Science.gov

Sample records for reinforced aluminium metal

  1. Recrystallization in SiC particulate reinforced 6061 aluminium metal matrix composites following low strain deformation

    SciTech Connect

    Yu, D.; Munroe, P.R.; Bandyopadhyay, S. . School of Materials Science and Engineering); Mouritz, A.P. . Materials Research Lab.)

    1994-04-01

    Aluminum metal matrix composites (MMC) are envisaged as candidate materials for the aerospace and automotive industries because of their low density, high stiffness, and strength. While the studies have examined the recrystallization behavior of MMCs deformed by large amounts of cold work, little work has been done on the behavior of the matrix microstructure during annealing following lower amounts (i.e.< 10% reduction) of deformation. The work presented in this paper examines the effect of small amounts of deformation in compression on the recovery and recrystallization behavior of MMCs, in two aluminium-based composites (6xxx series) reinforced with either 3 [mu]m or 20 [mu]m diameter SiC particulates.

  2. Ageing characteristics of aluminium alloy aluminosilicate discontinuous fiber reinforced composites

    SciTech Connect

    Nath, D.; Singh, V.

    1999-03-05

    Development of continuous fiber reinforced metal matrix composites is aimed at providing high specific strength and stiffness needed for aerospace and some critical high temperature structural applications. Considerable efforts have been made, during the last decade, to improve the strength of age-hardening aluminium alloy matrix composites by suitable heat treatment. It has also been well established that age-hardenable aluminium alloy composites show accelerated ageing behavior because of enhanced dislocation density at the fiber/matrix interface resulting from thermal expansion mismatch between ceramic fiber and the metal matrix. The accelerated ageing of aluminium alloy composites either from dislocation density or the residual stress, as a result of thermal expansion mismatch is dependent on the size of whisker and particulate. Investigations have also been made on the effect of volume fraction of particulate on the ageing behavior of aluminium alloys. The present investigation is concerned with characterization of age-hardening behavior of an Al-Si-Cu-Mg(AA 336) alloy alumino-silicate discontinuous fiber-reinforced composites (referred to as aluminium MMCs in the present text) being developed for automotive pistons. An effort is made to study the effect of volume fraction of the reinforcement on age-hardening behavior of this composite.

  3. Experimental investigations on mechanical behavior of aluminium metal matrix composites

    NASA Astrophysics Data System (ADS)

    Rajesh, A. M.; Kaleemulla, Mohammed

    2016-09-01

    Today we are widely using aluminium based metal matrix composite for structural, aerospace, marine and automobile applications for its light weight, high strength and low production cost. The purpose of designing metal matrix composite is to add the desirable attributes of metals and ceramics to the base metal. In this study we developed aluminium metal matrix hybrid composite by reinforced Aluminium7075 alloy with silicon carbide (SiC) and aluminium oxide (alumina) by method of stir casting. This technique is less expensive and very effective. The Hardness test and Wear test were performed on the specimens which are prepared by stir casting techniques. The result reveals that the addition of silicon carbide and alumina particles in aluminium matrix improves the mechanical properties.

  4. Investigation of mechanical properties of aluminium reinforced glass fibre polymer composites

    NASA Astrophysics Data System (ADS)

    Kumar, G. B. Veeresh; Pramod, R.

    2017-07-01

    This paper presents the recent work about reinforcing E-glass into Aluminium foil to attain high strength to weight ratio. Aluminium is corrosion resistant, light in weight and ductile, also when alloyed through other metals deliver the greater strengths as desirable for high-tech applications. The density of pure Aluminium is 2.7 g cm3. Electrical grade glass formally known as E-glass, is by far the most used fiber in reinforced plastic composites. It is a high strength material with light weight compared to steel and corrosive resistant. The matrix and reinforcement is bonded with a resin, named Araldite Ly556, which has density at 25 °C, 1.15-1.20 g cm3. Thus gives a good binding structure. In the present work, Aluminium, E-Glass and Epoxy are combined to fabricate a laminate by Hand-Lay process. Hand-lay is the oldest and simplest method used for producing reinforced plastic laminates. The fabricated metal matrix composites are tested for their mechanical properties. The metal laminate is found to render high strength, hardness, flexural strength and increased wear resistance. Further theoretical simulations was carried out to validate the experimental results.

  5. Synthesis and Characterization of TiB2 Reinforced Aluminium Matrix Composites: A Review

    NASA Astrophysics Data System (ADS)

    Kumar, Narendra; Gautam, Gaurav; Gautam, Rakesh Kumar; Mohan, Anita; Mohan, Sunil

    2016-10-01

    Aluminium-matrix composites (AMCs) are developed to meet the demands of light weight high performance materials in aerospace, automotive, marine and other applications. The properties of AMCs can be tailored suitably by combinations of matrix, reinforcement and processing route. AMCs are one of the most attractive alternatives for the manufacturing of light weight and high strength parts due to their low density and high specific strength. There are various techniques for preparing the AMCs with different reinforcement particles. In AMCs, the reinforcements are usually in the form of metal oxides, carbides, borides, nitrides and their combination. Among the various reinforcements titanium di-boride (TiB2) is of much interest due to its excellent stiffness, hardness, and wear resistance. This paper attempts to provide an overview to explore the possibilities of synthesizing titanium di-boride reinforced AMCs with different techniques. The mechanical and tribological properties of these composites have been emphasized to project these as tribo-materials.

  6. Mechanical Properties of Particulate Reinforced Aluminium Alloy Matrix Composite

    SciTech Connect

    Sayuti, M.; Sulaiman, S.; Baharudin, B. T. H. T.; Arifin, M. K. A.; Suraya, S.; Vijayaram, T. R.

    2011-01-17

    This paper discusses the mechanical properties of Titanium Carbide (TiC) particulate reinforced aluminium-silicon alloy matrix composite. TiC particulate reinforced LM6 alloy matrix composites were fabricated by carbon dioxide sand molding process with different particulate weight fraction. Tensile strength, hardness and microstructure studies were conducted to determine the maximum load, tensile strength, modulus of elasticity and fracture surface analysis have been performed to characterize the morphological aspects of the test samples after tensile testing. Hardness values are measured for the TiC reinforced LM6 alloy composites and it has been found that it gradually increases with increased addition of the reinforcement phase. The tensile strength of the composites increased with the increase percentage of TiC particulate.

  7. Mechanical Properties of Particulate Reinforced Aluminium Alloy Matrix Composite

    NASA Astrophysics Data System (ADS)

    Sayuti, M.; Sulaiman, S.; Baharudin, B. T. H. T.; Arifin, M. K. A.; Suraya, S.; Vijayaram, T. R.

    2011-01-01

    This paper discusses the mechanical properties of Titanium Carbide (TiC) particulate reinforced aluminium-silicon alloy matrix composite. TiC particulate reinforced LM6 alloy matrix composites were fabricated by carbon dioxide sand molding process with different particulate weight fraction. Tensile strength, hardness and microstructure studies were conducted to determine the maximum load, tensile strength, modulus of elasticity and fracture surface analysis have been performed to characterize the morphological aspects of the test samples after tensile testing. Hardness values are measured for the TiC reinforced LM6 alloy composites and it has been found that it gradually increases with increased addition of the reinforcement phase. The tensile strength of the composites increased with the increase percentage of TiC particulate.

  8. Laminates and reinforced metals

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1980-01-01

    A selective review is presented of the state of the art of metallic laminates and fiber reinforced metals called metallic matrix laminates (MMLs). Design and analysis procedures that are used for, and typical structural components that have been made from MMLs are emphasized. Selected MMLs, constituent materials, typical material properties and fabrication procedures are briefly described, including hybrids and superhybrids. Advantages, disadvantages, and special considerations required during design, analysis, and fabrication of MMLs are examined. Tabular and graphical data are included to illustrate key aspects of MMLs. Appropriate references are cited to provide a selective bibliography of a rapidly expanding and very promising research and development field.

  9. Effect of Turning Parameters on Aluminium Metal Matrix Composites -A Review

    NASA Astrophysics Data System (ADS)

    Rathod, B. S.; Pandey, Brajesh, Dr.

    2017-08-01

    Metal matrix composites have good mechanical properties as comparison to metals during various operations. Hence, different engineering applications started using MMC a very good choice in substituting metals. The paper provides a review on turning of strengthened aluminium metal matrix composites (AMMC) particularly reinforced particles. Also paper highlights the recent development of reinforced MMC from glass fiber reinforced polymers to present day hybrid and nano-composites. The paper is also showing the effect of different machining parameter on the response variables like surface roughness, tool wear rate, and material removal rate.

  10. The fracture of boron fibre-reinforced 6061 aluminium alloy

    NASA Technical Reports Server (NTRS)

    Wright, M. A.; Welch, D.; Jollay, J.

    1979-01-01

    The fracture of 6061 aluminium alloy reinforced with unidirectional and cross-plied 0/90 deg, 0/90/+ or - 45 deg boron fibres has been investigated. The results have been described in terms of a critical stress intensity, K(Q). Critical stress intensity factors were obtained by substituting the failure stress and the initial crack length into the appropriate expression for K(Q). Values were obtained that depended on the dimensions of the specimens. It was therefore concluded that, for the size of specimen tested, the values of K(Q) did not reflect any basic materials property.

  11. Abrasive wear of alumina fibre-reinforced aluminium

    NASA Astrophysics Data System (ADS)

    Axen, N.; Alahelisten, A.; Jacobson, S.

    1994-04-01

    The friction and abrasive wear behaviour of an Al-Si1MgMn aluminium alloy reinforced with 10, 15 and 30 vol.% of alumina fibers has been evaluated. The influence of fiber content, matrix hardness, applied load as well as the hardness and size of the abrasive grits was investigated. The tests were performed with a pin-on-drum two-body abrasion apparatus. The wear mechanisms were studied using scanning electron microscopy. It is shown that fiber reinforcement increases the wear resistance in milder abrasive situations, i.e. small and soft abrasives and low loads. However, in tougher abrasive situations, meaning coarse and hard abrasives and high loads, the wear resistance of the composites is equal to or, in some cases, even lower than that of the unreinforced material. It is also shown that the coefficient of friction decreases with increasing fiber content and matrix hardness of the composites.

  12. A Brief Research Review for Improvement Methods the Wettability between Ceramic Reinforcement Particulate and Aluminium Matrix Composites

    NASA Astrophysics Data System (ADS)

    Razzaq, Alaa Mohammed; Majid, Dayang Laila Abang Abdul; Ishak, M. R.; B, Uday M.

    2017-05-01

    The development of new methods for addition fine ceramic powders to Al aluminium alloy melts, which would lead to more uniform distribution and effective incorporation of the reinforcement particles into the aluminium matrix alloy. Recently the materials engineering research has moved to composite materials from monolithic, adapting to the global need for lightweight, low cost, quality, and high performance advanced materials. Among the different methods, stir casting is one of the simplest ways of making aluminium matrix composites. However, it suffers from poor distribution and combination of the reinforcement ceramic particles in the metal matrix. These problems become significantly effect to reduce reinforcement size, more agglomeration and tendency with less wettability for the ceramic particles in the melt process. Many researchers have carried out different studies on the wettability between the metal matrix and dispersion phase, which includes added wettability agents, fluxes, preheating the reinforcement particles, coating the reinforcement particles, and use composting techniques. The enhancement of wettability of ceramic particles by the molten matrix alloy and the reinforcement particles distribution improvement in the solidified matrix is the main objective for many studies that will be discussed in this paper.

  13. High strain rate superplasticity of AlN particulate reinforced aluminium alloy composites

    SciTech Connect

    Imai, T. ); L'Esperance, G.; Hong, B.D. )

    1994-08-01

    Ceramic whisker or particulate reinforced aluminium alloy composites have a great potential for automobile engineering components, aerospace structures, semi-conductor packaging and so on, because of the composites ability to exhibit a high specific elastic modulus and specific tensile strength, excellent wear resistance and heat resistance, low thermal expansion and good dimensional stability. A serious problem involving practical application of ceramic whisker or particulate reinforced aluminium alloy composites is due to the low tensile ductility, fracture toughness at room temperature and, also, their hardness qualities that make it difficult to deform by conventional forming processing and machining by ordinary tools. It has been found, however, that aluminium alloy composites reinforced by SiC or Si[sub 3]N[sub 4] whiskers or particulates produce superplasticity at a high strain rate of about 0.1s[sup [minus]1]. Superplastic deformation mechanisms of the ceramic whisker or particulate reinforced aluminium alloy composites are fine grain boundary sliding, interfacial sliding at a liquid phase and dynamic recrystallization. An AlN particulate reinforced aluminium alloy composite exhibits a high elastic modulus and a high thermal conductivity, and their thermal expansion is similar to silicon in that the AlN particulate reinforced aluminum alloy composite is expected to apply to semi-conductor packaging in the aerospace structure. In addition, if the composite could produce superplasticity at high strain rates, the market of aerospace application for superplastic composites could be expanded. The purpose of this study is to make clear if an AlN particulate reinforced aluminium alloy composite can produce superplasticity at high strain rate and the superplastic characteristics.

  14. Manufacturing and Machining Challenges of Hybrid Aluminium Metal Matix Composites

    NASA Astrophysics Data System (ADS)

    Baburaja, Kammuluri; Sainadh Teja, S.; Karthik Sri, D.; Kuldeep, J.; Gowtham, V.

    2017-08-01

    Manufacturing which involves material removal processes or material addition processes or material transformation processes. One or all the processes to obtain the final desired properties for a material with desired shape which meets the required precision and accuracy values for the expected service life of a material in working conditions. Researchers found the utility of aluminium to be the second largest after steel. Aluminium and its metal matrix composite possess wide applications in various applications in aerospace industry, automobile industry, Constructions and even in kitchen utensils. Hybrid Al-MMCconsist of two different materials, and one will be from organic origin along with the base material. In this paper an attempt is made to bring out the importance of utilization of aluminium and the challenges concerned in manufacturing and machining of hybrid aluminium MMC.

  15. Aspects regarding wearing behaviour in case of aluminium composite materials reinforced with carbon fibers

    NASA Astrophysics Data System (ADS)

    Caliman, R.

    2016-08-01

    This paper presents a study regarding wear comportment of sintered composite materials obtained by mixture of aluminium with short carbon fibers. The necessity to satisfying more and more the specific functions during design of high performance structures leads to perform multi-materials such as reinforced composite parts. The wear tests were made on three different orientations of fibers on a standard machine of tribology, pin disk type. Counter-disk was made of cast iron with a superficial hardness of 92 HB. The wear rate and friction coefficient decreased exponentially with time of friction and reached a stationary value. This behaviour was attributed to the development of a lubricating film on the friction surface. To conduct this work was performed measurements on samples from the Al matrix composites and carbon fiber 43%, wear mechanism was investigated by scanning electron microscopy. In addition to fiber orientation, the tribological behaviour of metal matrix composites reinforced with fiber is influenced by the interfacial reaction of fiber-matrix. The characteristics and the dimensions of the interface depend on the cycle of temperature and time at which the material has been subjected during the manufacturing process and thereafter.

  16. A Study on 3-Body Abrasive Wear Behaviour of Aluminium 8011 / Graphite Metal Matrix Composite

    NASA Astrophysics Data System (ADS)

    Latha Shankar, B.; Anil, K. C.; Patil, Rahul

    2016-09-01

    Metals and alloys have found their vital role in many applications like structural, corrosive, tribological, etc., in engineering environment. The alloys/composites having high strength to low weight ratio have gained attention of many researchers recently. In this work, graphite reinforced Aluminium 8011 metal matrix composite was prepared by conventional stir casting route, by varying the weight % of reinforcement. Uniform distribution of Graphite in matrix alloy was confirmed by optical micrographs. Prepared composite specimens were subjected to 3-body abrasive testing by varying applied load and time, the silica particles of 400 grit size were used as abrasive particles. It was observed that with the increase of weight% of Graphite the wear resistance of composite was also increasing and on comparison it was found that reinforced composite gives good wear resistance than base alloy.

  17. Quench Crucibles Reinforced with Metal

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Carrasquillo, Edgar; O'Dell, J. Scott; McKehnie, N.

    2008-01-01

    Improved crucibles consisting mainly of metal-reinforced ceramic ampules have been developed for use in experiments in which material specimens are heated in the crucibles to various high temperatures, then quenched by, for example, plunging the crucibles into water at room temperature. In a traditional quench crucible, the gap between the ampule and the metal cartridge impedes the transfer of heat to such a degree that the quench rate (the rate of cooling of the specimen) can be too low to produce the desired effect in the specimen. One can increase the quench rate by eliminating the metal cartridge to enable direct quenching of the ampule, but then the thermal shock of direct quenching causes cracking of the ampule. In a quench crucible of the present improved type, there is no gap and no metal cartridge in the traditional sense. Instead, there is an overlay of metal in direct contact with the ampule, as shown on the right side of the figure. Because there is no gap between the metal overlay and the ampule, the heat-transfer rate can be much greater than it is in a traditional quench crucible. The metal overlay also reinforces the ampule against cracking.

  18. Metal borohydride formation from aluminium boride and metal hydrides.

    PubMed

    Møller, Kasper T; Fogh, Alexander S; Paskevicius, Mark; Skibsted, Jørgen; Jensen, Torben R

    2016-10-05

    Metal borides are often decomposition products from metal borohydrides and thus play a role in the reverse reaction where hydrogen is absorbed. In this work, aluminium boride, AlB2, has been investigated as a boron source for the formation of borohydrides under hydrogen pressures of p(H2) = 100 or 600 bar at elevated temperatures (350 or 400 °C). The systems AlB2-MHx (M = Li, Na, Mg, Ca) have been investigated, producing LiBH4, NaBH4 and Ca(BH4)2, whereas the formation of Mg(BH4)2 was not observed at T = 400 °C and p(H2) = 600 bar. The formation of the metal borohydrides is confirmed by powder X-ray diffraction and infrared spectroscopy and the fraction of boron in AlB2 and M(BH4)x is determined quantitatively by (11)B MAS NMR. Hydrogenation for 12 h at T = 350-400 °C and p(H2) = 600 bar leads to the formation of substantial amounts of LiBH4 (38.6 mol%), NaBH4 (83.0 mol%) and Ca(BH4)2 (43.6 mol%).

  19. Examples of liquiq metal embrittlement in industrial aluminium alloys

    NASA Astrophysics Data System (ADS)

    Bréchet, Y.; Rodine, A.; Véron, M.; Péron, S.; Deschamps, A.

    2002-09-01

    Liquid metal embrittlement (LME) phenomena were investigated in two industrial aluminium alloys. Gallium penetration in 7010 alloys was systematically investigated to shed light on the effect of microstructure and plasticity ahead of the crack tip. Hot temperature shortness in 5083 alloy is given as an example of cleavage induced by LME.

  20. Dry Sliding Wear behaviour of Aluminium-Red mud- Tungsten Carbide Hybrid metal matrix composites

    NASA Astrophysics Data System (ADS)

    Devi Chinta, Neelima; Selvaraj, N.; Mahesh, V.

    2016-09-01

    Red mud is an industrial waste obtained during the processing of alumina by Bayer's process. An attempt has been made to utilize the solid waste by using it as the reinforcement material in metal matrix composites. Red mud received from NALCO has been subjected for sieve analysis and milled to 42 nanometers using high energy ball mill. Red mud is used as a reinforcement material in Pure Aluminium matrix composite at 2%, 4%, and 6% weight at 100 microns level as well as 42 nano meters along with 4%Tungsten carbide by weight. Micro and Nano structured red mud powders, Tungsten carbide powder and Aluminium is mixed in a V-Blender, compacted at a pressure of 40 bar and samples are prepared by conventional sintering with vacuum as medium. In this current work, dry sliding wear characteristics at normal and heat treatment conditions are investigated with optimal combination of Aluminium, Tungsten carbide and different weight fractions of micro and nano structured red mud powder.

  1. Investigation of Selectively-Reinforced Metallic Lugs

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.; Abada, Christopher H.

    2007-01-01

    An investigation of the effects of material and geometric variables on the response of U-shaped band-reinforced metallic lugs was performed. Variables studied were reinforcement, adhesive and metallic lug mechanical properties, hole diameter, reinforcement and adhesive thickness, and the distance from the hole s center to the end of the lug. Generally, U-shaped band reinforced lugs exhibited superior performance than non-reinforced lugs, that is higher load at the conventional lug design criteria of four percent hole elongation. Depending upon the reinforcement configuration the increase in load may be negligible to 15 or 20 percent. U-shaped band reinforcement increases lug load carrying capability primarily through two mechanisms; increasing the slope of the response curve after the initial knee and restraining overall deformation of the metallic portion of the lug facilitating increased yielding of metallic material between the hole and the edge of the metallic portion of the lug.

  2. Pulsed Nd-YAG laser welding of A SiC particulate reinforced aluminium alloy composite

    NASA Astrophysics Data System (ADS)

    Yue, T. M.; Xu, J. H.; Man, H. C.

    1997-01-01

    This paper examines the laser welding behaviour of a SiC particulate reinforced Al-alloy 2124 composite using a pulsed Nd-YAG laser. The influences of laser welding parameters of laser intensity, pulse duration and the beam's focus position on the depth of weld penetration as well as the size of fusion zone were investigated. These investigations have led to an optimum welding condition proposed for pulsed laser welding of SiC particulate reinforced aluminium alloy composites with minimum defects.

  3. Corrosion of aluminium metal in OPC- and CAC-based cement matrices

    SciTech Connect

    Kinoshita, Hajime; Swift, Paul; Utton, Claire; Carro-Mateo, Beatriz; Collier, Nick; Milestone, Neil

    2013-08-15

    Corrosion of aluminium metal in ordinary Portland cement (OPC) based pastes produces hydrogen gas and expansive reaction products causing problems for the encapsulation of aluminium containing nuclear wastes. Although corrosion of aluminium in cements has been long known, the extent of aluminium corrosion in the cement matrices and effects of such reaction on the cement phases are not well established. The present study investigates the corrosion reaction of aluminium in OPC, OPC-blast furnace slag (BFS) and calcium aluminate cement (CAC) based systems. The total amount of aluminium able to corrode in an OPC and 4:1 BFS:OPC system was determined, and the correlation between the amount of calcium hydroxide in the system and the reaction of aluminium obtained. It was also shown that a CAC-based system could offer a potential matrix to incorporate aluminium metal with a further reduction of pH by introduction of phosphate, producing a calcium phosphate cement.

  4. Wear Behavior of Aluminium Metal Matrix Composite Prepared from Industrial Waste.

    PubMed

    Xavier, L Francis; Suresh, Paramasivam

    2016-01-01

    With an increase in the population and industrialization, a lot of valuable natural resources are depleted to prepare and manufacture products. However industrialization on the other hand has waste disposal issues, causing dust and environmental pollution. In this work, Aluminium Metal Matrix Composite is prepared by reinforcing 10 wt% and 20 wt% of wet grinder stone dust particles an industrial waste obtained during processing of quarry rocks which are available in nature. In the composite materials design wear is a very important criterion requiring consideration which ensures the materials reliability in applications where they come in contact with the environment and other surfaces. Dry sliding wear test was carried out using pin-on-disc apparatus on the prepared composites. The results reveal that increasing the reinforcement content from 10 wt% to 20 wt% increases the resistance to wear rate.

  5. Wear Behavior of Aluminium Metal Matrix Composite Prepared from Industrial Waste

    PubMed Central

    Xavier, L. Francis; Suresh, Paramasivam

    2016-01-01

    With an increase in the population and industrialization, a lot of valuable natural resources are depleted to prepare and manufacture products. However industrialization on the other hand has waste disposal issues, causing dust and environmental pollution. In this work, Aluminium Metal Matrix Composite is prepared by reinforcing 10 wt% and 20 wt% of wet grinder stone dust particles an industrial waste obtained during processing of quarry rocks which are available in nature. In the composite materials design wear is a very important criterion requiring consideration which ensures the materials reliability in applications where they come in contact with the environment and other surfaces. Dry sliding wear test was carried out using pin-on-disc apparatus on the prepared composites. The results reveal that increasing the reinforcement content from 10 wt% to 20 wt% increases the resistance to wear rate. PMID:26989764

  6. Unusual sources of aluminium and heavy metals in potable waters.

    PubMed

    Fuge, R; Pearce, N J; Perkins, W T

    1992-04-01

    Aluminium in water supplies derives from natural sources and from the use of Al2(SO4)3 in water treatment. Heavy metals such as Pb, Cu, Zn and Cd can be added to water from pipework and solder. However, it is apparent that AI and other metals in potable waters can derive from deposits on pipe walls which can be subsequently mobilised when the supply and/or treatment process is changed. Concentrations of Al in domestic supply water of the Llanbrynmair area have been shown to increase from 1 μg to 50 μg L(-1) during its 18 km journey along the water main. Similarly, Pb concentrations in a public building in the Aberystwyth area are found to be extremely elevated due to the metal's mobilisation from encrustations occurring on the copper pipework.

  7. Electrochemical synthesis of nickel-aluminium oxide system from metals obtained by ore processing

    NASA Astrophysics Data System (ADS)

    Korobochkin, V. V.; Usoltseva, N. V.; Shorokhov, K. G.; Popova, E. V.

    2015-11-01

    Separate and combined electrochemical oxidation of aluminium and nickel has been conducted by alternating current of industrial frequency. Concentration increase of electrolyte solution (sodium chloride) in the range from 3 to 25 wt. % and current density from 0.5 to 1.5 A/cm2 was found to result in the increasing metal oxidation rate, excluding aluminium oxidation which oxidation rate is independent of the electrolyte solution concentration. At the current density of 1.5 A/cm2 the products of separate oxidation of nickel and aluminium are nickel oxyhydroxides, nickel hydroxides and aluminium oxyhydroxide (boehmite), respectively. In addition to these compounds, the nickel-aluminium oxide hydrate is included in the products of nickel and aluminium co-oxidation. Its content grows with the increasing electrolyte solution concentration. Varying the concentration and current density within the limits indicated, the nickel-aluminium oxide system with nickel oxide content from 3 to 10 wt. % is produced.

  8. Bonding of reinforced Teflon to metals

    NASA Technical Reports Server (NTRS)

    Laiacona, F. P. (Inventor)

    1971-01-01

    Reinforced FEP Teflon composite material is bonded to a metal substrate by applying a thin layer of copper on the metal surface and disposing irregularly shaped copper particles on the coated surface. The reinforced Teflon is then assembled in contact with the particles, and the assembly is heated under pressure at an elevated temperature below the melting point of the Teflon. A diffusion bond stronger than the reinforced Teflon component is produced, thus enabling the fabrication of self-lubricating bodies with relatively high strength.

  9. Aluminium plasmonics

    NASA Astrophysics Data System (ADS)

    Gérard, Davy; Gray, Stephen K.

    2015-05-01

    We present an overview of ‘aluminium plasmonics’, i.e. the study of both fundamental and practical aspects of surface plasmon excitations in aluminium structures, in particular thin films and metal nanoparticles. After a brief introduction noting both some recent and historical contributions to aluminium plasmonics, we discuss the optical properties of aluminium and aluminium nanostructures and highlight a few selected studies in a host of areas ranging from fluorescence to data storage.

  10. Aluminium plasmonics

    SciTech Connect

    Gerard, Davy; Gray, Stephen K.

    2014-12-15

    In this study, we present an overview of 'aluminium plasmonics', i.e. the study of both fundamental and practical aspects of surface plasmon excitations in aluminium structures, in particular thin films and metal nanoparticles. After a brief introduction noting both some recent and historical contributions to aluminium plasmonics, we discuss the optical properties of aluminium and aluminium nanostructures and highlight a few selected studies in a host of areas ranging from fluorescence to data storage.

  11. Aluminium plasmonics

    DOE PAGES

    Gerard, Davy; Gray, Stephen K.

    2014-12-15

    In this study, we present an overview of 'aluminium plasmonics', i.e. the study of both fundamental and practical aspects of surface plasmon excitations in aluminium structures, in particular thin films and metal nanoparticles. After a brief introduction noting both some recent and historical contributions to aluminium plasmonics, we discuss the optical properties of aluminium and aluminium nanostructures and highlight a few selected studies in a host of areas ranging from fluorescence to data storage.

  12. Residual stresses in shape memory alloy fiber reinforced aluminium matrix composite

    NASA Astrophysics Data System (ADS)

    Tsz Loong, Tang; Jamian, Saifulnizan; Ismail, Al Emran; Nur, Nik Hisyammudin Muhd; Watanabe, Yoshimi

    2017-01-01

    Process-induced residual stress in shape memory alloy (SMA) fiber reinforced aluminum (Al) matrix composite was simulated by ANSYS APDL. The manufacturing process of the composite named as NiTi/Al is start with loading and unloading process of nickel titanium (NiTi) wire as SMA to generate a residual plastic strain. Then, this plastic deformed NiTi wire would be embedded into Al to become a composite. Lastly, the composite is heated form 289 K to 363 K and then cooled back to 300 K. Residual stress is generated in composite because of shape memory effect of NiTi and mismatch of thermal coefficient between NiTi wire and Al matrix of composite. ANSYS APDL has been used to simulate the distribution of residual stress and strain in this process. A sensitivity test has been done to determine the optimum number of nodes and elements used. Hence, the number of nodes and elements used are 15680 and 13680, respectively. Furthermore, the distribution of residual stress and strain of nickel fiber reinforced aluminium matrix composite (Ni/Al) and titanium fiber reinforced aluminium matrix composite (Ti/Al) under same simulation process also has been simulated by ANSYS APDL as comparison to NiTi/Al. The simulation results show that compressive residual stress is generated on Al matrix of Ni/Al, Ti/Al and NiTi/Al during heating and cooling process. Besides that, they also have similar trend of residual stress distribution but difference in term of value. For Ni/Al and Ti/Al, they are 0.4% difference on their maximum compressive residual stress at 363K. At same circumstance, NiTi/Al has higher residual stress value which is about 425% higher than Ni/Al and Ti/Al composite. This implies that shape memory effect of NiTi fiber reinforced in composite able to generated higher compressive residual stress in Al matrix, hence able to enhance tensile property of the composite.

  13. Effect of Weight Percentage and Cutting Parameter on Surface Finish of SiC Reinforced Aluminium Composite

    NASA Astrophysics Data System (ADS)

    Kadadevaramath, R. S.; Kotresh, M. C.; Srinivasan, D.

    2016-09-01

    In the present work, aluminium alloy of series 1100 is selected as a matrix material and SiC of 45 microns as reinforcement. The composites are synthesized by 2 stage stir casting route, by varying a weight % of reinforcement from 6 % and 10%. The surface roughness of prepared composite were examined after plain turning operation. The machining parameters like speed, feed, DOC, SiC Wt. % are varied at 3 different levels. In order to minimize the time, cost and material a taguchi L9 orthogonal array was used for experiment. From the studies it was observed that the roughness value will increase with the increasing in reinforcement percentage.

  14. Improved method for producing metal-reinforced ceramics

    NASA Technical Reports Server (NTRS)

    Landingham, R. L.

    1972-01-01

    Vacuum impregnation process produces metal-reinforced ceramics with only 3 percent void space volumes. Method may be used to produce metal-reinforced ceramics for high temperature or structural applications such as furnace supports and armor.

  15. Health risk assessment of workers exposed to metals from an aluminium production plant.

    PubMed

    Buranatrevedh, Surasak

    2010-12-01

    Foundry is an industry involved various kinds of metals and chemicals. Workers who work in foundry industry are at risk of exposure to these metals and chemicals. Objective of this study was to conduct quantitative health risk assessment for workers who exposed to metals from an aluminium production industry. The U.S. National Academy of Sciences' four steps of health risk assessment were used to conduct quantitative health risk assessment in this study. This study showed that there were 6 types of metals involved in the aluminium foundry in this study. These metals could cause various health effects but not cancers. Workers were mostly exposed to these metals by inhalation. Calculated reference dose (RfD) for inhalation of aluminium used in this assessment was 0.000015 mg/kg/day. Calculated RID for inhalation of manganese used in this assessment was 0.000002 mg/kg/day. Calculated RfD for inhalation of copper used in this assessment was 0.000028 mg/kg/day. Calculated RID for inhalation of zinc used in this assessment was 0.000083 mg/ kg/day. Calculated RID for inhalation of magnesium used in this assessment was 0.949833 mg/kg/day. Calculated RID for inhalation of iron used in this assessment was 10.6219 mg/kg/day. Maximum daily doses (MDDs) for workers who exposed to metals measured in this foundry were 0, 0, 0.000463, 0.0000927, 0.000162 and 0 mg/kg/day for manganese, zinc, aluminium, iron, magnesium and copper, respectively. Finally, risk characterization for workers exposed to metals in this aluminium foundry showed that workers in this foundry had 31 times higher risk of developing diseases from aluminium than persons who were not exposed to aluminium. These workers had the same risk of developing diseases from other metals and chemicals as persons who were not exposed to those metals and chemicals. Workers who exposed to aluminium in this aluminium production plant had 31 times risk of developing non-carcinogenic effects from aluminium compared with normal

  16. Short-fibre and particulate-reinforced metal-matrix composites

    SciTech Connect

    Harris, S.J.

    1989-08-01

    Short fibres, whiskers or particles of ceramic materials, e.g. silicon carbide and alumina, when dispersed in a more or less random manner in a metallic matrix can promote increases in stiffness and strength at ambient and elevated temperatures without imposing a weight penalty. The paper considers the available routes for the fabrication of such composites, e.g. by squeeze casting, spray forming, powder technologies and hot working etc. Influences of type and amount of reinforcement, matrix alloy selection and processing route on strength, creep and fatigue resistance are discussed. Comparisons are made with conventional metals and alloys, and polymers and metals reinforced with continuous fibres. Attention is drawn to the behaviour of these materials under compressive loading as well as to their thermal expansion and conductivity. The majority of the matrices considered are aluminium-based.

  17. Recycling of ceramic particulate reinforced aluminium metal matrix composites

    SciTech Connect

    Sharma, S.C.; Murthy, C.S.C.; Kamath, R.; Vinai Babu, B.R.; Satish, B.M.; Girish, B.M.

    1995-12-31

    The aluminum matrix composites with ceramic dispersoids can be separated by the density difference concept. In the proposed work, composite scrap is recycled using an oil fired furnace. The scrap is melted in the furnace and temperature is maintained below 740 degree centigrade. Because of the density difference the lighter dispersoids will float and heavier dispersoids will settle down. The clean melt is separated be removing the floating and settled dispersoids, and then filtering using ceramic filters.

  18. Mechanical Properties of SiC, Al2O3 Reinforced Aluminium 6061-T6 Hybrid Matrix Composite

    NASA Astrophysics Data System (ADS)

    Murugan, S. Senthil; Jegan, V.; Velmurugan, M.

    2017-06-01

    This paper contains the investigation of tensile, compression and impact characterization of SiC, Al2O3 reinforced Aluminium 6061-T6 matrix hybrid composite. Hybrid matrix composite fabrication was done by stir casting method. An attempt has been made by keeping Al2O3 percentage (7%) constant and increasing SiC percentage (10, 15, and 20%). After fabricating, the samples were prepared and tested to find out the various mechanical properties like tensile, compressive, and impact strength of the developed composites of different weight % of silicon carbide and Alumina in Aluminium alloy. The main objective of the study is to compare the values obtained and choose the best composition of the hybrid matrix composite from the mechanical properties point of view.

  19. Tribological Properties of Aluminium Alloy Composites Reinforced with Multi-Layer Graphene-The Influence of Spark Plasma Texturing Process.

    PubMed

    Kostecki, Marek; Woźniak, Jarosław; Cygan, Tomasz; Petrus, Mateusz; Olszyna, Andrzej

    2017-08-10

    Self-lubricating composites are designed to obtain materials that reduce energy consumption, improve heat dissipation between moving bodies, and eliminate the need for external lubricants. The use of a solid lubricant in bulk composite material always involves a significant reduction in its mechanical properties, which is usually not an optimal solution. The growing interest in multilayer graphene (MLG), characterised by interesting properties as a component of composites, encouraged the authors to use it as an alternative solid lubricant in aluminium matrix composites instead of graphite. Aluminium alloy 6061 matrix composite reinforced with 2-15 vol % of MLG were synthesised by the spark plasma sintering process (SPS) and its modification, spark plasma texturing (SPT), involving deformation of the pre-sintered body in a larger diameter matrix. It was found that the application of the SPT method improves the density and hardness of the composites, resulting in improved tribological properties, particularly in the higher load regime.

  20. Damage tolerance in discontinuously reinforced metal-matrix composites

    SciTech Connect

    Rack, H.J.; Ratnaparkhi, P.

    1988-11-01

    Properly designed discontinuously-reinforced MMCs have been projected by linear-elastic fracture mechanics to be competitive, on both cost and performance bases, with cross-plied graphite-reinforced polymer-matrix composites and continuously-reinforced MMCs. With respect to the latter, discontinuously-reinforced MMCs achieve considerable advantages in virtue of their lower-cost reinforcements and their fabricability by standard metal-working practices. Discontinuously reinforced MMC billets can also be produced through powder-blending and direct-spraying techniques. SiC short fibers, whiskers, and particulates are typical of the discontinuous reinforcements used in 2124 and 6061 aluminum matrices. 18 references.

  1. Fatigue of continuous fiber reinforced metallic materials

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Mirdamadi, M.; Bakuckas, J. G., Jr.

    1993-01-01

    The complex damage mechanisms that occur in fiber reinforced advanced metallic materials are discussed. As examples, results for several layups of SCS-6/Ti-15-3 composites are presented. Fatigue tests were conducted and analyzed for both notched and unnotched specimens at room and elevated temperatures. Test conditions included isothermal, non-isothermal, and simulated mission profile thermomechanical fatigue. Test results indicated that the stress in the 0 degree fibers is the controlling factor for fatigue life for a given test condition. An effective strain approach is presented for predicting crack initiation at notches. Fiber bridging models were applied to crack growth behavior.

  2. Plasticity of continuous fiber-reinforced metals

    SciTech Connect

    Bystricky, P.; Mortensen, A.; Bjerregaard, H.

    1999-07-01

    Continuous parallel alumina fiber-reinforced metals produced by pressure infiltration are tested in tension/compression along the fiber axis with a goal of measuring the influence exerted by long fibers on the flow stress of their matrix. In this configuration, the equistrain rule of mixtures, modified to take into account stresses due to differential lateral contraction, can be used to back-calculate the matrix flow stress from that of the composite. This method provides the least physically ambiguous measurement of matrix flow stress in the composite; however, experimental uncertainty can be high. This uncertainty is evaluated in detail for the present experiments, in which matrix in situ stress-strain curves are measured for cast 3M NEXTEL 610 and DUPONT FIBER FP reinforced pure and alloyed aluminum- and copper-based matrices of varying propensity for recovery and cross-slip. Within experimental uncertainty, data show no enhanced matrix work-hardening rates such as those that have been measured with tungsten fiber-reinforced copper. It is found that the fibers alter the matrix plastic flow behavior by increasing the flow-stress amplitude of the matrix, and by rendering initial yield in compression more progressive than in initial tension. Essentially, all observed features of matrix/fiber interaction can be rationalized as attributable to dislocation emission in the matrix caused by thermal mismatch strains within the material during composite cooldown from processing temperatures.

  3. Human biomonitoring of aluminium after a single, controlled manual metal arc inert gas welding process of an aluminium-containing worksheet in nonwelders.

    PubMed

    Bertram, Jens; Brand, Peter; Hartmann, Laura; Schettgen, Thomas; Kossack, Veronika; Lenz, Klaus; Purrio, Ellwyn; Reisgen, Uwe; Kraus, Thomas

    2015-10-01

    Several existing field studies evaluate aluminium welding works but no thoroughly controlled exposure scenario for welding fume has been described yet. This study provides information about the uptake and elimination of aluminium from welding fumes under controlled conditions. In the Aachen Workplace Simulation Laboratory, we are able to generate welding fumes of a defined particle mass concentration. We exposed 12, until then occupationally unexposed participants with aluminium-containing welding fumes of a metal inert gas (MIG) welding process of a total dust mass concentration of 2.5 mg/m(3) for 6 h. Room air filter samples were collected, and the aluminium concentration in air derived. Urine and plasma samples were collected directly before and after the 6-h lasting exposure, as well as after 1 and 7 days. Human biomonitoring methods were used to determine the aluminium content of the samples with high-resolution continuum source atomic absorption spectrometry. Urinary aluminium concentrations showed significant changes after exposure compared to preexposure levels (mean t(1) (0 h) 13.5 µg/L; mean t(2) (6 h) 23.5 µg/L). Plasma results showed the same pattern but pre-post comparison did not reach significance. We were able to detect a significant increase of the internal aluminium burden of a single MIG aluminium welding process in urine, while plasma failed significance. Biphasic elimination kinetic can be observed. The German BAT of 60 µg/g creatinine was not exceeded, and urinary aluminium returned nearly to baseline concentrations after 7 days.

  4. Serum aluminium and cobalt levels after ceramic-on-ceramic and metal-on-metal total hip replacement.

    PubMed

    Grübl, A; Weissinger, M; Brodner, W; Gleiss, A; Giurea, A; Gruber, M; Pöll, G; Meisinger, V; Gottsauner-Wolf, F; Kotz, R

    2006-08-01

    In a randomised study, 28 patients with a mean age of 62.2 years (32 to 81) with osteoarthritis or avascular necrosis of the hip received either a ceramic-on-ceramic or a metal-on-metal total hip replacement. Apart from the liners the acetabular and femoral components were made of Ti-Al-Nb alloy. The serum aluminium and cobalt levels were measured before, and at one year after surgery. The 15 patients in the ceramic-on-ceramic group had a median pre-operative aluminium level of 1.3 microg/l (0.25 to 8.4) and a cobalt level below the detection limit. At one year the aluminium level was 1.1 microg/l (0.25 to 2.3) and the cobalt level was 0.4 microg/l (0.15 to 0.7). The 13 patients in the metal-on-metal group had a median pre-operative aluminium level of 1.9 microg/l (0.25 to 4.4) and a cobalt level below the detection limit. At one year the median aluminium level was 0.9 microg/l (0.25 to 3.9) whereas the cobalt level was 1.4 microg/l (0.5 to 10.5). This increase in the cobalt level at one year was significant (p < 0.001). Our findings indicate that ceramic-on-ceramic bearings do not cause elevated levels of serum aluminium in the first post-operative year.

  5. Experimental Investigation of Thermal Properties in Glass Fiber Reinforced with Aluminium

    NASA Astrophysics Data System (ADS)

    Irudaya raja, S. Joseph; Vinod Kumar, T.; Sridhar, R.; Vivek, P.

    2017-03-01

    A test method of a Guarded heat flow meter are used to measure the thermal conductivity of glass fiber and filled with a aluminum powder epoxy composites using an instrument in accordance with ASTM. This experimental study reveals that the incorporation of aluminum and glass fiber reinforced results in enhancement of thermal conductivity of epoxy resin and thereby improves its heat transfer capability. Fiber metal laminates are good candidates for advanced automobile structural applications due to their high categorical mechanical and thermal properties. The most consequential factor in manufacturing of these laminates is the adhesive bonding between aluminum and FRP layers. Here several glass-fiber reinforced aluminum were laminates with different proportion of bonding adhesion were been manufactured. It was observed that the damage size is more preponderant in laminates with poor interfacial adhesion compared to that of laminates with vigorous adhesion between aluminum and glass layers numerically calculated ones and it is found that the values obtained for various composite models using experimental testing method.

  6. Effect of aluminium metal on glutathione (GSH) level in plasma and cytosolic fraction of human blood.

    PubMed

    Khan, Haroon; Khan, M Farid; Jan, Syed Umer; Ullah, Naseem

    2011-01-01

    Aluminium is being used in the medicines in the form of antacids. The Aluminium metal can be leached from our utensils and can harm the body for its side effects, if become available to the systemic circulation. So it is important to check the effect of Aluminum on the Glutathione in vivo condition. Ellman method was used to determine the effect of Aluminum on GSH level in whole blood spectrophotometerically. 5,5-Dithiobis, 2-Nitrobenzoic Acid, Glutathione, Aluminium sulphate, phosphate buffer, HCl (Hydrochloric acid) and other laboratory instruments were used to conduct the research work. Time dependent effect of Aluminum on Glutathione level in whole blood was also checked and decrease was observed. This study also shows the effect of Aluminum as helping agent for the Glutathione to enhance the antioxidant system of the body or a cause for depletion of reduced Glutathione.

  7. Reinforcement of Aluminum Castings with Dissimilar Metals

    SciTech Connect

    Han, Q

    2004-01-07

    The project ''Reinforcement of Aluminum Casting with Dissimilar Metal'' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Cummins Inc. This project, technologies have been developed to reinforce aluminum castings with steel insert. Defect-free bond between the steel insert and the aluminum casting has been consistently obtained. The push-out experiment indicated that the bond strength is higher than that of the Al-Fin method. Two patents have been granted to the project team that is comprised of Cummins Inc. and ORNL. This report contains four sections: the coating of the steel pins, the cast-in method, microstructure characterization, and the bond strength. The section of the coating of the steel pins contains coating material selection, electro-plating technique for plating Cu and Ni on steel, and diffusion bonding of the coatings to the steel. The section of cast-in method deals with factors that affecting the quality of the metallurgical bond between the coated steel and the aluminum castings. The results of microstructure characteristics of the bonding are presented in the microstructure characterization section. A push-out experiment and the results obtained using this method is described in the section of bond strength/mechanical property.

  8. Process Simulation of Aluminium Sheet Metal Deep Drawing at Elevated Temperatures

    SciTech Connect

    Winklhofer, Johannes; Trattnig, Gernot; Sommitsch, Christof

    2010-06-15

    Lightweight design is essential for an economic and environmentally friendly vehicle. Aluminium sheet metal is well known for its ability to improve the strength to weight ratio of lightweight structures. One disadvantage of aluminium is that it is less formable than steel. Therefore complex part geometries can only be realized by expensive multi-step production processes. One method for overcoming this disadvantage is deep drawing at elevated temperatures. In this way the formability of aluminium sheet metal can be improved significantly, and the number of necessary production steps can thereby be reduced. This paper introduces deep drawing of aluminium sheet metal at elevated temperatures, a corresponding simulation method, a characteristic process and its optimization. The temperature and strain rate dependent material properties of a 5xxx series alloy and their modelling are discussed. A three dimensional thermomechanically coupled finite element deep drawing simulation model and its validation are presented. Based on the validated simulation model an optimised process strategy regarding formability, time and cost is introduced.

  9. Process Simulation of Aluminium Sheet Metal Deep Drawing at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Winklhofer, Johannes; Trattnig, Gernot; Lind, Christoph; Sommitsch, Christof; Feuerhuber, Hannes

    2010-06-01

    Lightweight design is essential for an economic and environmentally friendly vehicle. Aluminium sheet metal is well known for its ability to improve the strength to weight ratio of lightweight structures. One disadvantage of aluminium is that it is less formable than steel. Therefore complex part geometries can only be realized by expensive multi-step production processes. One method for overcoming this disadvantage is deep drawing at elevated temperatures. In this way the formability of aluminium sheet metal can be improved significantly, and the number of necessary production steps can thereby be reduced. This paper introduces deep drawing of aluminium sheet metal at elevated temperatures, a corresponding simulation method, a characteristic process and its optimization. The temperature and strain rate dependent material properties of a 5xxx series alloy and their modelling are discussed. A three dimensional thermomechanically coupled finite element deep drawing simulation model and its validation are presented. Based on the validated simulation model an optimised process strategy regarding formability, time and cost is introduced.

  10. Preparation of SiC based Aluminium metal matrix nano composites by high intensity ultrasonic cavitation process and evaluation of mechanical and tribological properties

    NASA Astrophysics Data System (ADS)

    Murthy, N. V.; Prasad Reddy, A.; Selvaraj, N.; Rao, C. S. P.

    2016-09-01

    Request augments on a worldwide scale for the new materials. The metal matrix nano composites can be used in numerous applications of helicopter structural parts, gas turbine exit guide vane's, space shuttle, and other structural applications. The key mailman to ameliorate performance of composite matrix in aluminium alloy metal reinforces nano particles in the matrix of alloy uniformly, which ameliorates composite properties without affecting limit of ductility. The ultrasonic assisted stir casting helped agitation was successfully used to fabricate Al 2219 metal matrix of alloy reinforced with (0.5, 1, 1.5 and 2) wt.% of nano silicon carbide (SiC) particles of different sizes 50nm and 150nm. The micrographs of scanning electron microscopy of nano composite were investigated it reveals that the uniform dispersion of nano particles silicon carbide in aluminium alloy 2219 matrix and with the low porosity. How the specific wear rate was vary with increasing weight percentage of nano particles at constant load and speed as shown in results and discussions. And the mechanical properties showed that the ultimate tensile strength and hardness of metal matrix nano composite AA 2219 / nano SiC of 50nm and 150nm lean to augment with increase weight percentage of silicon carbide content in the matrix alloy.

  11. Carbide-reinforced metal matrix composite by direct metal deposition

    NASA Astrophysics Data System (ADS)

    Novichenko, D.; Thivillon, L.; Bertrand, Ph.; Smurov, I.

    Direct metal deposition (DMD) is an automated 3D laser cladding technology with co-axial powder injection for industrial applications. The actual objective is to demonstrate the possibility to produce metal matrix composite objects in a single-step process. Powders of Fe-based alloy (16NCD13) and titanium carbide (TiC) are premixed before cladding. Volume content of the carbide-reinforced phase is varied. Relationships between the main laser cladding parameters and the geometry of the built-up objects (single track, 2D coating) are discussed. On the base of parametric study, a laser cladding process map for the deposition of individual tracks was established. Microstructure and composition of the laser-fabricated metal matrix composite objects are examined. Two different types of structures: (a) with the presence of undissolved and (b) precipitated titanium carbides are observed. Mechanism of formation of diverse precipitated titanium carbides is studied.

  12. In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface.

    PubMed

    Xie, De-Gang; Wang, Zhang-Jie; Sun, Jun; Li, Ju; Ma, Evan; Shan, Zhi-Wei

    2015-09-01

    The presence of excess hydrogen at the interface between a metal substrate and a protective oxide can cause blistering and spallation of the scale. However, it remains unclear how nanoscale bubbles manage to reach the critical size in the first place. Here, we perform in situ environmental transmission electron microscopy experiments of the aluminium metal/oxide interface under hydrogen exposure. It is found that once the interface is weakened by hydrogen segregation, surface diffusion of Al atoms initiates the formation of faceted cavities on the metal side, driven by Wulff reconstruction. The morphology and growth rate of these cavities are highly sensitive to the crystallographic orientation of the aluminium substrate. Once the cavities grow to a critical size, the internal gas pressure can become great enough to blister the oxide layer. Our findings have implications for understanding hydrogen damage of interfaces.

  13. In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface

    NASA Astrophysics Data System (ADS)

    Xie, De-Gang; Wang, Zhang-Jie; Sun, Jun; Li, Ju; Ma, Evan; Shan, Zhi-Wei

    2015-09-01

    The presence of excess hydrogen at the interface between a metal substrate and a protective oxide can cause blistering and spallation of the scale. However, it remains unclear how nanoscale bubbles manage to reach the critical size in the first place. Here, we perform in situ environmental transmission electron microscopy experiments of the aluminium metal/oxide interface under hydrogen exposure. It is found that once the interface is weakened by hydrogen segregation, surface diffusion of Al atoms initiates the formation of faceted cavities on the metal side, driven by Wulff reconstruction. The morphology and growth rate of these cavities are highly sensitive to the crystallographic orientation of the aluminium substrate. Once the cavities grow to a critical size, the internal gas pressure can become great enough to blister the oxide layer. Our findings have implications for understanding hydrogen damage of interfaces.

  14. Comparison of nickel silicide and aluminium ohmic contact metallizations for low-temperature quantum transport measurements

    PubMed Central

    2011-01-01

    We examine nickel silicide as a viable ohmic contact metallization for low-temperature, low-magnetic-field transport measurements of atomic-scale devices in silicon. In particular, we compare a nickel silicide metallization with aluminium, a common ohmic contact for silicon devices. Nickel silicide can be formed at the low temperatures (<400°C) required for maintaining atomic precision placement in donor-based devices, and it avoids the complications found with aluminium contacts which become superconducting at cryogenic measurement temperatures. Importantly, we show that the use of nickel silicide as an ohmic contact at low temperatures does not affect the thermal equilibration of carriers nor contribute to hysteresis in a magnetic field. PMID:21968083

  15. Nanostructured metal composites reinforced with fullerenes

    NASA Astrophysics Data System (ADS)

    Robles-Hernández, Francisco C.; Calderon, H. A.

    2010-02-01

    This work presents the results of the characterization of nanostructured Al or Fe matrix composites reinforced with fullerenes. The fullerene used is a mix of 15 wt%C60, 5 wt.%C70, and 80 wt.% soot that is the product of the primary synthesis of C60. The composites were produced by mechanical alloying and sintered by spark plasma sintering (SPS). It was found that in both composites, C60 withstands mechanical alloying, and acts as a control agent, reducing the agglomeration of the particles. In both composite systems the as-mechanically alloyed powders as well as the SPS sintered products are nanostructured. During the SPS process the effect of the metal (Al or Fe) matrix with the fullerene is different for each composite. For instance, Al reacts with all the carbon in the fullerene mix and forms Al4C3; on the contrary, in the Fe-fullerene composite, Fe sponsors the synthesis of C60 during the SPS process. The synthesis of the C60 is presumably assisted by the catalytic nature of Fe and the electric field generated during the SPS sintering process.

  16. Aging effects of diamond reinforced aluminium alloys submitted to deep space real conditions. Structural, chemical and electrical degradation

    NASA Astrophysics Data System (ADS)

    Korneli, Grigorov; Bouzekova-Penkova, Anna; Datcheva, Maria; Avdeev, George; Grushin, Valerii; Klimov, Stanislav

    2016-07-01

    An aluminium alloy (Al-Cu-Zn-Mg) reinforced with ultra-dispersed diamond powder and tungsten (W), has been prepared in form of 7 cm bars and 4 mm diameter. One part of them stayed 2 years on satellite exposed to outer space, where the Sun activity and the background radiation were monitored. After satellite return both batches has been studied. Structural test, mainly micro-hardness together with detailed X-rays analyses was performed. The satellite makes a tour around the Earth each two hours, the temperature difference being circa 300oC. The micro-hardness being measured with Agilent G200 nano-indentor shows a significant drop of 25%. The XRD patterns are consistent with the previous results, states defects incorporation, and crystalline cells deterioration.

  17. Reinforcement of Wood Pallets with Metal Connector Plates

    Treesearch

    John W. Clarke; Thomas E. McLain; Marshall S. White; Philip A. Araman

    1993-01-01

    Reinforcement of the damage-prone areas of wood pallet stringers with metal connector plates (MCPs) may increase useful pallet life or permit use of less desirable wood species. This will improve the utilization of our timber resources and landfill space. Whole pallets and individual stringers, reinforced at the inner notches, were tested in static bending. Stringer...

  18. FIBER-REINFORCED METALLIC COMPOSITE MATERIALS.

    DTIC Science & Technology

    COMPOSITE MATERIALS), (*FIBER METALLURGY, TITANIUM ALLOYS , NICKEL ALLOYS , REINFORCING MATERIALS, TUNGSTEN, WIRE, MOLYBDENUM ALLOYS , COBALT ALLOYS , CHROMIUM ALLOYS , ALUMINUM ALLOYS , MECHANICAL PROPERTIES, POWDER METALLURGY.

  19. Iron and aluminium oxides containing industrial wastes as adsorbents of heavy metals: Application possibilities and limitations.

    PubMed

    Jacukowicz-Sobala, Irena; Ociński, Daniel; Kociołek-Balawejder, Elżbieta

    2015-07-01

    Industrial wastes with a high iron or aluminium oxide content are produced in huge quantities as by-products of water treatment (water treatment residuals), bauxite processing (red mud) and hard and brown coal burning in power plants (fly ash). Although they vary in their composition, the wastes have one thing in common--a high content of amorphous iron and/or aluminium oxides with a large specific surface area, whereby this group of wastes shows very good adsorbability towards heavy metals, arsenates, selenates, etc. But their physical form makes their utilisation quite difficult, since it is not easy to separate the spent sorbent from the solution and high bed hydraulic resistances occur in dynamic regime processes. Nevertheless, because of the potential benefits of utilising the wastes in industrial effluent treatment, this issue attracts much attention today. This study describes in detail the waste generation processes, the chemical structure of the wastes, their physicochemical properties, and the mechanisms of fixing heavy metals and semimetals on the surface of iron and aluminium oxides. Typical compositions of wastes generated in selected industrial plants are given. A detailed survey of the literature on the adsorption applications of the wastes, including methods of their thermal and chemical activation, as well as regeneration of the spent sorbents, is presented. The existing and potential ways of modifying the physical form of the discussed group of wastes, making it possible to overcome the basic limitation on their practical use, are discussed. © The Author(s) 2015.

  20. Effect of metal coatings on mechanical properties of aluminium alloy

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, V.; Dileep, B. P.; Mohan Kumar, S.; Phanibhushana, M. V.

    2017-07-01

    This investigation mainly targeted on study of hardness and tensile properties of Al 7075 with different metal coatings like Nickel, Zinc and cadmium. Coating of these metals on Al 7075 is successfully achieved by time dependent electroplating method for different thicknesses of 10, 15 and 20 Microns. These metal coated Al-7075 specimens were tested for hardness and tensile properties according to the ASTM standards. It's found that Nickel coated alloy shows excellent hardness and tensile properties compared to Zinc and Cadmium coated alloys. 20 µm Nickel coated alloy exhibits highest hardness number of 102 HRB and Maximum Tensile Strength of 603 MPa than Zinc and Cadmium coated alloy. The microstructural studies authenticated that the coating of Nickel, zinc and cadmium on Al 7075 is homogeneous.

  1. [Effect of amount of silane coupling agent on flexural strength of dental composite resins reinforced with aluminium borate whisker].

    PubMed

    Zhu, Ming-yi; Zhang, Xiu-yin

    2015-06-01

    To evaluate the effect of amount of silane coupling agent on flexural strength of dental composite resins reinforced with aluminium borate whisker (ABW). ABW was surface-treated with 0%, 1%, 2%, 3% and 4% silan coupling agent (γ-MPS), and mixed with resin matrix to synthesize 5 groups of composite resins. After heat-cured at 120 degrees centigrade for 1 h, specimens were tested in three-point flexure to measure strength according to ISO-4049. One specimen was selected randomly from each group and observed under scanning electron microscope (SEM). The data was analyzed with SAS 9.2 software package. The flexural strength (117.93±11.9 Mpa) of the group treated with 2% silane coupling agent was the highest, and significantly different from that of the other 4 groups (α=0.01). The amount of silane coupling agent has impact on the flexural strength of dental composite resins reinforced with whiskers; The flexual strength will be reduced whenever the amount is higher or lower than the threshold. Supported by Research Fund of Science and Technology Committee of Shanghai Municipality (08DZ2271100).

  2. Reinforcement of a mandibular complete denture with internal metal framework.

    PubMed

    Balch, J Heath; Smith, Pamela D; Marin, Mark A; Cagna, David R

    2013-03-01

    Metal framework reinforcement is used in complete dentures to improve the fracture resistance, dimensional stability, accuracy, weight, and retention of a definitive prosthesis. A novel technique for suspending a metal framework within the denture base of mandibular complete dentures is described.

  3. Novel method for joining CFRP to aluminium

    NASA Astrophysics Data System (ADS)

    Möller, F.; Thomy, C.; Vollertsen, F.; Schiebel, P.; Hoffmeister, C.; Herrmann, A. S.

    The current state of the art in joining of carbon-fibre reinforced composites (CFRP) to metals such as aluminium is - for the case of aircraft structures, e.g.- riveting or bolting. However, to reduce structural weight and improve structural performance, integral, load-bearing aluminium-CFRP-structures are desirable. To produce such structures, a novel joint configuration together with an appropriate thermal, laser-based joining process is suggested by the authors. In this paper, the joint configuration (based on CFRP-Ti-aluminium joints) and the laser beam conduction welding process will be presented, and first specimens obtained will be discussed with respect to their properties. It will be shown that the novel approach is in principle suitable to produce load-bearing CFRP-aluminium structures.

  4. Macronutrients, aluminium from drinking water and foods, and other metals in cognitive decline and dementia.

    PubMed

    Solfrizzi, Vincenzo; Colacicco, Anna Maria; D'Introno, Alessia; Capurso, Cristiano; Parigi, Angelo Del; Capurso, Sabrina A; Torres, Francesco; Capurso, Antonio; Panza, Francesco

    2006-11-01

    A possible role of the macronutrients and the basic elements of carbohydrates (glucose administration or depletion), proteins (amino acids such as tryptophan and tyrosine), and fat (unsaturated fatty acids) was recently proposed for age-related changes of cognitive function, and the cognitive decline of degenerative (AD) or vascular origin. The availability and utilization of glucose has been implicated in cognitive function not only as a result of nutritional and systemic metabolic conditions, but also, although speculatively, as a crucial phase of the mechanism of action of molecules used as cognitive-enhancers. Furthermore, many lines of evidence have focused on the importance of oxidative stress mechanisms and free radical damage in AD pathogenesis. In addition, epidemiological studies have recently reported an association between alcohol and the incidence of AD and predementia syndromes. Foods with large amounts of aluminium-containing additives or aluminium from drinking water may affect the risk of developing AD, aluminium more likely acting as a cofactor somewhere in the cascade of events leading to the demented brain. A role for other metals in dementia have been speculated, given the encouraging results reported from studies on peripheral zinc concentrations, zinc supplementation, serum copper, either bound with ceruloplasmin or not, and iron metabolism in AD. Nonetheless, more data are needed to support a possible role of these metals in dementing diseases. Healthy diets, antioxidant supplements, and the prevention of nutritional deficiencies or exposure to foods and water with high content of metals could be considered the first line of defence against the development and progression of cognitive decline.

  5. The Potential of Aluminium Metal Powder as a Fuel for Space Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Ismail, A. M.; Osborne, B.; Welch, C. S.

    Metal powder propulsion systems have been addressed intermittently since the Second World War, initially in the field of underwater propulsion where research in the application of propelling torpedoes continues until this day. During the post war era, researchers attempted to utilise metal powders as a fuel for ram jet applications in missiles. The 1960's and 1970's saw additional interest in the use of `pure powder' propellants, i.e. fluidised metal fuel and oxidiser, both in solid particulate form. Again the application was for employment in space-constrained missiles where the idea was to maximise the performance of high energy density powder propellants in order to enhance the missile's flight duration. Metal powder as possible fuel was investigated for in-situ resource utilisation propulsion systems post-1980's where the emphasis was on the use of gaseous oxygen or liquid oxygen combined with aluminium metal powder for use as a ``lunar soil propellant'' or carbon dioxide and magnesium metal powder as a ``Martian propellant''.Albeit aluminium metal powder propellants are lower in performance than cryogenic and Earth storable propellants, the former does have an advantage inasmuch that the propulsion system is generic, i.e. it can be powered with chemicals mined and processed on Earth, the Moon and Mars. Thus, due to the potential refuelling capability, the lower performing aluminium metal powder propellant would effectively possess a much higher change in velocity (V) for multiple missions than the cryogenic or Earth storable propellant which is only suitable for one planet or one mission scenario, respectively.One of the principal limitations of long duration human spaceflight beyond cis-lunar orbit is the lack of refuelling capabilities on distant planets resulting in the reliance on con- ventional non-cryogenic, propellants produced on Earth. If one could develop a reliable propulsion system operating on pro- pellants derived entirely of ingredients found on

  6. Determination of aluminium in molybdenum and tungsten metals, iron, steel and ferrous and non-ferrous alloys with pyrocatechol violet.

    PubMed

    Donaldson, E M

    1971-09-01

    A method for determining 0.001-0.10% of aluminium in molybdenum and tungsten metals is described. After sample dissolution, aluminium is separated from the matrix materials by chloroform extraction of its acetylacetone complex, at pH 6.5, from an ammonium acetate-hydrogen peroxide medium, then back-extracted into 12M hydrochloric add. Following separation of most co-extracted elements, except for beryllium and small amounts of chroinium(III) and copper(II), by a combined ammonium pyrrolidincdithiocarbamate-cupfen-on-chlorofonn extraction, aluminium is determined spectrophotometrically with Pyrocatechol Violet at 578 nm. Chromium interferes during colour development but beryllium, in amounts equivalent to the aluminium concentration, does not cause significant error in the results. Interference from copper(II) is eliminated by reduction with ascorbic acid. The proposed method is also applicable to iron, steel, ferrovanadium, and copper-base alloys after preliminary removal of the matrix elements by a mercury cathode separation.

  7. [Experimental evaluation of combined effects caused by stress and metals (cadmium and aluminium) in reproductivity of male rats].

    PubMed

    Makutina, V A; Balezin, S L; Slyshkina, T V; Pashnina, I A; Likhacheva, E I

    2014-01-01

    To investigate combined effects of stress and metal (aluminium, cadmium) on reproductivity, male rats twice per week received intraperitoneal injections of aluminium (3.8 mg Al3+ per kg of body weight) or cadmium (0.3 mg Cd2+ per kg of body weight) and were subjected to stress via short-term immobilization during spermatogenic cycle (54 +/- 3 days). Findings are cumulation of both cadmium and aluminium in genitals and brain, increasing under stress. When acting separately to the laboratory animals, the three factors (aluminium/cadmium/stress) increase serum corticosterone level, change testosterone level, increase number of aberrant mitoses of spermatogenic epithelium cells, increased sperm count with fragmented DNA, lower percentage of the impregnated females. If the exposure combined with stress, spermatogenesis disorders are more marked, and preimplantation death rate of intact females' offspirngs becomes statistically significant.

  8. The erosion performance of particle reinforced metal matrix composite coatings produced by co-deposition cold gas dynamic spraying

    NASA Astrophysics Data System (ADS)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This work reports on the erosion performance of three particle reinforced metal matrix composite coatings, co-deposited with an aluminium binder via cold-gas dynamic spraying. The deposition of ceramic particles is difficult to achieve with typical cold spray techniques due to the absence of particle deformation. This issue has been overcome in the present study by simultaneously spraying the reinforcing particles with a ductile metallic binder which has led to an increased level of ceramic/cermet particles deposited on the substrate with thick (>400 μm) coatings produced. The aim of this investigation was to evaluate the erosion performance of the co-deposited coatings within a slurry environment. The study also incorporated standard metallographic characterisation techniques to evaluate the distribution of reinforcing particles within the aluminium matrix. All coatings exhibited poorer erosion performance than the uncoated material, both in terms of volume loss and mass loss. The Al2O3 reinforced coating sustained the greatest amount of damage following exposure to the slurry and recorded the greatest volume loss (approx. 2.8 mm3) out of all of the examined coatings. Despite the poor erosion performance, the WC-CoCr reinforced coating demonstrated a considerable hardness increase over the as-received AA5083 (approx. 400%) and also exhibited the smallest free space length between adjacent particles. The findings of this study reveal that the removal of the AA5083 matrix by the impinging silicon carbide particles acts as the primary wear mechanism leading to the degradation of the coating. Analysis of the wear scar has demonstrated that the damage to the soft matrix alloy takes the form of ploughing and scoring which subsequently exposes carbide/oxide particles to the impinging slurry.

  9. Fatigue evaluation of composite-reinforced, integrally stiffened metal panels

    NASA Technical Reports Server (NTRS)

    Dumesnil, C. E.

    1973-01-01

    The fatigue behavior of composite-reinforced, integrally stiffened metal panels was investigated in combined metal and composite materials subjected to fatigue loading. The systems investigated were aluminum-graphite/epoxy, and aluminum-S glass/epoxy. It was found that the composite material would support the total load at limit stress after the metal had completely failed, and the weight of the composite-metal system would be equal to that of an all metal system which would carry the same total load at limit stress.

  10. Microstructural evolution in WC-Co cermet reinforced - A17075 metal matrix composites by stir casting

    NASA Astrophysics Data System (ADS)

    Gopal Krishna, U. B.; Ranganatha, P.; Auradi, V.; Mahendra Kumar, S.; Vasudeva, B.

    2016-09-01

    Aluminium metal matrix composites (AMMCs) are preferred because of their enhanced properties like high strength to weight ratio, stiffness and wear resistance. In the present work, an attempt is made to develop cermet (WC-Co) reinforced with Al7075 metal matrix composite by stir casting technique. WC-Co cermet is reduced to an average size of 10μm through ball milling using Alumina as grinding media. Ball milled WC-Co Cermet in an amount of 6 wt. % is used as reinforcement in Al7075 matrix. Microstructural characterization of the prepared composites is carried out using SEM/EDX and XRD studies. X-ray diffraction studies have revealed the peaks corresponding to α-Al, WC, Co and minor Al5W phases. SEM/EDX characterization revealed the uniform distribution of cermet in Al matrix. Further studies also revealed that, addition of WC-Co cermet to Al7075 matrix has resulted in improvement in hardness and Densities of Al7075 matrix.

  11. On the effect of pre-straining on the fatigue behavior of a particulate-reinforced metal-matrix composite

    SciTech Connect

    Beyer, G.; Biermann, H.; Mughrabi, H.

    1997-04-15

    Since the development of the Duralcan melt-stirring process, particulate-reinforced metal-matrix composites (MMCs) can be produced in sufficient amounts and at low enough cost to meet industrial demands. Aluminium-alloy based MMCs with Al{sub 2}O{sub 3} particulate reinforcement fabricated by casting processes have already been applied as engine components and other automotive parts, mainly because of their high strength and stiffness and their superior wear resistance. Another property of great interest and practical importance is the fatigue behavior of MMCs which has been studied repeatedly in the past. A particular aspect which has not been investigated so far is the influence of pre-straining on the fatigue properties. In view of the possibility of pre-straining during the finishing process, its effect on the fatigue behavior is of interest. Here the authors report results on the fatigue behavior of a ceramic-particle reinforced MMC obtained in the framework of a more extended study. In an earlier publication, quantitative data on the stress-dependence of the Young`s modulus in tension and compression were reported. The present paper deals with the influence of pre-straining on the fatigue properties and on the fatigue life of the aluminium-matrix composite AA6061-Al{sub 2}O{sub 3}-15p-T6. The mechanical tests were supplemented by microstructural investigations, using in particular optical, scanning (SEM) and transmission electron microscopy (TEM).

  12. Collected studies on interfaces and interphases as related to the behaviour of fibre-reinforced aluminium alloy composites

    PubMed

    Scott; Chen

    1999-11-01

    This paper is an essentially practical treatment of interphases and interfaces and of their influence on the properties of a number of metal matrix composites (MMCs). The illustrations are drawn from the authors' experiences and have been chosen to underline the importance of detailed microstructural analysis for elucidating the fabrication behaviour and the mechanical performance of this group of materials. The work involves a series of MMCs based upon different combinations of aluminium alloy and ceramic/carbon fibre (both continuous and short) and made using the method of low-pressure liquid metal infiltration (LMI). Detailed analyses of the composite microstructures are given, with particular attention being paid to the interface regions. The data are used to categorize an interface according to the type of bond, that is a mechanical bond resulting from thermal mismatch between the fibre and metal matrix, or a chemical bond, with or without second phase, caused by chemical reaction. The information is then employed to account for aspects of composite fabrication, such as the cast microstructure produced by the LMI method and the effect of heat treatment, and to elucidate composite properties such as stiffness, yield stress and failure strength.

  13. Scanning and transmission electron microscopy study of the microstructural changes occurring in aluminium matrix composites reinforced with SiC particles during casting and welding: interface reactions

    PubMed

    Urena; Gomez De Salazar JM; Gil; Escalera; Baldonedo

    1999-11-01

    Processing of aluminium matrix composites (AMCs), especially those constituted by a reactive system such as Al-SiC, presents great difficulties which limit their potential applications. The interface reactivity between SiC and molten Al generates an aluminium carbide which degrades the composite properties. Scanning and transmission electron microscopes equipped with energy-dispersive X-ray spectroscopes are essential tools for determining the structure and chemistry of the Al-SiC interfaces in AMCs and changes occurring during casting and arc welding. In the present work, an aluminium-copper alloy (AA2014) reinforced with three different percentages of SiC particles was subjected to controlled remelting tests, at temperatures in the range 750-900 degrees C for 10 and 30 min. Arc welding tests using a tungsten intert gas with power inputs in the range 850-2000 W were also carried out. The results of these studies showed that during remelting there is preferential SiC particle consumption with formation of Al4C3 by interface reaction between the solid SiC particle and the molten aluminium matrix. The formation of Al4C3 by the same mechanism has also been detected in molten pools of arc welded composites. However, in this case there was formation of an almost continuous layer of Al4C3, which protects the particle against further consumption, and formation of aciculate aluminium carbide on the top weld. Both are formed by fusion and dissolution of the SiC in molten aluminium followed by reaction and precipitation of the Al4C3 during cooling.

  14. Metal-bonded, carbon fiber-reinforced composites

    DOEpatents

    Sastri, Suri A.; Pemsler, J. Paul; Cooke, Richard A.; Litchfield, John K.; Smith, Mark B.

    1996-01-01

    Metal bonded carbon fiber-reinforced composites are disclosed in which the metal and the composite are strongly bound by (1) providing a matrix-depleted zone in the composite of sufficient depth to provide a binding site for the metal to be bonded and then (2) infiltrating the metal into the matrix-free zone to fill a substantial portion of the zone and also provide a surface layer of metal, thereby forming a strong bond between the composite and the metal. The invention also includes the metal-bound composite itself, as well as the provision of a coating over the metal for high-temperature performance or for joining to other such composites or to other substrates.

  15. Metal-bonded, carbon fiber-reinforced composites

    DOEpatents

    Sastri, S.A.; Pemsler, J.P.; Cooke, R.A.; Litchfield, J.K.; Smith, M.B.

    1996-03-05

    Metal bonded carbon fiber-reinforced composites are disclosed in which the metal and the composite are strongly bound by (1) providing a matrix-depleted zone in the composite of sufficient depth to provide a binding site for the metal to be bonded and then (2) infiltrating the metal into the matrix-free zone to fill a substantial portion of the zone and also provide a surface layer of metal, thereby forming a strong bond between the composite and the metal. The invention also includes the metal-bound composite itself, as well as the provision of a coating over the metal for high-temperature performance or for joining to other such composites or to other substrates. 2 figs.

  16. Development of protective coatings using fly ash premixed with metal powder on aluminium substrates.

    PubMed

    Satapathy, Alok; Sahu, Suvendu Prasad; Mishra, Debadutta

    2010-07-01

    Fly ash is a solid waste generated in huge quantities from coal-fired thermal power stations during the combustion of coal. Rich in metal oxides, it has tremendous potential as a coating material on structural and engineering components. This work aims at developing and characterizing a new class of such coatings made of fly ash by a novel technique - plasma spraying. Plasma spray technology has the advantage of being able to process various low-grade ore minerals to obtain value-added products and also to deposit ceramics, metals and a combination of these, generating near-homogeneous coatings with the desired microstructure on a range of substrates. In the present investigation, coatings are developed on aluminium substrates using fly ash premixed with aluminium powder in different weight proportions at various plasma torch input power levels ranging from 9- 18 kW DC. The coatings are characterized in terms of interface adhesion strength and deposition efficiency. Maximum adhesion strength of about 35 MPa is recorded with coatings deposited at 12 kW power level. It was noticed that the quality and properties are significantly affected by the operating power level of the plasma sprayer. This work identifies fly ash as a potential coating material, suitable for possible tribological applications.

  17. Structure-property relationships in Al{sub 2}O{sub 3} short fiber and SiC particle reinforced aluminium alloys

    SciTech Connect

    Harris, S.J.; Cai, H.W.; Weatherburn, P.C.

    1993-12-31

    A study has been made of how Saffil {delta}-Al{sub 2}O{sub 3} fibres and {alpha}-SiC particles influence the microstructure and properties of two types of heat-treatable aluminium alloys, i.e. aluminum-copper and aluminium-copper-magnesium (2124, 2618A) alloys. Natural aging (T4) of the binary Al-Cu alloys was virtually prevented by the reinforcements, while in the case of the AlCu-Mg alloys, hardening did take place at a similar rate. Magnesium additions, it is believed, maintained the concentration of quenched in vacancies thus permitting GPB zone formation and in consequence increases in proof stress and tensile strength values. Artificial aging of these reinforcement composites helped to promote {theta}{prime}(CuAl{sub 2}) precipitation at lower temperatures. These precipitates nucleated on the increased dislocation density which arose from differential thermal effects between reinforcement and matrix. The limit of proportionality, tensile strength and ductility of short fiber reinforced composites are not as well developed as with the particulate systems because of enhanced tensile residual stresses in the matrix, fiber cracking and strong fiber-matrix bonding.

  18. Fracture criteria for discontinuously reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Rack, H. J.; Goree, J. G.; Albritton, J.; Ratnaparkhi, P.

    1988-01-01

    Summarized is the progress achieved during the period September 16, 1987 to August 15, l988 on NASA Grant NAG1-724, Fracture Criteria for Discontinuously Reinforced Metal Matrix Composites. Appended are copies of three manuscripts prepared under NASA funding during the performance period.

  19. Fracture criteria for discontinuously reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Rack, H. J.; Goree, J. G.; Albritton, J.; Ratnarparkhi, P.

    1988-01-01

    The effect of sample configuration on the details of initial crack propagation in discontinuously whisker reinforced aluminum metal matrix composites was investigated. Care was taken to allow direct comparison of fracture toughness values utilizing differing sample configurations and orientations, holding all materials variables constant, e.g., extrusion ration, heat treatment, and chemistry.

  20. Evaluation of Thrust force in Drilling Woven roving Glass fibre reinforced Aluminium Sandwich laminates with TiAlN coated drill using Taguchi analysis

    NASA Astrophysics Data System (ADS)

    Ramya Devi, G.; Palanikumar, K.

    2017-05-01

    TiAlN is a high-performance coating which outshines in coarse and hard-to-machine materials like cast iron, aluminium alloys, tool steels, and nickel alloys. This paper presents the prediction and evaluation of thrust force and Torque in drilling of Woven roving Glass Fibre Reinforced Plastic and Aluminium sandwich laminate. The Prediction is based on Taguchi method. The experimental results specify that the feed rate and the drill diameter are the most significant factors affecting the thrust force, while the feed rate and spindle speed contribute the most to the surface roughness. In this study, the objective was to establish a correlation between the feed rate, spindle speed and drill diameter with the induced thrust force and Torque in drilling sandwich laminate.

  1. Repair & Reinforcing Pallet Stringers With Metal Plates

    Treesearch

    John W. Clarke; Thomas E. McLain; Marshall S. White; Philip A. Araman

    1993-01-01

    Notches significantly reduce the bending strength and life expectancy of stringer-class pallets with partial 4-way entry. Common failures include cracking between the notches (BN), bending failures in the region above the notch (AN) and splitting of end feet. In recent years, several suppliers and manufacturers of metal connector plates (MCPs) have developed equipment...

  2. Development and characterization of fatigue resistant Aramid reinforced aluminium laminates (ARALL) for fatigue Critical aircraft components

    NASA Astrophysics Data System (ADS)

    Qaiser, M. H.; Umar, S.; Nauman, S.

    2014-06-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced ALuminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft.

  3. Reinforcement of titanium by laser metal deposition

    NASA Astrophysics Data System (ADS)

    Sampedro, Jesús; Pérez, Irene; Cárcel, Bernabé; Amigó, Vicente; Sánchez, José María

    2010-09-01

    Pure commercial titanium is widely used because of its high corrosion resistance and lower cost compared with other titanium alloys, in particular when there is no high wear requirements. Nevertheless, the wear resistance is poor and surface damage occurs in areas under contact loadings. Laser melting deposition using a high power laser is a suitable technique for manufacturing precise and defect free coatings of a dissimilar material with higher wear and corrosion resistance. In this work a good understanding of laser metal deposition mechanisms allowed to obtain defect free coatings of Ti6Al4V and TiC metal matrix composite (MMC) using a flash lamp pumped Nd:YAG laser of 1 kW. A complete investigation of the process parameters is discussed and resultant wear and corrosion properties are shown. The results show the feasibility to apply the process for manufacturing, improving or repairing high added value components for a wide range of industrial sectors.

  4. Effect of Copper Coated SiC Reinforcements on Microstructure, Mechanical Properties and Wear of Aluminium Composites

    NASA Astrophysics Data System (ADS)

    Kori, P. S.; Vanarotti, Mohan; Angadi, B. M.; Nagathan, V. V.; Auradi, V.; Sakri, M. I.

    2017-08-01

    Experimental investigations are carried out to study the influence of copper coated Silicon carbide (SiC) reinforcements in Aluminum (Al) based Al-SiC composites. Wear behavior and mechanical Properties like, ultimate tensile strength (UTS) and hardness are studied in the present work. Experimental results clearly revealed that, an addition of SiC particles (5, 10 and 15 Wt %) has lead in the improvement of hardness and ultimate tensile strength. Al-SiC composites containing the Copper coated SiC reinforcements showed better improvement in mechanical properties compared to uncoated ones. Characterization of Al-SiC composites are carried out using optical photomicrography and SEM analysis. Wear tests are carried out to study the effects of composition and normal pressure using Pin-On Disc wear testing machine. Results suggested that, wear rate decreases with increasing SiC composition, further an improvement in wear resistance is observed with copper coated SiC reinforcements in the Al-SiC metal matrix composites (MMC’s).

  5. The effect of exposure to aluminium on concentrations of essential metals in serum of foundry workers.

    PubMed Central

    Röllin, H B; Theodorou, P; Kilroe-Smith, T A

    1991-01-01

    The concentrations of aluminium (Al) in serum and urine of 33 volunteers exposed to inhalation of Al2O3 dust at a concentration in the air of less than 1 mg Al/m3 were measured. These were compared with results from 20 normal subjects not exposed. The concentrations of copper (Cu), zinc (Zn), and total iron (Fe) in serum were also measured. The Al concentration in serum was significantly raised in the subjects exposed to dust, but Al concentrations in urine showed no significant difference from controls. This suggests a possible change in distribution of metals in the body tissues due to the presence of Al, with incomplete excretion of Al in the urine. This redistribution was selective, as the serum concentrations of Cu were conclusively decreased whereas the serum concentrations of Zn were conclusively increased. The serum concentration of Fe did not change significantly. PMID:2025590

  6. The assessment of metal fiber reinforced polymeric composites

    NASA Technical Reports Server (NTRS)

    Chung, Wenchiang R.

    1990-01-01

    Because of their low cost, excellent electrical conductivity, high specific strength (strength/density), and high specific modulus (modulus/density) short metal fiber reinforced composites have enjoyed a widespread use in many critical applications such as automotive industry, aircraft manufacturing, national defense, and space technology. However, little data has been found in the study of short metal fibrous composites. Optimum fiber concentration in a resin matrix and fiber aspect ratio (length-to-diameter ratio) are often not available to a user. Stress concentration at short fiber ends is the other concern when the composite is applied to a load-bearing application. Fracture in such composites where the damage will be initiated or accumulated is usually difficult to be determined. An experimental investigation is therefore carefully designed and undertaken to systematically evaluate the mechanical properties as well as electrical properties. Inconel 601 (nickel based) metal fiber with a diameter of eight microns is used to reinforce commercially available thermoset polyester resin. Mechanical testing such as tensile, impact, and flexure tests along with electrical conductivity measurements is conducted to study the feasibility of using such composites. The advantages and limitations of applying chopped metal fiber reinforced polymeric composites are also discussed.

  7. Mechanical Behaviour of Alumina Silicon Carbide Reinforced Particulate Reinforced Metal Matrix Composite

    NASA Astrophysics Data System (ADS)

    Raghu Ram, K. S.; Sweanney Bandi, Sharon Rose; Sivarama Krishna, Ch.

    2017-08-01

    The present study was aimed at evaluating the effect of hardness and impact strength of Aluminum Al2O3SiC particulate reinforced Composites. These AMCs with multiple reinforcement (hybrid MMCs) are finding increased applications in aerospace, automobile, space, underwater and transportation applications. An effort is made to enhance the Hardness, flexural strength and Impact properties of AMCs by reinforcing Aluminum matrix with Varying Proportion of small particles of Al2O3SiC by stir casting method. Aluminum alloy matrix varying proportions of Al2O3SiC particulates were fabricated. The microstructure, hardness and impact strength properties of the fabricated AMCs were analyzed. The optical microstructure study revealed the homogeneous dispersion of Al2O3SiC particles in the matrix. Based on the results obtained from the Hardness and Impact of the metal matrix composites it is observed that, the hardness and impact strength increases with increase in the amount of reinforcement content.

  8. Performance Enhancement Using Selective Reinforcement for Metallic Single- and Multi-Pin Loaded Holes

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.; Seshadri, Banavara R.

    2005-01-01

    An analysis based investigation of aluminum with metal matrix composite selectively reinforced single- and multi-hole specimens was performed and their results compared with results from geometrically comparable non-reinforced specimens. All reinforced specimens exhibited a significant increase in performance. Performance increase of up to 170 percent was achieved. Specimen failure modes were consistent with results from reinforced polymeric matrix composite specimens. Localized reinforcement application (circular) proved as effective as a broader area (strip) reinforcement. Also, selective reinforcement is an excellent method of increasing the performance of multi-hole specimens.

  9. Aluminium fumarate metal-organic framework: A super adsorbent for fluoride from water.

    PubMed

    Karmakar, Sankha; Dechnik, Janina; Janiak, Christoph; De, Sirshendu

    2016-02-13

    Potential of aluminium fumarate metal organic framework (MOF) for fluoride removal from groundwater has been explored in this work. The laboratory produced MOF exhibited characteristics similar to the commercial version. MOF was found to be micro-porous with surface area of 1156 m(2)/g and average pore size 17Å. Scanning electron micrograph of the AlFu MOF showed minute pores and texture was completely different from either of the parent materials. Change in the composition of AlFu MOF after fluoride adsorption was evident from powder X-ray diffraction analysis. Thermal stability of the AlFu MOF up to 700K was established by thermo-gravimetric analysis. Incorporation of fluoride phase after adsorption was confirmed by X-ray fluorescence analysis. As observed from FTIR study, hydroxyl ions in AlFu MOF were substituted by fluoride. 0.75 g/l AlFu MOF was good enough for complete removal of 30 mg/l fluoride concentration in feed solution. The maximum adsorption capacity for fluoride was 600, 550, 504 and 431 mg/g, respectively, at 293, 303, 313 and 333K. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Glass Fiber Reinforced Metal Pressure Vessel Design Guide

    NASA Technical Reports Server (NTRS)

    Landes, R. E.

    1972-01-01

    The Engineering Guide presents curves and general equations for safelife design of lightweight glass fiber reinforced (GFR) metal pressure vessels operating under anticipated Space Shuttle service conditions. The high composite vessel weight efficiency is shown to be relatively insensitive to shape, providing increased flexibility to designers establishing spacecraft configurations. Spheres, oblate speroids, and cylinders constructed of GFR Inconel X-750, 2219-T62 aluminum, and cryoformed 301 stainless steel are covered; design parameters and performance efficiencies for each configuration are compared at ambient and cryogenic temperature for an operating pressure range of 690 to 2760 N/sq cm (1000 to 4000 psi). Design variables are presented as a function of metal shell operating to sizing (proof) stress ratios for use with fracture mechanics data generated under a separate task of this program.

  11. The properties of metal-reinforced glass ionomer materials.

    PubMed

    Chung, K H

    1993-01-01

    The physical properties and bond strengths of two glass ionomer materials reinforced with silver and amalgam alloy powders were compared with those of a conventional material from the same manufacture as well as two commercially available products. The diametral tensile strength, hardness and bonding strength are improved with the addition of either commercial available silver particles or fabricated high-copper amalgam alloy powders to the glass. Simple mixture of the metal or alloy powders with the glass ionomer cement seems to be feasible to improve the properties of the regular cement. However, further studies in formulating an optimal composition of metal or alloy, setting characteristics and long-term clinical evaluation are necessary before proposing uses for this new material.

  12. Effect of Reinforcement Architecture on Fracture of Selectively Reinforced Metallic Compact Tension Specimens

    NASA Technical Reports Server (NTRS)

    Abada, Christopher H.; Farley, Gary L.; Hyer, Michael W.

    2006-01-01

    A computer-based parametric study of the effect of reinforcement architectures on fracture response of aluminum compact-tension (CT) specimens is performed. Eleven different reinforcement architectures consisting of rectangular and triangular cross-section reinforcements were evaluated. Reinforced specimens produced between 13 and 28 percent higher fracture load than achieved with the non-reinforced case. Reinforcements with blunt leading edges (rectangular reinforcements) exhibited superior performance relative to the triangular reinforcements with sharp leading edges. Relative to the rectangular reinforcements, the most important architectural feature was reinforcement thickness. At failure, the reinforcements carried between 58 and 85 percent of the load applied to the specimen, suggesting that there is considerable load transfer between the base material and the reinforcement.

  13. Composite reinforced metallic cylinder for? high-speed rotation

    NASA Astrophysics Data System (ADS)

    Pradhan, Sahadev, , Dr.

    2017-01-01

    The objective of the present study is to design and development of the composite reinforced thin metallic cylinder to increase the peripheral speed significantly and thereby? improve the separation performance in a centrifugal gas separation processes through? proper optimization of the internal parameters. According to Dirac equation (Cohen? (1951)), the maximum separative work for a centrifugal gas separation process increase? with 4th power of the peripheral speed. Therefore, it has been intended to reinforce the? metallic cylinder with composites (carbon fibers: T-700 and T- 1000 grade with suitable? epoxy resin) to increase the stiffness and hoop stress so that the peripheral speed can? be increased significantly, and thereby enhance the separative output. Here, we have developed the mathematical model to investigate the elastic stresses of? a laminated cylinder subjected to mechanical, thermal and thermo-mechanical loading? A detailed analysis is carried out to underline the basic hypothesis of each formulation? Further, we evaluate the steady state creep response of the rotating cylinder and analyze? the stresses and strain rates in the cylinder.

  14. Fiber reinforcement of metal matrices against plastic flow

    SciTech Connect

    Fang, D.; Liu, T.

    1999-07-01

    The uniaxial stress-strain behavior and plastic flow in rate-independent plastic flow for transverse loading of continuous fiber-reinforced metal-matrix composites are examined in this paper. Cell models with different packing arrangements are employed to analyze the effects of fiber cross-sectional shapes (square, circular, and diamond) and periodic distributions (square, hexagonal and diagonal packing arrays) as well as transverse loading directions (45, 0, or 90{degree}) on the transverse plastic deformation of metal-matrix composites reinforced with periodically distributed, aligned continuous fibers. Calculations were carried out using increasingly refined meshes to demonstrate numerical convergence. The calculations of the alternations in matrix field quantities in response to controlled changes in the fiber packing array give insights into the effects of fiber clustering on the transverse plastic flow. The results indicated that the overall transverse plastic flow of the composites is sensitive to fiber geometric parameters, such as fiber shape, packing arrangement and volume fraction, and to the transverse loading direction. The stress contours demonstrated that the interference of fibers with flow paths plays an important role in the transverse strengthening mechanism.

  15. Non-contact characterization of hybrid aluminium/carbon-fibre-reinforced plastic sheets using multi-frequency eddy-current sensors

    NASA Astrophysics Data System (ADS)

    Yin, W.; Li, X.; Withers, P. J.; Peyton, A. J.

    2010-10-01

    The characterization of hybrid aluminium/carbon-fibre-reinforced plastic (CFRP) sheets using multi-frequency eddy-current sensors is presented in this paper. Both air-cored circular sensors and highly directional ferrite-cored sensors are designed for bulk conductivity measurements and directionality characterization. An analytical model describing the interaction of the circular sensors with the hybrid planar structure is developed. Finite element (FE) models that take into account the anisotropicity of CFRP have also been proposed. Both models are in good agreement with experimental results. The features of the sensor output signals are analysed and explained. It is proved that an anisotropic model (tensor expression for conductivity) is appropriate for the CFRP materials under investigation. A formula to link the bulk conductivity with the conductivity tensor is proposed and verified. Lift-off effects are also discussed. It is believed that this is amongst the first published reports of using eddy-current techniques for characterizing the hybrid aluminium/CFRP material.

  16. Creep and creep rupture of strongly reinforced metallic composites

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.; Binienda, W. K.; Miti-Kavuma, M.

    1990-01-01

    A creep and creep damage theory is presented for metallic composites with strong fibers. Application is to reinforced structures in which the fiber orientation may vary throughout but a distinct fiber direction can be identified locally (local transverse isotropy). The creep deformation model follows earlier work and is based on a flow potential function that depends on invariants reflecting stress and the material symmetry. As the focus is on the interaction of creep and damage, primary creep is ignored. The creep rupture model is an extension of continuum damage mechanics and includes an isochronous damage function that depends on invariants specifying the local maximum transverse tension and the maximum longitudinal shear stress. It is posited that at high temperature and low stress, appropriate to engineering practice, these stress components damage the fiber/matrix interface through diffusion controlled void growth, eventually causing creep rupture. Experiments are outlined for characterizing a composite through creep rupture tests under transverse tension and longitudinal shear. Application is made to a thin-walled pressure vessel with reinforcing fibers at an arbitrary helical angle. The results illustrate the usefulness of the model as a means of achieving optimal designs of composite structures where creep and creep rupture are life limiting.

  17. Creep behavior of tungsten fiber reinforced niobium metal matrix composites

    NASA Technical Reports Server (NTRS)

    Grobstein, Toni L.

    1992-01-01

    Tungsten fiber reinforced niobium metal matrix composites were evaluated for use in space nuclear power conversion systems. The composite panels were fabricated using the arc-spray monotape technique at the NASA Lewis Research Center. The creep behavior of W/Nb composite material was determined at 1400 and 1500 K in vacuum over a wide range of applied loads. The time to reach 1 percent strain, the time to rupture, and the minimum creep rate were measured. The W/Nb composites exceeded the properties of monolithic niobium alloys significantly even when compared creep strength also was evaluated. Kirkendall void formation was observed at the fiber/matrix interface; the void distribution differed depending the fiber orientation relative to the stress axis. A relationship was found between the fiber orientation and the creep strength.

  18. Creep behavior of tungsten fiber reinforced niobium metal matrix composites

    NASA Technical Reports Server (NTRS)

    Grobstein, T. L.

    1989-01-01

    Tungsten fiber reinforced niobium metal matrix composites were evaluated for use in space nuclear power conversion systems. The composite panels were fabricated using the arc-spray monotape technique at the NASA Lewis Research Center. The creep behavior of W/Nb composite material was determined at 1400 and 1500 K in vacuum over a wide range of applied loads. The time to reach 1 percent strain, the time to rupture, and the minimum creep rate were measured. The W/Nb composites exceeded the properties of monolithic niobium alloys significantly even when compared on a strength to density basis. The effect of fiber orientation on the creep strength also was evaluated. Kirkendall void formation was observed at the fiber/matrix interface; the void distribution differed depending on the fiber orientation relative to the stress axis. A relationship was found between the fiber orientation and the creep strength.

  19. Thermomechanical fatigue cracking in fiber reinforced metal-matrix composites

    NASA Astrophysics Data System (ADS)

    Bao, G.; McMeeking, R. M.

    1995-09-01

    A theoretical model is developed for thermomechanical fatigue cracking in fiber reinforced metal-matrix composites. Interfacial debonding is assumed to occur readily, allowing fibers to slide relative to the matrix resisted by a uniform shear stress. The fibers therefore bridge any matrix crack which develops. The crack bridging traction law is obtained, including the effect of thermal expansion mismatch between the fiber and the matrix and a temperature dependence of the frictional shear stress. Any combination of thermal and mechanical cycling is considered as long as the slip zone along the fiber increases in length monotonically during each increment of cycling. However, for clarity, the results are presented in terms of in-phase and out-of-phase cycling of the thermal and mechanical loads at the same frequency. For each case, the stress distributions in the bridging zone as well as the stress intensity factors at the crack tip are computed for relevant regimes of the thermal and mechanical loading conditions. Predictions are made of the matrix fatigue crack growth under combined thermal and mechanical loading conditions. It is found that when the thermal expansion coefficient of the fiber is less than that of the matrix, a significant increase in the crack growth rate results in out-of-phase thermomechanical fatigue. On the other hand, there is decreased tendency for fibers to fail in this case. For in-phase thermomechanical fatigue, the crack growth rate is reduced but the stress in the fiber is larger than that due to mechanical loading alone, resulting in an increased tendency for fiber failure. The implications for life prediction for fiber reinforced metal-matrix composites are discussed.

  20. Application of composites to the selective reinforcement of metallic aerospace structures

    NASA Technical Reports Server (NTRS)

    Brooks, W. A., Jr.; Mathauser, E. E.; Pride, R. A.

    1973-01-01

    The use of composite materials to selectively reinforce metallic structures provides a low-cost way to reduce weight and a means of minimizing the risks usually associated with the introduction of new materials. An overview is presented of the NASA Langley Research Center programs to identify the advantages and to develop the potential of the selective reinforcement approach to the use of composites. These programs have shown that selective reinforcement provides excellent strength and stiffness improvements to metallic structures. Significant weight savings can be obtained in a cost effective manner. Flight service programs which have been initiated to validate further the merits of selective reinforcement are described.

  1. Decrements in cognitive performance in metal inert gas welders exposed to aluminium.

    PubMed

    Akila, R; Stollery, B T; Riihimäki, V

    1999-09-01

    Often little has been discovered of the cognitive functions affected by occupational toxins because many functions cooperate to produce the single performance scores typically reported from neuropsychological tests. To facilitate the interpretation of neuropsychological scores, the issue of occupational exposure to aluminium was examined with an approach intended to increase understanding of those cognitive processes that may be affected. The investigation was a cross sectional study of asymptomatic aluminium welders and a reference group of mild steel welders. Based on urinary aluminium concentrations, welders were classified into a reference (n = 28), low (n = 27), and high (n = 24) exposure group. The mean urinary aluminium concentrations were 0.46, 2.25, and 9.98 mumol/l, respectively. A comprehensive neuropsychological examination was undertaken to assess psychomotor function, simple visual reaction time, attention related tasks, verbal and visual or visuospatial abilities as well as verbal and visual learning and memory. Aluminium welders showed no impairment on the finger tapping, Santa Ana dexterity, simple visual reaction times, any of the verbal memory tasks, the similarities subtest of Wechsler adult intelligence scale, or the Stroop task. However, the low exposed group performed poorer on the memory for designs and on more difficult block design items demanding preliminary visuospatial analysis. The time limited synonym task, embedded figures, digit symbol speed, and the backward counting component of the divided attention task showed exposure-response relations. The impairments found were circumscribed. When the neuropsychological tasks were scored to show some of the underlying theoretical cognitive structures, the results indicated that performance difficulties were mainly detected in tasks requiring working memory, particularly that relating to processing of visuospatial information. There was also evidence that such impairments are more readily

  2. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites.

    PubMed

    Wang, Z; Georgarakis, K; Nakayama, K S; Li, Y; Tsarkov, A A; Xie, G; Dudina, D; Louzguine-Luzgin, D V; Yavari, A R

    2016-04-12

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses.

  3. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-04-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses.

  4. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    PubMed Central

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses. PMID:27067824

  5. Predicting Mechanical Properties of Metal Matrix Syntactic Foams Reinforced with Ceramic Spheres

    DTIC Science & Technology

    2012-01-01

    reinforced with Al2O3 spheres of various sizes, size ranges, and wall thickness to sphere diameter ratios show good agreement. Introduction Metal matrix...treatments reinforced with Al2O3 spheres of various sizes, size ranges, and wall thickness to sphere diameter ratios show good agreement. 15. SUBJECT...longitudinally and not laterally (i.e. no barreling: ) until all hollow reinforcements are crushed. Assuming the wall thickness of the hollow

  6. Solidification of particle-reinforced metal-matrix composites

    NASA Astrophysics Data System (ADS)

    Hanumanth, G. S.; Irons, G. A.

    1996-08-01

    The solidification behavior of ceramic particle-reinforced metal-matrix composites (MMCs) is different from that of the bare matrix, not only because of the presence of the ceramic particles, but also due to their redistribution in the melt that results in nonhomogeneous thermophysical properties. The MMCs comprised of 10-to 15-μm SiC particles of varying volume fractions, dispersed uniformly in a modified aluminum A356 alloy by the melt stirring technique, were solidified unidirectionally in a thermocouple-instrumented cylindrical steel mold. The cooling rates were continually monitored by measuring temperatures at different depths in the melt, and the solidified MMCs were sectioned into disks and chemically analyzed for SiC volume fraction. The results point out that the cooling rate increased with increasing volume fraction of SiC particles. A small increase in the bulk SiC volume fraction of the cast MMC was observed due to particle settling during solidification. A one-dimensional enthalpy model of MMC solidification was formulated, wherein particle settling occurring in the solidifying matrix was coupled to the enthalpy equation by means of the Richardson-Zaki hindered settling correlation. A comparative study of simulations with experiments suggested that the thermal response of SiC particles used in this study was similar to that of single crystals, and their presence increased the effective thermal conductivity of the composite.

  7. Preparation, structure, and properties of aluminium nitride (AIN) reinforced polymer composites: alternative substrate materials for microelectronic packaging

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Koh, Juay S.; Hing, Peter

    1997-08-01

    A series of composite materials of varying compositions based on a high temperature resistance engineering thermotropic liquid crystalline polymer and particulate aluminium nitride (AlN) were compounded at relatively low temperature using a co-rotating twin screw extruder/compounder equipped with the segmented screws. The compounded composites are injection molded into different shapes, i.e., dumbbell, rectangular bar and cylindrical disk, for various physical and mechanical tests. In particular, detailed study was carried out to understand the effect of AlN on the dielectric constant, thermal conductivity and thermal expansion behavior of these materials. Results have shown that the thermal conductivity steadily increases with AlN filler concentration. An increase by about 80 percent in thermal conductivity of the composite materials is achieved as compared to the unfilled polymer. The dielectric constants of these composites were found to increase with filer content and range from 3.6 to 5.0 at 1 kHz and 3.0 to 4.2 at 10 MHz. Substantial reductio in thermal expansion coefficient was also achieved in the composite materials. Attempt has been made to correlate the experimental data with composite theories.

  8. Does cation dehydration drive the binding of metal ions to polyelectrolytes in water? What we can learn from the behaviour of aluminium(III) and chromium(III).

    PubMed

    Burrows, Hugh D; Costa, Diana; Ramos, M Luísa; Miguel, M da Graça; Teixeira, M Helena; Pais, Alberto A C C; Valente, Artur J M; Bastos, Margarida; Bai, Guangyue

    2012-06-14

    Much stronger binding is seen in aqueous solutions between the anionic polyelectrolyte potassium poly(vinyl sulfate) and the substitution labile aluminium(III) than with the kinetically inert chromium(III). This strongly supports the idea that entropy driven water loss from the hydration sphere of the metal ion plays a major role in driving binding of the trivalent metal ion to the polyelectrolyte.

  9. The toxicity of aluminium in humans.

    PubMed

    Exley, C

    2016-06-01

    We are living in the 'aluminium age'. Human exposure to aluminium is inevitable and, perhaps, inestimable. Aluminium's free metal cation, Alaq(3+), is highly biologically reactive and biologically available aluminium is non-essential and essentially toxic. Biologically reactive aluminium is present throughout the human body and while, rarely, it can be acutely toxic, much less is understood about chronic aluminium intoxication. Herein the question is asked as to how to diagnose aluminium toxicity in an individual. While there are as yet, no unequivocal answers to this problem, there are procedures to follow to ascertain the nature of human exposure to aluminium. It is also important to recognise critical factors in exposure regimes and specifically that not all forms of aluminium are toxicologically equivalent and not all routes of exposure are equivalent in their delivery of aluminium to target sites. To ascertain if Alzheimer's disease is a symptom of chronic aluminium intoxication over decades or breast cancer is aggravated by the topical application of an aluminium salt or if autism could result from an immune cascade initiated by an aluminium adjuvant requires that each of these is considered independently and in the light of the most up to date scientific evidence. The aluminium age has taught us that there are no inevitabilities where chronic aluminium toxicity is concerned though there are clear possibilities and these require proving or discounting but not simply ignored. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Mechanical behaviour of A356 alloy reinforced with high strength alloy particulate metallic composites

    NASA Astrophysics Data System (ADS)

    Krishna Mallarapu, Gopi; Kancharla, Praveen Kumar; Rao, J. B.; Bhargava, N. R. M. R.

    2017-08-01

    In the present investigation, work has been carried out to fabricate composites with high strength and good ductility by maximizing a uniform and smooth interface for effective transfer of load, and minimizing reinforcement cracking, agglomerations, and pull outs. A high-strength alloy (ternary) in particulate (HSA(P)) form was used as reinforcement in 356 aluminium. A 356-HSA(P) composite was prepared using the stir casting technique by dispersing an average particle size of 125 µm for reinforcement with various weight fractions varying between 5% and 15%. Secondary processing was done using the hot extrusion process to obtain 14 mm Ø rods (extrusion ratio of 18:1) and homogenized in an industrial furnace for 24 h. A decrease in reinforcement size was observed with increments in particulate content. The hardness of the composites was improved compared to the existing matrix. Mechanical properties such as UTS, yield strength, modulus of elasticity and ductility reveal superior specific properties than that of the alloy.

  11. Dimensional accuracy and stability of polymethyl methacrylate reinforced with metal wire or with continuous glass fiber.

    PubMed

    Vallittu, P K

    1996-06-01

    The aim of this study was to determine the dimensional accuracy and stability of denture base polymethyl methacrylate (PMMA), which was reinforced in various ways. Autopolymerizing PMMA and heat-cured PMMA were reinforced either with semicircular steel wire or with a prefabricated experimental reinforcement made of continuous E-glass fiber. Control specimens had no reinforcement. The width of each U-shaped test specimen was measured with a digital micrometer under a light microscope immediately after the test specimen was cured and when stored in water for 1, 2, 7, and 14 days. The results revealed that both the type of PMMA and the type of reinforcement affected the dimensional accuracy of the test specimens, especially after 7 and 14 days in water storage (p < 0.001). The greatest dimensional accuracy was found with the unreinforced test specimen made from autopolymerizing PMMA and with test specimens reinforced with the metal wire made from heat-cured PMMA. In terms of the width of the test specimens, the lowest dimensional accuracy was found in unreinforced and glass fiber reinforced specimens made from heat-cured PMMA. Storage in water did not affect the stability of the width (p > 0.1). The results suggest that the polymerization shrinkage of PMMA causes lower dimensional accuracy of the test specimens reinforced with glass fiber. This should be considered when glass-fiber reinforcement is used clinically.

  12. Experimental and numerical investigation of concrete structures with metal and non-metal reinforcement at impulse loadings

    NASA Astrophysics Data System (ADS)

    Radchenko, P. A.; Batuev, S. P.; Radchenko, A. V.; Plevkov, V. S.; Kudyakov, K. L.

    2016-11-01

    Manufacturing durable and high-strength concrete structures has always been a relevant objective. Therefore special attention has been paid to non-metallic composite reinforcement. This paper considers experimental and numerical studies of nature of fracture and crack formation in concrete beams with rod composite reinforcement. Fiber glass rods, 6 mm in diameter, have been used as composite reinforcement. Concrete elements have been tested under dynamic load using special pile driver. The obtained results include patterns of fracture and crack formation, maximum load value and maximum element deflection. Comparative analysis of numerical and experimental studies has been held.

  13. Simulation of Damage Evolution in Discontinously Reinforced Metal Matrix Composites

    SciTech Connect

    Biner, S.B.; Hu, Shenyang Y.

    2009-08-01

    First, a phase-field model for elastic-plastic solids obeying von Mises yield criterion will be described. Then, this phase-field model will be extended to simulate the damage evolution due to nucleation and growth of voids in ductile matrix for discontinuously reinforced composites. The role of reinforcement morphology and the modulus effects leading to final failure all included in the simulations in an effort to make a parametric investigation. The advantages and disadvantages of such phase-field modeling approach in comparison to well established other continuum methods will be elucidated.

  14. Selective Reinforcement to Enhance the Structural Performance of Metallic Compression Panels

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    2004-01-01

    An experimental and analytical investigation of the influence of selective reinforcement on metallic panels with cutouts was conducted. Selective reinforcement was shown to be a weight effective concept for increasing structural performance of panels with cutouts designed to carry loads into the post-buckled regime. For instance, a selectively reinforced aluminum panel under shear load exhibited a 68 percent increase in specific-buckling load as compared to a geometrically comparable unreinforced aluminum panel. In comparison, a quasi-isotropic carbon-fiber-reinforced-polymer composite panel only produced a 45 percent higher specific-buckling load than the same unreinforced aluminum panel. Selective reinforcement offers the potential to tailor structural response through local strengthening and stiffening the structure for a broad range of structural application.

  15. Reinforcement Size Dependence of Load Bearing Capacity in Ultrafine-Grained Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Yang, Hanry; Jiang, Lin; Balog, Martin; Krizik, Peter; Schoenung, Julie M.

    2017-09-01

    The length-scale effects on the load bearing capacity of reinforcement particles in an ultrafine-grained metal matrix composite (MMC) were studied, paying particular attention to the nanoscale effects. We observed that the nanoparticles provide the MMCs with a higher strength but a lower stiffness compared to equivalent materials reinforced with submicron particles. The reduction in stiffness is attributed to ineffective load transfer of the local stresses to the small and equiaxed nanoparticles.

  16. Reinforcement Size Dependence of Load Bearing Capacity in Ultrafine-Grained Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Yang, Hanry; Jiang, Lin; Balog, Martin; Krizik, Peter; Schoenung, Julie M.

    2017-07-01

    The length-scale effects on the load bearing capacity of reinforcement particles in an ultrafine-grained metal matrix composite (MMC) were studied, paying particular attention to the nanoscale effects. We observed that the nanoparticles provide the MMCs with a higher strength but a lower stiffness compared to equivalent materials reinforced with submicron particles. The reduction in stiffness is attributed to ineffective load transfer of the local stresses to the small and equiaxed nanoparticles.

  17. High Temperature Interactions of Metallic Matrices with Ceramic Reinforcements

    DTIC Science & Technology

    1990-12-31

    temperatura range were extensive; various metal silicides, metalIcarbides, ternary metal-slilcon-carbides, and unreacted carbon were formed as layered...Couples 3.2.1 Preparation of SiC Ceramic: The polycrystalline SiC substrates, designated as Hexoloy, were obtained from the Carborundum Corporation ...and was received from Engelhard Corporation . The metal pieces were cut into a similar size to that of the SiC, mechanically ground with #600 SiC papers

  18. Fracture Analysis of Particulate Reinforced Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Min, James B.; Cornie, James A.

    2013-01-01

    A fracture analysis of highly loaded particulate reinforced composites was performed using laser moire interferometry to measure the displacements within the plastic zone at the tip of an advancing crack. Ten castings were made of five different particulate reinforcement-aluminum alloy combinations. Each casting included net-shape specimens which were used for the evaluation of fracture toughness, tensile properties, and flexure properties resulting in an extensive materials properties data. Measured fracture toughness range from 14.1 MPa for an alumina reinforced 356 aluminum alloy to 23.9 MPa for a silicon carbide reinforced 2214 aluminum alloy. For the combination of these K(sub Ic) values and the measured tensile strengths, the compact tension specimens were too thin to yield true plane strain K(sub Ic) values. All materials exhibited brittle behavior characterized by very small tensile ductility suggesting that successful application of these materials requires that the design stresses be below the elastic limit. Probabilistic design principles similar to those used with ceramics are recommended when using these materials. Such principles would include the use of experimentally determined design allowables. In the absence of thorough testing, a design allowable stress of 60 percent of the measured ultimate tensile stress is recommended.

  19. Method of making metal matrix composites reinforced with ceramic particulates

    DOEpatents

    Cornie, James A.; Kattamis, Theodoulos; Chambers, Brent V.; Bond, Bruce E.; Varela, Raul H.

    1989-01-01

    Composite materials and methods for making such materials are disclosed in which dispersed ceramic particles are at chemical equilibrium with a base metal matrix, thereby permitting such materials to be remelted and subsequently cast or otherwise processed to form net weight parts and other finished (or semi-finished) articles while maintaining the microstructure and mechanical properties (e.g. wear resistance or hardness) of the original composite. The composite materials of the present invention are composed of ceramic particles in a base metal matrix. The ceramics are preferably carbides of titanium, zirconium, tungsten, molybdenum or other refractory metals. The base metal can be iron, nickel, cobalt, chromium or other high temperature metal and alloys thereof. For ferrous matrices, alloys suitable for use as the base metal include cast iron, carbon steels, stainless steels and iron-based superalloys.

  20. Method of making metal matrix composites reinforced with ceramic particulates

    DOEpatents

    Cornie, J.A.; Kattamis, T.; Chambers, B.V.; Bond, B.E.; Varela, R.H.

    1989-08-01

    Composite materials and methods for making such materials are disclosed in which dispersed ceramic particles are at chemical equilibrium with a base metal matrix, thereby permitting such materials to be remelted and subsequently cast or otherwise processed to form net weight parts and other finished (or semi-finished) articles while maintaining the microstructure and mechanical properties (e.g. wear resistance or hardness) of the original composite. The composite materials of the present invention are composed of ceramic particles in a base metal matrix. The ceramics are preferably carbides of titanium, zirconium, tungsten, molybdenum or other refractory metals. The base metal can be iron, nickel, cobalt, chromium or other high temperature metal and alloys thereof. For ferrous matrices, alloys suitable for use as the base metal include cast iron, carbon steels, stainless steels and iron-based superalloys. 2 figs.

  1. Evaluation of a metal fuselage frame selectively reinforced with filamentary composites for space shuttle application

    NASA Technical Reports Server (NTRS)

    Oken, S.; Skoumal, D. E.; Straayer, J. W.

    1974-01-01

    The development of metal structures reinforced with filamentary composites as a weight saving feature of the space shuttle components is discussed. A frame was selected for study that was representative of the type of construction used in the bulk frames of the orbiter vehicle. Theoretical and experimental investigations were conducted. Component tests were performed to evaluate the critical details used in the designs and to provide credibility to the weight saving results. A model frame was constructed of the reinforced metal material to provide a final evaluation of the construction under realistic load conditions.

  2. Seamless metal-clad fiber-reinforced organic matrix composite structures and process for their manufacture

    NASA Technical Reports Server (NTRS)

    Bluck, Raymond M. (Inventor); Bush, Harold G. (Inventor); Johnson, Robert R. (Inventor)

    1990-01-01

    A metallic outer sleeve is provided which is capable of enveloping a hollow metallic inner member having continuous reinforcing fibers attached to the distal end thereof. The inner member is then introduced into outer sleeve until inner member is completely enveloped by outer sleeve. A liquid matrix member is then injected into space between inner member and outer sleeve. A pressurized heat transfer medium is flowed through the inside of inner member, thereby forming a fiber reinforced matrix composite material. The wall thicknesses of both inner member and outer sleeve are then reduced to the appropriate size by chemical etching, to adjust the thermal expansion coefficient of the metal-clad composite structure to the desired value. thereby forming a fiber reinforced matrix composite material. The wall thicknesses of both inner member and outer sleeve are then reduced to the appropriate size by chemical etching, to adjust the thermal expansion coefficient of the metal-clad composite structure to the desired value. The novelty of this invention resides in the development of a efficient method of producing seamless metal clad fiber reinforced organic matrix composite structures.

  3. Occupational asthma caused by aluminium welding.

    PubMed

    Vandenplas, O; Delwiche, J P; Vanbilsen, M L; Joly, J; Roosels, D

    1998-05-01

    Work-related asthma has been documented in workers employed in the primary aluminium industry and in the production of aluminium salts. The role of aluminium in the development of occupational asthma has, however, never been convincingly substantiated. We investigated a subject who experienced asthmatic reactions related to manual metal arc welding on aluminium. Challenge exposure to aluminium welding with flux-coated electrodes, as well as with electrodes without flux, elicited marked asthmatic reactions. Manual metal arc welding on mild steel did not cause significant bronchial response. The results of inhalation challenges combined with exposure assessments provided evidence that aluminium can cause asthmatic reactions in the absence of fluorides. Awareness of this possibility may be relevant to the investigation of asthma in workers exposed to aluminium.

  4. Content and binding forms of heavy metals, aluminium and phosphorus in bog iron ores from Poland.

    PubMed

    Kaczorek, Danuta; Brümmer, Gerhard W; Sommer, Michael

    2009-01-01

    Bog iron ores are widespread in Polish wetland soils used as meadows or pastures. They are suspected to contain high concentrations of heavy metals, which are precipitated together with Fe along a redox gradient. Therefore, soils with bog iron ore might be important sources for a heavy metal transfer from meadow plants into the food chain. However, this transfer depends on the different binding forms of heavy metals. The binding forms were quantified by sequential extraction analysis of heavy metals (Fe, Mn, Cr, Co, Ni, Cd, Pb) as well as Al and P on 13 representative samples of bog iron ores from central and southwestern Poland. Our results showed total contents of Cr, Co, Ni, Zn, Cd, and Pb not to exceed the natural values for sandy soils from Poland. Only the total Mn was slightly higher. The highest contents of all heavy metals have been obtained in iron oxide fractions V (occluded in noncrystalline and poorly crystalline Fe oxides) and VI (occluded in crystalline Fe oxides). The results show a distinct relationship between the content of Fe and the quantity of Zn and Pb as well P. Water soluble as well as plant available fractions were below the detection limit in most cases. From this we concluded bog iron ores not to be an actual, important source of heavy metals in the food chain. However, a remobilization of heavy metals might occur due to any reduction of iron oxides in bog iron ores, for example, by rising groundwater levels.

  5. Assessment of the biological effects of welding fumes emitted from metal inert gas welding processes of aluminium and zinc-plated materials in humans.

    PubMed

    Hartmann, L; Bauer, M; Bertram, J; Gube, M; Lenz, K; Reisgen, U; Schettgen, T; Kraus, T; Brand, P

    2014-03-01

    The aim of this study was to investigate biological effects and potential health risks due to two different metal-inert-gas (MIG) welding fumes (MIG welding of aluminium and MIG soldering of zinc coated steel) in healthy humans. In a threefold cross-over design study 12 male subjects were exposed to three different exposure scenarios. Exposures were performed under controlled conditions in the Aachener Workplace Simulation Laboratory (AWSL). On three different days the subjects were either exposed to filtered ambient air, to welding fumes from MIG welding of aluminium, or to fumes from MIG soldering of zinc coated materials. Exposure was performed for 6 h and the average fume concentration was 2.5 mg m(-3). Before, directly after, 1 day after, and 7 days after exposure spirometric and impulse oscillometric measurements were performed, exhaled breath condensate (EBC) was collected and blood samples were taken and analyzed for inflammatory markers. During MIG welding of aluminium high ozone concentrations (up to 250 μg m(-3)) were observed, whereas ozone was negligible for MIG soldering. For MIG soldering, concentrations of high-sensitivity CRP (hsCRP) and factor VIII were significantly increased but remained mostly within the normal range. The concentration of neutrophils increased in tendency. For MIG welding of aluminium, the lung function showed significant decreases in Peak Expiratory Flow (PEF) and Mean Expiratory Flow at 75% vital capacity (MEF 75) 7 days after exposure. The concentration of ristocetin cofactor was increased. The observed increase of hsCRP during MIG-soldering can be understood as an indicator for asymptomatic systemic inflammation probably due to zinc (zinc concentration 1.5 mg m(-3)). The change in lung function observed after MIG welding of aluminium may be attributed to ozone inhalation, although the late response (7 days after exposure) is surprising. Copyright © 2013 Elsevier GmbH. All rights reserved.

  6. Study on aluminium-based single films.

    PubMed

    Vinod Kumar, G S; García-Moreno, F; Babcsán, N; Brothers, A H; Murty, B S; Banhart, J

    2007-12-28

    In the present paper the authors studied isolated metallic films made from the same material used for making metallic foams, and then characterised their properties. Metal films were made from a liquid aluminium alloy reinforced with ceramic particles of known concentration. Melts without such particles were also investigated. It is shown that stable films could not be made from Al-Si alloy having no particles, and just extremely thin and fragile films could be made from commercially-pure Al. In contrast, aluminium alloys containing particles such as SiC and TiB(2) allowed pulling thin, stable films, which did not rupture. Significant thinning of films was observed when the particle concentration in the melt decreased. By in situ X-ray monitoring of liquid films during pulling, film thickness and drainage effects within the liquid film could be studied. The morphology and microstructure of films was characterised after solidification. Our work shows that the question of how foams are stabilised can be studied using a simplified system such as a film, instead of having to deal with the multitude of different structural elements present in a foam.

  7. Strength and deformability of concrete beams reinforced by non-metallic fiber and composite rebar

    NASA Astrophysics Data System (ADS)

    Kudyakov, K. L.; Plevkov, V. S.; Nevskii, A. V.

    2015-01-01

    Production of durable and high-strength concrete structures with unique properties has always been crucial. Therefore special attention has been paid to non-metallic composite and fiber reinforcement. This article describes the experimental research of strength and deformability of concrete beams with dispersed and core fiber-based reinforcement. As composite reinforcement fiberglass reinforced plastic rods with diameters 6 mm and 10 mm are used. Carbon and basalt fibers are used as dispersed reinforcement. The developed experimental program includes designing and production of flexural structures with different parameters of dispersed fiber and composite rebar reinforcement. The preliminary testing of mechanical properties of these materials has shown their effectiveness. Structures underwent bending testing on a special bench by applying flexural static load up to complete destruction. During the tests vertical displacements were recorded, as well as value of actual load, slippage of rebars in concrete, crack formation. As a result of research were obtained structural failure and crack formation graphs, value of fracture load and maximum displacements of the beams at midspan. Analysis of experimental data showed the effectiveness of using dispersed reinforcement of concrete and the need for prestressing of fiberglass composite rebar.

  8. Simulation of a Novel Joining Process for Fiber-Reinforced Thermoplastic Composites and Metallic Components

    NASA Astrophysics Data System (ADS)

    Gude, M.; Freund, A.; Vogel, C.; Kupfer, R.

    2017-01-01

    In this study, a new joining technology to produce hybrid structures with continuous-fiber-reinforced thermoplastics and metallic components is presented adapting the concept of classical clinching for thermoplastic composites. To demonstrate the capability of the thermoclinching process, prototypic joints were manufactured using an experimental joining installation developed. Nondestructive and destructive analyses of the thermoclinched joints showed that a relocation of the reinforcement into the neck and head area of the joining zone could be achieved. For a first estimation of the maximum load-carrying capacity of the joints, single-lap specimens with both reinforced and nonreinforced thermoplastics were manufactured and tested, revealing up to 50% higher failure loads of the reinforced joints. To understand the local material configuration and to achieve a defined and adjustable fabric structure in the head area of the joint, further analyses with regard to material- and tool-side conditions of the joining zone are necessary.

  9. Stabilising metal(loid)s in soil with iron and aluminium-based products: microbial, biochemical and plant growth impact.

    PubMed

    Garau, Giovanni; Silvetti, Margherita; Castaldi, Paola; Mele, Elena; Deiana, Pietrino; Deiana, Salvatore

    2014-06-15

    Four iron and aluminium-based products, including red mud (RM), hematite (Fe2O3), an iron-rich water treatment residual (Fe-WTR) and amorphous Al hydroxide (Al-OH), were evaluated for their effectiveness at stabilising As and heavy metals (i.e. Cd, Cu, Pb, Zn) in a circumneutral contaminated soil [As (2105 mg kg(-1)), Cd (18 mg kg(-1)), Cu (264 mg kg(-1)), Pb (710 mg kg(-1)), Zn (522 mg kg(-1))]. Treatment impacts on soil microbial and biochemical features (i.e. microbial biomass-C, microbial counts, 16S rRNA PCR-TTGE of culturable bacteria, dehydrogenase, urease and β-glucosidase activity, Biolog derived parameters-AWCD and richness) as well as bean (Phaseolus vulgaris) and wheat (Triticum vulgare) growth were also assessed. After 6 months equilibration, all the amendments (application rate 3% w/w) but RM reduced labile As while only Al-OH reduced the concentration of water-soluble heavy metals. Despite the highest bioavailability of contaminants, most of the soil microbial and biochemical features monitored (i.e. microbial biomass-C, total bacterial counts, dehydrogenase activity and AWCD) were significantly higher in the RM-soil. Bean germination was completely inhibited in RM-soil while wheat growth was similar to that of the control. The Al-OH treatment was best overall, promoting microbial abundance, diversity and activity while increasing bean and wheat growth and reducing As accumulated in plant shoots. Results suggest that Al-OH is a suitable candidate for field evaluations while the use of RM in the remediation of circumneutral or subalkaline contaminated soils should be reconsidered. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Elasto-plastic analysis of interface layers for fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Doghri, I.; Leckie, F. A.

    1991-01-01

    The mismatch in coefficients of thermal expansion (CTE) of fiber and matrix in metal matrix composites reinforced with ceramic fibers induces high thermal stresses in the matrix. Elasto-plastic analyses - with different degrees of simplification and modelization - show that an interface layer with a sufficiently high CTE can reduce the tensile hoop stress in the matrix substantially.

  11. Usinage des composites a matrice d'alliage d'aluminium GrA-Ni(Reg)

    NASA Astrophysics Data System (ADS)

    Songmene, Victor

    2001-07-01

    Aluminium Metal Matrix Composites (MMC) reinforced with ceramic particles have been increasingly developed during the last decade. Ceramic particles used as reinforcement that improve the wear resistance of composites also cause high abrasive wear on cutting tools. This thesis investigates the machinability of graphitic MMC consisting of an aluminium alloy matrix reinforced with both soft nickel-coated graphite particles and hard (SiC or Al2O 3) particles. These composites were developed seven years ago, but the lack of optimised machining data to machine GrA-NIRTM composites cost effectively have been slowing down their use in engineering applications. Turning, milling and drilling tests were performed to evaluate the machinability of different GrA-NIRTM and to establish cutting conditions. It was found that: (1) The machinability of GrA-NiRTM composites depends on the nature and the percentage of the reinforcing particles. GrA-NiRTM containing alumina and graphite are easier to machine than those reinforced with silicon carbide and graphite. (2) Polycrystalline (PCD) and diamond-coated carbide (DCC) are the tool material of choice for machining GrA-NiRTM. DCC tools are most cost effective while PCD tools produce better part finishes. (3) The cutting force required to machine the GrA-NIRTM composites is similar to that used for aluminium alloys such as Al 380.

  12. An in vitro comparative evaluation of fracture resistance of custom made, metal, glass fiber reinforced and carbon reinforced posts in endodontically treated teeth.

    PubMed

    Sonkesriya, Subhash; Olekar, Santosh T; Saravanan, V; Somasunderam, P; Chauhan, Rashmi Singh; Chaurasia, Vishwajit Rampratap

    2015-05-01

    Posts are used to enhance crown buildup in pulpless teeth with destructed crown portion. Different types of post are used in endodontically treated teeth. The aim of the present in vitro study was to evaluate fracture resistance of custom made, metal, glass fiber reinforced and carbon reinforced posts in endodontically treated teeth. An in vitro study was carried out on extracted 40 human maxillary central incisor teeth, which was divided into four groups with 10 samples in each group with custom made, metal post, glass fiber reinforced, and carbon reinforced posts. The samples were decoronated at cemento-enamel junction and endodontically treated. Post space was prepared and selected posts were cemented. The composite cores were prepared at the height of 5 mm and samples mounted on acrylic blocks. Later fracture resistance to the compressive force of samples was measured using Universal Testing Machine. The maximum resistance to the compressive force was observed in carbon reinforced and glass fiber reinforced posts compared others which is statistically significant (P > 0.001) and least was seen in custom fabricated post. It is concluded that carbon reinforced fiber post and glass fiber posts showed good fracture resistance compared to custom made and metal posts.

  13. An In Vitro Comparative Evaluation of Fracture Resistance of Custom Made, Metal, Glass Fiber Reinforced and Carbon Reinforced Posts in Endodontically Treated Teeth

    PubMed Central

    Sonkesriya, Subhash; Olekar, Santosh T; Saravanan, V; Somasunderam, P; Chauhan, Rashmi Singh; Chaurasia, Vishwajit Rampratap

    2015-01-01

    Background: Posts are used to enhance crown buildup in pulpless teeth with destructed crown portion. Different types of post are used in endodontically treated teeth. The aim of the present in vitro study was to evaluate fracture resistance of custom made, metal, glass fiber reinforced and carbon reinforced posts in endodontically treated teeth. Materials and Methods: An in vitro study was carried out on extracted 40 human maxillary central incisor teeth, which was divided into four groups with 10 samples in each group with custom made, metal post, glass fiber reinforced, and carbon reinforced posts. The samples were decoronated at cemento-enamel junction and endodontically treated. Post space was prepared and selected posts were cemented. The composite cores were prepared at the height of 5 mm and samples mounted on acrylic blocks. Later fracture resistance to the compressive force of samples was measured using Universal Testing Machine. Results: The maximum resistance to the compressive force was observed in carbon reinforced and glass fiber reinforced posts compared others which is statistically significant (P > 0.001) and least was seen in custom fabricated post. Conclusion: It is concluded that carbon reinforced fiber post and glass fiber posts showed good fracture resistance compared to custom made and metal posts. PMID:26028904

  14. Impact strength of denture polymethyl methacrylate reinforced with continuous glass fibers or metal wire.

    PubMed

    Vallittu, P K; Vojtkova, H; Lassila, V P

    1995-12-01

    The impact strength of heat-cured acrylic resin test specimens that had been reinforced in various ways was compared in this study. Ten rectangular test specimens were fabricated for each test group. The strengtheners included 1.0-mm-diameter steel wire and continuous E-glass fibers. Both notched and unnotched test specimens were tested in a Charpy-type impact test. In a further analysis the concentration of glass fibers in the test specimens was determined and plotted against the impact strength of the test specimens. The results showed that, compared with the unreinforced specimens, both types of reinforcement increased the impact strength of the test specimens considerably (p < 0.001). There was no clear difference between the mean impact strength value of the test specimens reinforced with metal wire and that of the specimens reinforced with glass fiber. The correlation coefficient between the fiber concentration of the test specimens and their impact strength was 0.818 (p < 0.005). Specimens with fiber concentrations greater than 25 wt% yielded to the higher impact strength more readily than those with metal wire reinforcement did.

  15. Toxic Aluminium and Heavy Metals in Groundwater of Middle Russia: Health Risk Assessment

    PubMed Central

    Momot, Olga; Synzynys, Boris

    2005-01-01

    Two approaches are distinguished in modern ecological monitoring. The first one is physicochemical analysis of environmental objects with respect to maximum allowable concentrations (MACs) of chemical substances, which is performed by standards methods in accordance with state regulations. The second approach (biological monitoring) is based on the methodology of biotesting and bio indication. The task of this work is to create biotests for estimation of Al and other metals toxicity in ground water and to compare these results with physicochemical analysis dates. Risk assessment for heavy metals contaminated groundwater was also performed. Risk assessment was performed accordingly EPA US recommendation and gave results about 90 per 100000 citizens for Al and 402 per 100000 for mixture of different heavy metals. For comparison: risk for earth background radiation for Middle Russia is (Individual dose 1 millisivert per year) consist 5 per 100000 people. It was shown that groundwater consist HCO3− ions (360 mg/l), sometimes Al compounds 0.21–0.65 mg/l (MAC for Al is 0.5 mg/l for Russia). Other groundwater contain Hg – 0.004 mg/l (MAC – 0.0005 mg/l); Cr – 0.072 mg/l (MAC – 0.05 mg/l); As – less than 0.03 mg/l (MAC – 0.05 mg/l). We developed plant biotest for estimation of groundwater quality with barley roots, tradescatia and others. Some biotests parameters correlate with HCO3−, Cl−, SO42− and metal ions content positively, for another biotest this correlation is strongly negative. The quality of groundwater near Obninsk and in Kaluga Region is very different but hasn’t been changed since the year 1998. PMID:16705820

  16. Tribological properties of metal-matrix composite materials reinforced by superelastic hard carbon particles

    NASA Astrophysics Data System (ADS)

    Ushakova, I. N.; Drozdova, E. I.; Chernogorova, O. P.; Blinov, V. M.; Ekimov, E. A.

    2016-05-01

    Metal-matrix composite materials (CMs) are synthesized from a mixture of a metal powder (Ti, Fe, Co, Ni, Cu, Al-based alloy) and fullerenes (10 wt %). The thermobaric synthesis conditions (700-1000°C, 5-8 GPa) ensure the collapse of fullerene molecules and their transformation into superelastic carbon phase particles with an indentation hardness H IT = 10-37 GPa, an elastic modulus E IT = 60-260 GPa, and an elastic recovery of >80% upon indentation. After reinforcing by superelastic hard carbon, the friction coefficient of CM decreases by a factor of 2-4 as compared to the friction coefficient of the matrix metal, and the abrasive wear resistance increases by a factor of 4-200. Superelastic hard carbon particles are a unique reinforcing material for an increase in the wear resistance and a simultaneous decrease in the friction coefficient of CM.

  17. Application of composites to the selective reinforcement of metallic aerospace structures. [application of structural design criteria for weight reduction

    NASA Technical Reports Server (NTRS)

    Brooks, W. A., Jr.; Mathauser, E. E.; Pride, R. A.

    1972-01-01

    The use of composite materials to selectively reinforce metallic structures provides a low-cost way to reduce weight and a means of minimizing the risks usually associated with the introduction of new materials. An overview is presented of the NASA Langley Research Center programs to identify the advantages and to develop the potential of the selective reinforcement approach to the use of composites. These programs have shown that selective reinforcement provides excellent strength and stiffness improvements to metallic structures. Significant weight savings can be obtained in a cost effective manner. Flight service programs which have been initiated to validate further the merits of selective reinforcement are described.

  18. Reinforcement of metal with liquid-exfoliated inorganic nano-platelets

    NASA Astrophysics Data System (ADS)

    May, Peter; Khan, Umar; Coleman, Jonathan N.

    2013-10-01

    We have prepared metal matrix composites of a pewter alloy filled with liquid-exfoliated Molybdenum Telluride (MoTe2) nano-platelets. The combination of MoTe2 and pewter was chosen due to their near-identical densities, thus reducing the scope for buoyancy-induced separation during melt mixing. The addition of nanofiller results in a doubling of the Young's modulus, Y, for a volume fraction, Vf, of <1% MoTe2, corresponding to a reinforcement of dY/dVf = 110 GPa. We find that this degree of reinforcement to be reasonably consistent with that predicted by a simplified version of Halpin-Tsai theory.

  19. Design synthesis of a boron/epoxy reinforced metal shear web.

    NASA Technical Reports Server (NTRS)

    Laakso, J. H.

    1972-01-01

    An advanced composite shear web design concept has been developed for the Space Shuttle Orbiter main engine thrust beam structure. Various web concepts were synthesized by a computer-aided adaptive random search procedure. A practical concept is identified having a titanium-clad, boron/epoxy plate with vertical boron/epoxy reinforced stiffeners. Baseline composite and titanium shear resistant designs are compared; the composite concept is 28% lighter than the titanium web. Element test results show the metal cladding effectively reinforces critical composite load transfer and fastener hole areas making the composite web concept practical for other shear structure applications.-

  20. Metal-organic frameworks (MOFs) as safer, structurally reinforced energetics.

    PubMed

    Bushuyev, Oleksandr S; Peterson, Geneva R; Brown, Preston; Maiti, Amitesh; Gee, Richard H; Weeks, Brandon L; Hope-Weeks, Louisa J

    2013-01-28

    Second-generation cobalt and zinc coordination architectures were obtained through efforts to stabilize extremely sensitive and energetic transition-metal hydrazine perchlorate ionic polymers. Partial ligand substitution by the tridentate hydrazinecarboxylate anion afforded polymeric 2D-sheet structures never before observed for energetic materials. Carefully balanced reaction conditions allowed the retention of the noncoordinating perchlorate anion in the presence of a strongly chelating hydrazinecarboxylate ligand. High-quality X-ray single-crystal structure determination revealed that the metal coordination preferences lead to different structural motifs and energetic properties, despite the nearly isoformulaic nature of the two compounds. Energetic tests indicate highly decreased sensitivity and DFT calculations suggest a high explosive performance for these remarkable structures.

  1. Durability of Continuous Fiber Reinforced Metal Matrix Composites

    DTIC Science & Technology

    1987-10-01

    Wright-Patterson Air Force Base, Ohio, under contract F33615-83-C-3219, Project 2401, Work Unit 24010167, "Durability of Continuous Fiber Metal...determine the range of fatigue failure modes found by previous investigators. Testing performed under MCAIR IRAD had previously shown that failure modes... under tension loading. The fatigue sensitivity is the ratio of net stress in a notched specimen to that in an unnotched specimen at a given life

  2. Biopharmaceutical characterisation of ciprofloxacin-metallic ion interactions: comparative study into the effect of aluminium, calcium, zinc and iron on drug solubility and dissolution.

    PubMed

    Stojković, Aleksandra; Tajber, Lidia; Paluch, Krzysztof J; Djurić, Zorica; Parojčić, Jelena; Corrigan, Owen I

    2014-03-01

    Ciprofloxacin bioavailability may be reduced when ciprofloxacin is co-administered with metallic ion containing preparations. In our previous study, physicochemical interaction between ciprofloxacin and ferrous sulphate was successfully simulated in vitro. In the present work, comparative in vitro ciprofloxacin solubility and dissolution studies were performed in the reactive media containing aluminium hydroxide, calcium carbonate or zinc sulphate. Solid phases collected from the dissolution vessel with aluminium hydroxide, calcium carbonate and zinc sulphate were investigated for their properties. The results obtained indicate that different types of adducts may form and retard ciprofloxacin solubility and dissolution. In the case of aluminium, no phase changes were observed. The solid phase generated in the presence of calcium carbonate was identified as hydrated ciprofloxacin base. Similarly to iron, a new complex consistent with Zn(SO4)2(Cl)2(ciprofloxacin)2 × nH2O stoichiometry was generated in the presence of relatively high concentrations of ciprofloxacin hydrochloride and zinc sulphate, indicating that small volume dissolution experiments can be useful for biorelevant dissolution tests.

  3. Tensile and fatigue behaviour of self-piercing rivets of CFRP to aluminium for automotive application

    NASA Astrophysics Data System (ADS)

    Kang, J.; Rao, H.; Zhang, R.; Avery, K.; Su, X.

    2016-07-01

    In this study, the tensile and fatigue behaviour of self-piercing rivets (SPRs) in carbon fibre reinforced plastic (CFRP) to aluminium 6111 T82 alloys were evaluated. An average maximum lap-shear tensile load capacity of 3858 N was achieved, which is comparable to metal-to-metal SPR lap-shear joints. The CFRP-Al SPRs failed in lap-shear tension due to pull-out of the rivet head from the CFRP upper sheet. The CFRP-Al SPR lap- shear specimens exhibited superior fatigue life compared to previously studied aluminium-to- aluminium SPR lap-shear joints. The SPR lap-shear joints under fatigue loads failed predominantly due to kinked crack growth along the width of the bottom aluminium sheet. The fatigue cracks initiated in the plastically deformed region of the aluminium sheet close to the rivet shank in the rivet-sheet interlock region. Scatter in fatigue life and failure modes was observed in SPR lap-shear specimens tested close to maximum tensile load.

  4. Advances in Thermal Spray Deposition of Billets for Particle Reinforced Light Metals

    SciTech Connect

    Wenzelburger, Martin; Zimmermann, Christian; Gadow, Rainer

    2007-04-07

    Forming of light-metals in semi-solid state offers some advantages like low process temperatures, improved mould durability, good flow behavior and fine, globular microstructure of the final material. By the introduction of ceramic particles, increased elastic modulus and yield strength as well as wear resistance and creep behavior can be obtained. By semi-solid forging or semi-solid casting, particle reinforced metals (PRM) can be produced with improved matrix microstructure and beneficial forming process parameters compared to conventional MMC manufacturing techniques. The production of this kind of light metal matrix composites requires the supply of dense semi-finished parts with well defined volume fractions of homogeneously distributed particulate reinforcement. A manufacturing method for cylindrical light metal billets is described that applies thermal spraying as a build-up process for simultaneous deposition of matrix and reinforcement phase with cored wires as spraying material. Thermal spraying leads to small grain sizes and prevents dendrite formation. However, long process cycle times lead to billet heating and recrystallization of the matrix microstructure. In order to preserve small grain sizes that enable semi-solid forming, the thermal spraying process was analyzed by in-flight particle analysis and thermography. As a consequence, the deposition process was optimized by adaptation of the thermal spraying parameters and by application of additional cooling, leading to lower billet temperatures and finer PRM billet microstructure.

  5. Advances in Thermal Spray Deposition of Billets for Particle Reinforced Light Metals

    NASA Astrophysics Data System (ADS)

    Wenzelburger, Martin; Zimmermann, Christian; Gadow, Rainer

    2007-04-01

    Forming of light-metals in semi-solid state offers some advantages like low process temperatures, improved mould durability, good flow behavior and fine, globular microstructure of the final material. By the introduction of ceramic particles, increased elastic modulus and yield strength as well as wear resistance and creep behavior can be obtained. By semi-solid forging or semi-solid casting, particle reinforced metals (PRM) can be produced with improved matrix microstructure and beneficial forming process parameters compared to conventional MMC manufacturing techniques. The production of this kind of light metal matrix composites requires the supply of dense semi-finished parts with well defined volume fractions of homogeneously distributed particulate reinforcement. A manufacturing method for cylindrical light metal billets is described that applies thermal spraying as a build-up process for simultaneous deposition of matrix and reinforcement phase with cored wires as spraying material. Thermal spraying leads to small grain sizes and prevents dendrite formation. However, long process cycle times lead to billet heating and recrystallization of the matrix microstructure. In order to preserve small grain sizes that enable semi-solid forming, the thermal spraying process was analyzed by in-flight particle analysis and thermography. As a consequence, the deposition process was optimized by adaptation of the thermal spraying parameters and by application of additional cooling, leading to lower billet temperatures and finer PRM billet microstructure.

  6. Dynamic Effects in Elastothermodynamic Damping of Hollow Particle Reinforced Metal-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Srivastava, Sunil Kumar; Mishra, Bhanu Kumar

    2016-06-01

    The Metal-Matrix Composites (MMCs) containing hollow spherical reinforcements are under active development for the applications such as space structures, submarine hulls etc. where weight is of critical importance. When these materials are subjected to a time varying strain field, energy is dissipated because of the thermoelastic effect (Elastothermodynamic Damping or ETD). The quasi-static ETD analysis for the MMCs containing hollow spherical particles has been reported in literature. The entropic approach, which is better suited for composite materials with perfect or imperfect interfaces, is used for the analysis. In the present work, the effect of inertia forces is carried out on ETD of hollow particle-reinforced MMCs. For given particle volume fractions (V p ), the inertia forces are found to be more significant at higher value of thermal parameter (Ω T1) (alternatively, frequency of vibration if reinforcement radius is fixed), large cavity volume fraction (V h ) and low value of the parameter B1.

  7. Dynamic Effects in Elastothermodynamic Damping of Hollow Particle Reinforced Metal-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Srivastava, Sunil Kumar; Mishra, Bhanu Kumar

    2017-04-01

    The Metal-Matrix Composites (MMCs) containing hollow spherical reinforcements are under active development for the applications such as space structures, submarine hulls etc. where weight is of critical importance. When these materials are subjected to a time varying strain field, energy is dissipated because of the thermoelastic effect (Elastothermodynamic Damping or ETD). The quasi-static ETD analysis for the MMCs containing hollow spherical particles has been reported in literature. The entropic approach, which is better suited for composite materials with perfect or imperfect interfaces, is used for the analysis. In the present work, the effect of inertia forces is carried out on ETD of hollow particle-reinforced MMCs. For given particle volume fractions ( V p ), the inertia forces are found to be more significant at higher value of thermal parameter (Ω T1) (alternatively, frequency of vibration if reinforcement radius is fixed), large cavity volume fraction ( V h ) and low value of the parameter B1.

  8. Residual thermal stress control in composite reinforced metal structures. [by mechanical loading of metal component prior to bonding

    NASA Technical Reports Server (NTRS)

    Kelly, J. B.; June, R. R.

    1972-01-01

    Advanced composite materials, composed of boron or graphite fibers and a supporting matrix, make significant structural efficiency improvements available to aircraft and aerospace designers. Residual stress induced during bonding of composite reinforcement to metal structural elements can be reduced or eliminated through suitable modification to the manufacturing processes. The most successful method employed during this program used a steel tool capable of mechanically loading the metal component in compression prior to the adhesive bonding cycle. Compression loading combined with heating to 350 F during the bond cycle can result in creep deformation in aluminum components. The magnitude of the deformation increases with increasing stress level during exposure to 350 F.

  9. Special issue on aluminium plasmonics

    DOE PAGES

    Gerard, Davy; Gray, Stephen K.

    2015-04-08

    Plasmonics is a rapidly growing field that takes advantage of the intense and confined electromagnetic fields that appear near metallic nanostructures illuminated at frequencies near their surface plasmon resonances. As plasmonics continues to develop, it faces the need to find new materials supporting well-defined surface plasmon resonances in different frequency ranges. In the visible and near-infrared ranges the noble metals, most typically gold and silver, exhibit relatively low losses. This is why they are quite ubiquitous in plasmonics literature. However it is somewhat ironic to see that a non-noble metal, aluminium, the metal upon which surface plasmons where first evidencedmore » in the 1950s, is now reappearing after fifty years of near oblivion as one of the 'hottest' materials for plasmonics. Several reasons explain the return of aluminium to the centre stage. First, aluminium exhibits good plasmonic properties in the ultraviolet and deep ultraviolet—a spectral range where gold and silver no longer behave as metals. Second, aluminium is cheap and widely available (Al is the third most abundant element in the earth's crust), criteria of paramount importance when discussing industry-related applications. It is furthermore compatible with complementary metal–oxide–semiconductor (CMOS) technology. In conclusion, this is why an ever-increasing number of papers report new advances on aluminium plasmonics.« less

  10. Special issue on aluminium plasmonics

    SciTech Connect

    Gerard, Davy; Gray, Stephen K.

    2015-04-08

    Plasmonics is a rapidly growing field that takes advantage of the intense and confined electromagnetic fields that appear near metallic nanostructures illuminated at frequencies near their surface plasmon resonances. As plasmonics continues to develop, it faces the need to find new materials supporting well-defined surface plasmon resonances in different frequency ranges. In the visible and near-infrared ranges the noble metals, most typically gold and silver, exhibit relatively low losses. This is why they are quite ubiquitous in plasmonics literature. However it is somewhat ironic to see that a non-noble metal, aluminium, the metal upon which surface plasmons where first evidenced in the 1950s, is now reappearing after fifty years of near oblivion as one of the 'hottest' materials for plasmonics. Several reasons explain the return of aluminium to the centre stage. First, aluminium exhibits good plasmonic properties in the ultraviolet and deep ultraviolet—a spectral range where gold and silver no longer behave as metals. Second, aluminium is cheap and widely available (Al is the third most abundant element in the earth's crust), criteria of paramount importance when discussing industry-related applications. It is furthermore compatible with complementary metal–oxide–semiconductor (CMOS) technology. In conclusion, this is why an ever-increasing number of papers report new advances on aluminium plasmonics.

  11. Earthquake Response of Reinforced Concrete Building Retrofitted with Geopolymer Concrete and X-shaped Metallic Damper

    NASA Astrophysics Data System (ADS)

    Madheswaran, C. K.; Prakash vel, J.; Sathishkumar, K.; Rao, G. V. Rama

    2017-06-01

    A three-storey half scale reinforced concrete (RC) building is fixed with X-shaped metallic damper at the ground floor level, is designed and fabricated to study its seismic response characteristics. Experimental studies are carried out using the (4 m × 4 m) tri-axial shake-table facility to evaluate the seismic response of a retrofitted RC building with open ground storey (OGS) structure using yielding type X-shaped metallic dampers (also called as Added Damping and Stiffness-ADAS elements) and repairing the damaged ground storey columns using geopolymer concrete composites. This elasto-plastic device is normally incorporated within the frame structure between adjacent floors through chevron bracing, so that they efficiently enhance the overall energy dissipation ability of the seismically deficient frame structure under earthquake loading. Free vibration tests on RC building without and with yielding type X-shaped metallic damper is carried out. The natural frequencies and mode shapes of RC building without and with yielding type X-shaped metallic damper are determined. The retrofitted reinforced concrete building is subjected to earthquake excitations and the response from the structure is recorded. This work discusses the preparation of test specimen, experimental set-up, instrumentation, method of testing of RC building and the response of the structure. The metallic damper reduces the time period of the structure and displacement demands on the OGS columns of the structure. Nonlinear time history analysis is performed using structural analysis package, SAP2000.

  12. Aluminium, antiperspirants and breast cancer.

    PubMed

    Darbre, P D

    2005-09-01

    Aluminium salts are used as the active antiperspirant agent in underarm cosmetics, but the effects of widespread, long term and increasing use remain unknown, especially in relation to the breast, which is a local area of application. Clinical studies showing a disproportionately high incidence of breast cancer in the upper outer quadrant of the breast together with reports of genomic instability in outer quadrants of the breast provide supporting evidence for a role for locally applied cosmetic chemicals in the development of breast cancer. Aluminium is known to have a genotoxic profile, capable of causing both DNA alterations and epigenetic effects, and this would be consistent with a potential role in breast cancer if such effects occurred in breast cells. Oestrogen is a well established influence in breast cancer and its action, dependent on intracellular receptors which function as ligand-activated zinc finger transcription factors, suggests one possible point of interference from aluminium. Results reported here demonstrate that aluminium in the form of aluminium chloride or aluminium chlorhydrate can interfere with the function of oestrogen receptors of MCF7 human breast cancer cells both in terms of ligand binding and in terms of oestrogen-regulated reporter gene expression. This adds aluminium to the increasing list of metals capable of interfering with oestrogen action and termed metalloestrogens. Further studies are now needed to identify the molecular basis of this action, the longer term effects of aluminium exposure and whether aluminium can cause aberrations to other signalling pathways in breast cells. Given the wide exposure of the human population to antiperspirants, it will be important to establish dermal absorption in the local area of the breast and whether long term low level absorption could play a role in the increasing incidence of breast cancer.

  13. Analytical and experimental investigation of aircraft metal structures reinforced with filamentary composites. Phase 3: Major component development

    NASA Technical Reports Server (NTRS)

    Bryson, L. L.; Mccarty, J. E.

    1973-01-01

    Analytical and experimental investigations, performed to establish the feasibility of reinforcing metal aircraft structures with advanced filamentary composites, are reported. Aluminum-boron-epoxy and titanium-boron-epoxy were used in the design and manufacture of three major structural components. The components were representative of subsonic aircraft fuselage and window belt panels and supersonic aircraft compression panels. Both unidirectional and multidirectional reinforcement concepts were employed. Blade penetration, axial compression, and inplane shear tests were conducted. Composite reinforced structural components designed to realistic airframe structural criteria demonstrated the potential for significant weight savings while maintaining strength, stability, and damage containment properties of all metal components designed to meet the same criteria.

  14. Analytical and experimental investigation of aircraft metal structures reinforced with filamentary composites. Phase 1: Concept development and feasibility

    NASA Technical Reports Server (NTRS)

    Oken, S.; June, R. R.

    1971-01-01

    The analytical and experimental investigations are described in the first phase of a program to establish the feasibility of reinforcing metal aircraft structures with advanced filamentary composites. The interactions resulting from combining the two types of materials into single assemblies as well as their ability to function structurally were studied. The combinations studied were boron-epoxy reinforced aluminum, boron-epoxy reinforced titanium, and boron-polyimide reinforced titanium. The concepts used unidirectional composites as reinforcement in the primary loading direction and metal for carrying the transverse loads as well as its portion of the primary load. The program established that several realistic concepts could be fabricated, that these concepts could perform to a level that would result in significant weight savings, and that there are means for predicting their capability within a reasonable degree of accuracy. This program also encountered problems related to the application of polyimide systems that resulted in their relatively poor and variable performance.

  15. Additive Manufacturing and Characterization of Polylactic Acid (PLA) Composites Containing Metal Reinforcements

    NASA Technical Reports Server (NTRS)

    Kuentz, Lily; Salem, Anton; Singh, M.; Halbig, M. C.; Salem, J. A.

    2016-01-01

    Additive manufacturing of polymeric systems using 3D printing has become quite popular recently due to rapid growth and availability of low cost and open source 3D printers. Two widely used 3D printing filaments are based on polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) systems. PLA is much more environmentally friendly in comparison to ABS since it is made from renewable resources such as corn, sugarcane, and other starches as precursors. Recently, polylactic acid-based metal powder containing composite filaments have emerged which could be utilized for multifunctional applications. The composite filaments have higher density than pure PLA, and the majority of the materials volume is made up of polylactic acid. In order to utilize functionalities of composite filaments, printing behavior and properties of 3-D printed composites need to be characterized and compared with the pure PLA materials. In this study, pure PLA and composite specimens with different metallic reinforcements (Copper, Bronze, Tungsten, Iron, etc) were 3D printed at various layer heights and resulting microstructures and properties were characterized. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) behavior of filaments with different reinforcements were studied. The microscopy results show an increase in porosity between 3-D printed regular PLA and the metal composite PLA samples, which could produce weaker mechanical properties in the metal composite materials. Tensile strength and fracture toughness behavior of specimens as a function of print layer height will be presented.

  16. Prediction of transverse fatigue behavior of unidirectionally reinforced metal matrix composites

    SciTech Connect

    John, R.; Buchanan, D.J.; Larsen, J.M.

    1998-11-03

    Unidirectionally reinforced metal matrix composites (MMC) are targeted for use in many aerospace applications which require high specific strength and stiffness at elevated temperatures. Such applications include blings and disks. The primary weakness of a component made of unidirectionally reinforced MMC is its susceptibility to transverse loads. The strength of the component in the transverse direction is significantly lower than that in the longitudinal direction under monotonic, sustained and fatigue loading conditions. Hence, replacement of monolithic components with MMC components requires that the transverse strength of the MMC should be predicted accurately. This paper discusses the applicability of a net-section based model to predict the fatigue behavior of [909] MMC under transverse loading.

  17. Reinforced Si3N4 matrix composites formed by the directed metal oxidation process

    SciTech Connect

    Johnson, W.B.

    1992-10-01

    Results of an exploratory study in which the DIMOX directed metal oxidation process was used to form reinforced Si3N4 matrix composites are reported. The study focused on C-fiber reinforcement, which is satisfactory for low-to-moderate temperature applications, including some aerospace and turbine engine applications. It is noted, however, that whenever C-fibers are used at high temperatures in an oxidizing environment, the oxidation resistance of the resulting composites must be addressed. The need for investigating more stable fibers, such as SiC, is emphasized. The approach offers the potential to produce lightweight materials with high room temperature and elevated temperature strength as well as the net or near-net shape capability. 15 refs.

  18. Revealing homogeneous plastic deformation in dendrite-reinforced Ti-based metallic glass composites under tension

    NASA Astrophysics Data System (ADS)

    Wu, F. F.; Wei, J. S.; Chan, K. C.; Chen, S. H.; Zhao, R. D.; Zhang, G. A.; Wu, X. F.

    2017-02-01

    The tensile plastic deformation of dendrite-reinforced Ti-based metallic glass composites (MGCs) was investigated. It was found that there is a critical normalized strain-hardening rate (NSHR) that determines the plastic stability of MGCs: if the NSHR is larger than the critical value, the plastic deformation of the MGCs will be stable, i.e. the necking and strain localization can be effectively suppressed, resulting in homogeneous plastic elongation. In addition, dendrite-reinforce MGCs are verified as being intrinsically ductile, and can be used as good coatings for improving the surface properties of pure titanium or titanium alloys. These findings are helpful in designing, producing, and using MGCs with improved performance properties.

  19. In situ measurement of the reinforcement modulus in a metal matrix composite by acoustic microscopy

    SciTech Connect

    Canumalla, S.; Gordon, G.A.; Pangborn, R.N.

    1995-12-31

    The mechanical properties of metal-matrix composites have been observed to be a strong function of the content of non-fiber inclusions. Shot particles, with the nominal composition of the reinforcement, have been found to crack prematurely, thus representing prefer-red failure initiation sites under mechanical and thermal fatigue of discontinuous, alumina-silicate fiber reinforced aluminum matrix composites. To better understand the differences between the responses of the shot and fibers to loading, the Young`s modulus of the shot is measured and compared to that of the fibers. Scanning acoustic microscopy is used to nondestructively measure the modulus of the shot in situ, and the fiber modulus is obtained from the previously measured composite response. The shot, with a modulus of 131.5 GPa, has a Young`s modulus that is approximately 40% lower than that of the fibers. The influence of this on the composite response will be discussed.

  20. Revealing homogeneous plastic deformation in dendrite-reinforced Ti-based metallic glass composites under tension

    PubMed Central

    Wu, F. F.; Wei, J. S.; Chan, K. C.; Chen, S. H.; Zhao, R. D.; Zhang, G. A.; Wu, X. F.

    2017-01-01

    The tensile plastic deformation of dendrite-reinforced Ti-based metallic glass composites (MGCs) was investigated. It was found that there is a critical normalized strain-hardening rate (NSHR) that determines the plastic stability of MGCs: if the NSHR is larger than the critical value, the plastic deformation of the MGCs will be stable, i.e. the necking and strain localization can be effectively suppressed, resulting in homogeneous plastic elongation. In addition, dendrite-reinforce MGCs are verified as being intrinsically ductile, and can be used as good coatings for improving the surface properties of pure titanium or titanium alloys. These findings are helpful in designing, producing, and using MGCs with improved performance properties. PMID:28195216

  1. Dry sliding wear of heat treated hybrid metal matrix composites

    NASA Astrophysics Data System (ADS)

    Naveed, Mohammed; Khan, A. R. Anwar

    2016-09-01

    In recent years, there has been an ever-increasing demand for enhancing mechanical properties of Aluminum Matrix Composites (AMCs), which are finding wide applications in the field of aerospace, automobile, defence etc,. Among all available aluminium alloys, Al6061 is extensively used owing to its excellent wear resistance and ease of processing. Newer techniques of improving the hardness and wear resistance of Al6061 by dispersing an appropriate mixture of hard ceramic powder and whiskers in the aluminium alloy are gaining popularity. The conventional aluminium based composites possess only one type of reinforcements. Addition of hard reinforcements such as silicon carbide, alumina, titanium carbide, improves hardness, strength and wear resistance of the composites. However, these composites possessing hard reinforcement do posses several problems during their machining operation. AMCs reinforced with particles of Gr have been reported to be possessing better wear characteristics owing to the reduced wear because of formation of a thin layer of Gr particles, which prevents metal to metal contact of the sliding surfaces. Further, heat treatment has a profound influence on mechanical properties of heat treatable aluminium alloys and its composites. For a solutionising temperature of 5500C, solutionising duration of 1hr, ageing temperature of 1750C, quenching media and ageing duration significantly alters mechanical properties of both aluminium alloy and its composites. In the light of the above, the present paper aims at developing aluminium based hybrid metal matrix composites containing both silicon carbide and graphite and characterize their mechanical properties by subjecting it to heat treatment. Results indicate that increase of graphite content increases wear resistance of hybrid composites reinforced with constant SiC reinforcement. Further heat treatment has a profound influence on the wear resistance of the matrix alloy as well as its hybrid composites

  2. Process for the manufacture of seamless metal-clad fiber-reinforced organic matrix composite structures

    NASA Technical Reports Server (NTRS)

    Bluck, Raymond M. (Inventor); Bush, Harold G. (Inventor); Johnson, Robert R. (Inventor)

    1991-01-01

    A process for producing seamless metal-clad composite structures includes providing a hollow, metallic inner member and an outer sleeve to surround the inner member and define an inner space therebetween. A plurality of continuous reinforcing fibers is attached to the distal end of the outside diameter of the inner member, and the inner member is then introduced, distal end first, into one end of the outer sleeve. The inner member is then moved, distal end first, into the outer sleeve until the inner member is completely enveloped by the outer sleeve. A liquid matrix material is then injected into the space containing the reinforcing fibers between the inner member and the outer sleeve. Next a pressurized heat transfer medium is passed through the inner member to cure the liquid matrix material. Finally, the wall thickness of both the inner member and the outer sleeve are reduced to desired dimensions by chemical etching, which adjusts the thermal expansion coefficient of the metal-clad composite structure to a desired value.

  3. Optimized process parameters for fabricating metal particles reinforced 5083 Al composite by friction stir processing

    PubMed Central

    Bauri, Ranjit; Yadav, Devinder; Shyam Kumar, C.N.; Janaki Ram, G.D.

    2015-01-01

    Metal matrix composites (MMCs) exhibit improved strength but suffer from low ductility. Metal particles reinforcement can be an alternative to retain the ductility in MMCs (Bauri and Yadav, 2010; Thakur and Gupta, 2007) [1,2]. However, processing such composites by conventional routes is difficult. The data presented here relates to friction stir processing (FSP) that was used to process metal particles reinforced aluminum matrix composites. The data is the processing parameters, rotation and traverse speeds, which were optimized to incorporate Ni particles. A wide range of parameters covering tool rotation speeds from 1000 rpm to 1800 rpm and a range of traverse speeds from 6 mm/min to 24 mm/min were explored in order to get a defect free stir zone and uniform distribution of particles. The right combination of rotation and traverse speed was found from these experiments. Both as-received coarse particles (70 μm) and ball-milled finer particles (10 μm) were incorporated in the Al matrix using the optimized parameters. PMID:26566541

  4. Optimized process parameters for fabricating metal particles reinforced 5083 Al composite by friction stir processing.

    PubMed

    Bauri, Ranjit; Yadav, Devinder; Shyam Kumar, C N; Janaki Ram, G D

    2015-12-01

    Metal matrix composites (MMCs) exhibit improved strength but suffer from low ductility. Metal particles reinforcement can be an alternative to retain the ductility in MMCs (Bauri and Yadav, 2010; Thakur and Gupta, 2007) [1,2]. However, processing such composites by conventional routes is difficult. The data presented here relates to friction stir processing (FSP) that was used to process metal particles reinforced aluminum matrix composites. The data is the processing parameters, rotation and traverse speeds, which were optimized to incorporate Ni particles. A wide range of parameters covering tool rotation speeds from 1000 rpm to 1800 rpm and a range of traverse speeds from 6 mm/min to 24 mm/min were explored in order to get a defect free stir zone and uniform distribution of particles. The right combination of rotation and traverse speed was found from these experiments. Both as-received coarse particles (70 μm) and ball-milled finer particles (10 μm) were incorporated in the Al matrix using the optimized parameters.

  5. Residual stress alleviation of aircraft metal structures reinforced with filamentary composites

    NASA Technical Reports Server (NTRS)

    Kelly, J. B.; June, R. R.

    1973-01-01

    Methods to eliminate or reduce residual stresses in aircraft metal structures reinforced by filamentary composites are discussed. Residual stress level reductions were achieved by modifying the manufacturing procedures used during adhesive bonding. The residual stress alleviation techniques involved various forms of mechanical constraint which were applied to the components during bonding. Nine methods were evaluated, covering a wide range in complexity. All methods investigated during the program affected the residual stress level. In general, residual stresses were reduced by 70 percent or more from the stress level produced by conventional adhesive bonding procedures.

  6. Fatigue damage criteria - Matrix, fibers and interfaces of continuous fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1988-01-01

    Continuous fiber reinforced metal matrix composites (MMC) are projected for use in high temperature, stiffness critical parts that will be subjected to cyclic loadings. Depending on the relative fatigue behavior of the fiber and matrix, and the interface properties, the failure modes of MMC can be grouped into four catagories: (1) matrix dominated, (2) fiber dominated, (3) self-similar damage growth, and (4) fiber/matrix interfacial failures. These four types of damage are discussed and illustrated by examples. The emphasis is on the fatigue of unnotched laminates.

  7. Characterization of Corrosion on Outdoor-Exposed Aluminum Metal-Matrix Composites as a Function of Reinforcement Specie and Volume Fraction

    DTIC Science & Technology

    2008-02-01

    Characterization of Corrosion on Outdoor-Exposed Aluminum Metal-Matrix Composites as a Function of Reinforcement Specie and Volume Fraction...Exposed Aluminum Metal-Matrix Composites as a Function of Reinforcement Specie and Volume Fraction Ralph P. I. Adler and Daniel J. Snoha...4. TITLE AND SUBTITLE Characterization of Corrosion on Outdoor-Exposed Aluminum Metal-Matrix Composites as a Function of Reinforcement Specie and

  8. Thermally sprayed prepregs for thixoforging of UD fiber reinforced light metal MMCs

    SciTech Connect

    Silber, Martin; Wenzelburger, Martin; Gadow, Rainer

    2007-04-07

    Low density and good mechanical properties are the basic requirements for lightweight structures in automotive and aerospace applications. With their high specific strength and strain to failure values, aluminum alloys could be used for such applications. Only the insufficient stiffness and thermal and fatigue strength prevented their usage in high-end applications. One possibility to solve this problem is to reinforce the light metal with unidirectional fibers. The UD fiber allows tailoring of the reinforcement to meet the direction of the component's load. In this study, the production of thermally sprayed prepregs for the manufacturing of continuous fiber reinforced MMC by thixoforging is analysed. The main aim is to optimize the winding procedure, which determines the fiber strand position and tension during the coating process. A method to wind and to coat the continuous fibers with an easy-to-use handling technique for the whole manufacturing process is presented. The prepregs were manufactured by producing arc wire sprayed AlSi6 coatings on fibers bundles. First results of bending experiments showed appropriate mechanical properties.

  9. Influence of thermal residual stress on behaviour of metal matrix composites reinforced with particles

    NASA Astrophysics Data System (ADS)

    Guzmán, R. E.; Hernández Arroyo, E.

    2016-02-01

    The properties of a metallic matrix composites materials (MMC's) reinforced with particles can be affected by different events occurring within the material in a manufacturing process. The existence of residual stresses resulting from the manufacturing process of these materials (MMC's) can markedly differentiate the curves obtained in tensile tests obtained from compression tests. One of the themes developed in this work is the influence of residual stresses on the mechanical behaviour of these materials. The objective of this research work presented is numerically estimate the thermal residual stresses using a unit cell model for the Mg ZC71 alloy reinforced with SiC particles with volume fraction of 12% (hot-forging technology). The MMC's microstructure is represented as a three dimensional prismatic cube-shaped with a cylindrical reinforcing particle located in the centre of the prism. These cell models are widely used in predicting stress/strain behaviour of MMC's materials, in this analysis the uniaxial stress/strain response of the composite can be obtained through the calculation using the commercial finite-element code.

  10. Effect of reinforcement type and porosity on strength of metal matrix composite

    NASA Astrophysics Data System (ADS)

    Kulkarni, S. G.; Lal, Achchhe; Menghani, J. V.

    2016-05-01

    In the present work, experimental investigation and the numerical analysis are carried out for strength analysis of A356 alloy matrix composites reinforced with alumina, fly ash and hybrid particle composites. The combined strengthening effect of load bearing, Hall-Petch, Orowan, coefficient of thermal expansion mismatch and elastic modulus mismatch is studied for predicting accurate uniaxial stress-strain behavior of A356 based alloy matrix composite. The unit cell micromechanical approach and nine noded isoparametric finite element analysis (FEA) is used to investigate the yield failure load by considering material defect of porosity as fabrication errors in particulate composite. The Ramberg-Osgood approach is considered for the linear and nonlinear relationship between stress and strain of A356 based metal matrix composites containing different amounts of fly ash and alumina reinforcing particles. A numerical analysis of material porosity on the stress strain behavior of the composite is performed. The literature and experimental results exhibit the validity of this model and confirm the importance of the fly ash as the cheapest and low density reinforcement obtained as a waste by product in thermal power plants.

  11. Deformation behavior of FRP-metal composites locally reinforced with carbon fibers

    NASA Astrophysics Data System (ADS)

    Scholze, M.; Kolonko, A.; Lindner, T.; Lampke, T.; Helbig, F.

    2016-03-01

    This study investigates variations of hybrid laminates, consisting of one aluminum sheet and a unidirectional glass fiber (GF) reinforced polyamide 6 (PA6) basic structure with partial carbon fiber (CF) reinforcement. To create these heterogeneous FRP laminates, it is necessary to design and produce semi-finished textile-based products. Moreover, a warp knitting machine in conjunction with a warp thread offset unit was used to generate bionic inspired compounds. By the variation of stacking prior to the consolidation process of the hybrid laminate, an oriented CF reinforcement at the top and middle layer of the FRP is realized. In both cases the GFRP layer prevents contact between the aluminum and carbon fibers. In so doing, the high strength of carbon fibers can be transferred to the hybrid laminate in load directions with an active prevention of contact corrosion. The interface strength between thermoplastic and metal component was improved by a thermal spray coating on the aluminum sheet. Because of the high surface roughness and porosity, mechanical interlock was used to provide high interface strength without bonding agents between both components. The resulting mechanical properties of the hybrid laminates are evaluated by three point bending tests in different load directions. The effect of local fiber orientation and layer positioning on failure and deformation mechanism is additionally investigated by digital image correlation (DIC).

  12. Metallic Reinforcement of Direct Squeeze Die Casting Aluminum Alloys for Improved Strength and Fracture Resistance

    SciTech Connect

    D. Schwam: J.F. Wallace: Y. Zhu: J.W. Ki

    2004-10-01

    The utilization of aluminum die casting as enclosures where internal equipment is rotating inside of the casting and could fracture requires a strong housing to restrain the fractured parts. A typical example would be a supercharger. In case of a failure, unless adequately contained, fractured parts could injure people operating the equipment. A number of potential reinforcement materials were investigated. The initial work was conducted in sand molds to create experimental conditions that promote prolonged contact of the reinforcing material with molten aluminum. Bonding of Aluminum bronze, Cast iron, and Ni-resist inserts with various electroplated coatings and surface treatments were analyzed. Also toughening of A354 aluminum cast alloy by steel and stainless steel wire mesh with various conditions was analyzed. A practical approach to reinforcement of die cast aluminum components is to use a reinforcing steel preform. Such performs can be fabricated from steel wire mesh or perforated metal sheet by stamping or deep drawing. A hemispherical, dome shaped casting was selected in this investigation. A deep drawing die was used to fabricate the reinforcing performs. The tendency of aluminum cast enclosures to fracture could be significantly reduced by installing a wire mesh of austenitic stainless steel or a punched austenitic stainless steel sheet within the casting. The use of reinforcements made of austenitic stainless steel wire mesh or punched austenitic stainless steel sheet provided marked improvement in reducing the fragmentation of the casting. The best strengthening was obtained with austenitic stainless steel wire and with a punched stainless steel sheet without annealing this material. Somewhat lower results were obtained with the annealed punched stainless steel sheet. When the annealed 1020 steel wire mesh was used, the results were only slightly improved because of the lower mechanical properties of this unalloyed steel. The lowest results were

  13. Feet sunk in molten aluminium: The burn and its prevention.

    PubMed

    Alonso-Peña, David; Arnáiz-García, María Elena; Valero-Gasalla, Javier Luis; Arnáiz-García, Ana María; Campillo-Campaña, Ramón; Alonso-Peña, Javier; González-Santos, Jose María; Fernández-Díaz, Alaska Leonor; Arnáiz, Javier

    2015-08-01

    Nowadays, despite improvements in safety rules and inspections in the metal industry, foundry workers are not free from burn accidents. Injuries caused by molten metals include burns secondary to molten iron, aluminium, zinc, copper, brass, bronze, manganese, lead and steel. Molten aluminium is one of the most common causative agents of burns (60%); however, only a few publications exist concerning injuries from molten aluminium. The main mechanisms of lesion from molten aluminium include direct contact of the molten metal with the skin or through safety apparel, or when the metal splash burns through the pants and rolls downward along the leg. Herein, we report three cases of deep dermal burns after 'soaking' the foot in liquid aluminium and its evolutive features. This paper aims to show our experience in the management of burns due to molten aluminium. We describe the current management principles and the key features of injury prevention. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  14. Aluminium in human sweat.

    PubMed

    Minshall, Clare; Nadal, Jodie; Exley, Christopher

    2014-01-01

    It is of burgeoning importance that the human body burden of aluminium is understood and is measured. There are surprisingly few data to describe human excretion of systemic aluminium and almost no reliable data which relate to aluminium in sweat. We have measured the aluminium content of sweat in 20 healthy volunteers following mild exercise. The concentration of aluminium ranged from 329 to 5329μg/L. These data equate to a daily excretion of between 234 and 7192μg aluminium and they strongly suggest that perspiration is the major route of excretion of systemic aluminium in humans. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. Evidence of aluminium accumulation in aluminium welders.

    PubMed Central

    Elinder, C G; Ahrengart, L; Lidums, V; Pettersson, E; Sjögren, B

    1991-01-01

    Using atomic absorption spectrometry the aluminium concentrations in blood and urine and in two iliac bone biopsies obtained from welders with long term exposure to fumes containing aluminium were measured. The urinary excretion of two workers who had welded for 20 and 21 years varied between 107 and 351 micrograms Al/l, more than 10 times the concentration found in persons without occupational exposure. Urinary aluminium excretion remained high many years after stopping exposure. Blood and bone aluminium concentrations (4-53 micrograms Al/l and 18-29 micrograms Al/g respectively) were also raised but not to the same extent as urine excretion. It is concluded that long term exposure to aluminium by inhalation gives rise to accumulation of aluminium in the body and skeleton of health persons, and that the elimination of retained aluminium is very slow, in the order of several years. PMID:1954151

  16. Microstructure and mechanical properties of aluminium matrix composites reinforced by Al{sub 62}Cu{sub 25.5}Fe{sub 12.5} melt spun ribbon

    SciTech Connect

    Lityńska-Dobrzyńska, Lidia Mitka, Mikołaj; Góral, Anna; Stan-Głowińska, Katarzyna; Dutkiewicz, Jan

    2016-07-15

    Aluminium matrix composites containing 15, 30 and 50 vol.% of pulverized Al{sub 62}Cu{sub 25.5}Fe{sub 12.5} (in at.%) melt spun ribbons have been prepared by a vacuum hot pressing (T = 673 K, P = 600 MPa). The microstructure of the initial ribbon and the composites was investigated using X-ray, scanning and transmission electron microscopy. In the as-spun ribbon the quasicrystalline icosahedral phase (i-phase) coexisted with the cubic copper rich β-Al(Cu, Fe) intermetallic compound. The phase composition of Al-Cu-Fe particles changed after consolidation process and the i-phase transformed partially to the ω-Al{sub 70}Cu{sub 20}Fe{sub 10} phase. Additionally, the Θ-Al{sub 2}Cu phase formed at the α(Al)/Al-Cu-Fe particle interfaces. With an increase in volume fraction of the reinforcement the hardness of the composites increased up to HV = 180 for the highest amount of added particles. The ultimate compression strength of the same sample reached the value of 545 MPa. - Highlights: • Al and 15, 30, 50% of pulverized Al{sub 62}Cu{sub 25.5}Fe{sub 12.5} melt spun ribbon were consolidated. • The initial ribbon consisted of the icosahedral i-phase and copper rich β-Al(Cu, Fe). • The i-phase partially transforms to ω-Al{sub 7}Cu{sub 2}Fe phase in all composites. • Increase of microhardness and compressive strength with content of reinforcement • Ultimate compression strength 545 MPa for 50% of added particles.

  17. Ceramics reinforced metal base composite coatings produced by CO II laser cladding

    NASA Astrophysics Data System (ADS)

    Yang, Xichen; Wang, Yu; Yang, Nan

    2008-03-01

    Due to the excellent performance in high strength, anti-temperature and anti-wear, ceramics reinforced metal base composite material was used in some important fields of aircraft, aerospace, automobile and defense. The traditional bulk metal base composite materials are the expensive cost, which is limited in its industrial application. Development of laser coating of ceramics reinforced metal base composite is very interesting in economy. This paper is focused on three laser cladding ceramics coatings of SiC particle /Al matrix , Al IIO 3 powder/ Al matrix and WC + Co/mild steel matrix. Powder particle sizes are of 10-60μm. Chemical contents of aluminum matrix are of 3.8-4.0% Cu, 1.2-1.8% Mg, 0.3-0.99% Mn and balance Al. 5KW CO II laser, 5 axes CNC table, JKF-6 type powder feeder and co-axis feeder nozzle are used in laser cladding. Microstructure and performance of laser composite coatings have been respectively examined with OM,SEM and X-ray diffraction. Its results are as follows : Microstructures of 3C-,6H- and 5H- SiC particles + Al + Al 4SiC 4 + Si in SiC/Al composite, hexagonal α-Al IIO 3 + cubic γ-Al IIO 3 + f.c.c Al in Al IIO 3 powder/ Al composite and original WC particles + separated WC particles + eutectic WC + γ-Co solid solution + W IIC particles in WC + Co/steel coatings are respectively recognized. New microstructures of 5H-SiC in SiC/Al composite, cubic γ-Al IIO 3 in Al IIO 3 composite and W IIC in WC + Co/ steel composite by laser cladding have been respectively observed.

  18. The influence of reinforcement size on the microstructure and mechanical behavior of a nanostructured aluminum-based metal matrix composite

    NASA Astrophysics Data System (ADS)

    Behm, Nathan Adam

    With increased availability and growing commercial applications, aluminum-based metal matrix composites show promise as high specific strength structural materials. Before they can be implemented however, they require thorough characterization and testing. A novel nanostructured aluminum-based metal matrix composite (MMC) was characterized through a combination of microstructural analysis and mechanical testing. Two composites were studied, an aluminum MMC reinforced with 50 nm boron carbide, (B4C) and an aluminum MMC reinforced with 500 nm boron carbide. Transmission electron microscopy (TEM) analysis revealed an ultra-fine grained matrix with grains on the order of 100--300 nm. The quasi-static and dynamic response of the composites was compared with the behavior of the unreinforced aluminum alloy, and it was found that the reinforcement resulted in a 30% improvement in strength. The decrease in the reinforcement size from 500 to 50 nm activated an additional strengthening mechanism, which further improved the strength of the MMC reinforced with the 50 nm B4C. Dynamic compression tests were performed at elevated temperatures up 400°C on the composites, and it was found that they exhibited impressive strengths considering the thermal softening prevalent in aluminum. The reinforcement size was found to play an important role in the strain softening exhibited at elevated temperature, fracture mechanism, and composite strength. Models to describe the composite behavior are presented.

  19. Lactobacillus plantarum CCFM639 alleviates aluminium toxicity.

    PubMed

    Yu, Leilei; Zhai, Qixiao; Liu, Xiaoming; Wang, Gang; Zhang, Qiuxiang; Zhao, Jianxin; Narbad, Arjan; Zhang, Hao; Tian, Fengwei; Chen, Wei

    2016-02-01

    Aluminium (Al) is the most abundant metal in the earth's crust. Al exposure can cause a variety of adverse physiological effects in humans and animals. Our aim was to demonstrate that specific probiotic bacteria can play a special physiologically functional role in protection against Al toxicity in mice. Thirty strains of lactic acid bacteria (LAB) were tested for their aluminium-binding ability, aluminium tolerance, their antioxidative capacity, and their ability to survive the exposure to artificial gastrointestinal (GI) juices. Lactobacillus plantarum CCFM639 was selected for animal experiments because of its excellent performance in vitro. Forty mice were divided into four groups: control, Al only, Al plus CCFM639, and Al plus deferiprone (DFP). CCFM639 was administered at 10(9) CFU once daily for 10 days, followed by a single oral dose of aluminium chloride hexahydrate at 5.14 mg aluminium (LD50) for each mouse. The results showed that CCFM639 treatment led to a significant reduction in the mortality rates with corresponding decrease in intestinal aluminium absorption and in accumulation of aluminium in the tissues and amelioration of hepatic histopathological damage. This probiotic treatment also resulted in alleviation of hepatic, renal, and cerebral oxidative stress. The treatment of L. plantarum CCFM639 has potential as a therapeutic dietary strategy against acute aluminium toxicity.

  20. Fabrication and physical properties of glass-fiber-reinforced thermoplastics for non-metal-clasp dentures.

    PubMed

    Nagakura, Manamu; Tanimoto, Yasuhiro; Nishiyama, Norihiro

    2016-07-26

    Recently, non-metal-clasp dentures (NMCDs) made from thermoplastic resins such as polyamide, polyester, polycarbonate, and polypropylene have been used as removable partial dentures (RPDs). However, the use of such RPDs can seriously affect various tissues because of their low rigidity. In this study, we fabricated high-rigidity glass-fiber-reinforced thermoplastics (GFRTPs) for use in RPDs, and examined their physical properties such as apparent density, dynamic hardness, and flexural properties. GFRTPs made from E-glass fibers and polypropylene were fabricated using an injection-molding. The effects of the fiber content on the GFRTP properties were examined using glass-fiber contents of 0, 5, 10, 20, 30, 40, and 50 mass%. Commercially available denture base materials and NMCD materials were used as controls. The experimental densities of GFRTPs with various fiber contents agreed with the theoretical densities. Dynamic micro-indentation tests confirmed that the fiber content does not affect the GFRTP surface properties such as dynamic hardness and elastic modulus, because most of the reinforcing glass fibers are embedded in the polypropylene. The flexural strength increased from 55.8 to 217.6 MPa with increasing glass-fiber content from 0 to 50 mass%. The flexural modulus increased from 1.75 to 7.42 GPa with increasing glass-fiber content from 0 to 50 mass%, that is, the flexural strength and modulus of GFRTP with a fiber content of 50 mass% were 3.9 and 4.2 times, respectively, those of unreinforced polypropylene. These results suggest that fiber reinforcement has beneficial effects, and GFRTPs can be used in NMCDs because their physical properties are better than those of controls. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  1. Aluminium in Alzheimer's disease: are we still at a crossroad?

    PubMed

    Gupta, Veer Bala; Anitha, S; Hegde, M L; Zecca, L; Garruto, R M; Ravid, R; Shankar, S K; Stein, R; Shanmugavelu, P; Jagannatha Rao, K S

    2005-01-01

    Aluminium, an environmentally abundant non-redox trivalent cation has long been implicated in the pathogenesis of Alzheimer's disease (AD). However, the definite mechanism of aluminium toxicity in AD is not known. Evidence suggests that trace metal homeostasis plays a crucial role in the normal functioning of the brain, and any disturbance in it can exacerbate events associated with AD. The present paper reviews the scientific literature linking aluminium with AD. The focus is on aluminium levels in brain, region-specific and subcellular distribution, its relation to neurofibrillary tangles, amyloid beta, and other metals. A detailed mechanism of the role of aluminium in oxidative stress and cell death is highlighted. The importance of complex speciation chemistry of aluminium in relation to biology has been emphasized. The debatable role of aluminium in AD and the cross-talk between aluminium and genetic susceptibility are also discussed. Finally, it is concluded based on extensive literature that the neurotoxic effects of aluminium are beyond any doubt, and aluminium as a factor in AD cannot be discarded. However, whether aluminium is a sole factor in AD and whether it is a factor in all AD cases still needs to be understood.

  2. Boron, metal, and aramid fiber reinforced plastics. January 1973-May 1989 (Citations from the Rubber and Plastics Research Association data base). Report for January 1973-May 1989

    SciTech Connect

    Not Available

    1989-05-01

    This bibliography contains citations concerning properties and applications of boron, metal, and fiber-reinforced plastics. Discussions on improvements of electrical, thermal, and mechanical properties of plastics by boron, metal, and aramid fiber reinforcement are presented. Applications are considered in automotive, aerospace, electronics, marine, sports, and medical industries. (This updated bibliography contains 338 citations, 121 of which are new entries to the previous edition.)

  3. The role of rapid solidification processing in the fabrication of fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Locci, Ivan E.; Noebe, Ronald D.

    1989-01-01

    Advanced composite processing techniques for fiber reinforced metal matrix composites require the flexibility to meet several widespread objectives. The development of uniquely desired matrix microstructures and uniformly arrayed fiber spacing with sufficient bonding between fiber and matrix to transmit load between them without degradation to the fiber or matrix are the minimum requirements necessary of any fabrication process. For most applications these criteria can be met by fabricating composite monotapes which are then consolidated into composite panels or more complicated components such as fiber reinforced turbine blades. Regardless of the end component, composite monotapes are the building blocks from which near net shape composite structures can be formed. The most common methods for forming composite monotapes are the powder cloth, foil/fiber, plasma spray, and arc spray processes. These practices, however, employ rapid solidification techniques in processing of the composite matrix phase. Consequently, rapid solidification processes play a vital and yet generally overlooked role in composite fabrication. The future potential of rapid solidification processing is discussed.

  4. Aluminium in Biological Environments: A Computational Approach

    PubMed Central

    Mujika, Jon I; Rezabal, Elixabete; Mercero, Jose M; Ruipérez, Fernando; Costa, Dominique; Ugalde, Jesus M; Lopez, Xabier

    2014-01-01

    The increased availability of aluminium in biological environments, due to human intervention in the last century, raises concerns on the effects that this so far “excluded from biology” metal might have on living organisms. Consequently, the bioinorganic chemistry of aluminium has emerged as a very active field of research. This review will focus on our contributions to this field, based on computational studies that can yield an understanding of the aluminum biochemistry at a molecular level. Aluminium can interact and be stabilized in biological environments by complexing with both low molecular mass chelants and high molecular mass peptides. The speciation of the metal is, nonetheless, dictated by the hydrolytic species dominant in each case and which vary according to the pH condition of the medium. In blood, citrate and serum transferrin are identified as the main low molecular mass and high molecular mass molecules interacting with aluminium. The complexation of aluminium to citrate and the subsequent changes exerted on the deprotonation pathways of its tritable groups will be discussed along with the mechanisms for the intake and release of aluminium in serum transferrin at two pH conditions, physiological neutral and endosomatic acidic. Aluminium can substitute other metals, in particular magnesium, in protein buried sites and trigger conformational disorder and alteration of the protonation states of the protein's sidechains. A detailed account of the interaction of aluminium with proteic sidechains will be given. Finally, it will be described how alumnium can exert oxidative stress by stabilizing superoxide radicals either as mononuclear aluminium or clustered in boehmite. The possibility of promotion of Fenton reaction, and production of hydroxyl radicals will also be discussed. PMID:24757505

  5. Evolution of In-Situ Generated Reinforcement Precipitates in Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Sen, S.; Kar, S. K.; Catalina, A. V.; Stefanescu, D. M.; Dhindaw, B. K.

    2004-01-01

    Due to certain inherent advantages, in-situ production of Metal Matrix Composites (MMCs) have received considerable attention in the recent past. ln-situ techniques typically involve a chemical reaction that results in precipitation of a ceramic reinforcement phase. The size and spatial distribution of these precipitates ultimately determine the mechanical properties of these MMCs. In this paper we will investigate the validity of using classical growth laws and analytical expressions to describe the interaction between a precipitate and a solid-liquid interface (SLI) to predict the size and spatial evolution of the in-situ generated precipitates. Measurements made on size and distribution of Tic precipitates in a Ni&I matrix will be presented to test the validity of such an approach.

  6. Solidification of SiC/Al fiber-reinforced metal matrix composites

    SciTech Connect

    Ho, S.; Saigal, A. . Dept. of Mechanical Engineering)

    1994-08-01

    In recent years there has been considerable interest in the development and improvement of near net shape manufacturing processes for the fabrication of metal matrix composites (MMCs). Among the techniques available today, the solidification processing technique, including a casting process, provides the most direct route to a finished shape and stands out as potentially simple and economical. In the present study, the solidification of fiber-reinforced composites was investigated by means of the finite element method (FEM). The finite element formulation of general heat conduction equations is typically done by Galerkin's method, which is one of the weighted residual methods. Numerical results from FEM are compared with analytical solutions for the phase change problems. The interface between the solid and liquid phases and the temperature distribution in the composite are analyzed as a function of volume fraction of fibers. ABAQUS, a general purpose commercially available finite element code, was used in this study.

  7. Effects of metal- and fiber-reinforced composite root canal posts on flexural properties.

    PubMed

    Kim, Su-Hyeon; Oh, Tack-Oon; Kim, Ju-Young; Park, Chun-Woong; Baek, Seung-Ho; Park, Eun-Seok

    2016-01-01

    The aim of this study was to observe the effects of different test conditions on the flexural properties of root canal post. Metal- and fiber-reinforced composite root canal posts of various diameters were measured to determine flexural properties using a threepoint bending test at different conditions. In this study, the span length/post diameter ratio of root canal posts varied from 3.0 to 10.0. Multiple regression models for maximum load as a dependent variable were statistically significant. The models for flexural properties as dependent variables were statistically significant, but linear regression models could not be fitted to data sets. At a low span length/post diameter ratio, the flexural properties were distorted by occurrence of shear stress in short samples. It was impossible to obtain high span length/post diameter ratio with root canal posts. The addition of parameters or coefficients is necessary to appropriately represent the flexural properties of root canal posts.

  8. Mechanisms controlling fatigue damage development in continuous fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1989-01-01

    Damage in continuous fiber reinforced metal matrix composite materials can be quite complex since there are a number of different constituents (fiber, matrix, and the fiber/matrix interface) that can fail. Multidirectional lay-ups have an even greater number of possible damage orientations and mechanisms. Based on the simplifying assumption of equivalent constituent strain states in the absence of damage, a strain based failure criteria may be applied to determine when and where initial damage will occur. Based on the relative strain to fatigue failure of the fiber and matrix, the possible damage mechanisms of an MMC can be grouped into three categories: (1) matrix dominated, (2) fiber dominated, and (3) self-similar damage growth. A fourth type of damage development, fiber/matrix interface failure, is dependent on the relative strength of the fiber/matrix interface and the matrix yield strength. These four types of damage are discussed and illustrated by examples.

  9. Evaluation of non-metallic fiber reinforced concrete in new full depth pcc pavements. Final report

    SciTech Connect

    Ramakrishnan, V.; Tolmare, N.S.

    1998-12-30

    This final report presents the construction and performance evaluation of a new full depth pavement, constructed with a new type non-metallic fiber reinforced concrete (NMFRC). The mixture proportions used, the quality control tests conducted for the evaluation of the fresh and hardened concrete properties, the procedure used for mixing, transporting, placing, consolidating, finishing, and curing of the concrete are described. Periodic inspection of the full depth pavement was done and this report includes the results of these inspections. The feasibility of using this NMFRC in the construction of highway structures has been discussed. The new NMFRC with enhanced fatigue, impact resistance, modulus of rupture, ductility and toughness properties is suitable for the construction of full depth pavements. However, a life-cycle cost analysis shows that NMFRC is not a favorable choice, because of it`s high initial cost.

  10. Evolution of In-Situ Generated Reinforcement Precipitates in Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Sen, S.; Kar, S. K.; Catalina, A. V.; Stefanescu, D. M.; Dhindaw, B. K.

    2004-01-01

    Due to certain inherent advantages, in-situ production of Metal Matrix Composites (MMCs) have received considerable attention in the recent past. ln-situ techniques typically involve a chemical reaction that results in precipitation of a ceramic reinforcement phase. The size and spatial distribution of these precipitates ultimately determine the mechanical properties of these MMCs. In this paper we will investigate the validity of using classical growth laws and analytical expressions to describe the interaction between a precipitate and a solid-liquid interface (SLI) to predict the size and spatial evolution of the in-situ generated precipitates. Measurements made on size and distribution of Tic precipitates in a Ni&I matrix will be presented to test the validity of such an approach.

  11. Aluminium Involvement in Neurotoxicity

    PubMed Central

    Fulgenzi, Alessandro; Vietti, Daniele; Ferrero, Maria Elena

    2014-01-01

    The aetiology of neurodegenerative diseases (ND) seems to involve susceptibility genes and environmental factors. Toxic metals are considered major environmental pollutants. Following our study of a case of multiple sclerosis (MS) improvement due to removal of aluminium (Al) and other toxic metals, we have examined the possible relationship between Al intoxication and ND. We used the slow intravenous treatment with the chelating agent EDTA (calcium disodium ethylene diamine tetraacetic acid) (chelation test) to remove Al and detected it in the urine collected from the patients for 12 hours. Patients affected by MS represented 85.6% of total ND. Al was present in 44.8% of cases comprehensive of ND and healthy patients. Al levels were significantly higher in ND patients than in healthy subjects. We here show that treatment of patients affected by Al burden with ten EDTA chelation therapies (EDTA intravenous administration once a week) was able to significantly reduce Al intoxication. PMID:25243176

  12. Dislocation fiber interactions in short fiber reinforced metal matrix composites during creep and during thermal cycling

    SciTech Connect

    Eggeler, G.F.; Earthman, J.C.

    1997-12-22

    Short fiber reinforced metal matrix composites (SFR MMCs) are attractive engineering materials because they exhibit increased strength and wear resistance as compared to the fiber free matrix materials. For example, an aluminum alloy containing 15 volume percent of Al{sub 2}O{sub 3} fibers with average dimensions of 200 {micro}m length and 3 {micro}m diameter exhibits an improved creep strength with respect to the fiber free matrix. In addition to extended periods of isothermal and static creep loading high temperature components are subjected to temperature changes which are associated with thermal stresses. Thermal cycles can be due to start up and shut down events and can also be a consequence of anisothermal operating conditions. In short fiber reinforced aluminum alloys, in the stress and temperature range of interest, dislocation creep governs the deformation behavior of the MMC`s metallic matrix. It is therefore interesting to discuss the role of dislocations during creep and during thermal cycling of SFR MMCs. In the present paper the authors describe some basic dislocation mechanisms near the fiber/matrix-interface (FMI) of SFR MMCs. They first consider dislocation structures which are associated with the processing of SFR MMCs. Then dislocation processes which are associated with (1) static isothermal creep and (2) thermal cycling are discussed. Common and distinct features of the associated dislocation structures in the matrix zone near the FMI are highlighted. The authors then use the insight they have gained to qualitatively understand the role of dislocations in the macroscopic response of a SFR MMC under more complex load profiles.

  13. Human exposure to aluminium.

    PubMed

    Exley, Christopher

    2013-10-01

    Human activities have circumvented the efficient geochemical cycling of aluminium within the lithosphere and therewith opened a door, which was previously only ajar, onto the biotic cycle to instigate and promote the accumulation of aluminium in biota and especially humans. Neither these relatively recent activities nor the entry of aluminium into the living cycle are showing any signs of abating and it is thus now imperative that we understand as fully as possible how humans are exposed to aluminium and the future consequences of a burgeoning exposure and body burden. The aluminium age is upon us and there is now an urgent need to understand how to live safely and effectively with aluminium.

  14. The removal of iron from molten aluminium

    SciTech Connect

    Donk, H.M. van der; Nijhof, G.H.; Castelijns, C.A.M.

    1995-12-31

    In this work an overview is given about the techniques available for the removal of metallic impurities from molten aluminium. The overview is focused on the removal of iron. Also, some experimental results are given about the creation of iron-rich intermetallic compounds in an aluminium system, which are subsequently removed by gravity segregation and filtration techniques. This work is part of an ongoing research project of three major European aluminium companies who are co-operating on the subject of recycling of aluminium packaging materials recovered from household waste by means of Eddy-Current techniques. Using this technique the pick-up of some contaminating metals, particularly iron, is almost unavoidable.

  15. Accumulation of polycyclic aromatic hydrocarbons and heavy metals in the tree foliage of Eucalyptus rostrata, Pinus radiata and Populus hybridus in the vicinity of a large aluminium smelter in Argentina

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. H.; Wannaz, E. D.; Salazar, M. J.; Pignata, M. L.; Fangmeier, A.; Franzaring, J.

    2012-08-01

    A pollution gradient of polycyclic aromatic hydrocarbons (PAHs) was observed in tree foliage sampled in the vicinity of a large aluminium production facility in Patagonia (Argentina). Leaves of Eucalyptus rostrata, Populus hybridus and one-year-old needles of Pinus radiata were collected, and concentrations of 12 PAHs including the so-called EPA priority pollutants as well as heavy metals (Cd, Cu, Fe, Mn, Ni and Zn) were analysed. The PAH concentrations indicated a steep pollution gradient in the study area associated with the Al-industry, while the heavy metal content was unrelated to this activity. The present study confirms that aluminium smelting results in the deposition of PAH in the study area, and therefore further studies should be carried out taking into account the potentially adverse effects of these compounds on human and ecosystem health.

  16. Simulator trials to determine the wear of the combination aluminium oxide ceramic-carbon fibre reinforced plastic (CFRP) used as an insert in a hip socket.

    PubMed

    Scheller, G; Schwarz, M; Früh, H J; Jani, L

    1999-01-01

    Hip simulator trials were conducted to determine the initial wear between alumina femoral heads and carbon fibre reinforced plastic (CFRP, CAPROMAN) insert in a titanium socket. A force of 2500 N and a frequency of 0.857 H were applied. Using surface and sphericity measurement techniques, the amount of wear was determined. After 500,000 cycles, the centre of the head had moved by 10 microm into the insert, and the average radius increased by 2 microm. After 1 million cycles, the additional changes were less than 1 microm. Based on an examination of retrieved implants (wear rate: 6.1 microm/year) and based on the simulator results, the combination alumina-CFRP inserts could be approved for total hip replacement.

  17. Intestinal absorption of aluminium in renal failure.

    PubMed

    Drüeke, Tilman B

    2002-01-01

    aluminium absorption-from the methodological difficulties of measuring it accurately to understanding the long-term clinical risks of this metal-should guide us in the safety evaluation of other potentially toxic metals that have been proposed for therapeutic use in patients with renal failure.

  18. A Unified Model for the Prediction of Yield Strength in Particulate-Reinforced Metal Matrix Nanocomposites

    PubMed Central

    Mirza, F. A.; Chen, D. L.

    2015-01-01

    Lightweighting in the transportation industry is today recognized as one of the most important strategies to improve fuel efficiency and reduce anthropogenic climate-changing, environment-damaging, and human death-causing emissions. However, the structural applications of lightweight alloys are often limited by some inherent deficiencies such as low stiffness, high wear rate and inferior strength. These properties could be effectively enhanced by the addition of stronger and stiffer reinforcements, especially nano-sized particles, into metal matrix to form composites. In most cases three common strengthening mechanisms (load-bearing effect, mismatch of coefficients of thermal expansion, and Orowan strengthening) have been considered to predict the yield strength of metal matrix nanocomposites (MMNCs). This study was aimed at developing a unified model by taking into account the matrix grain size and porosity (which is unavoidable in the materials processing such as casting and powder metallurgy) in the prediction of the yield strength of MMNCs. The Zener pinning effect of grain boundaries by the nano-sized particles has also been integrated. The model was validated using the experimental data of magnesium- and titanium-based nanocomposites containing different types of nano-sized particles (namely, Al2O3, Y2O3, and carbon nanotubes). The predicted results were observed to be in good agreement with the experimental data reported in the literature. PMID:28793496

  19. A Unified Model for the Prediction of Yield Strength in Particulate-Reinforced Metal Matrix Nanocomposites.

    PubMed

    Mirza, F A; Chen, D L

    2015-08-10

    Lightweighting in the transportation industry is today recognized as one of the most important strategies to improve fuel efficiency and reduce anthropogenic climate-changing, environment-damaging, and human death-causing emissions. However, the structural applications of lightweight alloys are often limited by some inherent deficiencies such as low stiffness, high wear rate and inferior strength. These properties could be effectively enhanced by the addition of stronger and stiffer reinforcements, especially nano-sized particles, into metal matrix to form composites. In most cases three common strengthening mechanisms (load-bearing effect, mismatch of coefficients of thermal expansion, and Orowan strengthening) have been considered to predict the yield strength of metal matrix nanocomposites (MMNCs). This study was aimed at developing a unified model by taking into account the matrix grain size and porosity (which is unavoidable in the materials processing such as casting and powder metallurgy) in the prediction of the yield strength of MMNCs. The Zener pinning effect of grain boundaries by the nano-sized particles has also been integrated. The model was validated using the experimental data of magnesium- and titanium-based nanocomposites containing different types of nano-sized particles (namely, Al₂O₃, Y₂O₃, and carbon nanotubes). The predicted results were observed to be in good agreement with the experimental data reported in the literature.

  20. Fatigue testing and damage development in continuous fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1989-01-01

    A general overview of the fatigue behavior of metal matrix composites (MMC) is presented. The first objective is to present experimental procedures and techniques for conducting a meaningful fatigue test to detect and quantify fatigue damage in MMC. These techniques include interpretation of stress-strain responses, acid etching of the matrix, edge replicas of the specimen under load, radiography, and micrographs of the failure surfaces. In addition, the paper will show how stiffness loss in continuous fiber reinforced metal matrix composites can be a useful parameter for detecting fatigue damage initiation and accumulation. Second, numerous examples of how fatigue damage can initiate and grow in various MMC are given. Depending on the relative fatigue behavior of the fiber and matrix, and the interface properties, the failure modes of MMC can be grouped into four categories: (1) matrix dominated, (2) fiber dominated, (3) self-similar damage growth, and (4) fiber/matrix interfacial failures. These four types of damage will be discussed and illustrated by examples with the emphasis on the fatigue of unnotched laminates.

  1. Fatigue testing and damage development in continuous fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1988-01-01

    A general overview of the fatigue behavior of metal matrix composites (MMC) is presented. The first objective is to present experimental procedures and techniques for conducting a meaningful fatigue test to detect and quantify fatigue damage in MMC. These techniques include interpretation of stress-strain responses, acid etching of the matrix, edge replicas of the specimen under load, radiography, and micrographs of the failure surfaces. In addition, the paper will show how stiffness loss in continuous fiber reinforced metal matrix composites can be a useful parameter for detecting fatigue damage initiation and accumulation. Second, numerous examples of how fatigue damage can initiate and grow in various MMC are given. Depending on the relative fatigue behavior of the fiber and matrix, and the interface properties, the failure modes of MMC can be grouped into four categories: (1) matrix dominated, (2) fiber dominated, (3) self-similar damage growth, and (4) fiber/matrix interfacial failures. These four types of damage will be discussed and illustrated by examples with the emphasis on the fatigue of unnotched laminates.

  2. Selective Reinforcement to Improve Fracture Toughness and Fatigue Crack Growth Resistance in Metallic Structures

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.; Newman, John A.; James, Mark A.

    2004-01-01

    Experimental and analytical investigations of the fatigue crack growth and fracture response of aluminum selectively reinforced compact tension specimens were performed. It was shown that selective reinforcement significantly improved these responses primarily through load sharing by the reinforcement. With the appropriate combination of reinforcement architecture and mechanical properties, as well as reinforcement to base aluminum interface properties, fatigue cracks can be arrested using selective reinforcement. Maximum load associated with fracture increased up to 20 percent for the cases investigated and crack growth at maximum load increased as much as 150 percent. For both fatigue crack growth and fracture, the three most influential properties identified within the bounds of this investigation that influence this response are reinforcement width, reinforcement stiffness and interface stiffness. Considerable coupling occurs between the different fiber architecture and material properties and how they influence fatigue crack growth and fracture responses.

  3. Spacecraft Shielding: An Experimental Comparison Between Open Cell Aluminium Foam Core Sandwich Panel Structures and Whipple Shielding.

    NASA Astrophysics Data System (ADS)

    Pasini, D. L. S.; Price, M. C.; Burchell, M. J.; Cole, M. J.

    2013-09-01

    Spacecraft shielding is generally provided by metallic plates in a Whipple shield type configuration [1] where possible. However, mission restrictions such as spacecraft payload mass, can prevent the inclusion of a dedicated protective structure for prevention against impact damage from micrometeoroids. Due to this, often the spacecraft's primary structure will act as the de facto shield. This is commonly an aluminium honeycomb backed with either glass fibre reinforced plastic (GFRP) or aluminium faceplates [2]. Such materials are strong, lightweight and relatively cheap due to their abundance used within the aerospace industry. However, these materials do not offer the best protection (per unit weight) against hypervelocity impact damage. A new material for shielding (porous aluminium foam [3]) is suggested for low risk space missions. Previous studies by NASA [4] have been performed to test this new material against hypervelocity impacts using spherical aluminium projectiles. This showed its potential for protection for satellites in Earth orbit, against metallic space debris. Here we demonstrate the material's protective capabilities against micrometeoroids, using soda-lime glass spheres as projectiles to accurately gauge its potential with relation to silicatious materials, such as micrometeoroids and natural solar system debris. This is useful for spacecraft missions beyond Earth orbit where solar system materials are the dominant threat (via hypervelocity impacts) to the spacecraft, rather than manmade debris.

  4. A Study on Effect of Graphite Particles on Tensile, Hardness and Machinability of Aluminium 8011 Matrix Material

    NASA Astrophysics Data System (ADS)

    Latha Shankar, B.; Anil, K. C.; Karabasappagol, Prasann J.

    2016-09-01

    Industrial application point of view, metal matrix composites in general and Aluminium alloy matrix composites in particular are ideal candidates because of their favourable engineering properties. Being lightweight Aluminium matrix composites are widely used in aircraft, defence and automotive industries. In this work Aluminium 8011 metal matrix was reinforced with fine Graphite particles of 50 μm. developed by two-step Stir casting method. Graphite weight %was varied in the range 2, 4, 6 and 8%. Uniform dispersion of graphite particle is examined under optical microscope. Tensile test coupons were prepared as per standard to determine % of elongation and tensile strength for various % of graphite particle. Hardness of developed composite for various % of graphite particle and Machinability parameters were also studied for effect on surface finish. It was observed that with increase of weight percentage of Graphite particles up to 8% in Aluminium 8011 alloy matrix there was increase in tensile strength, decrease in % of elongation with increase in hardness. Machinability study revealed that, there was decrease in surface roughness with increase in Graphite content.

  5. Alveolar proteinosis associated with aluminium dust inhalation.

    PubMed

    Chew, R; Nigam, S; Sivakumaran, P

    2016-08-01

    Secondary alveolar proteinosis is a rare lung disease which may be triggered by a variety of inhaled particles. The diagnosis is made by detection of anti-granulocyte-macrophage colony-stimulating factor antibodies in bronchoalveolar lavage fluid, which appears milky white and contains lamellar bodies. Aluminium has been suggested as a possible cause, but there is little evidence in the literature to support this assertion. We report the case of a 46-year-old former boilermaker and boat builder who developed secondary alveolar proteinosis following sustained heavy aluminium exposure. The presence of aluminium was confirmed both by histological examination and metallurgical analysis of a mediastinal lymph node. Despite cessation of exposure to aluminium and treatment with whole-lung lavage which normally results in improvements in both symptoms and lung function, the outcome was poor and novel therapies are now being used for this patient. It may be that the natural history in aluminium-related alveolar proteinosis is different, with the metal playing a mediating role in the disease process. Our case further supports the link between aluminium and secondary alveolar proteinosis and highlights the need for measures to prevent excessive aluminium inhalation in relevant industries. © The Author 2016. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Advanced Grounding Methods in the Presence of Carbon Fibre Reinforced Plastic Structures

    NASA Astrophysics Data System (ADS)

    Leininger, M.; Thurecht, F.; Pfeiffer, E.; Ruddle, A.

    2012-05-01

    Lightweight satellite structures are usually of sandwich type where the core is formed of a honeycomb-like structure made of aluminium foil. The outer facesheets are made of aluminium and serve as a ground reference plane. Carbon fibre reinforced plastic (CFRP), however, is a composite material having an electrical conductivity that is about 2000 times lower than the conductivity of aluminium. Since such a material is not suitable to carry electrical current of high value a network of metal sheets (grounding rails) connects all equipment mounted on the satellite structure. This paper describes an evaluation whether the classical grounding rail system can be replaced by a network of round wires while the high-frequency portion of the current is flowing along the CFRP sheet.

  7. Comparison of the fracture resistances of glass fiber mesh- and metal mesh-reinforced maxillary complete denture under dynamic fatigue loading.

    PubMed

    Im, So-Min; Huh, Yoon-Hyuk; Cho, Lee-Ra; Park, Chan-Jin

    2017-02-01

    The aim of this study was to investigate the effect of reinforcing materials on the fracture resistances of glass fiber mesh- and Cr-Co metal mesh-reinforced maxillary complete dentures under fatigue loading. Glass fiber mesh- and Cr-Co mesh-reinforced maxillary complete dentures were fabricated using silicone molds and acrylic resin. A control group was prepared with no reinforcement (n = 15 per group). After fatigue loading was applied using a chewing simulator, fracture resistance was measured by a universal testing machine. The fracture patterns were analyzed and the fractured surfaces were observed by scanning electron microscopy. After cyclic loading, none of the dentures showed cracks or fractures. During fracture resistance testing, all unreinforced dentures experienced complete fracture. The mesh-reinforced dentures primarily showed posterior framework fracture. Deformation of the all-metal framework caused the metal mesh-reinforced denture to exhibit the highest fracture resistance, followed by the glass fiber mesh-reinforced denture (P<.05) and the control group (P<.05). The glass fiber mesh-reinforced denture primarily maintained its original shape with unbroken fibers. River line pattern of the control group, dimples and interdendritic fractures of the metal mesh group, and radial fracture lines of the glass fiber group were observed on the fractured surfaces. The glass fiber mesh-reinforced denture exhibits a fracture resistance higher than that of the unreinforced denture, but lower than that of the metal mesh-reinforced denture because of the deformation of the metal mesh. The glass fiber mesh-reinforced denture maintains its shape even after fracture, indicating the possibility of easier repair.

  8. Comparison of the fracture resistances of glass fiber mesh- and metal mesh-reinforced maxillary complete denture under dynamic fatigue loading

    PubMed Central

    2017-01-01

    PURPOSE The aim of this study was to investigate the effect of reinforcing materials on the fracture resistances of glass fiber mesh- and Cr–Co metal mesh-reinforced maxillary complete dentures under fatigue loading. MATERIALS AND METHODS Glass fiber mesh- and Cr–Co mesh-reinforced maxillary complete dentures were fabricated using silicone molds and acrylic resin. A control group was prepared with no reinforcement (n = 15 per group). After fatigue loading was applied using a chewing simulator, fracture resistance was measured by a universal testing machine. The fracture patterns were analyzed and the fractured surfaces were observed by scanning electron microscopy. RESULTS After cyclic loading, none of the dentures showed cracks or fractures. During fracture resistance testing, all unreinforced dentures experienced complete fracture. The mesh-reinforced dentures primarily showed posterior framework fracture. Deformation of the all-metal framework caused the metal mesh-reinforced denture to exhibit the highest fracture resistance, followed by the glass fiber mesh-reinforced denture (P<.05) and the control group (P<.05). The glass fiber mesh-reinforced denture primarily maintained its original shape with unbroken fibers. River line pattern of the control group, dimples and interdendritic fractures of the metal mesh group, and radial fracture lines of the glass fiber group were observed on the fractured surfaces. CONCLUSION The glass fiber mesh-reinforced denture exhibits a fracture resistance higher than that of the unreinforced denture, but lower than that of the metal mesh-reinforced denture because of the deformation of the metal mesh. The glass fiber mesh-reinforced denture maintains its shape even after fracture, indicating the possibility of easier repair. PMID:28243388

  9. The potential role of aluminium in Alzheimer's disease.

    PubMed

    Campbell, Arezoo

    2002-01-01

    Aluminium is a trivalent cation that does not undergo redox changes. It has, nonetheless, been implicated in a variety of neurological disorders that have been associated with an increase in the formation of reactive oxygen species (ROS). The exact mechanism of aluminium toxicity is not known. However, accumulating evidence suggests that the metal can potentiate oxidative and inflammatory events, leading to tissue damage. A review of the epidemiological and clinical evidence linking aluminium to Alzheimer's disease (AD) is presented. The article discusses the role of aluminium in two mechanisms that have been linked to neurodegenerative disorders, including AD. Studies are summarized that describe how aluminium can potentiate iron-induced oxidative events. Involvement of aluminium in inflammatory responses, mediated by interleukins and other inflammatory cytokines, is also discussed. Although a direct relationship between aluminium and AD has not been clearly demonstrated, a detailed mechanistic basis for the hypothesis that aluminium may exacerbate events associated with AD is clearly emerging. The results discussed here have broad implications for the role played by aluminium and other metals in neurodegenerative diseases, and suggest that long-term exposure to supra-physiological amounts these metals should be avoided.

  10. Specimen Preparation for Metal Matrix Composites with a High Volume Fraction of Reinforcing Particles for EBSD Analysis

    NASA Astrophysics Data System (ADS)

    Smirnov, A. S.; Belozerov, G. A.; Smirnova, E. O.; Konovalov, A. V.; Shveikin, V. P.; Muizemnek, O. Yu.

    2016-07-01

    The paper deals with a procedure of preparing a specimen surface for the EBSD analysis of a metal matrix composite (MMC) with a high volume fraction of reinforcing particles. Unlike standard procedures of preparing a specimen surface for the EBSD analysis, the proposed procedure is iterative with consecutive application of mechanical and electrochemical polishing. This procedure significantly improves the results of an indexed MMC matrix in comparison with the standard procedure of specimen preparation. The procedure was verified on a MMC with pure aluminum (99.8% Al) as the matrix, SiC particles being used as reinforcing elements. The average size of the SiC particles is 14 μm, and their volume fraction amounts to 50% of the total volume of the composite. It has been experimentally found that, for making the EBSD analysis of a material matrix near reinforcing particles, the difference in height between the particles and the matrix should not exceed 2 µm.

  11. Hot Extrusion of A356 Aluminum Metal Matrix Composite with Carbon Nanotube/Al2O3 Hybrid Reinforcement

    NASA Astrophysics Data System (ADS)

    Kim, H. H.; Babu, J. S. S.; Kang, C. G.

    2014-05-01

    Over the years, the attention of material scientists and engineers has shifted from conventional composite materials to nanocomposite materials for the development of light weight and high-performance devices. Since the discovery of carbon nanotubes (CNTs), many researchers have tried to fabricate metal matrix composites (MMCs) with CNT reinforcements. However, CNTs exhibit low dispersibility in metal melts owing to their poor wettability and large surface-to-volume ratio. The use of an array of short fibers or hybrid reinforcements in a preform could overcome this problem and enhance the dispersion of CNTs in the matrix. In this study, multi-walled CNT/Al2O3 preform-based aluminum hybrid composites were fabricated using the infiltration method. Then, the composites were extruded to evaluate changes in its mechanical properties. In addition, the dispersion of reinforcements was investigated using a hardness test. The required extrusion pressure of hybrid MMCs increased as the Al2O3/CNT fraction increased. The deformation resistance of hybrid material was over two times that of the original A356 aluminum alloy material due to strengthening by the Al2O3/CNTs reinforcements. In addition, an unusual trend was detected; primary transition was induced by the hybrid reinforcements, as can be observed in the pressure-displacement curve. Increasing temperature of the material can help increase formability. In particular, temperatures under 623 K (350 °C) and over-incorporating reinforcements (Al2O3 20 pct, CNTs 3 pct) are not recommended owing to a significant increase in the brittleness of the hybrid material.

  12. Characterization and modeling of three-dimensional self-healing shape memory alloy-reinforced metal-matrix composites

    SciTech Connect

    Zhu, Pingping; Cui, Zhiwei; Kesler, Michael S.; Newman, John A.; Manuel, Michele V.; Wright, M. Clara; Brinson, L. Catherine

    2016-09-10

    In this paper, three-dimensional metal-matrix composites (MMCs) reinforced by shape memory alloy (SMA) wires are modeled and simulated, by adopting an SMA constitutive model accounting for elastic deformation, phase transformation and plastic behavior. A modeling method to create composites with pre-strained SMA wires is also proposed to improve the self-healing ability. Experimental validation is provided with a composite under three-point bending. This modeling method is applied in a series of finite element simulations to investigate the self-healing effects in pre-cracked composites, especially the role of the SMA reinforcement, the softening property of the matrix, and the effect of pre-strain in the SMA. The results demonstrate that SMA reinforcements provide stronger shape recovery ability than other, non-transforming materials. The softening property of the metallic matrix and the pre-strain in SMA are also beneficial to help crack closure and healing. This modeling approach can serve as an efficient tool to design SMA-reinforced MMCs with optimal self-healing properties that have potential applications in components needing a high level of reliability.

  13. Effect of Size, Content and Shape of Reinforcements on the Behavior of Metal Matrix Composites (MMCs) Under Tension

    NASA Astrophysics Data System (ADS)

    Paknia, A.; Pramanik, A.; Dixit, A. R.; Chattopadhyaya, S.

    2016-10-01

    The objective of this research was to investigate the mechanical behavior of metal matrix composites (MMCs) 6061 aluminum, reinforced with silicon carbide particles, under unidirectional tensile loading by finite element analysis. The effects of particle's shape, size and content on the tensile properties of the composites were studied and compared with each other. In addition, stress and strain distributions and possible particle fracture or debonding were investigated. It was found that, among different shapes, a certain shape of reinforcement particle provided better tensile properties for MMCs and, within each shape category, composites with smaller particle size and higher particle content (20%) also showed better properties. It was also found that when the reinforcement content was 10%, the effects of shape and size of the particles were negligible. Not only interfacial length between the reinforcement and matrix materials, but also state of matrix material, due to the presence of the reinforcement particles, affected the stiffness of the MMCs. In almost all of the cases, except for MMCs with triangular particles, when the stress increased, with the increase in the applied positive displacement, the stress distributions remained unchanged.

  14. Control of porosity and pore size of metal reinforced carbon nanotube membranes.

    PubMed

    Dumee, Ludovic; Velleman, Leonora; Sears, Kallista; Hill, Matthew; Schutz, Jurg; Finn, Niall; Duke, Mikel; Gray, Stephen

    2010-12-21

    Membranes are crucial in modern industry and both new technologies and materials need to be designed to achieve higher selectivity and performance. Exotic materials such as nanoparticles offer promising perspectives, and combining both their very high specific surface area and the possibility to incorporate them into macrostructures have already shown to substantially increase the membrane performance. In this paper we report on the fabrication and engineering of metal-reinforced carbon nanotube (CNT) Bucky-Paper (BP) composites with tuneable porosity and surface pore size. A BP is an entangled mesh non-woven like structure of nanotubes. Pure CNT BPs present both very high porosity (>90%) and specific surface area (>400 m2/g). Furthermore, their pore size is generally between 20-50 nm making them promising candidates for various membrane and separation applications. Both electro-plating and electroless plating techniques were used to plate different series of BPs and offered various degrees of success. Here we will report mainly on electroless plated gold/CNT composites. The benefit of this method resides in the versatility of the plating and the opportunity to tune both average pore size and porosity of the structure with a high degree of reproducibility. The CNT BPs were first oxidized by short UV/O3 treatment, followed by successive immersion in different plating solutions. The morphology and properties of these samples has been investigated and their performance in air permeation and gas adsorption will be reported.

  15. Micromechanical and macroscopic models of ductile fracture in particle reinforced metallic materials

    NASA Astrophysics Data System (ADS)

    Hu, Chao; Bai, Jie; Ghosh, Somnath

    2007-06-01

    This paper is aimed at developing two modules contributing to the overall framework of multi-scale modelling of ductile fracture of particle reinforced metallic materials. The first module is for detailed micromechanical analysis of particle fragmentation and matrix cracking of heterogeneous microstructures. The Voronoi cell FEM for particle fragmentation is extended in this paper to incorporate ductile failure through matrix cracking in the form of void growth and coalescence using a non-local Gurson-Tvergaard-Needleman (GTN) model. In the resulting enriched Voronoi cell finite element model (VCFEM) or E-VCFEM, the assumed stress-based hybrid VCFEM formulation is overlaid with narrow bands of displacement based elements to accommodate strain softening in the constitutive behaviour. The second module develops an anisotropic plasticity-damage model in the form of the GTN model for macroscopic analysis in the multi-scale material model. Parameters in this model are calibrated from results of homogenization of microstructural variables obtained by E-VCFEM analysis of microstructural representative volume element. Numerical examples conducted yield satisfactory results.

  16. Control of Porosity and Pore Size of Metal Reinforced Carbon Nanotube Membranes

    PubMed Central

    Dumee, Ludovic; Velleman, Leonora; Sears, Kallista; Hill, Matthew; Schutz, Jurg; Finn, Niall; Duke, Mikel; Gray, Stephen

    2011-01-01

    Membranes are crucial in modern industry and both new technologies and materials need to be designed to achieve higher selectivity and performance. Exotic materials such as nanoparticles offer promising perspectives, and combining both their very high specific surface area and the possibility to incorporate them into macrostructures have already shown to substantially increase the membrane performance. In this paper we report on the fabrication and engineering of metal-reinforced carbon nanotube (CNT) Bucky-Paper (BP) composites with tuneable porosity and surface pore size. A BP is an entangled mesh non-woven like structure of nanotubes. Pure CNT BPs present both very high porosity (>90%) and specific surface area (>400 m2/g). Furthermore, their pore size is generally between 20–50 nm making them promising candidates for various membrane and separation applications. Both electro-plating and electroless plating techniques were used to plate different series of BPs and offered various degrees of success. Here we will report mainly on electroless plated gold/CNT composites. The benefit of this method resides in the versatility of the plating and the opportunity to tune both average pore size and porosity of the structure with a high degree of reproducibility. The CNT BPs were first oxidized by short UV/O3 treatment, followed by successive immersion in different plating solutions. The morphology and properties of these samples has been investigated and their performance in air permeation and gas adsorption will be reported. PMID:24957493

  17. Filament-reinforced metal composite pressure vessel evaluation and performance demonstration

    NASA Technical Reports Server (NTRS)

    Landes, R. E.

    1976-01-01

    Two different Kevlar-49 filament-reinforced metal sphere designs were developed, and six vessels of each type were fabricated and subjected to fatigue cycling, sustained loading, and hydrostatic burst. The 61 cm (24 inch) diameter Kevlar-49/cryoformed 301 stainless steel pressure vessels demonstrated the required pressure cycle capability, burst factor of safety, and a maximum pressure times volume divided by weight (pV/W) performance of 210 J/g (834 000 in-lb/lbm) at burst; this represented a 25 to 30% weight saving over the lightest weight comparable, 6A1-4V Ti, homogeneous pressure vessel. Both the Kevlar/stainless steel design and the 97 cm (38 inch) diameter Kevlar-49/2219-T62 aluminum sphere design demonstrated nonfragmentation and controlled failure mode features when pressure cycled to failure at operating pressure. When failure occurred during pressure cycling, the mode was localized leakage and not catastrophic. Kevlar/stainless steel vessels utilized a unique conical boss design, and Kevlar/aluminum vessels incorporated a tie-rod to carry port loads; both styles of polar fittings performed as designed during operational testing of the vessels.

  18. Thermal diffusivity of Al-Mg based metallic matrix composite reinforced with Al2O3 ceramic particles

    NASA Astrophysics Data System (ADS)

    Cruz-Orea, A.; Morales, J. E.; Saavedra S, R.; Carrasco, C.

    2010-03-01

    Thermal diffusivities of Al-Mg based metallic matrix composite reinforced with ceramic particles of Al2O3 are reported in this article. The samples were produced by rheocasting and the studied operational condition in this case is the shear rate: 800, 1400 and 2000 rpm. Additionally, the AlMg base alloy was tested. Measurements of thermal diffusivity were performed at room temperature by using photoacoustic technique.

  19. Microstructure, mechanical characteristics and cell compatibility of β-tricalcium phosphate reinforced with biodegradable Fe-Mg metal phase.

    PubMed

    Swain, Sanjaya K; Gotman, Irena; Unger, Ronald; Kirkpatrick, C James; Gutmanas, Elazar Y

    2016-01-01

    The use of beta-tricalcium phosphate (β-TCP) ceramic as a bioresorbable bone substitute is limited to non-load-bearing sites by the material׳s brittleness and low bending strength. In the present work, new biocompatible β-TCP-based composites with improved mechanical properties were developed via reinforcing the ceramic matrix with 30 vol% of a biodegradable iron-magnesium metallic phase. β-TCP-15Fe15Mg and β-TCP-24Fe6Mg (vol%) composites were fabricated using a combination of high energy attrition milling, cold sintering/high pressure consolidation of powders at room temperature and annealing at 400 °C. The materials synthesized had a hierarchical nanocomposite structure with a nanocrystalline β-TCP matrix toughened by a finely dispersed nanoscale metallic phase (largely Mg) alongside micron-scale metallic reinforcements (largely Fe). Both compositions exhibited high strength characteristics; in bending, they were about 3-fold stronger than β-TCP reinforced with 30 vol% PLA polymer. Immersion in Ringer׳s solution for 4 weeks resulted in formation of corrosion products on the specimens׳ surface, a few percent weight loss and about 50% decrease in bending strength. In vitro studies of β-TCP-15Fe15Mg composite with human osteoblast monocultures and human osteoblast-endothelial cell co-cultures indicated that the composition was biocompatible for the growth and survival of both cell types and cells exhibited tissue-specific markers for bone formation and angiogenesis, respectively.

  20. Evaluation of several micromechanics models for discontinuously reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. Steven; Birt, M. J.

    1990-01-01

    A systematic experimental evaluation of whisker and particulate reinforced aluminum matrix composites was conducted to assess the variation in tensile properties with reinforcement type, volume fraction, and specimen thickness. Each material was evaluated in three thicknesses, 1.8, 3.18, and 6.35 mm, to determine the size, distribution, and orientation of the reinforcements. This information was used to evaluate several micromechanical models that predict composite moduli. The longitudinal and transverse moduli were predicted for reinforced aluminum. The Paul model, the Cox model and the Halpin-Tsai model were evaluated. The Paul model gave a good upper bound prediction for the particulate reinforced composites but under predicted whisker reinforced composite moduli. The Cox model gave good moduli predictions for the whisker reinforcement, but was too low for the particulate. The Halpin-Tsai model gave good results for both whisker and particulate reinforced composites. An approach using a trigonometric projection of whisker length to predict the fiber contribution to the modulus in the longitudinal and transverse directions was compared to the more conventional lamination theory approach.

  1. Effect of Fiber Surface Structure on Interfacial Reaction between Carbon Fiber and Aluminium

    NASA Astrophysics Data System (ADS)

    Chang, Kuang-Chih; Matsugi, Kazuhiro; Sasaki, Gen; Yanagisawa, Osamu

    Surface structure of carbon fiber and interfacial reaction between fiber and aluminium in carbon fiber reinforced aluminium composites were investigated by high-resolution transmission electron microscopy. Low and high graphitized carbon fiber reinforced pure aluminium composites were prepared by ultrasonic liquid infiltration. Vapor grown carbon nano fiber (VGCF) reinforced pure aluminium composites were prepared by hot-pressing. Heteroatoms, which existed abundantly in the surface of low graphitized carbon fiber, caused carbon lamellar structure in the fiber surface pronounced curvature. VGCF surface structure appeared regular and linear graphitic lamellae. Low graphitized fiber reinforced pure aluminium composites revealed serious interfacial reaction produced crystalline aluminium carbides (Al4C3), compared to composites reinforced by high graphitized fiber. On the other hand, Al4C3 crystalline reactants were not found at the interface of VGCF reinforced pure aluminium composites, but formation of interlayer was observed. In order to promote Al4C3 growth, carbon fiber reinforced composites were heat-treated at 573K and 873K for 1.8ks. Al4C3 interfacial phases in low and high graphitized fiber reinforced aluminium composites grew with the rise in the temperature. The heat-treatment resulted in the formation of non-crystalline Al4C3 interlayer by energy dispersive X-ray spectroscopy analysis of electron microscopy. At high temperature, Al4C3 was not grew and increased merely at the interface between carbon fiber and pure aluminium matrix, and moreover, the formation of new Al4C3 crystal occurred in this interlayer.

  2. Color stability of glass-fiber-reinforced polypropylene for non-metal clasp dentures.

    PubMed

    Nagakura, Manamu; Tanimoto, Yasuhiro; Nishiyama, Norihiro

    2017-07-04

    The purpose of this study was to investigate the color stability of a glass-fiber-reinforced thermoplastic (GFRTP), for use in non-metal clasp dentures (NMCDs). GFRTPs composed of E-glass fibers and polypropylene with 2 mass% of pigments were fabricated using injection molding. According to our previous study on the optimum fiber content for GFRTPs, we prepared GFRTPs with fiber contents of 0, 10, and 20 mass% (GF0, GF10, and GF20). Commercially available NMCD and PMMA materials were used as controls. The color changes of GFRTPs at 24h, and at 1, 2, and 4 weeks of coffee immersion at 37°C were measured by colorimetry, using the Commission Internationale de l'Eclairage (CIE) Lab system. The color stabilities of the GFRTPs were evaluated in two units: the color difference (ΔE(∗)) and National Bureau of Standards (NBS) units. After immersion, none of the GFRTPs showed visible color change. From the colorimetry measurement using the CIE Lab system, the ΔE(∗) values of the GFRTPs were 0.65-2.45. The NBS values of the GFRTPs were 0.60-2.25, all lower than the threshold level of 3.0, demonstrating clinically acceptable color changes. On the other hand, an available polyamide-based NMCD material exhibited "appreciable" color change, as measured in NBS units. The results indicate that the GFRTPs showed clinically acceptable color stability and might be satisfactory for clinical use. Therefore, GFRTPs are expected to become attractive materials for esthetic dentures. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  3. Nanostructured Carbon Nitride Polymer-Reinforced Electrolyte To Enable Dendrite-Suppressed Lithium Metal Batteries.

    PubMed

    Hu, Jiulin; Tian, Jing; Li, Chilin

    2017-04-05

    Lithium metal batteries (LMBs) containing S, O2, and fluoride cathodes are attracting increasing attention owing to their much higher energy density than that of Li-ion batteries. However, current limitation for the progress of LMBs mainly comes from the uncontrolled formation and growth of Li dendrites at the anode side. In order to suppress dendrite growth, exploring novel nanostructured electrolyte of high modulus without degradation of Li-electrolyte interface appears to be a potential solution. Here we propose a lightweight polymer-reinforced electrolyte based on graphitic carbon nitride (g-C3N4) mesoporous microspheres as electrolyte filler [bis(trifluoromethanesulfonimide) lithium salt/di(ethylene glycol) dimethyl ether mixed with g-C3N4, denoted as LiTFSI-DGM-C3N4] for the first time. This nanostructured electrolyte can effectively suppress lithium dendrite growth during cycling, benefiting from the high mechanical strength and nanosheet-built hierarchical structure of g-C3N4. The Li/Li symmetrical cell based on this slurrylike electrolyte enables long-term cycling of at least 120 cycles with a high capacity of 6 mA·h/cm(2) and small plating/stripping overpotential of ∼100 mV at a high current density of 2 mA/cm(2). g-C3N4 filling also enables a separator(Celgard)-free Li/FeS2 cell with at least 400 cycles. The 3D geometry of g-C3N4 shows advantages on interfacial resistance and Li plating/stripping stability compared to its 2D geometry.

  4. Aluminium salt slag characterization and utilization--a review.

    PubMed

    Tsakiridis, P E

    2012-05-30

    Aluminium salt slag (also known as aluminium salt cake), which is produced by the secondary aluminium industry, is formed during aluminium scrap/dross melting and contains 15-30% aluminium oxide, 30-55% sodium chloride, 15-30% potassium chloride, 5-7% metallic aluminium and impurities (carbides, nitrides, sulphides and phosphides). Depending on the raw mix the amount of salt slag produced per tonne of secondary aluminium ranges from 200 to 500 kg. As salt slag has been classified as toxic and hazardous waste, it should be managed in compliance with the current legislation. Its landfill disposal is forbidden in most of the European countries and it should be recycled and processed in a proper way by taking the environmental impact into consideration. This paper presents a review of the aluminium salt slag chemical and mineralogical characteristics, as well as various processes for metal recovery, recycling of sodium and potassium chlorides content back to the smelting process and preparation of value added products from the final non metallic residue. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Aluminium speciation in effluents and receiving waters.

    PubMed

    Gardner, M J; Comber, S D W

    2003-12-01

    The respective speciation of aluminium in sewage effluent and in river water receiving effluent, has been examined. Results showed that concentrations of reactive aluminium changed over a timescale of hours and were controlled predominantly by pH. A minimum concentration of reactive aluminium occurred at a pH of approximately 6.8, coinciding with the prevalence of non-reactive, insoluble Al(OH)3 species. For receiving waters of low pH value, typically < pH 5, a large proportion of the 'naturally present' aluminium can be present in a reactive form at concentrations higher than the proposed Environmental Quality Standard (EQS). Mixing of waters of this type with effluent of a higher pH value leads to the precipitation of aluminium hydroxide. Mixing of effluent of pH value in the range 7.5-8.0 with river water in the same (or slightly higher) pH range appears to result in no appreciable change in the proportion of reactive aluminium; the change in concentration tends to be related simply to dilution. On the basis of a theoretical knowledge of aluminium speciation, results obtained in this work indicate that it is possible to make predictions about the proportion of reactive aluminium present in a receiving water, based on the pH values of the effluent water mixture and the concentration in the effluent. Reasonable comparisons between measured and predicted values were obtained at higher pH values, but the relationship was less certain at pH values less than 6.5 for which levels of reactive metal tended to be higher than the quality standard value.

  6. Aluminium Electroplating on Steel from a Fused Bromide Electrolyte

    SciTech Connect

    Prabhat Tripathy; Laura Wurth; Eric Dufek; Toni Y. Gutknecht; Natalie Gese; Paula Hahn; Steven Frank; Guy Fredrickson; J Stephen Herring

    2014-08-01

    A quaternary bromide bath (LiBr-KBr-CsBr-AlBr3) was used to electro-coat aluminium on steel substrates. The electrolyte was prepared by the addition of AlBr3 into the eutectic LiBr-KBr-CsBr melt. A smooth, thick, adherent and shiny aluminium coating could be obtained with 80 wt.% AlBr3 in the ternary melt. The SEM photographs of the coated surfaces suggest the formation of thick and dense coatings with good aluminium coverage. Both salt immersion and open circuit potential measurement suggest that the coatings did display good corrosion-resistance behavior. Annealing of the coated surfaces, prior to corrosion tests, suggested the robustness of the metallic aluminium coating in preventing the corrosion of the steel surfaces. Studies also indicated that the quaternary bromide plating bath can potentially provide a better aluminium coating on both ferrous and non-ferrous metals, including complex surfaces/geometries.

  7. Accumulation and toxicity of aluminium-contaminated food in the freshwater crayfish, Pacifastacus leniusculus.

    PubMed

    Woodburn, Katie; Walton, Rachel; McCrohan, Catherine; White, Keith

    2011-10-01

    The accumulation and toxicity of aluminium in freshwater organisms have primarily been examined following aqueous exposure. This study investigated the uptake, excretion and toxicity of aluminium when presented as aluminium-contaminated food. Adult Pacifastacus leniusculus were fed control (3 μg aluminium/g) or aluminium-spiked pellets (420 μg aluminium/g) over 28 days. Half the crayfish in each group were then killed and the remainder fed control pellets for a further 10 days (clearance period). Concentrations of aluminium plus the essential metals calcium, copper, potassium and sodium were measured in the gill, hepatopancreas, flexor muscle, antennal gland (kidney) and haemolymph. Histopathological analysis of tissue damage and sub-cellular distribution of aluminium were examined in the hepatopancreas. Haemocyte number and protein concentration in the haemolymph were analysed as indicators of toxicity. The hepatopancreas of aluminium-fed crayfish contained significantly more aluminium than controls on days 28 and 38, and this amount was positively correlated with the amount ingested. More than 50% of the aluminium in the hepatopancreas of aluminium-fed crayfish was located in sub-cellular fractions thought to be involved in metal detoxification. Aluminium concentrations were also high in the antennal glands of aluminium-fed crayfish suggesting that some of the aluminium lost from the hepatopancreas is excreted. Aluminium exposure via contaminated food caused inflammation in the hepatopancreas but did not affect the number of circulating haemocytes, haemolymph ion concentrations or protein levels. In conclusion, crayfish accumulate, store and excrete aluminium from contaminated food with only localised toxicity. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Effect of aluminium chloride on human spermatozoa

    SciTech Connect

    Kaur, S.

    1988-03-01

    Aluminium (Al), which is the most prevalent metal in the earth's crust, has been implicated as an etiological factor in a variety of clinical disorders. Only recently Al has been discussed in the pathogenesis of the parenteral nutrition - associated liver disease. Included in this report are the preliminary findings on its effects on the reproductive functions of human beings.

  9. Strength and deformability of compressed concrete elements with various types of non-metallic fiber and rods reinforcement under static loading

    NASA Astrophysics Data System (ADS)

    Nevskii, A. V.; Baldin, I. V.; Kudyakov, K. L.

    2015-01-01

    Adoption of modern building materials based on non-metallic fibers and their application in concrete structures represent one of the important issues in construction industry. This paper presents results of investigation of several types of raw materials selected: basalt fiber, carbon fiber and composite fiber rods based on glass and carbon. Preliminary testing has shown the possibility of raw materials to be effectively used in compressed concrete elements. Experimental program to define strength and deformability of compressed concrete elements with non-metallic fiber reinforcement and rod composite reinforcement included design, manufacture and testing of several types of concrete samples with different types of fiber and longitudinal rod reinforcement. The samples were tested under compressive static load. The results demonstrated that fiber reinforcement of concrete allows increasing carrying capacity of compressed concrete elements and reducing their deformability. Using composite longitudinal reinforcement instead of steel longitudinal reinforcement in compressed concrete elements insignificantly influences bearing capacity. Combined use of composite rod reinforcement and fiber reinforcement in compressed concrete elements enables to achieve maximum strength and minimum deformability.

  10. Development of an in-situ multi-component reinforced Al-based metal matrix composite by direct metal laser sintering technique — Optimization of process parameters

    SciTech Connect

    Ghosh, Subrata Kumar; Bandyopadhyay, Kaushik; Saha, Partha

    2014-07-01

    In the present investigation, an in-situ multi-component reinforced aluminum based metal matrix composite was fabricated by the combination of self-propagating high-temperature synthesis and direct metal laser sintering process. The different mixtures of Al, TiO{sub 2} and B{sub 4}C powders were used to initiate and maintain the self-propagating high-temperature synthesis by laser during the sintering process. It was found from the X-ray diffraction analysis and scanning electron microscopy that the reinforcements like Al{sub 2}O{sub 3}, TiC, and TiB{sub 2} were formed in the composite. The scanning electron microscopy revealed the distribution of the reinforcement phases in the composite and phase identities. The variable parameters such as powder layer thickness, laser power, scanning speed, hatching distance and composition of the powder mixture were optimized for higher density, lower porosity and higher microhardness using Taguchi method. Experimental investigation shows that the density of the specimen mainly depends upon the hatching distance, composition and layer thickness. On the other hand, hatching distance, layer thickness and laser power are the significant parameters which influence the porosity. The composition, laser power and layer thickness are the key influencing parameters for microhardness. - Highlights: • The reinforcements such as Al{sub 2}O{sub 3}, TiC, and TiB{sub 2} were produced in Al-MMC through SHS. • The density is mainly influenced by the material composition and hatching distance. • Hatching distance is the major influencing parameter on porosity. • The material composition is the significant parameter to enhance the microhardness. • The SEM micrographs reveal the distribution of TiC, TiB{sub 2} and Al{sub 2}O{sub 3} in the composite.

  11. Aluminium toxicity during regular haemodialysis.

    PubMed

    Elliott, H L; Dryburgh, F; Fell, G S; Sabet, S; Macdougall, A I

    1978-04-29

    In the west of Scotland the incidence of dialysis encephalopathy has been confined to three geographical areas where the concentration of aluminium in the water supply is greatly increased owing to the addition of aluminium sulphate. Eight patients with encephalopathy who dialysed at home in these areas had greatly increased serum aluminium concentrations, and a significant correlation was found between serum aluminium concentrations and the concentrations of aluminium in the water supply. This study provides further evidence that the dialysis encephalopathy syndrome is due to aluminium intoxication, the major source of aluminium being the water supply from which dialysis fluid prepared.

  12. Aluminium toxicity during regular haemodialysis.

    PubMed Central

    Elliott, H L; Dryburgh, F; Fell, G S; Sabet, S; Macdougall, A I

    1978-01-01

    In the west of Scotland the incidence of dialysis encephalopathy has been confined to three geographical areas where the concentration of aluminium in the water supply is greatly increased owing to the addition of aluminium sulphate. Eight patients with encephalopathy who dialysed at home in these areas had greatly increased serum aluminium concentrations, and a significant correlation was found between serum aluminium concentrations and the concentrations of aluminium in the water supply. This study provides further evidence that the dialysis encephalopathy syndrome is due to aluminium intoxication, the major source of aluminium being the water supply from which dialysis fluid prepared. PMID:638617

  13. Steady-state creep of complexly reinforced shallow metal-composite shells

    NASA Astrophysics Data System (ADS)

    Yankovskii, A. P.

    2010-05-01

    The problem of deformation of shallow shells of variable thickness reinforced with fibers of constant cross section, whose all phases operate under the conditions of steady-state creep, is formulated. The system of resolving equations and the corresponding boundary conditions are analyzed, and the procedure for solving this problem is developed. A way of approximate solution of such problems in the case of transient creep is indicated. The particular calculations performed show that the compliance of thin-walled structures, under the conditions of steady-state creep, greatly depends on the structure of reinforcement.

  14. Deformation behavior of metallic glass composites reinforced with shape memory nanowires studied via molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Şopu, D.; Stoica, M.; Eckert, J.

    2015-05-01

    Molecular dynamics simulations indicate that the deformation behavior and mechanism of Cu64Zr36 composite structures reinforced with B2 CuZr nanowires are strongly influenced by the martensitic phase transformation and distribution of these crystalline precipitates. When nanowires are distributed in the glassy matrix along the deformation direction, a two-steps stress-induced martensitic phase transformation is observed. Since the martensitic transformation is driven by the elastic energy release, the strain localization behavior in the glassy matrix is strongly affected. Therefore, the composite materials reinforced with a crystalline phase, which shows stress-induced martensitic transformation, represent a route for controlling the properties of glassy materials.

  15. Aluminium levels in spices and aromatic herbs.

    PubMed

    López, F F; Cabrera, C; Lorenzo, M L; López, M C

    2000-08-10

    We evaluated the levels of aluminium in a total of 72 samples of 17 different spices and aromatic herbs that are widely consumed in Spain, and in the Mediterranean diet, in general. Aluminium was determined in the samples mineralized with HNO3 and V2O5, using electrothermal atomization atomic absorption spectroscopy as the analytical technique. The accuracy and precision of the proposed method was verified against an NBS-certified reference material. Precision, expressed as relative standard deviation, ranged from 1.10 to 4.07%. The results obtained from recovery studies were of 97.90 +/- 1.20. Aluminium concentrations ranged from 3.74 to 56.50 microg/g (dry wt.). The presence of this metal was detected in all the samples we analysed.

  16. Multilayer roll bonded aluminium foil: processing, microstructure and flow stress

    SciTech Connect

    Barlow, C.Y.; Nielsen, P.; Hansen, N

    2004-08-02

    Bulk aluminium has been produced by warm-rolling followed by cold-rolling of commercial purity (99% purity) aluminium foil. The bonding appeared perfect from observation with the naked eye, light and transmission electron microscopy. By comparison with bulk aluminium of similar purity (AA1200) rolled to a similar strain (90%RA), the roll-bonded metal showed a much higher density of high-angle grain boundaries, similar strength and improved thermal stability. This study has implications for a number of applications in relation to the processing of aluminium. Roll bonding is of interest as a method for grain size refinement; oxide-containing materials have increased strength, enhanced work-hardening behaviour, and exhibit alterations in recrystallisation behaviour. The behaviour of the hard oxide film is of interest in aluminium processing, and has been investigated by characterising the size and distribution of oxide particles in the roll-bonded samples.

  17. On Porosity Formation in Metal Matrix Composites Made with Dual-Scale Fiber Reinforcements Using Pressure Infiltration Process

    NASA Astrophysics Data System (ADS)

    Etemadi, Reihaneh; Pillai, Krishna M.; Rohatgi, Pradeep K.; Hamidi, Sajad Ahmad

    2015-05-01

    This is the first such study on porosity formation phenomena observed in dual-scale fiber preforms during the synthesis of metal matrix composites (MMCs) using the gas pressure infiltration process. In this paper, different mechanisms of porosity formation during pressure infiltration of Al-Si alloys into Nextel™ 3D-woven ceramic fabric reinforcements (a dual-porosity or dual-scale porous medium) are studied. The effect of processing conditions on porosity content of the ceramic fabric infiltrated by the alloys through the gas PIP (PIP stands for "Pressure Infiltration Process" in which liquid metal is injected under pressure into a mold packed with reinforcing fibers.) is investigated. Relative density (RD), defined as the ratio of the actual MMC density and the density obtained at ideal 100 pct saturation of the preform, was used to quantify the overall porosity. Increasing the infiltration temperature led to an increase in RD due to reduced viscosity of liquid metal and enhanced wettability leading to improved feedability of the liquid metal. Similarly, increasing the infiltration pressure led to enhanced penetration of fiber tows and resulted in higher RD and reduced porosity. For the first time, the modified Capillary number ( Ca*), which is found to predict formation of porosity in polymer matrix composites quite well, is employed to study porosity in MMCs made using PIP. It is observed that in the high Ca* regime which is common in PIP, the overall porosity shows a strong downward trend with increasing Ca*. In addition, the effect of matrix shrinkage on porosity content of the samples is studied through using a zero-shrinkage Al-Si alloy as the matrix; usage of this alloy as the matrix led to a reduction in porosity content.

  18. Tensile and Compressive Responses of Ceramic and Metallic Nanoparticle Reinforced Mg Composites

    PubMed Central

    Tun, Khin Sandar; Wong, Wai Leong Eugene; Nguyen, Quy Bau; Gupta, Manoj

    2013-01-01

    In the present study, room temperature mechanical properties of pure magnesium, Mg/ZrO2 and Mg/(ZrO2 + Cu) composites with various compositions are investigated. Results revealed that the use of hybrid (ZrO2 + Cu) reinforcements in Mg led to enhanced mechanical properties when compared to that of single reinforcement (ZrO2). Marginal reduction in mechanical properties of Mg/ZrO2 composites were observed mainly due to clustering of ZrO2 particles in Mg matrix and lack of matrix grain refinement. Addition of hybrid reinforcements led to grain size reduction and uniform distribution of hybrid reinforcements, globally and locally, in the hybrid composites. Macro- and micro- hardness, tensile strengths and compressive strengths were all significantly increased in the hybrid composites. With respect to unreinforced magnesium, failure strain was almost unchanged under tensile loading while it was reduced under compressive loading for both Mg/ZrO2 and Mg/(ZrO2 + Cu) composites. PMID:28809245

  19. Metallic Concepts for Repair of Reinforced Carbon-Carbon Space Shuttle Leading Edges

    NASA Technical Reports Server (NTRS)

    Ritzert, Frank; Nesbitt, James

    2007-01-01

    The Columbia accident has focused attention on the critical need for on-orbit repair concepts for wing leading edges in the event that potentially catastrophic damage is incurred during Space Shuttle Orbiter flight. The leading edge of the space shuttle wings consists of a series of eleven panels on each side of the orbiter. These panels are fabricated from reinforced carbon-carbon (RCC) which is a light weight composite with attractive strength at very high temperatures. The damage that was responsible for the loss of the Colombia space shuttle was deemed due to formation of a large hole in one these RCC leading edge panels produced by the impact of a large piece of foam. However, even small cracks in the RCC are considered as potentially catastrophic because of the high temperature re-entry environment. After the Columbia accident, NASA has explored various means to perform on-orbit repairs in the event that damage is sustained in future shuttle flights. Although large areas of damage, such as that which doomed Columbia, are not anticipated to re-occur due to various improvements to the shuttle, especially the foam attachment, NASA has also explored various options for both small and large area repair. This paper reports one large area repair concept referred to as the "metallic over-wrap." Environmental conditions during re-entry of the orbiter impose extreme requirements on the RCC leading edges as well as on any repair concepts. These requirements include temperatures up to 3000 F (1650 C) for up to 15 minutes in the presence of an extremely oxidizing plasma environment. Figure 1 shows the temperature profile across one panel (#9) which is subject to the highest temperatures during re-entry. Although the RCC possesses adequate mechanical strength at these temperatures, it lacks oxidation resistance. Oxidation protection is afforded by converting the outer layers of the RCC to SiC by chemical vapor deposition (CVD). At high temperatures in an oxidizing

  20. Comparison of the in vitro fatigue resistance of an acrylic resin removable partial denture reinforced with continuous glass fibers or metal wires.

    PubMed

    Vallittu, P K

    1996-06-01

    The fatigue resistance of heat-polymerized acrylic resin test specimens reinforced with continuous glass fibers or metal wire was investigated. Test specimens in the shape of maxillary removable partial dentures were reinforced with one of the following: (1) circular steel wire (cross-sectional diameter, 1.0 mm); (2) semicircular steel wire (cross-sectional diameter, 1.0 x 2.0 mm); or (3) continuous unidirectional E-glass fibers. Ten specimens were fabricated for each test group. The specimens were tested by a constant force flexural fatigue test at a force of 180 N while immersed in 37 degrees C water. The number of loading cycles required to generate a fatigue fracture and the position of the fracture were measured. Results showed that the test specimens, which were either unreinforced or reinforced with metal wires, fractured after 13,197 to 39,237 loading cycles. For the glass fiber-reinforced test specimens, the fracture did not coincide with the region of the strengthener but with the opposite side of the test specimen after 1,239,298 loading cycles. The position of the fracture showed a statistically significant variation between the test groups (P < .001). This study suggests that the fatigue resistance of acrylic resin removable partial dentures reinforced with glass fibers are superior to those removable partial dentures reinforced with conventional metal wire.

  1. Volatilisation and oxidation of aluminium scraps fed into incineration furnaces

    SciTech Connect

    Biganzoli, Laura; Gorla, Leopoldo; Nessi, Simone; Grosso, Mario

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Aluminium packaging partitioning in MSW incineration residues is evaluated. Black-Right-Pointing-Pointer The amount of aluminium packaging recoverable from the bottom ashes is evaluated. Black-Right-Pointing-Pointer Aluminium packaging oxidation rate in the residues of MSW incineration is evaluated. Black-Right-Pointing-Pointer 80% of aluminium cans, 51% of trays and 27% of foils can be recovered from bottom ashes. - Abstract: Ferrous and non-ferrous metal scraps are increasingly recovered from municipal solid waste incineration bottom ash and used in the production of secondary steel and aluminium. However, during the incineration process, metal scraps contained in the waste undergo volatilisation and oxidation processes, which determine a loss of their recoverable mass. The present paper evaluates the behaviour of different types of aluminium packaging materials in a full-scale waste to energy plant during standard operation. Their partitioning and oxidation level in the residues of the incineration process are evaluated, together with the amount of potentially recoverable aluminium. About 80% of post-consumer cans, 51% of trays and 27% of foils can be recovered through an advanced treatment of bottom ash combined with a melting process in the saline furnace for the production of secondary aluminium. The residual amount of aluminium concentrates in the fly ash or in the fine fraction of the bottom ash and its recovery is virtually impossible using the current eddy current separation technology. The average oxidation levels of the aluminium in the residues of the incineration process is equal to 9.2% for cans, 17.4% for trays and 58.8% for foils. The differences between the tested packaging materials are related to their thickness, mechanical strength and to the alloy.

  2. Processing of Hybrid Structures Consisting of Al-Based Metal Matrix Composites (MMCs) With Metallic Reinforcement of Steel or Titanium

    DTIC Science & Technology

    2013-09-01

    titanium - and steel-based metals, high specific stiffness, high specific strength , tailorable coefficient of thermal...to titanium and steel- based metals, high specific stiffuess, high specific strength , tailorable coefficient of thermal expansion (CTE), and high ...hollow, periodic cellular structures are of interest due to their very high stiffness to weight ratio and high damage tolerance (e.g., very high

  3. Aluminium uptake and excretion in potroom workers of a new primary aluminium smelter during the construction stage.

    PubMed

    Röllin, H B; Theodorou, P; Nogueir, C M; Levin, J

    2001-12-01

    The aim of this study was to define bio-accumulation and excretion patterns of aluminium in newly employed potroom workers as well as changes in ambient aluminium levels in the potrooms of a modern aluminium smelter during the plant construction stage and one year into full production. A study was carried out on 115 newly employed volunteer potroom workers at various intervals, over a total period of 36 months. Before commencement of employment a structured questionnaire was completed by all study participants and the first collection of blood and urine specimens took place. As none of the subjects had ever worked in the aluminium industry before, they also served as their own controls. Atomic absorption spectroscopy was used to measure the aluminium content in the biological fluids and the content of the metal in the ambient air of the potrooms. Significantly, the study found an early and marked biological response to inhalation of very low levels of airborne aluminium. After only 12 months, the mean concentration of aluminium in serum had almost doubled; thereafter it levelled off. A mixed model analysis did not find any differences in the concentrations of aluminium in the serum of the subjects since the variation between subjects at any given time was much smaller than the variation within subjects. This may be an indication of the pronounced effect of aluminium inhalation on the kinetics of this metal in the human body. Furthermore, urinary excretion of aluminium by the potroom workers showed a linear increase reaching a concentration of only 49 microg l(-1) at the 36 month stage, suggesting a slow rate of elimination.

  4. Application of ceramic fibers to the manufacture of reinforced metal-matrix composites

    SciTech Connect

    Wielage, B.; Rahm, J.; Steinhaeuser, S.

    1995-12-31

    The application of the thermal spraying process is a new way to produce carbon fiber or Tyranno fiber reinforced aluminum matrix composites. Spreaded fiber rovings are enveloped in the matrix material with wire flame spraying. The advantage of the thermal spraying process is based in the low times for contacting between the fibers and the liquid matrix material. Chemical reactions on the interface fiber/matrix, which are caused by the decreasing of the fiber tensile strength, can be excluded. The thermal sprayed prepregs can be compressed to MMC by hot pressing process. This longfiber reinforced composites are used to increase f.e. casted components of motors. The aim of this research is the estimation of possibilities to applicate the wire flame spray process for prepreg manufacturing.

  5. Evaluation of metal landing gear door assembly selectively reinforced with filamentary composite for space shuttle application

    NASA Technical Reports Server (NTRS)

    Kong, S. J.; Freeman, V. L.

    1972-01-01

    The development and evaluation of a main landing gear door for space shuttle applications are discussed. The door is constructed on composite materials using a rib-stiffened titanium panel selectively reinforced with boron/epoxy composite. A weight comparison between the hybrid design and the all-titanium baseline design showed a weight saving of approximately fifteen percent. Detailed descriptions of the door structure and method of manufacture are presented.

  6. Acid-shock, aluminium, and presence of Sphagnum aurantiacum: effect on embryological development in the common frog, Rana temporaria and the moor frog, Rana arvalis

    SciTech Connect

    Olsson, M.; Hogstrand, C.; Dahlberg, A.; Berglind, S.A.

    1987-07-01

    During the last two decades, several effects of acidification have been shown, e.g., enhanced leaching of metals from sediments and soil. Furthermore, an increased growth of Sphagnum aurantiacum frequently occurs in acidified waters. The aim of the present study is to investigate some effects of acidification on the embryological development on two Anurans. The toxicity of aluminium is thought to vary with pH. The highest toxicity of aluminium in the hydroxyl form have been found at pH 5. In the present study a laboratory experiment was performed to investigate the toxicity of Al to frog embryos in water with pH 5.0. In acidified waters Sphagnum and especially S. aurantiacum, is competitive and quickly become established. It has been indicated that frog spawn deposited on Sphagnum show an unusually high mortality and questions have been raised if Sphagnum reinforces the detrimental effects of acidification on Anuran reproduction.

  7. The Current Efficiency for Aluminium Deposition from Molten Fluoride Electrolytes with Dissolved Alumina

    NASA Astrophysics Data System (ADS)

    Haarberg, Geir Martin

    Controlled laboratory experiments were carried out to determine the current efficiency for aluminium deposition from fluoride electrolytes containing dissolved alumina. Electrolysis was performed at constant current density, and the amount of deposited aluminium was determined. Effects of temperature, cathodic current density, electrolyte composition and the presence of dissolved impurities were studied. The loss in current efficiency is strongly linked to the solubility of dissolved aluminium. The rate of the so called back reaction between dissolved aluminium and CO2 depends on the diffusion of dissolved aluminium near the cathode. Both dissolved aluminium and dissolved alkali metals must be considered. Impurities with several oxidation states, such as phosphorus, cause a loss in current efficiency by undergoing cyclic red/ox reactions at the electrodes. The results are of interest for the industrial process of producing aluminium.

  8. Role of interfacial and matrix creep during thermal cycling of continuous fiber reinforced metal-matrix composites

    SciTech Connect

    Dutta, I.

    2000-03-14

    A uni-dimensional micro-mechanical model for thermal cycling of continuous fiber reinforced metal-matrix composites is developed. The model treats the fiber and matrix as thermo-elastic and thermo-elasto-plastic-creeping solids, respectively, and allows the operation of multiple matrix creep mechanisms at various stages of deformation through the use of unified creep laws. It also incorporates the effect of interfacial sliding by an interface-diffusion-controlled diffusional creep mechanism proposed earlier (Funn and Dutta, Acta mater., 1999, 47, 149). The results of thermal cycling simulations based on a graphite fiber reinforced pure aluminum-matrix composite were compared with experimental data on a P100 graphite-6061 Al composite. The model successfully captured all the important features of the observed heating/cooling rate dependence, strain hysteresis, residual permanent strain at the end of a cycle, as well as both intrusion and protrusion of the fiber-ends relative to the matrix at the completion of cycling. The analysis showed that the dominant deformation mechanism operative in the matrix changes continually during thermal cycling due to continuous stress and temperature revision. Based on these results, a framework for the construction of a transient deformation mechanism map for thermal excursions of continuous fiber composites is proposed.

  9. Characterization of anisotropic elastic constants of silicon-carbide particulate reinforced aluminum metal matrix composites; Part 1: Experiment

    SciTech Connect

    Jeong, H. ); Hsu, D.K. . Center for Nondestructive Evaluation); Shannon, R.E. . Materials Reliability Dept.); Liaw, P.K. . Dept. of Materials Science and Engineering)

    1994-04-01

    The anisotropic elastic properties of silicon-carbide particulate (SiC[sub p]) reinforced Al metal matrix composites were characterized using ultrasonic techniques and microstructural analysis. The composite materials, fabricated by a powder metallurgy extrusion process, included 2124, 6061, and 7091 Al alloys reinforced by 10 to 30 pct of [alpha]-SiC[sub p] by volume. Results were presented for the assumed orthotropic elastic constants obtained from ultrasonic velocities and for the microstructural data on particulate shape, aspect ratio, and orientation distribution. All of the composite samples exhibited a systematic anisotropy: the stiffness in the extrusion direction was the highest, and the stiffness in the out-of-plane direction was the lowest. Microstructural analysis suggested that the observed anisotropy could be attributed to the preferred orientation of SiC[sub p]. The ultrasonic velocity was found to be sensitive to internal defects such as porosity and intermetallic compounds. It has been observed that ultrasonics may be a useful, nondestructive technique for detecting small directional differences in the overall elastic constants of the composites since a good correlation has been noted between the velocity and microstructure and the mechanical test. By incorporating the observed microstructural characteristics, a theoretical model for predicting the anisotropic stiffnesses of the composites has been developed and is presented in a companion article (Part 2).

  10. Characterization of anisotropie elastic constants of silicon-carbide participate reinforced aluminum metal matrix composites: Part I. Experiment

    NASA Astrophysics Data System (ADS)

    Jeong, Hyunjo; Hsu, David K.; Shannon, Robert E.; Liaw, Peter K.

    1994-04-01

    The anisotropic elastic properties of silicon-carbide particulate (SiC p ) reinforced Al metal matrix composites were characterized using ultrasonic techniques and microstructural analysis. The composite materials, fabricated by a powder metallurgy extrusion process, included 2124, 6061, and 7091 Al alloys reinforced by 10 to 30 pct of α-SiC p by volume. Results were presented for the assumed orthotropic elastic constants obtained from ultrasonic velocities and for the microstructural data on particulate shape, aspect ratio, and orientation distribution. All of the composite samples exhibited a systematic anisotropy: the stiffness in the extrusion direction was the highest, and the stiffness in the out-of-plane direction was the lowest. Microstructural analysis suggested that the observed anisotropy could be attributed to the preferred orientation of SiC p . The ultrasonic velocity was found to be sensitive to internal defects such as porosity and intermetallic compounds. It has been observed that ultrasonics may be a useful, nondestructive technique for detecting small directional differences in the overall elastic constants of the composites since a good correlation has been noted between the velocity and microstructure and the mechanical test. By incorporating the observed microstructural characteristics, a theoretical model for predicting the anisotropic stiffnesses of the composites has been developed and is presented in a companion article (Part II).

  11. Continuous fiber reinforced composite materials as alternatives for metal alloys used for dental appliances.

    PubMed

    Karmaker, A C; DiBenedetto, A T; Goldberg, A J

    1997-01-01

    Two types of uniaxially oriented long S2-glass fiber reinforced composites were prepared for use in various dental appliances. Matrix polymers were polycarbonate (PC) and bisphenol A bis (2-hydroxy-propyl) methacrylate (Bis-GMA) based copolymers. Flexural tests were conducted on the composites using a procedure which simulates clinical usages. To evaluate the adhesion between the composites and the adhesive, the single-lap shear test was conducted. Mechanical properties of the small cross-sectional composite strips were superior to those used previously in clinical studies.

  12. Mechanical characterization and modeling of non-linear deformation and fracture of a fiber reinforced metal matrix composite

    NASA Technical Reports Server (NTRS)

    Jansson, S.

    1991-01-01

    The nonlinear anisotropic mechanical behavior of an aluminum alloy metal matrix composite reinforced with continuous alumina fibers was determined experimentally. The mechanical behavior of the composite were modeled by assuming that the composite has a periodical microstructure. The resulting unit cell problem was solved with the finite element method. Excellent agreement was found between theoretically predicted and measured stress-strain responses for various tensile and shear loadings. The stress-strain responses for transverse and inplane shear were found to be identical and this will provide a simplification of the constitutive equations for the composite. The composite has a very low ductility in transverse tension and a limited ductility in transverse shear that was correlated to high hydrostatic stresses that develop in the matrix. The shape of the initial yield surface was calculated and good agreement was found between the calculated shape and the experimentally determined shape.

  13. Crack initiation and propagation behavior of WC particles reinforced Fe-based metal matrix composite produced by laser melting deposition

    NASA Astrophysics Data System (ADS)

    Wang, Jiandong; Li, Liqun; Tao, Wang

    2016-08-01

    It is generally believed that cracks in metal matrix composites (MMC) parts manufacturing are crucial to the reliable material properties, especially for the reinforcement particles with high volume fraction. In this paper, WC particles (WCp) reinforced Fe-based metal matrix composites (WCp/Fe) were manufactured by laser melting deposition (LMD) technology to investigate the characteristics of cracks formation. The section morphology of composites were analyzed by optical microscope (OM), and microstructure of WCp, matrix and interface were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), in order to study the crack initiation and propagation behavior under different laser process conditions. The temperature of materials during the laser melting deposition was detected by the infrared thermometer. The results showed that the cracks often appeared after five layers laser deposition in this experiment. The cracks crossed through WC particles rather than the interface, so the strength of interface obtained by the LMD was relatively large. When the thermal stress induced by high temperature gradient during LMD and the coefficient of thermal expansion mismatch between WC and matrix was larger than yield strength of WC, the cracks would initiate inside WC particle. Cracks mostly propagated along the eutectic phases whose brittleness was very large. The obtained thin interface was beneficial to transmitting the stress from particle to matrix. The influence of volume fraction of particles, laser power and scanning speed on cracks were investigated. This paper investigated the influence of WC particles size on cracks systematically, and the smallest size of cracked WC in different laser processing parameters was also researched.

  14. Tribological Behavior of TiAl Metal Matrix Composite Brake Disk with TiC Reinforcement Under Dry Sliding Conditions

    NASA Astrophysics Data System (ADS)

    Liaquat, Hassan; Shi, Xiaoliang; Yang, Kang; Huang, Yuchun; Liu, Xiyao; Wang, Zhihai

    2017-07-01

    In this investigation, the effect of TiC particulate reinforcement and sintering parameters on tribological behavior of TiAl metal matrix composite (TMMC) has been studied and compared with commercially conventional gray cast iron to evaluate the use of TMMC as brake disk material in an automobile. Three sample disks of TMMC containing TiC particulate reinforcement (D1-5 wt.%, D2 and D3-10 wt.%) were produced by the spark plasma sintering process. D3 compared with D2 was sintered at a higher temperature to evaluate the effect of SPS parameters on the wear characteristics of TMMC. All experiments were performed on pin-on-disk tribotester under a dry sliding condition with different loads (10-11.5 N) and sliding velocities (0.2-0.9 m/s). It is found that higher content of TiC increased TMMC hardness and density. XRD technique has been used to analyze the phase composition. Owing to the high sintering temperature, α-2 Ti3Al phase was formed which further enhanced the matrix anti-wear capability. Scanning electron microscope (SEM) was used to capture the wear track and observe wear mechanism. Energy-dispersive spectroscopy (EDS) has been used to analyze the tribofilm and wear debris. The results showed that the tribofilm for TMMC was mainly composed of metal oxides. Oxidation of Al and Ti due to frictional heat provides wear-resistant protective layer. Under almost all sliding conditions, TMMC, especially disk D3, exhibited minimum wear rate and stable friction coefficient, whereas gray cast iron exhibited lower and unstable friction coefficient as well as higher wear rate. TMMC has shown superior tribological characteristics over gray cast iron in terms of low wear rate along with stable and adequate friction coefficient which is necessary for braking operation and life of brake disk. However, further investigation on full-scale automobile conditions is needed for its practical application.

  15. Composite Reinforcement using Boron Nitride Nanotubes

    DTIC Science & Technology

    2014-05-09

    while retaining the nanotube structure. This project involves the use of computational quantum chemistry to study interactions of aluminium (Al...small clusters of 1–4 metal atoms. The effect of varying the radius of the nanotubes and the size of aluminium and titanium clusters was considered...15. SUBJECT TERMS Boron Nitride Nanotubes, composite materials, Aluminum Alloys , Titanium Alloy , Theoretical Chemistry 16. SECURITY

  16. Development of TiN particulates reinforced SS316 based metal matrix composite by direct metal laser sintering technique and its characterization

    NASA Astrophysics Data System (ADS)

    Hussain, Manowar; Mandal, Vijay; Kumar, Vikas; Das, A. K.; Ghosh, S. K.

    2017-12-01

    The present study describes the fabrication of TiN particulates reinforced SS316 based Metal Matrix Composites (MMCs) in nitrogen and argon atmosphere. The influence of sintering process parameters on microstructure, density, porosity, wear rate and microhardness of the fabricated samples has been analyzed. The input variable process parameters, such as, laser power density (range: 4.13-5.57 W/cm2 (× 104)), scanning speed (range: 3500-4500 mm/min) and the constant parameters, such as, laser beam diameter (0.4 mm), hatching distance (0.2 mm) and layer thickness (0.4 mm) have been considered in the process. It has been observed from Field Emission Scanning Electron Microscopy (FESEM) analysis that TiN and SS316 powder mixture can be sintered in which chromium acts as a binder. Fine gaps are not found at the interface between TiN and SS316 when the mixture is sintered in nitrogen atmosphere. With an increase in the percentage of TiN, the density and wear rate decreases. However, when the reinforcement is taken beyond 18% by weight, the wear rate starts increasing. The microhardness also increases with an increase in the percentage of TiN. The microstructure, elemental compositions and phase characterization of the developed sintered MMCs have been examined by FESEM, EDX (Energy-dispersive X-ray spectroscopy) and XRD (X-ray diffractometer) analysis, respectively. The results have demonstrated the suitability of the TiN reinforced SS316 MMCs for industrial applications.

  17. ALUHAB — The Superior Aluminium Foam

    NASA Astrophysics Data System (ADS)

    Babcsan, N.; Beke, S.; Makk, P.; Soki, P.; Számel, Gy; Degischer, H. P.; Mokso, R.

    A new metal foaming technology has been developed to produce aluminum foams with controlled cell sizes, a wide range of alloy compositions, and attractive mechanical properties. ALUHAB aluminium foams are manufactured from a special foamable aluminium alloy containing ultrafine particles (80-3000 nm). The technology uses high temperature ultrasonication to homogeneously disperse the particles and thus create a stable, foamable aluminum melt. Oscillating gas injector (loud-nozzle) technology permits the injection of optimally sized bubbles into the melt that are independent of the injector orifice diameter. Using this direct gas injection method, bubble size is regulated by the frequency and the power of the ultrasound, producing uniform bubble sizes in the sub-millimeter range. The technology results in extremely stable metal foams which can be cast into complex forms and re-melted without loss of foam integrity. Processing methods and properties of the ALUHAB foams will be discussed.

  18. Fatal aluminium phosphide poisoning

    PubMed Central

    Mittal, Sachin; Rani, Yashoda

    2015-01-01

    Aluminium phosphide (AlP) is a cheap solid fumigant and a highly toxic pesticide which is commonly used for grain preservation. AlP has currently aroused interest with a rising number of cases in the past four decades due to increased use for agricultural and non-agricultural purposes. Its easy availability in the markets has increased also its misuse for committing suicide. Phosphine inhibits cellular oxygen utilization and can induce lipid peroxidation. Poisoning with AlP has often occurred in attempts to commit suicide, and that more often in adults than in teenagers. This is a case of suicidal consumption of aluminium phosphide by a 32-year-old young medical anesthetist. Toxicological analyses detected aluminium phosphide. We believe that free access of celphos tablets in grain markets should be prohibited by law. PMID:27486362

  19. Zero age planetary orbit of gas giant planets revisited: reinforcement of the link with stellar metallicity

    NASA Astrophysics Data System (ADS)

    Pinotti, R.; Boechat-Roberty, H. M.; Porto de Mello, G. F.

    2017-01-01

    In 2005, we suggested a relation between the optimal locus of gas giant planet formation, prior to migration, and the metallicity of the host star, based on the core accretion model, and radial profiles of dust surface density and gas temperature. At that time, less than 200 extrasolar planets were known, limiting the scope of our analysis. Here, we take into account the expanded statistics allowed by new discoveries, in order to check the validity of some premises. We compare predictions with the present available data and results for different stellar mass ranges. We find that the zero age planetary orbit (ZAPO) hypothesis continues to hold after an order of magnitude increase in discovered planets. In particular, the prediction that metal-poor stars harbour planets with average radii distinctively lower than metal-rich ones is still evident in the statistics, and cannot be explained by chaotic planetary formation mechanisms involving migration and gravitational interaction between planets. The ZAPO hypothesis predicts that in metal-poor stars the planets are formed near their host stars; as a consequence, they are more frequently engulfed by the stars during the migration process or stripped of their gaseous envelops. The depleted number of gas giant planets around metal-poor stars would then be the result of the synergy between low formation probability, as predicted by the core accretion model, and high destruction probability, for the ones that are formed.

  20. Evaluation of a metal shear web selectively reinforced with filamentary composites for space shuttle application

    NASA Technical Reports Server (NTRS)

    Laakso, J. H.; Straayer, J. W.

    1974-01-01

    A final program summary is reported for test and evaluation activities that were conducted for space shuttle web selection. Large scale advanced composite shear web components were tested and analyzed to evaluate application of advanced composite shear web construction to a space shuttle orbiter thrust structure. The shear web design concept consisted of a titanium-clad + or - 45 deg boron/epoxy web laminate stiffened with vertical boron-epoxy reinforced aluminum stiffeners and logitudinal aluminum stiffening. The design concept was evaluated to be efficient and practical for the application that was studied. Because of the effects of buckling deflections, a requirement is identified for shear buckling resistant design to maximize the efficiency of highly-loaded advanced composite shear webs.

  1. Influence of specimen features on the strength of boron/epoxy-reinforced metal

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.; Davis, J. G., Jr.; Renieri, M. P.

    1975-01-01

    Experimental results are presented which indicate that the ultimate tensile strength of aluminum reinforced with boron/epoxy composite may be significantly affected by the configuration of the specimen, and whether it was individually laid-up or cut from a larger piece of material. Coupon specimens which were individually laid-up exhibited strengths close to that predicted by theory. However, specimens cut from large plates had strengths about 38 percent of predicted values. All specimens had a one-half inch (12.7 mm) wide gage section. For individually laid-up specimens, it was found that specimens which were loaded through fiberglass tabs yielded higher ultimate tensile strengths than modified dogbone specimens with load introduction through stepped load-transfer regions. Machining along the edges was found to have little influence on the strength of the specimens used in this study.

  2. An ultrafast rechargeable aluminium-ion battery

    NASA Astrophysics Data System (ADS)

    Lin, Meng-Chang; Gong, Ming; Lu, Bingan; Wu, Yingpeng; Wang, Di-Yan; Guan, Mingyun; Angell, Michael; Chen, Changxin; Yang, Jiang; Hwang, Bing-Joe; Dai, Hongjie

    2015-04-01

    The development of new rechargeable battery systems could fuel various energy applications, from personal electronics to grid storage. Rechargeable aluminium-based batteries offer the possibilities of low cost and low flammability, together with three-electron-redox properties leading to high capacity. However, research efforts over the past 30 years have encountered numerous problems, such as cathode material disintegration, low cell discharge voltage (about 0.55 volts ref. 5), capacitive behaviour without discharge voltage plateaus (1.1-0.2 volts or 1.8-0.8 volts) and insufficient cycle life (less than 100 cycles) with rapid capacity decay (by 26-85 per cent over 100 cycles). Here we present a rechargeable aluminium battery with high-rate capability that uses an aluminium metal anode and a three-dimensional graphitic-foam cathode. The battery operates through the electrochemical deposition and dissolution of aluminium at the anode, and intercalation/de-intercalation of chloroaluminate anions in the graphite, using a non-flammable ionic liquid electrolyte. The cell exhibits well-defined discharge voltage plateaus near 2 volts, a specific capacity of about 70 mA h g-1 and a Coulombic efficiency of approximately 98 per cent. The cathode was found to enable fast anion diffusion and intercalation, affording charging times of around one minute with a current density of ~4,000 mA g-1 (equivalent to ~3,000 W kg-1), and to withstand more than 7,500 cycles without capacity decay.

  3. Evaluation of a metal shear web selectively reinforced with filamentary composites for space shuttle application. Phase 1 summary report: Shear web design development

    NASA Technical Reports Server (NTRS)

    Laakso, J. H.; Zimmerman, D. K.

    1972-01-01

    An advanced composite shear web design concept was developed for the Space Shuttle orbiter main engine thrust beam structure. Various web concepts were synthesized by a computer-aided adaptive random search procedure. A practical concept is identified having a titanium-clad + or - 45 deg boron/epoxy web plate with vertical boron/epoxy reinforced aluminum stiffeners. The boron-epoxy laminate contributes to the strength and stiffness efficiency of the basic web section. The titanium-cladding functions to protect the polymeric laminate parts from damaging environments and is chem-milled to provide reinforcement in selected areas. Detailed design drawings are presented for both boron/epoxy reinforced and all-metal shear webs. The weight saving offered is 24% relative to all-metal construction at an attractive cost per pound of weight saved, based on the detailed designs. Small scale element tests substantiate the boron/epoxy reinforced design details in critical areas. The results show that the titanium-cladding reliably reinforces the web laminate in critical edge load transfer and stiffener fastener hole areas.

  4. Novel iron metal matrix composite reinforced by quartz sand for the effective dechlorination of aqueous 2-chlorophenol.

    PubMed

    Zhang, Yunfei; Yang, Bo; Han, Yanni; Jiang, Chaojin; Wu, Deli; Fan, Jinhong; Ma, Luming

    2016-03-01

    In this work, we tested a novel iron metal matrix composite (MMC) synthesized by mechanically introducing quartz sand (SiO2) into an iron matrix (denoted as SiO2-Fe MMC). The pseudo-first-order reaction rate constant of the SiO2-Fe MMC (initial pH 5.0) for 20 mg/L of 2-chlorophenol (2-CP) was 0.051 × 10(-3) L/m(2)/min, which was even higher than that of some reported Pd/Fe bimetals. This extraordinary high activity was promoted by the quick iron dissolution rate, which was caused by the formation of Fe-C internal electrolysis from carbonization of process control agent (PCA) and the active reinforcement/metal interfaces during the milling process. In addition, pH has slight effect on the dechlorination rate. The SiO2-Fe MMC retained relatively stable activity, still achieving 71% removal efficiency for 2-CP after six consecutive cycles. The decrease in dechlorination efficiency can be attributed to the rapid consumption of Fe(0). A dechlorination mechanism using the SiO2-Fe MMC was proposed by a direct electron transfer from Fe(0) to 2-CP at the quartz sand/iron interface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Volatilisation and oxidation of aluminium scraps fed into incineration furnaces.

    PubMed

    Biganzoli, Laura; Gorla, Leopoldo; Nessi, Simone; Grosso, Mario

    2012-12-01

    Ferrous and non-ferrous metal scraps are increasingly recovered from municipal solid waste incineration bottom ash and used in the production of secondary steel and aluminium. However, during the incineration process, metal scraps contained in the waste undergo volatilisation and oxidation processes, which determine a loss of their recoverable mass. The present paper evaluates the behaviour of different types of aluminium packaging materials in a full-scale waste to energy plant during standard operation. Their partitioning and oxidation level in the residues of the incineration process are evaluated, together with the amount of potentially recoverable aluminium. About 80% of post-consumer cans, 51% of trays and 27% of foils can be recovered through an advanced treatment of bottom ash combined with a melting process in the saline furnace for the production of secondary aluminium. The residual amount of aluminium concentrates in the fly ash or in the fine fraction of the bottom ash and its recovery is virtually impossible using the current eddy current separation technology. The average oxidation levels of the aluminium in the residues of the incineration process is equal to 9.2% for cans, 17.4% for trays and 58.8% for foils. The differences between the tested packaging materials are related to their thickness, mechanical strength and to the alloy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Tribological properties of aluminium-based materials

    NASA Astrophysics Data System (ADS)

    Iglesias Victoria, Patricia

    order of magnitude reduction with respect to Al-1. The wear resistance of MA Al-NH3 is attributed to its high hardness, lower porosity, and fine microstructure with submicroscopic reinforcing phases such as aluminium carbide and nitride (by X-ray diffraction and TEM observations).

  7. Synthesis of high performance ceramic fibers by chemical vapor deposition for advanced metallics reinforcing

    NASA Technical Reports Server (NTRS)

    Revankar, Vithal; Hlavacek, Vladimir

    1991-01-01

    The chemical vapor deposition (CVD) synthesis of fibers capable of effectively reinforcing intermetallic matrices at elevated temperatures which can be used for potential applications in high temperature composite materials is described. This process was used due to its advantage over other fiber synthesis processes. It is extremely important to produce these fibers with good reproducible and controlled growth rates. However, the complex interplay of mass and energy transfer, blended with the fluid dynamics makes this a formidable task. The design and development of CVD reactor assembly and system to synthesize TiB2, CrB, B4C, and TiC fibers was performed. Residual thermal analysis for estimating stresses arising form thermal expansion mismatch were determined. Various techniques to improve the mechanical properties were also performed. Various techniques for improving the fiber properties were elaborated. The crystal structure and its orientation for TiB2 fiber is discussed. An overall view of the CVD process to develop CrB2, TiB2, and other high performance ceramic fibers is presented.

  8. A Modified Cast-on Method for the Reinforcement of Aluminum Castings with Dissimilar Metals

    NASA Astrophysics Data System (ADS)

    Han, Qingyou

    2016-12-01

    A modified cast-on method has been developed to reinforce aluminum castings with steel insert. Defect-free bond between the steel insert and the aluminum casting has been consistently obtained. Data obtained from a push-out experiment indicated that the bond strength was much higher than that obtained using the Al-Fin approach. This paper introduces this modified method in four sections: the coating of the steel pins, the cast-on method, microstructure characterization, and the bond strength. The section on the coating of the steel pins contains coating material selection, electroplating technique for plating Cu and Ni on steel, and diffusion bonding of the coatings to the steel. The section on cast-on method deals with factors that affecting the quality of the metallurgical bond between the coated steel and the aluminum castings. The results of microstructure characteristics of the bonding are presented in the microstructure characterization section. A push-out experiment and the results obtained using this method is described in the section of bond strength/mechanical property.

  9. Dry Sliding Wear Behaviour of Flyash Reinforced ZA-27 Alloy Based Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Sharma, S. C.; Krishna, M.; Bhattacharyya, D.

    In the present investigation, an attempt has been made to evaluate the wear rate of ZA-27 alloy composites reinforced with fly ash particles from 1 to 3 wt% in steps of 1 wt%. The compo-casting method has been used to fabricate the composites using Raichur fly ash of average size 3-5 microns. The wear specimens are tested under dry conditions using a pin-on-disc sliding wear testing machine with wear loads of 20-120 N in steps of 20 N, and the sliding distances in the range of 0.5 km to 2.5 km. The results indicate that the wear rate of the composites is less than that of the matrix alloy and it further decreases with the increase in fly ash content. However, the material loss in terms of wear rate and wear volume increases with the increase in load and sliding distance, both in the cases of composites and the matrix alloy. An increase in the applied load increases the wear severity by changing the wear mechanism from abrasion to particle-cracking induced delamination wear. It is found that with the increase in fly ash content, the wear resistance increases monotonically. The observations have been explained using scanning electron microscope (SEM) analysis of the worn surfaces of the composites.

  10. Investigation and in situ removal of spatter generated during laser ablation of aluminium composites

    NASA Astrophysics Data System (ADS)

    Popescu, A. C.; Delval, C.; Shadman, S.; Leparoux, M.

    2016-08-01

    Spatter generated during laser irradiation of an aluminium alloy nanocomposite (AlMg5 reinforced with Al2O3 nanoparticles) was monitored by high speed imaging. Droplets trajectory and speed were assessed by computerized image analysis. The effects of laser peak power and laser focusing on the plume expansion and expulsed droplet speeds were studied in air or under argon flow. It was found that the velocity of visible droplets expulsed laterally or at the end of the plume emission from the metal surface was not dependent on the plasma plume speed. The neighbouring area of irradiation sites was studied by optical and scanning electron microscopy. Droplets deposited on the surface were classified according to their size and counted using a digital image processing software. It was observed that the number of droplets on surface was 1.5-3 times higher when the laser beam was focused in depth as compared to focused beams, even though the populations average diameter were comparable. Three methods were selected for removing droplets in situ, during plume expansion: an argon gas jet crossing the plasma plume, a fused silica plate collector transparent to the laser wavelength placed parallel to the irradiated surface and a mask placed onto the aluminium composite surface. The argon gas jet was efficient only for low power irradiation conditions, the fused silica plate failed in all tested conditions and the mask was successful for all irradiation regimes.

  11. Thermal Infrared Reflective Metal Oxide Sol-Gel Coatings for Carbon Fiber Reinforced Composite Structures

    NASA Astrophysics Data System (ADS)

    Richard, Brandon Demar

    Recent trends in composite research include the development of structural materials with multiple functionalities. In new studies, novel materials are being designed, developed, modified, and implemented into composite designs. Typically, an increase in functionality requires additional material phases within one system. The presence of excessive phases can result in deterioration of individual or overall properties. True multi-functional materials must maintain all properties at or above the minimum operating limit. In this project, samples of antimony and cobalt-doped tin oxide (ATO(Co2O 3)) sol-gel solutions are used to coat carbon fibers and are heat treated at a temperature range of 200 - 500 °C. Results from this research are used to model the implementation of sol-gel coatings into carbon fiber reinforced multifunctional composite systems. This research presents a novel thermo-responsive sol-gel/ (dopant) combination and evaluation of the actuating responses (reflectivity and surface heat dissipation) due to various heat treatment temperatures. While ATO is a well-known transparent conductive material, the implementation of ATO on carbon fibers for infrared thermal reflectivity has not been examined. These coatings serve as actuators capable of reflecting thermal infrared radiation in the near infrared wavelengths of 0.7-1.2 μm. By altering the level of Co2O3 and heat treatment temperatures, optimal optical properties are obtained. While scanning electron microscopy (SEM) is used for imaging, electron diffraction spectroscopy (EDS) is used to verify the compounds present in the coatings. Fourier transform infrared (FT-IR) spectroscopy was performed to analyze the chemical bonds and reflectivity in the infrared spectra after the heat treatments. Total reflection and angle-dependent reflectivity measurements were performed on the coatings in the wavelengths of 0.7-2 μm. Laser induced damage threshold testing was done to investigate the dielectric breakdown

  12. Analytical and experimental investigation of aircraft metal structures reinforced with filamentary composites. Phase 2: Structural fatigue, thermal cycling, creep, and residual strength

    NASA Technical Reports Server (NTRS)

    Blichfeldt, B.; Mccarty, J. E.

    1972-01-01

    Specimens representative of metal aircraft structural components reinforced with boron filamentary composites were manufactured and tested under cyclic loading, cyclic temperature, or continuously applied loading to evaluate some of the factors that affect structural integrity under cyclic conditions. Bonded, stepped joints were used throughout to provide composite-to-metal transition regions at load introduction points. Honeycomb panels with titanium or aluminum faces reinforced with unidirectional boron composite were fatigue tested at constant amplitude under completely reversed loading. Results indicated that the matrix material was the most fatigue-sensitive part of the design, with debonding initiating in the stepped joints. However, comparisons with equal weight all-metal specimens show a 10 to 50 times improved fatigue life. Fatigue crack propagation and residual strength were studied for several different stiffened panel concepts, and were found to vary considerably depending on the configuration. Composite-reinforced metal specimens were also subjected to creep and thermal cycling tests. Thermal cycling of stepped joint tensile specimens resulted in a ten percent decrease in residual strength after 4000 cycles.

  13. Aluminium recycling and environmental issues of salt slag treatment.

    PubMed

    Xiao, Yanping; Reuter, Markus A; Boin, Udo

    2005-01-01

    Environmental friendly recycling is the trend toward total recycling of aluminium metal. In the secondary aluminium industry, due to the complexity of compositions and contaminants in the various types of aluminium scraps, an understanding of the behavior of different scraps during melting is crucial in the recycling process. Salt slags are the byproducts of the secondary aluminium industry, which should be recycled and processed in a proper way by taking the environmental impact into consideration. This article provides qualitative assessment on 10 different commercial aluminium scraps for their relative recyclability via well-designed and controlled laboratory experiments. It confirms that more nonmetallic contaminants, smaller size, and higher ratio of surface area to body volume generally lead to a lower metal recovery. Recycling the scraps with lower recyclability normally generates more salt slags. High slag viscosity leads to more fine aluminum metal entrapped in the salt slag and thus increases the load of salt slag recycling. It was found that viscosity of the salt flux is increased with the amount of entrapped nonmetallic components, which affect the settling of heavier materials. In addition, the slag samples from the melting tests were leached and analyzed to evaluate the behavior of carbon containing scrap. The elevated carbon content in the scrap resulted in more carbide formation in salt slags and thus more methane generation in salt slag recycling with a higher environmental impact.

  14. Strain intensity factor approach for predicting the strength of continuously reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1988-01-01

    A method was previously developed to predict the fracture toughness (stress intensity factor at failure) of composites in terms of the elastic constants and the tensile failing strain of the fibers. The method was applied to boron/aluminum composites made with various proportions of 0 to + or - 45 deg plies. Predicted values of fracture toughness were in gross error because widespread yielding of the aluminum matrix made the compliance very nonlinear. An alternate method was developed to predict the strain intensity factor at failure rather than the stress intensity factor because the singular strain field was not affected by yielding as much as the stress field. Strengths of specimens containing crack-like slits were calculated from predicted failing strains using uniaxial stress-strain curves. Predicted strengths were in good agreement with experimental values, even for the very nonlinear laminates that contained only + or - 45 deg plies. This approach should be valid for other metal matrix composites that have continuous fibers.

  15. Corrosion of Continuous Fiber Reinforced Aluminum Metal Matrix Composites (CF-AMCs)

    NASA Astrophysics Data System (ADS)

    Tiwari, Shruti

    The first objective of this research is to study the atmospheric corrosion behavior of continuous reinforced aluminum matrix composites (CF-AMCs). The materials used for this research were alumina (Al2O3) and nickel (Ni) coated carbon (C) fibers reinforced AMCs. The major focus is to identify the correlation between atmospheric parameters and the corrosion rates of CF-AMCs in the multitude of microclimates and environments in Hawai'i. The micro-structures of CF-AMCs were obtained to correlate the microstructures with their corrosion performances. Also electrochemical polarization experiments were conducted in the laboratory to explain the corrosion mechanism of CF-AMCs. In addition, CF-AMCs were exposed to seven different test sites for three exposure periods. The various climatic conditions like temperature (T), relative humidity (RH), rainfall (RF), time of wetness (TOW), chloride (Cl- ) and sulfate (SO42-) deposition rate, and pH were monitored for three exposure period. Likewise, mass losses of CF-AMCs at each test site for three exposure periods were determined. The microstructure of the CF-AMCS showed that Al/C/50f MMCs contained a Ni-rich phase in the matrix, indicating that the Ni coating on the C fiber dissolved in the matrix. The intermetallic phases obtained in Al-2wt% Cu/Al 2O3/50f-T6 MMC and Al-2wt%-T6 monolith were rich in Cu and Fe. The intermetallic phases obtained in Al 7075/Al2O3/50f-T6 MMC and Al 7075-T6 monolith also contained traces of Mg, Zn, Ni, and Si. Electrochemical polarization experiment indicated that the Al/Al 2O3/50f Al-2wt% Cu/Al2O3/50f-T6 and Al 7075/Al2O3/50f-T6 MMC showed similar corrosion trends as their respective monoliths pure Al, Al-2wt%-T6 and Al 7075-T6 in both aerated and deaerated condition. Al2O3 fiber, being an insulator, did not have a great effect on the polarization behavior of the composites. Al/C/50f MMCs corroded at a much faster rate as compared to pure Al monolith due to the galvanic effect between C and Al

  16. Equal-Stressed Reinforcement of Metal-Composite Plates in Transverse Bending at Steady-State Creep with Account of Weakened Resistance to In-Plane Shears

    NASA Astrophysics Data System (ADS)

    Yankovskii, A. P.

    2016-03-01

    Within the hypotheses of Tymoshenko and Timoshenko-Reissner theories, problems on the equal-stressed reinforcement (ER) are formulated for metal-composite plates in transverse bending at steady-state creep. The plates are reinforced with fibers of constant cross section. A qualitative analysis is performed for the corresponding systems of resolving equations and boundary conditions. The method of secant modulus is used. It is shown that, at each iteration, the systems of resolving equations are systems of quasi-linear equations of mixed-compound type with nonlinear static boundary conditions. From these conditions follows the possibility of existence of several alternative solutions which can be controlled by varying the densities of reinforcement on the edge of plates. It is revealed that the trajectories of reinforcement are the actual characteristics of the system of resolving equations. Within the framework of the Timoshenko-Reissner theory, model ER problems on the cylindrical bending of elongated rectangular plates in the cases where one of the longitudinal edges is subjected to different loadings, but the others are rigidly fixed, are considered. By particular examples, the possibility of existence of two alternative solutions to the ER problem, one regular and the other singular, is shown. The emergence of edge effects deeply penetrating into the plate is revealed in the presence of torque applied to the edge, which has a significant effect not only on the stress-strain state of the binder material, but also on the structure of reinforcement.

  17. Hot pressing titanium metal matrix composites reinforced with graphene nanoplatelets through an in-situ reactive method

    NASA Astrophysics Data System (ADS)

    Mu, X. N.; Zhang, H. M.; Cai, H. N.; Fan, Q. B.; Wu, Y.; Fu, Z. J.; Wang, Q. X.

    2017-05-01

    This study proposed an in-situ reactive method that uses graphene as a reinforcement to fabricate titanium metal matrix composites (TiMMCs) through powder metallurgy processing route. The volume fraction of graphene nanoplatelets was 1.8%vol, and the pure titanium was used as a matrix. The Archimedes density, hardness, microstructure and mechanical properties of specimens were compared under different ball milling times (20 min and 2.5 h) and hot pressing temperatures (900°C, 1150°C, and 1300°C,). The ultimate tensile strength of 630 MPa, which demonstrated a 27.3% increase compared with pure Ti, was achieved under a ball milling time of 20 min. Elongation increased with increasing temperature. When the ball milling time and hot pressing temperature were increased to 2.5 h and 1300 °C, respectively, the ultimate tensile strength of the composites reached 750 MPa, showing an increase of 51.5% compared with pure Ti.

  18. Aluminium and human breast diseases.

    PubMed

    Darbre, P D; Pugazhendhi, D; Mannello, F

    2011-11-01

    The human breast is exposed to aluminium from many sources including diet and personal care products, but dermal application of aluminium-based antiperspirant salts provides a local long-term source of exposure. Recent measurements have shown that aluminium is present in both tissue and fat of the human breast but at levels which vary both between breasts and between tissue samples from the same breast. We have recently found increased levels of aluminium in noninvasively collected nipple aspirate fluids taken from breast cancer patients (mean 268 ± 28 μg/l) compared with control healthy subjects (mean 131 ± 10 μg/l) providing evidence of raised aluminium levels in the breast microenvironment when cancer is present. The measurement of higher levels of aluminium in type I human breast cyst fluids (median 150 μg/l) compared with human serum (median 6 μg/l) or human milk (median 25 μg/l) warrants further investigation into any possible role of aluminium in development of this benign breast disease. Emerging evidence for aluminium in several breast structures now requires biomarkers of aluminium action in order to ascertain whether the presence of aluminium has any biological impact. To this end, we report raised levels of proteins that modulate iron homeostasis (ferritin, transferrin) in parallel with raised aluminium in nipple aspirate fluids in vivo, and we report overexpression of mRNA for several S100 calcium binding proteins following long-term exposure of MCF-7 human breast cancer cells in vitro to aluminium chlorhydrate. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. The binding, transport and fate of aluminium in biological cells.

    PubMed

    Exley, Christopher; Mold, Matthew J

    2015-04-01

    Aluminium is the most abundant metal in the Earth's crust and yet, paradoxically, it has no known biological function. Aluminium is biochemically reactive, it is simply that it is not required for any essential process in extant biota. There is evidence neither of element-specific nor evolutionarily conserved aluminium biochemistry. This means that there are no ligands or chaperones which are specific to its transport, there are no transporters or channels to selectively facilitate its passage across membranes, there are no intracellular storage proteins to aid its cellular homeostasis and there are no pathways which evolved to enable the metabolism and excretion of aluminium. Of course, aluminium is found in every compartment of every cell of every organism, from virus through to Man. Herein we have investigated each of the 'silent' pathways and metabolic events which together constitute a form of aluminium homeostasis in biota, identifying and evaluating as far as is possible what is known and, equally importantly, what is unknown about its uptake, transport, storage and excretion. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. Toxicology and occupational hazards of new materials and processes in metal surface treatment, powder metallurgy, technical ceramics, and fiber-reinforced plastics.

    PubMed

    Midtgård, U; Jelnes, J E

    1991-12-01

    Many new materials and processes are about to find their way from the research laboratory into industry. The present paper describes some of these processes and provides an overview of possible occupational hazards and a list of chemicals used or produced in the processes. The technological areas that are considered are metal surface treatment (ion implantation, physical and chemical vapor deposition, plasma spraying), powder metallurgy, advanced technical ceramics, and fiber-reinforced plastics.

  1. Coal fly ash: a potential resource for aluminium and titanium

    SciTech Connect

    Frederick, J.R.; Murtha, M.J.; Burnet, G.

    1980-01-01

    Two processes are described which utilize fly ash as a source of metals and by-products. The lime-soda sinter process involves sintering of the fly ash and alkaline oxides at 1100-1300/sup 0/C to break the alumina-silica bonds and form soluble aluminate compounds and insoluble calcium silicates. The aluminates are extracted from the sinter by dissolution in sodium carbonate. The calcium silicate sinter extract shows promise as a raw material for the manufacture of portland cement. The HiChlor process uses high temperature chlorination of fly ash in the presence of a reductant to form volatile metal chlorides of aluminium, titanium, iron, and silicon. The HiChlor process extracts aluminium, titanium, and iron, while the sinter process extracts only aluminium.

  2. Absorbed aluminium is found with two cytosolic protein fractions, other than ferritin, in the rat duodenum.

    PubMed Central

    Cochran, M; Goddard, G; Ramm, G; Ludwigson, N; Marshall, J; Halliday, J

    1993-01-01

    After in vivo perfusion of the upper intestine of the rat with a range of concentrations of aluminium chloride, entry of the metal into the portal system was only detected when the perfusate exceeded 400 mumol/l, suggesting a mucosal block. Using gel filtration of a mucosal cytosol extract, two consistently appearing aluminium peaks were identified which may represent aluminium binding proteins. Both were heat stable at 60 degrees C and had molecular sizes of about 700 (kilo daltons) (kD) and 17 kD respectively. The larger molecule was distinct from ferritin. Neither molecule associated with 59Fe nor 45Ca. It is suggested that the aluminium peaks are relatively specific aluminium binding proteins that have a scavenging role, reducing entry of the metal from the intestinal contents into the portal blood. PMID:8504964

  3. Ultraviolet Plasmonic Aluminium Nanoparticles for Highly Efficient Light Incoupling on Silicon Solar Cells

    PubMed Central

    Zhang, Yinan; Cai, Boyuan; Jia, Baohua

    2016-01-01

    Plasmonic metal nanoparticles supporting localized surface plasmon resonances have attracted a great deal of interest in boosting the light absorption in solar cells. Among the various plasmonic materials, the aluminium nanoparticles recently have become a rising star due to their unique ultraviolet plasmonic resonances, low cost, earth-abundance and high compatibility with the complementary metal-oxide semiconductor (CMOS) manufacturing process. Here, we report some key factors that determine the light incoupling of aluminium nanoparticles located on the front side of silicon solar cells. We first numerically study the scattering and absorption properties of the aluminium nanoparticles and the influence of the nanoparticle shape, size, surface coverage and the spacing layer on the light incoupling using the finite difference time domain method. Then, we experimentally integrate 100-nm aluminium nanoparticles on the front side of silicon solar cells with varying silicon nitride thicknesses. This study provides the fundamental insights for designing aluminium nanoparticle-based light trapping on solar cells. PMID:28335223

  4. Ultraviolet Plasmonic Aluminium Nanoparticles for Highly Efficient Light Incoupling on Silicon Solar Cells.

    PubMed

    Zhang, Yinan; Cai, Boyuan; Jia, Baohua

    2016-05-24

    Plasmonic metal nanoparticles supporting localized surface plasmon resonances have attracted a great deal of interest in boosting the light absorption in solar cells. Among the various plasmonic materials, the aluminium nanoparticles recently have become a rising star due to their unique ultraviolet plasmonic resonances, low cost, earth-abundance and high compatibility with the complementary metal-oxide semiconductor (CMOS) manufacturing process. Here, we report some key factors that determine the light incoupling of aluminium nanoparticles located on the front side of silicon solar cells. We first numerically study the scattering and absorption properties of the aluminium nanoparticles and the influence of the nanoparticle shape, size, surface coverage and the spacing layer on the light incoupling using the finite difference time domain method. Then, we experimentally integrate 100-nm aluminium nanoparticles on the front side of silicon solar cells with varying silicon nitride thicknesses. This study provides the fundamental insights for designing aluminium nanoparticle-based light trapping on solar cells.

  5. Boron, graphite, glass, metal and aramid fiber reinforced plastics. January, 1973-May, 1981 (Citations from the Rubber and Plastics Research Association Data Base). Report for January 1973-May 1981

    SciTech Connect

    Not Available

    1981-05-01

    The citations cover information about advanced reinforced composites such as boron, graphite, glass, metal, and aramid. Topics include applications, fabrication processes, proerties, nondestructive testing, and economics of composite materials. (Contains 90 citations fully indexed and including a title list.)

  6. Simulation studies of mechanical stresses in REBaCuO superconducting ring bulks with infinite and finite height reinforced by metal ring during field-cooled magnetization

    NASA Astrophysics Data System (ADS)

    Fujishiro, H.; Ainslie, M. D.; Takahashi, K.; Naito, T.; Yanagi, Y.; Itoh, Y.; Nakamura, T.

    2017-08-01

    We have performed the numerical simulation of mechanical stresses (hoop stress, σ θ and radial stress, σ r) in REBaCuO ring bulks with an infinite and finite height reinforced by metal (aluminum alloy or stainless steel) ring during field-cooled magnetization (FCM) using a solenoid coil with an infinite and finite height. The superconducting characteristics of the bulk material were assumed to follow Bean’s critical state model. The electromagnetic hoop stress, {{σ }θ }{{F}{{C}}{{M}}}, of the finite height ring bulk during FCM using the infinite coil was larger than that for the infinite ring bulk, and the time step dependence of {{σ }θ }{{F}{{C}}{{M}}} was clearly different in each case. The {{σ }θ }{{F}{{C}}{{M}}} value was reduced by the reinforcement by the metal ring, and the stainless steel ring was more effective than the aluminum alloy ring. The {{σ }θ }{{F}{{C}}{{M}}} value of the finite ring bulk magnetized using the finite coil was slightly reduced, compared to magnetization using the infinite coil. The thermal hoop stress, {{σ }θ }{{cool}}, which occurs in the ring bulk when cooling down to operating temperature due to the difference of thermal contraction coefficient between ring bulk and metal ring, was also estimated. The compressive, {{σ }θ }{{cool}}, was reduced comparatively at the uppermost surface of the ring bulk because of the larger thermal contraction of the metal ring along the axial direction. The actual total hoop stress, {σ }θ (= {{σ }θ }{{F}{{C}}{{M}}}+{{σ }θ }{{cool}}) was analyzed for the finite ring bulk reinforced by the metal ring during FCM and the possibility of mechanical fracture due to this hoop stress is also discussed.

  7. Influence of particle size on Cutting Forces and Surface Roughness in Machining of B4Cp - 6061 Aluminium Matrix Composites

    NASA Astrophysics Data System (ADS)

    Hiremath, Vijaykumar; Badiger, Pradeep; Auradi, V.; Dundur, S. T.; Kori, S. A.

    2016-02-01

    Amongst advanced materials, metal matrix composites (MMC) are gaining importance as materials for structural applications in particular, particulate reinforced aluminium MMCs have received considerable attention due to their superior properties such as high strength to weight ratio, excellent low-temperature performance, high wear resistance, high thermal conductivity. The present study aims at studying and comparing the machinability aspects of B4Cp reinforced 6061Al alloy metal matrix composites reinforced with 37μm and 88μm particulates produced by stir casting method. The micro structural characterization of the prepared composites is done using Scanning Electron Microscopy equipped with EDX analysis (Hitachi Su-1500 model) to identify morphology and distribution of B4C particles in the 6061Al matrix. The specimens are turned on a conventional lathe machine using a Polly crystalline Diamond (PCD) tool to study the effect of particle size on the cutting forces and the surface roughness under varying machinability parameters viz., Cutting speed (29-45 m/min.), Feed rate (0.11-0.33 mm/rev.) and depth of cut (0.5-1mm). Results of micro structural characterization revealed fairly uniform distribution of B4C particles (in both cases i.e., 37μm and 88μm) in 6061Al matrix. The surface roughness of the composite is influenced by cutting speed. The feed rate and depth of cut have a negative influence on surface roughness. The cutting forces decreased with increase in cutting speed whereas cutting forces increased with increase in feed and depth of cut. Higher cutting forces are noticed while machining Al6061 base alloy compared to reinforced composites. Surface finish is high during turning of the 6061Al base alloy and surface roughness is high with 88μm size particle reinforced composites. As the particle size increases Surface roughness also increases.

  8. Galvanic interactions of aluminium 3004 and ∝ brass in tropical marine atmosphere

    NASA Astrophysics Data System (ADS)

    Palraj, S.; Subramanian, G.; Palanichamy, S.

    2014-12-01

    The galvanic corrosion behaviour of aluminium 3004 - ∝ brass with different area ratios was studied in the tropical marine atmosphere at Tuticorin harbour over a period of 426 days. The area ratios, viz. A Aluminium: A ∝ brass, studied were 0.125, 0.25, 0.5, 1, 2, 4 and 8. The galvanic corrosion behaviour of the metals was studied in terms of the relative increase in the corrosion rate of aluminium due to galvanic coupling with ∝ brass, the relative decrease in the corrosion rate of ∝ brass due to galvanic coupling with aluminium, and the susceptibility of aluminium to pitting owing to galvanic coupling with ∝ brass. The galvanic potential and galvanic current of the system were monitored. Pits of different dimensions ranging from mild etchings to perforations were experienced on the borders and the surfaces of the interface of aluminium in contact with ∝ brass. The corrosion products resulting from galvanic corrosion were analysed using XRD and the pitting on aluminium as a result of galvanic corrosion was highlighted in terms of pit depth, size and density of pit, using a high resolution microscope. The most favourable area ratio of aluminium — ∝ brass in marine atmosphere in terms of gravimetric corrosion rate is 8:1 and the most unfavourable area ratio of aluminium — ∝ brass is 1:4.

  9. Materials characterization of silicon carbide reinforced titanium (Ti/SCS-6) metal matrix composites: Part I. Tensile and fatigue behavior

    NASA Astrophysics Data System (ADS)

    Liaw, P. K.; Diaz, E. S.; Chiang, K. T.; Loh, D. H.

    1995-12-01

    Flexural fatigue behavior was investigated on titanium (Ti-15V-3Cr) metal matrix composites reinforced with cross-ply, continuous silicon carbide (SiC) fibers. The titanium composites had an eightply (0, 90, +45, -45 deg) symmetric layup. Fatigue life was found to be sensitive to fiber layup sequence. Increasing the test temperature from 24 °C to 427 °C decreased fatigue life. Interface debonding and matrix and fiber fracture were characteristic of tensile behavior regardless of test temperature. In the tensile fracture process, interface debonding between SiC and the graphite coating and between the graphite coating and the carbon core could occur. A greater amount of coating degradation at 427 °C than at 24 °C reduced the Ti/SiC interface bonding integrity, which resulted in lower tensile properties at 427 °C. During tensile testing, a crack could initiate from the debonded Ti/SiC interface and extend to the debonded interface of the neighboring fiber. The crack tended to propagate through the matrix and the interface. Dimpled fracture was the prime mode of matrix fracture. During fatigue testing, four stages of flexural deflection behavior were observed. The deflection at stage I increased slightly with fatigue cycling, while that at stage II increased significantly with cycling. Interestingly, the deflection at stage III increased negligibly with fatigue cycling. Stage IV was associated with final failure, and the deflection increased abruptly. Interface debonding, matrix cracking, and fiber bridging were identified as the prime modes of fatigue mechanisms. To a lesser extent, fiber fracture was observed during fatigue. However, fiber fracture was believed to occur near the final stage of fatigue failure. In fatigued specimens, facet-type fracture appearance was characteristic of matrix fracture morphology. Theoretical modeling of the fatigue behavior of Ti/SCS-6 composites is presented in Part II of this series of articles.

  10. An ultrafast rechargeable aluminium-ion battery.

    PubMed

    Lin, Meng-Chang; Gong, Ming; Lu, Bingan; Wu, Yingpeng; Wang, Di-Yan; Guan, Mingyun; Angell, Michael; Chen, Changxin; Yang, Jiang; Hwang, Bing-Joe; Dai, Hongjie

    2015-04-16

    The development of new rechargeable battery systems could fuel various energy applications, from personal electronics to grid storage. Rechargeable aluminium-based batteries offer the possibilities of low cost and low flammability, together with three-electron-redox properties leading to high capacity. However, research efforts over the past 30 years have encountered numerous problems, such as cathode material disintegration, low cell discharge voltage (about 0.55 volts; ref. 5), capacitive behaviour without discharge voltage plateaus (1.1-0.2 volts or 1.8-0.8 volts) and insufficient cycle life (less than 100 cycles) with rapid capacity decay (by 26-85 per cent over 100 cycles). Here we present a rechargeable aluminium battery with high-rate capability that uses an aluminium metal anode and a three-dimensional graphitic-foam cathode. The battery operates through the electrochemical deposition and dissolution of aluminium at the anode, and intercalation/de-intercalation of chloroaluminate anions in the graphite, using a non-flammable ionic liquid electrolyte. The cell exhibits well-defined discharge voltage plateaus near 2 volts, a specific capacity of about 70 mA h g(-1) and a Coulombic efficiency of approximately 98 per cent. The cathode was found to enable fast anion diffusion and intercalation, affording charging times of around one minute with a current density of ~4,000 mA g(-1) (equivalent to ~3,000 W kg(-1)), and to withstand more than 7,500 cycles without capacity decay.

  11. Numerical investigation of effective mechanical properties of metal-ceramic composites with reinforcing inclusions of different shapes under intensive dynamic impacts

    NASA Astrophysics Data System (ADS)

    Karakulov, Valerii V.; Smolin, Igor Yu.; Skripnyak, Vladimir A.

    2016-11-01

    In the present paper, the results of numerical simulation of high-rate deformation of stochastic metal-ceramic composite materials Al-50% B4C, Al-50% SiC, and Al-50% Al2O3 at the mesoscopic scale level under loading by a plane shock wave are presented. Deformation of the mesoscopic volume of a composite, whose structure consists of the aluminum matrix and randomly distributed reinforcing ceramic inclusions, is numerically simulated. The results of the numerical simulation are used for the investigation of special features of the mechanical behavior at the mesoscopic scale level under shock-wave loading and for the numerical evaluation of effective elastic and strength properties of metal-ceramic composites with reinforcing ceramic inclusions of different shapes. Values of effective sound velocities, elastic moduli and elastic limits of investigated materials are obtained, and the character of the dependence of the effective elastic and strength properties on the structure parameters of composites is determined. The simulation results show that values of effective mechanical characteristics weakly depend on the shape of reinforcing inclusions and mainly are defined by their volume concentration.

  12. Alloying Behavior and Properties of Al-Based Composites Reinforced with Al85Fe15 Metallic Glass Particles Fabricated by Mechanical Alloying and Hot Pressing Consolidation

    NASA Astrophysics Data System (ADS)

    Zhang, Lanxiang; Yang, LiKun; Leng, Jinfeng; Wang, Tongyang; Wang, Yan

    2017-04-01

    In this study, Al85Fe15 metallic glass particles with high onset crystallization temperature (1209 K) were synthesized by a mechanical alloying method. High-quality 6061Al-based composites reinforced with Al85Fe15 metallic glass particles were fabricated by a vacuum hot-pressing sintering technique. The glass particles with flake-like shape are distributed uniformly in the Al matrix. The bulk composites possess high relative density, excellent hardness and strength. The microhardness values of the Al-based bulk composites with the additions of 20 vol.% and 30 vol.% Al85Fe15 particles are 204 MPa and 248 MPa, respectively, which are much higher than that of 6061Al (61 MPa). The compressive yield strength of the 30 vol.% glass-reinforced composite is 478 MPa, which is enhanced by 273% compared with 6061Al. The amorphous characteristic and homogeneous dispersion of glass particles account for the excellent mechanical properties of the Al-based composites. In addition, the corrosion behavior of Al-based composites in a seawater solution has been investigated by electrochemical polarization measurements. Compared to 6061Al, the 30 vol.% glass-reinforced composite shows the lower corrosion/passive current density and larger passive region, indicating the greatly enhanced corrosion resistance.

  13. Alloying Behavior and Properties of Al-Based Composites Reinforced with Al85Fe15 Metallic Glass Particles Fabricated by Mechanical Alloying and Hot Pressing Consolidation

    NASA Astrophysics Data System (ADS)

    Zhang, Lanxiang; Yang, LiKun; Leng, Jinfeng; Wang, Tongyang; Wang, Yan

    2017-01-01

    In this study, Al85Fe15 metallic glass particles with high onset crystallization temperature (1209 K) were synthesized by a mechanical alloying method. High-quality 6061Al-based composites reinforced with Al85Fe15 metallic glass particles were fabricated by a vacuum hot-pressing sintering technique. The glass particles with flake-like shape are distributed uniformly in the Al matrix. The bulk composites possess high relative density, excellent hardness and strength. The microhardness values of the Al-based bulk composites with the additions of 20 vol.% and 30 vol.% Al85Fe15 particles are 204 MPa and 248 MPa, respectively, which are much higher than that of 6061Al (61 MPa). The compressive yield strength of the 30 vol.% glass-reinforced composite is 478 MPa, which is enhanced by 273% compared with 6061Al. The amorphous characteristic and homogeneous dispersion of glass particles account for the excellent mechanical properties of the Al-based composites. In addition, the corrosion behavior of Al-based composites in a seawater solution has been investigated by electrochemical polarization measurements. Compared to 6061Al, the 30 vol.% glass-reinforced composite shows the lower corrosion/passive current density and larger passive region, indicating the greatly enhanced corrosion resistance.

  14. Transmittance jump in a thin aluminium layer during laser ablation

    SciTech Connect

    Bykovsky, N E; Senatsky, Yu V; Pershin, S M; Samokhin, A A

    2016-02-28

    A jump in the transmittance (from ∼0.1% to ∼50% for ∼1 ns) of an optical gate on a Mylar film (a thin aluminium layer on a Lavsan substrate) irradiated by nanosecond (10{sup -7} – 10{sup -8} s) pulses of a neodymium laser with an intensity up to 0.1 GW cm{sup -2} has been recorded. The mechanism of a fast (10{sup -10} – 10{sup -11} s) increase in the transmittance of the aluminium layer upon its overheating (without boiling) to the metal – insulator phase-transition temperature is discussed. (interaction of laser radiation with matter. laser plasma)

  15. Silver coated aluminium microrods as highly colloidal stable SERS platforms.

    PubMed

    Pazos-Perez, Nicolas; Borke, Tina; Andreeva, Daria V; Alvarez-Puebla, Ramon A

    2011-08-01

    We report on the fabrication of a novel material with the ability to remain in solution even under the very demanding conditions required for structural and dynamic characterization of biomacromolecule assays. This stability is provided by the increase in surface area of a low density material (aluminium) natively coated with a very hydrophilic surface composed of aluminium oxide (Al(2)O(3)) and metallic silver nanoparticles. Additionally, due to the dense collection of active hot spots on their surface, this material offers higher levels of SERS intensity as compared with the same free and aggregated silver nanoparticles.

  16. Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network.

    PubMed

    Zhang, Xiang; Shi, Chunsheng; Liu, Enzuo; He, Fang; Ma, Liying; Li, Qunying; Li, Jiajun; Bacsa, Wolfgang; Zhao, Naiqin; He, Chunnian

    2017-08-24

    Graphene or graphene-like nanosheets have been emerging as an attractive reinforcement for composites due to their unique mechanical and electrical properties as well as their fascinating two-dimensional structure. It is a great challenge to efficiently and homogeneously disperse them within a metal matrix for achieving metal matrix composites with excellent mechanical and physical performance. In this work, we have developed an innovative in situ processing strategy for the fabrication of metal matrix composites reinforced with a discontinuous 3D graphene-like network (3D GN). The processing route involves the in situ synthesis of the encapsulation structure of 3D GN powders tightly anchored with Cu nanoparticles (NPs) (3D GN@Cu) to ensure mixing at the molecular level between graphene-like nanosheets and metal, coating of Cu on the 3D GN@Cu (3D GN@Cu@Cu), and consolidation of the 3D GN@Cu@Cu powders. This process can produce GN/Cu composites on a large scale, in which the in situ synthesized 3D GN not only maintains the perfect 3D network structure within the composites, but also has robust interfacial bonding with the metal matrix. As a consequence, the as-obtained 3D GN/Cu composites exhibit exceptionally high strength and superior ductility (the uniform and total elongation to failure of the composite are even much higher than the unreinforced Cu matrix). To the best of our knowledge, this work is the first report validating that a discontinuous 3D graphene-like network can simultaneously remarkably enhance the strength and ductility of the metal matrix.

  17. [Photophysical properties and photodynamic activity of nanostructured aluminium phthalocyanines].

    PubMed

    Udartseva, O O; Lobanov, A V; Andeeva, E R; Dmitrieva, G S; Mel'nikov, M Ia; Buravkova, L B

    2014-01-01

    We developed water-soluble supramolecular complexes of aluminium phthalocyanine based on mesoporous silica nanoparticles and polyvinylpirrolidone containing rare photoactive nanoaggregates. Radiative lifetimes, extinction coefficients and energy of electronic transitions of isolated and associated metal phthalocyanine complexes were calculated. Nontoxic concentrations of synthesized nanocomposite photosensibilizers were in vitro determined. In present study we compared photodynamic treatment efficacy using different modifications of aluminium phthalocyanine (Photosens®, AlPc-nSiO2 and AlPc-PVP). Mesenchymal stromal cells were used as a model for photodynamic treatment. Intracellular accumulation of aluminium phthalocyanine based on mesoporous silica nanoparticles AlPc-nSiO2 was the most efficient. Illumination of phthalocyanine-loaded cells led to reactive oxygen species generation and subsequent apoptotic cell death. Silica nanoparticles provided a significant decrease of effective phthalocyanine concentration and enhanced cytotoxicity of photodynamic treatment.

  18. Thermodynamic remarks on chelating ligands for aluminium related diseases.

    PubMed

    Crisponi, Guido; Nurchi, Valeria Marina

    2011-11-01

    Attention is devoted to the role of chelating agents in the treatment of aluminium related diseases. In fact, in spite of the actions that have drastically reduced the occurrence of dialysis diseases, they so far constitute a cause of great medical concern. Being aluminium chelators strictly related to iron chelators, a comparison is made of the complex formation properties of these two hard metal ions towards ligands characterized by charged oxygen donor groups. Empirical correlations between aluminium(III) and iron(III) complex formation constants, and their behavior are discussed in terms of structural and thermodynamic stabilities. Insertion of proper substituents to enhance the chelator binding capacity is debated on the bases of substituent effects on protonation and complex formation constants. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Aluminium and iron air pollution near an iron casting and aluminium foundry in Turin district (Italy).

    PubMed

    Polizzi, Salvatore; Ferrara, Mauro; Bugiani, Massimiliano; Barbero, Domenico; Baccolo, Tiziana

    2007-09-01

    This work reports the results of an environmental survey carried out in an industrial area in the Province of Turin: its main aim is to assess the levels of iron and aluminium in the outside air during the period from July to September to assess the influence of industrial activity (a cast-iron and aluminium foundry) which is interrupted during the month of August, on the level of metals present in the air. Conducting the analysis during this period of time made it possible to avoid the confounding effect of pollution due to domestic central heating. The measurements were taken from nine areas at different distances from the foundry in the area and according to the direction of the prevailing winds, as deduced from the historical data. The results of this survey show a statistically significant difference in iron and aluminium levels in the outside air in the geographic areas between the two main periods examined: during August (no foundry activity) v/s July-September (foundry activity). The values recorded are: Aluminium 0.4+/-0.45 microg/m(3) v/s 1.12+/-1.29 microg/m(3) (p<0.0001); Iron 0.95+/-0.56 microg/m(3) v/s 1.6+/-1.0 microg/m(3) (p<0.0001). There were no statistically significant differences between the nine sampling points from the point of view of the sampling sites, climate conditions and wind directions. We found no correlation with car traffic, in terms of the number of vehicles, and metals. The values of iron tended to be higher in the areas farther away from the foundry site in the areas located along the path of the prevailing winds.

  20. Effects of damage and thermal residual stresses on the overall elastoplastic behavior of particle-reinforced metal matrix composites

    NASA Astrophysics Data System (ADS)

    Liu, Haitao

    The objective of the present study is to investigate damage mechanisms and thermal residual stresses of composites, and to establish the frameworks to model the particle-reinforced metal matrix composites with particle-matrix interfacial debonding, particle cracking or thermal residual stresses. An evolutionary interfacial debonding model is proposed for the composites with spheroidal particles. The construction of the equivalent stiffness is based on the fact that when debonding occurs in a certain direction, the load-transfer ability will lose in that direction. By using this equivalent method, the interfacial debonding problem can be converted into a composite problem with perfectly bonded inclusions. Considering the interfacial debonding is a progressive process in which the debonding area increases in proportion to external loading, a progressive interfacial debonding model is proposed. In this model, the relation between external loading and the debonding area is established using a normal stress controlled debonding criterion. Furthermore, an equivalent orthotropic stiffness tensor is constructed based on the debonding areas. This model is able to study the composites with randomly distributed spherical particles. The double-inclusion theory is recalled to model the particle cracking problems. Cracks inside particles are treated as penny-shape particles with zero stiffness. The disturbed stress field due to the existence of a double-inclusion is expressed explicitly. Finally, a thermal mismatch eigenstrain is introduced to simulate the inconsistent expansions of the matrix and the particles due to the difference of the coefficients of thermal expansion. Micromechanical stress and strain fields are calculated due to the combination of applied external loads and the prescribed thermal mismatch eigenstrains. For all of the above models, ensemble-volume averaging procedures are employed to derive the effective yield function of the composites. Numerical

  1. Experimental comparison of the MIG, friction stir welding, cold metal transfer and hybrid laser-MIG processes for AA 6005-T6 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Caruso, Serafino; Sgambitterra, Emanuele; Rinaldi, Sergio; Gallone, Antonello; Viscido, Lucio; Filice, Luigino; Umbrello, Domenico

    2016-10-01

    In this study, the mechanical properties of welded joints of AA 6005-T6 aluminum alloy obtained with hybrid laser-MIG and cold metal transfer (CMT) welding were analyzed. The performance of hybrid laser-MIG and CMT welded joints were identified using tensile, bending, shear and fatigue life tests. Taking into account the process conditions and requirements, hybrid laser-MIG and CMT welding processes were compared with friction stir welding (FSW) and conventional metal inert gas (MIG) welding processes, shown in a previous work, to understand the advantages and disadvantages of the processes for welding applications of studied Al alloy. Better tensile, bending and shear strength and fatigue life behavior were obtained with hybrid laser-MIG and FSW welded joints compared with conventional MIG processes.

  2. Cast Reinforced Metal Composites: Proceedings of the International Symposium on Advances in Cast Reinforced Metal Composites Held in Conjunction with the 1988 World Materials Congress, Chicago, Illinois, USA, 24-30 September 1988

    DTIC Science & Technology

    1988-01-01

    heat. In the case of a pure metal, this solid metal must b - CASE OF A PURE METAL. In the case of a pure metal, solidify as a sheath surrounding the...the = 0.05 region of partly solid metal, (ii) the morphology of the solidifying metal is no longer that of a sheath surrounding the fibers because...eV/A 2 . The second possible method is that the 1. R. J. Arsenault and N. Shi, Mat . Sci. & misfit is accommodated entirely by long range Eng., 81

  3. Tribological Wear Behaviour and Hardness Measurement of SiC, Al2O3 Reinforced Al. Matrix Hybrid Composite

    NASA Astrophysics Data System (ADS)

    Subramanian, Senthil Murugan; Vijayan, Jegan; Muthaiah, Velmurugan

    2017-01-01

    In the present study, Aluminium Matrix Hybrid Composite (AMHC) of 6061-T6 alloy reinforced with silicon carbide (SiC) particulate and further addition of aluminium oxide (Al2O3) particulate was fabricated by stir casting process. The wear resistance and frictional properties of that AMHC were studied by performing dry sliding wear test using a pin on disk wear tester. The experiments were conducted at a constant sliding velocity of 1.57 m/s and sliding distance of 1800 m under loading conditions of 10 and 20 N. Further tests were also carried out by keeping Al2O3 percentage (7%) constant and increasing the SiC percentage (10, 15, and 20%). The results show that the reinforcement of the metal matrix with SiC and Al2O3 reduces the wear rate range and also indicate that the wear of the test specimen increases with the increasing load and sliding distance. The coefficient of friction increases with load and increasing volume content of reinforcement. The worn surfaces were examined by scanning electron microscope to study the wear mechanism. By using wear mechanism analysis, the wear surfaces and wear properties of AMHC were determined.

  4. Tribological Wear Behaviour and Hardness Measurement of SiC, Al2O3 Reinforced Al. Matrix Hybrid Composite

    NASA Astrophysics Data System (ADS)

    Subramanian, Senthil Murugan; Vijayan, Jegan; Muthaiah, Velmurugan

    2017-10-01

    In the present study, Aluminium Matrix Hybrid Composite (AMHC) of 6061-T6 alloy reinforced with silicon carbide (SiC) particulate and further addition of aluminium oxide (Al2O3) particulate was fabricated by stir casting process. The wear resistance and frictional properties of that AMHC were studied by performing dry sliding wear test using a pin on disk wear tester. The experiments were conducted at a constant sliding velocity of 1.57 m/s and sliding distance of 1800 m under loading conditions of 10 and 20 N. Further tests were also carried out by keeping Al2O3 percentage (7%) constant and increasing the SiC percentage (10, 15, and 20%). The results show that the reinforcement of the metal matrix with SiC and Al2O3 reduces the wear rate range and also indicate that the wear of the test specimen increases with the increasing load and sliding distance. The coefficient of friction increases with load and increasing volume content of reinforcement. The worn surfaces were examined by scanning electron microscope to study the wear mechanism. By using wear mechanism analysis, the wear surfaces and wear properties of AMHC were determined.

  5. Reinforcing effect of glass fiber-reinforced composite reinforcement on flexural strength at proportional limit of a repaired denture base resin

    PubMed Central

    Yoshida, Kaneyoshi; Takahashi, Yutaka; Hamanaka, Ippei; Kawaguchi, Tomohiro; Sasaki, Hirono; Shimizu, Hiroshi

    2015-01-01

    Abstract Objective: This study evaluated the reinforcing effect of glass fiber-reinforced composite (FRC) reinforcement on flexural strength at the proportional limit (FS-PL) of a repaired denture base resin. Materials and methods: Repaired denture base resins reinforced with metal and with FRC reinforcement, and that without reinforcement were tested. The ultimate flexural strength, the FS-PL and the elastic modulus of repaired denture base resins were tested. The joint efficiency (times) of the repaired denture base resins on the intact denture base resin was evaluated. Results: The repaired denture base resins reinforced with metal reinforcement and with FRC reinforcement had significantly higher ultimate flexural strength than the repaired denture base resin without reinforcement (p < 0.05) and were not significantly different from each other (p > 0.05). The FS-PL of a repaired denture base resin reinforced with the FRC reinforcement was similar to that with the metal reinforcement (p > 0.05), and these were significantly higher than the FS-PL of a repaired denture base resin without reinforcement (p < 0.05). The elastic modulus of the repaired denture base resin reinforced with the FRC reinforcement was significantly lower than that with metal reinforcement (p < 0.05) and was significantly higher than that without reinforcement (p < 0.05). The joint efficiency of the FRC reinforced specimen was 0.98. Conclusion: The FRC reinforcement had a reinforcing effect on the FS-PL of a repaired denture base resin. PMID:28642906

  6. Precipitate strengthening of nanostructured aluminium alloy.

    PubMed

    Wawer, Kinga; Lewandowska, Malgorzata; Kurzydlowski, Krzysztof J

    2012-11-01

    Grain boundaries and precipitates are the major microstructural features influencing the mechanical properties of metals and alloys. Refinement of the grain size to the nanometre scale brings about a significant increase in the mechanical strength of the materials because of the increased number of grain boundaries which act as obstacles to sliding dislocations. A similar effect is obtained if nanoscale precipitates are uniformly distributed in coarse grained matrix. The development of nanograin sized alloys raises the important question of whether or not these two mechanisms are "additive" and precipitate strengthening is effective in nanostructured materials. In the reported work, hydrostatic extrusion (HE) was used to obtain nanostructured 7475 aluminium alloy. Nanosized precipitates were obtained by post-HE annealing. It was found that such annealing at the low temperatures (100 degrees C) results in a significant increase in the microhardness (HV0.2) and strength of the nanostructured 7475 aluminium alloy. These results are discussed in terms of the interplay between the precipitation and deformation of nanocrystalline metals.

  7. Characterization of liquid metal infiltration of a chopped fiber preform aided by external pressure. 1: Visualization of the flow behavior of aluminium melt in a fiber preform

    SciTech Connect

    Long, S.; Zhang, Z.; Flower, H.M.

    1995-09-01

    The flow behavior of an AlSi10Mg alloy melt in Saffil chopped fiber preforms during liquid metal infiltration aided by squeeze pressure or vacuum has been visualized. Experimental results indicate that under the external pressure the flow behavior of the melt in non-wetting chopped fiber preforms is dominated by capillary laws and the geometrical characteristics of the interspaces in the preform in a manner analogous to flow in a capillary tube network. The degree of saturation of the interspaces is dominated by local infiltration pressure, and variation of the saturation degree at a given infiltration depth is determined by fiber distribution uniformity at the microscopic level.

  8. Tensile and Dry Sliding Wear Behavior of In-Situ Al3Zr + Al2O3-Reinforced Aluminum Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Gautam, G.; Ghose, A. K.; Chakrabarty, I.

    2015-12-01

    In the present study, aluminum-based in-situ intermetallic Al3Zr and Al2O3-reinforced metal matrix composites have been synthesized by direct melt reaction through stir casting of zirconium oxychloride (ZrOCl2·8H2O) powder in commercially pure aluminum. The in-situ reaction produces intermetallic Al3Zr needles that change to feathery morphology with increasing ZrOCl2·8H2O, while the Al2O3 is of fine globular shape. The tensile strengths of these composites increase with increasing volume percent reinforcements, attaining a peak value with 18 pct addition. The dry sliding wear behavior of the composites was evaluated with varying parameters, viz. sliding distance, normal load, and sliding velocities. The wear mechanisms are explained based on the microstructure, the topography of the worn surface, and the interfacial strength of the matrix and reinforcement. The tensile and wear properties are compared with widely used wear resistant hypereutectic Al-17 pct Si cast alloy.

  9. The effect of TiB2 reinforcement on the mechanical properties of an Al-Cu-Li alloy-based metal-matrix composite

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The addition of ceramic particles to aluminum based alloys can substantially improve mechanical properties, especially Young's modulus and room and elevated temperature strengths. However, these improvements typically occur at the expense of tensile ductility. The mechanical properties are evaluated to a metal matrix composite (MMC) consisting of an ultrahigh strength aluminum lithium alloy, Weldalite (tm) 049, reinforced with TiB2 particles produced by an in situ precipitation technique called the XD (tm) process. The results are compared to the behavior of a nonreinforced Weldalite 049 variant. It is shown that both 049 and 049-TiB2 show very attractive warm temperature properties e.g., 625 MPa yield strength at 150 C after 100 h at temperature. Weldalite 049 reinforced with a nominal 4 v pct. TiB2 shows an approx. 8 pct. increase in modulus and a good combination of strength (529 MPa UTS) and ductility (6.5 pct.) in the T3 temper. And the high ductility of Weldalite 049 in the naturally aged and underaged tempers makes the alloy a good, high strength matrix for ceramic reinforcement.

  10. Direct Observation on the Evolution of Shear Banding and Buckling in Tungsten Fiber Reinforced Zr-Based Bulk Metallic Glass Composite

    NASA Astrophysics Data System (ADS)

    Chen, J. H.; Chen, Y.; Jiang, M. Q.; Chen, X. W.; Fu, H. M.; Zhang, H. F.; Dai, L. H.

    2014-11-01

    The evolution of micro-damage and deformation of each phase in the composite plays a pivotal role in the clarification of deformation mechanism of composite. However, limited model and mechanical experiments were conducted to reveal the evolution of the deformation of the two phases in the tungsten fiber reinforced Zr-based bulk metallic glass composite. In this study, quasi-static compressive tests were performed on this composite. For the first time, the evolution of micro-damage and deformation of the two phases in this composite, i.e., shear banding of the metallic glass matrix and buckling deformation of the tungsten fiber, were investigated systematically by controlling the loading process at different degrees of deformation. It is found that under uniaxial compression, buckling of the tungsten fiber occurs first, while the metallic glass matrix deforms homogeneously. Upon further loading, shear bands initiate from the fiber/matrix interface and propagate in the metallic glass matrix. Finally, the composite fractures in a mixed mode, with splitting in the tungsten fiber, along with shear fracture in the metallic glass matrix. Through the analysis on the stress state in the composite and resistance to shear banding of the two phases during compressive deformation, the possible deformation mechanism of the composite is unveiled. The deformation map of the composite, which covers from elastic deformation to final fracture, is obtained as well.

  11. Evaluation of the DGT technique for selective measurement of aluminium and trace metal concentrations in an acid drainage-impacted coastal waterway.

    PubMed

    Shiva, Amir Houshang; Teasdale, Peter R; Welsh, David T; Bennett, William W

    2017-05-24

    The performance of DGT-Chelex, DGT-Metsorb and DGT-MBL (Chelex-Metsorb mixed binding layer) with open and restricted diffusive layers for trace metal (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) and oxyanion (As, Mo, Sb, V) measurements, was evaluated in four natural waters with different pH (range 3.29-7.81). In moderately acidic (pH ≈ 5) and circumneutral (pH ≈ 6.3) waters, all three binding layers measured relatively similar concentrations of Al, while in more alkaline waters (pH ≈ 8) DGT-MBL measured higher concentrations than the other two binding layers. The measurements of DGT-Chelex and DGT-MBL for Co, Cu, Ni, Pb and Zn, and DGT-Metsorb and DGT-MBL for As, Sb and V were within 82-119% and not statistically different (p > 0.05) over the pH range 5-8. Mn measurements by DGT-Chelex and DGT-MBL were quite similar (95%) at pH 6.3, while DGT-MBL measured higher concentrations than DGT-Chelex at other pHs. The ratios of measured concentrations with different diffusive layers (Crestricted/Copen) were between 0.78 and 1.12 for all binding layers and no statistical differences (p > 0.05) were observed, except for Al at pH 7.81 and Cu at pH 6.28. DGT-MBL was comparable to DGT-Chelex for the measurement of most trace metals, and to DGT-Metsorb for the measurement of most oxyanions, over the pH range 5.05-7.81. Overall, DGT-MBL is superior to the other tested binding layers because it can simultaneously measure cations and anions, and accurately measure dissolved Al, across the greatest range of environmental conditions.

  12. Friction behavior of ceramic fiber-reinforced aluminum metal-matrix composites against a 440C steel counterface

    NASA Astrophysics Data System (ADS)

    Prasad, S. V.; Mecklenburg, K. R.

    1993-04-01

    The friction behavior of short ceramic fiber-reinforced aluminum MMCs against a steel counterface is investigated. The friction coefficients between metallographically polished surfaces of kaowool and saffil fiber-reinforced aluminum MMCs and 44 C steel counterface varied between 0.4 and 0.6. The friction traces were rough with characteristic stick-slip behavior. Transfer of aluminum to steel counterface was observed in all cases. The friction coefficients dropped to below 0.2 when the MMC surface was etched; the stick-slip behavior disappeared. The increase in normal load, the friction coefficients of etched MMC surfaces increased progressively with sliding distance and the rough stick-slip type behavior reappeared. The transition from smooth to rough friction behavior was not observed for the etched surface of the MMC reinforced with 17 percent kaowool fibers even at a normal load of 0.7 N; aluminum transfer to steel was not detected in this case. The results demonstrate the feasibility of producing kaowool and saffil-fiber-reinforced aluminum MMCs by a squeeze infiltration route.

  13. On the Prospects of Using Nanoindentation and Wear Test to Study the Mechanical Behavior of Fe-Based Metallic Glass Coating Reinforced by B4C Nanoparticles

    NASA Astrophysics Data System (ADS)

    Movahedi, Behrooz

    2017-03-01

    In this study, Fe-based metallic glass was served as the matrix in which various ratios of hard B4C nanoparticles as reinforcing agents were prepared using a high-energy mechanical milling. The feedstock nanocomposite powders were transferred to the coatings using a high-velocity oxygen fuel process. The results showed that the microstructure of the nanocomposite coating was divided into two regions, namely a full amorphous phase region and homogeneous dispersion of B4C nanoparticles with a scale of 10 to 50 nm in a residual amorphous matrix. As the B4C content is increased, the hardness of the composite coatings is increased too, but the fracture toughness begins to be decreased at the B4C content higher than 20 vol pct. The optimal mechanical properties are obtained with 15 vol pct B4C due to the suitable content and uniform distribution of nanoparticles. The addition of 15 vol pct B4C to the Fe-based metallic glass matrix reduced the friction coefficient from 0.49 to 0.28. The average specific wear rate of the nanocomposite coating (0.48 × 10-5 mm3 Nm-1) was much less than that for the single-phase amorphous coating (1.23 × 10-5 mm3Nm-1). Consequently, the changes in wear resistance between both coatings were attributed to the changes in the brittle to ductile transition by adding B4C reinforcing nanoparticles.

  14. On the Prospects of Using Nanoindentation and Wear Test to Study the Mechanical Behavior of Fe-Based Metallic Glass Coating Reinforced by B4C Nanoparticles

    NASA Astrophysics Data System (ADS)

    Movahedi, Behrooz

    2017-01-01

    In this study, Fe-based metallic glass was served as the matrix in which various ratios of hard B4C nanoparticles as reinforcing agents were prepared using a high-energy mechanical milling. The feedstock nanocomposite powders were transferred to the coatings using a high-velocity oxygen fuel process. The results showed that the microstructure of the nanocomposite coating was divided into two regions, namely a full amorphous phase region and homogeneous dispersion of B4C nanoparticles with a scale of 10 to 50 nm in a residual amorphous matrix. As the B4C content is increased, the hardness of the composite coatings is increased too, but the fracture toughness begins to be decreased at the B4C content higher than 20 vol pct. The optimal mechanical properties are obtained with 15 vol pct B4C due to the suitable content and uniform distribution of nanoparticles. The addition of 15 vol pct B4C to the Fe-based metallic glass matrix reduced the friction coefficient from 0.49 to 0.28. The average specific wear rate of the nanocomposite coating (0.48 × 10-5 mm3 Nm-1) was much less than that for the single-phase amorphous coating (1.23 × 10-5 mm3Nm-1). Consequently, the changes in wear resistance between both coatings were attributed to the changes in the brittle to ductile transition by adding B4C reinforcing nanoparticles.

  15. Dependence in Classification of Aluminium Waste

    NASA Astrophysics Data System (ADS)

    Resti, Y.

    2015-06-01

    Based on the dependence between edge and colour intensity of aluminium waste image, the aim of this paper is to classify the aluminium waste into three types; pure aluminium, not pure aluminium type-1 (mixed iron/lead) and not pure aluminium type 2 (unrecycle). Principal Component Analysis (PCA) was employed to reduction the dimension of image data, while Bayes’ theorem with the Gaussian copula was applied to classification. The copula was employed to handle dependence between edge and colour intensity of aluminium waste image. The results showed that the classifier has been correctly classifiable by 88.33%.

  16. Tribological and mechanical characterization of Al-Ni-SiC metal matrix composites

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, V.; Dileep, B. P.; Vital, H. R.

    2017-07-01

    Aluminium being light weight metal used widely in many engineering applications. It's being a highly ductile material in its purest form also limits its applications in load carrying members. Addition of alloying elements like nickel and silicon carbide can make aluminium a better material for many applications. In this work aluminium metal matrix composite is prepared by adding nickel powder of 30 microns4% and silicon carbide of 45 microns in 2,4,6and 8% by weight of matrix material. Composite was prepared by using a powder metallurgy (PM) at room temperature compaction. The compaction load was optimized to 15tonns for successful fabrication of green specimen; these green specimens were sintered in a furnace to 5400 temperatures and furnace cooled. It was found that reinforcement of nickel and silicon carbide significantly improved the mechanical properties of the composite; hardness is improved by 35% in that compaction load. Wear rate of the composite is reduced from 200 micrometers to 50 micrometers for 5000 meters of track length at a load of 5N. The prepared composite also shown a uniform distribution of reinforcement particle in the matrix material under micro structural studies.

  17. Aluminium and zinc phosphide poisoning.

    PubMed

    Proudfoot, Alex T

    2009-02-01

    Aluminium and zinc phosphides are highly effective insecticides and rodenticides and are used widely to protect grain in stores and during its transportation. Acute poisoning with these compounds may be direct due to ingestion of the salts or indirect from accidental inhalation of phosphine generated during their approved use. Both forms of poisoning are mediated by phosphine which has been thought to be toxic because it inhibits cytochrome c oxidase. While phosphine does inhibit cytochrome C oxidase in vitro, the inhibition is much less in vivo. It has been shown recently in nematodes that phosphine rapidly perturbs mitochondrial morphology, inhibits oxidative respiration by 70%, and causes a severe drop in mitochondrial membrane potential. This failure of cellular respiration is likely to be due to a mechanism other than inhibition of cytochrome C oxidase. In addition, phosphine and hydrogen peroxide can interact to form the highly reactive hydroxyl radical and phosphine also inhibits catalase and peroxidase; both mechanisms result in hydroxyl radical associated damage such as lipid peroxidation. The major lethal consequence of phosphide ingestion, profound circulatory collapse, is secondary to factors including direct effects on cardiac myocytes, fluid loss, and adrenal gland damage. In addition, phosphine and phosphides have corrosive actions. There is usually only a short interval between ingestion of phosphides and the appearance of systemic toxicity. Phosphine-induced impairment of myocardial contractility and fluid loss leads to circulatory failure, and critically, pulmonary edema supervenes, though whether this is a cardiogenic or non-cardiogenic is not always clear. Metabolic acidosis, or mixed metabolic acidosis and respiratory alkalosis, and acute renal failure are frequent. Other features include disseminated intravascular coagulation, hepatic necrosis and renal failure. There is conflicting evidence on the occurrence of magnesium disturbances. There

  18. Tuning the properties of metal-organic framework nodes as supports of single-site iridium catalysts: node modification by atomic layer deposition of aluminium.

    PubMed

    Yang, Dong; Momeni, Mohammad R; Demir, Hakan; Pahls, Dale R; Rimoldi, Martino; Wang, Timothy C; Farha, Omar K; Hupp, Joseph T; Cramer, Christopher J; Gates, Bruce C; Gagliardi, Laura

    2017-09-08

    The metal-organic framework NU-1000, with Zr6-oxo, hydroxo, and aqua nodes, was modified by incorporation of hydroxylated Al(iii) ions by ALD-like chemistry with [Al(CH3)2(iso-propoxide)]2 followed by steam (ALD = atomic layer deposition). Al ions were installed to the extent of approximately 7 per node. Single-site iridium diethylene complexes were anchored to the nodes of the modified and unmodified MOFs by reaction with Ir(C2H4)2(acac) (acac = acetylacetonate) and converted to Ir(CO)2 complexes by treatment with CO. Infrared spectra of these supported complexes show that incorporation of Al weakened the electron donor tendency of the MOF. Correspondingly, the catalytic activity of the initial supported iridium complexes for ethylene hydrogenation increased, as did the selectivity for ethylene dimerization. The results of density functional theory calculations with a simplified model of the nodes incorporating Al(iii) ions are in qualitative agreement with some catalyst performance data.

  19. Aluminium in allergen-specific subcutaneous immunotherapy--a German perspective.

    PubMed

    Kramer, Matthias F; Heath, Matthew D

    2014-07-16

    We are living in an "aluminium age" with increasing bioavailability of the metal for approximately 125 years, contributing significantly to the aluminium body burden of humans. Over the course of life, aluminium accumulates and is stored predominantly in the lungs, bones, liver, kidneys and brain. The toxicity of aluminium in humans is briefly summarised, highlighting links and possible causal relationships between a high aluminium body burden and a number of neurological disorders and disease states. Aluminium salts have been used as depot-adjuvants successfully in essential prophylactic vaccinations for almost 100 years, with a convincing positive benefit-risk assessment which remains unchanged. However, allergen-specific immunotherapy commonly consists of administering a long-course programme of subcutaneous injections using preparations of relevant allergens. Regulatory authorities currently set aluminium limits for vaccines per dose, rather than per treatment course. Unlike prophylactic vaccinations, numerous injections with higher proportions of aluminium-adjuvant per injection are applied in subcutaneous immunotherapy (SCIT) and will significantly contribute to a higher cumulative life dose of aluminium. While the human body may cope robustly with a daily aluminium overload from the environment, regulatory cumulative threshold values in immunotherapy need further addressing. Based on the current literature, predisposing an individual to an unusually high level of aluminium, such as through subcutaneous immunotherapy, has the potential to form focal accumulations in the body with the propensity to exert forms of toxicity. Particularly in relation to longer-term health effects, the safety of aluminium adjuvants in immunotherapy remains unchallenged by health authorities - evoking the need for more consideration, guidance, and transparency on what is known and not known about its safety in long-course therapy and what measures can be taken to prevent or

  20. Comparative genotoxicity of aluminium and cadmium in embryonic zebrafish cells.

    PubMed

    Pereira, Sandrine; Cavalie, Isabelle; Camilleri, Virginie; Gilbin, Rodolphe; Adam-Guillermin, Christelle

    2013-01-20

    Aluminium is a toxic metal whose genotoxicity has been scarcely studied in aquatic species and more generally in mammals. Recently, human and ecological disaster caused by the discharge of red mud in Hungary has revived questions about the toxicity of this metal particularly for the environment. On the contrary, cadmium is a highly toxic metal whose genotoxicity has been well characterized in various mammalian cells. However on non-human cells, little is known about its impact on DNA damage and repair. In this study, the genotoxic potential of both metals on embryonic zebrafish cells ZF4 was analyzed and particularly the impairment of the major DNA double strand breaks (DSB)-repair pathway, i.e. non-homologous end-joining (NHEJ). To this aim, DNA single strand breaks (SSB) and DSB were evaluated using the comet assay and the immunodetection of γ-H2AX proteins, respectively, in AlCl(3) or CdCl(2) exposed ZF4 cells. These exposures result in the production of DSBs a few hours after incubation. The DNA-PK kinase activity, essential for NHEJ, is more affected by the presence of aluminium than cadmium. Altogether our data provide evidence of the high toxicity induced by aluminium in zebrafish and indicates the pertinence of genotoxicity evaluation in organisms living in contaminated water.

  1. Chemical mimicking of bio-assisted aluminium extraction by Aspergillus niger's exometabolites.

    PubMed

    Boriová, Katarína; Urík, Martin; Bujdoš, Marek; Pifková, Ivana; Matúš, Peter

    2016-11-01

    Presence of microorganisms in soils strongly affects mobility of metals. This fact is often excluded when mobile metal fraction in soil is studied using extraction procedures. Thus, the first objective of this paper was to evaluate strain Aspergillus niger's exometabolites contribution on aluminium mobilization. Fungal exudates collected in various time intervals during cultivation were analyzed and used for two-step bio-assisted extraction of alumina and gibbsite. Oxalic, citric and gluconic acids were identified in collected culture media with concentrations up to 68.4, 2.0 and 16.5 mmol L(-1), respectively. These exometabolites proved to be the most efficient agents in mobile aluminium fraction extraction with aluminium extraction efficiency reaching almost 2.2%. However, fungal cultivation is time demanding process. Therefore, the second objective was to simplify acquisition of equally efficient extracting agent by chemically mimicking composition of main organic acid components of fungal exudates. This was successfully achieved with organic acids mixture prepared according to medium composition collected on the 12th day of Aspergillus niger cultivation. This mixture extracted similar amounts of aluminium from alumina compared to culture medium. The aluminium extraction efficiency from gibbsite by organic acids mixture was lesser than 0.09% which is most likely because of more rigid mineral structure of gibbsite compared to alumina. The prepared organic acid mixture was then successfully applied for aluminium extraction from soil samples and compared to standard single step extraction techniques. This showed there is at least 2.9 times higher content of mobile aluminium fraction in soils than it was previously considered, if contribution of microbial metabolites is considered in extraction procedures. Thus, our contribution highlights the significance of fungal metabolites in aluminium extraction from environmental samples, but it also simplifies the

  2. Production of flexible metal matrix composites reinforced with continuous Si-Ti-C-O fibers by atmospheric plasma spraying

    NASA Astrophysics Data System (ADS)

    Waku, Y.; Nakagawa, N.; Ohsora, Y.; Takahashi, T.; Shimizu, K.; Yamamura, T.; Ohmori, A.

    1992-06-01

    An experiment is conducted to fabricate a flexible prepreg sheet with a continuous Si-Ti-C-O fiber by means of an air-plasma spraying method for use as an MMC plate. Plasma spraying is conducted under atmospheric conditions, and the prepreg and MMC sheets are investigated by means of a three-point flexural test and Auger electron spectroscopy to study strength and oxidation qualities. The oxidation layer is found to be about 200 A in depth, and the longitudinal and transverse flexural strengths of a unidirectionally reinforced MMC plate fabricated by hot pressing at 660 C are given as 1.0 and 0.25 GPa, respectively. The technique outlined is shown to be useful for developing squeeze-cast MMCs reinforced with Si-Ti-C-O that have high specific strength, specific modulus, and heat resistance.

  3. Production of flexible metal matrix composites reinforced with continuous Si-Ti-C-O fibers by atmospheric plasma spraying

    SciTech Connect

    Waku, Y.; Nakagawa, N.; Ohsora, Y.; Takahashi, T.; Shimizu, K.; Yamamura, T.; Ohmori, A. Osaka University, )

    1992-06-01

    An experiment is conducted to fabricate a flexible prepreg sheet with a continuous Si-Ti-C-O fiber by means of an air-plasma spraying method for use as an MMC plate. Plasma spraying is conducted under atmospheric conditions, and the prepreg and MMC sheets are investigated by means of a three-point flexural test and Auger electron spectroscopy to study strength and oxidation qualities. The oxidation layer is found to be about 200 A in depth, and the longitudinal and transverse flexural strengths of a unidirectionally reinforced MMC plate fabricated by hot pressing at 660 C are given as 1.0 and 0.25 GPa, respectively. The technique outlined is shown to be useful for developing squeeze-cast MMCs reinforced with Si-Ti-C-O that have high specific strength, specific modulus, and heat resistance. 18 refs.

  4. Fracture resistance of incisor teeth restored using fibre-reinforced posts and threaded metal posts: effect of post length, location, pretreatment and cementation of the final restoration.

    PubMed

    Schmitter, M; Lippenberger, S; Rues, S; Gilde, H; Rammelsberg, P

    2010-05-01

    The hypothesis of this study was that the fracture load of incisor teeth restored using short, threaded, parallel-sided posts (TMP) is, under special conditions, not inferior to that of teeth restored using long TMPs or fibre-reinforced posts (FRP). Seventy-two maxillary incisors and 72 mandibular incisors were collected. Sixty-four in each group were root filled; in half of these FRPs were cemented, and in the other half TMPs were used. Half of the FRPs were pretreated; the others were not pretreated. In the TMP-group, half of the teeth received a long post (10 mm), the other half a short post (3 mm). Crowns were fabricated and cemented with Ketac-cem or Panavia. Eight maxillary incisors and eight mandibular incisors with intact natural crowns were used as control groups. All specimens were loaded until fracture. Fracture loads were higher for pretreated FRPs than for untreated FRPs. If the FRPs were not pretreated, fracture loads for maxillary incisors after use of short metal posts were significantly higher (248 N compared with 133 N, P = 0.027). Fracture loads for teeth restored using long TMPs were not higher than for teeth restored using short TMPs (277 N compared with 266 N). Fracture loads for mandibular incisors restored using long (10 mm) pretreated FRP were higher than for mandibular incisors restored using short (3 mm) metal posts (436 N compared with 285 N). Cementation of the crowns using an adhesive resin cement did not increase the fracture load for mandibular incisors, whereas for maxillary incisors, this cementation technique tended to increase fracture loads in teeth restored with FRP, although this increase was not significant at the P < 0.05 level (P = 0.06). In both groups, fracture loads were higher for mandibular incisors. Short, threaded, parallel-sided metal posts might be an alternative to fibre- reinforced posts for maxillary incisors, for teeth with short roots or when FRP cannot be pretreated.

  5. Effect of Steel slag on Wear Characterization of Aluminium Composite Using Taguchi Technique

    NASA Astrophysics Data System (ADS)

    Sridhar Raja, K. S.; Bupesh Raja, V. K.; Aaro Rinold, F.; Abhilash, L. S.

    2017-05-01

    A wear behavior of steel slag reinforced aluminium A356 composite was fabricated by stir casting technique. Here an attempt has been made by reinforcing steel slag particle of size (1-5micron) in the aluminium matrix alloy fabricated through stir casting process. Dry sliding wear behavior of the composite was studied by pin on disc method. The experiment was conducted through Taguchi technique. A L16 orthogonal array was developed using ANOVA and the regression analysis was determined to find the optimum parameter. The parameters such as applied load, sliding speed, percentage reinforcement, and the distance travelled are considered for wear test. By considering the’ smaller the best’ the dry sliding wear was analyzed. Based on analysis of variance (ANOVA) the single-to-noise ratio are used to investigate the wear rate parameters. By studying the SEM analysis the worn out parts are studied.

  6. Corrosion protection of Al alloys and Al-based metal-matrix composites by chemical passivation

    SciTech Connect

    Mansfeld, F.; Lin, S.; Sim, S.; Shih, H.

    1989-08-01

    Chemical passivation by immersion of aluminium alloys and aluminium 6061/ silicon carbide and aluminium 6061/graphite metal-matrix composites in cerium chloride solution produces very corrosion-resistant surfaces. Aluminium 6061 and aluminium 7075-T6 that had been immersed in 1000 ppm cerium chloride for one week did not suffer from pitting corrosion during immersion in acerated 0.5 N NaCl for three weeks. For aluminium 7075-T7l3 some improvement of the corrosion resistance was also achieved, but to a much lesser extent. Chemical passivation in cerium chloride was also successful for aluminium/silicon carbide and Allgraphite.

  7. In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries

    NASA Astrophysics Data System (ADS)

    Bufford, D.; Liu, Y.; Wang, J.; Wang, H.; Zhang, X.

    2014-09-01

    Nanotwinned metals have been the focus of intense research recently, as twin boundaries may greatly enhance mechanical strength, while maintaining good ductility, electrical conductivity and thermal stability. Most prior studies have focused on low stacking-fault energy nanotwinned metals with coherent twin boundaries. In contrast, the plasticity of twinned high stacking-fault energy metals, such as aluminium with incoherent twin boundaries, has not been investigated. Here we report high work hardening capacity and plasticity in highly twinned aluminium containing abundant Σ3{112} incoherent twin boundaries based on in situ nanoindentation studies in a transmission electron microscope and corresponding molecular dynamics simulations. The simulations also reveal drastic differences in deformation mechanisms between nanotwinned copper and twinned aluminium ascribed to stacking-fault energy controlled dislocation-incoherent twin boundary interactions. This study provides new insight into incoherent twin boundary-dominated plasticity in high stacking-fault energy twinned metals.

  8. In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries.

    PubMed

    Bufford, D; Liu, Y; Wang, J; Wang, H; Zhang, X

    2014-09-10

    Nanotwinned metals have been the focus of intense research recently, as twin boundaries may greatly enhance mechanical strength, while maintaining good ductility, electrical conductivity and thermal stability. Most prior studies have focused on low stacking-fault energy nanotwinned metals with coherent twin boundaries. In contrast, the plasticity of twinned high stacking-fault energy metals, such as aluminium with incoherent twin boundaries, has not been investigated. Here we report high work hardening capacity and plasticity in highly twinned aluminium containing abundant Σ3{112} incoherent twin boundaries based on in situ nanoindentation studies in a transmission electron microscope and corresponding molecular dynamics simulations. The simulations also reveal drastic differences in deformation mechanisms between nanotwinned copper and twinned aluminium ascribed to stacking-fault energy controlled dislocation-incoherent twin boundary interactions. This study provides new insight into incoherent twin boundary-dominated plasticity in high stacking-fault energy twinned metals.

  9. Carbon Nanotubes Reinforced Composites for Biomedical Applications

    PubMed Central

    Wang, Wei; Zhu, Yuhe; Liao, Susan; Li, Jiajia

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matrix composites, and CNTs reinforced ceramic matrix composites), their mechanical properties, cell experiments in vitro, and biocompatibility tests in vivo. PMID:24707488

  10. Carbon nanotubes reinforced composites for biomedical applications.

    PubMed

    Wang, Wei; Zhu, Yuhe; Liao, Susan; Li, Jiajia

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matrix composites, and CNTs reinforced ceramic matrix composites), their mechanical properties, cell experiments in vitro, and biocompatibility tests in vivo.

  11. Numerical simulation of early stages of oxide formation in molten aluminium magnesium alloys in a reverberatory furnace

    NASA Astrophysics Data System (ADS)

    Kanti De, Anindya; Mukhopadhyay, Achintya; Sen, Swarnendu; Puri, Ishwar K.

    2004-05-01

    A significant amount of aluminium is processed by melting aluminium scrap that contains small amounts of magnesium. A major drawback of aluminium production in secondary melt furnaces is the formation of dross or aluminium oxide by the oxidation of the molten metal. Since aluminium scrap forms a major source of the metal in secondary aluminium processing, the presence of alloying elements plays a key role in the oxidation process. Here, we consider the early stage of oxidation of an Al-Mg alloy during which primarily the oxidation of magnesium to its oxide occurs. Our model simulates the process in an aluminium melting furnace and considers metal oxidation to be diffusion limited. The phenomenon is assumed to be one-dimensional and the reaction of Al/Mg with O2 to be infinitely fast. We are able to obtain a closed form analytical solution of the evaporation rate and the amount of oxide that is formed. We find that the evaporation of the metal vapour and its oxidation depend on the furnace size, melt composition, melt temperature, gas temperature and oxygen concentration in the gas. Oxide formation decreases with increasing furnace height and with decreasing oxygen concentration and melt temperature. Dross formation is weakly dependent on the ambient temperature and alloy composition. The results indicate that there are essentially two parameters, namely, the equivalence ratio of the fuel-air mixture (which controls the ambient oxygen concentration) and the melt temperature that can be manipulated to influence oxide formation in practical furnaces.

  12. Effects on the nervous system among welders exposed to aluminium and manganese.

    PubMed Central

    Sjögren, B; Iregren, A; Frech, W; Hagman, M; Johansson, L; Tesarz, M; Wennberg, A

    1996-01-01

    OBJECTIVES--The purpose was to study the effects on the nervous system in welders exposed to aluminium and manganese. METHODS--The investigation included questionnaires on symptoms, psychological methods (simple reaction time, finger tapping speed and endurance, digit span, vocabulary, tracking, symbol digit, cylinders, olfactory threshold, Luria-Nebraska motor scale), neurophysiological methods (electroencephalography, event related auditory evoked potential (P-300), brainstem auditory evoked potential, and diadochokinesometry) and assessments of blood and urine concentrations of metals (aluminium, lead, and manganese). RESULTS--The welders exposed to aluminium (n = 38) reported more symptoms from the central nervous system than the control group (n = 39). They also had a decreased motor function in five tests. The effect was dose related in two of these five tests. The median exposure of aluminium welders was 7065 hours and they had about seven times higher concentrations of aluminium in urine than the controls. The welders exposed to manganese (n = 12) had a decreased motor function in five tests. An increased latency of event related auditory evoked potential was also found in this group. The median manganese exposure was 270 hours. These welders did not have higher concentrations of manganese in blood than the controls. CONCLUSIONS--The neurotoxic effects found in the groups of welders exposed to aluminium and manganese are probably caused by the aluminium and manganese exposure, respectively. These effects indicate a need for improvements in the work environments of these welders. PMID:8563855

  13. Effects on the nervous system among welders exposed to aluminium and manganese.

    PubMed

    Sjögren, B; Iregren, A; Frech, W; Hagman, M; Johansson, L; Tesarz, M; Wennberg, A

    1996-01-01

    The purpose was to study the effects on the nervous system in welders exposed to aluminium and manganese. The investigation included questionnaires on symptoms, psychological methods (simple reaction time, finger tapping speed and endurance, digit span, vocabulary, tracking, symbol digit, cylinders, olfactory threshold, Luria-Nebraska motor scale), neurophysiological methods (electroencephalography, event related auditory evoked potential (P-300), brainstem auditory evoked potential, and diadochokinesometry) and assessments of blood and urine concentrations of metals (aluminium, lead, and manganese). The welders exposed to aluminium (n = 38) reported more symptoms from the central nervous system than the control group (n = 39). They also had a decreased motor function in five tests. The effect was dose related in two of these five tests. The median exposure of aluminium welders was 7065 hours and they had about seven times higher concentrations of aluminium in urine than the controls. The welders exposed to manganese (n = 12) had a decreased motor function in five tests. An increased latency of event related auditory evoked potential was also found in this group. The median manganese exposure was 270 hours. These welders did not have higher concentrations of manganese in blood than the controls. The neurotoxic effects found in the groups of welders exposed to aluminium and manganese are probably caused by the aluminium and manganese exposure, respectively. These effects indicate a need for improvements in the work environments of these welders.

  14. Continuous flow analysis method for determination of soluble iron and aluminium in ice cores.

    PubMed

    Spolaor, A; Vallelonga, P; Gabrieli, J; Roman, M; Barbante, C

    2013-01-01

    Iron and aluminium are the two most abundant metals on the Earth's crust, but they display quite different biogeochemical properties. While iron is essential to many biological processes, aluminium has not been found to have any biological function at all. In environmental studies, iron has been studied in detail for its limiting role in the bioproductivity of high nutrient, low carbon oceanic zones, while aluminium is routinely used as a reference of crustal contributions to atmospheric deposition archives including peat bogs, lacustrine and marine sediments and ice sheets and glaciers. We report here the development of a flow injection analysis technique, which has been optimised for the simultaneous determination of soluble iron and aluminium in polar ice cores. Iron was determined by its catalytic role in the reduction of N,N-dimethyl-p-phenylenediamene (DPD) to a semiquinonic form (DPDQ) and subsequent absorption spectroscopy at 514 nm. Aluminium was determined by spectroscopic analysis of an aluminium-lumogallion complex that exhibits fluorescence at 560 nm. These techniques have been applied to a section of Greenland ice dated to 1729-1733 AD and indicate that volcanism is a source of highly soluble aluminium and iron.

  15. Microstructural and Mechanical Characterization of Zr Modified 2014 Aluminium Alloy

    DTIC Science & Technology

    2007-11-02

    heated using an induction furnace; the temperature stabilisation time was 6 min. -The gauge section of samples was a solid cylinder with a length (L) of...torsion tests - Fatigue tests -Fracture observations Introduction -Aluminium sheets require a good attitude to the cold metal forming. -Al-Cu-Mg alloys...precipitation occurring during hot deformation or heat treatment Introduction -The precipitation sequence for 2014 Al alloys has been extensively

  16. Mechanochemical route to the synthesis of nanostructured Aluminium nitride

    PubMed Central

    Rounaghi, S. A.; Eshghi, H.; Scudino, S.; Vyalikh, A.; Vanpoucke, D. E. P.; Gruner, W.; Oswald, S.; Kiani Rashid, A. R.; Samadi Khoshkhoo, M.; Scheler, U.; Eckert, J.

    2016-01-01

    Hexagonal Aluminium nitride (h-AlN) is an important wide-bandgap semiconductor material which is conventionally fabricated by high temperature carbothermal reduction of alumina under toxic ammonia atmosphere. Here we report a simple, low cost and potentially scalable mechanochemical procedure for the green synthesis of nanostructured h-AlN from a powder mixture of Aluminium and melamine precursors. A combination of experimental and theoretical techniques has been employed to provide comprehensive mechanistic insights on the reactivity of melamine, solid state metal-organic interactions and the structural transformation of Al to h-AlN under non-equilibrium ball milling conditions. The results reveal that melamine is adsorbed through the amine groups on the Aluminium surface due to the long-range van der Waals forces. The high energy provided by milling leads to the deammoniation of melamine at the initial stages followed by the polymerization and formation of a carbon nitride network, by the decomposition of the amine groups and, finally, by the subsequent diffusion of nitrogen into the Aluminium structure to form h-AlN. PMID:27650956

  17. Mechanochemical route to the synthesis of nanostructured Aluminium nitride

    NASA Astrophysics Data System (ADS)

    Rounaghi, S. A.; Eshghi, H.; Scudino, S.; Vyalikh, A.; Vanpoucke, D. E. P.; Gruner, W.; Oswald, S.; Kiani Rashid, A. R.; Samadi Khoshkhoo, M.; Scheler, U.; Eckert, J.

    2016-09-01

    Hexagonal Aluminium nitride (h-AlN) is an important wide-bandgap semiconductor material which is conventionally fabricated by high temperature carbothermal reduction of alumina under toxic ammonia atmosphere. Here we report a simple, low cost and potentially scalable mechanochemical procedure for the green synthesis of nanostructured h-AlN from a powder mixture of Aluminium and melamine precursors. A combination of experimental and theoretical techniques has been employed to provide comprehensive mechanistic insights on the reactivity of melamine, solid state metal-organic interactions and the structural transformation of Al to h-AlN under non-equilibrium ball milling conditions. The results reveal that melamine is adsorbed through the amine groups on the Aluminium surface due to the long-range van der Waals forces. The high energy provided by milling leads to the deammoniation of melamine at the initial stages followed by the polymerization and formation of a carbon nitride network, by the decomposition of the amine groups and, finally, by the subsequent diffusion of nitrogen into the Aluminium structure to form h-AlN.

  18. Aluminium phosphide-induced leukopenia

    PubMed Central

    Ntelios, Dimitrios; Mandros, Charalampos; Potolidis, Evangelos; Fanourgiakis, Panagiotis

    2013-01-01

    Acute intoxication from the pesticide aluminium phosphide is a relatively rare, life-threatening condition in which cardiovascular decompensation is the most feared problem. We report the case of a patient exposed to aluminium phosphide-liberated phosphine gas. It resulted in the development of a gastroenteritis-like syndrome accompanied by severe reduction in white blood cell numbers as an early and prominent manifestation. By affecting important physiological processes such as mitochondrial function and reactive oxygen species homeostasis, phosphine could cause severe toxicity. After presenting the characteristics of certain leucocyte subpopulations we provide the current molecular understanding of the observed leukopenia which in part seems paradoxical. PMID:24172776

  19. Evaluation of a metal shear web selectively reinforced with filamentary composites for space shuttle application. Phase 3 Summary report: Shear web component testing and analysis

    NASA Technical Reports Server (NTRS)

    Laakso, J. H.; Straayer, J. W.

    1973-01-01

    Three large scale advanced composite shear web components were tested and analyzed to evaluate application of the design concept to a space shuttle orbiter thrust structure. The shear web design concept consisted of a titanium-clad + or - 45 deg boron/epoxy web laminate stiffened with vertical boron/epoxy reinforced aluminum stiffeners. The design concept was evaluated to be efficient and practical for the application that was studied. Because of the effects of buckling deflections, a requirement is identified for shear buckling resistant design to maximize the efficiency of highly-loaded advanced composite shear webs. An approximate analysis of prebuckling deflections is presented and computer-aided design results, which consider prebuckling deformations, indicate that the design concept offers a theoretical weight saving of 31 percent relative to all metal construction. Recommendations are made for design concept options and analytical methods that are appropriate for production hardware.

  20. Control of Microthrix parvicella by aluminium salts addition.

    PubMed

    Durban, N; Juzan, L; Krier, J; Gillot, S

    2016-01-01

    Aluminium and iron chloride were added to a biological nutrient removal pilot plant (1,500 population equivalent) treating urban wastewater to investigate the control of Microthrix parvicella bulking and foaming by metallic salts. Monitoring plant performance over two 6-month periods showed a slight impact on the removal efficiencies. Addition of metallic salts (Me; aluminium or aluminium + iron) at a concentration of 41 mmol Me(kg MLSS·d) (MLSS: mixed liquor suspended solids) over 70 days allowed a stabilization of the diluted sludge volume index (DSVI), whereas higher dosages (94 mmol Me(kg MLSS·d) over 35 days or 137 mmol Me(kg MLSS·d) over 14 days induced a significant improvement of the settling conditions. Microscopic observations showed a compaction of biological aggregates with an embedding of filamentous bacteria into the flocs that is not specific to M. parvicella as bacteria from phylum Chloroflexi are embedded too. The quantitative polymerase chain reaction targeting M. parvicella further indicated a possible growth limitation in addition to the flocculation impact at the high dosages of metallic salts investigated. DSVI appeared to be correlated with the relative abundance of M. parvicella.

  1. Hydrogenated vacancies lock dislocations in aluminium

    SciTech Connect

    Xie, Degang; Li, Suzhi; Li, Meng; Wang, Zhangjie; Gumbsch, Peter; Sun, Jun; Ma, Evan; Li, Ju; Shan, Zhiwei

    2016-11-03

    Due to its high diffusivity, hydrogen is often considered a weak inhibitor or even a promoter of dislocation movements in metals and alloys. By quantitative mechanical tests in an environmental transmission electron microscope, here we demonstrate that after exposing aluminium to hydrogen, mobile dislocations can lose mobility, with activating stress more than doubled. On degassing, the locked dislocations can be reactivated under cyclic loading to move in a stick-slip manner. However, relocking the dislocations thereafter requires a surprisingly long waiting time of ~103 s, much longer than that expected from hydrogen interstitial diffusion. Both the observed slow relocking and strong locking strength can be attributed to superabundant hydrogenated vacancies, verified by our atomistic calculations. In conclusion, vacancies therefore could be a key plastic flow localization agent as well as damage agent in hydrogen environment.

  2. Hydrogenated vacancies lock dislocations in aluminium

    DOE PAGES

    Xie, Degang; Li, Suzhi; Li, Meng; ...

    2016-11-03

    Due to its high diffusivity, hydrogen is often considered a weak inhibitor or even a promoter of dislocation movements in metals and alloys. By quantitative mechanical tests in an environmental transmission electron microscope, here we demonstrate that after exposing aluminium to hydrogen, mobile dislocations can lose mobility, with activating stress more than doubled. On degassing, the locked dislocations can be reactivated under cyclic loading to move in a stick-slip manner. However, relocking the dislocations thereafter requires a surprisingly long waiting time of ~103 s, much longer than that expected from hydrogen interstitial diffusion. Both the observed slow relocking and strongmore » locking strength can be attributed to superabundant hydrogenated vacancies, verified by our atomistic calculations. In conclusion, vacancies therefore could be a key plastic flow localization agent as well as damage agent in hydrogen environment.« less

  3. Hydrogenated vacancies lock dislocations in aluminium

    NASA Astrophysics Data System (ADS)

    Xie, Degang; Li, Suzhi; Li, Meng; Wang, Zhangjie; Gumbsch, Peter; Sun, Jun; Ma, Evan; Li, Ju; Shan, Zhiwei

    2016-11-01

    Due to its high diffusivity, hydrogen is often considered a weak inhibitor or even a promoter of dislocation movements in metals and alloys. By quantitative mechanical tests in an environmental transmission electron microscope, here we demonstrate that after exposing aluminium to hydrogen, mobile dislocations can lose mobility, with activating stress more than doubled. On degassing, the locked dislocations can be reactivated under cyclic loading to move in a stick-slip manner. However, relocking the dislocations thereafter requires a surprisingly long waiting time of ~103 s, much longer than that expected from hydrogen interstitial diffusion. Both the observed slow relocking and strong locking strength can be attributed to superabundant hydrogenated vacancies, verified by our atomistic calculations. Vacancies therefore could be a key plastic flow localization agent as well as damage agent in hydrogen environment.

  4. Hydrogenated vacancies lock dislocations in aluminium

    PubMed Central

    Xie, Degang; Li, Suzhi; Li, Meng; Wang, Zhangjie; Gumbsch, Peter; Sun, Jun; Ma, Evan; Li, Ju; Shan, Zhiwei

    2016-01-01

    Due to its high diffusivity, hydrogen is often considered a weak inhibitor or even a promoter of dislocation movements in metals and alloys. By quantitative mechanical tests in an environmental transmission electron microscope, here we demonstrate that after exposing aluminium to hydrogen, mobile dislocations can lose mobility, with activating stress more than doubled. On degassing, the locked dislocations can be reactivated under cyclic loading to move in a stick-slip manner. However, relocking the dislocations thereafter requires a surprisingly long waiting time of ∼103 s, much longer than that expected from hydrogen interstitial diffusion. Both the observed slow relocking and strong locking strength can be attributed to superabundant hydrogenated vacancies, verified by our atomistic calculations. Vacancies therefore could be a key plastic flow localization agent as well as damage agent in hydrogen environment. PMID:27808099

  5. DNA strand patterns on aluminium thin films.

    PubMed

    Khatir, Nadia Mahmoudi; Banihashemian, Seyedeh Maryam; Periasamy, Vengadesh; Majid, Wan Haliza Abd; Rahman, Saadah Abdul; Shahhosseini, Fatemeh

    2011-01-01

    A new patterning method using Deoxyribose Nucleic Acid (DNA) strands capable of producing nanogaps of less than 100 nm is proposed and investigated in this work. DNA strands from Bosenbergia rotunda were used as the fundamental element in patterning DNA on thin films of aluminium (Al) metal without the need for any lithographic techniques. The DNA strands were applied in buffer solutions onto thin films of Al on silicon (Si) and the chemical interactions between the DNA strands and Al creates nanometer scale arbitrary patterning by direct transfer of the DNA strands onto the substrate. This simple and cost-effective method can be utilized in the fabrication of various components in electronic chips for microelectronics and Nano Electronic Mechanical System (NEMS) applications in general.

  6. Computational modeling and relevance of numerical convergence for the investigation of thermal expansion behavior for aluminium hybrid composites

    NASA Astrophysics Data System (ADS)

    Krishna, S. A. Mohan; Shridhar, T. N.; Krishnamurthy, L.

    2016-06-01

    The thermal characterization and analysis of composite materials has been increasingly important in a wide range of applications. The coefficient of thermal expansion (CTE) is one of the most important properties of metal matrix composites (MMCs). Since nearly all MMCs are used in various temperature ranges, measurement of CTE as a function of temperature is necessary in order to know the behavior of the material. In this research paper, the evaluation of CTE or thermal expansivity has been accomplished for Al 6061, silicon carbide and graphite hybrid MMCs from room temperature to 300∘C. Aluminium-based composites reinforced with silicon carbide and graphite particles have been prepared by stir casting technique. The thermal expansivity behavior of hybrid composites with different percentage compositions of reinforcements has been investigated. The results have indicated that the thermal expansivity of different compositions of hybrid MMCs decrease by the addition of graphite with silicon carbide and Al 6061. Empirical models have been validated for the evaluation of thermal expansivity of composites. Numerical convergence test has been accomplished to investigate the thermal expansion behavior of composites.

  7. The prophylactic reduction of aluminium intake.

    PubMed

    Lione, A

    1983-02-01

    The use of modern analytical methods has demonstrated that aluminium salts can be absorbed from the gut and concentrated in various human tissues, including bone, the parathyroids and brain. The neurotoxicity of aluminium has been extensively characterized in rabbits and cats, and high concentrations of aluminium have been detected in the brain tissue of patients with Alzheimer's disease. Various reports have suggested that high aluminium intakes may be harmful to some patients with bone disease or renal impairment. Fatal aluminium-induced neuropathies have been reported in patients on renal dialysis. Since there are no demonstrable consequences of aluminium deprivation, the prophylactic reduction of aluminium intake by many patients would appear prudent. In this report, the major sources of aluminium in foods and non-prescription drugs are summarized and alternative products are described. The most common foods that contain substantial amounts of aluminium-containing additives include some processed cheeses, baking powders, cake mixes, frozen doughs, pancake mixes, self-raising flours and pickled vegetables. The aluminium-containing non-prescription drugs include some antacids, buffered aspirins, antidiarrhoeal products, douches and haemorrhoidal medications. The advisability of recommending a low aluminium diet for geriatric patients is discussed in detail.

  8. Oxidation and waste-to-energy output of aluminium waste packaging during incineration: A laboratory study.

    PubMed

    López, Félix A; Román, Carlos Pérez; García-Díaz, Irene; Alguacil, Francisco J

    2015-09-01

    This work reports the oxidation behaviour and waste-to-energy output of different semi-rigid and flexible aluminium packagings when incinerated at 850°C in an air atmosphere enriched with 6% oxygen, in the laboratory setting. The physical properties of the different packagings were determined, including their metallic aluminium contents. The ash contents of their combustion products were determined according to standard BS ISO 1171:2010. The net calorific value, the required energy, and the calorific gain associated with each packaging type were determined following standard BS EN 13431:2004. Packagings with an aluminium lamina thickness of >50μm did not fully oxidise. During incineration, the weight-for-weight waste-to-energy output of the packagings with thick aluminium lamina was lower than that of packagings with thin lamina. The calorific gain depended on the degree of oxidation of the metallic aluminium, but was greater than zero for all the packagings studied. Waste aluminium may therefore be said to act as an energy source in municipal solid waste incineration systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Galvanic corrosion behaviour of aluminium 3004 and copper in tropical marine atmosphere

    NASA Astrophysics Data System (ADS)

    Subramanian, G.; Palraj, S.; Palanichamy, S.

    2014-06-01

    The galvanic corrosion behaviour of aluminium 3004 and copper with different area ratios were studied in the tropical marine atmosphere at Tuticorin harbour over a period of 426 days. The area ratios of A Al: A Cu, studied were 1:1, 1:2, 1:4, 1:8, 2:1, 4:1 & 8:1. The galvanic corrosion behaviour of metals was studied in terms of relative increase in the corrosion rate of aluminium due to galvanic coupling with copper, relative decrease in the corrosion rate of copper due to galvanic coupling with aluminium, and the susceptibility of aluminium to pitting owing to galvanic coupling with copper. The galvanic potential and galvanic current of the system were monitored. Pits of different dimensions ranging from mild etchings to perforations were experienced on the borders and the surfaces of the interface of aluminium in contact with copper. The weathering parameters and the environmental pollutants which have a major role in influencing the galvanic corrosion of metals were also monitored. The corrosion products resulting from galvanic corrosion were analysed using XRD and the pitting on aluminium resulting from galvanic corrosion has been highlighted in terms of pit depth, size and density of pit, using a high resolution microscope.

  10. Non-aqueous aluminium-air battery based on ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Revel, Renaud; Audichon, Thomas; Gonzalez, Serge

    2014-12-01

    A promising metal-air secondary battery based on aluminium-oxygen couple is described. In this paper, we observed that an aluminium-air battery employing EMImCl, AlCl3 room temperature ionic liquid (RTIL) as electrolyte and aluminium as negative electrode, has an exceptional reduced self-discharged rate. Due to its new and innovative type of electrolyte, this aluminium-air battery can support relatively high current densities (up to 0.6 mA cm-2) and an average voltage of 0.6-0.8 V. Such batteries may find immediate applications, as they can provide an internal, built-in autonomous and self-sustained energy source.

  11. Aluminium exposure from parenteral nutrition in preterm infants and later health outcomes during childhood and adolescence.

    PubMed

    Fewtrell, Mary S; Edmonds, Caroline J; Isaacs, Elizabeth; Bishop, Nick J; Lucas, Alan

    2011-08-01

    Aluminium is the most common metallic element, but has no known biological role. It accumulates in the body when protective gastrointestinal mechanisms are bypassed, renal function is impaired, or exposure is high - all of which apply frequently to preterm infants. Recognised clinical manifestations of aluminium toxicity include dementia, anaemia and bone disease. Parenteral nutrition (PN) solutions are liable to contamination with aluminium, particularly from acidic solutions in glass vials, notably calcium gluconate. When fed parenterally, infants retain >75% of the aluminium, with high serum, urine and tissue levels. Later health effects of neonatal intravenous aluminium exposure were investigated in a randomised trial comparing standard PN solutions with solutions specially sourced for low aluminium content. Preterm infants exposed for >10 d to standard solutions had impaired neurologic development at 18 months. At 13-15 years, subjects randomised to standard PN had lower lumbar spine bone mass; and, in non-randomised analyses, those with neonatal aluminium intake above the median had lower hip bone mass. Given the sizeable number of infants undergoing intensive care and still exposed to aluminium via PN, these findings have contemporary relevance. Until recently, little progress had been made on reducing aluminium exposure, and meeting Food and Drug Administration recommendations (<5 μg/kg per d) has been impossible in patients <50 kg using available products. Recent advice from the UK Medicines and Healthcare regulatory Authority that calcium gluconate in small volume glass containers should not be used for repeated treatment in children <18 years, including preparation of PN, is an important step towards addressing this problem.

  12. Aluminium toxicity in chronic renal insufficiency

    SciTech Connect

    Savory, J.; Bertholf, R.L.; Wills, M.R.

    1985-08-01

    Aluminium is a ubiquitous element in the environment and has been demonstrated to be toxic, especially in individuals with impaired renal function. Not much is known about the biochemistry of aluminium and the mechanisms of its toxic effects. Most of the interest in aluminium has been in the clinical setting of the hemodialysis unit. Here aluminium toxicity occurs due to contamination of dialysis solutions, and treatment of the patients with aluminium-containing phosphate binding gels. Aluminium has been shown to be the major contributor to the dialysis encephalopathy syndrome and an osteomalacic component of dialysis osteodystrophy. Other clinical disturbances associated with aluminium toxicity are a microcytic anemia and metastatic extraskeletal calcification. Aluminium overload can be treated effectively by chelation therapy with desferrioxamine and hemodialysis. Aluminium is readily transferred from the dialysate to the patient's -bloodstream during hemodialysis. Once transferred, the aluminium is tightly bound to non-dialysable plasma constituents. Very low concentrations of dialysate aluminium in the range of 10-15 micrograms/l are recommended to guard against toxic effects. Very few studies have been directed towards the separation of the various plasma species which bind eluminium. Gel filtration chromatography has been used to identify five major fractions, one of which is of low molecular weight and the others appear to be protein-aluminium complexes. Recommendations on aluminium monitoring have been published and provide safe and toxic concentrations. Also, the frequency of monitoring has been addressed. Major problems exist with the analytical methods for measuring aluminium which result from inaccurate techniques and contamination difficulties. 136 references.

  13. The Potential of the Cold Spray Process for the Repair and Manufacture of Aluminium Alloy Parts

    NASA Astrophysics Data System (ADS)

    Harvey, David; Marrocco, Tiziana

    Being capable of producing deposits up to several centimetres thick, the cold spray process is emerging as an attractive technology for the manufacture and repair of high value aluminium and magnesium components. During the cold spray process fine aluminium or aluminium alloy powders are propelled at high velocities in the solid state at the target substrate. Due to the high velocity particle impacts, strong bonds are formed between the coating and the substrate and between particles within the deposited layer. Metallographic sections of cold sprayed coatings reveal microstructures characterised by very low porosity. With the objective of improving the abrasive wear and erosion resistance of cold sprayed coatings, ceramic reinforcements such as SiC, B4C and Al2O3 have been introduced in the feedstock to produce composite coatings, and these composite materials have been deposited with thicknesses in excess of 25mm. Several applications employing commercially available equipment have achieved industrialisation.

  14. The erosion performance of cold spray deposited metal matrix composite coatings with subsequent friction stir processing

    NASA Astrophysics Data System (ADS)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This study forms an initial investigation into the development of SprayStir, an innovative processing technique for generating erosion resistant surface layers on a chosen substrate material. Tungsten carbide - cobalt chromium, chromium carbide - nickel chromium and aluminium oxide coatings were successfully cold spray deposited on AA5083 grade aluminium. In order to improve the deposition efficiency of the cold spray process, coatings were co-deposited with powdered AA5083 using a twin powder feed system that resulted in thick (>300 μm) composite coatings. The deposited coatings were subsequently friction stir processed to embed the particles in the substrate in order to generate a metal matrix composite (MMC) surface layer. The primary aim of this investigation was to examine the erosion performance of the SprayStirred surfaces and demonstrate the benefits of this novel process as a surface engineering technique. Volumetric analysis of the SprayStirred surfaces highlighted a drop of approx. 40% in the level of material loss when compared with the cold spray deposited coating prior to friction stir processing. Micro-hardness testing revealed that in the case of WC-CoCr reinforced coating, the hardness of the SprayStirred material exhibits an increase of approx. 540% over the unaltered substrate and 120% over the as-deposited composite coating. Microstructural examination demonstrated that the increase in the hardness of the MMC aligns with the improved dispersion of reinforcing particles throughout the aluminium matrix.

  15. Electrospun carbon nanofibers reinforced 3D porous carbon polyhedra network derived from metal-organic frameworks for capacitive deionization

    PubMed Central

    Liu, Yong; Ma, Jiaqi; Lu, Ting; Pan, Likun

    2016-01-01

    Carbon nanofibers reinforced 3D porous carbon polyhedra network (e-CNF-PCP) was prepared through electrospinning and subsequent thermal treatment. The morphology, structure and electrochemical performance of the e-CNF-PCP were characterized using scanning electron microscopy, Raman spectra, nitrogen adsorption-desorption, cyclic voltammetry and electrochemical impedance spectroscopy, and their electrosorption performance in NaCl solution was studied. The results show that the e-CNF-PCP exhibits a high electrosorption capacity of 16.98 mg g−1 at 1.2 V in 500 mg l−1 NaCl solution, which shows great improvement compared with those of electrospun carbon nanofibers and porous carbon polyhedra. The e-CNF-PCP should be a very promising candidate as electrode material for CDI applications. PMID:27608826

  16. Electrospun carbon nanofibers reinforced 3D porous carbon polyhedra network derived from metal-organic frameworks for capacitive deionization

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Ma, Jiaqi; Lu, Ting; Pan, Likun

    2016-09-01

    Carbon nanofibers reinforced 3D porous carbon polyhedra network (e-CNF-PCP) was prepared through electrospinning and subsequent thermal treatment. The morphology, structure and electrochemical performance of the e-CNF-PCP were characterized using scanning electron microscopy, Raman spectra, nitrogen adsorption-desorption, cyclic voltammetry and electrochemical impedance spectroscopy, and their electrosorption performance in NaCl solution was studied. The results show that the e-CNF-PCP exhibits a high electrosorption capacity of 16.98 mg g-1 at 1.2 V in 500 mg l-1 NaCl solution, which shows great improvement compared with those of electrospun carbon nanofibers and porous carbon polyhedra. The e-CNF-PCP should be a very promising candidate as electrode material for CDI applications.

  17. Interfacial morphology of low-voltage anodic aluminium oxide

    SciTech Connect

    Hu, Naiping; Dongcinn, Xuecheng; He, Xueying; Argekar, Sandip; Zhang, Yan; Browning, Jim; Schaefer, Dale

    2013-01-01

    X-ray reflectivity (XRR) and neutron reflectivity (NR), as well as ultra-smallangle X-ray scattering (USAXS), are used to examine the in-plane and surfacenormal structure of anodic films formed on aluminium alloy AA2024 and pure aluminium. Aluminium and alloy films up to 3500 A thick were deposited on Si wafers by electron beam evaporation of ingots. Porous anodic aluminium oxide (AAO) films are formed by polarizing at constant voltage up to 20 V noble to the open circuit potential. The voltage sweet spot (5 V) appropriate for constant-voltage anodization of such thin films was determined for both alloy and pure Al. In addition, a new concurrent voltage- and current-control protocol was developed to prepare films with larger pores (voltages higher than 5 V), but formed at a controlled current so that pore growth is slow enough to avoid stripping the aluminium substrate layer. USAXS shows that the pore size and interpore spacing are fixed in the first 10 s after initiation of anodization. Pores then grow linearly in time, at constant radius and interpore spacing. Using a combination of XRR and NR, the film density and degree of hydration of the films were determined from the ratio of scattering length densities. Assuming a chemical formula Al2O3xH2O, it was found that x varies from 0.29 for the native oxide to 1.29 for AAO grown at 20 V under concurrent voltage and current control. The average AAO film density of the porous film at the air surface is 2.45 (20) g cm3. The density of the barrier layer at the metal interface is 2.9 (4) g cm3, which indicates that this layer is also quite porous

  18. Wear behavior of Al-Si alloy based metal matrix composite reinforced with TiB2

    NASA Astrophysics Data System (ADS)

    Sahoo, J. K.; Sahoo, S. K.; Sutar, H.; Sarangi, B.

    2017-02-01

    Al-Si alloy based composites are widely used in automotive, aerospace and for structural application due to improved strength to weight ratio, low density, and better wear resistance. In the present work, Al-xSi-5TiB2 (x=7, 11, 12.6) in-situ composite was synthesized successfully by stir casting method. Here the composites were prepared by the exothermic reaction of K2TiF6 and KBF4 salts with the molten Al-x Si alloy. The dry sliding wear behavior of Al-Si matrix composites reinforced with 5 % TiB2 was studied using a pin-on-disc wear testing machine to study the effect of % Si, load (10, 20, 30 N), sliding speed (1.36, 1.82, 2.27 m.s-1) and sliding distance on stir cast Al–xSi-5TiB2 composites. The Al-Si alloy and the reinforcement mixers were confirmed by the X-ray Diffraction analysis. The microstructure of Al-xSi-5TiB2 composite was investigated by using Optical Microscope to determine the phases present in the prepared composites. The prepared AMC composites were tested for hardness using Vickers Hardness tester with the variation of Si. Wear rate (mm3/m), Wear resistance (m/mm3), Specific Wear rate (m3/N.m) and were analyzed with various conditions. The worn surfaces of the specimens were analyzed before and after wear testing by Scanning Electron Microscope (SEM) to determine the governing wear mechanisms in the composites. Wear rate and specific wear rate decreases at all the operating condition with increase in wt% Si. Wear resistance all most increases with increase in wt% Si. Hardness values are increased with increase in amount of Si.

  19. Microstructural evolution and micromechanical modeling of the mechanical behavior of a ceramic particle-reinforced metal-matrix composite

    SciTech Connect

    Christman, T.A.

    1989-01-01

    The objective was to develop a thorough understanding of the precipitation characteristics and mechanical behavior of a 2124 Al-SiC Aluminum alloy reinforced with 13.2 volume% SiC whiskers. Microstructural development of the 2124 Al-SiC composite subject to controlled and systematic aging treatments was investigated. The results indicate that the matrix of the composite material has a much greater dislocation density than the control alloy. The increased dislocation density facilitates the nucleation of the strengthening precipitates whereby the incubation time for precipitate nucleation and the time to reach peak hardness in the matrix of the composite are significantly reduced. Theoretical analysis of dislocation generation due to thermal contraction mismatch and of the punching of dislocations at whisker ends are examined in the context of microstructural development. An experimental and theoretical investigation into the uniaxial: stress-strain response of the 2124 Al-SiC whisker composite system was undertaken where the effects of accelerated aging of the matrix of the composite were incorporated into the modeling of deformation behavior. The 0.2% offset yield strength was found to be independent of aging state, whereas the strain to failure was found to decrease monotonically with an increase in aging time for the composite. A self consistent approximation was formulated and was found to provide the most accurate predictions for the elastic response of the composite. A finite-element unit-cell model was used to predict the plastic response of the composite material. The effects of SiC reinforcement and matrix aging treatment on crack growth under quasi-static and fatigue loading were also investigated. The composite exhibits a fatigue threshold value which is about twice that of the control alloy.

  20. Neurotoxic effects of aluminium among foundry workers and Alzheimer's disease.

    PubMed

    Polizzi, Salvatore; Pira, Enrico; Ferrara, Mauro; Bugiani, Massimiliano; Papaleo, Andrea; Albera, Roberto; Palmi, Silvana

    2002-12-01

    In a cross-sectional case-control study conducted in northern Italy, 64 former aluminium dust-exposed workers were compared with 32 unexposed controls from other companies matched for age, professional training, economic status, educational and clinical features. The findings lead the authors to suggest a possible role of the inhalation of aluminium dust in pre-clinical mild cognitive disorder which might prelude Alzheimer's disease (AD) or AD-like neurological deterioration. The investigation involved a standardised occupational and medical history with particular attention to exposure and symptoms, assessments of neurotoxic metals in serum: aluminium (Al-s), copper (Cu-s) and zinc (Zn-s), and in blood: manganese (Mn-b), lead (Pb-b) and iron (Fe-b). Cognitive functions were assessed by the Mini Mental State Examination (MMSE), the Clock Drawing Test (CDT) and auditory evoked Event-Related Potential (ERP-P300). To detect early signs of mild cognitive impairment (MCI), the time required to solve the MMSE (MMSE-time) and CDT (CDT-time) was also measured. Significantly higher internal doses of Al-s and Fe-b were found in the ex-employees compared to the control group. The neuropsychological tests showed a significant difference in the latency of P300, MMSE score, MMSE-time, CDT score and CDT-time between the exposed and the control population. P300 latency was found to correlate positively with Al-s and MMSE-time. Al-s has significant effects on all tests: a negative relationship was observed between internal Al concentrations, MMSE score and CDT score; a positive relationship was found between internal Al concentrations, MMSE-time and CDT-time. All the potential confounders such as age, height, weight, blood pressure, schooling years, alcohol, coffee consumption and smoking habit were taken into account. These findings suggest a role of aluminium in early neurotoxic effects that can be detected at a pre-clinical stage by P300, MMSE, MMSE-time, CDT-time and CDT score

  1. Bumblebee Pupae Contain High Levels of Aluminium

    PubMed Central

    Exley, Christopher; Rotheray, Ellen; Goulson, David

    2015-01-01

    The causes of declines in bees and other pollinators remains an on-going debate. While recent attention has focussed upon pesticides, other environmental pollutants have largely been ignored. Aluminium is the most significant environmental contaminant of recent times and we speculated that it could be a factor in pollinator decline. Herein we have measured the content of aluminium in bumblebee pupae taken from naturally foraging colonies in the UK. Individual pupae were acid-digested in a microwave oven and their aluminium content determined using transversely heated graphite furnace atomic absorption spectrometry. Pupae were heavily contaminated with aluminium giving values between 13.4 and 193.4 μg/g dry wt. and a mean (SD) value of 51.0 (33.0) μg/g dry wt. for the 72 pupae tested. Mean aluminium content was shown to be a significant negative predictor of average pupal weight in colonies. While no other statistically significant relationships were found relating aluminium to bee or colony health, the actual content of aluminium in pupae are extremely high and demonstrate significant exposure to aluminium. Bees rely heavily on cognitive function and aluminium is a known neurotoxin with links, for example, to Alzheimer’s disease in humans. The significant contamination of bumblebee pupae by aluminium raises the intriguing spectre of cognitive dysfunction playing a role in their population decline. PMID:26042788

  2. Bumblebee pupae contain high levels of aluminium.

    PubMed

    Exley, Christopher; Rotheray, Ellen; Goulson, David

    2015-01-01

    The causes of declines in bees and other pollinators remains an on-going debate. While recent attention has focussed upon pesticides, other environmental pollutants have largely been ignored. Aluminium is the most significant environmental contaminant of recent times and we speculated that it could be a factor in pollinator decline. Herein we have measured the content of aluminium in bumblebee pupae taken from naturally foraging colonies in the UK. Individual pupae were acid-digested in a microwave oven and their aluminium content determined using transversely heated graphite furnace atomic absorption spectrometry. Pupae were heavily contaminated with aluminium giving values between 13.4 and 193.4 μg/g dry wt. and a mean (SD) value of 51.0 (33.0) μg/g dry wt. for the 72 pupae tested. Mean aluminium content was shown to be a significant negative predictor of average pupal weight in colonies. While no other statistically significant relationships were found relating aluminium to bee or colony health, the actual content of aluminium in pupae are extremely high and demonstrate significant exposure to aluminium. Bees rely heavily on cognitive function and aluminium is a known neurotoxin with links, for example, to Alzheimer's disease in humans. The significant contamination of bumblebee pupae by aluminium raises the intriguing spectre of cognitive dysfunction playing a role in their population decline.

  3. Aluminium content of Spanish infant formula.

    PubMed

    Navarro-Blasco, I; Alvarez-Galindo, J I

    2003-05-01

    Levels of aluminium in 82 different infant formulae from nine different manufacturers in Spain were determined by acid-microwave digestion and graphite furnace atomic absorption spectrophotometry. The influence of aluminium content in tap water in reconstituted powder formulae was examined and an estimate was made of the theoretical toxic aluminium intake in comparison with the provisional tolerable weekly intake (PTWI). Possible interactions between aluminium and certain essential trace elements added to infant formulations have been studied according to the type or main protein-based infant formula. In general, the infant formulae contained a higher aluminium content than that found in human milk, especially in the case of soya, preterm or hydrolysed casein-based formulae. Standard formulae gave lower aluminium intakes amounting to about 4% PTWI. Specialized and preterm formulae resulted in a moderate intake (11-12 and 8-10% PTWI, respectively) and soya formulae contributed the highest intake (15% PTWI). Aluminium exposure from drinking water used for powder formula reconstitution was not considered a potential risk. In accordance with the present state of knowledge about aluminium toxicity, it seems prudent to call for continued efforts to standardize routine quality control and reduce aluminium levels in infant formula as well as to keep the aluminium concentration under 300 microg l(-1) for all infant formulae, most specifically those formulae for premature and low birth neonates.

  4. Pulse electrodeposition of adherent nickel coatings onto anodized aluminium surfaces

    NASA Astrophysics Data System (ADS)

    Frantz, Cédric; Vichery, Charlotte; Zechner, Johannes; Frey, Damian; Bürki, Gerhard; Cebeci, Halil; Michler, Johann; Philippe, Laetitia

    2015-03-01

    Aluminium is one of the mostly used elements in the industry because of its abundance and low weight. However, the deposition of a metallic coating requires performing the so-called zincate pre-treatment in order to allow the formation of inter-metallic bonds and thereby achieving sufficient adherence. In this work, porous anodic aluminium oxide (AAO) is used as an anchoring intermediate layer for nickel coatings. AAO is grown anodically in sulfuric acid and nickel coatings are deposited by potentiostatic reverse pulse electrodeposition onto as-anodized aluminium surfaces. The electrodeposition of nickel is initiated onto the electrochemically thinned barrier layer of AAO and pursued until the complete covering of the oxide. The electrochemical behavior of Watts and sulfamate baths is investigated by cyclic voltammetry for different barrier layer thickness, allowing to validate the thinning conditions and to determine the appropriate deposition potential of nickel. GD-OES measurements show that low duty cycles are necessary to achieve high filling ratio of the AAO. SEM micrographs show that a smooth uniform coating is obtained when nickel is deposited in presence of additives.

  5. Recycling of aluminium scrap for secondary Al-Si alloys.

    PubMed

    Velasco, Eulogio; Nino, Jose

    2011-07-01

    An increasing amount of recycled aluminium is going into the production of aluminium alloy used for automotive applications. In these applications, it is necessary to control and remove alloy impurities and inclusions. Cleaning and fluxing processes are widely used during processing of the alloys for removal of inclusions, hydrogen and excess of magnesium. These processes use salt fluxes based in the system NaCl-KCl, injection of chlorine or mixture of chlorine with an inert gas. The new systems include a graphite wand and a circulation device to force convection in the melt and permit the bubbling and dispersion of reactive and cleaning agents. This paper discusses the recycling of aluminium alloys in rotary and reverberatory industrial furnaces. It focuses on the removal of magnesium during the melting process. In rotary furnaces, the magnesium lost is mainly due to the oxidation process at high temperatures. The magnesium removal is carried out by the reaction between chlorine and magnesium, with its efficiency associated to kinetic factors such as concentration of magnesium, mixing, and temperature. These factors are also related to emissions generated during the demagging process. Improvements in the metallic yield can be reached in rotary furnaces if the process starts with a proper salt, with limits of addition, and avoiding long holding times. To improve throughput in reverberatories, start the charging with high magnesium content material and inject chlorine gas if the molten metal is at the right temperature. Removal of magnesium through modern technologies can be efficiently performed to prevent environmental problems.

  6. Recovering obliterated engraved marks on aluminium surfaces by etching technique.

    PubMed

    Baharum, Mohd Izhar Mohd; Kuppuswamy, R; Rahman, Azari Abd

    2008-05-20

    A study has been made of the characteristics of restoration of obliterated engraved marks on aluminium surfaces by etching technique. By etching different reagents on 0.61mm thick sheets of aluminium (99wt%) on which some engraved marks had been erased to different depths it was found that the reagent 60% hydrochloric acid and 40% sodium hydroxide on alternate swabbing on the surfaces was found to be the most sensitive one for these metal surfaces. This reagent was able to restore marks in the above plates erased down to 0.04mm below the bottom of the engraving. The marks also presented excellent contrast with the background. This reagent was further experimented with similar aluminium surfaces, but of relatively greater thickness of 1.5mm. It was noticed that the recovery depth increased slightly to 0.06mm; this suggested the dependence of recovery depth on the thickness of the sheet metal. Further, the depth of restoration decreased in cases where the original number was erased and over which a new number was engraved; the latter results are similar to those of steel surfaces reported earlier [M.A.M. Zaili, R. Kuppuswamy, H. Harun, Restoration of engraved marks on steel surfaces by etching technique, Forensic Sci. Int. 171 (2007) 27-32].

  7. Properties- and applications of quasicrystals and complex metallic alloys.

    PubMed

    Dubois, Jean-Marie

    2012-10-21

    This article aims at an account of what is known about the potential for applications of quasicrystals and related compounds, the so-called family of Complex Metallic Alloys (CMAs‡). Attention is focused at aluminium-based CMAs, which comprise a large number of crystalline compounds and quasicrystals made of aluminium alloyed with transition metals (like Fe or Cu) or normal metals like Mg. Depending on composition, the structural complexity varies from a few atoms per unit cell up to thousands of atoms. Quasicrystals appear then as CMAs of ultimate complexity and exhibit a lattice that shows no periodicity anymore in the usual 3-dimensional space. Properties change dramatically with lattice complexity and turn the metal-type behaviour of simple Al-based crystals into a far more complex behaviour, with a fingerprint of semi-conductors that may be exploited in various applications, potential or realised. An account of the ones known to the author is given in the light of the relevant properties, namely light absorption, reduced adhesion and friction, heat insulation, reinforcement of composites for mechanical devices, and few more exotic ones. The role played by the search for applications of quasicrystals in the development of the field is briefly addressed in the concluding section.

  8. Surface roughness effects on aluminium-based ultraviolet plasmonic nanolasers

    NASA Astrophysics Data System (ADS)

    Chung, Yi-Cheng; Cheng, Pi-Ju; Chou, Yu-Hsun; Chou, Bo-Tsun; Hong, Kuo-Bin; Shih, Jheng-Hong; Lin, Sheng-Di; Lu, Tien-Chang; Lin, Tzy-Rong

    2017-01-01

    We systematically investigate the effects of surface roughness on the characteristics of ultraviolet zinc oxide plasmonic nanolasers fabricated on aluminium films with two different degrees of surface roughness. We demonstrate that the effective dielectric functions of aluminium interfaces with distinct roughness can be analysed from reflectivity measurements. By considering the scattering losses, including Rayleigh scattering, electron scattering, and grain boundary scattering, we adopt the modified Drude-Lorentz model to describe the scattering effect caused by surface roughness and obtain the effective dielectric functions of different Al samples. The sample with higher surface roughness induces more electron scattering and light scattering for SPP modes, leading to a higher threshold gain for the plasmonic nanolaser. By considering the pumping efficiency, our theoretical analysis shows that diminishing the detrimental optical losses caused by the roughness of the metallic interface could effectively lower (~33.1%) the pumping threshold of the plasmonic nanolasers, which is consistent with the experimental results.

  9. Surface roughness effects on aluminium-based ultraviolet plasmonic nanolasers

    PubMed Central

    Chung, Yi-Cheng; Cheng, Pi-Ju; Chou, Yu-Hsun; Chou, Bo-Tsun; Hong, Kuo-Bin; Shih, Jheng-Hong; Lin, Sheng-Di; Lu, Tien-Chang; Lin, Tzy-Rong

    2017-01-01

    We systematically investigate the effects of surface roughness on the characteristics of ultraviolet zinc oxide plasmonic nanolasers fabricated on aluminium films with two different degrees of surface roughness. We demonstrate that the effective dielectric functions of aluminium interfaces with distinct roughness can be analysed from reflectivity measurements. By considering the scattering losses, including Rayleigh scattering, electron scattering, and grain boundary scattering, we adopt the modified Drude-Lorentz model to describe the scattering effect caused by surface roughness and obtain the effective dielectric functions of different Al samples. The sample with higher surface roughness induces more electron scattering and light scattering for SPP modes, leading to a higher threshold gain for the plasmonic nanolaser. By considering the pumping efficiency, our theoretical analysis shows that diminishing the detrimental optical losses caused by the roughness of the metallic interface could effectively lower (~33.1%) the pumping threshold of the plasmonic nanolasers, which is consistent with the experimental results. PMID:28045127

  10. Advances in Joining Techniques Used in Development of SPF/DB Titanium Sandwich Reinforced with Metal Matrices

    NASA Technical Reports Server (NTRS)

    Fischler, J. E.

    1985-01-01

    Three and four-sheet expanded titanium sandwich sheets have been developed at Douglas Aircraft Company, a division of McDonnell Douglas Corporation, under contract to NASA Langley Research Center. In these contracts, spot welding and roll seam welding are used to join the core sheets. These core sheets are expanded to the face sheets and diffusion bonded to form various type cells. The advantages of various cell shapes and the design parameters for optimizing the wing and fuselage concepts are discussed versus the complexity of the spot weld pattern. In addition, metal matrix composites of fibers in an aluminum matrix encapsulated in a titanium sheath are aluminum brazed successfully to the titanium sandwich face sheets. The strength and crack growth rate of the superplastic-formed/diffusion bonded (SPF/DB) titanium sandwich with and without the metal matrix composites are described.

  11. Smelting Reduction of Bottom Ash in Presence of Liquid Steel Bath for Recovery of Aluminium

    NASA Astrophysics Data System (ADS)

    Mandal, A. K.; Sinha, O. P.

    For the recovery of aluminium from industrial waste bottom ash, a new concept was developed for smelting reduction in presence of metal solvent bath. Nitrogen plasma arc was generated by passing current and nitrogen gas through a hollow graphite electrode. Nitrogen plasma generated heat for reduction as well as melting under inert atmosphere inside the furnace. Pellets containing 50%bottom ash, 50% iron slime and charcoal were fed in the plasma zone above the liquid steel bath which was acted as for the absorption of reduced metals after reduction of oxides present in the wastes. Due to the immediate absorption of aluminium in the liquid steel bath after subsequent reduction from waste, vaporization loss of aluminium metal got minimized. The percent recovery of aluminium were determined in case of different exposure time, types of arcing and plasma gas etc. Maximum recovery of aluminium was recovered upto 21% with 30 minute exposure of pellets containing 50% bottom ash and 50% iron slime. It was observed that aluminum, could be recovered effectively from the wastes.

  12. Conjugate Reinforcement.

    ERIC Educational Resources Information Center

    Lewis, Richard F.

    Conjugate reinforcement is a new attention measure which has emerged from experimental psychology. It can provide accurate measurement of a subject's attention to a stimulus. In conjugate reinforcement, the duration of the stimulus varies directly and immediately with the subject's rate of response. In this process, the subject must demonstrate…

  13. Studies on adhesion characteristics and corrosion behaviour of vinyltriethoxysilane/epoxy coating protective system on aluminium

    NASA Astrophysics Data System (ADS)

    Bajat, Jelena B.; Milošev, Ingrid; Jovanović, Željka; Mišković-Stanković, Vesna B.

    2010-03-01

    The corrosion stability of vinyltriethoxysilane/epoxy coating protective system on aluminium is strongly related to the strength of bonds forming at the metal/organic coating interface. This article is a study of adhesion, composition, electrochemical and transport properties of epoxy coatings electrodeposited on bare aluminium and aluminium pretreated by vinyltriethoxysilane (VTES) during exposure to 3% NaCl. The VTES film was deposited on aluminium surface from 2% vinyltriethoxysilane solution during 30 s. From the values of adhesion strength (pull-off test), time dependence of pore resistance and coating capacitance of epoxy coating (impedance measurements) and diffusion coefficient of water through epoxy coating (gravimetric liquid sorption measurements), the influence of VTES sublayer on the corrosion stability of the electrodeposited epoxy coating was shown. The work discusses the role of the VTES pretreatment in the enhanced adhesion and corrosion stability of epoxy cataphoretic coating. The electrochemical results showed that the aluminium pretreatment by VTES film improved barrier properties of epoxy coating (greater pore resistance and lower coating capacitance). The lower value of diffusion coefficient of water through epoxy coating indicates the lower porosity, while the smaller adhesion reduction points to better adhesion of epoxy coating on aluminium pretreated by VTES film. The composition of the deposited coatings investigated by XPS enabled the clarification of the bonding mechanism.

  14. Aluminium in foodstuffs and diets in Sweden.

    PubMed

    Jorhem, L; Haegglund, G

    1992-01-01

    The levels of aluminium have been determined in a number of individual foodstuffs on the Swedish market and in 24 h duplicate diets collected by women living in the Stockholm area. The results show that the levels in most foods are very low and that the level in vegetables can vary by a factor 10. Beverages from aluminium cans were found to have aluminium levels not markedly different from those in glass bottles. Based on the results of the analysis of individual foods, the average Swedish daily diet was calculated to contain about 0.6 mg aluminium, whereas the mean content of the collected duplicate diets was 13 mg. A cake made from a mix containing aluminium phosphate in the baking soda was identified as the most important contributor of aluminium to the duplicate diets. Tea and aluminium utensils were estimated to increase the aluminium content of the diets by approximately 4 and 2 mg/day, respectively. The results also indicate that a considerable amount of aluminium must be introduced from other sources.

  15. Neurocognitive effects in welders exposed to aluminium.

    PubMed

    Giorgianni, Concetto Mario; D'Arrigo, Graziella; Brecciaroli, Renato; Abbate, Adriana; Spatari, Giovanna; Tringali, Maria Antonietta; Gangemi, Silvia; De Luca, Annamaria

    2014-05-01

    Various authors who studied the effects of aluminium (Al) exposure on the neurocognitive system in the last 30 years have reached different and often contradictory conclusions. The aim of this study is to help clarify the effects that the metal causes on cognitive ability in a group of naval welders exposed to Al. The study was performed on a sample of 86 male Al welders in a shipyard in Messina. The average value of environmental Al, recorded in the workplace, was 19.5 mg/m(3). The blood levels of Al, zinc, manganese, lead and chromium were monitored in all the subjects. The reagents used for the neuropsychic study were the Wechsler Memory Scale (WMS), the Colour Word Test or Stroop Test and the Test of Attention Matrixes. The results were compared with those obtained in a similar control group not exposed to Al and with an Al-b value of 6.93 g/l. For all the mental reagents used, the reply is obtained in the sample of exposed subjects showed decreased cognitive response with regard to attention and memory performance. The comparison between the individual tests showed greater sensitivity of performance studied using the WMS and the Stroop Test compared with the Test of Attention Matrixes. The alterations encountered in the cognitive functions studied increased proportionally to time of exposure and quantity of metal absorbed. The study confirmed that occupational exposure to Al causes alteration in cognitive responses that are more evident in complex functions.

  16. Hatchability and survival of oncomiracidia of Paradiplozoon ichthyoxanthon (Monogenea: Diplozoidae) exposed to aqueous aluminium.

    PubMed

    Gilbert, Beric M; Avenant-Oldewage, Annemariè

    2016-07-28

    Monogenea is a diverse group of ectoparasites showing great potential as sentinel organisms for monitoring environmental health. Exposure to metals negatively affects infrapopulations of monogeneans and exposure to aluminium has been found to negatively impact the survival of gyrodactylids. Samples of infected host fish, the smallmouth yellowfish Labeobarbus aeneus (Cyprinidae), were collected from the Vaal Dam, South Africa and transported back to the laboratory in dark 160 l containers. Eggs of the monogenean Paradiplozoon ichthyoxanthon infecting L. aeneus were collected and exposed to varying concentrations of aluminium along with a control group in static tanks. The eggs were checked every 24 h and hatching commenced 13-14 days after exposure. Water samples were taken from exposure tanks and acidified for analysis of Al levels with inductively-coupled plasma mass spectrometry. Hatching of eggs was variable between exposures, and in 30 μg Al/l and 60 μg Al/l was found to occur before eggs in control beakers, whereas, exposure to 120 μg Al/l delayed hatching and reduced hatchability. Survival of hatched oncomiracidia was concentration dependent and negatively correlated with aluminium concentrations. Lowest survival was recorded for 60 μg Al/l and 120 μg Al/l where all larvae died shortly after or during hatching. Normal development of embryos of P. ichthyoxanthon within eggs exposed to all doses of aluminium indicates that the egg shell is moderately impermeable to metals and inhibits movement of aluminium across the shell and interacting with developing embryos. Higher larval mortality rate in 120 μg/l exposure can be related to aluminium crossing the egg shell in the late stages and causing death of unhatched yet fully developed embryos, possibly due to changes in the permeability of the egg shell as embryos neared developmental completion. Accelerated death of oncomiracidia after hatching indicates sensitivity toward high concentrations of aluminium.

  17. A 3D printed superconducting aluminium microwave cavity

    SciTech Connect

    Creedon, Daniel L.; Goryachev, Maxim; Kostylev, Nikita; Tobar, Michael E.; Sercombe, Timothy B.

    2016-07-18

    3D printing of plastics, ceramics, and metals has existed for several decades and has revolutionized many areas of manufacturing and science. Printing of metals, in particular, has found a number of applications in fields as diverse as customized medical implants, jet engine bearings, and rapid prototyping in the automotive industry. Although many techniques are used for 3D printing metals, they commonly rely on computer controlled melting or sintering of a metal alloy powder using a laser or electron beam. The mechanical properties of parts produced in such a way have been well studied, but little attention has been paid to their electrical properties. Here we show that a microwave cavity (resonant frequencies 9.9 and 11.2 GHz) 3D printed using an Al-12Si alloy exhibits superconductivity when cooled below the critical temperature of aluminium (1.2 K), with a performance comparable with the common 6061 alloy of aluminium. Superconducting cavities find application in numerous areas of physics, from particle accelerators to cavity quantum electrodynamics experiments. The result is achieved even with a very large concentration of non-superconducting silicon in the alloy of 12.18%, compared with Al-6061, which has between 0.4% and 0.8%. Our results may pave the way for the possibility of 3D printing superconducting cavity configurations that are otherwise impossible to machine.

  18. A 3D printed superconducting aluminium microwave cavity

    NASA Astrophysics Data System (ADS)

    Creedon, Daniel L.; Goryachev, Maxim; Kostylev, Nikita; Sercombe, Timothy B.; Tobar, Michael E.

    2016-07-01

    3D printing of plastics, ceramics, and metals has existed for several decades and has revolutionized many areas of manufacturing and science. Printing of metals, in particular, has found a number of applications in fields as diverse as customized medical implants, jet engine bearings, and rapid prototyping in the automotive industry. Although many techniques are used for 3D printing metals, they commonly rely on computer controlled melting or sintering of a metal alloy powder using a laser or electron beam. The mechanical properties of parts produced in such a way have been well studied, but little attention has been paid to their electrical properties. Here we show that a microwave cavity (resonant frequencies 9.9 and 11.2 GHz) 3D printed using an Al-12Si alloy exhibits superconductivity when cooled below the critical temperature of aluminium (1.2 K), with a performance comparable with the common 6061 alloy of aluminium. Superconducting cavities find application in numerous areas of physics, from particle accelerators to cavity quantum electrodynamics experiments. The result is achieved even with a very large concentration of non-superconducting silicon in the alloy of 12.18%, compared with Al-6061, which has between 0.4% and 0.8%. Our results may pave the way for the possibility of 3D printing superconducting cavity configurations that are otherwise impossible to machine.

  19. Tensile and fatigue behavior of Al-based metal matrix composites reinforced with continuous carbon or alumina fibers: Part I. Quasi-unidirectional composites

    NASA Astrophysics Data System (ADS)

    Jacquesson, M.; Girard, A.; Vidal-Sétif, M.-H.; Valle, R.

    2004-10-01

    The thermomechanical (dilatometric, tensile, and fatigue) behavior of Al-based metal matrix composites (MMCs) is investigated. These composites are reinforced by quasi-unidirectional (quasi-UD) woven fabric preforms with 90 pct of continuous fibers in the longitudinal direction and 10 pct in the transverse direction. The two composite systems investigated feature a highly ductile matrix (AU2: Al-2Cu wt pct) with a strongly bonded fiber-matrix interface (N610 alumina fibers) and an alloyed, high-strength matrix (A357: Al-7Si-0.6Mg wt pct) with a weak fiber-matrix interface (K139 carbon fibers). Microstructural investigation of the tested specimens has permitted identification of the specific characteristics of these composites: undulation of the longitudinal bundles, presence of the straight transverse bundles, interply shearing, and role of brittle phases. Moreover, simple semiquantitative models ( e.g., interply shearing) have enabled explanation of the specific mechanical behavior of these quasi-UD composites, which exhibit high tensile and fatigue strengths, as compared with the corresponding pure UD composites. Knowledge of the specific characteristics and mechanical behavior of these quasi-UD composites will facilitate the further investigation of the (0, ±45, 90 deg) quasi-UD laminates (Part II). At a more theoretical viewpoint, the specific geometry and behavior of these quasi-UD composites allows exacerbation of fatigue mechanisms, even more intense than in “model” composites.

  20. Preparation and characterization of water-soluble carbon nanotube reinforced Nafion membranes and so-based ionic polymer metal composite actuators

    NASA Astrophysics Data System (ADS)

    Ru, Jie; Wang, Yanjie; Chang, Longfei; Chen, Hualing; Li, Dichen

    2016-09-01

    In this paper, we developed a new kind of ionic polymer metal composite (IPMC) actuator by doping water-soluble sulfonated multi-walled carbon nanotube (sMWCNT) into Nafion matrix to overcome some major drawbacks of traditional IPMCs, such as relatively low bending deformation and carring capacity at low driving voltages. Firstly, sMWCNT was synthesized via diazotization coupling reaction, and then doped into Nafion matrix by casting method. Subsequently, the electrochemical and electromechanical properties of sMWCNT-reinforced Nafion membranes and the corresponding IPMCs were investigated. Finally, the effects of sMWCNT on the performances of IPMCs were evaluated and analyzed systematacially. The results showed that sMWCNT was homogeneously dispersed in Nafion matrix without any entangled structure or obvious agglomeration. The main factors for superior actuation performances, like water-uptake ratio, proton conductivity and elastic modulus, increased significantly. Compared to the pure Nafion IPMC and MWCNT/Nafion IPMC, much superior electrochemical and electromechanical performances were achieved in the sMWCNT/Nafion IPMC, which were attributed to the numerous insertion sites, high surface conductivity and excellent mechanical strength as well as the homogeneous dispersity of the incorporated sMWCNT. Herein, a trace amount of sMWCNT can improve the performances of IPMCs significantly for realistic applications.

  1. The interface in tungsten fiber reinforced niobium metal-matrix composites. Final Report Ph.D. Thesis - Case Western Reserve Univ., Cleveland, OH

    NASA Technical Reports Server (NTRS)

    Grobstein, Toni L.

    1989-01-01

    The creep resistance of tungsten fiber reinforced niobium metal-matrix composites was evaluated. The interface region between the fiber and matrix was characterized by microhardness and electron probe microanalysis measurements which indicated that its properties were between those of fiber and matrix. However, the measured properties of the composite exceeded those calculated by the rule of mixtures even when the interface zone was assumed to retain all the strength of the fiber. The composite structure appeared to enhance the strengths of both the fibers and the matrix above what they exhibited in stand-alone tests. The effect of fiber orientation and matrix alloy composition on the fiber/matrix interface were also evaluated. Small alloying additions of zirconium and tungsten to the niobium matrix affected the creep resistance of the composites only slightly. A decrease in the creep resistance of the composite with increasing zirconium content in the matrix was ascribed to an increase in the diffusion rate of the fiber/matrix interdiffusion reaction, and a slight increase in the creep resistance of the composite was observed with an addition of 9 w percent tungsten to the matrix. In addition, Kirkendall void formation was observed at the fiber/matrix interface; the void distribution differed depending on the fiber orientation relative to the stress axis.

  2. Aluminium Pneumoconiosis I. In Vitro Comparison of Stamped Aluminium Powders Containing Different Lubricating Agents and a Granular Aluminium Powder

    PubMed Central

    Corrin, B.

    1963-01-01

    The discrepancy in previous reports of the action of aluminium on the lung may be explained by differences between stamped and granular aluminium powders. A stamped powder of the variety causing pulmonary fibrosis showed a brisk reaction with water, but a granular powder was unreactive. This difference is primarily due to the granular particles being covered by inert aluminium oxide, the formation of which is partially prevented in the stamping process by stearine and mineral oil. The reactivity of the flake-like stamped particles is also dependent on their large surface area per unit volume. The appearance of aluminium pneumoconiosis in Britain is explained by the introduction of mineral oil into the stamping industry for, in contrast to stearine, mineral oil permits the powder to react with water. The lung damage is believed to be caused by a soluble form of aluminium. PMID:14072616

  3. Spectroscopic diagnostics of plasma during laser processing of aluminium

    NASA Astrophysics Data System (ADS)

    Lober, R.; Mazumder, J.

    2007-10-01

    The role of the plasma in laser-metal interaction is of considerable interest due to its influence in the energy transfer mechanism in industrial laser materials processing. A 10 kW CO2 laser was used to study its interaction with aluminium under an argon environment. The objective was to determine the absorption and refraction of the laser beam through the plasma during the processing of aluminium. Laser processing of aluminium is becoming an important topic for many industries, including the automobile industry. The spectroscopic relative line to continuum method was used to determine the electron temperature distribution within the plasma by investigating the 4158 Å Ar I line emission and the continuum adjacent to it. The plasmas are induced in 1.0 atm pure Ar environment over a translating Al target, using f/7 and 10 kW CO2 laser. Spectroscopic data indicated that the plasma composition and behaviour were Ar-dominated. Experimental results indicated the plasma core temperature to be 14 000-15 300 K over the incident range of laser powers investigated from 5 to 7 kW. It was found that 7.5-29% of the incident laser power was absorbed by the plasma. Cross-section analysis of the melt pools from the Al samples revealed the absence of any key-hole formation and confirmed that the energy transfer mechanism in the targets was conduction dominated for the reported range of experimental data.

  4. Nanostructured composite reinforced material

    DOEpatents

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  5. No association between the aluminium content of trabecular bone and bone density, mass or size of the proximal femur in elderly men and women

    PubMed Central

    Hellström, Hans-Olov; Mjöberg, Bengt; Mallmin, Hans; Michaëlsson, Karl

    2006-01-01

    Background Aluminium is considered a bone toxic metal since poisoning can lead to aluminium-induced bone disease in patients with chronic renal failure. Healthy subjects with normal renal function retain 4% of the aluminium consumed. They might thus also accumulate aluminium and eventually be at risk of long-term low-grade aluminium intoxication that can affect bone health. Methods We therefore examined 62 patients with femoral neck fractures or osteoarthritis of the hip (age range 38–93), with the aim of examining whether aluminium in bone is associated with bone-mineral density (BMD), content (BMC) or width of the femoral neck measured by dual-energy X-ray absorptiometry (DXA). During operations bone biopsies were taken from the trabecular bone of the proximal femur. The samples were measured for their content of aluminium using a mass spectrometer. Results No significant association between the aluminium content in bone and femoral neck BMD, BMC or width could be found after multivariate adjustment. Conclusion Our results indicate that the accumulated aluminium content in bone during life does not substantially influence the extent of osteoporosis. PMID:16928265

  6. Elastic-plastic stress concentrations around crack-like notches in continuous fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Bigelow, C. A.

    1987-01-01

    Continuous fiber silicon-carbide/aluminum composite laminates with slits were tested statically to failure. Five different layups were examined: (0) sub 8, (0 sub 2/ + or - 45) sub s, (0/90) sub 2s), (0/ + or - 45/90 sub s), and (+ or - 45) sub 2s. Either a 9.5 or a 19 mm slit was machined in the center of each specimen. The strain distribution ahead of the slit tip was found experimentally with a series of strain gages bonded ahead of the slit tip. A three-dimensional finite element program (PAFAC) was used to predict the strain distribution ahead of the slit tip for several layups. For all layups, except the (0) sub 8, the yielding of the metal matrix caused the fiber stress concentration factor to increase with increasing load. This is contrary to the behavior seen in homogeneous materials where yielding causes the stress concentration to drop. For the (0) sub 8 laminate, yielding of the matrix caused a decrease in the fiber stress concentration. The finite element analysis predicted these trends correctly.

  7. Elastic-plastic stress concentrations around crack-like notches in continuous fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Bigelow, C. A.

    1989-01-01

    Continuous fiber silicon-carbide/aluminum composite laminates with slits were tested statically to failure. Five different layups were examined: (0) sub 8, (0 sub 2/ + or - 45) sub s, (0/90) sub 2s), (0/ + or - 45/90 sub s), and (+ or - 45) sub 2s. Either a 9.5 or a 19 mm slit was machined in the center of each specimen. The strain distribution ahead of the slit tip was found experimentally with a series of strain gages bonded ahead of the slit tip. A three-dimensional finite element program (PAFAC) was used to predict the strain distribution ahead of the slit tip for several layups. For all layups, except the (0) sub 8, the yielding of the metal matrix caused the fiber stress concentration factor to increase with increasing load. This is contrary to the behavior seen in homogeneous materials where yielding causes the stress concentration to drop. For the (0) sub 8 laminate, yielding of the matrix caused a decrease in the fiber stress concentration. The finite element analysis predicted these trends correctly.

  8. Transverse crack initiation under combined thermal and mechanical loading of Fibre Metal Laminates and Glass Fibre Reinforced Polymers

    NASA Astrophysics Data System (ADS)

    van de Camp, W.; Dhallé, M. M. J.; Warnet, L.; Wessel, W. A. J.; Vos, G. S.; Akkerman, R.; ter Brake, H. J. M.

    2017-02-01

    The paper describes a temperature-dependent extension of the classical laminate theory (CLT) that may be used to predict the mechanical behaviour of Fibre Metal Laminates (FML) at cryogenic conditions, including crack initiation. FML are considered as a possible alternative class of structural materials for the transport and storage of liquified gasses such as LNG. Combining different constituents in a laminate opens up the possibility to enhance its functionality, e.g. offering lower specific weight and increased damage tolerance. To explore this possibility, a test programme is underway at the University of Twente to study transverse crack initiation in different material combinations under combined thermal and mechanical loading. Specifically, the samples are tested in a three-point bending experiment at temperatures ranging from 77 to 293 K. These tests will serve as a validation of the model presented in this paper which, by incorporating temperature-dependent mechanical properties and differential thermal expansion, will allow to select optimal material combinations and laminate layouts. By combining the temperature-dependent mechanical properties and the differential thermal contraction explicitly, the model allows for a more accurate estimate of the resulting thermal stresses which can then be compared to the strength of the constituent materials.

  9. Elastic-plastic stress concentrations around crack-like notches in continuous fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Bigelow, C. A.

    1989-01-01

    Continuous fiber silicon-carbide/aluminum composite laminates with slits were tested statically to failure. Five different layups were examined: (0) sub 8, (0 sub 2/ + or - 45) sub s, (0/90) sub 2s), (0/ + or - 45/90 sub s), and (+ or - 45) sub 2s. Either a 9.5 or a 19 mm slit was machined in the center of each specimen. The strain distribution ahead of the slit tip was found experimentally with a series of strain gages bonded ahead of the slit tip. A three-dimensional finite element program (PAFAC) was used to predict the strain distribution ahead of the slit tip for several layups. For all layups, except the (0) sub 8, the yielding of the metal matrix caused the fiber stress concentration factor to increase with increasing load. This is contrary to the behavior seen in homogeneous materials where yielding causes the stress concentration to drop. For the (0) sub 8 laminate, yielding of the matrix caused a decrease in the fiber stress concentration. The finite element analysis predicted these trends correctly.

  10. Electron Conditioning of Technical Aluminium Surfaces

    SciTech Connect

    Le Pimpec, F

    2004-09-02

    The effect of electron conditioning on commercially aluminium alloys 1100 and 6063 were investigated. Contrary to the assumption that electron conditioning, if performed long enough, can reduce and stabilize the SEY to low values (= 1.3, value of many pure elements [1]), the SEY of aluminium did not go lower than 1.8. In fact, it reincreases with continued electron exposure dose.

  11. High aluminium content of infant milk formulas.

    PubMed Central

    Weintraub, R; Hams, G; Meerkin, M; Rosenberg, A R

    1986-01-01

    The aluminium content of several commercially available infant milk formulas was measured by electrothermal atomic absorption spectrometry. Results were compared with those for fresh breast milk, cow's milk, and local tap water. Differences in aluminium concentration of greater than 150-fold were found, with the lowest concentrations in breast milk. PMID:3767424

  12. Chelometric determination of aluminium in vaccines*

    PubMed Central

    Meijerman, G. W.; van Lier, K. L.

    1965-01-01

    A rapid and accurate chelometric method is described for the determination of aluminium in aluminium-phosphate-adsorbed vaccines. Thiomersal preservative in the vaccine is first destroyed and the aluminium content is determined by addition of excess disodium edetate (Na2-EDTA) and back-titration with zinc sulfate using dithizone as an indicator. Phosphate does not interfere with the method. The aluminium content of the samples under investigation varied from 0.3 mg/ml to 1.0 mg/ml. In analysis of vaccines containing inactivated poliomyelitis virus, aluminium was determined with a standard deviation of 0.0014 mg and in other vaccines with a standard deviation of approximately 0.0040 mg. PMID:5294262

  13. Aluminium Diphosphamethanides: Hidden Frustrated Lewis Pairs.

    PubMed

    Styra, Steffen; Radius, Michael; Moos, Eric; Bihlmeier, Angela; Breher, Frank

    2016-07-04

    The synthesis and characterisation of two aluminium diphosphamethanide complexes, [Al(tBu)2 {κ(2) P,P'-Mes*PCHPMes*}] (3) and [Al(C6 F5 )2 {κ(2) P,P'-Mes*PCHPMes*}] (4), and the silylated analogue, Mes*PCHP(SiMe3 )Mes* (5), are reported. The aluminium complexes feature four-membered PCPAl core structures consisting of diphosphaallyl ligands. The silylated phosphine 5 was found to be a valuable precursor for the synthesis of 4 as it cleanly reacts with the diaryl aluminium chloride [(C6 F5 )2 AlCl]2 . The aluminium complex 3 reacts with molecular dihydrogen at room temperature under formation of the acyclic σ(2) λ(3) ,σ(3) λ(3) -diphosphine Mes*PCHP(H)Mes* and the corresponding dialkyl aluminium hydride [tBu2 AlH]3 . Thus, 3 belongs to the family of so-called hidden frustrated Lewis pairs.

  14. The effect of matrix temper on particulate integrity in an Al/Al[sub 2]O[sub 3] metal matrix composite

    SciTech Connect

    Ferry, M.; Munroe, P.R. . School of Materials Science and Engineering)

    1994-07-15

    Aluminium-based particulate metal-matrix composites (PMMC's) are being developed for application in both the aerospace and automotive industries. The near-isotropic properties of these materials allow them to be processed through the same conventional thermomechanical routes that are applied to unreinforced aluminium alloys. However, the microstructural behavior of these materials during such treatments has not been widely studied. It is also relevant to note that matrix prior to processing may strongly affect the behavior of these alloys during deformation. This paper describes the microstructural development during cold work of a PMMC consisting of a 2xxx series alloy matrix, reinforced with alumina particles, heat treated to two different starting tempers. Of particular importance is the effect of matrix temper on the integrity of the alumina particulates.

  15. Exposure and inhalation risk assessment in an aluminium cast-house.

    PubMed

    Godderis, L; Vanderheyden, W; Van Geel, J; Moens, G; Masschelein, R; Veulemans, H

    2005-12-01

    To date the exposure, absorption and respiratory health effects of cast-house workers have not been described since most studies performed in the aluminium industry are focused on exposure and health effects of potroom personnel. In the present study, we assessed the external exposure and the absorbed dose of metals in personnel from the aluminium cast house. This was combined with an evaluation of respiratory complaints and the lung function of the personnel. 30 workers from an aluminium casting plant participated and 17 individuals of the packaging and distribution departments were selected as controls. The exposure was assessed by the quantification of total inhalable fume with metal fraction and by the determination of urinary aluminium, chromium, beryllium, manganese and lead concentration. Carbon monoxide (CO), carbon dioxide (CO2), aldehydes and polyaromatic hydrocarbons and man-made mineral fibres concentration were assessed as well. In order to evaluate their respiratory status each participant filled out a questionnaire and their lung function was tested by forced spirometry. Total inhalable fume exposure was maximum 4.37 mg m(-3). Exposure to the combustion gases, man-made mineral fibres and metal fume was well below the exposure limits. Beryllium could not be detected in the urine. The values of aluminium, manganese and lead in the urine were all under the respective reference value. One individual had a urinary chromium excretion above the ACGIH defined biological exposure index (BEI) of 30 microg g(-1) creatinine. There was no significant difference in any of the categories of the respiratory questionnaire and in the results of the spirometry between cast house personnel and referents (Chi-square, all p > 0.05). Exposure in cast houses seem to be acceptable under these conditions. However, peak exposure to fumes cannot be excluded and the potential risk of chromium and beryllium exposure due to the recycling of aluminium requires further attention.

  16. Micromechanics for particulate reinforced composites

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Goldberg, Robert K.; Mital, Subodh K.

    1996-01-01

    A set of micromechanics equations for the analysis of particulate reinforced composites is developed using the mechanics of materials approach. Simplified equations are used to compute homogenized or equivalent thermal and mechanical properties of particulate reinforced composites in terms of the properties of the constituent materials. The microstress equations are also presented here to decompose the applied stresses on the overall composite to the microstresses in the constituent materials. The properties of a 'generic' particulate composite as well as those of a particle reinforced metal matrix composite are predicted and compared with other theories as well as some experimental data. The micromechanics predictions are in excellent agreement with the measured values.

  17. Immuno-detection of aluminium and aluminium induced conformational changes in calmodulin--implications in Alzheimer's disease.

    PubMed

    Levi, R; Wolf, T; Fleminger, G; Solomon, B

    1998-12-01

    Binding of calcium to calmodulin (CAM) induces specific structural rearrangements in the whole protein molecule. Ca2+ organizes and stabilizes the four-domains structure of calmodulin in a helical, active conformation that can bind to its target proteins; the central helix remaining flexible is an essential condition for their bio-recognition. The conformation of calmodulin, and its efficacy to interact with target proteins, is profoundly altered when bound to metal ions other than calcium. As recently reported, the local structural changes of CaM, which occur upon aluminium binding, lead to the impairment of protein flexibility and to the loss of its ability to interact with several other proteins, which may decrease or inhibit the regulatory character of calmodulin. In this study we followed conformational changes occurring in the calmodulin molecule after aluminium binding using highly specific monoclonal antibodies (mAbs) able to differentiate between the conformational states of calmodulin, as well as mAbs which recognize aluminium free or bound to proteins. Under the same experimental conditions, mAb CAM-1, a Ca2+ conformation sensitive antibody raised against calmodulin, fails to recognize the calmodulin-aluminium complex, despite the presence of Ca2+, while the anti-Al antibodies show a maximal binding pattern towards their antigen. These data suggest that Al3+ ions bind to calmodulin in the presence of Ca2+ ions, leading to an inactive, reversible conformation, instead of its physiological active form. Alteration of the conformation of calmodulin imposed by Al binding may have possible implications in the neurotoxicity mechanism related to Alzheimer's disease.

  18. Effects of silicon on gastrointestinal absorption of aluminium

    SciTech Connect

    Edwardson, J.A.; Moore, P.B.; Ferrier, I.N.; Lilley, J.S.; Newton, G.W.A.; Barker, J.; Templar, J.; Day, J.P.

    1993-07-24

    The reported geographical association between Alzheimer's disease and levels of aluminium (Al) in water supplies may reflect the inverse relation between Al and silicon (Si) concentrations in water, and the potential for Si to reduce the bioavailability of the metal. The authors tested this hypothesis using isotopic [sup 26]Al tracer administered orally to five healthy volunteers in the presence and absence of Si. Dissolved Si, at a concentration found in some water supplies reduced the peak plasma [sup 26]Al concentration to 15% of the value obtained in the absence of Si. The results indicate that dissolved Si is an important factor in limiting the absorption of dietary Al.

  19. The influence of thermal degradation on the electrodeposition of aluminium from an air- and water-stable ionic liquid.

    PubMed

    Veder, Jean-Pierre M; Horne, Michael D; Rüther, Thomas; Bond, Alan M; Rodopoulos, Theo

    2013-05-28

    Aluminium electrodeposition is demonstrated from a thermally degraded ionic liquid solution. NMR and voltammetric analyses established that Al(3+) reduction was remarkably similar to that in non-degraded IL solutions suggesting that the electroactive metal-containing species was unaffected by heat treatment. Electron microscopy revealed a significant grain refinement of the deposited metal.

  20. Biological indicators of exposure to total and respirable aluminium dust fractions in a primary aluminium smelter.

    PubMed Central

    Röllin, H B; Theodorou, P; Cantrell, A C

    1996-01-01

    OBJECTIVES: The study attempts to define biological indicators of aluminium uptake and excretion in workers exposed to airborne aluminium compounds in a primary aluminium smelter. Also, this study defines the total and respirable aluminium dust fractions in two different potrooms, and correlates their concentrations with biological indicators in this group of workers. METHODS: Air was sampled at defined work sites. Non-destructive and conventional techniques were used to find total and respirable aluminium content of the dust. Blood and urine was collected from 84 volunteers employed at various work stations throughout the smelter and from two different cohorts of controls matched for sex, age, and socioeconomic status. Aluminium in serum samples and urine specimens was measured by flameless atomic absorption with a PE 4100 ZL spectrometer. RESULTS: The correlation of aluminium concentrations in serum and urine samples with the degree of exposure was assessed for three arbitrary exposure categories; low (0.036 mg Al/m3), medium (0.35 mg Al/m3) and high (1.47 mg Al/m3) as found in different areas of the smelter. At medium and high exposure, the ratio of respirable to total aluminium in the dust samples varied significantly. At high exposure, serum aluminium, although significantly raised, was still within the normal range of an unexposed population. The workers with low exposure excreted aluminium in urine at levels significantly higher than the controls, but still within the normal range of the population. However, potroom workers with medium and high exposure had significantly higher urinary aluminium than the normal range. CONCLUSIONS: It is concluded that only urinary aluminium constitutes a practical index of occupational exposure at or above 0.35 mg Al/m3, and that the respirable fraction of the dust may play a major role in the biological response to exposure to aluminium in a smelter environment. PMID:8758038

  1. In vitro effect of aluminium upon erythrocyte membrane properties.

    PubMed

    Hernández, G; Bollini, A; Huarte, M; Bazzoni, G; Piehl, L; Chiarotto, M; Rubín de Celis, E; Rasia, M

    2008-01-01

    The link between aluminium (Al(III)) and a range of disorders in organisms (plants and animals including human beings) has been stated in diverse studies. As regards as human beings in particular, there are numerous studies on this metal's toxicity in relation to pathological processes. Only few references to the metal's effect upon cell rheological properties can be found. In this study, we present evidence for alterations in the rheological properties of cells as consequence of the Al(III)'s interaction with human red blood cell membrane. Al(III) could damage membrane functions of the red blood cell by favouring lipid peroxidation reactions due to the presence of Fe(II) as an initiator. The metal's effect on lipid bilayer, and probably on the cytoskeleton as well, would constitute the cause for the impaired erythrocyte rheology.

  2. Derivation of a water quality guideline for aluminium in marine waters.

    PubMed

    Golding, Lisa A; Angel, Brad M; Batley, Graeme E; Apte, Simon C; Krassoi, Rick; Doyle, Chris J

    2015-01-01

    Metal risk assessment of industrialized harbors and coastal marine waters requires the application of robust water quality guidelines to determine the likelihood of biological impacts. Currently there is no such guideline available for aluminium in marine waters. A water quality guideline of 24 µg total Al/L has been developed for aluminium in marine waters based on chronic 10% inhibition or effect concentrations (IC10 or EC10) and no-observed-effect concentrations (NOECs) from 11 species (2 literature values and 9 species tested including temperate and tropical species) representing 6 taxonomic groups. The 3 most sensitive species tested were a diatom Ceratoneis closterium (formerly Nitzschia closterium; IC10 = 18 µg Al/L, 72-h growth rate inhibition) < mussel Mytilus edulis plannulatus (EC10 = 250 µg Al/L, 72-h embryo development) < oyster Saccostrea echinata (EC10 = 410 µg Al/L, 48-h embryo development). Toxicity to these species was the result of the dissolved aluminium forms of aluminate (Al(OH4 (-) ) and aluminium hydroxide (Al(OH)3 (0) ) although both dissolved, and particulate aluminium contributed to toxicity in the diatom Minutocellus polymorphus and green alga Dunaliella tertiolecta. In contrast, aluminium toxicity to the green flagellate alga Tetraselmis sp. was the result of particulate aluminium only. Four species, a brown macroalga (Hormosira banksii), sea urchin embryo (Heliocidaris tuberculata), and 2 juvenile fish species (Lates calcarifer and Acanthochromis polyacanthus), were not adversely affected at the highest test concentration used. © 2014 SETAC.

  3. Effect of particle concentration on the structure and tribological properties of submicron particle SiC reinforced Ni metal matrix composite (MMC) coatings produced by electrodeposition

    NASA Astrophysics Data System (ADS)

    Gül, H.; Kılıç, F.; Uysal, M.; Aslan, S.; Alp, A.; Akbulut, H.

    2012-03-01

    In the present work, a nickel sulfate bath containing SiC submicron particles between 100 and 1000 nm was used as the plating electrolyte. The aim of this work is to obtain Ni-SiC metal matrix composites (MMCs) reinforced with submicron particles on steel surfaces with high hardness and wear resistance for using in anti-wear applications such as dies, tools and working parts for automobiles and vehicles. The influence of the SiC content in the electrolyte on particle distribution, microhardness and wear resistance of nano-composite coatings was studied. During the electroplating process, the proper stirring speed was also determined for sub-micron SiC deposition with Ni matrix. The Ni films were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The depositions were controlled to obtain a specific thickness (between 50 and 200 μm) and volume fraction of the particles in the matrix (between 0.02 and 0.10). The hardness of the coatings was measured to be 280-571 HV depending on the particle volume in the Ni matrix. The tribological behaviors of the electrodeposited SiC nanocomposite coatings sliding against an M50 steel ball (Ø 10 mm) were examined on a tribometer. All the friction and wear tests were performed without lubrication at room temperature and in the ambient air (with a relative humidity of 55-65%). The results showed that the wear resistance of the nanocomposites was approximately 2-2.2 times more than those of unreinforced Ni.

  4. Evaluation Of Four Welding Arc Processes Applied To 6061 Aluminium Alloy

    SciTech Connect

    Benoit, A.; Paillard, P.; Baudin, T.; Jobez, S.; Castagne, J.-F.

    2011-01-17

    At a time when greenhouse gas emissions must be reduced, the use of the aluminium alloys is expanding, in particular in the transportation industry. In order to extend the possibilities of aluminium assembly design, new Metal Inert Gas (MIG) welding processes have been conceived. They work at lower temperatures than usual arc processes (classic MIG or Tungsten Inert Gas). This study compares four arc welding processes, applied to the 6061 aluminium alloy. These four weld processes have been studied through the metallurgical analysis of the weld beads. Metallography, micro-hardness testings, X Ray radiography have been carried out on the produced weld beads. The processes are classified according to the quality of the beads like geometry of beads, size of the heat affected zone and presence of defects.

  5. Void growth in high strength aluminium alloy single crystals: a CPFEM based study

    NASA Astrophysics Data System (ADS)

    Asim, Umair; Siddiq, M. Amir; Demiral, Murat

    2017-04-01

    High strength aluminium alloys that are produced through forming and joining processes are widely used in aerospace components. The ductile failure in these metals occurs due to the evolution and accumulation of microscopic defects, such as microvoids and shear bands. The present work investigates the underlying physical mechanisms during ductile failure by performing a rigorous, fully-validated, three-dimensional crystal plasticity, finite element study with aluminium alloy single crystals. Representative volume element (RVE) based simulations of single crystalline aluminium alloys (AA-5xxx) with different void geometries and orientations have been performed. Both local and nonlocal crystal plasticity constitutive models have been implemented in a finite element framework and are used to seek new insights into the interrelationships among void growth, initial porosity, initial void size, plastic anisotropy, and local/nonlocal size effects.

  6. Investigation of the aluminium-aluminium oxide reversible transformation as observed by hot stage electron microscopy.

    NASA Technical Reports Server (NTRS)

    Grove, C. A.; Judd, G.; Ansell, G. S.

    1972-01-01

    Thin foils of high purity aluminium and an Al-Al2O3 SAP type of alloy were oxidised in a specially designed hot stage specimen chamber in an electron microscope. Below 450 C, amorphous aluminium oxide formed on the foil surface and was first detectable at foil edges, holes, and pits. Islands of aluminium then nucleated in this amorphous oxide. The aluminium islands displayed either a lateral growth with eventual coalescence with other islands, or a reoxidation process which caused the islands to disappear. The aluminium island formation was determined to be related to the presence of the electron beam. A mechanism based upon electron charging due to the electron beam was proposed to explain the nucleation, growth, coalescence, disappearance, and geometry of the aluminium islands.

  7. Recovery of phosphorus and aluminium from sewage sludge ash by a new wet chemical elution process (SESAL-Phos-recovery process).

    PubMed

    Petzet, S; Peplinski, B; Bodkhe, S Y; Cornel, P

    2011-01-01

    The potential of a new wet chemical process for phosphorus and aluminium recovery from sewage sludge ash by sequential elution with acidic and alkaline solutions has been investigated: SESAL-Phos (sequential elution of sewage sludge ash for aluminium and phosphorus recovery). Its most innovative aspect is an acidic pre-treatment step in which calcium is leached from the sewage sludge ash. Thus the percentage of alkaline soluble aluminium phosphates is increased from 20 to 67%. This aluminium phosphate is then dissolved in alkali. Subsequently, the dissolved phosphorus is precipitated as calcium phosphate with low heavy metal content and recovered from the alkaline solution. Dissolved aluminium is recovered and may be reused as a precipitant in wastewater treatment plants.

  8. Aluminium overload after 5 years in skin biopsy following post-vaccination with subcutaneous pseudolymphoma.

    PubMed

    Guillard, Olivier; Fauconneau, Bernard; Pineau, Alain; Marrauld, Annie; Bellocq, Jean-Pierre; Chenard, Marie-Pierre

    2012-10-01

    Aluminium hydroxide is used as an effective adjuvant in a wide range of vaccines for enhancing immune response to the antigen. The pathogenic role of aluminium hydroxide is now recognized by the presence of chronic fatigue syndrome, macrophagic myofasciitis and subcutaneous pseudolymphoma, linked to intramuscular injection of aluminium hydroxide-containing vaccines. The aim of this study is to verify if the subcutaneous pseudolymphoma observed in this patient in the site of vaccine injection is linked to an aluminium overload. Many years after vaccination, a subcutaneous nodule was discovered in a 45-year-old woman with subcutaneous pseudolymphoma. In skin biopsy at the injection site for vaccines, aluminium (Al) deposits are assessed by Morin stain and quantification of Al is performed by Zeeman Electrothermal Atomic Absorption Spectrophotometry. Morin stain shows Al deposits in the macrophages, and Al assays (in μg/g, dry weight) were 768.10±18 for the patient compared with the two control patients, 5.61±0.59 and 9.13±0.057. Given the pathology of this patient and the high Al concentration in skin biopsy, the authors wish to draw attention when using the Al salts known to be particularly effective as adjuvants in single or repeated vaccinations. The possible release of Al may induce other pathologies ascribed to the well-known toxicity of this metal. Copyright © 2012 Elsevier GmbH. All rights reserved.

  9. Tensile Strength and Hardness Correlations with Microscopy in Friction welded Aluminium to Copper

    NASA Astrophysics Data System (ADS)

    Satish, Rengarajan; Seshagiri Rao, Vaddi; Ananthapadmanaban, Dattaguru; Ravi, Balappa

    2016-01-01

    Aluminium and copper are good conductors of heat and electricity, copper being the better conductor, is a costly metal indeed. On the other hand, aluminium is cheap, easily available and also has a lower density than copper. Hence, worldwide efforts are being made to partially replace copper wire. Solid state welding should be used to join aluminium to copper. This is because the use of fusion welding results in brittle phases formed in the weld interface. One of the solid state welding techniques used for joining aluminium to copper is friction welding. In this paper, an attempt has been made to join aluminium to copper by friction welding by varying the friction welding parameters, namely friction pressure, upset pressure, burn-off length and speed of rotation of the workpiece. Nine different friction welding parameter combinations were used during welding in accordance with ASTM standards and results have been reported. Tensile strength and hardness tests were carried out for each parameter combination. Optimum friction welding parameter combination was identified with respect to tensile strength. Scanning Electron Microscopy and Electron dispersive spectroanalysis were obtained to identify modes of fracture and presence of intermetallic phases for each friction welding combination with the aim to narrow down friction welding parameters that give good properties on the whole.

  10. AC impedance-emission spectroscopy for determining the electrochemical behaviour of anodised aluminium in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Habib, K.

    2010-09-01

    In the present investigation, holographic interferometry was utilised for the first time to determine the rate change of the alternating current (AC) impedance of aluminium samples during the initial stage of anodisation processes in aqueous solution without any physical contact. In fact, because the AC impedance values in this investigation were obtained by holographic interferometry, electromagnetic method rather than electronic method, the abrupt rate change of the AC impedance was called AC impedance-emission spectroscopy. The anodisation process (oxidation) of the aluminium samples was carried out chemically in different sulphuric acid concentrations (0.5-3.125% H2SO4) at room temperature. In the mean time, the real time holographic interferometry was used to determine the difference in the AC impedance of two subsequent values, dZ, as a function of the elapsed time of the experiment for the aluminium samples in 0. 5, 1.0, 1.5 and 3.125% H2SO4 solutions. The AC impedance-emission spectra of the present investigation represent a detailed picture of not only the rate change of the AC impedance throughout the anodisation processes but also the spectra represent the rate change of the growth of the oxide films on the aluminium samples in different solutions. Consequently, holographic interferometry is found to be very useful for surface finish industries, especially for monitoring the early stage of anodisation processes of metals, in which the rate change of AC impedance of the aluminium samples can be determined in situ.

  11. Fabrication of fibre reinforced nickel aluminide matrix composites by reactive processing

    SciTech Connect

    Downing, M.; Horsfall, I.

    1994-12-31

    This paper describes the fabrication by reactive processing of short, and continuous, alumina fibre reinforced nickel aluminide matrix composites. The fibre is introduced into the aluminide system to increase toughness and high temperature strength. The short fibre reinforced nickel aluminide is formed by squeeze casting a porous preform containing nickel powder and SAFFIL fibre with an aluminium or aluminium alloy melt. The continuous fibre reinforced nickel aluminide is formed by squeeze casting a jig containing nickel coated ALMAX fibre. The short fibre reinforced composite (containing 10% and 20% volume fibre) reacted during infiltration with an aluminium melt to form a single phase intermetallic. Using an aluminium-copper melt the intermetallic formation was inhibited and a multi-phase composite was obtained. A preliminary study into reactive processing of this system by utilising a hot isostatic pressing (HIP) cycle is presented. HIP was required to prevent the formation of porosity due to an imbalance in the diffusive mobility of the various components. It was found that HIP was only effective on canned samples, the preferred encapsulation material being glass. The continuous fibre reinforced composite did not react to an intermetallic phase when infiltrated with an aluminum melt. Use of an aluminum-copper melt resulted in partial nickel-melt reaction producing various nickel-aluminum (-copper) phases. HIP was then used to form a two phase intermetallic matrix with no evidence of fibre damage.

  12. A computational analysis and suitability assessment of cold-gas dynamic spraying of glass-fiber-reinforced poly-amide 6 for use in direct-adhesion polymer metal hybrid components

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Pandurangan, B.; Bell, W. C.; Daqaq, M.; Ma, L.; Seyr, Norbert; Erdmann, Marc; Holzleitner, Jochen

    2008-01-01

    SummaryA transient non-linear dynamics computational analysis of cold-gas dynamic spraying (CGDS) of glass-fiber-reinforced poly-amide (nylon) 6 has been carried out using Ansys-Autodyn [Century Dynamics Inc., Ansys-Autodyn Version 11.0, User Documentation, Century Dynamics Inc. (a subsidiary of ANSYS Inc.), 2007] in order to assess the suitability of this spraying technology for coating of metal stampings used in polymer metal hybrid (PMH) load-bearing automotive component applications. In addition, the suitability of the CGDS is assessed with respect to a need for metal stamping surface preparation/treatment, the ability to deposit polymeric material without significant material degradation, the ability to selectively overcoat the metal stamping, the resulting magnitude of the polymer-to-metal adhesion strength, durability of the polymer/metal bond with respect to prolonged exposure to high-temperature/high-humidity and mechanical/thermal fatigue service conditions, and compatibility with the automotive body-in-white ( BIW) manufacturing process chain. The analysis revealed that CGDS can be considered as a viable technology for coating of metal stampings used in PMH load-bearing automotive component applications.

  13. South Oregon Coast Reinforcement.

    SciTech Connect

    United States. Bonneville Power Administration.

    1998-05-01

    The Bonneville Power Administration is proposing to build a transmission line to reinforce electrical service to the southern coast of Oregon. This FYI outlines the proposal, tells how one can learn more, and how one can share ideas and opinions. The project will reinforce Oregon`s south coast area and provide the necessary transmission for Nucor Corporation to build a new steel mill in the Coos Bay/North Bend area. The proposed plant, which would use mostly recycled scrap metal, would produce rolled steel products. The plant would require a large amount of electrical power to run the furnace used in its steel-making process. In addition to the potential steel mill, electrical loads in the south Oregon coast area are expected to continue to grow.

  14. Aluminium chloride-induced toxicity in zebrafish larvae.

    PubMed

    Monaco, A; Grimaldi, M C; Ferrandino, I

    2016-08-15

    Embryos at shield stage and larvae at protruding mouth stage were exposed to different concentrations of aluminium chloride (AlCl3 ) for 72 h with the purpose to analyse their phenotype and lethality. After 24, 48 and 72 h of treatment, higher toxicity of the metal was observed on larvae with minimal lethal concentration of 0.25, 0.20 and 0.08 mm, respectively, while for embryos the corresponding values were 40, 25 and 16 mm. We observed pericardial oedema and alteration of heart rate in 50% of larvae after 48 h of exposure to 100 μm. In larvae exposed to the same concentration, there was also a neurological injury at the level of glial cells, with the number of glial fibrillary acidic protein-positive cells being significantly reduced. This study confirms the toxic nature of this metal and shows that aluminium could also interestingly represent a cardiotoxin in addition to its neurotoxic ability.

  15. Aluminium surface treatment with ceramic phases using diode laser

    NASA Astrophysics Data System (ADS)

    Labisz, K.; Tański, T.; Brytan, Z.; Pakieła, W.; Wiśniowski, M.

    2016-07-01

    Ceramic particles powder feeding into surface layer of engineering metal alloy is a well-known and widely used technique. New approach into the topic is to obtain finely distributed nano-sized particles involved in the aluminium matrix using the traditional laser technology. In this paper are presented results of microstructure investigation of cast aluminium-silicon-copper alloys surface layer after heat treatment and alloying with ceramic carbides of WC and ZrO2 using high-power diode laser. The surface layer was specially prepared for the reason of reducing the reflectivity, which is the main problem in the up-to-date metal matrix composites production. With scanning electron microscopy, it was possible to determine the deformation process and distribution of WC and ZrO2 ceramic powder phase. Structure of the surface after laser treatment changes, revealing three zones—remelting zone, heat-affected zone and transition zone placed over the Al substrate. The structural changes of ceramic powder, its distribution and morphology as well as microstructure of the matrix material influence on functional properties, especially wear resistance and hardness of the achieved layer, were investigated.

  16. Simultaneous determination of lead, nickel, tin and copper in aluminium-base alloys using slurry sampling by electrical discharge and multielement ETAAS.

    PubMed

    Carrión, Nereida; Itriago, Ana M; Alvarez, Maria A; Eljuri, Elias

    2003-12-04

    The simultaneous multielement determination of Pb, Sn, Ni and Cu in aluminium alloys by electrothermal atomic absorption spectrometry (ETAAS) was performed by a quick method using slurry sampling. The metallic colloidal slurries were obtained by an electrical discharge operated in liquid medium. In this work, the effects of aluminium were evaluated and the results show that it causes a strong retention of Pb, Ni and Cu at low pyrolysis temperatures which is overcome by employing high pyrolysis temperatures. Aluminium also significantly improves the thermal stabilisation of Pb and Sn, it being possible to reach pyrolysis temperatures of 1100 and 1300 degrees C, respectively. Such stabilisation indicates that the performance of aluminium as a matrix modifier for Pb is better than that obtained using phosphate and magnesium nitrate without substantial changes of the figures of merit. The effects of aluminium on the atomisation characteristics of the elements and those coming from the simultaneous multielement determination on the figures of merit of the elements are also discussed. In this work, a calibration procedure involving a matrix matching method with aqueous aluminium standards is proposed as a simple and efficient way to solve the inconveniences originated by the aluminium matrix. The proposed method was applied to the simultaneous multielement determination of several aluminium-base alloy standards giving results well within the recommended values.

  17. A review of semi-solid aluminium-steel joining processes

    NASA Astrophysics Data System (ADS)

    Obeidi, Muhannad; McCarthy, Éanna; Brabazon, Dermot

    2016-10-01

    The semi-solid metal (SSM) forming process can be applied to achieve near net shape forming of metal alloys, and provides superior component properties compared to those achievable with conventional casting methods. The technique, also commonly called thixoforming, relies on achieving a spheroidal microstructure within the metal alloy so that its fluidity can be adjusted to achieve a controlled laminar filling of the die. Despite the better quality and the higher mechanical properties of an SSM product, thixoforming still represents only 1% of the total aluminium production, which can be explained by the higher premium cost of the processing equipment compared to conventional die casting. The method has also proven successful as a joining method, for joining similar and dissimilar materials. This paper reviews semisolid forming as a forming method and as a joining method, in particular the joining of dissimilar materials such as stainless steel to aluminium.

  18. Fabrication of Nano-Composite Surface Layers on Aluminium Employing Friction Stir Processing Technique

    SciTech Connect

    Bozorg, S. F. K.; Zarghani, A. S.; Zarei-Hanzaki, A.

    2010-03-11

    Al/Al{sub 2}O{sub 3} nano-composite surface layer was fabricated via friction stir processing technique. Commercial AA6082 aluminium alloy extruded bar and nanometric Al{sub 2}O{sub 3} powder were subjected to friction stir processing at a substrate travel speed of 80 mm/min and a tool rotation speed of 1000 rpm using a hardened H-13 tool steel. The grain structure and reinforcement particles were investigated by using optical and scanning electron microscopy. Results show that Al{sub 2}O{sub 3} particles can be more uniformly dispread in aluminium substrate by increasing the number of processing passes. Also, hardness enhancement of the nano-composite surface layer was found. This is attributed to uniform dispersion of Al{sub 2}O{sub 3} particles.

  19. Does aluminium bind to histidine? An NMR investigation of amyloid β12 and amyloid β16 fragments.

    PubMed

    Narayan, Priya; Krishnarjuna, Bankala; Vishwanathan, Vinaya; Jagadeesh Kumar, Dasappa; Babu, Sudhir; Ramanathan, Krishna Venkatachala; Easwaran, Kalpathy Ramaier Katchap; Nagendra, Holenarasipur Gundurao; Raghothama, Srinivasarao

    2013-07-01

    Aluminium and zinc are known to be the major triggering agents for aggregation of amyloid peptides leading to plaque formation in Alzheimer's disease. While zinc binding to histidine in Aβ (amyloid β) fragments has been implicated as responsible for aggregation, not much information is available on the interaction of aluminium with histidine. In the NMR study of the N-terminal Aβ fragments, DAEFRHDSGYEV (Aβ12) and DAEFRHDSGYEVHHQK (Aβ16) presented here, the interactions of the fragments with aluminium have been investigated. Significant chemical shifts were observed for few residues near the C-terminus when aluminium chloride was titrated with Aβ12 and Aβ16 peptides. Surprisingly, it is nonhistidine residues which seem to be involved in aluminium binding. Based on NMR constrained structure obtained by molecular modelling, aluminium-binding pockets in Aβ12 were around charged residues such as Asp, Glu. The results are discussed in terms of native structure propagation, and the relevance of histidine residues in the sequences for metal-binding interactions. We expect that the study of such short amyloid peptide fragments will not only provide clues for plaque formation in aggregated conditions but also facilitate design of potential drugs for these targets. © 2013 John Wiley & Sons A/S.

  20. Aspects of fabrication aluminium matrix heterophase composites by suspension method

    NASA Astrophysics Data System (ADS)

    Dolata, A. J.; Dyzia, M.

    2012-05-01

    Composites with an aluminium alloy matrix (AlMMC) exhibit several advantageous properties such as good strength, stiffness, low density, resistance and dimensional stability to elevated temperatures, good thermal expansion coefficient and particularly high resistance to friction wear. Therefore such composites are more and more used in modern engineering constructions. Composites reinforced with hard ceramic particles (Al2O3, SiC) are gradually being implemented into production in automotive or aircraft industries. Another application of AlMMC is in the electronics industry, where the dimensional stability and capacity to absorb and remove heat is used in radiators. However the main problems are still: a reduction of production costs, developing methods of composite material tests and final product quality assessment, standardisation, development of recycling and mechanical processing methods. AlMMC production technologies, based on liquid-phase methods, and the shaping of products by casting methods, belong to the cheapest production methods. Application of a suspension method for the production of composites with heterophase reinforcement may turn out to be a new material and technological solution. The article presents the material and technological aspects of the transfer procedures for the production of composite suspensions from laboratory scale to a semi-industrial scale.

  1. [Aluminium content in foods with aluminium-containing food additives].

    PubMed

    Ogimoto, Mami; Suzuki, Kumi; Kabashima, Junichiro; Nakazato, Mitsuo; Uematsu, Yoko

    2012-01-01

    The aluminium (Al) content of 105 samples, including bakery products made with baking powder, agricultural products and seafoods treated with alum, was investigated. The amounts of Al detected were as follows (limit of quantification: 0.01 mg/g): 0.01-0.37 mg/g in 26 of 57 bakery products, 0.22-0.57 mg/g in 3 of 6 powder mixes, 0.01-0.05 mg/g in all three agricultural products examined, 0.03-0.90 mg/g in 4 of 6 seafood samples, 0.01-0.03 mg/g in 3 of 11 samples of instant noodles, 0.04-0.14 mg/g in 3 of 4 samples of vermicelli, 0.01 mg/g in 1 of 16 soybean products, but none in soybeans. Amounts equivalent to the PTWI of a 16 kg infant were detected in two samples of bakery products, two samples of powder mixes and one sample of salted jellyfish, if each sample was taken once a week. These results suggest that certain foods, depending on the product and the intake, might exceed the PTWI of children, especially infants.

  2. The chemical transformation of copper in aluminium oxide during heating

    NASA Astrophysics Data System (ADS)

    Wei, Yu-Ling; Wang, Hsi-Chih; Yang, Yaw-Wen; Lee, Jyh-Fu

    2004-08-01

    Thermal treatment has recently been emerging as a promising environmental technology to stabilize heavy metal-containing industrial sludge. This study used x-ray absorption spectroscopy (XAS) to identify the species of copper contaminant contained in aluminium oxide that is one of the main compositions of sludge and soil. Results indicate that the originally loaded copper nitrate was transformed into Cu(OH)2 after its dissolution in the aluminium oxide slurry. Extended x-ray absorption fine structure (EXAFS) fitting indicates that the main copper species in the 105 °C dried Cu(NO3)2-loaded aluminium oxide is Cu(OH)2 which accounts for ca. 75% of the loaded copper. After thermal treatment at 500 °C for 1 h, both x-ray absorption near-edge structure (XANES) and EXAFS fitting results show that CuO became the prevailing copper species (about 85%); the rest of the copper consisted of {\\sim }15{%} Cu(OH)2 and a negligible amount of Cu(NO3)2. It was found that most Cu(OH)2 and Cu(NO3)2 decomposed into CuO at 500 °C. Further increase of the heating temperature from 500 to 900 °C resulted in more decomposition of Cu(OH)2 and Cu(NO3)2; therefore CuO remained as the main copper species. However, it was suggested that about 15% of the loaded copper formed CuAl2O4 through the chemical reaction between CuO and Al2O3 at 900 °C.

  3. Aluminium-induced electrophysiological, biochemical and cognitive modifications in the hippocampus of aging rats.

    PubMed

    Sethi, Pallavi; Jyoti, Amar; Singh, Rameshwar; Hussain, Ejaz; Sharma, Deepak

    2008-11-01

    Aluminium (Al) is the most abundant metal known for its neurotoxicity in humans. It gains easy access to the central nervous system under normal physiological conditions and accumulates in different brain regions. It has been reported to be involved in the etiology of several neurodegenerative diseases. In this study, we have investigated the effects of long-term intake of aluminium chloride (AlCl(3)) on the electrophysiological, behavioral, biochemical and histochemical functions of hippocampus. Wistar rats were fed with AlCl(3) at a dose of 50mg/(kgday) for 6 months in the drinking water. Effect of long-term intake of Al was studied on the electrical activity of hippocampal CA1 and CA3 regions in brain of young and old rats. Morris water maze and open field tests were performed to investigate the cognitive and anxiety status of aging rats intoxicated with aluminium. Our studies indicate that aluminium intake results in increased multiple unit activity and adversely affect the spatial learning and memory abilities of both young and old rats. Aluminium intake also inflicts oxidative stress-related damage to lipids, membrane associated proteins (Na-K ATPase and PKC) and endogenous antioxidant enzyme activity (SOD, GPx and GST). The compromised antioxidant system might be playing a crucial role in the observed Al-induced alterations. We have observed that the magnitude of AlCl(3)-induced alteration was considerably higher in younger group of rats compared to older group. In conclusion, the results of the present study implicates that aluminium treatment exerts its neurotoxic effects by altering the overall physiology of brain, and the induced changes were strongly correlated with each other.

  4. Zinc modulates aluminium-induced oxidative stress and cellular injury in rat brain.

    PubMed

    Singla, Neha; Dhawan, D K

    2014-10-01

    Dysregulation of metal homeostasis has been perceived as one of the key factors in the progression of neurodegeneration. Aluminium (Al) has been considered as a major risk factor, which is linked to several neurodegenerative diseases, especially Alzheimer's disease, whereas zinc (Zn) has been reported as a vital dietary element, which regulates a number of physiological processes in central nervous system. The present study was conducted to explore the protective potential of zinc, if any, in ameliorating neurotoxicity induced by aluminium. Male Sprague Dawley rats received either aluminium chloride (AlCl3) orally (100 mg kg(-1) b.wt. per day), zinc sulphate (ZnSO4) at a dose level of 227 mg L(-1) in drinking water or combined treatment of aluminium and zinc for 8 weeks. Aluminium treatment significantly elevated the levels of lipid peroxidation and reactive oxygen species as well as the activities of catalase, superoxide dismutase and glutathione reductase, which however were decreased following Zn co-treatment of Al-treated rats. In contrast, Al treatment decreased the activities of glutathione-S-transferase as well as the levels of reduced glutathione, oxidised glutathione and total glutathione, but co-administration of Zn to Al-treated animals increased these levels. Furthermore, Al treatment caused a significant increase in the levels of Fe and Mn as well as of Al but decreased the Zn and metallothionein levels. In the Zn-supplemented animals, the levels of Al, Fe, Mn were found to be significantly decreased, whereas the levels of metallothionein as well as Zn were increased. Moreover, histopathological alterations such as vacuolization and loss of Purkinje cells were also evident following Al treatment, which showed improvement upon Zn supplementation. Therefore, zinc has the potential to alleviate aluminium-induced neurodegeneration.

  5. Determination of heavy metal toxicity of finished leather solid waste.

    PubMed

    Aslan, Ahmet

    2009-05-01

    This paper investigates the toxicity in leather products of heavy metals known to be detrimental to the ecosystem. Heavy metal concentrations in leather samples were identified with ICP-OES, and toxicity was determined using a MetPLATE bioassay. Chromium and aluminium were found to constitute 98% of the total concentration of heavy metals in finished leather tanned with chromium and aluminium salts, while in some vegetable-tanned leather, zirconium was the only heavy metal identified. The average inhibition values for chromium, aluminium and vegetable tanned leather were 98.08%, 97.04% and 62.36%, respectively.

  6. Aluminium recovery vs. hydrogen production as resource recovery options for fine MSWI bottom ash fraction.

    PubMed

    Biganzoli, Laura; Ilyas, Aamir; Praagh, Martijn van; Persson, Kenneth M; Grosso, Mario

    2013-05-01

    Waste incineration bottom ash fine fraction contains a significant amount of aluminium, but previous works have shown that current recovery options based on standard on-step Eddy Current Separation (ECS) have limited efficiency. In this paper, we evaluated the improvement in the efficiency of ECS by using an additional step of crushing and sieving. The efficiency of metallic Al recovery was quantified by measuring hydrogen gas production. The ash samples were also tested for total aluminium content with X-ray fluorescence spectroscopy (XRF). As an alternative to material recovery, we also investigated the possibility to convert residual metallic Al into useful energy, promoting H2 gas production by reacting metallic Al with water at high pH. The results show that the total aluminium concentration in the <4 mm bottom ash fraction is on average 8% of the weight of the dry ash, with less than 15% of it being present in the metallic form. Of this latter, only 21% can be potentially recovered with ECS combined with crushing and sieving stages and subsequently recycled. For hydrogen production, using 10MNaOH at 1L/S ratio results in the release of 6-11l of H2 gas for each kilogram of fine dry ash, equivalent to an energy potential of 118 kJ.

  7. Investigation of the formability of aluminium alloys at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Tisza, M.; Budai, D.; Kovács, P. Z.; Lukács, Zs

    2016-11-01

    Aluminium alloys are more and more widely applied in car body manufacturing. Increasing the formability of aluminium alloys are one of the most relevant tasks in todays’ research topics. In this paper, the focus will be on the investigation of the formability of aluminium alloys concerning those material grades that are more widely applied in the automotive industry including the 5xxx and 6xxx aluminium alloy series. Recently, besides the cold forming of aluminium sheets the forming of aluminium alloys at elevated temperatures became a hot research topic, too. In our experimental investigations, we mostly examined the EN AW 5754 and EN AW 6082 aluminium alloys at elevated temperatures. We analysed the effect of various material and process parameters (e.g. temperature, sheet thickness) on the formability of aluminium alloys with particular emphasis on the Forming Limit Diagrams at elevated temperatures in order to find the optimum forming conditions for these alloys.

  8. Molten Metal Explosions are Still Occurring

    DTIC Science & Technology

    2009-02-01

    recycling plant. Another recent 665 Light Metals 2009 Edited by: Geoff Bearne TMS (The Minerals, Metals & Materials Society), 2009 catastrophic...occurred recently in a recycling plant casting small ingots over a water tank. An explosion occurred that extensively damaged the machine and...have been held in Europe as a joint activity with the European Aluminium Association (EAA) and the International Aluminium Institute (IAI). These

  9. Performance of commercial aluminium alloys as anodes in gelled electrolyte aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Pino, M.; Chacón, J.; Fatás, E.; Ocón, P.

    2015-12-01

    The evaluation of commercial aluminium alloys, namely, Al2024, Al7475 and Al1085, for Al-air batteries is performed. Pure Al cladded Al2024 and Al7475 are also evaluated. Current rates from 0.8 mA cm-2 to 8.6 mA cm-2 are measured in a gel Al-air cell composed of the commercial alloy sample, a commercial air-cathode and an easily synthesizable gelled alkaline electrolyte. The influence of the alloying elements and the addition to the electrolyte of ZnO and ZnCl2, as corrosion inhibitors is studied and analysed via EDX/SEM. Specific capacities of up to 426 mAh/g are obtained with notably flat potential discharges of 1.3-1.4 V. The competition between self-corrosion and oxidation reactions is also discussed, as well as the influence of the current applied on that process. Al7475 is determined to have the best behaviour as anode in Al-air primary batteries, and cladding process is found to be an extra protection against corrosion at low current discharges. Conversely, Al1085 provided worse results because of an unfavourable metallic composition.

  10. 3D printing of high-strength aluminium alloys.

    PubMed

    Martin, John H; Yahata, Brennan D; Hundley, Jacob M; Mayer, Justin A; Schaedler, Tobias A; Pollock, Tresa M

    2017-09-20

    Metal-based additive manufacturing, or three-dimensional (3D) printing, is a potentially disruptive technology across multiple industries, including the aerospace, biomedical and automotive industries. Building up metal components layer by layer increases design freedom and manufacturing flexibility, thereby enabling complex geometries, increased product customization and shorter time to market, while eliminating traditional economy-of-scale constraints. However, currently only a few alloys, the most relevant being AlSi10Mg, TiAl6V4, CoCr and Inconel 718, can be reliably printed; the vast majority of the more than 5,500 alloys in use today cannot be additively manufactured because the melting and solidification dynamics during the printing process lead to intolerable microstructures with large columnar grains and periodic cracks. Here we demonstrate that these issues can be resolved by introducing nanoparticles of nucleants that control solidification during additive manufacturing. We selected the nucleants on the basis of crystallographic information and assembled them onto 7075 and 6061 series aluminium alloy powders. After functionalization with the nucleants, we found that these high-strength aluminium alloys, which were previously incompatible with additive manufacturing, could be processed successfully using selective laser melting. Crack-free, equiaxed (that is, with grains roughly equal in length, width and height), fine-grained microstructures were achieved, resulting in material strengths comparable to that of wrought material. Our approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines. It thus provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting, and will enable additive manufacturing of other alloy systems, such as non-weldable nickel

  11. Analysis of aluminium in rat following administration of allergen immunotherapy using either aluminium or microcrystalline-tyrosine-based adjuvants.

    PubMed

    McDougall, Stuart A; Heath, Matthew D; Kramer, Matthias F; Skinner, Murray A

    2016-03-01

    Investigation into the absorption, distribution and elimination of aluminium in rat after subcutaneous aluminium adjuvant formulation administration using ICP-MS is described. Assays were verified under the principles of a tiered approach. There was no evidence of systemic exposure of aluminium, in brain or in kidney. Extensive and persistent retention of aluminium at the dose site was observed for at least 180 days after administration. This is the first published work that has quantified aluminium adjuvant retention based on the quantity of aluminium delivered in a typical allergy immunotherapy course. The results indicate that the repeated administration of aluminium-containing adjuvants will likely contribute directly and significantly to an individual's body burden of aluminium.

  12. [Aluminium allergy and granulomas induced by vaccinations for children].

    PubMed

    Andersen, Rosa Marie Ø; Zachariae, Claus; Johansen, Jeanne Duus

    2015-04-27

    Vaccination with aluminium-adsorbed vaccines can induce aluminium allergy with persistent itching subcutaneous nodules at the injection site – vaccination granulomas. In this article we give an overview of childhood aluminium-adsorbed vaccines available in Denmark. Through literature studies we examine the incidence, the symptoms and the prognosis for the vaccination granulomas and the allergy. Finally we discuss the status in Denmark.

  13. Characterisation of secondary products of uranium-aluminium material test reactor fuel element corrosion in repository-relevant brine

    NASA Astrophysics Data System (ADS)

    Mazeina, L.; Curtius, H.; Fachinger, J.; Odoj, R.

    2003-11-01

    Corrosion experiments with non-irradiated uranium-aluminium fuel elements were performed in MgCl 2-rich brine. Distribution analysis of corroded material showed that about 90% of the initially available metallic U and Al precipitated. Investigations of these secondary corrosion products provided that one component is a Mg-Al-Cl-hydrotalcite.

  14. Aluminium and the human breast.

    PubMed

    Darbre, P D

    2016-06-01

    The human population is exposed to aluminium (Al) from diet, antacids and vaccine adjuvants, but frequent application of Al-based salts to the underarm as antiperspirant adds a high additional exposure directly to the local area of the human breast. Coincidentally the upper outer quadrant of the breast is where there is also a disproportionately high incidence of breast cysts and breast cancer. Al has been measured in human breast tissues/fluids at higher levels than in blood, and experimental evidence suggests that at physiologically relevant concentrations, Al can adversely impact on human breast epithelial cell biology. Gross cystic breast disease is the most common benign disorder of the breast and evidence is presented that Al may be a causative factor in formation of breast cysts. Evidence is also reviewed that Al can enable the development of multiple hallmarks associated with cancer in breast cells, in particular that it can cause genomic instability and inappropriate proliferation in human breast epithelial cells, and can increase migration and invasion of human breast cancer cells. In addition, Al is a metalloestrogen and oestrogen is a risk factor for breast cancer known to influence multiple hallmarks. The microenvironment is established as another determinant of breast cancer development and Al has been shown to cause adverse alterations to the breast microenvironment. If current usage patterns of Al-based antiperspirant salts contribute to causation of breast cysts and breast cancer, then reduction in exposure would offer a strategy for prevention, and regulatory review is now justified. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Diamond grooving of rapidly solidified optical aluminium

    NASA Astrophysics Data System (ADS)

    Abou-El-Hossein, Khaled; Hsu, Wei-Yao; Ghobashy, Sameh; Cheng, Yuan-Chieh; Mkoko, Zwelinzima

    2015-10-01

    Traditional optical aluminium grades such as Al 6061 are intensively used for making optical components for applications ranging from mould insert fabrication to laser machine making. However, because of their irregular microstructure and relative inhomogeneity of material properties at micro scale, traditional optical aluminium may exhibit some difficulties when ultra-high precision diamond turned. Inhomogeneity and micro-variation in the material properties combined with uneven and coarse microstructure may cause unacceptable surface finish and accelerated tool wear, especially in grooving operation when the diamond tool edge is fully immersed in the material surface. Recently, new grades of optical aluminium that are featured by their ultra-fine microstructure and improved material properties have been developed to overcome the problem of high tool wear rates. The new aluminium grades have been developed using rapid solidification process which results in extremely small grain sizes combined with improved mechanical properties. The current study is concerned with investigating the performance of single-point diamond turning when grooving two grades of rapidly solidified aluminium (RSA) grades: RSA905 which is a high-alloyed aluminium grade and RSA443 which has a high silicon content. In this study, two series of experiments employed to create radial microgrooves on the two RSA grades. The surface roughness obtained on the groove surface is measured when different combinations of cutting parameters are used. Cutting speed is varied while feed rate and depth of cut were kept constant. The results show that groove surface roughness produced on RSA443 is higher than that obtained on RSA905. Also, the paper reports on the effect of cutting speed on surface roughness for each RSA grade.

  16. Reinforced structural plastics

    NASA Technical Reports Server (NTRS)

    Lubowitz, H. R.; Kendrick, W. P.; Jones, J. F.; Thorpe, R. S.; Burns, E. A. (Inventor)

    1972-01-01

    Reinforced polyimide structures are described. Reinforcing materials are impregnated with a suspension of polyimide prepolymer and bonded together by heat and pressure to form a cured, hard-reinforced, polyimide structure.

  17. Aluminium ring pulls: an invisible foreign body.

    PubMed Central

    Stewart, G D; Lakshmi, M V; Jackson, A

    1994-01-01

    The aluminium ring pulls associated with the latest designs of drinks cans can be relatively easily detached from their mounting on the top of the can and subsequently aspirated. Their small size predisposes them to lodge as foreign bodies (FBs) in the throat. The similarity of atomic number between soft tissue (7.5) and aluminium (13) makes detection of these FBs difficult on soft tissue radiography. If aspiration is suspected direct visualization and removal may be indicated even if radiography is negative. Images Fig. 1 Fig. 2 Fig. 3 PMID:7804592

  18. Analysis of wear properties of aluminium based journal bearing alloys with and without lubrication.

    NASA Astrophysics Data System (ADS)

    Mathavan, J. Joy; Patnaik, Amar

    2016-09-01

    Apart from classical bearing materials, Aluminium alloys are used as bearing materials these days because of their superior quality. In this analysis, new Aluminium based bearing materials, with filler metals Si, Ni, and Cr are prepared by metal mould casting in burnout furnace machine, and tribological properties of these alloys with and without lubrication were tested. The experiments for wear with lubrication are conducted on multiple specimen tester and experiments without lubrication is conducted on Pin on disk tribometer. The disc material used was SAE 1050 steel. Wear tests were conducted at a sliding speed of 0.785 m/s and at a normal load of 20 N. Coefficient of friction values, temperature changes and wear of the specimens were plotted on graph according to the above mentioned working conditions. Hardness and weight losses of the specimens were calculated. The obtained results demonstrate how the friction and wear properties of these samples have changed with the % addition of Silicon, Chromium and Nickel to the base metal aluminium.

  19. Fluence dependent electrical conductivity in aluminium thin films grown by infrared pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Rebollar, Esther; Martínez-Tong, Daniel E.; Sanz, Mikel; Oujja, Mohamed; Marco, José F.; Ezquerra, Tiberio A.; Castillejo, Marta

    2016-11-01

    We studied the effect of laser fluence on the morphology, composition, structure and electric conductivity of deposits generated by pulsed laser ablation of a metallic aluminium target in vacuum using a Q-switched Nd:YAG laser (1064 nm, 15 ns). Upon irradiation for one hour at a repetition rate of 10 Hz, a smooth layer of several tens of nanometres, as revealed by atomic force microscopy (AFM) was deposited on glass. Surface chemical composition was determined by X-ray photoelectron spectroscopy, and to study the conductivity of deposits both I-V curves and conductive-AFM measurements were performed. Irradiation at fluences around 2.7 J/cm2 resulted in deposition of amorphous aluminium oxide films. Differently, at higher fluences above 7 J/cm2, the films are constituted by metallic aluminium. Optical emission spectroscopy revealed that highly ionized species are more abundant in the ablation plumes generated at higher fluences. The results demonstrate the possibility to control by PLD the metal or dielectric character of the films.

  20. Reinforced Carbon Nanotubes.

    DOEpatents

    Ren, Zhifen; Wen, Jian Guo; Lao, Jing Y.; Li, Wenzhi

    2005-06-28

    The present invention relates generally to reinforced carbon nanotubes, and more particularly to reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  1. Nanostructural hierarchy increases the strength of aluminium alloys.

    PubMed

    Liddicoat, Peter V; Liao, Xiao-Zhou; Zhao, Yonghao; Zhu, Yuntian; Murashkin, Maxim Y; Lavernia, Enrique J; Valiev, Ruslan Z; Ringer, Simon P

    2010-09-07

    Increasing the strength of metallic alloys while maintaining formability is an interesting challenge for enabling new generations of lightweight structures and technologies. In this paper, we engineer aluminium alloys to contain a hierarchy of nanostructures and possess mechanical properties that expand known performance boundaries-an aerospace-grade 7075 alloy exhibits a yield strength and uniform elongation approaching 1 GPa and 5%, respectively. The nanostructural architecture was observed using novel high-resolution microscopy techniques and comprises a solid solution, free of precipitation, featuring (i) a high density of dislocations, (ii) subnanometre intragranular solute clusters, (iii) two geometries of nanometre-scale intergranular solute structures and (iv) grain sizes tens of nanometres in diameter. Our results demonstrate that this novel architecture offers a design pathway towards a new generation of super-strong materials with new regimes of property-performance space.

  2. Microstructure characterization of hypereutectoid aluminium bronze composite coating

    NASA Astrophysics Data System (ADS)

    Kucita, P.; Wang, S. C.; Li, W. S.; Cook, R. B.; Starink, M. J.

    2015-10-01

    Hypereutectoid aluminium bronze coating was deposited onto an E.N. 10503 steel substrate using plasma transferred arc welding (PTA). Microstructure characterisation of the coating and a section near the steel substrate joint was carried out using SEM, EBSD, EDS in conjunction with XRD and depth-sensing nano-indentation. The constituent phases in the coating were identified as: martensitic Cu3Al β1' phase, solid solution of Al in Cu α phase and the intermetallic Fe3Al κ1 phase. The region near the steel substrate was characterised by high hardness, large grains and presence of Cu precipitates. No cracks were observed in this region. The coating has high hardness of 4.9GPa and Young's modulus of 121.7GPa. This is attributed to homogeneous distribution of sub microns size Fe3Al intermetallic phase. The implications of the coating to the engineering application of sheet metal forming are discussed.

  3. Fabrication of super slippery sheet-layered and porous anodic aluminium oxide surfaces and its anticorrosion property

    NASA Astrophysics Data System (ADS)

    Song, Tingting; Liu, Qi; Liu, Jingyuan; Yang, Wanlu; Chen, Rongrong; Jing, Xiaoyan; Takahashi, Kazunobu; Wang, Jun

    2015-11-01

    Inspired by natural plants such as Nepenthes pitcher plants, super slippery surfaces have been developed to improve the attributes of repellent surfaces. In this report, super slippery porous anodic aluminium oxide (AAO) surfaces have fabricated by a simple and reproducible method. Firstly, the aluminium substrates were treated by an anodic process producing micro-nano structured sheet-layered pores, and then immersed in Methyl Silicone Oil, Fluororalkylsilane (FAS) and DuPont Krytox, respectively, generating super slippery surfaces. Such a good material with excellent anti-corrosion property through a simple and repeatable method may be potential candidates for metallic application in anti-corrosion and extreme environment.

  4. Investigation into the Mechanical Properties and Fracture Behavior of A356 Aluminum Alloy-Based ZrO2-Particle-Reinforced Metal-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Abdizadeh, H.; Baghchesara, M. A.

    2013-11-01

    In the present study, an investigation has been carried out into the influence of ZrO2 content and casting temperature on the mechanical properties and fracture behavior of A356 Al/ZrO2 composites. A356 aluminum alloy matrix composites reinforced with 5, 10 and 15 vol.% ZrO2 were fabricated at 750, 850, and 95 0°C via the stir-casting method. Based on the results obtained, the optimum amount of reinforcement and casting temperature were determined by evaluating the density and mechanical properties of the composites through the use of hardness and tensile tests. The fracture surfaces of composite specimens were also studied to identify the main fracture mechanisms of the composites. The results obtained indicated that all samples fractured due to the interdendritic cracking of the matrix alloy. Reinforcing the Al matrix alloy with ZrO2 particles increased the hardness and ultimate tensile strength of the alloy to the maximum values of 70 BHN and 232 MPa, respectively. The best mechanical properties were obtained for the specimens with 15 vol.% of ZrO2 produced at 75 0°C.

  5. Activation of carbon dioxide and carbon monoxide at aluminium surfaces

    NASA Astrophysics Data System (ADS)

    Carley, A. F.; Gallagher, D. E.; Roberts, M. W.

    Dynamic photoelectron spectroscopy has shown that the adsorption of carbon dioxide at aluminium surfaces is followed by a dissociative reaction leading to the formation of a metastable surface carbonate in the temperature range 80-120 K. The carbonate is subsequently reduced (120-475 K) (deoxygenated) to generate two different forms of surface carbon, one carbidic C δ- (a) and the other less ionic C 0(a) possibly graphitic. Quantification of the C(ls) and O(ls) spectra enable each of the species O 2-(a), CO 32-(a), C δ-(a) and C 0 (a) to be distinguished and their surface concentrations calculated over a wide temperature range. The temperature and pressure dependences of CO 2 reduction suggest the participation of a precursor dimer state (CO 2---CO 2)(a) which then disproportionates. Furthermore studies of the coadsorption of ammonia and carbon dioxide in analogous systems indicate that a discrete and specifically reactive species, O - (s), is formed during carbonate formation. The results are discussed in the context of recent theoretical studies of F REUND and M ESSMER and also comparisons made with metal-CO 2 complexes. The facile surface reduction of CO 2 via a surface carbonate suggested that a possible route to carbon-oxygen bond cleavage in carbon monoxide interaction with an sp-metal surface (aluminium) was a step-wise oxidation to CO 2 leading to surface carbonate which was then readily deoxygenated. Studies of carbon monoxide: dioxygen mixtures (100: I) confirmed that this indeed occurred. A modified E LEY-R IDEAL type mechanism involving a hopping "non-adsorbed" CO molecule and a short-lived surface O - (s) species is suggested.

  6. Aluminium in over-the-counter drugs: risks outweigh benefits?

    PubMed

    Reinke, Claudia M; Breitkreutz, Jörg; Leuenberger, Hans

    2003-01-01

    In the early 1970s, aluminium toxicity was first implicated in the pathogenesis of clinical disorders in patients with chronic renal failure involving bone (renal osteomalacia) or brain tissue (dialysis encephalopathy). Before that time the toxic effects of aluminium ingestion were not considered to be a major concern because absorption seemed unlikely to occur. Meanwhile, aluminium toxicity has been investigated in countless epidemiological and clinical studies as well as in animal experiments and many papers have been published on the subject. It is now commonly acknowledged that aluminium toxicity can be induced by infusion of aluminium-contaminated dialysis fluids, by parenteral nutrition solutions, and by oral exposure as a result of aluminium-containing pharmaceutical products such as aluminium-based phosphate binders or antacid intake. Over-the-counter antacids are the most important source for human aluminium exposure from a quantitative point of view. However, aluminium can act as a powerful neurological toxicant and provoke embryonic and fetal toxic effects in animals and humans after gestational exposure. Despite these facts, the patient information leaflets from European antacids that are available OTC show substantial differences regarding warnings from aluminium toxicity. It seems advisable that all patients should receive the same information on aluminium toxicity from patient information leaflets, in particular with regard to the increased absorption through concomitant administration with citrate-containing beverages and the use of such antacids during pregnancy.

  7. The interrelationship between silicon and aluminium in the biological effects of aluminium.

    PubMed

    Birchall, J D

    1992-01-01

    It is well established that aluminium is toxic at the cellular level and that pathological symptoms follow its entry into organisms (plants, fish, humans) when the normal exclusion mechanisms fail or are bypassed, as for example in renal dialysis. The present debate concerns the availability of environmental aluminium and the possible impact of its slow and insidious absorption and accumulation in vulnerable individuals. Silicon is considered as essential element but the mechanisms underlying its essentiality remain unknown and binding of the element (through oxygen) with biomolecules has not been demonstrated. There is, however, a unique affinity between aluminium and silicon, not only in solid state chemistry ([AlO4]5- and [SiO4]4- are isostructural), but also in aqueous solution chemistry as illustrated by the synthesis of zeolite from aluminate and silicate anions at high pH and under hydrothermal conditions. This affinity exists also in very dilute solution (< 10(-5) M) at near-neutral pH when hydroxyalumino-silicate species form. These species mediate the bioavailability and cellular toxicity of aluminium. The observed effects of silicon deficiency can be attributed to consequential aluminium availability. There are important implications for the epidemiology and biochemistry of aluminium-induced disorders and any consideration of one element must include the other.

  8. Molecular breeding of cereals for aluminium resistance

    USDA-ARS?s Scientific Manuscript database

    Aluminium (Al3+) toxicity is the primary factor limiting crop production on acidic soils worldwide. In addition to an application of lime for soil amelioration, Al3+ resistant plant varieties have been deployed to raise productivity on such hostile soils. This has been possible due to the exploita...

  9. Indentation of aluminium foam at low velocity

    NASA Astrophysics Data System (ADS)

    Shi, Xiaopeng; Miao, Yinggang; Liu, Shuangyan; Li, Yulong; Lu, Guoxing

    2015-09-01

    The indentation behaviour of aluminium foams at low velocity (10 m/s ˜ 30 m/s) was investigated both in experiments and numerical simulation in this paper. A flat-ended indenter was used and the force-displacement history was recorded. The Split Hopkinson Pressure bar was used to obtain the indentation velocity and forces in the dynamic experiments. Because of the low strength of the aluminium foam, PMMA bar was used, and the experimental data were corrected using Bacon's method. The energy absorption characteristics varying with impact velocity were then obtained. It was found that the energy absorption ability of aluminium foam gradually increases in the quasi-static regime and shows a significant increase at ˜10 m/s velocity. Numerical simulation was also conducted to investigate this process. A 3D Voronoi model was used and models with different relative densities were investigated as well as those with different failure strain. The indentation energy increases with both the relative density and failure strain. The analysis of the FE model implies that the significant change in energy absorption ability of aluminium foam in indentation at ˜10 m/s velocity may be caused by plastic wave effect.

  10. Toxicity of dissolved and precipitated aluminium to marine diatoms.

    PubMed

    Gillmore, Megan L; Golding, Lisa A; Angel, Brad M; Adams, Merrin S; Jolley, Dianne F

    2016-05-01

    Localised aluminium contamination can lead to high concentrations in coastal waters, which have the potential for adverse effects on aquatic organisms. This research investigated the toxicity of 72-h exposures of aluminium to three marine diatoms (Ceratoneis closterium (formerly Nitzschia closterium), Minutocellus polymorphus and Phaeodactylum tricornutum) by measuring population growth rate inhibition and cell membrane damage (SYTOX Green) as endpoints. Toxicity was correlated to the time-averaged concentrations of different aluminium size-fractions, operationally defined as <0.025μm filtered, <0.45μm filtered (dissolved) and unfiltered (total) present in solution over the 72-h bioassay. The chronic population growth rate inhibition after aluminium exposure varied between diatom species. C. closterium was the most sensitive species (10% inhibition of growth rate (72-h IC10) of 80 (55-100)μg Al/L (95% confidence limits)) while M. polymorphus (540 (460-600)μg Al/L) and P. tricornutum (2100 (2000-2200)μg Al/L) were less sensitive (based on measured total aluminium). Dissolved aluminium was the primary contributor to toxicity in C. closterium, while a combination of dissolved and precipitated aluminium forms contributed to toxicity in M. polymorphus. In contrast, aluminium toxicity to the most tolerant diatom P. tricornutum was due predominantly to precipitated aluminium. Preliminary investigations revealed the sensitivity of C. closterium and M. polymorphus to aluminium was influenced by initial cell density with aluminium toxicity significantly (p<0.05) increasing with initial cell density from 10(3) to 10(5)cells/mL. No effects on plasma membrane permeability were observed for any of the three diatoms suggesting that mechanisms of aluminium toxicity to diatoms do not involve compromising the plasma membrane. These results indicate that marine diatoms have a broad range in sensitivity to aluminium with toxic mechanisms related to both dissolved and precipitated

  11. Aluminum Metal Matrix Composites

    SciTech Connect

    Hunt, Warren; Herling, Darrell R.

    2004-02-01

    Metal matrix composites comprise a relatively wide range of materials defined by the metal matrix, reinforcement type, and reinforcement geometry. In the area of the matrix, most metallic systems have been explored for use in metal matrix composites, including Al, Be, Mg, Ti, Fe, Ni, Co, and Ag. By far, the largest usage is in aluminum matrix composites. From a reinforcement perspective, the materials used are typically ceramics since they provide a very desirable combination of stiffness, strength, and relatively low density. Candidate reinforcement materials include SiC, Al2O3, B4C, TiC, TiB2, graphite, and a number of other ceramics. In addition, there has been work on metallic materials as reinforcements, notably W and steel fibers. The morphology of the reinforcement material is another variable of importance in metal matrix composites. The three major classes of reinforcement morphology are continuous fiber, chopped fiber or whisker, and particulate. Typically, the selection of the reinforcement morphology is determined by the desired property/cost combination. Generally, continuous fiber reinforced MMCs provide the highest properties in the direction of the fiber orientation but are the most expensive. Chopped fiber and whisker reinforced materials can produce significant property improvements in the plane or direction of their orientation, at somewhat lower cost. Particulates provide a comparatively more moderate but isotropic increase in properties and are typically available at the lowest cost. By adding to the three variables of metallic matrix, reinforcement material, and reinforcement morphology the further options of reinforcement volume fraction, orientation, and matrix alloy composition and heat treatment, it is apparent that there is a very wide range of available material combinations and resultant properties. This paper will focus on how MMCs have been applied in specific application areas.

  12. Bone aluminium in haemodialysed patients and in rats injected with aluminium chloride: relationship to impaired bone mineralisation.

    PubMed Central

    Ellis, H A; McCarthy, J H; Herrington, J

    1979-01-01

    Iliac bone aluminium was determined by neutron activation analysis in 34 patients with chronic renal failure and in eight control subjects. In 17 patients treated by haemodialysis there was a significant increase in the amount of aluminium (mean +/- SE = 152 +/- 30 ppm bone ash). In eight patients treated by haemodialysis and subsequent renal transplantation, bone aluminium was still significantly increased (92 +/- 4.5 ppm bone ash) but was less than in the haemodialysed patients. In some patients aluminium persisted in bone for many years after successful renal transplantation. There was no relationship between hyperparathyroidism and bone aluminium. Although no statistically significant relationship was found between the mineralisation status of bone and bone aluminium, patients dialysed for the longest periods tended to be those with the highest levels of aluminium, osteomalacia, and dialysis encephalopathy. In 20 rats given daily intraperitoneal injections of aluminium chloride for periods of up to three months, there was accumulation of aluminium in bone (163 +/- 9 ppm ash) to levels comparable to those obtained in the dialysis patients, and after about eight weeks osteomalacia developed. The increased bone aluminium and osteomalacia persisted after injections had been stopped for up to 49 days, although endochondral ossification was restored to normal. As a working hypothesis it is suggested that aluminium retained in the bone of the dialysis patients and the experimental animals interferes with normal mineralisation. Images Fig. 5 Fig. 6 PMID:389958

  13. Aluminium, iron, zinc and copper influence the in vitro formation of amyloid fibrils of Abeta42 in a manner which may have consequences for metal chelation therapy in Alzheimer's disease.

    PubMed

    House, Emily; Collingwood, Joanna; Khan, Ayesha; Korchazkina, Olga; Berthon, Guy; Exley, Christopher

    2004-06-01

    Metals are found associated with beta-pleated sheets of Abeta42 in vivo and may be involved in their formation. Metal chelation has been proposed as a therapy for Alzheimer's disease on the basis that it may safely dissolve precipitated Abeta peptides. We have followed fibrillisation of Abeta42 in the presence of an additional metal ion (Al(III), Fe(III), Zn(II), Cu(II)) over a period of 32 weeks and we have investigated the dissolution of these aged peptide aggregates in the presence of both desferrioxamine (DFO) and ethylenediaminetetraacetic acid (EDTA). Abeta42 either alone or in the presence of Al(III) or Fe(III) formed beta-pleated sheets of plaque-like amyloids which were dissolved upon incubation with either chelator. Zn(II) inhibited whilst Cu(II) prevented the formation of beta-pleated sheets of Abeta42and neither of these influences were affected by incubation of the aged peptide aggregates with either DFO or EDTA. Freshly prepared solutions of Abeta42 either alone or in the presence of added Al(III) or Fe(III) did not form beta-pleated amyloid in the presence of DFO when incubated for up to 8 weeks. EDTA did not prevent beta-pleated amyloid formation in the same treatments and promoted beta-pleated amyloid formation in the presence of either Zn(II) or Cu(II). The presence of significant concentrations of Al(III) and Fe(III) as contaminants of 'Abeta42 only' preparations suggested that both of these metals were involved in either triggering the formation or stabilising the structure of beta-pleated amyloid. If the formation of such amyloid is critical to the aetiology of AD then the chelation of Al(III) and Fe(III) may prove to be a protective mechanism whilst the chelation of Cu(II) and Zn(II) without also chelating Al(III) and Fe(III) might actually exacerbate the condition.

  14. Comparative studies of thin film growth on aluminium by AFM, TEM and GDOES characterization

    NASA Astrophysics Data System (ADS)

    Qi, Jiantao; Thompson, George E.

    2016-07-01

    In this present study, comparative studies of trivalent chromium conversion coating formation, associated with aluminium dissolution process, have been investigated using atomic force microscopy (AFM), transmission electron microscopy (TEM) and glow-discharge optical emission spectroscopy (GDOES). High-resolution electron micrographs revealed the evident and uniform coating initiation on the whole surface after conversion treatment for only 30 s, although a network of metal ridges was created by HF etching pre-treatment. In terms of conversion treatment process on electropolished aluminium, constant kinetics of coating growth, ∼0.30 ± 0.2 nm/s, were found after the prolonged conversion treatment for 600 s. The availability of electrolyte anions for coating deposition determined the growth process. Simultaneously, a proceeding process of aluminium dissolution during conversion treatment, of ∼0.11 ± 0.02 nm/s, was found for the first time, indicating constant kinetics of anodic reactions. The distinct process of aluminium consumption was assigned with loss of corrosion protection of the deposited coating material as evidenced in the electrochemical impedance spectroscopy. Based on the present data, a new mechanism of coating growth on aluminium was proposed, and it consisted of an activation period (0-30 s), a linear growth period (0.30 nm/s, up for 600 s) and limited growth period (0.17 nm/s, 600-1200 s). In addition, the air-drying post-treatment and a high-vacuum environment in the microscope revealed a coating shrinkage, especially in the coatings after conversion treatments for longer time.

  15. Reducing Behavior through Reinforcement.

    ERIC Educational Resources Information Center

    Deitz, Diane E. D.; Repp, Alan C.

    1983-01-01

    The use of reinforcement to reduce inappropriate behaviors of mentally retarded and emotionally disturbed students may involve the following procedures: differential reinforcement of low rates of responding (DRL), the differential reinforcement of response omission (DRO), and the differential reinforcement of incompatible (DRI) or alternative…

  16. The Reinforcement Hierarchy

    ERIC Educational Resources Information Center

    Forness, Steven R.

    1973-01-01

    Reinforcement hierarchy implies movement along a continuum from top to bottom, from primitive levels of reinforcement to more sophisticated levels. Unless it is immediately obvious that a child cannot function without the use of lower-order reinforcers, we should approach him as though he responds to topmost reinforcers until he demonstrates…

  17. Wax Reinforces Honeycomb During Machining

    NASA Technical Reports Server (NTRS)

    Towell, Timothy W.; Fahringer, David T.; Vasquez, Peter; Scheidegger, Alan P.

    1995-01-01

    Method of machining on conventional metal lathe devised for precise cutting of axisymmetric contours on honeycomb cores made of composite (matrix/fiber) materials. Wax filling reinforces honeycomb walls against bending and tearing while honeycomb being contoured on lathe. Innovative method of machining on lathe involves preparation in which honeycomb is placed in appropriate fixture and the fixture is then filled with molten water-soluble wax. Number of different commercial waxes have been tried.

  18. beta-Diketiminate aluminium complexes: synthesis, characterization and ring-opening polymerization of cyclic esters.

    PubMed

    Gong, Shaogang; Ma, Haiyan

    2008-07-07

    A series of aluminium alkyl complexes (BDI)AlEt(2) (3a-m) bearing symmetrical or unsymmetrical beta-diketiminate ligand (BDI) frameworks were obtained from the reaction of triethyl aluminium and the corresponding beta-diketimine. The monomeric structure of the aluminium complex 3k was confirmed by an X-ray diffraction study, which shows that the aluminium center is coordinated by both of the nitrogen donors of the chelating diketiminate ligand and the two ethyl groups in a distorted tetrahedral geometry. Attempt to synthesize beta-diketiminate aluminium alkoxide complexes by the reactions of monochloride complex "(BDI-2a)AlMeCl" (4) with alkali salts of 2-propanol gave unexpectedly an aluminoxane [(BDI-2a)AlMe](2)(micro-O) (7) as characterized by X-ray diffraction methods. Complexes 3a-m and [(2,6-(i)Pr(2)C(6)H(3)NCMe)(2)HC]AlEt(2) (8) were found to catalyze the ring-opening polymerization (ROP) of epsilon-caprolactone with moderate activities. The steric and electronic characteristics of the ancillary ligands have a significant influence on the polymerization performance of the corresponding aluminium complexes. The introduction of electron-donating substituents at the para-positions of the aryl rings in the ligand resulted in an apparent decrease in catalytic activity. Complex 3h showed the highest activity among the investigated aluminium complexes due to the high electrophilicity of the metal center induced by the meta-trifluoromethyl substituents on the aryl rings. The increase of steric hindrance of the ligand by introducing ortho-substituents onto the phenyl moieties also resulted in a decrease in the catalytic activity. Although the viscosity average molecular weights (M(eta)) of the obtained poly(caprolactone)s increased with the enhancement of monomer conversion, the ROPs of epsilon-caprolactone initiated by complexes 3a-m and 8 were not well-controlled, as judged from the broad molecular weight distributions (PDI = 1.66-3.74, M(w)/M(n)) of the obtained

  19. Research rocket test RR-1 (Black Brant VC) and RR-2 (Aerobee 170A): Investigations of the stability of bubbles in plain and fiber-reinforced metal and solidified in a near-zero-g environment

    NASA Technical Reports Server (NTRS)

    Yates, I. C.; Yost, V. H.

    1973-01-01

    The results of the first two of a series of research rocket flights are presented. The objectives of these flights were (1) to learn about the capabilities of these rockets, (2) to learn how to interface the payloads and rockets, and (3) to process some of the composite casting demonstration capsules intended originally for Apollo 15. The capsules contained experiments for investigating the stability of gas bubbles in plain and fiber-reinforced metal melted and solidified in a near-zero-g (0.0119g) environment. The characteristics of the two research rockets, an Aerobee 170A and a Black Brant VC, used to obtain the periods of near-zero-g and the temperature control unit used for processing the contents of the two experiment capsules are discussed.

  20. Effects of thermal cycling on density, elastic modulus, and vibrational damping in an alumina particulate reinforced aluminum metal matrix composite (Al{sub 2}O{sub 3p}/2014 Al)

    SciTech Connect

    Wolfenden, A.; Tang, H.H.; Chawla, K.; Hermel, T.

    1999-07-01

    The effects of thermal cycling on the mechanical and physical properties, namely, the density, dynamic elastic modulus and vibrational damping, were measured for a particular reinforced metal matrix composite (MMC). The material was made by Duralcan. Specimens were exposed to up thermal cycles from room temperature to 300 C. The density of the material was measured by the Archimedes technique. The dynamic Young`s Modulus and vibrational damping of the material were determined by the piezoelectric ultrasonic composite oscillator technique (PUCOT). The results showed that the density and elastic modulus of the material increased only slightly due to the thermal cycling while the damping increased significantly. An increase in dislocation concentration near the particle/matrix interfaces caused by the thermal cycling could account for the measured results.

  1. Microemulsion extraction separation and determination of aluminium species by spectrofluorimetry.

    PubMed

    Lu, Jusheng; Tian, Jiuying; Guo, Na; Wang, Yan; Pan, Yichun

    2011-01-30

    A simple and sensitive microemulsion extraction separation method was developed for the speciation of aluminium in tea samples by spectrofluorimetry. With 8-hydroxyquinoline (8-HQ) as the chelating agent and Triton X-100 Winsor II microemulsion as the extractant, separation of aluminium species in different pH solutions was achieved by microemulsion extraction. The formation of microemulsion, the conditions of extraction and determination of aluminium species were studied. The results showed that, the contents of aluminium species in tea leaves and infusions samples, such as total aluminium, total soluble aluminium, total granular aluminium, inorganic aluminium except Al-F, and (Al-F+Al-org), were obtained successfully under the optimal conditions. The limit of detection was 0.23 μg L(-1) in pH 9.5 solution, and 0.59 μg L(-1) in pH 6.0 solution respectively; the precision (RSD) for 11 replicate measurements of 10 μg L(-1) aluminium was 2.1% in pH 9.5 solution, and 2.8% in pH 6.0 solution respectively; the recoveries for the spiked samples were 96.8-103.5%. The proposed method is simple and efficient, which has been applied to the speciation of aluminium in tea samples with satisfactory results.

  2. Aluminium in brain tissue in familial Alzheimer's disease.

    PubMed

    Mirza, Ambreen; King, Andrew; Troakes, Claire; Exley, Christopher

    2017-03-01

    The genetic predispositions which describe a diagnosis of familial Alzheimer's disease can be considered as cornerstones of the amyloid cascade hypothesis. Essentially they place the expression and metabolism of the amyloid precursor protein as the main tenet of disease aetiology. However, we do not know the cause of Alzheimer's disease and environmental factors may yet be shown to contribute towards its onset and progression. One such environmental factor is human exposure to aluminium and aluminium has been shown to be present in brain tissue in sporadic Alzheimer's disease. We have made the first ever measurements of aluminium in brain tissue from 12 donors diagnosed with familial Alzheimer's disease. The concentrations of aluminium were extremely high, for example, there were values in excess of 10μg/g tissue dry wt. in 5 of the 12 individuals. Overall, the concentrations were higher than all previous measurements of brain aluminium except cases of known aluminium-induced encephalopathy. We have supported our quantitative analyses using a novel method of aluminium-selective fluorescence microscopy to visualise aluminium in all lobes of every brain investigated. The unique quantitative data and the stunning images of aluminium in familial Alzheimer's disease brain tissue raise the spectre of aluminium's role in this devastating disease.

  3. Recovery of aluminium, nickel-copper alloys and salts from spent fluorescent lamps.

    PubMed

    Rabah, Mahmoud A

    2004-01-01

    This study explores a combined pyro-hydrometallurgical method to recover pure aluminium, nickel-copper alloy(s), and some valuable salts from spent fluorescent lamps (SFLs). It also examines the safe recycling of clean glass tubes for the fluorescent lamp industry. Spent lamps were decapped under water containing 35% acetone to achieve safe capture of mercury vapour. Cleaned glass tubes, if broken, were cut using a rotating diamond disc to a standard shorter length. Aluminium and copper-nickel alloys in the separated metallic parts were recovered using suitable flux to decrease metal losses going to slag. Operation variables affecting the quality of the products and the extent of recovery with the suggested method were investigated. Results revealed that total loss in the glass tube recycling operation was 2% of the SFLs. Pure aluminium meeting standard specification DIN 1712 was recovered by melting at 800 degrees C under sodium chloride/carbon flux for 20 min. Standard nickel-copper alloys with less than 0.1% tin were prepared by melting at 1250 degrees C using a sodium borate/carbon flux. De-tinning of the molten nickel-copper alloy was carried out using oxygen gas. Tin in the slag as oxide was recovered by reduction using carbon or hydrogen gas at 650-700 degrees C. Different valuable chloride salts were also obtained in good quality. Further research is recommended on the thermodynamics of nickel-copper recovery, yttrium and europium recovery, and process economics.

  4. Recovery of aluminium, nickel-copper alloys and salts from spent fluorescent lamps

    SciTech Connect

    Rabah, Mahmoud A

    2004-07-01

    This study explores a combined pyro-hydrometallurgical method to recover pure aluminium, nickel-copper alloy(s), and some valuable salts from spent fluorescent lamps (SFLs). It also examines the safe recycling of clean glass tubes for the fluorescent lamp industry. Spent lamps were decapped under water containing 35% acetone to achieve safe capture of mercury vapour. Cleaned glass tubes, if broken, were cut using a rotating diamond disc to a standard shorter length. Aluminium and copper-nickel alloys in the separated metallic parts were recovered using suitable flux to decrease metal losses going to slag. Operation variables affecting the quality of the products and the extent of recovery with the suggested method were investigated. Results revealed that total loss in the glass tube recycling operation was 2% of the SFLs. Pure aluminium meeting standard specification DIN 1712 was recovered by melting at 800 deg. C under sodium chloride/carbon flux for 20 min. Standard nickel-copper alloys with less than 0.1% tin were prepared by melting at 1250 deg. C using a sodium borate/carbon flux. De-tinning of the molten nickel-copper alloy was carried out using oxygen gas. Tin in the slag as oxide was recovered by reduction using carbon or hydrogen gas at 650-700 deg. C. Different valuable chloride salts were also obtained in good quality. Further research is recommended on the thermodynamics of nickel-copper recovery, yttrium and europium recovery, and process economics.

  5. TCAP Aluminium Dissolution Flowsheet Basis

    SciTech Connect

    PIERCE, ROBERTA.

    2004-03-01

    The Actinide Technology Section has proposed the use of an nitric acid HNO3 and potassium fluoride KF flowsheet for stripping palladium Pd from palladium-coated kieselguhr Pd/K and removing aluminum (Al) metal foam from the TCAP coils. The basis for the HNO3-KF flowsheet is drawn from many sources. A brief review of the sources will be presented. The basic flowsheet involves three process steps, each with its own chemistry.

  6. Ti particle-reinforced surface layers in Al: Effect of particle size on microstructure, hardness and wear

    SciTech Connect

    Mordyuk, B.N.; Silberschmidt, V.V.; Prokopenko, G.I.; Nesterenko, Yu.V.; Iefimov, M.O.

    2010-11-15

    Two types of Ti particles are used in an ultrasonic impact peening (UIP) process to modify sub-surface layers of cp aluminium atomized, with an average size of approx. 20 {mu}m and milled (0.3-0.5 {mu}m). They are introduced into a zone of severe plastic deformation induced by UIP. The effect of Ti particles of different sizes on microstructure, phase composition, microhardness and wear resistance of sub-surface composite layers in aluminium is studied in this paper. The formed layers of a composite reinforced with smaller particles have a highly misoriented fine-grain microstructure of its matrix with a mean grain size of 200-400 nm, while reinforcement with larger particles results in relatively large Al grains (1-2 {mu}m). XRD, SEM, EDX and TEM studies confirm significantly higher particle/matrix bonding in the former case due to formation of a Ti{sub 3}Al interlayer around Ti particles with rough surface caused by milling. Different microstructures determine hardness and wear resistance of reinforced aluminium layers: while higher magnitudes of microhardness are observed for both composites (when compared with those of annealed and UIP-treated aluminium), the wear resistance is improved only in the case of reinforcement with small particles.

  7. KENNEDY SPACE CENTER, FLA. - Japanese astronaut Koichi Wakata looks at the spars installed on the wing of the orbiter Atlantis. Reinforced Carbon Carbon (RCC) panels are mechanically attached to the wing via the spars - a series of floating joints - to reduce loading on the panels caused by wing deflections. The aluminum and the metallic attachments are protected from exceeding temperature limits by internal insulation.

    NASA Image and Video Library

    2003-09-05

    KENNEDY SPACE CENTER, FLA. - Japanese astronaut Koichi Wakata looks at the spars installed on the wing of the orbiter Atlantis. Reinforced Carbon Carbon (RCC) panels are mechanically attached to the wing via the spars - a series of floating joints - to reduce loading on the panels caused by wing deflections. The aluminum and the metallic attachments are protected from exceeding temperature limits by internal insulation.

  8. Experimental and numerical investigation of the residual yield strength of aluminium alloy EN AW-2024-T3 affected by artificially produced pitting corrosion

    NASA Astrophysics Data System (ADS)

    Pippig, R.; Schmidl, E.; Steinert, P.; Schubert, A.; Lampke, T.

    2017-03-01

    In this study, the behaviour of the residual yield strength of aluminium alloy EN AW-2024-T3 affected by the morphology and numbers of corrosion pits (defects) is presented. Since specific defect structures are not reproducible during experimental corrosion tests, metal sheets with different numbers of pits and pit shapes are produced using laser micro structuring. The defect structures are measured using laser scanning microscopy. To compare the stress states of the micro structured and real corroded metal sheets, FE-analysis is used. Afterwards, uniaxial tensile tests are carried out and critical defect parameters in terms of yield strength reduction of the investigated aluminium alloy are detected.

  9. Active coatings for SiC particles to reduce the degradation by liquid aluminium during processing of aluminium matrix composites: study of interfacial reactions.

    PubMed

    Ureña, A.; Rodrigo, P.; Baldonedo, J. L.; Gil, L.

    2001-02-01

    The application of a surface coating on SiC particles is studied as an alternative means of solving problems of reactivity between SiC reinforcements and molten aluminium and problems of low wetting which limit the application of casting routes for fabrication of Al-SiCp composites. The selected active barrier was a ceramic composed of SiO2, which was generated by controlled oxidation of the SiC particles. The coating behaves as an active barrier, preventing a direct reaction between molten aluminium and SiC to form Al4C3 as the main degradation product. At the same time, the SiO2 provokes other interfacial reactions, which are responsible for an improvement in wetting behaviour. Composites were prepared by mixing and compacting SiC particles with Al powders followed by melting in a vacuum furnace, and varying the residence time. Transmission electron microscopy (TEM), high resolution electron microscopy (HREM) and field emission TEM were employed as the main characterization techniques to study the interfacial reactions occurring between the barrier and the molten aluminium. These studies showed that the SiO2 coating behaves as an active barrier which reacts with the molten Al to form a glassy phase Al-Si-O. This compound underwent partial crystallization during the composite manufacture to form mullite. The formation of an outer crystalline layer, composed mainly of Al2O3, was also detected. Participation of other secondary interface reactions inside the active barrier was also identified by HREM techniques.

  10. Composite and Nanocomposite Metal Foams

    PubMed Central

    Duarte, Isabel; Ferreira, José M. F.

    2016-01-01

    Open-cell and closed-cell metal foams have been reinforced with different kinds of micro- and nano-sized reinforcements to enhance their mechanical properties of the metallic matrix. The idea behind this is that the reinforcement will strengthen the matrix of the cell edges and cell walls and provide high strength and stiffness. This manuscript provides an updated overview of the different manufacturing processes of composite and nanocomposite metal foams. PMID:28787880

  11. Composite and Nanocomposite Metal Foams.

    PubMed

    Duarte, Isabel; Ferreira, José M F

    2016-01-28

    Open-cell and closed-cell metal foams have been reinforced with different kinds of micro- and nano-sized reinforcements to enhance their mechanical properties of the metallic matrix. The idea behind this is that the reinforcement will strengthen the matrix of the cell edges and cell walls and provide high strength and stiffness. This manuscript provides an updated overview of the different manufacturing processes of composite and nanocomposite metal foams.

  12. Aluminium takes to the road

    SciTech Connect

    Kazmier, R.J. . Mill Products Div.)

    1994-01-01

    Automotive applications of aluminum sheet are on the rise, and are expected to accelerate throughout the decade. The metal's low density, recyclability, fabricability, and other factors are said to give it an edge over steel, plastics, or copper, depending on the application. This growth is already evident. The North American market for aluminum automotive sheet is expected to approach 134,000 t (148,000 tons) for 1993, up 15% from the previous year. The fastest growing market segments are body panels, heat exchangers, and bumper systems. While the automotive market for aluminum castings is much larger, sheet usage is expected to increase at a faster rate.

  13. Reinforcement of inhibition

    PubMed Central

    Anger, Douglas

    1983-01-01

    A differential-reinforcement-of-other-behavior (DRO) schedule with trials and delayed reinforcement was investigated. Periodically a wheel was briefly available to rats, followed six seconds later by brief availability of a bar. Variable-ratio food reinforcement of wheel turns was adjusted to give 95% turns. After variable-ratio-five reinforcement of bar presses produced 100% pressing, then separate ratio schedules were used for presses following turns (turn presses) and presses following nonturns (nonturn presses). Increasing nonturn-press reinforcements decreased turns, even though total reinforcements increased. Reversal by decreasing nonturn-press reinforcements raised turns, though with hysteresis. Thus food reinforcement increased nonturns even though delayed six to ten seconds after nonturns, a delay that greatly reduces response reinforcement. Those and other results indicate that the turn decrease was not due to reinforcement of competing responses. Evidence against other alternatives, and the reduction of responding by increased reinforcement, indicate that the term inhibition is appropriate for the phenomenon reinforced. Response-specific inhibition appears appropriate for this particular kind, since its effects are more specific to particular responses than Pavlovian conditioned-inhibition. Response-specific inhibition seems best considered a behavioral output comparable to responses (e.g., both reinforcible) but with important properties different from responses (e.g., different reinforcement-delay gradients). PMID:16812315

  14. What is the risk of aluminium as a neurotoxin?

    PubMed

    Exley, Christopher

    2014-06-01

    Aluminium is neurotoxic. Its free ion, Al(3+) (aq), is highly biologically reactive and uniquely equipped to do damage to essential cellular (neuronal) biochemistry. This unequivocal fact must be the starting point in examining the risk posed by aluminium as a neurotoxin in humans. Aluminium is present in the human brain and it accumulates with age. The most recent research demonstrates that a significant proportion of individuals older than 70 years of age have a potentially pathological accumulation of aluminium somewhere in their brain. What are the symptoms of chronic aluminium intoxication in humans? What if neurodegenerative diseases such as Alzheimer's disease are the manifestation of the risk of aluminium as a neurotoxin? How might such an (outrageous) hypothesis be tested?

  15. Study on the effect of the surface treatment on the residual stress gradient in silicon carbide (SiC) reinforced aluminum metal matrix composites

    SciTech Connect

    Lu, J.; Miege, B.; Flavenot, J.; Thery, S. Groupe Usinor Sacilor, Firminy )

    1990-01-01

    In this work, the residual stresses induced on SiC-reinforced MMCs by the manufacturing processes (machining, surface finishing, and surface treatment) were investigated using an incremental hole-drilling method to measure the macroscopic residual stress gradient in depth and X-ray diffraction method to study the surface residual stresses in matrix. Three aluminum matrices (2024, 2124, and 6061) with different proportions of SiC fiber were tested, and the effects of the heat treatment, machining, and shot-peening treatment on the residual stress distribution of the materials were analyzed and compared. Results show that it is possible to optimize the residual stress distribution of MCC materials with adequate posttreatment. 14 refs.

  16. Influence of fiber interconnections on the thermomechanical behavior of metal matrix composites consisting of Zn-Al alloy reinforced with steel fibers

    SciTech Connect

    Tao, L.; Delannay, F.

    1998-11-20

    Interconnected fiber networks presenting transverse isotropic symmetry with variable fiber interconnectivity were prepared by sintering assemblies of low carbon steel fibers. The strength and stiffness of these fiber preforms was found to increase very much when increasing sintering temperature or sintering time. Squeeze cast composites were prepared by infiltrating these preforms with alloy ZA8. Creep tests and tensile tests were carried out at 150 C. Both the creep strength and the back-flow strains at unloading drastically increase with increasing preform sintering temperature or time. Also thermal expansion is much affected by fiber interconnectivity. Especially, during cooling, the matrix dilatation strains brought about by thermal mismatches increase with increasing fiber interconnectivity. These results demonstrate that plastic and viscoplastic behaviors of network reinforced composites depend on the mechanical properties of the network as a whole.

  17. Effect of pressure on the formation of superelastic hard particles in a metal-fullerene system and the tribological properties of composite materials reinforced with such particles

    NASA Astrophysics Data System (ADS)

    Chernogorova, O. P.; Drozdova, E. I.; Blinov, V. M.; Ovchinnikova, I. N.

    2011-03-01

    Raman spectroscopy, X-ray diffraction, and microhardness and modulus of elasticity measurements are used to study the influence of compacting pressure (5, 8 GPa) on the structure and properties of the phases prepared from fullerene soot extract (mixture of C60 and C70 crystallites) in a mixture with a cobalt powder. Carbon particles synthesized during high-temperature treatment at a pressure of 5 or 8 GPa and reinforcing composite samples have a universal hardness H u (hardness measured from the total (elastic and plastic) strain under loading) of 12 or 25 GPa, respectively. After heating of samples to 900°C, the values of H u of the particles decrease to 9-11 GPa at elastic recovery of the phase more than 85%. The dry friction coefficients of iron- and cobalt-based composite materials in contact with tool steel are 0.08 and 0.04, respectively.

  18. Corrosion Behavior of Nickel Alloy (ASTM A 494 M) Reinforced with Fused SiO2 Chilled Metal Matrix Composites (MMCs) for Marine Applications

    NASA Astrophysics Data System (ADS)

    Hemanth, Joel, Dr.

    2017-08-01

    This paper presents the results obtained and the discussions made from a series of corrosion experiments involving Nickel alloy (ASTM A 494 M) reinforced with fused SiO2, size of the particles dispersed varies from 80-120 µm and amount of addition varies from 3 to 12 wt.% in steps of 3 wt.%. The resulting chilled MMCs are solidified under the influence of copper chill of 25 mm thickness to study the effect of corrosion behavior. Corrosion resistance was found to increase significantly with increase in SiO2 content in chilled MMCs. Nevertheless, even with high SiO2 content corrosion attack ie., pitting was found to be most severe during the initial stages of each test but it invariably decreased to a very low value in the later stages, due to the formation of an adherent protective layer on the MMCs developed.

  19. Plastic Deformation and Perforation of Metal using Metallic Jet

    NASA Astrophysics Data System (ADS)

    Sarkar, Partha; Chaturvedi, Shashank; Shyam, Anurag; Kumar, Rajesh; Lathi, Deepak; Chaudhari, Vilas; Verma, Rishi; Sonara, Jaswant; Shah, Kunal; Adhikary, Biswajit

    2002-12-01

    Pulsed underwater electrical discharges have been used in the past to generate pressures of the order of several tens of kilobars, for applications such as rock fragmentation and metallic jet production. Preliminary results for a metallic jet system have been reported earlier. A modified design for a metallic jet production system is reported here. With this arrangement, we are able to perforate 11 mm thick aluminium sheet. Such a system, at higher energy levels, could be used for oil and gas well perforation.

  20. The aluminium content of infant formulas remains too high.

    PubMed

    Chuchu, Nancy; Patel, Bhavini; Sebastian, Blaise; Exley, Christopher

    2013-10-08

    Recent research published in this journal highlighted the issue of the high content of aluminium in infant formulas. The expectation was that the findings would serve as a catalyst for manufacturers to address a significant problem of these, often necessary, components of infant nutrition. It is critically important that parents and other users have confidence in the safety of infant formulas and that they have reliable information to use in choosing a product with a lower content of aluminium. Herein, we have significantly extended the scope of the previous research and the aluminium content of 30 of the most widely available and often used infant formulas has been measured. Both ready-to-drink milks and milk powders were subjected to microwave digestion in the presence of 15.8 M HNO3 and 30% w/v H2O2 and the aluminium content of the digests was measured by TH GFAAS. Both ready-to-drink milks and milk powders were contaminated with aluminium. The concentration of aluminium across all milk products ranged from ca 100 to 430 μg/L. The concentration of aluminium in two soya-based milk products was 656 and 756 μg/L. The intake of aluminium from non-soya-based infant formulas varied from ca 100 to 300 μg per day. For soya-based milks it could be as high as 700 μg per day. All 30 infant formulas were contaminated with aluminium. There was no clear evidence that subsequent to the problem of aluminium being highlighted in a previous publication in this journal that contamination had been addressed and reduced. It is the opinion of the authors that regulatory and other non-voluntary methods are now required to reduce the aluminium content of infant formulas and thereby protect infants from chronic exposure to dietary aluminium.

  1. The aluminium content of infant formulas remains too high

    PubMed Central

    2013-01-01

    Background Recent research published in this journal highlighted the issue of the high content of aluminium in infant formulas. The expectation was that the findings would serve as a catalyst for manufacturers to address a significant problem of these, often necessary, components of infant nutrition. It is critically important that parents and other users have confidence in the safety of infant formulas and that they have reliable information to use in choosing a product with a lower content of aluminium. Herein, we have significantly extended the scope of the previous research and the aluminium content of 30 of the most widely available and often used infant formulas has been measured. Methods Both ready-to-drink milks and milk powders were subjected to microwave digestion in the presence of 15.8 M HNO3 and 30% w/v H2O2 and the aluminium content of the digests was measured by TH GFAAS. Results Both ready-to-drink milks and milk powders were contaminated with aluminium. The concentration of aluminium across all milk products ranged from ca 100 to 430 μg/L. The concentration of aluminium in two soya-based milk products was 656 and 756 μg/L. The intake of aluminium from non-soya-based infant formulas varied from ca 100 to 300 μg per day. For soya-based milks it could be as high as 700 μg per day. Conclusions All 30 infant formulas were contaminated with aluminium. There was no clear evidence that subsequent to the problem of aluminium being highlighted in a previous publication in this journal that contamination had been addressed and reduced. It is the opinion of the authors that regulatory and other non-voluntary methods are now required to reduce the aluminium content of infant formulas and thereby protect infants from chronic exposure to dietary aluminium. PMID:24103160

  2. Improvement of photodynamic activity of aluminium sulphophthalocyanine due to biotinylation

    NASA Astrophysics Data System (ADS)

    Meerovich, Irina G.; Jerdeva, Victoria V.; Derkacheva, Valentina M.; Meerovich, Gennadii A.; Lukyanets, Eugeny A.; Kogan, Eugenia A.; Savitsky, Alexander P.

    2003-09-01

    The photodynamic activity of dibiotinylated aluminium sulphophthalocyanine in vitro and in vivo were studied. It was obtained that in vitro dibiotinylated aluminium sulphophthalocyanine provides the effective damage of small cell lung carcinoma OAT-75. In vivo dibiotinylated aluminium sulphophthalocyanine causes destruction of tumor (Erlich carcinoma), results in total necrosis of tumor tissue and expresses vascular damage (trombosis and destruction of vascular walls) even in concentration 0.25 mg/kg of a body weight.

  3. Aluminium Toxicity to Plants as Influenced by the Properties of the Root Growth Environment Affected by Other Co-Stressors: A Review.

    PubMed

    Siecińska, Joanna; Nosalewicz, Artur

    Aluminium toxicity to crops depends on the acidity of the soil and specific plant resistance. However, it is also strongly affected by other environmental factors that have to be considered to properly evaluate the resultant effects on plants. Observed weather perturbations and predicted climate changes will increase the probability of co-occurrence of aluminium toxicity and other abiotic stresses.In this review the mechanisms of plant-aluminium interactions are shown to be influenced by soil mineral nutrients, heavy metals, organic matter, oxidative stress and drought. Described effects of aluminium toxicity include: root growth inhibition, reduction in the uptake of mineral nutrients resulting from the inhibition of transport processes through ion channels; epigenetic changes to DNA resulting in gene silencing. Complex processes occurring in the rhizosphere are highlighted, including the role of soil organic matter and aluminium detoxification by mucilage.There is a considerable research gap in the understanding of root growth in the soil environment in the presence of toxic aluminium concentrations as affected by interactions with abiotic stressors. This knowledge is important for the selection of feasible methods aimed at the reduction of negative consequences of crop production in acidic soils affected by adverse growth environment.

  4. Exposure to chemical agents in aluminium potrooms.

    PubMed

    Doko Jelinić, Jagoda; Nola, Iskra Alexandra; Udovicić, Ruzica; Ostojić, D; Zuskin, Eugenija

    2007-01-01

    To assess the effects of modernization of aluminium production on reducing the chemical health hazards in the working environment in aluminium potrooms (smelter). Modernization included the introduction ofa technique of point feeding of alumina and aluminium fluoride into the pots, semi-automatic equipment and computerized control. Periodical environmental measurements of chemical substances, dusts containing alumina and fluorides, and gases, i.e., carbon monoxide, carbon dioxide, sulphur dioxide, hydrogen fluoride, nitrogen dioxide, and difluorosulphide, were performed at the same workplaces before (1986-1988) and sixteen years later, after modernization (2004). The measured values were compared with the recommended occupational safety and health standards. The concentrations of total dust (alumina and fluorides) and gases, i.e., carbon monoxide, carbon dioxide, sulphur dioxide, hydrogen fluoride and phenol, were above the recommended standards in 76.6% (95/124) of the samples before modernization and in only 23.8% (57/240) of the samples tested after modernization. Before modernization in almost all jobs the workers were simultaneously exposed to higher concentrations of all chemical agents present in the working environment. After modernization high concentrations of hydrogen fluoride were the primary pollutant in this plant (GM = 4.5451 ppm), while the presence of other gases was significantly reduced. Dusts containing alumina and fluorides and hydrogen fluoride gas were still present in considerable concentrations in the working environments of jobs such as changing and covering of anodes. The modernization of the aluminium smelter plant reduced the concentrations of the most harmful substances in the working environment and reduced the number of jobs where workers were simultaneously exposed to a variety of health hazards.

  5. Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium.

    PubMed

    Lee, Woo; Schwirn, Kathrin; Steinhart, Martin; Pippel, Eckhard; Scholz, Roland; Gösele, Ulrich

    2008-04-01

    Nanoporous anodic aluminium oxide has traditionally been made in one of two ways: mild anodization or hard anodization. The first method produces self-ordered pore structures, but it is slow and only works for a narrow range of processing conditions; the second method, which is widely used in the aluminium industry, is faster, but it produces films with disordered pore structures. Here we report a novel approach termed "pulse anodization" that combines the advantages of the mild and hard anodization processes. By designing the pulse sequences it is possible to control both the composition and pore structure of the anodic aluminium oxide films while maintaining high throughput. We use pulse anodization to delaminate a single as-prepared anodic film into a stack of well-defined nanoporous alumina membrane sheets, and also to fabricate novel three-dimensional nanostructures.

  6. Fracture of silicon carbide whisker reinforced aluminum

    NASA Technical Reports Server (NTRS)

    Albritton, J. R.; Goree, J. G.

    1989-01-01

    An attempt is made to apply standard fracture toughness testing procedures, developed for metals, to whisker reinforced metal matrix composites. Test were carried out on compact-tension, center-notched, and edge-notched specimens of silicon carbide whisker reinforced extruded 2124 aluminum plate (10 and twenty volume percent of whiskers), with the loading direction either parallel or perpendicular to the extrusion direction. None of the tests is found to give a valid fracture toughness according to the criteria of the ASTM Standard E-399.

  7. Epitaxial growth of silicon nanowires using an aluminium catalyst

    NASA Astrophysics Data System (ADS)

    Wang, Yewu; Schmidt, Volker; Senz, Stephan; Gösele, Ulrich

    2006-12-01

    Silicon nanowires have been identified as important components for future electronic and sensor nanodevices. So far gold has dominated as the catalyst for growing Si nanowires via the vapour-liquid-solid (VLS) mechanism. Unfortunately, gold traps electrons and holes in Si and poses a serious contamination problem for Si complementary metal oxide semiconductor (CMOS) processing. Although there are some reports on the use of non-gold catalysts for Si nanowire growth, either the growth requires high temperatures and/or the catalysts are not compatible with CMOS requirements. From a technological standpoint, a much more attractive catalyst material would be aluminium, as it is a standard metal in Si process lines. Here we report for the first time the epitaxial growth of Al-catalysed Si nanowires and suggest that growth proceeds via a vapour-solid-solid (VSS) rather than a VLS mechanism. It is also found that the tapering of the nanowires can be strongly reduced by lowering the growth temperature.

  8. Epitaxial growth of silicon nanowires using an aluminium catalyst.

    PubMed

    Wang, Yewu; Schmidt, Volker; Senz, Stephan; Gösele, Ulrich

    2006-12-01

    Silicon nanowires have been identified as important components for future electronic and sensor nanodevices. So far gold has dominated as the catalyst for growing Si nanowires via the vapour-liquid-solid (VLS) mechanism. Unfortunately, gold traps electrons and holes in Si and poses a serious contamination problem for Si complementary metal oxide semiconductor (CMOS) processing. Although there are some reports on the use of non-gold catalysts for Si nanowire growth, either the growth requires high temperatures and/or the catalysts are not compatible with CMOS requirements. From a technological standpoint, a much more attractive catalyst material would be aluminium, as it is a standard metal in Si process lines. Here we report for the first time the epitaxial growth of Al-catalysed Si nanowires and suggest that growth proceeds via a vapour-solid-solid (VSS) rather than a VLS mechanism. It is also found that the tapering of the nanowires can be strongly reduced by lowering the growth temperature.

  9. Thorium sorption in seawater suspensions of aluminium oxide particles

    NASA Astrophysics Data System (ADS)

    Niven, Sherry E. H.; Moore, Robert M.

    1993-05-01

    The partitioning of thorium between solid and solution phases in seawater suspensions of aluminium oxide particles was studied in controlled laboratory experiments to determine whether partitioning is consistent with current models of trace-metal adsorption (surface complexation models). Experimental conditions (i.e., thorium and particle concentrations, pH, temperature, salinity) were chosen to be as realistic as possible for coastal seawater while minimizing nonadsorptive processes; 234Th was used as a tracer of thorium, and filtration/ultrafiltration techniques were used to prepare suspensions with minimal colloidal material, as well as to define and to separate solid and solution phases. A comparison of the experimental results with relationships predicted by surface complexation models shows that thorium sorption in the alumina suspensions was consistent with surface complexation theory: Sorption kinetics were consistent with a (pseudo-) first-order reversible reaction at constant particle concentration, the pseudo-first-order forward rate constants had a first-order dependence on particle concentration, and Kd values were independent of particle concentration. Thorium sorption consisted of two distinct reversible reactions, both of which were consistent with surface complexation theory. Second order rate constants were within the range of rate constants reported for the adsorption of divalent metal ions ontoγ-Al 2O 3 surfaces.

  10. Food reinforcement during infancy

    PubMed Central

    Kong, Kai Ling

    2017-01-01

    The motivation to eat, as operationalized by measuring how hard someone will work for food, is cross-sectionally and prospectively related to obesity. Persons high in food reinforcement consume more calories, and energy intake mediates the relationship between food reinforcement and obesity. Research has shown avid sucking for milk in early infancy predicts later adiposity, and the relationship between food reinforcement and excess body weight has been observed in infants as young as 9 months of age. New methodological developments in studying food reinforcement in infants and young children provide the first opportunity to study the origin of food reinforcement. This review seeks to provide background on the measurement of food reinforcement, and to present, for the first time, prenatal and postnatal predictors of infant food reinforcement. Lastly, potential mechanisms for an increasing trajectory of food reinforcement throughout development are proposed. PMID:27373207

  11. The Role of Microstructural Variability on the Very High-Cycle Fatigue Behavior of Discontinuously-Reinforced Aluminum Metal Matrix Composites using Ultrasonic Fatigue (Preprint)

    DTIC Science & Technology

    2008-05-01

    Strength Controlled by Porosity Population in A 319- type cast Aluminum Alloy Part II: Monte - Carlo Simulation J.Z. Yi, X. Zhu, J.W. Jones and J.E. Allison...this collection of information is estimated to average 1 hour per response , including the time for reviewing instructions, searching existing data...ALUMINUM METAL MATRIX COMPOSITES USING ULTRASONIC FATIGUE (PREPRINT) 5a. CONTRACT NUMBER IN-HOUSE 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  12. Nano-hydroxyapatite reinforced AZ31 magnesium alloy by friction stir processing: a solid state processing for biodegradable metal matrix composites.

    PubMed

    Ratna Sunil, B; Sampath Kumar, T S; Chakkingal, Uday; Nandakumar, V; Doble, Mukesh

    2014-04-01

    Friction stir processing (FSP) was successfully adopted to fabricate nano-hydroxyapatite (nHA) reinforced AZ31 magnesium alloy composite as well as to achieve fine grain structure. The combined effect of grain refinement and the presence of embedded nHA particles on enhancing the biomineralization and controlling the degradation of magnesium were studied. Grain refinement from 56 to ~4 and 2 μm was observed at the stir zones of FSP AZ31 and AZ31-nHA composite respectively. The immersion studies in super saturated simulated body fluid (SBF 5×) for 24 h suggest that the increased wettability due to fine grain structure and nHA particles present in the AZ31-nHA composite initiated heterogeneous nucleation which favored the early nucleation and growth of calcium-phosphate mineral phase. The nHA particles as nucleation sites initiated rapid biomineralization in the composite. After 72 h of immersion the degradation due to localized pitting was observed to be reduced by enhanced biomineralization in both the FSPed AZ31 and the composite. Also, best corrosion behavior was observed for the composite before and after immersion test. MTT assay using rat skeletal muscle (L6) cells showed negligible toxicity for all the processed and unprocessed samples. However, cell adhesion was observed to be more on the composite due to the small grain size and incorporated nHA.

  13. Prevalence of beryllium sensitization among aluminium smelter workers

    PubMed Central

    Slade, M. D.; Cantley, L. F.; Kirsche, S. R.; Wesdock, J. C.; Cullen, M. R.

    2010-01-01

    Background Beryllium exposure occurs in aluminium smelters from natural contamination of bauxite, the principal source of aluminium. Aims To characterize beryllium exposure in aluminium smelters and determine the prevalence rate of beryllium sensitization (BeS) among aluminium smelter workers. Methods A population of 3185 workers from nine aluminium smelters owned by four different aluminium-producing companies were determined to have significant beryllium exposure. Of these, 1932 workers participated in medical surveillance programmes that included the serum beryllium lymphocyte proliferation test (BeLPT), confirmation of sensitization by at least two abnormal BeLPT test results and further evaluation for chronic beryllium disease in workers with BeS. Results Personal beryllium samples obtained from the nine aluminium smelters showed a range of <0.01–13.00 μg/m3 time-weighted average with an arithmetic mean of 0.25 μg/m3 and geometric mean of 0.06 μg/m3. Nine workers were diagnosed with BeS (prevalence rate of 0.47%, 95% confidence interval = 0.21–0.88%). Conclusions BeS can occur in aluminium smelter workers through natural beryllium contamination of the bauxite and further concentration during the refining and smelting processes. Exposure levels to beryllium observed in aluminium smelters are similar to those seen in other industries that utilize beryllium. However, compared with beryllium-exposed workers in other industries, the rate of BeS among aluminium smelter workers appears lower. This lower observed rate may be related to a more soluble form of beryllium found in the aluminium smelting work environment as well as the consistent use of respiratory protection. PMID:20610489

  14. There is (still) too much aluminium in infant formulas

    PubMed Central

    2010-01-01

    Background Infant formulas are sophisticated milk-based feeds for infants which are used as a substitute for breast milk. Historically they are known to be contaminated by aluminium and in the past this has raised health concerns for exposed infants. We have measured the aluminium content of a number of widely used infant formulas to determine if their contamination by aluminium and consequent issues of child health persists. Methods Samples of ready-made milks and powders used to make milks were prepared by microwave digestion of acid/peroxide mixtures and their aluminium content determined by THGA. Results The concentration of aluminium in ready-made milks varied from ca 176 to 700 μg/L. The latter concentration was for a milk for preterm infants. The aluminium content of powders used to make milks varied from ca 2.4 to 4.3 μg/g. The latter content was for a soya-based formula and equated to a ready-to-drink milk concentration of 629 μg/L. Using the manufacturer's own guidelines of formula consumption the average daily ingestion of aluminium from infant formulas for a child of 6 months varied from ca 200 to 600 μg of aluminium. Generally ingestion was higher from powdered as compared to ready-made formulas. Conclusions The aluminium content of a range of well known brands of infant formulas remains high and particularly so for a product designed for preterm infants and a soya-based product designed for infants with cow's milk intolerances and allergies. Recent research demonstrating the vulnerability of infants to early exposure to aluminium serves to highlight an urgent need to reduce the aluminium content of infant formulas to as low a level as is practically possible. PMID:20807425

  15. Long-term effects of aluminium dust inhalation.

    PubMed

    Peters, Susan; Reid, Alison; Fritschi, Lin; de Klerk, Nicholas; Musk, A W Bill

    2013-12-01

    During the 1950s and 1960s, aluminium dust inhalation was used as a potential prophylaxis against silicosis in underground miners, including in Australia. We investigated the association between aluminium dust inhalation and cardiovascular, cerebrovascular and Alzheimer's diseases in a cohort of Australian male underground gold miners. We additionally looked at pneumoconiosis mortality to estimate the effect of the aluminium therapy. SMRs and 95% CI were calculated to compare mortality of the cohort members with that of the Western Australian male population (1961-2009). Internal comparisons on duration of aluminium dust inhalation were examined using Cox regression. Aluminium dust inhalation was reported for 647 out of 1894 underground gold miners. During 42 780 person-years of follow-up, 1577 deaths were observed. An indication of increased mortality of Alzheimer's disease among miners ever exposed to aluminium dust was found (SMR=1.38), although it was not statistically significant (95% CI 0.69 to 2.75). Rates for cardiovascular and cerebrovascular death were above population levels, but were similar for subjects with or without a history of aluminium dust inhalation. HRs suggested an increasing risk of cardiovascular disease with duration of aluminium dust inhalation (HR=1.02, 95% CI 1.00 to 1.04, per year of exposure). No difference in the association between duration of work underground and pneumoconiosis was observed between the groups with or without aluminium dust exposure. No protective effect against silicosis was observed from aluminium dust inhalation. Conversely, exposure to aluminium dust may possibly increase the risk of cardiovascular disease and dementia of the Alzheimer's type.

  16. There is (still) too much aluminium in infant formulas.

    PubMed

    Burrell, Shelle-Ann M; Exley, Christopher

    2010-08-31

    Infant formulas are sophisticated milk-based feeds for infants which are used as a substitute for breast milk. Historically they are known to be contaminated by aluminium and in the past this has raised health concerns for exposed infants. We have measured the aluminium content of a number of widely used infant formulas to determine if their contamination by aluminium and consequent issues of child health persists. Samples of ready-made milks and powders used to make milks were prepared by microwave digestion of acid/peroxide mixtures and their aluminium content determined by THGA. The concentration of aluminium in ready-made milks varied from ca 176 to 700 μg/L. The latter concentration was for a milk for preterm infants. The aluminium content of powders used to make milks varied from ca 2.4 to 4.3 μg/g. The latter content was for a soya-based formula and equated to a ready-to-drink milk concentration of 629 μg/L. Using the manufacturer's own guidelines of formula consumption the average daily ingestion of aluminium from infant formulas for a child of 6 months varied from ca 200 to 600 μg of aluminium. Generally ingestion was higher from powdered as compared to ready-made formulas. The aluminium content of a range of well known brands of infant formulas remains high and particularly so for a product designed for preterm infants and a soya-based product designed for infants with cow's milk intolerances and allergies. Recent research demonstrating the vulnerability of infants to early exposure to aluminium serves to highlight an urgent need to reduce the aluminium content of infant formulas to as low a level as is practically possible.

  17. Fiber reinforced engineering plastics

    Treesearch

    Daniel F. Caulfield; Rodney E. Jacobson; Karl D. Sears; John H. Underwood

    2001-01-01

    Although natural fiber reinforced commodity thermoplastics have a wide range of nonstructural applications in the automotive and decking industries, there have been few reports of cellulosic fiber-reinforced engineering thermoplastics. The commonly held belief has been that the only thermoplastics amenable to natural-fibre reinforcement are limited to low-melting (...

  18. Variable Resolution Reinforcement Learning.

    DTIC Science & Technology

    1995-04-01

    Can reinforcement learning ever become a practical method for real control problems? This paper begins by reviewing three reinforcement learning algorithms... reinforcement learning . In addition to exploring state space, and developing a control policy to achieve a task, partigame also learns a kd-tree partitioning of

  19. Partial Planning Reinforcement Learning

    DTIC Science & Technology

    2012-08-31

    This project explored several problems in the areas of reinforcement learning , probabilistic planning, and transfer learning. In particular, it...studied Bayesian Optimization for model-based and model-free reinforcement learning , transfer in the context of model-free reinforcement learning based on

  20. Reinforcement of Learning

    ERIC Educational Resources Information Center

    Jones, Peter

    1977-01-01

    A company trainer shows some ways of scheduling reinforcement of learning for trainees: continuous reinforcement, fixed ratio, variable ratio, fixed interval, and variable interval. As there are problems with all methods, he suggests trying combinations of various types of reinforcement. (MF)