Science.gov

Sample records for reinforced composite materials

  1. Nanostructured composite reinforced material

    DOEpatents

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  2. 3-D textile reinforcements in composite materials

    SciTech Connect

    Miravete, A.

    1999-11-01

    Laminated composite materials have been used in structural applications since the 1960s. However, their high cost and inability to accommodate fibers in the laminate`s thickness direction greatly reduce their damage tolerance and impact resistance. The second generation of materials--3-D textile reinforced composites--offers significant cost reduction, and by incorporating reinforcement in the thickness direction, dramatically increases damage tolerance and impact resistance. However, methods for predicting mechanical properties of 3-D textile reinforced composite materials tend to be more complex. These materials also have disadvantages--particularly in regard to crimps in the yarns--that require more research. Textile preforms, micro- and macromechanical modeling, manufacturing processes, and characterization all need further development. As researchers overcome these problems, this new generation of composites will emerge as a highly competitive family of materials. This book provides a state-of-the-art account of this promising technology. In it, top experts describe the manufacturing processes, highlight the advantages, identify the main applications, analyze methods for predicting mechanical properties, and detail various reinforcement strategies, including grid structure, knitted fabric composites, and the braiding technique. Armed with the information in this book, readers will be prepared to better exploit the advantages of 3-D textile reinforced composites, overcome its disadvantages, and contribute to the further development of the technology.

  3. Processes for fabricating composite reinforced material

    SciTech Connect

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2015-11-24

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  4. Fiber Reinforced Composite Materials Used for Tankage

    NASA Technical Reports Server (NTRS)

    Cunningham, Christy

    2005-01-01

    The Nonmetallic Materials and Processes Group is presently working on several projects to optimize cost while providing effect materials for the space program. One factor that must be considered is that these materials must meet certain weight requirements. Composites contribute greatly to this effort. Through the use of composites the cost of launching payloads into orbit will be reduced to one-tenth of the current cost. This research project involved composites used for aluminum pressure vessels. These tanks are used to store cryogenic liquids during flight. The tanks need some type of reinforcement. Steel was considered, but added too much weight. As a result, fiber was chosen. Presently, only carbon fibers with epoxy resin are wrapped around the vessels as a primary source of reinforcement. Carbon fibers are lightweight, yet high strength. The carbon fibers are wet wound onto the pressure vessels. This was done using the ENTEC Filament Winding Machine. It was thought that an additional layer of fiber would aid in reinforcement as well as containment and impact reduction. Kevlar was selected because it is light weight, but five times stronger that steel. This is the same fiber that is used to make bullet-proof vests trampolines, and tennis rackets.

  5. Composite structural materials. [fiber reinforced composites for aircraft structures

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.

    1981-01-01

    Physical properties of fiber reinforced composites; structural concepts and analysis; manufacturing; reliability; and life prediction are subjects of research conducted to determine the long term integrity of composite aircraft structures under conditions pertinent to service use. Progress is reported in (1) characterizing homogeneity in composite materials; (2) developing methods for analyzing composite materials; (3) studying fatigue in composite materials; (4) determining the temperature and moisture effects on the mechanical properties of laminates; (5) numerically analyzing moisture effects; (6) numerically analyzing the micromechanics of composite fracture; (7) constructing the 727 elevator attachment rib; (8) developing the L-1011 engine drag strut (CAPCOMP 2 program); (9) analyzing mechanical joints in composites; (10) developing computer software; and (11) processing science and technology, with emphasis on the sailplane project.

  6. Natural Kenaf Fiber Reinforced Composites as Engineered Structural Materials

    NASA Astrophysics Data System (ADS)

    Dittenber, David B.

    The objective of this work was to provide a comprehensive evaluation of natural fiber reinforced polymer (NFRP)'s ability to act as a structural material. As a chemical treatment, aligned kenaf fibers were treated with sodium hydroxide (alkalization) in different concentrations and durations and then manufactured into kenaf fiber / vinyl ester composite plates. Single fiber tensile properties and composite flexural properties, both in dry and saturated environments, were assessed. Based on ASTM standard testing, a comparison of flexural, tensile, compressive, and shear mechanical properties was also made between an untreated kenaf fiber reinforced composite, a chemically treated kenaf fiber reinforced composite, a glass fiber reinforced composite, and oriented strand board (OSB). The mechanical properties were evaluated for dry samples, samples immersed in water for 50 hours, and samples immersed in water until saturation (~2700 hours). Since NFRPs are more vulnerable to environmental effects than synthetic fiber composites, a series of weathering and environmental tests were conducted on the kenaf fiber composites. The environmental conditions studied include real-time outdoor weathering, elevated temperatures, immersion in different pH solutions, and UV exposure. In all of these tests, degradation was found to be more pronounced in the NFRPs than in the glass FRPs; however, in nearly every case the degradation was less than 50% of the flexural strength or stiffness. Using a method of overlapping and meshing discontinuous fiber ends, large mats of fiber bundles were manufactured into composite facesheets for structural insulated panels (SIPs). The polyisocyanurate foam cores proved to be poorly matched to the strength and stiffness of the NFRP facesheets, leading to premature core shear or delamination failures in both flexure and compressive testing. The NFRPs were found to match well with the theoretical stiffness prediction methods of classical lamination

  7. Hot extruded carbon nanotube reinforced aluminum matrix composite materials.

    PubMed

    Kwon, Hansang; Leparoux, Marc

    2012-10-19

    Carbon nanotube (CNT) reinforced aluminum (Al) matrix composite materials were successfully fabricated by mechanical ball milling followed by powder hot extrusion processes. Microstructural analysis revealed that the CNTs were well dispersed at the boundaries and were aligned with the extrusion direction in the composites obtained. Although only a small quantity of CNTs were added to the composite (1 vol%), the Vickers hardness and the tensile strength were significantly enhanced, with an up to three-fold increase relative to that of pure Al. From the fractography of the extruded Al-CNT composite, several shapes were observed in the fracture surface, and this unique morphology is discussed based on the strengthening mechanism. The damage in the CNTs was investigated with Raman spectroscopy. However, the Al-CNT composite materials were not only strengthened by the addition of CNTs but also enhanced by several synergistic effects. The nanoindentation stress-strain curve was successfully constructed by setting the effective zero-load and zero-displacement points and was compared with the tensile stress-strain curve. The yield strengths of the Al-CNT composites from the nanoindentation and tensile tests were compared and discussed. We believe that the yield strength can be predicted using a simple nanoindentation stress/strain curve and that this method will be useful for materials that are difficult to machine, such as complex ceramics. PMID:23011263

  8. The dynamic inelastic behavior in fiber reinforced composite materials

    SciTech Connect

    Haberman, K.S.; Bennett, J.G.; Liu, Cheng

    1997-03-01

    Accurately simulating the complete dynamic behavior, elastic and inelastic, of engineering structures composed of fiber reinforced composite materials can be accomplished by integrating three components: (1) a physically based micromechanical material model that accounts for the experimentally observed mechanisms producing the inelastic behavior; (2) a dynamic three-dimensional continuum simulation capability in which the physically based micromechanical material model is incorporated; and (3) a complete set of robust dynamic experiments. These experiments are used (1) to establish the microstructural mechanisms that produce inelastic behavior and (2) to validate the dynamic simulation capability. This paper focuses on the implementation of a physically based micromechanical material model into an explicit 3D finite element code and shows the experimental comparison.

  9. Mechanical response of composite materials with through-the-thickness reinforcement

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.; Dickinson, Larry C.

    1992-01-01

    An experimental investigation was conducted to identify the key geometrical parameters and quantify their influence on the mechanical response of through-the-thickness (TTT) reinforced composite materials. Composite laminates with TTT reinforcement fibers were fabricated using different TTT reinforcement materials and reinforcement methods and laminates were also fabricated of similar construction but without TTT reinforcement fibers. Coupon specimens were machined from these laminates and were destructively tested. TTT reinforcement yarns enhance damage tolerance and improve interlaminar strength. Thick-layer composites with TTT reinforcement yarns have equal or superior mechanical properties to thin-layer composites without TTT reinforcement yarns. A significant potential exists for fabrication cost reduction by using thick-layer composites with TTT reinforcement yarns. Removal of the surface loop of the TTT reinforcement improves compression strength. Stitching provides somewhat higher mechanical properties than integral weaving.

  10. Analysis of woven fabrics for reinforced composite materials

    NASA Technical Reports Server (NTRS)

    Dow, Norris F.; Ramnath, V.; Rosen, B. Walter

    1987-01-01

    The use of woven fabrics as reinforcements for composites is considered. Methods of analysis of properties are reviewed and extended, with particular attention paid to three-dimensional constructions having through-the-thickness reinforcements. Methodology developed is used parametrically to evaluate the performance potential of a wide variety of reinforcement constructions including hybrids. Comparisons are made of predicted and measured properties of representative composites having biaxial and triaxial woven, and laminated tape lay-up reinforcements. Overall results are incorporated in advanced weave designs.

  11. Dual-nanoparticulate-reinforced aluminum matrix composite materials.

    PubMed

    Kwon, Hansang; Cho, Seungchan; Leparoux, Marc; Kawasaki, Akira

    2012-06-01

    Aluminum (Al) matrix composite materials reinforced with carbon nanotubes (CNT) and silicon carbide nanoparticles (nano-SiC) were fabricated by mechanical ball milling, followed by hot-pressing. Nano-SiC was used as an active mixing agent for dispersing the CNTs in the Al powder. The hardness of the produced composites was dramatically increased, up to eight times higher than bulk pure Al, by increasing the amount of nano-SiC particles. A small quantity of aluminum carbide (Al(4)C(3)) was observed by TEM analysis and quantified using x-ray diffraction. The composite with the highest hardness values contained some nanosized Al(4)C(3). Along with the CNT and the nano-SiC, Al(4)C(3) also seemed to play a role in the enhanced hardness of the composites. The high energy milling process seems to lead to a homogeneous dispersion of the high aspect ratio CNTs, and of the nearly spherical nano-SiC particles in the Al matrix. This powder metallurgical approach could also be applied to other nanoreinforced composites, such as ceramics or complex matrix materials. PMID:22571898

  12. MULTIPHASE MATERIAL OPTIMIZATION FOR FIBER REINFORCED COMPOSITES CONSIDERING STRAIN SOFTENING

    NASA Astrophysics Data System (ADS)

    Kato, Junji; Ramm, Ekkehard; Terada, Kenjiro; Kyoya, Takashi

    The present paper addresses an optimization strategy of textile fiber reinforced concrete (FRC) with emphasis on its special failure behavior. Since both concrete and fiber are brittle materials, a prominent objective for FRC structures is concerned with the improvement of structural ductility, which may be defined as energy absorption capacity. Despite above unfavorable characteristics, the interface between fiber and matrix plays a substantial role in the structural response. This favorable 'composite effect' is related to material parameters involved in the interface and the material layout on the small scale level. Therefore the purpose of the present paper is to improve the structural ductility of FRC at the macroscopic level applying an optimization method with respect to significant material parameters at the small scale level. The method discussed is based on multiphase material optimization. This methodology is extended to a damage formulation. The performance of the proposed method is demonstrated in a series of numerical examples; it is verified that the structural ductility can be considerably improved.

  13. Development of Ceramic Fibers for Reinforcement in Composite Materials

    NASA Technical Reports Server (NTRS)

    Gates, L. E.; Lent, W. E.; Teague, W. T.

    1961-01-01

    the. testing apparatus for single fiber tensile strength increased the precision. of tests conducted on nine fibers. The highest mean tensile strength, a value of 295,000 pounds per square inch, was obtained with R-141 fibers. Treatment of R-74 fibers with anhydrous Linde A-1100 silane finish improved its mean fiber tensile strength by 25 percent. The lapse of time after fiber formation had no measurable effect on tensile strength. A static heating test conducted with various high melting fibers indicated that Fiberfrax and R-108 underwent no significant changes in bulk volume or resiliency on exposure to 2750 degrees Fahrenheit (1510 degrees Centigrade) in an oxidizing atmosphere. For fiber-resin composition fabrication, ten fiber materials were selected on the bases of high fiber yield, fusion temperature, and type of composition. Fiberfrax, a commercial ceramic fiber, was included for comparison. A new, more effective method of removing pellets from blown fibers was developed. The de-pelletized fibers were treated with a silane finish and felted into ten-inch diameter felts prior to resin impregnation. Composites containing 30 percent by weight of CTL 91-LD phenolic resin were molded under high pressure from the impregnated felts and post-cured to achieve optimum properties. Flexural strength, flexural modules of elasticity, and punch shear strength tests were conducted on the composite specimens. The highest average flexural strength obtained was 19,958 pounds per square inch with the R-74-fiber-resin composite. This compares very favorably with the military specification of 13,000 pounds per square inch flexural strength for randomly oriented fiber reinforced composites. The highest punch shear strength (11,509 pounds per square inch) was obtained with the R-89 fiber-resin composite. The effects of anhydrous fiber finishes on composite strength were not clearly indicated. Plasma arc tests at a heat flux of 550 British Thermal Units per square foot per second on

  14. Advanced low-activation materials. Fibre-reinforced ceramic composites

    NASA Astrophysics Data System (ADS)

    Fenici, P.; Scholz, H. W.

    1994-09-01

    A serious safety and environmental concern for thermonuclear fusion reactor development regards the induced radioactivity of the first wall and structural components. The use of low-activation materials (LAM) in a demonstration reactor would reduce considerably its potential risk and facilitate its maintenance. Moreover, decommissioning and waste management including disposal or even recycling of structural materials would be simplified. Ceramic fibre-reinforced SiC materials offer highly appreciable low activation characteristics in combination with good thermomechanical properties. This class of materials is now under experimental investigation for structural application in future fusion reactors. An overview on the recent results is given, covering coolant leak rates, thermophysical properties, compatibility with tritium breeder materials, irradiation effects, and LAM-consistent purity. SiC/SiC materials present characteristics likely to be optimised in order to meet the fusion application challenge. The scope is to put into practice the enormous potential of inherent safety with fusion energy.

  15. Creep behavior of abaca fibre reinforced composite material

    SciTech Connect

    Tobias, B.C.; Lieng, V.T.

    1996-12-31

    This study investigates the creep behavior of abaca fibre reinforced composite lamina. The optimum proportions of constituents and loading conditions, temperature and stresses, are investigated in terms of creep properties. Lamina with abaca fibre volume fractions of 60, 70 and 80 percent, embedded in polyester resin were fabricated. Creep tests in tension at three temperature levels 20{degrees}C, 100{degrees}C and 120{degrees}C and three constant stress levels of 0. 1 MPa, 0. 13 Mpa and 0. 198 MPa using a Dynamic Mechanical Analyzer (DMA) were performed. The creep curves show standard regions of an ideal creep curve such as primary and secondary creep stage. The results also show that the minimum creep rate of abaca fibre reinforced composite increases with the increase of temperature and applied stress. Plotting the minimum creep rate against stress, depicts the variations of stress exponents which vary from 1.6194 at 20{degrees}C to 0.4576 at 120{degrees}C.

  16. Fungal degradation of fiber-reinforced composite materials

    NASA Technical Reports Server (NTRS)

    Gu, J. D.; Lu, C.; Mitchell, R.; Thorp, K.; Crasto, A.

    1997-01-01

    As described in a previous report, a fungal consortium isolated from degraded polymeric materials was capable of growth on presterilized coupons of five composites, resulting in deep penetration into the interior of all materials within five weeks. Data describing the utilization of composite constituents as nutrients for the microflora are described in this article. Increased microbial growth was observed when composite extract was incubated with the fungal inoculum at ambient temperatures. Scanning electron microscopic observation of carbon fibers incubated with a naturally developed population of microorganisms showed the formation of bacterial biofilms on the fiber surfaces, suggesting possible utilization of the fiber chemical sizing as carbon and energy sources. Electrochemical impedance spectroscopy was used to monitor the phenomena occurring at the fiber-matrix interfaces. Significant differences were observed between inoculated and sterile panels of the composite materials. A progressive decline in impedance was detected in the inoculated panels. Several reaction steps may be involved in the degradation process. Initial ingress of water into the resin matrix appeared to be followed by degradation of fiber surfaces, and separation of fibers from the resin matrix. This investigation suggested that composite materials are susceptible to microbial attack by providing nutrients for growth.

  17. Compressive strength of fiber-reinforced composite materials

    NASA Technical Reports Server (NTRS)

    Davis, J. G., Jr.

    1975-01-01

    Results of an experimental and analytical investigation of the compressive strength of unidirectional boron-epoxy composite material are presented. Observation of fiber coordinates in a boron-epoxy composite indicates that the fibers contain initial curvature. Combined axial compression and torsion tests were conducted on boron-epoxy tubes and it was shown that the shear modulus is a function of axial compressive stress. An analytical model which includes initial curvature in the fibers and permits an estimate of the effect of curvature on compressive strength is proposed. Two modes of failure which may result from the application of axial compressive stress are analyzed - delamination and shear instability. Based on tests and analysis, failure of boron-epoxy under axial compressive load is due to shear instability.

  18. Effect of tool material on machinability of TiCp reinforced Al-1100 composite

    NASA Astrophysics Data System (ADS)

    Harishchandra; Kadadevaramath, R. S.; Anil, K. C.

    2016-09-01

    In present days MMC's are widely used in most of the industries, like automobiles, aerospace, minerals and marine industries, because of its high specific strength to weight ratio. There are many types of reinforcements are available, selection of reinforcement is depends on availability, cost and desired reinforcement properties. In our study Al-1100 is selected as a primary material and Titanium carbide particle (TiCp) of 44 pm size as reinforcement and synthesized by manual stir casting method, by varying the reinforcement percentage. K2DF6 salt was used as wetting agent in order to improve the wetting behaviour of the reinforcement and same was observed in optical micrographs. Further, prepared composite materials are subjected to machinability studies by using lathe tool dynamometer in order to evaluate the cutting force, surface roughness with respect to reinforcement percentage and tool material. From the results, it is observed that the hardness and surface roughness of a specimen increases with the increasing of reinforcement percentage and Hardness of the tool material respectively.

  19. Reinforcements: The key to high performance composite materials

    NASA Technical Reports Server (NTRS)

    Grisaffe, Salvatore J.

    1990-01-01

    Better high temperature fibers are the key to high performance, light weight composite materials. However, current U.S. and Japanese fibers still have inadequate high temperature strength, creep resistance, oxidation resistance, modulus, stability, and thermal expansion match with some of the high temperature matrices being considered for future aerospace applications. In response to this clear deficiency, both countries have research and development activities underway. Once successful fibers are identified, their production will need to be taken from laboratory scale to pilot plant scale. In such efforts it can be anticipated that the Japanese decisions will be based on longer term criteria than those applied in the U.S. Since the initial markets will be small, short term financial criteria may adversely minimize the number and strength of U.S. aerospace materials suppliers to well into the 21st century. This situation can only be compounded by the Japanese interests in learning to make commercial products with existing materials so that when the required advanced fibers eventually do arrive, their manufacturing skills will be developed.

  20. Bonding of strain gages to fiber reinforced composite plastic materials

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Hanson, M. P.; Serafini, T. T.

    1970-01-01

    Strain gage is installed during molding of composite and utilizes the adhesive properties of the matrix resin in the composite to bond the strain gage in place. Gages thus embedded provide data at all temperatures that the matrix can withstand.

  1. MATERIAL SHAPE OPTIMIZATION FOR FIBER REINFORCED COMPOSITES APPLYING A DAMAGE FORMULATION

    NASA Astrophysics Data System (ADS)

    Kato, Junji; Ramm, Ekkehard; Terada, Kenjiro; Kyoya, Takashi

    The present contribution deals with an optimization strategy of fiber reinforced composites. Although the methodical concept is very general we concentrate on Fiber Reinforced Concrete with a complex failure mechanism resulting from material brittleness of both constituents matrix and fibers. The purpose of the present paper is to improve the structural ductility of the fiber reinforced composites applying an optimization method with respect to the geometrical layout of continuous long textile fibers. The method proposed is achieved by applying a so-called embedded reinforcement formulation. This methodology is extended to a damage formulation in order to represent a realistic structural behavior. For the optimization problem a gradient-based optimization scheme is assumed. An optimality criteria method is applied because of its numerically high efficiency and robustness. The performance of the method is demonstrated by a series of numerical examples; it is verified that the ductility can be substantially improved.

  2. Modelling of dimensional stability of fiber reinforced composite materials

    NASA Technical Reports Server (NTRS)

    Hahn, H. T.; Hosangadi, A.

    1982-01-01

    Various methods of predicting the expansion and diffusion properties of composite laminates are reviewed. The prediction equations for continuous fiber composites can be applied to SMC composites as the effective fiber aspect ratio in the latter is large enough. The effect of hygrothermal expansion on the dimensional stability of composite laminates was demonstrated through the warping of unsymmetric graphite/epoxy laminates. The warping is very sensitive to the size of the panel, and to the moisture content which is in turn sensitive to the relative humidity in the environment. Thus, any long term creep test must be carried out in a humidity-controlled environment. Environmental effects in SMC composites and bulk polyester were studied under seven different environments. The SMC composites chosen are SMC-R25, SMC-R40, and SMC-R65.

  3. Strength and toughness of structural fibres for composite material reinforcement.

    PubMed

    Herráez, M; Fernández, A; Lopes, C S; González, C

    2016-07-13

    The characterization of the strength and fracture toughness of three common structural fibres, E-glass, AS4 carbon and Kevlar KM2, is presented in this work. The notched specimens were prepared by means of selective carving of individual fibres by means of the focused ion beam. A straight-fronted edge notch was introduced in a plane perpendicular to the fibre axis, with the relative notch depth being a0/D≈0.1 and the notch radius at the tip approximately 50 nm. The selection of the appropriate beam current during milling operations was performed to avoid to as much as possible any microstructural changes owing to ion impingement. Both notched and un-notched fibres were submitted to uniaxial tensile tests up to failure. The strength of the un-notched fibres was characterized in terms of the Weibull statistics, whereas the residual strength of the notched fibres was used to determine their apparent toughness. To this end, the stress intensity factor of a fronted edge crack was computed by means of the finite-element method for different crack lengths. The experimental results agreed with those reported in the literature for polyacrylonitrile-based carbon fibres obtained by using similar techniques. After mechanical testing, the fracture surface of the fibres was analysed to ascertain the failure mechanisms. It was found that AS4 carbon and E-glass fibres presented the lower toughness with fracture surfaces perpendicular to the fibre axis, emanating from the notch tip. The fractured region of Kevlar KM2 fibres extended along the fibre and showed large permanent deformation, which explains their higher degree of toughness when compared with carbon and glass fibres. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'.

  4. Strength and toughness of structural fibres for composite material reinforcement.

    PubMed

    Herráez, M; Fernández, A; Lopes, C S; González, C

    2016-07-13

    The characterization of the strength and fracture toughness of three common structural fibres, E-glass, AS4 carbon and Kevlar KM2, is presented in this work. The notched specimens were prepared by means of selective carving of individual fibres by means of the focused ion beam. A straight-fronted edge notch was introduced in a plane perpendicular to the fibre axis, with the relative notch depth being a0/D≈0.1 and the notch radius at the tip approximately 50 nm. The selection of the appropriate beam current during milling operations was performed to avoid to as much as possible any microstructural changes owing to ion impingement. Both notched and un-notched fibres were submitted to uniaxial tensile tests up to failure. The strength of the un-notched fibres was characterized in terms of the Weibull statistics, whereas the residual strength of the notched fibres was used to determine their apparent toughness. To this end, the stress intensity factor of a fronted edge crack was computed by means of the finite-element method for different crack lengths. The experimental results agreed with those reported in the literature for polyacrylonitrile-based carbon fibres obtained by using similar techniques. After mechanical testing, the fracture surface of the fibres was analysed to ascertain the failure mechanisms. It was found that AS4 carbon and E-glass fibres presented the lower toughness with fracture surfaces perpendicular to the fibre axis, emanating from the notch tip. The fractured region of Kevlar KM2 fibres extended along the fibre and showed large permanent deformation, which explains their higher degree of toughness when compared with carbon and glass fibres. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. PMID:27242306

  5. Yeh-Stratton Criterion for Stress Concentrations on Fiber-Reinforced Composite Materials

    NASA Technical Reports Server (NTRS)

    Yeh, Hsien-Yang; Richards, W. Lance

    1996-01-01

    This study investigated the Yeh-Stratton Failure Criterion with the stress concentrations on fiber-reinforced composites materials under tensile stresses. The Yeh-Stratton Failure Criterion was developed from the initial yielding of materials based on macromechanics. To investigate this criterion, the influence of the materials anisotropic properties and far field loading on the composite materials with central hole and normal crack were studied. Special emphasis was placed on defining the crack tip stress fields and their applications. The study of Yeh-Stratton criterion for damage zone stress fields on fiber-reinforced composites under tensile loading was compared with several fracture criteria; Tsai-Wu Theory, Hoffman Theory, Fischer Theory, and Cowin Theory. Theoretical predictions from these criteria are examined using experimental results.

  6. Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)

    1994-01-01

    A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.

  7. Quasicrystalline particulate reinforced aluminum composite

    SciTech Connect

    Anderson, I.E.; Biner, S.B.; Sordelet, D.J.; Unal, O.

    1997-07-01

    Particulate reinforced aluminum and aluminum alloy composites are rapidly emerging as new commercial materials for aerospace, automotive, electronic packaging and other high performance applications. However, their low processing ductility and difficulty in recyclability have been the key concern. In this study, two composite systems having the same aluminum alloy matrix, one reinforced with quasicrystals and the other reinforced with the conventional SiC reinforcements were produced with identical processing routes. Their processing characteristics and tensile mechanical properties were compared.

  8. Styrene-terminated polysulfone oligomers as matrix material for graphite reinforced composites: An initial study

    NASA Technical Reports Server (NTRS)

    Garcia, Dana; Bowles, Kenneth J.; Vannucci, Raymond D.

    1987-01-01

    Styrene terminated polysulfone oligomers are part of an oligomeric class of compounds with end groups capable of thermal polymerization. These materials can be used as matrices for graphite reinforced composites. The initial evaluation of styrene terminated polysulfone oligomer based composites are summarized in terms of fabrication methods, and mechanical and environmental properties. In addition, a description and evaluation is provided of the NASA/Industry Fellowship Program for Technology Transfer.

  9. Composite material reinforced with atomized quasicrystalline particles and method of making same

    DOEpatents

    Biner, S.B.; Sordelet, D.J.; Lograsso, B.K.; Anderson, I.E.

    1998-12-22

    A composite material comprises an aluminum or aluminum alloy matrix having generally spherical, atomized quasicrystalline aluminum-transition metal alloy reinforcement particles disposed in the matrix to improve mechanical properties. A composite article can be made by consolidating generally spherical, atomized quasicrystalline aluminum-transition metal alloy particles and aluminum or aluminum alloy particles to form a body that is cold and/or hot reduced to form composite products, such as composite plate or sheet, with interfacial bonding between the quasicrystalline particles and the aluminum or aluminum alloy matrix without damage (e.g. cracking or shape change) of the reinforcement particles. The cold and/or hot worked composite exhibits substantially improved yield strength, tensile strength, Young`s modulus (stiffness). 3 figs.

  10. A mechanism responsible for reducing compression strength of through-the-thickness reinforced composite material

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1992-01-01

    A study was conducted to identify one of the mechanisms that contributes to the reduced compression strength of composite materials with through-the-thickness (TTT) reinforcements. In this study a series of thick (0/90) laminates with stitched and integrally woven TTT reinforcements were fabricated and statically tested. In both the stitching and weaving process a surface loop of TTT reinforcement yarn is created between successive TTT penetrations. It was shown that the surface loop of the TTT reinforcement 'kinked' the in-plane fibers in such a manner that they were made ineffective in carrying compressive load. The improvement in strength by removal of the surface loop and 'kinked' in-plane fibers was between 7 and 35 percent.

  11. Nanofiber reinforcement of a geopolymer matrix for improved composite materials mechanical performance

    NASA Astrophysics Data System (ADS)

    Rahman, AKM Samsur

    Geopolymers have the potential to cross the process performance gap between polymer matrix and ceramic matrix composites (CMC), enabling high temperature capable composites that are manufactured at relatively low temperatures. Unfortunately, the inherently low toughness of these geopolymers limits the performance of the resulting fiber reinforced geopolymer matrix composites. Toughness improvements in composites can be addressed through the adjustments in the fiber/matrix interfacial strength and through the improvements in the inherent toughness of the constituent materials. This study investigates the potential to improve the inherent toughness of the geopolymer matrix material through the addition of nanofillers, by considering physical dimensions, mechanical properties, reinforcing capability and interfacial bond strength effects. A process optimization study was first undertaken to develop the ability to produce consistent, neat geopolymer samples, a critical precursor to producing nano-filled geopolymer for toughness evaluation. After that, single edge notched bend beam fracture toughness and un-notched beam flexural strength were evaluated for silicon carbide, alumina and carbon nanofillers reinforced geopolymer samples treated at various temperatures in reactive and inert environments. Toughness results of silicon carbide and carbon nanofillers reinforced geopolymers suggested that with the improved baseline properties, high aspect ratio nanofillers with high interfacial bond strength are the most capable in further improving the toughness of geopolymers. Among the high aspect ratio nanofillers i.e. nanofibers, 2vol% silicon carbide whicker (SCW) showed the highest improvement in fracture toughness and flexural strength of ~164% & ~185%, respectively. After heat treatment at 650 °C, SCW reinforcement was found to be effective, with little reduction in the performance, while the performance of alumina nanofiber (ANF) reinforced geopolymer significantly

  12. Composite material reinforced with atomized quasicrystalline particles and method of making same

    DOEpatents

    Biner, Suleyman B.; Sordelet, Daniel J.; Lograsso, Barbara K.; Anderson, Iver E.

    1998-12-22

    A composite material comprises an aluminum or aluminum alloy matrix having generally spherical, atomized quasicrystalline aluminum-transition metal alloy reinforcement particles disposed in the matrix to improve mechanical properties. A composite article can be made by consolidating generally spherical, atomized quaiscrystalline aluminum-transition metal alloy particles and aluminum or aluminum alloy particles to form a body that is cold and/or hot reduced to form composite products, such as composite plate or sheet, with interfacial bonding between the quasicrystalline particles and the aluminum or aluminum alloy matrix without damage (e.g. cracking or shape change) of the reinforcement particles. The cold and/or hot worked compositehibits substantially improved yield strength, tensile strength, Young's modulus (stiffness).

  13. Micromechanics for particulate reinforced composites

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Goldberg, Robert K.; Mital, Subodh K.

    1996-01-01

    A set of micromechanics equations for the analysis of particulate reinforced composites is developed using the mechanics of materials approach. Simplified equations are used to compute homogenized or equivalent thermal and mechanical properties of particulate reinforced composites in terms of the properties of the constituent materials. The microstress equations are also presented here to decompose the applied stresses on the overall composite to the microstresses in the constituent materials. The properties of a 'generic' particulate composite as well as those of a particle reinforced metal matrix composite are predicted and compared with other theories as well as some experimental data. The micromechanics predictions are in excellent agreement with the measured values.

  14. Effects of EB irradiation on stress-strain curves for carbon fiber reinforced composite materials

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Yamada, K.; Mizutani, A.; Uchida, N.; Tanaka, K.; Nishi, Yoshitake

    2004-02-01

    In order to evaluate influence of electron beam (EB) irradiation on elasticity and stress- strain curve of composite materials reinforced by carbon fiber (CF), carbon fiber reinforced polymer (CFRP) and carbon fiber reinforced graphite (C/C) were treated by EB irradiation of 0.3 MGy. Since the EB strengthening was mainly dominated by the ductility enhancements of carbon fiber and matrix of epoxy resin, EB irradiation enlarged fracture stress and enhanced fracture strain of CFRP. Furthermore, EB irradiation slightly enhanced bending elasticity of CFRP and largely enhanced the initial spring constant related to elasticity of C/C coil. Although the elasticity enhancement of carbon fibers did not largely contribute that of CFRP, that of treated graphite matrix in C/C mainly caused the C/C coil elasticity enhancement by EB irradiation. Such a new treatment is a dream-worthy technology for structural materials to be applied in the fields of future engineering.

  15. Processing and Material Characterization of Continuous Basalt Fiber Reinforced Ceramic Matrix Composites Using Polymer Derived Ceramics.

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.

    2014-01-01

    The need for high performance vehicles in the aerospace industry requires materials which can withstand high loads and high temperatures. New developments in launch pads and infrastructure must also be made to handle this intense environment with lightweight, reusable, structural materials. By using more functional materials, better performance can be seen in the launch environment, and launch vehicle designs which have not been previously used can be considered. The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer matrix composites can be used for temperatures up to 260C. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in the composites. In this study, continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. The oxyacetylene torch testing and three point bend testing have been performed on test panels and the test results are presented.

  16. Design and analysis of a novel latch system implementing fiber-reinforced composite materials

    NASA Astrophysics Data System (ADS)

    Guevara Arreola, Francisco Javier

    The use of fiber-reinforced composite materials have increased in the last four decades in high technology applications due to their exceptional mechanical properties and low weight. In the automotive industry carbon fiber have become popular exclusively in luxury cars because of its high cost. However, Carbon-glass hybrid composites offer an effective alternative to designers to implement fiber-reinforced composites into several conventional applications without a considerable price increase maintaining most of their mechanical properties. A door latch system is a complex mechanism that is under high loading conditions during car accidents such as side impacts and rollovers. Therefore, the Department of Transportation in The United States developed a series of tests that every door latch system comply in order to be installed in a vehicle. The implementation of fiber-reinforced composite materials in a door latch system was studied by analyzing the material behavior during the FMVSS No. 206 transverse test using computational efforts and experimental testing. Firstly, a computational model of the current forkbolt and detent structure was developed. Several efforts were conducted in order to create an effective and time efficient model. Two simplified models were implemented with two different contact interaction approaches. 9 composite materials were studied in forkbolt and 5 in detent including woven carbon fiber, unidirectional carbon fiber, woven carbon-glass fiber hybrid composites and unidirectional carbon-glass fiber hybrid composites. The computational model results showed that woven fiber-reinforced composite materials were stiffer than the unidirectional fiber-reinforced composite materials. For instance, a forkbolt made of woven carbon fibers was 20% stiffer than a forkbolt made of unidirectional fibers symmetrically stacked in 0° and 90° alternating directions. Furthermore, Hybrid composite materials behaved as expected in forkbolt noticing a decline

  17. Railgun Application for High Energy Impact Testing of Nano-Reinforced Kevlar-Based Composite Materials

    NASA Astrophysics Data System (ADS)

    Micheli, D.; Vricella, A.; Pastore, R.; Morles, R. B.; Marchetti, M.

    2013-08-01

    An advanced electromagnetic accelerator, called railgun, has been assembled and tuned in order to perform high energy impact test on layered structures. Different types of layered composite materials have been manufactured and characterized in terms of energy absorbing capability upon impact of metallic bullets fired at high velocity. The composite materials under testing are manufactured by integrating several layers of Kevlar fabric and carbon fiber ply within a polymeric matrix reinforced by carbon nanotubes at 1% of weight percentage. The experimental results show that the railgun-device is a good candidate to perform impact testing of materials in the space debris energy range, and that carbon nanotubes may enhance, when suitably coupled to the composite's matrix, the excellent antiballistic properties of the Kevlar fabrics.

  18. Investigation of Polymer Resin/Fiber Compatibility in Natural Fiber Reinforced Composite Automotive Materials

    SciTech Connect

    Fifield, Leonard S.; Huang, Cheng; Simmons, Kevin L.

    2010-01-01

    Natural fibers represent a lower density and potentially lower cost alternative to glass fibers for reinforcement of polymers in automotive composites. The high specific modulus and strength of bast fibers make them an attractive option to replace glass not only in non-structural automotive components, but also in semi-structural and structural components. Significant barriers to insertion of bast fibers in the fiber reinforced automotive composite market include the high moisture uptake of this lignocellulosic material relative to glass and the weak inherent interface between natural fibers and automotive resins. This work seeks to improve the moisture uptake and resin interfacing properties of natural fibers through improved fundamental understanding of fiber physiochemical architecture and development of tailored fiber surface modification strategies.

  19. Complementary methods for nondestructive testing of composite materials reinforced with carbon woven fibers

    NASA Astrophysics Data System (ADS)

    Steigmann, R.; Iftimie, N.; Sturm, R.; Vizureanu, P.; Savin, A.

    2015-11-01

    This paper presents complementary methods used in nondestructive evaluation (NDE) of composite materials reinforced with carbon woven fibers as two electromagnetic methods using sensor with orthogonal coils and sensor with metamaterials lens as well as ultrasound phased array method and Fiber Bragg gratings embedded instead of a carbon fiber for better health monitoring. The samples were impacted with low energy in order to study delamination influence. The electromagnetic behavior of composite was simulated by finite- difference time-domain (FDTD) software, showing a very good concordance with electromagnetic nondestructive evaluation tests.

  20. Al-matrix composite materials reinforced by Al-Cu-Fe particles

    NASA Astrophysics Data System (ADS)

    Bonneville, J.; Laplanche, G.; Joulain, A.; Gauthier-Brunet, V.; Dubois, S.

    2010-07-01

    Al-matrix material composites were produced using hot isostatic pressing technique, starting with pure Al and icosahedral (i) Al-Cu-Fe powders. Depending on the processing temperature, the final reinforcement particles are either still of the initial i-phase or transformed into the tetragonal ω-Al00.70Cu0.20Fe0.10 crystalline phase. Compression tests performed in the temperature range 293K - 823K on the two types of composite, i.e. Al/i and Al/ω, indicate that the flow stress of both composites is strongly temperature dependent and exhibit distinct regimes with increasing temperature. Differences exist between the two composites, in particul ar in yield stress values. In the low temperatureregime (T <= 570K), the yield stress of the Al/ω composite is nearly 75% higher than that of the Al/i composite, while for T > 570K both composites exhibit similar yield stress values. The results are interpreted in terms of load transfer contribution between the matrix and the reinforcement particles and elementary dislocation mechanisms in the Al matrix.

  1. Aspects regarding wearing behaviour in case of aluminium composite materials reinforced with carbon fibers

    NASA Astrophysics Data System (ADS)

    Caliman, R.

    2016-08-01

    This paper presents a study regarding wear comportment of sintered composite materials obtained by mixture of aluminium with short carbon fibers. The necessity to satisfying more and more the specific functions during design of high performance structures leads to perform multi-materials such as reinforced composite parts. The wear tests were made on three different orientations of fibers on a standard machine of tribology, pin disk type. Counter-disk was made of cast iron with a superficial hardness of 92 HB. The wear rate and friction coefficient decreased exponentially with time of friction and reached a stationary value. This behaviour was attributed to the development of a lubricating film on the friction surface. To conduct this work was performed measurements on samples from the Al matrix composites and carbon fiber 43%, wear mechanism was investigated by scanning electron microscopy. In addition to fiber orientation, the tribological behaviour of metal matrix composites reinforced with fiber is influenced by the interfacial reaction of fiber-matrix. The characteristics and the dimensions of the interface depend on the cycle of temperature and time at which the material has been subjected during the manufacturing process and thereafter.

  2. Tribological properties of metal-matrix composite materials reinforced by superelastic hard carbon particles

    NASA Astrophysics Data System (ADS)

    Ushakova, I. N.; Drozdova, E. I.; Chernogorova, O. P.; Blinov, V. M.; Ekimov, E. A.

    2016-05-01

    Metal-matrix composite materials (CMs) are synthesized from a mixture of a metal powder (Ti, Fe, Co, Ni, Cu, Al-based alloy) and fullerenes (10 wt %). The thermobaric synthesis conditions (700-1000°C, 5-8 GPa) ensure the collapse of fullerene molecules and their transformation into superelastic carbon phase particles with an indentation hardness H IT = 10-37 GPa, an elastic modulus E IT = 60-260 GPa, and an elastic recovery of >80% upon indentation. After reinforcing by superelastic hard carbon, the friction coefficient of CM decreases by a factor of 2-4 as compared to the friction coefficient of the matrix metal, and the abrasive wear resistance increases by a factor of 4-200. Superelastic hard carbon particles are a unique reinforcing material for an increase in the wear resistance and a simultaneous decrease in the friction coefficient of CM.

  3. A study of fiber materials for use in temperature resistant fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Bachowsky, M. J.; Anderson, R. N.

    1982-01-01

    This study has been directed at characterizing the micro-properties of candidate ceramics and glasses for use in making fibers used in fiber reinforced material composites. Particular emphasis has been given into developing techniques to guide the optimization of fiber properties. The Scanning Electron Microscope (SEM) and X-ray Diffractometer (XRD) have been used to help collate the method of synthesis, crystal structure and surface morphology with physical performance parameters. As a result, progress has been made in characterizing such materials. This increased understanding makes the previous research worthy of further study.

  4. Damage threshold study of sonic IR imaging on carbon-fiber reinforced laminated composite materials

    NASA Astrophysics Data System (ADS)

    Han, Xiaoyan; He, Qi; Zhang, Ding; Ashbaugh, Mike; Favro, Lawrence D.; Newaz, Golam; Thomas, Robert L.

    2013-01-01

    Sonic Infrared Imaging, as a young NDE technology, has drawn a lot of attentions due to it's fast, wide-area evaluation capability, and due to its broad applications in different materials such as metal/metal alloy, composites and detection of various types of defects: surface, subsurface, cracks, delaminations/disbonds. Sonic IR Imaging combines pulsed ultrasound excitation and infrared imaging to detect defects in materials. The sound pulse causes rubbing due to non-unison motion between faces of defects, and infrared sensors image the temperature map over the target to identify defects. However, concerns have also been brought up about possible damages which might occur at the contact spots between the ultrasound transducer from the external excitation source and the target materials. In this paper, we present our results from a series of systematically designed experiments on carbon-fiber reinforced laminated composite panels to address the concerns.

  5. Fracture mechanics in fiber reinforced composite materials, taking as examples B/A1 and CRFP

    NASA Technical Reports Server (NTRS)

    Peters, P. W. M.

    1982-01-01

    The validity of linear elastic fracture mechanics and other fracture criteria was investigated with laminates of boron fiber reinforced aluminum (R/A1) and of carbon fiber reinforced epoxide (CFRP). Cracks are assessed by fracture strength Kc or Kmax (critical or maximum value of the stress intensity factor). The Whitney and Nuismer point stress criterion and average stress criterion often show that Kmax of fiber composite materials increases with increasing crack length; however, for R/A1 and CFRP the curve showing fracture strength as a function of crack length is only applicable in a small domain. For R/A1, the reason is clearly the extension of the plastic zone (or the damage zone n the case of CFRP) which cannot be described with a stress intensity factor.

  6. Flexural behavior of reinforced concrete beams strengthened with advanced composite materials

    SciTech Connect

    Shahawy, M.A.; Beitelman, T.

    1996-12-31

    This paper presents the results of a feasibility study to investigate the flexural behavior of structurally damaged reinforced and prestressed concrete members retrofitted with bonded carbon fiber materials. The effect of CFRP laminates, bonded to the soffit of precracked reinforced concrete rectangular and tee beams, is investigated in terms of flexural strength, deflections, cracking behavior and failure modes. The results indicate that strengthening of significantly cracked structural members by bonding Carbon laminates is structurally efficient and that the retrofitted members are restored to stiffness and strength values nearly equal to or greater than those of the original. The results indicate that the retrofitted members maintained adequate structural integrity and composite action at all stages of testing up to failure.

  7. The effect of ductile innerlayers on the mechanical performance of fiber-reinforced composite materials

    SciTech Connect

    Hsu, Meng-Bor.

    1990-01-01

    The effects of ductile innerlayers on the mechanical behavior of unidirectional fiber reinforced composites were studied. Two fiber systems were used as the reinforcement; a monofilament system and a roving system. The ductile innerlayer materials were applied on fiber surfaces using coating equipment that was first designed for monofilament coating. For composites reinforced by rovings, problems such as nonuniform fiber distribution and resin starvation in spaces between closely packed filaments arise from the coating process. Even with these problems, improvement in transverse tensile strength, longitudinal compressive strength, flexural fatigue resistance, and fatigue endurance limit were achieved. For monofilament systems, properties such as flexural strength, interlaminar shear strength, and transverse tensile strength are improved by the application of ductile innerlayers. Three mechanisms were shown to be responsible for the improvements: by acting as a spacer and preventing fiber-fiber contact; local ductility is provided near the fiber-matrix interface and lowering stress concentrations; and healing surface flaws in large diameter fiber systems, thus increasing fiber strength.

  8. Elastic constants of fibrous polymer composite materials reinforced with transversely isotropic fibers

    NASA Astrophysics Data System (ADS)

    Venetis, J.; Sideridis, E.

    2015-03-01

    In this paper, a model to find the approximate equations for determining the elastic constants of unidirectional fiber - reinforced composite materials in terms of the constituent material properties is described. The novelty of this work is that the fibers are considered to be transversely isotropic. To simulate the microstructure of the composite, we will take into account the concept of interphase with the concurrent assumption that the fibers are parallel to the line formed by the centers of the bases of a three - phase cylinder model, having a uniform distribution inside the matrix without agglomeration. The results were compared with the respective values of some reliable theoretical models as well as with experimental data obtained from other researchers, and they were found to be in reasonable agreement.

  9. Composite Intersection Reinforcement

    NASA Technical Reports Server (NTRS)

    Misciagna, David T. (Inventor); Fuhrer, Jessica J. (Inventor); Funk, Robert S. (Inventor); Tolotta, William S. (Inventor)

    2013-01-01

    An assembly and method for manufacturing a composite reinforcement for unitizing a structure are provided. According to one embodiment, the assembly includes a base having a plurality of pins extending outwardly therefrom to define a structure about which a composite fiber is wound to define a composite reinforcement preform. The assembly also includes a plurality of mandrels positioned adjacent to the base and at least a portion of the composite reinforcement preform, and a cap that is positioned over at least a portion of the plurality of mandrels. The cap is configured to engage each of the mandrels to support the mandrels and the composite reinforcement preform during a curing process to form the composite reinforcement.

  10. Composite intersection reinforcement

    NASA Technical Reports Server (NTRS)

    Misciagna, David T. (Inventor); Fuhrer, Jessica J. (Inventor); Funk, Robert S. (Inventor); Tolotta, William S. (Inventor)

    2010-01-01

    An assembly and method for manufacturing a composite reinforcement for unitizing a structure are provided. According to one embodiment, the assembly includes a base having a plurality of pins extending outwardly therefrom to define a structure about which a composite fiber is wound to define a composite reinforcement preform. The assembly also includes a plurality of mandrels positioned adjacent to the base and at least a portion of the composite reinforcement preform, and a cap that is positioned over at least a portion of the plurality of mandrels. The cap is configured to engage each of the mandrels to support the mandrels and the composite reinforcement preform during a curing process to form the composite reinforcement.

  11. Neutron scattering as a probe of liquid crystal polymer-reinforced composite materials

    SciTech Connect

    Hjelm, R.P.; Douglas, E.P.; Benicewicz, B.C.; Langlois, D.A.

    1995-12-31

    This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This research project sought to obtain nanoscale and molecular level information on the mechanism of reinforcement in liquid crystal polymer (LCP)-reinforced composites, to realize molecular-reinforced LCP composites, and to test the validity of the concept of molecular reinforcement. Small-angle neutron scattering was used to study the structures in the ternary phase diagram of LCP with liquid crystal thermosets and solvent on length scales ranging from 1-100 nm. The goal of the scattering measurements is to understand the phase morphology and degree of segregation of the reinforcing and matrix components. This information helps elucidate the physics of self assembly in these systems. This work provides an experimental basis for a microengineering approach to composites of vastly improved properties.

  12. Surface emissivity of a reinforced carbon composite material with an oxidation-inhibiting coating

    NASA Technical Reports Server (NTRS)

    Wakefield, R. M.

    1973-01-01

    Total effective emissivity and spectral emissivity over the wavelength range of 0.65 to 6.3 microns were determined for temperatures from 1300 t0 2250 deg K. A multi channel radiometer was used in the arcjet and laboratory tests. The black-body-hole method was used to independently check radiometer results. The results show the silicon-carbide coated reinforced carbon composite material is a nongray radiator. The total effective emissivity and the spectral emissivity at 0.65 micron both decreased with increasing temperature, respectively, from approximately 0.8 to 0.6, and from 0.4 to 0.25, over the temperature range. The emissivity values were the same when the sample was viewed normal to the surface or at a 45 deg angle. Recommended emissivity values are presented.

  13. Using Plasma-Activated High Performance Fibers with Nanocrystalline Structure in Producing New Reinforced Composite Materials

    NASA Astrophysics Data System (ADS)

    Kudinov, V.; Korneeva, N.

    2008-08-01

    A wet-pull-out method for investigation of interaction between the high performance polyethylene (HPPE) fiber and polymer matrix is discussed. The paper concerns a cold plasma technique for improving the bond of the HPPE fibers to the matrices and the fibers impregnation with the matrix. Controlled parameters are pull-out force and the height of the matrix capillary lifting along the fiber both in air and in vacuum, in combination with plasma activation of the fibers. The method allows one to estimate the wetting and impregnation of multi-filament fiber with the matrix and simultaneously measure the joint strength. Coupled action of plasma treatment and vacuum impregnation of the fibers improves the joint strength by a factor of 3. Plasma activated HPPE fibers impregnated in air show the value of shear strength τ of 4 Kg/mm2. To understand the effect of treatment initial and plasma-activated fibers were used to fabricate composite materials (CM). The properties and failure modes were compared to those of CM reinforced with untreated fibers. The failure mode of CM reinforced with plasma-activated fibers points to a high strength of the bond between the fibers and the matrix.

  14. Mechanical properties of neat polymer matrix materials and their unidirectional carbon fiber-reinforced composites

    NASA Technical Reports Server (NTRS)

    Zimmerman, Richard S.; Adams, Donald F.

    1988-01-01

    The mechanical properties of two neat resin systems for use in carbon fiber epoxy composites were characterized. This included tensile and shear stiffness and strengths, coefficients of thermal and moisture expansion, and fracture toughness. Tests were conducted on specimens in the dry and moisture-saturated states, at temperatures of 23, 82 and 121 C. The neat resins tested were American Cyanamid 1806 and Union Carbide ERX-4901B(MPDA). Results were compared to previously tested neat resins. Four unidirectional carbon fiber reinforced composites were mechanically characterized. Axial and transverse tension and in-plane shear strengths and stiffness were measured, as well as transverse coefficients of thermal and moisture expansion. Tests were conducted on dry specimens only at 23 and 100 C. The materials tested were AS4/3502, AS6/5245-C, T300/BP907, and C6000/1806 unidirectional composites. Scanning electron microscopic examination of fracture surfaces was performed to permit the correlation of observed failure modes with the environmental test conditions.

  15. Fiber reinforced PMR polyimide composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Winters, W. E.

    1978-01-01

    Commercially obtained PMR-15 polyimide prepregs with S-glass and graphite fiber reinforcements were evaluated along with in-house prepared glass and graphite cloth PMR 2 materials. A novel autoclave approach was conceived and used to demonstrate that both the PMR systems respond to 1.4 MPa (200 psi) autoclave pressures to produce void free composites equivalent to die molded laminates. Isothermal gravimetric analysis and subsequent mechanical property tests indicated that the PMR 2 system was significantly superior in thermo-oxidative stability, and that S-glass reinforcements may contribute to the accelerated degradation of composites at 316 C (600 F) when compared to graphite fiber reinforced composites. Fully reversed bending fatigue experiments were conducted with a type of fixture unused for organic matrix composites. These studies indicated that the graphite fiber composites were clearly superior in fatigue resistance to the glass fiber reinforced material and that PMR matrix composite systems yield performance of the same order as composite materials employing other families of matrices.

  16. A study of woven fabric-reinforced composite materials using an invariant-based orthotropic plasticity formulation

    SciTech Connect

    Blackketter, D.M.

    1989-01-01

    This dissertation presents an investigation of the mechanical behavior of woven fabric-reinforced composite materials. Linear and nonlinear material behavior of a woven fabric-reinforced composite was modeled using a three-dimensional finite element computer program. Tension and shear load case were investigated using a minimechanics unit cell and results from the finite element analysis were compared to experimental data. The three-dimensional finite element computer program was developed based on an existing computer program known as WYO3D initially developed by the Composite Materials Research Group at the University of Wyoming. This computer program was modified in order to conduct a nonlinear finite element analysis for either material nonlinearities and/or nonlinear behavior due to material damage. To perform the analysis a constitutive relation was needed which accurately predicted the nonlinear behavior for a wide range of orthotropic composite materials. Work presented here develops an invariant-based flow rule which was able to predict plastic behavior of orthotropic materials without the use of an effective stress-effective strain relation. This orthotropic plasticity formulation represents a major contribution to the analysis of composite materials over previously used theories. The finite element formulation for the invariant-based flow rule has also been presented. A finite element formulation was developed and implemented which was able to predict material damage occurring within the composite material.

  17. Tooth splinting with fiber-reinforced composite materials: achieving predictable aesthetics.

    PubMed

    Rappelli, Giorgio; Putignano, Angelo

    2002-08-01

    The need to respond to the ever-increasing patient demand for aesthetics, tissue maintenance, and cost efficiency has resulted in the evolution of techniques and materials that allow predictable restoration of teeth that would otherwise be compromised. The development of synthetic dental materials has allowed the incorporation of fiber-reinforced materials to replace metal splints. These contemporary materials provide increased flexural strength, as well as improved aesthetics, to the restoration. This article describes a conservative tooth splinting procedure using polyethylene fibers as reinforcement for both direct and indirect restorations.

  18. Material development aspects of an oxidation protection system for a reinforced carbon-carbon composite. [for Space Shuttle leading edges

    NASA Technical Reports Server (NTRS)

    Rogers, D. C.; Scott, R. O.; Shuford, D. M.

    1976-01-01

    The paper describes the procedures which led to selection of a diffusion-coated siliconized oxidation-resistant reinforced carbon-carbon composite as a candidate for use in the leading edge structure of the Space Shuttle for the purpose of providing thermal protection. Materials were evaluated on the basis of oxidation-inhibitor performance, strength properties, and fabricability. Compounds of titanium, tantalum, zirconium, silicon, hafnium, aluminum, and boron were compounded with the reinforced carbon-carbon material in two different processing techniques to discover an oxidation-inhibited system which provided multicycle protection at temperatures up to 4000 F. Details of the manufacture and testing of the reinforced carbon-carbon composites are provided.

  19. Feasibility study of prestressed natural fiber-reinforced polylactic acid (pla) composite materials

    NASA Astrophysics Data System (ADS)

    Hinchcliffe, Sean A.

    The feasibility of manufacturing prestressed natural-fiber reinforced biopolymer composites is demonstrated in this work. The objective of this study was to illustrate that the specific mechanical properties of biopolymers can be enhanced by leveraging a combination of additive manufacturing (3D printing) and post-tensioning of continuous natural fiber reinforcement. Tensile and flexural PLA specimens were 3D-printed with and without post-tensioning ducts. The mechanical properties of reinforcing fibers jute and flax were characterized prior to post-tensioning. The effect of matrix cross-sectional geometry and post-tensioning on the specific mechanical properties of PLA were investigated using mechanical testing. Numerical and analytical models were developed to predict the experimental results, which confirm that 3D-printed matrices improve the specific mechanical properties of PLA composites and are further improved via initial fiber prestressing. The results suggest that both additive manufacturing and fiber prestressing represent viable new methods for improving the mechanical performance of natural fiber-reinforced polymeric composites.

  20. Alumina-Reinforced Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Bansal, Narottam P.

    2003-01-01

    Alumina-reinforced zirconia composites, used as electrolyte materials for solid oxide fuel cells, were fabricated by hot pressing 10 mol percent yttria-stabilized zirconia (10-YSZ) reinforced with two different forms of alumina particulates and platelets each containing 0 to 30 mol percent alumina. Major mechanical and physical properties of both particulate and platelet composites including flexure strength, fracture toughness, slow crack growth, elastic modulus, density, Vickers microhardness, thermal conductivity, and microstructures were determined as a function of alumina content either at 25 C or at both 25 and 1000 C. Flexure strength and fracture toughness at 1000 C were maximized with 30 particulate and 30 mol percent platelet composites, respectively, while resistance to slow crack growth at 1000 C in air was greater for 30 mol percent platelet composite than for 30 mol percent particulate composites.

  1. Microstructural characterization of fiber-reinforced composites

    SciTech Connect

    Summerscales, J.

    1998-12-31

    In the past 50 years, great progress has been made in developing artificial fiber-reinforced composite materials, generally using filaments with microscopic diameters. An array of reinforcement forms can be used in commercial applications--with the microstructure being a critical factor in realizing the required properties in a material. This book comprehensively examines the application of advanced microstructural characterization techniques to fiber-reinforced composites. Its contents include: (1) flexible textile composite microstructure; (2) 3-D confocal microscopy of glass fiber-reinforced composites; (3) geometric modeling of yarn and fiber assemblies; (4) characterization of yarn shape in woven fabric composites; (5) quantitative microstructural analysis for continuous fiber composites; (6) electron microscopy of polymer composites; (7) micromechanics of reinforcement using laser raman spectroscopy; and (8) acoustic microscopy of ceramic fiber composites.

  2. Recovery of microfields in fiber-reinforced composite materials: Principles and limitations

    NASA Astrophysics Data System (ADS)

    Ritchey, Andrew J.

    A detailed investigation of the limitations and errors induced by modeling a composite layer composed of straight carbon fibers embedded in an epoxy matrix as an homogenous layer with Cauchy effective moduli is performed. Specifically, the material system studied has IM7 carbon fibers arranged in a square array and bonded together with 8552 epoxy resin (IM7/8552). The finite element method is used to study the effect of free surfaces on the local elastic fields in 0°, 45° and 90° laminae, in which as many as 256 individual fibers are modeled. Through these analyses, it is shown that a micro-boundary layer, analogous to the macro-boundary layer observed in composite laminates, is developed at the microlevel. Additionally, [0/90]s and [90/0]s laminates are studied to investigate the joint action of the macro- and micro-boundary layers. Unless otherwise noted, fiber volume fractions of Vƒ=0.20 and Vƒ=0.65 are selected and the domains are subjected to uniform axial extension. Although this study is done for a highly idealized geometry (i.e. with a single material system and under a simple loading condition) the principles of periodicity, symmetry and antisymmetry used to efficiently perform a direct numerical simulation with a large number of fiber inclusions is general, and can be applied to more complicated geometries and boundary conditions. The purpose of the current work is to be the first step in a building block approach to understanding the interaction of multiple scales in fiber-reinforced composites through direct numerical simulations. The main part of the current manuscript focuses on the characterization of a micro-boundary layer that develops in fiber reinforced composite layers. This phenomena results from the changing constraints on the constituent phases as a result of discontinuities, such as free surfaces or ply interfaces. The effect is most pronounced in laminae that have a fiber termination intersecting a free surface, and appears to be

  3. Laser-Generated Lamb Waves Propagation in Multilayered Plates Composed of Viscoelastic Fiber-reinforced Composite Materials

    NASA Astrophysics Data System (ADS)

    Sun, Hong-xiang; Zhang, Shu-yi; Yuan, Shou-qi; Guan, Yi-jun; Ge, Yong

    2016-07-01

    The propagation characteristics of laser-generated Lamb waves in multilayered fiber-reinforced composite plates with different fiber orientations and number of layers have been investigated quantitatively. Considering the viscoelasticity of the composite materials, we have set up finite element models for simulating the laser-generated Lamb waves in two types of the multilayered composite plates. In the first type, different fiber orientations are adopted. In the second one, different number of layers are considered. The results illustrate the occurrence of attenuation and dispersion, which is induced by the viscoelasticity and multilayer structure, respectively.

  4. Buckling of Carbon Nanotube-Reinforced Polymer Laminated Composite Materials Subjected to Axial Compression and Shear Loadings

    NASA Technical Reports Server (NTRS)

    Riddick, J. C.; Gates, T. S.; Frankland, S.-J. V.

    2005-01-01

    A multi-scale method to predict the stiffness and stability properties of carbon nanotube-reinforced laminates has been developed. This method is used in the prediction of the buckling behavior of laminated carbon nanotube-polyethylene composites formed by stacking layers of carbon nanotube-reinforced polymer with the nanotube alignment axes of each layer oriented in different directions. Linking of intrinsic, nanoscale-material definitions to finite scale-structural properties is achieved via a hierarchical approach in which the elastic properties of the reinforced layers are predicted by an equivalent continuum modeling technique. Solutions for infinitely long symmetrically laminated nanotube-reinforced laminates with simply-supported or clamped edges subjected to axial compression and shear loadings are presented. The study focuses on the influence of nanotube volume fraction, length, orientation, and functionalization on finite-scale laminate response. Results indicate that for the selected laminate configurations considered in this study, angle-ply laminates composed of aligned, non-functionalized carbon nanotube-reinforced lamina exhibit the greatest buckling resistance with 1% nanotube volume fraction of 450 nm uniformly-distributed carbon nanotubes. In addition, hybrid laminates were considered by varying either the volume fraction or nanotube length through-the-thickness of a quasi-isotropic laminate. The ratio of buckling load-to-nanotube weight percent for the hybrid laminates considered indicate the potential for increasing the buckling efficiency of nanotube-reinforced laminates by optimizing nanotube size and proportion with respect to laminate configuration.

  5. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1979-01-01

    Technology utilization of fiber reinforced composite materials is discussed in the areas of physical properties, and life prediction. Programs related to the Composite Aircraft Program are described in detail.

  6. Self-sealing of thermal fatigue and mechanical damage in fiber-reinforced composite materials

    NASA Astrophysics Data System (ADS)

    Moll, Jericho L.

    Fiber reinforced composite tanks provide a promising method of storage for liquid oxygen and hydrogen for aerospace applications. The inherent thermal fatigue of these vessels leads to the formation of microcracks, which allow gas phase leakage across the tank walls. In this dissertation, self-healing functionality is imparted to a structural composite to effectively seal microcracks induced by both mechanical and thermal loading cycles. Two different microencapsulated healing chemistries are investigated in woven glass fiber/epoxy and uni-weave carbon fiber/epoxy composites. Self-healing of mechanically induced damage was first studied in a room temperature cured plain weave E-glass/epoxy composite with encapsulated dicyclopentadiene (DCPD) monomer and wax protected Grubbs' catalyst healing components. A controlled amount of microcracking was introduced through cyclic indentation of opposing surfaces of the composite. The resulting damage zone was proportional to the indentation load. Healing was assessed through the use of a pressure cell apparatus to detect nitrogen flow through the thickness direction of the damaged composite. Successful healing resulted in a perfect seal, with no measurable gas flow. The effect of DCPD microcapsule size (51 microm and 18 microm) and concentration (0--12.2 wt%) on the self-sealing ability was investigated. Composite specimens with 6.5 wt% 51 microm capsules sealed 67% of the time, compared to 13% for the control panels without healing components. A thermally stable, dual microcapsule healing chemistry comprised of silanol terminated poly(dimethyl siloxane) plus a crosslinking agent and a tin catalyst was employed to allow higher composite processing temperatures. The microcapsules were incorporated into a satin weave E-glass fiber/epoxy composite processed at 120°C to yield a glass transition temperature of 127°C. Self-sealing ability after mechanical damage was assessed for different microcapsule sizees (25 microm and 42

  7. Analysis of Graphite-Reinforced Cementitious Composites

    NASA Technical Reports Server (NTRS)

    Vaughan, R. E.

    2002-01-01

    Strategically embedding graphite meshes in a compliant cementitious matrix produces a composite material with relatively high tension and compressive properties as compared to steel-reinforced structures fabricated from a standard concrete mix. Although these composite systems are somewhat similar, the methods used to analyze steel-reinforced composites often fail to characterize the behavior of their more advanced graphite-reinforced counterparts. This Technical Memorandum describes some of the analytical methods being developed to determine the deflections and stresses in graphite-reinforced cementitious composites. It is initially demonstrated that the standard transform section method fails to provide accurate results when the elastic moduli ratio exceeds 20. An alternate approach is formulated by using the rule of mixtures to determine a set of effective material properties for the composite. Tensile tests are conducted on composite samples to verify this approach. When the effective material properties are used to characterize the deflections of composite beams subjected to pure bending, an excellent agreement is obtained. Laminated composite plate theory is investigated as a means for analyzing even more complex composites, consisting of multiple graphite layers oriented in different directions. In this case, composite beams are analyzed using the laminated composite plate theory with material properties established from tensile tests. Then, finite element modeling is used to verify the results. Considering the complexity of the samples, a very good agreement is obtained.

  8. Mechanical properties of several neat polymer matrix materials and unidirectional carbon fiber-reinforced composites

    NASA Technical Reports Server (NTRS)

    Coguill, Scott L.; Adams, Donald F.

    1989-01-01

    The mechanical and physical properties of three neat matrix materials, i.e., PEEK (polyetheretherketone) thermoplastic, Hexcel F155 rubber-toughened epoxy and Hercules 8551-7 rubber-toughened epoxy, were experimentally determined. Twelve unidirectional carbon fiber composites, incorporating matrix materials characterized in this or earlier studies (with one exception; the PISO(sub 2)-TPI matrix itself was not characterized), were also tested. These composite systems included AS4/2220-1, AS4/2220-3, T500/R914, IM6/HX1504, T300/4901A (MDA), T700/4901A (MDA), T300/4901B (MPDA), T700/4901B (MPDA), APC2 (AS4/PEEK, ICI), APC2 (AS4/PEEK, Langley Research Center), AS4/8551-7, and AS4/PISO(sub 2)-TPI. For the neat matrix materials, the tensile, shear, fracture toughness, coefficient of thermal expansion, and coefficient of moisture expansion properties were measured as a function of both temperature and moisture content. For the unidirectional composites, axial and transverse tensile, longitudinal shear, coefficient of thermal expansion, and coefficient of moisture expansion properties were determined, at room temperature and 100 C.

  9. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.; Prewo, K. M.; Thompson, E. R.

    1978-01-01

    A composite that can be used at temperatures up to 875 K with mechanical properties equal or superior to graphite fiber reinforced epoxy composites is presented. The composite system consist of graphite fiber, uniaxially or biaxially, reinforced borosilicate glass. The mechanical and thermal properties of such a graphite fiber reinforced glass composite are described, and the system is shown to offer promise as a high performance structural material. Specific properties that were measured were: a modified borosilicate glass uniaxially reinforced by Hercules HMS graphite fiber has a three-point flexural strength of 1030 MPa, a four-point flexural strength of 964 MPa, an elastic modulus of 199 GPa and a failure strain of 0.0052. The preparation and properties of similar composites with Hercules HTS, Celanese DG-102, Thornel 300 and Thornel Pitch graphite fibers are also described.

  10. The development, fabrication, and material characterization of polypropylene composites reinforced with carbon nanofiber and hydroxyapatite nanorod hybrid fillers

    PubMed Central

    Liao, Cheng Zhu; Wong, Hoi Man; Yeung, Kelvin Wai Kwok; Tjong, Sie Chin

    2014-01-01

    This study focuses on the design, fabrication, microstructural and property characterization, and biocompatibility evaluation of polypropylene (PP) reinforced with carbon nanofiber (CNF) and hydroxyapatite nanorod (HANR) fillers. The purpose is to develop advanced PP/CNF–HANR hybrids with good mechanical behavior, thermal stability, and excellent biocompatibility for use as craniofacial implants in orthopedics. Several material-examination techniques, including X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry, tensile tests, and impact measurement are used to characterize the microstructural, mechanical, and thermal properties of the hybrids. Furthermore, osteoblastic cell cultivation and colorimetric assay are also employed for assessing their viability on the composites. The CNF and HANR filler hybridization yields an improvement in Young’s modulus, impact strength, thermal stability, and biocompatibility of PP. The PP/2% CNF–20% HANR hybrid composite is found to exhibit the highest elastic modulus, tensile strength, thermal stability, and biocompatibility. PMID:24648729

  11. Compressive strength of fiber reinforced composite materials. [composed of boron and epoxy

    NASA Technical Reports Server (NTRS)

    Davis, J. G., Jr.

    1974-01-01

    Results of an experimental and analytical investigation of the compressive strength of unidirectional boron-epoxy composite material are presented. Observation of fiber coordinates in a boron-epoxy composite indicates that the fibers contain initial curvature. Combined axial compression and torsion tests were conducted on boron-epoxy tubes, and it was shown that the shear modulus is a function of axial compressive stress. An analytical model which includes initial curvature in the fibers and permits an estimate of the effect of curvature on compressive strength is proposed. Two modes of failure which may result from the application of axial compressive stress are analyzed, delamination and shear instability. Based on tests and analysis, failure of boron-epoxy under axial compressive load is due to shear instability.

  12. The Comparison of Shear Bond Strength Between Fibre Reinforced Composite Posts with Three Different Composite Core Materials – An In vitro Study

    PubMed Central

    Anche, Sampath; Kakarla, Pranitha; Kadiyala, Krishna Kishore; Sreedevi, B.; Chiramana, Sandeep; Dev J., Ravi Rakesh; Manne, Sanjay Dutt; G., Deepthi

    2014-01-01

    Aim: The aim of this study is to compare the shear bond strength between fiber reinforced composite post with three different composite core materials. Materials and Methods: The materials used for the study were: 30 maxillary central incisors, pre fabricated fiber reinforced composite post (postec plus posts), Multi-core heavy body, Ti-core, Fluoro-core, Etchant gel, Silane coupling agent, Dentin bonding agent, Standardized gutta percha points, Rely-X dual cure composite resin. A total of 30 human maxillary central incisor were selected for this study. They were divided into three groups of 10 specimens each namely A, B and C. Results: The results obtained were analyzed by using one way analysis (ANOVA) and Tukey Honestly Significant Difference and they showed highest mean shear bond strength for group C when compared with group A and group B. There is no significant difference in the shear bond strength values between group A and group B. Conclusion: The teeth restored with multicore HB showed highest shear bond strength. The teeth restored with Fluoro core showed lowest shear bond strength. No statistically significant difference exists between the shear bond strength values between Ti-core and Fluoro-core. PMID:24596784

  13. Studies of Matrix/Fiber Reinforced Composite Materials for the High Speed Research (HSR) Program

    NASA Technical Reports Server (NTRS)

    Orwoll, Robert A.

    1998-01-01

    The research on the curing mechanism of the phenylethynyl terminated imide matrix resins was the primary focus of this research. The ability to process high performance polymers into useful adhesives and high quality composites has been significantly advanced by synthetic techniques in which oligomers terminated with reactive groups cure or crosslink at elevated temperature after the article has been fabricated. The research used a variety of analytical techniques. Many stable products were isolated, and attempts at identification were made. This research was intended to provide fundamental insight into the molecular structure of these new engineering materials.

  14. Thick fibrous composite reinforcements behave as special second-gradient materials: three-point bending of 3D interlocks

    NASA Astrophysics Data System (ADS)

    Madeo, Angela; Ferretti, Manuel; dell'Isola, Francesco; Boisse, Philippe

    2015-08-01

    In this paper, we propose to use a second gradient, 3D orthotropic model for the characterization of the mechanical behavior of thick woven composite interlocks. Such second-gradient theory is seen to directly account for the out-of-plane bending rigidity of the yarns at the mesoscopic scale which is, in turn, related to the bending stiffness of the fibers composing the yarns themselves. The yarns' bending rigidity evidently affects the macroscopic bending of the material and this fact is revealed by presenting a three-point bending test on specimens of composite interlocks. These specimens differ one from the other for the different relative direction of the yarns with respect to the edges of the sample itself. Both types of specimens are independently seen to take advantage of a second-gradient modeling for the correct description of their macroscopic bending modes. The results presented in this paper are essential for the setting up of a correct continuum framework suitable for the mechanical characterization of composite interlocks. The few second-gradient parameters introduced by the present model are all seen to be associated with peculiar deformation modes of the mesostructure (bending of the yarns) and are determined by inverse approach. Although the presented results undoubtedly represent an important step toward the complete characterization of the mechanical behavior of fibrous composite reinforcements, more complex hyperelastic second-gradient constitutive laws must be conceived in order to account for the description of all possible mesostructure-induced deformation patterns.

  15. Tungsten fiber reinforced FeCralY: A first generation composite turbine blade material

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.; Winsa, E. A.; Westfall, L. J.; Signorelli, R. A.

    1979-01-01

    Tungsten-fiber/FeCrAlY (W/FeCrAlY) was identified as a promising aircraft engine, first generation, turbine blade composite material. Based on available data, W/FeCrAlY should have the stress-rupture, creep, tensile, fatigue, and impact strengths required for turbine blades operating from 1250 to 1370 K. It should also have adequate oxidation, hot corrosion, and thermal cycling damage resistance as well as high thermal conductivity. Concepts for potentially low cost blade fabrication were developed. These concepts were used to design a first stage JT9D convection cooled turbine blade having a calculated 50 K use-temperature advantage over the directionally solidified superalloy blade.

  16. A Strategy to Support Design Processes for Fibre Reinforced Thermoset Composite Materials

    NASA Astrophysics Data System (ADS)

    Gascons, Marc; Blanco, Norbert; Mayugo, Joan Andreu; Matthys, Koen

    2012-06-01

    The concept stage in the design for a new composite part is a time when several fundamental decisions must be taken and a considerable amount of the budget is spent. Specialized commercial software packages can be used to support the decision making process in particular aspects of the project (e.g. material selection, numerical analysis, cost prediction,...). However, a complete and integrated virtual environment that covers all the steps in the process is not yet available for the composite design and manufacturing industry. This paper does not target the creation of such an overarching virtual tool, but instead presents a strategy that handles the information generated in each step of the design process, independently of the commercial packages used. Having identified a suitable design parameter shared in common with all design steps, the proposed strategy is able to evaluate the effects of design variations throughout all the design steps in parallel. A case study illustrating the strategy on an industrial part is presented.

  17. Inorganic nanotubes reinforced polyvinylidene fluoride composites as low-cost electromagnetic interference shielding materials

    PubMed Central

    2011-01-01

    Novel polymer nanocomposites comprising of MnO2 nanotubes (MNTs), functionalized multiwalled carbon nanotubes (f-MWCNTs), and polyvinylidene fluoride (PVDF) were synthesized. Homogeneous distribution of f-MWCNTs and MNTs in PVDF matrix were confirmed by field emission scanning electron microscopy. Electrical conductivity measurements were performed on these polymer composites using four probe technique. The addition of 2 wt.% of MNTs (2 wt.%, f-MWCNTs) to PVDF matrix results in an increase in the electrical conductivity from 10-16S/m to 4.5 × 10-5S/m (3.2 × 10-1S/m). Electromagnetic interference shielding effectiveness (EMI SE) was measured with vector network analyzer using waveguide sample holder in X-band frequency range. EMI SE of approximately 20 dB has been obtained with the addition of 5 wt.% MNTs-1 wt.% f-MWCNTs to PVDF in comparison with EMI SE of approximately 18 dB for 7 wt.% of f-MWCNTs indicating the potential use of the present MNT/f-MWCNT/PVDF composite as low-cost EMI shielding materials in X-band region. PMID:21711633

  18. Advanced X-Ray Inspection of Reinforced Carbon Composite Materials on the Orbiter Leading Edge Structural Subsystem (LESS)

    NASA Technical Reports Server (NTRS)

    Hernandez, Jose M.; Berry, Robert F.; Osborn, Robin; Bueno, Clifford; Osterlitz, Mark; Mills, Richard; Morris, Philip; Phalen, Robert; McNab, Jim; Thibodeaux, Tahanie; Thompson, Kyle

    2004-01-01

    The post return-to-flight (RTF) inspection methodology for the Orbiter Leading Edge Structural Subsystem (LESS) is currently being defined. Numerous NDT modalities and techniques are being explored to perform the flight-to-flight inspections of the reinforced carbon/carbon (RCC) composite material for impact damage, general loss of mass in the bulk layers, or other anomalous conditions that would pose risk to safe return upon re-entry. It is possible to have an impact upon ascent that is not visually observable on the surface, yet causes internal damage. Radiographic testing may be a useful NDT technique for such occurrences. The authors have performed radiographic tests on full-sized mock samples of LESS hardware with embedded image quality phantoms. Digitized radiographic film, computed radiography and flat panel digital real-time radiography was acquired using a GE Eresco 200 x-ray tube, and Se-75 and Yb-169 radioisotopes.

  19. Novel methods and self-reinforced composite materials for assessment and prevention of mechanically assisted corrosion in modular implants

    NASA Astrophysics Data System (ADS)

    Ouellette, Eric S.

    Novel methods for assessing the electrochemical and micromechanical performance of modular tapers were evaluated, and self-reinforced composite materials were developed for their potential to prevent the onset of mechanically assisted corrosion in modular taper devices. A study of the seating and taper locking mechanics of modular taper samples was conducted, and the effect on taper engagement strength of seating load, loading rate, taper moisture, and taper design/material combination was studied. The load-displacement behavior was captured during seating, and the subsequent pull off load was correlated to seating displacement, seating energy, and seating load. The primary factor affecting taper engagement strength was seating load, and loading rate and design/material factors did not have a significant impact on the quality of the taper engagement. Next, the effect of variation of 7 different design, material, and surgical factors on the fretting corrosion and micromechanical behavior during incremental cyclic fretting corrosion testing was examined using a design of experiments matrix. Seating load and head offset length were the most influential factors affecting fretting corrosion, with low seating loads and high head offsets giving rise to increased currents during sequentially incremented cyclic loads. Poly(ether ether ketone) (PEEK) fibers were produced, and the effects of varying draw down ratio, molecular weight, and post-spinning treatment on the structural and mechanical properties of the fibers were studied. Highly drawn fibers showed the highest increase in molecular orientation and mechanical properties. PEEK fibers were then utilized in the design and fabrication of self-reinforced composite PEEK (SRC-PEEK) thin film composites, and self-reinforced composite ultra-high molecular weight polyethylene (SRC-PE) produced from Spectra fiber was also introduced. Pin on disk studies were employed to understand the potential of both of these SRC materials to

  20. Carbon nanotubes reinforced composites for biomedical applications.

    PubMed

    Wang, Wei; Zhu, Yuhe; Liao, Susan; Li, Jiajia

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matrix composites, and CNTs reinforced ceramic matrix composites), their mechanical properties, cell experiments in vitro, and biocompatibility tests in vivo.

  1. Carbon Nanotubes Reinforced Composites for Biomedical Applications

    PubMed Central

    Wang, Wei; Zhu, Yuhe; Liao, Susan; Li, Jiajia

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matrix composites, and CNTs reinforced ceramic matrix composites), their mechanical properties, cell experiments in vitro, and biocompatibility tests in vivo. PMID:24707488

  2. Fiber reinforced composite resin systems.

    PubMed

    Giordano, R

    2000-01-01

    The Targis/Vectris and Sculpture/FibreKor systems were devised to create a translucent maximally reinforced resin framework for fabrication of crowns, bridges, inlays, and onlays. These materials are esthetic, have translucency similar to castable glass-ceramics such as OPC and Empress, and have fits that are reported to be acceptable in clinical and laboratory trials. These restorations rely on proper bonding to the remaining tooth structure; therefore, careful attention to detail must be paid to this part of the procedure. Cementation procedures should involve silane treatment of the cleaned abraded internal restoration surface, application of bonding agent to the restoration as well as the etched/primed tooth, and finally use of a composite resin. Each manufacturer has a recommended system which has been tested for success with its resin system. These fiber reinforced resins are somewhat different than classical composites, so not all cementation systems will necessarily work with them. Polishing of the restoration can be accomplished using diamond or alumina impregnated rubber wheels followed by diamond paste. The glass fibers can pose a health risk. They are small enough to be inhaled and deposited in the lungs, resulting in a silicosis-type problem. Therefore, if fibers are exposed and ground on, it is extremely important to wear a mask. Also, the fibers can be a skin irritant, so gloves also should be worn. If the fibers become exposed intraorally, they can cause gingival inflammation and may attract plaque. The fibers should be covered with additional composite resin. If this cannot be accomplished, the restoration should be replaced. The bulk of these restorations are formed using a particulate filled resin, similar in structure to conventional composite resins. Therefore, concerns as to wear resistance, color stability, excessive expansion/contraction, and sensitivity remain until these materials are proven in long-term clinical trials. They do hold the

  3. Resonant Ultrasound Spectroscopy, as Applied to Nondestructive Evaluation and Characterization of Carbon Fiber Reinforced Epoxy Composite Materials.

    NASA Astrophysics Data System (ADS)

    Whitney, Timothy Marvin

    1996-08-01

    Resonant ultrasound spectroscopy (RUS) can be an elegantly simple nondestructive evaluation tool. The resonance spectrum of any specimen is dependent on, and sensitive at ppm levels to, its density, geometry, elastic and thermal properties, and boundary conditions. The measurement of spectrum is fast, taking between 15 and 90 seconds with state-of-the-art instrumentation, making it appropriate for following properties as a function of temperature. Parts per million changes in specimen density, geometry, elastic moduli, temperature, and boundary conditions are detected with RUS. A novel apparatus is presented for driving and detecting the mechanical resonance of objects with major dimensions ranging from 0.1 cm to 33 cm. The noise floor of the apparatus is characterized using a high Q titanium alloy and a low Q graphite/epoxy composite. The apparatus is used to measure the amplitude/frequency resonance spectra of right rectangular parallelepiped (RRP) specimens of four different lay-ups of AS4/3501-6 carbon fiber reinforced epoxy (CFRE) composite material at room temperature and at one degree C intervals between -177^circC and 25 ^circC. It is important to know the mechanical properties of this material at low temperatures for underwater, polar, and space applications. The temperature dependence of the second order elastic moduli are calculated from the resonance spectra of the AS4/3501-6 RRPs. High power ultrasound is used to enhance the cure of AS4/3501-6 CFRE composite. Composite panels are insonified through the caul plate, by a high power ultrasonic horn, while curing. Stiffness enhancements of five percent are observed. The resonance spectrum of a steel caul plate is used to monitor the degree of cure of AS4/3501-6 CFRE composite panels in real time. Because the curing composite acts to change the boundary conditions, the resonance spectrum changes as the composite cures. RUS is used to screen a variety of high precision engineered parts for mechanical defects

  4. Sapphire reinforced alumina matrix composites

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.; Setlock, John A.

    1994-01-01

    Unidirectionally reinforced A1203 matrix composites have been fabricated by hot pressing. Approximately 30 volume % of either coated or uncoated sapphire fiber was used as reinforcement. Unstabilized ZrO2 was applied as the fiber coating. Composite mechanical behavior was analyzed both after fabrication and after additional heat treatment. The results of composite tensile tests were correlated with fiber-matrix interfacial shear strengths determined from fiber push-out tests. Substantially higher strength and greater fiber pull-out were observed for the coated fiber composites for all processing conditions studied. The coated fiber composites retained up to 95% and 87% of their as-fabricated strength when heat treated at 14000C for 8 or 24 hours, respectively. Electron microscopy analysis of the fracture surfaces revealed extensive fiber pull-out both before and after heat treatment.

  5. The mechanics of delamination in fiber-reinforced composite materials. I - Stress singularities and solution structure

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1983-01-01

    The fundamental mechanics of delamination in fiber composite laminates is studied. Mathematical formulation of the problem is based on laminate anisotropic elasticity theory and interlaminar fracture mechanics concepts. Stress singularities and complete solution structures associated with general composite delaminations are determined. For a fully open delamination with traction-free surfaces, oscillatory stress singularities always appear, leading to physically inadmissible field solutions. A refined model is introduced by considering a partially closed delamination with crack surfaces in finite-length contact. Stress singularities associated with a partially closed delamination having frictional crack-surface contact are determined, and are found to be different from the inverse square-root one of the frictionless-contact case. In the case of a delamination with very small area of crack closure, a simplified model having a square-root stress singularity is employed by taking the limit of the partially closed delamination. The possible presence of logarithmic-type stress singularity is examined; no logarithmic singularity of any kind is found in the composite delamination problem. Numerical examples of dominant stress singularities are shown for delaminations having crack-tip closure with different frictional coefficients between general (1) and (2) graphite-epoxy composites. Previously announced in STAR as N84-13221

  6. Analysis of Graphite Reinforced Cementitious Composites

    NASA Technical Reports Server (NTRS)

    Vaughan, Robert E.; Gilbert, John A.; Spanyer, Karen (Technical Monitor)

    2001-01-01

    This paper describes analytical methods that can be used to determine the deflections and stresses in highly compliant graphite-reinforced cementitious composites. It is demonstrated that the standard transform section fails to provide accurate results when the elastic modulus ratio exceeds 20. So an alternate approach is formulated by using the rule of mixtures to determine a set of effective material properties for the composite. Tensile tests are conducted on composite samples to verify this approach; and, when the effective material properties are used to characterize the deflections of composite beams subject to pure bending, an excellent agreement is obtained. Laminated composite plate theory is also investigated as a means for analyzing even more complex composites, consisting of multiple graphite layers oriented in different directions. In this case, composite beams are analyzed by incorporating material properties established from tensile tests. Finite element modeling is used to verity the results and, considering the complexity of the samples, a very good agreement is obtained.

  7. Fibre Reinforced Composite: Post and Core Material in a Pediatric Patient - An Alternative to Usual

    PubMed Central

    Tandon, Shobha

    2014-01-01

    Fractured teeth are always a challenge to the dentist. The root canal therapy today can retain even very badly broken teeth. One of the most accepted techniques involve restoration of extensively carious or badly fractured teeth by the fabrication of a post and core while utilizing the root canal space for anchorage. So far, the only materials that are available to the dentist for this procedure have been a variety of metallic alloys. These materials are hard and need to be cast precisely so that they can fit the canals. Today materials are available which usually eliminates all the intermediate steps which are done in laboratories and the total control is rendered in the hands of the dentist, to fabricate on the chair, a resilient, aesthetic and bonded post and core. One such material is discussed here in a pediatric permanent anterior tooth. PMID:25584339

  8. Fuselage structure using advanced technology fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Robinson, R. K.; Tomlinson, H. M. (Inventor)

    1982-01-01

    A fuselage structure is described in which the skin is comprised of layers of a matrix fiber reinforced composite, with the stringers reinforced with the same composite material. The high strength to weight ratio of the composite, particularly at elevated temperatures, and its high modulus of elasticity, makes it desirable for use in airplane structures.

  9. Kevlar reinforced neoprene composites

    NASA Technical Reports Server (NTRS)

    Penn, B. G.; Daniels, J. G.; White, W. T.; Thompson, L. M.; Clemons, L. M.

    1985-01-01

    Kevlar/neoprene composites were prepared by two techniques. One method involved the fabrication of a composite from a rubber prepreg prepared by coating Kevlar with viscous neoprene solution and then allowing the solvent to evaporate (solution impregnation technique). The second method involved heating a stack of Kevlar/neoprene sheets at a temperature sufficient to cause polymer flow (melt flow technique). There was no significant difference in the breaking strength and percent elongation for samples obtained by the two methods; however the shear strength obtained for samples fabricated by the solution impregnation technique (275 psi) was significantly higher than that found for the melt flow fabricated samples (110 psi).

  10. Kevlar reinforced neoprene composites

    SciTech Connect

    Penn, B.G.; Daniels, J.G.; White, W.T.; Thompson, L.M.; Clemons, L.M.

    1985-04-01

    Kevlar/neoprene composites were prepared by two techniques. One method involved the fabrication of a composite from a rubber prepreg prepared by coating kevlar with viscous neoprene solution and then allowing the solvent to evaporate (solution impregnation technique). The second method involved heating a stack of kevlar/neoprene sheets at a temperature sufficient to cause polymer flow (melt flow technique). There was no significant difference in the breaking strength and percent elongation for samples obtained by the two methods; however the shear strength obtained for samples fabricated by the solution impregnation technique (275 psi) was significantly higher than that found for the melt flow fabricated samples (110 psi). 1 reference, 2 tables.

  11. Cyclic fatigue behaviour of fibre reinforced rubber-toughened nylon composite materials

    NASA Astrophysics Data System (ADS)

    Pinot, L.; Gomina, M.; Jernot, J.-P.; Moreau, R.; Nakache, E.

    2005-03-01

    The effects of the amount of rubber, the concentration of fibres and the state of the fibre/matrix interface upon the mechanical behaviour of glass fibre/rubber-toughened nylon ternary blends are checked. First, monotonic tensile tests were carried out on different intermediate materials and then on the ternary blends to derive the stress-strain curves and document the damage mechanisms. Cyclic fatigue tests were implemented on tensile specimens and the results were analysed in terms of the reduction of the Young's modulus, the increase of the hysteresis energy rate in the stress-strain diagram and the temperature rise. These findings were correlated to fractographic observations to assess the role of the different constituents.

  12. Interface shear strength and fracture behaviour of porous glass-fibre-reinforced composite implant and bone model material.

    PubMed

    Nganga, Sara; Ylä-Soininmäki, Anne; Lassila, Lippo V J; Vallittu, Pekka K

    2011-11-01

    Glass-fibre-reinforced composites (FRCs) are under current investigation to serve as durable bone substitute materials in load-bearing orthopaedic implants and bone implants in the head and neck area. The present form of biocompatible FRCs consist of non-woven E-glass-fibre tissues impregnated with varying amounts of a non-resorbable photopolymerisable bifunctional polymer resin with equal portions of both bis-phenyl-A-glycidyl dimethacrylate (BisGMA) and triethyleneglycol dimethacrylate (TEGDMA). FRCs with a total porosity of 10-70 vol% were prepared, more than 90 vol% of which being functional (open pores), and the rest closed. The pore sizes were greater than 100 μm. In the present study, the push-out test was chosen to analyse the shear strength of the interface between mechanically interlocked gypsum and a porous FRC implant structure. Gypsum was used as a substitute material for natural bone. The simulative in vitro experiments revealed a significant rise of push-out forces to the twofold level of 1147 ± 271 N for an increase in total FRC porosity of 43%. Pins, intended to model the initial mechanical implant fixation, did not affect the measured shear strength of the gypsum-FRC interface, but led to slightly more cohesive fracture modes. Fractures always occurred inside the gypsum, it having lower compressive strength than the porous FRC structures. Therefore, the largest loads were restricted by the brittleness of the gypsum. Increases of the FRC implant porosity tended to lead to more cohesive fracture modes and higher interfacial fracture toughness. Statistical differences were confirmed using the Kruskal-Wallis test. The differences between the modelled configuration showing gypsum penetration into all open pores and the real clinical situation with gradual bone ingrowth has to be considered. PMID:22098879

  13. Interface shear strength and fracture behaviour of porous glass-fibre-reinforced composite implant and bone model material.

    PubMed

    Nganga, Sara; Ylä-Soininmäki, Anne; Lassila, Lippo V J; Vallittu, Pekka K

    2011-11-01

    Glass-fibre-reinforced composites (FRCs) are under current investigation to serve as durable bone substitute materials in load-bearing orthopaedic implants and bone implants in the head and neck area. The present form of biocompatible FRCs consist of non-woven E-glass-fibre tissues impregnated with varying amounts of a non-resorbable photopolymerisable bifunctional polymer resin with equal portions of both bis-phenyl-A-glycidyl dimethacrylate (BisGMA) and triethyleneglycol dimethacrylate (TEGDMA). FRCs with a total porosity of 10-70 vol% were prepared, more than 90 vol% of which being functional (open pores), and the rest closed. The pore sizes were greater than 100 μm. In the present study, the push-out test was chosen to analyse the shear strength of the interface between mechanically interlocked gypsum and a porous FRC implant structure. Gypsum was used as a substitute material for natural bone. The simulative in vitro experiments revealed a significant rise of push-out forces to the twofold level of 1147 ± 271 N for an increase in total FRC porosity of 43%. Pins, intended to model the initial mechanical implant fixation, did not affect the measured shear strength of the gypsum-FRC interface, but led to slightly more cohesive fracture modes. Fractures always occurred inside the gypsum, it having lower compressive strength than the porous FRC structures. Therefore, the largest loads were restricted by the brittleness of the gypsum. Increases of the FRC implant porosity tended to lead to more cohesive fracture modes and higher interfacial fracture toughness. Statistical differences were confirmed using the Kruskal-Wallis test. The differences between the modelled configuration showing gypsum penetration into all open pores and the real clinical situation with gradual bone ingrowth has to be considered.

  14. Provisional anterior tooth replacement using nonimpregnated fiber and fiber-reinforced composite resin materials: a clinical report.

    PubMed

    Chan, Daniel C N; Giannini, Marcelo; De Goes, Mario Fernando

    2006-05-01

    The loss of anterior teeth is often a serious esthetic concern. While conventional fixed partial dentures and implant-supported restorations may be the treatments of choice, nonimpregnated fibers (NFs) and fiber-reinforced composite (FRC) resins offer a conservative alternative for improving esthetics. This article describes 2 clinical situations in which NF glass ribbon and FRC were successfully used to provisionally restore anterior edentulous areas in an esthetic, functional, and timely manner. PMID:16679128

  15. Provisional anterior tooth replacement using nonimpregnated fiber and fiber-reinforced composite resin materials: a clinical report.

    PubMed

    Chan, Daniel C N; Giannini, Marcelo; De Goes, Mario Fernando

    2006-05-01

    The loss of anterior teeth is often a serious esthetic concern. While conventional fixed partial dentures and implant-supported restorations may be the treatments of choice, nonimpregnated fibers (NFs) and fiber-reinforced composite (FRC) resins offer a conservative alternative for improving esthetics. This article describes 2 clinical situations in which NF glass ribbon and FRC were successfully used to provisionally restore anterior edentulous areas in an esthetic, functional, and timely manner.

  16. Acoustic emission from composite-reinforced metals

    NASA Technical Reports Server (NTRS)

    Henneke, E. G., II; Herakovich, C. T.; Jones, G. L.; Renieri, M. P.

    1975-01-01

    Acoustic-emission (AE) count rates are presented for tensile loading of unidirectional boron-epoxy and for aluminum sheets reinforced with unidirectional boron-epoxy. It is shown that different prepreg materials have different characteristic AE patterns. Results from composite-reinforced metal specimens show that early failures are accompanied by a sharp increase in AE count rate at the knee of the bilinear stress-strain diagram. It is further shown that the count rates are a function of specimen fabrication and that higher total counts do not necessarily correspond to early failures.

  17. Composite Structural Materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.

    1984-01-01

    The development and application of filamentary composite materials, is considered. Such interest is based on the possibility of using relatively brittle materials with high modulus, high strength, but low density in composites with good durability and high tolerance to damage. Fiber reinforced composite materials of this kind offer substantially improved performance and potentially lower costs for aerospace hardware. Much progress has been made since the initial developments in the mid 1960's. There were only limited applied to the primary structure of operational vehicles, mainly as aircrafts.

  18. Composite material

    DOEpatents

    Hutchens, Stacy A.; Woodward, Jonathan; Evans, Barbara R.; O'Neill, Hugh M.

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  19. Joint Strength Control at the Fiber/Matrix Interface during the Production of Polymer Composite Materials Reinforced with High Performance Fibers

    NASA Astrophysics Data System (ADS)

    Kudinov, Vladimir V.; Korneeva, Natalia V.

    2010-06-01

    The paper presents the results obtained in the study of the joint strength between polymer matrix and high performance polyethylene fiber. The fiber/matrix joints simulate the unit cell of the fiber-reinforced composite materials. Effect of heat treatment on the composite properties at the interface was estimated by a multifilament wet-pull-out method. It was found that the joint strength may be increased with the help of extra heart treatment. Both the energy to peak load and the energy to failure for CM joints at various stages of loading were determined.

  20. Multi-Length Scale-Enriched Continuum-Level Material Model for Kevlar®-Fiber-Reinforced Polymer-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Pandurangan, B.; Snipes, J. S.; Yen, C.-F.; Cheeseman, B. A.

    2013-03-01

    Fiber-reinforced polymer matrix composite materials display quite complex deformation and failure behavior under ballistic/blast impact loading conditions. This complexity is generally attributed to a number of factors such as (a) hierarchical/multi-length scale architecture of the material microstructure; (b) nonlinear, rate-dependent and often pressure-sensitive mechanical response; and (c) the interplay of various intrinsic phenomena and processes such as fiber twisting, interfiber friction/sliding, etc. Material models currently employed in the computational engineering analyses of ballistic/blast impact protective structures made of this type of material do not generally include many of the aforementioned aspects of the material dynamic behavior. Consequently, discrepancies are often observed between computational predictions and their experimental counterparts. To address this problem, the results of an extensive set of molecular-level computational analyses regarding the role of various microstructural/morphological defects on the Kevlar® fiber mechanical properties are used to upgrade one of the existing continuum-level material models for fiber-reinforced composites. The results obtained show that the response of the material is significantly affected as a result of the incorporation of microstructural effects both under quasi-static simple mechanical testing condition and under dynamic ballistic-impact conditions.

  1. Tensile properties of nanoclay reinforced epoxy composites

    NASA Astrophysics Data System (ADS)

    Ku, H.; Trada, Mohan

    2013-08-01

    Kinetic epoxy resin was filled with nanoclay to increase tensile properties of the composite for civil and structural. This project manufactured samples with different percentages by weight of nanoclay in the composites in steps of 1 wt %, which were then post-cured in an oven. The samples were then subjected to tensile tests. The results showed that the composite with 3 wt % of nanoclay produced the highest yield and tensile strengths. However, the Young's modulus increased with increasing nanoparticulate loading. It is hoped that the discussion and results in this work would not only contribute towards the further development of nanoclay reinforced epoxy composites with enhanced material properties, but also provide useful information for the studies of fracture toughness, tensile properties and flexural properties of other composites.

  2. Silicon, iron and titanium doped calcium phosphate-based glass reinforced biodegradable polyester composites as bone analogous materials

    NASA Astrophysics Data System (ADS)

    Shah Mohammadi, Maziar

    Bone defects resulting from disease or traumatic injury is a major health care problem worldwide. Tissue engineering offers an alternative approach to repair and regenerate bone through the use of a cell-scaffold construct. The scaffold should be biodegradable, biocompatible, porous with an open pore structure, and should be able to withstand the applied forces. Phosphate-based glasses (PGs) may be used as reinforcing agents in degradable composites since their degradation can be predicted and controlled through their chemistry. This doctoral dissertation describes the development and evaluation of PGs reinforced biodegradable polyesters for intended applications in bone augmentation and regeneration. This research was divided into three main objectives: 1) Investigating the composition dependent properties of novel PG formulations by doping a sodium-free calcium phosphate-based glass with SiO2, Fe2O3, and TiO2. Accordingly, (50P2 O5-40CaO- xSiO2-(10-x)Fe2O3, where x = 10, 5 and 0 mol.%) and (50P2O5-40CaO-xSiO 2-(10-x)TiO2 where x = 10, 7, 5, 3 and 0 mol.%) formulations were developed and characterised. SiO2 incorporation led to increased solubility, ion release, pH reduction, as well as hydrophilicity, surface energy, and surface polarity. In contrast, doping with Fe2O 3 or TiO2 resulted in more durable glasses, and improved cell attachment and viability. It was hypothesised that the presence of SiO 2 in the TiO2-doped formulations could up-regulate the ionic release from the PG leading to higher alkaline phosphatase activity of MC3T3-E1 cells. 2) Incorporating Si, Fe, and Ti doped PGs as fillers, either as particulates (PGPs) or fibres (PGFs), into biodegradable polyesters (polycaprolactone (PCL) and semi-crystalline and amorphous poly(lactic acid) (PLA and PDLLA)) with the aim of developing degradable bone analogous composites. It was found that PG composition and geometry dictated the weight loss, ionic release, and mechanical properties of the composites. It

  3. Modified glass fibre reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Cao, Yumei

    A high ratio of strength to density and relatively low-cost are some of the significant features of glass fibre reinforced polymer composites (GFRPCs) that made them one of the most rapidly developed materials in recent years. They are widely used as the material of construction in the areas of aerospace, marine and everyday life, such as airplane, helicopter, boat, canoe, fishing rod, racket, etc. Traditionally, researchers tried to raise the mechanical properties and keep a high strength/weight ratio using all or some of the following methods: increasing the volume fraction of the fibre; using different polymeric matrix material; or changing the curing conditions. In recent years, some new techniques and processing methods were developed to further improve the mechanical properties of glass fibre (GF) reinforced polymer composite. For example, by modifying the surface condition of the GF, both the interface strength between the GF and the polymer matrix and the shear strength of the final composite can be significantly increased. Also, by prestressing the fibre during the curing process of the composite, the tensile, flexural and the impact properties of the composite can be greatly improved. In this research project, a new method of preparing GFRPCs, which combined several traditional and modern techniques together, was developed. This new method includes modification of the surface of the GF with silica particles, application of different levels of prestressing on the GF during the curing process, and the change of the fibre volume fraction and curing conditions in different sets of experiments. The results of the new processing were tested by the three-point bend test, the short beam shear test and the impact test to determine the new set of properties so formed in the composite material. Scanning electronic microscopy (SEM) was used to study the fracture surface of the new materials after the mechanical tests were performed. By taking advantages of the

  4. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1982-01-01

    The promise of filamentary composite materials, whose development may be considered as entering its second generation, continues to generate intense interest and applications activity. Fiber reinforced composite materials offer substantially improved performance and potentially lower costs for aerospace hardware. Much progress has been achieved since the initial developments in the mid 1960's. Rather limited applications to primary aircraft structure have been made, however, mainly in a material-substitution mode on military aircraft, except for a few experiments currently underway on large passenger airplanes in commercial operation. To fulfill the promise of composite materials completely requires a strong technology base. NASA and AFOSR recognize the present state of the art to be such that to fully exploit composites in sophisticated aerospace structures, the technology base must be improved. This, in turn, calls for expanding fundamental knowledge and the means by which it can be successfully applied in design and manufacture.

  5. Experimental Investigation of Mechanical and Thermal properties of sisal fibre reinforced composite and effect of sic filler material

    NASA Astrophysics Data System (ADS)

    Surya Teja, Malla; Ramana, M. V.; Sriramulu, D.; Rao, C. J.

    2016-09-01

    With a view of exploring the potential use of natural recourses, we made an attempt to fabricate sisal fibre polymer composites by hand lay-up method. Natural fiber composites are renewable, cheap and biodegradable. Their easy availability, lower density, higher specific properties, lower cost, satisfactory mechanical and thermal properties, non-corrosive nature, makes them an attractive ecological alternative to glass, carbon or other man-made synthetic fibers. In this work, the effect of SiC on mechanical and thermal properties of natural sisal fiber composites are investigated. The composite has been made with and without SiC incorporating natural sisal fiber with polyester as bonding material. The experimental outcomes exhibited that the tensile strength of composite with 10%SiC 2.53 times greater than that of composite without SiC. The impact strength of composite with 10% SiC is 1.73 times greater than that of composite without SiC plain polyester. Thermal properties studied include thermal conductivity, specific heat capacity, thermal diffusivity, thermal degradation and stability. Three different samples with 0%, 5%, 10% SiC powder are considered. With the addition of SiC filler powder, thermal conductivity increases, specific heat capacity gradually increases then decreases, thermal diffusivity increases and thermal stability improves with Sic powder.

  6. PEDOT:PSS-Based Piezo-Resistive Sensors Applied to Reinforcement Glass Fibres for in Situ Measurement during the Composite Material Weaving Process

    PubMed Central

    Trifigny, Nicolas; Kelly, Fern M.; Cochrane, Cédric; Boussu, François; Koncar, Vladan; Soulat, Damien

    2013-01-01

    The quality of fibrous reinforcements used in composite materials can be monitored during the weaving process. Fibrous sensors previously developed in our laboratory, based on PEDOT:PSS, have been adapted so as to directly measure the mechanical stress on fabrics under static or dynamic conditions. The objective of our research has been to develop new sensor yarns, with the ability to locally detect mechanical stresses all along the warp or weft yarn. This local detection is undertaken inside the weaving loom in real time during the weaving process. Suitable electronic devices have been designed in order to record in situ measurements delivered by this new fibrous sensor yarn. PMID:23959238

  7. PEDOT:PSS-based piezo-resistive sensors applied to reinforcement glass fibres for in situ measurement during the composite material weaving process.

    PubMed

    Trifigny, Nicolas; Kelly, Fern M; Cochrane, Cédric; Boussu, François; Koncar, Vladan; Soulat, Damien

    2013-08-16

    The quality of fibrous reinforcements used in composite materials can be monitored during the weaving process. Fibrous sensors previously developed in our laboratory, based on PEDOT:PSS, have been adapted so as to directly measure the mechanical stress on fabrics under static or dynamic conditions. The objective of our research has been to develop new sensor yarns, with the ability to locally detect mechanical stresses all along the warp or weft yarn. This local detection is undertaken inside the weaving loom in real time during the weaving process. Suitable electronic devices have been designed in order to record in situ measurements delivered by this new fibrous sensor yarn.

  8. SiC Fiber-Reinforced Celsian Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    2003-01-01

    Celsian is a promising matrix material for fiber-reinforced composites for high temperature structural applications. Processing and fabrication of small diameter multifilament silicon carbide tow reinforced celsian matrix composites are described. Mechanical and microstructural properties of these composites at ambient and elevated temperatures are presented. Effects of high-temperature exposures in air on the mechanical behavior of these composites are also given. The composites show mechanical integrity up to 1100 C but degrade at higher temperatures in oxidizing atmospheres. A model has been proposed for the degradation of these composites in oxidizing atmospheres at high temperatures.

  9. Effects of temperature and humidity cycling on the strengths of textile reinforced carbon/epoxy composite materials

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Furrow, Keith W.

    1993-01-01

    Results are presented from an experimental evaluation of the combined effects of temperature and humidity cycling on AS4/3501-6 composites (unstitched, Kevlar 29 stitched, and S-2 glass stitched uniweave fabric) and AS4/E905L composites (2-D, S-2 glass stitched 2-D, and 3-D braided fabric). The AS4/3501-6 uniweave material had a quasi-isotropic layup, whereas the AS4/E905L materials were braided in a (+/-30 deg/0 deg)(sub s) orientation. Data presented include compression strengths and compression-compression fatigue results for uncycled composites and cycled composites (160, 480, 720, and 1280 cycles from 140 deg F at 95 percent relative humidity to -67 deg F). To observe the presence of microcracking within the laminates, photomicrographs were taken of each material type at the end of each cycling period. Microcracks were found to be more prevalent within stitched laminates, predominantly around individual stitches. The glass stitched laminates showed significant microcracking even before cycling. Less microcracking was evident in the Kevlar stitched materials, whereas the unstitched uniweave material developed microcracks only after cycling. The 3-D braid did not develop microcracks. The static compression strengths of the unstitched and Kevlar stitched uniweave materials were degraded by about 10 percent after 1280 temperature/humidity cycles, whereas the reduction in compression strength for the glass stitched uniweave was less than 3 percent. The reduction in compression strength for the glass stitched 2-D braid was less than 8 percent. The unstitched 2-D and 3-D braids did not lose strength from temperature/humidity cycling. The compression-compression fatigue properties of all six material types were not affected by temperature/humidity cycling.

  10. Materials characterization of silicon carbide reinforced titanium (Ti/SCS-6) metal matrix composites. Part 1: Tensile and fatigue behavior

    SciTech Connect

    Liaw, P.K.; Diaz, E.S.; Chiang, K.T.; Loh, D.H.

    1995-12-01

    Flexural fatigue behavior was investigated on titanium (Ti-15V-3Cr) metal matrix composites reinforced with cross-ply, continuous silicon carbide (SiC) fibers. The titanium composites had an eight-ply (0, 90, +45, {minus}45 deg) symmetric layup. Fatigue life was found to be sensitive to fiber layup sequence. Increasing the test temperature from 24 C to 427 C decreased fatigue life. Interface debonding and matrix and fiber fracture were characteristic of tensile behavior regardless of test temperature. In the tensile fracture process, interface debonding between SiC and the graphite coating and between the graphite coating and the carbon core could occur. A greater amount of coating degradation at 427 C than at 24 C reduced the Ti/SiC interface bonding integrity, which resulted in lower tensile properties at 427 C. During tensile testing, a crack could initiate from the debonded Ti/SiC interface and extend to the debonded interface of the neighboring fiber. The crack tended to propagate through the matrix and the interface. Dimpled fracture was the prime mode of matrix fracture. Interface debonding, matrix cracking, and fiber bridging were identified as the prime modes of fatigue mechanisms. To a lesser extent, fiber fracture was observed during fatigue. However, fiber fracture was believed to occur near the final stage of fatigue failure. In fatigued specimens, facet-type fracture appearance was characteristic of matrix fracture morphology. Theoretical modeling of the fatigue behavior of Ti/SCS-6 composites is presented in Part 2 of this series of articles.

  11. An Assessment of Self-Healing Fiber Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.

    2012-01-01

    Several reviews and books have been written concerning self-healing polymers over the last few years. These have focused primarily on the types of self-healing materials being studied, with minor emphasis given to composite properties. The purpose of this review is to assess the self-healing ability of these materials when utilized in fiber reinforced composites

  12. Nano polypeptide particles reinforced polymer composite fibers.

    PubMed

    Li, Jiashen; Li, Yi; Zhang, Jing; Li, Gang; Liu, Xuan; Li, Zhi; Liu, Xuqing; Han, Yanxia; Zhao, Zheng

    2015-02-25

    Because of the intensified competition of land resources for growing food and natural textile fibers, there is an urgent need to reuse and recycle the consumed/wasted natural fibers as regenerated green materials. Although polypeptide was extracted from wool by alkaline hydrolysis, the size of the polypeptide fragments could be reduced to nanoscale. The wool polypeptide particles were fragile and could be crushed down to nano size again and dispersed evenly among polymer matrix under melt extrusion condition. The nano polypeptide particles could reinforce antiultraviolet capability, moisture regain, and mechanical properties of the polymer-polypeptide composite fibers.

  13. Fiber reinforced thermoplastic resin matrix composites

    NASA Technical Reports Server (NTRS)

    Jones, Robert J. (Inventor); Chang, Glenn E. C. (Inventor)

    1989-01-01

    Polyimide polymer composites having a combination of enhanced thermal and mechanical properties even when subjected to service temperatures as high as 700.degree. F. are described. They comprise (a) from 10 to 50 parts by weight of a thermoplastic polyimide resin prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and (b) from 90 to 50 parts by weight of continuous reinforcing fibers, the total of (a) and (b) being 100 parts by weight. Composites based on polyimide resin formed from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and pyromellitic dianhydride and continuous carbon fibers retained at least about 50% of their room temperature shear strength after exposure to 700.degree. F. for a period of 16 hours in flowing air. Preferably, the thermoplastic polyimide resin is formed in situ in the composite material by thermal imidization of a corresponding amide-acid polymer prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. It is also preferred to initially size the continuous reinforcing fibers with up to about one percent by weight of an amide-acid polymer prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. In this way imidization at a suitable elevated temperature results in the in-situ formation of a substantially homogeneous thermoplastic matrix of the polyimide resin tightly and intimately bonded to the continuous fibers. The resultant composites tend to have optimum thermo-mechanical properties.

  14. Time-resolved X-ray microtomographic measurement of water transport in wood-fibre reinforced composite material

    NASA Astrophysics Data System (ADS)

    Miettinen, Arttu; Harjupatana, Tero; Kataja, Markku; Fortino, Stefania; Immonen, Kirsi

    2016-07-01

    Natural fibre composites are prone to absorb moisture from the environment which may lead to dimensional changes, mold growth, degradation of mechanical properties or other adverse effects. In this work we develop a method for direct non-intrusive measurement of local moisture content inside a material sample. The method is based on X-ray microtomography, digital image correlation and image analysis. As a first application of the method we study axial transport of water in a cylindrical polylactic acid/birch pulp composite material sample with one end exposed to water. Based on the results, the method seems to give plausible estimates of water content profiles inside the cylindrical sample. The results may be used, e.g., in developing and validating models of moisture transport in biocomposites.

  15. Applications of magnetically active fibre reinforced composites

    NASA Astrophysics Data System (ADS)

    Etches, Julie; Bond, Ian; Mellor, Philip

    2005-05-01

    As the application of fibre reinforced polymer composites (FRP) becomes more widespread there is a desire to add functionality beyond that of simple mechanical properties in order to facilitate the development of 'smart' materials. For example, the functionality being discussed in this paper is the imparting of significant magnetic properties to a FRP. This can take the form of soft magnetic performance for use in electrical machines or hard magnetic performance for novel forms of sensing or power generation. It has been demonstrated that by using hollow glass fibres as a reinforcement, magnetic material can be introduced into these fibres without significant effects on the structural behaviour of the FRP. The current studies have included the assessment of such a magnetic FRP in a variety of applications. The addition of hard magnetic materials, e.g. magnetite and barium ferrite, has been achieved through the use of nanopowders and the resulting FRP has been assessed for morphing structures applications. The magnitude of magnetic performance that can be currently achieved is controlled by the availability of suitable magnetic materials in fine powder form and the volume of magnetic material which can be incorporated within the fibres.

  16. The mechanics of delamination in fiber-reinforced composite materials. II - The delamination behavior and fracture mechanics parameters

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1983-01-01

    Based on theories of laminate anisotropic elasticity and interlaminar fracture, the complete solution structure associated with a composite delamination is determined. Fracture mechanics parameters characterizing the interlaminar crack behavior are defined from asymptotic stress solutions for delaminations with different crack-tip deformation configurations. A numerical method employing singular finite elements is developed to study delaminations in fiber composites with any arbitrary combinations of lamination, material, geometric, and crack variables. The special finite elements include the exact delamination stress singularity in its formulation. The method is shown to be computationally accurate and efficient, and operationally simple. To illustrate the basic nature of composite delamination, solutions are shown for edge-delaminated (0/-0/-0/0) and (+ or - 0/+ or - 0/90/90 deg) graphite-epoxy systems under uniform axial extension. Three-dimensional crack-tip stress intensity factors, associated energy release rates, and delamination crack-closure are determined for each individual case. The basic mechanics and mechanisms of composite delamination are studied, and fundamental characteristics unique to recently proposed tests for interlaminar fracture toughness of fiber composite laminates are examined. Previously announced in STAR as N84-13222

  17. The mechanics of delamination in fiber-reinforced composite materials. Part 2: Delamination behavior and fracture mechanics parameters

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1983-01-01

    Based on theories of laminate anisotropic elasticity and interlaminar fracture, the complete solution structure associated with a composite delamination is determined. Fracture mechanics parameters characterizing the interlaminar crack behavior are defined from asymptotic stress solutions for delaminations with different crack-tip deformation configurations. A numerical method employing singular finite elements is developed to study delaminations in fiber composites with any arbitrary combinations of lamination, material, geometric, and crack variables. The special finite elements include the exact delamination stress singularity in its formulation. The method is shown to be computationally accurate and efficient, and operationally simple. To illustrate the basic nature of composite delamination, solutions are shown for edge-delaminated (0/-0/-0/0) and (+ or - 0/+ or - 0/90/90 deg) graphite-epoxy systems under uniform axial extenstion. Three-dimensional crack-tip stress intensity factors, associated energy release rates, and delamination crack-closure are determined for each individual case. The basic mechanics and mechanisms of composite delamination are studied, and fundamental characteristics unique to recently proposed tests for interlaminar fracture toughness of fiber composite laminates are examined.

  18. Composite material radomes

    NASA Astrophysics Data System (ADS)

    Carbone, R.; Simon, J.-Y.

    1987-06-01

    The fabrication of radomes from composite materials, for naval and aeronautical applications including the Mirage II, F1, and Mirage 2000, is discussed. The diverse radioelectric and mechanical requirements of radomes are best met in the average-temperature regime by reinforced plastics, and in the elevated supersonic regime by ceramic materials. The structural criteria of radomes concerning aerodynamic, inertial, and vibrational loading, and the environmental criteria concerning temperature, sand and rain erosion, and lightning effects, are reviewed. Materials considered for radome fabrication include modified polyesters, epoxies, and thermostable resins, using glass, silica, and aramide tissues or threads as the reinforcements. The advantages and disadvantages of the various fabrication methods, and the fabrication of monolithic radomes by winding and by using preformed weaves, are also discussed.

  19. Painted Fiberglass-Reinforced Contemporary Sculpture: Investigating Composite Materials, Techniques and Conservation Using a Multi-Analytical Approach.

    PubMed

    Salvadori, Barbara; Cantisani, Emma; Colombini, Maria Perla; Tognon, Cecilia Gaia Rachele

    2016-01-01

    A multi-analytical approach was used to study the constituent materials, manufacturing technique, and state of conservation of a contemporary sculpture. This sculpture, entitled Nuredduna, was created by Aligi Sassu in 1995 and is located in the "Bellariva garden" in Florence (Italy). Fourier transform infrared spectroscopy (FT-IR), optical and electronic microscopy (OM and SEM-EDS), X-ray diffraction (XRD), and portable X-ray fluorescence (XRF) highlighted the multi-layered structure of the statue: fiberglass and an overlay of different layers (gel coat) applied with an unsaturated polyester resin added with aggregate materials and bromine compounds. A top-coat in acrylic black varnish, used as a finish, was also found. The combination of these materials with their different compositions, environmental impact, and even vandalism have negatively affected the state of conservation of Nuredduna, causing the loss of strata in its lower parts (legs and feet). PMID:26767643

  20. Trans-Laminar-Reinforced (TLR) Composites

    NASA Technical Reports Server (NTRS)

    Hinders, Mark; Dickinson, Larry

    1997-01-01

    A Trans-Laminar-Reinforced (TLR) composite is defined as composite laminate with up to five percent volume of fibrous reinforcement oriented in a 'trans-laminar' fashion in the through-thickness direction. The TLR can be continuous threads as in 'stitched laminates', or it can be discontinuous rods or pins as in 'Z-Fiber(TM) materials. It has been repeatedly documented in the literature that adding TLR to an otherwise two dimensional laminate results in the following advantages: substantially improved compression-after-impact response; considerably increased fracture toughness in mode 1 (double cantilever beam) and mode 2 (end notch flexure); and severely restricted size and growth of impact damage and edge delamination. TLR has also been used to eliminate catastrophic stiffener disbonding in stiffened structures. TLR directly supports the 'Achilles heel' of laminated composites, that is delamination. As little as one percent volume of TLR significantly alters the mechanical response of laminates. The objective of this work was to characterize the effects of TLR on the in-plane and inter-laminar mechanical response of undamaged composite laminates. Detailed finite element models of 'unit cells', or representative volumes, were used to study the effects of adding TLR on the elastic constants; the in-plane strength; and the initiation of delamination. Parameters investigated included TLR material, TLR volume fraction, TLR diameter, TLR through-thickness angle, ply stacking sequence, and the microstructural features of pure resin regions and curved in-plane fibers. The work was limited to the linear response of undamaged material with at least one ply interface. An inter-laminar dominated problem of practical interest, a flanged skin in bending, was also modeled.

  1. Composition and method for making polyimide resin-reinforced fabric

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P. (Inventor)

    1981-01-01

    A composition for making polyimide resin reinforced fibers or fabric is discussed. The composition includes a polyfunctional ester, a polyfunctional amine, and an end capping agent. The composition is impregnated into fibers or fabric and heated to form prepreg material. The tack retention characteristics of this prepreg material are improved by incorporating into the composition a liquid olefinic material compatible with the other ingredients of the composition. The prepreg material is heated at a higher temperature to effect formation of the polyimide resin and the monomeric additive is incorporated in the polyimide polymer structure.

  2. Aluminum-Alloy-Matrix/Alumina-Reinforcement Composites

    NASA Technical Reports Server (NTRS)

    Kashalikar, Uday; Rozenoyer, Boris

    2004-01-01

    Isotropic composites of aluminum-alloy matrices reinforced with particulate alumina have been developed as lightweight, high-specific-strength, less-expensive alternatives to nickel-base and ferrous superalloys. These composites feature a specific gravity of about 3.45 grams per cubic centimeter and specific strengths of about 200 MPa/(grams per cubic centimeter). The room-temperature tensile strength is 100 ksi (689 MPa) and stiffness is 30 Msi (206 GPa). At 500 F (260 C), these composites have shown 80 percent retention in strength and 95 percent retention in stiffness. These materials also have excellent fatigue tolerance and tribological properties. They can be fabricated in net (or nearly net) sizes and shapes to make housings, pistons, valves, and ducts in turbomachinery, and to make structural components of such diverse systems as diesel engines, automotive brake systems, and power-generation, mining, and oil-drilling equipment. Separately, incorporation of these metal matrix composites within aluminum gravity castings for localized reinforcement has been demonstrated. A composite part of this type can be fabricated in a pressure infiltration casting process. The process begins with the placement of a mold with alumina particulate preform of net or nearly net size and shape in a crucible in a vacuum furnace. A charge of the alloy is placed in the crucible with the preform. The interior of the furnace is evacuated, then the furnace heaters are turned on to heat the alloy above its liquidus temperature. Next, the interior of the furnace is filled with argon gas at a pressure about 900 psi (approximately equal to 6.2 MPa) to force the molten alloy to infiltrate the preform. Once infiltrated, the entire contents of the crucible can be allowed to cool in place, and the composite part recovered from the mold.

  3. Evaluation of capillary reinforced composites

    NASA Technical Reports Server (NTRS)

    Cahill, J. E.; Halase, J. F.; South, W. K.; Stoffer, L. J.

    1985-01-01

    Anti-icing of the inlet of jet engines is generally performed with high pressure heated air that is directed forward from the compressor through a series of pipes to various manifolds located near the structures to be anti-iced. From these manifolds, the air is directed to all flowpath surfaces that may be susceptible to ice formation. There the anti-icing function may be performed by either heat conduction or film heating. Unfortunately, the prospect of utilizing lighweight, high strength composites for inlet structures of jet engines has been frustrated by the low transverse thermal conductivity of such materials. It was the objective of this program to develop an advanced materials and design concept for anti-icing composite structures. The concept that was evaluated used capillary glass tubes embedded on the surface of a composite structure with heated air ducted through the tubes. An analytical computer program was developed to predict the anti-icing performance of such tubes and a test program was conducted to demonstrate actual performance of this system. Test data and analytical code results were in excellent agreement. Both indicate feasibility of using capillary tubes for surface heating as a means for composite engine structures to combat ice accumulation.

  4. Fatigue of continuous fiber reinforced metallic materials

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Mirdamadi, M.; Bakuckas, J. G., Jr.

    1993-01-01

    The complex damage mechanisms that occur in fiber reinforced advanced metallic materials are discussed. As examples, results for several layups of SCS-6/Ti-15-3 composites are presented. Fatigue tests were conducted and analyzed for both notched and unnotched specimens at room and elevated temperatures. Test conditions included isothermal, non-isothermal, and simulated mission profile thermomechanical fatigue. Test results indicated that the stress in the 0 degree fibers is the controlling factor for fatigue life for a given test condition. An effective strain approach is presented for predicting crack initiation at notches. Fiber bridging models were applied to crack growth behavior.

  5. Continuous fiber-reinforced titanium aluminide composites

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Brindley, P. K.; Froes, F. H.

    1991-01-01

    An account is given of the fabrication techniques, microstructural characteristics, and mechanical behavior of a lightweight, high service temperature SiC-reinforced alpha-2 Ti-14Al-21Nb intermetallic-matrix composite. Fabrication techniques under investigation to improve the low-temperature ductility and environmental resistance of this material system, while reducing manufacturing costs to competitive levels, encompass powder-cloth processing, foil-fiber-foil processing, and thermal-spray processing. Attention is given to composite microstructure problems associated with fiber distribution and fiber-matrix interfaces, as well as with mismatches of thermal-expansion coefficient; major improvements are noted to be required in tensile properties, thermal cycling effects, mechanical damage, creep, and environmental effects.

  6. Designing bioinspired composite reinforcement architectures via 3D magnetic printing

    PubMed Central

    Martin, Joshua J.; Fiore, Brad E.; Erb, Randall M.

    2015-01-01

    Discontinuous fibre composites represent a class of materials that are strong, lightweight and have remarkable fracture toughness. These advantages partially explain the abundance and variety of discontinuous fibre composites that have evolved in the natural world. Many natural structures out-perform the conventional synthetic counterparts due, in part, to the more elaborate reinforcement architectures that occur in natural composites. Here we present an additive manufacturing approach that combines real-time colloidal assembly with existing additive manufacturing technologies to create highly programmable discontinuous fibre composites. This technology, termed as ‘3D magnetic printing', has enabled us to recreate complex bioinspired reinforcement architectures that deliver enhanced material performance compared with monolithic structures. Further, we demonstrate that we can now design and evolve elaborate reinforcement architectures that are not found in nature, demonstrating a high level of possible customization in discontinuous fibre composites with arbitrary geometries. PMID:26494282

  7. Reinforced rubber composition containing ground coal

    SciTech Connect

    Sperley, R.J.

    1984-10-16

    A reinforced rubber composition is provided comprising a mixture of (a) a sulfur vulcanizable rubber and (b) ground coal having an average mesh size of 25 or more and which produces an aqueous slurry with a pH of less than 7.0, and wherein a metallic reinforcing member is embedded in the rubber mixture of (a) and (b).

  8. Boron Nitride Nanotubes-Reinforced Glass Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam; Hurst, Janet B.; Choi, Sung R.

    2005-01-01

    Boron nitride nanotubes of significant lengths were synthesized by reaction of boron with nitrogen. Barium calcium aluminosilicate glass composites reinforced with 4 weight percent of BN nanotubes were fabricated by hot pressing. Ambient-temperature flexure strength and fracture toughness of the glass-BN nanotube composites were determined. The strength and fracture toughness of the composite were higher by as much as 90 and 35 percent, respectively, than those of the unreinforced glass. Microscopic examination of the composite fracture surfaces showed pullout of the BN nanotubes. The preliminary results on the processing and improvement in mechanical properties of BN nanotube reinforced glass matrix composites are being reported here for the first time.

  9. Compressive strength of the mineral reinforced aluminium alloy composite

    NASA Astrophysics Data System (ADS)

    Arora, Rama; Sharma, Anju; Kumar, Suresh; Singh, Gurmel; Pandey, O. P.

    2016-05-01

    This paper presents the results of quasi-static compressive strength of aluminium alloy reinforced with different concentration of rutile mineral particles. The reinforced material shows increase in compressive strength with 5wt% rutile concentration as compared to the base alloy. This increase in compressive strength of composite is attributed to direct strengthening due to transfer of load from lower stiffness matrix (LM13 alloy) to higher stiffness reinforcement (rutile particles). Indirect strengthening mechanisms like increase in dislocation density at the matrix-reinforcement interface, grain size refinement of the matrix and dispersion strengthening are also the contributing factors. The decrease in compressive strength of composite with the increased concentration of rutile concentration beyond 5 wt.% can be attributed to the increase in dislocation density due to the void formation at the matrix-reinforcement interface.

  10. Fibre reinforced composites in aircraft construction

    NASA Astrophysics Data System (ADS)

    Soutis, C.

    2005-02-01

    Fibrous composites have found applications in aircraft from the first flight of the Wright Brothers’ Flyer 1, in North Carolina on December 17, 1903, to the plethora of uses now enjoyed by them on both military and civil aircrafts, in addition to more exotic applications on unmanned aerial vehicles (UAVs), space launchers and satellites. Their growing use has risen from their high specific strength and stiffness, when compared to the more conventional materials, and the ability to shape and tailor their structure to produce more aerodynamically efficient structural configurations. In this paper, a review of recent advances using composites in modern aircraft construction is presented and it is argued that fibre reinforced polymers, especially carbon fibre reinforced plastics (CFRP) can and will in the future contribute more than 50% of the structural mass of an aircraft. However, affordability is the key to survival in aerospace manufacturing, whether civil or military, and therefore effort should be devoted to analysis and computational simulation of the manufacturing and assembly process as well as the simulation of the performance of the structure, since they are intimately connected.

  11. Recent progress in NASA Langley textile reinforced composites program

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson; Harris, Charles E.; Johnston, Norman J.

    1992-01-01

    The NASA LaRC is conducting and sponsoring research to explore the benefits of textile reinforced composites for civil transport aircraft primary structures. The objective of this program is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structural concepts. In addition to in-house research, the program was recently expanded to include major participation by the aircraft industry and aerospace textile companies. The major program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. The NASA Langley in-house focus is as follows: development of a science-based understanding of resin transfer molding (RTM), development of powder-coated towpreg processes, analysis methodology, and development of a performance database on textile reinforced composites. The focus of the textile industry participation is on development of multidirectional, damage-tolerant preforms, and the aircraft industry participation is in the areas of design, fabrication and testing of textile reinforced composite structural elements and subcomponents. Textile processes such as 3D weaving, 2D and 3D braiding, and knitting/stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighed against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural components are required to establish the full potential of textile reinforced

  12. Fiber-reinforced composites in fixed partial dentures

    PubMed Central

    Vallittu, Pekka

    2006-01-01

    Fiber-reinforced composite resin (FRC) prostheses offer the advantages of good aesthetics, minimal invasive treatment, and an ability to bond to the abutment teeth, thereby compensating for less-than-optimal abutment tooth retention and resistance form. These prostheses are composed of two types of composite materials: fiber composites to build the framework and hybrid or microfill particulate composites to create the external veneer surface. This review concentrates on the use of fiber reinforcement in the fabrication of laboratory or chairsidemade composite-fixed partial dentures of conventional preparation. Other applications of FRC in dentistry are briefly mentioned. The possibilities fiber reinforcement technology offers must be emphasized to the dental community. Rather than limiting discussion to whether FRC prostheses will replace metal-ceramic or full-ceramic prostheses, attention should be focused on the additional treatment options brought by the use of fibers. However, more clinical experience is needed. PMID:21526023

  13. Designing with figer-reinforced plastics (planar random composites)

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1982-01-01

    The use of composite mechanics to predict the hygrothermomechanical behavior of planar random composites (PRC) is reviewed and described. These composites are usually made from chopped fiber reinforced resins (thermoplastics or thermosets). The hygrothermomechanical behavior includes mechanical properties, physical properties, thermal properties, fracture toughness, creep and creep rupture. Properties are presented in graphical form with sample calculations to illustrate their use. Concepts such as directional reinforcement and strip hybrids are described. Typical data that can be used for preliminary design for various PRCs are included. Several resins and molding compounds used to make PRCs are described briefly. Pertinent references are cited that cover analysis and design methods, materials, data, fabrication procedures and applications.

  14. Shear bond strength of a new self-adhering flowable composite resin for lithium disilicate-reinforced CAD/CAM ceramic material

    PubMed Central

    Sancakli, Hande Sar; Sancakli, Erkan; Eren, Meltem Mert; Ozel, Sevda; Yucel, Taner; Yildiz, Esra

    2014-01-01

    PURPOSE The purpose of this study was to evaluate and compare the effects of different surface pretreatment techniques on the surface roughness and shear bond strength of a new self-adhering flowable composite resin for use with lithium disilicate-reinforced CAD/CAM ceramic material. MATERIALS AND METHODS A total of one hundred thirty lithium disilicate CAD/CAM ceramic plates with dimensions of 6 mm × 4 mm and 3 mm thick were prepared. Specimens were then assigned into five groups (n=26) as follows: untreated control, coating with 30 µm silica oxide particles (Cojet™ Sand), 9.6% hydrofluoric acid etching, Er:YAG laser irradiation, and grinding with a high-speed fine diamond bur. A self-adhering flowable composite resin (Vertise Flow) was applied onto the pre-treated ceramic plates using the Ultradent shear bond Teflon mold system. Surface roughness was measured by atomic force microscopy. Shear bond strength test were performed using a universal testing machine at a crosshead speed of 1 mm/min. Surface roughness data were analyzed by one-way ANOVA and the Tukey HSD tests. Shear bond strength test values were analyzed by Kruskal-Wallis and Mann-Whitney U tests at α=.05. RESULTS Hydrofluoric acid etching and grinding with high-speed fine diamond bur produced significantly higher surface roughness than the other pretreatment groups (P<.05). Hydrofluoric acid etching and silica coating yielded the highest shear bond strength values (P<.001). CONCLUSION Self-adhering flowable composite resin used as repair composite resin exhibited very low bond strength irrespective of the surface pretreatments used. PMID:25551002

  15. Simple stressed-skin composites using paper reinforcement

    SciTech Connect

    Bunnell, L.R.

    1990-11-01

    The objective of this study was to demonstrate the composite reinforcement concept in a hands-on manner, using readily available materials; to demonstrate the consequences of certain defects in these structures; and to quantify the gains made by engineering composite construction, using a simple measurement of Young's modulus of electricity. The materials used were foam rubber beams, beams reinforced on one side by bonding with heavy paper, a beam reinforced on both sides by bonding with heavy paper, and a beam with a defect caused by using a piece of waxed paper midway to prevent bonding of the paper. The experiment is designed to teach students at the high school level or above the concept of Young's modulus, a measure of a material's stiffness. 2 figs. (BM)

  16. [Carbon fiber-reinforced plastics as implant materials].

    PubMed

    Bader, R; Steinhauser, E; Rechl, H; Siebels, W; Mittelmeier, W; Gradinger, R

    2003-01-01

    Carbon fiber-reinforced plastics have been used clinically as an implant material for different applications for over 20 years.A review of technical basics of the composite materials (carbon fibers and matrix systems), fields of application,advantages (e.g., postoperative visualization without distortion in computed and magnetic resonance tomography), and disadvantages with use as an implant material is given. The question of the biocompatibility of carbon fiber-reinforced plastics is discussed on the basis of experimental and clinical studies. Selected implant systems made of carbon composite materials for treatments in orthopedic surgery such as joint replacement, tumor surgery, and spinal operations are presented and assessed. Present applications for carbon fiber reinforced plastics are seen in the field of spinal surgery, both as cages for interbody fusion and vertebral body replacement.

  17. Tungsten fiber reinforced copper matrix composites: A review

    NASA Technical Reports Server (NTRS)

    Mcdanels, David L.

    1989-01-01

    Tungsten fiber reinforced copper matrix (W/Cu) composites have served as an ideal model system with which to analyze the properties of metal matrix composites. A series of research programs were conducted to investigate the stress-strain behavior of W/Cu composites; the effect of fiber content on the strength, modulus, and conductivity of W/Cu composites; and the effect of alloying elements on the behavior of tungsten wire and of W/Cu composites. Later programs investigated the stress-rupture, creep, and impact behavior of these composites at elevated temperatures. Analysis of the results of these programs as allows prediction of the effects of fiber properties, matrix properties, and fiber content on the properties of W/Cu composites. These analyses form the basis for the rule-of-mixtures prediction of composite properties which was universally adopted as the criteria for measuring composite efficiency. In addition, the analyses allows extrapolation of potential properties of other metal matrix composites and are used to select candidate fibers and matrices for development of tungsten fiber reinforced superalloy composite materials for high temperature aircraft and rocket engine turbine applications. The W/Cu composite efforts are summarized, some of the results obtained are described, and an update is provided on more recent work using W/Cu composites as high strength, high thermal conductivity composite materials for high heat flux, elevated temperature applications.

  18. Carbon Nanomaterials as Reinforcements for Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Carbon nanomaterials including fellerenes, nanotubes (CNT) and nanofibers have been proposed for many applications. One of applications is to use the carbon nanomaterials as reinforcements for composites, especially for polymer matrices. Carbon nanotubes is a good reinforcement for lightweight composite applications due to its low mass density and high Young's modulus. Two obscures need to overcome for carbon nanotubes as reinforcements in composites, which are large quantity production and functioning the nanotubes. This presentation will discuss the carbon nanotube growth by chemical vapor deposition. In order to reduce the cost of producing carbon nanotubes as well as preventing the sliding problems, carbon nanotubes were also synthesized on carbon fibers. The synthesis process and characterization results of nanotubes and nanotubes/fibers will be discussed in the presentation.

  19. Fatigue evaluation of composite-reinforced, integrally stiffened metal panels

    NASA Technical Reports Server (NTRS)

    Dumesnil, C. E.

    1973-01-01

    The fatigue behavior of composite-reinforced, integrally stiffened metal panels was investigated in combined metal and composite materials subjected to fatigue loading. The systems investigated were aluminum-graphite/epoxy, and aluminum-S glass/epoxy. It was found that the composite material would support the total load at limit stress after the metal had completely failed, and the weight of the composite-metal system would be equal to that of an all metal system which would carry the same total load at limit stress.

  20. Composite laminate free edge reinforcement concepts

    NASA Technical Reports Server (NTRS)

    Howard, W. E.; Gossard, T., Jr.; Jones, R. M.

    1985-01-01

    The presence of a free edge in a laminated composite structure can result in delamination of the composite under certain loading conditions. Linear finite element analysis predicts large or even singular interlaminar stresses near the free edge. Edge reinforcements which will reduce these interlaminar stresses, prevent or delay the onset of delaminations, and thereby increase the strength and life of the structure were studied. Finite element models are used to analyze reinforced laminates which were subsequently fabricated and loaded to failure in order to verify the analysis results.

  1. Fracture criteria for discontinuously reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Rack, H. J.; Goree, J. G.; Albritton, J.; Ratnarparkhi, P.

    1988-01-01

    The effect of sample configuration on the details of initial crack propagation in discontinuously whisker reinforced aluminum metal matrix composites was investigated. Care was taken to allow direct comparison of fracture toughness values utilizing differing sample configurations and orientations, holding all materials variables constant, e.g., extrusion ration, heat treatment, and chemistry.

  2. Elastic/viscoplastic constitutive model for fiber reinforced thermoplastic composites

    NASA Technical Reports Server (NTRS)

    Gates, T. S.; Sun, C. T.

    1991-01-01

    A constitutive model to describe the elastic/viscoplastic behavior of fiber-reinforced thermoplastic composites under plane stress conditions is presented. Formulations are given for quasi-static plasticity and time-dependent viscoplasticity. Experimental procedures required to generate the necessary material constants are explained, and the experimental data is compared to the predicted behavior.

  3. Buckling of Fiber Reinforced Composite Plates with Nanofiber Reinforced Matrices

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Murthy, Pappu L. N.

    2010-01-01

    Anisotropic composite plates were evaluated with nanofiber reinforced matrices (NFRM). The nanofiber reinforcement volumes ratio in the matrix was 0.01. The plate dimensions were 20 by 10 by 1.0 in. (508 by 254 by 25.4 mm). Seven different loading condition cases were evaluated: three for uniaxial loading, three for pairs of combined loading, and one with three combined loadings. The anisotropy arose from the unidirectional plates having been at 30 from the structural axis. The anisotropy had a full 6 by 6 rigidities matrix which were satisfied and solved by a Galerkin buckling algorithm. The buckling results showed that the NFRM plates buckled at about twice those with conventional matrix.

  4. Biofiber composites - environmentally compatible materials

    SciTech Connect

    Narayan, R.; Krishnan, M.

    1995-12-01

    A number of thermoplastics have been evaluated as potential materials for composite and blend formulations with natural polymers such as cellulosics, lignocellulose, and starches. The use of biofibers, derived from annually renewable resources, as reinforcing fibers provides positive environmental benefits.An important aspect that affects the processing and ultimate performance is the interfacial adhesion between the biofibers and the plastic.

  5. Examining graphite reinforcement in composites

    NASA Technical Reports Server (NTRS)

    Sanders, R. E.; Yates, C. I.

    1980-01-01

    Structure of graphite layers in composite parts can be checked by pyrolizing epoxy portion of composite samples. After 2-3 hours in nitrogen atmosphere at 540 C, only graphite fibers remain. These can be separated and checked for proper number, thickness, and orientation.

  6. The mechanics of delamination in fiber-reinforced composite materials. Part 1: Stress singularities and solution structure

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1983-01-01

    The fundamental mechanics of delamination in fiber composite laminates is studied. Mathematical formulation of the problem is based on laminate anisotropic elasticity theory and interlaminar fracture mechanics concepts. Stress singularities and complete solution structures associated with general composite delaminations are determined. For a fully open delamination with traction-free surfaces, oscillatory stress singularities always appear, leading to physically inadmissible field solutions. A refined model is introduced by considering a partially closed delamination with crack surfaces in finite-length contact. Stress singularities associated with a partially closed delamination having frictional crack-surface contact are determined, and are found to be diferent from the inverse square-root one of the frictionless-contact case. In the case of a delamination with very small area of crack closure, a simplified model having a square-root stress singularity is employed by taking the limit of the partially closed delamination. The possible presence of logarithmic-type stress singularity is examined; no logarithmic singularity of any kind is found in the composite delamination problem. Numerical examples of dominant stress singularities are shown for delaminations having crack-tip closure with different frictional coefficients between general (1) and (2) graphite-epoxy composites.

  7. Ceramic fiber reinforced glass-ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor)

    1993-01-01

    A slurry of BSAS glass powders is cast into tapes which are cut to predetermined sizes. Mats of continuous chemical vapor deposition (CVD)-SiC fibers are alternately stacked with these matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite which is heated to burn out organic constituents. The remaining interim material is then hot-pressed to form a BSAS glass-ceramic fiber-reinforced composite.

  8. Bioinspired Composites with Spatial and Orientational Control of Reinforcement

    NASA Astrophysics Data System (ADS)

    Demiroers, Ahmet; Studart, Andre; Complex Materials Team

    Living organisms combine soft and hard components to fabricate composite materials with out-standing mechanical properties. The optimum design and assembly of the anisotropic components reinforce the material in specific directions against multidirectional external loads. Although nature does it quite readily, it is still a challenge for material scientists to control the orientation and position of the colloidal components in a matrix. Here, we use external electric and magnetic fields to achieve positional and orientational control over colloid-polymer composites to fabricate mechanically robust materials to capture some of the essential features of natural systems. We first investigated the assembly of spherical micron-sized colloids using dielectrophoresis, as these particles provided an easily accessible and instructive length scale for performing initial experiments. We used dielectrophoresis for spatial control of reinforcing anisotropic components and magnetic fields to provide control over the orientation of these reinforcing constituents. The obtained composites with different orientational and spatial reinforcement showed enhanced mechanical properties, such as wear resistance, which exhibits similarities to tooth enamel. SNSF Ambizione Grant PZ00P2_148040.

  9. Vibrations of carbon nanotube-reinforced composites

    NASA Astrophysics Data System (ADS)

    Formica, Giovanni; Lacarbonara, Walter; Alessi, Roberto

    2010-05-01

    This work deals with a study of the vibrational properties of carbon nanotube-reinforced composites by employing an equivalent continuum model based on the Eshelby-Mori-Tanaka approach. The theory allows the calculation of the effective constitutive law of the elastic isotropic medium (matrix) with dispersed elastic inhomogeneities (carbon nanotubes). The devised computational approach is shown to yield predictions in good agreement with the experimentally obtained elastic moduli of composites reinforced with uniformly aligned single-walled carbon nanotubes (CNTs). The primary contribution of the present work deals with the global elastic modal properties of nano-structured composite plates. The investigated composite plates are made of a purely isotropic elastic hosting matrix of three different types (epoxy, rubber, and concrete) with embedded single-walled CNTs. The computations are carried out via a finite element (FE) discretization of the composite plates. The effects of the CNT alignment and volume fraction are studied in depth to assess how the modal properties are influenced both globally and locally. As a major outcome, the lowest natural frequencies of CNT-reinforced rubber composites are shown to increase up to 500 percent.

  10. Processing and characterization of smart composite reinforcement

    NASA Astrophysics Data System (ADS)

    Kalamkarov, Alexander L.; Fitzgerald, Stephen B.; MacDonald, Douglas O.; Georgiades, Anastasis V.

    1998-07-01

    The issues of processing and characterization of pultruded smart composite reinforcements with the embedded fiber optic sensors are discussed. These fiber reinforced polymer reinforcements incorporate the optical fiber sensors to provide a strain monitoring of structures. The required modification of the pultrusion processing technology to allow for the incorporation of fiber optic sensors is developed. Fabry Perot and Bragg Grating optical strain sensors were chosen due to their small size and excellent sensitivity. The small diameter of the sensor and optical fiber allow them to be embedded without adversely affecting the strength of the composite. Two types of reinforcement with vinylester resin were used to produce the experimental 9.5 mm diameter rods. The reinforcements were carbon and E-glass fibers. In order to fully characterize the pultrusion process, it was decided to subject the strain sensors separately to each of the variables pertinent to the pultrusion process. Thus, sensors were used to monitor strain caused by compaction pressure in the die, compaction pressure plus standard temperature profile, and finally compaction pressure plus temperature plus resin cure (complete pultrusion process). A strain profile was recorded for each experiment as the sensor travelled through the pultrusion die, and for the cool-down period after the sensor had exited the die.

  11. New generation fiber reinforced polymer composites incorporating carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Soliman, Eslam

    The last five decades observed an increasing use of fiber reinforced polymer (FRP) composites as alternative construction materials for aerospace and infrastructure. The high specific strength of FRP attracted its use as non-corrosive reinforcement. However, FRP materials were characterized with a relatively low ductility and low shear strength compared with steel reinforcement. On the other hand, carbon nanotubes (CNTs) have been introduced in the last decade as a material with minimal defect that is capable of increasing the mechanical properties of polymer matrices. This dissertation reports experimental investigations on the use of multi-walled carbon nanotubes (MWCNTs) to produce a new generation of FRP composites. The experiments showed significant improvements in the flexure properties of the nanocomposite when functionalized MWCNTs were used. In addition, MWCNTs were used to produce FRP composites in order to examine static, dynamic, and creep behavior. The MWCNTs improved the off-axis tension, off-axis flexure, FRP lap shear joint responses. In addition, they reduced the creep of FRP-concrete interface, enhanced the fracture toughness, and altered the impact resistance significantly. In general, the MWCNTs are found to affect the behaviour of the FRP composites when matrix failure dominates the behaviour. The improvement in the mechanical response with the addition of low contents of MWCNTs would benefit many industrial and military applications such as strengthening structures using FRP composites, composite pipelines, aircrafts, and armoured vehicles.

  12. Homogenization of long fiber reinforced composites including fiber bending effects

    NASA Astrophysics Data System (ADS)

    Poulios, Konstantinos; Niordson, Christian F.

    2016-09-01

    This paper presents a homogenization method, which accounts for intrinsic size effects related to the fiber diameter in long fiber reinforced composite materials with two independent constitutive models for the matrix and fiber materials. A new choice of internal kinematic variables allows to maintain the kinematics of the two material phases independent from the assumed constitutive models, so that stress-deformation relationships, can be expressed in the framework of hyper-elasticity and hyper-elastoplasticity for the fiber and the matrix materials respectively. The bending stiffness of the reinforcing fibers is captured by higher order strain terms, resulting in an accurate representation of the micro-mechanical behavior of the composite. Numerical examples show that the accuracy of the proposed model is very close to a non-homogenized finite-element model with an explicit discretization of the matrix and the fibers.

  13. Fiber reinforced composites in prosthodontics – A systematic review

    PubMed Central

    Nayar, Sanjna; Ganesh, R.; Santhosh, S.

    2015-01-01

    Fiber-reinforced composite (FRC), prostheses offer the potential advantages of optimized esthetics, low wear of the opposing dentition and the ability to bond the prosthesis to the abutment teeth, thereby compensating for less-than-optimal abutment tooth retention and resistance form. These prostheses are composed of two types of composite materials: Fiber-composites to build the substructure and hybrid or micro fill particulate composites to create the external veneer surface. This article reviews the various types of FRCs and its mechanical properties. PMID:26015717

  14. Method of producing particulate-reinforced composites and composites produced thereby

    SciTech Connect

    Han, Qingyou; Liu, Zhiwei

    2015-12-29

    A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intensity acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaction products comprise a solid particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particle-reinforced composite materials produced by such a process.

  15. Method of producing particulate-reinforced composites and composites produced thereby

    DOEpatents

    Han, Qingyou; Liu, Zhiwei

    2013-12-24

    A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intensity acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaction products comprise a solid particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particle-reinforced composite materials produced by such a process.

  16. Apparatus and process for freeform fabrication of composite reinforcement preforms

    NASA Technical Reports Server (NTRS)

    Yang, Junsheng (Inventor); Wu, Liangwei (Inventor); Liu, Junhai (Inventor); Jang, Bor Z. (Inventor)

    2001-01-01

    A solid freeform fabrication process and apparatus for making a three-dimensional reinforcement shape. The process comprises the steps of (1) operating a multiple-channel material deposition device for dispensing a liquid adhesive composition and selected reinforcement materials at predetermined proportions onto a work surface; (2) during the material deposition process, moving the deposition device and the work surface relative to each other in an X-Y plane defined by first and second directions and in a Z direction orthogonal to the X-Y plane so that the materials are deposited to form a first layer of the shape; (3) repeating these steps to deposit multiple layers for forming a three-dimensional preform shape; and (4) periodically hardening the adhesive to rigidize individual layers of the preform. These steps are preferably executed under the control of a computer system by taking additional steps of (5) creating a geometry of the shape on the computer with the geometry including a plurality of segments defining the preform shape and each segment being preferably coded with a reinforcement composition defining a specific proportion of different reinforcement materials; (6) generating programmed signals corresponding to each of the segments in a predetermined sequence; and (7) moving the deposition device and the work surface relative to each other in response to these programmed signals. Preferably, the system is also operated to generate a support structure for any un-supported feature of the 3-D preform shape.

  17. Epoxy/carbon composite resins in dentistry: mechanical properties related to fiber reinforcements.

    PubMed

    Viguie, G; Malquarti, G; Vincent, B; Bourgeois, D

    1994-09-01

    Composite carbon/epoxy resin techniques for restorative dentistry have improved with the development of various composite resins classified according to fiber reinforcement, such as short fibers, woven materials, or long unidirectional fibers. This study of the mechanical properties with three-point flexion enabled comparison of the flexural strengths. The modulus of elasticity of different composite resin materials was determined so that the appropriate reinforced composite resin could be selected for specific clinical conditions.

  18. High strain-rate model for fiber-reinforced composites

    SciTech Connect

    Aidun, J.B.; Addessio, F.L.

    1995-07-01

    Numerical simulations of dynamic uniaxial strain loading of fiber-reinforced composites are presented that illustrate the wide range of deformation mechanisms that can be captured using a micromechanics-based homogenization technique as the material model in existing continuum mechanics computer programs. Enhancements to the material model incorporate high strain-rate plastic response, elastic nonlinearity, and rate-dependent strength degradation due to material damage, fiber debonding, and delamination. These make the model relevant to designing composite structural components for crash safety, armor, and munitions applications.

  19. Reversibly assembled cellular composite materials.

    PubMed

    Cheung, Kenneth C; Gershenfeld, Neil

    2013-09-13

    We introduce composite materials made by reversibly assembling a three-dimensional lattice of mass-produced carbon fiber-reinforced polymer composite parts with integrated mechanical interlocking connections. The resulting cellular composite materials can respond as an elastic solid with an extremely large measured modulus for an ultralight material (12.3 megapascals at a density of 7.2 milligrams per cubic centimeter). These materials offer a hierarchical decomposition in modeling, with bulk properties that can be predicted from component measurements and deformation modes that can be determined by the placement of part types. Because site locations are locally constrained, structures can be produced in a relative assembly process that merges desirable features of fiber composites, cellular materials, and additive manufacturing.

  20. Effect of thermal shock on fiber-reinforced superalloy composites

    NASA Technical Reports Server (NTRS)

    Yuen, J. L.; Schnittgrund, G. D.; Petrasek, D. W.

    1990-01-01

    An evaluation is presented of the thermal shock behavior of tungsten fiber-reinforced superalloy (FRS) composites with respect to the turbine blade requirements of rocket engine turbopumps. Each composite was reinforced unidirectionally with 40-volume-pct continuous tungsten fibers. The start-up conditions of the first-stage turbine blades of the high-pressure fuel turbopump in the Space Shuttle Main Engine (SSME) were used to investigate the thermal shock behavior of these materials. The FRS composites showed excellent thermal shock resistance, two to nine times better than the turbine blade material used in the SSME. Thermal shock cycling produced microcracks on the surfaces of the irradiated area that were less than 0.13 mm long and 0.005 mm deep. Neither fiber/matrix debonding nor microvoiding was observed.

  1. Properties of glass/carbon fiber reinforced epoxy hybrid polymer composites

    NASA Astrophysics Data System (ADS)

    Patel, R. H.; Sevkani, V. R.; Patel, B. R.; Patel, V. B.

    2016-05-01

    Composite Materials are well known for their tailor-made properties. For the fabrication of composites different types of reinforcements are used for different applications. Sometimes for a particular application, one type of reinforcement may not fulfill the requirements. Therefore, more than one type of reinforcements may be used. Thus, the idea of hybrid composites arises. Hybrid composites are made by joining two or more different reinforcements with suitable matrix system. It helps to improve the properties of composite materials. In the present work glass/carbon fiber reinforcement have been used with a matrix triglycidyl ether of tris(m-hydroxy phenyl) phosphate epoxy resin using amine curing agent. Different physical and mechanical properties of the glass, carbon and glass/carbon fiber reinforced polymeric systems have been found out.

  2. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.; Prewo, K. M.

    1977-01-01

    The results of research for the origination of graphite-fiber reinforced glass matrix composites are presented. The method selected to form the composites consisted of pulling the graphite fiber through a slurry containing powdered glass, winding up the graphite fiber and the glass it picks up on a drum, drying, cutting into segments, loading the tape segment into a graphite die, and hot pressing. During the course of the work, composites were made with a variety of graphite fibers in a glass matrix.

  3. Identification of thermodynamically stable ceramic reinforcement materials for iron aluminide matrices

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1990-01-01

    Aluminide-base intermetallic matrix composites are currently being considered as potential high-temperature materials. One of the key factors in the selection of a reinforcement material is its chemical stability in the matrix. In this study, chemical interactions between iron aluminides and several potential reinforcement materials, which include carbides, oxides, borides, and nitrides, are analyzed from thermodynamic considerations. Several chemically compatible reinforcement materials are identified for the iron aluminides with Al concentrations ranging from 40 to 50 at. pct.

  4. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Thompson, E. R.

    1980-01-01

    High levels of mechanical performance in tension, flexure, fatigue, and creep loading situations of graphite fiber reinforced glass matrix composites are discussed. At test temperatures of up to 813 K it was found that the major limiting factor was the oxidative instability of the reinforcing graphite fibers. Particular points to note include the following: (1) a wide variety of graphite fibers were found to be comparable with the glass matrix composite fabrication process; (2) choice of fiber, to a large extent, controlled resultant composite performance; (3) composite fatigue performance was found to be excellent at both 300 K and 703 K; (4) composite creep and stress rupture at temperatures of up to 813 K was limited by the oxidative stability of the fiber; (5) exceptionally low values of composite thermal expansion coefficient were attributable to the dimensional stability of both matrix and fiber; and (6) component fabricability was demonstrated through the hot pressing of hot sections and brazing using glass and metal joining phases.

  5. Smart pultruded composite reinforcements incorporating fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Kalamkarov, Alexander L.; Fitzgerald, Stephen B.; MacDonald, Douglas O.; Georgiades, Anastasis V.

    1998-03-01

    The issues of processing, evaluation, experimental testing, and modeling of smart fiber reinforced polymer (FRP) composite materials are discussed. The specific application in view is the use of smart composite reinforcements for a monitoring of innovative bridges and structures. The pultrusion technology for the fabrication of fiber reinforced polymer composites with embedded fiber optic senors (Fabry Perot and Bragg Grating) is developed. The optical sensor/composite material interaction is studied. The tensile and shear properties of the pultruded carbon/vinylester and glass/vinylester rods with and without optical fibers are determined. The microstructural analysis of the smart pultruded FRP is carried out. The interfaces between the resin matrix and the acrylate and polyimide coated optical fibers are examined and interpreted in terms of the coatings's ability to resist high temperature and its compatibility with resin matrix. The strain monitoring during the pultrusion of composite parts using the embedded fiber optic sensors was performed. The strain readings from the sensors and the extensometer were compared in mechanical tensile tests.

  6. [Carbon fiber reinforced polysulfone--a new implant material].

    PubMed

    Claes, L

    1989-12-01

    Carbon fibre reinforced polysulfone is a composite material which contains two materials of well known biocompatibility. In comparison to metals this composite material has some advantages which makes it favourable particularly for implants in tumor surgery. The custom made arrangement of fibres in the composite allows the development of implants with special mechanical properties. The radiolucency of the material avoids problems caused by the reflection of x-rays, using metal implants. This special property allows the exact calculation of postoperative radiation doses of tumor patients. Simultaneously the structures behind the implants are not hidden. All implants can be machined during the operation to adapt them to the individual anatomical situation. Animal experimental and clinical applications of plates, screws and spinal segmental replacement implants made of this composite material have shown good results so far.

  7. Development of Textile Reinforced Composites for Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson

    1998-01-01

    NASA has been a leader in development of composite materials for aircraft applications during the past 25 years. In the early 1980's NASA and others conducted research to improve damage tolerance of composite structures through the use of toughened resins but these resins were not cost-effective. The aircraft industry wanted affordable, robust structures that could withstand the rigors of flight service with minimal damage. The cost and damage tolerance barriers of conventional laminated composites led NASA to focus on new concepts in composites which would incorporate the automated manufacturing methods of the textiles industry and which would incorporate through-the-thickness reinforcements. The NASA Advanced Composites Technology (ACT) Program provided the resources to extensively investigate the application of textile processes to next generation aircraft wing and fuselage structures. This paper discusses advanced textile material forms that have been developed, innovative machine concepts and key technology advancements required for future application of textile reinforced composites in commercial transport aircraft. Multiaxial warp knitting, triaxial braiding and through-the-thickness stitching are the three textile processes that have surfaced as the most promising for further development. Textile reinforced composite structural elements that have been developed in the NASA ACT Program are discussed. Included are braided fuselage frames and window-belt reinforcements, woven/stitched lower fuselage side panels, stitched multiaxial warp knit wing skins, and braided wing stiffeners. In addition, low-cost processing concepts such as resin transfer molding (RTM), resin film infusion (RFI), and vacuum-assisted resin transfer molding (VARTM) are discussed. Process modeling concepts to predict resin flow and cure in textile preforms are also discussed.

  8. Basalt fiber reinforced polymer composites: Processing and properties

    NASA Astrophysics Data System (ADS)

    Liu, Qiang

    A high efficiency rig was designed and built for in-plane permeability measurement of fabric materials. A new data derivation procedure to acquire the flow fluid pattern in the experiment was developed. The measurement results of the in-plane permeability for basalt twill 31 fabric material showed that a high correlation exists between the two principal permeability values for this fabric at 35% fiber volume fraction. This may be the most important scientific contribution made in this thesis. The results from radial measurements corresponded quite well with those from Unidirectional (UD) measurements, which is a well-established technique. No significant differences in mechanical properties were found between basalt fabric reinforced polymer composites and glass composites reinforced by a fabric of similar weave pattern. Aging results indicate that the interfacial region in basalt composites may be more vulnerable to environmental damage than that in glass composites. However, the basalt/epoxy interface may have been more durable than the glass/epoxy interface in tension-tension fatigue because the basalt composites have significantly longer fatigue life. In this thesis, chapter I reviews the literature on fiber reinforced polymer composites, with concentration on permeability measurement, mechanical properties and durability. Chapter II discusses the design of the new rig for in-plane permeability measurement, the new derivation procedure for monitoring of the fluid flow pattern, and the permeability measurement results. Chapter III compares the mechanical properties and durability between basalt fiber and glass fiber reinforced polymer composites. Lastly, chapter IV gives some suggestions and recommendations for future work.

  9. Microgravity processing of particulate reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Morel, Donald E.; Stefanescu, Doru M.; Curreri, Peter A.

    1989-01-01

    The elimination of such gravity-related effects as buoyancy-driven sedimentation can yield more homogeneous microstructures in composite materials whose individual constituents have widely differing densities. A comparison of composite samples consisting of particulate ceramics in a nickel aluminide matrix solidified under gravity levels ranging from 0.01 to 1.8 G indicates that the G force normal to the growth direction plays a fundamental role in determining the distribution of the reinforcement in the matrix. Composites with extremely uniform microstructures can be produced by these methods.

  10. Carbon Fiber Reinforced Ceramic Composites for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Shivakumar, Kunigal; Argade, Shyam

    2003-01-01

    This report presents a critical review of the processing techniques for fabricating continuous fiber-reinforced CMCs for possible applications at elevated temperatures. Some of the issues affecting durability of the composite materials such as fiber coatings and cracking of the matrix because of shrinkage in PIP-process are also examined. An assessment of the potential inexpensive processes is also provided. Finally three potential routes of manufacturing C/SiC composites using a technology that NC A&T developed for carbon/carbon composites are outlined. Challenges that will be encountered are also listed.

  11. Mechanical Properties of Continuous Fiber Reinforced Zirconium Diboride Matrix Composites

    NASA Technical Reports Server (NTRS)

    Stuffle, Kevin; Creegan, Peter; Nowell, Steven; Bull, Jeffrey D.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    Continuous fiber reinforced zirconium diboride matrix composites, SCS-9a-(RBSiCZrB2)matrix, are being developed for leading edge, rocket nozzle and turbine engine applications. Recently, the composite materials have been characterized for tensile properties to 1250 C, the highest temperature tested. The tensile properties are fiber dominated as the matrix is microcracked on fabrication, but favorable failure characteristic are observed. Compression and shear mechanical testing results will be reported if completed. The effects of fiber volume fraction and matrix density on mechanical properties will be discussed. The target applications of the materials will be discussed. Specific testing being performed towards qualification for these applications will be included.

  12. Titanium reinforced boron-polyimide composite

    NASA Technical Reports Server (NTRS)

    Clark, G. A.; Clayton, K. I.

    1969-01-01

    Processing techniques for boron polyimide prepreg were developed whereby composites could be molded under vacuum bag pressure only. A post-cure cycle was developed which resulted in no loss in room temperature mechanical properties of the composite at any time during up to 16 hours at 650 F. A design utilizing laminated titanium foil was developed to achieve a smooth transition of load from the titanium attachment points into the boron-reinforced body of the structure. The box beam test article was subjected to combined bending and torsional loads while exposed to 650 F. Loads were applied incrementally until failure occurred at 83% design limit load.

  13. Elastic properties of woven fabric reinforced composites

    NASA Technical Reports Server (NTRS)

    Ramnath, V.

    1985-01-01

    An analytical model for the realistic representation of a woven fabric reinforced composite is presented in this paper. The approach uses a variable cross-section geometric model in order to achieve geometric compatibility at the yarn cross-over regions. Admissible displacement and stress fields are used to determine bounds on the fabric elastic properties. The approach adopted enables the determination of the complete three-dimensional woven fabric composite properties. The in-plane fabric properties obtained through this approach have been compared with results obtained from other approaches existing in the literature. Also, comparisons made with available experimental data indicate good agreement.

  14. On the homogenized behaviour of reinforced and other Bingham composites.

    PubMed

    Castañeda, P Ponte

    2003-05-15

    A recently developed (Ponte Castañeda 2002 J. Mech. Phys. Solids 50, 737-757) 'second-order' nonlinear homogenization method is used to estimate the constitutive response of reinforced and other Bingham composites. For the special case of rigidly reinforced Bingham composites with overall isotropy (in two dimensions), the results show that the homogenized response of such materials is not strictly Bingham. Thus, instead of a purely linear incremental response beyond the relevant threshold (yield) stress, the response is strongly nonlinear just after yield and asymptotes to a purely linear incremental response only at sufficiently large stress or strain-rate levels. This phenomenon is linked to the presence of strong fluctuations of the strain-rate field in the composite at the onset of yield.

  15. In Vitro Study of Transverse Strength of Fiber Reinforced Composites

    PubMed Central

    Mosharraf, R.; Hashemi, Z.; Torkan, S.

    2011-01-01

    Objective Reinforcement with fiber is an effective method for considerable improvement in flexural properties of indirect composite resin restorations. The aim of this in-vitro study was to compare the transverse strength of composite resin bars reinforced with pre-impregnated and non-impregnated fibers. Materials and Methods Thirty six bar type composite resin specimens (3×2×25 mm) were constructed in three groups. The first group was the control group (C) without any fiber reinforcement. The specimens in the second group (P) were reinforced with pre-impregnated fibers and the third group (N) with non-impregnated fibers. These specimens were tested by the three-point bending method to measure primary transverse strength. Data were statistically analyzed with one way ANOVA and Tukey’s tests. Results There was a significant difference among the mean primary transverse strength in the three groups (P<0.001). The post-hoc (Tukey) test showed that there was a significant difference between the pre-impregnated and control groups in their primary transverse strength (P<0.001). Regarding deflection, there was also a significant difference among the three groups (P=0.001). There were significant differences among the mean deflection of the control group and two other groups (PC&N<.001 and PC&P=.004), but there was no significant difference between the non-and pre-impregnated groups (PN&P=.813). Conclusion Within the limitations of this study, it was concluded that reinforcement with fiber considerably increased the transverse strength of composite resin specimens, but impregnation of the fiber used implemented no significant difference in the transverse strength of composite resin samples. PMID:22457836

  16. Fracture Analysis of Particulate Reinforced Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Min, James B.; Cornie, James A.

    2013-01-01

    A fracture analysis of highly loaded particulate reinforced composites was performed using laser moire interferometry to measure the displacements within the plastic zone at the tip of an advancing crack. Ten castings were made of five different particulate reinforcement-aluminum alloy combinations. Each casting included net-shape specimens which were used for the evaluation of fracture toughness, tensile properties, and flexure properties resulting in an extensive materials properties data. Measured fracture toughness range from 14.1 MPa for an alumina reinforced 356 aluminum alloy to 23.9 MPa for a silicon carbide reinforced 2214 aluminum alloy. For the combination of these K(sub Ic) values and the measured tensile strengths, the compact tension specimens were too thin to yield true plane strain K(sub Ic) values. All materials exhibited brittle behavior characterized by very small tensile ductility suggesting that successful application of these materials requires that the design stresses be below the elastic limit. Probabilistic design principles similar to those used with ceramics are recommended when using these materials. Such principles would include the use of experimentally determined design allowables. In the absence of thorough testing, a design allowable stress of 60 percent of the measured ultimate tensile stress is recommended.

  17. Analysis/design of strip reinforced random composites (strip hybrids)

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1978-01-01

    Advanced analysis methods and composite mechanics were applied to a strip-reinforced random composite square panel with fixed ends to illustrate the use of these methods for the a priori assessment of the composite panel when subjected to complex loading conditions. The panel was assumed to be of E-glass random composite. The strips were assumed to be of three advanced unidirectional composites to cover a range of low, intermediate, and high modulus stiffness. The panels were assumed to be subjected to complex loadings to assess their adequacy as load-carrying members in auto body, aircraft engine nacelle and windmill blade applications. The results show that strip hybrid panels can be several times more structurally efficient than the random composite base materials. Some of the results are presented in graphical form and procedures are described for use of these graphs as guides for preliminary design of strip hybrids.

  18. Analysis/design of strip reinforced random composites /strip hybrids/

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1978-01-01

    Results are described which were obtained by applying advanced analysis methods and composite mechanics to a strip-reinforced random composite square panel with fixed ends. This was done in order to illustrate the use of these methods for the apriori assessment of the composite panel when subjected to complex loading conditions. The panel was assumed to be of E-Glass/Random Composite. The strips were assumed to be of three advanced unidirectional composites to cover a range of low, intermediate, and high modulus stiffness. The panels were assumed to be subjected to complex loadings to assess their adequacy as load-carrying members in auto body, aircraft engine nacelle, and windmill blade applications. The results show that strip hybrid panels can be several times more structurally efficient than the random composite base materials. Some of the results are presented in graphical form and procedures are described for use of these graphs as guides for preliminary design of strip hybrids.

  19. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, R. G.; Wiberley, S. E.

    1985-01-01

    Various topics relating to composite structural materials for use in aircraft structures are discussed. The mechanical properties of high performance carbon fibers, carbon fiber-epoxy interface bonds, composite fractures, residual stress in high modulus and high strength carbon fibers, fatigue in composite materials, and the mechanical properties of polymeric matrix composite laminates are among the topics discussed.

  20. Starch composites reinforced by bamboo cellulosic crystals.

    PubMed

    Liu, Dagang; Zhong, Tuhua; Chang, Peter R; Li, Kaifu; Wu, Qinglin

    2010-04-01

    Using a method of combined HNO(3)-KClO(3) treatment and sulfuric acid hydrolysis, bamboo cellulose crystals (BCCs) were prepared and used to reinforce glycerol plasticized starch. The structure and morphology of BCCs were investigated using X-ray diffraction, electron microscopy, and solid-state (13)C NMR. Results showed that BCCs were of typical cellulose I structure, and the morphology was dependent on its concentration in the suspension. BCC of 50-100 nm were assembled into leaf nervations at low concentration (i.e. 0.1 wt.% of solids), but congregated into a micro-sized "flower" geometry at high concentration (i.e. 10.0 wt.% of solids). Tensile strength and Young's modulus of the starch/BCC composite films (SBC) were enhanced by the incorporation of the crystals due to reinforcement of BCCs and reduction of water uptake. BCCs at the optimal 8% loading level exhibited a higher reinforcing efficiency for plasticized starch plastic than any other loading level.

  1. Optically transparent composites reinforced with plant fiber-based nanofibers

    NASA Astrophysics Data System (ADS)

    Iwamoto, S.; Nakagaito, A. N.; Yano, H.; Nogi, M.

    2005-11-01

    The fibrillation of pulp fiber was attempted by two methods, a high-pressure homogenizer treatment and a grinder treatment. The grinder treatment resulted in the successful fibrillation of wood pulp fibers into nanofibers. The nanofibers demonstrate promising characteristics as reinforcement material for optically transparent composites. Due to the size effect, the nanofiber-reinforced composite retains the transparency of the matrix resin even at high fiber content such as 70 wt %. Since the nanofiber is an aggregate of semi-crystalline extended cellulose chains, its addition also contributes to a significant improvement in the thermal expansion properties of plastics while maintaining its ease of bending. Cellulose nanofibers have tremendous potential as a future resource since they are produced in a sustainable manner by plants, one of the most abundant organic resources on earth.

  2. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Thompson, E. R.

    1981-01-01

    A broad group of fibers and matrices were combined to create a wide range of composite properties. Primary material fabrication procedures were developed which readily permit the fabrication of flat plate and shaped composites. Composite mechanical properties were measured under a wide range of test conditions. Tensile, flexure mechanical fatigue, thermal fatigue, fracture toughness, and fatigue crack growth resistance were evaluated. Selected fiber-matrix combinations were shown to maintain their strength at up to 1300 K when tested in an inert atmosphere. Composite high temperature mechanical properties were shown to be limited primarily by the oxidation resistance of the graphite fibers. Composite thermal dimensional stability was measured and found to be excellent.

  3. Interface characteristics of nanorope reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Ahmed, Khondaker S.; Keng, Ang K.

    2013-09-01

    A shear-lag model is proposed to obtain interface characteristics of nanorope reinforced polymer composites using representative volume element (RVE) concept. In the axisymmetric RVE, the nanorope is modelled as a closed-packed cylindrical lattice consisting seven single-walled carbon nanotubes. In the model, rope is considered to be perfectly bonded with the polymer resin where the nanotubes are assumed to be chemically non-bonded with each other in the rope system. Since, nanotubes are considered to be non-bonded in the nanorope there must exist a van der Waals interaction in terms of Lennard-Jones potential. A separate model is also proposed to determine the cohesive stress caused by this interaction. Closed form analytical solutions are derived for stress components of rope, resin and individual carbon nanotubes in the rope system. Parametric study has also been conducted to investigate the influences of key composite factors involved at both perfectly bonded and non-bonded interfaces.

  4. Processing and evaluation of smart composite reinforcement

    NASA Astrophysics Data System (ADS)

    Kalamkarov, Alexander L.; Fitzgerald, Stephen B.; MacDonald, Douglas O.

    1997-11-01

    The issues of processing and evaluation of pultruded smart composite reinforcements with embedded fiber optic sensors are discussed. The required modification of the pultrusion processing technology to allow for the incorporation of fiber optic sensors is developed. In order to fully evaluate the loads imposed on the Fabry Perot fiber optic sensors during the pultrusion process, the strain sensors were subjected to the separate variables of the total process. The following data was obtained for the carbon fiber rods. Compaction pressure alone caused negligible residual strain. The temperature profile caused a similar strain profile over the length of the pultrusion die. For the total pultrusion process, the residual strain after cooling appeared to present somewhat of a problem. For several experiments, the residual strain after exiting the pultrusion die was in the range of plus 200 to 400 microstrain, after which the sensors ceased to function. Calculations indicated that the radial shrinkage of the carbon fiber rods may have been sufficient to cause failure of the Fabry Perot sensors. A special procedure of reinforcing sensors prior to embedding them into the composite was successful in allowing the sensors to survive with only a slightly negative residual strain.

  5. Plastic matrix composites with continuous fiber reinforcement

    SciTech Connect

    1991-09-19

    Most plastic resins are not suitable for structural applications. Although many resins are extremely tough, most lack strength, stiffness, and deform under load with time. By mixing strong, stiff, fibrous materials into the plastic matrix, a variety of structural composite materials can be formed. The properties of these composites can be tailored by fiber selection, orientation, and other factors to suit specific applications. The advantages and disadvantages of fiberglass, carbon-graphite, aramid (Kevlar 49), and boron fibers are summarized.

  6. A theory of viscoplasticity for fabric-reinforced composites

    NASA Astrophysics Data System (ADS)

    Spencer, A. J. M.

    2001-11-01

    Some composite structures are constructed by impregnating sheets of fabric with a matrix material, and forming into a desired shape at a temperature at which the matrix flows easily. Here constitutive equations are formulated for flow of fabric-reinforced composite materials that exhibit viscoplastic response at the forming temperature. The theory is the analogue, for materials with material symmetries appropriate for fabric-reinforced materials, of the theory of Bingham solids for isotropic materials. The theory is formulated for general three-dimensional deformations, but simplifies greatly when specialised to the case of plane stress. In this case, the rheological behaviour is described by a single plasticity parameter and a single viscosity; these are functions of the current angle between the two families of fibres that form the fabric. The analysis is applied to the analysis of the 'picture-frame' experiment, and it is shown that this experiment provides a method of measuring the response functions. The effect of symmetry of the fabric architecture is considered, and it is found that for some practical fabric architectures the theory allows the possibility of different responses to in-plane shearing in different shearing directions, as has been observed in picture-frame experiments.

  7. Dynamic Mechanical Behavior of Nickel-Aluminum Reinforced Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Martin, Morgana; Hanagud, Sathyanaraya; Thadhani, Naresh

    2005-07-01

    Epoxy-based composites reinforced with a mixture of micron-sized Ni and micron or nano-sized Al powders were fabricated as bulk materials by cast/curing. The structural/mechanical behavior of these materials was evaluated using elastic and plastic property measurements via static and dynamic compression tests performed on rod shaped samples. Reverse Taylor anvil-on-rod impact tests combined with velocity interferometry gave qualitative and quantitative information about the transient deformation and failure response of the composites. The material containing 20wt% epoxy and nano-sized Al powder showed the most superior mechanical properties in terms of elastic modulus, and static and dynamic compressive strength, and strain before fracture, as compared to the other reinforced cast materials. The results illustrate that nano-sized Al particles provide significant enhancement to strength of epoxy composites by dispersing in the epoxy and generating a nano-Al containing epoxy matrix with embedded Ni particles. Funding for this research was provided by AFOSR/MURI Grant No. F49620-02-1-0382.

  8. Composite material dosimeters

    DOEpatents

    Miller, Steven D.

    1996-01-01

    The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.

  9. Fracture of fiber-reinforced composites analyzed via acoustic emission.

    PubMed

    Ereifej, Nadia S; Oweis, Yara G; Altarawneh, Sandra K

    2015-01-01

    This study investigated the fracture resistance of composite resins using a three-point bending test and acoustic emission (AE) analysis. Three groups of specimens (n=15) were prepared: non-reinforced BelleGlass HP composite (NRC), unidirectional (UFRC) and multidirectional (MFRC) fiber-reinforced groups which respectively incorporated unidirectional Stick and multidirectional StickNet fibers. Specimens were loaded to failure in a universal testing machine while an AE system was used to detect audible signals. Initial fracture strengths and AE amplitudes were significantly lower than those at final fracture in all groups (p<0.05). Initial fracture strength of UFRC (170.0 MPa) was significantly higher than MFRC (124.6 MPa) and NRC (87.9 MPa). Final fracture strength of UFRC (198.1 MPa) was also significantly higher than MFRC (151.0 MPa) and NRC (109.2 MPa). Initial and final fracture strengths were significantly correlated (r=0.971). It was concluded that fiber reinforcement improved the fracture resistance of composite resin materials and the monitoring of acoustic signals revealed significant information regarding the fracture process. PMID:25904176

  10. Fracture of fiber-reinforced composites analyzed via acoustic emission.

    PubMed

    Ereifej, Nadia S; Oweis, Yara G; Altarawneh, Sandra K

    2015-01-01

    This study investigated the fracture resistance of composite resins using a three-point bending test and acoustic emission (AE) analysis. Three groups of specimens (n=15) were prepared: non-reinforced BelleGlass HP composite (NRC), unidirectional (UFRC) and multidirectional (MFRC) fiber-reinforced groups which respectively incorporated unidirectional Stick and multidirectional StickNet fibers. Specimens were loaded to failure in a universal testing machine while an AE system was used to detect audible signals. Initial fracture strengths and AE amplitudes were significantly lower than those at final fracture in all groups (p<0.05). Initial fracture strength of UFRC (170.0 MPa) was significantly higher than MFRC (124.6 MPa) and NRC (87.9 MPa). Final fracture strength of UFRC (198.1 MPa) was also significantly higher than MFRC (151.0 MPa) and NRC (109.2 MPa). Initial and final fracture strengths were significantly correlated (r=0.971). It was concluded that fiber reinforcement improved the fracture resistance of composite resin materials and the monitoring of acoustic signals revealed significant information regarding the fracture process.

  11. Micromechanical aspects of failure in unidirectional fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Oguni, Kenji

    Micromechanical aspects of failure in unidirectional fiber reinforced composites are investigated using combined experimental and analytical methods. Results from an experimental investigation on mechanical behavior of a unidirectional fiber reinforced polymer composite (E-glass/vinylester) with 50% fiber volume fraction under quasi-static uniaxial and proportional multiaxial compression are presented. Detailed examination of the specimen during and after the test reveals the failure mode transition from axial splitting to kink band formation as the loading condition changes from uniaxial to multiaxial compression. Motivated by the experimental observations, an energy-based model is developed to provide an analytical estimate of the critical stress for axial splitting observed in unidirectional fiber reinforced composites under uniaxial compression in the fiber direction (also with weak lateral confinement). The analytic estimate for the compressive strength is used to illustrate its dependence on material properties, surface energy, fiber volume fraction, fiber diameter and lateral confining pressure. To understand the effect of flaws on the strength of unidirectional fiber reinforced composites, a fracture mechanics based model for failure is developed. Based on this model, failure envelope, dominant initial flaw orientation and failure mode for the composites under a wide range of stress states are predicted. Parametric study provides quantitative evaluation of the effect of various mechanical and physical properties on failure behavior and identifies their influence on strength. Finally, results from an experimental investigation on the dynamic mechanical behavior of unidirectional E-glass/vinylester composites with 30%, 50% fiber volume fraction under uniaxial compression are presented. Limited experimental results are also presented for the 50% fiber volume fraction composite under dynamic proportional lateral confinement. Specimens are loaded in the fiber

  12. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1983-01-01

    Transverse properties of fiber constituents in composites, fatigue in composite materials, matrix dominated properties of high performance composites, numerical investigation of moisture effects, numerical investigation of the micromechanics of composite fracture, advanced analysis methods, compact lug design, and the RP-1 and RP-2 sailplanes projects are discussed.

  13. Electron processing of fibre-reinforced advanced composites

    NASA Astrophysics Data System (ADS)

    Singh, Ajit; Saunders, Chris B.; Barnard, John W.; Lopata, Vince J.; Kremers, Walter; McDougall, Tom E.; Chung, Minda; Tateishi, Miyoko

    1996-08-01

    Advanced composites, such as carbon-fibre-reinforced epoxies, are used in the aircraft, aerospace, sporting goods, and transportation industries. Though thermal curing is the dominant industrial process for advanced composites, electron curing of similar composites containing acrylated epoxy matrices has been demonstrated by our work. The main attraction of electron processing technology over thermal technology is the advantages it offers which include ambient temperature curing, reduced curing times, reduced volatile emissions, better material handling, and reduced costs. Electron curing technology allows for the curing of many types of products, such as complex shaped, those containing different types of fibres, and up to 15 cm thick. Our work has been done principally with the AECL's 10 MeV, 1 kW electron accelerator; we have also done some comparative work with an AECL Gammacell 220. In this paper we briefly review our work on the various aspects of electron curing of advanced composites and their properties.

  14. Puncture-Healing Thermoplastic Resin Carbon-Fiber-Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor); Grimsley, Brian W. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor)

    2015-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  15. Creep behavior of tungsten fiber reinforced niobium metal matrix composites

    NASA Technical Reports Server (NTRS)

    Grobstein, T. L.

    1989-01-01

    Tungsten fiber reinforced niobium metal matrix composites were evaluated for use in space nuclear power conversion systems. The composite panels were fabricated using the arc-spray monotape technique at the NASA Lewis Research Center. The creep behavior of W/Nb composite material was determined at 1400 and 1500 K in vacuum over a wide range of applied loads. The time to reach 1 percent strain, the time to rupture, and the minimum creep rate were measured. The W/Nb composites exceeded the properties of monolithic niobium alloys significantly even when compared on a strength to density basis. The effect of fiber orientation on the creep strength also was evaluated. Kirkendall void formation was observed at the fiber/matrix interface; the void distribution differed depending on the fiber orientation relative to the stress axis. A relationship was found between the fiber orientation and the creep strength.

  16. Creep behavior of tungsten fiber reinforced niobium metal matrix composites

    NASA Technical Reports Server (NTRS)

    Grobstein, Toni L.

    1992-01-01

    Tungsten fiber reinforced niobium metal matrix composites were evaluated for use in space nuclear power conversion systems. The composite panels were fabricated using the arc-spray monotape technique at the NASA Lewis Research Center. The creep behavior of W/Nb composite material was determined at 1400 and 1500 K in vacuum over a wide range of applied loads. The time to reach 1 percent strain, the time to rupture, and the minimum creep rate were measured. The W/Nb composites exceeded the properties of monolithic niobium alloys significantly even when compared creep strength also was evaluated. Kirkendall void formation was observed at the fiber/matrix interface; the void distribution differed depending the fiber orientation relative to the stress axis. A relationship was found between the fiber orientation and the creep strength.

  17. Ceramic composites reinforced with modified silicon carbide whiskers

    DOEpatents

    Tiegs, Terry N.; Lindemer, Terrence B.

    1990-01-01

    Silicon carbide whisker-reinforced ceramic composites are fabricated in a highly reproducible manner by beneficating the surfaces of the silicon carbide whiskers prior to their usage in the ceramic composites. The silicon carbide whiskers which contain considerable concentrations of surface oxides and other impurities which interact with the ceramic composite material to form a chemical bond are significantly reduced so that only a relatively weak chemical bond is formed between the whisker and the ceramic material. Thus, when the whiskers interact with a crack propagating into the composite the crack is diverted or deflected along the whisker-matrix interface due to the weak chemical bonding so as to deter the crack propagation through the composite. The depletion of the oxygen-containing compounds and other impurities on the whisker surfaces and near surface region is effected by heat treating the whiskers in a suitable oxygen sparaging atmosphere at elevated temperatures. Additionally, a sedimentation technique may be utilized to remove whiskers which suffer structural and physical anomalies which render them undesirable for use in the composite. Also, a layer of carbon may be provided on the surface of the whiskers to further inhibit chemical bonding of the whiskers to the ceramic composite material.

  18. Compression response of thick layer composite laminates with through-the-thickness reinforcement

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.; Smith, Barry T.; Maiden, Janice

    1992-01-01

    Compression and compression-after-impact (CAI) tests were conducted on seven different AS4-3501-6 (0/90) 0.64-cm thick composite laminates. Four of the seven laminates had through-the-thickness (TTT) reinforcement fibers. Two TTT reinforcement methods, stitching and integral weaving, and two reinforcement fibers, Kevlar and carbon, were used. The remaining three laminates were made without TTT reinforcements and were tested to establish a baseline for comparison with the laminates having TTT reinforcement. Six of the seven laminates consisted of nine thick layers whereas the seventh material was composed of 46 thin plies. The use of thick-layer material has the potential for reducing structural part cost because of the reduced part count (layers of material). The compression strengths of the TTT reinforced laminates were approximately one half those of the materials without TTT reinforcements. However, the CAI strengths of the TTT reinforced materials were approximately twice those of materials without TTT reinforcements. The improvement in CAI strength is due to an increase in interlaminar strength produced by the TTT reinforcement. Stitched laminates had slightly higher compression and CAI strengths than the integrally woven laminates.

  19. Anomaly detection of microstructural defects in continuous fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Bricker, Stephen; Simmons, J. P.; Przybyla, Craig; Hardie, Russell

    2015-03-01

    Ceramic matrix composites (CMC) with continuous fiber reinforcements have the potential to enable the next generation of high speed hypersonic vehicles and/or significant improvements in gas turbine engine performance due to their exhibited toughness when subjected to high mechanical loads at extreme temperatures (2200F+). Reinforced fiber composites (RFC) provide increased fracture toughness, crack growth resistance, and strength, though little is known about how stochastic variation and imperfections in the material effect material properties. In this work, tools are developed for quantifying anomalies within the microstructure at several scales. The detection and characterization of anomalous microstructure is a critical step in linking production techniques to properties, as well as in accurate material simulation and property prediction for the integrated computation materials engineering (ICME) of RFC based components. It is desired to find statistical outliers for any number of material characteristics such as fibers, fiber coatings, and pores. Here, fiber orientation, or `velocity', and `velocity' gradient are developed and examined for anomalous behavior. Categorizing anomalous behavior in the CMC is approached by multivariate Gaussian mixture modeling. A Gaussian mixture is employed to estimate the probability density function (PDF) of the features in question, and anomalies are classified by their likelihood of belonging to the statistical normal behavior for that feature.

  20. Asymptotic Analysis of Fiber-Reinforced Composites of Hexagonal Structure

    NASA Astrophysics Data System (ADS)

    Kalamkarov, Alexander L.; Andrianov, Igor V.; Pacheco, Pedro M. C. L.; Savi, Marcelo A.; Starushenko, Galina A.

    2016-08-01

    The fiber-reinforced composite materials with periodic cylindrical inclusions of a circular cross-section arranged in a hexagonal array are analyzed. The governing analytical relations of the thermal conductivity problem for such composites are obtained using the asymptotic homogenization method. The lubrication theory is applied for the asymptotic solution of the unit cell problems in the cases of inclusions of large and close to limit diameters, and for inclusions with high conductivity. The lubrication method is further generalized to the cases of finite values of the physical properties of inclusions, as well as for the cases of medium-sized inclusions. The analytical formulas for the effective coefficient of thermal conductivity of the fiber-reinforced composite materials of a hexagonal structure are derived in the cases of small conductivity of inclusions, as well as in the cases of extremely low conductivity of inclusions. The three-phase composite model (TPhM) is applied for solving the unit cell problems in the cases of the inclusions with small diameters, and the asymptotic analysis of the obtained solutions is performed for inclusions of small sizes. The obtained results are analyzed and illustrated graphically, and the limits of their applicability are evaluated. They are compared with the known numerical and asymptotic data in some particular cases, and very good agreement is demonstrated.

  1. Porous Materials Reinforced by Statistically Oriented Fibres

    NASA Astrophysics Data System (ADS)

    Federico, Salvatore; Grillo, Alfio

    2010-09-01

    Hydrated soft biological tissues, such as articular cartilage, are well represented by a porous matrix saturated by a fluid and reinforced by a network of statistically oriented, impermeable collagen fibres. A previously developed homogenisation method for porous fibre-reinforced materials with an isotropic matrix, under small deformations, was capable of correctly predicting some specific aspects of the anisotropy and inhomogeneity of the permeability in the tissue. The aim of this work is to generalise this model to the case of large deformations. This is achieved by means of a rescaled pull-back of the structure tensor describing fibre orientation, and directional averaging methods allowing to account for the statistical distribution of the orientation. The resulting permeability tensor contains an integral term that must be implemented numerically, because of the explicit presence of the deformation in the integrand function.

  2. Tough Composite Materials

    NASA Technical Reports Server (NTRS)

    Vosteen, L. F. (Compiler); Johnson, N. J. (Compiler); Teichman, L. A. (Compiler)

    1984-01-01

    Papers and working group summaries are presented which address composite material behavior and performance improvement. Topic areas include composite fracture toughness and impact characterization, constituent properties and interrelationships, and matrix synthesis and characterization.

  3. Nano-composite materials

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  4. Nondestructive testing of externally reinforced structures for seismic retrofitting using flax fiber reinforced polymer (FFRP) composites

    NASA Astrophysics Data System (ADS)

    Ibarra-Castanedo, C.; Sfarra, S.; Paoletti, D.; Bendada, A.; Maldague, X.

    2013-05-01

    Natural fibers constitute an interesting alternative to synthetic fibers, e.g. glass and carbon, for the production of composites due to their environmental and economic advantages. The strength of natural fiber composites is on average lower compared to their synthetic counterparts. Nevertheless, natural fibers such as flax, among other bast fibers (jute, kenaf, ramie and hemp), are serious candidates for seismic retrofitting applications given that their mechanical properties are more suitable for dynamic loads. Strengthening of structures is performed by impregnating flax fiber reinforced polymers (FFRP) fabrics with epoxy resin and applying them to the component of interest, increasing in this way the load and deformation capacities of the building, while preserving its stiffness and dynamic properties. The reinforced areas are however prompt to debonding if the fabrics are not mounted properly. Nondestructive testing is therefore required to verify that the fabric is uniformly installed and that there are no air gaps or foreign materials that could instigate debonding. In this work, the use of active infrared thermography was investigated for the assessment of (1) a laboratory specimen reinforced with FFRP and containing several artificial defects; and (2) an actual FFRP retrofitted masonry wall in the Faculty of Engineering of the University of L'Aquila (Italy) that was seriously affected by the 2009 earthquake. Thermographic data was processed by advanced signal processing techniques, and post-processed by computing the watershed lines to locate suspected areas. Results coming from the academic specimen were compared to digital speckle photography and holographic interferometry images.

  5. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1979-01-01

    A multifaceted program is described in which aeronautical, mechanical, and materials engineers interact to develop composite aircraft structures. Topics covered include: (1) the design of an advanced composite elevator and a proposed spar and rib assembly; (2) optimizing fiber orientation in the vicinity of heavily loaded joints; (3) failure mechanisms and delamination; (4) the construction of an ultralight sailplane; (5) computer-aided design; finite element analysis programs, preprocessor development, and array preprocessor for SPAR; (6) advanced analysis methods for composite structures; (7) ultrasonic nondestructive testing; (8) physical properties of epoxy resins and composites; (9) fatigue in composite materials, and (10) transverse thermal expansion of carbon/epoxy composites.

  6. Nanostructure Titania Reinforced Conducting Polymer Composites

    NASA Astrophysics Data System (ADS)

    Kondawar, S. B.; Thakare, S. R.; Khati, V.; Bompilwar, S.

    Composites of polyaniline with synthesized nanostructured titania (TiO2) and polyaniline with commercial TiO2 have been in situ synthesized by oxidative chemical polymerization method. Sulfuric acid was used as dopant during the polymerization process. Sol-gel precipitates of nanostructured titania were synthesized by hydrolyzing the mixture of titanium chloride (TiCl3) and colloidal transparent solution of starch. Composite materials were subjected for comparison to spectroscopic and X-ray diffraction analysis. Strong coupling/interaction of titania with the imine nitrogen in polyaniline confirmed by FTIR spectral analysis. XRD shows the composite of synthesized titania with polyaniline have broaden peak as compared to that of commercial titania with polyaniline indicating particle size in the range of nanometer scale which is supported by 40 nm particle size of the synthesized titania from TEM picture. Increase in conductivity with increasing temperature was observed in both the composite materials.

  7. Calculation of the relative uniformity coefficient on the green composites reinforced with cotton and hemp fabric

    NASA Astrophysics Data System (ADS)

    Baciu, Florin; Hadǎr, Anton; Sava, Mihaela; Marinel, Stǎnescu Marius; Bolcu, Dumitru

    2016-06-01

    In this paper it is studied the influence of discontinuities on elastic and mechanical properties of green composite materials (reinforced with fabric of cotton or hemp). In addition, it is studied the way variations of the volume f the reinforcement influences the elasticity modulus and the tensile strength for the studied composite materials. In order to appreciate the difference in properties between different areas of the composite material, and also the dimensions of the defective areas, we have introduced a relative uniformity coefficient with which the mechanical behavior of the studied composite is compared with a reference composite. To validate the theoretical results we have obtained we made some experiments, using green composites reinforced with fabric, with different imperfection introduced special by cutting the fabric.

  8. [Fiber-reinforced composite in fixed prosthodontics].

    PubMed

    Pilo, R; Abu Rass, Z; Shmidt, A

    2010-07-01

    Fiber reinforced composite (FRC) is composed of resin matrix and fibers filler. Common types of fibers: polyethylene, carbon and glass. Fibers can be continuous and aligned, discontinuous and aligned, discontinuous and randomly oriented. The architecture of the fibers is unidirectional, woven or braided. The two main types are: dry fibers or impregnated. Inclusion of fibers to resin composite increased its average flexural strength in 100-200 MPa. FRC can be utilized by the dentist in direct approach (splinting, temporary winged bridge) or indirect approach (laboratory made fixed partial denture). Laboratory fixed partial denture (FPD) is made from FRC substructure and Hybrid/Microfill particulate composite veneer. Main indications: interim temporary FPD or FPD in cases of questionable abutment teeth, in aesthetic cases where All Ceram FPD is not feasible. Retention is attained by adhesive cementation to minimally prepared teeth or to conventionally prepared teeth; other options are inlay-onlay bridges or hybrid bridges. Contraindications are: poor hygiene, inability to control humidity, parafunction habits, and more than two pontics. Survival rate of FRC FPD over 5 years is 75%, lower compared to porcelain fused to metal FPD which is 95%. Main reasons for failure are: fracture of framework and delamination of the veneer. Part of the failures is repairable. PMID:21485555

  9. [Fiber-reinforced composite in fixed prosthodontics].

    PubMed

    Pilo, R; Abu Rass, Z; Shmidt, A

    2010-07-01

    Fiber reinforced composite (FRC) is composed of resin matrix and fibers filler. Common types of fibers: polyethylene, carbon and glass. Fibers can be continuous and aligned, discontinuous and aligned, discontinuous and randomly oriented. The architecture of the fibers is unidirectional, woven or braided. The two main types are: dry fibers or impregnated. Inclusion of fibers to resin composite increased its average flexural strength in 100-200 MPa. FRC can be utilized by the dentist in direct approach (splinting, temporary winged bridge) or indirect approach (laboratory made fixed partial denture). Laboratory fixed partial denture (FPD) is made from FRC substructure and Hybrid/Microfill particulate composite veneer. Main indications: interim temporary FPD or FPD in cases of questionable abutment teeth, in aesthetic cases where All Ceram FPD is not feasible. Retention is attained by adhesive cementation to minimally prepared teeth or to conventionally prepared teeth; other options are inlay-onlay bridges or hybrid bridges. Contraindications are: poor hygiene, inability to control humidity, parafunction habits, and more than two pontics. Survival rate of FRC FPD over 5 years is 75%, lower compared to porcelain fused to metal FPD which is 95%. Main reasons for failure are: fracture of framework and delamination of the veneer. Part of the failures is repairable.

  10. Materials characterization of silicon carbide reinforced titanium (Ti/SCS-6) metal matrix composites. Part 2: Theoretical modeling of fatigue behavior

    SciTech Connect

    Chiang, K.T.; Loh, D.H.; Liaw, P.K.; Diaz, E.S.

    1995-12-01

    Flexural fatigue behavior was investigated on titanium (Ti-15V-3Cr) metal matrix composites reinforced with cross-ply, continuous silicon carbide (SiC) fibers. The titanium composites had an eight-ply (0, 90, +45, {minus}45 deg) symmetric layup. Mechanistic investigation of the fatigue behavior is presented in Part 1 of this series. In Part 2, theoretical modeling of the fatigue behavior was performed using finite element techniques to predict the four stages of fatigue deflection behavior. On the basis of the mechanistic understanding, the fiber and matrix fracture sequence was simulated from ply to ply in finite element modeling. The predicted fatigue deflection behavior was found to be in good agreement with the experimental results. Furthermore, it has been shown that the matrix crack initiation starts in the 90 deg ply first, which is in agreement with the experimental observation. Under the same loading condition, the stress in the 90 deg ply of the transverse specimen is greater than that of the longitudinal specimen. This trend explains whey the longitudinal specimen has a longer fatigue life than the transverse specimen, as observed in Part 1.

  11. Strength of fabric reinforced Blackglas composites

    SciTech Connect

    Lei, C.; Ko, F.K.

    1996-12-31

    In brittle matrix composites the role of matrix porosity; interface; and matrix/fiber properties degradation due to processing are especially critical for the strength of the composite. In this paper, the Fabric Geometry Model (FGM) is modified to predict the strength of fabric composites. An incremental strain approach in conjunction with strain energy criterion is presented in order to account for the potentially nonlinear behavior of the materials, as seen in the experimental stress-strain curves of Nextel/Blackglas, composites. The failure of the composite is determined by use of a modified maximum strain energy criterion, which is based on the relative magnitudes of the various energy terms in corresponding direction. The effects of porosity, microcracks, fiber and matrix degradation, and fiber/matrix interface are also considered in the modified model.

  12. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1984-01-01

    Progress is reported in studies of constituent materials composite materials, generic structural elements, processing science technology, and maintaining long-term structural integrity. Topics discussed include: mechanical properties of high performance carbon fibers; fatigue in composite materials; experimental and theoretical studies of moisture and temperature effects on the mechanical properties of graphite-epoxy laminates and neat resins; numerical investigations of the micromechanics of composite fracture; delamination failures of composite laminates; effect of notch size on composite laminates; improved beam theory for anisotropic materials; variation of resin properties through the thickness of cured samples; numerical analysis composite processing; heat treatment of metal matrix composites, and the RP-1 and RP2 gliders of the sailplane project.

  13. Natural Fiber or Glass Reinforced Polypropylene Composites?

    NASA Astrophysics Data System (ADS)

    Lorenzi, W.; Di Landro, L.; Casiraghi, A.; Pagano, M. R.

    2008-08-01

    Problems related to the recycle of conventional composite materials are becoming always more relevant for many industrial fields. Natural fiber composites (NFC) have recently gained much attention due to their low cost, environmental gains (eco-compatibility), easy disposal, reduction in volatile organic emissions, and their potential to compete with glass fiber composites (GFC). Interest in natural fibers is not only based over ecological aspects. NFC have good mechanical performances in relation to their low specific weight and low price. A characterization of mechanical properties, dynamic behavior, and moisture absorption is presented.

  14. NATURAL FIBER OR GLASS REINFORCED POLYPROPYLENE COMPOSITES?

    SciTech Connect

    Lorenzi, W.; Di Landro, L.; Casiraghi, A.; Pagano, M. R.

    2008-08-28

    Problems related to the recycle of conventional composite materials are becoming always more relevant for many industrial fields. Natural fiber composites (NFC) have recently gained much attention due to their low cost, environmental gains (eco-compatibility), easy disposal, reduction in volatile organic emissions, and their potential to compete with glass fiber composites (GFC). Interest in natural fibers is not only based over ecological aspects. NFC have good mechanical performances in relation to their low specific weight and low price. A characterization of mechanical properties, dynamic behavior, and moisture absorption is presented.

  15. 3D FEA simulation of segmented reinforcement variable stiffness composites

    NASA Astrophysics Data System (ADS)

    Henry, C. P.; McKnight, G. P.; Enke, A.; Bortolin, R.; Joshi, S.

    2008-03-01

    Reconfigurable and morphing structures may provide significant improvement in overall platform performance through optimization over broad operating conditions. The realization of this concept requires structures, which can accommodate the large deformations necessary with modest weight and strength penalties. Other studies suggest morphing structures need new materials to realize the benefits that morphing may provide. To help meet this need, we have developed novel composite materials based on specially designed segmented reinforcement and shape memory polymer matrices that provide unique combinations of deformation and stiffness properties. To tailor and optimize the design and fabrication of these materials for particular structural applications, one must understand the envelope of morphing material properties as a function of microstructural architecture and constituent properties. Here we extend our previous simulations of these materials by using 3D models to predict stiffness and deformation properties in variable stiffness segmented composite materials. To understand the effect of various geometry tradeoffs and constituent properties on the elastic stiffness in both the high and low stiffness states, we have performed a trade study using a commercial FEA analysis package. The modulus tensor is constructed and deformation properties are computed from representative volume elements (RVE) in which all (6) basic loading conditions are applied. Our test matrix consisted of four composite RVE geometries modeled using combinations of 5 SMP and 3 reinforcement elastic moduli. Effective composite stiffness and deformation results confirm earlier evidence of the essential performance tradeoffs of reduced stiffness for increasing reversible strain accommodation with especially heavy dependencies on matrix modulus and microstructural architecture. Furthermore, our results show these laminar materials are generally orthotropic and indicate that previous calculations of

  16. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites.

    PubMed

    Wang, Z; Georgarakis, K; Nakayama, K S; Li, Y; Tsarkov, A A; Xie, G; Dudina, D; Louzguine-Luzgin, D V; Yavari, A R

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses. PMID:27067824

  17. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites.

    PubMed

    Wang, Z; Georgarakis, K; Nakayama, K S; Li, Y; Tsarkov, A A; Xie, G; Dudina, D; Louzguine-Luzgin, D V; Yavari, A R

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses.

  18. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    PubMed Central

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses. PMID:27067824

  19. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-04-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses.

  20. Method of preparing fiber reinforced ceramic material

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T. (Inventor)

    1987-01-01

    Alternate layers of mats of specially coated SiC fibers and silicon monotapes are hot pressed in two stages to form a fiber reinforced ceramic material. In the first stage a die is heated to about 600 C in a vacuum furnace and maintained at this temperature for about one-half hour to remove fugitive binder. In the second stage the die temperature is raised to about 1000 C and the layers are pressed at between 35 and 138 MPa. The resulting preform is placed in a reactor tube where a nitriding gas is flowed past the preform at 1100 to 1400 C to nitride the same.

  1. Mechanical property characterization of polymeric composites reinforced by continuous microfibers

    NASA Astrophysics Data System (ADS)

    Zubayar, Ali

    Innumerable experimental works have been conducted to study the effect of polymerization on the potential properties of the composites. Experimental techniques are employed to understand the effects of various fibers, their volume fractions and matrix properties in polymer composites. However, these experiments require fabrication of various composites which are time consuming and cost prohibitive. Advances in computational micromechanics allow us to study the various polymer based composites by using finite element simulations. The mechanical properties of continuous fiber composite strands are directional. In traditional continuous fiber laminated composites, all fibers lie in the same plane. This provides very desirable increases in the in-plane mechanical properties, but little in the transverse mechanical properties. The effect of different fiber/matrix combinations with various orientations is also available. Overall mechanical properties of different micro continuous fiber reinforced composites with orthogonal geometry are still unavailable in the contemporary research field. In this research, the mechanical properties of advanced polymeric composite reinforced by continuous micro fiber will be characterized based on analytical investigation and FE computational modeling. Initially, we have chosen IM7/PEEK, Carbon Fiber/Nylon 6, and Carbon Fiber/Epoxy as three different case study materials for analysis. To obtain the equivalent properties of the micro-hetero structures, a concept of micro-scale representative volume elements (RVEs) is introduced. Five types of micro scale RVEs (3 square and 2 hexagonal) containing a continuous micro fiber in the polymer matrix were designed. Uniaxial tensile, lateral expansion and transverse shear tests on each RVE were designed and conducted by the finite element computer modeling software ANSYS. The formulae based on elasticity theory were derived for extracting the equivalent mechanical properties (Young's moduli, shear

  2. Bioactive ceramic-reinforced composites for bone augmentation

    PubMed Central

    Tanner, K. E.

    2010-01-01

    Biomaterials have been used to repair the human body for millennia, but it is only since the 1970s that man-made composites have been used. Hydroxyapatite (HA)-reinforced polyethylene (PE) is the first of the ‘second-generation’ biomaterials that have been developed to be bioactive rather than bioinert. The mechanical properties have been characterized using quasi-static, fatigue, creep and fracture toughness testing, and these studies have allowed optimization of the production method. The in vitro and in vivo biological properties have been investigated with a range of filler content and have shown that the presence of sufficient bioactive filler leads to a bioactive composite. Finally, the material has been applied clinically, initially in the orbital floor and later in the middle ear. From this initial combination of HA in PE other bioactive ceramic polymer composites have been developed. PMID:20591846

  3. Material and Flexural Properties of Fiber-reinforced Rubber Concrete

    NASA Astrophysics Data System (ADS)

    Helminger, Nicholas P.

    The purpose of this research is to determine the material properties of rubber concrete with the addition of fibers, and to determine optimal mixture dosages of rubber and fiber in concrete for structural applications. Fiber-reinforced concrete and rubberized concrete have been researched separately extensively, but this research intends to combine both rubber and fiber in a concrete matrix in order to create a composite material, fiber-reinforced rubber concrete (FRRC). Sustainability has long been important in engineering design, but much of the previous research performed on sustainable concrete does not result in a material that can be used for practical purposes. While still achieving a material that can be used for structural applications, economical considerations were given when choosing the proportions and types of constituents in the concrete mix. Concrete mixtures were designed, placed, and tested in accordance with common procedures and standards, with an emphasis on practicality. Properties that were investigated include compressive strength, tensile strength, modulus of elasticity, toughness, and ductility. The basis for determining the optimal concrete mixture is one that is economical, practical, and exhibits ductile properties with a significant strength. Results show that increasing percentages of rubber tend to decrease workability, unit weight, compressive strength, split tensile strength, and modulus of elasticity while the toughness is increased. The addition of steel needle fibers to rubber concrete increases unit weight, compressive strength, split tensile strength, modulus of elasticity, toughness, and ductility of the composite material.

  4. Reinforced Pericardium as a Hybrid Material for Cardiovascular Applications

    PubMed Central

    Bracaglia, Laura G.; Yu, Li; Hibino, Narutoshi

    2014-01-01

    Pericardium-based cardiovascular devices are currently bound by a 10-year maximum lifetime due to detrimental calcification and degradation. The goal of this work is to develop a novel synthetic material to create a lasting replacement for malfunctioning or diseased tissue in the cardiovascular system. This study couples poly(propylene fumarate) (PPF) and a natural biomaterial together in an unprecedented hybrid composite and evaluates the composite versus the standard glutaraldehyde-treated tissue. The polymer reinforcement is hypothesized to provide initial physical protection from proteolytic enzymes and degradation, but leave the original collagen and elastin matrix unaltered. The calcification rate and durability of the hybrid material are evaluated in vitro and in an in vivo subdermal animal model. Results demonstrate that PPF is an effective support and leads to significantly less calcium deposition, important metrics when evaluating cardiovascular material. By avoiding chemical crosslinking of the tissue and associated side effects, PPF-reinforced pericardium as a biohybrid material offers a promising potential direction for further development in cardiovascular material alternatives. Eliminating the basis for the majority of cardiovascular prosthetic failures could revolutionize expectations for extent of cardiovascular repair. PMID:25236439

  5. Fiber-Reinforced-Foam (FRF) Core Composite Sandwich Panel Concept for Advanced Composites Technologi

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Fiber-Reinforced-Foam (FRF) Core Composite Sandwich Panel Concept for Advanced Composites Technologies Project - Preliminary Manufacturing Demonstration Articles for Ares V Payload Shroud Barrel Acreage Structure

  6. Microstructure and Tensile Behaviour of B4C Reinforced ZA43 Alloy Composites

    NASA Astrophysics Data System (ADS)

    Adaveesh, B.; Halesh, G. M.; Nagaral, Madeva; Mohan Kumar, T. S.

    2016-09-01

    The work is carried out to investigate and study the mechanical properties of B4C reinforced ZA43 alloy metal matrix composites. In the present work ZA43 alloy is taken as the base matrix and B4C particulates as reinforcement material to prepare metal matrix composites by stir casting method. For metal matrix composites the reinforcement material was varied from 0 to 6 wt.% in steps of 3 wt.%. For each composite, the reinforcement particulates were preheated to a temperature of 300°C and dispersed into a vortex of molten ZA43 alloy. The microstructural characterization was done using scanning electron microscope. Mechanical properties like hardness, ultimate tensile strength and yield strength were evaluated as per ASTM standards. Further, scanning electron microphotographs revealed that there was uniform distribution of B4C particulates in ZA43 alloy matrix. Hardness, ultimate tensile strength and yield strength increased as wt.% of B4C increased in the base matrix.

  7. Flexural analysis of palm fiber reinforced hybrid polymer matrix composite

    NASA Astrophysics Data System (ADS)

    Venkatachalam, G.; Gautham Shankar, A.; Raghav, Dasarath; Santhosh Kiran, R.; Mahesh, Bhargav; Kumar, Krishna

    2015-07-01

    Uncertainty in availability of fossil fuels in the future and global warming increased the need for more environment friendly materials. In this work, an attempt is made to fabricate a hybrid polymer matrix composite. The blend is a mixture of General Purpose Resin and Cashew Nut Shell Liquid, a natural resin extracted from cashew plant. Palm fiber, which has high strength, is used as reinforcement material. The fiber is treated with alkali (NaOH) solution to increase its strength and adhesiveness. Parametric study of flexure strength is carried out by varying alkali concentration, duration of alkali treatment and fiber volume. Taguchi L9 Orthogonal array is followed in the design of experiments procedure for simplification. With the help of ANOVA technique, regression equations are obtained which gives the level of influence of each parameter on the flexure strength of the composite.

  8. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Wiberley, S. E.

    1978-01-01

    The purpose of the RPI composites program is to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, reliability and life prediction. Concommitant goals are to educate engineers to design and use composite materials as normal or conventional materials. A multifaceted program was instituted to achieve these objectives.

  9. Comparison of mechanical properties of a new fiber reinforced composite and bulk filling composites

    PubMed Central

    Pradelle, Nelly; Villat, Cyril; Attik, Nina; Colon, Pierre; Grosgogeat, Brigitte

    2015-01-01

    Objectives The aim of this study was to evaluate the mechanical and physical properties of a newly developed fiber reinforced dental composite. Materials and Methods Fiber reinforced composite EverX Posterior (EXP, GC EUROPE), and other commercially available bulk fill composites, including Filtek Bulk Fill (FB, 3M ESPE), SonicFill (SF, Kerr Corp.), SureFil (SDR, Dentsply), Venus Bulk Fill (VB, HerausKultzer), Tetric evoceram bulk fill (TECB, Ivoclar Vivadent), and Xtra Base (XB, Voco) were characterized. Composite samples light-cured with a LED device were evaluated in terms of flexural strength, flexural modulus (ISO 4049, n = 6), fracture toughness (n = 6), and Vickers hardness (0, 2, and 4 mm in depth at 24 hr, n = 5). The EXP samples and the fracture surface were observed under a scanning electron microscopy. Data were statistically analyzed using one-way ANOVA and unpaired t-test. Results EXP, FB, and VB had significantly higher fracture toughness value compared to all the other bulk composite types. SF, EXP, and XB were not statistically different, and had significantly higher flexural strength values compared to other tested composite materials. EXP had the highest flexural modulus, VB had the lowest values. Vickers hardness values revealed SF, EXP, TECB, and XB were not statistically different, and had significantly higher values compared to other tested composite materials. SEM observations show well dispersed fibers working as a reinforcing phase. Conclusions The addition of fibers to methacrylate-based matrix results in composites with either comparable or superior mechanical properties compared to the other bulk fill materials tested. PMID:26587411

  10. Nanographene reinforced carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Bansal, Dhruv

    Carbon/Carbon Composites (CCC) are made of carbon reinforcement in carbon matrix and have high thermal stability and fatigue resistance. CCC are used in nose cones, heat shields and disc brakes of aircrafts due to their exceptional mechanical properties at high temperature. The manufacturing process of CCC involves a carbonization stage in which unwanted elements, except carbon, are eliminated from the polymer precursor. Carbonization results in the formation of voids and cracks due to the thermal mismatch between the reinforcement and the matrix and expulsion of volatiles from the polymer matrix. Thermal cracks and voids decrease the density and mechanical properties of the manufactured CCC. In this work, Nanographene Platelets (NGP) were explored as nanofillers to fill the voids/cracks and reduce thermal shrinkage in CCC. They were first compared with Vapor Grown Carbon Nanofibers (VGCNF) by dispersion of different concentrations (0.5wt%, 1.5wt%, 3wt%) in resole-type phenolic resin and were characterized to explore their effect on rheology, heat of reaction and wetting behavior. The dispersions were then cured to form nanocomposites and were characterized for morphology, flexure and thermal properties. Finally, NGP were introduced into the carbon/carboncomposites in two stages, first by spraying in different concentrations (0.5wt%, 1.5wt%, 3wt%, 5wt %) during the prepreg formation and later during densification by directly mixing in the corresponding densification mix. The manufactured NGP reinforced CCC were characterized for microstructure, porosity, bulk density and mechanical properties (Flexure and ILSS) which were further cross-checked by non-destructive techniques (vibration and ultrasonic). In this study, it was further found that at low concentration (≤ 1.5 wt%) NGP were more effective in increasing the heat of reaction and in decreasing the viscosity of the phenolic resin. The decrease in viscosity led to better wetting properties of NGP / phenolic

  11. Damage assessment and residual compression strength of thick composite plates with through-the-thickness reinforcements

    NASA Technical Reports Server (NTRS)

    Smith, Barry T.

    1990-01-01

    Damage in composite materials was studied with through-the-thickness reinforcements. As a first step it was necessary to develop new ultrasonic imaging technology to better assess internal damage of the composite. A useful ultrasonic imaging technique was successfully developed to assess the internal damage of composite panels. The ultrasonic technique accurately determines the size of the internal damage. It was found that the ultrasonic imaging technique was better able to assess the damage in a composite panel with through-the-thickness reinforcements than by destructively sectioning the specimen and visual inspection under a microscope. Five composite compression-after-impact panels were tested. The compression-after-impact strength of the panels with the through-the-thickness reinforcements was almost twice that of the comparable panel without through-the-thickness reinforcement.

  12. Damage assessment and residual compression strength of thick composite plates with through-the-thickness reinforcements

    NASA Technical Reports Server (NTRS)

    Smith, Barry T.; Farley, Gary L.; Maiden, Janice; Coogan, Dreux; Moore, Judith G.

    1991-01-01

    Damage in composite materials was studied with through-the-thickness reinforcements. As a first step it was necessary to develop new ultrasonic imaging technology to better assess internal damage of the composite. A useful ultrasonic imaging technique was successfully developed to assess the internal damage of composite panels. The ultrasonic technique accurately determines the size of the internal damage. It was found that the ultrasonic imaging technique was better able to assess the damage in composite panel with through-the-thickness reinforcements than by destructively sectioning the specimen and visual inspection under a microscope. Five composite compression-after-impact panels were tested. The compression-after-impact strength of the panels with the through-the-thickness reinforcements was almost twice that of the comparable panel without through-the-thickness reinforcement.

  13. Carbon fiber reinforced thermoplastic composites for future automotive applications

    NASA Astrophysics Data System (ADS)

    Friedrich, K.

    2016-05-01

    After a brief introduction to polymer composite properties and markets, the state of the art activities in the field of manufacturing of advanced composites for automotive applications are elucidated. These include (a) long fiber reinforced thermoplastics (LFT) for secondary automotive components, and (b) continuous carbon fiber reinforced thermosetting composites for car body applications. It is followed by future possibilities of carbon fiber reinforced thermoplastic composites for e.g. (i) crash elements, (ii) racing car seats, and (iii) production and recycling of automotive fenders.

  14. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, which allows a shape to be formed prior to the cure, and is then pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Basalt fibers are used for the reinforcement in the composite system. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material.

  15. Vibration Analysis of Composite Rectangular Plates Reinforced along Curved Lines

    NASA Astrophysics Data System (ADS)

    Honda, Shinya; Oonishi, Yoshimasa; Narita, Yoshihiro; Sasaki, Katsuhiko

    In the past few decades, composite materials composed of straight fibers and polymer matrix have gained their status as the most promising material for light-weight structures. Technical merit of the composites as tailored material also provided practical advantages in the optimum design process. Recently, it is reported that the fabrication machine has been developed to make curved fibers embedded in the matrix material. Based on such technical advancement, this paper proposes an analytical method to study vibration of composite rectangular plates reinforced along curved lines. The approach is based on the Ritz method where variable fiber direction can be accommodated. For this purpose, the fibers continuously changing their direction are formulated as the variable bending stiffness in the total potential energy. A frequency equation is derived by the Ritz minimizing process, and frequency parameters are calculated as the eigenvlaues in the eigenvalue problem. In numerical results, the accuracy of the method is presented by comparing present results with FEM results. The advantages of present plate are confirmed by comparing natural frequencies and mode shapes with those of conventional composite and isotropic plates, and the effectiveness of the new solution to the most recent problem is demonstrated.

  16. Experimental study on mixed mode fracture in unidirectional fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Gong, Kezhuang; Li, Zheng; Fu, Bin

    2008-11-01

    Fiber reinforced composites are applied broadly in aeronautic and astronautic fields as a structural material. But the investigation in dynamic fracture behavior of fiber reinforced composite stands in the breach for scientists due to a large number of aircraft disasters. In this paper, the mixed mode fracture problems in fiber reinforced composites under impact are studied. First, based on the theory of the reflective dynamic caustic method for mixed mode fracture, corresponding experiments are carried out to study the dynamic fracture behaviors of unidirectional fiber reinforced composites under two kinds load conditions. By recording and analyzing the shadow spot patterns during the crack propagation process carefully, the dynamic fracture toughness and crack growth velocity of fiber reinforced composites are obtained. Via the observation of the crack growth routes and fracture sections, we further reveal the fracture mechanism of unidirectional fiber reinforced composites. It concludes that opening mode still is the easier fracture type for the pre-crack initiation in fiber reinforced composites, while the interface between fibers and matrix becomes the fatal vulnerability during the crack propagation.

  17. Finite element analysis of the stiffness of fabric reinforced composites

    NASA Technical Reports Server (NTRS)

    Foye, R. L.

    1992-01-01

    The objective of this work is the prediction of all three dimensional elastic moduli of textile fabric reinforced composites. The analysis is general enough for use with complex reinforcing geometries and capable of subsequent improvements. It places no restrictions on fabric microgeometry except that the unit cell be determinate and rectangular. The unit cell is divided into rectangular subcells in which the reinforcing geometries are easier to define and analyze. The analysis, based on inhomogeneous finite elements, is applied to a variety of weave, braid, and knit reinforced composites. Some of these predictions are correlated to test data.

  18. High elastic modulus nanopowder reinforced resin composites for dental applications

    NASA Astrophysics Data System (ADS)

    Wang, Yijun

    2007-12-01

    Dental restorations account for more than $3 billion dollars a year on the market. Among them, all-ceramic dental crowns draw more and more attention and their popularity has risen because of their superior aesthetics and biocompatibility. However, their relatively high failure rate and labor-intensive fabrication procedure still limit their application. In this thesis, a new family of high elastic modulus nanopowder reinforced resin composites and their mechanical properties are studied. Materials with higher elastic modulus, such as alumina and diamond, are used to replace the routine filler material, silica, in dental resin composites to achieve the desired properties. This class of composites is developed to serve (1) as a high stiffness support to all-ceramic crowns and (2) as a means of joining independently fabricated crown core and veneer layers. Most of the work focuses on nano-sized Al2O3 (average particle size 47 nm) reinforcement in a polymeric matrix with 50:50 Bisphenol A glycidyl methacrylate (Bis-GMA): triethylene glycol dimethacrylate (TEGDMA) monomers. Surfactants, silanizing agents and primers are examined to obtain higher filler levels and enhance the bonding between filler and matrix. Silane agents work best. The elastic modulus of a 57.5 vol% alumina/resin composite is 31.5 GPa compared to current commercial resin composites with elastic modulus <15 GPa. Chemical additives can also effectively raise the hardness to as much as 1.34 GPa. Besides>alumina, diamond/resin composites are studied. An elastic modulus of about 45 GPa is obtained for a 57 vol% diamond/resin composite. Our results indicate that with a generally monodispersed nano-sized high modulus filler, relatively high elastic modulus resin-based composite cements are possible. Time-dependent behavior of our resin composites is also investigated. This is valuable for understanding the behavior of our material and possible fatigue testing in the future. Our results indicate that with

  19. Synthesis and Characterization of TiB2 Reinforced Aluminium Matrix Composites: A Review

    NASA Astrophysics Data System (ADS)

    Kumar, Narendra; Gautam, Gaurav; Gautam, Rakesh Kumar; Mohan, Anita; Mohan, Sunil

    2015-09-01

    Aluminium-matrix composites (AMCs) are developed to meet the demands of light weight high performance materials in aerospace, automotive, marine and other applications. The properties of AMCs can be tailored suitably by combinations of matrix, reinforcement and processing route. AMCs are one of the most attractive alternatives for the manufacturing of light weight and high strength parts due to their low density and high specific strength. There are various techniques for preparing the AMCs with different reinforcement particles. In AMCs, the reinforcements are usually in the form of metal oxides, carbides, borides, nitrides and their combination. Among the various reinforcements titanium di-boride (TiB2) is of much interest due to its excellent stiffness, hardness, and wear resistance. This paper attempts to provide an overview to explore the possibilities of synthesizing titanium di-boride reinforced AMCs with different techniques. The mechanical and tribological properties of these composites have been emphasized to project these as tribo-materials.

  20. CODIFICATION OF FIBER REINFORCED COMPOSITE PIPING

    SciTech Connect

    Rawls, G.

    2012-10-10

    The goal of the overall project is to successfully adapt spoolable FRP currently used in the oil industry for use in hydrogen pipelines. The use of FRP materials for hydrogen service will rely on the demonstrated compatibility of these materials for pipeline service environments and operating conditions. The ability of the polymer piping to withstand degradation while in service, and development of the tools and data required for life management are imperative for successful implementation of these materials for hydrogen pipeline. The information and data provided in this report provides the technical basis for the codification for fiber reinforced piping (FRP) for hydrogen service. The DOE has invested in the evaluation of FRP for the delivery for gaseous hydrogen to support the development of a hydrogen infrastructure. The codification plan calls for detailed investigation of the following areas: System design and applicable codes and standards; Service degradation of FRP; Flaw tolerance and flaw detection; Integrity management plan; Leak detection and operational controls evaluation; Repair evaluation. The FRP codification process started with commercially available products that had extensive use in the oil and gas industry. These products have been evaluated to assure that sufficient structural integrity is available for a gaseous hydrogen environment.

  1. Thermodynamic analysis of compatibility of several reinforcement materials with FeAl alloys

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Chemical compatibility of several reinforcement materials with FeAl alloys within the concentration range 40 to 50 at pct Al have been analyzed from thermodynamic considerations at 1173 and 1273 K. The reinforcement materials considered in this study include carbides, borides, oxides, nitrides, and silicides. Although several chemically compatible reinforcement materials are identified, the coefficients of thermal expansion for none of these materials match closely with that of FeAl alloys and this might pose serious problems in the design of composite systems based on FeAl alloys.

  2. Toughening reinforced epoxy composites with brominated polymeric additives

    NASA Technical Reports Server (NTRS)

    Nir, Z. (Inventor); Gilwee, W. J., Jr. (Inventor)

    1985-01-01

    Cured polyfunctional epoxy resins including tris(hydroxyphenyl)methane triglycidyl ether are toughened by addition of polybrominated polymeric additives having an EE below 1500 to the pre-cure composition. Carboxy-terminated butadiene-acrylonitrile rubber is optionally present in the pre-cure mixture as such or as a pre-formed copolymer with other reactants. Reinforced composites, particularly carbon-reinforced composites, of these resins are disclosed and shown to have improved toughness.

  3. Toughening reinforced epoxy composites with brominated polymeric additives

    NASA Technical Reports Server (NTRS)

    Nir, Z.; Gilwee, W. J., Jr. (Inventor)

    1985-01-01

    Cured polyfunctional epoxy resins including tris (hydroxyphenyl) methane triglycidyl ether are toughened by addition of polybrominated polymeric additives having an EE below 1500 to the pre-cure composition. Carboxy terminated butadiene acrylonitrile rubber is optionally present in the precure mixture as such or as a pre-formed copolymer with other reactants. Reinforced composites, particularly carbon reinforced composites, of these resins are disclosed and shown to have improved toughness.

  4. Industry to Education Technical Transfer Program & Composite Materials. Composite Materials Course. Fabrication I Course. Fabrication II Course. Composite Materials Testing Course. Final Report.

    ERIC Educational Resources Information Center

    Massuda, Rachel

    These four reports provide details of projects to design and implement courses to be offered as requirements for the associate degree program in composites and reinforced plastics technology. The reports describe project activities that led to development of curricula for four courses: composite materials, composite materials fabrication I,…

  5. EB treatment of carbon nanotube-reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Szebényi, G.; Romhány, G.; Vajna, B.; Czvikovszky, T.

    2012-09-01

    A small amount — less than 0.5% — carbon nanotube reinforcement may improve the mechanical properties of epoxy based composite materials significantly. The basic technical problem on one side is the dispersion of the nanotubes into the viscous matrix resin, namely, the fine powder-like — less than 100 nanometer diameter — nanotubes are prone to form aggregates. On the other side, the good connection between the nanofiber and matrix, which is determining the success of the reinforcement, requires some efficient adhesion promoting treatment. The goal of our research was to give one such treatment capable of industrial size application. A two step curing epoxy/vinylester resin process technology has been developed where the epoxy component has been cured conventionally, while the vinylester has been cured by electron treatment afterwards. The sufficient irradiation dose has been selected according to Raman spectroscopy characterization. Using the developed hybrid resin system hybrid composites containing carbon fibers and multiwalled carbon nanotubes have been prepared. The effect of the electron beam induced curing of the vinylester resin on the mechanical properties of the composites has been characterized by three point bending and interlaminar shear tests, which showed clearly the superiority of the developed resin system. The results of the mechanical tests have been supported by AFM studies of the samples, which showed that the difference in the viscoelastic properties of the matrix constituents decreased significantly by the electron beam treatment.

  6. NASA technology utilization survey on composite materials

    NASA Technical Reports Server (NTRS)

    Leeds, M. A.; Schwartz, S.; Holm, G. J.; Krainess, A. M.; Wykes, D. M.; Delzell, M. T.; Veazie, W. H., Jr.

    1972-01-01

    NASA and NASA-funded contractor contributions to the field of composite materials are surveyed. Existing and potential non-aerospace applications of the newer composite materials are emphasized. Economic factors for selection of a composite for a particular application are weight savings, performance (high strength, high elastic modulus, low coefficient of expansion, heat resistance, corrosion resistance,), longer service life, and reduced maintenance. Applications for composites in agriculture, chemical and petrochemical industries, construction, consumer goods, machinery, power generation and distribution, transportation, biomedicine, and safety are presented. With the continuing trend toward further cost reductions, composites warrant consideration in a wide range of non-aerospace applications. Composite materials discussed include filamentary reinforced materials, laminates, multiphase alloys, solid multiphase lubricants, and multiphase ceramics. New processes developed to aid in fabrication of composites are given.

  7. Electrically conductive composite material

    DOEpatents

    Clough, R.L.; Sylwester, A.P.

    1988-06-20

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  8. Electrically conductive composite material

    DOEpatents

    Clough, Roger L.; Sylwester, Alan P.

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  9. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, R.; Wiberley, S. E.

    1986-01-01

    Overall emphasis is on basic long-term research in the following categories: constituent materials, composite materials, generic structural elements, processing science technology; and maintaining long-term structural integrity. Research in basic composition, characteristics, and processing science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to present and future problems. Detailed descriptions of the progress achieved in the various component parts of this comprehensive program are presented.

  10. Thermal cycling of tungsten-fibre-reinforced superalloy composites

    NASA Technical Reports Server (NTRS)

    Wetherhold, Robert C.; Westfall, Leonard J.

    1988-01-01

    The thermal cycling of a tungsten-fiber-reinforced superalloy (TFRS) composite is typical of its application in high-temperature engine environments. The mismatch in thermal expansion coefficients between fiber and matrix causes substantial longitudinal (0 deg) stresses in the composite, which can produce inelastic damage-producing matrix strains. The case of thermal fatigue is explored as a "worst case" of the possible matrix damage, in comparison with specimens which are also mechanically loaded in tension. The thermally generated cyclic stresses and the attendant matrix plasticity may be estimated using a nonlinear finite-element program, by proposing a physical analog to the micromechanics equations. A damage metric for the matrix is proposed using the Coffin-Manson criterion, which metric can facilitate comparisons of damage among different candidate materials, and also comparisons for a given material subjected to different temperature cycles. An experimental program was carried out for thermal cycling of a 37 vol pct TFRS composite to different maximum temperatures. The results confirm the prediction that thermal cycling produces matrix degradation and composite strength reduction, which become more pronounced with increasing maximum cyclic temperature. The strength of the fiber is shown to be identical for the as-fabricated and thermally cycled specimens, suggesting that the reduction in composite strength is due to the loss of matrix contribution and also to notching effects of the matrix voids on the fiber.

  11. Rapid Prototyping of Continuous Fiber Reinforced Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, R.; Green, C.; Phillips, T.; Cipriani, R.; Yarlagadda, S.; Gillespie, J.; Effinger, M.; Cooper, K. C.; Gordon, Gail (Technical Monitor)

    2002-01-01

    For ceramics to be used as structural components in high temperature applications, their fracture toughness is improved by embedding continuous ceramic fibers. Ceramic matrix composite (CMC) materials allow increasing the overall operating temperature, raising the temperature safety margins, avoiding the need for cooling, and improving the damping capacity, while reducing the weight at the same time. They also need to be reliable and available in large quantities as well. In this paper, an innovative rapid prototyping technique to fabricate continuous fiber reinforced ceramic matrix composites is described. The process is simple, robust and will be widely applicable to a number of high temperature material systems. This technique was originally developed at the University of Delaware Center for Composite Materials (UD-CCM) for rapid fabrication of polymer matrix composites by a technique called automated tow placement or ATP. The results of mechanical properties and microstructural characterization are presented, together with examples of complex shapes and parts. It is believed that the process will be able to create complex shaped parts at an order of magnitude lower cost than current CVI and PIP processes.

  12. Rapid Prototyping of Continuous Fiber Reinforced Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, R.; Green, C.; Phillips, T.; Cipriani, R.; Yarlagadda, S.; Gillespie, J. W., Jr.; Effinger, M.; Cooper, K. C.

    2003-01-01

    For ceramics to be used as structural components in high temperature applications, their fracture toughness is improved by embedding continuous ceramic fibers. Ceramic matrix composite (CMC) materials allow increasing the overall operating temperature, raising the temperature safety margins, avoiding the need for cooling, and improving the damping capacity, while reducing the weight at the same time. They also need to be reliable and available in large quantities as well. In this paper, an innovative rapid prototyping technique to fabricate continuous fiber reinforced ceramic matrix composites is described. The process is simple, robust and will be widely applicable to a number of high temperature material systems. This technique was originally developed at the University of Delaware Center for Composite Materials (UD-CCM) for rapid fabrication of polymer matrix composites by a technique called automated tow placement or ATP. The results of mechanical properties and microstructural characterization are presented, together with examples of complex shapes and parts. It is believed that the process will be able to create complex shaped parts at an order of magnitude lower cost than current chemical vapor infiltration (CVI) and polymer impregnation and pyrolysis (PIP) processes.

  13. A physically-based abrasive wear model for composite materials

    SciTech Connect

    Lee, Gun Y.; Dharan, C.K.H.; Ritchie, Robert O.

    2001-05-01

    A simple physically-based model for the abrasive wear of composite materials is presented based on the mechanics and mechanisms associated with sliding wear in soft (ductile) matrix composites containing hard (brittle) reinforcement particles. The model is based on the assumption that any portion of the reinforcement that is removed as wear debris cannot contribute to the wear resistance of the matrix material. The size of this non-contributing portion of the reinforcement is estimated by modeling the three primary wear mechanisms, specifically plowing, interfacial cracking and particle removal. Critical variables describing the role of the reinforcement, such as its relative size and the nature of the matrix/reinforcement interface, are characterized by a single contribution coefficient, C. Predictions are compared with the results of experimental two-body (pin-on drum) abrasive wear tests performed on a model aluminum particulate-reinforced epoxy matrix composite material.

  14. Silicon carbide reinforced silicon carbide composite

    NASA Technical Reports Server (NTRS)

    Lau, Sai-Kwing (Inventor); Calandra, Salvatore J. (Inventor); Ohnsorg, Roger W. (Inventor)

    2001-01-01

    This invention relates to a process comprising the steps of: a) providing a fiber preform comprising a non-oxide ceramic fiber with at least one coating, the coating comprising a coating element selected from the group consisting of carbon, nitrogen, aluminum and titanium, and the fiber having a degradation temperature of between 1400.degree. C. and 1450.degree. C., b) impregnating the preform with a slurry comprising silicon carbide particles and between 0.1 wt % and 3 wt % added carbon c) providing a cover mix comprising: i) an alloy comprising a metallic infiltrant and the coating element, and ii) a resin, d) placing the cover mix on at least a portion of the surface of the porous silicon carbide body, e) heating the cover mix to a temperature between 1410.degree. C. and 1450.degree. C. to melt the alloy, and f) infiltrating the fiber preform with the melted alloy for a time period of between 15 minutes and 240 minutes, to produce a ceramic fiber reinforced ceramic composite.

  15. Nonmetallic materials and composites at low temperatures

    SciTech Connect

    Hartwig, G.; Evans, D.

    1982-01-01

    This book presents articles by leading scientists who explore the cryogenic behavior of such materials as epoxies, polyethylenes, polymers, various composites, and glasses. Examines the thermal and dielectric properties of these materials, as well as their elasticity, cohesive strength, resistance to strain and fracturing, and applications. Topics include thermal properties of crystalline polymers; thermal conductivity in semicrystalline polymers; ultrasonic absorption in polymethylmethacrylate; radiation damage in thin sheet fiberglass; epoxide resins; dynamic mechanical properties of poly (methacrylates); dielectric loss due to antioxidants in polyolefins; fracture measurements on polyethylene in comparison with epoxy resins; fatigue testing of epoxide resins; lap testing of epoxide resins; thermal conductivity and thermal expansion of non-metallic composite materials; nonlinear stresses and displacements of the fibers and matrix in a radially loaded circular composite ring; the strain energy release rate of glass fiber-reinforced polyester composites; charpy impact testing of cloth reinforced epoxide resin; nonmetallic and composite materials as solid superleaks; carbon fiber reinforced expoxide resins; standardizing nonmetallic composite materials.

  16. Fracture resistance of microhybrid composite, nano composite and fibre-reinforced composite used for incisal edge restoration.

    PubMed

    Badakar, Chandrashekhar M; Shashibhushan, Kukkalli Kamalaksharappa; Naik, N Sathyajith; Reddy, Vulavala Venkata Subba

    2011-06-01

    Traumatized anterior teeth need quick, aesthetic and functional repair. Along with aesthetics, the physical properties of restorative material should also be considered for long-lasting restoration. Fibre reinforcement has been tried as a newer technique to improve the physical properties of composite materials. Hence, this study was carried out to evaluate the fracture resistance of microhybrid composite, nano composite and fibre-reinforced composite used for restoration of incisal edge of fractured maxillary central incisors. Extracted permanent maxillary central incisors were randomly divided into four groups of 10 samples each: control group with intact teeth (Group A), microhybrid composite (Esthet X; Dentsply/Caulk, Milford, DE, USA) (group B), nano composite (Ceram X; Dentsply/Caulk) (group C) and microhybrid composite reinforced with polyethylene fibre - flowable composite unit [(Ribbond THM; Ribbond Inc., Seattle, WA, USA; Esthet X flow; Dentsply/Caulk)] (group D). The fracture resistance was measured under universal testing machine at a speed of 1mmmin(-1) with the loading tip of 2mm diameter. The samples were further evaluated for mode of fracture under stereomicroscope at 3.5× magnification. The data were analysed using one-way anova and Tukey's test for fracture resistance. Group A and group D exhibited significantly higher fracture resistance than group B and group C. No significant difference was found between group B and group C as well as between group A and group D. Fisher's exact test for the mode of fracture revealed no statistical significance. It was concluded that fibre reinforcement of composite could be an alternative technique for restoration of fractured anterior teeth for better aesthetics and longevity of the restoration.

  17. Impact and dynamic mechanical thermal properties of textile silk reinforced epoxy resin composites

    NASA Astrophysics Data System (ADS)

    Yang, K.; Guan, J.

    2016-07-01

    Silk fabric reinforced epoxy resin composites (SFRPs) were prepared using simple techniques of hand lay-up, hot-press and vacuum treatment, and a series of volume fractions of silk reinforcements were achieved. The impact properties and dynamic mechanical properties of SFRPs were investigated using a pendulum impact testing method and dynamic mechanical thermal analysis (DMTA). The results suggest that silk reinforcement could greatly enhance the mechanical performances of SFRPs. The impact strength reached a maximum of 71 kJ/m2 for 60%-silk SFRP, which demonstrated a potential of silk composites for defence and impact- resistant materials.

  18. Superelastic SMA-FRP composite reinforcement for concrete structures

    NASA Astrophysics Data System (ADS)

    Wierschem, Nicholas; Andrawes, Bassem

    2010-02-01

    For many years there has been interest in using fiber-reinforced polymers (FRPs) as reinforcement in concrete structures. Unfortunately, due to their linear elastic behavior, FRP reinforcing bars are never considered for structural damping or dynamic applications. With the aim of improving the ductility and damping capability of concrete structures reinforced with FRP reinforcement, this paper studies the application of SMA-FRP, a relatively novel type of composite reinforced with superelastic shape memory alloy (SMA) wires. The cyclic tensile behavior of SMA-FRP composites are studied experimentally and analytically. Tests of SMA-FRP composite coupons are conducted to determine their constitutive behavior. The experimental results are used to develop and calibrate a uniaxial SMA-FRP analytical model. Parametric and case studies are performed to determine the efficacy of the SMA-FRP reinforcement in concrete structures and the key factors governing its behavior. The results show significant potential for SMA-FRP reinforcement to improve the ductility and damping of concrete structures while still maintaining its elastic characteristic, typical of FRP reinforcement.

  19. Properties of indirect composites reinforced with monomer-impregnated glass fiber.

    PubMed

    Tanoue, Naomi; Sawase, Takashi; Matsumura, Hideo; McCabe, John F

    2012-07-01

    Sufficient flexural strength is required for long-term clinical use of fixed partial dentures made with fiber-reinforced composite. The flexural strengths of indirect composite materials reinforced with a monomer-preimpregnated glass fiber material were determined to evaluate the compatibility of the composites to glass fiber material. Four types (microhybrid, nanohybrid, microfilled, and minifilled) of indirect composites and a unidirectional long glass fiber material were selected for investigation. The composites were placed on a fiber plate and polymerized in accordance with the respective manufacturer's instructions. Rectangular bar fiber-composite specimens were machined and the flexural strength was calculated. The flexural strength of each indirect composite was also measured. The microfilled composite with the lowest filler content (70 wt%) exhibited the highest increase ratio using the fiber, although its strength without fiber reinforcement was the lowest (62.1 MPa). The fiber-microhybrid specimen demonstrated the highest mean strength (355.9 MPa), although the filler content of the microhybrid composite was comparatively low (73 wt%). The type of composite material should be considered for the selection of an optimal fiber-composite combination. PMID:21932008

  20. Tribological study of non-asbestos fiber reinforced phenolic composites for braking applications

    SciTech Connect

    Gopal, P.; Dharani, L.R.; Blum, F.D.

    1994-12-31

    A cashew modified phenolic resin was used as the binder to prepare several different nonasbestos fiber reinforced composite friction materials. Friction-wear tests were conducted at various loads, speeds and temperatures on a Chase friction testing machine. The fade and wear characteristics of glass and carbon fiber reinforced friction materials were studied. The wear rates of hybrid composites containing Kevlar{reg_sign} (registered trademark of E.I. duPont de Nemours) pulp were compared to those of control composites without Kevlar{reg_sign} pulp.

  1. Composite Material Switches

    NASA Technical Reports Server (NTRS)

    Javadi, Hamid (Inventor)

    2001-01-01

    A device to protect electronic circuitry from high voltage transients is constructed from a relatively thin piece of conductive composite sandwiched between two conductors so that conduction is through the thickness of the composite piece. The device is based on the discovery that conduction through conductive composite materials in this configuration switches to a high resistance mode when exposed to voltages above a threshold voltage.

  2. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1982-01-01

    Research in the basic composition, characteristics, and processng science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to problems. Detailed descriptions of the progress achieved in the various component parts of his program are presented.

  3. Method of producing particulate-reinforced composites and composties produced thereby

    DOEpatents

    Han, Qingyou; Liu, Zhiwei

    2013-12-24

    A process for producing particle-reinforced composite materials through utilization of an in situ reaction to produce a uniform dispersion of a fine particulate reinforcement phase. The process includes forming a melt of a first material, and then introducing particles of a second material into the melt and subjecting the melt to high-intenisty acoustic vibration. A chemical reaction initiates between the first and second materials to produce reaction products in the melt. The reaciton products comprise a solide particulate phase, and the high-intensity acoustic vibration fragments and/or separates the reaction products into solid particles that are dispersed in the melt and are smaller than the particles of the second material. Also encompassed are particles-reinforced composite materials produced by such a process.

  4. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, Robert G.; Wiberley, Stephen E.

    1987-01-01

    The development and application of composite materials to aerospace vehicle structures which began in the mid 1960's has now progressed to the point where what can be considered entire airframes are being designed and built using composites. Issues related to the fabrication of non-resin matrix composites and the micro, mezzo and macromechanics of thermoplastic and metal matrix composites are emphasized. Several research efforts are presented. They are entitled: (1) The effects of chemical vapor deposition and thermal treatments on the properties of pitch-based carbon fiber; (2) Inelastic deformation of metal matrix laminates; (3) Analysis of fatigue damage in fibrous MMC laminates; (4) Delamination fracture toughness in thermoplastic matrix composites; (5) Numerical investigation of the microhardness of composite fracture; and (6) General beam theory for composite structures.

  5. Comparative study of nanomaterials for interlaminar reinforcement of fiber-composite panels

    NASA Astrophysics Data System (ADS)

    Chiu, Karen Rachel; Duenas, Terrisa; Dzenis, Yuris; Kaser, Jase; Bakis, Charles E.; Roberts, J. Keith; Carter, Daniel

    2013-04-01

    Carbon-fiber reinforced polymer (CFRP) composites offer benefits of reduced weight and increased specific strength; however, these materials can have relatively weak interlaminar toughness. The first modes of composite material failure often remain undetected, since failure is not always visually apparent on the surface of composite materials. In this study, several nano-sized materials and integration approaches are investigated as nanoreinforcement for composite materials. Performance is characterized by the ability of each nanoreinforced composite type to improve Mode I interlaminar toughness. The nanomaterials include 1) commercially available surface-modified silica nanoparticles and 2) continuous polyacrylonitrile (PAN) nanofibers. Test articles are manufactured using hand-layup vacuum bagging and feature either reinforced unidirectional carbon fiber or woven carbon fiber material and one of two investigated epoxy-based resin systems. The nanosilica particles were integrated into the fiber composite structure by mixing with the resin system prior to layup. The PAN nanofibers were produced by an electrospinning process; these fibers were integrated by either collecting the fibers of various areal densities as respective "nanomats" on an interim substrate for subsequent transfer during layup, or directly electrospun onto dry carbon fiber ply surfaces. Test articles were characterized according to ASTM D5528 for finding Mode I strain energy release rates. Results were compared to baseline coupons to determine fracture toughness performance. Results showed that the nanosilica-reinforced coupons increased an average of 35% and 25% in strain energy release rates for the coupons featuring unidirectional fibers and woven fibers, respectively, as compared to the corresponding baseline, whereas the nanomat-reinforced and directly deposited nanofiber-reinforced composites decreased. Low strain energy release rates for the PAN nanofiber-reinforced coupons is attributed

  6. Physical and Mechanical Properties of Composites and Light Alloys Reinforced with Detonation Nanodiamonds

    NASA Astrophysics Data System (ADS)

    Sakovich, G. V.; Vorozhtsov, S. A.; Vorozhtsov, A. B.; Potekaev, A. I.; Kulkov, S. N.

    2016-07-01

    The influence of introduction of particles of detonation-synthesized nanodiamonds into composites and aluminum-base light alloys on their physical and mechanical properties is analyzed. The data on microstructure and physical and mechanical properties of composites and cast aluminum alloys reinforced with diamond nanoparticles are presented. The introduction of nanoparticles is shown to result in a significant improvement of the material properties.

  7. Placement protocol for an anterior fiber-reinforced composite restoration.

    PubMed

    Hornbrook, D S

    1997-01-01

    The new classification of metal-free restorative materials provides the clinician with a durable, flexible, and aesthetic laboratory-fabricated alternative to conventional porcelain-fused-to-metal (PFM) full-coverage crowns, inlay and onlay restorations, and single pontic bridges. With exceptional physical and optical characteristics, restorations fabricated utilizing the new ceramic optimized polymer (Ceromer) (Targis, Ivoclar Williams, Amherst, NY) and fiber-reinforced composite (FRC) framework (Vectris, Ivoclar Williams, Amherst, NY) materials can also be utilized predictably in the anterior segment. The success of metal-free restorations can be achieved by following conventional prosthodontic principles for preparation, cementation, and finishing. This article demonstrates the appropriate treatment protocol in order to achieve aesthetically acceptable and durable anterior results utilizing a metal-free restorative system for "Maryland-like" bridge restorations.

  8. In-situ Formation of Reinforcement Phases in Ultra High Temperature Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Stackpoole, Margaret M (Inventor); Gasch, Matthew J (Inventor); Olson, Michael W (Inventor); Hamby, Ian W. (Inventor); Johnson, Sylvia M (Inventor)

    2013-01-01

    A tough ultra-high temperature ceramic (UHTC) composite comprises grains of UHTC matrix material, such as HfB.sub.2, ZrB.sub.2 or other metal boride, carbide, nitride, etc., surrounded by a uniform distribution of acicular high aspect ratio reinforcement ceramic rods or whiskers, such as of SiC, is formed from uniformly mixing a powder of the UHTC material and a pre-ceramic polymer selected to form the desired reinforcement species, then thermally consolidating the mixture by hot pressing. The acicular reinforcement rods may make up from 5 to 30 vol % of the resulting microstructure.

  9. Mechanical Properties of Particulate Reinforced Aluminium Alloy Matrix Composite

    SciTech Connect

    Sayuti, M.; Sulaiman, S.; Baharudin, B. T. H. T.; Arifin, M. K. A.; Suraya, S.; Vijayaram, T. R.

    2011-01-17

    This paper discusses the mechanical properties of Titanium Carbide (TiC) particulate reinforced aluminium-silicon alloy matrix composite. TiC particulate reinforced LM6 alloy matrix composites were fabricated by carbon dioxide sand molding process with different particulate weight fraction. Tensile strength, hardness and microstructure studies were conducted to determine the maximum load, tensile strength, modulus of elasticity and fracture surface analysis have been performed to characterize the morphological aspects of the test samples after tensile testing. Hardness values are measured for the TiC reinforced LM6 alloy composites and it has been found that it gradually increases with increased addition of the reinforcement phase. The tensile strength of the composites increased with the increase percentage of TiC particulate.

  10. Composite Material Application to Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Judd, D. C.

    1982-01-01

    The substitution of reinforced plastic composite (RPC) materials for metal was studied. The major objectives were to: (1) determine the extent to which composite materials can be beneficially used in liquid rocket engines; (2) identify additional technology requirements; and (3) determine those areas which have the greatest potential for return. Weight savings, fabrication costs, performance, life, and maintainability factors were considered. Two baseline designs, representative of Earth to orbit and orbit to orbit engine systems, were selected. Weight savings are found to be possible for selected components with the substitution of materials for metal. Various technology needs are identified before RPC material can be used in rocket engine applications.

  11. Fracture and fatigue of discontinuously reinforced copper/tungsten composites

    NASA Technical Reports Server (NTRS)

    Harris, B.; Ramani, S. V.

    1975-01-01

    The strength, toughness and resistance to cyclic crack propagation of composites consisting of copper reinforced with short tungsten wires of various lengths have been studied and the results compared with the behavior of continuously reinforced composites manufactured by the same method, i.e., by vacuum hot-pressing. It has been found that whereas the resistance to fatigue crack growth of continuously reinforced composites is very similar to that of continuous Al/stainless steel composites reported elsewhere, the addition of short fibers completely changes the mode of fracture, and no direct comparisons are possible. In effect, short fibers inhibit single crack growth by causing plastic flow to be distributed rather than localized, and although these composites are much less strong than continuous fiber composites, they nevertheless have much greater fatigue resistance.

  12. Preliminary evaluation of fiber composite reinforcement of truck frame rails

    NASA Technical Reports Server (NTRS)

    Faddoul, J. R.

    1977-01-01

    The use of graphite fiber/resin matrix composite to effectively reinforce a standard steel truck frame rail is studied. A preliminary design was made and it was determined that the reinforcement weight could be reduced by a factor of 10 when compared to a steel reinforcement. A section of a 1/3 scale reinforced rail was fabricated to demonstrate low cost manufacturing techniques. The scale rail section was then tested and increased stiffness was confirmed. No evidence of composite fatigue was found after 500,000 cycles to a fiber stress of 34,000 psi. The test specimen failed in bending in a static test at a load 50 percent greater than that predicted for a non-reinforced rail.

  13. The influence of matrix composition and reinforcement type on the properties of polysialate composites

    NASA Astrophysics Data System (ADS)

    Hammell, James A.

    There is a critical need for the development of materials for eliminating fire as a cause of death in aircraft accidents. Currently available composites that use organic matrices not only deteriorate at temperatures above 300°C but also emit toxic fumes. The results presented in this dissertation focus on the development of an inorganic matrix that does not burn or emit toxic fumes. The matrix, known as polysialate, can withstand temperatures in excess of 1000°C. The matrix behaves like a ceramic, but does not need high curing temperatures, so it can be processed like many common organic matrices. The major parameters evaluated in this dissertation are: (i) Influence of reinforcement type, (ii) Matrix formulation for both wet-dry durability and high temperature resistance, (iii) Influence of processing variables such as moisture reduction and storage, (iv) Tensile strain capacity of modified matrices and matrices reinforced with ceramic microfibers and discrete carbon fibers, and (v) analytical modeling of mechanical properties. For the reinforcement type; carbon, glass, and stainless steel wire fabrics were investigated. Carbon fabrics with 1, 3, 12, and 50k tows were used. A matrix chemical formulation that can withstand wetting and drying was developed. This formulation was tested at high temperatures to ascertain its stability above 400°C. On the topic of processing, shelf life of prepregged fabric layers and efficient moisture removal methods were studied. An analytical model based on layered reinforcement was developed for analyzing flexural specimens. It is shown that the new inorganic matrix can withstand wetting and drying, and also high temperature. The layered reinforcement concept provides accurate prediction of strength and stiffness for composites reinforced with 1k and 3k tows. The prepregged fabric layers can be stored for 14 days at -15°C without losing strength.

  14. Recent progress in NASA Langley Research Center textile reinforced composites program

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson; Harris, Charles E.; Johnston, Norman J.

    1992-01-01

    Research was conducted to explore the benefits of textile reinforced composites for transport aircraft primary structures. The objective is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structural concepts. Some program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. Textile 3-D weaving, 3-D braiding, and knitting and/or stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighted against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural parts are required to establish the potential of textile reinforced composite materials.

  15. Creep Forming of Carbon-Reinforced Ceramic-Matrix Composites

    NASA Technical Reports Server (NTRS)

    Vaughn, Wallace L.; Scotti, Stephan J.; Ashe, Melissa P.; Connolly, Liz

    2007-01-01

    A set of lecture slides describes an investigation of creep forming as a means of imparting desired curvatures to initially flat stock plates of carbon-reinforced ceramic-matrix composite (C-CMC) materials. The investigation is apparently part of a continuing effort to develop improved means of applying small CCMC repair patches to reinforced carbon-carbon leading edges of aerospace vehicles (e.g., space shuttles) prior to re-entry into the atmosphere of the Earth. According to one of the slides, creep forming would be an intermediate step in a process that would yield a fully densified, finished C-CMC part having a desired size and shape (the other steps would include preliminary machining, finish machining, densification by chemical vapor infiltration, and final coating). The investigation included experiments in which C-CMC disks were creep-formed by heating them to unspecified high temperatures for time intervals of the order of 1 hour while they were clamped into single- and double-curvature graphite molds. The creep-formed disks were coated with an oxidation- protection material, then subjected to arc-jet tests, in which the disks exhibited no deterioration after exposure to high-temperature test conditions lasting 490 seconds.

  16. Mechanical and thermal expansion properties of glass fibers reinforced PEEK composites at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Chu, X. X.; Wu, Z. X.; Huang, R. J.; Zhou, Y.; Li, L. F.

    2010-02-01

    Polyetheretherketone (PEEK) has been widely used as matrix material for high performance composites. In this work, 30% chopped glass fibers reinforced PEEK composites were prepared by injection molding, and then the tensile, flexural and impact properties were tested at different temperatures. The modulus, strength and specific elongation of glass fibers reinforced PEEK at room temperature, 77 K and 20 K have been compared. And the fracture morphologies of different samples were investigated by scanning electron microscopy (SEM). The results showed a dependence of mechanical properties of glass fibers reinforced PEEK composites on temperature. The coefficient of thermal expansion of unfilled PEEK and glass fibers reinforced PEEK were also investigated from 77 K to room temperature. The results indicated that the thermal expansion coefficient (CTE) of PEEK matrix was nearly a constant in this temperature region, and it can be significantly decreased by adding glass fibers.

  17. The elevated temperature behavior of particle reinforced Al matrix composites

    SciTech Connect

    Lloyd, D.J.

    1994-12-31

    The elevated temperature modulus, strength and creep of SiC particle reinforced composites produced by the DURALCAN{trademark} are discussed. It is shown that the reinforcing particles provide an increased modulus over the complete temperature range studied, and the temperature dependence of the composite modulus is controlled by the temperature dependence of the matrix modulus. The composite strength decreases with increasing temperature, reflecting softening of the matrix due to over aging, and as a result, is dependent on the thermal stability of the matrix. The particles provide increased creep resistance, and there are differences between the creep of melt processed composites and those produced by powder metallurgy.

  18. Application of composites to the selective reinforcement of metallic aerospace structures. [application of structural design criteria for weight reduction

    NASA Technical Reports Server (NTRS)

    Brooks, W. A., Jr.; Mathauser, E. E.; Pride, R. A.

    1972-01-01

    The use of composite materials to selectively reinforce metallic structures provides a low-cost way to reduce weight and a means of minimizing the risks usually associated with the introduction of new materials. An overview is presented of the NASA Langley Research Center programs to identify the advantages and to develop the potential of the selective reinforcement approach to the use of composites. These programs have shown that selective reinforcement provides excellent strength and stiffness improvements to metallic structures. Significant weight savings can be obtained in a cost effective manner. Flight service programs which have been initiated to validate further the merits of selective reinforcement are described.

  19. Investigations of mechanical and wear properties of alumina/titania/fire-clay reinforced epoxy composites

    NASA Astrophysics Data System (ADS)

    Patel, Vinay Kumar; Chauhan, Shivani; Sharma, Aarushi

    2016-05-01

    In this work, the effect of various particulates (alumina, titania, fire clay) reinforcements on mechanical and wear properties of epoxy composites have been studied with a prime motive of replacing the costly alumina and titania by much economical fire clay for high mechanical strength and/or wear resistant materials. Fire clay based epoxy composites delivered better mechanical (both tensile and impact) properties than the alumina filled or neat epoxy composites and slightly lower than titania reinforced composites, which qualified the fire clay a very suitable cost effective alternatives of both alumina and titania for high mechanical strength based applications. However, the poor wear behavior of fire clay reinforced composites revealed its poor candidacy for wear and tear applications.

  20. Modified Composite Materials Workshop

    NASA Technical Reports Server (NTRS)

    Dicus, D. L. (Compiler)

    1978-01-01

    The reduction or elimination of the hazard which results from accidental release of graphite fibers from composite materials was studied at a workshop. At the workshop, groups were organized to consider six topics: epoxy modifications, epoxy replacement, fiber modifications, fiber coatings and new fibers, hybrids, and fiber release testing. Because of the time required to develop a new material and acquire a design data base, most of the workers concluded that a modified composite material would require about four to five years of development and testing before it could be applied to aircraft structures. The hybrid working group considered that some hybrid composites which reduce the risk of accidental fiber release might be put into service over the near term. The fiber release testing working group recommended a coordinated effort to define a suitable laboratory test.

  1. Carbon nanofibre reinforcement of soft materials

    SciTech Connect

    Schaefer, Dale W.; Zhao, Jian; Dowty, Heather; Alexander, Max; Orler, E. Bruce

    2009-08-26

    In elastomeric matrices carbon nanofibres are found to be twenty times more effective than carbon black as a reinforcing filler. In hard matrices, by contrast, reinforcement is minimal. Tensile and dynamic mechanical tests were performed to elucidate the mechanism of reinforcement in order to explain the superior performance in soft matrices. Small-angle neutron scattering and ultra-small-angle X-ray scattering were used to quantify filler morphology, which turns out to be the key factor that limits reinforcement potential. The presence of fractal cluster formed by agglomeration of the nanofibres reduces the effective aspect ratio of the nanotubes. Clustering, however, introduces a new reinforcement mechanism based on elastic deformation of the fibre clusters. This mechanism is operative in soft matrices but not in hard matrices, thus explaining the enhanced performance in soft matrices.

  2. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1983-01-01

    Progress and plans are reported for investigations of: (1) the mechanical properties of high performance carbon fibers; (2) fatigue in composite materials; (3) moisture and temperature effects on the mechanical properties of graphite-epoxy laminates; (4) the theory of inhomogeneous swelling in epoxy resin; (5) numerical studies of the micromechanics of composite fracture; (6) free edge failures of composite laminates; (7) analysis of unbalanced laminates; (8) compact lug design; (9) quantification of Saint-Venant's principles for a general prismatic member; (10) variation of resin properties through the thickness of cured samples; and (11) the wing fuselage ensemble of the RP-1 and RP-2 sailplanes.

  3. Carbon fiber-reinforced carbon as a potential implant material.

    PubMed

    Adams, D; Williams, D F; Hill, J

    1978-01-01

    A carbon fiber-reinforced carbon is being evaluated as a promising implant material. In a unidirectional composite, high strengths (1200 MN/m2 longitudinal flexural strength) and high modulus (140 GN/m2 flexural modulus) may be obtained with an interlaminar shear strength of 18 MN/m2. Alternatively, layers of fibers may be laid in two directions to give more isotopic properties. The compatibility of the material with bone has been studied by implanting specimens in holes drilled in rat femora. For a period of up to 8 weeks, a thin layer of fibrous tissue bridged the gap between bone and implant; but this tissue mineralizes and by 10 weeks, bone can be observed adjacent to the implant, giving firm fixation. Potential applications include endosseous dental implants where a greater strength in the neck than that provided by unreinforced carbon would be advantageous.

  4. The Application of Fiber-Reinforced Materials in Disc Repair

    PubMed Central

    Pei, Bao-Qing; Li, Hui; Zhu, Gang; Li, De-Yu; Fan, Yu-Bo; Wu, Shu-Qin

    2013-01-01

    The intervertebral disc degeneration and injury are the most common spinal diseases with tremendous financial and social implications. Regenerative therapies for disc repair are promising treatments. Fiber-reinforced materials (FRMs) are a kind of composites by embedding the fibers into the matrix materials. FRMs can maintain the original properties of the matrix and enhance the mechanical properties. By now, there are still some problems for disc repair such as the unsatisfied static strength and dynamic properties for disc implants. The application of FRMs may resolve these problems to some extent. In this review, six parts such as background of FRMs in tissue repair, the comparison of mechanical properties between natural disc and some typical FRMs, the repair standard and FRMs applications in disc repair, and the possible research directions for FRMs' in the future are stated. PMID:24383057

  5. Bioactive Glass Fiber Reinforced Starch-Polycaprolactone Composite for Bone Applications

    NASA Astrophysics Data System (ADS)

    Jukola, H.; Nikkola, L.; Gomes, M. E.; Chiellini, F.; Tukiainen, M.; Kellomäki, M.; Chiellini, E.; Reis, R. L.; Ashammakhi, N.

    2008-02-01

    For bone regeneration and repair, combinations of different materials are often needed. Biodegradable polymers are often combined with osteoconductive materials, such as bioactive glass (BaG), which can also improve the mechanical properties of the composite. The aim of this study was to develop and characterize BaG fiber-reinforced starch-poly-ɛ-caprolactone (SPCL) composite. Sheets of SPCL (30/70 wt%) were produced using single-screw extrusion. They were then cut and compression molded in layers with BaG fibers to form composite structures of different combinations. Thermal, mechanical, and degradation properties of the composites were studied. The actual amount of BaG in the composites was determined using combustion tests. A strong endothermic peak indicating melting at about 56 °C was observed by differential scanning calorimetry (DSC) analysis. Thermal gravimetry analysis (TGA) showed that thermal decomposition of SPCL started at 325 °C with the decomposition of starch and continued at 400 °C with the degradation of polycaprolactone (PCL). Initial mechanical properties of the reinforced composites were at least 50% better than the properties of the non-reinforced composites. However, the mechanical properties of the composites after two weeks of hydrolysis were comparable to those of the non-reinforced samples. During the six weeks' hydrolysis the mass of the composites had decreased only by about 5%. The amount of glass in the composites remained the same for the six-week period of hydrolysis. In conclusion, it is possible to enhance the initial mechanical properties of SPCL by reinforcing it with BaG fibers. However, the mechanical properties of the composites are only sufficient for use as filler material and they need to be further improved to allow long-lasting bone applications.

  6. Bioactive Glass Fiber Reinforced Starch-Polycaprolactone Composite for Bone Applications

    SciTech Connect

    Jukola, H.; Nikkola, L.; Tukiainen, M.; Kellomaeki, M.; Ashammakhi, N.; Gomes, M. E.; Reis, R. L.; Chiellini, F.; Chiellini, E.

    2008-02-15

    For bone regeneration and repair, combinations of different materials are often needed. Biodegradable polymers are often combined with osteoconductive materials, such as bioactive glass (BaG), which can also improve the mechanical properties of the composite. The aim of this study was to develop and characterize BaG fiber-reinforced starch-poly-{epsilon}-caprolactone (SPCL) composite. Sheets of SPCL (30/70 wt%) were produced using single-screw extrusion. They were then cut and compression molded in layers with BaG fibers to form composite structures of different combinations. Thermal, mechanical, and degradation properties of the composites were studied. The actual amount of BaG in the composites was determined using combustion tests. A strong endothermic peak indicating melting at about 56 deg. C was observed by differential scanning calorimetry (DSC) analysis. Thermal gravimetry analysis (TGA) showed that thermal decomposition of SPCL started at 325 deg. C with the decomposition of starch and continued at 400 deg. C with the degradation of polycaprolactone (PCL). Initial mechanical properties of the reinforced composites were at least 50% better than the properties of the non-reinforced composites. However, the mechanical properties of the composites after two weeks of hydrolysis were comparable to those of the non-reinforced samples. During the six weeks' hydrolysis the mass of the composites had decreased only by about 5%. The amount of glass in the composites remained the same for the six-week period of hydrolysis. In conclusion, it is possible to enhance the initial mechanical properties of SPCL by reinforcing it with BaG fibers. However, the mechanical properties of the composites are only sufficient for use as filler material and they need to be further improved to allow long-lasting bone applications.

  7. Deformation behavior of metallic glass composites reinforced with shape memory nanowires studied via molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Şopu, D.; Stoica, M.; Eckert, J.

    2015-05-01

    Molecular dynamics simulations indicate that the deformation behavior and mechanism of Cu64Zr36 composite structures reinforced with B2 CuZr nanowires are strongly influenced by the martensitic phase transformation and distribution of these crystalline precipitates. When nanowires are distributed in the glassy matrix along the deformation direction, a two-steps stress-induced martensitic phase transformation is observed. Since the martensitic transformation is driven by the elastic energy release, the strain localization behavior in the glassy matrix is strongly affected. Therefore, the composite materials reinforced with a crystalline phase, which shows stress-induced martensitic transformation, represent a route for controlling the properties of glassy materials.

  8. Damping properties of fiber reinforced composite suitable for stayed cable

    NASA Astrophysics Data System (ADS)

    Li, Jianzhi; Sun, Baochen; Du, Yanliang

    2011-11-01

    Carbon fiber reinforced plastics (CFRP) cables were initially most investigated to replace steel cables. To further explore the advantages of FRP cables, the potential ability of vibration control is studied in this paper emphasizing the designable characteristic of hybrid FRP cables. Fiber reinforced vinyl ester composites and fiber reinforced epoxy composites were prepared by the pultrusion method. Due to the extensive application of fiber reinforced composites, the temperature spectrum and frequency spectrum of loss factor for the composite were tested using dynamic mechanical analysis (DMA) equipment. The damping properties and damping mechanism of the composite were investigated and discussed at different temperatures and frequencies. The result indicates that the loss factor of the composites is increasing with the increase of the frequency from 0.1Hz to 2 Hz and decreasing with the decrease of the temperature from -20°C to 60°C. The loss factor of the carbon fiber composite is higher than that of the glass fiber for the same matrix. The loss factor of the vinyl ester composite is higher than that of the epoxy composite for the same fiber.

  9. Damping properties of fiber reinforced composite suitable for stayed cable

    NASA Astrophysics Data System (ADS)

    Li, Jianzhi; Sun, Baochen; Du, Yanliang

    2012-04-01

    Carbon fiber reinforced plastics (CFRP) cables were initially most investigated to replace steel cables. To further explore the advantages of FRP cables, the potential ability of vibration control is studied in this paper emphasizing the designable characteristic of hybrid FRP cables. Fiber reinforced vinyl ester composites and fiber reinforced epoxy composites were prepared by the pultrusion method. Due to the extensive application of fiber reinforced composites, the temperature spectrum and frequency spectrum of loss factor for the composite were tested using dynamic mechanical analysis (DMA) equipment. The damping properties and damping mechanism of the composite were investigated and discussed at different temperatures and frequencies. The result indicates that the loss factor of the composites is increasing with the increase of the frequency from 0.1Hz to 2 Hz and decreasing with the decrease of the temperature from -20°C to 60°C. The loss factor of the carbon fiber composite is higher than that of the glass fiber for the same matrix. The loss factor of the vinyl ester composite is higher than that of the epoxy composite for the same fiber.

  10. The possibility of E-glass woven roving as reinforcement of GFRP composite sheet roof

    NASA Astrophysics Data System (ADS)

    Setyanto, Djoko

    2016-03-01

    The 1.25 mm thickness of opaque glass fiber reinforced polymer (GFRP) composite sheet roof that is produced by an Indonesia company at Tangerang, consists of two layers of 300 g/m2 E-glass chopped strand mat as reinforcement and unsaturated polyester resin as matrix. A layer of 300 g/m2 E-glass chopped strand mat is replaced by a layer of 400 g/m2 E-glass woven roving as reinforcement to study the possibility use as sheet roof material. The properties of the two samples of GFRP composite materials were compared. Barcol hardness and flexure strength of the two samples relatively not significance change. Tensile strength and elastic modulus of the new sample which contains a layer of woven roving reinforcement is greater than the other one. On the other hand the waviness of the new sample is greater, but cheaper. In general, a layer of E-glass woven roving and a layer of E-glass chopped strand mat can be considered as an alternative reinforcement of two layers reinforcement of GFRP composite material of sheet roof.

  11. Design and realization a skiff racing boat hull made of natural fibers reinforced composite

    NASA Astrophysics Data System (ADS)

    Collotta, M.; Solazzi, L.; Pandini, S.; Tomasoni, G.; Alberti, M.; Donzella, G.

    2016-05-01

    This paper discusses the development of a racing boat with an hull made of a composite material reinforced by natural fibers. In particular, we report here the design and realization of the boat hull, the assessment of its mechanical performance by means of a computer assisted simulation, and the cost analysis to assess the economic sustainability of the new composite developed. The results have shown that the new composite has a performance comparable with conventional glass fiber reinforced composites employed for the realization of this type of boat, accordingly to the technology employed and the lamination sequence adopted. Moreover, the FEM analysis performed over the skiff of the designed and constructed boat has demonstrated a successful choice of the material for real application, as it was later confirmed by the good performance of the boat in water. Finally, the cost analysis highlighted the economic sustainability of the new composite, allowing a cost saving of over 28% with respect to carbon fiber composites.

  12. Pyrolysis of reinforced polymer composites: Parameterizing a model for multiple compositions

    NASA Astrophysics Data System (ADS)

    Martin, Geraldine E.

    A single set of material properties was developed to describe the pyrolysis of fiberglass reinforced polyester composites at multiple composition ratios. Milligram-scale testing was performed on the unsaturated polyester (UP) resin using thermogravimetric analysis (TGA) coupled with differential scanning calorimetry (DSC) to establish and characterize an effective semi-global reaction mechanism, of three consecutive first-order reactions. Radiation-driven gasification experiments were conducted on UP resin and the fiberglass composites at compositions ranging from 41 to 54 wt% resin at external heat fluxes from 30 to 70 kW m -2. The back surface temperature was recorded with an infrared camera and used as the target for inverse analysis to determine the thermal conductivity of the systematically isolated constituent species. Manual iterations were performed in a comprehensive pyrolysis model, ThermaKin. The complete set of properties was validated for the ability to reproduce the mass loss rate during gasification testing.

  13. Method for Forming Fiber Reinforced Composite Bodies with Graded Composition and Stress Zones

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay (Inventor); Levine, Stanley R. (Inventor); Smialek, James A. (Inventor)

    1999-01-01

    A near-net, complex shaped ceramic fiber reinforced silicon carbide based composite bodies with graded compositions and stress zones is disclosed. To provide the composite a fiber preform is first fabricated and an interphase is applied by chemical vapor infiltration, sol-gel or polymer processes. This first body is further infiltrated with a polymer mixture containing carbon, and/or silicon carbide, and additional oxide, carbide, or nitride phases forming a second body. One side of the second body is spray coated or infiltrated with slurries containing high thermal expansion and oxidation resistant. crack sealant phases and the other side of this second body is coated with low expansion phase materials to form a third body. This third body consisting of porous carbonaceous matrix surrounding the previously applied interphase materials, is then infiltrated with molten silicon or molten silicon-refractory metal alloys to form a fourth body. The resulting fourth body comprises dense composites consisting of fibers with the desired interphase which are surrounded by silicon carbide and other second phases materials at the outer and inner surfaces comprising material of silicon, germanium, refractory metal suicides, borides, carbides, oxides, and combinations thereof The resulting composite fourth body has different compositional patterns from one side to the other.

  14. A Study of Strength Transfer from tow to Textile Composite Using Different Reinforcement Architectures

    NASA Astrophysics Data System (ADS)

    Cristian, Irina; Nauman, Saad; Boussu, Francois; Koncar, Vladan

    2012-06-01

    The paper proposes an experimental and analytical approach of designing composites with the predetermined ultimate strength, reinforced with warp interlock fabrics. In order to better understand the phenomena of transfer of tensile properties from a tow to the composite, intermediate phases of composite manufacturing have also been taken into account and tensile properties of tows taken from the loom and the woven reinforcements have also been tested. Process of transfer of mechanical properties of raw materials to the final product (composite) depends on various structural factors. Here the influence of weave structure, which ultimately influences crimp has been studied. A strength transfer coefficient has been proposed which helps in estimating the influence of architectural parameters on 3D woven composites. 3 woven interlock reinforcements were woven to form composites. The coefficients of strength transfer were calculated for these three variants. The structural parameters were kept the same for these three reinforcements except for the weave structure. In was found that the phenomenon of strength transfer from tow to composite is negatively influenced by the crimp. In general the strength transfer coefficients have higher values for dry reinforcements and afterwards due to resin impregnation the values drop.

  15. Modeling and simulation of continuous fiber-reinforced ceramic composites

    NASA Astrophysics Data System (ADS)

    Bheemreddy, Venkata

    Finite element modeling framework based on cohesive damage modeling, constitutive material behavior using user-material subroutines, and extended finite element method (XFEM), are developed for studying the failure behavior of continuous fiber-reinforced ceramic matrix composites (CFCCs) by the example of a silicon carbide matrix reinforced with silicon carbide fiber (SiC/SiCf) composite. This work deals with developing comprehensive numerical models for three problems: (1) fiber/matrix interface debonding and fiber pull-out, (2) mechanical behavior of a CFCC using a representative volume element (RVE) approach, and (3) microstructure image-based modeling of a CFCC using object oriented finite element analysis (OOF). Load versus displacement behavior during a fiber pull-out event was investigated using a cohesive damage model and an artificial neural network model. Mechanical behavior of a CFCC was investigated using a statistically equivalent RVE. A three-step procedure was developed for generating a randomized fiber distribution. Elastic properties and damage behavior of a CFCC were analyzed using the developed RVE models. Scattering of strength distribution in CFCCs was taken into account using a Weibull probability law. A multi-scale modeling framework was developed for evaluating the fracture behavior of a CFCC as a function of microstructural attributes. A finite element mesh of the microstructure was generated using an OOF tool. XFEM was used to study crack propagation in the microstructure and the fracture behavior was analyzed. The work performed provides a valuable procedure for developing a multi-scale framework for comprehensive damage study of CFCCs.

  16. Multilayered Glass Fibre-reinforced Composites In Rotational Moulding

    NASA Astrophysics Data System (ADS)

    Chang, W. C.; Harkin-Jones, E.; Kearns, M.; McCourt, M.

    2011-05-01

    The potential of multiple layer fibre-reinforced mouldings is of growing interest to the rotational moulding industry because of their cost/performance ratio. The particular problem that arises when using reinforcements in this process relate to the fact that the process is low shear and good mixing of resin and reinforcement is not optimum under those conditions. There is also a problem of the larger/heavier reinforcing agents segregating out of the powder to lay up on the inner part surface. In this study, short glass fibres were incorporated and distributed into a polymer matrix to produce fibre-reinforced polymer composites using the rotational moulding process and characterised in terms of morphology and mechanical properties.

  17. Mechanical properties of woven glass fiber-reinforced composites.

    PubMed

    Kanie, Takahito; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji

    2006-06-01

    The aim of this investigation was to measure the flexural and compressive strengths and the corresponding moduli of cylindrical composite specimens reinforced with woven glass fiber. Test specimens were made by light-curing urethane dimethacrylate oligomer with woven glass fiber of 0.18-mm standard thickness. Tests were conducted using four reinforcement methods and two specimen diameters. Flexural strength and modulus of woven glass fiber-reinforced specimens were significantly greater than those without woven glass fiber (p < 0.01). Likewise, compressive strength of reinforced specimens was significantly greater than those without woven glass fiber (p < 0.01), except for specimens reinforced with woven glass fiber oriented at a tilt direction in the texture (p > 0.05). In terms of comparison between the two specimen diameters, no statistically significant differences in flexural strength and compressive strength (p > 0.05) were observed.

  18. Factors Controlling Stress Rupture of Fiber-Reinforced Ceramic Composites

    NASA Technical Reports Server (NTRS)

    DiCarlo, J. A.; Yun, H. M.

    1999-01-01

    The successful application of fiber-reinforced ceramic matrix composites (CMC) depends strongly on maximizing material rupture life over a wide range of temperatures and applied stresses. The objective of this paper is to examine the various intrinsic and extrinsic factors that control the high-temperature stress rupture of CMC for stresses below and above those required for cracking of the 0 C plies (Regions I and II, respectively). Using creep-rupture results for a variety of ceramic fibers and rupture data for CMC reinforced by these fibers, it is shown that in those cases where the matrix carries little structural load, CMC rupture conditions can be predicted very well from the fiber behavior measured under the appropriate test environment. As such, one can then examine the intrinsic characteristics of the fibers in order to develop design guidelines for selecting fibers and fiber microstructures in order to maximize CMC rupture life. For those cases where the fiber interfacial coatings are unstable in the test environment, CMC lives are generally worse than those predicted by fiber behavior alone. For those cases where the matrix can support structural load, CMC life can even be greater provided matrix creep behavior is properly controlled. Thus the achievement of long CMC rupture life requires understanding and optimizing the behavior of all constituents in the proper manner.

  19. Processing and damage recovery of intrinsic self-healing glass fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Sordo, Federica; Michaud, Véronique

    2016-08-01

    Glass fiber reinforced composites with a self-healing, supramolecular hybrid network matrix were produced using a modified vacuum assisted resin infusion moulding process adapted to high temperature processing. The quality and fiber volume fraction (50%) of the obtained materials were assessed through microscopy and matrix burn-off methods. The thermo-mechanical properties were quantified by means of dynamic mechanical analysis, revealing very high damping properties compared to traditional epoxy-based glass fiber reinforced composites. Self-healing properties were assessed by three-point bending tests. A high recovery of the flexural properties, around 72% for the elastic modulus and 65% of the maximum flexural stress, was achieved after a resting period of 24 h at room temperature. Recovery after low velocity impact events was also visually observed. Applications for this intrinsic and autonomic self-healing highly reinforced composite material point towards semi-structural applications where high damping and/or integrity recovery after impact are required.

  20. Reinforced Carbon Nanotubes.

    SciTech Connect

    Ren, Zhifen; Wen, Jian Guo; Lao, Jing Y.; Li, Wenzhi

    2005-06-28

    The present invention relates generally to reinforced carbon nanotubes, and more particularly to reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  1. Method of producing a ceramic fiber-reinforced glass-ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor)

    1994-01-01

    A fiber-reinforced composite composed of a BaO-Al2O3-2SiO2 (BAS) glass ceramic matrix is reinforced with CVD silicon carbide continuous fibers. A slurry of BAS glass powders is prepared and celsian seeds are added during ball melting. The slurry is cast into tapes which are cut to the proper size. Continuous CVD-SiC fibers are formed into mats of the desired size. The matrix tapes and the fiber mats are alternately stacked in the proper orientation. This tape-mat stack is warm pressed to produce a 'green' composite. The 'green' composite is then heated to an elevated temperature to burn out organic constituents. The remaining interim material is then hot pressed to form a silicon carbide fiber-reinforced celsian (BAS) glass-ceramic matrix composite which may be machined to size.

  2. Effect of fiber reinforcements on thermo-oxidative stability and mechanical properties of polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.

    1991-01-01

    A number of studies have investigated the thermo-oxidative behavior of polymer matrix composites. Two significant observations have been made from these research efforts: (1) fiber reinforcement has a significant effect on composite thermal stability; and (2) geometric effects must be considered when evaluating thermal aging data. A compilation of some results from these studies is presented, and this information shows the influence of the reinforcement fibers on the oxidative degradation of various polymer matrix composites. The polyimide PMR-15 was the matrix material that was used in these studies. The control composite material was reinforced with Celion 6000 graphite fiber. T-40R graphite fibers, along with some very stable ceramic fibers were selected as reinforcing fibers because of their high thermal stability. The ceramic fibers were Nicalon (silicon carbide) and Nextel 312 (alumina-silica-boron oxide). The mechanical properties of the two graphite fiber composites were significantly different, probably owing to variations in interfacial bonding between the fibers and the polyimide matrix. The Celion 6000/PMR-15 bond is very tight but the T-40/PMR-15 bond is less tight. Three oxidation mechanisms were observed: (1) the preferential oxidation of the Celion 6000 fiber ends at cut surfaces, leaving a surface of matrix material with holes where the fiber ends were originally situated; (2) preferential oxidation of the composite matrix; and (3) interfacial degradation by oxidation. The latter two mechanisms were also observed on fiber end cut surfaces. The fiber and interface attacks appeared to initiate interfiber cracking along these surfaces.

  3. Composite ion exchange materials

    SciTech Connect

    Amarasinghe, S.; Zook, L.; Leddy, J.

    1994-12-31

    Composite ion exchange materials can be formed by sorbing ion exchange polymers on inert, high surface area substrates. In general, the flux of ions and molecules through these composites, as measured electrochemically, increases as the ratio of the surface area of the substrate increases relative to the volume of the ion exchanger. This suggests that fields and gradients established at the interface between the ion exchanger and substrate are important in determining the transport characteristics of the composites. Here, the authors will focus on composites formed with a cation exchange polymer, Nafion, and two different types of microbeads: polystyrene microspheres and polystyrene coated magnetic microbeads. For the polystyrene microbeads, scanning electron micrographs suggest the beads cluster in a self-similar manner, independent of the bead diameter. Flux of Ru(NH3)63+ through the composites was studied as a function of bead fraction, bead radii, and fixed surface area with mixed bead sizes. Flux was well modeled by surface diffusion along a fractal interface. Magnetic composites were formed with columns of magnetic microbeads normal to the electrode surface. Flux of Ru(NH3)63+ through these composites increased exponentially with bead fraction. For electrolyses, the difference in the molar magnetic susceptibility of the products and reactants, Dcm, tends to be non-zero. For seven redox reactions, the ratio of the flux through the magnetic composites to the flux through a Nafion film increases monotonically with {vert_bar}Dcm{vert_bar}, with enhancements as large as thirty-fold. For reversible species, the electrolysis potential through the magnetic composites is 35 mV positive of that for the Nafion films.

  4. Influence of the Geometric Parameters on the Mechanical Behaviour of Fabric Reinforced Composite Laminates

    NASA Astrophysics Data System (ADS)

    Axinte, Andrei; Taranu, Nicolae; Bejan, Liliana

    2016-05-01

    A polymer fabric reinforced composite is a high performance material, which combines strength of the fibres with the flexibility and ductility of the matrix. For a better drapeability, the tows of fibres are interleaved, resulting the woven fabric, used as reinforcement. The complex geometric shape of the fabric is of paramount importance in establishing the deformability of the textile reinforced composite laminates. In this paper, an approach based on Classical Lamination Theory (CLT), combined with Finite Element Methods (FEM), using Failure Analysis and Internal Load Redistribution, is utilised, in order to compare the behaviour of the material under specific loads. The main goal is to analyse the deformability of certain types of textile reinforced composite laminates, using carbon fibre satin as reinforcement and epoxy resin as matrix. This is accomplished by studying the variation of the in-plane strains, given the fluctuation of several geometric parameters, namely the width of the reinforcing tow, the gap between two consecutive tows, the angle of laminae in a multi-layered configuration and the tows fibre volume fraction.

  5. Influence of the Geometric Parameters on the Mechanical Behaviour of Fabric Reinforced Composite Laminates

    NASA Astrophysics Data System (ADS)

    Axinte, Andrei; Taranu, Nicolae; Bejan, Liliana

    2016-10-01

    A polymer fabric reinforced composite is a high performance material, which combines strength of the fibres with the flexibility and ductility of the matrix. For a better drapeability, the tows of fibres are interleaved, resulting the woven fabric, used as reinforcement. The complex geometric shape of the fabric is of paramount importance in establishing the deformability of the textile reinforced composite laminates. In this paper, an approach based on Classical Lamination Theory ( CLT), combined with Finite Element Methods ( FEM), using Failure Analysis and Internal Load Redistribution, is utilised, in order to compare the behaviour of the material under specific loads. The main goal is to analyse the deformability of certain types of textile reinforced composite laminates, using carbon fibre satin as reinforcement and epoxy resin as matrix. This is accomplished by studying the variation of the in-plane strains, given the fluctuation of several geometric parameters, namely the width of the reinforcing tow, the gap between two consecutive tows, the angle of laminae in a multi-layered configuration and the tows fibre volume fraction.

  6. Aerogel/polymer composite materials

    NASA Technical Reports Server (NTRS)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

    2010-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  7. Validation of the numerical model of single-layer composites reinforced with carbon fiber and aramid

    NASA Astrophysics Data System (ADS)

    Sava, Mihaela; Hadǎr, Anton; Pǎrǎuşanu, Ioan; Petrescu, Horia-Alexandru; Baciu, Florin; Marinel, Stǎnescu Marius

    2016-06-01

    In this work we studied the experimental validation of the model and finite element analysis for a single layer of composite materials reinforced with carbon (denoted as C), aramid (K) and carbon-aramid (C-K) fibers. In the literature there are not many details about the differences that arise between transversal and longitudinal characteristics of composite materials reinforced with fabric, compared to those with unidirectional fibers. In order to achieve carbon and aramid composites we used twill fabric and for carbon-aramid plain fabric, as shown in Figure 1. In order to observe the static behavior of the considered specimens, numerical simulations were carried out in addition to the experimental determination of the characteristics of these materials. Layered composites are obviously the most widespread formula for getting advanced composite structures. It allows a unique variety of material and structural combinations leading to optimal design in a wide range of applications [1,2]. To design and verify the material composites it is necessary to know the basic mechanical constants of the materials. Almost all the layered composites consider that the every layer is an orthotropic material, so there are nine independent constants of material corresponding to the three principal directions: Young modulus E1, E2 and E3, shear modulus G12, G23 and G13, and major poison ratios ν12, ν23, ν13. Experimental determinations were performed using traction tests and strain gauges. For each of the three above mentioned materials, five samples were manufactured.

  8. Composites reinforced via mechanical interlocking of surface-roughened microplatelets within ductile and brittle matrices.

    PubMed

    Libanori, R; Carnelli, D; Rothfuchs, N; Binelli, M R; Zanini, M; Nicoleau, L; Feichtenschlager, B; Albrecht, G; Studart, A R

    2016-06-01

    Load-bearing reinforcing elements in a continuous matrix allow for improved mechanical properties and can reduce the weight of structural composites. As the mechanical performance of composite systems are heavily affected by the interfacial properties, tailoring the interactions between matrices and reinforcing elements is a crucial problem. Recently, several studies using bio-inspired model systems suggested that interfacial mechanical interlocking is an efficient mechanism for energy dissipation in platelet-reinforced composites. While cheap and effective solutions are available at the macroscale, the modification of surface topography in micron-sized reinforcing elements still represents a challenging task. Here, we report a simple method to create nanoasperities with tailored sizes and densities on the surface of alumina platelets and investigate their micromechanical effect on the energy dissipation mechanisms of nacre-like materials. Composites reinforced with roughened platelets exhibit improved mechanical properties for both organic ductile epoxy and inorganic brittle cement matrices. Mechanical interlocking increases the modulus of toughness (area under the stress-strain curve) by 110% and 56% in epoxy and cement matrices, respectively, as compared to those reinforced with flat platelets. This interlocking mechanism can potentially lead to a significant reduction in the weight of mechanical components while retaining the structural performance required in the application field. PMID:27070938

  9. Fabrication of tungsten wire reinforced nickel-base alloy composites

    NASA Technical Reports Server (NTRS)

    Brentnall, W. D.; Toth, I. J.

    1974-01-01

    Fabrication methods for tungsten fiber reinforced nickel-base superalloy composites were investigated. Three matrix alloys in pre-alloyed powder or rolled sheet form were evaluated in terms of fabricability into composite monotape and multi-ply forms. The utility of monotapes for fabricating more complex shapes was demonstrated. Preliminary 1093C (2000F) stress rupture tests indicated that efficient utilization of fiber strength was achieved in composites fabricated by diffusion bonding processes. The fabrication of thermal fatigue specimens is also described.

  10. Process of Making Boron-Fiber Reinforced Composite Tape

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor); Johnston, Norman J. (Inventor); Marchello, Joseph M. (Inventor)

    2002-01-01

    The invention is an apparatus and method for producing a hybrid boron reinforced polymer matrix composition from powder pre-impregnated fiber tow bundles and a linear array of boron fibers. The boron fibers are applied onto the powder pre-impregnated fiber tow bundles and then are processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the powder pre-impregnated fiber tow bundles with the boron fibers become a hybrid boron reinforced polymer matrix composite tape. A driving mechanism pulls the powder pre-impregnated fiber tow bundles with boron fibers through the processing line of the apparatus and a take-up spool collects the formed hybrid boron-fiber reinforced polymer matrix composite tape.

  11. A study of damping in fiber-reinforced composites

    NASA Astrophysics Data System (ADS)

    Chandra, Rakesh; Singh, S. P.; Gupta, K.

    2003-05-01

    Damping contributions from the viscoelastic matrix, interphase and the dissipation resulting from damage sites are considered to evaluate composite material damping coefficients in various loading modes. The paper presents the results of the FEM/Strain energy investigations carried out to predict anisotropic-damping matrix comprising of loss factors η11, η22, η12 and η23 considering the dissipation of energy due to fiber and matrix (two phase) and correlate the same with various micromechanical theories. Damping in three phase (i.e., fiber-interphase-matrix) composite is also calculated as an attempt to understand the effect of interphase. The contribution of energy dissipation due to sliding at the fiber-matrix interface is incorporated to evaluate its effect on η11, η22, η12 and η23 in fiber-reinforced composite having damage in the form of hairline debonding. Comparative studies of the various micromechanical theories/models with FEM/Strain energy method for the prediction of damping coefficients have shown consistency when both the effect of variable nature of stress and the fiber interaction is considered. Parametric damping studies for three phase composite have shown that the change in properties of fiber, matrix and interphase leads to a change in the magnitude of effectiveness of interphase, but the manner in which the interphase would affect the various loss factors depends predominately upon whether the hard or soft interphase is chosen. Analysis of the effect of damage on composite damping indicates that it is sensitive to its orientation and type of loading.

  12. Studying impact damage on carbon-fiber reinforced aircraft composite panels with sonicir

    SciTech Connect

    Han Xiaoyan; Zhang Ding; He Qi; Song Yuyang; Lubowicki, Anthony; Zhao Xinyue; Newaz, Golam.; Favro, Lawrence D.; Thomas, Robert L.

    2011-06-23

    Composites are becoming more important materials in commercial aircraft structures such as the fuselage and wings with the new B787 Dreamliner from Boeing which has the target to utilize 50% by weight of composite materials. Carbon-fiber reinforced composites are the material of choice in aircraft structures. This is due to their light weight and high strength (high strength-to-weight ratio), high specific stiffness, tailorability of properties, design flexibility etc. Especially, by reducing the aircraft's body weight by using such lighter structures, the cost of fuel can be greatly reduced with the high jet fuel price for commercial airlines. However, these composites are prone to impact damage and the damage may occur without any observable sign on the surface, yet resulting in delaminations and disbonds that may occur well within the layers. We are studying the impact problem with carbon-fiber reinforced composite panels and developing SonicIR for this application as a fast and wide-area NDE technology. In this paper, we present our results in studying composite structures including carbon-fiber reinforced composite materials, and preliminary quantitative studies on delamination type defect depth identification in the panels.

  13. Refractory composites structural materials

    NASA Astrophysics Data System (ADS)

    Sanzero, G. V.

    1990-10-01

    This paper presents the latest available data for the NASP Refractory Composites Materials and Structures Augmentation Program. The program's main goal is to provide the necessary information for a positive phase II to phase III plan for the X-30 to be built. After a brief overview of the program, the state-of-the-art fabrication of carbon/carbon subelements is presented. Material data packages for screening data, characterization data, damage and durability tolerance and actively-cooled airframe and engine program development are also presented.

  14. Evaluation of residual strength in the basalt fiber reinforced composites under impact damage

    NASA Astrophysics Data System (ADS)

    Kim, Yun-Hae; Lee, Jin-Woo; Moon, Kyung-Man; Yoon, Sung-Won; Baek, Tae-Sil; Hwang, Kwang-Il

    2015-03-01

    Composites are vulnerable to the impact damage by the collision as to the thickness direction, because composites are being manufactured by laminating the fiber. The understanding about the retained strength after the impact damage of the material is essential in order to secure the reliability of the structure design using the composites. In this paper, we have tried to evaluate the motion of the material according to the kinetic energy and potential energy and the retained strength after impact damage by testing the free fall test of the basalt fiber reinforced composite in the limelight as the environment friendly characteristic.

  15. Environmental Durability of Materials and Bonded Joints Involving Fiber Reinforced Polymers and Concerte

    NASA Astrophysics Data System (ADS)

    Gavari, Mahdi Mansouri; rad, A. Yazdi; Gavari, Mohsen Mansouri

    2008-08-01

    This paper describes the research work undertaken to evaluate the performance of materials and bonded joints involving Fibre Reinforced Polymers (FRPs) and concrete. Experimental variables ncluded polymer composite materials, test methods and environmental test conditions. Tensile and flexural tests were carried out to determine short term and long term environmental durability of composite materials. Single lap shear, a modified wedge cleavage and pull-off adhesion tests were used to study the performance of bonded joints. It is shown the tensile strength of composite materials can be affected after exposure to hot/humid conditions. The performance of stressed single lap joints was also affected by hot/humid conditions.

  16. Innovative Composites Through Reinforcement Morphology Design - a Bone-Shaped-Short-Fiber Composite

    SciTech Connect

    Zhu, Y.T.; Valdez, J.A.; Beyerlain, I.J.; Stout, M.G.; Zhou, S.; Shi, N.; Lowe, T.C.

    1999-06-29

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objective of this project is to improve the strength and toughness of conventional short-fiber composites by using innovative bone-shaped-short (BSS) fibers as reinforcement. We fabricated a model polyethylene BSS fiber-reinforced polyester-matrix composite to prove that fiber morphology, instead of interfacial strength, solves the problem. Experimental tensile and fracture toughness test results show that BSS fibers can bridge matrix cracks more effectively, and consume many times more energy when pulled out, than conventional-straight-short (CSS) fibers. This leads to both higher strength and fracture toughness for the BSS-fiber composites. A computational model was developed to simulate crack propagation in both BSS- and CSS-fiber composites, accounting for stress concentrations, interface debonding, and fiber pullout. Model predictions were validated by experimental results and will be useful in optimizing BSS-fiber morphology and other material system parameters.

  17. Mechanical Properties of Sisal/Coir Fiber Reinforced Hybrid Composites Fabricated by Cold Pressing Method

    NASA Astrophysics Data System (ADS)

    Akash; Sreenivasa Rao, K. V.; Venkatesha Gupta, N. S.; kumar, D. S. Arun

    2016-09-01

    Bio-composites have less density and are environmental friendly materials that require less energy during production and subsequent machining. This paper reports the mechanical and water absorption properties of sodium hydroxide (NaOH) treated sisal and coir fiber reinforced epoxy resin thermo set hybrid composites. The hybrid composites were prepared by traditional cold pressing method at room temperature with applied pressure of 410.4 kg/cm2 for 3 hours pressurization time. The mechanical properties were characterized according to ASTM standards. Hybrid composites with 40wt% of sisal and coir fiber were found to possess higher tensile strength of 48.2MPa and flexural strength of 76.68 MPa among the fabricated hybrid composite specimens. Absorption of water increases with increasing fiber volume. The experimental result also show that the sisal and coir fibers are promising reinforcement for use in low cost bio-composites which have high strength to weight ratio.

  18. Space processing of composite materials

    NASA Technical Reports Server (NTRS)

    Steurer, W. H.; Kaye, S.

    1975-01-01

    Materials and processes for the testing of aluminum-base fiber and particle composites, and of metal foams under extended-time low-g conditions were investigated. A wetting and dispersion technique was developed, based on the theory that under the absence of a gas phase all solids are wetted by liquids. The process is characterized by a high vacuum environment and a high temperature cycle. Successful wetting and dispersion experiments were carried out with sapphire fibers, whiskers and particles, and with fibers of silicon carbide, pyrolytic graphite and tungsten. The developed process and facilities permit the preparation of a precomposite which serves as sample material for flight experiments. Low-g processing consists then merely in the uniform redistribution of the reinforcements during a melting cycle. For the preparation of metal foams, gas generation by means of a thermally decomposing compound was found most adaptable to flight experiments. For flight experiments, the use of compacted mixture of the component materials limits low-g processing to a simple melt cycle.

  19. Indirect composite resin materials for posterior applications.

    PubMed

    Shellard, E; Duke, E S

    1999-12-01

    Indirect composite resin restorations were introduced a number of years ago as possible alternatives to traditional metallic or ceramic-based indirect restorations. However, the earlier formulations did not provide evidence of improvement in mechanical and physical properties over chairside-placed direct composite resin materials. Because they required more tooth structure removal than direct restorations, their use became unpopular and was abandoned by most clinicians. Over the past few years, a new class of composite resin indirect materials has surfaced in the profession. Various technologies have been suggested as reinforcement mechanisms. Fibers, matrix modifications, and an assortment of innovations have been proposed for enhancing indirect composite resin restorations. Applications are from inlay restorations all the way to multi-unit fixed prostheses. This manuscript summarizes some of the progress made in this area. When available, data is presented to provide clinicians with guidelines and indications for the use of these materials.

  20. SiC reinforced aluminide composites

    NASA Technical Reports Server (NTRS)

    Brindley, Pamela K.

    1987-01-01

    The tensile properties of SiC fiber, Ti3Al+Nb and SiC/Ti3Al+Nb composite have been determined from 300 to 1365 K. The composite results compared favorably to rule-of-mixtures (ROM) predictions in the intermediate temperature regime of 475 to 700 K. Deviations from ROM are discussed. Composite tensile results were compared on a strength/density basis to wrought superalloys and found to be superior. Fiber-matrix compatibility was characterized for the composite at 1250 and 1365 K for 1 to 100 hours.

  1. NDE of Fiber Reinforced Foam Composite Structures for Future Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Walker, james; Roth, Don; Hopkins, Dale

    2010-01-01

    This slide presentation reviews the complexities of non-destructive evaluation (NDE) of fiber reinforced foam composite structures to be used for aerospace vehicles in the future.Various views of fiber reinforced foam materials are shown and described. Conventional methods of NDE for composites are reviewed such as Micro-computed X-Ray Tomography, Thermography, Shearography, and Phased Array Ultrasonics (PAUT). These meth0ods appear to work well on the face sheet and face sheet ot core bond, they do not provide adequate coverage for the webs. There is a need for additional methods that will examine the webs and web to foam core bond.

  2. Fluorescent protein senses and reports mechanical damage in glass-fiber-reinforced polymer composites.

    PubMed

    Makyła, Katarzyna; Müller, Christoph; Lörcher, Samuel; Winkler, Thomas; Nussbaumer, Martin G; Eder, Michaela; Bruns, Nico

    2013-05-21

    Yellow fluorescent protein (YFP) is used as a mechanoresponsive layer at the fiber/resin interface in glass-fiber-reinforced composites. The protein loses its fluorescence when subjected to mechanical stress. Within the material, it reports interfacial shear debonding and barely visible impact damage by a transition from a fluorescent to a non-fluorescent state. PMID:23423911

  3. Carbon aerogel composites prepared by ambient drying and using oxidized polyacrylonitrile fibers as reinforcements.

    PubMed

    Feng, Junzong; Zhang, Changrui; Feng, Jian; Jiang, Yonggang; Zhao, Nan

    2011-12-01

    Carbon fiber-reinforced carbon aerogel composites (C/CAs) for thermal insulators were prepared by copyrolysis of resorcinol-formaldehyde (RF) aerogels reinforced by oxidized polyacrylonitrile (PAN) fiber felts. The RF aerogel composites were obtained by impregnating PAN fiber felts with RF sols, then aging, ethanol exchanging, and drying at ambient pressure. Upon carbonization, the PAN fibers shrink with the RF aerogels, thus reducing the difference of shrinkage rates between the fiber reinforcements and the aerogel matrices, and resulting in C/CAs without any obvious cracks. The three point bend strength of the C/CAs is 7.1 ± 1.7 MPa, and the thermal conductivity is 0.328 W m(-1) K(-1) at 300 °C in air. These composites can be used as high-temperature thermal insulators (in inert atmospheres or vacuum) or supports for phase change materials in thermal protection system.

  4. Effect of Sodium bicarbonate on Fire behaviour of tilled E- Glass Reinforced Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Girish, S.; Devendra, K.; Bharath, K. N.

    2016-09-01

    Composites such as fibre reinforced polymers give us the good mechanical properties, but their fire behaviour is not appreciable and needs to be improved. In this work, E- glass fiber is used as a reinforcement material and Epoxy resin is used as a matrix with particulate sodium bi-carbonate (NaHCO3) is used as additive. The hand lay-up technique is adopted for the development of composites by varying percentage of additive. All the tests were conducted according to ASTM standards to study the Fire behaviour of the developed composites. The different fire properties like Ignition time, mass loss rate and flame propagation rate of Fiber Reinforced Polymers (FRP) with NaHCO3 are compared with neat FRPs. It is found that the ignition time increases as the percentage of additive is increased.

  5. Dynamic Effects in Elastothermodynamic Damping of Hollow Particle Reinforced Metal-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Srivastava, Sunil Kumar; Mishra, Bhanu Kumar

    2016-06-01

    The Metal-Matrix Composites (MMCs) containing hollow spherical reinforcements are under active development for the applications such as space structures, submarine hulls etc. where weight is of critical importance. When these materials are subjected to a time varying strain field, energy is dissipated because of the thermoelastic effect (Elastothermodynamic Damping or ETD). The quasi-static ETD analysis for the MMCs containing hollow spherical particles has been reported in literature. The entropic approach, which is better suited for composite materials with perfect or imperfect interfaces, is used for the analysis. In the present work, the effect of inertia forces is carried out on ETD of hollow particle-reinforced MMCs. For given particle volume fractions (V p ), the inertia forces are found to be more significant at higher value of thermal parameter (Ω T1) (alternatively, frequency of vibration if reinforcement radius is fixed), large cavity volume fraction (V h ) and low value of the parameter B1.

  6. Hardness and wear resistance of carbon nanotube reinforced aluminum-copper matrix composites.

    PubMed

    Nam, Dong Hoon; Kim, Jae Hwang; Cha, Seung Il; Jung, Seung Il; Lee, Jong Kook; Park, Hoon Mo; Park, Hyun Dal; Hong, Hyung

    2014-12-01

    Recently, carbon nanotubes (CNTs) have been attracted to reinforcement of composite materials due to their extraordinary mechanical, thermal and electrical properties. Many researchers have attempted to develop CNT reinforced metal composites with various fabrication methods and have shown possibilities for structural and functional applications. Among them, CNT reinforced Al matrix composites have become very attractive due to their huge structural application in industry. In this study, CNT reinforced Al-Cu matrix composites with a microstructure of homogeneous dispersion of CNTs in the Al-Cu matrix are investigated. The CNT/Al-Cu composites are fabricated by mixing of CNT/Cu composite powders and Al powders by high energy ball mill process followed by hot extrusion process. The hardness and wear resistance of the CNT/Al-Cu composites are enhanced by 1.4 and 3 times, respectively, compared to those values for the Al-Cu matrix. This remarkable enhancement mainly originates from the homogeneous dispersion of CNTs in Al-Cu matrix and self-lubricant effect of CNTs. PMID:25971024

  7. Micromechanics Fatigue Damage Analysis Modeling for Fabric Reinforced Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Xue, D.; Shi, Y.

    2013-01-01

    A micromechanics analysis modeling method was developed to analyze the damage progression and fatigue failure of fabric reinforced composite structures, especially for the brittle ceramic matrix material composites. A repeating unit cell concept of fabric reinforced composites was used to represent the global composite structure. The thermal and mechanical properties of the repeating unit cell were considered as the same as those of the global composite structure. The three-phase micromechanics, the shear-lag, and the continuum fracture mechanics models were integrated with a statistical model in the repeating unit cell to predict the progressive damages and fatigue life of the composite structures. The global structure failure was defined as the loss of loading capability of the repeating unit cell, which depends on the stiffness reduction due to material slice failures and nonlinear material properties in the repeating unit cell. The present methodology is demonstrated with the analysis results evaluated through the experimental test performed with carbon fiber reinforced silicon carbide matrix plain weave composite specimens.

  8. Advanced composite materials and processes

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.

    1991-01-01

    Composites are generally defined as two or more individual materials, which, when combined into a single material system, results in improved physical and/or mechanical properties. The freedom of choice of the starting components for composites allows the generation of materials that can be specifically tailored to meet a variety of applications. Advanced composites are described as a combination of high strength fibers and high performance polymer matrix materials. These advanced materials are required to permit future aircraft and spacecraft to perform in extended environments. Advanced composite precursor materials, processes for conversion of these materials to structures, and selected applications for composites are reviewed.

  9. Manufacturing of Aluminum Matrix Composites Reinforced with Iron Oxide (Fe3O4) Nanoparticles: Microstructural and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Bayraktar, Emin; Ayari, Fayza; Tan, Ming Jen; Tosun-Bayraktar, Ayse; Katundi, Dhurata

    2014-04-01

    The purpose of this paper is to demonstrate the low-cost manufacturing of aluminum matrix composites reinforced with nano iron oxide as light and efficient materials for engineering applications. It is very desirable to use reinforced aluminum matrix composites in structural applications (automotive, aeronautical, etc.) because of their outstanding stiffness-to-weight and strength-to-weight ratios. In modern industry, it is increasingly important to develop new composites as alternative materials to fabricate multifunctional pieces. Detailed information is presented on the manufacturing process of this composite, and a preliminary study was performed on the cryogenic-cycling behavior to evaluate the interface between the matrix and the reinforcement. Microindentation tests were carried out to evaluate the micromechanical properties of these materials; a simple and practical finite element model is proposed to predict certain parameters related to the composition of the composite.

  10. Manufacture of magnetically active fiber-reinforced composites for use in power generation

    NASA Astrophysics Data System (ADS)

    Etches, Julie; Bond, Ian; Mellor, Phil

    2004-07-01

    A major issue yet to be resolved for embedding sensors, actuators and microelectromechanical systems (MEMS) in 'smart' structures is that of providing power. Work is ongoing in the field with examples of micro battery technology, use of solar power and micro fuel cells. The work presented here considers a technology to enable the development of integrated power generation and actuation. Magnetic fibre reinforced composite material has been developed which utilises hollow glass fibres filled with active magnetic material. The resulting material maintains structural integrity as well as providing a possible means of electrical power generation from a dynamically loaded structure. The hollow glass fibres were manufactured in-house using a bespoke fibre drawing facility. Hard magnetic powder materials were introduced into the hollow fibre cores to provide an active electromagnetic function. This paper will discuss the manufacture, characterization and optimisation of active magnetic fibre reinforced composite materials.

  11. Natural Curaua Fiber-Reinforced Composites in Multilayered Ballistic Armor

    NASA Astrophysics Data System (ADS)

    Monteiro, Sergio Neves; Louro, Luis Henrique Leme; Trindade, Willian; Elias, Carlos Nelson; Ferreira, Carlos Luiz; de Sousa Lima, Eduardo; Weber, Ricardo Pondé; Miguez Suarez, João Carlos; da Silva Figueiredo, André Ben-Hur; Pinheiro, Wagner Anacleto; da Silva, Luis Carlos; Lima, Édio Pereira

    2015-10-01

    The performance of a novel multilayered armor in which the commonly used plies of aramid fabric layer were replaced by an equal thickness layer of distinct curaua fiber-reinforced composites with epoxy or polyester matrices was assessed. The investigated armor, in addition to its polymeric layer (aramid fabric or curaua composite), was also composed of a front Al2O3 ceramic tile and backed by an aluminum alloy sheet. Ballistic impact tests were performed with actual 7.62 caliber ammunitions. Indentation in a clay witness, simulating human body behind the back layer, attested the efficacy of the curaua-reinforced composite as an armor component. The conventional aramid fabric display a similar indentation as the curaua/polyester composite but was less efficient (deeper indentation) than the curaua/epoxy composite. This advantage is shown to be significant, especially in favor of the lighter and cheaper epoxy composite reinforced with 30 vol pct of curaua fiber, as possible substitute for aramid fabric in multilayered ballistic armor for individual protection. Scanning electron microscopy revealed the mechanism associated with the curaua composite ballistic performance.

  12. Fiber Reinforced Composites for Insulation and Structures

    NASA Technical Reports Server (NTRS)

    Broughton, Roy M., Jr.

    2005-01-01

    The work involves two areas: Composites, optimum fiber placement with initial construction of a pressure vessel, and the general subject of insulation, a continual concern in harsh thermal environments. Insulation

  13. Modelling the development of defects during composite reinforcements and prepreg forming.

    PubMed

    Boisse, P; Hamila, N; Madeo, A

    2016-07-13

    Defects in composite materials are created during manufacture to a large extent. To avoid them as much as possible, it is important that process simulations model the onset and the development of these defects. It is then possible to determine the manufacturing conditions that lead to the absence or to the controlled presence of such defects. Three types of defects that may appear during textile composite reinforcement or prepreg forming are analysed and modelled in this paper. Wrinkling is one of the most common flaws that occur during textile composite reinforcement forming processes. The influence of the different rigidities of the textile reinforcement is studied. The concept of 'locking angle' is questioned. A second type of unusual behaviour of fibrous composite reinforcements that can be seen as a flaw during their forming process is the onset of peculiar 'transition zones' that are directly related to the bending stiffness of the fibres. The 'transition zones' are due to the bending stiffness of fibres. The standard continuum mechanics of Cauchy is not sufficient to model these defects. A second gradient approach is presented that allows one to account for such unusual behaviours and to master their onset and development during forming process simulations. Finally, the large slippages that may occur during a preform forming are discussed and simulated with meso finite-element models used for macroscopic forming. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. PMID:27242300

  14. Seamless metal-clad fiber-reinforced organic matrix composite structures and process for their manufacture

    NASA Technical Reports Server (NTRS)

    Bluck, Raymond M. (Inventor); Bush, Harold G. (Inventor); Johnson, Robert R. (Inventor)

    1990-01-01

    A metallic outer sleeve is provided which is capable of enveloping a hollow metallic inner member having continuous reinforcing fibers attached to the distal end thereof. The inner member is then introduced into outer sleeve until inner member is completely enveloped by outer sleeve. A liquid matrix member is then injected into space between inner member and outer sleeve. A pressurized heat transfer medium is flowed through the inside of inner member, thereby forming a fiber reinforced matrix composite material. The wall thicknesses of both inner member and outer sleeve are then reduced to the appropriate size by chemical etching, to adjust the thermal expansion coefficient of the metal-clad composite structure to the desired value. thereby forming a fiber reinforced matrix composite material. The wall thicknesses of both inner member and outer sleeve are then reduced to the appropriate size by chemical etching, to adjust the thermal expansion coefficient of the metal-clad composite structure to the desired value. The novelty of this invention resides in the development of a efficient method of producing seamless metal clad fiber reinforced organic matrix composite structures.

  15. Studies on natural fiber reinforced polymer matrix composites

    NASA Astrophysics Data System (ADS)

    Patel, R. H.; Kapatel, P. M.; Machchhar, A. D.; Kapatel, Y. A.

    2016-05-01

    Natural fiber reinforced composites show increasing importance in day to days applications because of their low cost, lightweight, easy availability, non-toxicity, biodegradability and environment friendly nature. But these fibers are hydrophilic in nature. Thus they have very low reactivity and poor compatibility with polymers. To overcome these limitations chemical modifications of the fibers have been carried out. Therefore, in the present work jute fibers have chemically modified by treating with sodium hydroxide (NaOH) solutions. These treated jute fibers have been used to fabricate jute fiber reinforced epoxy composites. Mechanical properties like tensile strength, flexural strength and impact strength have been found out. Alkali treated composites show better properties compare to untreated composites.

  16. Mesoscale simulations of particle reinforced epoxy-based composites

    NASA Astrophysics Data System (ADS)

    White, Bradley W.; Springer, Harry Keo; Jordan, Jennifer L.; Spowart, Jonathan E.; Thadhani, Naresh

    2012-03-01

    Polymer matrix composites reinforced with metal powders have complex microstructures that vary greatly from differences in particle size, morphology, loading fractions, etc. The effects of the underlying microstructure on the mechanical and wave propagation behavior of these composites during dynamic loading conditions are not well understood. To better understand these effects, epoxy (Epon826/DEA) reinforced with different particle sizes of Al and loading fractions of Al and Ni were prepared by casting. Microstructures from the composites were then used in 2D plane strain mesoscale simulations. The effect of varying velocity loading conditions on the wave velocity was then examined to determine the Us-Up and particle deformation response as a function of composite configuration.

  17. Improved inhomogeneous finite elements for fabric reinforced composite mechanics analysis

    NASA Technical Reports Server (NTRS)

    Foye, R. L.

    1992-01-01

    There is a need to do routine stress/failure analysis of fabric reinforced composite microstructures to provide additional confidence in critical applications and guide materials development. Conventional methods of 3-D stress analysis are time consuming to set up, run and interpret. A need exists for simpler methods of modeling these structures and analyzing the models. The principal difficulty is the discrete element mesh generation problem. Inhomogeneous finite elements are worth investigating for application to these problems because they eliminate the mesh generation problem. However, there are penalties associated with these elements. Their convergence rates can be slow compared to homogeneous elements. Also, there is no accepted method for obtaining detailed stresses in the constituent materials of each element. This paper shows that the convergence rate can be significantly improved by a simple device which substitutes homogeneous elements for the inhomogeneous ones. The device is shown to work well in simple one and two dimensional problems. However, demonstration of the application to more complex two and three dimensional problems remains to be done. Work is also progressing toward more realistic fabric microstructural geometries.

  18. Effect of Weight Percentage and Cutting Parameter on Surface Finish of SiC Reinforced Aluminium Composite

    NASA Astrophysics Data System (ADS)

    Kadadevaramath, R. S.; Kotresh, M. C.; Srinivasan, D.

    2016-09-01

    In the present work, aluminium alloy of series 1100 is selected as a matrix material and SiC of 45 microns as reinforcement. The composites are synthesized by 2 stage stir casting route, by varying a weight % of reinforcement from 6 % and 10%. The surface roughness of prepared composite were examined after plain turning operation. The machining parameters like speed, feed, DOC, SiC Wt. % are varied at 3 different levels. In order to minimize the time, cost and material a taguchi L9 orthogonal array was used for experiment. From the studies it was observed that the roughness value will increase with the increasing in reinforcement percentage.

  19. Laminated sheet composites reinforced with modular filament sheet

    NASA Technical Reports Server (NTRS)

    Reece, O. Y.

    1968-01-01

    Aluminum and magnesium composite sheet laminates reinforced with low density, high strength modular filament sheets are produced by diffusion bonding and explosive bonding. Both processes are accomplished in normal atmosphere and require no special tooling or cleaning other than wire brushing the metal surfaces just prior to laminating.

  20. Fracture criteria for discontinuously reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Rack, H. J.; Goree, J. G.; Albritton, J.; Ratnaparkhi, P.

    1988-01-01

    Summarized is the progress achieved during the period September 16, 1987 to August 15, l988 on NASA Grant NAG1-724, Fracture Criteria for Discontinuously Reinforced Metal Matrix Composites. Appended are copies of three manuscripts prepared under NASA funding during the performance period.

  1. Evaluation of metal landing gear door assembly selectively reinforced with filamentary composite for space shuttle application

    NASA Technical Reports Server (NTRS)

    Kong, S. J.; Freeman, V. L.

    1972-01-01

    The development and evaluation of a main landing gear door for space shuttle applications are discussed. The door is constructed on composite materials using a rib-stiffened titanium panel selectively reinforced with boron/epoxy composite. A weight comparison between the hybrid design and the all-titanium baseline design showed a weight saving of approximately fifteen percent. Detailed descriptions of the door structure and method of manufacture are presented.

  2. Thermo-dynamic characteristics of NITINOL-reinforced composite beams

    NASA Astrophysics Data System (ADS)

    Baz, A.; Ro, J.

    The fundamental principles governing the operation of NITINOL-reinforced composite beams are investigated by determining the individual contributions of the composite matrix, the NITINOL fibers, and the shape memory effect to the overall dynamic performance of the beams. The effect of the temperature distribution inside the composite, which results from the activation of a small subset of the NITINOL fibers, on the overall performance of the entire beam was investigated theoretically and experimentally. Particular attention was given to the effects of intentional electrical heating of a selected subset of NITINOL fibers, and the associated thermal energy propagating through the composite, on the unintentional thermal activation of additional subsets of the fibers.

  3. Doubly curved nanofiber-reinforced optically transparent composites

    PubMed Central

    Shams, Md. Iftekhar; Yano, Hiroyuki

    2015-01-01

    Doubly curved nanofiber-reinforced optically transparent composites with low thermal expansion of 15 ppm/k are prepared by hot pressing vacuum-filtered Pickering emulsions of hydrophobic acrylic resin monomer, hydrophilic chitin nanofibers and water. The coalescence of acrylic monomer droplets in the emulsion is prevented by the chitin nanofibers network. This transparent composite has 3D shape moldability, making it attractive for optical precision parts. PMID:26552990

  4. Doubly curved nanofiber-reinforced optically transparent composites

    NASA Astrophysics Data System (ADS)

    Shams, Md. Iftekhar; Yano, Hiroyuki

    2015-11-01

    Doubly curved nanofiber-reinforced optically transparent composites with low thermal expansion of 15 ppm/k are prepared by hot pressing vacuum-filtered Pickering emulsions of hydrophobic acrylic resin monomer, hydrophilic chitin nanofibers and water. The coalescence of acrylic monomer droplets in the emulsion is prevented by the chitin nanofibers network. This transparent composite has 3D shape moldability, making it attractive for optical precision parts.

  5. Fabrication of fibre reinforced nickel aluminide matrix composites by reactive processing

    SciTech Connect

    Downing, M.; Horsfall, I.

    1994-12-31

    This paper describes the fabrication by reactive processing of short, and continuous, alumina fibre reinforced nickel aluminide matrix composites. The fibre is introduced into the aluminide system to increase toughness and high temperature strength. The short fibre reinforced nickel aluminide is formed by squeeze casting a porous preform containing nickel powder and SAFFIL fibre with an aluminium or aluminium alloy melt. The continuous fibre reinforced nickel aluminide is formed by squeeze casting a jig containing nickel coated ALMAX fibre. The short fibre reinforced composite (containing 10% and 20% volume fibre) reacted during infiltration with an aluminium melt to form a single phase intermetallic. Using an aluminium-copper melt the intermetallic formation was inhibited and a multi-phase composite was obtained. A preliminary study into reactive processing of this system by utilising a hot isostatic pressing (HIP) cycle is presented. HIP was required to prevent the formation of porosity due to an imbalance in the diffusive mobility of the various components. It was found that HIP was only effective on canned samples, the preferred encapsulation material being glass. The continuous fibre reinforced composite did not react to an intermetallic phase when infiltrated with an aluminum melt. Use of an aluminum-copper melt resulted in partial nickel-melt reaction producing various nickel-aluminum (-copper) phases. HIP was then used to form a two phase intermetallic matrix with no evidence of fibre damage.

  6. Effect of nano-hydroxyapatite reinforcement in mechanically alloyed NiTi composites for biomedical implant.

    PubMed

    Akmal, Muhammad; Raza, Ahmad; Khan, Muhammad Mudasser; Khan, M Imran; Hussain, Muhammad Asif

    2016-11-01

    Equi-atomic NiTi alloy composites reinforced with 0, 2, 4 and 6vol.% nano-hydroxyapatite (HA) were successfully synthesized using pressureless sintering. Pure Ni and Ti elements were ball milled for 10h in order to produce a mechanically alloyed equi-atomic NiTi alloy (MA-NiTi). Mechanically alloyed NiTi and HA powders were blended, compacted and then sintered for 3h at 1325K. The sintered density varied inversely with volume percent of HA reinforcement. The X-Ray diffraction spectra and SEM images showed the formation of multiple phases like NiTi, NiTi2, Ni3Ti, and Ni4Ti3. The back scattered-SEM image analysis confirmed the presence of Ni-rich and Ti-rich phases with increasing HA content. The 6vol.% HA reinforced composite showed Ni3Ti as the major phase having the highest hardness value which can be attributed to the presence of relatively harder phases along with higher HA content as a reinforcement. The composite of MA-NiTi with 2vol.% HA manifested the most desirable results in the form of better sintering density mainly due to the minute decomposition of NiTi into other phases. Therefore, the 2vol.% reinforced MA-NiTi composite can be exploited as a novel material for manufacturing biomedical implants.

  7. Effect of nano-hydroxyapatite reinforcement in mechanically alloyed NiTi composites for biomedical implant.

    PubMed

    Akmal, Muhammad; Raza, Ahmad; Khan, Muhammad Mudasser; Khan, M Imran; Hussain, Muhammad Asif

    2016-11-01

    Equi-atomic NiTi alloy composites reinforced with 0, 2, 4 and 6vol.% nano-hydroxyapatite (HA) were successfully synthesized using pressureless sintering. Pure Ni and Ti elements were ball milled for 10h in order to produce a mechanically alloyed equi-atomic NiTi alloy (MA-NiTi). Mechanically alloyed NiTi and HA powders were blended, compacted and then sintered for 3h at 1325K. The sintered density varied inversely with volume percent of HA reinforcement. The X-Ray diffraction spectra and SEM images showed the formation of multiple phases like NiTi, NiTi2, Ni3Ti, and Ni4Ti3. The back scattered-SEM image analysis confirmed the presence of Ni-rich and Ti-rich phases with increasing HA content. The 6vol.% HA reinforced composite showed Ni3Ti as the major phase having the highest hardness value which can be attributed to the presence of relatively harder phases along with higher HA content as a reinforcement. The composite of MA-NiTi with 2vol.% HA manifested the most desirable results in the form of better sintering density mainly due to the minute decomposition of NiTi into other phases. Therefore, the 2vol.% reinforced MA-NiTi composite can be exploited as a novel material for manufacturing biomedical implants. PMID:27523992

  8. The assessment of metal fiber reinforced polymeric composites

    NASA Technical Reports Server (NTRS)

    Chung, Wenchiang R.

    1990-01-01

    Because of their low cost, excellent electrical conductivity, high specific strength (strength/density), and high specific modulus (modulus/density) short metal fiber reinforced composites have enjoyed a widespread use in many critical applications such as automotive industry, aircraft manufacturing, national defense, and space technology. However, little data has been found in the study of short metal fibrous composites. Optimum fiber concentration in a resin matrix and fiber aspect ratio (length-to-diameter ratio) are often not available to a user. Stress concentration at short fiber ends is the other concern when the composite is applied to a load-bearing application. Fracture in such composites where the damage will be initiated or accumulated is usually difficult to be determined. An experimental investigation is therefore carefully designed and undertaken to systematically evaluate the mechanical properties as well as electrical properties. Inconel 601 (nickel based) metal fiber with a diameter of eight microns is used to reinforce commercially available thermoset polyester resin. Mechanical testing such as tensile, impact, and flexure tests along with electrical conductivity measurements is conducted to study the feasibility of using such composites. The advantages and limitations of applying chopped metal fiber reinforced polymeric composites are also discussed.

  9. Ageing characteristics of aluminium alloy aluminosilicate discontinuous fiber reinforced composites

    SciTech Connect

    Nath, D.; Singh, V.

    1999-03-05

    Development of continuous fiber reinforced metal matrix composites is aimed at providing high specific strength and stiffness needed for aerospace and some critical high temperature structural applications. Considerable efforts have been made, during the last decade, to improve the strength of age-hardening aluminium alloy matrix composites by suitable heat treatment. It has also been well established that age-hardenable aluminium alloy composites show accelerated ageing behavior because of enhanced dislocation density at the fiber/matrix interface resulting from thermal expansion mismatch between ceramic fiber and the metal matrix. The accelerated ageing of aluminium alloy composites either from dislocation density or the residual stress, as a result of thermal expansion mismatch is dependent on the size of whisker and particulate. Investigations have also been made on the effect of volume fraction of particulate on the ageing behavior of aluminium alloys. The present investigation is concerned with characterization of age-hardening behavior of an Al-Si-Cu-Mg(AA 336) alloy alumino-silicate discontinuous fiber-reinforced composites (referred to as aluminium MMCs in the present text) being developed for automotive pistons. An effort is made to study the effect of volume fraction of the reinforcement on age-hardening behavior of this composite.

  10. Buckling and Failure of Compression-loaded Composite Cylindrical Shells with Reinforced Cutouts

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Nemeth, Michael P.

    2005-01-01

    Results from a numerical and experimental study that illustrate the effects of selected cutout reinforcement configurations on the buckling and failure response of compression-loaded composite cylindrical shells with a cutout are presented. The effects of reinforcement size, thickness, and orthotropy on the overall response of compression-loaded shells are described. In general, reinforcement around a cutout in a compression-loaded shell can retard or eliminate the local buckling response and material failure near the cutout and increase the buckling load of the shell. However, some results show that certain reinforcement configurations can cause a significant increase in the local interlaminar failures that can accumulate near the free edges of a cutout during a local buckling event.

  11. Durability of polymer composite materials

    NASA Astrophysics Data System (ADS)

    Liu, Liu

    The purpose of this research is to examine structural durability of advanced composite materials under critical loading conditions, e.g., combined thermal and mechanical loading and shear fatigue loading. A thermal buckling model of a burnt column, either axially restrained or under an axial applied force was developed. It was predicted that for a column exposed to the high heat flux under simultaneous constant compressive load, the response of the column is the same as that of an imperfection column; the instability of the burnt column happens. Based on the simplified theoretical prediction, the post-fire compressive behavior of fiberglass reinforced vinyl-ester composite columns, which have been exposed to high heat flux for a certain time was investigated experimentally, the post-fire compressive strength, modulus and failure mode were determined. The integrity of the same column under constant compressive mechanical loading combined with heat flux exposure was examined using a specially designed mechanical loading fixture that mounted directly below a cone calorimeter. All specimens in the experiments exhibited compressive instability. The experimental results show a thermal bending moment exists and has a significant influence on the structural behavior, which verified the thermal buckling model. The trend of response between the deflection of the column and exposure time is similar to that predicted by the model. A new apparatus was developed to study the monotonic shear and cyclic-shear behavior of sandwich structures. Proof-of-concept experiments were performed using PVC foam core polymeric sandwich materials. Shear failure occurred by the extension of cracks parallel to the face-sheet/core interface, the shear modulus degraded with the growth of fatigue damage. Finite element analysis was conducted to determine stress distribution in the proposed specimen geometry used in the new technique. Details for a novel apparatus used for the fatigue testing of thin

  12. Novel Dental Composites Reinforced with Zirconia-Silica Ceramic Nanofibers

    PubMed Central

    Guo, Guangqing; Fan, Yuwei; Zhang, Jian-Feng; Hagan, Joseph; Xu, Xiaoming

    2011-01-01

    Objective To fabricate and characterize dental composites reinforced with various amounts of zirconia-silica (ZS) or zirconia-yttria-silica (ZYS) ceramic nanofibers. Methods Control composites (70 wt% glass particle filler, no nanofibers) and experimental composites (2.5, 5.0, and 7.5 wt% ZS or ZYS nanofibers replacing glass particle filler) were prepared by blending 29 wt% dental resin monomers, 70 wt% filler, and 1.0 wt% initiator, and polymerized by either heat or dental curing light. Flexural strength (FS), flexural modulus (FM), energy at break (EAB), and fracture toughness (FT) were tested after the specimens were stored in 37 °C deionized water for 24 h, 3 months, or 6 months. Degree of conversion (DC) of monomers in composites was measured using Fourier transformed near-infrared (FT-NIR) spectroscopy. Fractured surfaces were observed by field-emission scanning electron microscope (FE-SEM). The data were analyzed using ANOVA with Tukey’s Honestly Significant Differences test used for post hoc analysis. Results Reinforcement of dental composites with ZS or ZYS nanofibers (2.5% or 5.0%) can significantly increase the FS, FM and EAB of dental composites over the control. Further increase the content of ZS nanofiber (7.5%), however, decreases these properties (although they are still higher than those of the control). Addition of nanofibers did not decrease the long-term mechanical properties of these composites. All ZS reinforced composites (containing 2.5%, 5.0% and 7.5% ZS nanofibers) exhibit significantly higher fracture toughness than the control. The DC of the composites decreases with ZS nanofiber content. Significance Incorporation of ceramic nanofibers in dental composites can significantly improve their mechanical properties and fracture toughness and thus may extend their service life. PMID:22153326

  13. Physicochemical characterization of three fiber-reinforced epoxide-based composites for dental applications.

    PubMed

    Bonon, Anderson J; Weck, Marcus; Bonfante, Estevam A; Coelho, Paulo G

    2016-12-01

    Fiber-reinforced composite (FRC) biomedical materials are in contact with living tissues arising biocompatibility questions regarding their chemical composition. The hazards of materials such as Bisphenol A (BPA), phthalate and other monomers and composites present in FRC have been rationalized due to its potential toxicity since its detection in food, blood, and saliva. This study characterized the physicochemical properties and degradation profiles of three different epoxide-based materials intended for restorative dental applications. Characterization was accomplished by several methods including FTIR, Raman, Brunauer-Emmett-Teller (BET) Analysis, X-ray fluorescence spectroscopy, and degradation experiments. Physicochemical characterization revealed that although materials presented similar chemical composition, variations between them were more largely accounted by the different phase distribution than chemical composition. PMID:27612785

  14. Physicochemical characterization of three fiber-reinforced epoxide-based composites for dental applications.

    PubMed

    Bonon, Anderson J; Weck, Marcus; Bonfante, Estevam A; Coelho, Paulo G

    2016-12-01

    Fiber-reinforced composite (FRC) biomedical materials are in contact with living tissues arising biocompatibility questions regarding their chemical composition. The hazards of materials such as Bisphenol A (BPA), phthalate and other monomers and composites present in FRC have been rationalized due to its potential toxicity since its detection in food, blood, and saliva. This study characterized the physicochemical properties and degradation profiles of three different epoxide-based materials intended for restorative dental applications. Characterization was accomplished by several methods including FTIR, Raman, Brunauer-Emmett-Teller (BET) Analysis, X-ray fluorescence spectroscopy, and degradation experiments. Physicochemical characterization revealed that although materials presented similar chemical composition, variations between them were more largely accounted by the different phase distribution than chemical composition.

  15. Influence of veneering composite composition on the efficacy of fiber-reinforced restorations (FRR).

    PubMed

    Ellakwa, A; Shortall, A; Shehata, M; Marquis, P

    2001-01-01

    This study investigated the influence of fiber reinforcement on the flexural properties of four commercial (Artglass, Belleglass HP, Herculite XRV and Solidex) veneering composites (Series A) and two experimental composites (Series B&C). This study investigated how the composition of the veneering composites influenced the enhancement of strength and modulus produced by fiber reinforcement. The formulation of the experimental composites were varied by changing the filler load (Series B) or the resin matrix chemistry (Series C) to assess the effect these changes would have on the degree of reinforcement. In Series A, the commercial veneering composites were reinforced by an Ultra-High-Molecular-Weight Polyethylene fiber (UHMW-PE/Connect) to evaluate flexural properties after 24 hours and six months. In Series B, experimental composites with the same organic matrix but with different filler loads (40% to 80% by weight) were also reinforced by Connect fiber to evaluate flexural properties. In Series C, experimental composites (Systems 1-4) with the same filler load (76.5% by weight) but with different organic matrix compositions were reinforced by Connect fiber to evaluate flexural properties. For Series B and C, flexural properties were evaluated after 24 hours water storage. All the samples were prepared in a mold 2 mm x 2 mm x 25 mm and stored in distilled water at 37 degrees C until they were ready for flexural testing in an Instron Universal Testing Machine using a crosshead speed of 1 mm/minute. The results showed no significant differences in the flexural strength (FS) between any of the commercial reinforced composites in Series A. The flexural modulus (FM) of the fiber-reinforced Belleglass HP group was significantly higher than for Artglass and Solidex. Water storage for six months had no significant (p>0.05) effect on the flexural strength of three of the four reinforced veneering composites. The flexural strength for Artglass was significantly reduced (p<0

  16. Wear Behaviour of Carbon Nanotubes Reinforced Nanocrystalline AA 4032 Composites

    NASA Astrophysics Data System (ADS)

    Senthil Saravanari, M. S.; Kumaresh Babu, S. P.; Sivaprasad, K.

    2016-09-01

    The present paper emphasizes the friction and wear properties of Carbon Nanotubes reinforced AA 4032 nanocomposites prepared by powder metallurgy technique. CNTs are multi-wall in nature and prepared by electric arc discharge method. Multi-walled CNTs are blended with AA 4032 elemental powders and compaction followed by sintering to get bulk nanocomposites. The strength of the composites has been evaluated by microhardness and the surface contact between the nanocomposites and EN 32 steel has been evaluated by Pin on disk tester. The results are proven that reinforcement of CNTs play a major role in the enhancement of hardness and wear.

  17. MODELING FUNCTIONALLY GRADED INTERPHASE REGIONS IN CARBON NANOTUBE REINFORCED COMPOSITES

    NASA Technical Reports Server (NTRS)

    Seidel, G. D.; Lagoudas, D. C.; Frankland, S. J. V.; Gates, T. S.

    2006-01-01

    A combination of micromechanics methods and molecular dynamics simulations are used to obtain the effective properties of the carbon nanotube reinforced composites with functionally graded interphase regions. The multilayer composite cylinders method accounts for the effects of non-perfect load transfer in carbon nanotube reinforced polymer matrix composites using a piecewise functionally graded interphase. The functional form of the properties in the interphase region, as well as the interphase thickness, is derived from molecular dynamics simulations of carbon nanotubes in a polymer matrix. Results indicate that the functional form of the interphase can have a significant effect on all the effective elastic constants except for the effective axial modulus for which no noticeable effects are evident.

  18. Durability of Cement Composites Reinforced with Sisal Fiber

    NASA Astrophysics Data System (ADS)

    Wei, Jianqiang

    understanding of degradation mechanisms, two approaches are proposed to mitigate the degradation of sisal fiber in the cement matrix. In order to relieve the aggressive environment of hydrated cement, cement substitution by a combination of metakaolin and nanoclay, and a combination of rice husk ash and limestone are studied. Both metakaolin and nanoclay significantly optimize the cement hydration, while the combination of these two supplementary cementitious materials validates their complementary and synergistic effect at different stages of aging. The presented approaches effectively reduce the calcium hydroxide content and the alkalinity of the pore solution, thereby mitigating the fiber degradation and improving both the initial mechanical properties and durability of the fiber-cement composites. The role of rice husk ash in cement modification is mainly as the active cementitious supplementary material. In order to improve the degradation resistance of sisal fiber itself, two novel, simple, and economical pretreatments of the fibers (thermal and sodium carbonate treatment) are investigated. Both thermal treatment and Na 2CO3 treatment effectively improve the durability of sisal fiber-reinforced concrete. The thermal treatment achieves improvement of cellulose's crystallization, which ensures the initial strength and improved durability of sisal fiber. A layer consisting of calcium carbonate sediments, which protects the internals of a fiber from the strong alkali pore solution, is formed and filled in pits and cavities on the Na2CO3 treated sisal fiber's surface.

  19. Fabrication of Fiber-Reinforced Celsian Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Setlock, John A.

    2000-01-01

    A method has been developed for the fabrication of small diameter, multifilament tow fiber reinforced ceramic matrix composites. Its application has been successfully demonstrated for the Hi-Nicalon/celsian system. Strong and tough celsian matrix composites, reinforced with BN/SiC-coated Hi-Nicalon fibers, have been fabricated by infiltrating the fiber tows with the matrix slurry, winding the tows on a drum, cutting and stacking of the prepreg tapes in the desired orientation, and hot pressing. The monoclinic celsian phase in the matrix was produced in situ, during hot pressing, from the 0.75BaO-0.25SrO-Al2O3-2SiO2 mixed precursor synthesized by solid state reaction from metal oxides. Hot pressing resulted in almost fully dense fiber-reinforced composites. The unidirectional composites having approx. 42 vol% of fibers exhibited graceful failure with extensive fiber pullout in three-point bend tests at room temperature. Values of yield stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 percent, respectively, and ultimate strengths of 900 +/- 60 MPa were observed. The Young's modulus of the composites was measured to be 165 +/- 5 GPa.

  20. Development of Cu Reinforced SiC Particulate Composites

    NASA Astrophysics Data System (ADS)

    Singh, Harshpreet; Kumar, Lailesh; Nasimul Alam, Syed

    2015-02-01

    This paper presents the results of Cu-SiCp composites developed by powder metallurgy route and an attempt has been made to make a comparison between the composites developed by using unmilled Cu powder and milled Cu powder. SiC particles as reinforcement was blended with unmilled and as-milled Cu powderwith reinforcement contents of 10, 20, 30, 40 vol. % by powder metallurgy route. The mechanical properties of pure Cu and the composites developed were studied after sintering at 900°C for 1 h. Density of the sintered composites were found out based on the Archimedes' principle. X-ray diffraction of all the composites was done in order to determine the various phases in the composites. Scanning electron microscopy (SEM) and EDS (electron diffraction x-ray spectroscopy) was carried out for the microstructural analysis of the composites. Vickers microhardness tester was used to find out the hardness of the samples. Wear properties of the developed composites were also studied.

  1. Hydrogel Composite Materials for Tissue Engineering Scaffolds

    NASA Astrophysics Data System (ADS)

    Shapiro, Jenna M.; Oyen, Michelle L.

    2013-04-01

    Hydrogels are appealing for biomaterials applications due to their compositional similarity with highly hydrated natural biological tissues. However, for structurally demanding tissue engineering applications, hydrogel use is limited by poor mechanical properties. Here, composite materials approaches are considered for improving hydrogel properties while attempting to more closely mimic natural biological tissue structures. A variety of composite material microstructures is explored, based on multiple hydrogel constituents, particle reinforcement, electrospun nanometer to micrometer diameter polymer fibers with single and multiple fiber networks, and combinations of these approaches to form fully three-dimensional fiber-reinforced hydrogels. Natural and synthetic polymers are examined for formation of a range of scaffolds and across a range of engineered tissue applications. Following a discussion of the design and fabrication of composite scaffolds, interactions between living biological cells and composite scaffolds are considered across the full life cycle of tissue engineering from scaffold fabrication to in vivo use. We conclude with a summary of progress in this area to date and make recommendations for continuing research and for advanced hydrogel scaffold development.

  2. Natural frequency behavior of damaged composite materials

    NASA Astrophysics Data System (ADS)

    Duggan, M. B.; Ochoa, O. O.

    1992-11-01

    Attention is given to characterizing the effect of material system, geometry, and stacking sequence on the vibration response of damaged plates of fiber-reinforced composite. Plate layups are fashioned from various composite materials and subjected to four damage cycles, and a signal analyzer is employed to study the frequency response function (FRF) of the materials. The materials employed include the AS4/3501-6, IM7/E7T1-2, and IM7/977-2 families, and numerical analyses are used for comparison. Frequencies are obtained from the experimentally established FRFs, and natural frequencies tend to decrease in the presence of extensive localized damage. The fiber is argued to dominate the response of the plate, and the experimental data are confirmed in some cases by the results of finite-element calculations.

  3. On Healable Polymers and Fiber-Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Nielsen, Christian Eric

    Polymeric materials capable of healing damage would be valuable in structural applications where access for repair is limited. Approaches to creating such materials are reviewed, with the present work focusing on polymers with thermally reversible covalent cross-links. These special cross-links are Diels-Alder (DA) adducts, which can be separated and re-formed, enabling healing of mechanical damage at the molecular level. Several DA-based polymers, including 2MEP4FS, are mechanically and thermally characterized. The polymerization reaction of 2MEP4FS is modeled and the number of established DA adducts is associated with the glass transition temperature of the polymer. The models are applied to concentric cylinder rotational measurements of 2MEP4FS prepolymer at room and elevated temperatures to describe the viscosity as a function of time, temperature, and conversion. Mechanical damage including cracks and scratches are imparted in cured polymer samples and subsequently healed. Damage due to high temperature thermal degradation is observed to not be reversible. The ability to repair damage without flowing polymer chains makes DA-based healable polymers particularly well-suited for crack healing. The double cleavage drilled compression (DCDC) fracture test is investigated as a useful method of creating and incrementally growing cracks in a sample. The effect of sample geometry on the fracture behavior is experimentally and computationally studied. Computational and empirical models are developed to estimate critical stress intensity factors from DCDC results. Glass and carbon fiber-reinforced composites are fabricated with 2MEP4FS as the matrix material. A prepreg process is developed that uses temperature to control the polymerization rate of the monomers and produce homogeneous prepolymer for integration with a layer of unidirectional fiber. Multiple prepreg layers are laminated to form multi-layered cross-ply healable composites, which are characterized in

  4. Composite materials for the extravehicular mobility unit

    NASA Technical Reports Server (NTRS)

    Barrera, Enrique V.; Tello, Hector M.

    1992-01-01

    The extravehicular mobility unit (EMU), commonly known as the astronaut space suit assembly (SSA) and primary life support system (PLSS), has evolved through the years to incorporate new and innovative materials in order to meet the demands of the space environment. The space shuttle program which is seeing an increasing level of extravehicular activity (EVA), also called space walks, along with interest in an EMU for Lunar-Mars missions means even more demanding conditions are being placed on the suit and PLSS. The project for this NASA-ASEE Summer Program was to investigate new materials for these applications. The focus was to emphasize the use of composite materials for every component of the EMU to enhance the properties while reducing the total weight of the EMU. To accomplish this, development of new materials called fullerene reinforced materials (FRM's) was initiated. Fullerenes are carbon molecules which when added to a material significantly reduce the weight of that material. The Faculty Fellow worked directly on the development of the fullerene reinforced materials. A chamber for fullerene production was designed and assembled and first generation samples were processed. He also supervised with the JSC Colleague, a study of composite materials for the EMU conducted by the student participant in the NASA-ASEE Program, Hector Tello a Rice University graduate student, and by a NASA Aerospace Technologist (Materials Engineer) Evelyne Orndoff, in the Systems Engineering Analysis Office (EC7), also a Rice University graduate student. Hector Tello conducted a study on beryllium and Be alloys and initiated a study of carbon and glass reinforced composites for space applications. Evelyne Orndoff compiled an inventory of the materials on the SSA. Ms. Orndoff also reviewed SSA material requirements and cited aspects of the SSA design where composite materials might be further considered. Hector Tello spent part of his time investigating the solar radiation

  5. Effect of stress on ultrasonic pulses in fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Hemann, J. H.; Baaklini, G. Y.

    1986-01-01

    An acoustical-ultrasonic technique was used to demonstrate relationships existing between changes in attenuation of stress waves and tensile stress on an eight ply 0 degree graphite-epoxy fiber reinforced composite. All tests were conducted in the linear range of the material for which no mechanical or macroscopic damage was evident. Changes in attenuation were measured as a function of tensile stress in the frequency domain and in the time domain. Stress wave propagation in these specimens was dispersive, i.e., the wave speed depends on frequency. Wave speeds varied from 267,400 cm/sec to 680,000 cm/sec as the frequency of the signal was varied from 150 kHz to 1.9 MHz which strongly suggests that flexural/lamb wave modes of propagation exist. The magnitude of the attenuation changes depended strongly on tensile stress. It was further observed that the wave speeds increased slightly for all tested frequencies as the stress was increased.

  6. Life Cycle Assessment of Carbon Fiber-Reinforced Polymer Composites

    SciTech Connect

    Das, Sujit

    2011-01-01

    Carbon fiber-reinforced polymer matrix composites is gaining momentum with the pressure to lightweight vehicles, however energy-intensity and cost remain some of the major barriers before this material could be used in large-scale automotive applications. A representative automotive part, i.e., a 30.8 kg steel floor pan having a 17% weight reduction potential with stringent cash performance requirements has been considered for the life cycle energy and emissions analysis based on the latest developments occurring in the precursor type (conventional textile-based PAN vs. renewable-based lignin), part manufacturing (conventional SMC vs. P4) and fiber recycling technologies. Carbon fiber production is estimated to be about 14 times more energy-intensive than conventional steel production, however life cycle primary energy use is estimated to be quite similar to the conventional part, i.e., 18,500 MJ/part, especially when considering the uncertainty in LCI data that exists from using numerous sources in the literature. Lignin P4 technology offers the most life cycle energy and CO2 emissions benefits compared to a conventional stamped steel technology. With a 20% reduction in energy use in the lignin conversion to carbon fiber and free availability of lignin as a by-product of ethanol and wood production, a 30% reduction in life cycle energy use could be obtained. A similar level of life cycle energy savings could also be obtained with a higher part weight reduction potential of 43%.

  7. Processing composite materials

    NASA Technical Reports Server (NTRS)

    Baucom, R. M.

    1982-01-01

    The fabrication of several composite structural articles including DC-10 upper aft rudders, L-1011 vertical fins and composite biomedical appliances are discussed. Innovative composite processing methods are included.

  8. Effect of fiber reinforcement on thermo-oxidative stability and mechanical properties of polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1992-01-01

    A number of studies have investigated the thermooxidative behavior of polymer matrix composites. Two significant observations have been made from these research efforts: (1) fiber reinforcement has a significant effect on composite thermal stability; and (2) geometric effects must be considered when evaluating thermal aging data. The polyimide PMR-15 was the matrix material used in these studies. The control composite material was reinforced with Celion 6000 graphite fiber. T-4OR graphite fibers, along with some very stable ceramic fibers were selected as reinforcing fibers because of their high thermal stability. The ceramic fibers were Nicalon (silicon carbide) and Nextel 312 (alumina-silica-boron oxide). The mechanical properties of the two graphite fiber composites were significantly different, probably owing to variations in interfacial bonding between the fibers and the polyimide matrix. Three oxidation mechanisms were observed: (1) the preferential oxidation of the Celion 6000 fiber ends at cut surfaces, leaving a surface of matrix material with holes where the fiber ends were originally situated; (2) preferential oxidation of the composite matrix; and (3) interfacial degradation by oxidation. The latter two mechanisms were also observed on fiber end cut surfaces. The fiber and interface attacks appeared to initiate interfiber cracking along these surfaces.

  9. Flame-retardant composite materials

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.

    1991-01-01

    The properties of eight different graphite composite panels fabricated using four different resin matrices and two types of graphite reinforcement are described. The resin matrices included: VPSP/BMI, a blend of vinylpolystyryl pyridine and bismaleimide; BMI, a bismaleimide; and phenolic and PSP, a polystyryl pyridine. The graphite fiber used was AS-4 in the form of either tape or fabric. The properties of these composites were compared with epoxy composites. It was determined that VPSP/BMI with the graphite tape was the optimum design giving the lowest heat release rate.

  10. [Recent development of research on the biotribology of carbon fiber reinforced poly ether ether ketone composites].

    PubMed

    Chen, Yan; Pan, Yusong

    2014-12-01

    Carbon fiber reinforced poly ether ether ketone (CF/PEEK) composite possesses excellent biocompatible, biomechanical and bioribological properties. It is one of the most promising implant materials for artificial joint. Many factors influence the bioribological properties of CF/PEEK composites. In this paper, the authors reviewed on the biotribology research progress of CF/PEEK composites. The influences of various factors such as lubricant, reinforcement surface modification, functional particles, friction counterpart and friction motion modes on the bio-tribological properties of CF/PEEK composites are discussed. Based on the recent research, the authors suggest that the further research should be focused on the synergistic effect of multiple factors on the wear and lubrication mechanism of CF/PEEK. PMID:25868268

  11. Synthesis and mechanical properties of interconnected carbon nanofiber network reinforced polydimethylsiloxane composites.

    PubMed

    Zhao, Z Y; Khatri, N D; Nguyen, K; Song, S Q; Sun, L

    2011-02-01

    Carbon nanofiber (CNF) reinforced elastomer composites with light weight, sustainability of large deformation, chemical stability, corrosion and fatigue resistance, and vibration and noise reduction capability can have positive impact on a wide range of applications. However, this type of composite is still a under studied research area due to the difficulties in material handling and processing. To improve processing control and reproducibility for large scale engineering applications, cost effective carbon nanofibers (CNFs) in form of interconnected porous network structure were used as nanofillers. Processing, microstructure and mechanical properties of carbon nanofibers reinforced polydimethylsiloxane (PDMS) have been studied. Mechanical measurements on the composites show that the CNF-PDMS interfacial bonding can be until failure, interfacial debonding happens in the CNF-PDMS composites and the resulted permanent deformation stabilizes with increasing load-unload cycles with significant energy dissipation. PMID:21456144

  12. Investigation of Mechanical Damping Characteristic in Short Fiberglass Reinforced Polycarbonate Composites

    NASA Astrophysics Data System (ADS)

    Cho, Myoung-Rae; Kim, Hyung-Ick; Jang, Jae-Soon; Suhr, Jonghwan; Prate, Devin R.; Chun, David

    2013-06-01

    The focus of this study is to experimentally investigate the effect of debonding stress, the interface between the fibers and the polymer matrix, on the damping properties of the short fiberglass reinforced polymer composites. In this study, short fiberglass reinforced polycarbonate composite materials were fabricated and characterized for their tensile properties by varying the fiberglass loading fraction. The debonding stress was evaluated by coupling the acoustic emission technique with the tensile testing. After the determination of the debonding stress was completed, dynamic cyclic testing was performed in order to investigate the effect of debonding on the damping properties of the polymer composites. It was experimentally observed in this study that the debonding can facilitate the stick-slip friction under cyclic loadings, which then gives rise to better damping performance in the fiberglass composites.

  13. Composite resin reinforcement of flared canals using light-transmitting plastic posts.

    PubMed

    Lui, J L

    1994-05-01

    Composite resins have been advocated as a reinforcing build-up material for badly damaged endodontically treated teeth with flared canals. However, the control of an autocuring composite resin is difficult because it polymerizes rapidly within the root canal. While the light-curing composite resins are more user friendly, their polymerization can be a problem deep in the root canal. Light-transmitting plastic posts allow the transmission of light into the root canal and enable intraradicular composite resin reconstitution and reinforcement of weakened roots. At the same time, the light-transmitting plastic post forms an optimal post canal in the rehabilitated root and can accurately fit a matching retentive final post. These light-transmitting posts are a useful addition to the dental armamentarium. PMID:7938415

  14. Metal-bonded, carbon fiber-reinforced composites

    DOEpatents

    Sastri, Suri A.; Pemsler, J. Paul; Cooke, Richard A.; Litchfield, John K.; Smith, Mark B.

    1996-01-01

    Metal bonded carbon fiber-reinforced composites are disclosed in which the metal and the composite are strongly bound by (1) providing a matrix-depleted zone in the composite of sufficient depth to provide a binding site for the metal to be bonded and then (2) infiltrating the metal into the matrix-free zone to fill a substantial portion of the zone and also provide a surface layer of metal, thereby forming a strong bond between the composite and the metal. The invention also includes the metal-bound composite itself, as well as the provision of a coating over the metal for high-temperature performance or for joining to other such composites or to other substrates.

  15. Metal-bonded, carbon fiber-reinforced composites

    DOEpatents

    Sastri, S.A.; Pemsler, J.P.; Cooke, R.A.; Litchfield, J.K.; Smith, M.B.

    1996-03-05

    Metal bonded carbon fiber-reinforced composites are disclosed in which the metal and the composite are strongly bound by (1) providing a matrix-depleted zone in the composite of sufficient depth to provide a binding site for the metal to be bonded and then (2) infiltrating the metal into the matrix-free zone to fill a substantial portion of the zone and also provide a surface layer of metal, thereby forming a strong bond between the composite and the metal. The invention also includes the metal-bound composite itself, as well as the provision of a coating over the metal for high-temperature performance or for joining to other such composites or to other substrates. 2 figs.

  16. Effect of reinforcement type and porosity on strength of metal matrix composite

    NASA Astrophysics Data System (ADS)

    Kulkarni, S. G.; Lal, Achchhe; Menghani, J. V.

    2016-05-01

    In the present work, experimental investigation and the numerical analysis are carried out for strength analysis of A356 alloy matrix composites reinforced with alumina, fly ash and hybrid particle composites. The combined strengthening effect of load bearing, Hall-Petch, Orowan, coefficient of thermal expansion mismatch and elastic modulus mismatch is studied for predicting accurate uniaxial stress-strain behavior of A356 based alloy matrix composite. The unit cell micromechanical approach and nine noded isoparametric finite element analysis (FEA) is used to investigate the yield failure load by considering material defect of porosity as fabrication errors in particulate composite. The Ramberg-Osgood approach is considered for the linear and nonlinear relationship between stress and strain of A356 based metal matrix composites containing different amounts of fly ash and alumina reinforcing particles. A numerical analysis of material porosity on the stress strain behavior of the composite is performed. The literature and experimental results exhibit the validity of this model and confirm the importance of the fly ash as the cheapest and low density reinforcement obtained as a waste by product in thermal power plants.

  17. The Applicability of the Generalized Method of Cells for Analyzing Discontinuously Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Pahr, D. H.; Arnold, S. M.

    2001-01-01

    The paper begins with a short overview of the recent work done in the field of discontinuous reinforced composites, focusing on the different parameters which influence the material behavior of discontinuous reinforced composites, as well as the various analysis approaches undertaken. Based on this overview it became evident that in order to investigate the enumerated effects in an efficient and comprehensive manner, an alternative approach to the computationally intensive finite-element based micromechanics approach is required. Therefore, an investigation is conducted to demonstrate the utility of utilizing the generalized method of cells (GMC), a semi-analytical micromechanics-based approach, to simulate the elastic and elastoplastic material behavior of aligned short fiber composites. The results are compared with simulations using other micromechanical based mean field models and finite element (FE) unit cell models found in the literature given elastic material behavior, as well as finite element unit cell and a new semianalytical elastoplastic shear lag model in the inelastic range. GMC is shown to definitely have a window of applicability when simulating discontinuously reinforced composite material behavior.

  18. The Applicability of the Generalized Method of Cells for Analyzing Discontinuously Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Pahr, D. H.; Arnold, S. M.

    2001-01-01

    The paper begins with a short overview of the recent work done in the field of discontinuous reinforced composites, focusing on the different parameters which influence the material behavior of discontinuous reinforced composites, as well as the various analysis approaches undertaken. Based on this overview it became evident, that in order to investigate the enumerated effects in an efficient and comprehensive manner, an alternative approach to the computationally intensive finite-element based micromechanics approach is required. Therefore, an investigation is conducted to demonstrate the utility of utilizing the generalized method of cells (GMC), a semi-analytical micromechanics-based approach, to simulate the elastic and elastoplastic material behavior of aligned short fiber composites. The results are compared with (1) simulations using other micromechanical based mean field models and finite element (FE) unit cell models found in the literature given elastic material behavior, as well as (2) finite element unit cell and a new semianalytical elastoplastic shear lag model in the inelastic range. GMC is shown to definitely have a window of applicability when simulating discontinuously reinforced composite material behavior.

  19. Laser processed TiN reinforced Ti6Al4V composite coatings.

    PubMed

    Balla, Vamsi Krishna; Bhat, Abhimanyu; Bose, Susmita; Bandyopadhyay, Amit

    2012-02-01

    The purpose of this first generation investigation is to evaluate fabrication, in vitro cytotoxicity, cell-material interactions and tribological performance of TiN particle reinforced Ti6Al4V composite coatings for potential wear resistant load bearing implant applications. The microstructural analysis of the composites was performed using scanning electron microscope and phase analysis was done with X-ray diffraction. In vitro cell-material interactions, using human fetal osteoblast cell line, have been assessed on these composite coatings and compared with Ti6Al4V alloy control samples. The tribological performance of the coatings were evaluated, in simulated body fluids, up to 1000 m sliding distance under 10 N normal load. The results show that the composite coatings contain distinct TiN particles embedded in α+β phase matrix. The average top surface hardness of Ti6Al4V alloy increased from 394±8 HV to 1138±61 HV with 40 wt% TiN reinforcement. Among the composite coatings, the coatings reinforced with 40 wt% TiN exhibited the highest wear resistance of 3.74×10(-6) mm(3)/Nm, which is lower than the wear rate, 1.04×10(-5) mm(3)/Nm, of laser processed CoCrMo alloy tested under identical experimental conditions. In vitro biocompatibility study showed that these composite coatings were non-toxic and provides superior cell-material interactions compared to Ti6Al4V control, as a result of their high surface energy. In summary, excellent in vitro wear resistance and biocompatibility of present laser processed TiN reinforced Ti6Al4V alloy composite coatings clearly show their potential as wear resistant contact surfaces for load bearing implant applications.

  20. Laser Processed TiN Reinforced Ti6Al4V Composite Coatings

    PubMed Central

    Balla, Vamsi Krishna; Bhat, Abhimanyu; Bose, Susmita; Bandyopadhyay, Amit

    2011-01-01

    The purpose of this first generation investigation is to evaluate fabrication, in vitro cytotoxicity, cell-materials interactions and tribological performance of TiN particle reinforced Ti6Al4V composite coatings for potential wear resistant load bearing implant applications. The microstructural analysis of the composites was performed using scanning electron microscope and phase analysis was done with X-ray diffraction. In vitro cell-materials interactions, using human fetal osteoblast cell line, have been assessed on these composite coatings and compared with Ti6Al4V alloy control samples. The tribological performance of the coatings were evaluated, in simulated body fluids, up to 1000 m sliding distance under 10N normal load. The results show that the composite coatings contain distinct TiN particles embedded in α + β phase matrix. The average top surface hardness of Ti6Al4V alloy increased from 394 ± 8 HV to 1138 ± 61 HV with 40 wt.% TiN reinforcement. Among the composite coatings, the coatings reinforced with 40 wt. % TiN exhibited the highest wear resistance of 3.74 × 10-6 mm3/Nm, which is lower than the wear rate, 1.04 × 10-5 mm3/Nm, of laser processed CoCrMo alloy tested under identical experimental conditions. In vitro biocompatibility study showed that these composite coatings were non-toxic and provides superior cell-material interactions compared to Ti6Al4V control, as a result of their high surface energy. In summary, excellent in vitro wear resistance and biocompatibility of present laser processed TiN reinforced Ti6Al4V alloy composite coatings clearly show their potential as wear resistant contact surfaces for load bearing implant applications. PMID:22301169

  1. Dynamic mechanical analysis of fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Reed, K. E.

    1979-01-01

    Dynamic mechanical and thermal properties were determined for unidirectional epoxy/glass composites at various fiber orientation angles. Resonant frequency and relative logarithmic decrement were measured as functions of temperature. In low angle and longitudinal specimens a transition was observed above the resin glass transition temperature which was manifested mechanically as an additional damping peak and thermally as a change in the coefficient of thermal expansion. The new transition was attributed to a heterogeneous resin matrix induced by the fiber. The temperature span of the glass-rubber relaxation was found to broaden with decreasing orientation angle, reflecting the growth of fiber contribution and exhibiting behavior similar to that of Young's modulus. The change in resonant frequency through the glass transition was greatest for samples of intermediate fiber angle, demonstrating behavior similar to that of the longitudinal shear modulus.

  2. Study of composites as substrate materials in large space telescopes

    NASA Technical Reports Server (NTRS)

    Sharma, A. V.

    1979-01-01

    Nonmetallic composites such as the graphite/epoxy system were investigated as possible substrates for the primary mirror of the large space telescope. The possible use of fiber reinforced metal matrix composites was reviewed in the literature. Problems arising out of the use of composites as substrate materials such as grinding, polishing, adherence of reflective coatings, rigidity of substrate, hygrospcopici tendency of the composites, thermal and temporal stability and other related problems were examined.

  3. DOE Automotive Composite Materials Research: Present and Future Efforts

    SciTech Connect

    Warren, C.D.

    1999-08-10

    One method of increasing automotive energy efficiency is through mass reduction of structural components by the incorporation of composite materials. Significant use of glass reinforced polymers as structural components could yield a 20--30% reduction in vehicle weight while the use of carbon fiber reinforced materials could yield a 40--60% reduction in mass. Specific areas of research for lightweighting automotive components are listed, along with research needs for each of these categories: (1) low mass metals; (2) polymer composites; and (3) ceramic materials.

  4. Monitoring of reinforced composites processed by microwave radiation using fiber-Bragg gratings

    NASA Astrophysics Data System (ADS)

    Barrera, David; Roig, Inma; Sales, Salvador; Emmerich, Rudolf

    2014-05-01

    The use of microwave radiation for curing carbon-fiber reinforced polymer materials (CFRP) can solve the nonhomogeneous heating problems when using conventional techniques based on the use of catalysts and can reduce the processing times. Optical fiber sensors have well-known advantages for Fiber Reinforced Composites (FRC) monitoring. In this paper fiber Bragg gratings (FBGs) are used for online monitoring of the residual stress and distortions produced during the microwave curing process. The CFRP samples are composed by layers of unidirectional carbon fibers and epoxy resin. The results show a very different behavior between the direction of carbon fibers and the perpendicular direction. Results are compared with the conventional processing technique.

  5. Development of highly reinforced amorphous matrix composites. Final report, 17 November 1997--16 May 1998

    SciTech Connect

    Tenhover, M.; Peker, A.

    1998-06-15

    Amorphous matrix composites (AMC) were developed and fabricated using Tungsten and carbon reinforcements. Emphasis was placed on achieving high loading fractions of the reinforcing materials. A process to commercially manufacture AMC`s was studied and mapped. The feasibility of the process was also determined. Rods of AMC were fabricated using this process. The samples were fully dense and the amorphous nature of the binding matrix was confirmed. The results from this study will provide valuable process data for the future development of AMC products.

  6. Simulated space environmental effects on a polyetherimide and its carbon fiber-reinforced composites

    NASA Technical Reports Server (NTRS)

    Kern, Kristen T.; Stancil, Phillip C.; Harries, Wynford L.; Long, Edward R., Jr.; Thibeault, Sheila A.

    1993-01-01

    The selection of materials for spacecraft construction requires identification of candidate materials which can perform reliably in the space environment. Understanding the effects of the space environment on the materials is an important step in the selection of candidate materials. This work examines the effects of energetic electrons, thermal cycling, electron radiation in conjunction with thermal cycling, and atomic oxygen on a thermoplastic polyetherimide and its carbon-fiber-reinforced composites. Composite materials made with non-sized fibers as well as materials made with fibers sized with an epoxy were evaluated. The mechanical and thermomechanical properties of the materials were studied and spectroscopic techniques were used to investigate the mechanisms for the observed effects. Considerations for future material development are suggested.

  7. Transverse isotropic modeling of the ballistic response of glass reinforced plastic composites

    SciTech Connect

    Taylor, P.A.

    1997-12-31

    The use of glass reinforced plastic (GRP) composites is gaining significant attention in the DoD community for use in armor applications. These materials typically possess a laminate structure consisting of up to 100 plies, each of which is constructed of a glass woven roving fabric that reinforces a plastic matrix material. Current DoD attention is focused on a high strength, S-2 glass cross-weave (0/90) fabric reinforcing a polyester matrix material that forms each ply of laminate structure consisting anywhere from 20 to 70 plies. The resulting structure displays a material anisotropy that is, to a reasonable approximation, transversely isotropic. When subjected to impact and penetration from a metal fragment projectile, the GRP displays damage and failure in an anisotropic manner due to various mechanisms such as matrix cracking, fiber fracture and pull-out, and fiber-matrix debonding. In this presentation, the author will describe the modeling effort to simulate the ballistic response of the GRP material described above using the transversely isotropic (TI) constitutive model which has been implemented in the shock physics code, CTH. The results of this effort suggest that the model is able to describe the delamination behavior of the material but has some difficulty capturing the in-plane (i.e., transverse) response of the laminate due to its cross-weave fabric reinforcement pattern which causes a departure from transverse isotropy.

  8. Interface Characterization in Fiber-Reinforced Polymer-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Naya, F.; Molina-Aldareguía, J. M.; Lopes, C. S.; González, C.; LLorca, J.

    2016-10-01

    A novel methodology is presented and applied to measure the shear interface strength of fiber-reinforced polymers. The strategy is based in fiber push-in tests carried out on the central fiber of highly-packed fiber clusters with hexagonal symmetry, and it is supported by a detailed finite element analysis of the push-in test to account for the influence of hygrothermal residual stresses, fiber constraint and fiber anisotropy on the interface strength. Examples of application are presented to determine the shear interface strength in carbon and glass fiber composites reinforced with either thermoset or thermoplastic matrices. In addition, the influence of the environment (either dry or wet conditions) on the interface strength in C/epoxy composites is demonstrated.

  9. Indirect aesthetic adhesive restoration with fibre-reinforced composite resin.

    PubMed

    Corona, S A M; Garcia, P P N S; Palma-Dibb, R G; Chimello, D T

    2004-10-01

    This paper describes the restoration of an endodontically treated upper first molar with a fibre-reinforced onlay indirect composite resin restoration. The clinical and radiographic examination confirmed that the tooth had suffered considerable loss of structure. Therefore, an indirect restoration was indicated. First, a core was built with resin-modified glass ionomer cement, followed by onlay preparation, mechanical/chemical gingival retraction and impression with addition-cured silicone. After the laboratory phase, the onlay was tried in, followed by adhesive bonding and occlusal adjustment. It can be concluded that fibre-reinforced aesthetic indirect composite resin restoration represented, in the present clinical case, an aesthetic and conservative treatment option. However, the use of fibres should be more extensively studied to verify the real improvement in physical and mechanical properties.

  10. Mechanical Performance of Rotomoulded Wollastonite-Reinforced Polyethylene Composites

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaowen; Easteal, Allan J.; Bhattacharyya, Debes

    This paper describes the development of a new processing technology for rotational moulding of wollastonite microfibre (WE) reinforced polyethylene (PE). Manufacturing wollastonite-polyethylene composites involved blending, compounding by extrusion, and granulating prior to rotational moulding. The properties of the resulting composites were characterised by tensile and impact strength measurements. The results show that tensile strength increases monotonically with the addition of wollastonite fibres, but impact strength is decreased. In addition, the processability is also decreased after adding more than 12 vol% WE because of increased viscosity. The effects of a coupling agent, maleated polyethylene (MAPE), on the mechanical performance and processability were also investigated. SEM analysis reveals good adhesion between the fibre reinforcements and polyethylene matrix at the fracture surface with the addition of MAPE. It is proposed that fillers with small particles with high aspect ratio (such as wollastonite) provide a large interfacial area between the filler and the polymer matrix, and may influence the mobility of the molecular chains.

  11. Discontinuously reinforced intermetallic matrix composites via XD synthesis. [exothermal dispersion

    NASA Technical Reports Server (NTRS)

    Kumar, K. S.; Whittenberger, J. D.

    1992-01-01

    A review is given of recent results obtained for discontinuously reinforced intermetallic matrix composites produced using the XD process. Intermetallic matrices investigated include NiAl, multiphase NiAl + Ni2AlTi, CoAl, near-gamma titanium aluminides, and Ll2 trialuminides containing minor amounts of second phase. Such mechanical properties as low and high temperature strength, compressive and tensile creep, elastic modulus, ambient ductility, and fracture toughness are discussed as functions of reinforcement size, shape, and volume fraction. Microstructures before and after deformation are examined and correlated with measured properties. An observation of interest in many of the systems examined is 'dispersion weakening' at high temperatures and high strain rates. This behavior is not specific to the XD process; rather similar observations have been reported in other discontinuous composites. Proposed mechanisms for this behavior are presented.

  12. Thermal conductivity of boron nitride reinforced polyethylene composites

    SciTech Connect

    Zhou Wenying Qi Shuhua; An Qunli; Zhao Hongzhen; Liu Nailiang

    2007-10-02

    The thermal conductivity of boron nitride (BN) particulates reinforced high density polyethylene (HDPE) composites was investigated under a special dispersion state of BN particles in HDPE, i.e., BN particles surrounding HDPE particles. The effects of BN content, particle size of HDPE and temperature on the thermal conductivity of the composites were discussed. The results indicate that the special dispersion of BN in matrix provides the composites with high thermal conductivity; moreover, the thermal conductivity of composites is higher for the larger size HDPE than for the smaller size one. The thermal conductivity increases with increasing filler content, and significantly deviates the predictions from the theoretic models. It is found also that the combined use of BN particles and alumina short fiber obtains higher thermal conductivity of composites compared to the BN particles used alone.

  13. Glass fibres reinforced polyester composites degradation monitoring by surface analysis

    NASA Astrophysics Data System (ADS)

    Croitoru, Catalin; Patachia, Silvia; Papancea, Adina; Baltes, Liana; Tierean, Mircea

    2015-12-01

    The paper presents a novel method for quantification of the modifications that occur on the surface of different types of gel-coated glass fibre-reinforced polyester composites under artificial UV-ageing at 254 nm. The method implies the adsorption of an ionic dye, namely methylene blue, on the UV-aged composite, and computing the CIELab colour space parameters from the photographic image of the coloured composite's surface. The method significantly enhances the colour differences between the irradiated composites and the reference, in contrast with the non-coloured ones. The colour modifications that occur represent a good indicative of the surface degradation, alteration of surface hydrophily and roughness of the composite and are in good correlation with the ATR-FTIR spectroscopy and optical microscopy results. The proposed method is easier, faster and cheaper than the traditional ones.

  14. Dynamic tensile strength of glass fiber reinforced pultruded composites

    SciTech Connect

    Dutta, P.K.; Kumar, M.M.; Hui, D.

    1994-12-31

    This paper discusses the stress-strain behavior, fracture strength, influence of low temperature, and energy absorption in the diametral tensile splitting fracturing of a Glass Fiber Reinforced Polymer Composite. Experiments were conducted at low-temperature in a thermal chamber installed on a servo-hydraulic universal testing machine. The tensile strength was determined by diametral compression of disc samples at 24, {minus}5 and {minus}40 C.

  15. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    SciTech Connect

    Besmann, T.M.; Stinton, D.P.; Matlin, W.M.; Liaw, P.K.

    1996-08-01

    Processing equipment for the infiltration of fiber-reinforced composite tubes is being designed that incorporates improvements over the equipment used to infiltrate disks. A computer-controlled machine-man interface is being developed to allow for total control of all processing variables. Additionally, several improvements are being made to the furnace that will reduce the complexity and cost of the process. These improvements include the incorporation of free standing preforms, cast mandrels, and simpler graphite heating elements.

  16. Elastic/viscoplastic behavior of fiber-reinforced thermoplastic composites

    NASA Technical Reports Server (NTRS)

    Wang, C.; Sun, C. T.; Gates, T. S.

    1990-01-01

    An elastic/viscoplastic constitutive model was used to characterize the nonlinear and rate dependent behavior of a continuous fiber-reinforced thermoplastic composite. This model was incorporated into a finite element program for the analysis of laminated plates and shells. Details on the finite element formulation with the proposed constitutive model were presented. The numerical results were compared with experimental data for uniaxial tension and three-point bending tests of (+ or - 45 deg)3s APC-2 laminates.

  17. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    SciTech Connect

    Besmann, T.M.; Matlin, W.M.; Stinton, D.P.; Liaw, P.K.

    1996-06-01

    Processing equipment for the infiltration of fiber-reinforced composite tubes is being designed that incorporates improvements over the equipment used to infiltrate disks. A computer-controlled machine-man interface is being developed to allow for total control of all processing variables. Additionally, several improvements are being made to the furnace that will reduce the complexity and cost of the process. These improvements include the incorporation of free standing preforms, cast mandrels, and simpler graphite heating elements.

  18. Mechanical properties and shape memory effect of short fiber reinforced SMP composite

    NASA Astrophysics Data System (ADS)

    Yu, Kai; Lv, Haibao; Yi, Guo; Liu, Yanju; Leng, Jinsong

    2010-04-01

    By adding randomly distributed short fiber into a shape memory polymer (SMP) matrix, both the mechanical properties and the shape memory behavior are improved significantly, overcoming some traditional defects of SMP composite reinforced by long fiber and particles. In this paper, the short fiber reinforced SMP composite are developed for the improvement of the mechanical and thermal properties of styrene-based SMP bulk. The specimens with different chopped fiber weight fractions are prepared, and then their mechanical behavior and electrical properties are investigated. As a result, the resistance against mechanical and thermal mechanical loads in the developed materials increases due to the role of reinforcement fiber. For the conducting composite filled with short carbon fiber, not only the actuation of SMP composite can be driven by low voltage, but also its tensile, bending strength, glass transition temperature, storage modulus and thermal conductivity increase by a factor of filler content of carbon fiber increasing. The results show meaningful guidance for further design and the performance evaluation of such composite materials.

  19. Additive Manufacturing and Characterization of Polylactic Acid (PLA) Composites Containing Metal Reinforcements

    NASA Technical Reports Server (NTRS)

    Kuentz, Lily; Salem, Anton; Singh, M.; Halbig, M. C.; Salem, J. A.

    2016-01-01

    Additive manufacturing of polymeric systems using 3D printing has become quite popular recently due to rapid growth and availability of low cost and open source 3D printers. Two widely used 3D printing filaments are based on polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) systems. PLA is much more environmentally friendly in comparison to ABS since it is made from renewable resources such as corn, sugarcane, and other starches as precursors. Recently, polylactic acid-based metal powder containing composite filaments have emerged which could be utilized for multifunctional applications. The composite filaments have higher density than pure PLA, and the majority of the materials volume is made up of polylactic acid. In order to utilize functionalities of composite filaments, printing behavior and properties of 3-D printed composites need to be characterized and compared with the pure PLA materials. In this study, pure PLA and composite specimens with different metallic reinforcements (Copper, Bronze, Tungsten, Iron, etc) were 3D printed at various layer heights and resulting microstructures and properties were characterized. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) behavior of filaments with different reinforcements were studied. The microscopy results show an increase in porosity between 3-D printed regular PLA and the metal composite PLA samples, which could produce weaker mechanical properties in the metal composite materials. Tensile strength and fracture toughness behavior of specimens as a function of print layer height will be presented.

  20. Long-term compressive property durability of carbon fibre-reinforced polyetheretherketone composite in physiological saline.

    PubMed

    Zhang, G; Latour, R A; Kennedy, J M; Del Schutte, H; Friedman, R J

    1996-04-01

    In total hip arthroplasty, concerns such as corrosion and stress shielding associated with stiff metallic femoral components have led to the development of low stiffness advanced fibre-reinforced polymer (FRP) composite femoral components. Carbon fibre-reinforced polyetheretherketone (CF/PEEK) composite material is now one of the primary material systems being considered for composite hip stem development. As a hip stem, a composite material must be able to support a complex state of stress in the in vivo environment without failure. Considering the loading conditions of a hip stem (superimposed compression and bending), and the fact that FRP composites typically possess lower compressive than tensile strength, the compressive behaviour of FRP composites becomes very important for femoral component design. This paper presents an investigation of the long-term durability of 0 degree and 90 degrees compressive strengths of CF/PEEK composite following physiological saline saturation. 0 degree and 90 degrees compressive moduli and Poisson ratio (v12) properties are also reported. Samples were tested following conditioning in physiological saline at 37, 65 and 95 degrees C for time periods from 0 to 5000 h. Dry samples were tested as controls. Results show no significant loss in compressive property values of the saline-saturated or the dry control samples as a function of conditioning time or temperature. PMID:8730962

  1. Fabrication Of Carbon-Boron Reinforced Dry Polymer Matrix Composite Tape

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L.; Cano, Roberto J.; Treasure, Monte; Shahood, Thomas W.

    1999-01-01

    Future generation aerospace vehicles will require specialized hybrid material forms for component structure fabrication. For this reason, high temperature composite prepregs in both dry and wet forms are being developed at NASA Langley Research Center (LaRC). In an attempt to improve compressive properties of carbon fiber reinforced composites, a hybrid carbon-boron tape was developed and used to fabricate composite laminates which were subsequently cut into flexural and compression specimens and tested. The hybrid material, given the designation HYCARB, was fabricated by modifying a previously developed process for the manufacture of dry polymer matrix composite (PMC) tape at LaRC. In this work, boron fibers were processed with IM7/LaRC(TradeMark)IAX poly(amide acid) solution-coated prepreg to form a dry hybrid tape for Automated Tow Placement (ATP). Boron fibers were encapsulated between two (2) layers of reduced volatile, low fiber areal weight poly(amide acid) solution-coated prepreg. The hybrid prepreg was then fully imidized and consolidated into a dry tape suitable for ATP. The fabrication of a hybrid boron material form for tow placement aids in the reduction of the overall manufacturing cost of boron reinforced composites, while realizing the improved compression strengths. Composite specimens were press-molded from the hybrid material and exhibited excellent mechanical properties.

  2. Zirconia toughened SiC whisker reinforced alumina composites small business innovation research

    NASA Technical Reports Server (NTRS)

    Loutfy, R. O.; Stuffle, K. L.; Withers, J. C.; Lee, C. T.

    1987-01-01

    The objective of this phase 1 project was to develop a ceramic composite with superior fracture toughness and high strength, based on combining two toughness inducing materials: zirconia for transformation toughening and SiC whiskers for reinforcement, in a controlled microstructure alumina matrix. The controlled matrix microstructure is obtained by controlling the nucleation frequency of the alumina gel with seeds (submicron alpha-alumina). The results demonstrate the technical feasibility of producing superior binary composites (Al2O3-ZrO2) and tertiary composites (Al2O3-ZrO2-SiC). Thirty-two composites were prepared, consolidated, and fracture toughness tested. Statistical analysis of the results showed that: (1) the SiC type is the key statistically significant factor for increased toughness; (2) sol-gel processing with a-alumina seed had a statistically significant effect on increasing toughness of the binary and tertiary composites compared to the corresponding mixed powder processing; and (3) ZrO2 content within the range investigated had a minor effect. Binary composites with an average critical fracture toughness of 6.6MPam sup 1/2, were obtained. Tertiary composites with critical fracture toughness in the range of 9.3 to 10.1 MPam sup 1/2 were obtained. Results indicate that these composites are superior to zirconia toughened alumina and SiC whisker reinforced alumina ceramic composites produced by conventional techniques with similar composition from published data.

  3. Composite material and method for production of improved composite material

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1996-01-01

    A laminated composite material with improved interlaminar strength and damage tolerance having short rods distributed evenly throughout the composite material perpendicular to the laminae. Each rod is shorter than the thickness of the finished laminate, but several times as long as the thickness of each lamina. The laminate is made by inserting short rods in layers of prepreg material, and then stacking and curing prepreg material with rods inserted therethrough.

  4. Interfacial stresses in shape memory alloy-reinforced composites

    NASA Astrophysics Data System (ADS)

    Hiremath, S. R.; Prajapati, Maulik; Rakesh, S.; Roy Mahapatra, D.

    2014-03-01

    Debonding of Shape Memory Alloy (SMA) wires in SMA reinforced polymer matrix composites is a complex phenomenon compared to other fabric fiber debonding in similar matrix composites. This paper focuses on experimental study and analytical correlation of stress required for debonding of thermal SMA actuator wire reinforced composites. Fiber pull-out tests are carried out on thermal SMA actuator at parent state to understand the effect of stress induced detwinned martensites. An ASTM standard is followed as benchmark method for fiber pull-out test. Debonding stress is derived with the help of non-local shear-lag theory applied to elasto-plastic interface. Furthermore, experimental investigations are carried out to study the effect of Laser shot peening on SMA surface to improve the interfacial strength. Variation in debonding stress due to length of SMA wire reinforced in epoxy are investigated for non-peened and peened SMA wires. Experimental results of interfacial strength variation due to various L/d ratio for non-peened and peened SMA actuator wires in epoxy matrix are discussed.

  5. Nondestructive Evaluation of Carbon Fiber Reinforced Polymer Composites Using Reflective Terahertz Imaging.

    PubMed

    Zhang, Jin; Li, Wei; Cui, Hong-Liang; Shi, Changcheng; Han, Xiaohui; Ma, Yuting; Chen, Jiandong; Chang, Tianying; Wei, Dongshan; Zhang, Yumin; Zhou, Yufeng

    2016-06-14

    Terahertz (THz) time-domain spectroscopy (TDS) imaging is considered a nondestructive evaluation method for composite materials used for examining various defects of carbon fiber reinforced polymer (CFRP) composites and fire-retardant coatings in the reflective imaging modality. We demonstrate that hidden defects simulated by Teflon artificial inserts are imaged clearly in the perpendicular polarization mode. The THz TDS technique is also used to measure the thickness of thin fire-retardant coatings on CFRP composites with a typical accuracy of about 10 micrometers. In addition, coating debonding is successfully imaged based on the time-delay difference of the time-domain waveforms between closely adhered and debonded sample locations.

  6. Compressive and Tensile Behaviours of PLLA Matrix Composites Reinforced with Randomly Dispersed Flax Fibres

    NASA Astrophysics Data System (ADS)

    Roussière, Fabrice; Baley, Christophe; Godard, Grégory; Burr, Dominique

    2012-04-01

    Nowadays, the ecological footprint of a material is becoming tremendously important. The Poly l-Lactide Acid (PLLA) matrix composites reinforced by randomly scattered flax fibres have mechanical properties similar to polyester/glass composites [1], lower environmental impacts and can be compost at the end of their lives. In this study, the mechanical characterization of biocomposites has been pushed further with the determination of the compressive and tensile properties. Furthermore, the mechanical properties of single flax fibres have been measured and implemented in a micro-mechanical estimation of the composite elastic modulus. Tensile and compressive stiffness determined by the mechanical analyses show very good correlations with the mathematical estimation.

  7. Analytical and experimental investigation of aircraft metal structures reinforced with filamentary composites. Phase 1: Concept development and feasibility

    NASA Technical Reports Server (NTRS)

    Oken, S.; June, R. R.

    1971-01-01

    The analytical and experimental investigations are described in the first phase of a program to establish the feasibility of reinforcing metal aircraft structures with advanced filamentary composites. The interactions resulting from combining the two types of materials into single assemblies as well as their ability to function structurally were studied. The combinations studied were boron-epoxy reinforced aluminum, boron-epoxy reinforced titanium, and boron-polyimide reinforced titanium. The concepts used unidirectional composites as reinforcement in the primary loading direction and metal for carrying the transverse loads as well as its portion of the primary load. The program established that several realistic concepts could be fabricated, that these concepts could perform to a level that would result in significant weight savings, and that there are means for predicting their capability within a reasonable degree of accuracy. This program also encountered problems related to the application of polyimide systems that resulted in their relatively poor and variable performance.

  8. Method of producing a silicon carbide fiber reinforced strontium aluminosilicate glass-ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor)

    1995-01-01

    A SrO-Al2O3-2SrO2 (SAS) glass ceramic matrix is reinforced with CVD SiC continuous fibers. This material is prepared by casting a slurry of SAS glass powder into tapes. Mats of continuous CVD-SiC fibers are alternately stacked with the matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite. Organic constituents are burned out of the 'green' composite, and the remaining interim material is hot pressed.

  9. Silicon carbide fiber reinforced strontium aluminosilicate glass-ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam (Inventor)

    1992-01-01

    A SrO-Al2O3 - 2SrO2 (SAS) glass ceramic matrix is reinforced with CVD SiC continuous fibers. This material is prepared by casting a slurry of SAS glass powder into tapes. Mats of continuous CVD-SiC fibers are alternately stacked with the matrix tapes. This tape-mat stack is warm-pressed to produce a 'green' composite. Organic constituents are burned out of the 'green' composite, and the remaining interim material is hot pressed.

  10. Simulations of Fiber Distribution Effects in Fiber-Reinforced Cement Composites

    SciTech Connect

    Bolander, John E.; Lim, Yun Mook

    2008-02-15

    This paper describes a lattice model for coupled moisture transport/stress analyses of fiber-reinforced cement composites (FRCC). Each fiber, and its interface with the matrix material, is explicitly represented within the three-dimensional material volume. This enables the direct study of fiber orientation and distribution effects on composite performance. Realistic, nonuniform fiber distributions can be specified as model input. Basic applications of the model are presented, with emphasis toward simulating the durability mechanics of FRCC exposed to drying environments. The modeling of functionally graded FRCC is an obvious potential extension of this work.

  11. Reinforcement Learning Based Web Service Compositions for Mobile Business

    NASA Astrophysics Data System (ADS)

    Zhou, Juan; Chen, Shouming

    In this paper, we propose a new solution to Reactive Web Service Composition, via molding with Reinforcement Learning, and introducing modified (alterable) QoS variables into the model as elements in the Markov Decision Process tuple. Moreover, we give an example of Reactive-WSC-based mobile banking, to demonstrate the intrinsic capability of the solution in question of obtaining the optimized service composition, characterized by (alterable) target QoS variable sets with optimized values. Consequently, we come to the conclusion that the solution has decent potentials in boosting customer experiences and qualities of services in Web Services, and those in applications in the whole electronic commerce and business sector.

  12. Low Cost Fabrication of Silicon Carbide Based Ceramics and Fiber Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.; Levine, S. R.

    1995-01-01

    A low cost processing technique called reaction forming for the fabrication of near-net and complex shaped components of silicon carbide based ceramics and composites is presented. This process consists of the production of a microporous carbon preform and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture with very good control of pore volume and pore size thereby yielding materials with tailorable microstructure and composition. Mechanical properties (elastic modulus, flexural strength, and fracture toughness) of reaction-formed silicon carbide ceramics are presented. This processing approach is suitable for various kinds of reinforcements such as whiskers, particulates, fibers (tows, weaves, and filaments), and 3-D architectures. This approach has also been used to fabricate continuous silicon carbide fiber reinforced ceramic composites (CFCC's) with silicon carbide based matrices. Strong and tough composites with tailorable matrix microstructure and composition have been obtained. Microstructure and thermomechanical properties of a silicon carbide (SCS-6) fiber reinforced reaction-formed silicon carbide matrix composites are discussed.

  13. Quantitative non-destructive evaluation of composite materials based on ultrasonic parameters

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1987-01-01

    Research into the nondestructive evaluation of advanced reinforced composite laminates is summarized. The applicability of the Framers-Kronig equations to the nondestructive evaluation of composite materials is described.

  14. Rehabilitation of advanced periodontal problems by using a combination of a glass fiber-reinforced composite resin bridge and splint.

    PubMed

    Kumbuloglu, Ovul; Aksoy, Gokhan; User, Atilla

    2008-02-01

    Rehabilitation of masticatory ability in patients with reduced periodontal tissue support is a multiple challenge in dentistry. It has been shown that tooth mobility is reduced by a splint in place. Splints may be constructed of various materials. Development of fiber-reinforced composite materials offers a new and conservative approach for tooth replacement and stabilization. This case report describes the rehabilitation and 2-year follow-up of a patient with advanced periodontal problems by using a glass fiber-reinforced composite resin material. PMID:18389738

  15. Buckling and Vibration of Fiber Reinforced Composite Plates With Nanofiber Reinforced Matrices

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Murthy, Pappu L. N.

    2011-01-01

    Anisotropic composite plates were evaluated with nanofiber reinforced matrices (NFRM). The nanofiber reinforcement volumes ratio in the matrix was 0.01. The plate dimensions were 20 by 10 by 1.0 in. (508 by 254 by 25.4 mm). Seven different loading condition cases were evaluated for buckling: three for uniaxial loading, three for pairs of combined loading, and one with three combined loadings. The anisotropy arose from the unidirectional plates having been at 30 from the structural axis. The anisotropy had a full 6 by 6 rigidities matrix which were satisfied and solved by a Galerkin buckling algorithm. For vibration the same conditions were used with the applied cods about a small fraction of the buckling loads. The buckling and vibration results showed that the NFRM plates buckled at about twice those with conventional matrix.

  16. Short fiber-reinforced cementitious composites manufactured by extrusion technology

    NASA Astrophysics Data System (ADS)

    Mu, Bin

    The use of short fibers in the cement-based composites is more preferable due to the simplicity and economic nature in fabrication. The short fiber-reinforced cementitious composite (SFRCC) manufactured by the extrusion method show a great improvement in both strength and toughness as compared to the fiber-reinforced composites made by traditional casting methods. This improvement can be attributed to the achievement of low porosity and good interfacial bond in SFRCC under high shear and compressive stress during the extrusion process. In the present study, products of cylinders, sheets, pipes and honeycomb panels incorporating various mineral admixtures such as slag, silica fume, and metakaolin have been manufactured by the extrusion technology. Two kinds of short fibers, ductile polyvinyl alcohol (PVA) fibers and stronger but less ductile glass fibers, were used as the reinforcement in the products. After the specimens were extruded, tension, bending and impact tests were performed to study the mechanical properties of these products. The rheology test was performed for each mix to determine its viscoelastic properties. In addition, X-ray diffraction (XRD) and scanning electronic microscopy (SEM) technology were employed to get an insight view of the mechanism. A freezing and thawing experiment (ASTM C666) was also carried to investigate the durability of the specimens. Based on these experimental results, the reinforcing behaviors of these two short fibers were investigated. The enhancing effects of silica fume and metakaolin on the extrudates were compared and discussed. Finally, the optimum amount of silica fume and slag was proposed. Since the key point for a successful extrusion is the properly designed rheology which controls both internal and external flow properties of extrudate, a nonlinear viscoelastic model was applied to investigate the rheological behavior of a movable fresh cementitious composite in an extruder channel. The velocity profile of the

  17. Self-reinforced composites of hydroxyapatite-coated PLLA fibers: fabrication and mechanical characterization.

    PubMed

    Charles, Lyndon F; Kramer, Erica R; Shaw, Montgomery T; Olson, James R; Wei, Mei

    2013-01-01

    Self-reinforced composites (SRCs) are materials where both the matrix and fiber-reinforcing phase are made up of the same polymer. Improved bonding can be achieved with self-reinforced composites compared to traditional dual-polymer, fiber-reinforced composites owing to the identical chemistry of the components in SRCs. Bonding between the fiber and matrix phase is an important factor in applications where mechanical stability is required, such as in the field of bone repair. In this study, we prepared bioabsorbable poly(L-lactic acid)/hydroxyapatite (PLLA/HA) self-reinforced composites via a three-step process that includes surface etching of the fiber, the deposition of the HA coating onto the PLLA fibers through immersion in simulated body fluid (SBF), and hot compaction molding. Although coated with a layer of HA, self-reinforced composites were successfully generated by hot compaction. The effects of compaction time (15 and 30 min), compaction temperature (140, 150, 155, 160, 165, and 170 °C), and HA wt% (0, 5, 10, and 15 wt%) on flexural mechanical properties were studied. Mechanical test results indicated that in unfilled (no HA) PLLA SRCs, compaction time and temperature increased the flexural modulus of the composites tested. Based on the results obtained for unfilled composites, a single compaction time and temperature condition of 15 min and 170 °C were selected to study the effect of HA loading on the composite mechanical properties. HA was successfully loaded onto the fibers at 0, 5, 10, and 15 wt% before hot compaction and was found to significantly increase flexural modulus (P=0.0001). Modulus values ranged from 8.3 GPa±0.5 (0 wt% HA) to 9.7 GPa±0.6 (15 wt% HA). Microscopy results suggest that the HA in these composites forms a nodular-like structure along the fibers, which allows polymer-polymer contact yet prevents longitudinal shear. The procedure used successfully generated composites with flexural moduli near the lower range of bone that may

  18. Prediction of plastic deformation of fiber-reinforced copper matrix composites

    NASA Astrophysics Data System (ADS)

    You, J. H.; Bolt, H.

    2002-12-01

    Copper alloys have been considered as a structural material for the heat sink of the actively cooled plasma facing components due to its high thermal conductivity. However, the decrease of strength at elevated temperatures and their large thermal expansion are detrimental aspects. The fiber-reinforced copper matrix composites (FRCMC) can be a potential candidate as heat sink material. In this article, the non-linear constitutive behavior of the FRCMCs reinforced with continuous SiC fibers is predicted. To this end, a simulation tool was developed using analytical micro-mechanics theory. The effects of thermal residual stress and of the matrix flow stress are estimated. The results show that these composites have a significantly increased work-hardening rate compared to the unreinforced matrix metals. The thermal residual stress has a marked influence on the initial yield surface as well as on the stress-strain curve showing asymmetry in tension and compression.

  19. The Cost of Automotive Polymer Composites: A Review and Assessment of DOE's Lightweight Materials Composites Research

    SciTech Connect

    Das, S.

    2001-01-26

    Polymer composite materials have been a part of the automotive industry for several decades, with early application in the 1953 Corvette. These materials have been used for applications with low production volumes, because of their shortened lead times and lower investment costs relative to conventional steel fabrication. Important drivers of the growth of polymer composites have been the reduced weight and parts consolidation opportunities the material offers, as well as design flexibility, corrosion resistance, material anisotropy, and mechanical properties. Although these benefits are well recognized by the industry, polymer composite use has been dampened by high material costs, slow production rates, and to a lesser extent, concerns about recyclability. Also impeding large scale automotive applications is a curious mixture of concerns about material issues such as crash energy absorption, recycling challenges, competitive and cost pressures, the industry's general lack of experience and comfort with the material, and industry concerns about its own capabilities (Flynn and Belzowski 1995). Polymer composite materials are generally made of two or more material components--fibers, either glass or carbon, reinforced in the matrix of thermoset or thermoplastic polymer materials. The glass-reinforced thermoset composites are the most commonly used composite in automotive applications today, but thermoplastic composites and carbon fiber-reinforced thermosets also hold potential. It has been estimated that significant use of glass-reinforced polymers as structural components could yield a 20-35% reduction in vehicle weight. More importantly, the use of carbon fiber-reinforced materials could yield a 40-65% reduction in weight.

  20. Erosion-resistant composite material

    DOEpatents

    Finch, C.B.; Tennery, V.J.; Curlee, R.M.

    A highly erosion-resistant composite material is formed of chemical vapor-deposited titanium diboride on a sintered titanium diboride-nickel substrate. This material may be suitable for use in cutting tools, coal liquefaction systems, etc.

  1. Development of explosively bonded TZM wire reinforced Columbian sheet composites

    NASA Technical Reports Server (NTRS)

    Otto, H. E.; Carpenter, S. H.

    1972-01-01

    Methods of producing TZM molybdenum wire reinforced C129Y columbium alloy composites by explosive welding were studied. Layers of TZM molybdenum wire were wound on frames with alternate layers of C129Y columbium alloy foil between the wire layers. The frames held both the wire and foils in place for the explosive bonding process. A goal of 33 volume percent molybdenum wire was achieved for some of the composites. Variables included wire diameter, foil thickness, wire separation, standoff distance between foils and types and amounts of explosive. The program was divided into two phases: (1) development of basic welding parameters using 5 x 10-inch composites, and (2) scaleup to 10 x 20-inch composites.

  2. Objective Surface Evaluation of Fiber Reinforced Polymer Composites

    NASA Astrophysics Data System (ADS)

    Palmer, Stuart; Hall, Wayne

    2013-08-01

    The mechanical properties of advanced composites are essential for their structural performance, but the surface finish on exterior composite panels is of critical importance for customer satisfaction. This paper describes the application of wavelet texture analysis (WTA) to the task of automatically classifying the surface finish properties of two fiber reinforced polymer (FRP) composite construction types (clear resin and gel-coat) into three quality grades. Samples were imaged and wavelet multi-scale decomposition was used to create a visual texture representation of the sample, capturing image features at different scales and orientations. Principal components analysis was used to reduce the dimensionality of the texture feature vector, permitting successful classification of the samples using only the first principal component. This work extends and further validates the feasibility of this approach as the basis for automated non-contact classification of composite surface finish using image analysis.

  3. Constitutive modeling of fiber-reinforced cement composites

    NASA Astrophysics Data System (ADS)

    Boulfiza, Mohamed

    The role of fibers in the enhancement of the inherently low tensile stress and strain capacities of fiber reinforced cementitious composites (FRC) has been addressed through both the phenomenological, using concepts of continuum damage mechanics, and micro-mechanical approaches leading to the development of a closing pressure that could be used in a cohesive crack analysis. The observed enhancements in the matrix behavior is assumed to be related to the ability of the material to transfer stress across cracks. In the micromechanics approach, this is modeled by the introduction of a nonlinear closing pressure at the crack lips. Due to the different nature of cracking in the pre-peak and post peak regimes, two different micro-mechanical models of the cohesive pressure have been proposed, one for the strain hardening stage and another for the strain softening regime. This cohesive pressure is subsequently incorporated into a finite element code so that a nonlinear fracture analysis can be carried out. On top of the fact that a direct fracture analysis has been performed to predict the response of some FRC structural elements, a numerical procedure for the homogenization of FRC materials has been proposed. In this latter approach, a link is established between the cracking taking place at the meso-scale and its mechanical characteristics as represented by the Young's modulus. A parametric study has been carried out to investigate the effect of crack patterning and fiber volume fractions on the overall Young's modulus and the thermodynamic force associated with the tensorial damage variable. After showing the usefulness and power of phenomenological continuum damage mechanics (PCDM) in the prediction of ERC materials' response to a stimuli (loading), a combined PCDM-NLFMsp1 approach is proposed to model (predict, forecast) the complete response of the composite up to failure. Based on experimental observations, this approach assumes that damage mechanics which predicts

  4. Assessment of probability of detection of delaminations in fiber-reinforced composites

    NASA Technical Reports Server (NTRS)

    Chern, E. J.; Chu, H. P.; Yang, J. N.

    1991-01-01

    Delamination is one of the critical defects in composite materials and structures. An ultrasonic C-scan imaging technique which maps out the acoustic impedance mismatched areas with respect to the sample coordinates, is particularly well suited for detecting and characterizing delaminations in composites. To properly interpret the results, it is necessary to correlate the indications with the detection limits and probability of detection (POD) of the ultrasonic C-scan imaging technique. The baseline information on the assessment of POD of delaminations in composite materials and structures is very beneficial to the evaluation of spacecraft materials. In this study, we review the principle of POD, describe the laboratory set-up and procedure, and present the experimental results as well as assessment of POD of delaminations in fiber reinforced composite panels using ultrasonic C-scan techniques.

  5. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1981-01-01

    The composite aircraft program component (CAPCOMP) is a graduate level project conducted in parallel with a composite structures program. The composite aircraft program glider (CAPGLIDE) is an undergraduate demonstration project which has as its objectives the design, fabrication, and testing of a foot launched ultralight glider using composite structures. The objective of the computer aided design (COMPAD) portion of the composites project is to provide computer tools for the analysis and design of composite structures. The major thrust of COMPAD is in the finite element area with effort directed at implementing finite element analysis capabilities and developing interactive graphics preprocessing and postprocessing capabilities. The criteria for selecting research projects to be conducted under the innovative and supporting research (INSURE) program are described.

  6. Damage-tolerant composite materials produced by stitching carbon fibers

    NASA Technical Reports Server (NTRS)

    Dow, Marvin B.; Smith, Donald L.

    1989-01-01

    NASA-Langley has undertaken the investigation of composite damage-tolerance enhancement and fabrication economies-maximization via reinforcement-stitching, in combination with resin transfer molding. Attention is given to results obtained by an experimental evaluation of composites tailored for damage tolerance by stitching layers of dry carbon-fiber fabric with closely-spaced threads, in order to furnish through-the-thickness reinforcement. Various stitching patterns and thread materials have been evaluated, using flat-plate specimens; blade-stiffened structural elements have been fabricated and tested. The results presented indicate that stitched laminates furnish damage tolerance performance comparable to that of more expensive, toughened-matrix composites.

  7. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, Robert G.; Wiberley, Stephen E.

    1988-01-01

    A decade long program to develop critical advanced composite technology in the areas of physical properties, structural concept and analysis, manufacturing, reliability, and life predictions is reviewed. Specific goals are discussed. The status of the chemical vapor deposition effects on carbon fiber properties; inelastic deformation of metal matrix laminates; fatigue damage in fibrous MMC laminates; delamination fracture toughness in thermoplastic matrix composites; and numerical analysis of composite micromechanical behavior are presented.

  8. Nondestructive evaluation of advanced ceramic composite materials

    SciTech Connect

    Lott, L.A.; Kunerth, D.C.; Walter, J.B.

    1991-09-01

    Nondestructive evaluation techniques were developed to characterize performance degrading conditions in continuous fiber-reinforced silicon carbide/silicon carbide composites. Porosity, fiber-matrix interface bond strength, and physical damage were among the conditions studied. The material studied is formed by chemical vapor infiltration (CVI) of the matrix material into a preform of woven reinforcing fibers. Acoustic, ultrasonic, and vibration response techniques were studied. Porosity was investigated because of its inherent presence in the CVI process and of the resultant degradation of material strength. Correlations between porosity and ultrasonic attenuation and velocity were clearly demonstrated. The ability of ultrasonic transmission scanning techniques to map variations in porosity in a single sample was also demonstrated. The fiber-matrix interface bond was studied because of its importance in determining the fracture toughness of the material. Correlations between interface bonding and acoustic and ultrasonic properties were observed. These results are presented along with those obtained form acoustic and vibration response measurements on material samples subjected to mechanical impact damage. This is the final report on research sponsored by the US Department of Energy, Fossil Energy Advanced Research and Technology Development Materials Program. 10 refs., 24 figs., 2 tabs.

  9. Influence of thermal residual stress on behaviour of metal matrix composites reinforced with particles

    NASA Astrophysics Data System (ADS)

    Guzmán, R. E.; Hernández Arroyo, E.

    2016-02-01

    The properties of a metallic matrix composites materials (MMC's) reinforced with particles can be affected by different events occurring within the material in a manufacturing process. The existence of residual stresses resulting from the manufacturing process of these materials (MMC's) can markedly differentiate the curves obtained in tensile tests obtained from compression tests. One of the themes developed in this work is the influence of residual stresses on the mechanical behaviour of these materials. The objective of this research work presented is numerically estimate the thermal residual stresses using a unit cell model for the Mg ZC71 alloy reinforced with SiC particles with volume fraction of 12% (hot-forging technology). The MMC's microstructure is represented as a three dimensional prismatic cube-shaped with a cylindrical reinforcing particle located in the centre of the prism. These cell models are widely used in predicting stress/strain behaviour of MMC's materials, in this analysis the uniaxial stress/strain response of the composite can be obtained through the calculation using the commercial finite-element code.

  10. Discontinuous Fiber-reinforced Composites above Critical Length

    PubMed Central

    Petersen, R.C.

    2014-01-01

    Micromechanical physics of critical fiber length, describing a minimum filament distance for resin impregnation and stress transfer, has not yet been applied in dental science. As a test of the hypothesis that 9-micron-diameter, 3-mm-long quartz fibers would increase mechanical strength over particulate-filled composites, photocure-resin-pre-impregnated discontinuous reinforcement was incorporated at 35 wt% into 3M Corporation Z100, Kerr Corporation HerculiteXRV, and an experimental photocure paste with increased radiopaque particulate. Fully articulated four-point bend testing per ASTM C 1161-94 for advanced ceramics and Izod impact testing according to a modified unnotched ASTM D 256-00 specification were then performed. All photocure-fiber-reinforced composites demonstrated significant improvements over particulate-filled compounds (p < 0.001) for flexural strength, modulus, work of fracture, strain at maximum load, and Izod toughness, with one exception for the moduli of Z100 and the experimental reinforced paste. The results indicate that inclusion of pre-impregnated fibers above the critical aspect ratio yields major advancements regarding the mechanical properties tested. PMID:15790745

  11. Evaluation of Composite Materials for Use on Launch Complexes

    NASA Technical Reports Server (NTRS)

    Finchum, A.; Welch, Peter J.

    1989-01-01

    Commercially available composite structural shapes were evaluated for use. These composites, fiberglass-reinforced polyester and vinylester resin materials are being used extensively in the fabrication and construction of low maintenance, corrosion resistant structures. The evaluation found that in many applications these composite materials can be successfully used at the space center. These composite materials should not be used where they will be exposed to the hot exhaust plume/cloud of the launch vehicle during the liftoff, and caution should be taken in their use in areas where electrostatic discharge and hypergolic propellant compatibility are primary concerns.

  12. NDE of polymeric composite material bridge components

    NASA Astrophysics Data System (ADS)

    Duke, John C., Jr.; Horne, Michael R.

    1998-03-01

    Rapid advancements with respect to utilization of polymeric composite materials for bridge components is occurring. This situation is driven primarily by the potential improvements offered by these materials with respect to long term durability. However, because of the developmental nature of these materials much of the materials characterization has involved short term testing without the synergistic effects of environmental exposure. Efforts to develop nondestructive evaluation procedures, essential for any wide spread use in critical structural applications, have been consequently limited. This paper discuses the effort to develop NDE methods for field inspection of hybrid glass and carbon fiber reinforced vinyl ester pultruded 'double box' I beams that are installed in a small bridge over Tom's Creek, in Blacksburg, Virginia. Integrated structural element sensors, dormant infrared devices, as well as acousto-ultrasonic methods are under development for detecting and monitoring the occurrence and progression of life limiting deterioration mechanisms.

  13. Processing and properties of multiscale cellular thermoplastic fiber reinforced composite (CellFRC)

    NASA Astrophysics Data System (ADS)

    Sorrentino, L.; Cafiero, L.; D'Auria, M.; Iannace, S.

    2015-12-01

    High performance fiber reinforced polymer composites are made by embedding high strength/modulus fibers in a polymeric matrix. They are a class of materials that owe its success to the impressive specific mechanical properties with respect to metals. In many weight-sensitive applications, where high mechanical properties and low mass are required, properties per unit of mass are more important than absolute properties and further weight reduction is desirable. A route to reach this goal could be the controlled induction of porosity into the polymeric matrix, while still ensuring load transfer to the reinforcing fibers and fiber protection from the environment. Cellular lightweight fiber reinforced composites (CellFRC) were prepared embedding gas bubbles of controlled size within a high performance thermoplastic matrix reinforced with continuous fibers. Pores were induced after the composite was first saturated with CO2 and then foamed by using an in situ foaming/shaping technology based on compression moulding with adjustable mould cavities. The presence of micro- or submicro-sized cells in the new CellFRC reduced the apparent density of the structure and led to significant improvements of its impact properties. Both structural and functional performances were further improved through the use of a platelet-like nanofiller (Expanded Graphite) dispersed into the matrix.

  14. Composite materials: A compilation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Design, analysis and fabrication techniques for boron-aluminum composite-structure technology is presented and a new method of joining different laminated composites without mechanical fasteners is proposed. Also discussed is a low-cost procedure for rigidifying expanded honeycomb tubing and piping simulations. A brief note on patent information is added.

  15. Space environmental effects on LDEF low Earth orbit exposed graphite reinforced polymer matrix composites

    NASA Technical Reports Server (NTRS)

    George, Pete

    1992-01-01

    The Long Duration Exposure Facility (LDEF) was deployed on April 7, 1984 in low earth orbit (LEO) at an altitude of 482 kilometers. On board experiments experienced the harsh LEO environment including atomic oxygen (AO), ultraviolet radiation (UV), and thermal cycling. During the 5.8 year mission, the LDEF orbit decayed to 340 kilometers where significantly higher AO concentrations exist. LDEF was retrieved on January 12, 1990 from this orbit. One experiment on board LDEF was M0003, Space Effects on Spacecraft Materials. As a subset of M0003 nearly 500 samples of polymer, metal, and glass matrix composites were flown as the Advanced Composites Experiment M0003-10. The Advanced Composites Experiment is a joint effort between government and industry with the Aerospace Corporation serving as the experiment integrator. A portion of the graphite reinforced polymer matrix composites were furnished by the Boeing Defense and Space Group, Seattle, Washington. Test results and discussions for the Boeing portion of M0003-10 are presented. Experiment and specimen location on the LDEF are presented along with a quantitative summary of the pertinent exposure conditions. Matrix materials selected for the test were epoxy, polysulfone, and polyimide. These composite materials were selected due to their suitability for high performance structural capability in spacecraft applications. Graphite reinforced polymer matrix composites offer higher strength to weight ratios along with excellent dimensional stability. The Boeing space exposed and corresponding ground control composite specimens were subjected to post flight mechanical, chemical, and physical testing in order to determine any changes in critical properties and performance characteristics. Among the more significant findings are the erosive effect of atomic oxygen on leading edge exposed specimens and microcracking in non-unidirectionally reinforced flight specimens.

  16. On Complexities of Impact Simulation of Fiber Reinforced Polymer Composites: A Simplified Modeling Framework

    PubMed Central

    Alemi-Ardakani, M.; Milani, A. S.; Yannacopoulos, S.

    2014-01-01

    Impact modeling of fiber reinforced polymer composites is a complex and challenging task, in particular for practitioners with less experience in advanced coding and user-defined subroutines. Different numerical algorithms have been developed over the past decades for impact modeling of composites, yet a considerable gap often exists between predicted and experimental observations. In this paper, after a review of reported sources of complexities in impact modeling of fiber reinforced polymer composites, two simplified approaches are presented for fast simulation of out-of-plane impact response of these materials considering four main effects: (a) strain rate dependency of the mechanical properties, (b) difference between tensile and flexural bending responses, (c) delamination, and (d) the geometry of fixture (clamping conditions). In the first approach, it is shown that by applying correction factors to the quasistatic material properties, which are often readily available from material datasheets, the role of these four sources in modeling impact response of a given composite may be accounted for. As a result a rough estimation of the dynamic force response of the composite can be attained. To show the application of the approach, a twill woven polypropylene/glass reinforced thermoplastic composite laminate has been tested under 200 J impact energy and was modeled in Abaqus/Explicit via the built-in Hashin damage criteria. X-ray microtomography was used to investigate the presence of delamination inside the impacted sample. Finally, as a second and much simpler modeling approach it is shown that applying only a single correction factor over all material properties at once can still yield a reasonable prediction. Both advantages and limitations of the simplified modeling framework are addressed in the performed case study. PMID:25431787

  17. On complexities of impact simulation of fiber reinforced polymer composites: a simplified modeling framework.

    PubMed

    Alemi-Ardakani, M; Milani, A S; Yannacopoulos, S

    2014-01-01

    Impact modeling of fiber reinforced polymer composites is a complex and challenging task, in particular for practitioners with less experience in advanced coding and user-defined subroutines. Different numerical algorithms have been developed over the past decades for impact modeling of composites, yet a considerable gap often exists between predicted and experimental observations. In this paper, after a review of reported sources of complexities in impact modeling of fiber reinforced polymer composites, two simplified approaches are presented for fast simulation of out-of-plane impact response of these materials considering four main effects: (a) strain rate dependency of the mechanical properties, (b) difference between tensile and flexural bending responses, (c) delamination, and (d) the geometry of fixture (clamping conditions). In the first approach, it is shown that by applying correction factors to the quasistatic material properties, which are often readily available from material datasheets, the role of these four sources in modeling impact response of a given composite may be accounted for. As a result a rough estimation of the dynamic force response of the composite can be attained. To show the application of the approach, a twill woven polypropylene/glass reinforced thermoplastic composite laminate has been tested under 200 J impact energy and was modeled in Abaqus/Explicit via the built-in Hashin damage criteria. X-ray microtomography was used to investigate the presence of delamination inside the impacted sample. Finally, as a second and much simpler modeling approach it is shown that applying only a single correction factor over all material properties at once can still yield a reasonable prediction. Both advantages and limitations of the simplified modeling framework are addressed in the performed case study. PMID:25431787

  18. On complexities of impact simulation of fiber reinforced polymer composites: a simplified modeling framework.

    PubMed

    Alemi-Ardakani, M; Milani, A S; Yannacopoulos, S

    2014-01-01

    Impact modeling of fiber reinforced polymer composites is a complex and challenging task, in particular for practitioners with less experience in advanced coding and user-defined subroutines. Different numerical algorithms have been developed over the past decades for impact modeling of composites, yet a considerable gap often exists between predicted and experimental observations. In this paper, after a review of reported sources of complexities in impact modeling of fiber reinforced polymer composites, two simplified approaches are presented for fast simulation of out-of-plane impact response of these materials considering four main effects: (a) strain rate dependency of the mechanical properties, (b) difference between tensile and flexural bending responses, (c) delamination, and (d) the geometry of fixture (clamping conditions). In the first approach, it is shown that by applying correction factors to the quasistatic material properties, which are often readily available from material datasheets, the role of these four sources in modeling impact response of a given composite may be accounted for. As a result a rough estimation of the dynamic force response of the composite can be attained. To show the application of the approach, a twill woven polypropylene/glass reinforced thermoplastic composite laminate has been tested under 200 J impact energy and was modeled in Abaqus/Explicit via the built-in Hashin damage criteria. X-ray microtomography was used to investigate the presence of delamination inside the impacted sample. Finally, as a second and much simpler modeling approach it is shown that applying only a single correction factor over all material properties at once can still yield a reasonable prediction. Both advantages and limitations of the simplified modeling framework are addressed in the performed case study.

  19. Dynamic fracture behaviour in fibre-reinforced cementitious composites

    NASA Astrophysics Data System (ADS)

    Yu, Rena C.; Cifuentes, Héctor; Rivero, Ignacio; Ruiz, Gonzalo; Zhang, Xiaoxin

    2016-08-01

    The object of this work is to simulate the dynamic fracture propagation in fibre-reinforced cementitious composites, in particular, in steel fibre reinforced concrete (SFRC). Beams loaded in a three-point bend configuration through a drop-weight impact device are considered. A single cohesive crack is assumed to propagate at the middle section; the opening of this crack is governed by a rate-dependent cohesive law; the fibres around the fracture plane are explicitly represented through truss elements. The fibre pull-out behaviour is depicted by an equivalent constitutive law, which is obtained from an analytical load-slip curve. The obtained load-displacement curves and crack propagation velocities are compared with their experimental counterparts. The good agreement with experimental data testifies to the feasibility of the proposed methodology and paves the way to its application in a multi-scale framework.

  20. Esthetic considerations when splinting with fiber-reinforced composites.

    PubMed

    Strassler, Howard E; Serio, Cheryl L

    2007-04-01

    The primary reasons for splinting and stabilizing teeth are to connect them for the purpose of replacing missing teeth or as an adjunct to periodontal therapy. Although the restorations must be planned to withstand the functional requirements of occlusion and mastication, esthetic considerations must also be taken into account. The challenge in creating an esthetic result with fiber-reinforced composite splints is that there is limited space in the connector region to create the three-dimensional effect required to give teeth the appearance of individuality. Careful planning in the diagnosis and treatment of the fiber splint is essential to allow for adequate tooth preparation to give the illusion of nonsplinted teeth. When missing teeth are replaced with a fiber-reinforced, direct, fixed partial denture, the pontic must be created to achieve an esthetically pleasing result. PMID:17532925

  1. Fretting maps of glass fiber-reinforced composites

    SciTech Connect

    Turki, C.; Salvia, M.; Vincent, L.

    1993-12-31

    Industrial development of new materials are often limited due to an insufficient knowledge in their functional properties. The paper deals with fretting behavior of glass fiber reinforced epoxy/metal contacts. Fretting is a plague for all industries, especially in the case of quasi-static loadings. Furthermore friction testing under small displacements appeared well fitted to understand the effect of fiber orientations and to relate results to microstructure (fiber, matrix and interface).

  2. Fabrication and Characterization of Carbon Nanofiber Reinforced Shape Memory Epoxy (CNFR-SME) Composites

    NASA Astrophysics Data System (ADS)

    Wang, Jiuyang

    Shape memory polymers have a wide range of applications due to their ability to mechanically change shapes upon external stimulus, while their achievable composite counterparts prove even more versatile. An overview of literature on shape memory materials, fillers and composites was provided to pave a foundation for the materials used in the current study and their inherent benefits. This study details carbon nanofiber and composite fabrication and contrasts their material properties. In the first section, the morphology and surface chemistry of electrospun-poly(acrylonitrile)-based carbon nanofiber webs were tailored through various fabrication methods and impregnated with a shape memory epoxy. The morphologies, chemical compositions, thermal stabilities and electrical resistivities of the carbon nanofibers and composites were then characterized. In the second section, an overview of thermal, mechanical and shape memory characterization techniques for shape memory polymers and their composites was provided. Thermal and mechanical properties in addition to the kinetic and dynamic shape memory performances of neat epoxy and carbon nanofiber/epoxy composites were characterized. The various carbon nanofiber web modifications proved to have notable influence on their respective composite performances. The results from these two sections lead to an enhanced understanding of these carbon nanofiber reinforced shape memory epoxy composites and provided insight for future studies to tune these composites at will.

  3. Nondestructive evaluation of composite materials - A design philosophy

    NASA Technical Reports Server (NTRS)

    Duke, J. C., Jr.; Henneke, E. G., II; Stinchcomb, W. W.; Reifsnider, K. L.

    1984-01-01

    Efficient and reliable structural design utilizing fiber reinforced composite materials may only be accomplished if the materials used may be nondestructively evaluated. There are two major reasons for this requirement: (1) composite materials are formed at the time the structure is fabricated and (2) at practical strain levels damage, changes in the condition of the material, that influence the structure's mechanical performance is present. The fundamental basis of such a nondestructive evaluation capability is presented. A discussion of means of assessing nondestructively the material condition as well as a damage mechanics theory that interprets the material condition in terms of its influence on the mechanical response, stiffness, strength and life is provided.

  4. Recent progress of smart composite material in HIT

    NASA Astrophysics Data System (ADS)

    Leng, Jinsong; Yu, Kai; Liu, Yanju

    2009-12-01

    Recent progresses of smart composite material in our ongoing research are presented in this paper. In recent years, shape memory polymers (SMPs) and electroactive polymers (EAPs) attract more and more attention in the world. In our researching work, different kinds of reinforcement are embedded into SMPs and EAPs to form smart composite materials, aiming to improve the properties or strengthen the materials. Based on the unique properties of SMP based smart composite materials, primary application in the deployable morphing wing are also studied, which provide meaningful guidance for further researching works in this area.

  5. Recent progress of smart composite material in HIT

    NASA Astrophysics Data System (ADS)

    Leng, Jinsong; Yu, Kai; Liu, Yanju

    2010-03-01

    Recent progresses of smart composite material in our ongoing research are presented in this paper. In recent years, shape memory polymers (SMPs) and electroactive polymers (EAPs) attract more and more attention in the world. In our researching work, different kinds of reinforcement are embedded into SMPs and EAPs to form smart composite materials, aiming to improve the properties or strengthen the materials. Based on the unique properties of SMP based smart composite materials, primary application in the deployable morphing wing are also studied, which provide meaningful guidance for further researching works in this area.

  6. Basalt fiber reinforced porous aggregates-geopolymer based cellular material

    NASA Astrophysics Data System (ADS)

    Luo, Xin; Xu, Jin-Yu; Li, Weimin

    2015-09-01

    Basalt fiber reinforced porous aggregates-geopolymer based cellular material (BFRPGCM) was prepared. The stress-strain curve has been worked out. The ideal energy-absorbing efficiency has been analyzed and the application prospect has been explored. The results show the following: fiber reinforced cellular material has successively sized pore structures; the stress-strain curve has two stages: elastic stage and yielding plateau stage; the greatest value of the ideal energy-absorbing efficiency of BFRPGCM is 89.11%, which suggests BFRPGCM has excellent energy-absorbing property. Thus, it can be seen that BFRPGCM is easy and simple to make, has high plasticity, low density and excellent energy-absorbing features. So, BFRPGCM is a promising energy-absorbing material used especially in civil defense engineering.

  7. Fracture behavior of glass fiber reinforced polymer composite

    SciTech Connect

    Avci, A.; Arikan, H.; Akdemir, A

    2004-03-01

    Chopped strand glass fiber reinforced particle-filled polymer composite beams with varying notch-to-depth ratios and different volume fractions of glass fibers were investigated in Mode I fracture using three-point bending tests. Effects of polyester resin content and glass fiber content on fracture behavior was also studied. Polyester resin contents were used 13.00%%, 14.75%, 16.50%, 18.00% and 19.50%, and glass fiber contents were 1% and 1.5% of the total weight of the polymer composite system. Flexural strength of the polymer composite increases with increase in polyester and fiber content. The critical stress intensity factor was determined by using several methods such as initial notch depth method, compliance method and J-integral method. The values of K{sub IC} obtained from these methods were compared.

  8. Carbide-reinforced metal matrix composite by direct metal deposition

    NASA Astrophysics Data System (ADS)

    Novichenko, D.; Thivillon, L.; Bertrand, Ph.; Smurov, I.

    Direct metal deposition (DMD) is an automated 3D laser cladding technology with co-axial powder injection for industrial applications. The actual objective is to demonstrate the possibility to produce metal matrix composite objects in a single-step process. Powders of Fe-based alloy (16NCD13) and titanium carbide (TiC) are premixed before cladding. Volume content of the carbide-reinforced phase is varied. Relationships between the main laser cladding parameters and the geometry of the built-up objects (single track, 2D coating) are discussed. On the base of parametric study, a laser cladding process map for the deposition of individual tracks was established. Microstructure and composition of the laser-fabricated metal matrix composite objects are examined. Two different types of structures: (a) with the presence of undissolved and (b) precipitated titanium carbides are observed. Mechanism of formation of diverse precipitated titanium carbides is studied.

  9. Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2009-01-01

    Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.

  10. Biaxial flexing of a fiber reinforced aluminum composite

    SciTech Connect

    Tsangarakis, N.; Pepi, M.S. )

    1990-07-01

    A disk specimen of silicon carbide continuous fiber reinforced aluminum is used to study the response of the composite to biaxial tensile flexure. The maximum surface principal tensile strain is constant within a radius of 6.1 mm from the center of the disk. The strain is found to be sensitive to the damage introduced in the composite during flexing. Fiber breakage under monotonic loading is initiated within a fiber tensile strain 0.0038-0.0083. Under cyclic loading and for principal surface strain ranges exceeding 0.0035 the dominant damage mechanism leading to failure is fiber breakage. At smaller surface strain ranges, slip bands and cracks formed in the matrix. The limiting value of the cyclic fiber strain range for a life of one million cycles is 0.00132. This strain is 15 percent of the composite failure strain under uniaxial monotonic loading and 50 percent of the maximum strain in uniaxial tensile fatigue. 27 refs.

  11. Effect of fiber and matrix maximum strain on the energy absorption of composite materials

    NASA Technical Reports Server (NTRS)

    Farley, G. L.

    1985-01-01

    Static crushing tests were conducted on graphite composite tubes to examine the influence of fiber and matrix maximum strain at failure on the energy absorption capability of graphite reinforced composite material. Fiber and matrix maximum strain at failure were determined to significantly effect energy absorption. The higher strain at failure composite material system, AS-4/5245, exhibited superior energy absorption capability compared to AS-4/934, T300/5245 or T300/934 composite material. Results of this investigation suggest that to achieve maximum energy absorption from a composite material a matrix material that has a higher strain at failure than the fiber reinforcement should be used.

  12. COMPRESSION MOLDED, BIO-FIBER REINFORCED, HIGH PERFORMANCE THERMOSET COMPOSITES FOR STRUCTURAL AND SEMI-STRUCTURAL APPLICATIONS

    SciTech Connect

    Fifield, Leonard S.; Simmons, Kevin L.

    2010-09-15

    Major goals for the future of transportation materials include reduced weight of components, reduced cost of materials and increased use of renewable content. Reinforcement of transportation composites with plant fibers has the potential to decrease component weight relative to glass fiber reinforcement, reduce cost of materials relative to carbon fiber reinforcement, and significantly increase the fraction of composite components from a renewable source. Barriers to widespread application of natural fiber reinforced components in structural and semi-structural vehicle applications have included the natural propensity of these materials to uptake moisture and the corresponding loss of mechanical properties with exposure to moisture. Through novel advances in fiber treatment, processing and molding to address moisture absorption and resin interfacing, Pacific Northwest National Laboratory is reducing these barriers. Herein we demonstrate natural fiber reinforced composites that are 1) composed of more than 50wt% renewable content, 2) weigh 17% less than glass fiber composites with the same fiber volume, and 3) exhibit wet mechanical properties suitable for semi-structural application. Lower cost, lower energy in production, and reduced greenhouse gas production are anticipated advantages of the described PNNL technologies.

  13. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    NASA Technical Reports Server (NTRS)

    Cox, Sarah; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed, to be cured, and be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000degC. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200degC, -SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Testing for this included thermal and mechanical testing per ASTM standard tests.

  14. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.; Lui, Donovan; Wang, Xin; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000 deg C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200 deg C, Beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  15. Processing and Characterization of Basalt Fiber Reinforced Ceramic Composites for High Temperature Applications Using Polymer Precursors

    NASA Technical Reports Server (NTRS)

    Cox, Sarah B.; Lui, Donovan; Gou, Jihua

    2014-01-01

    The development of high temperature structural composite materials has been very limited due to the high cost of the materials and the processing needed. Ceramics can take much higher temperatures, but they are difficult to produce and form in bulk volumes. Polymer Derived Ceramics (PDCs) begin as a polymer matrix, allowing a shape to be formed and cured and then to be pyrolized in order to obtain a ceramic with the associated thermal and mechanical properties. The two PDCs used in this development are polysiloxane and polycarbosilane. Polysiloxanes contain a silicon oxycarbide backbone when pyrolized up to 1000C. Polycarbosilane, an organosilicon polymer, contain a silicon-carbon backbone; around 1200C, beta-SiC begins to crystallize. The use of basalt in structural and high temperature applications has been under development for over 50 years, yet there has been little published research on the incorporation of basalt fibers as a reinforcement in composites. Basalt is a naturally occurring material found in volcanic rock. Continuous basalt fiber reinforced PDCs have been fabricated and tested for the applicability of this composite system as a high temperature structural composite material. Thermal and mechanical testing includes oxyacetylene torch testing and three point bend testing.

  16. Composite structural materials. [aircraft structures

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1980-01-01

    The use of filamentary composite materials in the design and construction of primary aircraft structures is considered with emphasis on efforts to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, and reliability and life prediction. The redesign of a main spar/rib region on the Boeing 727 elevator near its actuator attachment point is discussed. A composite fabrication and test facility is described as well as the use of minicomputers for computer aided design. Other topics covered include (1) advanced structural analysis methids for composites; (2) ultrasonic nondestructive testing of composite structures; (3) optimum combination of hardeners in the cure of epoxy; (4) fatigue in composite materials; (5) resin matrix characterization and properties; (6) postbuckling analysis of curved laminate composite panels; and (7) acoustic emission testing of composite tensile specimens.

  17. Fabrication Routes for Continuous Fiber-Reinforced Ceramic Composites (CFCC)

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Bansal, Narottam P.

    1998-01-01

    The primary approaches used for fabrication of continuous fiber-reinforced ceramic composite (CFCC) components have been reviewed. The CFCC fabrication issues related to fiber, interface, and matrix have been analyzed. The capabilities. advantages and limitations of the five matrix-infiltration routes have been compared and discussed. Today. the best fabrication route for the CFCC end-user is not clear and compromises need to be made depending on the details of the CFCC application. However, with time, this problem should be reduced as research continues to develop advanced CFCC constituents and fabrication routes.

  18. Fabrication Routes for Continuous Fiber-Reinforced Ceramic Composites (CFCC)

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Bansal, Narottam P.

    1998-01-01

    The primary approaches used for fabrication of continuous fiber-reinforced ceramic composite (CFCC) components have been reviewed. The CFCC fabrication issues related to fiber, interface, and matrix have been analyzed. The capabilities, advantages and limitations of the five matrix-infiltration routes have been compared and discussed. Today, the best fabrication route for the CFCC end-user is not clear and compromises need to be made depending on the details of the CFCC application. However, with time, this problem should be reduced as research continues to develop advanced CFCC constituents and fabrication routes.

  19. In Vitro Evaluation of Veneering Composites and Fibers on the Color of Fiber-Reinforced Composite Restorations

    PubMed Central

    Hasani Tabatabaei, Masoomeh; Hasani, Zahra; Ahmadi, Elham

    2014-01-01

    Objective: Color match between fiber-reinforced composite (FRC) restorations and teeth is an imperative factor in esthetic dentistry. The purpose of this study is to evaluate the influence of veneering composites and fibers on the color change of FRC restorations. Materials and Methods: Glass and polyethylene fibers were used to reinforce a direct microhybrid composite (Z250, 3M ESPE) and a microfilled composite (Gradia Indirect, GC). There were eight experimental groups (n=5 disks per group). Four groups were used as the controls (non-FRC control) and the others were used as experimental groups. CIELAB parameters (L*, a* and b*) of specimens were evaluated against a white background using a spectrophotometer to assess the color change. The color difference (ΔE*) and color coordinates were (L*, a* and b*) analyzed by two-way ANOVA and Tukey’s test. Results: Both types of composite and fiber influenced the color parameters (ΔL*, Δa*). The incorporation of fibers into the composite in the experimental groups made them darker than the control groups, except in the Gradia Indirect+ glass fibers group. Δb* is affected by types of fibers only in direct fiber reinforced composite. No statistically significant differences were recognized in ΔE* among the groups (p>0.05). Conclusion: The findings of the present study suggest that the tested FRC restorations exhibited no difference in color in comparison with non-FRC restoration. Hence, the types of veneering composites and fibers did not influence the color change (ΔE*) of FRC restorations. PMID:25584060

  20. Automobile materials competition: energy implications of fiber-reinforced plastics

    SciTech Connect

    Cummings-Saxton, J.

    1981-10-01

    The embodied energy, structural weight, and transportation energy (fuel requirement) characteristics of steel, fiber-reinforced plastics, and aluminum were assessed to determine the overall energy savings of materials substitution in automobiles. In body panels, a 1.0-lb steel component with an associated 0.5 lb in secondary weight is structurally equivalent to a 0.6-lb fiber-reinforced plastic component with 0.3 lb in associated secondary weight or a 0.5-lb aluminum component with 0.25 lb of secondary weight. (Secondary weight refers to the combined weight of the vehicle's support structure, engine, braking system, and drive train, all of which can be reduced in response to a decrease in total vehicle weight.) The life cycle transportation energy requirements of structurally equivalent body panels (including their associated secondary weights) are 174.4 x 10/sup 3/ Btu for steel, 104.6 x 10/sup 3/ Btu for fiber-reinforced plastics, and 87.2 x 10/sup 3/ Btu for aluminum. The embodied energy requirements are 37.2 x 10/sup 3/ Btu for steel, 22.1 x 10/sup 3/ Btu for fiber-reinforced plastics, and 87.1 x 10/sup 3/ Btu for aluminum. These results can be combined to yield total energy requirements of 211.6 x 10/sup 3/ Btu for steel, 126.7 x 10/sup 3/ Btu for fiber-reinforced plastics, and 174.3 x 10/sup 3/ Btu for aluminum. Fiber-reinforced plastics offer the greatest improvements over steel in both embodied and total energy requirements. Aluminum achieves the greatest savings in transportation energy.

  1. Fatigue Behaviour of Glass Fibre Reinforced Composites for Ocean Energy Conversion Systems

    NASA Astrophysics Data System (ADS)

    Boisseau, A.; Davies, P.; Thiebaud, F.

    2013-04-01

    The development of ocean energy conversion systems places more severe requirements on materials than similar land-based structures such as wind turbines. Intervention and maintenance at sea are very costly, so for ocean energy supply to become economically viable long term durability must be guaranteed. Cyclic loading is a common feature of most energy conversion devices and composites are widely used, but few data are available concerning the fatigue behaviour in sea water of composite materials. This paper presents the results from an experimental study to fill this gap. The fatigue behavior of composite materials reinforced with different types of glass fibre is characterized in air and in sea water; the influence of testing in sea water rather than air is shown to be small. However, sea water ageing is shown to reduce the fatigue lifetime significantly and strongly depends on matrix formulation.

  2. Vibrational damping of composite materials

    NASA Astrophysics Data System (ADS)

    Biggerstaff, Janet M.

    The purpose of this research was to develop new methods of vibrational damping in polymeric composite materials along with expanding the knowledge of currently used vibrational damping methods. A new barrier layer technique that dramatically increased damping in viscoelastic damping materials that interacted with the composite resin was created. A method for testing the shear strength of damping materials cocured in composites was developed. Directional damping materials, where the loss factor and modulus could be tailored by changing the angle, were produced and investigated. The addition of particles between composite prepreg layers to increase damping was studied. Electroviscoelastic materials that drastically changed properties such as loss factor and modulus with an applied voltage were manufactured and tested.

  3. Damage Tolerance Enhancement of Carbon Fiber Reinforced Polymer Composites by Nanoreinforcement of Matrix

    NASA Astrophysics Data System (ADS)

    Fenner, Joel Stewart

    Nanocomposites are a relatively new class of materials which incorporate exotic, engineered nanoparticles to achieve superior material properties. Because of their extremely small size and well-ordered structure, many nanoparticles possess properties that exceed those offered by a wide range of other known materials, making them attractive candidates for novel materials engineering development. Their small size is also an impediment to their practical use, as they typically cannot be employed by themselves to realize those properties in large structures. Furthermore, nanoparticles typically possess strong self-affinity, rendering them difficult to disperse uniformly into a composite. However, contemporary research has shown that, if well-dispersed, nanoparticles have great capacity to improve the mechanical properties of composites, especially damage tolerance, in the form of fracture toughness, fatigue life, and impact damage mitigation. This research focuses on the development, manufacturing, and testing of hybrid micro/nanocomposites comprised of woven carbon fibers with a carbon nanotube reinforced epoxy matrix. Material processing consisted of dispersant-and-sonication based methods to disperse nanotubes into the matrix, and a vacuum-assisted wet lay-up process to prepare the hybrid composite laminates. Various damage tolerance properties of the hybrid composite were examined, including static strength, fracture toughness, fatigue life, fatigue crack growth rate, and impact damage behavior, and compared with similarly-processed reference material produced without nanoreinforcement. Significant improvements were obtained in interlaminar shear strength (15%), Mode-I fracture toughness (180%), shear fatigue life (order of magnitude), Mode-I fatigue crack growth rate (factor of 2), and effective impact damage toughness (40%). Observations by optical microscopy, scanning electron microscopy, and ultrasonic imaging showed significant differences in failure behavior

  4. Characterization of radiation-induced aging in silica-reinforced polysiloxane composites

    NASA Astrophysics Data System (ADS)

    Chien, Allen; Maxwell, Robert; Chambers, David; Balazs, Bryan; LeMay, James

    2000-11-01

    Changes in crosslink density and chemical structure of silica-reinforced silicone polymer composites due to aging in gamma radiation environments were examined in this study. Solvent swelling was utilized to determine the individual contributions of the matrix polymer and filler phase to the overall crosslink density of silica-reinforced silicone polymer composites. The results show how polymer-filler hydrogen bonding dominates the overall crosslink density of the material. Air-irradiated samples displayed decreased hydrogen bonding at the polymer-filler interface, while vacuum irradiation revealed the opposite effect. These results were supported by solid-state NMR experiments that correlated the motional dynamics of the polymer chains with crosslink density through T2 relaxation time measurements. GC/MS analysis was used to identify degradation products formed as a result of irradiation and speculate upon likely degradation mechanisms.

  5. Carbon Fiber Reinforced Carbon Composite Valve for an Internal Combustion Engine

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1999-01-01

    A carbon fiber reinforced carbon composite valve for internal combustion engines and the like formed of continuous carbon fibers throughout the valve's stem and head is disclosed. The valve includes braided carbon fiber material over axially aligned unidirectional carbon fibers forming a valve stem; the braided and unidirectional carbon fibers being broomed out at one end of the valve stem forming the shape of the valve head; the valve-shaped structure being densified and rigidized with a matrix of carbon containing discontinuous carbon fibers: and the finished valve being treated to resist oxidation. Also disclosed is a carbon matrix plug containing continuous and discontinuous carbon fibers and forming a net-shape valve head acting as a mandrel over which the unidirectional and braided carbon fibers are formed according to textile processes. Also disclosed are various preform valves and processes for making finished and preform carbon fiber reinforced carbon composite valves.

  6. Characteristics of fatigue life and damage accumulation of short fiber-reinforced polymer composites

    SciTech Connect

    Yokobori, A.T. Jr.; Takeda, Hidetoshi; Adachi, Takeshi; Ha, J.C.; Yokobori, Takeo

    1996-12-31

    The relation between fatigue life and damage accumulation of fiber-reinforced polymer composite (FRP) is not yet clarified. For practical use of FRP, it is necessary to relate the fatigue life to the mechanism of damage accumulation. Damage formation is controlled by the mechanical behavior of the interface between the matrix and fiber. The authors used short glass fiber-reinforced polycarbonate composite in the experiments. By using an in situ (real time) observational fatigue testing machine, they investigated the relationship between fatigue life and damage accumulation. From these results, the fatigue life of this material was found to be dominated by damage accumulation which results from microfracture at the interface between the matrix and fiber. This microfracture is controlled by a cycle-dependent mechanism.

  7. Health monitoring in composite materials via peak strain sensing

    NASA Astrophysics Data System (ADS)

    Thompson, Larry D.; Westermo, Bruce D.

    1996-11-01

    Fiber-reinforced composite materials are beginning to be employed in applications related to retrofit and repair of large-scale civil structures. This paper discusses the utilization of a passive, pea, strain monitoring technology to the damage and health assessment of composite structures. Applications considered include epoxy-matrix composite materials reinforced with chopped glass, continuous glass fibers, carbon-fiber mat as well as continuous carbon-fiber. The advantages of the various material applications are discussed as they apply to large civil structures with peak strain monitoring data presented to illustrate how the systems can be field monitored. Full-scale structural component testing as well as subscale laboratory testing results will be presented and discussed. Recommendations are provided to guide the engineering community in such composite applications and to provide a design framework for the inclusion of simple and reliable sensor systems to detect both short-term and long-term damage.

  8. Multi-Scale CNT-Based Reinforcing Polymer Matrix Composites for Lightweight Structures

    NASA Technical Reports Server (NTRS)

    Eberly, Daniel; Ou, Runqing; Karcz, Adam; Skandan, Ganesh; Mather, Patrick; Rodriguez, Erika

    2013-01-01

    additional weight savings. More robust structures capable of withstanding micrometeoroid and space debris impacts will be possible with the enhanced mechanical properties imparted by the aligned CNTs incorporated into the fiber composite structure, as well as the potential for improved electrical and thermal properties. The materials fabrication approach developed in the present effort is a platform for customer applications where additional reinforcement is required or would be beneficial, especially in FRC structures and component parts. Depending upon the specific customer application, the NRM could be tailored to the specific matrix resin and desired property enhancement.

  9. Shock Interaction Studies on Glass Fibre Reinforced Epoxy Matrix Composites

    NASA Astrophysics Data System (ADS)

    Reddy, K. P. J.; Jagadeesh, G.; Jayaram, V.; Reddy, B. Harinath; Madhu, V.; Reddy, C. Jaya Rami

    Glass fibre reinforced polymer matrix composites are being extensively used for structural applications both in civil and defense sectors, owing to their high specific strength, stiffness and good energy absorbing capability. Understanding the dynamic response of these composites on shock loading is very essential for effective design of structures resistant to blast loads. In the present study, E- glass/epoxy composite laminate has been fabricated and evaluated for their mechanical properties such as tensile strength, flexural strength and inter laminar shear strength (ILSS). Further, dynamic response of E-glass laminates is presently studied by shock loading. When E-glass composite subjected to peak shock reflected pressure of 7.2 MPa and estimated temperature of about 14000 K for short duration, it underwent surface discolorations and charring of epoxy matrix. Post test analysis of the composite sample was carried out to study the damage analysis using Scanning Electron Microscope (SEM), changes in thermal properties of composites using Dynamic Mechanical Analyzer (DMA) and Thermo-Gravimetric Analyzer (TGA). The results of these investigations are discussed in this paper.

  10. A new SiC-whisker-reinforced lithium aluminosilicate composite

    SciTech Connect

    Xue, L.A.; Chen, Iwei . Dept. of Materials Science and Engineering)

    1993-11-01

    The glass-ceramic matrix of the well-known lithium aluminosilicate (LAS)/SiC composite is usually formulated near the spodumene composition. The authors report a new composition which is rich in alumina and lean in silica and lithia. This formulation offers a new option of converting the glass-ceramic matrix to a mullite/alumina matrix upon annealing above 1,400 C, and hence better creep resistance and other high-temperature mechanical properties. Using a transient-phase processing method that they developed previously for the superplastic forming of mullite, the authors are able to hot-press a composite containing 30 vol% SiC whiskers at [approximately]1,350 C to achieve full density. Flexural strength measurements up to 1,400 C have confirmed the improved high-temperature strength and creep resistance over conventional LAS. The fracture toughness is also higher than that of LAS. The results suggest that the new composition may be chosen as a better candidate matrix for SiC-fiber-reinforced composites.

  11. Sliding Wear Behavior of TiC-Reinforced Cu-4 wt.% Ni Matrix Composites

    NASA Astrophysics Data System (ADS)

    Jha, Pushkar; Gautam, R. K.; Tyagi, Rajnesh; Kumar, Devendra

    2016-08-01

    The present investigation explores the effect of TiC content on the sliding wear properties of Cu-4 wt.% Ni matrix composites. Cu-4 wt.% Ni - x wt.% TiC (x = 0, 2, 4 and 8 wt.%) metal matrix composites were developed by powder metallurgy route. Their friction and wear was studied under dry sliding at different loads of 5, 7.5 and 10 N and constant sliding speed of 2 m/s using a pin-on-disk machine. The metallographic observations showed an almost uniform distribution of TiC particles in the matrix. Hardness of the composites increased with increasing TiC content (up to 4 wt.%). Friction and wear results of TiC-reinforced composites show better wear resistance than unreinforced matrix alloy. However, the optimum wear resistance was observed for 4 wt.% TiC-reinforced composites. Worn surfaces of specimens indicated the abrasion as the primary mechanism of wear in all the materials investigated in the study. The observed behavior has been explained on the basis of (1) the hardness which results in a decrease in real area of contact in composites containing TiC particles and (2) the formation of a transfer layer of wear debris on the surface of the composites which protects underlying substrate by inhibiting metal-metal contact.

  12. Sliding Wear Behavior of TiC-Reinforced Cu-4 wt.% Ni Matrix Composites

    NASA Astrophysics Data System (ADS)

    Jha, Pushkar; Gautam, R. K.; Tyagi, Rajnesh; Kumar, Devendra

    2016-10-01

    The present investigation explores the effect of TiC content on the sliding wear properties of Cu-4 wt.% Ni matrix composites. Cu-4 wt.% Ni - x wt.% TiC ( x = 0, 2, 4 and 8 wt.%) metal matrix composites were developed by powder metallurgy route. Their friction and wear was studied under dry sliding at different loads of 5, 7.5 and 10 N and constant sliding speed of 2 m/s using a pin-on-disk machine. The metallographic observations showed an almost uniform distribution of TiC particles in the matrix. Hardness of the composites increased with increasing TiC content (up to 4 wt.%). Friction and wear results of TiC-reinforced composites show better wear resistance than unreinforced matrix alloy. However, the optimum wear resistance was observed for 4 wt.% TiC-reinforced composites. Worn surfaces of specimens indicated the abrasion as the primary mechanism of wear in all the materials investigated in the study. The observed behavior has been explained on the basis of (1) the hardness which results in a decrease in real area of contact in composites containing TiC particles and (2) the formation of a transfer layer of wear debris on the surface of the composites which protects underlying substrate by inhibiting metal-metal contact.

  13. Development of design data for graphite reinforced epoxy and polyimide composites

    NASA Technical Reports Server (NTRS)

    Scheck, W. G.

    1974-01-01

    Processing techniques and design data were characterized for a graphite/epoxy composite system that is useful from 75 K to 450 K, and a graphite/polyimide composite system that is useful from 75 K to 589 K. The Monsanto 710 polyimide resin was selected as the resin to be characterized and used with the graphite fiber reinforcement. Material was purchased using the prepreg specification for the design data generation for both the HT-S/710 and HM-S/710 graphite/polyimide composite system. Lamina and laminate properties were determined at 75 K, 297 K, and 589 K. The test results obtained on the skin-stringer components proved that graphite/polyimide composites can be reliably designed and analyzed much like graphite/epoxy composites. The design data generated in the program includes the standard static mechanical properties, biaxial strain data, creep, fatigue, aging, and thick laminate data.

  14. Studies on Effective Elastic Properties of CNT/Nano-Clay Reinforced Polymer Hybrid Composite

    NASA Astrophysics Data System (ADS)

    Thakur, Arvind Kumar; Kumar, Puneet; Srinivas, J.

    2016-02-01

    This paper presents a computational approach to predict elastic propertiesof hybrid nanocomposite material prepared by adding nano-clayplatelets to conventional CNT-reinforced epoxy system. In comparison to polymers alone/single-fiber reinforced polymers, if an additional fiber is added to the composite structure, it was found a drastic improvement in resultant properties. In this regard, effective elastic moduli of a hybrid nano composite are determined by using finite element (FE) model with square representative volume element (RVE). Continuum mechanics based homogenization of the nano-filler reinforced composite is considered for evaluating the volumetric average of the stresses and the strains under different periodic boundary conditions.A three phase Halpin-Tsai approach is selected to obtain the analytical result based on micromechanical modeling. The effect of the volume fractions of CNTs and nano-clay platelets on the mechanical behavior is studied. Two different RVEs of nano-clay platelets were used to investigate the influence of nano-filler geometry on composite properties. The combination of high aspect ratio of CNTs and larger surface area of clay platelets contribute to the stiffening effect of the hybrid samples. Results of analysis are validated with Halpin-Tsai empirical formulae.

  15. Corrosion and Wear Response of Oxide-Reinforced Nickel Composite Coatings

    NASA Astrophysics Data System (ADS)

    Tirlapur, Pradeep; Muniprakash, M.; Srivastava, Meenu

    2016-07-01

    Various grades of fuels are used in automobiles, as a result the engine components are continuously subjected to simultaneous action of corrosion and wear. Ni-SiC composite coating is the most widely investigated and commercialized wear-resistant coating in the automotive industry. However, this coating cannot be used at temperatures above 450 °C due to the tendency of SiC to react with Ni and form brittle silicides. An alternate approach is to use oxide-reinforced coatings. In the present study, zirconia, ZrO2 and, yttria-stabilized zirconia, YSZ-reinforced Ni composite coatings have been developed by electrodeposition method. It was observed from the microhardness studies that there is no significant difference in the values for Ni-SiC and Ni-ZrO2 coatings. The corrosion behavior was evaluated using polarization and electrochemical impedance studies. The studies showed that oxide particle-reinforced Ni coatings possessed better corrosion resistance due to their lower corrosion current density, I corr. Tribo-corrosion studies were carried out to understand the synergistic effect of wear and corrosion on the performance of Ni-based composite coatings in 0.5 M Na2SO4. Among various composite coatings, Ni-YSZ exhibited less material loss thereby showing better tribo-corrosion behavior.

  16. Role of matrix/reinforcement interfaces in the fracture toughness of brittle materials toughened by ductile reinforcements

    NASA Astrophysics Data System (ADS)

    Xiao, L.; Abbaschian, R.

    1992-10-01

    Crack interactions with ductile reinforcements, especially behavior of a crack tip at the interface, have been studied using MoSi2 composites reinforced with Nb foils. Effects of fracture energy of interfaces on toughness of the composites have also been investigated. Variation of interfacial bonding was achieved by depositing an oxide coating or by the development of a reaction prod- uct layer between the reinforcement and matrix. Toughness was measured using bend tests on chevron-notched specimens. It has been established that as a crack interacts with a ductile re- inforcement, three mechanisms compcte: interfacial debonding, multiple matrix fracture, and direct crack propagation through the reinforcement. Decohesion length at the matrix/reinforcement interface depends on the predominant mechanism. Furthermore, the results add to the evidence that the extent to which interfacial bonding is conducive to toughness of the composites depends on the criterion used to describe the toughness and that ductility of the ductile reinforcement is also an important factor in controlling toughness of the composites. Loss of ductility of the ductile reinforcement due to inappropriate processing could result in little improvement in tough- ness of the composites.

  17. Piezoelectric composite materials

    NASA Technical Reports Server (NTRS)

    Kiraly, L. J. (Inventor)

    1983-01-01

    A laminated structural devices has the ability to change shape, position and resonant frequency without using discrete motive components. The laminate may be a combination of layers of a piezoelectrically active, nonconductive matrix material. A power source selectively places various levels of charge in electrically conductive filaments imbedded in the respective layers to produce various configurations in a predetermined manner. The layers may be electrically conductive having imbedded piezoelectrically active filaments. A combination of layers of electrically conductive material may be laminated to layers of piezoelectrically active material.

  18. Mechanical behavior of a composite reinforced overhead conductor

    NASA Astrophysics Data System (ADS)

    Alawar, Ahmad

    A new type of overhead conductor with a polymer composite core is evaluated in terms of the mechanical properties and operating characteristics. The conductor is composed of trapezoidal O'-tempered aluminum wires helically wound around a hybrid glass/carbon composite core produced by pultrusion. The conductor is intended for electrical power transmission, and is designated ACCC/TW, for aluminum conductor composite core/trapezoidal wire. Measurements of core properties and conductor sag at high temperatures were compared to conventional ACSR (aluminum conductor, steel-reinforced) of the same diameter. The mechanical properties of ACCC/TW, such as the tensile strength, CTE and SAG performance, showed superiority to conventional ACSR. The ACCC/TW conductor also exhibited greater ampacity than ACSR conductor at all operating temperatures. A modification to a Numerical Sag Method for predicting conductor sag is presented that accurately predicts the observed bilinear sag behavior of composite conductors. The modified method is called the Hybrid Sag Method (HSM). It is used to predict the sag of conductors with conventional designs. The HSM predictions are compared with those obtained using a conventional graphical sag method. The HSM shows virtually the same accuracy as the graphical method for predicting sag for composite conductors operated under specific conditions. The HSM predictions of sag are validated by comparisons with experimental measurements. Tensile strength and storage modulus were measured to determine the temperature dependence of the composite core from 20°-200°C. The storage modulus was measured by dynamic mechanical analysis (DMA) and showed temperature dependence nearly identical to the tensile strength for both composites. The correlation between storage modulus and tensile strength was analyzed in terms of the temperature-dependent matrix shear strength, and the storage modulus behavior is presented as a basis for projecting the strength

  19. Correlation of composite material test results with finite element analysis

    NASA Astrophysics Data System (ADS)

    Guƫu, M.

    2016-08-01

    In this paper are presented some aspects regarding the method of simulation of composite materials testing with finite element analysis software. There were simulated tensile and shear tests of specimens manufactured from glass fiber reinforced polyester. For specimens manufacturing two types of fabrics were used: unidirectional and bidirectional. Experimentally determined elastic properties of composite material were used as input data. Modeling of composite architecture of the specimens was performed with ANSYS Composite PrepPost software. Finite element analysis stresses and strains on strain gauges bonding area were considered and compared with the real values in a diagram. After results comparison, potential causes of deviations were identified.

  20. Preparation of composite materials in space. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Steurer, W. H.; Kaye, S.

    1973-01-01

    The reported objectives were to define promising materials, to obtain significant processing criteria and the related processing techniques and apparatus for the preparation of composites in space, and to establish a program for zero-g experiments and the required developmental efforts. Preparation was studied of the following composite types: (1) metal-base fiber and particle composites, including cemented compacts, (2) controlled density metals, comprising plain and reinforced metal foams, and (3) unidirectionally solidified eutectic alloys. The zero-g environment of orbital operations offers the capability to produce metal-base composite materials and castings which exhibit properties and, particularly, unique combinations of properties that cannot be achieved in terrestrial production.

  1. Tensile flow properties of Al-based matrix composites reinforced with a random planar network of continuous metallic fibers

    SciTech Connect

    Boland, F.; Salmon, C.; Delannay, F.; Colin, C.

    1998-11-20

    Squeeze casting was used for processing two new types of composites: pure Al matrix composites reinforced with fibers of Inconel 601, and AS13 (Al-12% Si) matrix composites reinforced with fibers of Inconel 601 or stainless steel 316L. The fibers are continuous with a diameter of 12 {micro}m and their volume fraction in the composites varied from 20 to 80%. The processing conditions were such that no trace of interfacial reaction compound or of matrix precipitate resulting from the dissolution of elements of the fibers could be detected. The quality of the process was attested by Young`s modulus and electrical conductivity measurements. Tensile tests were carried out from room temperature up to 300 C. The composites with the pure Al matrix present a remarkable tensile ductility. They thus constitute convenient materials for assessing continuum plasticity models for composites. Properties of composites with the AS13 matrix are much affected by interface adhesion strength.

  2. Structure A, dock reinforcing & bill of material. Drawing no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Structure A, dock reinforcing & bill of material. Drawing no. H2-306, revised as-built dated August 13, 1953. Original drawing by Black & Veatch, consulting engineers, Kansas City, Missouri, prepared for the U.S. Department of the Army, Office of Engineers, Military Construction Division, Washington, D.C. dated October 1, 1951. - Travis Air Force Base, Building No. 925, W Street, Fairfield, Solano County, CA

  3. Scleral reinforcement in rabbits using synthetic graft materials.

    PubMed

    Whitmore, W G; Harrison, W; Curtin, B J

    1990-05-01

    Because of disappointing results using homologous collagen for scleral reinforcement in the treatment of pathologic myopia in humans, we undertook a series of experiments in rabbits to test the mechanical properties and long-term biocompatibility of three different synthetic graft materials. Grafts made from two of these materials, Gore-Tex Soft Tissue Patch (expanded polytetrafluoroethylene) and Miragel (poly[methyl acrylate-co-hydroxy-ethyl acrylate]), were easy to position about the globe. Both materials, however, were resistant to invasion by fibrovascular tissue. The third material, woven Dacron (polyethylene terephthalate), though more difficult to position, permitted extensive invasion of fibrovascular tissue, which made all parts of the graft firmly adherent to the globe. Our results indicate the long-term compatibility of all three of these materials when used as periscleral grafts in rabbits. However, our results also suggest that a woven material such as commercially available Dacron is a more suitable graft material for scleral reinforcement in humans than collagen, Miragel, or Gore-Tex.

  4. Advanced composite structures. [metal matrix composites - structural design criteria for spacecraft construction materials

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A monograph is presented which establishes structural design criteria and recommends practices to ensure the design of sound composite structures, including composite-reinforced metal structures. (It does not discuss design criteria for fiber-glass composites and such advanced composite materials as beryllium wire or sapphire whiskers in a matrix material.) Although the criteria were developed for aircraft applications, they are general enough to be applicable to space vehicles and missiles as well. The monograph covers four broad areas: (1) materials, (2) design, (3) fracture control, and (4) design verification. The materials portion deals with such subjects as material system design, material design levels, and material characterization. The design portion includes panel, shell, and joint design, applied loads, internal loads, design factors, reliability, and maintainability. Fracture control includes such items as stress concentrations, service-life philosophy, and the management plan for control of fracture-related aspects of structural design using composite materials. Design verification discusses ways to prove flightworthiness.

  5. Compression Testing of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Masters, John E.

    1996-01-01

    The applicability of existing test methods, which were developed primarily for laminates made of unidirectional prepreg tape, to textile composites is an area of concern. The issue is whether the values measured for the 2-D and 3-D braided, woven, stitched, and knit materials are accurate representations of the true material response. This report provides a review of efforts to establish a compression test method for textile reinforced composite materials. Experimental data have been gathered from several sources and evaluated to assess the effectiveness of a variety of test methods. The effectiveness of the individual test methods to measure the material's modulus and strength is determined. Data are presented for 2-D triaxial braided, 3-D woven, and stitched graphite/epoxy material. However, the determination of a recommended test method and specimen dimensions is based, primarily, on experimental results obtained by the Boeing Defense and Space Group for 2-D triaxially braided materials. They evaluated seven test methods: NASA Short Block, Modified IITRI, Boeing Open Hole Compression, Zabora Compression, Boeing Compression after Impact, NASA ST-4, and a Sandwich Column Test.

  6. Circular Functions Based Comprehensive Analysis of Plastic Creep Deformations in the Fiber Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Monfared, Vahid

    2016-06-01

    Analytically based model is presented for behavioral analysis of the plastic deformations in the reinforced materials using the circular (trigonometric) functions. The analytical method is proposed to predict creep behavior of the fibrous composites based on basic and constitutive equations under a tensile axial stress. New insight of the work is to predict some important behaviors of the creeping matrix. In the present model, the prediction of the behaviors is simpler than the available methods. Principal creep strain rate behaviors are very noteworthy for designing the fibrous composites in the creeping composites. Analysis of the mentioned parameter behavior in the reinforced materials is necessary to analyze failure, fracture, and fatigue studies in the creep of the short fiber composites. Shuttles, spaceships, turbine blades and discs, and nozzle guide vanes are commonly subjected to the creep effects. Also, predicting the creep behavior is significant to design the optoelectronic and photonic advanced composites with optical fibers. As a result, the uniform behavior with constant gradient is seen in the principal creep strain rate behavior, and also creep rupture may happen at the fiber end. Finally, good agreements are found through comparing the obtained analytical and FEM results.

  7. Tannin-based flax fibre reinforced composites for structural applications in vehicles

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Abhyankar, H.; Nassiopoulos, E.; Njuguna, J.

    2012-09-01

    Innovation is often driven by changes in government policies regulating the industries, especially true in case of the automotive. Except weight savings, the strict EU regulation of 95% recyclable material-made vehicles drives the manufactures and scientists to seek new 'green materials' for structural applications. With handing at two major drawbacks (production cost and safety), ECHOSHELL is supported by EU to develop and optimise structural solutions for superlight electric vehicles by using bio-composites made of high-performance natural fibres and resins, providing enhanced strength and bio-degradability characteristics. Flax reinforced tannin-based composite is selected as one of the candidates and were firstly investigated with different fabric lay-up angles (non-woven flax mat, UD, [0, 90°]4 and [0, +45°, 90°, -45°]2) through authors' work. Some of the obtained results, such as tensile properties and SEM micrographs were shown in this conference paper. The UD flax reinforced composite exhibits the best tensile performance, with tensile strength and modulus of 150 MPa and 9.6 MPa, respectively. It was observed that during tension the oriented-fabric composites showed some delamination process, which are expected to be eliminated through surface treatment (alkali treatment etc.) and nanotechnology, such as the use of nano-fibrils. Failure mechanism of the tested samples were identified through SEM results, indicating that the combination of fibre pull-out, fibre breakage and brittle resins failure mainly contribute to the fracture failure of composites.

  8. Glasses, ceramics, and composites from lunar materials

    NASA Technical Reports Server (NTRS)

    Beall, George H.

    1992-01-01

    A variety of useful silicate materials can be synthesized from lunar rocks and soils. The simplest to manufacture are glasses and glass-ceramics. Glass fibers can be drawn from a variety of basaltic glasses. Glass articles formed from titania-rich basalts are capable of fine-grained internal crystallization, with resulting strength and abrasion resistance allowing their wide application in construction. Specialty glass-ceramics and fiber-reinforced composites would rely on chemical separation of magnesium silicates and aluminosilicates as well as oxides titania and alumina. Polycrystalline enstatite with induced lamellar twinning has high fracture toughness, while cordierite glass-ceramics combine excellent thermal shock resistance with high flexural strengths. If sapphire or rutile whiskers can be made, composites of even better mechanical properties are envisioned.

  9. Fatigue strength of woven kenaf fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Ismail, A. E.; Aziz, M. A. Che Abdul

    2015-12-01

    Nowadays, green composites provide alternative to synthetic fibers for non-bearing and load-bearing applications. According to literature review, lack of information is available on the fatigue performances especially when the woven fiber is used instead of randomly oriented fibers. In order to overcome this problem, this paper investigates the fatigue strength of different fiber orientations and number of layers of woven kenaf fiber reinforced composites. Four types of fiber orientations are used namely 0°, 15°, 30° and 45°. Additionally, two numbers of layers are also considered. It is revealed that the fatigue life has no strong relationship with the fiber orientations. For identical fiber orientations, the fatigue life can be predicted considerably using the normalized stress. However as expected, the fatigue life enhancement occur when the number of layer is increased.

  10. Preparation of composite materials in space. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Steurer, W. H.; Kaye, S.

    1973-01-01

    A study to define promising materials, significant processing criteria, and the related processing techniques and apparatus for the preparation of composite materials in space was conducted. The study also established a program for zero gravity experiments and the required developmental efforts. The following composite types were considered: (1) metal-base fiber and particle composites, including cemented compacts, (2) controlled density metals, comprising plain and reinforced metal foams, and (3) unidirectionally solidified eutectic alloys. A program of suborbital and orbital experiments for the 1972 to 1978 time period was established to identify materials, processes, and required experiment equipment.

  11. Reinforcement Effect of Corn Flour in Rubber Composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn flour is an economical renewable material and investigated in this study as filler for rubber composites. The composites were prepared by mixing an aqueous dispersion of corn flour with rubber latex, followed by freeze-drying and compression molding. The small strain elastic modulus and the str...

  12. Bio-composites from mycelium reinforced agricultural substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a need for biodegradable alternatives to the inert plastics and expanded foams currently used in in manufacturing processes and device components. The material focused on in this report is a bio-composite patented by Ecovative Design, LLC. The bio-composite utilizes the fungus mycelium to i...

  13. Composite structural materials. [aircraft applications

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1981-01-01

    The development of composite materials for aircraft applications is addressed with specific consideration of physical properties, structural concepts and analysis, manufacturing, reliability, and life prediction. The design and flight testing of composite ultralight gliders is documented. Advances in computer aided design and methods for nondestructive testing are also discussed.

  14. Radiation processing of carbon fibre-reinforced advanced composites

    NASA Astrophysics Data System (ADS)

    Singh, Ajit

    2001-12-01

    Carbon fibre-reinforced advanced composites are being used for a variety of structural applications, because of their useful mechanical properties, including high strength-to-weight ratio and corrosion resistance. Thermal curing of composite products results in internal stresses, due to the mismatch of the coefficients of expansion of the tools and the composite products. Because radiation curing can be done at ambient temperatures, the possibility that the residual stresses might be absent, or much lower in the radiation-cured products, originally led to the start of work on radiation curing of advanced composites at AECL's Whiteshell Laboratories in Pinawa, Canada, in 1985. Research work during the last two decades has shown that advanced composites can be radiation-cured with electron beams or γ radiation. Many of the advantages of radiation curing, as compared to thermal curing, which include curing at ambient temperature, reduced curing time, improved resin stability and reduced volatile emissions, have now been demonstrated. The initial work focussed on electron curing of acrylated epoxy matrices. Since then, procedures have been developed to radiation cure conventional aerospace epoxies, as well. Electron beam cured advanced composites are now being developed for use in the aircraft and aerospace industry. Repair of advanced composite structures is also possible using radiation curing technology. Radiation curing work is continuing at Pinawa and has also been done by Aerospatiale, who have facilities for electron curing composite rocket motor casings and by Chappas and co-workers who have electron cured part of a boat hull. In this paper, the work done on this emerging new technology by the various groups is briefly reviewed.

  15. Cellulose fiber reinforced nylon 6 or nylon 66 composites

    NASA Astrophysics Data System (ADS)

    Xu, Xiaolin

    Cellulose fiber was used to reinforce higher melting temperature engineering thermoplastics, such as nylon 6 and nylon 66. The continuous extrusion - direct compression molding processing and extrusion-injection molding were chosen to make cellulose fiber/nylon 6 or 66 composites. Tensile, flexural and Izod impact tests were used to demonstrate the mechanical properties of the composites. The continuous extrusion-compression molding processing can decrease the thermal degradation of cellulose fiber, but fiber doesn't disperse well with this procedure. Injection molding gave samples with better fiber dispersion and less void content, and thus gave better mechanical properties than compression molding. Low temperature compounding was used to extrude cellulose fiber/nylon composites. Plasticizer and a ceramic powder were used to decrease the processing temperature. Low temperature extrusion gave better mechanical properties than high temperature extrusion. The tensile modulus of nylon 6 composite with 30% fiber can reach 5GPa; with a tensile strength of 68MPa; a flexural modulus of 4GPa, and a flexural strength of 100MPa. The tensile modulus of nylon 66 composites with 30% fiber can reach 5GPa; with a flexural modulus of 5GPa; a tensile strength of 70MPa; and a flexural strength of 147MPa. The effect of thermal degradation on fiber properties was estimated. The Halpin-Tsai model and the Cox model were used to estimate the composite modulus. The Kelly-Tyson model was used to estimate the composite strength. The result indicates that the change of fiber properties determines the final properties of composites. Fiber length has a minor affect on both modulus and strength as long as the fiber length is above the critical length.

  16. Geometrically nonlinear analysis of antisymmetric angle-ply smart composite plates integrated with a layer of piezoelectric fiber reinforced composite

    NASA Astrophysics Data System (ADS)

    Shivakumar, J.; Ray, M. C.

    2007-06-01

    This paper is concerned with static analysis of simply supported antisymmetric angle-ply plates integrated with a layer of piezoelectric fiber reinforced composite (PFRC) material undergoing nonlinear deformations. The Von Kàrmàn type nonlinear strain displacement relations and first-order shear deformation theory are used to formulate the variational model of this electromechanical coupled problem. Subsequently, the Galerkin method is employed to derive the nonlinear algebraic governing equations which are solved by employing the Newton-Raphson method. The results suggest the potential use of PFRC material for distributed control of nonlinear deformations of smart antisymmetric angle-ply composite plates. Particular emphasis has been placed on investigating the effect of variation of piezoelectric fiber orientation on the actuating capability of the PFRC layer for counteracting the nonlinear deformations of the smart antisymmetric angle-ply composite plates.

  17. Oxidation-resistant interfacial coatings for fiber-reinforced ceramic composites

    SciTech Connect

    Lara-Curzio, Edgar; More, Karren L.; Lee, Woo Y.

    1999-04-22

    A ceramic-matrix composite having a multilayered interfacial coating adapted to protect the reinforcing fibers from long-term oxidation, while allowing these to bridge the wake of advancing cracks in the matrix, is provided by selectively mismatching materials within adjacent layers of the interfacial coating, the materials having different coefficients of thermal expansion so that a low toughness interface region is created to promote crack deflection either within an interior layer of the mismatched interfacial coating or between adjacent layers of the mismatched interfacial coating.

  18. Study of fracture mechanisms of short fiber reinforced AS composite by acoustic emission technique

    SciTech Connect

    Kida, Sotoaki; Suzuki, Megumu

    1995-11-01

    The fracture mechanisms of short fiber reinforced AS composites are studied by acoustic emission technique for examining the effects of fiber contents. The loads P{sub b} and P{sub c} which the damage mechanisms change are obtained at the inflection points of the total AE energy curve the energy gradient method. The damages are generated by fiber breaking at the load point of P{sub b} and P{sub c} in B material, and by the fiber breaking and the debonding between resin and fiber at the load points of P{sub b} and P{sub c} in C material.

  19. Single-tooth replacement with a chairside prefabricated fiber-reinforced resin composite bridge: a case study.

    PubMed

    Arteaga, Sarita; Meiers, Jonathan C

    2004-01-01

    There are many fixed options for replacing a single anterior tooth, including implants; conventional full coverage; porcelain-fused-to-metal, all-ceramic, and fiber-reinforced composite designs; and minimal preparation designs that utilize lingual wing frameworks made from metal, ceramic, or fiber-reinforced composite. All of these approaches require at least two visits; however, it is possible to replace a missing anterior tooth in a single visit by using adhesive techniques with resin composite and fiber-reinforced resin composite materials. This approach has been developed and refined with a bridge created at chairside, using a prefabricated fiber-reinforced composite framework. This framework consists of a pontic substructure that is shaped to support a resin composite pontic, with one or two wings used to attach the pontic substructure to either the lingual or facial surfaces of the abutment teeth. This article describes a chairside technique for replacing a maxillary central incisor by using a prefabricated fiber-reinforced framework. PMID:15636277

  20. Carbon nanotube composite materials

    DOEpatents

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.