a miRNA-TF regulatory network. First, we compiled GBM-related miRNAs, GBM-related genes, and known human TFs. We then identified 1,128 3-node FFLs and 805 4-node FFLs with statistical significance. By merging these FFLs together, we constructed a comprehensive GBM-specific miRNA-TF mediated regulatory network. Then, from the network, we extracted a composite GBM-specific regulatory network. To illustrate the GBM-specific regulatory network is promising for identification of critical miRNA components, we specifically examined a Notch signaling pathway subnetwork. Our follow up topological and functional analyses of the subnetwork revealed that six miRNAs (miR-124, miR-137, miR-219-5p, miR-34a, miR-9, and miR-92b) might play important roles in GBM, including some results that are supported by previous studies. In this study, we have developed a computational framework to construct a miRNA-TF regulatory network and generated the first miRNA-TF regulatory network for GBM, providing a valuable resource for further understanding the complex regulatory mechanisms in GBM. The observation of critical miRNAs in the Notch signaling pathway, with partial verification from previous studies, demonstrates that our network-based approach is promising for the identification of new and important

  8. Analysis of Gene Sets Based on the Underlying Regulatory Network

    PubMed Central

    Michailidis, George

    2009-01-01

    Abstract Networks are often used to represent the interactions among genes and proteins. These interactions are known to play an important role in vital cell functions and should be included in the analysis of genes that are differentially expressed. Methods of gene set analysis take advantage of external biological information and analyze a priori defined sets of genes. These methods can potentially preserve the correlation among genes; however, they do not directly incorporate the information about the gene network. In this paper, we propose a latent variable model that directly incorporates the network information. We then use the theory of mixed linear models to present a general inference framework for the problem of testing the significance of subnetworks. Several possible test procedures are introduced and a network based method for testing the changes in expression levels of genes as well as the structure of the network is presented. The performance of the proposed method is compared with methods of gene set analysis using both simulation studies, as well as real data on genes related to the galactose utilization pathway in yeast. PMID:19254181

  9. Complex and unexpected dynamics in simple genetic regulatory networks

    NASA Astrophysics Data System (ADS)

    Borg, Yanika; Ullner, Ekkehard; Alagha, Afnan; Alsaedi, Ahmed; Nesbeth, Darren; Zaikin, Alexey

    2014-03-01

    One aim of synthetic biology is to construct increasingly complex genetic networks from interconnected simpler ones to address challenges in medicine and biotechnology. However, as systems increase in size and complexity, emergent properties lead to unexpected and complex dynamics due to nonlinear and nonequilibrium properties from component interactions. We focus on four different studies of biological systems which exhibit complex and unexpected dynamics. Using simple synthetic genetic networks, small and large populations of phase-coupled quorum sensing repressilators, Goodwin oscillators, and bistable switches, we review how coupled and stochastic components can result in clustering, chaos, noise-induced coherence and speed-dependent decision making. A system of repressilators exhibits oscillations, limit cycles, steady states or chaos depending on the nature and strength of the coupling mechanism. In large repressilator networks, rich dynamics can also be exhibited, such as clustering and chaos. In populations of Goodwin oscillators, noise can induce coherent oscillations. In bistable systems, the speed with which incoming external signals reach steady state can bias the network towards particular attractors. These studies showcase the range of dynamical behavior that simple synthetic genetic networks can exhibit. In addition, they demonstrate the ability of mathematical modeling to analyze nonlinearity and inhomogeneity within these systems.

  10. Low-Power Direct-Sequence Spread-Spectrum Modem Architecture for Distributed Wireless Sensor Networks

    SciTech Connect

    Chien, C; Elgorriaga, I; McConaghy, C

    2001-07-03

    Emerging CMOS and MEMS technologies enable the implementation of a large number of wireless distributed microsensors that can be easily and rapidly deployed to form highly redundant, self-configuring, and ad hoc sensor networks. To facilitate ease of deployment, these sensors should operate on battery for extended periods of time. A particular challenge in maintaining extended battery lifetime lies in achieving communications with low power. This paper presents a direct-sequence spread-spectrum modem architecture that provides robust communications for wireless sensor networks while dissipating very low power. The modem architecture has been verified in an FPGA implementation that dissipates only 33 mW for both transmission and reception. The implementation can be easily mapped to an ASIC technology, with an estimated power performance of less than 1 mW.

  11. A Functional and Regulatory Network Associated with PIP Expression in Human Breast Cancer

    PubMed Central

    Debily, Marie-Anne; Marhomy, Sandrine El; Boulanger, Virginie; Eveno, Eric; Mariage-Samson, Régine; Camarca, Alessandra; Auffray, Charles; Piatier-Tonneau, Dominique; Imbeaud, Sandrine

    2009-01-01

    Background The PIP (prolactin-inducible protein) gene has been shown to be expressed in breast cancers, with contradictory results concerning its implication. As both the physiological role and the molecular pathways in which PIP is involved are poorly understood, we conducted combined gene expression profiling and network analysis studies on selected breast cancer cell lines presenting distinct PIP expression levels and hormonal receptor status, to explore the functional and regulatory network of PIP co-modulated genes. Principal Findings Microarray analysis allowed identification of genes co-modulated with PIP independently of modulations resulting from hormonal treatment or cell line heterogeneity. Relevant clusters of genes that can discriminate between [PIP+] and [PIP−] cells were identified. Functional and regulatory network analyses based on a knowledge database revealed a master network of PIP co-modulated genes, including many interconnecting oncogenes and tumor suppressor genes, half of which were detected as differentially expressed through high-precision measurements. The network identified appears associated with an inhibition of proliferation coupled with an increase of apoptosis and an enhancement of cell adhesion in breast cancer cell lines, and contains many genes with a STAT5 regulatory motif in their promoters. Conclusions Our global exploratory approach identified biological pathways modulated along with PIP expression, providing further support for its good prognostic value of disease-free survival in breast cancer. Moreover, our data pointed to the importance of a regulatory subnetwork associated with PIP expression in which STAT5 appears as a potential transcriptional regulator. PMID:19262752

  12. Stochasticity, Bistability and the Wisdom of Crowds: A Model for Associative Learning in Genetic Regulatory Networks

    PubMed Central

    Sorek, Matan; Balaban, Nathalie Q.; Loewenstein, Yonatan

    2013-01-01

    It is generally believed that associative memory in the brain depends on multistable synaptic dynamics, which enable the synapses to maintain their value for extended periods of time. However, multistable dynamics are not restricted to synapses. In particular, the dynamics of some genetic regulatory networks are multistable, raising the possibility that even single cells, in the absence of a nervous system, are capable of learning associations. Here we study a standard genetic regulatory network model with bistable elements and stochastic dynamics. We demonstrate that such a genetic regulatory network model is capable of learning multiple, general, overlapping associations. The capacity of the network, defined as the number of associations that can be simultaneously stored and retrieved, is proportional to the square root of the number of bistable elements in the genetic regulatory network. Moreover, we compute the capacity of a clonal population of cells, such as in a colony of bacteria or a tissue, to store associations. We show that even if the cells do not interact, the capacity of the population to store associations substantially exceeds that of a single cell and is proportional to the number of bistable elements. Thus, we show that even single cells are endowed with the computational power to learn associations, a power that is substantially enhanced when these cells form a population. PMID:23990765

  13. Automated selection of synthetic biology parts for genetic regulatory networks.

    PubMed

    Yaman, Fusun; Bhatia, Swapnil; Adler, Aaron; Densmore, Douglas; Beal, Jacob

    2012-08-17

    Raising the level of abstraction for synthetic biology design requires solving several challenging problems, including mapping abstract designs to DNA sequences. In this paper we present the first formalism and algorithms to address this problem. The key steps of this transformation are feature matching, signal matching, and part matching. Feature matching ensures that the mapping satisfies the regulatory relationships in the abstract design. Signal matching ensures that the expression levels of functional units are compatible. Finally, part matching finds a DNA part sequence that can implement the design. Our software tool MatchMaker implements these three steps. PMID:23651287

  14. Neural Network Classifier Architectures for Phoneme Recognition. CRC Technical Note No. CRC-TN-92-001.

    ERIC Educational Resources Information Center

    Treurniet, William

    A study applied artificial neural networks, trained with the back-propagation learning algorithm, to modelling phonemes extracted from the DARPA TIMIT multi-speaker, continuous speech data base. A number of proposed network architectures were applied to the phoneme classification task, ranging from the simple feedforward multilayer network to more…

  15. An integrated architecture for deploying a virtual private medical network over the web.

    PubMed

    Gritzalis, S; Gritzalis, D; Moulinos, C; Iliadis, J

    2001-01-01

    In this paper we describe a pilot architecture aiming at protecting Web-based medical applications through the development of a virtual private medical network. The basic technology, which is utilized by this integrated architecture, is the Trusted Third Party (TTP). In specific, a TTP is used to generate, distribute, and revoke digital certificates to/from medical practitioners and healthcare organizations wishing to communicate in a secure way. Digital certificates and digital signatures are, in particular, used to provide peer and data origin authentication and access control functionalities. We also propose a logical Public Key Infrastructure (PKI) architecture, which is robust, scalable, and based on standards. This architecture aims at supporting large-scale healthcare applications. It supports openness, scalability, flexibility and extensibility, and can be integrated with existing TTP schemes and infrastructures offering transparency and adequate security. Finally, it is demonstrated that the proposed architecture enjoys all desirable usability characteristics, and meets the set of criteria, which constitutes an applicable framework for the development of trusted medical services over the Web.

  16. An integrated architecture for deploying a virtual private medical network over the web.

    PubMed

    Gritzalis, S; Gritzalis, D; Moulinos, C; Iliadis, J

    2001-01-01

    In this paper we describe a pilot architecture aiming at protecting Web-based medical applications through the development of a virtual private medical network. The basic technology, which is utilized by this integrated architecture, is the Trusted Third Party (TTP). In specific, a TTP is used to generate, distribute, and revoke digital certificates to/from medical practitioners and healthcare organizations wishing to communicate in a secure way. Digital certificates and digital signatures are, in particular, used to provide peer and data origin authentication and access control functionalities. We also propose a logical Public Key Infrastructure (PKI) architecture, which is robust, scalable, and based on standards. This architecture aims at supporting large-scale healthcare applications. It supports openness, scalability, flexibility and extensibility, and can be integrated with existing TTP schemes and infrastructures offering transparency and adequate security. Finally, it is demonstrated that the proposed architecture enjoys all desirable usability characteristics, and meets the set of criteria, which constitutes an applicable framework for the development of trusted medical services over the Web. PMID:11583408

  17. Characterizing the interplay betwen mulitple levels of organization within bacterial sigma factor regulatory networks

    SciTech Connect

    Yu, Qiu; Nagarajan, Harish; Embree, Mallory; Shieu, Wendy; Abate, Elisa; Juarez, Katy; Cho, Byung-Kwan; Elkins, James G; Nevin, Kelly P.; Barrett, Christian; Lovley, Derek; Palsson, Bernhard O.; Zengler, Karsten

    2013-01-01

    Bacteria contain multiple sigma factors, each targeting diverse, but often overlapping sets of promoters, thereby forming a complex network. The layout and deployment of such a sigma factor network directly impacts global transcriptional regulation and ultimately dictates the phenotype. Here we integrate multi-omic data sets to determine the topology, the operational, and functional states of the sigma factor network in Geobacter sulfurreducens, revealing a unique network topology of interacting sigma factors. Analysis of the operational state of the sigma factor network shows a highly modular structure with sN being the major regulator of energy metabolism. Surprisingly, the functional state of the network during the two most divergent growth conditions is nearly static, with sigma factor binding profiles almost invariant to environmental stimuli. This first comprehensive elucidation of the interplay between different levels of the sigma factor network organization is fundamental to characterize transcriptional regulatory mechanisms in bacteria.

  18. STOMP: A Software Architecture for the Design and Simulation UAV-Based Sensor Networks

    SciTech Connect

    Jones, E D; Roberts, R S; Hsia, T C S

    2002-10-28

    This paper presents the Simulation, Tactical Operations and Mission Planning (STOMP) software architecture and framework for simulating, controlling and communicating with unmanned air vehicles (UAVs) servicing large distributed sensor networks. STOMP provides hardware-in-the-loop capability enabling real UAVs and sensors to feedback state information, route data and receive command and control requests while interacting with other real or virtual objects thereby enhancing support for simulation of dynamic and complex events.

  19. Principles of Network Architecture Emerging from Comparisons of the Cerebral Cortex in Large and Small Brains.

    PubMed

    Finlay, Barbara L

    2016-09-01

    The cerebral cortex retains its fundamental organization, layering, and input-output relations as it scales in volume over many orders of magnitude in mammals. How is its network architecture affected by size scaling? By comparing network organization of the mouse and rhesus macaque cortical connectome derived from complete neuroanatomical tracing studies, a recent study in PLOS Biology shows that an exponential distance rule emerges that reveals the falloff in connection probability with distance in the two brains that in turn determines common organizational features. PMID:27631433

  20. Principles of Network Architecture Emerging from Comparisons of the Cerebral Cortex in Large and Small Brains

    PubMed Central

    Finlay, Barbara L.

    2016-01-01

    The cerebral cortex retains its fundamental organization, layering, and input–output relations as it scales in volume over many orders of magnitude in mammals. How is its network architecture affected by size scaling? By comparing network organization of the mouse and rhesus macaque cortical connectome derived from complete neuroanatomical tracing studies, a recent study in PLOS Biology shows that an exponential distance rule emerges that reveals the falloff in connection probability with distance in the two brains that in turn determines common organizational features. PMID:27631433

  1. Gene regulatory network analysis in sea urchin embryos.

    PubMed

    Oliveri, Paola; Davidson, Eric H

    2004-01-01

    It may safely be predicted that GRN analysis will become increasingly important. It will come to underlie the causal study of development, the major effort underway to understand the regulatory code built into animal genomes and also the evolution of these genomes. Partly by serendipity, sea urchin embryos turn out to be a superb experimental material for GRN analysis. Their natural properties have, in turn, influenced the predilections of those who work on them, and between them and us, so to speak, this is now a developmental system of which we are rapidly gaining an unusually complete understanding. The causal linkages that control development of the whole embryo will be revealed, leading all the way from the heritable genomic regulatory code to the events of embryology. The fundamental experimental operation is the perturbation analysis: Here is where causality permeates the exploration. We have in this chapter summarized in some detail the requirements for perturbation GRN analysis in sea urchin embryos. But that is not all, nor is it enough to enable the assembly of a GRN: What is required is the combined application of elegant computational methods, of gene regulation molecular biology, of genomic sequence data, and of experimental embryology. As the results crystallize together, we can begin to see how far this powerful combination of methods and ideas is going to carry us. PMID:15575631

  2. Dissecting neural differentiation regulatory networks through epigenetic footprinting.

    PubMed

    Ziller, Michael J; Edri, Reuven; Yaffe, Yakey; Donaghey, Julie; Pop, Ramona; Mallard, William; Issner, Robbyn; Gifford, Casey A; Goren, Alon; Xing, Jeffrey; Gu, Hongcang; Cacchiarelli, Davide; Tsankov, Alexander M; Epstein, Charles; Rinn, John L; Mikkelsen, Tarjei S; Kohlbacher, Oliver; Gnirke, Andreas; Bernstein, Bradley E; Elkabetz, Yechiel; Meissner, Alexander

    2015-02-19

    Models derived from human pluripotent stem cells that accurately recapitulate neural development in vitro and allow for the generation of specific neuronal subtypes are of major interest to the stem cell and biomedical community. Notch signalling, particularly through the Notch effector HES5, is a major pathway critical for the onset and maintenance of neural progenitor cells in the embryonic and adult nervous system. Here we report the transcriptional and epigenomic analysis of six consecutive neural progenitor cell stages derived from a HES5::eGFP reporter human embryonic stem cell line. Using this system, we aimed to model cell-fate decisions including specification, expansion and patterning during the ontogeny of cortical neural stem and progenitor cells. In order to dissect regulatory mechanisms that orchestrate the stage-specific differentiation process, we developed a computational framework to infer key regulators of each cell-state transition based on the progressive remodelling of the epigenetic landscape and then validated these through a pooled short hairpin RNA screen. We were also able to refine our previous observations on epigenetic priming at transcription factor binding sites and suggest here that they are mediated by combinations of core and stage-specific factors. Taken together, we demonstrate the utility of our system and outline a general framework, not limited to the context of the neural lineage, to dissect regulatory circuits of differentiation.

  3. The role of epiphytism in architecture and evolutionary constraint within mycorrhizal networks of tropical orchids.

    PubMed

    Martos, Florent; Munoz, François; Pailler, Thierry; Kottke, Ingrid; Gonneau, Cédric; Selosse, Marc-André

    2012-10-01

    Characterizing the architecture of bipartite networks is increasingly used as a framework to study biotic interactions within their ecological context and to assess the extent to which evolutionary constraint shape them. Orchid mycorrhizal symbioses are particularly interesting as they are viewed as more beneficial for plants than for fungi, a situation expected to result in an asymmetry of biological constraint. This study addressed the architecture and phylogenetic constraint in these associations in tropical context. We identified a bipartite network including 73 orchid species and 95 taxonomic units of mycorrhizal fungi across the natural habitats of Reunion Island. Unlike some recent evidence for nestedness in mycorrhizal symbioses, we found a highly modular architecture that largely reflected an ecological barrier between epiphytic and terrestrial subnetworks. By testing for phylogenetic signal, the overall signal was stronger for both partners in the epiphytic subnetwork. Moreover, in the subnetwork of epiphytic angraecoid orchids, the signal in orchid phylogeny was stronger than the signal in fungal phylogeny. Epiphytic associations are therefore more conservative and may co-evolve more than terrestrial ones. We suggest that such tighter phylogenetic specialization may have been driven by stressful life conditions in the epiphytic niches. In addition to paralleling recent insights into mycorrhizal networks, this study furthermore provides support for epiphytism as a major factor affecting ecological assemblage and evolutionary constraint in tropical mycorrhizal symbioses.

  4. A New Security Architecture for Personal Networks and Its Performance Evaluation

    NASA Astrophysics Data System (ADS)

    Shin, Seonghan; Fathi, Hanane; Kobara, Kazukuni; Prasad, Neeli R.; Imai, Hideki

    The concept of personal networks is very user-centric and representative for the next generation networks. However, the present security mechanism does not consider at all what happens whenever a mobile node (device) is compromised, lost or stolen. Of course, a compromised, lost or stolen mobile node (device) is a main factor to leak stored secrets. This kind of leakage of stored secrets remains a great danger in the field of communication security since it can lead to the complete breakdown of the intended security level. In order to solve this problem, we propose a 3-way Leakage-Resilient and Forward-Secure Authenticated Key Exchange (3LRFS-AKE) protocol and its security architecture suitable for personal networks. The 3LRFS-AKE protocol guarantees not only forward secrecy of the shared key between device and its server as well as providing a new additional layer of security against the leakage of stored secrets. The proposed security architecture includes two different types of communications: PN wide communication and communication between P-PANs of two different users. In addition, we give a performance evaluation and numerical results of the delay generated by the proposed security architecture.

  5. Standard Spacecraft Interfaces and IP Network Architectures: Prototyping Activities at the GSFC

    NASA Technical Reports Server (NTRS)

    Schnurr, Richard; Marquart, Jane; Lin, Michael

    2003-01-01