Science.gov

Sample records for reinforcement function design

  1. Function Transformation without Reinforcement

    PubMed Central

    Tonneau, François; Arreola, Fara; Martínez, Alma Gabriela

    2006-01-01

    In studies of function transformation, participants initially are taught to match stimuli in the presence of a contextual cue, X; the stimuli to be matched bear some formal relation to each other, for example, a relation of opposition or difference. In a second phase, the participants are taught to match arbitrary stimuli (say, A and B) in the presence of X. In a final test, A often displays behavioral functions that differ from those of B, and can be predicted from the nature of the relation associated with X in the initial training phase. Here we report function-transformation effects in the absence of selection responses and of their reinforcers. In three experiments with college students, exposure to relations of difference or identity modified the responses given to later stimuli. In Experiment 1, responses to a test stimulus A varied depending on preexposure to pairs of colors that were distinct from A but exemplified relations of difference or identity. In Experiment 2, a stimulus A acquired distinct functions, depending on its previous pairing with a contextual cue X that had itself been paired with identity or difference among colors. Experiment 3 confirmed the results of Experiment 2 with a modified design. Our data are consistent with the notion that relations of identity or difference can serve as stimuli for Pavlovian processes, and, in compound with other cues, produce apparent function-transformation effects. PMID:16776058

  2. Function transformation without reinforcement.

    PubMed

    Tonneau, Franćois; Arreola, Fara; Martínez, Alma Gabriela

    2006-05-01

    In studies of function transformation, participants initially are taught to match stimuli in the presence of a contextual cue, X; the stimuli to be matched bear some formal relation to each other, for example, a relation of opposition or difference. In a second phase, the participants are taught to match arbitrary stimuli (say, A and B) in the presence of X. In a final test, A often displays behavioral functions that differ from those of B, and can be predicted from the nature of the relation associated with X in the initial training phase. Here we report function-transformation effects in the absence of selection responses and of their reinforcers. In three experiments with college students, exposure to relations of difference or identity modified the responses given to later stimuli. In Experiment 1, responses to a test stimulus A varied depending on preexposure to pairs of colors that were distinct from A but exemplified relations of difference or identity. In Experiment 2, a stimulus A acquired distinct functions, depending on its previous pairing with a contextual cue X that had itself been paired with identity or difference among colors. Experiment 3 confirmed the results of Experiment 2 with a modified design. Our data are consistent with the notion that relations of identity or difference can serve as stimuli for Pavlovian processes, and, in compound with other cues, produce apparent function-transformation effects. PMID:16776058

  3. Reinforcement function design and bias for efficient learning in mobile robots

    SciTech Connect

    Touzet, C.; Santos, J.M.

    1998-06-01

    The main paradigm in sub-symbolic learning robot domain is the reinforcement learning method. Various techniques have been developed to deal with the memorization/generalization problem, demonstrating the superior ability of artificial neural network implementations. In this paper, the authors address the issue of designing the reinforcement so as to optimize the exploration part of the learning. They also present and summarize works relative to the use of bias intended to achieve the effective synthesis of the desired behavior. Demonstrative experiments involving a self-organizing map implementation of the Q-learning and real mobile robots (Nomad 200 and Khepera) in a task of obstacle avoidance behavior synthesis are described. 3 figs., 5 tabs.

  4. Function Transformation without Reinforcement

    ERIC Educational Resources Information Center

    Tonneau, Francois; Arreola, Fara; Martinez, Alma Gabriela

    2006-01-01

    In studies of function transformation, participants initially are taught to match stimuli in the presence of a contextual cue, X; the stimuli to be matched bear some formal relation to each other, for example, a relation of opposition or difference. In a second phase, the participants are taught to match arbitrary stimuli (say, A and B) in the…

  5. Automatic tuning of the reinforcement function

    SciTech Connect

    Touzet, C.; Santos, J.M.

    1997-12-31

    The aim of this work is to present a method that helps tuning the reinforcement function parameters in a reinforcement learning approach. Since the proposal of neural based implementations for the reinforcement learning paradigm (which reduced learning time and memory requirements to realistic values) reinforcement functions have become the critical components. Using a general definition for reinforcement functions, the authors solve, in a particular case, the so called exploration versus exploitation dilemma through the careful computation of the RF parameter values. They propose an algorithm to compute, during the exploration part of the learning phase, an estimate for the parameter values. Experiments with the mobile robot Nomad 200 validate their proposals.

  6. The effect of reinforcer preference on functional analysis outcomes.

    PubMed Central

    Lalli, J S; Kates, K

    1998-01-01

    We combined functional analyses and concurrent-schedule assessments to identify reinforcer preference during situations in which problem behavior may have been multiply controlled. Participants were 3 children with developmental delays who engaged in problem behavior during toy play with another child and one adult present, suggesting that problem behavior may have been maintained by adult attention or access to tangible reinforcement. Thus, conditions were designed to test attention and access-to-toys hypotheses. Initial functional analyses suggested multiple control. Subsequent concurrent-schedule assessments identified preference between the reinforcers, and treatments were based on these findings. Findings are discussed regarding the assessment of potentially multiply controlled problem behavior. PMID:9532752

  7. Optimal Reward Functions in Distributed Reinforcement Learning

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Tumer, Kagan

    2000-01-01

    We consider the design of multi-agent systems so as to optimize an overall world utility function when (1) those systems lack centralized communication and control, and (2) each agents runs a distinct Reinforcement Learning (RL) algorithm. A crucial issue in such design problems is to initialize/update each agent's private utility function, so as to induce best possible world utility. Traditional 'team game' solutions to this problem sidestep this issue and simply assign to each agent the world utility as its private utility function. In previous work we used the 'Collective Intelligence' framework to derive a better choice of private utility functions, one that results in world utility performance up to orders of magnitude superior to that ensuing from use of the team game utility. In this paper we extend these results. We derive the general class of private utility functions that both are easy for the individual agents to learn and that, if learned well, result in high world utility. We demonstrate experimentally that using these new utility functions can result in significantly improved performance over that of our previously proposed utility, over and above that previous utility's superiority to the conventional team game utility.

  8. The negative reinforcing functions of nonconformity.

    PubMed

    Seybert, J A; Weiss, R F

    1974-07-01

    Employing the general approach which Neal Miller called "extension of liberalized S-R theory," two experiments (N = 108) found that Ss would learn an instrumental response, the reinforcement for which was the opportunity to escape from a situation in which they were a nonconformist. When the nonconformity situations were presented on an intermittent basis, speed of the response was found to be a function of the percentage of nonconformity trials (p <.001). When the opportunity to escape was delayed (0, 1.5, or 3 sec), response acquisition was found to be an inverse function of the length of the delay (p <.001). The results of both experiments correspond to data collected in instrumental escape conditioning experiments on delay of reinforcement and intermittent shock using similar procedures.

  9. Facilitating tolerance of delayed reinforcement during functional communication training.

    PubMed

    Fisher, W W; Thompson, R H; Hagopian, L P; Bowman, L G; Krug, A

    2000-01-01

    Few clinical investigations have addressed the problem of delayed reinforcement. In this investigation, three individuals whose destructive behavior was maintained by positive reinforcement were treated using functional communication training (FCT) with extinction (EXT). Next, procedures used in the basic literature on delayed reinforcement and self-control (reinforcer delay fading, punishment of impulsive responding, and provision of an alternative activity during reinforcer delay) were used to teach participants to tolerate delayed reinforcement. With the first case, reinforcer delay fading alone was effective at maintaining low rates of destructive behavior while introducing delayed reinforcement. In the second case, the addition of a punishment component reduced destructive behavior to near-zero levels and facilitated reinforcer delay fading. With the third case, reinforcer delay fading was associated with increases in masturbation and head rolling, but prompting and praising the individual for completing work during the delay interval reduced all problem behaviors and facilitated reinforcer delay fading.

  10. Facilitating tolerance of delayed reinforcement during functional communication training.

    PubMed

    Fisher, W W; Thompson, R H; Hagopian, L P; Bowman, L G; Krug, A

    2000-01-01

    Few clinical investigations have addressed the problem of delayed reinforcement. In this investigation, three individuals whose destructive behavior was maintained by positive reinforcement were treated using functional communication training (FCT) with extinction (EXT). Next, procedures used in the basic literature on delayed reinforcement and self-control (reinforcer delay fading, punishment of impulsive responding, and provision of an alternative activity during reinforcer delay) were used to teach participants to tolerate delayed reinforcement. With the first case, reinforcer delay fading alone was effective at maintaining low rates of destructive behavior while introducing delayed reinforcement. In the second case, the addition of a punishment component reduced destructive behavior to near-zero levels and facilitated reinforcer delay fading. With the third case, reinforcer delay fading was associated with increases in masturbation and head rolling, but prompting and praising the individual for completing work during the delay interval reduced all problem behaviors and facilitated reinforcer delay fading. PMID:10641365

  11. Providing alternative reinforcers to facilitate tolerance to delayed reinforcement following functional communication training.

    PubMed

    Austin, Jillian E; Tiger, Jeffrey H

    2015-09-01

    The earliest stages of functional communication training (FCT) involve providing immediate and continuous reinforcement for a communicative response (FCR) that is functionally equivalent to the targeted problem behavior. However, maintaining immediate reinforcement is not practical, and the introduction of delays is associated with increased problem behavior. The present study evaluated the effects of providing alternative reinforcers during delays to reinforcement with a 13-year-old boy with an intellectual disability. Problem behavior was less likely when alternative reinforcers were available during delays. PMID:25958828

  12. Multiagent reinforcement learning with unshared value functions.

    PubMed

    Hu, Yujing; Gao, Yang; An, Bo

    2015-04-01

    One important approach of multiagent reinforcement learning (MARL) is equilibrium-based MARL, which is a combination of reinforcement learning and game theory. Most existing algorithms involve computationally expensive calculation of mixed strategy equilibria and require agents to replicate the other agents' value functions for equilibrium computing in each state. This is unrealistic since agents may not be willing to share such information due to privacy or safety concerns. This paper aims to develop novel and efficient MARL algorithms without the need for agents to share value functions. First, we adopt pure strategy equilibrium solution concepts instead of mixed strategy equilibria given that a mixed strategy equilibrium is often computationally expensive. In this paper, three types of pure strategy profiles are utilized as equilibrium solution concepts: pure strategy Nash equilibrium, equilibrium-dominating strategy profile, and nonstrict equilibrium-dominating strategy profile. The latter two solution concepts are strategy profiles from which agents can gain higher payoffs than one or more pure strategy Nash equilibria. Theoretical analysis shows that these strategy profiles are symmetric meta equilibria. Second, we propose a multistep negotiation process for finding pure strategy equilibria since value functions are not shared among agents. By putting these together, we propose a novel MARL algorithm called negotiation-based Q-learning (NegoQ). Experiments are first conducted in grid-world games, which are widely used to evaluate MARL algorithms. In these games, NegoQ learns equilibrium policies and runs significantly faster than existing MARL algorithms (correlated Q-learning and Nash Q-learning). Surprisingly, we find that NegoQ also performs well in team Markov games such as pursuit games, as compared with team-task-oriented MARL algorithms (such as friend Q-learning and distributed Q-learning).

  13. Multiagent reinforcement learning with unshared value functions.

    PubMed

    Hu, Yujing; Gao, Yang; An, Bo

    2015-04-01

    One important approach of multiagent reinforcement learning (MARL) is equilibrium-based MARL, which is a combination of reinforcement learning and game theory. Most existing algorithms involve computationally expensive calculation of mixed strategy equilibria and require agents to replicate the other agents' value functions for equilibrium computing in each state. This is unrealistic since agents may not be willing to share such information due to privacy or safety concerns. This paper aims to develop novel and efficient MARL algorithms without the need for agents to share value functions. First, we adopt pure strategy equilibrium solution concepts instead of mixed strategy equilibria given that a mixed strategy equilibrium is often computationally expensive. In this paper, three types of pure strategy profiles are utilized as equilibrium solution concepts: pure strategy Nash equilibrium, equilibrium-dominating strategy profile, and nonstrict equilibrium-dominating strategy profile. The latter two solution concepts are strategy profiles from which agents can gain higher payoffs than one or more pure strategy Nash equilibria. Theoretical analysis shows that these strategy profiles are symmetric meta equilibria. Second, we propose a multistep negotiation process for finding pure strategy equilibria since value functions are not shared among agents. By putting these together, we propose a novel MARL algorithm called negotiation-based Q-learning (NegoQ). Experiments are first conducted in grid-world games, which are widely used to evaluate MARL algorithms. In these games, NegoQ learns equilibrium policies and runs significantly faster than existing MARL algorithms (correlated Q-learning and Nash Q-learning). Surprisingly, we find that NegoQ also performs well in team Markov games such as pursuit games, as compared with team-task-oriented MARL algorithms (such as friend Q-learning and distributed Q-learning). PMID:25014990

  14. Providing Alternative Reinforcers to Facilitate Tolerance to Delayed Reinforcement Following Functional Communication Training

    ERIC Educational Resources Information Center

    Austin, Jillian E.; Tiger, Jeffrey H.

    2015-01-01

    The earliest stages of functional communication training (FCT) involve providing immediate and continuous reinforcement for a communicative response (FCR) that is functionally equivalent to the targeted problem behavior. However, maintaining immediate reinforcement is not practical, and the introduction of delays is associated with increased…

  15. Designing concrete EDS maglev guideways: Power losses in metallic reinforcement

    SciTech Connect

    Beto, D.; Plotkin, D.

    1997-05-01

    Conventional reinforced concrete designs will have to be altered when designing a guideway for a maglev using an electrodynamically suspended (EDS) propulsion system. This type of propulsion system generates large magnetic fields that will develop magnetically induced, circulating eddy currents in any conventional steel reinforcement in close proximity to the magnets. These eddy currents, if large enough, may produce significant power losses that could adversely effect operation of the system. This paper presents a method and explanation for civil engineers to use for estimating the power losses due to the presence of metallic reinforcement. This procedure may be used to help guide future designs in the selection and placement of reinforcing material.

  16. Glass Fiber Reinforced Metal Pressure Vessel Design Guide

    NASA Technical Reports Server (NTRS)

    Landes, R. E.

    1972-01-01

    The Engineering Guide presents curves and general equations for safelife design of lightweight glass fiber reinforced (GFR) metal pressure vessels operating under anticipated Space Shuttle service conditions. The high composite vessel weight efficiency is shown to be relatively insensitive to shape, providing increased flexibility to designers establishing spacecraft configurations. Spheres, oblate speroids, and cylinders constructed of GFR Inconel X-750, 2219-T62 aluminum, and cryoformed 301 stainless steel are covered; design parameters and performance efficiencies for each configuration are compared at ambient and cryogenic temperature for an operating pressure range of 690 to 2760 N/sq cm (1000 to 4000 psi). Design variables are presented as a function of metal shell operating to sizing (proof) stress ratios for use with fracture mechanics data generated under a separate task of this program.

  17. Functional impulsivity and reinforcement sensitivity theory.

    PubMed

    Smillie, Luke D; Jackson, Chris J

    2006-02-01

    In this article, we attempt to integrate Dickman's (1990) descriptive concept of Functional Impulsivity (FI) with Gray's (1970, 1991) Reinforcement Sensitivity Theory (RST). Specifically, we consider that FI bears great conceptual similarity to Gray's concept of reward-reactivity, which is thought to be caused by the combined effects of a Behavioral Activation System (BAS) and Behavioral Inhibition System (BIS). In our first study, we examine the construct validity and structural correlates of FI. Results indicate that FI is related positively to measures of BAS and Extraversion, negatively to measures of BIS and Neuroticism, and is separate from Psychoticism and typical trait Impulsivity, which Dickman calls Dysfunctional Impulsivity (DI). In our second study, we use a go/no-go discrimination task to examine the relationship between FI and response bias under conditions of rewarding and punishing feedback. Results indicate that FI, along with two measures of BAS, predicted the development of a response bias for the rewarded alternative. In comparison, high DI appeared to reflect indifference toward either reward or punishment. We consider how these findings might reconcile the perspectives of Gray and Dickman and help clarify the broader understanding of Impulsivity.

  18. Characterization and design of steel fiber reinforced shotcrete in tunnelling

    SciTech Connect

    Casanova, P.A.; Rossi, P.C.

    1995-12-31

    A design procedure of steel fiber reinforced shotcrete tunnel linings is proposed. It is based on the analysis of a cracked section. The tensile behavior of shotcrete after cracking is obtained by a uniaxial tension test on cored notched samples. As for usual reinforced concrete structures an interaction diagram (moment-axial load) is determined.

  19. Reinforcement schedule thinning following treatment with functional communication training.

    PubMed Central

    Hanley, G P; Iwata, B A; Thompson, R H

    2001-01-01

    We evaluated four methods for increasing the practicality of functional communication training (FCT) by decreasing the frequency of reinforcement for alternative behavior. Three participants whose problem behaviors were maintained by positive reinforcement were treated successfully with FCT in which reinforcement for alternative behavior was initially delivered on fixed-ratio (FR) 1 schedules. One participant was then exposed to increasing delays to reinforcement under FR 1, a graduated fixed-interval (FI) schedule, and a graduated multiple-schedule arrangement in which signaled periods of reinforcement and extinction were alternated. Results showed that (a) increasing delays resulted in extinction of the alternative behavior, (b) the FI schedule produced undesirably high rates of the alternative behavior, and (c) the multiple schedule resulted in moderate and stable levels of the alternative behavior as the duration of the extinction component was increased. The other 2 participants were exposed to graduated mixed-schedule (unsignaled alternation between reinforcement and extinction components) and multiple-schedule (signaled alternation between reinforcement and extinction components) arrangements in which the durations of the reinforcement and extinction components were modified. Results obtained for these 2 participants indicated that the use of discriminative stimuli in the multiple schedule facilitated reinforcement schedule thinning. Upon completion of treatment, problem behavior remained low (or at zero), whereas alternative behavior was maintained as well as differentiated during a multiple-schedule arrangement consisting of a 4-min extinction period followed by a 1-min reinforcement period. PMID:11317985

  20. Facilitating Tolerance of Delayed Reinforcement during Functional Communication Training.

    ERIC Educational Resources Information Center

    Fisher, Wayne W.; Thompson, Rachel H.; Hagopian, Louis P.; Bowman, Lynn G.; Krug, Amy

    2000-01-01

    Three individuals with severe behavior disorders and mental retardation, whose destructive behaviors were being maintained by positive reinforcement, were treated using functional communication training with extinction. The case studies investigated techniques used to increase effectiveness of delayed reinforcement and to teach individuals with…

  1. Design Guide for glass fiber reinforced metal pressure vessel

    NASA Technical Reports Server (NTRS)

    Landes, R. E.

    1973-01-01

    Design Guide has been prepared for pressure vessel engineers concerned with specific glass fiber reinforced metal tank design or general tank tradeoff study. Design philosophy, general equations, and curves are provided for safelife design of tanks operating under anticipated space shuttle service conditions.

  2. Cohesive fracture model for functionally graded fiber reinforced concrete

    SciTech Connect

    Park, Kyoungsoo; Paulino, Glaucio H.; Roesler, Jeffery

    2010-06-15

    A simple, effective, and practical constitutive model for cohesive fracture of fiber reinforced concrete is proposed by differentiating the aggregate bridging zone and the fiber bridging zone. The aggregate bridging zone is related to the total fracture energy of plain concrete, while the fiber bridging zone is associated with the difference between the total fracture energy of fiber reinforced concrete and the total fracture energy of plain concrete. The cohesive fracture model is defined by experimental fracture parameters, which are obtained through three-point bending and split tensile tests. As expected, the model describes fracture behavior of plain concrete beams. In addition, it predicts the fracture behavior of either fiber reinforced concrete beams or a combination of plain and fiber reinforced concrete functionally layered in a single beam specimen. The validated model is also applied to investigate continuously, functionally graded fiber reinforced concrete composites.

  3. [The reinforcing function of the emotions].

    PubMed

    Vartanian, G A; Petrov, E S

    1992-01-01

    In the paper are summarised the results of investigations of the central mechanisms of reinforcing properties of emotions which have been carried out during the last years in Pavlov Physiological Department of the Institute for Experimental Medicine. An attempt is made to outline a perspective of the future development in this domain of the brain physiology which is a key one for the theory of conditioning.

  4. The reinforcing function of the emotions.

    PubMed

    Vartanyan, G A; Petrov, E S

    1993-01-01

    The present study is devoted to a brief exposition of the results of investigations of the central mechanisms of the reinforcing properties of emotions that were carried out in the I.P. Pavlov Physiology Department of the Institute of Experimental Medicine in recent years, and to an attempt to outline the prospects for further developments in this sphere of brain physiology which is vital for conditioned reflex theory.

  5. Establishing books as conditioned reinforcers for preschool children as a function of an observational intervention.

    PubMed

    Singer-Dudek, Jessica; Oblak, Mara; Greer, R Douglas

    2011-01-01

    We tested the effects of an observational intervention (Greer & Singer-Dudek, 2008) on establishing children's books as conditioned reinforcers using a delayed multiple baseline design. Three preschool students with mild language and developmental delays served as the participants. Prior to the intervention, books did not function as reinforcers for any of the participants. The observational intervention consisted of a situation in which the participant observed a confederate being presented with access to books contingent on correct responses and the participant received nothing for correct responses. After several sessions of this treatment, the previously neutral books acquired reinforcing properties for maintenance and acquisition responses for all three participants.

  6. Feedback functions for variable-interval reinforcement

    PubMed Central

    Nevin, John A.; Baum, William M.

    1980-01-01

    On a given variable-interval schedule, the average obtained rate of reinforcement depends on the average rate of responding. An expression for this feedback effect is derived from the assumptions that free-operant responding occurs in bursts with a constant tempo, alternating with periods of engagement in other activities; that the durations of bursts and other activities are exponentially distributed; and that the rates of initiating and terminating bursts are inversely related. The expression provides a satisfactory account of the data of three experiments. PMID:16812187

  7. Democratic reinforcement: A principle for brain function

    NASA Astrophysics Data System (ADS)

    Stassinopoulos, Dimitris; Bak, Per

    1995-05-01

    We introduce a simple ``toy'' brain model. The model consists of a set of randomly connected, or layered integrate-and-fire neurons. Inputs to and outputs from the environment are connected randomly to subsets of neurons. The connections between firing neurons are strengthened or weakened according to whether the action was successful or not. Unlike previous reinforcement learning algorithms, the feedback from the environment is democratic: it affects all neurons in the same way, irrespective of their position in the network and independent of the output signal. Thus no unrealistic back propagation or other external computation is needed. This is accomplished by a global threshold regulation which allows the system to self-organize into a highly susceptible, possibly ``critical'' state with low activity and sparse connections between firing neurons. The low activity permits memory in quiescent areas to be conserved since only firing neurons are modified when new information is being taught.

  8. Designing with figer-reinforced plastics (planar random composites)

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1982-01-01

    The use of composite mechanics to predict the hygrothermomechanical behavior of planar random composites (PRC) is reviewed and described. These composites are usually made from chopped fiber reinforced resins (thermoplastics or thermosets). The hygrothermomechanical behavior includes mechanical properties, physical properties, thermal properties, fracture toughness, creep and creep rupture. Properties are presented in graphical form with sample calculations to illustrate their use. Concepts such as directional reinforcement and strip hybrids are described. Typical data that can be used for preliminary design for various PRCs are included. Several resins and molding compounds used to make PRCs are described briefly. Pertinent references are cited that cover analysis and design methods, materials, data, fabrication procedures and applications.

  9. Design and fabrication of a boron reinforced intertank skirt

    NASA Technical Reports Server (NTRS)

    Henshaw, J.; Roy, P. A.; Pylypetz, P.

    1974-01-01

    Analytical and experimental studies were performed to evaluate the structural efficiency of a boron reinforced shell, where the medium of reinforcement consists of hollow aluminum extrusions infiltrated with boron epoxy. Studies were completed for the design of a one-half scale minimum weight shell using boron reinforced stringers and boron reinforced rings. Parametric and iterative studies were completed for the design of minimum weight stringers, rings, shells without rings and shells with rings. Computer studies were completed for the final evaluation of a minimum weight shell using highly buckled minimum gage skin. The detail design is described of a practical minimum weight test shell which demonstrates a weight savings of 30% as compared to an all aluminum longitudinal stiffened shell. Sub-element tests were conducted on representative segments of the compression surface at maximum stress and also on segments of the load transfer joint. A 10 foot long, 77 inch diameter shell was fabricated from the design and delivered for further testing.

  10. Designing bioinspired composite reinforcement architectures via 3D magnetic printing

    PubMed Central

    Martin, Joshua J.; Fiore, Brad E.; Erb, Randall M.

    2015-01-01

    Discontinuous fibre composites represent a class of materials that are strong, lightweight and have remarkable fracture toughness. These advantages partially explain the abundance and variety of discontinuous fibre composites that have evolved in the natural world. Many natural structures out-perform the conventional synthetic counterparts due, in part, to the more elaborate reinforcement architectures that occur in natural composites. Here we present an additive manufacturing approach that combines real-time colloidal assembly with existing additive manufacturing technologies to create highly programmable discontinuous fibre composites. This technology, termed as ‘3D magnetic printing', has enabled us to recreate complex bioinspired reinforcement architectures that deliver enhanced material performance compared with monolithic structures. Further, we demonstrate that we can now design and evolve elaborate reinforcement architectures that are not found in nature, demonstrating a high level of possible customization in discontinuous fibre composites with arbitrary geometries. PMID:26494282

  11. MODELING FUNCTIONALLY GRADED INTERPHASE REGIONS IN CARBON NANOTUBE REINFORCED COMPOSITES

    NASA Technical Reports Server (NTRS)

    Seidel, G. D.; Lagoudas, D. C.; Frankland, S. J. V.; Gates, T. S.

    2006-01-01

    A combination of micromechanics methods and molecular dynamics simulations are used to obtain the effective properties of the carbon nanotube reinforced composites with functionally graded interphase regions. The multilayer composite cylinders method accounts for the effects of non-perfect load transfer in carbon nanotube reinforced polymer matrix composites using a piecewise functionally graded interphase. The functional form of the properties in the interphase region, as well as the interphase thickness, is derived from molecular dynamics simulations of carbon nanotubes in a polymer matrix. Results indicate that the functional form of the interphase can have a significant effect on all the effective elastic constants except for the effective axial modulus for which no noticeable effects are evident.

  12. Contrast and reallocation of extraneous reinforcers as a function of component duration and baseline rate of reinforcement

    PubMed Central

    McLean, Anthony P.

    1995-01-01

    Four pigeons responded on multiple schedules arranged on a “main” key in a two-key experimental chamber. A constant schedule component was alternated with another component that was varied over conditions. On an extra response key, conjoint schedules of reinforcement that operated in both components were arranged concurrently with the multiple schedule on the main key. On the main key, changes in reinforcement rate in the varied component were inversely related to changes in response rates in the constant component (behavioral contrast). On the extra key, some reinforcers were reallocated between components, depending on the schedules in effect on the main key in the varied component. In the varied component, the obtained rates of reinforcement on the extra key were inversely related to main-key reinforcement rate. In the constant component, extra-key reinforcer rates were positively related to main-key reinforcer rates obtained in the varied component, and were not a function of response rates on the extra key. In two comparisons, the rate at which components alternated and the value of the main-key schedule in the constant component were varied. Consistent with earlier work, long components reduced the extent of contrast. Reductions in contrast as a function of component duration were accompanied by similar reductions in the extent of reinforcer reallocation on the extra key. In the second comparison, lowering the rate of reinforcement in the constant component increased the rate at which extra-key reinforcers were obtained, reduced the extent of reinforcer reallocation, and reduced contrast. Overall, the results are consistent with the suggestion that some contrast effects are due to the changes in extraneous reinforcement during the constant component, and that manipulations of component duration, and manipulations of the rate of reinforcement in the constant component, affect contrast because they influence the extent of extraneous reinforcer real

  13. Comparisons of synthesized and individual reinforcement contingencies during functional analysis.

    PubMed

    Fisher, Wayne W; Greer, Brian D; Romani, Patrick W; Zangrillo, Amanda N; Owen, Todd M

    2016-09-01

    Researchers typically modify individual functional analysis (FA) conditions after results are inconclusive (Hanley, Iwata, & McCord, 2003). Hanley, Jin, Vanselow, and Hanratty (2014) introduced a marked departure from this practice, using an interview-informed synthesized contingency analysis (IISCA). In the test condition, they delivered multiple contingencies simultaneously (e.g., attention and escape) after each occurrence of problem behavior; in the control condition, they delivered those same reinforcers noncontingently and continuously. In the current investigation, we compared the results of the IISCA with a more traditional FA in which we evaluated each putative reinforcer individually. Four of 5 participants displayed destructive behavior that was sensitive to the individual contingencies evaluated in the traditional FA. By contrast, none of the participants showed a response pattern consistent with the assumption of the IISCA. We discuss the implications of these findings on the development of accurate and efficient functional analyses. PMID:27174563

  14. Fracture Behavior and Properties of Functionally Graded Fiber-Reinforced Concrete

    SciTech Connect

    Roesler, Jeffery; Bordelon, Amanda; Gaedicke, Cristian; Park, Kyoungsoo; Paulino, Glaucio

    2008-02-15

    In concrete pavements, a single concrete mixture design is selected to resist mechanical loading without attempting to adversely affect the concrete pavement shrinkage, ride quality, or noise attenuation. An alternative approach is to design distinct layers within the concrete pavement surface which have specific functions thus achieving higher performance at a lower cost. The objective of this research was to address the structural benefits of functionally graded concrete materials (FGCM) for rigid pavements by testing and modeling the fracture behavior of different combinations of layered plain and synthetic fiber-reinforced concrete materials. Fracture parameters and the post-peak softening behavior were obtained for each FGCM beam configuration by the three point bending beam test. The peak loads and initial fracture energy between the plain, fiber-reinforced, and FGCM signified similar crack initiation. The total fracture energy indicated improvements in fracture behavior of FGCM relative to full-depth plain concrete. The fracture behavior of FGCM depended on the position of the fiber-reinforced layer relative to the starter notch. The fracture parameters of both fiber-reinforced and plain concrete were embedded into a finite element-based cohesive zone model. The model successfully captured the experimental behavior of the FGCMs and predicted the fracture behavior of proposed FGCM configurations and structures. This integrated approach (testing and modeling) demonstrates the viability of FGCM for designing layered concrete pavements system.

  15. Incremental state aggregation for value function estimation in reinforcement learning.

    PubMed

    Mori, Takeshi; Ishii, Shin

    2011-10-01

    In reinforcement learning, large state and action spaces make the estimation of value functions impractical, so a value function is often represented as a linear combination of basis functions whose linear coefficients constitute parameters to be estimated. However, preparing basis functions requires a certain amount of prior knowledge and is, in general, a difficult task. To overcome this difficulty, an adaptive basis function construction technique has been proposed by Keller recently, but it requires excessive computational cost. We propose an efficient approach to this difficulty, in which the problem of approximating the value function is decomposed into a number of subproblems, each of which can be solved with small computational cost. Computer experiments show that the CPU time needed by our method is much smaller than that by the existing method.

  16. Reinforcement Schedule Thinning Following Functional Communication Training: Review and Recommendations

    PubMed Central

    Hagopian, Louis P; Boelter, Eric W; Jarmolowicz, David P

    2011-01-01

    This paper extends the Tiger, Hanley, and Bruzek (2008) review of functional communication training (FCT) by reviewing the published literature on reinforcement schedule thinning following FCT. As noted by Tiger et al. and others, schedule thinning may be necessary when the newly acquired communication response occurs excessively, to the extent that reinforcing it consistently is not practical in the natural environment. We provide a review of this literature including a discussion of each of the more commonly used schedule arrangements used for this purpose, outcomes obtained, a description of methods for progressing toward the terminal schedule, and a description of supplemental treatment components aimed at maintaining low levels of problem behavior during schedule thinning. Recommendations for schedule thinning are then provided. Finally, conceptual issues related to the reemergence of problem behavior during schedule thinning and areas for future research are discussed. PMID:22532899

  17. Clinical experience with reinforced, anchored intramuscular electrodes for functional neuromuscular stimulation.

    PubMed

    Prochazka, A; Davis, L A

    1992-05-01

    Implanted intramuscular electrodes must remain functional for many years if functional neuromuscular stimulation (FNS) is to become a standard treatment in paralysed individuals. In initial trials we found that 5 of 11 coiled single-wire FNS electrodes implanted in 3 patients failed within 8 months. Consequently, we turned to a reinforced electrode comprising 2 multi-stranded, insulated wires tandem-wound on a prolene core and terminated by a prolene anchor or tine (after Mortimer et al., 1986, 1987). The electrodes were implanted with a translumbar aortogram needle, the teflon sheath of which enabled us to stimulate through the tip to guide placement. We have monitored the electrical and functional properties of 8 reinforced electrodes implanted in 2 incomplete quadriplegic patients over 22 months. Four of the electrodes were used for at least 1 h daily to exercise muscles or to provide FNS in gait. Electrical impedances, thresholds and elicited limb motion remained constant in all 8 electrodes over the test period. Disadvantages of the reinforced electrodes are (1) difficulty of eventual removal, and (2) risk of pathogenic infiltration is increased by the 3-filament structure (fortunately dense tissue encapsulation seems to mitigate infection). We conclude that tandem-wound, prolene-reinforced FNS electrodes are much more robust than previous single-coil designs and may form the basis for FNS devices of the future. PMID:1501502

  18. Feedback Functions, Optimization, and the Relation of Response Rate to Reinforcer Rate

    ERIC Educational Resources Information Center

    Soto, Paul L.; McDowell, Jack J.; Dallery, Jesse

    2006-01-01

    The present experiment arranged a series of inverted U-shaped feedback functions relating reinforcer rate to response rate to test whether responding was consistent with an optimization account or with a one-to-one relation of response rate to reinforcer rate such as linear system theory's rate equation or Herrnstein's hyperbola. Reinforcer rate…

  19. The Function of Direct and Vicarious Reinforcement in Human Learning.

    ERIC Educational Resources Information Center

    Owens, Carl R.; And Others

    The role of reinforcement has long been an issue in learning theory. The effects of reinforcement in learning were investigated under circumstances which made the information necessary for correct performance equally available to reinforced and nonreinforced subjects. Fourth graders (N=36) were given a pre-test of 20 items from the Peabody Picture…

  20. Analysis/design of strip reinforced random composites (strip hybrids)

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1978-01-01

    Advanced analysis methods and composite mechanics were applied to a strip-reinforced random composite square panel with fixed ends to illustrate the use of these methods for the a priori assessment of the composite panel when subjected to complex loading conditions. The panel was assumed to be of E-glass random composite. The strips were assumed to be of three advanced unidirectional composites to cover a range of low, intermediate, and high modulus stiffness. The panels were assumed to be subjected to complex loadings to assess their adequacy as load-carrying members in auto body, aircraft engine nacelle and windmill blade applications. The results show that strip hybrid panels can be several times more structurally efficient than the random composite base materials. Some of the results are presented in graphical form and procedures are described for use of these graphs as guides for preliminary design of strip hybrids.

  1. Analysis/design of strip reinforced random composites /strip hybrids/

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1978-01-01

    Results are described which were obtained by applying advanced analysis methods and composite mechanics to a strip-reinforced random composite square panel with fixed ends. This was done in order to illustrate the use of these methods for the apriori assessment of the composite panel when subjected to complex loading conditions. The panel was assumed to be of E-Glass/Random Composite. The strips were assumed to be of three advanced unidirectional composites to cover a range of low, intermediate, and high modulus stiffness. The panels were assumed to be subjected to complex loadings to assess their adequacy as load-carrying members in auto body, aircraft engine nacelle, and windmill blade applications. The results show that strip hybrid panels can be several times more structurally efficient than the random composite base materials. Some of the results are presented in graphical form and procedures are described for use of these graphs as guides for preliminary design of strip hybrids.

  2. Design of functional metalloproteins.

    PubMed

    Lu, Yi; Yeung, Natasha; Sieracki, Nathan; Marshall, Nicholas M

    2009-08-13

    Metalloproteins catalyse some of the most complex and important processes in nature, such as photosynthesis and water oxidation. An ultimate test of our knowledge of how metalloproteins work is to design new metalloproteins. Doing so not only can reveal hidden structural features that may be missing from studies of native metalloproteins and their variants, but also can result in new metalloenzymes for biotechnological and pharmaceutical applications. Although it is much more challenging to design metalloproteins than non-metalloproteins, much progress has been made in this area, particularly in functional design, owing to recent advances in areas such as computational and structural biology.

  3. Aramid nanofiber-functionalized graphene nanosheets for polymer reinforcement

    NASA Astrophysics Data System (ADS)

    Fan, Jinchen; Shi, Zixing; Zhang, Lu; Wang, Jialiang; Yin, Jie

    2012-10-01

    Aramid macroscale fibers, also called Kevlar fibers, exhibit extremely high mechanical performance. Previous studies have demonstrated that bulk aramid macroscale fibers can be effectively split into aramid nanofibers (ANFs) by dissolution in dimethylsulfoxide (DMSO) in the presence of potassium hydroxide (KOH). In this paper, we first introduced the ANFs into the structure of graphene nanosheets through non-covalent functionalization through π-π stacking interactions. Aramid nanofiber-functionalized graphene sheets (ANFGS) were successfully obtained by adding the graphene oxide (GO)/DMSO dispersion into the ANFs/DMSO solution followed by reduction with hydrazine hydrate. The ANFGS, with ANFs absorbed on the surface of the graphene nanosheets, can be easily exfoliated and dispersed in N-methyl-2-pyrrolidone (NMP). Through a combination of these two ultra-strong materials, ANFs and graphene nanosheets (GS), the resultant ANFGS can act as novel nanofillers for polymer reinforcement. We used the ANFGS as an additive for reinforcing the mechanical properties of poly(methyl methacrylate) (PMMA). With a loading of 0.7 wt% of the ANFGS, the tensile strength and Young's modulus of the ANFGS/PMMA composite film approached 63.2 MPa and 3.42 GPa, which are increases of ~84.5% and ~70.6%, respectively. The thermal stabilities of ANFGS/PMMA composite films were improved by the addition of ANFGS. Additionally, the transparencies of the ANFGS/PMMA composite films have a degree of UV-shielding due to the ultraviolet light absorption of the ANFs in the ANFGS.Aramid macroscale fibers, also called Kevlar fibers, exhibit extremely high mechanical performance. Previous studies have demonstrated that bulk aramid macroscale fibers can be effectively split into aramid nanofibers (ANFs) by dissolution in dimethylsulfoxide (DMSO) in the presence of potassium hydroxide (KOH). In this paper, we first introduced the ANFs into the structure of graphene nanosheets through non

  4. Enzyme design: Functional Frankensteins

    NASA Astrophysics Data System (ADS)

    Makhlynets, Olga V.; Korendovych, Ivan V.

    2016-09-01

    An artificial esterase with no known natural structural analogues has been formed via the homo-heptameric self-assembly of a designed peptide. This esterase represents the first report of a functional catalytic triad rationally engineered into a de novo protein framework.

  5. Aramid nanofiber-functionalized graphene nanosheets for polymer reinforcement.

    PubMed

    Fan, Jinchen; Shi, Zixing; Zhang, Lu; Wang, Jialiang; Yin, Jie

    2012-11-21

    Aramid macroscale fibers, also called Kevlar fibers, exhibit extremely high mechanical performance. Previous studies have demonstrated that bulk aramid macroscale fibers can be effectively split into aramid nanofibers (ANFs) by dissolution in dimethylsulfoxide (DMSO) in the presence of potassium hydroxide (KOH). In this paper, we first introduced the ANFs into the structure of graphene nanosheets through non-covalent functionalization through π-π stacking interactions. Aramid nanofiber-functionalized graphene sheets (ANFGS) were successfully obtained by adding the graphene oxide (GO)/DMSO dispersion into the ANFs/DMSO solution followed by reduction with hydrazine hydrate. The ANFGS, with ANFs absorbed on the surface of the graphene nanosheets, can be easily exfoliated and dispersed in N-methyl-2-pyrrolidone (NMP). Through a combination of these two ultra-strong materials, ANFs and graphene nanosheets (GS), the resultant ANFGS can act as novel nanofillers for polymer reinforcement. We used the ANFGS as an additive for reinforcing the mechanical properties of poly(methyl methacrylate) (PMMA). With a loading of 0.7 wt% of the ANFGS, the tensile strength and Young's modulus of the ANFGS/PMMA composite film approached 63.2 MPa and 3.42 GPa, which are increases of ∼84.5% and ∼70.6%, respectively. The thermal stabilities of ANFGS/PMMA composite films were improved by the addition of ANFGS. Additionally, the transparencies of the ANFGS/PMMA composite films have a degree of UV-shielding due to the ultraviolet light absorption of the ANFs in the ANFGS.

  6. Design guidelines for steel-reinforced polymer concrete using resins based on recycled PET

    SciTech Connect

    Rebeiz, K.S.; Fowler, D.W.

    1996-10-01

    Very little research has been done on the structural behavior of steel-reinforced polymer concrete (PC). In all the previous studies, it was generally assumed that the structural behavior of reinforced PC is similar to the structural behavior of reinforced portland cement concrete because both are composite materials consisting of a binder and inorganic aggregates. However, the design equations developed for steel-reinforced portland cement concrete yield very conservative results when applied to reinforced PC. The objective of this paper is to recommend simple, yet effective design guidelines in shear and flexure for steel-reinforced PC. The recommended design procedures are mostly based on test results performed on PC beams using resins based on recycled poly(ethyleneterephthalate), PET, plastic waste (the PET waste is mainly recovered from used beverage bottles). Previous studies have shown that polyester resins based on recycled PET can produce very good quality PC at a potentially lower cost.

  7. Designing interventions that include delayed reinforcement: implications of recent laboratory research.

    PubMed Central

    Stromer, R; McComas, J J; Rehfeldt, R A

    2000-01-01

    The search for robust and durable interventions in everyday situations typically involves the use of delayed reinforcers, sometimes delivered well after a target behavior occurs. Integrating the findings from laboratory research on delayed reinforcement can contribute to the design and analysis of those applied interventions. As illustrations, we examine articles from the Journal of the Experimental Analysis of Behavior that analyzed delayed reinforcement with respect to response allocation (A. M. Williams & Lattal, 1999), stimulus chaining (B. A. Williams, 1999), and self-control (Jackson & Hackenberg, 1996). These studies help to clarify the conditions under which delayed reinforcement (a) exercises control of behavior, (b) entails conditioned reinforcement, and (c) displaces the effects of immediate reinforcement. The research has applied implications, including the development of positive social behavior and teaching people to make adaptive choices. DESCRIPTORS: delayed reinforcement, response allocation, stimulus chains, self-control, integration of basic and applied research PMID:11051582

  8. A Comparison of Function-Based Differential Reinforcement Interventions for Children Engaging in Disruptive Classroom Behavior

    ERIC Educational Resources Information Center

    LeGray, Matthew W.; Dufrene, Brad A.; Sterling-Turner, Heather; Olmi, D. Joe; Bellone, Katherine

    2010-01-01

    This study provides a direct comparison of differential reinforcement of other behavior (DRO) and differential reinforcement of alternative behavior (DRA). Participants included three children in center-based classrooms referred for functional assessments due to disruptive classroom behavior. Functional assessments included interviews and brief…

  9. Off-policy reinforcement learning for H∞ control design.

    PubMed

    Luo, Biao; Wu, Huai-Ning; Huang, Tingwen

    2015-01-01

    The H∞ control design problem is considered for nonlinear systems with unknown internal system model. It is known that the nonlinear H∞ control problem can be transformed into solving the so-called Hamilton-Jacobi-Isaacs (HJI) equation, which is a nonlinear partial differential equation that is generally impossible to be solved analytically. Even worse, model-based approaches cannot be used for approximately solving HJI equation, when the accurate system model is unavailable or costly to obtain in practice. To overcome these difficulties, an off-policy reinforcement leaning (RL) method is introduced to learn the solution of HJI equation from real system data instead of mathematical system model, and its convergence is proved. In the off-policy RL method, the system data can be generated with arbitrary policies rather than the evaluating policy, which is extremely important and promising for practical systems. For implementation purpose, a neural network (NN)-based actor-critic structure is employed and a least-square NN weight update algorithm is derived based on the method of weighted residuals. Finally, the developed NN-based off-policy RL method is tested on a linear F16 aircraft plant, and further applied to a rotational/translational actuator system. PMID:25532162

  10. Off-policy reinforcement learning for H∞ control design.

    PubMed

    Luo, Biao; Wu, Huai-Ning; Huang, Tingwen

    2015-01-01

    The H∞ control design problem is considered for nonlinear systems with unknown internal system model. It is known that the nonlinear H∞ control problem can be transformed into solving the so-called Hamilton-Jacobi-Isaacs (HJI) equation, which is a nonlinear partial differential equation that is generally impossible to be solved analytically. Even worse, model-based approaches cannot be used for approximately solving HJI equation, when the accurate system model is unavailable or costly to obtain in practice. To overcome these difficulties, an off-policy reinforcement leaning (RL) method is introduced to learn the solution of HJI equation from real system data instead of mathematical system model, and its convergence is proved. In the off-policy RL method, the system data can be generated with arbitrary policies rather than the evaluating policy, which is extremely important and promising for practical systems. For implementation purpose, a neural network (NN)-based actor-critic structure is employed and a least-square NN weight update algorithm is derived based on the method of weighted residuals. Finally, the developed NN-based off-policy RL method is tested on a linear F16 aircraft plant, and further applied to a rotational/translational actuator system.

  11. Design of Rock Slope Reinforcement: An Himalayan Case Study

    NASA Astrophysics Data System (ADS)

    Tiwari, Gaurav; Latha, Gali Madhavi

    2016-06-01

    The stability analysis of the two abutment slopes of a railway bridge proposed at about 359 m above the ground level, crossing a river and connecting two hill faces in the Himalayas, India, is presented. The bridge is located in a zone of high seismic activity. The rock slopes are composed of a heavily jointed rock mass and the spacing, dip and dip direction of joint sets are varying at different locations. Geological mapping was carried out to characterize all discontinuities present along the slopes. Laboratory and field investigations were conducted to assess the geotechnical properties of the intact rock, rock mass and joint infill. Stability analyses of these rock slopes were carried out using numerical programmes. Loads from the foundations resting on the slopes and seismic accelerations estimated from site-specific ground response analysis were considered. The proposed slope profile with several berms between successive foundations was simulated in the numerical model. An equivalent continuum approach with Hoek and Brown failure criterion was initially used in a finite element model to assess the global stability of the slope abutments. In the second stage, finite element analysis of rock slopes with all joint sets with their orientations, spacing and properties explicitly incorporated into the numerical model was taken up using continuum with joints approach. It was observed that the continuum with joints approach was able to capture the local failures in some of the slope sections, which were verified using wedge failure analysis and stereographic projections. Based on the slope deformations and failure patterns observed from the numerical analyses, rock anchors were designed to achieve the target factors of safety against failure while keeping the deformations within the permissible limits. Detailed design of rock anchors and comparison of the stability of slopes with and without reinforcement are presented.

  12. Clarifying Inconclusive Functional Analysis Results: Assessment and Treatment of Automatically Reinforced Aggression

    PubMed Central

    Saini, Valdeep; Greer, Brian D.; Fisher, Wayne W.

    2016-01-01

    We conducted a series of studies in which multiple strategies were used to clarify the inconclusive results of one boy’s functional analysis of aggression. Specifically, we (a) evaluated individual response topographies to determine the composition of aggregated response rates, (b) conducted a separate functional analysis of aggression after high rates of disruption masked the consequences maintaining aggression during the initial functional analysis, (c) modified the experimental design used during the functional analysis of aggression to improve discrimination and decrease interaction effects between conditions, and (d) evaluated a treatment matched to the reinforcer hypothesized to maintain aggression. An effective yet practical intervention for aggression was developed based on the results of these analyses and from data collected during the matched-treatment evaluation. PMID:25891269

  13. Clarifying inconclusive functional analysis results: Assessment and treatment of automatically reinforced aggression.

    PubMed

    Saini, Valdeep; Greer, Brian D; Fisher, Wayne W

    2015-01-01

    We conducted a series of studies in which multiple strategies were used to clarify the inconclusive results of one boy's functional analysis of aggression. Specifically, we (a) evaluated individual response topographies to determine the composition of aggregated response rates, (b) conducted a separate functional analysis of aggression after high rates of disruption masked the consequences that maintained aggression during the initial functional analysis, (c) modified the experimental design used during the functional analysis of aggression to improve discrimination and decrease interaction effects between conditions, and (d) evaluated a treatment matched to the reinforcer hypothesized to maintain aggression. An effective yet practical intervention for aggression was developed based on the results of these analyses and from data collected during the matched-treatment evaluation.

  14. Context transfer in reinforcement learning using action-value functions.

    PubMed

    Mousavi, Amin; Nadjar Araabi, Babak; Nili Ahmadabadi, Majid

    2014-01-01

    This paper discusses the notion of context transfer in reinforcement learning tasks. Context transfer, as defined in this paper, implies knowledge transfer between source and target tasks that share the same environment dynamics and reward function but have different states or action spaces. In other words, the agents learn the same task while using different sensors and actuators. This requires the existence of an underlying common Markov decision process (MDP) to which all the agents' MDPs can be mapped. This is formulated in terms of the notion of MDP homomorphism. The learning framework is Q-learning. To transfer the knowledge between these tasks, the feature space is used as a translator and is expressed as a partial mapping between the state-action spaces of different tasks. The Q-values learned during the learning process of the source tasks are mapped to the sets of Q-values for the target task. These transferred Q-values are merged together and used to initialize the learning process of the target task. An interval-based approach is used to represent and merge the knowledge of the source tasks. Empirical results show that the transferred initialization can be beneficial to the learning process of the target task. PMID:25610457

  15. Instructional Design Issues in Computer-Based Reading: Reinforcement and Objectives.

    ERIC Educational Resources Information Center

    Blanchard, Jay S.

    1987-01-01

    This review of cognitive development research in the area of computer-based reading instruction focuses on reinforcement and instructional objectives. Differences between extrinsic and intrinsic reinforcement and motivation are discussed, types of objectives and learner characteristics are described, and implications for instructional design are…

  16. Feedback functions, optimization, and the relation of response rate to reinforcer rate.

    PubMed

    Soto, Paul L; McDowell, Jack J; Dallery, Jesse

    2006-01-01

    The present experiment arranged a series of inverted U-shaped feedback functions relating reinforcer rate to response rate to test whether responding was consistent with an optimization account or with a one-to-one relation of response rate to reinforcer rate such as linear system theory's rate equation or Herrnstein's hyperbola. Reinforcer rate was arranged according to a quadratic equation with a maximum at a unique response rate. The experiment consisted of two phases, during which 6 Long Evans rats lever pressed for food. In the first phase of the experiment, the rats responded on six fixed-interval-plus-quadratic-feedback schedules, and in the second phase the rats responded on three variable-interval-plus-quadratic-feedback schedules. Responding in both phases was inconsistent with a one-to-one relation of response rate to reinforcer rate. Instead, different response rates were obtained at equivalent reinforcer rates. Responding did vary directly with the vertex of the feedback function in both phases, a finding consistent with optimization of reinforcer rate. The present results suggest that the feedback function relating reinforcer rate to response rate imposed by a reinforcement schedule can be an important determinant of behavior. Furthermore, the present experiment illustrates the benefit of arranging feedback functions to investigate assumptions about the variables that control schedule performance.

  17. Design and analysis of a novel latch system implementing fiber-reinforced composite materials

    NASA Astrophysics Data System (ADS)

    Guevara Arreola, Francisco Javier

    in the load-displacement slopes while the percentage of glass fiber increased. In the other hand, results showed that a detent made of only glass fiber layers was preferable than a carbon-glass fiber hybrid detent due to the high stresses shown in carbon fiber layers. Ultimately, forkbolt and detent were redesigned according to their functionality and test results. It was observed that the new design was stiffer than the original by showing a steeper load-displacement curve. Subsequently, an experimental procedure was performed in order to correlate computational model results. Fiber-reinforced composite forkbolt and detent were waterjet cut from a composite laminate manufactured by Vacuum Assisted Resin Transfer Molding (VART) process. Then, samples were tested according to the computational model. Six testing sample combinations of forkbolt and detent were tested including the top three woven iterations forkbolts from the computational model paired with woven and unidirectional glass fiber detents. Test results showed a stiffness drop of 15% when the carbon fiber percentage decreases from 100% to 75%. Also, it was observed that woven glass fiber detent was superior to the unidirectional glass fiber detent by presenting a forkbolt-detent stiffness 38% higher. Moreover, the new design of forkbolt and detent were tested showing a stiffness increment of 29%. Furthermore, it was observed that fiber-reinforced composite forkbolt and detent did not reach the desired load of 5000 N. However, the redesigned forkbolt made of 100% woven carbon fiber and the redesign detent made of 100% woven glass fiber were close to reach that load. The design review based on test results performed (DRBTR) showed that components did not fail where the computational model concluded to be the areas with the highest maximum principal stress. In contrast to the computational model, all samples failed at the contact area between forkbolt and detent.

  18. Relative Persistence as a Function of Order of Reinforcement Schedules

    ERIC Educational Resources Information Center

    Dyal, James A.; Sytsma, Donald

    1976-01-01

    Stimulus analyzer theory as proposed by Sutherland and Mackintosh (1971) makes the unique prediction that the first-experienced reinforcement schedule will influence resistance to extinction more than subsequent schedules. Results presently reported of runaway acquisition and extinction indicate the opposite: C-P consistently produce substantially…

  19. Circular Functions Based Comprehensive Analysis of Plastic Creep Deformations in the Fiber Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Monfared, Vahid

    2016-06-01

    Analytically based model is presented for behavioral analysis of the plastic deformations in the reinforced materials using the circular (trigonometric) functions. The analytical method is proposed to predict creep behavior of the fibrous composites based on basic and constitutive equations under a tensile axial stress. New insight of the work is to predict some important behaviors of the creeping matrix. In the present model, the prediction of the behaviors is simpler than the available methods. Principal creep strain rate behaviors are very noteworthy for designing the fibrous composites in the creeping composites. Analysis of the mentioned parameter behavior in the reinforced materials is necessary to analyze failure, fracture, and fatigue studies in the creep of the short fiber composites. Shuttles, spaceships, turbine blades and discs, and nozzle guide vanes are commonly subjected to the creep effects. Also, predicting the creep behavior is significant to design the optoelectronic and photonic advanced composites with optical fibers. As a result, the uniform behavior with constant gradient is seen in the principal creep strain rate behavior, and also creep rupture may happen at the fiber end. Finally, good agreements are found through comparing the obtained analytical and FEM results.

  20. Manufacturing and Mechanical Testing of a New Functionally Graded Fiber Reinforced Cement Composite

    SciTech Connect

    Shen Bin; Hubler, Mija; Paulino, Glaucio H.; Struble, Leslie J.

    2008-02-15

    A functionally graded (FG) material system is employed to make fiber use more efficient in a fiber reinforced cement composite (FRCC). This preliminary study demonstrates beam elements that were functionally graded fiber reinforced cement composite (FGFRCC) with four layers, each with a different fiber volume ratio. Fiber volume ratio was graded in accordance with its potential contribution to the mechanical load-bearing capacity so as to reduce the overall fiber volume ratio while preserving the flexural strength and ductility of the beam. Extrusion was used to produce single homogeneous layers of constant fiber volume ratio. The FRCC layers with different fiber volume ratios were stacked according to a desired configuration and then pressed to make an integrated FGFRCC. Flexural tests were carried out to characterize the mechanical behavior, and the results were analyzed to evaluate the effectiveness of the designed fiber distribution. Compared with homogeneous FRCC with the same overall fiber volume fraction, the FGFRCC exhibited about 50% higher strength and comparable ductility.

  1. Operant responding in Siamese fighting fish (Betta splendens) as a function of schedule of reinforcement and visual reinforcers.

    PubMed

    Turnbough, P D; Lloyd, K E

    1973-11-01

    Siamese fighting fish were trained to emit an operant response that was reinforced by the opportunity to view a motion picture film image of another fish. Performance under various schedules of reinforcement was examined. When reinforcement followed every response and when reinforcement was delivered after every second response, the number of responses per session was higher than during operant level or during extinction. Reinforcement delivered following intervals of no responding (differential reinforcement of other behavior) markedly decreased responding. Light from a projector without film was found to be as effective a reinforcer as film reinforcement. Responding when projector light reinforcement followed every response was maintained at approximately the same level as that obtained under film reinforcement. Responses per session decreased when only the light was delivered on a differential-reinforcement-of-other-behavior schedule. The behavior of the fish during presentation of the film was markedly different from their behavior while the projector light was being presented.

  2. Operant responding in Siamese fighting fish (Betta splendens) as a function of schedule of reinforcement and visual reinforcers1

    PubMed Central

    Turnbough, P. Diane; Lloyd, Kenneth E.

    1973-01-01

    Siamese fighting fish were trained to emit an operant response that was reinforced by the opportunity to view a motion picture film image of another fish. Performance under various schedules of reinforcement was examined. When reinforcement followed every response and when reinforcement was delivered after every second response, the number of responses per session was higher than during operant level or during extinction. Reinforcement delivered following intervals of no responding (differential reinforcement of other behavior) markedly decreased responding. Light from a projector without film was found to be as effective a reinforcer as film reinforcement. Responding when projector light reinforcement followed every response was maintained at approximately the same level as that obtained under film reinforcement. Responses per session decreased when only the light was delivered on a differential-reinforcement-of-other-behavior schedule. The behavior of the fish during presentation of the film was markedly different from their behavior while the projector light was being presented. PMID:4759058

  3. Reinforcement learning controller design for affine nonlinear discrete-time systems using online approximators.

    PubMed

    Yang, Qinmin; Jagannathan, Sarangapani

    2012-04-01

    In this paper, reinforcement learning state- and output-feedback-based adaptive critic controller designs are proposed by using the online approximators (OLAs) for a general multi-input and multioutput affine unknown nonlinear discretetime systems in the presence of bounded disturbances. The proposed controller design has two entities, an action network that is designed to produce optimal signal and a critic network that evaluates the performance of the action network. The critic estimates the cost-to-go function which is tuned online using recursive equations derived from heuristic dynamic programming. Here, neural networks (NNs) are used both for the action and critic whereas any OLAs, such as radial basis functions, splines, fuzzy logic, etc., can be utilized. For the output-feedback counterpart, an additional NN is designated as the observer to estimate the unavailable system states, and thus, separation principle is not required. The NN weight tuning laws for the controller schemes are also derived while ensuring uniform ultimate boundedness of the closed-loop system using Lyapunov theory. Finally, the effectiveness of the two controllers is tested in simulation on a pendulum balancing system and a two-link robotic arm system.

  4. A Robust Reinforcement Learning Control Design Method for Nonlinear System with Partially Unknown Structure

    NASA Astrophysics Data System (ADS)

    Nakano, Kazuhiro; Obayashi, Masanao; Kuremoto, Takashi; Kobayashi, Kunikazu

    We propose a robust control system which has robustness for disturbance and can deal with a nonlinear system with partially unknown structure by fusing reinforcement learning and robust control theory. First, we solved an optimal control problem without using unknown part of functions of the system, using neural network and the repetition learning of reinforcement learning algorithm. Second, we built the robust reinforcement learning control system which permits uncertainty and has robustness for disturbance by fusing the idea of H infinity control theory with above system.

  5. Microwave Heating of Functionalized Graphene Nanoribbons in Thermoset Polymers for Wellbore Reinforcement.

    PubMed

    Kim, Nam Dong; Metzger, Andrew; Hejazi, Vahid; Li, Yilun; Kovalchuk, Anton; Lee, Seoung-Ki; Ye, Ruquan; Mann, Jason A; Kittrell, Carter; Shahsavari, Rouzbeh; Tour, James M

    2016-05-25

    Here, we introduce a systematic strategy to prepare composite materials for wellbore reinforcement using graphene nanoribbons (GNRs) in a thermoset polymer irradiated by microwaves. We show that microwave absorption by GNRs functionalized with poly(propylene oxide) (PPO-GNRs) cured the composite by reaching 200 °C under 30 W of microwave power. Nanoscale PPO-GNRs diffuse deep inside porous sandstone and dramatically enhance the mechanics of the entire structure via effective reinforcement. The bulk and the local mechanical properties measured by compression and nanoindentation mechanical tests, respectively, reveal that microwave heating of PPO-GNRs and direct polymeric curing are major reasons for this significant reinforcement effect. PMID:27140722

  6. Covalent cum noncovalent functionalizations of carbon nanotubes for effective reinforcement of a solution cast composite film.

    PubMed

    Yuan, Wei; Chan-Park, Mary B

    2012-04-01

    Although carbon nanotubes have impressive tensile properties, exploiting these properties in composites, especially those made by the common solution casting technique, seems to be elusive thus far. The reasons could be partly due to the poor nanotube dispersion and the weak nanotube/matrix interface. To solve this dual pronged problem, we combine noncovalent and covalent functionalizations of nanotubes in a single system by the design and application of a novel dispersant, hydroxyl polyimide-graft-bisphenol A diglyceryl acrylate (PI(OH)-BDA), and use them with epoxidized single-walled carbon nanotubes (O-SWNTs). Our novel PI(OH)-BDA dispersant functionalizes the nanotubes noncovalently to achieve good dispersion of the nanotubes because of the strong π-π interaction due to main chain and steric hindrance of the BDA side chain. PI(OH)-BDA also functionalizes O-SWNTs covalently because it reacts with epoxide groups on the nanotubes, as well as the cyanate ester (CE) matrix used. The resulting solution-cast CE composites show 57%, 71%, and 124% increases in Young's modulus, tensile strength, and toughness over neat CE. These values are higher than those of composites reinforced with pristine SWNTs, epoxidized SWNTs, and pristine SWNTs dispersed with PI(OH)-BDA. The modulus and strength increase per unit nanotube weight fraction, i.e., dE/dW(NT) and dσ/dW(NT), are 175 GPa and 7220 MPa, respectively, which are significantly higher than those of other nanotube/thermosetting composites (22-70 GPa and 140-3540 MPa, respectively). Our study indicates that covalent cum noncovalent functionalization of nanotubes is an effective tool for improving both the nanotube dispersion and nanotube/matrix interfacial interaction, resulting in significantly improved mechanical reinforcement of the solution-cast composites. PMID:22432973

  7. Covalent cum noncovalent functionalizations of carbon nanotubes for effective reinforcement of a solution cast composite film.

    PubMed

    Yuan, Wei; Chan-Park, Mary B

    2012-04-01

    Although carbon nanotubes have impressive tensile properties, exploiting these properties in composites, especially those made by the common solution casting technique, seems to be elusive thus far. The reasons could be partly due to the poor nanotube dispersion and the weak nanotube/matrix interface. To solve this dual pronged problem, we combine noncovalent and covalent functionalizations of nanotubes in a single system by the design and application of a novel dispersant, hydroxyl polyimide-graft-bisphenol A diglyceryl acrylate (PI(OH)-BDA), and use them with epoxidized single-walled carbon nanotubes (O-SWNTs). Our novel PI(OH)-BDA dispersant functionalizes the nanotubes noncovalently to achieve good dispersion of the nanotubes because of the strong π-π interaction due to main chain and steric hindrance of the BDA side chain. PI(OH)-BDA also functionalizes O-SWNTs covalently because it reacts with epoxide groups on the nanotubes, as well as the cyanate ester (CE) matrix used. The resulting solution-cast CE composites show 57%, 71%, and 124% increases in Young's modulus, tensile strength, and toughness over neat CE. These values are higher than those of composites reinforced with pristine SWNTs, epoxidized SWNTs, and pristine SWNTs dispersed with PI(OH)-BDA. The modulus and strength increase per unit nanotube weight fraction, i.e., dE/dW(NT) and dσ/dW(NT), are 175 GPa and 7220 MPa, respectively, which are significantly higher than those of other nanotube/thermosetting composites (22-70 GPa and 140-3540 MPa, respectively). Our study indicates that covalent cum noncovalent functionalization of nanotubes is an effective tool for improving both the nanotube dispersion and nanotube/matrix interfacial interaction, resulting in significantly improved mechanical reinforcement of the solution-cast composites.

  8. Plant Stems: Functional Design and Mechanics

    NASA Astrophysics Data System (ADS)

    Speck, Thomas; Burgert, Ingo

    2011-08-01

    Plant stems are one of nature's most impressive mechanical constructs. Their sophisticated hierarchical structure and multifunctionality allow trees to grow more than 100 m tall. This review highlights the advanced mechanical design of plant stems from the integral level of stem structures down to the fiber-reinforced-composite character of the cell walls. Thereby we intend not only to provide insight into structure-function relationships at the individual levels of hierarchy but to further discuss how growth forms and habits of plant stems are closely interrelated with the peculiarities of their tissue and cell structure and mechanics. This concept is extended to a further key feature of plants, namely, adaptive growth as a reaction to mechanical perturbation and/or changing environmental conditions. These mechanical design principles of plant stems can serve as concept generators for advanced biomimetic materials and may inspire materials and engineering sciences research.

  9. Multiple determinants of transfer of evaluative function after conditioning with free-operant schedules of reinforcement.

    PubMed

    Dack, Charlotte; Reed, Phil; McHugh, Louise

    2010-11-01

    The aim of the four present experiments was to explore how different schedules of reinforcement influence schedule-induced behavior, their impact on evaluative ratings given to conditioned stimuli associated with each schedule through evaluative conditioning, and the transfer of these evaluations through derived stimulus networks. Experiment 1 compared two contrasting response reinforcement rules (variable ratio [VR], variable interval [VI]). Experiment 2 varied the response to reinforcement rule between two schedules but equated the outcome to response rate (differential reinforcement of high rate [DRH] vs. VR). Experiment 3 compared molar and molecular aspects of contingencies of reinforcement (tandem VIVR vs. tandem VRVI). Finally, Experiment 4 employed schedules that induced low rates of responding to determine whether, under these circumstances, responses were more sensitive to the molecular aspects of a schedule (differential reinforcement of low rate [DRL] vs. VI). The findings suggest that the transfer of evaluative functions is determined mainly by differences in response rate between the schedules and the molar aspects of the schedules. However, when neither schedule was based on a strong response reinforcement rule, the transfer of evaluative judgments came under the control of the molecular aspects of the schedule.

  10. Further Evaluations of Functional Communication Training and Chained Schedules of Reinforcement to Treat Multiple Functions of Challenging Behavior

    ERIC Educational Resources Information Center

    Falcomata, Terry S.; Muething, Colin S.; Gainey, Summer; Hoffman, Katherine; Fragale, Christina

    2013-01-01

    We evaluated functional communication training (FCT) combined with a chained schedule of reinforcement procedure for the treatment of challenging behavior exhibited by two individuals diagnosed with Asperger syndrome and autism. Following functional analyses that suggested that challenging behavior served multiple functions for both participants,…

  11. Design synthesis of a boron/epoxy reinforced metal shear web.

    NASA Technical Reports Server (NTRS)

    Laakso, J. H.

    1972-01-01

    An advanced composite shear web design concept has been developed for the Space Shuttle Orbiter main engine thrust beam structure. Various web concepts were synthesized by a computer-aided adaptive random search procedure. A practical concept is identified having a titanium-clad, boron/epoxy plate with vertical boron/epoxy reinforced stiffeners. Baseline composite and titanium shear resistant designs are compared; the composite concept is 28% lighter than the titanium web. Element test results show the metal cladding effectively reinforces critical composite load transfer and fastener hole areas making the composite web concept practical for other shear structure applications.-

  12. A constitutive function for the heat flux in short-fiber-reinforced composites

    NASA Astrophysics Data System (ADS)

    Herrmann, Heiko

    2015-12-01

    A constitutive function for heat flux in short-fiber-reinforced composites is developed. The fiber orientation distribution is considered using second-order orientation tensor; therefore, the constitutive function for the heat flux will depend on the orientation tensor. The resulting orthotropic equation is discussed also in the context of energy efficiency of buildings.

  13. Web platform for functional design

    NASA Astrophysics Data System (ADS)

    Dijmarescu, M. R.; Dijmarescu, M. C.

    2015-11-01

    Today's global competitive trends, especially those related to industries, determine a much higher degree of pressure and demands for substantial innovation driven improvements, flexible and time sensitive solutions. Improving and optimizing the design activity by shortening its timeline and maintaining a high quality level for its output have become the main success factors. The evolution of design activity is strongly related to the evolution of education and research made in the design field. Thus, the development of web tools which can contain knowledge about mechanical products functionality and structure may be an important achievement for the education and industry. This paper presents a web platform which contains functional-constructive knowledge in the area of mechanical design field and was developed to support design activity. The proposed web tool can provide any user, even one without background in design theory, information about the functionality of products and the way it is related to the product structure.

  14. Sociometric and disruptive behavior as a function of four types of token reinforcement programs.

    PubMed

    Drabman, R; Spitalnik, R; Spitalnik, K

    1974-01-01

    Children in a first-grade classroom were divided into four groups. Baseline measures of disruptive classroom behavior were taken on a well-behaved and disruptive child in each group. Following baseline, four types of token economies were simultaneously introduced and rotated every 10 days within a Latin Square design. The token economies were: (1) individual reinforcement determined by individual performance; (2) group reinforcement determined by the behavior of the most disruptive child; (3) group reinforcement determined by the behavior of the least disruptive child; (4) group reinforcement determined by the behavior of a randomly chosen child. The token economies were compared on their effectiveness in changing target behavior, preference by the targets, ease of use, and cost. Additionally, sociometric responses were taken on questions of responsibility, friendship, and funniness. Results showed a significant decrease of inappropriate behavior for the disruptive children and no difference between the effectiveness of the four types of token economies in producing behavior change. However, there were other differences that indicated that the system in which group reinforcement was determined by a randomly selected child would be desirable for most teachers. Results also showed changes in the sociometric status of the disruptive children. As predicted, disruptive children were rated as more responsible when they were in the group reinforcement determined by the most disruptive child in the group token economy. Using behavior modification techniques indirectly to change sociometric status is suggested as offering a new potential technique for behavior change agents. PMID:4619117

  15. Sociometric and disruptive behavior as a function of four types of token reinforcement programs.

    PubMed

    Drabman, R; Spitalnik, R; Spitalnik, K

    1974-01-01

    Children in a first-grade classroom were divided into four groups. Baseline measures of disruptive classroom behavior were taken on a well-behaved and disruptive child in each group. Following baseline, four types of token economies were simultaneously introduced and rotated every 10 days within a Latin Square design. The token economies were: (1) individual reinforcement determined by individual performance; (2) group reinforcement determined by the behavior of the most disruptive child; (3) group reinforcement determined by the behavior of the least disruptive child; (4) group reinforcement determined by the behavior of a randomly chosen child. The token economies were compared on their effectiveness in changing target behavior, preference by the targets, ease of use, and cost. Additionally, sociometric responses were taken on questions of responsibility, friendship, and funniness. Results showed a significant decrease of inappropriate behavior for the disruptive children and no difference between the effectiveness of the four types of token economies in producing behavior change. However, there were other differences that indicated that the system in which group reinforcement was determined by a randomly selected child would be desirable for most teachers. Results also showed changes in the sociometric status of the disruptive children. As predicted, disruptive children were rated as more responsible when they were in the group reinforcement determined by the most disruptive child in the group token economy. Using behavior modification techniques indirectly to change sociometric status is suggested as offering a new potential technique for behavior change agents.

  16. Functionalizing Designer DNA Crystals

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Arun Richard

    nucleotides is usually pH dependent (pH < 6) four different TFOs were examined: TFO-1 was unmodified while TFOs 2-4 contained additional stabilizing analogues capable of extending triplex formation to pH 7. In addition, each of the TFOs contained a Cy5 dye at the 5'-end of the oligonucleotide to aid in characterization of TFO binding - crystals were obtained with all four variations of TFOs. Formation of DNA triplex in the motif was characterized by an electrophoretic mobility shift assay (EMSA), UV melting studies and FRET. Crystals containing TFO-1 (unmodified) and TFO-2 (with 2'-amino ethoxy modification) were isolated and flash-frozen in liquid nitrogen for X-ray data collection at beam line NSLS-X25. X-ray data was also collected for crystals of the 3-turn triangle without any TFO bound to it. Difference maps were done between the crystals with TFO against the one without to identify any additional electron density corresponding to the third strand in the triplex binding region. The data from the crystal containing TFO-2 was used to further analyze if the additional density can match the expected position of the TFO on the triangle motif. Since the additional density did not correspond to the entire binding region, 2Fo-Fc, 3Fo-2Fc and 4Fo-3Fc maps were done to check for missing pieces of the electron density. From the resulting 2Fo-Fc map, the asymmetric unit from the 3-turn triangle (31-bp duplex model based on previous structure 3UBI) was inserted into the density as a reference. However, the electron density corresponding to the TFO was still not continuous throughout the 13-nt triplex binding region and allowed only a partial fit of the TFO. The third nucleotide in positions 1, 3, 4, 6, 7 were fit into the density in the major groove of the underlying duplex with proper triplex configuration. The third chapter describes the triplex approach to position a functional group (the UV cross-linking agent psoralen) within a pre-formed DNA motif. Triplex formation and

  17. Functional communication training during reinforcement schedule thinning: An analysis of 25 applications.

    PubMed

    Greer, Brian D; Fisher, Wayne W; Saini, Valdeep; Owen, Todd M; Jones, Jamie K

    2016-03-01

    Two principal goals of functional communication training (FCT) are (a) to eliminate destructive behavior and (b) to establish a more acceptable, yet functionally equivalent, communication response (FCR). A related and critically important goal is to thin the schedule of reinforcement for the FCR to levels that can be reasonably managed by caregivers. Researchers have described several approaches to thinning FCT reinforcement schedules. We summarize the results of 25 consecutive applications (among 20 cases) in which schedule-thinning procedures employed discriminative stimuli to signal when the FCR would and would not produce reinforcement (i.e., using multiple schedules, response restriction, or chained schedules). Results suggest that schedule-thinning procedures that use discriminative stimuli can maintain the effectiveness of FCT while they minimize the need for punishment or other supplemental procedures. PMID:26482103

  18. COMPSIZE - PRELIMINARY DESIGN METHOD FOR FIBER REINFORCED COMPOSITE STRUCTURES

    NASA Technical Reports Server (NTRS)

    Eastlake, C. N.

    1994-01-01

    The Composite Structure Preliminary Sizing program, COMPSIZE, is an analytical tool which structural designers can use when doing approximate stress analysis to select or verify preliminary sizing choices for composite structural members. It is useful in the beginning stages of design concept definition, when it is helpful to have quick and convenient approximate stress analysis tools available so that a wide variety of structural configurations can be sketched out and checked for feasibility. At this stage of the design process the stress/strain analysis does not need to be particularly accurate because any configurations tentatively defined as feasible will later be analyzed in detail by stress analysis specialists. The emphasis is on fast, user-friendly methods so that rough but technically sound evaluation of a broad variety of conceptual designs can be accomplished. Analysis equations used are, in most cases, widely known basic structural analysis methods. All the equations used in this program assume elastic deformation only. The default material selection is intermediate strength graphite/epoxy laid up in a quasi-isotropic laminate. A general flat laminate analysis subroutine is included for analyzing arbitrary laminates. However, COMPSIZE should be sufficient for most users to presume a quasi-isotropic layup and use the familiar basic structural analysis methods for isotropic materials, after estimating an appropriate elastic modulus. Homogeneous materials can be analyzed as simplified cases. The COMPSIZE program is written in IBM BASICA. The program format is interactive. It was designed on an IBM Personal Computer operating under DOS with a central memory requirement of approximately 128K. It has been implemented on an IBM compatible with GW-BASIC under DOS 3.2. COMPSIZE was developed in 1985.

  19. Functional Communication Training without Extinction Using Concurrent Schedules of Differing Magnitudes of Reinforcement in Classrooms

    ERIC Educational Resources Information Center

    Davis, Dawn H.; Fredrick, Laura D.; Alberto, Paul A.; Gama, Roberto

    2012-01-01

    This study investigated the effects of functional communication training (FCT) implemented with concurrent schedules of differing magnitudes of reinforcement in lieu of extinction to reduce inappropriate behaviors and increase alternative mands. Participants were four adolescent students diagnosed with severe emotional and behavior disorders…

  20. Effects of Noncontingent Reinforcement and Functional Communication Training on Problem Behavior and Mands

    ERIC Educational Resources Information Center

    Doughty, Shannon S.; Anderson, Cynthia M.

    2006-01-01

    Two children with developmental delays and a history of problem behavior participated in this study to examine the efficacy of combining two treatments demonstrated to reduce problem behavior: noncontingent reinforcement and functional communication training. At issue was whether the noncontingent delivery of an alternative preferred stimulus and…

  1. The Effects of a Local Negative Feedback Function between Choice and Relative Reinforcer Rate

    ERIC Educational Resources Information Center

    Davison, Michael; Elliffe, Douglas; Marr, M. Jackson

    2010-01-01

    Four pigeons were trained on two-key concurrent variable-interval schedules with no changeover delay. In Phase 1, relative reinforcers on the two alternatives were varied over five conditions from 0.1 to 0.9. In Phases 2 and 3, we instituted a molar feedback function between relative choice in an interreinforcer interval and the probability of…

  2. The Effects of the Absence of an Adult on the Emergence of Conditioned Reinforcement as a Function of Observation in Preschool Age Children

    ERIC Educational Resources Information Center

    Zrinzo, Michelle L.

    2010-01-01

    I tested the effects of the absence of an adult on the observational conditioning effect (Greer & Singer-Dudek, 2008). Neutral stimuli (metal washers) did not function to reinforce performance or learning tasks for three preschool age children as determined by a counterbalanced reversal design for the pre-intervention performance tasks and…

  3. THE EFFECTS OF FIXED-TIME REINFORCEMENT SCHEDULES ON FUNCTIONAL RESPONSE CLASSES: A TRANSLATIONAL STUDY

    PubMed Central

    Heinicke, Megan R; Carr, James E; LeBlanc, Linda A

    2012-01-01

    Research on functional response classes has applied significance because less severe forms of problem behavior have been found to co-occur with more severe forms. In addition, the most severe forms of problem behavior are sometimes targeted for intervention without monitoring other less severe forms. In such cases, it is unknown whether and how untreated forms of problem behavior covary with the targeted behaviors. The present study employed a translational procedure (with button presses as the target behavior) to investigate response covariation under noncontingent reinforcement with typically developing preschoolers. The results indicated that noncontingent reinforcement was generally effective in decreasing all response class members when only one member was targeted. PMID:23060665

  4. Functional communication training with and without alternative reinforcement and punishment: an analysis of 58 applications.

    PubMed

    Rooker, Griffin W; Jessel, Joshua; Kurtz, Patricia F; Hagopian, Louis P

    2013-12-01

    Functional communication training (FCT) is an empirically supported treatment for problem behavior displayed by individuals with intellectual disabilities. Hagopian, Fisher, Sullivan, Acquisto, and LeBlanc (1998) analyzed 25 applications of FCT and showed that extinction was a necessary component of FCT, but sometimes punishment was needed to maintain low levels of problem behavior. The current consecutive case series summarized data from 58 applications of FCT in more recent cases. This analysis extended and updated Hagopian et al. by examining FCT when used in combination with alternative reinforcement (noncontingent and differential reinforcement) and multiple schedules during schedule thinning. Although it is difficult to make direct comparisons with the 1998 study, the results of the current case series analysis suggest that FCT can be enhanced when used in combination with alternative reinforcement and when multiple schedules are used during schedule thinning. PMID:24114463

  5. Functional communication training with and without alternative reinforcement and punishment: an analysis of 58 applications.

    PubMed

    Rooker, Griffin W; Jessel, Joshua; Kurtz, Patricia F; Hagopian, Louis P

    2013-12-01

    Functional communication training (FCT) is an empirically supported treatment for problem behavior displayed by individuals with intellectual disabilities. Hagopian, Fisher, Sullivan, Acquisto, and LeBlanc (1998) analyzed 25 applications of FCT and showed that extinction was a necessary component of FCT, but sometimes punishment was needed to maintain low levels of problem behavior. The current consecutive case series summarized data from 58 applications of FCT in more recent cases. This analysis extended and updated Hagopian et al. by examining FCT when used in combination with alternative reinforcement (noncontingent and differential reinforcement) and multiple schedules during schedule thinning. Although it is difficult to make direct comparisons with the 1998 study, the results of the current case series analysis suggest that FCT can be enhanced when used in combination with alternative reinforcement and when multiple schedules are used during schedule thinning.

  6. Evaluation of a metal shear web selectively reinforced with filamentary composites for space shuttle application. Phase 1 summary report: Shear web design development

    NASA Technical Reports Server (NTRS)

    Laakso, J. H.; Zimmerman, D. K.

    1972-01-01

    An advanced composite shear web design concept was developed for the Space Shuttle orbiter main engine thrust beam structure. Various web concepts were synthesized by a computer-aided adaptive random search procedure. A practical concept is identified having a titanium-clad + or - 45 deg boron/epoxy web plate with vertical boron/epoxy reinforced aluminum stiffeners. The boron-epoxy laminate contributes to the strength and stiffness efficiency of the basic web section. The titanium-cladding functions to protect the polymeric laminate parts from damaging environments and is chem-milled to provide reinforcement in selected areas. Detailed design drawings are presented for both boron/epoxy reinforced and all-metal shear webs. The weight saving offered is 24% relative to all-metal construction at an attractive cost per pound of weight saved, based on the detailed designs. Small scale element tests substantiate the boron/epoxy reinforced design details in critical areas. The results show that the titanium-cladding reliably reinforces the web laminate in critical edge load transfer and stiffener fastener hole areas.

  7. Computational design of multifunctional composites made of shape memory alloys and fiber reinforced plastics

    NASA Astrophysics Data System (ADS)

    Senf, Björn; Eppler, Christoph; Bucht, André; Navarro y de Sosa, Iñaki; Kunze, Holger

    2013-04-01

    Shape memory alloys (SMA) like Nickel-Titanium possess a very high mechanical energy density in relation to conventional drives. Fiber reinforced plastics (FRP) will be increasingly applied to create lightweight structures. Combining both innovative materials will evolve synergy effects. Due to functional integration of SMA sheets into a base of FRP it is possible to realize adaptive composites for resource-efficient constructions as for instance flaps or spoilers on cars. For this purpose the interaction between SMA as an actuator and FRP as a return spring need to be designed in a suitable way. The computation of such structures is complex because of its non-linear (SMA) and anisotropic (FRP) mechanical behavior. Therefore, a structural simulation model based on the finite element method was developed by means of the software ANSYS. Based on that simulation model it is possible to determine proper geometrical parameters for a composite made of SMA and FRP to perform a certain mechanism. The material properties of SMA or FRP could also be varied to investigate their influence. For exemplary components it could be shown that the stress-strain behavior is computable.

  8. Behavioral functions of stimuli signaling transitions across rich and lean schedules of reinforcement.

    PubMed

    Everly, Jessica B; Holtyn, August F; Perone, Michael

    2014-03-01

    On multiple fixed-ratio schedules, pausing is extended at the start of a component ending in a small reinforcer (a lean component) but only when this component follows a component ending in a large reinforcer (a rich component). In two experiments, we assessed whether a stimulus correlated with a lean component is aversive and how its function is affected by the preceding component. In Experiment 1, pigeons responded on mixed fixed-ratio schedules ending in large or small reinforcers. Observing responses converted the mixed schedule to a multiple one by producing a stimulus correlated with the current component. Overall, the lean stimulus did not suppress observing, suggesting that it was not sufficiently aversive. In Experiment 2, an escape procedure was used, and pigeons could convert a multiple schedule to a mixed one by pecking a key to remove the discriminative stimuli. Pigeons escaped from the lean-schedule stimulus more than they did from the rich one. For two pigeons, this effect was enhanced when a rich component preceded the lean stimulus. The results indicate that a stimulus correlated with the leaner of two reinforcement schedules can acquire aversive functions, but observing and escape procedures may differ in their abilities to detect this effect. PMID:24446283

  9. Conditioned reinforcement as a function of duration of stimulus

    PubMed Central

    Dinsmoor, James A.; Mulvaney, Dallas E.; Jwaideh, Alice R.

    1981-01-01

    Pigeons were provided with three keys. Pecking the center key produced grain on a schedule that alternated at unpredictable times between a variable-interval component and extinction. On concurrent variable-interval schedules, pecking either side key produced a stimulus associated with the variable-interval component on the center key provided that said schedule was currently in effect. The independent variable was the length of time this stimulus remained on the keys. Pecking one side key produced the stimulus for 27 seconds, whereas the duration produced by pecking the other key varied for successive blocks of sessions. For the first four birds, the values tested were 3, 9, 27, and 81 seconds. For the second group, numbering three birds, the values tested were 1, 3, 9, and 27 seconds. The dependent variable was the proportion of total side key pecks that occurred on the variable key. For all birds, the function was positive in slope and negative in acceleration. This finding supports a formulation that ascribes the maintenance of observing responses in a normal setting to the fact that the subject exposes itself to the positive discriminative stimulus for a longer mean duration than it does to the negative stimulus. PMID:16812230

  10. Design and realization a skiff racing boat hull made of natural fibers reinforced composite

    NASA Astrophysics Data System (ADS)

    Collotta, M.; Solazzi, L.; Pandini, S.; Tomasoni, G.; Alberti, M.; Donzella, G.

    2016-05-01

    This paper discusses the development of a racing boat with an hull made of a composite material reinforced by natural fibers. In particular, we report here the design and realization of the boat hull, the assessment of its mechanical performance by means of a computer assisted simulation, and the cost analysis to assess the economic sustainability of the new composite developed. The results have shown that the new composite has a performance comparable with conventional glass fiber reinforced composites employed for the realization of this type of boat, accordingly to the technology employed and the lamination sequence adopted. Moreover, the FEM analysis performed over the skiff of the designed and constructed boat has demonstrated a successful choice of the material for real application, as it was later confirmed by the good performance of the boat in water. Finally, the cost analysis highlighted the economic sustainability of the new composite, allowing a cost saving of over 28% with respect to carbon fiber composites.

  11. Analysis and design of on-grade reinforced concrete track support structures

    NASA Technical Reports Server (NTRS)

    Mclean, F. G.; Williams, R. D.; Greening, L. R.

    1972-01-01

    For the improvement of rail service, the Department of Transportation, Federal Rail Administration, is sponsoring a test track on the Atchison, Topeka, and Santa Fe Railway. The test track will contain nine separate rail support structures, including one conventional section for control and three reinforced concrete structures on grade, one slab and two beam sections. The analysis and design of these latter structures was accomplished by means of the finite element method, NASTRAN, and is presented.

  12. The possible function of positive reinforcement in home-bound agoraphobia: a case study.

    PubMed

    O'Donohue, W; Plaud, J J; Hecker, J E

    1992-12-01

    We conducted an uncontrolled case study (ABA design) based upon the hypothesis that the behavior of a home-bound agoraphobic is at least partially maintained by positive reinforcement in the home and that a disruption of access to home-based reinforcement would lead to an increased frequency of out-of-the-home behavior. Data concerning the types and amounts of behavior engaged in by the subject within the confines of her home and yard were gathered during a 30-day base line period. In addition, potential reinforcers in the home were identified by a survey schedule and by self-report of time allocation. During an 18-day intervention period the subject agreed only to engage in certain reinforcing activities outside her home (e.g., only watching television at a neighbor's house). Postintervention results indicated that for the first time in over 7 years the subject began engaging in out-of-home activities, including walking to other parts of the street, visiting several neighbors' homes, and attending parties at neighbors' homes. Moreover, data suggested a positive trend in time spent outside the yard during both 2 and 18 month follow-up periods. However, significant restrictions in the range of mobility were still observed.

  13. Free vibration of functionally graded carbon-nanotube-reinforced composite plates with cutout.

    PubMed

    Mirzaei, Mostafa; Kiani, Yaser

    2016-01-01

    During the past five years, it has been shown that carbon nanotubes act as an exceptional reinforcement for composites. For this reason, a large number of investigations have been devoted to analysis of fundamental, structural behavior of solid structures made of carbon-nanotube-reinforced composites (CNTRC). The present research, as an extension of the available works on the vibration analysis of CNTRC structures, examines the free vibration characteristics of plates containing a cutout that are reinforced with uniform or nonuniform distribution of carbon nanotubes. The first-order shear deformation plate theory is used to estimate the kinematics of the plate. The solution method is based on the Ritz method with Chebyshev basis polynomials. Such a solution method is suitable for arbitrary in-plane and out-of-plane boundary conditions of the plate. It is shown that through a functionally graded distribution of carbon nanotubes across the thickness of the plate, the fundamental frequency of a rectangular plate with or without a cutout may be enhanced. Furthermore, the frequencies are highly dependent on the volume fraction of carbon nanotubes and may be increased upon using more carbon nanotubes as reinforcement. PMID:27335742

  14. Free vibration of functionally graded carbon-nanotube-reinforced composite plates with cutout.

    PubMed

    Mirzaei, Mostafa; Kiani, Yaser

    2016-01-01

    During the past five years, it has been shown that carbon nanotubes act as an exceptional reinforcement for composites. For this reason, a large number of investigations have been devoted to analysis of fundamental, structural behavior of solid structures made of carbon-nanotube-reinforced composites (CNTRC). The present research, as an extension of the available works on the vibration analysis of CNTRC structures, examines the free vibration characteristics of plates containing a cutout that are reinforced with uniform or nonuniform distribution of carbon nanotubes. The first-order shear deformation plate theory is used to estimate the kinematics of the plate. The solution method is based on the Ritz method with Chebyshev basis polynomials. Such a solution method is suitable for arbitrary in-plane and out-of-plane boundary conditions of the plate. It is shown that through a functionally graded distribution of carbon nanotubes across the thickness of the plate, the fundamental frequency of a rectangular plate with or without a cutout may be enhanced. Furthermore, the frequencies are highly dependent on the volume fraction of carbon nanotubes and may be increased upon using more carbon nanotubes as reinforcement.

  15. Free vibration of functionally graded carbon-nanotube-reinforced composite plates with cutout

    PubMed Central

    Mirzaei, Mostafa

    2016-01-01

    Summary During the past five years, it has been shown that carbon nanotubes act as an exceptional reinforcement for composites. For this reason, a large number of investigations have been devoted to analysis of fundamental, structural behavior of solid structures made of carbon-nanotube-reinforced composites (CNTRC). The present research, as an extension of the available works on the vibration analysis of CNTRC structures, examines the free vibration characteristics of plates containing a cutout that are reinforced with uniform or nonuniform distribution of carbon nanotubes. The first-order shear deformation plate theory is used to estimate the kinematics of the plate. The solution method is based on the Ritz method with Chebyshev basis polynomials. Such a solution method is suitable for arbitrary in-plane and out-of-plane boundary conditions of the plate. It is shown that through a functionally graded distribution of carbon nanotubes across the thickness of the plate, the fundamental frequency of a rectangular plate with or without a cutout may be enhanced. Furthermore, the frequencies are highly dependent on the volume fraction of carbon nanotubes and may be increased upon using more carbon nanotubes as reinforcement. PMID:27335742

  16. BAM learning of nonlinearly separable tasks by using an asymmetrical output function and reinforcement learning.

    PubMed

    Chartier, Sylvain; Boukadoum, Mounir; Amiri, Mahmood

    2009-08-01

    Most bidirectional associative memory (BAM) networks use a symmetrical output function for dual fixed-point behavior. In this paper, we show that by introducing an asymmetry parameter into a recently introduced chaotic BAM output function, prior knowledge can be used to momentarily disable desired attractors from memory, hence biasing the search space to improve recall performance. This property allows control of chaotic wandering, favoring given subspaces over others. In addition, reinforcement learning can then enable a dual BAM architecture to store and recall nonlinearly separable patterns. Our results allow the same BAM framework to model three different types of learning: supervised, reinforcement, and unsupervised. This ability is very promising from the cognitive modeling viewpoint. The new BAM model is also useful from an engineering perspective; our simulations results reveal a notable overall increase in BAM learning and recall performances when using a hybrid model with the general regression neural network (GRNN). PMID:19596635

  17. Key pecking during extinction after intermittent or continuous reinforcement as a function of the number of reinforcers delivered during training.

    PubMed Central

    Zarcone, T J; Branch, M N; Hughes, C E; Pennypacker, H S

    1997-01-01

    Key pecking by 7 pigeons was established and maintained on a multiple variable-ratio variable-ratio (VR) schedule of food presentation. The schedule in one of the components was then changed to fixed-ratio (FR) 1 for a predetermined number of reinforcers. Both components were then changed to extinction (i.e., multiple extinction, extinction). This sequence was repeated a different number of times for each pigeon to determine the relation between the number of reinforcers delivered during each component of the multiple VR FR 1 schedule and the number of responses during extinction. For most pigeons, there were fewer responses during extinction in the presence of a stimulus recently correlated with FR 1, regardless of the number of reinforcers received. The ratio of the total responses in extinction in the former VR component to the total responses in the former FR 1 component increased as the number of reinforcers delivered during each component of the multiple schedule increased. Within-subject replications of the partial-reinforcement extinction effect generally occurred, and there were no overall reductions in the number of responses in extinction with repeated exposures to extinction. PMID:9037782

  18. Tungsten-fiber-reinforced superalloy composite, high-temperature component design considerations

    NASA Technical Reports Server (NTRS)

    Winsa, E. A.

    1983-01-01

    Tungsten fiber reinforced superalloy composites (TFRS) are intended for use in high temperature turbine components. Current turbine component design methodology is based on applying the experience, sometimes semiempirical, gained from over 30 years of superalloy component design. Current composite component design capability is generally limited to the methodology for low temperature resin matrix composites. Often the tendency is to treat TFRS as just another superalloy or low temperature composite. However, TFRS behavior is significantly different than that of superalloys, and the high environment adds consideration not common in low temperature composite component design. The methodology used for preliminary design of TFRS components are described. Considerations unique to TFRS are emphasized. Previously announced in STAR as N82-21259

  19. Physical restraint as positive reinforcement.

    PubMed

    Favell, J E; McGimsey, J F; Jones, M L; Cannon, P R

    1981-01-01

    The reinforcing function of physical restraint was analyzed for three retarded individuals who had a history of restraint and appeared to enjoy it. Using a preference paradigm with one participant and a reversal design with two others, we found that an arbitrary response systematically increased for each participant when followed by brief periods of restraint. No comparable increases occurred in conditions in which responses were not reinforced or were followed by stimuli designed to control for the nonrestraint components of the restraint consequence. Results were discussed in terms of three clinical issues: determining the possible role of restraint in maintaining behavior problems such as self-injury in natural settings, preventing or eliminating the reinforcing function of restraint, and using restraint reinforcement in treating behavior problems when this consequence is the only identifiable reinforcer for an individual.

  20. A logical functional analysis of reinforcement-based disorders: alcoholism and pedophilia.

    PubMed

    Wulfert, E; Greenway, D E; Dougher, M J

    1996-12-01

    This article discusses a nomothetic functional strategy, termed logical functional analysis, as an approach to the refinement of the structural diagnostic categories of the Diagnostic and Statistical Manual of Mental Disorders (e.g., 4th ed.; DSM-IV; American Psychiatric Association, 1994). As heterogeneous diagnostic categories are more the norm than the exception in the DSM-IV, an argument is made for the identification of homogenous subgroups within diagnostic classes based on functional principles. Outlines of a logical functional analysis for 2 reinforcement-based disorders, alcoholism and pedophilia, are presented. The outlines show how topographically similar behavior patterns can serve different functions that are important to consider when making treatment decisions. The logical functional analysis is a strategy that helps practitioners to identify motivational conditions, antecedents, consequences, and concomitant behavioral repertoires associated with a given disorder. It also provides guidance for the selection of intervention strategies.

  1. Design of Fiber Reinforced Foam Sandwich Panels for Large Ares V Structural Applications

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.; Hopkins, Dale A.

    2010-01-01

    The preliminary design of three major structural components within NASA's Ares V heavy lift vehicle using a novel fiber reinforced foam composite sandwich panel concept is presented. The Ares V payload shroud, interstage, and core intertank are designed for minimum mass using this panel concept, which consists of integral composite webs separated by structural foam between two composite facesheets. The HyperSizer structural sizing software, in conjunction with NASTRAN finite element analyses, is used. However, since HyperSizer does not currently include a panel concept for fiber reinforced foam, the sizing was performed using two separate approaches. In the first, the panel core is treated as an effective (homogenized) material, whose properties are provided by the vendor. In the second approach, the panel is treated as a blade stiffened sandwich panel, with the mass of the foam added after completion of the panel sizing. Details of the sizing for each of the three Ares V components are given, and it is demonstrated that the two panel sizing approaches are in reasonable agreement for thinner panel designs, but as the panel thickness increases, the blade stiffened sandwich panel approach yields heavier panel designs. This is due to the effects of local buckling, which are not considered in the effective core property approach.

  2. Design principles for riboswitch function.

    PubMed

    Beisel, Chase L; Smolke, Christina D

    2009-04-01

    Scientific and technological advances that enable the tuning of integrated regulatory components to match network and system requirements are critical to reliably control the function of biological systems. RNA provides a promising building block for the construction of tunable regulatory components based on its rich regulatory capacity and our current understanding of the sequence-function relationship. One prominent example of RNA-based regulatory components is riboswitches, genetic elements that mediate ligand control of gene expression through diverse regulatory mechanisms. While characterization of natural and synthetic riboswitches has revealed that riboswitch function can be modulated through sequence alteration, no quantitative frameworks exist to investigate or guide riboswitch tuning. Here, we combined mathematical modeling and experimental approaches to investigate the relationship between riboswitch function and performance. Model results demonstrated that the competition between reversible and irreversible rate constants dictates performance for different regulatory mechanisms. We also found that practical system restrictions, such as an upper limit on ligand concentration, can significantly alter the requirements for riboswitch performance, necessitating alternative tuning strategies. Previous experimental data for natural and synthetic riboswitches as well as experiments conducted in this work support model predictions. From our results, we developed a set of general design principles for synthetic riboswitches. Our results also provide a foundation from which to investigate how natural riboswitches are tuned to meet systems-level regulatory demands. PMID:19381267

  3. Design overview of fiber-reinforced superalloy composites for the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Lewis, J. R.

    1985-01-01

    This preliminary design study evaluated the potential of fiber-reinforced superalloys (FRS) for hot-section components of Space Shuttle Main Engine turbopumps. Emphasis was placed on uncooled turbine blades, with a more limited evaluation of FRS turbine stator vanes. The study included FRS properties evaluation, current structural design capability, and preliminary design and structural analysis. In addition, key technology needs were identified, and a plan was generated to develop operational hardware for advanced versions of the SSME. Based on projections of design properties for FRS composites comprising 50 volume percent of W-4Re-0.38Hf-0.02C wire filaments in a ductile superalloy matrix, it was concluded that FRS turbine blades offer the potential of significant improved operating life and higher temperature capability over the MAR-M-246(Hf) (DS) blades currently used in the SSME.

  4. Development of design data for graphite reinforced epoxy and polyimide composites

    NASA Technical Reports Server (NTRS)

    Scheck, W. G.

    1974-01-01

    Processing techniques and design data were characterized for a graphite/epoxy composite system that is useful from 75 K to 450 K, and a graphite/polyimide composite system that is useful from 75 K to 589 K. The Monsanto 710 polyimide resin was selected as the resin to be characterized and used with the graphite fiber reinforcement. Material was purchased using the prepreg specification for the design data generation for both the HT-S/710 and HM-S/710 graphite/polyimide composite system. Lamina and laminate properties were determined at 75 K, 297 K, and 589 K. The test results obtained on the skin-stringer components proved that graphite/polyimide composites can be reliably designed and analyzed much like graphite/epoxy composites. The design data generated in the program includes the standard static mechanical properties, biaxial strain data, creep, fatigue, aging, and thick laminate data.

  5. Experimental versus design correlations in multi-cellular fiber reinforced plastic panels

    SciTech Connect

    GangaRao, H.V.S.; Lopez-Anido, R.; Sotiropoulos, S.; Sonti, S.S.; Winegardner, T.

    1996-11-01

    Reinforced plastic (RP) multi-cellular panels have been used recently in designing low-rise buildings. These RP panels were 24 in. wide and 5{1/2} in. thick and were manufactured by pultrusion process using an existing die with a modified (bidirectional) fiber architecture. Constituent materials were rovings, mats, and bi-directional fabrics made of E-glass, and polyester resin. Bending tests were conducted to characterize the stiffness performance of the RP panels and the stiffness results were compared with a simple analytical model. The joining of panels to create a modular deck or wall system is briefly discussed.

  6. Forced vibration analysis of functionally graded carbon nanotube-reinforced composite plates using a numerical strategy

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Hasrati, E.; Faghih Shojaei, M.; Gholami, R.; Shahabodini, A.

    2015-05-01

    In this paper, the nonlinear forced vibration behavior of composite plates reinforced by carbon nanotubes is investigated by a numerical approach. The reinforcement is considered to be functionally graded (FG) in the thickness direction according to a micromechanical model. The first-order shear deformation theory and von Kármán-type kinematic relations are employed. The governing equations and the corresponding boundary conditions are derived with the use of Hamilton's principle. The generalized differential quadrature (GDQ) method is utilized to achieve a discretized set of nonlinear governing equations. A Galerkin-based scheme is then applied to obtain a time-varying set of ordinary differential equations of Duffing-type. Subsequently, a time periodic discretization is done and the frequency response of plates is determined via the pseudo-arc length continuation method. Selected numerical results are given for the effects of different parameters on the nonlinear forced vibration characteristics of uniformly distributed carbon nanotube- and FG carbon nanotube-reinforced composite plates. It is found that with the increase of CNT volume fraction, the flexural stiffness of plate increases; and hence its natural frequency gets larger. Moreover, it is observed that the distribution type of CNTs significantly affects the vibrational behavior of plate. The results also show that when the mid-plane of plate is CNT-rich, the natural frequency takes its minimum value and the hardening-type response of plate is intensified.

  7. Efficient Design and Analysis of Lightweight Reinforced Core Sandwich and PRSEUS Structures

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Yarrington, Phillip W.; Lucking, Ryan C.; Collier, Craig S.; Ainsworth, James J.; Toubia, Elias A.

    2012-01-01

    Design, analysis, and sizing methods for two novel structural panel concepts have been developed and incorporated into the HyperSizer Structural Sizing Software. Reinforced Core Sandwich (RCS) panels consist of a foam core with reinforcing composite webs connecting composite facesheets. Boeing s Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) panels use a pultruded unidirectional composite rod to provide axial stiffness along with integrated transverse frames and stitching. Both of these structural concepts are ovencured and have shown great promise applications in lightweight structures, but have suffered from the lack of efficient sizing capabilities similar to those that exist for honeycomb sandwich, foam sandwich, hat stiffened, and other, more traditional concepts. Now, with accurate design methods for RCS and PRSEUS panels available in HyperSizer, these concepts can be traded and used in designs as is done with the more traditional structural concepts. The methods developed to enable sizing of RCS and PRSEUS are outlined, as are results showing the validity and utility of the methods. Applications include several large NASA heavy lift launch vehicle structures.

  8. Micromechanics and Structural Response of Functionally Graded, Particulate-Matrix, Fiber-Reinforced Composites

    PubMed Central

    Genin, Guy M.; Birman, Victor

    2009-01-01

    Reinforcement of fibrous composites by stiff particles embedded in the matrix offers the potential for simple, economical functional grading, enhanced response to mechanical loads, and improved functioning at high temperatures. Here, we consider laminated plates made of such a material, with spherical reinforcement tailored by layer. The moduli for this material lie within relatively narrow bounds. Two separate moduli estimates are considered: a “two-step” approach in which fibers are embedded in a homogenized particulate matrix, and the Kanaun-Jeulin (2001) approach, which we re-derive in a simple way using the Benveniste (1988) method. Optimal tailoring of a plate is explored, and functional grading is shown to improve the performance of the structures considered. In the example of a square, simply supported, cross-ply laminated panel subjected to uniform transverse pressure, a modest functional grading offers significant improvement in performance. A second example suggests superior blast resistance of the panel achieved at the expense of only a small increase in weight. PMID:23874001

  9. Micromechanics and Structural Response of Functionally Graded, Particulate-Matrix, Fiber-Reinforced Composites.

    PubMed

    Genin, Guy M; Birman, Victor

    2009-05-15

    Reinforcement of fibrous composites by stiff particles embedded in the matrix offers the potential for simple, economical functional grading, enhanced response to mechanical loads, and improved functioning at high temperatures. Here, we consider laminated plates made of such a material, with spherical reinforcement tailored by layer. The moduli for this material lie within relatively narrow bounds. Two separate moduli estimates are considered: a "two-step" approach in which fibers are embedded in a homogenized particulate matrix, and the Kanaun-Jeulin (2001) approach, which we re-derive in a simple way using the Benveniste (1988) method. Optimal tailoring of a plate is explored, and functional grading is shown to improve the performance of the structures considered. In the example of a square, simply supported, cross-ply laminated panel subjected to uniform transverse pressure, a modest functional grading offers significant improvement in performance. A second example suggests superior blast resistance of the panel achieved at the expense of only a small increase in weight.

  10. Optimization of reinforced concrete slabs

    NASA Technical Reports Server (NTRS)

    Ferritto, J. M.

    1979-01-01

    Reinforced concrete cells composed of concrete slabs and used to limit the effects of accidental explosions during hazardous explosives operations are analyzed. An automated design procedure which considers the dynamic nonlinear behavior of the reinforced concrete of arbitrary geometrical and structural configuration subjected to dynamic pressure loading is discussed. The optimum design of the slab is examined using an interior penalty function. The optimization procedure is presented and the results are discussed and compared with finite element analysis.

  11. Confirmation of linear system theory prediction: Changes in Herrnstein's k as a function of changes in reinforcer magnitude.

    PubMed

    McDowell, J J; Wood, H M

    1984-03-01

    Eight human subjects pressed a lever on a range of variable-interval schedules for 0.25 cent to 35.0 cent per reinforcement. Herrnstein's hyperbola described seven of the eight subjects' response-rate data well. For all subjects, the y-asymptote of the hyperbola increased with increasing reinforcer magnitude and its reciprocal was a linear function of the reciprocal of reinforcer magnitude. These results confirm predictions made by linear system theory; they contradict formal properties of Herrnstein's account and of six other mathematical accounts of single-alternative responding.

  12. Confirmation of linear system theory prediction: Changes in Herrnstein's k as a function of changes in reinforcer magnitude

    PubMed Central

    McDowell, J. J; Wood, Helena M.

    1984-01-01

    Eight human subjects pressed a lever on a range of variable-interval schedules for 0.25¢ to 35.0¢ per reinforcement. Herrnstein's hyperbola described seven of the eight subjects' response-rate data well. For all subjects, the y-asymptote of the hyperbola increased with increasing reinforcer magnitude and its reciprocal was a linear function of the reciprocal of reinforcer magnitude. These results confirm predictions made by linear system theory; they contradict formal properties of Herrnstein's account and of six other mathematical accounts of single-alternative responding. PMID:16812366

  13. Functionalized few-walled carbon nanotubes for mechanical reinforcement of polymeric composites.

    PubMed

    Hou, Ye; Tang, Jie; Zhang, Hongbo; Qian, Cheng; Feng, Yiyu; Liu, Jie

    2009-05-26

    Compared to single-walled carbon nanotubes (SWNTs) and more defective multiwalled carbon nanotubes (MWNTs), the thin few-walled carbon nanotubes (FWNTs) are believed to have extraordinary mechanical properties. However, the enhancement of mechanical properties in FWNTs-polymer composites has remained elusive. In this study, free-standing carbon nanotubes (CNTs)/polymer composite films were fabricated with three types (SWNTs, FWNTs, MWNTs) of functionalized CNTs. The mechanical properties of composite films have been investigated. It is observed that the Young's modulus of composite films with only 0.2 wt % functionalized FWNTs shows a remarkable reinforcement value of dY/dV(f) = 1658 GPa, which is approximately 400 GPa higher than the highest value (dY/dV(f) = 1244 GPa) that was previously reported. In addition, the Young's modulus increased steadily with the increased concentration of FWNTs. The results indicated that FWNTs are practically the optimum reinforcing filler for the next generation of carbon nanotube-based composite materials.

  14. Reliability-based design optimization of reinforced concrete structures including soil-structure interaction using a discrete gravitational search algorithm and a proposed metamodel

    NASA Astrophysics Data System (ADS)

    Khatibinia, M.; Salajegheh, E.; Salajegheh, J.; Fadaee, M. J.

    2013-10-01

    A new discrete gravitational search algorithm (DGSA) and a metamodelling framework are introduced for reliability-based design optimization (RBDO) of reinforced concrete structures. The RBDO of structures with soil-structure interaction (SSI) effects is investigated in accordance with performance-based design. The proposed DGSA is based on the standard gravitational search algorithm (GSA) to optimize the structural cost under deterministic and probabilistic constraints. The Monte-Carlo simulation (MCS) method is considered as the most reliable method for estimating the probabilities of reliability. In order to reduce the computational time of MCS, the proposed metamodelling framework is employed to predict the responses of the SSI system in the RBDO procedure. The metamodel consists of a weighted least squares support vector machine (WLS-SVM) and a wavelet kernel function, which is called WWLS-SVM. Numerical results demonstrate the efficiency and computational advantages of DGSA and the proposed metamodel for RBDO of reinforced concrete structures.

  15. German guidelines for steel fiber reinforced shotcrete in tunnels with special consideration of design and statical aspects

    SciTech Connect

    Schmidt-Schleicher, H.

    1995-12-31

    Steel fiber reinforced concrete can undoubtedly absorb tensile forces. The utilization of this characteristic for the design and specifications of support structures for underground tunnels is regulated by the new Guidelines from the German Concrete Association. Recommendations are given in these guidelines for construction design and for construction itself. The required tests for classification, suitability and quality monitoring are presented.

  16. Optimal design of variable-stiffness fiber-reinforced composites using cellular automata

    NASA Astrophysics Data System (ADS)

    Setoodeh, Shahriar

    The growing number of applications of composite materials in aerospace and naval structures along with advancements in manufacturing technologies demand continuous innovations in the design of composite structures. In the traditional design of composite laminates, fiber orientation angles are constant for each layer and are usually limited to 0, 90, and +/-45 degrees. To fully benefit from the directional properties of composite laminates, such limitations have to be removed. The concept of variable-stiffness laminates allows the stiffness properties to vary spatially over the laminate. Through tailoring of fiber orientations and laminate thickness spatially in an optimal fashion, mechanical properties of a part can be improved. In this thesis, the optimal design of variable-stiffness fiber-reinforced composite laminates is studied using an emerging numerical engineering optimization scheme based on the cellular automata paradigm. A cellular automaton (CA) based design scheme uses local update rule for both field variables (displacements) and design variables (lay-up configuration and laminate density measure) in an iterative fashion to convergence to an optimal design. In the present work, the displacements are updated based on the principle of local equilibrium and the design variables are updated according to the optimality criteria for minimum compliance design. A closed form displacement update rule for constant thickness isotropic continua is derived, while for the general anisotropic continua with variable thickness a numeric update rule is used. Combined lay-up and topology design of variable-stiffness flat laminates is performed under the action of in-plane loads and bending loads. An optimality criteria based formulation is used to obtain local design rules for minimum compliance design subject to a volume constraint. It is shown that the design rule splits into a two step application. In the first step an optimal lay-up configuration is computed and in

  17. Reinforcement contingencies and social reinforcement: some reciprocal relations between basic and applied research.

    PubMed

    Vollmer, T R; Hackenberg, T D

    2001-01-01

    Reinforcement contingencies and social reinforcement are ubiquitous phenomena in applied behavior analysis. This discussion paper is divided into two sections. In the first section, reinforcement contingencies are discussed in terms of the necessary and sufficient conditions for reinforcement effects. Response-stimulus dependencies, conditional probabilities, and contiguity are discussed as possible mechanisms of, and arrangements for, reinforcement effects. In the second section, social reinforcement is discussed in terms of its functional subtypes and reinforcement context effects. Two underlying themes run throughout the discussion: (a) Applied research would benefit from a greater understanding of existing basic research, and (b) basic research could be designed to specifically address some of the issues about reinforcement that are central to effective application.

  18. Arctigenin from Fructus Arctii (Seed of Burdock) Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers.

    PubMed

    Shin, Hee Soon; Jung, Sun Young; Back, Su Yeon; Do, Jeong-Ryong; Shon, Dong-Hwa

    2015-01-01

    Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER) value (as an index of barrier function) and ovalbumin (OVA) permeation (as an index of permeability) to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function.

  19. Arctigenin from Fructus Arctii (Seed of Burdock) Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers

    PubMed Central

    Shin, Hee Soon; Jung, Sun Young; Back, Su Yeon; Do, Jeong-Ryong; Shon, Dong-Hwa

    2015-01-01

    Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER) value (as an index of barrier function) and ovalbumin (OVA) permeation (as an index of permeability) to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function. PMID:26550018

  20. Arctigenin from Fructus Arctii (Seed of Burdock) Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers.

    PubMed

    Shin, Hee Soon; Jung, Sun Young; Back, Su Yeon; Do, Jeong-Ryong; Shon, Dong-Hwa

    2015-01-01

    Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER) value (as an index of barrier function) and ovalbumin (OVA) permeation (as an index of permeability) to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function. PMID:26550018

  1. Functional Communication Training and Chained Schedules of Reinforcement to Treat Challenging Behavior Maintained by Terminations of Activity Interruptions

    ERIC Educational Resources Information Center

    Falcomata, Terry S.; Roane, Henry S.; Muething, Colin S.; Stephenson, Kasey M.; Ing, Anna D.

    2012-01-01

    In this article, the authors evaluated functional communication training (FCT) and a chained schedule of reinforcement for the treatment of challenging behavior exhibited by two individuals diagnosed with Asperger syndrome and autism, respectively. Following a functional analysis with undifferentiated results, the authors demonstrated that…

  2. The Reinforcement Hierarchy

    ERIC Educational Resources Information Center

    Forness, Steven R.

    1973-01-01

    Reinforcement hierarchy implies movement along a continuum from top to bottom, from primitive levels of reinforcement to more sophisticated levels. Unless it is immediately obvious that a child cannot function without the use of lower-order reinforcers, we should approach him as though he responds to topmost reinforcers until he demonstrates…

  3. On the Neglected Art of "Thinning" Reinforcers.

    ERIC Educational Resources Information Center

    Katz, Roger C.; Vinciguerra, Paul

    A single case alternating treatment design was used to investigate interactions between reinforcement scheduling and the information that accompanies a shift from a high to lower density of reinforcement with a 12 year old emotionally disturbed boy. Results showed that the informational variables exerted functional control over behavior, with the…

  4. Creating a Reinforcement Learning Controller for Functional Electrical Stimulation of a Human Arm.

    PubMed

    Thomas, Philip S; Branicky, Michael; van den Bogert, Antonie; Jagodnik, Kathleen

    2008-01-01

    Clinical tests have shown that the dynamics of a human arm, controlled using Functional Electrical Stimulation (FES), can vary significantly between and during trials. In this paper, we study the application of Reinforcement Learning to create a controller that can adapt to these changing dynamics of a human arm. Development and tests were done in simulation using a two-dimensional arm model and Hill-based muscle dynamics. An actor-critic architecture is used with artificial neural networks for both the actor and the critic. We begin by training it using a Proportional Derivative (PD) controller as a supervisor. We then make clinically relevant changes to the dynamics of the arm and test the actor-critic's ability to adapt without supervision in a reasonable number of episodes. PMID:22081795

  5. Synthesis and Characterization of Carbon Nanotubes for Reinforced and Functional Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, C.-H.; Lehoczky, S.; Watson, M.

    2003-01-01

    Many efforts have been engaged recently in synthesizing single-walled and multi-walled carbon nanotubes due to their superior mechanical, electrical and thermal properties, which could be used for numerous applications to enhance the performance of electronics, sensors and composites. This presentation will demonstrate the synthesizing process of carbon nanotube by thermal chemical vapor deposition and the characterization results by using electron microscopy and optical spectroscopy. Carbon nanotubes could be synthesized on various substances. The conditions of fabricating single-walled or multi-walled carbon nanotubes depend strongly on temperature and hydrocarbon concentration but weakly on pressure. The sizes, orientations, and growth modes of carbon nanotubes will be illustrated. The advantages and limitations of several potential aerospace applications such as reinforced and functional composites, temperature sensing, and thermal control by using carbon nanotubes will be discussed.

  6. Design issues for a reinforcement-based self-learning fuzzy controller

    NASA Technical Reports Server (NTRS)

    Yen, John; Wang, Haojin; Dauherity, Walter

    1993-01-01

    Fuzzy logic controllers have some often cited advantages over conventional techniques such as PID control: easy implementation, its accommodation to natural language, the ability to cover wider range of operating conditions and others. One major obstacle that hinders its broader application is the lack of a systematic way to develop and modify its rules and as result the creation and modification of fuzzy rules often depends on try-error or pure experimentation. One of the proposed approaches to address this issue is self-learning fuzzy logic controllers (SFLC) that use reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of self-learning fuzzy controller is highly contingent on the design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for the application to chemical process are discussed and its performance is compared with that of PID and self-tuning fuzzy logic controller.

  7. Design issues of a reinforcement-based self-learning fuzzy controller for petrochemical process control

    NASA Technical Reports Server (NTRS)

    Yen, John; Wang, Haojin; Daugherity, Walter C.

    1992-01-01

    Fuzzy logic controllers have some often-cited advantages over conventional techniques such as PID control, including easier implementation, accommodation to natural language, and the ability to cover a wider range of operating conditions. One major obstacle that hinders the broader application of fuzzy logic controllers is the lack of a systematic way to develop and modify their rules; as a result the creation and modification of fuzzy rules often depends on trial and error or pure experimentation. One of the proposed approaches to address this issue is a self-learning fuzzy logic controller (SFLC) that uses reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of its fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of a self-learning fuzzy controller is highly contingent on its design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for application to a petrochemical process are discussed, and its performance is compared with that of a PID and a self-tuning fuzzy logic controller.

  8. Electronic Design Automation: Integrating the Design and Manufacturing Functions

    NASA Technical Reports Server (NTRS)

    Bachnak, Rafic; Salkowski, Charles

    1997-01-01

    As the complexity of electronic systems grows, the traditional design practice, a sequential process, is replaced by concurrent design methodologies. A major advantage of concurrent design is that the feedback from software and manufacturing engineers can be easily incorporated into the design. The implementation of concurrent engineering methodologies is greatly facilitated by employing the latest Electronic Design Automation (EDA) tools. These tools offer integrated simulation of the electrical, mechanical, and manufacturing functions and support virtual prototyping, rapid prototyping, and hardware-software co-design. This report presents recommendations for enhancing the electronic design and manufacturing capabilities and procedures at JSC based on a concurrent design methodology that employs EDA tools.

  9. Design and operating characteristics of cathodic protection systems associated with large seawater intake reinforced concrete structures in the Arabian Gulf

    SciTech Connect

    Ali, M.; Chaudhary, Z.; Al-Muhid, T.M.M.

    1999-07-01

    The large reinforced concrete seawater intake structures, which are part of a cooling system in several petrochemical plants located in the Arabian Gulf, have been catholically protected to arrest chloride-induced corrosion of the steel reinforcement. The cathodic protection systems have an operating history of 1--5 years. The design and operating features of the cathodic protection systems are described and discussed. Monitoring data of each system collected over the years since commissioning of the systems are described and discussed to evaluate performance of each system.

  10. A composite-appropriate integration method of thick functional components in fibre-reinforced plastics

    NASA Astrophysics Data System (ADS)

    Filippatos, A.; Höhne, R.; Kliem, M.; Gude, M.

    2016-03-01

    The use of integrated structural health monitoring systems for critical composite parts, such as wind turbine blades, fuselage and wing parts, is an promising approach to guarantee a safe and efficient operational lifetime of such components. Therefore, the integration of thick functional components like sensors, actuators and electronic components is often necessary. An optimal integration of such components should be ensured without material imperfections in the composite structure, i.e. voids and resin rich areas, and failure of the functional components. In this paper, first investigations were undertaken for a basic understanding of the mechanical performance of a fibre reinforced plastic component with integrated functional elements. The influence of different materials and treatment methods for the encapsulation of electronic components was experimentally investigated under static and dynamic loading tests. By means of a parametric finite element model, the effects of an encapsulation and various parameters such as the shape and orientation of the electronic components were examined. Several encapsulation variants were investigated in order to minimise the chance of failure initiations. Based both on experimental and numerical results, a preferred composite integration concept was selected for an electronic board and some first recommendations for an optimal integration were derived.

  11. Teacher Implementation of Trial-Based Functional Analysis and Differential Reinforcement of Alternative Behavior for Students with Challenging Behavior

    ERIC Educational Resources Information Center

    Flynn, Susan D.; Lo, Ya-yu

    2016-01-01

    The purpose of this study was to examine the effects of a training package on three middle school special education teachers' accurate implementation of trial-based functional analysis (TBFA) and differential reinforcement of alternative behavior (DRA) with their students with autism spectrum disorders or emotional and behavioral disorders in the…

  12. Design and evaluation of a bolted joint for a discrete carbon-epoxy rod-reinforced hat section

    NASA Technical Reports Server (NTRS)

    Rousseau, Carl Q.; Baker, Donald J.

    1996-01-01

    The use of prefabricated pultruded carbon-epoxy rods has reduced the manufacturing complexity and costs of stiffened composite panels while increasing the damage tolerance of the panels. However, repairability of these highly efficient discrete stiffeners has been a concern. Design, analysis, and test results are presented in this paper for a bolted-joint repair for the pultruded rod concept that is capable of efficiently transferring axial loads in a hat-section stiffener on the upper skin segment of a heavily loaded aircraft wing component. A tension and a compression joint design were evaluated. The tension joint design achieved approximately 1.0% strain in the carbon-epoxy rod-reinforced hat-section and failed in a metal fitting at 166% of the design ultimate load. The compression joint design failed in the carbon-epoxy rod-reinforced hat-section test specimen area at approximately 0.7% strain and at 110% of the design ultimate load. This strain level of 0.7% in compression is similar to the failure strain observed in previously reported carbon-epoxy rod-reinforced hat-section column tests.

  13. Design and Evaluation of a Bolted Joint for a Discrete Carbon-Epoxy Rod-Reinforced Hat Section

    NASA Technical Reports Server (NTRS)

    Baker, Donald J.; Rousseau, Carl Q.

    1996-01-01

    The use of pre-fabricated pultruded carbon-epoxy rods has reduced the manufacturing complexity and costs of stiffened composite panels while increasing the damage tolerance of the panels. However, repairability of these highly efficient discrete stiffeners has been a concern. Design, analysis, and test results are presented in this paper for a bolted-joint repair for the pultruded rod concept that is capable of efficiently transferring axial loads in a hat-section stiffener on the upper skin segment of a heavily loaded aircraft wing component. A tension and a compression joint design were evaluated. The tension joint design achieved approximately 1.0 percent strain in the carbon-epoxy rod-reinforced hat-section and failed in a metal fitting at 166 percent of the design ultimate load. The compression joint design failed in the carbon-epoxy rod-reinforced hat-section test specimen area at approximately 0.7 percent strain and at 110 percent of the design ultimate load. This strain level of 0.7 percent in compression is similar to the failure strain observed in previously reported carbon-epoxy rod-reinforced hat-section column tests.

  14. A Function-Based Classroom Behavior Intervention Using Non-Contingent Reinforcement Plus Response Cost

    ERIC Educational Resources Information Center

    Nolan, Julene D.; Filter, Kevin J.

    2012-01-01

    This study investigated the use of noncontingent reinforcement with response cost to reduce problem verbal and physical behavior maintained by automatic reinforcement in an internationally adopted, post-institutionalized student diagnosed with ADHD. Systematic direct observation was employed to measure behavior in a single-subject withdrawal…

  15. Assessing Preferences for Positive and Negative Reinforcement during Treatment of Destructive Behavior with Functional Communication Training

    ERIC Educational Resources Information Center

    Fisher, Wayne W.; Adelinis, John D.; Volkert, Valerie M.; Keeney, Kris M.; Neidert, Pamela L.; Hovanetz, Alyson

    2005-01-01

    Results of prior studies (e.g. [J. Appl. Behav. Anal. 32 (1999) 285]) showing that participants chose alternative behavior (compliance) over escape-reinforced destructive behavior when this latter response produced escape and the former response produced positive reinforcement may have been due to (a) the value of the positive reinforcer…

  16. Multifunctional cyanate ester nanocomposites reinforced by hexagonal boron nitride after noncovalent biomimetic functionalization.

    PubMed

    Wu, Hongchao; Kessler, Michael R

    2015-03-18

    Boron nitride (BN) reinforced polymer nanocomposites have attracted a growing research interest in the microelectronic industry for their uniquely thermal conductive but electrical insulating properties. To overcome the challenges in surface functionalization, in this study, hexagonal boron nitride (h-BN) nanoparticles were noncovalently modified with polydopamine in a solvent-free aqueous condition. The strong π-π interaction between the hexagonal structural BN and aromatic dopamine molecules facilitated 15 wt % polydopamine encapsulating the nanoparticles. High-performance bisphenol E cyanate ester (BECy) was incorporated by homogeneously dispersed h-BN at different loadings and functionalities to investigate their effects on thermo-mechanical, dynamic-mechanical, and dielectric properties, as well as thermal conductivity. Different theoretical and empirical models were successfully applied to predict thermal and dielectric properties of h-BN/BECy nanocomposites. Overall, the prepared h-BN/BECy nanocomposites exhibited outstanding performance in dimensional stability, dynamic-mechanical properties, and thermal conductivity, together with the controllable dielectric property and preserved thermal stability for high-temperature applications. PMID:25726956

  17. Multifunctional cyanate ester nanocomposites reinforced by hexagonal boron nitride after noncovalent biomimetic functionalization.

    PubMed

    Wu, Hongchao; Kessler, Michael R

    2015-03-18

    Boron nitride (BN) reinforced polymer nanocomposites have attracted a growing research interest in the microelectronic industry for their uniquely thermal conductive but electrical insulating properties. To overcome the challenges in surface functionalization, in this study, hexagonal boron nitride (h-BN) nanoparticles were noncovalently modified with polydopamine in a solvent-free aqueous condition. The strong π-π interaction between the hexagonal structural BN and aromatic dopamine molecules facilitated 15 wt % polydopamine encapsulating the nanoparticles. High-performance bisphenol E cyanate ester (BECy) was incorporated by homogeneously dispersed h-BN at different loadings and functionalities to investigate their effects on thermo-mechanical, dynamic-mechanical, and dielectric properties, as well as thermal conductivity. Different theoretical and empirical models were successfully applied to predict thermal and dielectric properties of h-BN/BECy nanocomposites. Overall, the prepared h-BN/BECy nanocomposites exhibited outstanding performance in dimensional stability, dynamic-mechanical properties, and thermal conductivity, together with the controllable dielectric property and preserved thermal stability for high-temperature applications.

  18. Design of the IXO optics based on thin glass plates connected by reinforcing ribs

    NASA Astrophysics Data System (ADS)

    Parodi, G.; Martelli, F.; Basso, S.; Citterio, O.; Civitani, M.; Conconi, P.; Ghigo, M.; Pareschi, G.; Zambra, A.

    2011-09-01

    Effective area requirements for the large X-ray mirror of the International X-ray Observatory (IXO) are about 3 m2 at 1keV, 0.65 m2 at 6 keV and 150 cm2 at 30 keV. Because of its large dimension, the telescope cannot be realized as a monolithic structure but rather it requires the integration and assembly in the telescope optical bench of a number of basic module units, called X-ray Optical Unit (XOU). We are currently studying a method for the production of these basic units that is based on the slumping technology for the production of thin glass segmented mirrors. It foresees the implementation of a stacking integration concept based on the use of reinforcing ribs connecting the glass segments in order to create very stiff structures. This paper reports on the last design of the single optical module and describe the results of FEM analyses that show how it is possible to use an innovative approach to the integration of the slumped glass foils.

  19. Towards Practical Carbonation Prediction and Modelling for Service Life Design of Reinforced Concrete Structures

    NASA Astrophysics Data System (ADS)

    Ekolu, O. S.

    2015-11-01

    Amongst the scientific community, the interest in durability of concrete structures has been high for quite a long time of over 40 years. Of the various causes of degradation of concrete structures, corrosion is the most widespread durability problem and carbonation is one of the two causes of steel reinforcement corrosion. While much scientific understanding has been gained from the numerous carbonation studies undertaken over the past years, it is still presently not possible to accurately predict carbonation and apply it in design of structures. This underscores the complex nature of the mechanisms as influenced by several interactive factors. Based on critical literature and some experience of the author, it is found that there still exist major challenges in establishing a mathematical constitutive relation for realistic carbonation prediction. While most current models employ permeability /diffusion as the main model property, analysis shows that the most practical material property would be compressive strength, which has a low coefficient of variation of 20% compared to 30 to 50% for permeability. This important characteristic of compressive strength, combined with its merit of simplicity and data availability at all stages of a structure's life, promote its potential use in modelling over permeability. By using compressive strength in carbonation prediction, the need for accelerated testing and permeability measurement can be avoided. This paper attempts to examine the issues associated with carbonation prediction, which could underlie the current lack of a sound established prediction method. Suggestions are then made for possible employment of different or alternative approaches.

  20. Performance-based plastic design of earthquake resistant reinforced concrete moment frames

    NASA Astrophysics Data System (ADS)

    Liao, Wen-Cheng

    Performance-Based Plastic Design (PBPD) method has been recently developed to achieve enhanced performance of earthquake resistant structures. The design concept uses pre-selected target drift and yield mechanism as performance criteria. The design base shear for selected hazard level is determined by equating the work needed to push the structure monotonically up to the target drift to the corresponding energy demand of an equivalent SDOF oscillator. This study presents development of the PBPD approach as applied to reinforced concrete special moment frame (RC SMF) structures. RC structures present special challenge because of their complex and degrading ("pinched") hysteretic behavior. In order to account for the degrading hysteretic behavior the 1-EMA 440 C2 factor approach was used in the process of determining the design base shear. Four baseline RC SMF (4, 8, 12 and 20-story) as used in the FEMA P695 were selected for this study. Those frames were redesigned by the PBPD approach. The baseline frames and the PBPD frames were subjected to extensive inelastic pushover and time-history analyses. The PBPD frames showed much improved response meeting all desired performance objectives, including the intended yield mechanisms and the target drifts. On the contrary, the baseline frames experienced large story drifts due to flexural yielding of the columns. The work-energy equation to determine design base shear can also be used to estimate seismic demands, called the energy spectrum method. In this approach the skeleton force-displacement (capacity) curve of the structure is converted into energy-displacement plot (Ec) which is superimposed over the corresponding energy demand plot ( Ed) for the specified hazard level to determine the expected peak displacement demands. In summary, this study shows that the PBPD approach can be successfully applied to RC moment frame structures as well, and that the responses of the example moment frames were much improved over those

  1. Influence of fibril taper on the function of collagen to reinforce extracellular matrix.

    PubMed

    Goh, K L; Meakin, J R; Aspden, R M; Hukins, D W L

    2005-09-22

    Collagen fibrils provide tensile reinforcement for extracellular matrix. In at least some tissues, the fibrils have a paraboloidal taper at their ends. The purpose of this paper is to determine the implications of this taper for the function of collagen fibrils. When a tissue is subjected to low mechanical forces, stress will be transferred to the fibrils elastically. This process was modelled using finite element analysis because there is no analytical theory for elastic stress transfer to a non-cylindrical fibril. When the tissue is subjected to higher mechanical forces, stress will be transferred plastically. This process was modelled analytically. For both elastic and plastic stress transfer, a paraboloidal taper leads to a more uniform distribution of axial tensile stress along the fibril than would be generated if it were cylindrical. The tapered fibril requires half the volume of collagen than a cylindrical fibril of the same length and the stress is shared more evenly along its length. It is also less likely to fracture than a cylindrical fibril of the same length in a tissue subjected to the same mechanical force.

  2. Hybrid damping of smart, functionally graded plates using piezoelectric, fiber-reinforced composites.

    PubMed

    Ray, Manas C

    2006-11-01

    This paper deals with the investigation of active, constrained layer damping (ACLD) of smart, functionally graded (FG) plates. The constraining layer of the ACLD treatment is considered to be made of a piezoelectric, fiber-reinforced composite (PFRC) material with enhanced effective piezoelectric coefficient that quantifies the in-plane actuating force due to the electric field applied across the thickness of the layer. The Young's modulus and the mass density of the FG plates are assumed to vary exponentially along the thickness of the plate, and the Poisson's ratio is assumed to be constant over the domain of the plate. A finite-element model has been developed to model the open-loop and closed-loop dynamics of the FG plates integrated with two patches of ACLD treatment. The frequency response of the plates revealed that the active patches of ACLD treatment significantly improve the damping characteristics of the FG plates over the passive damping. Emphasis has been placed on investigating the effect of variation of piezoelectric fiber angle in the constraining layer of the ACLD treatment on the attenuating capability of the patches. The analysis also revealed that the activated patches of the ACLD treatment are more effective in controlling the vibrations of FG plates when the patches are attached to the surface of the FG plates with minimum stiffness than when they are attached to the surface of the same with maximum stiffness.

  3. Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair

    PubMed Central

    Yodmuang, Supansa; McNamara, Stephanie L.; Nover, Adam B.; Mandal, Biman B.; Agarwal, Monica; Kelly, Terri-Ann N.; Chao, Pen-hsiu Grace; Hung, Clark; Kaplan, David L.; Vunjak-Novakovic, Gordana

    2014-01-01

    Cartilage tissue lacks an intrinsic capacity for self-regeneration due to slow matrix turnover, a limited supply of mature chondrocytes and insufficient vasculature. Although cartilage tissue engineering has achieved some success using agarose as a scaffolding material, major challenges of agarose-based cartilage repair, including non-degradability, poor tissue–scaffold integration and limited processing capability, have prompted the search for an alternative biomaterial. In this study, silk fiber–hydrogel composites (SF–silk hydrogels) made from silk microfibers and silk hydrogels were investigated for their potential use as a support material for engineered cartilage. We demonstrated the use of 100% silk-based fiber–hydrogel composite scaffolds for the development of cartilage constructs with properties comparable to those made with agarose. Cartilage constructs with an equilibrium modulus in the native tissue range were fabricated by mimicking the collagen fiber and proteoglycan composite architecture of native cartilage using biocompatible, biodegradable silk fibroin from Bombyx mori. Excellent chondrocyte response was observed on SF–silk hydrogels, and fiber reinforcement resulted in the development of more mechanically robust constructs after 42 days in culture compared to silk hydrogels alone. Thus, we demonstrate the versatility of silk fibroin as a composite scaffolding material for use in cartilage tissue repair to create functional cartilage constructs that overcome the limitations of agarose biomaterials, and provide a much-needed alternative to the agarose standard. PMID:25281788

  4. Application of Visual Reinforcement Audiometry (VRA) to Low-Functioning Children.

    ERIC Educational Resources Information Center

    Thompson, Gary; And Others

    1979-01-01

    The application of visual reinforcement audiometry (VRA) -- a testing procedure involving the use of visual stimuli following auditory responses -- was studied with 21 mentally handicapped children (ages 1-6 years). (Author/DLS)

  5. Design for a Nine-Month School-Wide Program of Token Reinforcement for the Trainable Mentally Retarded. Research and Development Report, Volume IV, Number 4.

    ERIC Educational Resources Information Center

    Ayllon, T.; Barnes, Jarvis

    Outlined are plans for a 9-month elementary school-wide program of token reinforcement for the trainable mentally retarded (TMR), which is said to allow for later additional components. Program focus is to be application of reinforcement to TMR academic work. All children will take the Metropolitan Readiness Test in pretest and posttest design for…

  6. Two functional serotonin polymorphisms moderate the effect of food reinforcement on BMI.

    PubMed

    Carr, Katelyn A; Lin, Henry; Fletcher, Kelly D; Sucheston, Lara; Singh, Prashant K; Salis, Robbert J; Erbe, Richard W; Faith, Myles S; Allison, David B; Stice, Eric; Epstein, Leonard H

    2013-06-01

    Food reinforcement, or the motivation to eat, has been associated with increased energy intake, greater body weight, and prospective weight gain. Much of the previous research on the reinforcing value of food has focused on the role of dopamine, but it may be worthwhile to examine genetic polymorphisms in the serotonin and opioid systems as these neurotransmitters have been shown to be related to reinforcement processes and to influence energy intake. We examined the relationship among 44 candidate genetic polymorphisms in the dopamine, serotonin, and opioid systems, as well as food reinforcement and body mass index (BMI) in a sample of 245 individuals. Polymorphisms in the monoamine oxidase A (MAOA-LPR) and serotonin receptor 2A genes (rs6314) moderated the effect of food reinforcement on BMI, accounting for an additional 5-10% variance and revealed a potential role of the single nucleotide polymorphism, rs6314, in the serotonin 2A receptor as a differential susceptibility factor for obesity. Differential susceptibility describes a factor that can confer either risk or protection depending on a second variable, such that rs6314 is predictive of both high and low BMI based on the level of food reinforcement, while the diathesis stress or dual-gain model only influences one end of the outcome measure. The interaction with MAOA-LPR better fits the diathesis stress model, with the 3.5R/4R allele conferring protection for individuals low in food reinforcement. These results provide new insight into genes theoretically involved in obesity, and support the hypothesis that genetics moderate the association between food reinforcement and BMI.

  7. In silico design of functional DNA constructs.

    PubMed

    Villalobos, Alan; Welch, Mark; Minshull, Jeremy

    2012-01-01

    The promise of synthetic biology lies in the creation of novel function from the proper combination of genetic elements. De novo gene synthesis has become a cost-effective method for building virtually any conceptualized genetic construct, removing the constraints of extant sequences, and greatly facilitating study of the relationships between gene sequence and function. With the rapid increase in the number and variety of characterized and cataloged genetic elements, tools that facilitate assembly of such parts into functional constructs (genes, vectors, circuits, etc.) are essential. The Gene Designer software allows scientists and engineers to readily manage and recombine genetic elements into novel assemblies. It also provides tools for the simulation of molecular cloning schemes as well as the engineering and optimization of protein-coding sequences. Together, the functions in Gene Designer provide a complete capability to design functional genetic constructs.

  8. Design of a cast bar reinforced provisional restoration for the management of the interim phase in implant dentistry.

    PubMed

    Saba, S

    1999-03-01

    Implant therapy is becoming the treatment of choice for the replacement of teeth in partially edentulous arches. The interim phase of implant treatment often presents particular problems because of the position of the remaining teeth, their periodontal status, and the loss of vertical dimension of occlusion. This case report will discuss the design and fabrication of a cast bar reinforced long-span provisional restoration based on a diagnostic wax-up to simplify the management of the interim phase.

  9. Network architecture functional description and design

    SciTech Connect

    Stans, L.; Bencoe, M.; Brown, D.; Kelly, S.; Pierson, L.; Schaldach, C.

    1989-05-25

    This report provides a top level functional description and design for the development and implementation of the central network to support the next generation of SNL, Albuquerque supercomputer in a UNIX{reg sign} environment. It describes the network functions and provides an architecture and topology.

  10. Emergence of reinforcer preference as a function of schedule requirements and stimulus similarity.

    PubMed Central

    DeLeon, I G; Iwata, B A; Goh, H L; Worsdell, A S

    1997-01-01

    Tustin (1994) recently observed that an individual's preference for one of two concurrently available reinforcers under low schedule requirements (concurrent fixed-ratio [FR] 1) switched to the other reinforcer when the schedule requirements were high (concurrent FR 10). We extended this line of research by examining preference for similar and dissimilar reinforcers (i.e., those affecting the same sensory modality and those affecting different sensory modalities). Two individuals with developmental disabilities were exposed to an arrangement in which pressing two different panels produced two different reinforcers according to progressively increasing, concurrent-ratio schedules. When two dissimilar stimuli were concurrently available (food and a leisure item), no clear preference for one item over the other was observed, regardless of the FR schedules in effect (FR 1, 2, 5, 10, and 20). By contrast, when two similar stimuli were concurrently available (two food items), a clear preference for one item emerged as the schedule requirements were increased from FR 1 to FR 5 or FR 10. These results are discussed in terms of implications for conducting preference assessments and for selecting reinforcers to be used under training conditions in which response requirements are relatively high or effortful. PMID:9378681

  11. Signaled alternative reinforcement and the persistence of operant behavior.

    PubMed

    Bland, Vikki J; Bai, John Y H; Fullerton, Jane A; Podlesnik, Christopher A

    2016-07-01

    Differential reinforcement of alternative behavior (DRA) is a treatment designed to eliminate problem behavior by reinforcing an alternative behavior at a higher rate. Availability of alternative reinforcement may be signaled, as with Functional Communication Training, or unsignaled. Whether or not alternative reinforcement is signaled could influence both the rate and persistence of problem behavior. The present study investigated whether signaling the availability of alternative reinforcement affects the rate and persistence of a concurrently available target response with pigeons. Three components of a multiple concurrent schedule arranged equal reinforcement rates for target responding. Two of the components also arranged equal reinforcement rates for an alternative response. In one DRA component, a discrete stimulus signaled the availability of response-contingent alternative reinforcement by changing the keylight color upon reinforcement availability. In the other DRA component, availability of alternative reinforcement was not signaled. Target responding was most persistent in the unsignaled DRA component when disrupted by satiation, free food presented between components, and extinction, relative to the signaled DRA and control components. These findings suggest the discrete stimulus functionally separated the availability of alternative reinforcement from the discriminative stimuli governing target responding. These findings provide a novel avenue to explore in translational research assessing whether signaling the availability of alternative reinforcement with DRA treatments reduces the persistence of problem behavior. PMID:27282131

  12. Signaled alternative reinforcement and the persistence of operant behavior.

    PubMed

    Bland, Vikki J; Bai, John Y H; Fullerton, Jane A; Podlesnik, Christopher A

    2016-07-01

    Differential reinforcement of alternative behavior (DRA) is a treatment designed to eliminate problem behavior by reinforcing an alternative behavior at a higher rate. Availability of alternative reinforcement may be signaled, as with Functional Communication Training, or unsignaled. Whether or not alternative reinforcement is signaled could influence both the rate and persistence of problem behavior. The present study investigated whether signaling the availability of alternative reinforcement affects the rate and persistence of a concurrently available target response with pigeons. Three components of a multiple concurrent schedule arranged equal reinforcement rates for target responding. Two of the components also arranged equal reinforcement rates for an alternative response. In one DRA component, a discrete stimulus signaled the availability of response-contingent alternative reinforcement by changing the keylight color upon reinforcement availability. In the other DRA component, availability of alternative reinforcement was not signaled. Target responding was most persistent in the unsignaled DRA component when disrupted by satiation, free food presented between components, and extinction, relative to the signaled DRA and control components. These findings suggest the discrete stimulus functionally separated the availability of alternative reinforcement from the discriminative stimuli governing target responding. These findings provide a novel avenue to explore in translational research assessing whether signaling the availability of alternative reinforcement with DRA treatments reduces the persistence of problem behavior.

  13. Design and installation of a cathodic protection system for a large reinforced concrete intake structure in the Arabian Gulf

    SciTech Connect

    Ali, M.; Al-Ghannam, H.

    1997-09-01

    The paper describes the condition survey methodology, design and installation of a cathodic protection (C.P.) system for a large reinforced concrete reservoir and sea water intake structure. The structure is critical for the supply of cooling water for a 2.4 million metric ton steel plant. The C.P. System consisting of mixed metal oxide coating on titanium mesh type anodes and automatic voltage/current controlled rectifiers was successfully installed and has been operating within design guidelines for the past 15 months.

  14. Concrete material characterization reinforced concrete tank structure Multi-Function Waste Tank Facility

    NASA Astrophysics Data System (ADS)

    Winkel, B. V.

    1995-03-01

    The purpose of this report is to document the Multi-Function Waste Tank Facility (MWTF) Project position on the concrete mechanical properties needed to perform design/analysis calculations for the MWTF secondary concrete structure. This report provides a position on MWTF concrete properties for the Title 1 and Title 2 calculations. The scope of the report is limited to mechanical properties and does not include the thermophysical properties of concrete needed to perform heat transfer calculations. In the 1970's, a comprehensive series of tests were performed at Construction Technology Laboratories (CTL) on two different Hanford concrete mix designs. Statistical correlations of the CTL data were later generated by Pacific Northwest Laboratories (PNL). These test results and property correlations have been utilized in various design/analysis efforts of Hanford waste tanks. However, due to changes in the concrete design mix and the lower range of MWTF operating temperatures, plus uncertainties in the CTL data and PNL correlations, it was prudent to evaluate the CTL data base and PNL correlations, relative to the MWTF application, and develop a defendable position. The CTL test program for Hanford concrete involved two different mix designs: a 3 kip/sq in mix and a 4.5 kip/sq in mix. The proposed 28-day design strength for the MWTF tanks is 5 kip/sq in. In addition to this design strength difference, there are also differences between the CTL and MWTF mix design details. Also of interest, are the appropriate application of the MWTF concrete properties in performing calculations demonstrating ACI Code compliance. Mix design details and ACI Code issues are addressed in Sections 3.0 and 5.0, respectively. The CTL test program and PNL data correlations focused on a temperature range of 250 to 450 F. The temperature range of interest for the MWTF tank concrete application is 70 to 200 F.

  15. Concrete material characterization reinforced concrete tank structure Multi-Function Waste Tank Facility

    SciTech Connect

    Winkel, B.V.

    1995-03-03

    The purpose of this report is to document the Multi-Function Waste Tank Facility (MWTF) Project position on the concrete mechanical properties needed to perform design/analysis calculations for the MWTF secondary concrete structure. This report provides a position on MWTF concrete properties for the Title 1 and Title 2 calculations. The scope of the report is limited to mechanical properties and does not include the thermophysical properties of concrete needed to perform heat transfer calculations. In the 1970`s, a comprehensive series of tests were performed at Construction Technology Laboratories (CTL) on two different Hanford concrete mix designs. Statistical correlations of the CTL data were later generated by Pacific Northwest Laboratories (PNL). These test results and property correlations have been utilized in various design/analysis efforts of Hanford waste tanks. However, due to changes in the concrete design mix and the lower range of MWTF operating temperatures, plus uncertainties in the CTL data and PNL correlations, it was prudent to evaluate the CTL data base and PNL correlations, relative to the MWTF application, and develop a defendable position. The CTL test program for Hanford concrete involved two different mix designs: a 3 kip/in{sup 2} mix and a 4.5 kip/in{sup 2} mix. The proposed 28-day design strength for the MWTF tanks is 5 kip/in{sup 2}. In addition to this design strength difference, there are also differences between the CTL and MWTF mix design details. Also of interest, are the appropriate application of the MWTF concrete properties in performing calculations demonstrating ACI Code compliance. Mix design details and ACI Code issues are addressed in Sections 3.0 and 5.0, respectively. The CTL test program and PNL data correlations focused on a temperature range of 250 to 450 F. The temperature range of interest for the MWTF tank concrete application is 70 to 200 F.

  16. Design, fabrication, and characterization of lightweight and broadband microwave absorbing structure reinforced by two dimensional composite lattice

    NASA Astrophysics Data System (ADS)

    Chen, Mingji; Pei, Yongmao; Fang, Daining

    2012-07-01

    Microwave absorbing structures (MASs) reinforced by two dimensional (2D) composite lattice elements have been designed and fabricated. The density of these MASs is lower than 0.5 g/cm3. Experimental measurements show that the sandwich structure with glass fiber reinforced composite (GFRC) lattice core can serve as a broadband MAS with its reflectivity below -10 dB over the frequency range of 4-18 GHz. The low permittivity GFRC is indicated to be the proper material for both the structural element of the core and the transparent face sheet. Calculations by the periodic moment method (PMM) demonstrate that the 2D Kagome lattice performs better for microwave absorbing than the square one at relatively low frequencies. The volume fraction and cell size of the structural element are also revealed to be key factors for microwave absorbing performance.

  17. A Preliminary Investigation of the Reinforcement Function of Signal Detections in Simulated Baggage Screening: Further Support for the Vigilance Reinforcement Hypothesis

    ERIC Educational Resources Information Center

    Hogan, Lindsey C.; Bell, Matthew; Olson, Ryan

    2009-01-01

    The vigilance reinforcement hypothesis (VRH) asserts that errors in signal detection tasks are partially explained by operant reinforcement and extinction processes. VRH predictions were tested with a computerized baggage screening task. Our experiment evaluated the effects of signal schedule (extinction vs. variable interval 6 min) and visual…

  18. Functionally graded materials: Design, processing and applications

    SciTech Connect

    Miyamoto, Y.; Kaysser, W.A.; Rabin, B.H.; Kawasaki, A.; Ford, R.G.

    1999-09-01

    In a Functionally Graded Material (FGM), the composition and structure gradually change over volume, resulting in corresponding changes in the properties of the material. By applying the many possibilities inherent in the FGM concept, it is anticipated that materials will be improved and new functions for them created. A comprehensive description of design, modeling, processing, and evaluation of FGMs as well as their applications is covered in this book. The contents include: lessons from nature; graded microstructures; modeling and design; characterization of properties; processing and fabrication; applications; and summary and outlook.

  19. Improved mechanical properties of polylactide nanocomposites-reinforced with cellulose nanofibrils through interfacial engineering via amine-functionalization.

    PubMed

    Lu, Yuan; Cueva, Mario Calderón; Lara-Curzio, Edgar; Ozcan, Soydan

    2015-10-20

    One of the main factors responsible for the mechanical and physical properties of nanocomposites is the effectiveness of the interfacial region to transfer loads and mechanical vibrations between the nano-reinforcements and the matrix. Surface functionalization has been the preferred approach to engineer the interfaces in polymer nanocomposites in order to maximize their potential in structural and functional applications. In this study, amine-functionalized cellulose nanofibrils (mCNF-G1) were synthesized via silylation of the hydroxyl groups on the CNF surface using 3-aminopropyltrimethoxysilane (APTMS). To further increase the amine density (mCNF-G2), dendritic polyamidoamine (PAMAM) was grafted onto mCNF-G1 by the Michael addition of methacrylate onto mCNF-G1, followed by the transamidation of the ester groups of methacrylate using ethylenediamine. Compared to native CNF-reinforced, poly(l-lactide) (PLLA) nanocomposites, amine-functionalized CNF exhibited significantly improved dispersion and interfacial properties within the PLLA matrix due to the grafting of PLLA chains via aminolysis. It is also a more effective nucleating agent, with 15% mCNF-G1 leading to a crystallinity of 32.5%, compared to 0.1 and 8.7% for neat PLLA and native CNF-reinforced composites. We have demonstrated that APTMS-functionalized CNF (mCNF-G1) significantly improved the tensile strength compared to native CNF, with 10% mCNF-G1 being the most effective (i.e., >100% increase in tensile strength). However, we also found that excessive amines on the CNF surface (i.e., mCNF-G2) resulted in decreased tensile strength and modulus due to PLLA degradation via aminolysis. These results demonstrate the potential of optimized amine-functionalized CNF for future renewable material applications.

  20. Positive and Negative Reinforcers: How about the Second and Third Functions?

    ERIC Educational Resources Information Center

    Staats, Arthur W.

    2006-01-01

    The author of this article presents his own explanation on the two types of conditioning--respondent and operant. He states that when withdrawal of a negative reinforcer is the contingency that increases the strength of the operant behavior, the stimulus will have a negative emotional response to the experimental chamber. However, when a positive…

  1. Safety performance functions incorporating design consistency variables.

    PubMed

    Montella, Alfonso; Imbriani, Lella Liana

    2015-01-01

    Highway design which ensures that successive elements are coordinated in such a way as to produce harmonious and homogeneous driver performances along the road is considered consistent and safe. On the other hand, an alignment which requires drivers to handle high speed gradients and does not meet drivers' expectancy is considered inconsistent and produces higher crash frequency. To increase the usefulness and the reliability of existing safety performance functions and contribute to solve inconsistencies of existing highways as well as inconsistencies arising in the design phase, we developed safety performance functions for rural motorways that incorporate design consistency measures. Since the design consistency variables were used only for curves, two different sets of models were fitted for tangents and curves. Models for the following crash characteristics were fitted: total, single-vehicle run-off-the-road, other single vehicle, multi vehicle, daytime, nighttime, non-rainy weather, rainy weather, dry pavement, wet pavement, property damage only, slight injury, and severe injury (including fatal). The design consistency parameters in this study are based on operating speed models developed through an instrumented vehicle equipped with a GPS continuous speed tracking from a field experiment conducted on the same motorway where the safety performance functions were fitted (motorway A16 in Italy). Study results show that geometric design consistency has a significant effect on safety of rural motorways. Previous studies on the relationship between geometric design consistency and crash frequency focused on two-lane rural highways since these highways have the higher crash rates and are generally characterized by considerable inconsistencies. Our study clearly highlights that the achievement of proper geometric design consistency is a key design element also on motorways because of the safety consequences of design inconsistencies. The design consistency measures

  2. Optimum design for fixed partial dentures made of hybrid resin with glass fiber reinforcement by finite element analysis: effect of vertical reinforced thickness on fiber frame.

    PubMed

    Ootaki, Masayuki; Shin-Ya, Akikazu; Gomi, Harunori; Shin-Ya, Akiyoshi; Nakasone, Yuji

    2007-03-01

    By means of finite element analysis, the optimal thickness of fiber framework placed in a fiber-reinforced composite bridge replacing the mandibular first molar was obtained. Test results demonstrated that more than 30% maximum principal stress was reduced by reinforcing with fiber framework in a thickness of up to 0.6 mm for 1.5-mm occlusal clearance. Indeed, maximum principal stress generated in lower embrasure of connectors was reduced from 107 MPa to 70 MPa by maximizing reinforcement effect. PMID:17621946

  3. Function through synthesis-informed design.

    PubMed

    Wender, Paul A; Quiroz, Ryan V; Stevens, Matthew C

    2015-03-17

    In 1996, a snapshot of the field of synthesis was provided by many of its thought leaders in a Chemical Reviews thematic issue on "Frontiers in Organic Synthesis". This Accounts of Chemical Research thematic issue on "Synthesis, Design, and Molecular Function" is intended to provide further perspective now from well into the 21st century. Much has happened in the past few decades. The targets, methods, strategies, reagents, procedures, goals, funding, practices, and practitioners of synthesis have changed, some in dramatic ways as documented in impressive contributions to this issue. However, a constant for most synthesis studies continues to be the goal of achieving function with synthetic economy. Whether in the form of new catalysts, reagents, therapeutic leads, diagnostics, drug delivery systems, imaging agents, sensors, materials, energy generation and storage systems, bioremediation strategies, or molecules that challenge old theories or test new ones, the function of a target has been and continues to be a major and compelling justification for its synthesis. While the targets of synthesis have historically been heavily represented by natural products, increasingly design, often inspired by natural structures, is providing a new source of target structures exhibiting new or natural functions and new or natural synthetic challenges. Complementing isolation and screening approaches to new target identification, design enables one to create targets de novo with an emphasis on sought-after function and synthetic innovation with step-economy. Design provides choice. It allows one to determine how close a synthesis will come to the ideal synthesis and how close a structure will come to the ideal function. In this Account, we address studies in our laboratory on function-oriented synthesis (FOS), a strategy to achieve function by design and with synthetic economy. By starting with function rather than structure, FOS places an initial emphasis on target design

  4. Biocomposites from Natural Rubber: Synergistic Effects of Functionalized Cellulose Nanocrystals as Both Reinforcing and Cross-Linking Agents via Free-Radical Thiol-ene Chemistry.

    PubMed

    Parambath Kanoth, Bipinbal; Claudino, Mauro; Johansson, Mats; Berglund, Lars A; Zhou, Qi

    2015-08-01

    Natural rubber/cellulose nanocrystals (NR/CNCs) form true biocomposites from renewable resources and are demonstrated to show significantly improved thermo-mechanical properties and reduced stress-softening. The nanocomposites were prepared from chemically functionalized CNCs bearing thiols. CNCs served as both reinforcing and cross-linking agents in the NR matrix, and the study was designed to prove the cross-linking function of modified CNCs. CNCs were prepared from cotton, and the cross-linkable mercapto-groups were introduced onto the surface of CNCs by esterification. Nanocomposite films were prepared by dispersing the modified CNCs (m-CNCs) in NR matrix by solution casting. The cross-links at the filler-matrix (m-CNCs-NR) interface were generated by photochemically initiated thiol-ene reactions as monitored by real-time FTIR analysis. The synergistic effects of reinforcement and chemical cross-linking at the m-CNCs-NR interface on structure, thermo-mechanical, and stress-softening behavior were investigated. Methods included field emission scanning electron microscopy (FE-SEM), swelling tests, dynamic mechanical analysis, and tensile tests. Compared to biocomposites from NR with unmodified CNCs, the NR/m-CNCs nanocomposites showed 2.4-fold increase in tensile strength, 1.6-fold increase in strain-to-failure, and 2.9-fold increase in work-of-fracture at 10 wt % of m-CNCs in NR. PMID:26151647

  5. Function through Synthesis-Informed Design

    PubMed Central

    2016-01-01

    Conspectus In 1996, a snapshot of the field of synthesis was provided by many of its thought leaders in a Chemical Reviews thematic issue on “Frontiers in Organic Synthesis”. This Accounts of Chemical Research thematic issue on “Synthesis, Design, and Molecular Function” is intended to provide further perspective now from well into the 21st century. Much has happened in the past few decades. The targets, methods, strategies, reagents, procedures, goals, funding, practices, and practitioners of synthesis have changed, some in dramatic ways as documented in impressive contributions to this issue. However, a constant for most synthesis studies continues to be the goal of achieving function with synthetic economy. Whether in the form of new catalysts, reagents, therapeutic leads, diagnostics, drug delivery systems, imaging agents, sensors, materials, energy generation and storage systems, bioremediation strategies, or molecules that challenge old theories or test new ones, the function of a target has been and continues to be a major and compelling justification for its synthesis. While the targets of synthesis have historically been heavily represented by natural products, increasingly design, often inspired by natural structures, is providing a new source of target structures exhibiting new or natural functions and new or natural synthetic challenges. Complementing isolation and screening approaches to new target identification, design enables one to create targets de novo with an emphasis on sought-after function and synthetic innovation with step-economy. Design provides choice. It allows one to determine how close a synthesis will come to the ideal synthesis and how close a structure will come to the ideal function. In this Account, we address studies in our laboratory on function-oriented synthesis (FOS), a strategy to achieve function by design and with synthetic economy. By starting with function rather than structure, FOS places an initial emphasis on

  6. Designing for Functional Limitations. The Worksite. Revised.

    ERIC Educational Resources Information Center

    Mueller, James

    This resource presents the functional effects of chronic disabilities in order to aid those persons who must plan environments usable by persons with disabilities. The guide does not concern architectural accessibility per se, but rather discusses designing the worksite to be usable by a disabled person. In the guide, drawings are provided for…

  7. Design, Form, and Function in Art Education

    ERIC Educational Resources Information Center

    Vande Zande, Robin

    2007-01-01

    Human beings are influenced by design every day through continuous contact with functional form in and through visual culture. They encounter a continuous current of such new styles as clothing fashions, architecture, furniture and advertisements. The American pursuit of happiness has become related to an increasing flow of products and…

  8. The design and function of birds' nests.

    PubMed

    Mainwaring, Mark C; Hartley, Ian R; Lambrechts, Marcel M; Deeming, D Charles

    2014-10-01

    All birds construct nests in which to lay eggs and/or raise offspring. Traditionally, it was thought that natural selection and the requirement to minimize the risk of predation determined the design of completed nests. However, it is becoming increasingly apparent that sexual selection also influences nest design. This is an important development as while species such as bowerbirds build structures that are extended phenotypic signals whose sole purpose is to attract a mate, nests contain eggs and/or offspring, thereby suggesting a direct trade-off between the conflicting requirements of natural and sexual selection. Nest design also varies adaptively in order to both minimize the detrimental effects of parasites and to create a suitable microclimate for parents and developing offspring in relation to predictable variation in environmental conditions. Our understanding of the design and function of birds' nests has increased considerably in recent years, and the evidence suggests that nests have four nonmutually exclusive functions. Consequently, we conclude that the design of birds' nests is far more sophisticated than previously realized and that nests are multifunctional structures that have important fitness consequences for the builder/s. PMID:25505520

  9. The design and function of birds' nests.

    PubMed

    Mainwaring, Mark C; Hartley, Ian R; Lambrechts, Marcel M; Deeming, D Charles

    2014-10-01

    All birds construct nests in which to lay eggs and/or raise offspring. Traditionally, it was thought that natural selection and the requirement to minimize the risk of predation determined the design of completed nests. However, it is becoming increasingly apparent that sexual selection also influences nest design. This is an important development as while species such as bowerbirds build structures that are extended phenotypic signals whose sole purpose is to attract a mate, nests contain eggs and/or offspring, thereby suggesting a direct trade-off between the conflicting requirements of natural and sexual selection. Nest design also varies adaptively in order to both minimize the detrimental effects of parasites and to create a suitable microclimate for parents and developing offspring in relation to predictable variation in environmental conditions. Our understanding of the design and function of birds' nests has increased considerably in recent years, and the evidence suggests that nests have four nonmutually exclusive functions. Consequently, we conclude that the design of birds' nests is far more sophisticated than previously realized and that nests are multifunctional structures that have important fitness consequences for the builder/s.

  10. The design and function of birds' nests

    PubMed Central

    Mainwaring, Mark C; Hartley, Ian R; Lambrechts, Marcel M; Deeming, D Charles

    2014-01-01

    All birds construct nests in which to lay eggs and/or raise offspring. Traditionally, it was thought that natural selection and the requirement to minimize the risk of predation determined the design of completed nests. However, it is becoming increasingly apparent that sexual selection also influences nest design. This is an important development as while species such as bowerbirds build structures that are extended phenotypic signals whose sole purpose is to attract a mate, nests contain eggs and/or offspring, thereby suggesting a direct trade-off between the conflicting requirements of natural and sexual selection. Nest design also varies adaptively in order to both minimize the detrimental effects of parasites and to create a suitable microclimate for parents and developing offspring in relation to predictable variation in environmental conditions. Our understanding of the design and function of birds' nests has increased considerably in recent years, and the evidence suggests that nests have four nonmutually exclusive functions. Consequently, we conclude that the design of birds' nests is far more sophisticated than previously realized and that nests are multifunctional structures that have important fitness consequences for the builder/s. PMID:25505520

  11. Functional categories for future flight deck designs

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    1993-01-01

    With the addition of each new system on the flight deck, the danger of increasing overall operator workload while reducing crew understanding of critical mission information exists. The introduction of more powerful onboard computers, larger databases, and the increased use of electronic display media may lead to a situation of flight deck 'sophistication' at the expense of losses in flight crew capabilities and situational awareness. To counter this potentially negative impact of new technology, research activities are underway to reassess the flight deck design process. The fundamental premise of these activities is that a human-centered, systems-oriented approach to the development of advanced civil aircraft flight decks will be required for future designs to remain ergonomically sound and economically competitive. One of the initial steps in an integrated flight deck process is to define the primary flight deck functions needed to support the mission goals of the vehicle. This would allow the design team to evaluate candidate concepts in relation to their effectiveness in meeting the functional requirements. In addition, this would provide a framework to aid in categorizing and bookkeeping all of the activities that are required to be performed on the flight deck, not just activities of the crew or of a specific system. This could then allow for a better understanding and allocation of activities in the design, an understanding of the impact of a specific system on overall system performance, and an awareness of the total crew performance requirements for the design. One candidate set of functional categories that could be used to guide an advanced flight deck design are described.

  12. TECHNIQUES AND RESULTS FOR FIBER LENGTH DISTRIBUTION DETERMINATION AS A FUNCTION OF THICKNESS IN LONG FIBER REINFORCED INJECTION MOLDED THERMOPLASTICS

    SciTech Connect

    Kunc, Vlastimil; Frame, Barbara J; Pryor, Jeff M; Nguyen, Ba N.; TuckerIII, Charles L.; Case, Scott; Penumadu, Dayakar; Guffey, Eric W

    2008-01-01

    A novel measurement technique was developed to obtain unbiased fiber length distribution (FLD) measurements at specified locations in the thickness of the sample. This technique relies on elastic energy stored in long fiber thermoplastics (LFT), which is released during partially constrained burn-off. This release results in an increase of thickness dimension of the sample and partial disentanglement, allowing sample selection and subsequent filament separation. Quantitative FLD results and the measurement technique are discussed in detail. The FLD in long fiber reinforced injection molded thermoplastics is shown to vary as a function of thickness.

  13. Space shuttle configuration accounting functional design specification

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis is presented of the requirements for an on-line automated system which must be capable of tracking the status of requirements and engineering changes and of providing accurate and timely records. The functional design specification provides the definition, description, and character length of the required data elements and the interrelationship of data elements to adequately track, display, and report the status of active configuration changes. As changes to the space shuttle program levels II and III configuration are proposed, evaluated, and dispositioned, it is the function of the configuration management office to maintain records regarding changes to the baseline and to track and report the status of those changes. The configuration accounting system will consist of a combination of computers, computer terminals, software, and procedures, all of which are designed to store, retrieve, display, and process information required to track proposed and proved engineering changes to maintain baseline documentation of the space shuttle program levels II and III.

  14. Designing added functions in engineered cementitious composites

    NASA Astrophysics Data System (ADS)

    Yang, En-Hua

    In this dissertation, a new and systematic material design approach is developed for ECC with added functions through material microstructures linkage to composite macroscopic behavior. The thesis research embodies theoretical development by building on previous ECC micromechanical models, and experimental investigations into three specific new versions of ECC with added functions aimed at addressing societal demands of our built infrastructure. Specifically, the theoretical study includes three important ECC modeling elements: Steady-state crack propagation analyses and simulation, predictive accuracy of the fiber bridging constitutive model, and development of the rate-dependent strain-hardening criteria. The first element establishes the steady-state cracking criterion as a fundamental requirement for multiple cracking behavior in brittle matrix composites. The second element improves the accuracy of crack-width prediction in ECC. The third element establishes the micromechanics basis for impact-resistant ECC design. Three new ECCs with added functions were developed and experimentally verified in this thesis research through the enhanced theoretical framework. A green ECC incorporating a large volume of industrial waste was demonstrated to possess reduced crack width and drying shrinkage. The self-healing ECC designed with tight crack width was demonstrated to recover transport and mechanical properties after microcrack damage when exposed to wet and dry cycles. The impact-resistant ECC was demonstrated to retain tensile ductility with increased strength under moderately high strain-rate loading. These new versions of ECC with added functions are expected to contribute greatly to enhancing the sustainability, durability, and safety of civil infrastructure built with ECC. This research establishes the effectiveness of micromechanics-based design and material ingredient tailoring for ECC with added new attributes but without losing its basic tensile ductile

  15. Electrostatic camera system functional design study

    NASA Technical Reports Server (NTRS)

    Botticelli, R. A.; Cook, F. J.; Moore, R. F.

    1972-01-01

    A functional design study for an electrostatic camera system for application to planetary missions is presented. The electrostatic camera can produce and store a large number of pictures and provide for transmission of the stored information at arbitrary times after exposure. Preliminary configuration drawings and circuit diagrams for the system are illustrated. The camera system's size, weight, power consumption, and performance are characterized. Tradeoffs between system weight, power, and storage capacity are identified.

  16. Functional properties of the basal ganglia's re-entrant loop architecture: selection and reinforcement.

    PubMed

    Redgrave, P; Vautrelle, N; Reynolds, J N J

    2011-12-15

    Multifunctional agents with limited motor resources must decide what actions will best ensure their survival. Moreover, given that in an unpredictable world things don't always work out, considerable advantage is to be gained by learning from experience - instrumental behaviour that maximises reward and minimises punishment. In this review we will argue that the re-entrant looped architecture of the basal ganglia represents biological solutions to these fundamental behavioural problems of selection and reinforcement. A potential solution to the selection problem is provided for by selective disinhibition within the parallel loop architecture that connects the basal ganglia with external neural structures. The relay points within these loops permit the signals of a particular channel to be modified by external influences. In part, these influences have the capacity to modify overall selections so that the probability of re-selecting reinforced behaviours in the future is altered. This is the basic process of instrumental learning, which we suggest decomposes into two sub-problems for the agent: (i) learning which external events it causes to happen and learning precisely what it is doing that is causal; and (ii) having determined agency and discovered novel action-outcome routines, how best to exploit this knowledge to maximise future reward acquisitions. Considerations of connectional architecture and signal timing suggest that the short-latency, sensory-evoked dopamine response, which can modulate the re-entrant loop structure within the basal ganglia, is ideally suited to reinforce the determination of agency and the discovery of novel actions. Alternatively, recent studies showing that presence or absence of reward can selectively modulate the magnitude of signals in structures providing input signals to the basal ganglia, offer an alternative mechanism for biasing selection within the re-entrant loop architecture. We suggest that this mechanism may be better

  17. Innovative Composites Through Reinforcement Morphology Design - a Bone-Shaped-Short-Fiber Composite

    SciTech Connect

    Zhu, Y.T.; Valdez, J.A.; Beyerlain, I.J.; Stout, M.G.; Zhou, S.; Shi, N.; Lowe, T.C.

    1999-06-29

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objective of this project is to improve the strength and toughness of conventional short-fiber composites by using innovative bone-shaped-short (BSS) fibers as reinforcement. We fabricated a model polyethylene BSS fiber-reinforced polyester-matrix composite to prove that fiber morphology, instead of interfacial strength, solves the problem. Experimental tensile and fracture toughness test results show that BSS fibers can bridge matrix cracks more effectively, and consume many times more energy when pulled out, than conventional-straight-short (CSS) fibers. This leads to both higher strength and fracture toughness for the BSS-fiber composites. A computational model was developed to simulate crack propagation in both BSS- and CSS-fiber composites, accounting for stress concentrations, interface debonding, and fiber pullout. Model predictions were validated by experimental results and will be useful in optimizing BSS-fiber morphology and other material system parameters.

  18. Optimal seismic design of reinforced concrete structures under time-history earthquake loads using an intelligent hybrid algorithm

    NASA Astrophysics Data System (ADS)

    Gharehbaghi, Sadjad; Khatibinia, Mohsen

    2015-03-01

    A reliable seismic-resistant design of structures is achieved in accordance with the seismic design codes by designing structures under seven or more pairs of earthquake records. Based on the recommendations of seismic design codes, the average time-history responses (ATHR) of structure is required. This paper focuses on the optimal seismic design of reinforced concrete (RC) structures against ten earthquake records using a hybrid of particle swarm optimization algorithm and an intelligent regression model (IRM). In order to reduce the computational time of optimization procedure due to the computational efforts of time-history analyses, IRM is proposed to accurately predict ATHR of structures. The proposed IRM consists of the combination of the subtractive algorithm (SA), K-means clustering approach and wavelet weighted least squares support vector machine (WWLS-SVM). To predict ATHR of structures, first, the input-output samples of structures are classified by SA and K-means clustering approach. Then, WWLS-SVM is trained with few samples and high accuracy for each cluster. 9- and 18-storey RC frames are designed optimally to illustrate the effectiveness and practicality of the proposed IRM. The numerical results demonstrate the efficiency and computational advantages of IRM for optimal design of structures subjected to time-history earthquake loads.

  19. Analysis of Social Variables when an Initial Functional Analysis Indicates Automatic Reinforcement as the Maintaining Variable for Self-Injurious Behavior

    ERIC Educational Resources Information Center

    Kuhn, Stephanie A. Contrucci; Triggs, Mandy

    2009-01-01

    Self-injurious behavior (SIB) that occurs at high rates across all conditions of a functional analysis can suggest automatic or multiple functions. In the current study, we conducted a functional analysis for 1 individual with SIB. Results indicated that SIB was, at least in part, maintained by automatic reinforcement. Further analyses using…

  20. Carbon-fiber-reinforced polymer variable-curvature mirror used for optical zoom imaging: prototype design and experimental demonstration

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Fan, Xuewu; Pang, Zhihai; Ren, Guorui; Wang, Wei; Xie, Yongjie; Ma, Zhen; Du, Yunfei; Su, Yu; Wei, Jingxuan

    2015-02-01

    In recent years, optical zoom imaging without moving elements has received much attention. The key to realizing this technique lies in the design of the variable-curvature mirror (VCM). To obtain enough optical magnification, the VCM should be able to change its radius of curvature over a wide range. In other words, the VCM must be able to provide a large sagittal variation, which requires the mirror material to be robust during curvature variation, require little force to deform, and have high ultimate strength. Carbon-fiber-reinforced polymer (CFRP) satisfies all these requirements and is suitable for fabricating such a VCM. Therefore, in this research, a CFRP prototype VCM has been designed, fabricated, and tested. With a diameter of 100 mm, a thickness of 2 mm, and an initial radius of curvature of 1740 mm, this VCM can provide a maximum 23-μm sagittal variation and a minimum and maximum radius of curvature of 1705 and 1760 mm.

  1. Learning to reach by reinforcement learning using a receptive field based function approximation approach with continuous actions.

    PubMed

    Tamosiunaite, Minija; Asfour, Tamim; Wörgötter, Florentin

    2009-03-01

    Reinforcement learning methods can be used in robotics applications especially for specific target-oriented problems, for example the reward-based recalibration of goal directed actions. To this end still relatively large and continuous state-action spaces need to be efficiently handled. The goal of this paper is, thus, to develop a novel, rather simple method which uses reinforcement learning with function approximation in conjunction with different reward-strategies for solving such problems. For the testing of our method, we use a four degree-of-freedom reaching problem in 3D-space simulated by a two-joint robot arm system with two DOF each. Function approximation is based on 4D, overlapping kernels (receptive fields) and the state-action space contains about 10,000 of these. Different types of reward structures are being compared, for example, reward-on- touching-only against reward-on-approach. Furthermore, forbidden joint configurations are punished. A continuous action space is used. In spite of a rather large number of states and the continuous action space these reward/punishment strategies allow the system to find a good solution usually within about 20 trials. The efficiency of our method demonstrated in this test scenario suggests that it might be possible to use it on a real robot for problems where mixed rewards can be defined in situations where other types of learning might be difficult. PMID:19229556

  2. Preserving SSC Design Function Using RCM Principles

    SciTech Connect

    Mohammadi, K

    2009-02-04

    Reliability-Centered Maintenance (RCM) can be defined as an approach that employs preventive, predictive, proactive, and reactive maintenance practices and strategies in an integrated manner to increase the probability that a Structure, System, or Component (SSC) will function as designed over its life cycle with optimum maintenance. The goal of RCM is to preserve the SSC intended design function at the lowest cost by developing a maintenance strategy that is supported by sound technical and economic justification. RCM has been used extensively by the aircraft, space, defense, power generation, and manufacturing industries where functional failures of SSCs can have the potential to compromise worker or public safety, cause adverse environmental impact, cause loss of production, and/or result in excessive damage to critical SSCs. This paper provides a framework for performing an RCM analysis in support of DOE Order 430.1A (Life Cycle Asset Management) and DOE Order 420.1B (Facility Safety). The influence of RCM on the various aspects of the maintenance program including the work control process is also discussed.

  3. Cure Cycle Design Methodology for Fabricating Reactive Resin Matrix Fiber Reinforced Composites: A Protocol for Producing Void-free Quality Laminates

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung

    2014-01-01

    For the fabrication of resin matrix fiber reinforced composite laminates, a workable cure cycle (i.e., temperature and pressure profiles as a function of processing time) is needed and is critical for achieving void-free laminate consolidation. Design of such a cure cycle is not trivial, especially when dealing with reactive matrix resins. An empirical "trial and error" approach has been used as common practice in the composite industry. Such an approach is not only costly, but also ineffective at establishing the optimal processing conditions for a specific resin/fiber composite system. In this report, a rational "processing science" based approach is established, and a universal cure cycle design protocol is proposed. Following this protocol, a workable and optimal cure cycle can be readily and rationally designed for most reactive resin systems in a cost effective way. This design protocol has been validated through experimental studies of several reactive polyimide composites for a wide spectrum of usage that has been documented in the previous publications.

  4. Synthesis and Characterization of Carbon Nanotubes for Reinforced and Functional Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Many efforts have been engaged recently in synthesizing single-walled and multi-walled carbon nanotubes due to their superior mechanical, electrical and thermal properties, which could be used to enhance numerous applications such as electronics, sensors and composite strength. This presentation will show the synthesizing process of carbon nanotubes by thermal chemical vapor deposition and the characterization results by using electron microscopy and optical spectroscopy. Carbon nanotubes were synthesized on various substances. The conditions of fabricating single-walled or multi-walled carbon nanotubes depend strongly on temperatures and hydrocarbon concentrations but weakly on pressures. The size, growth modes and orientations of carbon nanotube will be illustrated. The advantages and limitations of several potential applications including sensor, heat pipe, field emission, radiation shielding, and reinforcements for composites by using carbon nanotubes will be discussed.

  5. Durability-Based Design Criteria for a Quasi-Isotropic Carbon-Fiber-Reinforced Thermoplastic Automotive Composite

    SciTech Connect

    Naus, Dan J; Corum, James; Klett, Lynn B; Davenport, Mike; Battiste, Rick; Simpson, Jr., William A

    2006-04-01

    This report provides recommended durability-based design properties and criteria for a quais-isotropic carbon-fiber thermoplastic composite for possible automotive structural applications. The composite consisted of a PolyPhenylene Sulfide (PPS) thermoplastic matrix (Fortron's PPS - Ticona 0214B1 powder) reinforced with 16 plies of carbon-fiber unidirectional tape, [0?/90?/+45?/-45?]2S. The carbon fiber was Hexcel AS-4C and was present in a fiber volume of 53% (60%, by weight). The overall goal of the project, which is sponsored by the U.S. Department of Energy's Office of Freedom Car and Vehicle Technologies and is closely coordinated with the Advanced Composites Consortium, is to develop durability-driven design data and criteria to assure the long-term integrity of carbon-fiber-based composite systems for automotive structural applications. This document is in two parts. Part 1 provides design data and correlations, while Part 2 provides the underlying experimental data and models. The durability issues addressed include the effects of short-time, cyclic, and sustained loadings; temperature; fluid environments; and low-energy impacts (e.g., tool drops and kickups of roadway debris) on deformation, strength, and stiffness. Guidance for design analysis, time-independent and time-dependent allowable stresses, rules for cyclic loadings, and damage-tolerance design guidance are provided.

  6. Functional cooperation between the hippocampal subregions and the medial septum in unreinforced and reinforced spatial memory tasks.

    PubMed

    Okada, Kana; Okaichi, Hiroshige

    2010-06-19

    Anatomical connections between the medial septum (MS) and hippocampus (Hipp) via the fimbria-fornix suggest that functional cooperation between these structures may be important for the acquisition and use of spatial reference memories. The present study examined the extent to which this was true for both an unreinforced learning task (object exploration task) and a reinforced learning task (Morris water maze task). In Experiment 1, we compared the performance of MS/Hipp contralateral- and MS/Hipp ipsilateral-lesioned rats. MS/Hipp contralateral-lesioned rats exhibited deficient performance in both the object exploration and Morris water maze tasks. In Experiment 2, we examined the task performance of MS/CA1 contralateral-, MS/CA1 ipsilateral-, MS/CA3 contralateral- and MS/CA3 ipsilateral-lesioned rats. Contralateral MS/CA3 and MS/CA1 lesions were respectively associated with deficient performance at the spatial recognition test and object recognition test in the object exploration task. None of the lesioned rats performed deficiently in the Morris water maze task. These results indicate the importance of spatial reference memory of a functional cooperation between the MS and Hipp as a whole, irrespective of reward contingency. In contrast, functional cooperation between the MS and each of CA1 and CA3 played an important role in the performance of the unreinforced voluntary task, but not in the reinforced task. Further, the functional cooperation of both MS/CA3 and MA/CA1 were important in the spatial reference memory with the unreinforced task. PMID:20144657

  7. Functional cooperation between the hippocampal subregions and the medial septum in unreinforced and reinforced spatial memory tasks.

    PubMed

    Okada, Kana; Okaichi, Hiroshige

    2010-06-19

    Anatomical connections between the medial septum (MS) and hippocampus (Hipp) via the fimbria-fornix suggest that functional cooperation between these structures may be important for the acquisition and use of spatial reference memories. The present study examined the extent to which this was true for both an unreinforced learning task (object exploration task) and a reinforced learning task (Morris water maze task). In Experiment 1, we compared the performance of MS/Hipp contralateral- and MS/Hipp ipsilateral-lesioned rats. MS/Hipp contralateral-lesioned rats exhibited deficient performance in both the object exploration and Morris water maze tasks. In Experiment 2, we examined the task performance of MS/CA1 contralateral-, MS/CA1 ipsilateral-, MS/CA3 contralateral- and MS/CA3 ipsilateral-lesioned rats. Contralateral MS/CA3 and MS/CA1 lesions were respectively associated with deficient performance at the spatial recognition test and object recognition test in the object exploration task. None of the lesioned rats performed deficiently in the Morris water maze task. These results indicate the importance of spatial reference memory of a functional cooperation between the MS and Hipp as a whole, irrespective of reward contingency. In contrast, functional cooperation between the MS and each of CA1 and CA3 played an important role in the performance of the unreinforced voluntary task, but not in the reinforced task. Further, the functional cooperation of both MS/CA3 and MA/CA1 were important in the spatial reference memory with the unreinforced task.

  8. Self-control in mentally retarded adolescents: choice as a function of amount and delay of reinforcement.

    PubMed

    Ragotzy, S P; Blakely, E; Poling, A

    1988-03-01

    Three severely mentally retarded adolescents were studied under discrete-trial procedures in which a choice was arranged between edible reinforcers that differed in magnitude and, in some conditions, delay. In the absence of delays the larger reinforcer was consistently chosen. Under conditions in which the smaller reinforcer was not delayed, increasing the delay to delivery of the larger reinforcer decreased the percentage of trials in which that reinforcer was chosen. All subjects directed the majority of choice responses to the smaller reinforcer when the larger reinforcer was sufficiently delayed, although the value at which this occurred differed across subjects. Under conditions in which the larger reinforcer initially was sufficiently delayed to result in preference for the smaller one, progressively increasing in 5-s increments the delay to both reinforcers increased percentage of trials with the larger reinforcer chosen. At sufficiently long delays, 2 of the subjects consistently chose the larger, but more delayed, reinforcer, and the 3rd subject chose that reinforcer on half of the trials. These results are consistent with the findings of prior studies in which adult humans responded to terminate noise and pigeons responded to produce food. PMID:3361265

  9. The Measurement and Functional Properties of Reinforcer Value in Single-Alternative Responding: A Test of Linear System Theory

    ERIC Educational Resources Information Center

    Dallery, Jesse; McDowell, J. J.; Soto, Paul L.

    2004-01-01

    Matching theory and linear system theory make different predictions about how the y-asymptote, k, of Herrnstein's (1970) hyperbola varies with reinforcer value. The present experiment tested both these predictions and linear system theory's account of how reinforcement rate and reinforcer value jointly govern response rate. Eight rats served as…

  10. Functional design of refractories for slagging gasifiers

    SciTech Connect

    Kwong, Kyei-Sing; Dogan, Cynthia P.; Bennett, James P.; Chinn, Richard E.; Dahlin, Cheryl L.

    2002-09-01

    Refractories are used in coal slagging gasifiers to protect the outer steel shell from coal slag attack and to insulate it from heat. Corrosion by the aggressive coal slags and unexpected temperature shock severely shorten the service life of these refractories. Currently, the best refractories available for the slagging coal gasifiers last from 6 to 18 months. The down time for the installation of new refractory lining reduces on-line availability of the gasifier. Researchers at the Albany Research Center (ARC) have found that structural spalling by slag penetration into the refractory is responsible for the early failure of refractories in some gasifiers. The low melting point of coal slags, the low thermal gradient in the refractory, and the improper design of refractory microstructure contribute to promote slag penetration. Work at ARC has demonstrated that refractories with an improved functional design are more resistant to slag penetration. Cooperation with commercial refractory companies and gasifier designers/operators is underway to produce and test improved refractories.

  11. Performance of continuously reinforced concrete pavements: Volume 6 -- CRC pavement design, construction, and performance. Final report, August 1990--December 1994

    SciTech Connect

    Zollinger, D.G.; Buch, N.; Xin, D.; Soares, J.

    1999-02-01

    This report is one of a series of reports prepared as part of a recent study sponsored by the Federal Highway Administration (FHWA) aimed at updating the state-of-the-art of the design, construction, maintenance, and rehabilitation of continuous reinforced concrete (CRC) pavements. The scope of work of the FHWA study included the following: (1) Conduct of a literature review and preparation of an annotated bibliography on CRC pavements and CRC overlays. (2) Conduct of a field investigation and laboratory testing related to 23 existing in-service pavement sections. This was done to evaluate the effect of various design features on CRC pavement performance, to identify any design or construction related problems, and to recommend procedures to improve CRC pavement technology. (3) Evaluation of the effectiveness of various maintenance and rehabilitation strategies for CRC pavements. (4) Preparation of a Summary Report on the current state of the practice for CRC pavements. Each of the above four items is addressed in a separate report. The following reports have been prepared under this study: Performance of CRC Pavements. Volume 1: Summary of Practice and Annotated Bibliography. Volume 2: Field Investigation of CRC Pavements. Volume 3: Analysis and Evaluation of Field Test Data. Volume 4: Resurfacing for CRC Pavements. Volume 5: Maintenance and Repair of CRC Pavements. Volume 6: CRC Pavement Design, Construction, and Performance. Volume 7: Summary. This report is Volume 6 in the series.

  12. Design optimization of functionally graded dental implant.

    PubMed

    Hedia, H S; Mahmoud, Nemat-Alla

    2004-01-01

    The continuous increase of man's life span, and the growing confidence in using artificial materials inside the human body necessities introducing more effective prosthesis and implant materials. However, no artificial implant has biomechanical properties equivalent to the original tissue. Recently, titanium and bioceramic materials, such as hydroxyapatite are extensively used as fabrication materials for dental implant due to their high compatibility with hard tissue and living bone. Titanium has reasonable stiffness and strength while hydroxyapatite has low stiffness, low strength and high ability to reach full integration with living bone. In order to obtain good dental implantation of the biomaterial; full integration of the implant with living bone should be satisfied. Minimum stresses in the implant and the bone must be achieved to increase the life of the implant and prevent bone resorption. Therefore, the aim of the current investigation is to design an implant made from functionally graded material (FGM) to achieve the above advantages. The finite element method and optimization technique are used to reach the required implant design. The optimal materials of the FGM dental implant are found to be hydroxyapatite/titanium. The investigations have shown that the maximum stress in the bone for the hydroxyapatite/titanium FGM implant has been reduced by about 22% and 28% compared to currently used titanium and stainless steel dental implants, respectively.

  13. Transfer Function Design for Scientific Discovery

    SciTech Connect

    Jian Huang

    2008-12-08

    As computation scales beyond terascale, the scientific problems under study through computing are increasingly pushing the boundaries of human knowledge about the physical world. It is more pivotal than ever to quickly and reliably extract new knowledge from these complex simulations of ultra scale. In this project, the PI expanded the traditional notion of transfer function, which maps physical quantities to visual cues via table look-ups, to include general temporal as well as multivariate patterns that can be described procedurally through specialty mini programming languages. Their efforts aimed at answering a perpetual question of fundamental importance. That is "what a visualization should show". Instead of waiting for application scientists to initiate the process, the team at University of Tennessee worked closely with scientists at ORNL in a proactive role to envision and design elegant, powerful, and reliable tools that a user can use to specify "what is interesting". Their new techniques include visualization operators that revolve around correlation and graph properties, relative patterns in statistical distribution, temporal regular expressions, concurrent attribute subspaces and traditional compound boolean range queries. The team also paid special attention to ensure that all visualization operators are inherently designed with great parallel scalability to handle tera-scale datasets in both homogeneous and heterogeneous environments. Success has been demonstrated with leading edge computational science areas include climate modeling, combustion and systems genetics.

  14. A Strategy to Support Design Processes for Fibre Reinforced Thermoset Composite Materials

    NASA Astrophysics Data System (ADS)

    Gascons, Marc; Blanco, Norbert; Mayugo, Joan Andreu; Matthys, Koen

    2012-06-01

    The concept stage in the design for a new composite part is a time when several fundamental decisions must be taken and a considerable amount of the budget is spent. Specialized commercial software packages can be used to support the decision making process in particular aspects of the project (e.g. material selection, numerical analysis, cost prediction,...). However, a complete and integrated virtual environment that covers all the steps in the process is not yet available for the composite design and manufacturing industry. This paper does not target the creation of such an overarching virtual tool, but instead presents a strategy that handles the information generated in each step of the design process, independently of the commercial packages used. Having identified a suitable design parameter shared in common with all design steps, the proposed strategy is able to evaluate the effects of design variations throughout all the design steps in parallel. A case study illustrating the strategy on an industrial part is presented.

  15. Sampling design optimization for spatial functions

    USGS Publications Warehouse

    Olea, R.A.

    1984-01-01

    A new procedure is presented for minimizing the sampling requirements necessary to estimate a mappable spatial function at a specified level of accuracy. The technique is based on universal kriging, an estimation method within the theory of regionalized variables. Neither actual implementation of the sampling nor universal kriging estimations are necessary to make an optimal design. The average standard error and maximum standard error of estimation over the sampling domain are used as global indices of sampling efficiency. The procedure optimally selects those parameters controlling the magnitude of the indices, including the density and spatial pattern of the sample elements and the number of nearest sample elements used in the estimation. As an illustration, the network of observation wells used to monitor the water table in the Equus Beds of Kansas is analyzed and an improved sampling pattern suggested. This example demonstrates the practical utility of the procedure, which can be applied equally well to other spatial sampling problems, as the procedure is not limited by the nature of the spatial function. ?? 1984 Plenum Publishing Corporation.

  16. Application of composites to the selective reinforcement of metallic aerospace structures. [application of structural design criteria for weight reduction

    NASA Technical Reports Server (NTRS)

    Brooks, W. A., Jr.; Mathauser, E. E.; Pride, R. A.

    1972-01-01

    The use of composite materials to selectively reinforce metallic structures provides a low-cost way to reduce weight and a means of minimizing the risks usually associated with the introduction of new materials. An overview is presented of the NASA Langley Research Center programs to identify the advantages and to develop the potential of the selective reinforcement approach to the use of composites. These programs have shown that selective reinforcement provides excellent strength and stiffness improvements to metallic structures. Significant weight savings can be obtained in a cost effective manner. Flight service programs which have been initiated to validate further the merits of selective reinforcement are described.

  17. "Reinforcement" in behavior theory.

    PubMed

    Schoenfeld, W N

    1978-01-01

    In its Pavlovian context, "reinforcement" was actually a descriptive term for the functional relation between an unconditional and a conditional stimulus. When it was adopted into operant conditioning, "reinforcement" became the central concept and the key operation, but with new qualifications, new referents, and new expectations. Some behavior theorists believed that "reinforcers" comprise a special and limited class of stimuli or events, and they speculated about what the essential "nature of reinforcement" might be. It is now known that any stimulus can serve a reinforcing function, with due recognition of such parameters as subject species characteristics, stimulus intensity, sensory modality, and schedule of application. This paper comments on these developments from the standpoint of reflex behavior theory.

  18. "Reinforcement" in behavior theory.

    PubMed

    Schoenfeld, W N

    1995-01-01

    In its Pavlovian context, "reinforcement" was actually a descriptive term for the functional relation between an unconditional and a conditional stimulus. When it was adopted into operant conditioning, "reinforcement" became the central concept and the key operation, but with new qualifications, new referents, and new expectations. Some behavior theorists believed that "reinforcers" comprise a special and limited class of stimuli or events, and they speculated about what the essential "nature of reinforcement" might be. It is now known that any stimulus can serve a reinforcing function, with due recognition of such parameters as subject species characteristics, stimulus intensity, sensory modality, and schedule of application. This paper comments on these developments from the stand-point of reflex behavior theory.

  19. [Influence of retainer design on fixation strength of resin-bonded glass fiber reinforced composite fixed cantilever dentures].

    PubMed

    Petrikas, O A; Voroshilin, Iu G; Petrikas, I V

    2013-01-01

    Fiber-reinforced composite (FRC) fixed partial dentures (FPD) have become an accepted part of the restorative dentist's armamentarium. The aim of this study was to evaluate in vitro the influence of retainer design on the strength of two-unit cantilever resin-bonded glass FRC-FPDs. Four retainer designs were tested: a dual wing, a dual wing + horizontal groove, a dual wing + occlusal rest and a step-box. Of each design on 7 human mandibular molars, FRC-FPDs of a premolar size were produced. The FRC framework was made of resin Revolution (Kerr) impregnated glass fibers (GlasSpan, GlasSpan) and veneered with hybrid resin composite (Charisma, Kulzer). Revolution (Kerr) was used as resin luting cement. FRC-FPDs were loaded to failure in a universal testing machine. T (Student's)-test was used to evaluate the data. The four designs were analyzed with finite element analysis (FEA) to reveal the stress distribution within the tooth/restoration complex. Significantly lower fracture strengths were observed with inlay-retained FPDs (step-box: 172±11 N) compared to wing-retained FPDs (p<0.05) (a dual wing + horizontal groove 222±9 N). The highest fracture strengths were observed with dual wing + occlusal rest FPDs: 250±10 N compared to inlay-retained FPDs (p<0.001) and wing-retained FPDs (p<0.001). FEA showed more favorable stress distributions within the tooth/restoration complex for dual wing retainers+ occlusal rest FPDs. There was stress concentration around connectors and retainers near connectors. A dual-wing retainer with occlusal rest is the optimal design for replacement of a single premolar by means of a two-unit cantilever FRC-FPDs.

  20. [Influence of retainer design on fixation strength of resin-bonded glass fiber reinforced composite fixed cantilever dentures].

    PubMed

    Petrikas, O A; Voroshilin, Iu G; Petrikas, I V

    2013-01-01

    Fiber-reinforced composite (FRC) fixed partial dentures (FPD) have become an accepted part of the restorative dentist's armamentarium. The aim of this study was to evaluate in vitro the influence of retainer design on the strength of two-unit cantilever resin-bonded glass FRC-FPDs. Four retainer designs were tested: a dual wing, a dual wing + horizontal groove, a dual wing + occlusal rest and a step-box. Of each design on 7 human mandibular molars, FRC-FPDs of a premolar size were produced. The FRC framework was made of resin Revolution (Kerr) impregnated glass fibers (GlasSpan, GlasSpan) and veneered with hybrid resin composite (Charisma, Kulzer). Revolution (Kerr) was used as resin luting cement. FRC-FPDs were loaded to failure in a universal testing machine. T (Student's)-test was used to evaluate the data. The four designs were analyzed with finite element analysis (FEA) to reveal the stress distribution within the tooth/restoration complex. Significantly lower fracture strengths were observed with inlay-retained FPDs (step-box: 172±11 N) compared to wing-retained FPDs (p<0.05) (a dual wing + horizontal groove 222±9 N). The highest fracture strengths were observed with dual wing + occlusal rest FPDs: 250±10 N compared to inlay-retained FPDs (p<0.001) and wing-retained FPDs (p<0.001). FEA showed more favorable stress distributions within the tooth/restoration complex for dual wing retainers+ occlusal rest FPDs. There was stress concentration around connectors and retainers near connectors. A dual-wing retainer with occlusal rest is the optimal design for replacement of a single premolar by means of a two-unit cantilever FRC-FPDs. PMID:23715455

  1. Design and synthesis of supramolecular functional benzoxazines

    NASA Astrophysics Data System (ADS)

    Choi, Seong-Woo

    control of the number of phenolic functionalities. Benzoxazine monomers and polymers containing phenyl phosphine oxide are also synthesized and characterized to generate a novel class of functional polymers which have high char yield. Three different kinds of phosphorus containing phenolic derivatives, bis(4-hydroxyphenyl)phenyl phosphine oxide (BHPPO), bis(4-hydroxyphenoxyphenyl)phenyl phosphine oxide (BPPPO), and bis(4-hydroxyphenoxy)phenyl phosphine oxide (BPHPPO) are designed to elucidate structure-property relationships. The monomers are thermally initiated and polymerized via ring-opening polymerization. Thermogravimetric analysis indicates that phosphorylation has profound effect on increasing char yield.

  2. The Effects of Consequence Manipulation During Functional Analysis of Problem Behavior Maintained by Negative Reinforcement

    PubMed Central

    Potoczak, Kathryn; Carr, James E; Michael, Jack

    2007-01-01

    Two distinct analytic methods have been used to identify the function of problem behavior. The antecedent-behavior-consequence (ABC) method (Iwata, Dorsey, Slifer, Bauman, & Richman, 1982/1994) includes the delivery of consequences for problem behavior. The AB method (Carr & Durand, 1985) does not include consequence delivery, instead relying exclusively on antecedent conditions to evoke the behavior. The AB and ABC functional analysis methods were compared in this study with 4 children with developmental disabilities who engaged in task-related problem behavior. Results show that the ABC method identified an escape method for all four cases, whereas the AB method failed to identify a function for any case. PMID:18189106

  3. The effects of consequence manipulation during functional analysis of problem behavior maintained by negative reinforcement.

    PubMed

    Potoczak, Kathryn; Carr, James E; Michael, Jack

    2007-01-01

    Two distinct analytic methods have been used to identify the function of problem behavior. The antecedent-behavior-consequence (ABC) method (Iwata, Dorsey, Slifer, Bauman, & Richman, 1982/1994) includes the delivery of consequences for problem behavior. The AB method (Carr & Durand, 1985) does not include consequence delivery, instead relying exclusively on antecedent conditions to evoke the behavior. The AB and ABC functional analysis methods were compared in this study with 4 children with developmental disabilities who engaged in task-related problem behavior. Results show that the ABC method identified an escape method for all four cases, whereas the AB method failed to identify a function for any case.

  4. The use of the direct optimized probabilistic calculation method in design of bolt reinforcement for underground and mining workings.

    PubMed

    Krejsa, Martin; Janas, Petr; Yilmaz, Işık; Marschalko, Marian; Bouchal, Tomas

    2013-01-01

    The load-carrying system of each construction should fulfill several conditions which represent reliable criteria in the assessment procedure. It is the theory of structural reliability which determines probability of keeping required properties of constructions. Using this theory, it is possible to apply probabilistic computations based on the probability theory and mathematic statistics. Development of those methods has become more and more popular; it is used, in particular, in designs of load-carrying structures with the required level or reliability when at least some input variables in the design are random. The objective of this paper is to indicate the current scope which might be covered by the new method-Direct Optimized Probabilistic Calculation (DOProC) in assessments of reliability of load-carrying structures. DOProC uses a purely numerical approach without any simulation techniques. This provides more accurate solutions to probabilistic tasks, and, in some cases, such approach results in considerably faster completion of computations. DOProC can be used to solve efficiently a number of probabilistic computations. A very good sphere of application for DOProC is the assessment of the bolt reinforcement in the underground and mining workings. For the purposes above, a special software application-"Anchor"-has been developed.

  5. Adaptive critic autopilot design of bank-to-turn missiles using fuzzy basis function networks.

    PubMed

    Lin, Chuan-Kai

    2005-04-01

    A new adaptive critic autopilot design for bank-to-turn missiles is presented. In this paper, the architecture of adaptive critic learning scheme contains a fuzzy-basis-function-network based associative search element (ASE), which is employed to approximate nonlinear and complex functions of bank-to-turn missiles, and an adaptive critic element (ACE) generating the reinforcement signal to tune the associative search element. In the design of the adaptive critic autopilot, the control law receives signals from a fixed gain controller, an ASE and an adaptive robust element, which can eliminate approximation errors and disturbances. Traditional adaptive critic reinforcement learning is the problem faced by an agent that must learn behavior through trial-and-error interactions with a dynamic environment, however, the proposed tuning algorithm can significantly shorten the learning time by online tuning all parameters of fuzzy basis functions and weights of ASE and ACE. Moreover, the weight updating law derived from the Lyapunov stability theory is capable of guaranteeing both tracking performance and stability. Computer simulation results confirm the effectiveness of the proposed adaptive critic autopilot.

  6. Chemical functionalization of carbon nanotubes for the mechanical reinforcement of polystyrene composites.

    PubMed

    Byrne, Michele T; McNamee, William P; Gun'ko, Yurii K

    2008-10-15

    An organometallic approach was used to functionalize multiwalled carbon nanotubes with n-butyllithium. This procedure was repeated two more times to achieve a higher degree of multiwalled carbon nanotube functionalization. The functionalized nanotubes have been characterized by Fourier transform infrared and Raman spectroscopy, thermogravimetrical analysis, scanning electron microscopy and sedimentation studies. It was possible to form stable suspensions of the functionalized nanotubes in tetrahydrofuran and they were used to make nanotube polymer composites. The mechanical properties of these new nanotube polymer composites were tested and they were found to show an increase of up to 25% in their Young's moduli and up to 50% in their tensile strength over pure polystyrene. PMID:21832658

  7. Preliminary design methods for fiber reinforced composite structures employing a personal computer

    NASA Technical Reports Server (NTRS)

    Eastlake, C. N.

    1986-01-01

    The objective of this project was to develop a user-friendly interactive computer program to be used as an analytical tool by structural designers. Its intent was to do preliminary, approximate stress analysis to help select or verify sizing choices for composite structural members. The approach to the project was to provide a subroutine which uses classical lamination theory to predict an effective elastic modulus for a laminate of arbitrary material and ply orientation. This effective elastic modulus can then be used in a family of other subroutines which employ the familiar basic structural analysis methods for isotropic materials. This method is simple and convenient to use but only approximate, as is appropriate for a preliminary design tool which will be subsequently verified by more sophisticated analysis. Additional subroutines have been provided to calculate laminate coefficient of thermal expansion and to calculate ply-by-ply strains within a laminate.

  8. Design and Analysis of Complex D-Regions in Reinforced Concrete Structures

    ERIC Educational Resources Information Center

    Yindeesuk, Sukit

    2009-01-01

    STM design provisions, such as those in Appendix A of ACI318-08, consist of rules for evaluating the capacity of the load-resisting truss that is idealized to carry the forces through the D-Region. These code rules were primarily derived from test data on simple D-Regions such as deep beams and corbels. However, these STM provisions are taken as…

  9. Induction when Rats Respond for Liquid-Sucrose Reinforcement as a Function of Amount of Upcoming "Work"

    ERIC Educational Resources Information Center

    Weatherly, Jeffrey N.; Bauste, Grant A.; McDougall, Casey L.; Nurnberger, Jeri T.

    2006-01-01

    Previous research has shown that rats increase their rate of responding for 1% sucrose reinforcement in the first half of the session if food-pellet, rather than 1% sucrose, reinforcement will be available in the second half (i.e., positive induction). Four experiments investigated whether this induction effect would be changed by altering the…

  10. The Effects of Fixed-Time Reinforcement Schedules on Functional Response Classes: A Translational Study

    ERIC Educational Resources Information Center

    Heinicke, Megan R.; Carr, James E.; LeBlanc, Linda A.

    2012-01-01

    Research on functional response classes has applied significance because less severe forms of problem behavior have been found to co-occur with more severe forms. In addition, the most severe forms of problem behavior are sometimes targeted for intervention without monitoring other less severe forms. In such cases, it is unknown whether and how…

  11. The Effects of Consequence Manipulation during Functional Analysis of Problem Behavior Maintained by Negative Reinforcement

    ERIC Educational Resources Information Center

    Potoczak, Kathryn; Carr, James E.; Michael, Jack

    2007-01-01

    Two distinct analytic methods have been used to identify the function of problem behavior. The antecedent-behavior-consequence (ABC) method (Iwata, Dorsey, Slifer, Bauman, & Richman, 1982/1994) includes the delivery of consequences for problem behavior. The AB method (Carr & Durand, 1985) does not include consequence delivery, instead relying…

  12. The design of fibre-reinforced composite blades for passive and active wind turbine rotor aerodynamic control

    NASA Astrophysics Data System (ADS)

    Karaolis, Nicos M.

    An alternative method of varying the pitch of wind turbine rotor blades is examined, which relies on the use of fiber reinforced composite materials to design the blades so as to develop elastic coupling between an applied load of a generally twisting and non-twisting nature. With such an approach, twist can be obtained either by using one of the forces experienced by the blade during operation to alter passively the blade pitch, or by internal pressurization to control actively the blade pitch by varying the pressure. The passive control option is considered in detail. First the relevant composite construction geometries that produce the desired coupling effect are identified and then a theoretical model is developed. This is also used to explore the variation in coupling and stiffness properties with the fiber orientation. Various materials are considered including glass, aramid, and carbon fiber epoxy composites. Subsequently, the structural model is confirmed experimentally by a series of tests on composite, foam-cored beams specially designed and manufactured for this purpose. It is then combined with existing aerodynamic theories in order to model the performance of horizontal and vertical axis rotors employing such blades. The effect of passively induced twist on the aerodynamic performance is examined both theoretically and experimentally. Additionally, a simplified dynamic model is developed to obtain a general idea on how built-in elastic coupling may affect the dynamic stability of a horizontal axis rotor system. The active control option is considered in general as an alternative mechanism of inducing twist. The relevant theory is derived and illustrated with examples, and the realistic practicability of this concept is discussed. To validate the theory, a composite cylindrical shell has been designed, manufactured and tested under pressure.

  13. EELS Analysis of Nylon 6 Nanofibers Reinforced with Nitroxide-Functionalized Graphene Oxide

    PubMed Central

    Leyva-Porras, César; Ornelas-Gutiérrez, C.; Miki-Yoshida, M.; Avila-Vega, Yazmín I.; Macossay, Javier; Bonilla-Cruz, José

    2014-01-01

    A detailed analysis by transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) of nitroxide-functionalized graphene oxide layers (GOFT) dispersed in Nylon 6 nanofibers is reported herein. The functionalization and exfoliation process of graphite oxide to GOFT was confirmed by TEM using electron diffraction patterns (EDP), wherein 1 to 4 graphene layers of GOFT were observed. The distribution and alignment of GOFT layers within a sample of Nylon 6 nanofiber reveals that GOFT platelets are mainly within the fiber, but some were partially protruding from it. Furthermore, Nylon 6 nanofibers exhibit an average diameter of 225 nm with several microns in length. GOFT platelets embedded into the fiber, the pristine fiber, and amorphous carbon were analyzed by EELS where each spectra [corresponding to the carbon edge (C-K)] exhibited changes in the fine structure, allowing a clear distinction between: i) GOFT single-layers, ii) Nylon-6 nanofibers, and iii) the carbon substrate. EELS analysis is presented here for the first time as a powerful tool to identify functionalized graphene single-layers (< 4 layers of GOFT) into a Nylon 6 nanofiber composite. PMID:24634536

  14. EELS Analysis of Nylon 6 Nanofibers Reinforced with Nitroxide-Functionalized Graphene Oxide.

    PubMed

    Leyva-Porras, César; Ornelas-Gutiérrez, C; Miki-Yoshida, M; Avila-Vega, Yazmín I; Macossay, Javier; Bonilla-Cruz, José

    2014-01-01

    A detailed analysis by transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) of nitroxide-functionalized graphene oxide layers (GOFT) dispersed in Nylon 6 nanofibers is reported herein. The functionalization and exfoliation process of graphite oxide to GOFT was confirmed by TEM using electron diffraction patterns (EDP), wherein 1 to 4 graphene layers of GOFT were observed. The distribution and alignment of GOFT layers within a sample of Nylon 6 nanofiber reveals that GOFT platelets are mainly within the fiber, but some were partially protruding from it. Furthermore, Nylon 6 nanofibers exhibit an average diameter of 225 nm with several microns in length. GOFT platelets embedded into the fiber, the pristine fiber, and amorphous carbon were analyzed by EELS where each spectra [corresponding to the carbon edge (C-K)] exhibited changes in the fine structure, allowing a clear distinction between: i) GOFT single-layers, ii) Nylon-6 nanofibers, and iii) the carbon substrate. EELS analysis is presented here for the first time as a powerful tool to identify functionalized graphene single-layers (< 4 layers of GOFT) into a Nylon 6 nanofiber composite. PMID:24634536

  15. EELS Analysis of Nylon 6 Nanofibers Reinforced with Nitroxide-Functionalized Graphene Oxide.

    PubMed

    Leyva-Porras, César; Ornelas-Gutiérrez, C; Miki-Yoshida, M; Avila-Vega, Yazmín I; Macossay, Javier; Bonilla-Cruz, José

    2014-01-01

    A detailed analysis by transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) of nitroxide-functionalized graphene oxide layers (GOFT) dispersed in Nylon 6 nanofibers is reported herein. The functionalization and exfoliation process of graphite oxide to GOFT was confirmed by TEM using electron diffraction patterns (EDP), wherein 1 to 4 graphene layers of GOFT were observed. The distribution and alignment of GOFT layers within a sample of Nylon 6 nanofiber reveals that GOFT platelets are mainly within the fiber, but some were partially protruding from it. Furthermore, Nylon 6 nanofibers exhibit an average diameter of 225 nm with several microns in length. GOFT platelets embedded into the fiber, the pristine fiber, and amorphous carbon were analyzed by EELS where each spectra [corresponding to the carbon edge (C-K)] exhibited changes in the fine structure, allowing a clear distinction between: i) GOFT single-layers, ii) Nylon-6 nanofibers, and iii) the carbon substrate. EELS analysis is presented here for the first time as a powerful tool to identify functionalized graphene single-layers (< 4 layers of GOFT) into a Nylon 6 nanofiber composite.

  16. Effect of implant design and bioactive glass coating on biomechanical properties of fiber-reinforced composite implants.

    PubMed

    Ballo, Ahmed M; Akca, Eralp; Ozen, Tuncer; Moritz, Niko; Lassila, Lippo; Vallittu, Pekka; Närhi, Timo

    2014-08-01

    This study aimed to evaluate the influence of implant design and bioactive glass (BAG) coating on the response of bone to fiber-reinforced composite (FRC) implants. Three different FRC implant types were manufactured for the study: non-threaded implants with a BAG coating; threaded implants with a BAG coating; and threaded implants with a grit-blasted surface. Thirty-six implants (six implants for each group per time point) were installed in the tibiae of six pigs. After an implantation period of 4 and 12 wk, the implants were retrieved and prepared for micro-computed tomography (micro-CT), push-out testing, and scanning electron microscopy analysis. Micro-CT demonstrated that the screw-threads and implant structure remained undamaged during the installation. The threaded FRC/BAG implants had the highest bone volume after 12 wk of implantation. The push-out strengths of the threaded FRC/BAG implants after 4 and 12 wk (463°N and 676°N, respectively) were significantly higher than those of the threaded FRC implants (416°N and 549°N, respectively) and the nonthreaded FRC/BAG implants (219°N and 430°N, respectively). Statistically significant correlation was found between bone volume and push-out strength values. This study showed that osseointegrated FRC implants can withstand the static loading up to failure without fracture, and that the addition of BAG significantly improves the push-out strength of FRC implants.

  17. The several roles of stimuli in token reinforcement.

    PubMed

    Bullock, Christopher E; Hackenberg, Timothy D

    2015-03-01

    Three experiments were conducted with pigeons to identify the stimulus functions of tokens in second-order token-reinforcement schedules. All experiments employed two-component multiple schedules with a token-reinforcement schedule in one component and a schedule with equivalent response requirements and/or reinforcer density in the other. In Experiment 1, response rates were lower under a token-reinforcement schedule than under a tandem schedule with the same response requirements, suggesting a discriminative role for the tokens. In Experiment 2, response rates varied systematically with signaling functions of the tokens in a series of conditions designed to explore other aspects of the temporal-correlative relations between tokens and food. In Experiment 3, response rates were reduced but not eliminated by presenting tokens independent of responding, yoked to their temporal occurrence in a preceding token component, suggesting both a reinforcing function and eliciting/evocative functions based on stimulus-food relations. Only when tokens were removed entirely was responding eliminated. On the whole, the results suggest that tokens, as stimuli temporally correlated with food, may serve multiple stimulus functions in token-reinforcement procedures--reinforcing, discriminative, or eliciting--depending on the precise arrangement of the contingencies in which they are embedded. PMID:25604188

  18. Sliding Wear Response of Beryl Reinforced Aluminum Composite - A Factorial Design Approach

    NASA Astrophysics Data System (ADS)

    Bharat, V.; Durga Prasad, B.; Prabhakar, M. Bhovi; Venkateswarlu, K.

    2016-02-01

    Al-Beryl MMCs were successfully fabricated using powder metallurgy route. Processing conditions such as beryl content and particle size were varied and its influence on dry sliding wear response was studied. Effect of test parameters like applied load and sliding distance on wear performance of Al-Beryl MMCs were discussed detail. Sliding wear tests were conducted using a pin on disc machine based on the 24 (4 factors at 2 levels) factorial design. Analysis of variance (ANOVA) was performed to obtain the contribution of control parameters on wear rate. The present study shows that wear resistance of Al-beryl MMCs not only depends on the beryl content but also influenced by normal load, sliding distance and particle size. The results show that most significant variables affecting wear rate of Al - beryl MMCs are size of the beryl particles (22%), beryl content (19.60%), sliding distance (18.47%), and normal load (10.30%). The interaction effects of these parameters are less significant in influencing wear rate compared to the individual parameters. The correlation between sliding wear and its parameters was obtained by multiple regression analysis. Regression model developed in the present study can be successfully implemented to predict the wear response of Al-Beryl MMCs.

  19. Design of the IPIRG-2 simulated seismic forcing function

    SciTech Connect

    Olson, R.; Scott, P.; Wilkowski, G.

    1996-02-01

    A series of pipe system experiments was conducted in IPIRG-2 that used a realistic seismic forcing function. Because the seismic forcing function was more complex than the single-frequency increasing-amplitude sinusoidal forcing function used in the IPIRG-1 pipe system experiments, considerable effort went into designing the function. This report documents the design process for the seismic forcing function used in the IPIRG-2 pipe system experiments.

  20. Reinforcement-related brain potentials from medial frontal cortex: origins and functional significance.

    PubMed

    Nieuwenhuis, Sander; Holroyd, Clay B; Mol, Nisan; Coles, Michael G H

    2004-07-01

    The development of the field of cognitive neuroscience has inspired a revival of interest in the brain mechanisms involved in the processing of rewards, punishments, and abstract performance feedback. One fruitful line of research in this area was initiated by the report of an electrophysiological brain potential in humans that was differentially sensitive to negative and positive performance feedback [J. Cogn. Neurosci. 9 (1997) 788]. Here we review current knowledge regarding the neural basis and functional significance of this feedback-evoked 'error-related negativity' (ERN). Our review is organized around a set of predictions derived from a recent theory, which holds that the ERN is associated with the arrival of a negative reward prediction error signal in anterior cingulate cortex.

  1. Demand for food on fixed-ratio schedules as a function of the quality of concurrently available reinforcement.

    PubMed

    Lea, S E; Roper, T J

    1977-03-01

    Six rats lever pressed for food on concurrent fixed-ratio schedules, in a two-compartment chamber. In one compartment, mixed diet pellets were delivered on fixed-ratio schedules of 1, 6, 11, and 16; in the other, either no food was delivered, or sucrose or mixed diet pellets were delivered on fixed-ratio 8. The number of pellets obtained in the first compartment declined as a function of fixed-ratio size in that compartment in all three conditions, but the decline was greatest overall with mixed diet pellets concurrently available in the other compartment, and least with no food concurrently available. The result is discussed in terms of economic demand theory, and is consistent with the prediction that elasticity of demand for a commodity (defined in operant terms as the ratio of the proportionate change in number of reinforcements per session to the proportionate change in fixed-ratio size) is greater the more substitutable for that commodity are any concurrently available commodities.

  2. Processing speed enhances model-based over model-free reinforcement learning in the presence of high working memory functioning

    PubMed Central

    Schad, Daniel J.; Jünger, Elisabeth; Sebold, Miriam; Garbusow, Maria; Bernhardt, Nadine; Javadi, Amir-Homayoun; Zimmermann, Ulrich S.; Smolka, Michael N.; Heinz, Andreas; Rapp, Michael A.; Huys, Quentin J. M.

    2014-01-01

    Theories of decision-making and its neural substrates have long assumed the existence of two distinct and competing valuation systems, variously described as goal-directed vs. habitual, or, more recently and based on statistical arguments, as model-free vs. model-based reinforcement-learning. Though both have been shown to control choices, the cognitive abilities associated with these systems are under ongoing investigation. Here we examine the link to cognitive abilities, and find that individual differences in processing speed covary with a shift from model-free to model-based choice control in the presence of above-average working memory function. This suggests shared cognitive and neural processes; provides a bridge between literatures on intelligence and valuation; and may guide the development of process models of different valuation components. Furthermore, it provides a rationale for individual differences in the tendency to deploy valuation systems, which may be important for understanding the manifold neuropsychiatric diseases associated with malfunctions of valuation. PMID:25566131

  3. Functionalized carbon nanotube reinforced scaffolds for bone regenerative engineering: fabrication, in vitro and in vivo evaluation.

    PubMed

    Mikael, Paiyz E; Amini, Ami R; Basu, Joysurya; Josefina Arellano-Jimenez, M; Laurencin, Cato T; Sanders, Mary M; Barry Carter, C; Nukavarapu, Syam P

    2014-06-01

    Designing biodegradable scaffolds with bone-compatible mechanical properties has been a significant challenge in the field of bone tissue engineering and regenerative engineering. The objective of this work is to improve the polymeric scaffold's mechanical strength by compositing it with mechanically superior carbon nanotubes. Poly(lactide-co-glycolide) (PLGA) microsphere scaffolds exhibit mechanical properties in the range of human cancellous bone. On the other hand, carbon nanotubes have outstanding mechanical properties. The aim of this study is to improve further the mechanical strength of PLGA scaffolds such that they may be applicable for a wide range of load-bearing repair and regeneration applications. We have formed composite microspheres of PLGA containing pristine and modified (with hydroxyl (OH), carboxylic acid (COOH)) multi-walled carbon nanotubes (MWCNTs), and fabricated them into three-dimensional porous scaffolds. Results show that by adding only 3% MWCNTs, the compressive strength and modulus was significantly increased (35 MPa, 510.99 MPa) compared to pure PLGA scaffolds (19 MPa and 166.38 MPa). Scanning electron microscopy images showed excellent cell adhesion and proliferation. In vitro studies exhibited good cell viability, proliferation and mineralization. The in vivo study, however, indicated differences in inflammatory response throughout the 12 weeks of implantation, with OH-modified MWCNTs having the least response, followed by unmodified and COOH-modified exhibiting a more pronounced response. Overall, our results show that PLGA scaffolds containing water-dispersible MWCNTs are mechanically stronger and display good cellular and tissue compatibility, and hence are potential candidates for load-bearing bone tissue engineering. PMID:24687391

  4. Tank SY-101 void fraction instrument functional design criteria

    SciTech Connect

    McWethy, L.M.

    1994-10-18

    This document presents the functional design criteria for design, analysis, fabrication, testing, and installation of a void fraction instrument for Tank SY-101. This instrument will measure the void fraction in the waste in Tank SY-101 at various elevations.

  5. Computational approaches for rational design of proteins with novel functionalities.

    PubMed

    Tiwari, Manish Kumar; Singh, Ranjitha; Singh, Raushan Kumar; Kim, In-Won; Lee, Jung-Kul

    2012-01-01

    Proteins are the most multifaceted macromolecules in living systems and have various important functions, including structural, catalytic, sensory, and regulatory functions. Rational design of enzymes is a great challenge to our understanding of protein structure and physical chemistry and has numerous potential applications. Protein design algorithms have been applied to design or engineer proteins that fold, fold faster, catalyze, catalyze faster, signal, and adopt preferred conformational states. The field of de novo protein design, although only a few decades old, is beginning to produce exciting results. Developments in this field are already having a significant impact on biotechnology and chemical biology. The application of powerful computational methods for functional protein designing has recently succeeded at engineering target activities. Here, we review recently reported de novo functional proteins that were developed using various protein design approaches, including rational design, computational optimization, and selection from combinatorial libraries, highlighting recent advances and successes.

  6. Design Guidelines for In-Plane Mechanical Properties of SiC Fiber-Reinforced Melt-Infiltrated SiC Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Pujar, Vijay V.

    2008-01-01

    In-plane tensile stress-strain, tensile creep, and after-creep retained tensile properties of melt-infiltrated SiC-SiC composites reinforced with different fiber types were evaluated with an emphasis on obtaining simple or first-order microstructural design guidelines for these in-plane mechanical properties. Using the mini-matrix approach to model stress-strain behavior and the results of this study, three basic general design criteria for stress and strain limits are formulated, namely a design stress limit, a design total strain limit, and an after-creep design retained strength limit. It is shown that these criteria can be useful for designing components for high temperature applications.

  7. Functional design specification: NASA form 1510

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The 1510 worksheet used to calculate approved facility project cost estimates is explained. Topics covered include data base considerations, program structure, relationship of the 1510 form to the 1509 form, and functions which the application must perform: WHATIF, TENENTER, TENTYPE, and data base utilities. A sample NASA form 1510 printout and a 1510 data dictionary are presented in the appendices along with the cost adjustment table, the floppy disk index, and methods for generating the calculated values (TENCALC) and for calculating cost adjustment (CONSTADJ). Storage requirements are given.

  8. Functional design specification for the problem data system. [space shuttle

    NASA Technical Reports Server (NTRS)

    Boatman, T. W.

    1975-01-01

    The purpose of the Functional Design Specification is to outline the design for the Problem Data System. The Problem Data System is a computer-based data management system designed to track the status of problems and corrective actions pertinent to space shuttle hardware.

  9. UML Profiles for Design Decisions and Non-Functional Requirements

    SciTech Connect

    Zhu, Liming; Gorton, Ian

    2007-06-30

    A software architecture is composed of a collection of design decisions. Each design decision helps or hinders certain Non-Functional Requirements (NFR). Current software architecture views focus on expressing components and connectors in the system. Design decisions and their relationships with non-functional requirements are often captured in separate design documentation, not explicitly expressed in any views. This disassociation makes architecture comprehension and architecture evolution harder. In this paper, we propose a UML profile for modeling design decisions and an associated UML profile for modeling non-functional requirements in a generic way. The two UML profiles treat design decisions and nonfunctional requirements as first-class elements. Modeled design decisions always refer to existing architectural elements and thus maintain traceability between the two. We provide a mechanism for checking consistency over this traceability. An exemplar is given as

  10. A More Realistic Lateral Load Pattern for Design of Reinforced Concrete Buildings with Moment Frames and Shear Walls

    SciTech Connect

    Hosseini, Mahmood

    2008-07-08

    In this research it has been tried to find a more realistic distribution pattern for the seismic load in reinforced concrete (R/C) buildings, having moment frames with shear walls as their lateral resisting system, by using Nonlinear Time History Analyses (NLTHA). Having shear wall as lateral load bearing system decreases the effect of infill walls in the seismic behavior of the building, and therefore the case of buildings with shear walls has been considered for this study as the first stage of the studies on lateral load patterns for R/C buildings. For this purpose, by assuming three different numbers of bays in each direction and also three different numbers of stories for the buildings, several R/C buildings, have been studied. At first, the buildings have been designed by the Iranian National Code for R/C Buildings. Then they have been analyzed by a NLTHA software using the accelerograms of some well-known earthquakes. The used accelerograms have been also scaled to various levels of peak ground acceleration (PGA) such as 0.35 g, 0.50 g, and 0.70 g, to find out the effect of PGA in the seismic response. Numerical results have shown that firstly the values of natural period of the building and their shear force values, calculated by the code, are not appropriate in all cases. Secondly, it has been found out that the real lateral load pattern is quite different with the one suggested by the seismic code. Based on the NLTHA results a new lateral load pattern has been suggested for this kind of buildings, in the form of some story-dependent modification factors applied to the existing code formula. The effects of building's natural period, as well as its number of stories, are taken into account explicitly in the proposed new load pattern. The proposed load pattern has been employed to redesign the buildings and again by NLTHA the real lateral load distribution in each case has been obtained which has shown very good agreement with the proposed pattern.

  11. Parametric Cost Analysis: A Design Function

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1989-01-01

    Parametric cost analysis uses equations to map measurable system attributes into cost. The measures of the system attributes are called metrics. The equations are called cost estimating relationships (CER's), and are obtained by the analysis of cost and technical metric data of products analogous to those to be estimated. Examples of system metrics include mass, power, failure_rate, mean_time_to_repair, energy _consumed, payload_to_orbit, pointing_accuracy, manufacturing_complexity, number_of_fasteners, and percent_of_electronics_weight. The basic assumption is that a measurable relationship exists between system attributes and the cost of the system. If a function exists, the attributes are cost drivers. Candidates for metrics include system requirement metrics and engineering process metrics. Requirements are constraints on the engineering process. From optimization theory we know that any active constraint generates cost by not permitting full optimization of the objective. Thus, requirements are cost drivers. Engineering processes reflect a projection of the requirements onto the corporate culture, engineering technology, and system technology. Engineering processes are an indirect measure of the requirements and, hence, are cost drivers.

  12. Reinforced Stimulus Preexposure Effects as a Function of US Intensity: Implications for Understanding the Hall-Pearce Effect

    ERIC Educational Resources Information Center

    Rodriguez, Gabriel; Alonso, Gumersinda

    2011-01-01

    Three conditioned suppression experiments examined the Hall-Pearce (1979) negative transfer effect in rats. Experiment 1 replicated the effect: CS-US[subscript weak] pairings retarded subsequent fear conditioning to the CS as a result of CS-US[subscript strong] pairings. The size of this retardation was less than that produced by non-reinforced CS…

  13. On singular cases in the design derivative of Green's functional

    NASA Technical Reports Server (NTRS)

    Reiss, Robert

    1987-01-01

    The author's prior development of a general abstract representation for the design sensitivities of Green's functional for linear structural systems is extended to the case where the structural stiffness vanishes at an internal location. This situation often occurs in the optimal design of structures. Most optimality criteria require that optimally designed beams be statically determinate. For clamped-pinned beams, for example, this is possible only if the flexural stiffness vanishes at some intermediate location. The Green's function for such structures depends upon the stiffness and the location where it vanishes. A precise representation for Green's function's sensitivity to the location of vanishing stiffness is presented for beams and axisymmetric plates.

  14. The substitutability of reinforcers.

    PubMed

    Green, Leonard; Freed, Debra E

    1993-07-01

    Substitutability is a construct borrowed from microeconomics that describes a continuum of possible interactions among the reinforcers in a given situation. Highly substitutable reinforcers, which occupy one end of the continuum, are readily traded for each other due to their functional similarity. Complementary reinforcers, at the other end of the continuum, tend to be consumed jointly in fairly rigid proportion, and therefore cannot be traded for one another except to achieve that proportion. At the center of the continuum are reinforcers that are independent with respect to each other; consumption of one has no influence on consumption of another. Psychological research and analyses in terms of substitutability employ standard operant conditioning paradigms in which humans and nonhumans choose between alternative reinforcers. The range of reinforcer interactions found in these studies is more readily accommodated and predicted when behavior-analytic models of choice consider issues of substitutability. New insights are gained into such areas as eating and drinking, electrical brain stimulation, temporal separation of choice alternatives, behavior therapy, drug use, and addictions. Moreover, the generalized matching law (Baum, 1974) gains greater explanatory power and comprehensiveness when measures of substitutability are included. PMID:16812696

  15. The substitutability of reinforcers

    PubMed Central

    Green, Leonard; Freed, Debra E.

    1993-01-01

    Substitutability is a construct borrowed from microeconomics that describes a continuum of possible interactions among the reinforcers in a given situation. Highly substitutable reinforcers, which occupy one end of the continuum, are readily traded for each other due to their functional similarity. Complementary reinforcers, at the other end of the continuum, tend to be consumed jointly in fairly rigid proportion, and therefore cannot be traded for one another except to achieve that proportion. At the center of the continuum are reinforcers that are independent with respect to each other; consumption of one has no influence on consumption of another. Psychological research and analyses in terms of substitutability employ standard operant conditioning paradigms in which humans and nonhumans choose between alternative reinforcers. The range of reinforcer interactions found in these studies is more readily accommodated and predicted when behavior-analytic models of choice consider issues of substitutability. New insights are gained into such areas as eating and drinking, electrical brain stimulation, temporal separation of choice alternatives, behavior therapy, drug use, and addictions. Moreover, the generalized matching law (Baum, 1974) gains greater explanatory power and comprehensiveness when measures of substitutability are included. PMID:16812696

  16. Reinforcement pathology and obesity.

    PubMed

    Carr, Katelyn A; Daniel, Tinuke Oluyomi; Lin, Henry; Epstein, Leonard H

    2011-09-01

    Obesity is, in part, a result of positive energy balance or energy intake exceeding physiological needs. Excess energy intake is determined by a series of food choices over time. These choices involve both motivational and executive function processes. Problems arise when there is excessive motivation to eat and low impulse control, a situation we have termed reinforcement pathology. Motivational and executive function processes have also been implicated in the development of drug dependence and addiction. In this review we discuss the application of reinforcement pathology to obesity, and implications of this approach for obesity treatment. PMID:21999693

  17. Reinforcement pathology and obesity.

    PubMed

    Carr, Katelyn A; Daniel, Tinuke Oluyomi; Lin, Henry; Epstein, Leonard H

    2011-09-01

    Obesity is, in part, a result of positive energy balance or energy intake exceeding physiological needs. Excess energy intake is determined by a series of food choices over time. These choices involve both motivational and executive function processes. Problems arise when there is excessive motivation to eat and low impulse control, a situation we have termed reinforcement pathology. Motivational and executive function processes have also been implicated in the development of drug dependence and addiction. In this review we discuss the application of reinforcement pathology to obesity, and implications of this approach for obesity treatment.

  18. Rational Design of a Structural and Functional Nitric Oxide Reductase

    SciTech Connect

    Yeung, N.; Lin, Y; Gao, Y; Zhao, X; Russell, B; Lei, L; Miner, L; Robinson, H; Lu, Y

    2009-01-01

    Protein design provides a rigorous test of our knowledge about proteins and allows the creation of novel enzymes for biotechnological applications. Whereas progress has been made in designing proteins that mimic native proteins structurally, it is more difficult to design functional proteins. In comparison to recent successes in designing non-metalloproteins, it is even more challenging to rationally design metalloproteins that reproduce both the structure and function of native metalloenzymes. This is because protein metal-binding sites are much more varied than non-metal-containing sites, in terms of different metal ion oxidation states, preferred geometry and metal ion ligand donor sets. Because of their variability, it has been difficult to predict metal-binding site properties in silico, as many of the parameters, such as force fields, are ill-defined. Therefore, the successful design of a structural and functional metalloprotein would greatly advance the field of protein design and our understanding of enzymes. Here we report a successful, rational design of a structural and functional model of a metalloprotein, nitric oxide reductase (NOR), by introducing three histidines and one glutamate, predicted as ligands in the active site of NOR, into the distal pocket of myoglobin. A crystal structure of the designed protein confirms that the minimized computer model contains a haem/non-haem FeB centre that is remarkably similar to that in the crystal structure. This designed protein also exhibits NO reduction activity, and so models both the structure and function of NOR, offering insight that the active site glutamate is required for both iron binding and activity. These results show that structural and functional metalloproteins can be rationally designed in silico.

  19. Diagnosis And Prescription: Reinforcement Module.

    ERIC Educational Resources Information Center

    Fair, George W.

    This learning module has been designed to aid the teacher trainee in identifying ways in which he influences student behavior in the classroom and also explores means of selecting more meaningful reinforcers and their application. Terminal objectives of the module are the ability to (1) define the terms "reinforcement,""positive…

  20. Structural design and analysis of the multi-function waste tanks

    SciTech Connect

    Farnworth, S.K.; Stine, M.D.; Miller, L.K.

    1993-10-01

    This paper describes structural design and analysis procedures to be used for the Multi-function Waste Tank Facility underground waste storage tanks proposed for the Hanford Site. The Multi-function Waste Tank Facility will consist of four one-million-gallon nominal capacity, double-shell, underground waste storage tanks and will include the associated process and control systems and aboveground structures. The tanks will consist of an inner primary steel tank and an outer secondary reinforced-concrete steel-lined tank. The primary tank head will be structurally attached to the concrete dome. A supporting layer of material will be placed between the bottom of the primary steel tank and the bottom of the steel liner on the secondary tank. The tank analysis is undertaken jointly by a team of engineers and analysts representing Kaiser Engineers Hanford, the site architect/engineer, and Westinghouse Hanford Company, the site management and operating contractor. This analysis is planned in several phases. Heat transfer solutions will address the anticipated mixing pump and cyclic fill/drain environment to provide steel and concrete temperature distributions. With this information, an in situ static analysis of the reinforced-concrete secondary tank will be carried out over the structure design life and will give material states and deformations along with strength and stability checks. Seismic analysis, accounting for soil-structure interaction and liquid loads, will be conducted with the most conservative material state, and the in situ deformations will be incorporated. Finally, penetrations and other components will be analyzed.

  1. Functional interaction of medial mediodorsal thalamic nucleus but not nucleus accumbens with amygdala and orbital prefrontal cortex is essential for adaptive response selection after reinforcer devaluation.

    PubMed

    Izquierdo, Alicia; Murray, Elisabeth A

    2010-01-13

    In nonhuman primates, reward-based decision making may be assessed through choices of objects overlying two different foods, one of which has been devalued by selective satiation. The most adaptive object choices yield the food of higher value. A large body of data identifies the amygdala and orbital prefrontal cortex (PFo) as neural mediators of adaptive responses to reinforcer devaluation. More recent work in nonhuman primates reveals the critical role of the medial, magnocellular portion of the mediodorsal nucleus of the thalamus (MDm) as well. Because both the nucleus accumbens (NA) and the MDm are anatomically related to the amygdala and PFo, and because both regions are implicated in reward processing, we tested whether either region necessarily interacts with the amygdala and PFo to mediate reinforcer devaluation effects. We used a crossed-disconnection design in which monkeys received amygdala and PFo lesions in one hemisphere combined with either NA or MDm lesions in the contralateral hemisphere. Monkeys that sustained NA disconnection, like controls, showed robust shifts in object choices in response to reinforcer devaluation. In contrast, monkeys that sustained MDm disconnection failed to adjust their object choices. Thus, MDm, but not NA, works together with the amygdala and PFo to support reward-based decision making.

  2. [The systems process of reinforcement].

    PubMed

    Sudakov, K V

    1996-01-01

    The process of reinforcement is considered in the context of the general theory of functional systems as an important part of behavioural act organization closely interacting with the dominant motivation. It is shown that reinforcement substantially changes the activities of separate neurons in different brain structures involved in dominant motivation. After a preliminary reinforcement under the influence of corresponding motivation the ribosomal apparatus of neurons begins to synthesize special molecular engrams of the action acceptor. The sensory mechanisms of reinforcement and, especially, the role of emotions are considered in details in the paper.

  3. Thermal Characterization of Functionally Graded Materials: Design of Optimum Experiments

    NASA Technical Reports Server (NTRS)

    Cole, Kevin D.

    2003-01-01

    This paper is a study of optimal experiment design applied to the measure of thermal properties in functionally graded materials. As a first step, a material with linearly-varying thermal properties is analyzed, and several different tran- sient experimental designs are discussed. An optimality criterion, based on sen- sitivity coefficients, is used to identify the best experimental design. Simulated experimental results are analyzed to verify that the identified best experiment design has the smallest errors in the estimated parameters. This procedure is general and can be applied to design of experiments for a variety of materials.

  4. The nature of sexual reinforcement.

    PubMed Central

    Crawford, L L; Holloway, K S; Domjan, M

    1993-01-01

    Sexual reinforcers are not part of a regulatory system involved in the maintenance of critical metabolic processes, they differ for males and females, they differ as a function of species and mating system, and they show ontogenetic and seasonal changes related to endocrine conditions. Exposure to a member of the opposite sex without copulation can be sufficient for sexual reinforcement. However, copulatory access is a stronger reinforcer, and copulatory opportunity can serve to enhance the reinforcing efficacy of stimulus features of a sexual partner. Conversely, under certain conditions, noncopulatory exposure serves to decrease reinforcer efficacy. Many common learning phenomena such as acquisition, extinction, discrimination learning, second-order conditioning, and latent inhibition have been demonstrated in sexual conditioning. These observations extend the generality of findings obtained with more conventional reinforcers, but the mechanisms of these effects and their gender and species specificity remain to be explored. PMID:8354970

  5. Is function-based control room design human-centered?

    SciTech Connect

    Norros, L.; Savioja, P.

    2006-07-01

    Function-based approaches to system interface design appears an appealing possibility in helping designers and operators to cope with the vast amount of information needed to control complex processes. In this paper we provide evidence of operator performance analyses showing that outcome-centered performance measures may not be sufficiently informative for design. We need analyses indicating habitual patterns of using information, operator practices. We argue that practices that portray functional orienting to the task support mastery of the process. They also create potential to make use of function-based information presentation. We see that functional design is not an absolute value. Instead, such design should support communication of the functional significance of the process information to the operators in variable situations. Hence, it should facilitate development of practices that focus to interpreting this message. Successful function-based design facilitates putting operations into their contexts and is human-centered in an extended sense: It aids making sense in the complex, dynamic and uncertain environment. (authors)

  6. Computational design of proteins with novel structure and functions

    NASA Astrophysics Data System (ADS)

    Wei, Yang; Lu-Hua, Lai

    2016-01-01

    Computational design of proteins is a relatively new field, where scientists search the enormous sequence space for sequences that can fold into desired structure and perform desired functions. With the computational approach, proteins can be designed, for example, as regulators of biological processes, novel enzymes, or as biotherapeutics. These approaches not only provide valuable information for understanding of sequence-structure-function relations in proteins, but also hold promise for applications to protein engineering and biomedical research. In this review, we briefly introduce the rationale for computational protein design, then summarize the recent progress in this field, including de novo protein design, enzyme design, and design of protein-protein interactions. Challenges and future prospects of this field are also discussed. Project supported by the National Basic Research Program of China (Grant No. 2015CB910300), the National High Technology Research and Development Program of China (Grant No. 2012AA020308), and the National Natural Science Foundation of China (Grant No. 11021463).

  7. Canberra Alpha Sentry Installation Functional Design Criteria (FDC)

    SciTech Connect

    WHITE, W.F.

    1999-12-16

    This document provides the functional design criteria for the installation of the Canberra Alpha Sentry System at selected locations within the Plutonium Finishing Plant (PFP). The equipment being installed is identified by part number in Section 3 and the locations are given in Section 5. The design, procurement and installation are assigned to Fluor Federal Services.

  8. Role of the Dorsal Medial Habenula in the Regulation of Voluntary Activity, Motor Function, Hedonic State, and Primary Reinforcement

    PubMed Central

    Hsu, Yun-Wei A.; Wang, Si D.; Wang, Shirong; Morton, Glenn; Zariwala, Hatim A.; de la Iglesia, Horacio O.

    2014-01-01

    The habenular complex in the epithalamus consists of distinct regions with diverse neuronal populations. Past studies have suggested a role for the habenula in voluntary exercise motivation and reinforcement of intracranial self-stimulation but have not assigned these effects to specific habenula subnuclei. Here, we have developed a genetic model in which neurons of the dorsal medial habenula (dMHb) are developmentally eliminated, via tissue-specific deletion of the transcription factor Pou4f1 (Brn3a). Mice with dMHb lesions perform poorly in motivation-based locomotor behaviors, such as voluntary wheel running and the accelerating rotarod, but show only minor abnormalities in gait and balance and exhibit normal levels of basal locomotion. These mice also show deficits in sucrose preference, but not in the forced swim test, two measures of depression-related phenotypes in rodents. We have also used Cre recombinase-mediated expression of channelrhodopsin-2 and halorhodopsin to activate dMHb neurons or silence their output in freely moving mice, respectively. Optical activation of the dMHb in vivo supports intracranial self-stimulation, showing that dMHb activity is intrinsically reinforcing, whereas optical silencing of dMHb outputs is aversive. Together, our findings demonstrate that the dMHb is involved in exercise motivation and the regulation of hedonic state, and is part of an intrinsic reinforcement circuit. PMID:25143617

  9. Role of the dorsal medial habenula in the regulation of voluntary activity, motor function, hedonic state, and primary reinforcement.

    PubMed

    Hsu, Yun-Wei A; Wang, Si D; Wang, Shirong; Morton, Glenn; Zariwala, Hatim A; de la Iglesia, Horacio O; Turner, Eric E

    2014-08-20

    The habenular complex in the epithalamus consists of distinct regions with diverse neuronal populations. Past studies have suggested a role for the habenula in voluntary exercise motivation and reinforcement of intracranial self-stimulation but have not assigned these effects to specific habenula subnuclei. Here, we have developed a genetic model in which neurons of the dorsal medial habenula (dMHb) are developmentally eliminated, via tissue-specific deletion of the transcription factor Pou4f1 (Brn3a). Mice with dMHb lesions perform poorly in motivation-based locomotor behaviors, such as voluntary wheel running and the accelerating rotarod, but show only minor abnormalities in gait and balance and exhibit normal levels of basal locomotion. These mice also show deficits in sucrose preference, but not in the forced swim test, two measures of depression-related phenotypes in rodents. We have also used Cre recombinase-mediated expression of channelrhodopsin-2 and halorhodopsin to activate dMHb neurons or silence their output in freely moving mice, respectively. Optical activation of the dMHb in vivo supports intracranial self-stimulation, showing that dMHb activity is intrinsically reinforcing, whereas optical silencing of dMHb outputs is aversive. Together, our findings demonstrate that the dMHb is involved in exercise motivation and the regulation of hedonic state, and is part of an intrinsic reinforcement circuit.

  10. Matrix Transfer Function Design for Flexible Structures: An Application

    NASA Technical Reports Server (NTRS)

    Brennan, T. J.; Compito, A. V.; Doran, A. L.; Gustafson, C. L.; Wong, C. L.

    1985-01-01

    The application of matrix transfer function design techniques to the problem of disturbance rejection on a flexible space structure is demonstrated. The design approach is based on parameterizing a class of stabilizing compensators for the plant and formulating the design specifications as a constrained minimization problem in terms of these parameters. The solution yields a matrix transfer function representation of the compensator. A state space realization of the compensator is constructed to investigate performance and stability on the nominal and perturbed models. The application is made to the ACOSSA (Active Control of Space Structures) optical structure.

  11. Function combined method for design innovation of children's bike

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoli; Qiu, Tingting; Chen, Huijuan

    2013-03-01

    As children mature, bike products for children in the market develop at the same time, and the conditions are frequently updated. Certain problems occur when using a bike, such as cycle overlapping, repeating function, and short life cycle, which go against the principles of energy conservation and the environmental protection intensive design concept. In this paper, a rational multi-function method of design through functional superposition, transformation, and technical implementation is proposed. An organic combination of frog-style scooter and children's tricycle is developed using the multi-function method. From the ergonomic perspective, the paper elaborates on the body size of children aged 5 to 12 and effectively extracts data for a multi-function children's bike, which can be used for gliding and riding. By inverting the body, parts can be interchanged between the handles and the pedals of the bike. Finally, the paper provides a detailed analysis of the components and structural design, body material, and processing technology of the bike. The study of Industrial Product Innovation Design provides an effective design method to solve the bicycle problems, extends the function problems, improves the product market situation, and enhances the energy saving feature while implementing intensive product development effectively at the same time.

  12. Does supplementary reinforcement of stereotypy facilitate extinction?

    PubMed

    Dozier, Claudia L; Iwata, Brian A; Wilson, David M; Thomason-Sassi, Jessica L; Roscoe, Eileen M

    2013-01-01

    Results of several studies suggest that delivery of supplemental (social) reinforcement for stereotypy might facilitate its subsequent extinction. We examined this possibility with 9 subjects who engaged in stereotypy by including methodological refinements to ensure that (a) subjects' stereotypy was maintained in the absence of social consequences, (b) supplementary reinforcers were highly preferred and were shown to be reinforcers for some behavior, and (c) subjects were exposed to lengthy reinforcement and extinction conditions. In spite of these modifications, only 4 subjects' stereotypy increased when supplementary reinforcement was delivered contingent on stereotypy, and no subject's stereotypy decreased below initial baseline levels when social reinforcement was subsequently withheld. Decreases in stereotypy occurred with the implementation of noncontingent reinforcement. Thus, delivery of supplementary reinforcers either did not increase stereotypy or did not facilitate extinction of stereotypy maintained by automatic reinforcement. We discuss the practical and conceptual bases of these results with respect to our current understanding of function-based interventions.

  13. Ethical considerations for a better collaboration between architects and structural engineers: design of buildings with reinforced concrete frame systems in earthquake zones.

    PubMed

    Hurol, Yonca

    2014-06-01

    Architects design building structures, although structural design is the profession of structural engineers. Thus, it is better for architects and structural engineers to collaborate starting from the initial phases of the architectural design. However, this is not very common because of the contradictory design processes and value systems held within the two professions. This article provides a platform upon which architects and structural engineers can resolve the value conflicts between them by analysing phases of the structural design of reinforced concrete frame systems in architecture, the criteria of the structural design for each phase and determining the conflicting values for each criterion. The results shown in the article demonstrate that the architectural design of structures is a complex process, which is based on contradictory values and value systems. Finally, the article suggests to architects and structural engineers to use Value Sensitive Design and to choose an appropriate team leader in order to resolve the unethical conflict between them and to avoid any unreasonable decision making.

  14. Analysis, design and development of a carbon fibre reinforced plastic knee-ankle-foot orthosis prototype for myopathic patients.

    PubMed

    Granata, C; De Lollis, A; Campo, G; Piancastelli, L; Merlini, L

    1990-01-01

    A traditional knee-ankle-foot orthosis (KAFO) for myopathic patients has been studied for the assessment of loads and fatigue resistance. Starting from this basis a thermoplastic matrix carbon fibre reinforced plastic composite (CFRP) KAFO has been developed in order to reduce the weight. A finite-element simulation programme for deformation analysis was used to compare the behaviour of conventional and CFRP orthosis. There were no breakages either of the prototype or of its parts. The CFRP orthosis allows a weight reduction of more than 40 per cent.

  15. The Functional Requirements and Design Basis for Information Barriers

    SciTech Connect

    Fuller, James L.

    2012-05-01

    This report summarizes the results of the Information Barrier Working Group workshop held at Sandia National Laboratory in Albuquerque, NM, February 2-4, 1999. This workshop was convened to establish the functional requirements associated with warhead radiation signature information barriers, to identify the major design elements of any such system or approach, and to identify a design basis for each of these major elements. Such information forms the general design basis to be used in designing, fabricating, and evaluating the complete integrated systems developed for specific purposes.

  16. A Comparison of Functional Models for Use in the Function-Failure Design Method

    NASA Technical Reports Server (NTRS)

    Stock, Michael E.; Stone, Robert B.; Tumer, Irem Y.

    2006-01-01

    When failure analysis and prevention, guided by historical design knowledge, are coupled with product design at its conception, shorter design cycles are possible. By decreasing the design time of a product in this manner, design costs are reduced and the product will better suit the customer s needs. Prior work indicates that similar failure modes occur with products (or components) with similar functionality. To capitalize on this finding, a knowledge base of historical failure information linked to functionality is assembled for use by designers. One possible use for this knowledge base is within the Elemental Function-Failure Design Method (EFDM). This design methodology and failure analysis tool begins at conceptual design and keeps the designer cognizant of failures that are likely to occur based on the product s functionality. The EFDM offers potential improvement over current failure analysis methods, such as FMEA, FMECA, and Fault Tree Analysis, because it can be implemented hand in hand with other conceptual design steps and carried throughout a product s design cycle. These other failure analysis methods can only truly be effective after a physical design has been completed. The EFDM however is only as good as the knowledge base that it draws from, and therefore it is of utmost importance to develop a knowledge base that will be suitable for use across a wide spectrum of products. One fundamental question that arises in using the EFDM is: At what level of detail should functional descriptions of components be encoded? This paper explores two approaches to populating a knowledge base with actual failure occurrence information from Bell 206 helicopters. Functional models expressed at various levels of detail are investigated to determine the necessary detail for an applicable knowledge base that can be used by designers in both new designs as well as redesigns. High level and more detailed functional descriptions are derived for each failed component based

  17. Collateral gains and short-term maintenance in reading and on-task responses by inner-city adolescents as a function of their use of social reinforcement while tutoring.

    PubMed Central

    Greer, R D; Polirstok, S R

    1982-01-01

    Two experiments are reported concerning the effects of the differential use of verbal approval by problematic adolescents serving as tutors in a remedial reading program for an inner-city school. The experiments, each with 3 tutors and 15 tutees, used a combined multiple baseline and ABCBC design. Data showed that tutors' approvals as well as tutors' and tutees' on-task and reading responses were low and stable during baseline. Tutors were trained to use verbal approval for tutees' on-task behavior. Tokens were presented and withdrawn to control the tutors' use of approval. During phases in which tutors' approvals were raised via token dispensation, tutor reading and on-task scores increased in a nonexperimental setting. Tutee reading scores also increased as a function of tutor approvals. The second experiment replicated these findings and, in addition, (a) tested the validity of changes in reading responses via standardized tests, (b) isolated and compared the covariance between variables in all phases, and (c) provided data on tutee attention to tutors as a possible natural reinforcer for short-term maintenance found in both studies. Data are discussed as evidence that tutors had acquired the ability to recruit reinforcement from the classroom for appropriate behavior. PMID:7096224

  18. Rational and Mechanistic Perspectives on Reinforcement Learning

    ERIC Educational Resources Information Center

    Chater, Nick

    2009-01-01

    This special issue describes important recent developments in applying reinforcement learning models to capture neural and cognitive function. But reinforcement learning, as a theoretical framework, can apply at two very different levels of description: "mechanistic" and "rational." Reinforcement learning is often viewed in mechanistic terms--as…

  19. Hyperbolic tangential function-based progressive addition lens design.

    PubMed

    Qiu, Gufeng; Cui, Xudong

    2015-12-10

    The diopter distribution is key to the successful design of a progressive addition lens. A hyperbolic tangential function is then introduced to describe well the desired diopter distribution on the lens. Simulation and fabrication show that the astigmia on the whole surface is very close to the addition, exhibiting superior performance than that of currently used high-order polynomials and cosine functions. Our investigations found that once the diopter distribution design is reasonable, both the direct and indirect methods of constructing a progressive addition lens can give consistent results. With this function we are able to effectively control the design of critical areas, the position, sizes of far-view and near-view zones, as well as the channel of the lens. This study would provide an efficient way to customize different progressive lenses not only for presbyopia, but also for anti-fatigue, office progressive usages, etc. PMID:26836863

  20. Functional design to support CDTI/DABS flight experiments

    NASA Technical Reports Server (NTRS)

    Goka, T.

    1982-01-01

    The objectives of this project are to: (1) provide a generalized functional design of CDTI avionics using the FAA developd DABS/ATARS ground system as the 'traffic sensor', (2) specify software modifications and/or additions to the existing DABS/ATARS ground system to support CDTI avionics, (3) assess the existing avionics of a NASA research aircraft in terms of CDTI applications, and (4) apply the generalized functional design to provide research flight experiment capability. DABS Data Link Formats are first specified for CDTI flight experiments. The set of CDTI/DABS Format specifications becomes a vehicle to coordinate the CDTI avionics and ground system designs, and hence, to develop overall system requirements. The report is the first iteration of a system design and development effort to support eventual CDTI flight test experiments.

  1. Numerical and Analytical Design of Functionally Graded Piezoelectric Transducers

    NASA Astrophysics Data System (ADS)

    Rubio, Wilfredo Montealegre; Buiochi, Flavio; Adamowski, Julio C.; Silva, Emílio Carlos Nelli

    2008-02-01

    This paper presents analytical and finite element methods to model broadband transducers with a graded piezoelectric parameter. The application of FGM (Functionally Graded Materials) concept to piezoelectric transducer design allows the design of composite transducers without interface between materials (e.g. piezoelectric ceramic and backing material), due to the continuous change of property values. Thus, large improvements can be achieved in their performance characteristics, mainly generating short-time waveform ultrasonic pulses. Nevertheless, recent research on functionally graded piezoelectric transducers shows lack of studies that compare numerical and analytical approaches used in their design. In this work analytical and numerical models of FGM piezoelectric transducers are developed to analyze the effects of piezoelectric material gradation, specifically, in ultrasonic applications. In addition, results using FGM piezoelectric transducers are compared with non-FGM piezoelectric transducers. We concluded that the developed modeling techniques are accurate, providing a useful tool for designing FGM piezoelectric transducers.

  2. Graphite fiber reinforced thermoplastic resins

    NASA Technical Reports Server (NTRS)

    Navak, R. C.

    1977-01-01

    The results of a program designed to optimize the fabrication procedures for graphite thermoplastic composites are described. The properties of the composites as a function of temperature were measured and graphite thermoplastic fan exit guide vanes were fabricated and tested. Three thermoplastics were included in the investigation: polysulfone, polyethersulfone, and polyarylsulfone. Type HMS graphite was used as the reinforcement. Bending fatigue tests of HMS graphite/polyethersulfone demonstrated a gradual shear failure mode which resulted in a loss of stiffness in the specimens. Preliminary curves were generated to show the loss in stiffness as a function of stress and number of cycles. Fan exit guide vanes of HMS graphite polyethersulfone were satisfactorily fabricated in the final phase of the program. These were found to have stiffness and better fatigue behavior than graphite epoxy vanes which were formerly bill of material.

  3. Design of polymer nanocomposites in solution by polymer functionalization

    NASA Astrophysics Data System (ADS)

    Anderson, J. A.; Sknepnek, R.; Travesset, A.

    2010-08-01

    Polymer nanocomposites, materials combining polymers and inorganic components such as nanosized crystallites or nanoparticles have attracted significant attention in recent years. A successful strategy for designing polymer nanocomposites is polymer functionalization via attaching functional groups with specific affinity for the inorganic component. In this paper, a systematic investigation by molecular dynamics of polymer functionalization for design of composites combining nanosize crystallites with multiblock polymers in solution is presented. It is shown that functionalization is an example of active self-assembly, where the resulting polymer nanocomposite exhibits a different type of order than the original pure polymer system (without inorganic components). Optimal polymer architectures and concentrations are identified appropriate for different applications, alongside an in-depth analysis on the origin and stability of the resulting phases as well as its experimental implications.

  4. Complete RNA inverse folding: computational design of functional hammerhead ribozymes

    PubMed Central

    Dotu, Ivan; Garcia-Martin, Juan Antonio; Slinger, Betty L.; Mechery, Vinodh; Meyer, Michelle M.; Clote, Peter

    2014-01-01

    Nanotechnology and synthetic biology currently constitute one of the most innovative, interdisciplinary fields of research, poised to radically transform society in the 21st century. This paper concerns the synthetic design of ribonucleic acid molecules, using our recent algorithm, RNAiFold, which can determine all RNA sequences whose minimum free energy secondary structure is a user-specified target structure. Using RNAiFold, we design ten cis-cleaving hammerhead ribozymes, all of which are shown to be functional by a cleavage assay. We additionally use RNAiFold to design a functional cis-cleaving hammerhead as a modular unit of a synthetic larger RNA. Analysis of kinetics on this small set of hammerheads suggests that cleavage rate of computationally designed ribozymes may be correlated with positional entropy, ensemble defect, structural flexibility/rigidity and related measures. Artificial ribozymes have been designed in the past either manually or by SELEX (Systematic Evolution of Ligands by Exponential Enrichment); however, this appears to be the first purely computational design and experimental validation of novel functional ribozymes. RNAiFold is available at http://bioinformatics.bc.edu/clotelab/RNAiFold/. PMID:25209235

  5. Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding

    NASA Astrophysics Data System (ADS)

    Singh, B. P.; Choudhary, Veena; Saini, Parveen; Mathur, R. B.

    2012-06-01

    In this letter, we report preparation of strongly anchored multiwall carbon nanotubes (MWCNTs) carbon fiber (CF) fabric preforms. These preforms were reinforced in epoxy resin to make multi scale composites for microwave absorption in the X-band (8.2-12.4GHz). The incorporation of MWCNTs on the carbon fabric produced a significant enhancement in the electromagnetic interference shielding effectiveness (EMI-SE) from -29.4 dB for CF/epoxy-composite to -51.1 dB for CF-MWCNT/epoxy multiscale composites of 2 mm thickness. In addition to enhanced EMI-SE, interlaminar shear strength improved from 23 MPa for CF/epoxy-composites to 50 MPa for multiscale composites indicating their usefulness for making structurally strong microwave shields.

  6. Stress-resultant models for ultimate load design of reinforced concrete frames and multi-scale parameter estimates

    NASA Astrophysics Data System (ADS)

    Pham, B. H.; Brancherie, D.; Davenne, L.; Ibrahimbegovic, A.

    2013-03-01

    In this work, we present a new finite element for (geometrically linear) Timoshenko beam model for ultimate load computation of reinforced concrete frames. The proposed model combines the descriptions of the diffuse plastic failure in the beam-column followed by the creation of plastic hinges due to the failure or collapse of the concrete and of the re-bars. A modified multi-scale analysis is performed in order to identify the parameters for stress-resultant-based macro model, which is used to described the behavior of the Timoshenko beam element. For clarity, we focus upon the micro-scale models using the multi-fiber elements with embedded displacement discontinuities in mode I, which would typically be triggered by bending failure mode. More general case of micro-scale model capable of describing shear failure is described by Ibrahimbegovic et al. (Int J Numer Methods Eng 83(4):452-481, 2010).

  7. Design and use of a prefabricated fiber-reinforced composite substructure for the chairside replacement of missing premolars.

    PubMed

    Meiers, Jonathan C; Freilich, Martin A

    2006-06-01

    Fiber-reinforced resin composites (FRCs) have been used to make frameworks to support particulate resin composite veneers in the replacement of missing teeth. Both prosthetic laboratory-fabricated and chairside-fabricated approaches have been used with varying degrees of success. The chairside FRC fixed partial denture has been mainly used for anterior tooth replacement where the emphasis is on esthetics rather than withstanding occlusal load. This article focuses on the use of this technology in the chairside replacement of premolars. The concept of using a prefabricated framework is described in detail. This approach allows for the efficient delivery of a consistently made chairside prosthesis. This is in contrast with the time-consuming and less consistent result of FRC framework fabrication directly in the mouth. The goal for this concept is to use a premade framework finalized by the provider at chairside to provide medium- to long-term posterior tooth replacement, with minimal abutment tooth reduction. PMID:16752701

  8. Oak Ridge Environmental Information System (OREIS) functional system design document

    SciTech Connect

    Birchfield, T.E.; Brown, M.O.; Coleman, P.R.

    1994-03-01

    The OREIS Functional System Design document provides a detailed functional description of the Oak Ridge Environmental Information System (OREIS). It expands the system requirements defined in the OREIS Phase 1-System Definition Document (ES/ER/TM-34). Documentation of OREIS development is based on the Automated Data Processing System Development Methodology, a Martin Marietta Energy Systems, Inc., procedure written to assist in developing scientific and technical computer systems. This document focuses on the development of the functional design of the user interface, which includes the integration of commercial applications software. The data model and data dictionary are summarized briefly; however, the Data Management Plan for OREIS (ES/ER/TM-39), a companion document to the Functional System Design document, provides the complete data dictionary and detailed descriptions of the requirements for the data base structure. The OREIS system will provide the following functions, which are executed from a Menu Manager: (1) preferences, (2) view manager, (3) macro manager, (4) data analysis (assisted analysis and unassisted analysis), and (5) spatial analysis/map generation (assisted ARC/INFO and unassisted ARC/INFO). Additional functionality includes interprocess communications, which handle background operations of OREIS.

  9. Negative effects of positive reinforcement

    PubMed Central

    Perone, Michael

    2003-01-01

    Procedures classified as positive reinforcement are generally regarded as more desirable than those classified as aversive—those that involve negative reinforcement or punishment. This is a crude test of the desirability of a procedure to change or maintain behavior. The problems can be identified on the basis of theory, experimental analysis, and consideration of practical cases. Theoretically, the distinction between positive and negative reinforcement has proven difficult (some would say the distinction is untenable). When the distinction is made purely in operational terms, experiments reveal that positive reinforcement has aversive functions. On a practical level, positive reinforcement can lead to deleterious effects, and it is implicated in a range of personal and societal problems. These issues challenge us to identify other criteria for judging behavioral procedures. ImagesFigure 1Figure 2 PMID:22478391

  10. Negative effects of positive reinforcement.

    PubMed

    Perone, Michael

    2003-01-01

    Procedures classified as positive reinforcement are generally regarded as more desirable than those classified as aversive-those that involve negative reinforcement or punishment. This is a crude test of the desirability of a procedure to change or maintain behavior. The problems can be identified on the basis of theory, experimental analysis, and consideration of practical cases. Theoretically, the distinction between positive and negative reinforcement has proven difficult (some would say the distinction is untenable). When the distinction is made purely in operational terms, experiments reveal that positive reinforcement has aversive functions. On a practical level, positive reinforcement can lead to deleterious effects, and it is implicated in a range of personal and societal problems. These issues challenge us to identify other criteria for judging behavioral procedures.

  11. BEHAVIORAL MECHANISMS UNDERLYING NICOTINE REINFORCEMENT

    PubMed Central

    Rupprecht, Laura E.; Smith, Tracy T.; Schassburger, Rachel L.; Buffalari, Deanne M.; Sved, Alan F.; Donny, Eric C.

    2015-01-01

    Cigarette smoking is the leading cause of preventable deaths worldwide and nicotine, the primary psychoactive constituent in tobacco, drives sustained use. The behavioral actions of nicotine are complex and extend well beyond the actions of the drug as a primary reinforcer. Stimuli that are consistently paired with nicotine can, through associative learning, take on reinforcing properties as conditioned stimuli. These conditioned stimuli can then impact the rate and probability of behavior and even function as conditioning reinforcers that maintain behavior in the absence of nicotine. Nicotine can also act as a conditioned stimulus, predicting the delivery of other reinforcers, which may allow nicotine to acquire value as a conditioned reinforcer. These associative effects, establishing non-nicotine stimuli as conditioned stimuli with discriminative stimulus and conditioned reinforcing properties as well as establishing nicotine as a conditioned stimulus, are predicted by basic conditioning principles. However, nicotine can also act non-associatively. Nicotine directly enhances the reinforcing efficacy of other reinforcing stimuli in the environment, an effect that does not require a temporal or predictive relationship between nicotine and either the stimulus or the behavior. Hence, the reinforcing actions of nicotine stem both from the primary reinforcing actions of the drug (and the subsequent associative learning effects) as well as the reinforcement enhancement action of nicotine which is non-associative in nature. Gaining a better understanding of how nicotine impacts behavior will allow for maximally effective tobacco control efforts aimed at reducing the harm associated with tobacco use by reducing and/or treating its addictiveness. PMID:25638333

  12. A Designer's View: The Perspective of Form and Function

    ERIC Educational Resources Information Center

    Boerwinkel, Dirk Jan; Waarlo, Arend Jan; Boersma, Kerst

    2009-01-01

    Perspectives are domain-specific strategies employed by experts in a specific field to formulate and investigate questions. Such strategies may therefore serve as good models for acquiring knowledge. Based on this premise, we developed the perspective of form and function, as used by both biologists and technical designers, into a tool for…

  13. Engineering study for the functional design of a multiprocessor system

    NASA Technical Reports Server (NTRS)

    Miller, J. S.; Vandever, W. H.; Stanten, S. F.; Avakian, A. E.; Kosmala, A. L.

    1972-01-01

    The results are presented of a study to generate a functional system design of a multiprocessing computer system capable of satisfying the computational requirements of a space station. These data management system requirements were specified to include: (1) real time control, (2) data processing and storage, (3) data retrieval, and (4) remote terminal servicing.

  14. Functional Design in Rehabilitation: Modular Mechanisms for Ankle Complex

    PubMed Central

    2016-01-01

    This paper is aimed at presenting an innovative ankle rehabilitation device based on a parallel mechanism. A functional analysis and design are described to obtain a device able to guarantee ankle movement while patient's body remains stationary. Human ankle is a challenging context where a series of joints are highly integrated. The proposed rehabilitation device permits a patient with walking defects to improve his or her gait. The research focuses on plantar-flexion-dorsiflexion movement. The robust design starts from an accurate modelling of ankle movements during walking, assessing motion data from healthy individuals and patients. The kinematics analysis and functional evaluations lead the study and development of the articulated system. In particular, results of simulations support the effectiveness of the current design. A 3D prototype is presented highlighting that the ankle motion is successfully demonstrated. PMID:27524881

  15. Functional Design in Rehabilitation: Modular Mechanisms for Ankle Complex.

    PubMed

    Aggogeri, Francesco; Pellegrini, Nicola; Adamini, Riccardo

    2016-01-01

    This paper is aimed at presenting an innovative ankle rehabilitation device based on a parallel mechanism. A functional analysis and design are described to obtain a device able to guarantee ankle movement while patient's body remains stationary. Human ankle is a challenging context where a series of joints are highly integrated. The proposed rehabilitation device permits a patient with walking defects to improve his or her gait. The research focuses on plantar-flexion-dorsiflexion movement. The robust design starts from an accurate modelling of ankle movements during walking, assessing motion data from healthy individuals and patients. The kinematics analysis and functional evaluations lead the study and development of the articulated system. In particular, results of simulations support the effectiveness of the current design. A 3D prototype is presented highlighting that the ankle motion is successfully demonstrated.

  16. Functional Design in Rehabilitation: Modular Mechanisms for Ankle Complex.

    PubMed

    Aggogeri, Francesco; Pellegrini, Nicola; Adamini, Riccardo

    2016-01-01

    This paper is aimed at presenting an innovative ankle rehabilitation device based on a parallel mechanism. A functional analysis and design are described to obtain a device able to guarantee ankle movement while patient's body remains stationary. Human ankle is a challenging context where a series of joints are highly integrated. The proposed rehabilitation device permits a patient with walking defects to improve his or her gait. The research focuses on plantar-flexion-dorsiflexion movement. The robust design starts from an accurate modelling of ankle movements during walking, assessing motion data from healthy individuals and patients. The kinematics analysis and functional evaluations lead the study and development of the articulated system. In particular, results of simulations support the effectiveness of the current design. A 3D prototype is presented highlighting that the ankle motion is successfully demonstrated. PMID:27524881

  17. A systems process of reinforcement.

    PubMed

    Sudakov, K V

    1997-01-01

    Functional systems theory was used to consider the process of reinforcement of the actions on the body of reinforcing factors, i.e., the results of behavior satisfying the body's original needs. The systems process of reinforcement includes reverse afferentation entering the CNS from receptors acted upon by various parameters of the desired results, and mechanisms for comparing reverse afferentation with the apparatus which accepts the results of the action and the corresponding emotional component. A tight interaction between reinforcement and the dominant motivation is generated on the basis of the hologram principle. Reinforcement forms an apparatus for predicting a desired result, i.e. a result-of-action acceptor. Reinforcement procedures significant changes in the activities of individual neurons in the various brain structures involved in dominant motivation, transforming their spike activity for a burst pattern to regular discharges; there are also molecular changes in neuron properties. After preliminary reinforcement, the corresponding motivation induces the ribosomal system of neurons to start synthesizing special effector molecules, which organize molecular engrams of the acceptor of the action's result. Sensory mechanisms of reinforcement are considered, with particular reference to the information role of emotions.

  18. Single Dose of a Dopamine Agonist Impairs Reinforcement Learning in Humans: Evidence from Event-related Potentials and Computational Modeling of Striatal-Cortical Function

    PubMed Central

    Santesso, Diane L.; Evins, A. Eden; Frank, Michael J.; Cowman Schetter, Erika M.; Bogdan, Ryan; Pizzagalli, Diego A.

    2011-01-01

    Animal findings have highlighted the modulatory role of phasic dopamine (DA) signaling in incentive learning, particularly in the acquisition of reward-related behavior. In humans, these processes remain largely unknown. In a recent study we demonstrated that a single low dose of a D2/D3 agonist (pramipexole) – assumed to activate DA autoreceptors and thus reduce phasic DA bursts – impaired reward learning in healthy subjects performing a probabilistic reward task. The purpose of the present study was to extend these behavioral findings using event-related potentials and computational modeling. Compared to the placebo group, participants receiving pramipexole showed increased feedback-related negativity to probabilistic rewards and decreased activation in dorsal anterior cingulate regions previously implicated in integrating reinforcement history over time. Additionally, findings of blunted reward learning in participants receiving pramipexole were simulated by reduced presynaptic DA signaling in response to reward in a neural network model of striatal-cortical function. These preliminary findings offer important insights on the role of phasic DA signals on reinforcement learning in humans, and provide initial evidence regarding the spatio-temporal dynamics of brain mechanisms underlying these processes. PMID:18726908

  19. Highly specific role of hypocretin (orexin) neurons: differential activation as a function of diurnal phase, operant reinforcement versus operant avoidance and light level.

    PubMed

    McGregor, Ronald; Wu, Ming-Fung; Barber, Grace; Ramanathan, Lalini; Siegel, Jerome M

    2011-10-26

    Hypocretin (Hcrt) cell loss is responsible for narcolepsy, but Hcrt's role in normal behavior is unclear. We found that Hcrt knock-out mice were unable to work for food or water reward during the light phase. However, they were unimpaired relative to wild-type (WT) mice when working for reward during the dark phase or when working to avoid shock in the light or dark phase. In WT mice, expression of Fos in Hcrt neurons occurs only in the light phase when working for positive reinforcement. Expression was seen throughout the mediolateral extent of the Hcrt field. Fos was not expressed when expected or unexpected unearned rewards were presented, when working to avoid negative reinforcement, or when given or expecting shock, even though these conditions elicit maximal electroencephalogram (EEG) arousal. Fos was not expressed in the light phase when light was removed. This may explain the lack of light-induced arousal in narcoleptics and its presence in normal individuals. This is the first demonstration of such specificity of arousal system function and has implications for understanding the motivational and circadian consequences of arousal system dysfunction. The current results also indicate that comparable and complementary specificities must exist in other arousal systems.

  20. Tokens for Success: Using the Graduated Reinforcement System.

    ERIC Educational Resources Information Center

    Lyon, Carla S.; Lagarde, Renee

    1997-01-01

    Describes the Graduated Reinforcement System, a simplifed token system that involves establishing a partnership with parents and students, identifying target behaviors, planning for record keeping, tallying daily/weekly points, designating the graduated reinforcement criteria, determining reinforcers for the three levels, awarding the reinforcer,…

  1. Vestibular Function Research (VFR) experiment. Phase B: Design definition study

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Vestibular Functions Research (VFR) Experiment was established to investigate the neurosensory and related physiological processes believed to be associated with the space flight nausea syndrome and to develop logical means for its prediction, prevention and treatment. The VFR Project consists of ground and spaceflight experimentation using frogs as specimens. The phase B Preliminary Design Study provided for the preliminary design of the experiment hardware, preparation of performance and hardware specification and a Phase C/D development plan, establishment of STS (Space Transportation System) interfaces and mission operations, and the study of a variety of hardware, experiment and mission options. The study consist of three major tasks: (1) mission mode trade-off; (2) conceptual design; and (3) preliminary design.

  2. Stress concentration in notched anisotropically fiber-reinforced plates

    NASA Astrophysics Data System (ADS)

    Hufenbach, W.; Kroll, L.

    1992-06-01

    As notches represent the most relevant sites of failure in a construction, a calculation of the stress distribution around holes is essential for the design of fiber-reinforced materials. Especially in the case of anisotropic materials the maximal stress concentration factor on the cutout is considerably higher than in conventional isotropic materials. In fiber-reinforced materials the stress distribution around holes is strongly dependent on the degree of anisotropy as well as on the notch geometry and load parameters. The plain stress field around a notch of known geometry will be calculated by means of the method of conformal mapping and complex stress functions, based on the mathematical model of an infinite anisotropic plate with various shapes of the aperture. For some standard types of notches and load cases, the stress concentration factor as a function of various construction parameters will be studied for fiber-reinforced materials used in lightweight construction.

  3. Robust reinforcement learning.

    PubMed

    Morimoto, Jun; Doya, Kenji

    2005-02-01

    This letter proposes a new reinforcement learning (RL) paradigm that explicitly takes into account input disturbance as well as modeling errors. The use of environmental models in RL is quite popular for both offline learning using simulations and for online action planning. However, the difference between the model and the real environment can lead to unpredictable, and often unwanted, results. Based on the theory of H(infinity) control, we consider a differential game in which a "disturbing" agent tries to make the worst possible disturbance while a "control" agent tries to make the best control input. The problem is formulated as finding a min-max solution of a value function that takes into account the amount of the reward and the norm of the disturbance. We derive online learning algorithms for estimating the value function and for calculating the worst disturbance and the best control in reference to the value function. We tested the paradigm, which we call robust reinforcement learning (RRL), on the control task of an inverted pendulum. In the linear domain, the policy and the value function learned by online algorithms coincided with those derived analytically by the linear H(infinity) control theory. For a fully nonlinear swing-up task, RRL achieved robust performance with changes in the pendulum weight and friction, while a standard reinforcement learning algorithm could not deal with these changes. We also applied RRL to the cart-pole swing-up task, and a robust swing-up policy was acquired.

  4. Biomimetic scaffold design for functional and integrative tendon repair.

    PubMed

    Zhang, Xinzhi; Bogdanowicz, Danielle; Erisken, Cevat; Lee, Nancy M; Lu, Helen H

    2012-02-01

    Rotator cuff tears represent the most common shoulder injuries in the United States. The debilitating effect of this degenerative condition coupled with the high incidence of failure associated with existing graft choices underscores the clinical need for alternative grafting solutions. The 2 critical design criteria for the ideal tendon graft would require the graft to not only exhibit physiologically relevant mechanical properties but also be able to facilitate functional graft integration by promoting the regeneration of the native tendon-to-bone interface. Centered on these design goals, this review will highlight current approaches to functional and integrative tendon repair. In particular, the application of biomimetic design principles through the use of nanofiber- and nanocomposite-based scaffolds for tendon tissue engineering will be discussed. This review will begin with nanofiber-based approaches to functional tendon repair, followed by a section highlighting the exciting research on tendon-to-bone interface regeneration, with an emphasis on implementation of strategic biomimicry in nanofiber scaffold design and the concomitant formation of graded multi-tissue systems for integrative soft-tissue repair. This review will conclude with a summary and discussion of future directions.

  5. An analysis of the reinforcing properties of hand mouthing.

    PubMed Central

    Goh, H L; Iwata, B A; Shore, B A; DeLeon, I G; Lerman, D C; Ulrich, S M; Smith, R G

    1995-01-01

    Hand mouthing often has been described as a stereotypic response that is maintained by nonsocial (automatic) reinforcement; however, data supporting this conclusion can be found in relatively few studies. This series of studies presents an experimental analysis of conditions associated with the maintenance of hand mouthing. In Experiment 1, a functional analysis was conducted for 12 individuals who engaged in chronic hand mouthing, to determine whether the behavior is usually maintained independent of social contingencies. Results obtained for 10 subjects were consistent with an automatic reinforcement hypothesis; the remaining 2 subjects' hand mouthing was maintained by social-positive reinforcement. Based on these results, Experiment 2 was designed to identify the specific reinforcing properties of hand mouthing. Each of 4 subjects was provided with a toy that substituted for hand mouthing, and preference for a specific topography of toy manipulation (hand-toy contact or mouth-toy contact) was measured. Results indicated that hand stimulation was the predominant reinforcer for all subjects. Experiment 3 provided an extension of Experiment 2 in that the same responses were measured across a variety of toys presented to each of 5 subjects. Results again indicated that hand stimulation was the predominant reinforcer for all subjects. Implications of these results are discussed with relevance to treatment. PMID:7592144

  6. Reinforcement learning in continuous time and space: interference and not ill conditioning is the main problem when using distributed function approximators.

    PubMed

    Baddeley, Bart

    2008-08-01

    Many interesting problems in reinforcement learning (RL) are continuous and/or high dimensional, and in this instance, RL techniques require the use of function approximators for learning value functions and policies. Often, local linear models have been preferred over distributed nonlinear models for function approximation in RL. We suggest that one reason for the difficulties encountered when using distributed architectures in RL is the problem of negative interference, whereby learning of new data disrupts previously learned mappings. The continuous temporal difference (TD) learning algorithm TD(lambda) was used to learn a value function in a limited-torque pendulum swing-up task using a multilayer perceptron (MLP) network. Three different approaches were examined for learning in the MLP networks; 1) simple gradient descent; 2) vario-eta; and 3) a pseudopattern rehearsal strategy that attempts to reduce the effects of interference. Our results show that MLP networks can be used for value function approximation in this task but require long training times. We also found that vario-eta destabilized learning and resulted in a failure of the learning process to converge. Finally, we showed that the pseudopattern rehearsal strategy drastically improved the speed of learning. The results indicate that interference is a greater problem than ill conditioning for this task.

  7. Improved Mechanical Properties of Various Fabric-Reinforced Geocomposite at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Samal, Sneha; Phan Thanh, Nhan; Petríková, Iva; Marvalová, Bohadana

    2015-07-01

    This article signifies the improved performance of the various types of fabric reinforcement of geopolymer as a function of physical, thermal, mechanical, and heat-resistant properties at elevated temperatures. Geopolymer mixed with designed Si:Al ratios of 15.6 were synthesized using three different types of fabric reinforcement such as carbon, E-glass, and basalt fibers. Heat testing was conducted on 3-mm-thick panels with 15 × 90 mm surface exposure region. The strength of carbon-based geocomposite increased toward a higher temperature. The basalt-reinforced geocomposite strength decreased due to the catastrophic failure in matrix region. The poor bridging effect and dissolution of fabric was observed in the E-glass-reinforced geocomposite. At an elevated temperature, fiber bridging was observed in carbon fabric-reinforced geopolymer matrix. Among all the fabrics, carbon proved to be suitable candidate for the high-temperature applications in thermal barrier coatings and fire-resistant panels.

  8. Development and modification of a response class via positive and negative reinforcement: a translational approach.

    PubMed

    Mendres, Amber E; Borrero, John C

    2010-01-01

    When responses function to produce the same reinforcer, a response class exists. Researchers have examined response classes in applied settings; however, the challenges associated with conducting applied research on response class development have recently necessitated the development of an analogue response class model. To date, little research has examined response classes that are strengthened by negative reinforcement. The current investigation was designed to develop a laboratory model of a response class through positive reinforcement (i.e., points exchangeable for money) and through negative reinforcement (i.e., the avoidance of scheduled point losses) with 11 college students as participants and clicks as the operant. Results of both the positive and negative reinforcement evaluations showed that participants usually selected the least effortful response that produced points or the avoidance of point losses, respectively. The applied implications of the findings are discussed, along with the relevance of the present model to the study of punishment and resurgence. PMID:21541150

  9. Development and modification of a response class via positive and negative reinforcement: a translational approach.

    PubMed

    Mendres, Amber E; Borrero, John C

    2010-01-01

    When responses function to produce the same reinforcer, a response class exists. Researchers have examined response classes in applied settings; however, the challenges associated with conducting applied research on response class development have recently necessitated the development of an analogue response class model. To date, little research has examined response classes that are strengthened by negative reinforcement. The current investigation was designed to develop a laboratory model of a response class through positive reinforcement (i.e., points exchangeable for money) and through negative reinforcement (i.e., the avoidance of scheduled point losses) with 11 college students as participants and clicks as the operant. Results of both the positive and negative reinforcement evaluations showed that participants usually selected the least effortful response that produced points or the avoidance of point losses, respectively. The applied implications of the findings are discussed, along with the relevance of the present model to the study of punishment and resurgence.

  10. DEVELOPMENT AND MODIFICATION OF A RESPONSE CLASS VIA POSITIVE AND NEGATIVE REINFORCEMENT: A TRANSLATIONAL APPROACH

    PubMed Central

    Mendres, Amber E; Borrero, John C

    2010-01-01

    When responses function to produce the same reinforcer, a response class exists. Researchers have examined response classes in applied settings; however, the challenges associated with conducting applied research on response class development have recently necessitated the development of an analogue response class model. To date, little research has examined response classes that are strengthened by negative reinforcement. The current investigation was designed to develop a laboratory model of a response class through positive reinforcement (i.e., points exchangeable for money) and through negative reinforcement (i.e., the avoidance of scheduled point losses) with 11 college students as participants and clicks as the operant. Results of both the positive and negative reinforcement evaluations showed that participants usually selected the least effortful response that produced points or the avoidance of point losses, respectively. The applied implications of the findings are discussed, along with the relevance of the present model to the study of punishment and resurgence. PMID:21541150

  11. Design for a high field combined function superferric magnet

    NASA Astrophysics Data System (ADS)

    Gupta, R. C.; Morgan, G. H.

    A combined function superferric magnet option was investigated for the Relativistic Heavy Ion Collider (RHIC). The option requires the maximum value of the field in the magnet to be much higher than that achieved in any existing combined function accelerator magnet. A model is presented in which a good field quality can be maintained up to 2T. It is done by carefully designing the yoke structure and positioning the coils in such a way that the iron poles tend to saturate evenly across the gap. A cold iron model might be necessary for this magnet.

  12. Automated reasoning applications to design validation and sneak function analysis

    SciTech Connect

    Stratton, R.C.

    1984-01-01

    Argonne National Laboratory (ANL) is actively involved in the LMFBR Man-Machine Integration (MMI) Safety Program. The objective of this program is to enhance the operational safety and reliability of fast-breeder reactors by optimum integration of men and machines through the application of human factors principles and control engineering to the design, operation, and the control environment. ANL is developing methods to apply automated reasoning and computerization in the validation and sneak function analysis process. This project provides the element definitions and relations necessary for an automated reasoner (AR) to reason about design validation and sneak function analysis. This project also provides a demonstration of this AR application on an Experimental Breeder Reactor-II (EBR-II) system, the Argonne Cooling System (ACS).

  13. A model for designing functionally gradient material joints

    SciTech Connect

    Messler, R.W. Jr.; Jou, M.; Orling, T.T.

    1995-05-01

    An analytical, thin-plate layer model was developed to assist research and development engineers in the design of functionally gradient material (FGM) joints consisting of discrete steps between end elements of dissimilar materials. Such joints have long been produced by diffusion bonding using intermediates or multiple interlayers; welding, brazing or soldering using multiple transition pieces; and glass-to-glass or glass-to-metal bonding using multiple layers to produce matched seals. More recently, FGM joints produced by self-propagating high-temperature synthesis (SHS) are attracting the attention of researchers. The model calculates temperature distributions and associated thermally induced stresses, assuming elastic behavior, for any number of layers of any thickness or composition, accounting for critically important thermophysical properties in each layer as functions of temperature. It is useful for assuring that cured-in fabrication stresses from thermal expansion mismatches will not prevent quality joint production. The model`s utility is demonstrated with general design cases.

  14. HAL/SM system functional design specification. [systems analysis and design analysis of central processing units

    NASA Technical Reports Server (NTRS)

    Ross, C.; Williams, G. P. W., Jr.

    1975-01-01

    The functional design of a preprocessor, and subsystems is described. A structure chart and a data flow diagram are included for each subsystem. Also a group of intermodule interface definitions (one definition per module) is included immediately following the structure chart and data flow for a particular subsystem. Each of these intermodule interface definitions consists of the identification of the module, the function the module is to perform, the identification and definition of parameter interfaces to the module, and any design notes associated with the module. Also described are compilers and computer libraries.

  15. Design of multi-function Hanford tank corrosion monitoring system

    SciTech Connect

    EDGEMON, G.L.

    1999-04-01

    A multi-fiction corrosion monitoring system has been designed for installation into DST 241-AN-105 at the Hanford Site in fiscal year 1999. The 241-AN-105 system is the third-generation corrosion monitoring system described by TTP RLO-8-WT-21. Improvements and upgrades from the second-generation system (installed in 241-AN-102) that have been incorporated into the third-generation system include: Gasket seating surfaces utilize O-rings instead of a washer type gasket for improved seal; Probe design contains an equally spaced array of 22 thermocouples; Probe design contains an adjustable verification thermocouple; Probe design contains three ports for pressure/gas sampling; Probe design contains one set of strain gauges to monitor probe flexure if flexure occurs; Probe utilizes an adjustable collar to allow depth adjustment of probe during installation; System is capable of periodically conducting LPR scans; System is housed in a climate controlled enclosure adjacent to the riser containing the probe; System uses wireless Ethernet links to send data to Hanford Local Area Network; System uses commercial remote access software to allow remote command and control; and Above ground wiring uses driven shields to reduce external electrostatic noise in the data. These new design features have transformed what was primarily a second-generation corrosion monitoring system into a multi-function tank monitoring system that adds a great deal of functionality to the probe, provides for a better understanding of the relationship between corrosion and other tank operating parameters, and optimizes the use of the riser that houses the probe in the tank.

  16. Study design for a randomized controlled trial to increase the relative reinforcing value of vegetable consumption using incentive sensitization among obese and overweight people.

    PubMed

    Jahns, Lisa; Roemmich, James N

    2016-09-01

    In this manuscript, we present the protocol for a study that applies incentive sensitization theory to improve vegetable intake in overweight and obese adults. This 8-week, randomized, controlled, community-based feeding study with an 8-week follow-up seeks to use repeated exposure to amounts of vegetables recommended by federal guidance to increase the primary outcome of the relative reinforcing value of vegetables compared to a snack food. A community-based design is used to give participants autonomy in choosing their method of exposure. Secondary outcomes include: 1) Determine potential moderators of incentive sensitization of vegetables, including genetic polymorphisms associated with food reinforcement and obesity, 6-n-propylthiouracil tasting status, and delay discounting. 2) Determine whether adding vegetables to the diet results in participants substituting low-energy-dense vegetables for energy-dense foods or whether energy-dense food consumption is independent of vegetable consumption. 3) Determine whether reductions in adiposity are associated with substitution of vegetables in the diet. 4) Determine if markers of bone turnover change. 5) Assess changes in self-reported secondary outcomes measured by questionnaire such as self-efficacy to eat vegetables. The results of this study will provide information about the drivers of individual choice to consume recommended amounts of vegetables. The understanding gained will help increase the effectiveness and sustainability of behavior-based interventions focused on improving vegetable intake. This information may also be used to assist in setting dietary guidance targets for the amounts and types of vegetables Americans can, and should, consume. PMID:27565831

  17. Study design for a randomized controlled trial to increase the relative reinforcing value of vegetable consumption using incentive sensitization among obese and overweight people.

    PubMed

    Jahns, Lisa; Roemmich, James N

    2016-09-01

    In this manuscript, we present the protocol for a study that applies incentive sensitization theory to improve vegetable intake in overweight and obese adults. This 8-week, randomized, controlled, community-based feeding study with an 8-week follow-up seeks to use repeated exposure to amounts of vegetables recommended by federal guidance to increase the primary outcome of the relative reinforcing value of vegetables compared to a snack food. A community-based design is used to give participants autonomy in choosing their method of exposure. Secondary outcomes include: 1) Determine potential moderators of incentive sensitization of vegetables, including genetic polymorphisms associated with food reinforcement and obesity, 6-n-propylthiouracil tasting status, and delay discounting. 2) Determine whether adding vegetables to the diet results in participants substituting low-energy-dense vegetables for energy-dense foods or whether energy-dense food consumption is independent of vegetable consumption. 3) Determine whether reductions in adiposity are associated with substitution of vegetables in the diet. 4) Determine if markers of bone turnover change. 5) Assess changes in self-reported secondary outcomes measured by questionnaire such as self-efficacy to eat vegetables. The results of this study will provide information about the drivers of individual choice to consume recommended amounts of vegetables. The understanding gained will help increase the effectiveness and sustainability of behavior-based interventions focused on improving vegetable intake. This information may also be used to assist in setting dietary guidance targets for the amounts and types of vegetables Americans can, and should, consume.

  18. Investigation of Selectively-Reinforced Metallic Lugs

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.; Abada, Christopher H.

    2007-01-01

    An investigation of the effects of material and geometric variables on the response of U-shaped band-reinforced metallic lugs was performed. Variables studied were reinforcement, adhesive and metallic lug mechanical properties, hole diameter, reinforcement and adhesive thickness, and the distance from the hole s center to the end of the lug. Generally, U-shaped band reinforced lugs exhibited superior performance than non-reinforced lugs, that is higher load at the conventional lug design criteria of four percent hole elongation. Depending upon the reinforcement configuration the increase in load may be negligible to 15 or 20 percent. U-shaped band reinforcement increases lug load carrying capability primarily through two mechanisms; increasing the slope of the response curve after the initial knee and restraining overall deformation of the metallic portion of the lug facilitating increased yielding of metallic material between the hole and the edge of the metallic portion of the lug.

  19. Conditioned inhibition and reinforcement rate.

    PubMed

    Harris, Justin A; Kwok, Dorothy W S; Andrew, Benjamin J

    2014-07-01

    We investigated conditioned inhibition in a magazine approach paradigm. Rats were trained on a feature negative discrimination between an auditory conditioned stimulus (CS) reinforced at one rate versus a compound of that CS and a visual stimulus (L) reinforced at a lower rate. This training established L as a conditioned inhibitor. We then tested the inhibitory strength of L by presenting it in compound with other auditory CSs. L reduced responding when tested with a CS that had been reinforced at a high rate, but had less or even no inhibitory effect when tested with a CS that had been reinforced at a low rate. The inhibitory strength of L was greater if it signaled a decrease in reinforcement from an already low rate than if it signaled an equivalent decrease in reinforcement from a high rate. We conclude that the strength of inhibition is not a linear function of the change in reinforcement that it signals. We discuss the implications of this finding for models of learning (e.g., Rescorla & Wagner, 1972) that identify inhibition with a difference (subtraction) rule.

  20. Laminates and reinforced metals

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1980-01-01

    A selective review is presented of the state of the art of metallic laminates and fiber reinforced metals called metallic matrix laminates (MMLs). Design and analysis procedures that are used for, and typical structural components that have been made from MMLs are emphasized. Selected MMLs, constituent materials, typical material properties and fabrication procedures are briefly described, including hybrids and superhybrids. Advantages, disadvantages, and special considerations required during design, analysis, and fabrication of MMLs are examined. Tabular and graphical data are included to illustrate key aspects of MMLs. Appropriate references are cited to provide a selective bibliography of a rapidly expanding and very promising research and development field.

  1. Reinforced structural plastics

    NASA Technical Reports Server (NTRS)

    Lubowitz, H. R.; Kendrick, W. P.; Jones, J. F.; Thorpe, R. S.; Burns, E. A. (Inventor)

    1972-01-01

    Reinforced polyimide structures are described. Reinforcing materials are impregnated with a suspension of polyimide prepolymer and bonded together by heat and pressure to form a cured, hard-reinforced, polyimide structure.

  2. Optimum weight design of functionally graded material gears

    NASA Astrophysics Data System (ADS)

    Jing, Shikai; Zhang, He; Zhou, Jingtao; Song, Guohua

    2015-11-01

    Traditional gear weight optimization methods consider gear tooth number, module, face width or other dimension parameters of gear as design variables. However, due to the complicated form and geometric features peculiar to the gear, there will be large amounts of design parameters in gear design, and the influences of gear parameters changing on gear trains, transmission system and the whole equipment have to be taken into account, which increases the complexity of optimization problem. This paper puts forward to apply functionally graded materials (FGMs) to gears and then conduct the optimization. According to the force situation of gears, the material distribution form of FGM gears is determined. Then based on the performance parameters analysis of FGMs and the practical working demands for gears, a multi-objective optimization model is formed. Finally by using the goal driven optimization (GDO) method, the optimal material distribution is achieved, which makes gear weight and the maximum deformation be minimum and the maximum bending stress do not exceed the allowable stress. As an example, the applying of FGM to automotive transmission gear is conducted to illustrate the optimization design process and the result shows that under the condition of keeping the normal working performance of gear, the method achieves in greatly reducing the gear weight. This research proposes a FGM gears design method that is able to largely reduce the weight of gears by optimizing the microscopic material parameters instead of changing the macroscopic dimension parameters of gears, which reduces the complexity of gear weight optimization problem.

  3. Digital controller design for absolute value function constrained nonlinear systems via scalar sign function approach.

    PubMed

    Wu, Jian; Singla, Mithun; Olmi, Claudio; Shieh, Leang S; Song, Gangbing

    2010-07-01

    In this paper, a scalar sign function-based digital design methodology is developed for modeling and control of a class of analog nonlinear systems that are restricted by the absolute value function constraints. As is found to be not uncommon, many real systems are subject to the constraints which are described by the non-smooth functions such as absolute value function. The non-smooth and nonlinear nature poses significant challenges to the modeling and control work. To overcome these difficulties, a novel idea proposed in this work is to use a scalar sign function approach to effectively transform the original nonlinear and non-smooth model into a smooth nonlinear rational function model. Upon the resulting smooth model, a systematic digital controller design procedure is established, in which an optimal linearization method, LQR design and digital implementation through an advanced digital redesign technique are sequentially applied. The example of tracking control of a piezoelectric actuator system is utilized throughout the paper for illustrating the proposed methodology.

  4. Optimization of a novel method for determination of benzene, toluene, ethylbenzene, and xylenes in hair and waste water samples by carbon nanotubes reinforced sol-gel based hollow fiber solid phase microextraction and gas chromatography using factorial experimental design.

    PubMed

    Es'haghi, Zarrin; Ebrahimi, Mahmoud; Hosseini, Mohammad-Saeid

    2011-05-27

    A novel design of solid phase microextraction fiber containing carbon nanotube reinforced sol-gel which was protected by polypropylene hollow fiber (HF-SPME) was developed for pre-concentration and determination of BTEX in environmental waste water and human hair samples. The method validation was included and satisfying results with high pre-concentration factors were obtained. In the present study orthogonal array experimental design (OAD) procedure with OA(16) (4(4)) matrix was applied to study the effect of four factors influencing the HF-SPME method efficiency: stirring speed, volume of adsorption organic solvent, extraction and desorption time of the sample solution, by which the effect of each factor was estimated using individual contributions as response functions in the screening process. Analysis of variance (ANOVA) was employed for estimating the main significant factors and their percentage contributions in extraction. Calibration curves were plotted using ten spiking levels of BTEX in the concentration ranges of 0.02-30,000ng/mL with correlation coefficients (r) 0.989-0.9991 for analytes. Under the optimized extraction conditions, the method showed good linearity (0.3-20,000ng/L), repeatability, low limits of detections (0.49-0.7ng/L) and excellent pre-concentration factors (185-1872). The best conditions which were estimated then applied for the analysis of BTEX compounds in the real samples.

  5. Effect of reinforcement surface functionalization on the mechanical properties of nacre-like bulk lamellar composites processed by a hybrid conventional method.

    PubMed

    Gurbuz, Selen N; Dericioglu, Arcan F

    2013-05-01

    Alumina platelet reinforced epoxy matrix composites with an architecture resembling to natural nacre were fabricated by a hybrid conventional method called Hot-press Assisted Slip Casting process (HASC). Correlation between processing parameters, platelet content, platelet orientation and mechanical property enhancement of the fabricated composites was examined. In order to investigate the effect of interfacial compatibility and bonding on the mechanical properties of the fabricated inorganic-organic composites, platelet surfaces were modified with both epoxy- and amino-functional silanes. As received and functionalized platelet surfaces were studied by X-Ray Photoelectron Spectroscopy (XPS) to confirm the success of surface modification. Fabricated bio-inspired bulk lamellar composite materials were characterized in terms of their microstructural architecture and mechanical properties. The results obtained indicated that HASC processed composites exhibit enhanced flexural strength, stiffness and hardness, as compared to neat epoxy and composites fabricated by simple mixing, as a result of their nacre-like architecture with well aligned platelets. It has been also observed that functionalization by both type of silanes improves interfacial adhesion between platelets and epoxy matrix resulting in further enhancement of the mechanical properties of bulk lamellar composites fabricated by HASC. PMID:23498226

  6. [A simple design of functional near-infrared spectroscopy system].

    PubMed

    Xu, Gang; Li, Xiao-li; Liu, Xiao-min

    2015-02-01

    With the development in last twenty years, functional near-infrared spectroscopy (fNIRS) is a non-invasive brain imaging technique which widely used in cognitive neuroscience studies. Based on mechanism of neurovascular coupling, increased functional neural activities in brain induce higher regional cerebral blood flow, which will cause relative concentration change of oxygenated and deoxygenated hemoglobin. In this paper, a single channel continuous wave fNIRS system based on multi-function data acquisition board was proposed. With the benefits of narrow spectral peaks and low divergence, laser diodes provided a better accuracy for measurement with optimal dual-wavelength of 690 and 830 nm. Frequency multiplexing technique was used to distinguish light sources from different emitters, and remove environmental stable interference sources such as ambient light and line power noise as well. LabVIEW was used to design graphical user interface with functionalities including source sequence schedule, auto gain setting, digital inhase and quadrature demodulation, data visualization and storage. The experimental results during holding breath and mental arithmetic task indicated that our system was capable of monitoring regional concentration change of hemoglobin in real time, and detecting activation associated with advanced brain functions. PMID:25970931

  7. Effective Design of Multifunctional Peptides by Combining Compatible Functions

    PubMed Central

    Diener, Christian; Garza Ramos Martínez, Georgina; Moreno Blas, Daniel; Castillo González, David A.; Corzo, Gerardo; Castro-Obregon, Susana; Del Rio, Gabriel

    2016-01-01

    Multifunctionality is a common trait of many natural proteins and peptides, yet the rules to generate such multifunctionality remain unclear. We propose that the rules defining some protein/peptide functions are compatible. To explore this hypothesis, we trained a computational method to predict cell-penetrating peptides at the sequence level and learned that antimicrobial peptides and DNA-binding proteins are compatible with the rules of our predictor. Based on this finding, we expected that designing peptides for CPP activity may render AMP and DNA-binding activities. To test this prediction, we designed peptides that embedded two independent functional domains (nuclear localization and yeast pheromone activity), linked by optimizing their composition to fit the rules characterizing cell-penetrating peptides. These peptides presented effective cell penetration, DNA-binding, pheromone and antimicrobial activities, thus confirming the effectiveness of our computational approach to design multifunctional peptides with potential therapeutic uses. Our computational implementation is available at http://bis.ifc.unam.mx/en/software/dcf. PMID:27096600

  8. Effective Design of Multifunctional Peptides by Combining Compatible Functions.

    PubMed

    Diener, Christian; Garza Ramos Martínez, Georgina; Moreno Blas, Daniel; Castillo González, David A; Corzo, Gerardo; Castro-Obregon, Susana; Del Rio, Gabriel

    2016-04-01

    Multifunctionality is a common trait of many natural proteins and peptides, yet the rules to generate such multifunctionality remain unclear. We propose that the rules defining some protein/peptide functions are compatible. To explore this hypothesis, we trained a computational method to predict cell-penetrating peptides at the sequence level and learned that antimicrobial peptides and DNA-binding proteins are compatible with the rules of our predictor. Based on this finding, we expected that designing peptides for CPP activity may render AMP and DNA-binding activities. To test this prediction, we designed peptides that embedded two independent functional domains (nuclear localization and yeast pheromone activity), linked by optimizing their composition to fit the rules characterizing cell-penetrating peptides. These peptides presented effective cell penetration, DNA-binding, pheromone and antimicrobial activities, thus confirming the effectiveness of our computational approach to design multifunctional peptides with potential therapeutic uses. Our computational implementation is available at http://bis.ifc.unam.mx/en/software/dcf.

  9. Computational design of receptor and sensor proteins with novel functions

    NASA Astrophysics Data System (ADS)

    Looger, Loren L.; Dwyer, Mary A.; Smith, James J.; Hellinga, Homme W.

    2003-05-01

    The formation of complexes between proteins and ligands is fundamental to biological processes at the molecular level. Manipulation of molecular recognition between ligands and proteins is therefore important for basic biological studies and has many biotechnological applications, including the construction of enzymes, biosensors, genetic circuits, signal transduction pathways and chiral separations. The systematic manipulation of binding sites remains a major challenge. Computational design offers enormous generality for engineering protein structure and function. Here we present a structure-based computational method that can drastically redesign protein ligand-binding specificities. This method was used to construct soluble receptors that bind trinitrotoluene, L-lactate or serotonin with high selectivity and affinity. These engineered receptors can function as biosensors for their new ligands; we also incorporated them into synthetic bacterial signal transduction pathways, regulating gene expression in response to extracellular trinitrotoluene or L-lactate. The use of various ligands and proteins shows that a high degree of control over biomolecular recognition has been established computationally. The biological and biosensing activities of the designed receptors illustrate potential applications of computational design.

  10. Reinforced Carbon Nanotubes.

    SciTech Connect

    Ren, Zhifen; Wen, Jian Guo; Lao, Jing Y.; Li, Wenzhi

    2005-06-28

    The present invention relates generally to reinforced carbon nanotubes, and more particularly to reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

  11. Token Reinforcement: A Review and Analysis

    ERIC Educational Resources Information Center

    Hackenberg, Timothy D.

    2009-01-01

    Token reinforcement procedures and concepts are reviewed and discussed in relation to general principles of behavior. The paper is divided into four main parts. Part I reviews and discusses previous research on token systems in relation to common behavioral functions--reinforcement, temporal organization, antecedent stimulus functions, and…

  12. Establishing operations and reinforcement effects.

    PubMed

    Vollmer, T R; Iwata, B A

    1991-01-01

    Positive reinforcement procedures have had a major impact on educational programs for the developmentally disabled; nevertheless, variation in reinforcer effectiveness both within and across individuals is a common phenomenon. This study examined one class of variables--establishing operations--that might influence the effectiveness of reinforcers. Five developmentally disabled adult males participated. Responding on one of two motor tasks--switch closure or block placement--was assessed during baseline, satiation, and deprivation conditions with respect to three classes of consequences: small food items, music, and social praise. Deprivation and satiation conditions were constructed so as not to alter significantly the normal course of events in a subject's day. For example, food deprivation entailed scheduling sessions just prior to a subject's regular lunch, and social deprivation involved limiting a subject's access to social interaction for 15 minutes, during which time the subject had access to an assortment of other activities. Results showed that each stimulus class functioned as reinforcement with different degrees of effectiveness during satiation versus deprivation conditions. These results are discussed in light of previous research on enhancement of reinforcer efficacy as well as the assessment and identification of functional reinforcers, and implications are presented for future research and client habilitation. PMID:1890048

  13. Functional and aesthetic approach to design of bird feeders

    NASA Astrophysics Data System (ADS)

    Kukhta, A.; Kukhta, M.

    2015-10-01

    Anthropogenic objects which load the urban environment negatively affects the human psyche. The alternative is attracting elements of the natural environment into urban environment, of which some of the most frequently identified are birds. Attracting birds in the city is possible by means of feeders and artificial nests, however, both must be harmonious. The aim of this study is to analyze the essential functions of the feeders, and their integration into the environmental design and development of the city. On this basis an original feeder which is convenient for use by birds and attracts people's attention is developed. In this paper we apply comparative analysis of different types of feeders encountered in Tomsk, bird watching, and evaluate usability of different types of feeders from the position of their convenience both for birds and human beings. Historical-cultural analysis for determining features of the architectural and environmental design of Tomsk is carried out, the method allows us to solve engineering problems. In this study the feeder convenient for bird use is designed which blends harmoniously with the architectural design of Tomsk.

  14. ATRP in the design of functional materials for biomedical applications

    PubMed Central

    Siegwart, Daniel J.; Oh, Jung Kwon; Matyjaszewski, Krzysztof

    2013-01-01

    Atom Transfer Radical Polymerization (ATRP) is an effective technique for the design and preparation of multifunctional, nanostructured materials for a variety of applications in biology and medicine. ATRP enables precise control over macromolecular structure, order, and functionality, which are important considerations for emerging biomedical designs. This article reviews recent advances in the preparation of polymer-based nanomaterials using ATRP, including polymer bioconjugates, block copolymer-based drug delivery systems, cross-linked microgels/nanogels, diagnostic and imaging platforms, tissue engineering hydrogels, and degradable polymers. It is envisioned that precise engineering at the molecular level will translate to tailored macroscopic physical properties, thus enabling control of the key elements for realized biomedical applications. PMID:23525884

  15. Functional Analysis of Erratic Body Movement Maintained by Visual Stimulation: Incorporating Conjugate Reinforcement Into a Paired-Stimulus Preference Assessment

    ERIC Educational Resources Information Center

    Rapp, John T.; Dozier, Claudia L.; Carr, James E.; Patel, Meeta R.; Enloe, Kimberly A.

    2004-01-01

    A concurrent-operants design was used to analyze the repetitive behavior of observing reflective surfaces while simultaneously engaging in erratic gross-motor body movements (EBMs) exhibited by a young boy diagnosed with autism. The assessment involved an evaluation of preference for controlled (i. e., the participant controlled the visual…

  16. Single-molecule electronics: from chemical design to functional devices.

    PubMed

    Sun, Lanlan; Diaz-Fernandez, Yuri A; Gschneidtner, Tina A; Westerlund, Fredrik; Lara-Avila, Samuel; Moth-Poulsen, Kasper

    2014-11-01

    The use of single molecules in electronics represents the next limit of miniaturisation of electronic devices, which would enable us to continue the trend of aggressive downscaling of silicon-based electronic devices. More significantly, the fabrication, understanding and control of fully functional circuits at the single-molecule level could also open up the possibility of using molecules as devices with novel, not-foreseen functionalities beyond complementary metal-oxide semiconductor technology (CMOS). This review aims at highlighting the chemical design and synthesis of single molecule devices as well as their electrical and structural characterization, including a historical overview and the developments during the last 5 years. We discuss experimental techniques for fabrication of single-molecule junctions, the potential application of single-molecule junctions as molecular switches, and general physical phenomena in single-molecule electronic devices.

  17. Rational design of functional and tunable oscillating enzymatic networks

    NASA Astrophysics Data System (ADS)

    Semenov, Sergey N.; Wong, Albert S. Y.; van der Made, R. Martijn; Postma, Sjoerd G. J.; Groen, Joost; van Roekel, Hendrik W. H.; de Greef, Tom F. A.; Huck, Wilhelm T. S.

    2015-02-01

    Life is sustained by complex systems operating far from equilibrium and consisting of a multitude of enzymatic reaction networks. The operating principles of biology's regulatory networks are known, but the in vitro assembly of out-of-equilibrium enzymatic reaction networks has proved challenging, limiting the development of synthetic systems showing autonomous behaviour. Here, we present a strategy for the rational design of programmable functional reaction networks that exhibit dynamic behaviour. We demonstrate that a network built around autoactivation and delayed negative feedback of the enzyme trypsin is capable of producing sustained oscillating concentrations of active trypsin for over 65 h. Other functions, such as amplification, analog-to-digital conversion and periodic control over equilibrium systems, are obtained by linking multiple network modules in microfluidic flow reactors. The methodology developed here provides a general framework to construct dissipative, tunable and robust (bio)chemical reaction networks.

  18. Accessing FMS Functionality: The Impact of Design on Learning

    NASA Technical Reports Server (NTRS)

    Fennell, Karl; Sherry, Lance; Roberts, Ralph, Jr.

    2004-01-01

    In modern commercial and military aircraft, the Flight Management System (FMS) lies at the heart of the functionality of the airplane. The nature of the FMS has also caused great difficulties learning and accessing this functionality. This study examines actual Air Force pilots who were qualified on the newly introduced advanced FMS and shows that the design of the system itself is a primary source of difficulty learning the system. Twenty representative tasks were selected which the pilots could be expected to accomplish on an ' actual flight. These tasks were analyzed using the RAFIV stage model (Sherry, Polson, et al. 2002). This analysis demonstrates that a great burden is placed on remembering complex reformulation of the task to function mapping. 65% of the tasks required retaining one access steps in memory to accomplish the task, 20% required two memorized access steps, and 15% required zero memorized access steps. The probability that a participant would make an access error on the tasks was: two memorized access steps - 74%, one memorized access step - 13%, and zero memorized access steps - 6%. Other factors were analyzed as well, including experience with the system and frequency of use. This completed the picture of a system with many memorized steps causing difficulty with the new system, especially when trying to fine where to access the correct function.

  19. The fabrication and tribological behavior of epoxy composites modified by the three-dimensional polyurethane sponge reinforced with dopamine functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Wang, Huaiyuan; Sun, Liyuan; Wang, Enqun; Zhu, Yixing; Zhu, Yanji

    2016-01-01

    Three-dimensional (3D) interpenetrating network structure epoxy composites were fabricated based on the modified carbon nanotube (CNT) reinforced flexible polyurethane (PU) sponge. CNTs were first functionalized with polydopamine (PDA) as revealed by TEM imaging, which is formed via the oxidative self-polymerization of dopamine. Then the functionalized CNTs (CNT-PDA) were successfully anchored on the skeleton surfaces of sponge, forming a continuous 3D carbon network. The interfacial interaction between modified PU sponge and epoxy (EP) matrix was significantly enhanced due to the covalent linkage of PDA. Improvement in the thermal stability of CNT-PDA/PU3D/EP composites was observed by TG analysis and related to the CNTs anchored on the skeleton of sponge. The tribological properties of pure EP, PU3D/EP and CNT-PDA/PU3D/EP composites were comparatively investigated in terms of different loads and velocities. Results demonstrated that CNT-PDA/PU3D/EP composites exhibited the best tribological performance owing to the strong interfacial interaction and the 3D carbon network structure. In particular, the wear resistance of CNT-PDA/PU3D/EP composites was 6.2 times and 3 times higher than those of pure EP and PU3D/EP composites under the applied load of 1.6 MPa, respectively.

  20. Evaluating the integrity of the reinforced concrete structure repaired by epoxy injection using simulated transfer function of impact-echo response

    SciTech Connect

    Cheng, Chia-Chi; Yu, Chih-peng; Wu, Jiunn-Hong; Hsu, Keng-Tsan; Ke, Ying-Tsu

    2014-02-18

    Cracks and honeycombs are often found inside reinforced concrete (RC) structure caused by excessive external force, or improper casting of concrete. The repairing method usually involves epoxy injection. The impact-echo method, which is a sensitive for detecting of the interior voids, may not be applicable to assess the integrity of the repaired member as both air and epoxy are less in acoustic impedances. In this study, the repaired RC structure was evaluated by the simulated transfer function of the IE displacement waveform where the R-wave displacement waveform is used as a base of a simulated force-time function. The effect of different thickness of the epoxy layer to the amplitude corresponding to the interface is studied by testing on specimen containing repaired naturally delaminated cracks with crack widths about 1 mm, 3 mm and 5 mm. The impact-echo responses were compared with the drilling cores at the test positions. The results showed the cracks were not fully filled with epoxy when the peak amplitude corresponding to the interface dropped less than 20%. The peak corresponding to the thicker epoxy layer tends to be larger in amplitude. A field study was also performed on a column damaged by earthquake before and after repairing.

  1. Functionalization of biomineral reinforcement in crustacean cuticle: Calcite orientation in the partes incisivae of the mandibles of Porcellio scaber and the supralittoral species Tylos europaeus (Oniscidea, Isopoda).

    PubMed

    Huber, Julia; Griesshaber, Erika; Nindiyasari, Fitriana; Schmahl, Wolfgang W; Ziegler, Andreas

    2015-05-01

    In arthropods the cuticle forms an exoskeleton with its physical and chemical properties adapted to functions of distinct skeletal elements. The cuticle of the partes incisivae (PI) in mandibles of terrestrial isopods is a composite of chitin-protein fibrils/fibres and minerals. It consists of an unmineralized tip, a middle region with organic fibrils reinforced mainly with amorphous calcium phosphate and a base region mineralized with amorphous calcium carbonate and calcite. In this study we extend our work on the structure and material properties of the incisive cuticle employing electron backscatter diffraction (EBSD), and investigate calcite orientation patterns in the PI of two terrestrial isopod species from different habitats. We trace small-scale differences in texture sharpness and calcite microstructure, and compare calcite organization and orientation patterns in the PI with those in the tergites of the same isopod species. We observe that in the PI calcite orientation, the degree of crystal alignment, and mode of crystalline domain assemblage is highly varied within short length scales. This contrasts to calcite organization in the tergite cuticle, where calcite has only one specific texture pattern. Such a large range in the variation of calcite organization has not been observed in other carbonate biological hard tissues, such as shells and teeth, where one specific texture and microstructure prevails. Thus, the investigated isopod species are able to control crystallization of the amorphous carbonate precursor in a differential way, most probably related to the function of the individual skeletal element and the animals' behavior.

  2. Methodology for Selection of Optimum Light Stringers in Functionally Graded Panels Designed for Prescribed Fundamental Frequency or Buckling Load

    NASA Astrophysics Data System (ADS)

    Birman, Victor; Byrd, Larry W.

    2008-02-01

    The interest to functionally graded materials (FGM) and structures has been generated by their potential advantages, including enhanced thermal properties, reduced or eliminated delamination concerns, a potential for an improved stress distribution, etc. Various aspects of the processing, design, micromechanics and analysis of FGM have been outlined in a number of reviews, mentioned here are [1-3]. In particular, functionally graded panels may be advantageous compared to their conventional counterparts in numerous applications. However, a typical FGM panel is asymmetric about its middle plane resulting in lower buckling loads and fundamental frequencies as well as higher stresses and deformations than the counterpart with a symmetric distribution of the same constituents. The reduced stiffness of FGM panels can be compensated by reinforcing them with stringers. For example, metallic stringers at the metal-rich surface of a FGM ceramic-metal panel may provide an efficient solution enabling a designer to increase both buckling loads as well as natural frequencies. The list of studies on optimization of FGM is extensive as could be anticipated for such tailored structural elements. For example, recent papers by Batra and his collaborators present optimization of the natural frequencies of a FGM plate through material grading [4] and through the graded fiber orientation [5]. The present paper is concerned with an optimum design of the system of stringers for a specified FGM panel. The task is to design the lightest system of stringers enabling the panel to achieve prescribed buckling loads or fundamental frequency.

  3. Designing functional metalloproteins: from structural to catalytic metal sites.

    PubMed

    Zastrow, Melissa L; Pecoraro, Vincent L

    2013-09-01

    Metalloenzymes efficiently catalyze some of the most important and difficult reactions in nature. For many years, coordination chemists have effectively used small molecule models to understand these systems. More recently, protein design has been shown to be an effective approach for mimicking metal coordination environments. Since the first designed proteins were reported, much success has been seen for incorporating metal sites into proteins and attaining the desired coordination environment but until recently, this has been with a lack of significant catalytic activity. Now there are examples of designed metalloproteins that, although not yet reaching the activity of native enzymes, are considerably closer. In this review, we highlight work leading up to the design of a small metalloprotein containing two metal sites, one for structural stability (HgS3) and the other a separate catalytic zinc site to mimic carbonic anhydrase activity (ZnN3O). The first section will describe previous studies that allowed for a high affinity thiolate site that binds heavy metals in a way that stabilizes three-stranded coiled coils. The second section will examine ways of preparing histidine rich environments that lead to metal based hydrolytic catalysts. We will also discuss other recent examples of the design of structural metal sites and functional metalloenzymes. Our work demonstrates that attaining the proper first coordination geometry of a metal site can lead to a significant fraction of catalytic activity, apparently independent of the type of secondary structure of the surrounding protein environment. We are now in a position to begin to meet the challenge of building a metalloenzyme systematically from the bottom-up by engineering and analyzing interactions directly around the metal site and beyond.

  4. Structural Behavior of Concrete Beams Reinforced with Basalt Fiber Reinforced Polymer (BFRP) Bars

    NASA Astrophysics Data System (ADS)

    Ovitigala, Thilan

    The main challenge for civil engineers is to provide sustainable, environmentally friendly and financially feasible structures to the society. Finding new materials such as fiber reinforced polymer (FRP) material that can fulfill the above requirements is a must. FRP material was expensive and it was limited to niche markets such as space shuttles and air industry in the 1960s. Over the time, it became cheaper and spread to other industries such as sporting goods in the 1980-1990, and then towards the infrastructure industry. Design and construction guidelines are available for carbon fiber reinforced polymer (CFRP), aramid fiber reinforced polymer (AFRP) and glass fiber reinforced polymer (GFRP) and they are currently used in structural applications. Since FRP is linear elastic brittle material, design guidelines for the steel reinforcement are not valid for FRP materials. Corrosion of steel reinforcement affects the durability of the concrete structures. FRP reinforcement is identified as an alternative to steel reinforcement in corrosive environments. Although basalt fiber reinforced polymer (BFRP) has many advantages over other FRP materials, but limited studies have been done. These studies didn't include larger BFRP bar diameters that are mostly used in practice. Therefore, larger beam sizes with larger BFRP reinforcement bar diameters are needed to investigate the flexural and shear behavior of BFRP reinforced concrete beams. Also, shear behavior of BFRP reinforced concrete beams was not yet studied. Experimental testing of mechanical properties and bond strength of BFRP bars and flexural and shear behavior of BFRP reinforced concrete beams are needed to include BFRP reinforcement bars in the design codes. This study mainly focuses on the use of BFRP bars as internal reinforcement. The test results of the mechanical properties of BFRP reinforcement bars, the bond strength of BFRP reinforcement bars, and the flexural and shear behavior of concrete beams

  5. Harvesting bioenergy with rationally designed complex functional materials

    NASA Astrophysics Data System (ADS)

    Kuang, Liangju

    A key challenge in renewable energy is to capture, convert and store solar power with earth-abundant materials and environmentally benign technologies. The goal of this thesis is to develop rationally designed complex functional materials for bio-renewable energy applications. On one hand, photoconversion membrane proteins (MPs) are nature's nanoengineering feats for renewable energy management. Harnessing their functions in synthetic systems could help understand, predict, and ultimately control matter and energy at the nanoscale. This is particularly enticing in the post-genome era as recombinant or cell-free expression of many MPs with high yields becomes possible. However, the labile nature of lipid bilayers renders them unsuitable for use in a broad range of engineered systems. A knowledge gap exists about how to design robust synthetic nanomembranes as lipid-bilayer-mimics to support MP functions and how to direct hierarchical MP reconstitution into those membranes to form 2-D or 3-D ordered proteomembrane arrays. Our studies on proteorhodopsin (PR) and bacterial reaction center (BRC), the two light-harvesting MPs, reveal that a charge-interaction-directed reconstitution (CIDR) mechanism induces spontaneous reconstitution of detergent-solubilized MPs into various amphiphilic block copolymer membranes, many of which have far superior stability than lipid bilayers. Our preliminary data also suggest MPs are not enslaved by the biological membranes they derive from; rather, the chemically nonspecific material properties of MP-supporting membranes may act as allosteric regulators. Versatile chemical designs are possible to modulate the conformational energetics of MPs, hence their transport performance in synthetic systems. On the other hand, microalgae are widely regarded as a sustainable feedstock for biofuel production. Microalgae-derived biofuels have not been commercialized yet because current technologies for microalgae dewatering add a huge cost to the

  6. Design of Functional Materials with Hydrogen-Bonded Host Frameworks

    NASA Astrophysics Data System (ADS)

    Soegiarto, Airon Cosanova

    The properties of molecular crystals are governed by the attributes of their molecular constituents and their solid-state arrangements, making control of crystal packing paramount when designing new materials with targeted functions. One effective strategy involves the use of robust host frameworks that encapsulate functional guests in molecular-scale cavities with tailored shapes, sizes, and chemical environments that enable systematic regulation of solid state properties. This approach promises to simplify the synthesis of molecular materials by decoupling the design of structure, provided by the host framework, from function, introduced by the guests. This thesis has reported a series of crystalline, structurally robust hosts based on guanidinium cations (G = (C(NH2) 3 +) and the sulfonate moieties of organodisulfonate anions (DS; S = -O3S-R-SO3 -). The host framework is based on layers of 2-D GS sheet, which are interconnected by the organic residues (pillars) of the disulfonates, thereby producing a lamellar architecture with inclusion cavities, occupied by guest molecules, between the sheets. Notably, the GDS inclusion compounds exhibit numerous architectures such as bilayer, simple brick, and zigzag brick -- each endowed with uniquely sized and shaped cavities, suggesting that the aggregation motifs of the included guests can be controlled within the host lattice. Furthermore, the selectivity toward different architectures is governed by the relative size of the pillars and guests, allowing the construction of a "structural phase diagram" which can be used to predict the solid-state architecture of untested host-guest combination. Consequently, a variety of functional molecules have been included in order to exploit these features. Chapter 3 reports the inclusion of polyconjugated molecules within the GDS hosts, generating various guest aggregation motifs -- edge-to-edge to face-to-edge to end-to-end. The effects of the various host and/or guest aggregation

  7. Ensemble algorithms in reinforcement learning.

    PubMed

    Wiering, Marco A; van Hasselt, Hado

    2008-08-01

    This paper describes several ensemble methods that combine multiple different reinforcement learning (RL) algorithms in a single agent. The aim is to enhance learning speed and final performance by combining the chosen actions or action probabilities of different RL algorithms. We designed and implemented four different ensemble methods combining the following five different RL algorithms: Q-learning, Sarsa, actor-critic (AC), QV-learning, and AC learning automaton. The intuitively designed ensemble methods, namely, majority voting (MV), rank voting, Boltzmann multiplication (BM), and Boltzmann addition, combine the policies derived from the value functions of the different RL algorithms, in contrast to previous work where ensemble methods have been used in RL for representing and learning a single value function. We show experiments on five maze problems of varying complexity; the first problem is simple, but the other four maze tasks are of a dynamic or partially observable nature. The results indicate that the BM and MV ensembles significantly outperform the single RL algorithms.

  8. Ensemble algorithms in reinforcement learning.

    PubMed

    Wiering, Marco A; van Hasselt, Hado

    2008-08-01

    This paper describes several ensemble methods that combine multiple different reinforcement learning (RL) algorithms in a single agent. The aim is to enhance learning speed and final performance by combining the chosen actions or action probabilities of different RL algorithms. We designed and implemented four different ensemble methods combining the following five different RL algorithms: Q-learning, Sarsa, actor-critic (AC), QV-learning, and AC learning automaton. The intuitively designed ensemble methods, namely, majority voting (MV), rank voting, Boltzmann multiplication (BM), and Boltzmann addition, combine the policies derived from the value functions of the different RL algorithms, in contrast to previous work where ensemble methods have been used in RL for representing and learning a single value function. We show experiments on five maze problems of varying complexity; the first problem is simple, but the other four maze tasks are of a dynamic or partially observable nature. The results indicate that the BM and MV ensembles significantly outperform the single RL algorithms. PMID:18632380

  9. Interfacial properties and design of functional energy materials.

    PubMed

    Sumpter, Bobby G; Liang, Liangbo; Nicolaï, Adrien; Meunier, Vincent

    2014-11-18

    CONSPECTUS: The vital importance of energy to society continues to demand a relentless pursuit of energy responsive materials that can bridge fundamental chemical structures at the molecular level and achieve improved functionality and performance. This demand can potentially be realized by harnessing the power of self-assembly, a spontaneous process where molecules or much larger entities form ordered aggregates as a consequence of predominately noncovalent (weak) interactions. Self-assembly is the key to bottom-up design of molecular devices, because the nearly atomic-level control is very difficult to realize in a top-down, for example, lithographic, approach. However, while function in simple systems such as single crystals can often be evaluated a priori, predicting the function of the great variety of self-assembled molecular architectures is complicated by the lack of understanding and control over nanoscale interactions, mesoscale architectures, and macroscale order. To establish a foundation toward delivering practical solutions, it is critical to develop an understanding of the chemical and physical mechanisms responsible for the self-assembly of molecular and hybrid materials on various support substrates. Typical molecular self-assembly involves noncovalent intermolecular and substrate-molecule interactions. These interactions remain poorly understood, due to the combination of many-body interactions compounded by local or collective influences from the substrate atomic lattice and electronic structure. Progress toward unraveling the underlying physicochemical processes that control the structure and macroscopic physical, chemical, mechanical, electrical, and transport properties of materials increasingly requires tight integration of theory, modeling, and simulation with precision synthesis, advanced experimental characterization, and device measurements. Theory, modeling, and simulation can accelerate the process of materials understanding and design

  10. Interfacial properties and design of functional energy materials.

    PubMed

    Sumpter, Bobby G; Liang, Liangbo; Nicolaï, Adrien; Meunier, Vincent

    2014-11-18

    CONSPECTUS: The vital importance of energy to society continues to demand a relentless pursuit of energy responsive materials that can bridge fundamental chemical structures at the molecular level and achieve improved functionality and performance. This demand can potentially be realized by harnessing the power of self-assembly, a spontaneous process where molecules or much larger entities form ordered aggregates as a consequence of predominately noncovalent (weak) interactions. Self-assembly is the key to bottom-up design of molecular devices, because the nearly atomic-level control is very difficult to realize in a top-down, for example, lithographic, approach. However, while function in simple systems such as single crystals can often be evaluated a priori, predicting the function of the great variety of self-assembled molecular architectures is complicated by the lack of understanding and control over nanoscale interactions, mesoscale architectures, and macroscale order. To establish a foundation toward delivering practical solutions, it is critical to develop an understanding of the chemical and physical mechanisms responsible for the self-assembly of molecular and hybrid materials on various support substrates. Typical molecular self-assembly involves noncovalent intermolecular and substrate-molecule interactions. These interactions remain poorly understood, due to the combination of many-body interactions compounded by local or collective influences from the substrate atomic lattice and electronic structure. Progress toward unraveling the underlying physicochemical processes that control the structure and macroscopic physical, chemical, mechanical, electrical, and transport properties of materials increasingly requires tight integration of theory, modeling, and simulation with precision synthesis, advanced experimental characterization, and device measurements. Theory, modeling, and simulation can accelerate the process of materials understanding and design

  11. Test-specific control conditions for functional analyses.

    PubMed

    Fahmie, Tara A; Iwata, Brian A; Querim, Angie C; Harper, Jill M

    2013-01-01

    Most functional analyses of problem behavior include a common condition (play or noncontingent reinforcement) as a control for both positive and negative reinforcement. However, test-specific conditions that control for each potential source of reinforcement may be beneficial occasionally. We compared responding during alone, ignore, play, and differential reinforcement of other behavior (DRO) control conditions for individuals whose problem behavior was maintained by positive or negative reinforcement. Results showed that all of the conditions were effective controls for problem behavior maintained by positive reinforcement; however, the DRO condition was consistently ineffective as a control for problem behavior maintained by negative reinforcement. Implications for the design of functional analyses and future research are discussed.

  12. Relationship between intracortical electrode design and chronic recording function.

    PubMed

    Karumbaiah, Lohitash; Saxena, Tarun; Carlson, David; Patil, Ketki; Patkar, Radhika; Gaupp, Eric A; Betancur, Martha; Stanley, Garrett B; Carin, Lawrence; Bellamkonda, Ravi V

    2013-11-01

    Intracortical electrodes record neural signals directly from local populations of neurons in the brain, and conduct them to external electronics that control prosthetics. However, the relationship between electrode design, defined by shape, size and tethering; and long-term (chronic) stability of the neuron-electrode interface is poorly understood. Here, we studied the effects of various commercially available intracortical electrode designs that vary in shape (cylindrical, planar), size (15 μm, 50 μm and 75 μm), and tethering [electrode connections to connector with (tethered) and without tethering cable (untethered)] using histological, transcriptomic, and electrophysiological analyses over acute (3 day) and chronic (12 week) timepoints. Quantitative analysis of histological sections indicated that Michigan 50 μm (M50) and Michigan tethered (MT) electrodes induced significantly (p < 0.01) higher glial scarring, and lesser survival of neurons in regions of blood-brain barrier (BBB) breach when compared to microwire (MW) and Michigan 15 μm (M15) electrodes acutely and chronically. Gene expression analysis of the neurotoxic cytokines interleukin (Il)1 (Il1α, Il1β), Il6, Il17 (Il17a, Il17b, Il17f), and tumor necrosis factor alpha (Tnf) indicated that MW electrodes induced significantly (p < 0.05) reduced expression of these transcripts when compared to M15, M50 and FMAA electrodes chronically. Finally, electrophysiological assessment of electrode function indicated that MW electrodes performed significantly (p < 0.05) better than all other electrodes over a period of 12 weeks. These studies reveal that intracortical electrodes with smaller size, cylindrical shape, and without tethering cables produce significantly diminished inflammatory responses when compared to large, planar and tethered electrodes. These studies provide a platform for the rational design and assessment of chronically functional intracortical electrode implants in the future. PMID:23891081

  13. Functional optimization of gene clusters by combinatorial design and assembly.

    PubMed

    Smanski, Michael J; Bhatia, Swapnil; Zhao, Dehua; Park, YongJin; B A Woodruff, Lauren; Giannoukos, Georgia; Ciulla, Dawn; Busby, Michele; Calderon, Johnathan; Nicol, Robert; Gordon, D Benjamin; Densmore, Douglas; Voigt, Christopher A

    2014-12-01

    Large microbial gene clusters encode useful functions, including energy utilization and natural product biosynthesis, but genetic manipulation of such systems is slow, difficult and complicated by complex regulation. We exploit the modularity of a refactored Klebsiella oxytoca nitrogen fixation (nif) gene cluster (16 genes, 103 parts) to build genetic permutations that could not be achieved by starting from the wild-type cluster. Constraint-based combinatorial design and DNA assembly are used to build libraries of radically different cluster architectures by varying part choice, gene order, gene orientation and operon occupancy. We construct 84 variants of the nifUSVWZM operon, 145 variants of the nifHDKY operon, 155 variants of the nifHDKYENJ operon and 122 variants of the complete 16-gene pathway. The performance and behavior of these variants are characterized by nitrogenase assay and strand-specific RNA sequencing (RNA-seq), and the results are incorporated into subsequent design cycles. We have produced a fully synthetic cluster that recovers 57% of wild-type activity. Our approach allows the performance of genetic parts to be quantified simultaneously in hundreds of genetic contexts. This parallelized design-build-test-learn cycle, which can access previously unattainable regions of genetic space, should provide a useful, fast tool for genetic optimization and hypothesis testing.

  14. Impact of Functional Group Modifications on Designer Phenethylamine Induced Hyperthermia.

    PubMed

    Grecco, Gregory G; Sprague, Jon E

    2016-05-16

    The popularity of designer phenethylamines such as synthetic cathinones ("bath salts") has led to increased reports of life-threatening hyperthermia. The diversity of chemical modifications has resulted in the toxicological profile of most synthetic cathinones being mostly uncharacterized. Here, we investigated the thermogenic effects of six recently identified designer phenethylamines (4-methylmethamphetamine, methylone, mephedrone, butylone, pentylone, and MDPV) and compared these effects to the established thermogenic agent 3,4-methylenedioxymethamphetamine (MDMA). Specifically, we determined the impact of a β-ketone, α-alkyl, or pyrrolidine functional group on core-body temperature changes. Sprague-Dawley rats (n = 5-6) were administered a dose (30 mg/kg, sc) of a designer phenethylamine or MDMA, and core body temperature measurements were recorded at 30 min intervals for 150 min post treatment. MDMA elicited the greatest maximum temperature change (ΔTmax), and this effect was significantly greater than that of its β-ketone analogue, methylone. Temperature-area under the curves (TAUCs) and ΔTmax were also significantly different between 4-methylmethamphetamine (4-MMA) and its β-ketone analogue mephedrone. Lengthening the α-alkyl chain of methylone to produce butylone and pentylone significantly attenuated the thermogenic response on both TAUCs and ΔTmax compared to those of methylone; however, butylone and pentylone were not different from each other. Pyrrolidine substitution on the N-terminus of pentylone produces 3,4-methylenedioxypyrovalerone (MDPV), which did not significantly alter core body temperature. Thermogenic comparisons of MDMA vs methylone and 4-MMA vs mephedrone indicate that oxidation at the benzylic position significantly attenuates the hyperthermic response. Furthermore, either extending the α-alkyl chain to ethyl and propyl (butylone and pentylone, respectively) or extending the α-alkyl chain and adding a pyrrolidine on the N

  15. Optimal Design of Functionally Graded Metallic Foam Insulations

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.; Sankar, Bhavani; Venkataraman, Satchi; Zhu, Huadong

    2002-01-01

    The focus of our work has been on developing an insight into the physics that govern the optimum design of thermal insulation for use in thermal protection systems of launch vehicle. Of particular interest was to obtain optimality criteria for designing foam insulations that have density (or porosity) distributions through the thickness for optimum thermal performance. We investigate the optimum design of functionally graded thermal insulation for steady state heat transfer through the foam. We showed that the heat transfer in the foam has competing modes, of radiation and conduction. The problem assumed a fixed inside temperature of 400 K and varied the aerodynamic surface heating on the outside surface from 0.2 to 1.0 MW/sq m. The thermal insulation develops a high temperature gradient through the thickness. Investigation of the model developed for heat conduction in foams showed that at high temperatures (as on outside wall) intracellular radiation dominates the heat transfer in the foam. Minimizing radiation requires reducing the pore size, which increases the density of the foam. At low temperatures (as on the inside wall), intracellular conduction (of the metal and air) dominates the heat transfer. Minimizing conduction requires increasing the pore size. This indicated that for every temperature there was an optimum value of density that minimized the heat transfer coefficient. Two optimization studies were performed. One was to minimize the heat transmitted though a fixed thickness insulation by varying density profiles. The second was to obtain the minimum mass insulation for specified thickness. Analytical optimality criteria were derived for the cases considered. The optimality condition for minimum heat transfer required that at each temperature we find the density that minimizes the heat transfer coefficient. Once a relationship between the optimum heat transfer coefficient and the temperature was found, the design problem reduced to the solution of a

  16. Bioinspiration from fish for smart material design and function

    NASA Astrophysics Data System (ADS)

    Lauder, G. V.; Madden, P. G. A.; Tangorra, J. L.; Anderson, E.; Baker, T. V.

    2011-09-01

    Fish are a potentially rich source of inspiration for the design of smart materials. Fish exemplify the use of flexible materials to generate forces during locomotion, and a hallmark of fish functional design is the use of body and fin deformation to power propulsion and maneuvering. As a result of nearly 500 million years of evolutionary experimentation, fish design has a number of interesting features of note to materials engineers. In this paper we first provide a brief general overview of some key features of the mechanical design of fish, and then focus on two key properties of fish: the bilaminar mechanical design of bony fish fin rays that allows active muscular control of curvature, and the role of body flexibility in propulsion. After describing the anatomy of bony fish fin rays, we provide new data on their mechanical properties. Three-point bending tests and measurement of force inputs to and outputs from the fin rays show that these fin rays are effective displacement transducers. Fin rays in different regions of the fin differ considerably in their material properties, and in the curvature produced by displacement of one of the two fin ray halves. The mean modulus for the proximal (basal) region of the fin rays was 1.34 GPa, but this varied from 0.24 to 3.7 GPa for different fin rays. The distal fin region was less stiff, and moduli for the different fin rays measured varied from 0.11 to 0.67 GPa. These data are similar to those for human tendons (modulus around 0.5 GPa). Analysis of propulsion using flexible foils controlled using a robotic flapping device allows investigation of the effect of altering flexural stiffness on swimming speed. Flexible foils with the leading edge moved in a heave show a distinct peak in propulsive performance, while the addition of pitch input produces a broad plateau where the swimming speed is relatively unaffected by the flexural stiffness. Our understanding of the material design of fish and the control of tissue

  17. Matching and conditioned reinforcement rate.

    PubMed

    Shahan, Timothy A; Podlesnik, Christopher A; Jimenez-Gomez, Corina

    2006-03-01

    Attempts to examine the effects of variations in relative conditioned reinforcement rate on choice have been confounded by changes in rates of primary reinforcement or changes in the value of the conditioned reinforcer. To avoid these problems, this experiment used concurrent observing responses to examine sensitivity of choice to relative conditioned reinforcement rate. In the absence of observing responses, unsignaled periods of food delivery on a variable-interval 90-s schedule alternated with extinction on a center key (i.e., a mixed schedule was in effect). Two concurrently available observing responses produced 15-s access to a stimulus differentially associated with the schedule of food delivery (S+). The relative rate of S+ deliveries arranged by independent variable-interval schedules for the two observing responses varied across conditions. The relation between the ratio of observing responses and the ratio of S+ deliveries was well described by the generalized matching law, despite the absence of changes in the rate of food delivery. In addition, the value of the S+ deliveries likely remained constant across conditions because the ratio of S+ to mixed schedule food deliveries remained constant. Assuming that S+ deliveries serve as conditioned reinforcers, these findings are consistent with the functional similarity between primary and conditioned reinforcers suggested by general choice theories based on the concatenated matching law (e.g., contextual choice and hyperbolic value-added models). These findings are inconsistent with delay reduction theory, which has no terms for the effects of rate of conditioned reinforcement in the absence of changes in rate of primary reinforcement.

  18. Positive reinforcement as treatment for problem behavior maintained by negative reinforcement.

    PubMed

    Payne, Steven W; Dozier, Claudia L

    2013-01-01

    Functional analyses (Iwata, Dorsey, Slifer, Bauman, & Richman, 1982/1994) have been useful in determining function-based treatments for problem behavior. Recently, however, researchers have evaluated the use of arbitrary reinforcers (e.g., positive reinforcers) to decrease problem behavior maintained by negative reinforcement, particularly in the absence of extinction. We provide a brief review of recent research on this topic and discuss implications regarding mechanisms, practice, and future research directions.

  19. An Atomistic Statistically Effective Energy Function for Computational Protein Design.

    PubMed

    Topham, Christopher M; Barbe, Sophie; André, Isabelle

    2016-08-01

    Shortcomings in the definition of effective free-energy surfaces of proteins are recognized to be a major contributory factor responsible for the low success rates of existing automated methods for computational protein design (CPD). The formulation of an atomistic statistically effective energy function (SEEF) suitable for a wide range of CPD applications and its derivation from structural data extracted from protein domains and protein-ligand complexes are described here. The proposed energy function comprises nonlocal atom-based and local residue-based SEEFs, which are coupled using a novel atom connectivity number factor to scale short-range, pairwise, nonbonded atomic interaction energies and a surface-area-dependent cavity energy term. This energy function was used to derive additional SEEFs describing the unfolded-state ensemble of any given residue sequence based on computed average energies for partially or fully solvent-exposed fragments in regions of irregular structure in native proteins. Relative thermal stabilities of 97 T4 bacteriophage lysozyme mutants were predicted from calculated energy differences for folded and unfolded states with an average unsigned error (AUE) of 0.84 kcal mol(-1) when compared to experiment. To demonstrate the utility of the energy function for CPD, further validation was carried out in tests of its capacity to recover cognate protein sequences and to discriminate native and near-native protein folds, loop conformers, and small-molecule ligand binding poses from non-native benchmark decoys. Experimental ligand binding free energies for a diverse set of 80 protein complexes could be predicted with an AUE of 2.4 kcal mol(-1) using an additional energy term to account for the loss in ligand configurational entropy upon binding. The atomistic SEEF is expected to improve the accuracy of residue-based coarse-grained SEEFs currently used in CPD and to extend the range of applications of extant atom-based protein statistical

  20. An Atomistic Statistically Effective Energy Function for Computational Protein Design.

    PubMed

    Topham, Christopher M; Barbe, Sophie; André, Isabelle

    2016-08-01

    Shortcomings in the definition of effective free-energy surfaces of proteins are recognized to be a major contributory factor responsible for the low success rates of existing automated methods for computational protein design (CPD). The formulation of an atomistic statistically effective energy function (SEEF) suitable for a wide range of CPD applications and its derivation from structural data extracted from protein domains and protein-ligand complexes are described here. The proposed energy function comprises nonlocal atom-based and local residue-based SEEFs, which are coupled using a novel atom connectivity number factor to scale short-range, pairwise, nonbonded atomic interaction energies and a surface-area-dependent cavity energy term. This energy function was used to derive additional SEEFs describing the unfolded-state ensemble of any given residue sequence based on computed average energies for partially or fully solvent-exposed fragments in regions of irregular structure in native proteins. Relative thermal stabilities of 97 T4 bacteriophage lysozyme mutants were predicted from calculated energy differences for folded and unfolded states with an average unsigned error (AUE) of 0.84 kcal mol(-1) when compared to experiment. To demonstrate the utility of the energy function for CPD, further validation was carried out in tests of its capacity to recover cognate protein sequences and to discriminate native and near-native protein folds, loop conformers, and small-molecule ligand binding poses from non-native benchmark decoys. Experimental ligand binding free energies for a diverse set of 80 protein complexes could be predicted with an AUE of 2.4 kcal mol(-1) using an additional energy term to account for the loss in ligand configurational entropy upon binding. The atomistic SEEF is expected to improve the accuracy of residue-based coarse-grained SEEFs currently used in CPD and to extend the range of applications of extant atom-based protein statistical

  1. Epoxy elastomers reinforced with functionalized multi-walled carbon nanotubes as stimuli-responsive shape memory materials

    NASA Astrophysics Data System (ADS)

    Lama, G. C.; Nasti, G.; Ambrogi, V.; Cerruti, P.; Gentile, G.; Carfagna, C.

    2014-05-01

    In this work, the incorporation of multiwalled carbon nanotubes (MWCNT) into epoxy-based elastomers was carried out in order to obtain nanocomposite systems with shape memory effect. For the preparation of elastomeric matrices, p-bis(2,3-epoxypropoxy)-α-methylstilbene (DOMS) was cured with sebacic acid. DOMS was synthesized in our laboratory and it is characterized by a rigid-rod, potentially liquid crystalline structure. A lightly cross-linked liquid crystalline elastomer was obtained. As for nanocomposites, variable amounts (0.75, 1.50, 3.0, 6.0, 12.0 wt.%) of COOH-MWCNTs were employed. In order to improve the nanotubes dispersibility and the interfacial adhesion with the epoxy matrix, an optimized two-step procedure was developed, which consisted in grafting the epoxy monomer onto the nanotube surface and then curing it in presence of crosslinking agent. DOMS-functionalized MWCNT were characterized through solvent dispersion experiments, FTIR spectroscopy and TGA analysis, which demonstrated the occurred covalent functionalization of the nanotubes with the epoxy monomers. The morphological analysis through electron microscopy demonstrated that this was an efficient strategy to improve the dispersion of nanotubes within the matrix. The second part of the work was devoted to the structural, thermal, mechanical and electric characterization of elastomeric nanocomposites. The results indicated a general improvement of properties of nanocomposites. Also, independently of the nanotube content, a smectic phase formed. Shape memory features of LC systems were also evaluated. It was demonstrated the shape could be recovered through heating, solvent immersion, as well as upon the application of an electrical field.

  2. Epoxy elastomers reinforced with functionalized multi-walled carbon nanotubes as stimuli-responsive shape memory materials

    SciTech Connect

    Lama, G. C.; Nasti, G.; Cerruti, P.; Gentile, G.; Carfagna, C.; Ambrogi, V.

    2014-05-15

    In this work, the incorporation of multiwalled carbon nanotubes (MWCNT) into epoxy-based elastomers was carried out in order to obtain nanocomposite systems with shape memory effect. For the preparation of elastomeric matrices, p-bis(2,3-epoxypropoxy)-α-methylstilbene (DOMS) was cured with sebacic acid. DOMS was synthesized in our laboratory and it is characterized by a rigid-rod, potentially liquid crystalline structure. A lightly cross-linked liquid crystalline elastomer was obtained. As for nanocomposites, variable amounts (0.75, 1.50, 3.0, 6.0, 12.0 wt.%) of COOH-MWCNTs were employed. In order to improve the nanotubes dispersibility and the interfacial adhesion with the epoxy matrix, an optimized two-step procedure was developed, which consisted in grafting the epoxy monomer onto the nanotube surface and then curing it in presence of crosslinking agent. DOMS-functionalized MWCNT were characterized through solvent dispersion experiments, FTIR spectroscopy and TGA analysis, which demonstrated the occurred covalent functionalization of the nanotubes with the epoxy monomers. The morphological analysis through electron microscopy demonstrated that this was an efficient strategy to improve the dispersion of nanotubes within the matrix. The second part of the work was devoted to the structural, thermal, mechanical and electric characterization of elastomeric nanocomposites. The results indicated a general improvement of properties of nanocomposites. Also, independently of the nanotube content, a smectic phase formed. Shape memory features of LC systems were also evaluated. It was demonstrated the shape could be recovered through heating, solvent immersion, as well as upon the application of an electrical field.

  3. Reinforcement of vocalizations through contingent vocal imitation.

    PubMed

    Pelaez, Martha; Virues-Ortega, Javier; Gewirtz, Jacob L

    2011-01-01

    Maternal vocal imitation of infant vocalizations is highly prevalent during face-to-face interactions of infants and their caregivers. Although maternal vocal imitation has been associated with later verbal development, its potentially reinforcing effect on infant vocalizations has not been explored experimentally. This study examined the reinforcing effect of maternal vocal imitation of infant vocalizations using a reversal probe BAB design. Eleven 3- to 8-month-old infants at high risk for developmental delays experienced contingent maternal vocal imitation during reinforcement conditions. Differential reinforcement of other behavior served as the control condition. The behavior of 10 infants showed evidence of a reinforcement effect. Results indicated that vocal imitations can serve to reinforce early infant vocalizations. PMID:21541136

  4. Reinforcement of vocalizations through contingent vocal imitation.

    PubMed

    Pelaez, Martha; Virues-Ortega, Javier; Gewirtz, Jacob L

    2011-01-01

    Maternal vocal imitation of infant vocalizations is highly prevalent during face-to-face interactions of infants and their caregivers. Although maternal vocal imitation has been associated with later verbal development, its potentially reinforcing effect on infant vocalizations has not been explored experimentally. This study examined the reinforcing effect of maternal vocal imitation of infant vocalizations using a reversal probe BAB design. Eleven 3- to 8-month-old infants at high risk for developmental delays experienced contingent maternal vocal imitation during reinforcement conditions. Differential reinforcement of other behavior served as the control condition. The behavior of 10 infants showed evidence of a reinforcement effect. Results indicated that vocal imitations can serve to reinforce early infant vocalizations.

  5. Reliable distribution networks design with nonlinear fortification function

    NASA Astrophysics Data System (ADS)

    Li, Qingwei; Savachkin, Alex

    2016-03-01

    Distribution networks have been facing an increased exposure to the risk of unpredicted disruptions causing significant economic losses. The current literature features a limited number of studies considering fortification of network facilities. In this paper, we develop a reliable uncapacitated fixed-charge location model with fortification to support the design of distribution networks. The model considers heterogeneous facility failure probabilities, one layer of supplier backup, and facility fortification within a finite budget. Facility reliability improvement is modelled as a nonlinear function of fortification investment. The problem is formulated as a nonlinear mixed integer programming model proven to be ?-hard. A Lagrangian relaxation-based heuristic algorithm is developed and its computational efficiency for solving large-scale problems is demonstrated.

  6. An incremental design of radial basis function networks.

    PubMed

    Yu, Hao; Reiner, Philip D; Xie, Tiantian; Bartczak, Tomasz; Wilamowski, Bogdan M

    2014-10-01

    This paper proposes an offline algorithm for incrementally constructing and training radial basis function (RBF) networks. In each iteration of the error correction (ErrCor) algorithm, one RBF unit is added to fit and then eliminate the highest peak (or lowest valley) in the error surface. This process is repeated until a desired error level is reached. Experimental results on real world data sets show that the ErrCor algorithm designs very compact RBF networks compared with the other investigated algorithms. Several benchmark tests such as the duplicate patterns test and the two spiral problem were applied to show the robustness of the ErrCor algorithm. The proposed ErrCor algorithm generates very compact networks. This compactness leads to greatly reduced computation times of trained networks.

  7. Reinforcement of Existing Cast-Iron Structural Elements by Means of Fiber Reinforced Composites / Wzmacnianie Istniejących, Żeliwnych Elementów Konstrukcyjnych za Pomocą Włóknokompozytów

    NASA Astrophysics Data System (ADS)

    Marcinowski, Jakub; Różycki, Zbigniew

    2016-03-01

    The paperdeals with tubular, cast-iron columns which should be reinforced due to the planned new structural function of these elements. According to the requirements of the monument conservator the general appearance of columns should not be altered significantly. Reinforcement with an external, thin coating (sleeve or jacket) made of composite (carbon fibre reinforced polymer - CFRP) was proposed. Details of the proposedtechniquewerepresented. The reinforcementeffect was verifiedin destructivetestsperformed on two columns without reinforcement and the two other columns reinforced with the chosentechnique. Due to the expected very high load capacity of the axially loaded column, the test rig was designed in such a manner that the force could be applied on big eccentricity. For this purpose a specialbase was prepared(comp. Fig. 1). Destructivetests have confirmed the high effectiveness of the adopted strengthening technique.

  8. Design of Treatment Trials for Functional Gastrointestinal Disorders.

    PubMed

    Irvine, E Jan; Tack, Jan; Crowell, Michael D; Gwee, Kok Ann; Ke, Meiyun; Schmulson, Max J; Whitehead, William E; Spiegel, Brennan

    2016-05-01

    This article summarizes recent progress and regulatory guidance on design of trials to assess the efficacy of new therapies for functional gastrointestinal disorders (FGIDs). The double-masked, placebo-controlled, parallel-group design remains the accepted standard for evaluating treatment efficacy. A control group is essential, and a detailed description of the randomization process and concealed allocation method must be included in the study report. The control will most often be placebo, but for therapeutic procedures and for behavioral treatment trials, respectively, a sham procedure and control intervention with similar expectation of benefit, but lacking the treatment principle, are recommended. Investigators should be aware of, and attempt to minimize, expectancy effects (placebo, nocebo, precebo). The primary analysis should be based on the proportion of patients in each treatment arm who satisfy a treatment responder definition or a prespecified clinically meaningful change in a patient-reported outcome measure. Data analysis should use the intention-to-treat principle. Reporting of results should follow the Consolidated Standards for Reporting Trials guidelines and include secondary outcome measures to support or explain the primary outcome and an analysis of harms data. Trials should be registered in a public location before initiation and results should be published regardless of outcome.

  9. Designing and implementing customer-focused functional support teams

    SciTech Connect

    Levine, L.O.; Cejka, C.L.

    1995-02-01

    The contract services department of a U.S. Department of Energy research laboratory is radically revising how it serves its primary customers--the laboratory research and development staff. The department provides services that include contract research initiation (proposal preparation and contract negotiation) and acquisition of goods and services to support specific research projects. It previously provided these services with approximately 170 staff in four centralized functional units. In reorganizing, the department used a structured analysis and design process to categorize internal customers according to their unique attributes and specific support needs. Concurrently, it identified a number of conceptually distinct customer-focused units that could accomplish the contract processes in different ways and then chose a preferred concept for each customer category. The organizational concepts were designed to enhance customer service and improve staff morale and development opportunities. The new organization will have a total of 10 customer support units as well as other centralized services and activities. It will flatten the organizational structures and encourage more cooperation among contracts staff to meet customer needs for improved timeliness, communication, and teaming with researchers.

  10. Separated function RFQ beam dynamics design and commissioning

    NASA Astrophysics Data System (ADS)

    Kang, M. L.; Lu, Y. R.; Chen, J. E.; Zhu, K.; Wang, Z.; Yan, X. Q.; Guo, Z. Y.; Gao, S. L.; Peng, S. X.; Fang, J. X.

    2011-06-01

    Separated Function Radio Frequency Quadrupole (SFRFQ) accelerator is a new structure where diaphragms are loaded onto the quadrupole electrodes to form accelerating gaps, while the unmodulated RF quadrupole electric field provides transverse focusing. SFRFQ promises a higher accelerating efficiency than the conventional RFQ for heavy ions at low frequencies. In order to reduce reverse field and avoid RF sparking, an asymmetrical electrode and diaphragms designs were adopted. After simulation and RF design, a full scale SFRFQ prototype cavity with 14 βλ/2 cells has been constructed as a post-accelerator of the Peking University Integral Split Ring (ISR) RFQ. Beam commissioning was carried out to verify its feasibility. It accelerates O + beam from 64 to 103 keV/ u with a beam current exceeding 0.53 mA and the experimental results agree well with the simulation predictions by SFRFQCODEV1.0 [Z. Wang, J.E. Chen, Y.R. Lu, et al., Nucl. Instr. and Meth. A, 572, (2007) 596].

  11. Design of Functional Materials based on Liquid Crystalline Droplets

    PubMed Central

    Miller, Daniel S.; Wang, Xiaoguang; Abbott, Nicholas L.

    2014-01-01

    This brief perspective focuses on recent advances in the design of functional soft materials that are based on confinement of low molecular weight liquid crystals (LCs) within micrometer-sized droplets. While the ordering of LCs within micrometer-sized domains has been explored extensively in polymer-dispersed LC materials, recent studies performed with LC domains with precisely defined size and interfacial chemistry have unmasked observations of confinement-induced ordering of LCs that do not follow previously reported theoretical predictions. These new findings, which are enabled in part by advances in the preparation of LCs encapsulated in polymeric shells, are opening up new opportunities for the design of soft responsive materials based on surface-induced ordering transitions. These materials are also providing new insights into the self-assembly of biomolecular and colloidal species at defects formed by LCs confined to micrometer-sized domains. The studies presented in this perspective serve additionally to highlight gaps in knowledge regarding the ordering of LCs in confined systems. PMID:24882944

  12. Design of Treatment Trials for Functional Gastrointestinal Disorders.

    PubMed

    Irvine, E Jan; Tack, Jan; Crowell, Michael D; Gwee, Kok Ann; Ke, Meiyun; Schmulson, Max J; Whitehead, William E; Spiegel, Brennan

    2016-05-01

    This article summarizes recent progress and regulatory guidance on design of trials to assess the efficacy of new therapies for functional gastrointestinal disorders (FGIDs). The double-masked, placebo-controlled, parallel-group design remains the accepted standard for evaluating treatment efficacy. A control group is essential, and a detailed description of the randomization process and concealed allocation method must be included in the study report. The control will most often be placebo, but for therapeutic procedures and for behavioral treatment trials, respectively, a sham procedure and control intervention with similar expectation of benefit, but lacking the treatment principle, are recommended. Investigators should be aware of, and attempt to minimize, expectancy effects (placebo, nocebo, precebo). The primary analysis should be based on the proportion of patients in each treatment arm who satisfy a treatment responder definition or a prespecified clinically meaningful change in a patient-reported outcome measure. Data analysis should use the intention-to-treat principle. Reporting of results should follow the Consolidated Standards for Reporting Trials guidelines and include secondary outcome measures to support or explain the primary outcome and an analysis of harms data. Trials should be registered in a public location before initiation and results should be published regardless of outcome. PMID:27147123

  13. Design of smart functional apparel products for moxa moxibustion

    NASA Astrophysics Data System (ADS)

    Li, Li; Au, Wai-man; Ding, Feng; Wong, Kwok-shing

    2013-08-01

    Moxa Moxibustion is a common traditional Chinese therapy in which burning Moxa is applied to affected body areas. This method has been employed for thousands of years to achieve certain medical objectives, such as pain relief or antibacterial and anti-inflammatory effects. Its therapeutic effectiveness has been demonstrated successfully both in research and clinical studies. However, this traditional approach may cause undesirable side effects, for example: 1) burning of Moxa produces by-products such as smoke and ash; 2) patients are at risk of being burnt; 3) the active ingredients of the Moxa leaf oil are volatile, odorous, unstable in air and easy to dissipate, and difficult to store and transport; 4) it is inconvenient to operate. These side effects limit its further high-potential and high-value applications. This study is aimed at developing a multi-functional smart textile system that will adopt smart fabrics containing encapsulated Moxa oil integrated with thermally conductive materials to replace the conventional Moxa products. This will efficiently deliver the active ingredients of Moxa to a human body at optimum conditions, i.e., in a precise and controllable way, with maximum convenience and a high level of comfort. Doing so would solve the existing problems mentioned above. Both garment design skill and textile technology will be applied to Moxa Moxibustion textile to enhance the aesthetics and functionality. The smart garment performance will be assessed subjectively in a clinical trial and objectively by a number of instrumental methods.

  14. Behavior systems and reinforcement: an integrative approach.

    PubMed Central

    Timberlake, W

    1993-01-01

    Most traditional conceptions of reinforcement are based on a simple causal model in which responding is strengthened by the presentation of a reinforcer. I argue that reinforcement is better viewed as the outcome of constraint of a functioning causal system comprised of multiple interrelated causal sequences, complex linkages between causes and effects, and a set of initial conditions. Using a simplified system conception of the reinforcement situation, I review the similarities and drawbacks of traditional reinforcement models and analyze the recent contributions of cognitive, regulatory, and ecological approaches. Finally, I show how the concept of behavior systems can begin to incorporate both traditional and recent conceptions of reinforcement in an integrative approach. PMID:8354963

  15. ZnO-reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bionanocomposites with antimicrobial function for food packaging.

    PubMed

    Díez-Pascual, Ana M; Díez-Vicente, Angel L

    2014-06-25

    Biodegradable nanocomposites were prepared by adding ZnO nanoparticles to bacterial polyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) via solution casting technique. The morphology, thermal, mechanical, antibacterial, barrier, and migration properties of the nanocomposites were analyzed. The nanoparticles were uniformly dispersed within PHBV without the aid of coupling agents, and acted effectively as nucleating agents, raising the crystallization temperature and the level of crystallinity of the matrix while decreasing its crystallite size. A gradual rise in thermal stability was found with increasing ZnO loading, since the nanofillers hinder the diffusion of volatiles generated during the decomposition process. The nanocomposites displayed superior stiffness, strength, toughness, and glass transition temperature, whereas they displayed reduced water uptake and oxygen and water vapor permeability compared to the neat biopolymer, related to the strong matrix-nanofiller interfacial adhesion attained via hydrogen bonding interactions. At an optimal concentration of 4.0 wt % ZnO, the tensile strength and Young's and storage moduli showed a maximum that coincided with the highest crystallinity and the best barrier properties. PHBV/ZnO films showed antibacterial activity against human pathogen bacteria, and the effect on Escherichia coli was stronger than on Staphylococcus aureus. The overall migration levels of the nanocomposites in both nonpolar and polar simulants dropped upon increasing nanoparticle content, and were well below the limits required by the current normative for food packaging materials. These sustainable nanomaterials with antimicrobial function are very promising to be used as containers for beverage and food products as well as for disposable applications like cutlery or overwrap films.

  16. ZnO-reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bionanocomposites with antimicrobial function for food packaging.

    PubMed

    Díez-Pascual, Ana M; Díez-Vicente, Angel L

    2014-06-25

    Biodegradable nanocomposites were prepared by adding ZnO nanoparticles to bacterial polyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) via solution casting technique. The morphology, thermal, mechanical, antibacterial, barrier, and migration properties of the nanocomposites were analyzed. The nanoparticles were uniformly dispersed within PHBV without the aid of coupling agents, and acted effectively as nucleating agents, raising the crystallization temperature and the level of crystallinity of the matrix while decreasing its crystallite size. A gradual rise in thermal stability was found with increasing ZnO loading, since the nanofillers hinder the diffusion of volatiles generated during the decomposition process. The nanocomposites displayed superior stiffness, strength, toughness, and glass transition temperature, whereas they displayed reduced water uptake and oxygen and water vapor permeability compared to the neat biopolymer, related to the strong matrix-nanofiller interfacial adhesion attained via hydrogen bonding interactions. At an optimal concentration of 4.0 wt % ZnO, the tensile strength and Young's and storage moduli showed a maximum that coincided with the highest crystallinity and the best barrier properties. PHBV/ZnO films showed antibacterial activity against human pathogen bacteria, and the effect on Escherichia coli was stronger than on Staphylococcus aureus. The overall migration levels of the nanocomposites in both nonpolar and polar simulants dropped upon increasing nanoparticle content, and were well below the limits required by the current normative for food packaging materials. These sustainable nanomaterials with antimicrobial function are very promising to be used as containers for beverage and food products as well as for disposable applications like cutlery or overwrap films. PMID:24846876

  17. A Brief Opportunity to Run Does Not Function as a Reinforcer for Mice Selected for High Daily Wheel-running Rates

    PubMed Central

    Belke, Terry W; GarlandJr, Theodore

    2007-01-01

    Mice from replicate lines, selectively bred based on high daily wheel-running rates, run more total revolutions and at higher average speeds than do mice from nonselected control lines. Based on this difference it was assumed that selected mice would find the opportunity to run in a wheel a more efficacious consequence. To assess this assumption within an operant paradigm, mice must be trained to make a response to produce the opportunity to run as a consequence. In the present study an autoshaping procedure was used to compare the acquisition of lever pressing reinforced by the opportunity to run for a brief opportunity (i.e., 90 s) between selected and control mice and then, using an operant procedure, the effect of the duration of the opportunity to run on lever pressing was assessed by varying reinforcer duration over values of 90 s, 30 min, and 90 s. The reinforcement schedule was a ratio schedule (FR 1 or VR 3). Results from the autoshaping phase showed that more control mice met a criterion of responses on 50% of trials. During the operant phase, when reinforcer duration was 90 s, almost all control, but few selected mice completed a session of 20 reinforcers; however, when reinforcer duration was increased to 30 min almost all selected and control mice completed a session of 20 reinforcers. Taken together, these results suggest that selective breeding based on wheel-running rates over 24 hr may have altered the motivational system in a way that reduces the reinforcing value of shorter running durations. The implications of this finding for these mice as a model for attention deficit hyperactivity disorder (ADHD) are discussed. It also is proposed that there may be an inherent trade-off in the motivational system for activities of short versus long duration. PMID:17970415

  18. Combining noncontingent reinforcement and differential reinforcement schedules as treatment for aberrant behavior.

    PubMed

    Marcus, B A; Vollmer, T R

    1996-01-01

    Research has shown that noncontingent reinforcement (NCR) can be an effective behavior-reduction procedure when based on a functional analysis. The effects of NCR may be a result of elimination of the contingency between aberrant behavior and reinforcing consequences (extinction) or frequent and free access to reinforcers that may reduce the participant's motivation to engage in aberrant behaviors or mands. If motivation is momentarily reduced, behavior such as mands may not be sensitive to positive reinforcement. In this study, for 3 children with aberrant behavior maintained by tangible positive reinforcement, differential-reinforcement-of-alternative-behavior schedules were superimposed on NCR schedules to determine if mands could be strengthened. Results for the participants indicated that NCR did not preclude reinforcement of mands.

  19. Time-out from positive reinforcement.

    PubMed

    AZRIN, N H

    1961-02-10

    When an organism can itself impose extinction during fixed-ratio food reinforcement, the duration of the extinction period is a function of the number of responses required for reinforcement. Typically, the subject imposes extinction at the start of the usual fixed-ratio run.

  20. [Reinforcement learning by striatum].

    PubMed

    Kunisato, Yoshihiko; Okada, Go; Okamoto, Yasumasa

    2009-04-01

    Recently, computational models of reinforcement learning have been applied for the analysis of neuroimaging data. It has been clarified that the striatum plays a key role in decision making. We review the reinforcement learning theory and the biological structures such as the brain and signals such as neuromodulators associated with reinforcement learning. We also investigated the function of the striatum and the neurotransmitter serotonin in reward prediction. We first studied the brain mechanisms for reward prediction at different time scales. Our experiment on the striatum showed that the ventroanterior regions are involved in predicting immediate rewards and the dorsoposterior regions are involved in predicting future rewards. Further, we investigated whether serotonin regulates both the reward selection and the striatum function are specialized reward prediction at different time scales. To this end, we regulated the dietary intake of tryptophan, a precursor of serotonin. Our experiment showed that the activity of the ventral part of the striatum was correlated with reward prediction at shorter time scales, and this activity was stronger at low serotonin levels. By contrast, the activity of the dorsal part of the striatum was correlated with reward prediction at longer time scales, and this activity was stronger at high serotonin levels. Further, a higher proportion of small reward choices, together with a higher rate of discounting of delayed rewards is observed in the low-serotonin condition than in the control and high-serotonin conditions. Further examinations are required in future to assess the relation between the disturbance of reward prediction caused by low serotonin and mental disorders related to serotonin such as depression.

  1. Model-Based Reinforcement Learning under Concurrent Schedules of Reinforcement in Rodents

    ERIC Educational Resources Information Center

    Huh, Namjung; Jo, Suhyun; Kim, Hoseok; Sul, Jung Hoon; Jung, Min Whan

    2009-01-01

    Reinforcement learning theories postulate that actions are chosen to maximize a long-term sum of positive outcomes based on value functions, which are subjective estimates of future rewards. In simple reinforcement learning algorithms, value functions are updated only by trial-and-error, whereas they are updated according to the decision-maker's…

  2. Functionalized carbon nanotubes in drug design and discovery.

    PubMed

    Prato, Maurizio; Kostarelos, Kostas; Bianco, Alberto

    2008-01-01

    Carbon nanotubes (CNTs) have been proposed and actively explored as multipurpose innovative carriers for drug delivery and diagnostic applications. Their versatile physicochemical features enable the covalent and noncovalent introduction of several pharmaceutically relevant entities and allow for rational design of novel candidate nanoscale constructs for drug development. CNTs can be functionalized with different functional groups to carry simultaneously several moieties for targeting, imaging, and therapy. Among the most interesting examples of such multimodal CNT constructs described in this Account is one carrying a fluorescein probe together with the antifungal drug amphotericin B or fluorescein and the antitumor agent methotrexate. The biological action of the drug in these cases is retained or, as in the case of amphotericin B constructs, enhanced, while CNTs are able to reduce the unwanted toxicity of the drug administered alone. Ammonium-functionalized CNTs can also be considered very promising vectors for gene-encoding nucleic acids. Indeed, we have formed stable complexes between cationic CNTs and plasmid DNA and demonstrated the enhancement of the gene therapeutic capacity in comparison to DNA alone. On the other hand, CNTs conjugated with antigenic peptides can be developed as a new and effective system for synthetic vaccine applications. What makes CNTs quite unique is their ability, first shown by our groups in 2004, to passively cross membranes of many different types of cells following a translocation mechanism that has been termed the nanoneedle mechanism. In that way, CNTs open innumerable possibilities for future drug discovery based on intracellular targets that have been hard to reach until today. Moreover, adequately functionalized CNTs as those shown in this Account can be rapidly eliminated from the body following systemic administration offering further encouragment for their development. CNT excretion rates and accumulation in organs and

  3. Short Time Impulse Response Function (STIRF) for automatic evaluation of the variation of the dynamic parameters of reinforced concrete framed structures during strong earthquakes.

    NASA Astrophysics Data System (ADS)

    Carlo Ponzo, Felice; Ditommaso, Rocco

    2015-04-01

    the results provided in this study, the methodology seems to be able to evaluate fast variations (over time) of dynamic parameters of a generic reinforced concrete framed structure. Further analyses are necessary to better calibrate the length of the moving time-window (in order to minimize the spurious frequency within each Interferometric Response Function evaluated on both weak and strong motion phases) and to verify the possibility to use the STIRF to analyse the nonlinear behaviour of general systems. Acknowledgements This study was partially funded by the Italian Civil Protection Department within the project DPC-RELUIS 2014 - RS4 ''Seismic observatory of structures and health monitoring''. References R. Ditommaso, F.C. Ponzo (2015). Automatic evaluation of the fundamental frequency variations and related damping factor of reinforced concrete framed structures using the Short Time Impulse Response Function (STIRF). Engineering Structures, 82 (2015), 104-112. http://dx.doi.org/10.1016/j.engstruct.2014.10.023.

  4. Suboptimal choice in pigeons: Choice is primarily based on the value of the conditioned reinforcer rather than overall reinforcement rate.

    PubMed

    Smith, Aaron P; Zentall, Thomas R

    2016-04-01

    Pigeons have sometimes shown a preference for a signaled 50% reinforcement alternative (leading half of the time to a stimulus that signaled 100% reinforcement and otherwise to a stimulus that signaled 0% reinforcement) over a 100% reinforcement alternative. We hypothesized that pigeons may actually be indifferent between the 2 alternatives with previous inconsistent preferences resulting in part from an artifact of the use of a spatial discrimination. In the present experiments, we tested the hypothesis that pigeons would be indifferent between alternatives that provide conditioned reinforcers of equal value. In Experiment 1, we used the signaled 50% reinforcement versus 100% reinforcement procedure, but cued the alternatives with shapes that varied in their spatial location from trial to trial. Consistent with the stimulus value hypothesis, the pigeons showed indifference between the alternatives. In Experiment 2, to confirm that the pigeons could discriminate between the shapes, we removed the discriminative function from the 50% reinforcement alternative and found a clear preference for the 100% reinforcement alternative. Finally, in Experiment 3, when we returned the discriminative function to the 50% reinforcement alternative and reduced the 100% reinforcement alternative to 50% reinforcement, we found a clear preference for the discriminative stimulus alternative. These results support the hypothesis that pigeons prefer the alternative with the conditioned reinforcer that best predicts reinforcement, whereas its frequency may be relatively unimportant.

  5. Critical Zone Experimental Design to Assess Soil Processes and Function

    NASA Astrophysics Data System (ADS)

    Banwart, Steve

    2010-05-01

    experimental design studies soil processes across the temporal evolution of the soil profile, from its formation on bare bedrock, through managed use as productive land to its degradation under longstanding pressures from intensive land use. To understand this conceptual life cycle of soil, we have selected 4 European field sites as Critical Zone Observatories. These are to provide data sets of soil parameters, processes and functions which will be incorporated into the mathematical models. The field sites are 1) the BigLink field station which is located in the chronosequence of the Damma Glacier forefield in alpine Switzerland and is established to study the initial stages of soil development on bedrock; 2) the Lysina Catchment in the Czech Republic which is representative of productive soils managed for intensive forestry, 3) the Fuchsenbigl Field Station in Austria which is an agricultural research site that is representative of productive soils managed as arable land and 4) the Koiliaris Catchment in Crete, Greece which represents degraded Mediterranean region soils, heavily impacted by centuries of intensive grazing and farming, under severe risk of desertification.

  6. Abstracting Attribute Space for Transfer Function Exploration and Design.

    PubMed

    Maciejewski, Ross; Jang, Yun; Woo, Insoo; Jänicke, Heike; Gaither, Kelly P; Ebert, David S

    2013-01-01

    Currently, user centered transfer function design begins with the user interacting with a one or two-dimensional histogram of the volumetric attribute space. The attribute space is visualized as a function of the number of voxels, allowing the user to explore the data in terms of the attribute size/magnitude. However, such visualizations provide the user with no information on the relationship between various attribute spaces (e.g., density, temperature, pressure, x, y, z) within the multivariate data. In this work, we propose a modification to the attribute space visualization in which the user is no longer presented with the magnitude of the attribute; instead, the user is presented with an information metric detailing the relationship between attributes of the multivariate volumetric data. In this way, the user can guide their exploration based on the relationship between the attribute magnitude and user selected attribute information as opposed to being constrained by only visualizing the magnitude of the attribute. We refer to this modification to the traditional histogram widget as an abstract attribute space representation. Our system utilizes common one and two-dimensional histogram widgets where the bins of the abstract attribute space now correspond to an attribute relationship in terms of the mean, standard deviation, entropy, or skewness. In this manner, we exploit the relationships and correlations present in the underlying data with respect to the dimension(s) under examination. These relationships are often times key to insight and allow us to guide attribute discovery as opposed to automatic extraction schemes which try to calculate and extract distinct attributes a priori. In this way, our system aids in the knowledge discovery of the interaction of properties within volumetric data.

  7. Biomimetic shark skin: design, fabrication and hydrodynamic function.

    PubMed

    Wen, Li; Weaver, James C; Lauder, George V

    2014-05-15

    Although the functional properties of shark skin have been of considerable interest to both biologists and engineers because of the complex hydrodynamic effects of surface roughness, no study to date has successfully fabricated a flexible biomimetic shark skin that allows detailed study of hydrodynamic function. We present the first study of the design, fabrication and hydrodynamic testing of a synthetic, flexible, shark skin membrane. A three-dimensional (3D) model of shark skin denticles was constructed using micro-CT imaging of the skin of the shortfin mako (Isurus oxyrinchus). Using 3D printing, thousands of rigid synthetic shark denticles were placed on flexible membranes in a controlled, linear-arrayed pattern. This flexible 3D printed shark skin model was then tested in water using a robotic flapping device that allowed us to either hold the models in a stationary position or move them dynamically at their self-propelled swimming speed. Compared with a smooth control model without denticles, the 3D printed shark skin showed increased swimming speed with reduced energy consumption under certain motion programs. For example, at a heave frequency of 1.5 Hz and an amplitude of ± 1 cm, swimming speed increased by 6.6% and the energy cost-of-transport was reduced by 5.9%. In addition, a leading-edge vortex with greater vorticity than the smooth control was generated by the 3D printed shark skin, which may explain the increased swimming speeds. The ability to fabricate synthetic biomimetic shark skin opens up a wide array of possible manipulations of surface roughness parameters, and the ability to examine the hydrodynamic consequences of diverse skin denticle shapes present in different shark species.

  8. Design Function and Structure of a Monomeric CLC Transporter

    SciTech Connect

    L Robertson; L Kolmakova-Partensky; C Miller

    2011-12-31

    Channels and transporters of the ClC family cause the transmembrane movement of inorganic anions in service of a variety of biological tasks, from the unusual - the generation of the kilowatt pulses with which electric fish stun their prey - to the quotidian - the acidification of endosomes, vacuoles and lysosomes. The homodimeric architecture of ClC proteins, initially inferred from single-molecule studies of an elasmobranch Cl{sup -} channel and later confirmed by crystal structures of bacterial Cl{sup -}/H{sup +} antiporters, is apparently universal. Moreover, the basic machinery that enables ion movement through these proteins - the aqueous pores for anion diffusion in the channels and the ion-coupling chambers that coordinate Cl{sup -} and H{sup +} antiport in the transporters - are contained wholly within each subunit of the homodimer. The near-normal function of a bacterial ClC transporter straitjacketed by covalent crosslinks across the dimer interface and the behaviour of a concatemeric human homologue argue that the transport cycle resides within each subunit and does not require rigid-body rearrangements between subunits. However, this evidence is only inferential, and because examples are known in which quaternary rearrangements of extramembrane ClC domains that contribute to dimerization modulate transport activity, we cannot declare as definitive a 'parallel-pathways picture in which the homodimer consists of two single-subunit transporters operating independently. A strong prediction of such a view is that it should in principle be possible to obtain a monomeric ClC. Here we exploit the known structure of a ClC Cl{sup -}/H{sup +} exchanger, ClC-ec1 from Escherichia coli, to design mutants that destabilize the dimer interface while preserving both the structure and the transport function of individual subunits. The results demonstrate that the ClC subunit alone is the basic functional unit for transport and that cross-subunit interaction is not

  9. Design of a biochemical circuit motif for learning linear functions.

    PubMed

    Lakin, Matthew R; Minnich, Amanda; Lane, Terran; Stefanovic, Darko

    2014-12-01

    Learning and adaptive behaviour are fundamental biological processes. A key goal in the field of bioengineering is to develop biochemical circuit architectures with the ability to adapt to dynamic chemical environments. Here, we present a novel design for a biomolecular circuit capable of supervised learning of linear functions, using a model based on chemical reactions catalysed by DNAzymes. To achieve this, we propose a novel mechanism of maintaining and modifying internal state in biochemical systems, thereby advancing the state of the art in biomolecular circuit architecture. We use simulations to demonstrate that the circuit is capable of learning behaviour and assess its asymptotic learning performance, scalability and robustness to noise. Such circuits show great potential for building autonomous in vivo nanomedical devices. While such a biochemical system can tell us a great deal about the fundamentals of learning in living systems and may have broad applications in biomedicine (e.g. autonomous and adaptive drugs), it also offers some intriguing challenges and surprising behaviours from a machine learning perspective. PMID:25401175

  10. Design of highly stable functional GroEL minichaperones.

    PubMed Central

    Wang, Q.; Buckle, A. M.; Foster, N. W.; Johnson, C. M.; Fersht, A. R.

    1999-01-01

    GroEL minichaperones have potential in the biotechnology industry for the refolding of recombinant proteins. With the aim of enhancing and widening their use, we have created two highly stable functional variants of minichaperone GroEL(193-345). A sequence alignment of 130 members of the chaperonin 60 (Cpn60) family was used to design 37 single mutations. Two small-to-large mutations, A223T, A223V and one similar-size mutation, M233L, all located in the hydrophobic core were found to stabilize the protein by more than 1 kcal mol(-1) each. Six stabilizing mutations were combined, yielding two multiple mutants that were 6.99 and 6.15 kcal mol(-1) more stable than wild-type protein. Even though some of the substituted residue pairs are close to each other in the protein structure, the energetic effects of mutation are approximately additive. In particular, the stabilizing substitution A223T is unexpected and would have been missed by purely structural analysis. In the light of previously reported successes employing similar methods with several other proteins, our results show that a homology based approach is a simple and efficient method of increasing the stability of a protein. PMID:10548065

  11. Design of chitosan-based nanoparticles functionalized with gallic acid.

    PubMed

    Lamarra, J; Rivero, S; Pinotti, A

    2016-10-01

    Active nanoparticles based on chitosan could be applied as a support for the modulation of gallic acid delivery. In this sense, these nanostructures could be employed in different fields such as food, packaging, and pharmaceutical areas. The design parameters of chitosan-based nanoparticles functionalized with gallic acid (GA) were optimized through RSM by means of the analysis of zeta potential (ZP) and percentage encapsulation efficiency (PEE). The nanoparticles were prepared by ionotropic gelation using tripolyphosphate (TPP), at different combinations of chitosan (CH) concentration, CH:TPP ratio and GA. Global desirability methodology allowed finding the optimum formulation that included CH 0.76% (w/w), CH:TPP ratio of 5 and 37mgGA/gCH leading to ZP of +50mV and 82% of PEE. Analysis through QuickScan and turbidity demonstrated that the most stable nanoparticle suspensions were achieved combining concentrations of chitosan ranging between 0.5 and 0.75% with CH:TPP ratios higher than 3. These suspensions had high stability confirmed by means ZP and transmittance values which were higher than +25mV and 0.21 on average, respectively, as well as nanoparticle diameters of about 140nm. FTIR revealed the occurrence of both hydrogen bond and ionic interactions of CH-TPP which allowed the encapsulation and the improvement of the stability of the active agent. PMID:27287172

  12. Strategy for Molecular Design of Photochromic Diarylethenes Having Thermal Functionality.

    PubMed

    Kitagawa, Daichi; Kobatake, Seiya

    2016-08-01

    Thermal reactivities of photochromic diarylethene closed-ring isomers can be controlled by the introduction of substituents at the reactive positions. Diarylethenes having bulky alkyl groups undergo thermal cycloreversion reactions. When bulky alkoxy groups are introduced, the diarylethenes have both thermal cycloreversion reactivities and low photocycloreversion quantum yields. Such photochromic compounds can be applied to thermally reusable photoresponsive-image recordings. The thermal cycloreversion reactivity of the closed-ring isomers can be evaluated using specific steric substituent constants and be correlated with the parameters. By introduction of trimethylsilyl or methoxymethyl groups at the reactive positions, the diarylethene closed-ring isomers undergo thermal irreversible reactions to produce by-products at high temperatures. These diarylethenes may be useful for secret-image recordings. Furthermore, thiophene-S,S-dioxidized diarylethenes having secondary alkyl groups at the reactive positions undergo thermal by-product formation reactions, in addition to the photostability of the colored closed-ring isomers. Such materials may be used for light-starting thermosensors. The thermal by-product formation reactivity can be evaluated by the specific substituent constants and theoretical calculations of quantum chemistry. These results supply the strategy for the molecular design of the photochromic diarylethenes having thermal functionality.

  13. Strategy for Molecular Design of Photochromic Diarylethenes Having Thermal Functionality.

    PubMed

    Kitagawa, Daichi; Kobatake, Seiya

    2016-08-01

    Thermal reactivities of photochromic diarylethene closed-ring isomers can be controlled by the introduction of substituents at the reactive positions. Diarylethenes having bulky alkyl groups undergo thermal cycloreversion reactions. When bulky alkoxy groups are introduced, the diarylethenes have both thermal cycloreversion reactivities and low photocycloreversion quantum yields. Such photochromic compounds can be applied to thermally reusable photoresponsive-image recordings. The thermal cycloreversion reactivity of the closed-ring isomers can be evaluated using specific steric substituent constants and be correlated with the parameters. By introduction of trimethylsilyl or methoxymethyl groups at the reactive positions, the diarylethene closed-ring isomers undergo thermal irreversible reactions to produce by-products at high temperatures. These diarylethenes may be useful for secret-image recordings. Furthermore, thiophene-S,S-dioxidized diarylethenes having secondary alkyl groups at the reactive positions undergo thermal by-product formation reactions, in addition to the photostability of the colored closed-ring isomers. Such materials may be used for light-starting thermosensors. The thermal by-product formation reactivity can be evaluated by the specific substituent constants and theoretical calculations of quantum chemistry. These results supply the strategy for the molecular design of the photochromic diarylethenes having thermal functionality. PMID:27321920

  14. Functionalizing designer DNA crystals with a triple-helical veneer.

    PubMed

    Rusling, David A; Chandrasekaran, Arun Richard; Ohayon, Yoel P; Brown, Tom; Fox, Keith R; Sha, Ruojie; Mao, Chengde; Seeman, Nadrian C

    2014-04-01

    DNA is a very useful molecule for the programmed self-assembly of 2D and 3D nanoscale objects.1 The design of these structures exploits Watson-Crick hybridization and strand exchange to stitch linear duplexes into finite assemblies.2-4 The dimensions of these complexes can be increased by over five orders of magnitude through self-assembly of cohesive single-stranded segments (sticky ends).5, 6 Methods that exploit the sequence addressability of DNA nanostructures will enable the programmable positioning of components in 2D and 3D space, offering applications such as the organization of nanoelectronics,7 the direction of biological cascades,8 and the structure determination of periodically positioned molecules by X-ray diffraction.9 To this end we present a macroscopic 3D crystal based on the 3-fold rotationally symmetric tensegrity triangle3, 6 that can be functionalized by a triplex-forming oligonucleotide on each of its helical edges. PMID:24615910

  15. Design of a biochemical circuit motif for learning linear functions

    PubMed Central

    Lakin, Matthew R.; Minnich, Amanda; Lane, Terran; Stefanovic, Darko

    2014-01-01

    Learning and adaptive behaviour are fundamental biological processes. A key goal in the field of bioengineering is to develop biochemical circuit architectures with the ability to adapt to dynamic chemical environments. Here, we present a novel design for a biomolecular circuit capable of supervised learning of linear functions, using a model based on chemical reactions catalysed by DNAzymes. To achieve this, we propose a novel mechanism of maintaining and modifying internal state in biochemical systems, thereby advancing the state of the art in biomolecular circuit architecture. We use simulations to demonstrate that the circuit is capable of learning behaviour and assess its asymptotic learning performance, scalability and robustness to noise. Such circuits show great potential for building autonomous in vivo nanomedical devices. While such a biochemical system can tell us a great deal about the fundamentals of learning in living systems and may have broad applications in biomedicine (e.g. autonomous and adaptive drugs), it also offers some intriguing challenges and surprising behaviours from a machine learning perspective. PMID:25401175

  16. Functional design criteria for pumping and instrumentation control (PIC) skids

    SciTech Connect

    BOETTGER, J.S.

    1999-08-25

    Radioactive liquid and semisolid waste from operation of Hanford's nuclear fuel processing plants is stored in 177 underground storage tanks located in the 200 Areas of the Hanford site. 28 of these tanks are of double-shell construction. The remaining 149 tanks are of single-shell construction. Only the newer, double-shell tanks (DST) can meet current requirements for containment of dangerous waste. Therefore, the single-shell tanks (SST) are being ''interim stabilized,'' which is the process of removing liquid from the waste through the use of a jet pump installed in a saltwell which penetrates the waste. Lockheed Martin Hanford Company has decided to purchase additional Pumping and Instrumentation Control (PIC) skids to monitor and control the operation of saltwell jet pumps in SSTs. Similar PIC skids are already in use at several locations. The PIC skids will shut off all power to equipment/instruments if preset limits are exceeded for such conditions as flammable gas, leak detection, pressure and flow, as well as provide air and water necessary for saltwell pumping activities. This document outlines the functional design criteria for pumping and instrumentation control (PIC) skids to support the interim stabilization effort for saltwell pumping.

  17. Interfacial Properties and Design of Functional Energy Materials

    SciTech Connect

    Sumpter, Bobby G; Liang, Liangbo; Nicolai, Adrien; Meunier, V.

    2014-01-01

    The vital importance of energy to society continues to demand a relentless pursuit of energy responsive materials that can bridge fundamental chemical structures at the molecular level and achieve improved functionality, such as efficient energy conversion/storage/transmission, over multiple length scales. This demand can potentially be realized by harnessing the power of self-assembly a spontaneous process where molecules or much larger entities form ordered aggregates as a consequence of predominately non-covalent (weak) interactions. Self-assembly is the key to bottom-up design of molecular devices, because the nearly atomic-level control is very difficult to realize in a top-down, e.g., lithographic approach. However, while function (e.g., charge mobility) in simple systems such as single crystals can often be predicted, predicting the function of the great variety of self-assembled molecular architectures is complicated by the lack of understanding and control over nanoscale interactions, mesoscale architectures, and macroscale (long-range) order. To establish a foundation toward delivering practical solutions, it is critical to develop an understanding of the chemical and physical mechanisms responsible for the self-assembly of molecular and hybrid materials on various substrates. Typically molecular self-assembly involves poorly understood non-covalent intermolecular and substrate-molecule interactions compounded by local and/or collective influences from the substrate atomic lattice (symmetry and/or topological features) and electronic structure. Thus, progress towards unraveling the underlying physicochemical processes that control the structure and macroscopic physical, mechanical, electrical, and transport properties of materials increasingly requires tight integration of theory, modeling and simulation with precision synthesis, advanced experimental characterization, and device measurements. In this mode, theory and simulation can greatly accelerate the

  18. EDITORIAL: Design and function of molecular and bioelectronics devices

    NASA Astrophysics Data System (ADS)

    Krstic, Predrag; Forzani, Erica; Tao, Nongjian; Korkin, Anatoli

    2007-10-01

    Further rapid progress of electronics, in particular the increase of computer power and breakthroughs in sensor technology for industrial, medical diagnostics and environmental applications, strongly depends on the scaling of electronic devices, ultimately to the size of molecules. Design of controllable molecular-scale devices may resolve the problem of energy dissipation at the nanoscale and take advantage of molecular self-assembly in the so-called bottom-up approach. This special issue of Nanotechnology is devoted to a better understanding of the function and design of molecular-scale devices that are relevant to future electronics and sensor technology. Papers contained in this special issue are selected from the symposium Nano and Giga Challenges in Electronics and Photonics: From Atoms to Materials to Devices to System Architecture (12-16 March, 2007, Phoenix, Arizona, USA), as well as from original and novel scientific contributions of invited world-renown researchers. It addresses both theoretical and experimental achievements in the fields of molecular and bioelectronics, chemical and biosensors at the molecular level, including carbon nanotubes, novel nanostructures, as well as related research areas and industrial applications. The conference series Nano and Giga Challenges in Electronics and Photonics was launched as a truly interdisciplinary forum to bridge scientists and engineers to work across boundaries in the design of future information technologies, from atoms to materials to devices to system architecture. Following the first two successful meetings in Moscow, Russia (NGCM2002) and Krakow, Poland (NGCM2004), the third Nano and Giga Forum (NGC2007) was held in 2007 hosted by Arizona State University. Besides this special issue of Nanotechnology, two other collections (in the journal Solid State Electronics and the tutorial book in the series Nanostructure Science and Technology Springer) have published additional selected and invited papers

  19. Design and function of molecular and bioelectronics devices.

    PubMed

    Krstic, Predrag; Forzani, Erica; Tao, Nongjian; Korkin, Anatoli

    2007-10-24

    Further rapid progress of electronics, in particular the increase of computer power and breakthroughs in sensor technology for industrial, medical diagnostics and environmental applications, strongly depends on the scaling of electronic devices, ultimately to the size of molecules. Design of controllable molecular-scale devices may resolve the problem of energy dissipation at the nanoscale and take advantage of molecular self-assembly in the so-called bottom-up approach. This special issue of Nanotechnology is devoted to a better understanding of the function and design of molecular-scale devices that are relevant to future electronics and sensor technology. Papers contained in this special issue are selected from the symposium Nano and Giga Challenges in Electronics and Photonics: From Atoms to Materials to Devices to System Architecture (12-16 March, 2007, Phoenix, Arizona, USA), as well as from original and novel scientific contributions of invited world-renown researchers. It addresses both theoretical and experimental achievements in the fields of molecular and bioelectronics, chemical and biosensors at the molecular level, including carbon nanotubes, novel nanostructures, as well as related research areas and industrial applications. The conference series Nano and Giga Challenges in Electronics and Photonics was launched as a truly interdisciplinary forum to bridge scientists and engineers to work across boundaries in the design of future information technologies, from atoms to materials to devices to system architecture. Following the first two successful meetings in Moscow, Russia (NGCM2002) and Krakow, Poland (NGCM2004), the third Nano and Giga Forum (NGC2007) was held in 2007 hosted by Arizona State University. Besides this special issue of Nanotechnology, two other collections (in the journal Solid State Electronics and the tutorial book in the series Nanostructure Science and Technology Springer) have published additional selected and invited papers

  20. Design and function of molecular and bioelectronics devices.

    PubMed

    Krstic, Predrag; Forzani, Erica; Tao, Nongjian; Korkin, Anatoli

    2007-10-24

    Further rapid progress of electronics, in particular the increase of computer power and breakthroughs in sensor technology for industrial, medical diagnostics and environmental applications, strongly depends on the scaling of electronic devices, ultimately to the size of molecules. Design of controllable molecular-scale devices may resolve the problem of energy dissipation at the nanoscale and take advantage of molecular self-assembly in the so-called bottom-up approach. This special issue of Nanotechnology is devoted to a better understanding of the function and design of molecular-scale devices that are relevant to future electronics and sensor technology. Papers contained in this special issue are selected from the symposium Nano and Giga Challenges in Electronics and Photonics: From Atoms to Materials to Devices to System Architecture (12-16 March, 2007, Phoenix, Arizona, USA), as well as from original and novel scientific contributions of invited world-renown researchers. It addresses both theoretical and experimental achievements in the fields of molecular and bioelectronics, chemical and biosensors at the molecular level, including carbon nanotubes, novel nanostructures, as well as related research areas and industrial applications. The conference series Nano and Giga Challenges in Electronics and Photonics was launched as a truly interdisciplinary forum to bridge scientists and engineers to work across boundaries in the design of future information technologies, from atoms to materials to devices to system architecture. Following the first two successful meetings in Moscow, Russia (NGCM2002) and Krakow, Poland (NGCM2004), the third Nano and Giga Forum (NGC2007) was held in 2007 hosted by Arizona State University. Besides this special issue of Nanotechnology, two other collections (in the journal Solid State Electronics and the tutorial book in the series Nanostructure Science and Technology Springer) have published additional selected and invited papers

  1. Reinforcement, Expectancy, and Learning

    ERIC Educational Resources Information Center

    Bolles, Robert

    1972-01-01

    Surveys some of the difficulties currently confronting the reinforcement concept and cosiders some alternatives to reinforcement as the fundamental basis of learning. Two specific alternatives considered are: an incentive motivation approach and a cognitive approach. (Author)

  2. Reinforcement learning and Tourette syndrome.

    PubMed

    Palminteri, Stefano; Pessiglione, Mathias

    2013-01-01

    In this chapter, we report the first experimental explorations of reinforcement learning in Tourette syndrome, realized by our team in the last few years. This report will be preceded by an introduction aimed to provide the reader with the state of the art of the knowledge concerning the neural bases of reinforcement learning at the moment of these studies and the scientific rationale beyond them. In short, reinforcement learning is learning by trial and error to maximize rewards and minimize punishments. This decision-making and learning process implicates the dopaminergic system projecting to the frontal cortex-basal ganglia circuits. A large body of evidence suggests that the dysfunction of the same neural systems is implicated in the pathophysiology of Tourette syndrome. Our results show that Tourette condition, as well as the most common pharmacological treatments (dopamine antagonists), affects reinforcement learning performance in these patients. Specifically, the results suggest a deficit in negative reinforcement learning, possibly underpinned by a functional hyperdopaminergia, which could explain the persistence of tics, despite their evident inadaptive (negative) value. This idea, together with the implications of these results in Tourette therapy and the future perspectives, is discussed in Section 4 of this chapter.

  3. Effects of Prevent-Teach-Reinforce on Academic Engagement and Disruptive Behavior

    ERIC Educational Resources Information Center

    DeJager, Brett W.; Filter, Kevin J.

    2015-01-01

    This study assessed the effectiveness of prevent-teach-reinforce (P-T-R), a functional behavioral assessment-based intervention for students with behavior problems, using an A-B-A-B design with follow-up. Participants included three students in kindergarten, fourth grade, and fifth grade in a rural Midwestern school district. P-T-R interventions…

  4. The Role of Automatic Negative Reinforcement in Clinical Problems

    ERIC Educational Resources Information Center

    Miltenberger, Raymond G.

    2005-01-01

    This paper discusses the role of automatic negative reinforcement in the maintenance of clinical problems. Following a brief introduction to the functional conceptualization of clinical problems and discussion of four classes of reinforcement maintaining clinical problems, the paper suggests that automatic negative reinforcement is an understudied…

  5. Reinforcement of Learning

    ERIC Educational Resources Information Center

    Jones, Peter

    1977-01-01

    A company trainer shows some ways of scheduling reinforcement of learning for trainees: continuous reinforcement, fixed ratio, variable ratio, fixed interval, and variable interval. As there are problems with all methods, he suggests trying combinations of various types of reinforcement. (MF)

  6. Recycling of Reinforced Plastics

    NASA Astrophysics Data System (ADS)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  7. Applying Quality Function Deployment in Industrial Design Curriculum Planning

    ERIC Educational Resources Information Center

    Liu, Shuo-Fang; Lee, Yann-Long; Lin, Yi-Zhi; Tseng, Chien-Feng

    2013-01-01

    Industrial design is a discipline that combines multiple professional fields. Enterprise demands for industrial design competencies also change over time; thus, the curriculum of industrial design education should be compatible with the current demands of the industry. However, scientific approaches have not been previously employed to plan…

  8. On the role of CFRP reinforcement for wood beams stiffness

    NASA Astrophysics Data System (ADS)

    Ianasi, A. C.

    2015-11-01

    In recent years, carbon fiber composites have been increasingly used in different ways in reinforcing structural elements. Specifically, the use of composite materials as a reinforcement for wood beams under bending loads requires paying attention to several aspects of the problem such as the number of the composite layers applied on the wood beams. Study consolidation of composites revealed that they are made by bonding fibrous material impregnated with resin on the surface of various elements, to restore or increase the load carrying capacity (bending, cutting, compression or torque) without significant damage of their rigidity. Fibers used in building applications can be fiberglass, aramid or carbon. Items that can be strengthened are concrete, brick, wood, steel and stone, and in terms of structural beams, walls, columns and floors. This paper describes an experimental study which was designed to evaluate the effect of composite material on the stiffness of the wood beams. It proposes a summary of the fundamental principles of analysis of composite materials and the design and use. The type of reinforcement used on the beams is the carbon fiber reinforced polymer (CFRP) sheet and plates and also an epoxy resin for bonding all the elements. Structural epoxy resins remain the primary choice of adhesive to form the bond to fiber-reinforced plastics and are the generally accepted adhesives in bonded CFRP-wood connections. The advantages of using epoxy resin in comparison to common wood-laminating adhesives are their gap-filling qualities and the low clamping pressures that are required to form the bond between carbon fiber plates or sheets and the wood beams. Mechanical tests performed on the reinforced wood beams showed that CFRP materials may produce flexural displacement and lifting increases of the beams. Observations of the experimental load-displacement relationships showed that bending strength increased for wood beams reinforced with CFRP composite plates

  9. Designing functionally graded materials with superior load-bearing properties.

    PubMed

    Zhang, Yu; Sun, Ming-Jie; Zhang, Denzil

    2012-03-01

    Ceramic prostheses often fail from fracture and wear. We hypothesize that these failures may be substantially mitigated by an appropriate grading of elastic modulus at the ceramic surface. In this study, we elucidate the effect of elastic modulus profile on the flexural damage resistance of functionally graded materials (FGMs), providing theoretical guidelines for designing FGMs with superior load-bearing property. The Young's modulus of the graded structure is assumed to vary in a power-law relation with a scaling exponent n; this is in accordance with experimental observations from our laboratory and elsewhere. Based on the theory for bending of graded beams, we examine the effect of n value and bulk-to-surface modulus ratio (E(b)/E(s)) on stress distribution through the graded layer. Theory predicts that a low exponent (0.15

  10. On the establishing and reinforcing effects of termination of demands for destructive behavior maintained by positive and negative reinforcement.

    PubMed

    Piazza, C C; Hanley, G P; Fisher, W W; Ruyter, J M; Gulotta, C S

    1998-01-01

    The results of functional analyses suggested that the destructive behavior of two individuals was sensitive to escape and attention as reinforcement. In an instructional context, we evaluated the effects of reinforcing compliance with functional reinforcers when destructive behavior produced a break. For one participant we also evaluated the effects of reinforcing compliance with functional reinforcers when destructive behavior produced no differential consequence (escape extinction). We hypothesized that destructive behavior failed to decrease in an instructional context when compliance resulted in a break because presentation of a break evoked attention-maintained destructive behavior. The results of a reinforcer assessment supported this hypothesis by demonstrating that demands functioned as positive reinforcement when no alternative activities were available. These results are discussed in terms of the importance of establishing operations in determining the appetitive or aversive properties of stimuli when destructive behavior is multiply controlled. PMID:9770252

  11. On the establishing and reinforcing effects of termination of demands for destructive behavior maintained by positive and negative reinforcement.

    PubMed

    Piazza, C C; Hanley, G P; Fisher, W W; Ruyter, J M; Gulotta, C S

    1998-01-01

    The results of functional analyses suggested that the destructive behavior of two individuals was sensitive to escape and attention as reinforcement. In an instructional context, we evaluated the effects of reinforcing compliance with functional reinforcers when destructive behavior produced a break. For one participant we also evaluated the effects of reinforcing compliance with functional reinforcers when destructive behavior produced no differential consequence (escape extinction). We hypothesized that destructive behavior failed to decrease in an instructional context when compliance resulted in a break because presentation of a break evoked attention-maintained destructive behavior. The results of a reinforcer assessment supported this hypothesis by demonstrating that demands functioned as positive reinforcement when no alternative activities were available. These results are discussed in terms of the importance of establishing operations in determining the appetitive or aversive properties of stimuli when destructive behavior is multiply controlled.

  12. General level of reinforcement.

    PubMed

    Cautela, J R

    1984-06-01

    A concept of General Level of Reinforcement (GLR) is introduced. This concept is defined as the number, quality and duration of reinforcements per unit time. The assumptions of this theory are discussed. A crucial assumption is that the theory is related to psychological and physiological well-being. Ways to measure general level of reinforcement are described, and clinical implications presented. Methods to increase the level of reinforcement, such as covert reinforcement and the Self-Control Triad, are specified. Finally, suggestions for research are provided.

  13. Structure-Based Design of Functional Amyloid Materials

    DOE PAGES

    Li, Dan; Jones, Eric M.; Sawaya, Michael R.; Furukawa, Hiroyasu; Luo, Fang; Ivanova, Magdalena; Sievers, Stuart A.; Wang, Wenyuan; Yaghi, Omar M.; Liu, Cong; et al

    2014-12-04

    We report that amyloid fibers, once exclusively associated with disease, are acquiring utility as a class of biological nanomaterials. We introduce a method that utilizes the atomic structures of amyloid peptides, to design materials with versatile applications. As a model application, we designed amyloid fibers capable of capturing carbon dioxide from flue gas, to address the global problem of excess anthropogenic carbon dioxide. By measuring dynamic separation of carbon dioxide from nitrogen, we show that fibers with designed amino acid sequences double the carbon dioxide binding capacity of the previously reported fiber formed by VQIVYK from Tau protein. In amore » second application, we designed fibers that facilitate retroviral gene transfer. Finally, by measuring lentiviral transduction, we show that designed fibers exceed the efficiency of polybrene, a commonly used enhancer of transduction. The same procedures can be adapted to the design of countless other amyloid materials with a variety of properties and uses.« less

  14. Structure-Based Design of Functional Amyloid Materials

    SciTech Connect

    Li, Dan; Jones, Eric M.; Sawaya, Michael R.; Furukawa, Hiroyasu; Luo, Fang; Ivanova, Magdalena; Sievers, Stuart A.; Wang, Wenyuan; Yaghi, Omar M.; Liu, Cong; Eisenberg, David S.

    2014-12-04

    We report that amyloid fibers, once exclusively associated with disease, are acquiring utility as a class of biological nanomaterials. We introduce a method that utilizes the atomic structures of amyloid peptides, to design materials with versatile applications. As a model application, we designed amyloid fibers capable of capturing carbon dioxide from flue gas, to address the global problem of excess anthropogenic carbon dioxide. By measuring dynamic separation of carbon dioxide from nitrogen, we show that fibers with designed amino acid sequences double the carbon dioxide binding capacity of the previously reported fiber formed by VQIVYK from Tau protein. In a second application, we designed fibers that facilitate retroviral gene transfer. Finally, by measuring lentiviral transduction, we show that designed fibers exceed the efficiency of polybrene, a commonly used enhancer of transduction. The same procedures can be adapted to the design of countless other amyloid materials with a variety of properties and uses.

  15. Functional definition and design of a USDA system

    NASA Technical Reports Server (NTRS)

    Evans, S. M.; Dario, E. R.; Dickinson, G. L. (Principal Investigator)

    1979-01-01

    The fundamental definition and design of a U.S.D.A. system utilizing the LACIE technology avaliable as of June 1976, is discussed. The organization and methods described are focused on LACIE technology in terms of its transfer for use applications. The simulation of a feasible system design provided timely answers to system design questions, such as the ability of a minicomputer to handle the proposed geometrical correction of MSS data.

  16. Improving variable-fidelity modelling by exploring global design space and radial basis function networks for aerofoil design

    NASA Astrophysics Data System (ADS)

    Tyan, Maxim; Van Nguyen, Nhu; Lee, Jae-Woo

    2015-07-01

    The global variable-fidelity modelling (GVFM) method presented in this article extends the original variable-complexity modelling (VCM) algorithm that uses a low-fidelity and scaling function to approximate a high-fidelity function for efficiently solving design-optimization problems. GVFM uses the design of experiments to sample values of high- and low-fidelity functions to explore global design space and to initialize a scaling function using the radial basis function (RBF) network. This approach makes it possible to remove high-fidelity-gradient evaluation from the process, which makes GVFM more efficient than VCM for high-dimensional design problems. The proposed algorithm converges with 65% fewer high-fidelity function calls for a one-dimensional problem than VCM and approximately 80% fewer for a two-dimensional numerical problem. The GVFM method is applied for the design optimization of transonic and subsonic aerofoils. Both aerofoil design problems show design improvement with a reasonable number of high- and low-fidelity function evaluations.

  17. A New Vision for Public Art and Functional Landscape Design

    ERIC Educational Resources Information Center

    Song, Young Imm Kang

    2014-01-01

    This article explores how Johanson's ecological public art and landscape design addresses current social issues and community necessities. It also examines how her designs may serve as a communication tool for the surrounding society, and how her public art may provide new perspectives for community members, scientists, artists, engineers,…

  18. Sleep deprivation, allergy symptoms, and negatively reinforced problem behavior.

    PubMed

    Kennedy, C H; Meyer, K A

    1996-01-01

    We studied the relation between the presence versus the absence of sleep deprivation or allergy symptoms and the rate and function of problem behavior. Three students whose problem behavior was negatively reinforced by escape form instruction were studied across several weeks using analogue functional analyses. Our results indicated that the extraexperimental events were associated with (a) termination of instruction functioning as a negative reinforcer, (b) increased rates of negatively reinforced problem behavior, or (c) increased rates of problem behavior across all conditions.

  19. Finding intrinsic rewards by embodied evolution and constrained reinforcement learning.

    PubMed

    Uchibe, Eiji; Doya, Kenji

    2008-12-01

    Understanding the design principle of reward functions is a substantial challenge both in artificial intelligence and neuroscience. Successful acquisition of a task usually requires not only rewards for goals, but also for intermediate states to promote effective exploration. This paper proposes a method for designing 'intrinsic' rewards of autonomous agents by combining constrained policy gradient reinforcement learning and embodied evolution. To validate the method, we use Cyber Rodent robots, in which collision avoidance, recharging from battery packs, and 'mating' by software reproduction are three major 'extrinsic' rewards. We show in hardware experiments that the robots can find appropriate 'intrinsic' rewards for the vision of battery packs and other robots to promote approach behaviors.

  20. Effects of reinforcer rate and reinforcer quality on time allocation: Extensions of matching theory to educational settings.

    PubMed

    Neef, N A

    1992-01-01

    We examined how 3 special education students allocated their responding across two concurrently available tasks associated with unequal rates and equal versus unequal qualities of reinforcement. The students completed math problems from two alternative sets on concurrent variable-interval (VI) 30-s VI 120-s schedules of reinforcement. During the equal-quality reinforcer condition, high-quality (nickels) and low-quality items ("program money" in the school's token economy) were alternated across sessions as the reinforcer for both sets of problems. During the unequal-quality reinforcer condition, the low-quality reinforcer was used for the set of problems on the VI 30-s schedule, and the high-quality reinforcer was used for the set of problems on the VI 120-s schedule. Equal- and unequal-quality reinforcer conditions were alternated using a reversal design. Results showed that sensitivity to the features of the VI reinforcement schedules developed only after the reinforcement intervals were signaled through countdown timers. Thereafter, when reinforcer quality was equal, the time allocated to concurrent response alternatives was approximately proportional to obtained reinforcement, as predicted by the matching law. However the matching relation was disrupted when, as occurs in most natural choice situations, the quality of the reinforcers differed across the response options.

  1. Conditioned reinforcement and information theory reconsidered.

    PubMed

    Shahan, Timothy A; Cunningham, Paul

    2015-03-01

    The idea that stimuli might function as conditioned reinforcers because of the information they convey about primary reinforcers has a long history in the study of learning. However, formal application of information theory to conditioned reinforcement has been largely abandoned in modern theorizing because of its failures with respect to observing behavior. In this paper we show how recent advances in the application of information theory to Pavlovian conditioning offer a novel approach to conditioned reinforcement. The critical feature of this approach is that calculations of information are based on reductions of uncertainty about expected time to primary reinforcement signaled by a conditioned reinforcer. Using this approach, we show that previous failures of information theory with observing behavior can be remedied, and that the resulting framework produces predictions similar to Delay Reduction Theory in both observing-response and concurrent-chains procedures. We suggest that the similarity of these predictions might offer an analytically grounded reason for why Delay Reduction Theory has been a successful theory of conditioned reinforcement. Finally, we suggest that the approach provides a formal basis for the assertion that conditioned reinforcement results from Pavlovian conditioning and may provide an integrative approach encompassing both domains.

  2. Conditioned reinforcement and information theory reconsidered.

    PubMed

    Shahan, Timothy A; Cunningham, Paul

    2015-03-01

    The idea that stimuli might function as conditioned reinforcers because of the information they convey about primary reinforcers has a long history in the study of learning. However, formal application of information theory to conditioned reinforcement has been largely abandoned in modern theorizing because of its failures with respect to observing behavior. In this paper we show how recent advances in the application of information theory to Pavlovian conditioning offer a novel approach to conditioned reinforcement. The critical feature of this approach is that calculations of information are based on reductions of uncertainty about expected time to primary reinforcement signaled by a conditioned reinforcer. Using this approach, we show that previous failures of information theory with observing behavior can be remedied, and that the resulting framework produces predictions similar to Delay Reduction Theory in both observing-response and concurrent-chains procedures. We suggest that the similarity of these predictions might offer an analytically grounded reason for why Delay Reduction Theory has been a successful theory of conditioned reinforcement. Finally, we suggest that the approach provides a formal basis for the assertion that conditioned reinforcement results from Pavlovian conditioning and may provide an integrative approach encompassing both domains. PMID:25766452

  3. COMPUTATIONAL STRATEGIES FOR THE DESIGN OF NEW ENZYMATIC FUNCTIONS

    PubMed Central

    Świderek, K; Tuñón, I.; Moliner, V.; Bertran, J.

    2015-01-01

    In this contribution, recent developments in the design of biocatalysts are reviewed with particular emphasis in the de novo strategy. Studies based on three different reactions, Kemp elimination, Diels-Alder and retro-aldolase, are used to illustrate different success achieved during the last years. Finally, a section is devoted to the particular case of designed metalloenzymes. As a general conclusion, the interplay between new and more sophisticated engineering protocols and computational methods, based on molecular dynamics simulations with Quantum Mechanics/Molecular Mechanics potentials and fully flexible models, seems to constitute the bed rock for present and future successful design strategies. PMID:25797438

  4. Habituation of reinforcer effectiveness

    PubMed Central

    Lloyd, David R.; Medina, Douglas J.; Hawk, Larry W.; Fosco, Whitney D.; Richards, Jerry B.

    2014-01-01

    In this paper we propose an integrative model of habituation of reinforcer effectiveness (HRE) that links behavioral- and neural-based explanations of reinforcement. We argue that HRE is a fundamental property of reinforcing stimuli. Most reinforcement models implicitly suggest that the effectiveness of a reinforcer is stable across repeated presentations. In contrast, an HRE approach predicts decreased effectiveness due to repeated presentation. We argue that repeated presentation of reinforcing stimuli decreases their effectiveness and that these decreases are described by the behavioral characteristics of habituation (McSweeney and Murphy, 2009; Rankin etal., 2009). We describe a neural model that postulates a positive association between dopamine neurotransmission and HRE. We present evidence that stimulant drugs, which artificially increase dopamine neurotransmission, disrupt (slow) normally occurring HRE and also provide evidence that stimulant drugs have differential effects on operant responding maintained by reinforcers with rapid vs. slow HRE rates. We hypothesize that abnormal HRE due to genetic and/or environmental factors may underlie some behavioral disorders. For example, recent research indicates that slow-HRE is predictive of obesity. In contrast ADHD may reflect “accelerated-HRE.” Consideration of HRE is important for the development of effective reinforcement-based treatments. Finally, we point out that most of the reinforcing stimuli that regulate daily behavior are non-consumable environmental/social reinforcers which have rapid-HRE. The almost exclusive use of consumable reinforcers with slow-HRE in pre-clinical studies with animals may have caused the importance of HRE to be overlooked. Further study of reinforcing stimuli with rapid-HRE is needed in order to understand how habituation and reinforcement interact and regulate behavior. PMID:24409128

  5. Dextroamphetamine and individual susceptibility to reinforcement in verbal operant conditioning.

    PubMed

    Gupta, B S; Gupta, U

    1984-05-01

    The present investigation was designed to study the relationships between extraversion, d-amphetamine and modes of reinforcement in verbal operant conditioning. A factorial design involving two levels of extraversion (extraverts and introverts), two reinforcement conditions ('good' and 'electric shock') and three treatments (placebo and two doses, 7.5 and 12.5 mg, of d-amphetamine) with repeated measures on the last factor was used. Sixty postgraduate female students were individually subjected to Taffel's verbal conditioning procedure. The study supported the following conclusions: (1) under the placebo condition, the extraverted subjects condition better with the rewarding reinforcer while the introverted subjects condition better with the punishing reinforcer; (2) under the influence of d-amphetamine, the extraverted subjects condition better with the punishing reinforcer while the conditioning scores of introverted subjects decrease with the punishing reinforcer but are not influenced with the rewarding reinforcer.

  6. 324 Bldg Liquid Waste Handling System Functional Design Criteria

    SciTech Connect

    HAM, J.E.

    1999-12-16

    The 324 Building in the 300 Area of the Hanford Site, is preparing to design, construct, and operate the Liquid Waste Handling System (LWHS). The system will include transfer, collection, treatment, and disposal of radiological and mixed liquid waste.

  7. Spaceborne computer executive routine functional design specification. Volume 1: Functional design of a flight computer executive program for the reusable shuttle

    NASA Technical Reports Server (NTRS)

    Curran, R. T.

    1971-01-01

    A flight computer functional executive design for the reusable shuttle is presented. The design is given in the form of functional flowcharts and prose description. Techniques utilized in the regulation of process flow to accomplish activation, resource allocation, suspension, termination, and error masking based on process primitives are considered. Preliminary estimates of main storage utilization by the Executive are furnished. Conclusions and recommendations for timely, effective software-hardware integration in the reusable shuttle avionics system are proposed.

  8. Reducing pawing in horses using positive reinforcement.

    PubMed

    Fox, Adam E; Belding, Devon L

    2015-12-01

    Aversive control is a common method to reduce undesirable behavior in horses. However, it often results in unintended negative side effects, including potential abuse of the animal. Procedures based on positive reinforcement, such as differential reinforcement of other behavior (DRO), may reduce undesirable behaviors with fewer negative consequences. The current study used DRO schedules to reduce pawing using a multiple baseline design across 3 horses. Results indicated that DRO schedules were effective at reducing pawing. However, individual differences in sensitivity to DRO and reinforcer efficacy may be important considerations.

  9. Macromolecular surface design: photopatterning of functional stable nitrile oxides.

    PubMed

    Altintas, Ozcan; Glassner, Mathias; Rodriguez-Emmenegger, Cesar; Welle, Alexander; Trouillet, Vanessa; Barner-Kowollik, Christopher

    2015-05-01

    The efficient trapping of photogenerated thioaldehydes with functional shelf-stable nitrile oxides in a 1,3-dipolar cycloaddition is a novel and versatile photochemical strategy for polymer end-group functionalization and surface modification under mild and equimolar conditions. The modular ligation in solution was followed in detail by electrospray ionization mass spectrometry (ESI-MS). X-ray photoelectron spectroscopy (XPS) was employed to analyze the functionalized surfaces, whereas time-of-flight secondary-ion mass spectrometry (ToF-SIMS) confirmed the spatial control of the surface functionalization using a micropatterned shadow mask. Polymer brushes were grown from the surface in a spatially confined regime by surface-initiated atom transfer radical polymerization (SI-ATRP) as confirmed by TOF-SIMS, XPS as well as ellipsometry. PMID:25784598

  10. Macromolecular surface design: photopatterning of functional stable nitrile oxides.

    PubMed

    Altintas, Ozcan; Glassner, Mathias; Rodriguez-Emmenegger, Cesar; Welle, Alexander; Trouillet, Vanessa; Barner-Kowollik, Christopher

    2015-05-01

    The efficient trapping of photogenerated thioaldehydes with functional shelf-stable nitrile oxides in a 1,3-dipolar cycloaddition is a novel and versatile photochemical strategy for polymer end-group functionalization and surface modification under mild and equimolar conditions. The modular ligation in solution was followed in detail by electrospray ionization mass spectrometry (ESI-MS). X-ray photoelectron spectroscopy (XPS) was employed to analyze the functionalized surfaces, whereas time-of-flight secondary-ion mass spectrometry (ToF-SIMS) confirmed the spatial control of the surface functionalization using a micropatterned shadow mask. Polymer brushes were grown from the surface in a spatially confined regime by surface-initiated atom transfer radical polymerization (SI-ATRP) as confirmed by TOF-SIMS, XPS as well as ellipsometry.

  11. Extraversion and reinforcement in verbal operant conditioning.

    PubMed

    Gupta, B S

    1976-02-01

    The present investigation was designed to study the relationship between extraversion and modes of reinforcement in verbal operant conditioning. A 4 X 3 randomized block design was replicated ten times. Eighty graduate and post-graduate male students were individually subjected to the standard Taffel conditioning procedure. When the numbers of conditioned responses produced by introverts and extraverts were compared, it was found that: (1) under negative reinforcement ('bad' and electric shock), with both the female and male experimenters, and under positive reinforcement ('good') with the male experimenter, the introverts' score was the higher of the two; (2) under positive reinforcement ('good') with the female experimenter, the extraverts' score was higher than that of the introverts.

  12. Design of ultra-compact triplexer with function-expansion based topology optimization.

    PubMed

    Zhang, Zejun; Tsuji, Yasuhide; Yasui, Takashi; Hirayama, Koichi

    2015-02-23

    In this paper, in order to optimize wavelength selective photonic devices using the function-expansion-based topology optimization method, several expansion functions are considered and the influence on the optimized structure based on each expansion function was investigated. Although the Fourier series is conventionally used in the function-expansion-based method, the optimized structure sometimes has a complicated refractive index distribution. Therefore, we employed a sampling function and a pyramid function to obtain a simpler structure through the optimal design. A triplexer was designed by using our method, and the comparison between the optimized structures based on the three expansion functions was also discussed in detail. PMID:25836433

  13. Temporal integration and instrumental conditioned reinforcement.

    PubMed

    Thrailkill, Eric A; Shahan, Timothy A

    2014-09-01

    Stimuli associated with primary reinforcement for instrumental behavior are widely believed to acquire the capacity to function as conditioned reinforcers via Pavlovian conditioning. Some Pavlovian conditioning studies suggest that animals learn the important temporal relations between stimuli and integrate such temporal information over separate experiences to form a temporal map. The present experiment examined whether Pavlovian conditioning can establish a positive instrumental conditioned reinforcer through such temporal integration. Two groups of rats received either delay or trace appetitive conditioning in which a neutral stimulus predicted response-independent food deliveries (CS1→US). Both groups then experienced one session of backward second-order conditioning of the training CS1 and a novel CS2 (CS1-CS2 pairing). Finally, the ability of CS2 to function as a conditioned reinforcer for a new instrumental response (leverpressing) was assessed. Consistent with the previous demonstrations of temporal integration in fear conditioning, a CS2 previously trained in a trace-conditioning protocol served as a better instrumental conditioned reinforcer after backward second-order conditioning than did a CS2 previously trained in a delay protocol. These results suggest that an instrumental conditioned reinforcer can be established via temporal integration and raise challenges for existing quantitative accounts of instrumental conditioned reinforcement.

  14. Optimal Experiment Design for Thermal Characterization of Functionally Graded Materials

    NASA Technical Reports Server (NTRS)

    Cole, Kevin D.

    2003-01-01

    The purpose of the project was to investigate methods to accurately verify that designed , materials meet thermal specifications. The project involved heat transfer calculations and optimization studies, and no laboratory experiments were performed. One part of the research involved study of materials in which conduction heat transfer predominates. Results include techniques to choose among several experimental designs, and protocols for determining the optimum experimental conditions for determination of thermal properties. Metal foam materials were also studied in which both conduction and radiation heat transfer are present. Results of this work include procedures to optimize the design of experiments to accurately measure both conductive and radiative thermal properties. Detailed results in the form of three journal papers have been appended to this report.

  15. Impulsivity in students with serious emotional disturbance: the interactive effects of reinforcer rate, delay, and quality.

    PubMed

    Neef, N A; Mace, F C; Shade, D

    1993-01-01

    We conducted two studies extending basic matching research on self-control and impulsivity to the investigation of choices of students diagnosed as seriously emotionally disturbed. In Study 1 we examined the interaction between unequal rates of reinforcement and equal versus unequal delays to reinforcer access on performance of concurrently available sets of math problems. The results of a reversal design showed that when delays to reinforcer access were the same for both response alternatives, the time allocated to each was approximately proportional to obtained reinforcement. When the delays to reinforcer access differed between the response alternatives, there was a bias toward the response alternative and schedule with the lower delays, suggesting impulsivity (i.e., immediate reinforcer access overrode the effects of rate of reinforcement). In Study 2 we examined the interactive effects of reinforcer rate, quality, and delay. Conditions involving delayed access to the high-quality reinforcers on the rich schedule (with immediate access to low-quality reinforcers earned on the lean schedule) were alternated with immediate access to low-quality reinforcers on the rich schedule (with delayed access to high-quality reinforcers on the lean schedule) using a reversal design. With 1 student, reinforcer quality overrode the effects of both reinforcer rate and delay to reinforcer access. The other student tended to respond exclusively to the alternative associated with immediate access to reinforcers. The studies demonstrate a methodology based on matching theory for determining influential dimensions of reinforcers governing individuals' choices.

  16. Origins of food reinforcement in infants12345

    PubMed Central

    Kong, Kai Ling; Feda, Denise M; Eiden, Rina D; Epstein, Leonard H

    2015-01-01

    Background: Rapid weight gain in infancy is associated with a higher risk of obesity in children and adults. A high relative reinforcing value of food is cross-sectionally related to obesity; lean children find nonfood alternatives more reinforcing than do overweight/obese children. However, to our knowledge, there is no research on how and when food reinforcement develops. Objective: This study was designed to assess whether the reinforcing value of food and nonfood alternatives could be tested in 9- to 18-mo-old infants and whether the reinforcing value of food and nonfood alternatives is differentially related to infant weight status. Design: Reinforcing values were assessed by using absolute progressive ratio schedules of reinforcement, with presentation of food and nonfood alternatives counterbalanced in 2 separate studies. Two nonfood reinforcers [Baby Einstein–Baby MacDonald shows (study 1, n = 27) or bubbles (study 2, n = 30)] were tested against the baby’s favorite food. Food reinforcing ratio (FRR) was quantified by measuring the reinforcing value of food (Food Pmax) in proportion to the total reinforcing value of food and a nonfood alternative (DVD Pmax or BUB Pmax). Results: Greater weight-for-length z score was associated with a greater FRR of a favorite food in study 1 (FRR-DVD) (r = 0.60, P < 0.001) and FRR of a favorite food in study 2 (FRR-BUB) (r = 0.49, P = 0.006), primarily because of the strong association between greater weight-for-length z score and lower DVD Pmax (r = −0.71, P < 0.0001) and BUB Pmax (r = −0.53, P = 0.003). Infant monthly weight gain was positively associated with FRR-DVD (r = 0.57, P = 0.009) and FRR-BUB (r = 0.37, P = 0.047). Conclusions: Our newly developed paradigm, which tested 2 different nonfood alternatives, demonstrated that lean infants find nonfood alternatives more reinforcing than do overweight/obese infants. This observation suggests that strengthening the alternative reinforcers may have a protective

  17. Cost benefit theory and optimal design of gene regulation functions

    NASA Astrophysics Data System (ADS)

    Kalisky, Tomer; Dekel, Erez; Alon, Uri

    2007-12-01

    Cells respond to the environment by regulating the expression of genes according to environmental signals. The relation between the input signal level and the expression of the gene is called the gene regulation function. It is of interest to understand the shape of a gene regulation function in terms of the environment in which it has evolved and the basic constraints of biological systems. Here we address this by presenting a cost-benefit theory for gene regulation functions that takes into account temporally varying inputs in the environment and stochastic noise in the biological components. We apply this theory to the well-studied lac operon of E. coli. The present theory explains the shape of this regulation function in terms of temporal variation of the input signals, and of minimizing the deleterious effect of cell-cell variability in regulatory protein levels. We also apply the theory to understand the evolutionary tradeoffs in setting the number of regulatory proteins and for selection of feed-forward loops in genetic circuits. The present cost-benefit theory can be used to understand the shape of other gene regulatory functions in terms of environment and noise constraints.

  18. Further weight reduction of applications in long glass reinforced polymers

    NASA Astrophysics Data System (ADS)

    Yanev, A.; Schijve, W.; Martin, C.; Brands, D.

    2014-05-01

    Long glass reinforced materials are broadly used in the automotive industry due to their good mechanical performance, competitive price and options for functional integration in order to reduce weight. With rapidly changing environmental requirements, a demand for further weight reduction is growing constantly. Designs in LGF-PP can bring light weight solutions in combination with system cost improvement. There are quite some possibilities for applying weight reduction technologies nowadays. These technologies have to be evaluated based on weight reduction potential, but also on mechanical performance of the end application, where the latter is often the key to success. Different weight reduction technologies are applied to SABIC®STAMAX{trade mark, serif} material, a long glass fiber reinforced polypropylene (LGF-PP), in order to investigate and define best application performance. These techniques include: chemical foaming, physical foaming and thin wall applications. Results from this research will be presented, giving a guideline for your development.

  19. The competition of autistic stereotyped behavior with usual and specially assessed reinforcers.

    PubMed

    Dyer, K

    1987-01-01

    This study was conducted to empirically assess a reinforcement theory of stereotyped behavior. Six students with autism were first presented with tasks, and no contingent reinforcers were provided for correct responding. Then, contingent reinforcers that were typically used with the students (usual reinforcers) were presented in a multiple baseline across subjects design. Three of the students evidenced decreases in stereotypy and increases in responding in the presence of usual reinforcers. The other three students required external suppression of stereotypy before increases in responding were shown. For these students, usual reinforcers and specially assessed reinforcers were then compared. The specially assessed reinforcers resulted in decreases in stereotypy and increases in responding and subjective measures of responsiveness. The results were discussed in terms of supporting a competing reinforcement hypothesis, such that powerful external reinforcers will successfully compete with and suppress reinforcers provided by stereotypy.

  20. Soft materials design via self assembly of functionalized icosahedral particles

    NASA Astrophysics Data System (ADS)

    Muthukumar, Vidyalakshmi Chockalingam

    In this work we simulate self assembly of icosahedral building blocks using a coarse grained model of the icosahedral capsid of virus 1m1c. With significant advancements in site-directed functionalization of these macromolecules [1], we propose possible application of such self-assembled materials for drug delivery. While there have been some reports on organization of viral particles in solution through functionalization, exploiting this behaviour for obtaining well-ordered stoichiometric structures has not yet been explored. Our work is in well agreement with the earlier simulation studies of icosahedral gold nanocrystals, giving chain like patterns [5] and also broadly in agreement with the wet lab works of Finn, M.G. et al., who have shown small predominantly chain-like aggregates with mannose-decorated Cowpea Mosaic Virus (CPMV) [22] and small two dimensional aggregates with oligonucleotide functionalization on the CPMV capsid [1]. To quantify the results of our Coarse Grained Molecular Dynamics Simulations I developed analysis routines in MATLAB using which we found the most preferable nearest neighbour distances (from the radial distribution function (RDF) calculations) for different lengths of the functional groups and under different implicit solvent conditions, and the most frequent coordination number for a virus particle (histogram plots further using the information from RDF). Visual inspection suggests that our results most likely span the low temperature limits explored in the works of Finn, M.G. et al., and show a good degree of agreement with the experimental results in [1] at an annealing temperature of 4°C. Our work also reveals the possibility of novel stoichiometric N-mer type aggregates which could be synthesized using these capsids with appropriate functionalization and solvent conditions.

  1. Planning and Designing Functional Facilities for Industrial Arts Education.

    ERIC Educational Resources Information Center

    Schmitt, Marshall L.; Taylor, James L.

    This publication's purpose is to provide assistance in the planning of industrial arts facilities through suggestions and guidelines for functional space utilization and meaningful educational specifications. It is one of a series on specialized areas of the school plant. Chapter headings include "Educational Trends and the Emerging Industrial…

  2. From molecular chemistry to hybrid nanomaterials. Design and functionalization.

    PubMed

    Mehdi, Ahmad; Reye, Catherine; Corriu, Robert

    2011-02-01

    This tutorial review reports upon the organisation and functionalization of two families of hybrid organic-inorganic materials. We attempted to show in both cases the best ways permitting the organisation of materials in terms of properties at the nanometric scale. The first family concerns mesoporous hybrid organic-inorganic materials prepared in the presence of a structure-directing agent. We describe the functionalization of the channel pores of ordered mesoporous silica, that of the silica framework, as well as the functionalization of both of them simultaneously. This family is currently one of the best supports for exploring polyfunctional materials, which can provide a route to interactive materials. The second family concerns lamellar hybrid organic-inorganic materials which is a new class of nanostructured materials. These materials were first obtained by self-assembly, as a result of van der Waals interactions of bridged organosilica precursors containing long alkylene chains during the sol-gel process, without any structure directing agent. This methodology has been extended to functional materials. It is also shown that such materials can be obtained from monosilylated precursors.

  3. Biochemical basis for functional ingredient design from fruits.

    PubMed

    Jacob, Jissy K; Tiwari, Krishnaraj; Correa-Betanzo, Julieta; Misran, Azizah; Chandrasekaran, Renu; Paliyath, Gopinadhan

    2012-01-01

    Functional food ingredients (nutraceuticals) in fruits range from small molecular components, such as the secondary plant products, to macromolecular entities, e.g., pectin and cellulose, that provide several health benefits. In fruits, the most visible functional ingredients are the color components anthocyanins and carotenoids. In addition, several other secondary plant products, including terpenes, show health beneficial activities. A common feature of several functional ingredients is their antioxidant function. For example, reactive oxygen species (ROS) can be oxidized and stabilized by flavonoid components, and the flavonoid radical can undergo electron rearrangement stabilizing the flavonoid radical. Compounds that possess an orthodihydroxy or quinone structure can interact with cellular proteins in the Keap1/Nrf2/ARE pathway to activate the gene transcription of antioxidant enzymes. Carotenoids and flavonoids can also exert their action by modulating the signal transduction and gene expression within the cell. Recent results suggest that these activities are primarily responsible for the health benefits associated with the consumption of fruits and vegetables.

  4. Formal functional test designs with a test representation language

    NASA Technical Reports Server (NTRS)

    Hops, J. M.

    1993-01-01

    The application of the category-partition method to the test design phase of hardware, software, or system test development is discussed. The method provides a formal framework for reducing the total number of possible test cases to a minimum logical subset for effective testing. An automatic tool and a formal language were developed to implement the method and produce the specification of test cases.

  5. A model for designing functionally gradient material joints

    SciTech Connect

    Jou, M.; Messler, R.W.; Orling, T.T.

    1994-12-31

    Joining of dissimilar materials into hybrid structures to meet severe design and service requirements is becoming more necessary and common. Joints between heat-resisting or refractory metals and refractory or corrosion resistant ceramics and intermetallics are especially in demand. Before resorting to a more complicated but versatile finite element analysis (FEA) model, a simpler, more user-friendly analytical layer-model based on a thin plate assumption was developed and tested. The model has been successfully used to design simple FGM joints between Ni-base superalloys or Mo and SiC, Ni{sub 3}Al or Al{sub 2}O{sub 3} using self-propagating high-temperature or pressurized composition synthesis for joining. Cases are presented to demonstrate capability for: (1) varying processing temperature excursions or service gradients; (2) varying overall joint thickness for a fixed number of uniform composition steps; (3) varying the number of uniform steps for a particular overall joint thickness; (4) varying the thickness and/or composition of individual steps for a constant overall thickness; and (5) altering the constitutive law for mixed-material composition steps. The model provides a useful joint design tool for process R&D.

  6. First principles materials design of novel functional oxides

    NASA Astrophysics Data System (ADS)

    Cooper, Valentino R.; Voas, Brian K.; Bridges, Craig A.; Morris, James R.; Beckman, Scott P.

    2016-05-01

    We review our efforts to develop and implement robust computational approaches for exploring phase stability to facilitate the prediction-to-synthesis process of novel functional oxides. These efforts focus on a synergy between (i) electronic structure calculations for properties predictions, (ii) phenomenological/empirical methods for examining phase stability as related to both phase segregation and temperature-dependent transitions and (iii) experimental validation through synthesis and characterization. We illustrate this philosophy by examining an inaugural study that seeks to discover novel functional oxides with high piezoelectric responses. Our results show progress towards developing a framework through which solid solutions can be studied to predict materials with enhanced properties that can be synthesized and remain active under device relevant conditions.

  7. Molecular Design for Tuning Work Functions of Transparent Conducting Electrodes.

    PubMed

    Koldemir, Unsal; Braid, Jennifer L; Morgenstern, Amanda; Eberhart, Mark; Collins, Reuben T; Olson, Dana C; Sellinger, Alan

    2015-06-18

    In this Perspective, we provide a brief background on the use of aromatic phosphonic acid modifiers for tuning work functions of transparent conducting oxides, for example, zinc oxide (ZnO) and indium tin oxide (ITO). We then introduce our preliminary results in this area using conjugated phosphonic acid molecules, having a substantially larger range of dipole moments than their unconjugated analogues, leading to the tuning of ZnO and ITO electrodes over a 2 eV range as derived from Kelvin probe measurements. We have found that these work function changes are directly correlated to the magnitude and the direction of the computationally derived molecular dipole of the conjugated phosphonic acids, leading to the predictive power of computation to drive the synthesis of new and improved phosphonic acid ligands. PMID:26266603

  8. First principles materials design of novel functional oxides

    DOE PAGES

    Cooper, Valentino R.; Voas, Brian K.; Bridges, Craig A.; Morris, James R.; Beckman, Scott P.

    2016-05-31

    We review our efforts to develop and implement robust computational approaches for exploring phase stability to facilitate the prediction-to-synthesis process of novel functional oxides. These efforts focus on a synergy between (i) electronic structure calculations for properties predictions, (ii) phenomenological/empirical methods for examining phase stability as related to both phase segregation and temperature-dependent transitions and (iii) experimental validation through synthesis and characterization. We illustrate this philosophy by examining an inaugural study that seeks to discover novel functional oxides with high piezoelectric responses. Lastly, our results show progress towards developing a framework through which solid solutions can be studied to predictmore » materials with enhanced properties that can be synthesized and remain active under device relevant conditions.« less

  9. Development of ductile hybrid fiber reinforced polymer (D-H-FRP) reinforcement for concrete structures

    NASA Astrophysics Data System (ADS)

    Somboonsong, Win

    The corrosion of steel rebars has been the major cause of the reinforced concrete deterioration in transportation structures and port facilities. Currently, the Federal Highway Administration (FHWA) spends annually $31 billion for maintaining and repairing highways and highway bridges. The study reported herein represents the work done in developing a new type of reinforcement called Ductile Hybrid Fiber Reinforced Polymer or D-H-FRP using non-corrosive fiber materials. Unlike the previous FRP reinforcements that fail in a brittle manner, the D-H-FRP bars exhibit the stress-strain curves that are suitable for concrete reinforcement. The D-H-FRP stress-strain curves are linearly elastic with a definite yield point followed by plastic deformation and strain hardening resembling that of mild steel. In addition, the D-H-FRP reinforcement has integrated ribs required for concrete bond. The desirable mechanical properties of D-H-FRP reinforcement are obtained from the integrated design based on the material hybrid and geometric hybrid concepts. Using these concepts, the properties can be tailored to meet the specific design requirements. An analytical model was developed to predict the D-H-FRP stress-strain curves with different combination of fiber materials and geometric configuration. This model was used to optimize the design of D-H-FRP bars. An in-line braiding-pultrusion manufacturing process was developed at Drexel University to produce high quality D-H-FRP reinforcement in diameters that can be used in concrete structures. A series of experiments were carried out to test D-H-FRP reinforcement as well as their individual components in monotonic and cyclic tensile tests. Using the results from the tensile tests and fracture analysis, the stress-strain behavior of the D-H-FRP reinforcement was fully characterized and explained. Two series of concrete beams reinforced with D-H-FRP bars were studied. The D-H-FRP beam test results were then compared with companion

  10. Design management of functional foods for quality of life improvement.

    PubMed

    Butnariu, Monica; Caunii, Angela

    2013-01-01

    The paper examines the benefit of bread enriched with antioxidants on oxidative stress, and on the quantities of hydrosoluble antioxidants in a group of human subjects. The home-management of functional foods strategy seeks to improve prompt and effective basic nutrition using additional attributes that are directly positively beneficial for health and well-being. The purpose of this clinical study was to test the tolerance and benefits of multicomponent functional foods enriched with antioxidant compounds obtained from plant extracts on healthy adult volunteers. A detailed protocol was created to formalize and standardize the procedures for data collection, e.g. filling out standardized forms and functional diet questionnaires. For the research method, Group A was given the special diet enriched with multicomponent antioxidant foods and Group B (control). The data were analysed using the quantitative methods. They showed significant increase of hydrosoluble antioxidants in group A compared to control, from 220.61+/-27.92 - 313.56+/-37.09 micrograms/mL (p=0.05), compared to 280.47+/-32.1 - 238.27+/-44.93 micrograms/mL (p=0.45). Also, oxidative stress values showed a decrease in the diet group compared to control that reached statistical significance. Oxidative stress decreased in the diet group to 244 +/- 89 compared to 308+/-108 UFORT in the control group. The responses of the prevention of chronic diseases to a functional foods strategy depend on how they are absorbed and utilized in the body. An anti-oxidant diet with natural bioactive components could become an interesting solution for degenerative disorders in which oxidative stress is increased.

  11. Design of Light-Controlled Protein Conformations and Functions.

    PubMed

    Ritterson, Ryan S; Hoersch, Daniel; Barlow, Kyle A; Kortemme, Tanja

    2016-01-01

    In recent years, interest in controlling protein function with light has increased. Light offers a number of unique advantages over other methods, including spatial and temporal control and high selectivity. Here, we describe a general protocol for engineering a protein to be controllable with light via reaction with an exogenously introduced photoisomerizable small molecule and illustrate our protocol with two examples from the literature: the engineering of the calcium affinity of the cell-cell adhesion protein cadherin, which is an example of a protein that switches from a native to a disrupted state (Ritterson et al. J Am Chem Soc (2013) 135:12516-12519), and the engineering of the opening and closing of the chaperonin Mm-cpn, an example of a switch between two functional states (Hoersch et al.: Nat Nanotechn (2013) 8:928-932). This protocol guides the user from considering which proteins may be most amenable to this type of engineering, to considerations of how and where to make the desired changes, to the assays required to test for functionality. PMID:27094293

  12. Reinforced plastics durability

    SciTech Connect

    Pritchard, G.

    1999-01-01

    Written especially for first-time users of reinforced plastics. The book offers substantial introductory information with key concepts. Chapters examine the long-term threats to the integrity of reinforced plastics: outdoor weathering, solvent/water attack, high temperatures, and repetitive stress.

  13. An Analysis of Risk and Function Information in Early Stage Design

    NASA Technical Reports Server (NTRS)

    Barrientos, Francesca; Tumer, Irem; Grantham, Katie; VanWie, Michael; Stone, Robert

    2005-01-01

    The concept of function offers a high potential for thinking and reasoning about designs as well as providing a common thread for relating together other design information. This paper focuses specifically on the relation between function and risk by examining how this information is addressed for a design team conducting early stage design for space missions. Risk information is decomposed into a set of key attributes which are then used to scrutinize the risk information using three approaches from the pragmatics sub-field of linguistics: i) Gricean, ii) Relevance Theory, and Functional Analysis. Results of this linguistics-based approach descriptively account for the context of designer communication with respect to function and risk, and offer prescriptive guidelines for improving designer communication.

  14. Composite Intersection Reinforcement

    NASA Technical Reports Server (NTRS)

    Misciagna, David T. (Inventor); Fuhrer, Jessica J. (Inventor); Funk, Robert S. (Inventor); Tolotta, William S. (Inventor)

    2013-01-01

    An assembly and method for manufacturing a composite reinforcement for unitizing a structure are provided. According to one embodiment, the assembly includes a base having a plurality of pins extending outwardly therefrom to define a structure about which a composite fiber is wound to define a composite reinforcement preform. The assembly also includes a plurality of mandrels positioned adjacent to the base and at least a portion of the composite reinforcement preform, and a cap that is positioned over at least a portion of the plurality of mandrels. The cap is configured to engage each of the mandrels to support the mandrels and the composite reinforcement preform during a curing process to form the composite reinforcement.

  15. Composite intersection reinforcement

    NASA Technical Reports Server (NTRS)

    Misciagna, David T. (Inventor); Fuhrer, Jessica J. (Inventor); Funk, Robert S. (Inventor); Tolotta, William S. (Inventor)

    2010-01-01

    An assembly and method for manufacturing a composite reinforcement for unitizing a structure are provided. According to one embodiment, the assembly includes a base having a plurality of pins extending outwardly therefrom to define a structure about which a composite fiber is wound to define a composite reinforcement preform. The assembly also includes a plurality of mandrels positioned adjacent to the base and at least a portion of the composite reinforcement preform, and a cap that is positioned over at least a portion of the plurality of mandrels. The cap is configured to engage each of the mandrels to support the mandrels and the composite reinforcement preform during a curing process to form the composite reinforcement.

  16. Structure-Function-Property-Design Interplay in Biopolymers: Spider Silk

    PubMed Central

    Tokareva, Olena; Jacobsen, Matthew; Buehler, Markus; Wong, Joyce; Kaplan, David L.

    2013-01-01

    Spider silks have been a focus of research for almost two decades due to their outstanding mechanical and biophysical properties. Recent advances in genetic engineering have led to the synthesis of recombinant spider silks, thus helping to unravel a fundamental understanding of structure-function-property relationships. The relationships between molecular composition, secondary structures, and mechanical properties found in different types of spider silks are described, along with a discussion of artificial spinning of these proteins and their bioapplications, including the role of silks in biomineralization and fabrication of biomaterials with controlled properties. PMID:23962644

  17. Functionalized synthetic clays designed for polymer-clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Chastek, Thuy Truong

    Polymer-clay nanocomposites have many advantageous properties such as their light weight, transparency, flame retardency, barrier properties, and low cost. Exfoliation of natural clays into commercially important non-polar polymers such as polystyrene (PS) and polypropylene (PP) melts has been limited due to the immiscibility of these polymers with highly polar clays. Current means of addressing this problem, such as treating clays with surfactants, has met with limited success. Motivated by the need for synthetic clays that can be dispersed and exfoliated in non-polar polymer melts without added compatibilizers, we synthesized lamellar silicates and aluminosilicates to act as clay analogs. The flexibility of the sol-gel syntheses allowed hexadecyl and isobutyl functional groups to be covalently attached to the surface of the clays. Incorporating a high content of octahedral aluminum also strengthened the clay layers. The strength and surface functionalities of the layered silicates improved exfoliation during melt blending with PS and PP. We studied the effects of clay layer composition (silicate and alumino-silicate), layer thickness, organic functional groups, aluminum coordination, and covalent linking of surfactants on the performance of the nanocomposites. The lamellar morphology was determined from XRD and TEM. Organic functionalization was determined with solid state NMR and IR spectroscopy. The synthetic clays were mixed with various solvents to help predict their miscibility with PS and PP. Composites were prepared with different molecular weight polymers, which subjected the clays to a wide range of shear stresses. The clays were also pretreated by mixing in a master batch or dispersing in an organic solvent. The effects of PS and PP molecular weight, master batch, and solvent dispersion on the exfoliation of synthetic clays in PS are examined. Rheology and TEM were used to observe the quality of exfoliation and the final aspect ratio of the clay layers

  18. Porous materials. Function-led design of new porous materials.

    PubMed

    Slater, Anna G; Cooper, Andrew I

    2015-05-29

    Porous solids are important as membranes, adsorbents, catalysts, and in other chemical applications. But for these materials to find greater use at an industrial scale, it is necessary to optimize multiple functions in addition to pore structure and surface area, such as stability, sorption kinetics, processability, mechanical properties, and thermal properties. Several different classes of porous solids exist, and there is no one-size-fits-all solution; it can therefore be challenging to choose the right type of porous material for a given job. Computational prediction of structure and properties has growing potential to complement experiment to identify the best porous materials for specific applications.

  19. Functional Design Criteria plutonium stabilization and handling (PUSH) project W-460

    SciTech Connect

    NELSON, D.W.

    1999-09-02

    This Functional Design Criteria (FDC) contains information to guide the design of the Stabilization and Packaging Equipment necessary to oxidize and package the remaining plutonium-bearing Special Nuclear Materials (SNM) currently in the Plutonium Finishing Plant (PFP) inventory. The FDC also guides the design of vault modifications to allow storage of 3013 packages of stabilized SNM for up to 50 years.

  20. Materials design and development of functional materials for industry.

    PubMed

    Asahi, Ryoji; Morikawa, Takeshi; Hazama, Hirofumi; Matsubara, Masato

    2008-02-13

    It is now well recognized that we are witnessing a golden age of innovation with novel materials, with discoveries that are important for both basic science and industry. With the development of theory along with computing power, quantum materials design-the synthesis of materials with the desired properties in a controlled way via materials engineering on the atomic scale-is becoming a major component of materials research. Computational prediction based on first-principles calculations has helped to find an efficient way to develop materials that are much needed for industry, as we have seen in the successful development of visible-light sensitized photocatalysts and thermoelectric materials. Close collaboration between theory and experiment is emphasized as an essential for success.

  1. Functional design criteria W-367, 222-S ancillary equipment addition

    SciTech Connect

    McVey, C.B.

    1995-02-21

    This paper reviews the designs and performance of tubular solid oxide fuel cells (SOFCs). A large number of tubular cells of the porous support tube type have been electrically tested, some to times over 50,000 hours; these cells have shown excellent performance and performance stability. Since 1984, successfully larger electrical generators utilizing these cells have been built and operated; a 20 kW integrated SOFC system operated for 7064 hours during 1993-1994. Results of development efforts to reduce cost and increase power output of tubular cells by eliminating porous support tube and increasing active length are described, and plans to utilize such air electrode supported cells in future SOFC systems are discussed.

  2. Dynamics of CYP51: implications for function and inhibitor design

    PubMed Central

    Yu, Xiaofeng; Cojocaru, Vlad; Mustafa, Ghulam; Salo-Ahen, Outi M. H.; Lepesheva, Galina I.; Wade, Rebecca C.

    2015-01-01

    Sterol 14α-demethylase (cytochrome P450 family 51 (CYP51)) is an essential enzyme occurring in all biological kingdoms. In eukaryotes, it is located in the membrane of the endoplasmic reticulum. Selective inhibitors of trypanosomal CYP51s that do not affect the human CYP51 have been discovered in vitro and found to cure acute and chronic mouse Chagas disease without severe side effects in vivo. Crystal structures indicate that CYP51 may be more rigid than most CYPs, and it has been proposed that this property may facilitate antiparasitic drug design. Therefore, to investigate the dynamics of trypanosomal CYP51, we built a model of membrane-bound Trypanosoma brucei CYP51 and then performed molecular dynamics simulations of T. brucei CYP51 in membrane-bound and soluble forms. We compared the dynamics of T. brucei CYP51 with those of human CYP51, CYP2C9, and CYP2E1. In the simulations, the CYP51s display low mobility in the buried active site although overall mobility is similar in all the CYPs studied. The simulations suggest that in CYP51, pathway 2f serves as the major ligand access tunnel, and both pathways 2f (leading to membrane) and S (leading to solvent) can serve as ligand egress tunnels. Compared with the other CYPs, the residues at the entrance of the ligand access tunnels in CYP51 have higher mobility that may be necessary to facilitate the passage of its large sterol ligands. The water (W) tunnel is accessible to solvent during most of the simulations of CYP51, but its width is affected by the conformations of the heme's two propionate groups. These differ from those observed in the other CYPs studied because of differences in their hydrogen-bonding network. Our simulations give insights into the dynamics of CYP51 that complement the available experimental data and have implications for drug design against CYP51 enzymes. PMID:25601796

  3. Alumina-Reinforced Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Bansal, Narottam P.

    2003-01-01

    Alumina-reinforced zirconia composites, used as electrolyte materials for solid oxide fuel cells, were fabricated by hot pressing 10 mol percent yttria-stabilized zirconia (10-YSZ) reinforced with two different forms of alumina particulates and platelets each containing 0 to 30 mol percent alumina. Major mechanical and physical properties of both particulate and platelet composites including flexure strength, fracture toughness, slow crack growth, elastic modulus, density, Vickers microhardness, thermal conductivity, and microstructures were determined as a function of alumina content either at 25 C or at both 25 and 1000 C. Flexure strength and fracture toughness at 1000 C were maximized with 30 particulate and 30 mol percent platelet composites, respectively, while resistance to slow crack growth at 1000 C in air was greater for 30 mol percent platelet composite than for 30 mol percent particulate composites.

  4. Spaceborne computer executive routine functional design specification. Volume 2: Computer executive design for space station/base

    NASA Technical Reports Server (NTRS)

    Kennedy, J. R.; Fitzpatrick, W. S.

    1971-01-01

    The computer executive functional system design concepts derived from study of the Space Station/Base are presented. Information Management System hardware configuration as directly influencing the executive design is reviewed. The hardware configuration and generic executive design requirements are considered in detail in a previous report (System Configuration and Executive Requirements Specifications for Reusable Shuttle and Space Station/Base, 9/25/70). This report defines basic system primitives and delineates processes and process control. Supervisor states are considered for describing basic multiprogramming and multiprocessing systems. A high-level computer executive including control of scheduling, allocation of resources, system interactions, and real-time supervisory functions is defined. The description is oriented to provide a baseline for a functional simulation of the computer executive system.

  5. Strong, Tough Ceramics Containing Microscopic Reinforcements: Tailoring In-Situ Reinforced Silicon Nitride Ceramics

    SciTech Connect

    Becher, P.F.

    1999-06-27

    Ceramics with their hardness, chemical stability, and refractoriness could be used to design more efficient energy generation and conversion systems as well as numerous other applications. However, we have needed to develop a fundamental understanding of how to tailor ceramics to improve their performance, especially to overcome their brittle nature. One of the advances in this respect was the incorporation of very strong microscopic rod-like reinforcements in the form of whiskers that serve to hold the ceramic together making it tougher and resistant to fracture. This microscopic reinforcement approach has a number of features that are similar to continuous fiber-reinforced ceramics; however, some of the details are modified. For instance, the strengths of the microscopic reinforcements must be higher as they typically have much stronger interfaces. For instance, single crystal silicon carbide whiskers can have tensile strengths in excess of {ge}7 GPa or >2 times that of continuous fibers. Furthermore, reinforcement pullout is limited to lengths of a few microns in the case of microscopic reinforcement due as much to the higher interfacial shear resistance as to the limit of the reinforcement lengths. On the other hand, the microscopic reinforcement approach can be generated in-situ during the processing of ceramics. A remarkable example of this is found in silicon nitride ceramics where elongated rod-like shape grains can be formed when the ceramic is fired at elevated temperatures to form a dense component.

  6. Exploring the Noisy Threshold Function in Designing Bayesian Networks

    NASA Astrophysics Data System (ADS)

    Jurgelenaite, Rasa; Lucas, Peter; Heskes, Tom

    Causal independence modelling is a well-known method both for reducing the size of probability tables and for explaining the underlying mechanisms in Bayesian networks. Many Bayesian network models incorporate causal independence assumptions; however, only the noisy OR and noisy AND, two examples of causal independence models, are used in practice. Their underlying assumption that either at least one cause, or all causes together, give rise to an effect, however, seems unnecessarily restrictive. In the present paper a new, more flexible, causal independence model is proposed, based on the Boolean threshold function. A connection is established between conditional probability distributions based on the noisy threshold model and Poisson binomial distributions, and the basic properties of this probability distribution are studied in some depth. The successful application of the noisy threshold model in the refinement of a Bayesian network for the diagnosis and treatment of ventilator-associated pneumonia demo nstrates the practical value of the presented theory.

  7. Temporal control of behaviour in children with differential reinforcement of low rates schedule: the role of age, language and cognitive functioning on temporal regulation.

    PubMed

    Gaucher, Mélissa; Forget, Jacques; Clément, Céline

    2015-10-01

    Research on temporal regulation in children has been prolific until early 1990s and has received a very limited attention since then. However, the studies focussed mainly on very short durations, and many questions raised at that time remain unanswered (Clément et al., 2007). The scope of this study was to evaluate temporal control in children with differential reinforcement of low-rates (DRL) schedule. Objectives were (a) to evaluate the performance in DRL with two distinct durations; (b) to evaluate the relationship between performance, IQ and language; and (c) to observe children's response patterns across the sessions. Eleven children aged from 2.6 to 7 years old were exposed to a DRL 5s and a DRL 20s schedule. No significant correlation was observed between language, IQ and the performance in DRL. In DRL 5s, seven children adjusted their responses and six in DRL 20s. Age was positively correlated to performance in DRL 5s, while the response patterns in DRL 20s were hardly predictable. In both conditions, children aged from 4.6 years old showed a lower proportion of bursting responses, a lower rate of response, a larger proportion of reinforced responses and a higher optimisation coefficient.

  8. Was It Designed to Do That? Children's Focus on Intended Function in Their Conceptualization of Artifacts

    ERIC Educational Resources Information Center

    Asher, Yvonne M.; Kemler Nelson, Deborah G.

    2008-01-01

    Do young children who seek the conceptual kind of an artifact weigh the plausibility that a current function constitutes the function intended by the object designer? Three- and four-year-olds were encouraged to question adults about novel artifacts. After inquiring about what an object was, some children were shown a function that plausibly…

  9. Design optimization of a radial functionally graded dental implant.

    PubMed

    Ichim, Paul I; Hu, Xiaozhi; Bazen, Jennifer J; Yi, Wei

    2016-01-01

    In this work, we use FEA to test the hypothesis that a low-modulus coating of a cylindrical zirconia dental implant would reduce the stresses in the peri-implant bone and we use design optimization and the rule of mixture to estimate the elastic modulus and the porosity of the coating that provides optimal stress shielding. We show that a low-modulus coating of a dental implant significantly reduces the maximum stresses in the peri-implant bone without affecting the average stresses thus creating a potentially favorable biomechanical environment. Our results suggest that a resilient coating is capable of reducing the maximum compressive and tensile stresses in the peri-implant bone by up to 50% and the average stresses in the peri-implant bone by up to 15%. We further show that a transitional gradient between the high-modulus core and the low-modulus coating is not necessary and for a considered zirconia/HA composite the optimal thickness of the coating is 100 µ with its optimal elastic at the lowest value considered of 45 GPa.

  10. Mars habitat modules: launch, scaling and functional design considerations.

    PubMed

    Bell, Larry; Hines, Gerald D

    2005-07-01

    The Sasakawa International Center for Space Architecture (SICSA) is undertaking a multi-year research, planning and design study that is exploring near- and long-term commercial space development opportunities. The central goal of this activity is to conceptualize a scenario of sequential, integrated private enterprise initiatives that can carry humankind forward to Mars. Each development stage is planned as a building block to provide the economic foundation, technology advancements and operational infrastructure to support others that follow. This report presents fundamental issues and requirements associated with planning human Mars initiatives that can transfer crews, habitats and equipment from Earth to Mars orbit, deliver them to the planet's surface, and return people and samples safely back to Earth. The study builds in part upon previous studies which are summarized in SICSA's: Commercial Space Development Plan and the Artificial Gravity Science and Excursion Vehicle reports. Information and conclusions produced in this study provide assumptions and a conceptual foundation for a subsequent report titled The First Mars Outpost: Planning and Concepts.

  11. Mars habitat modules: launch, scaling and functional design considerations.

    PubMed

    Bell, Larry; Hines, Gerald D

    2005-07-01

    The Sasakawa International Center for Space Architecture (SICSA) is undertaking a multi-year research, planning and design study that is exploring near- and long-term commercial space development opportunities. The central goal of this activity is to conceptualize a scenario of sequential, integrated private enterprise initiatives that can carry humankind forward to Mars. Each development stage is planned as a building block to provide the economic foundation, technology advancements and operational infrastructure to support others that follow. This report presents fundamental issues and requirements associated with planning human Mars initiatives that can transfer crews, habitats and equipment from Earth to Mars orbit, deliver them to the planet's surface, and return people and samples safely back to Earth. The study builds in part upon previous studies which are summarized in SICSA's: Commercial Space Development Plan and the Artificial Gravity Science and Excursion Vehicle reports. Information and conclusions produced in this study provide assumptions and a conceptual foundation for a subsequent report titled The First Mars Outpost: Planning and Concepts. PMID:15900646

  12. Micro-/nanostructured multicomponent molecular materials: design, assembly, and functionality.

    PubMed

    Yan, Dongpeng

    2015-03-23

    Molecule-based micro-/nanomaterials have attracted considerable attention because their properties can vary greatly from the corresponding macro-sized bulk systems. Recently, the construction of multicomponent molecular solids based on crystal engineering principles has emerged as a promising alternative way to develop micro-/nanomaterials. Unlike single-component materials, the resulting multicomponent systems offer the advantages of tunable composition, and adjustable molecular arrangement, and intermolecular interactions within their solid states. The study of these materials also supplies insight into how the crystal structure, molecular components, and micro-/nanoscale effects can influence the performance of molecular materials. In this review, we describe recent advances and current directions in the assembly and applications of crystalline multicomponent micro-/nanostructures. Firstly, the design strategies for multicomponent systems based on molecular recognition and crystal engineering principles are introduced. Attention is then focused on the methods of fabrication of low-dimensional multicomponent micro-/nanostructures. Their new applications are also outlined. Finally, we briefly discuss perspectives for the further development of these molecular crystalline micro-/nanomaterials.

  13. Learning to trade via direct reinforcement.

    PubMed

    Moody, J; Saffell, M

    2001-01-01

    We present methods for optimizing portfolios, asset allocations, and trading systems based on direct reinforcement (DR). In this approach, investment decision-making is viewed as a stochastic control problem, and strategies are discovered directly. We present an adaptive algorithm called recurrent reinforcement learning (RRL) for discovering investment policies. The need to build forecasting models is eliminated, and better trading performance is obtained. The direct reinforcement approach differs from dynamic programming and reinforcement algorithms such as TD-learning and Q-learning, which attempt to estimate a value function for the control problem. We find that the RRL direct reinforcement framework enables a simpler problem representation, avoids Bellman's curse of dimensionality and offers compelling advantages in efficiency. We demonstrate how direct reinforcement can be used to optimize risk-adjusted investment returns (including the differential Sharpe ratio), while accounting for the effects of transaction costs. In extensive simulation work using real financial data, we find that our approach based on RRL produces better trading strategies than systems utilizing Q-learning (a value function method). Real-world applications include an intra-daily currency trader and a monthly asset allocation system for the S&P 500 Stock Index and T-Bills.

  14. Choice and conditioned reinforcement.

    PubMed

    Fantino, E; Freed, D; Preston, R A; Williams, W A

    1991-03-01

    A potential weakness of one formulation of delay-reduction theory is its failure to include a term for rate of conditioned reinforcement, that is, the rate at which the terminal-link stimuli occur in concurrent-chains schedules. The present studies assessed whether or not rate of conditioned reinforcement has an independent effect upon choice. Pigeons responded on either modified concurrent-chains schedules or on comparable concurrent-tandem schedules. The initial link was shortened on only one of two concurrent-chains schedules and on only one of two corresponding concurrent-tandem schedules. This manipulation increased rate of conditioned reinforcement sharply in the chain but not in the tandem schedule. According to a formulation of delay-reduction theory, when the outcomes chosen (the terminal links) are equal, as in Experiment 1, choice should depend only on rate of primary reinforcement; thus, choice should be equivalent for the tandem and chain schedules despite a large difference in rate of conditioned reinforcement. When the outcomes chosen are unequal, however, as in Experiment 2, choice should depend upon both rate of primary reinforcement and relative signaled delay reduction; thus, larger preferences should occur in the chain than in the tandem schedules. These predictions were confirmed, suggesting that increasing the rate of conditioned reinforcement on concurrent-chains schedules may have no independent effect on choice.

  15. Application of differential reinforcement to control disruptive behaviours of mentally retarded students during remedial instruction.

    PubMed

    Luiselli, J K; Pollow, R S; Colozzi, G A; Teitelbaum, M

    1981-12-01

    This research was concerned with training special education practitioners to utilise DRO procedures (differential reinforcement of other behaviour) to control disruptive behaviours of mentally retarded students during remedial instruction. The procedures consisted of delivering an edible treat to the students if they failed to exhibit specified problem behaviours during selected time frames. In Study I, out-of-seat behaviour of a six-year-old mildly retarded girl was eliminated in two classroom settings following application of DRO. In addition, treatment effects generalised to a second problem behaviour, disruptive vocalising. In Study II, vocal disruption of a sixteen-year-old severely retarded boy was reduced to near-zero levels during speech therapy sessions. Both studies employed single case experimental designs to determine functional control of the reinforcement contingencies and utilised adjusting schedules to gradually increase the interval for reinforcement. The advantages of DRO programmes in special education settings are discussed.

  16. A Real-time Reinforcement Learning Control System with H∞ Tracking Performance Compensator

    NASA Astrophysics Data System (ADS)

    Uchiyama, Shogo; Obayashi, Masanao; Kuremoto, Takashi; Kobayashi, Kunikazu

    Robust control theory generally guarantees robustness and stability of the closed-loop system. It however requires a mathematical model of the system to design the control system. It therefore can't often deal with nonlinear systems due to difficulty of modeling of the system. On the other hand, reinforcement learning methods can deal with nonlinear systems without any mathematical model. It however usually doesn't guarantee the stability of the system control. In this paper, we propose a “Real-time Reinforcement Learning Control System (RRLCS)” through combining reinforcement learning to treat unknown nonlinear systems and robust control theory to guarantee the robustness and stability of the system. Moreover, we analyze the stability of the proposed system using H∞ tracking performance and Lyapunov function. Finally, through the computer simulation for controlling an inverted pendulum system, we show the effectiveness of the proposed method.

  17. Design of Sensitivity Function of Multi-Rate VCM Control System

    NASA Astrophysics Data System (ADS)

    Kisaka, Masashi

    The method for designing the sensitivity function of a multiple-input single-output servo system is proposed. The method does not require weight or a weight function unlike linear quadratic (LQ) or H∞ design. First, a controller candidate is derived by taking into consideration the specification of robustness of the plant system. Then, the sensitivity function is derived from the gain specification of the sensitivity function. As the design of a multi-rate controller can be shown to be equivalent to the multiple-input single-output system, the method is employed to design the multi-rate VCM position control system. The multi-rate controller is designed such that at frequencies higher than the Nyquist frequency, the desired robustness is achieved.

  18. The relative motivational properties of sensory and edible reinforcers in teaching autistic children.

    PubMed Central

    Rincover, A; Newsom, C D

    1985-01-01

    We compared the effects of sensory and edible reinforcers on resistance to satiation in three autistic children while learning visual discrimination tasks. Within-subject designs were used to compare a single sensory reinforcer with a single edible reinforcer and to compare multiple sensory reinforcers with multiple edibles. Results indicated that multiple sensory reinforcers maintained responding over more trials than did multiple edible reinforcers; however, the use of single sensory reinforcers and single edibles resulted in about equal numbers of trials to satiation. Both multiple and single sensory reinforcers produced higher percentages of correct responses than edible reinforcers. The findings are discussed in terms of the advantages of sensory reinforcers in teaching autistic children. PMID:4044457

  19. Abdominal closure reinforcement by using polypropylene mesh functionalized with poly-ε-caprolactone nanofibers and growth factors for prevention of incisional hernia formation

    PubMed Central

    Plencner, Martin; East, Barbora; Tonar, Zbyněk; Otáhal, Martin; Prosecká, Eva; Rampichová, Michala; Krejčí, Tomáš; Litvinec, Andrej; Buzgo, Matej; Míčková, Andrea; Nečas, Alois; Hoch, Jiří; Amler, Evžen

    2014-01-01

    Incisional hernia affects up to 20% of patients after abdominal surgery. Unlike other types of hernia, its prognosis is poor, and patients suffer from recurrence within 10 years of the operation. Currently used hernia-repair meshes do not guarantee success, but only extend the recurrence-free period by about 5 years. Most of them are nonresorbable, and these implants can lead to many complications that are in some cases life-threatening. Electrospun nanofibers of various polymers have been used as tissue scaffolds and have been explored extensively in the last decade, due to their low cost and good biocompatibility. Their architecture mimics the natural extracellular matrix. We tested a biodegradable polyester poly-ε-caprolactone in the form of nanofibers as a scaffold for fascia healing in an abdominal closure-reinforcement model for prevention of incisional hernia formation. Both in vitro tests and an experiment on a rabbit model showed promising results. PMID:25031534

  20. Reinforcement learning in scheduling

    NASA Technical Reports Server (NTRS)

    Dietterich, Tom G.; Ok, Dokyeong; Zhang, Wei; Tadepalli, Prasad

    1994-01-01

    The goal of this research is to apply reinforcement learning methods to real-world problems like scheduling. In this preliminary paper, we show that learning to solve scheduling problems such as the Space Shuttle Payload Processing and the Automatic Guided Vehicle (AGV) scheduling can be usefully studied in the reinforcement learning framework. We discuss some of the special challenges posed by the scheduling domain to these methods and propose some possible solutions we plan to implement.

  1. Covert Reinforcement: A Partial Replication.

    ERIC Educational Resources Information Center

    Ripstra, Constance C.; And Others

    A partial replication of an investigation of the effect of covert reinforcement on a perceptual estimation task is described. The study was extended to include an extinction phase. There were five treatment groups: covert reinforcement, neutral scene reinforcement, noncontingent covert reinforcement, and two control groups. Each subject estimated…

  2. Preference pulses without reinforcers.

    PubMed

    McLean, Anthony P; Grace, Randolph C; Pitts, Raymond C; Hughes, Christine E

    2014-05-01

    Preference pulses are thought to represent strong, short-term effects of reinforcers on preference in concurrent schedules. However, the general shape of preference pulses is substantially determined by the distributions of responses-per-visit (visit lengths) for the two choice alternatives. In several series of simulations, we varied the means and standard deviations of distributions describing visits to two concurrently available response alternatives, arranged "reinforcers" according to concurrent variable-interval schedules, and found a range of different preference pulses. Because characteristics of these distributions describe global aspects of behavior, and the simulations assumed no local effects of reinforcement, these preference pulses derive from the visit structure alone. This strongly questions whether preference pulses should continue to be interpreted as representing local effects of reinforcement. We suggest an alternative approach whereby local effects are assessed by subtracting the artifactual part, which derives from visit structure, from the observed preference pulses. This yields "residual" preference pulses. We illustrate this method in application to published data from mixed dependent concurrent schedules, revealing evidence that the delivery of reinforcers had modest lengthening effects on the duration of the current visit, a conclusion that is quantitatively consistent with early research on short-term effects of reinforcement.

  3. Was it designed to do that? Children's focus on intended function in their conceptualization of artifacts.

    PubMed

    Asher, Yvonne M; Kemler Nelson, Deborah G

    2008-01-01

    Do young children who seek the conceptual kind of an artifact weigh the plausibility that a current function constitutes the function intended by the object designer? Three- and four-year-olds were encouraged to question adults about novel artifacts. After inquiring about what an object was, some children were shown a function that plausibly accounted for the structural features of the object; others were shown a possible, but implausible function. Children given implausible functions were less satisfied with these responses than those given plausible functions, as shown by their more persistent attempts to ask follow-up questions about function. Accordingly, preschoolers appear to take into account matters of intentional design when assigning artifacts to conceptual kinds.

  4. Resist Profile Control Obtained Through A Desirability Function And Statistically Designed Experiments

    NASA Astrophysics Data System (ADS)

    Bell, Kenneth L.; Christensen, Lorna D.

    1989-07-01

    This paper describes a technique used to determine an optimized microlithographic process using statistical methods which included a statistically designed experiment (SDE); a desirability function, d(θ*) and a rigorous daily statistical process control program, (SPC).

  5. A new optimal sliding mode controller design using scalar sign function.

    PubMed

    Singla, Mithun; Shieh, Leang-San; Song, Gangbing; Xie, Linbo; Zhang, Yongpeng

    2014-03-01

    This paper presents a new optimal sliding mode controller using the scalar sign function method. A smooth, continuous-time scalar sign function is used to replace the discontinuous switching function in the design of a sliding mode controller. The proposed sliding mode controller is designed using an optimal Linear Quadratic Regulator (LQR) approach. The sliding surface of the system is designed using stable eigenvectors and the scalar sign function. Controller simulations are compared with another existing optimal sliding mode controller. To test the effectiveness of the proposed controller, the controller is implemented on an aluminum beam with piezoceramic sensor and actuator for vibration control. This paper includes the control design and stability analysis of the new optimal sliding mode controller, followed by simulation and experimental results. The simulation and experimental results show that the proposed approach is very effective.

  6. Mapping kinematic functional abilities of the hand to three dimensional shapes for inclusive design.

    PubMed

    Leitkam, Samuel T; Bix, Laura; de la Fuente, Javier; Reid Bush, Tamara

    2015-08-20

    Loss of hand function can have adverse effects on an individual's ability to maintain independence. The ability to perform daily activities, such as food preparation and medication delivery, is dependent on the hand's ability to grasp and manipulate objects. Therefore, the goal of this research was to demonstrate that three dimensional (3D) modeling of hand function can be used to improve the accessibility of handheld objects for individuals with reduced functionality through informed design. Individual models of hand functionality were created for 43 participants and group models were developed for groups of individuals without (Healthy) and with reduced functionality due to arthritis (RFA) of the hand. Cylindrical models representative of auto-injectors of varying diameters were analyzed in 3D space relative to hand function. The individual model mappings showed the cylinder diameter with the highest mapped functional values varied depending on the type of functional weighting chosen: kinematic redundancy of fingertip pad positional placement, fingertip pad orientation, or finger force directionality. The group mappings showed that for a cylinder to be grasped in a power grasp by at least 75% of the Healthy or RFA groups, a diameter of 40mm was required. This research utilizes a new hand model to objectively compare design parameters across three different kinematic factors of hand function and across groups with different functional abilities. The ability to conduct these comparisons enables the creation of designs that are universal to all - including accommodation of individuals with limits in their functional abilities.

  7. Improvement in protein functional site prediction by distinguishing structural and functional constraints on protein family evolution using computational design.

    PubMed

    Cheng, Gong; Qian, Bin; Samudrala, Ram; Baker, David

    2005-01-01

    The prediction of functional sites in newly solved protein structures is a challenge for computational structural biology. Most methods for approaching this problem use evolutionary conservation as the primary indicator of the location of functional sites. However, sequence conservation reflects not only evolutionary selection at functional sites to maintain protein function, but also selection throughout the protein to maintain the stability of the folded state. To disentangle sequence conservation due to protein functional constraints from sequence conservation due to protein structural constraints, we use all atom computational protein design methodology to predict sequence profiles expected under solely structural constraints, and to compute the free energy difference between the naturally occurring amino acid and the lowest free energy amino acid at each position. We show that functional sites are more likely than non-functional sites to have computed sequence profiles which differ significantly from the naturally occurring sequence profiles and to have residues with sub-optimal free energies, and that incorporation of these two measures improves sequence based prediction of protein functional sites. The combined sequence and structure based functional site prediction method has been implemented in a publicly available web server.

  8. Conditioned reinforcement: Experimental and theoretical issues.

    PubMed

    Williams, B A

    1994-01-01

    The concept of conditioned reinforcement has received decreased attention in learning textbooks over the past decade, in part because of criticisms of its validity by major behavior theorists and in part because its explanatory function in a variety of different conditioning procedures has become uncertain. Critical data from the major procedures that have been used to investigate the concept (second-order schedules, chain schedules, concurrent chains, observing responses, delay-of-reinforcement procedures) are reviewed, along with the major issues of interpretation. Although the role played by conditioned reinforcement in some procedures remains unresolved, the results taken together leave little doubt that the underlying idea of conditioned value is a critical component of behavior theory that is necessary to explain many different types of data. Other processes (marking, bridging) may also operate to produce effects similar to those of conditioned reinforcement, but these clearly cannot explain the full domain of experimental effects ascribed to conditioned reinforcement and should be regarded as complements to the concept rather than theoretical competitors. Examples of practical and theoretical applications of the concept of conditioned reinforcement are also considered.

  9. Analytical and experimental investigation of soil reinforcing

    NASA Astrophysics Data System (ADS)

    Holtz, R. D.; Harr, M. E.

    1983-10-01

    Significant improvements in the capacity and service life of reinforced earth structures require an improved understanding of the fundamental behavior of these systems. Both experimental and analytical investigations were carried out to develop models for the interaction of geotextile-type reinforcement and granular soils. Reinforcement configurations and systems investigated were thought to be applicable to alternate launch and recovery surfaces (ALRS). Model ALRS systems using geotextiles and geogrids as reinforcement were tested in the laboratory in a variety of configurations. These were loaded to failure, quasi-statically, by both plane strain and axisymmetric rigid plates. Load-deformation characteristics as well as the shape of the deflected basin are reported. Significant increases in bearing capacity and modulus of subgrade reaction as a function of depth and number of layers of reinforcement were observed. However, there was a decrease in improvement as the depth to the first layer increased. Edge fixity conditions were found to be relatively unimportant, and the benefit of multiple-reinforcement layers was greater if the depth and spacing were small compared to the diameter of the loaded area. Surprisingly, little difference was observed in the response of the geogrids and geotextiles, probably because sand was used in the experiments. Geometric scaling of bearing capacity, based on the diameters of the loaded areas, was not possible.

  10. Conditioned reinforcement: Experimental and theoretical issues

    PubMed Central

    Williams, Ben A.

    1994-01-01

    The concept of conditioned reinforcement has received decreased attention in learning textbooks over the past decade, in part because of criticisms of its validity by major behavior theorists and in part because its explanatory function in a variety of different conditioning procedures has become uncertain. Critical data from the major procedures that have been used to investigate the concept (second-order schedules, chain schedules, concurrent chains, observing responses, delay-of-reinforcement procedures) are reviewed, along with the major issues of interpretation. Although the role played by conditioned reinforcement in some procedures remains unresolved, the results taken together leave little doubt that the underlying idea of conditioned value is a critical component of behavior theory that is necessary to explain many different types of data. Other processes (marking, bridging) may also operate to produce effects similar to those of conditioned reinforcement, but these clearly cannot explain the full domain of experimental effects ascribed to conditioned reinforcement and should be regarded as complements to the concept rather than theoretical competitors. Examples of practical and theoretical applications of the concept of conditioned reinforcement are also considered. PMID:22478192

  11. Study of space shuttle orbiter system management computer function. Volume 1: Analysis, baseline design

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A system analysis of the shuttle orbiter baseline system management (SM) computer function is performed. This analysis results in an alternative SM design which is also described. The alternative design exhibits several improvements over the baseline, some of which are increased crew usability, improved flexibility, and improved growth potential. The analysis consists of two parts: an application assessment and an implementation assessment. The former is concerned with the SM user needs and design functional aspects. The latter is concerned with design flexibility, reliability, growth potential, and technical risk. The system analysis is supported by several topical investigations. These include: treatment of false alarms, treatment of off-line items, significant interface parameters, and a design evaluation checklist. An in-depth formulation of techniques, concepts, and guidelines for design of automated performance verification is discussed.

  12. 28 CFR 0.31 - Designating officials to perform the functions of the Director.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Designating officials to perform the functions of the Director. 0.31 Section 0.31 Judicial Administration DEPARTMENT OF JUSTICE ORGANIZATION OF THE DEPARTMENT OF JUSTICE Community Relations Service § 0.31 Designating officials to perform...

  13. Curriculum and Course Design: A New Approach Using Quality Function Deployment

    ERIC Educational Resources Information Center

    Denton, James W.; Kleist, Virginia Franke; Surendra, Nanda

    2005-01-01

    In this article, the authors describe a method for assuring the quality of curriculum design based on techniques that have been used in industrial settings for over 30 years. Quality Function Deployment assures that the needs of the customer are considered at all levels of product design and a graphical matrix called the House of Quality serves as…

  14. Physics Buildings Today. A Supplement to Modern Physics Buildings: Design and Function.

    ERIC Educational Resources Information Center

    American Inst. of Physics, New York, NY.

    This supplement to "Modern Physics Buildings: Design and Function" is intended as an aid to physics department faculties, administrators, and architects responsible for designing new science buildings. It provides descriptions of 26 new physics buildings and science buildings with physics facilities. Presented are (1) floor plans, (2) photographs,…

  15. Functionally Graded Designer Viscoelastic Materials Tailored to Perform Prescribed Tasks with Probabilistic Failures and Lifetimes

    SciTech Connect

    Hilton, Harry H.

    2008-02-15

    Protocols are developed for formulating optimal viscoelastic designer functionally graded materials tailored to best respond to prescribed loading and boundary conditions. In essence, an inverse approach is adopted where material properties instead of structures per se are designed and then distributed throughout structural elements. The final measure of viscoelastic material efficacy is expressed in terms of failure probabilities vs. survival time000.

  16. Functional design criteria for the self-installing liquid observation well

    SciTech Connect

    Parra, S.A.

    1996-01-01

    This document presents the functional Design Criteria for installing liquid observation wells (LOWs) into single-shell tanks containing ferrocyanide and organic wastes. The LOWs will be designed to accommodate the deployment of gamma, neutron, and electromagnetic induction probes and to interface with the existing tank structure and environment.

  17. Analysis of woven fabrics for reinforced composite materials

    NASA Technical Reports Server (NTRS)

    Dow, Norris F.; Ramnath, V.; Rosen, B. Walter

    1987-01-01

    The use of woven fabrics as reinforcements for composites is considered. Methods of analysis of properties are reviewed and extended, with particular attention paid to three-dimensional constructions having through-the-thickness reinforcements. Methodology developed is used parametrically to evaluate the performance potential of a wide variety of reinforcement constructions including hybrids. Comparisons are made of predicted and measured properties of representative composites having biaxial and triaxial woven, and laminated tape lay-up reinforcements. Overall results are incorporated in advanced weave designs.

  18. Toward high-resolution computational design of the structure and function of helical membrane proteins.

    PubMed

    Barth, Patrick; Senes, Alessandro

    2016-06-01

    The computational design of α-helical membrane proteins is still in its infancy but has already made great progress. De novo design allows stable, specific and active minimal oligomeric systems to be obtained. Computational reengineering can improve the stability and function of naturally occurring membrane proteins. Currently, the major hurdle for the field is the experimental characterization of the designs. The emergence of new structural methods for membrane proteins will accelerate progress. PMID:27273630

  19. Toward high-resolution computational design of helical membrane protein structure and function

    PubMed Central

    Barth, Patrick; Senes, Alessandro

    2016-01-01

    The computational design of α-helical membrane proteins is still in its infancy but has made important progress. De novo design has produced stable, specific and active minimalistic oligomeric systems. Computational re-engineering can improve stability and modulate the function of natural membrane proteins. Currently, the major hurdle for the field is not computational, but the experimental characterization of the designs. The emergence of new structural methods for membrane proteins will accelerate progress PMID:27273630

  20. Visual reinforcement audiometry: an Adobe Flash based approach.

    PubMed

    Atherton, Steve

    2010-09-01

    Visual Reinforcement Audiometry (VRA) is a key behavioural test for young children. It is central to the diagnosis of hearing-impaired infants (1) . Habituation to the visual reinforcement can give misleading results. Medical Illustration ABM University Health Board has designed a collection of Flash animations to overcome this.

  1. Functional design specification for Stowage List And Hardware Tracking System (SLAHTS). [space shuttles

    NASA Technical Reports Server (NTRS)

    Keltner, D. J.

    1975-01-01

    This functional design specification defines the total systems approach to meeting the requirements stated in the Detailed Requirements Document for Stowage List and Hardware Tracking System for the space shuttle program. The stowage list and hardware tracking system is identified at the system and subsystem level with each subsystem defined as a function of the total system.

  2. Functional Contextualism: An Ideal Framework for Theory in Instructional Design and Technology

    ERIC Educational Resources Information Center

    Reigeluth, Charles M.; An, Yun-Jo

    2006-01-01

    In this article, the authors comment on Eric Fox's description of functional contextualism which makes several contributions to instructional design and technology (IDT). They agree that functional contextualism does indeed provide some "theoretical clarity and philosophical cohesion," not just for constructivism, but also for understanding…

  3. Negative reinforcement learning is affected in substance dependence

    PubMed Central

    Thompson, Laetitia L.; Claus, Eric D.; Mikulich-Gilbertson, Susan K.; Banich, Marie T.; Crowley, Thomas; Krmpotich, Theodore; Miller, David; Tanabe, Jody

    2011-01-01

    Background Negative reinforcement results in behavior to escape or avoid an aversive outcome. Withdrawal symptoms are purported to be negative reinforcers in perpetuating substance dependence, but little is known about negative reinforcement learning in this population. The purpose of this study was to examine reinforcement learning in substance dependent individuals (SDI), with an emphasis on assessing negative reinforcement learning. We modified the Iowa Gambling Task to separately assess positive and negative reinforcement. We hypothesized that SDI would show differences in negative reinforcement learning compared to controls and we investigated whether learning differed as a function of the relative magnitude or frequency of the reinforcer. Methods Thirty subjects dependent on psychostimulants were compared with 28 community controls on a decision making task that manipulated outcome frequencies and magnitudes and required an action to avoid a negative outcome. Results SDI did not learn to avoid negative outcomes to the same degree as controls. This difference was driven by the magnitude, not the frequency, of negative feedback. In contrast, approach behaviors in response to positive reinforcement were similar in both groups. Conclusions Our findings are consistent with a specific deficit in negative reinforcement learning in SDI. SDI were relatively insensitive to the magnitude, not frequency, of loss. If this generalizes to drug-related stimuli, it suggests that repeated episodes of withdrawal may drive relapse more than the severity of a single episode. PMID:22079143

  4. Electron work function-a promising guiding parameter for material design.

    PubMed

    Lu, Hao; Liu, Ziran; Yan, Xianguo; Li, Dongyang; Parent, Leo; Tian, Harry

    2016-04-14

    Using nickel added X70 steel as a sample material, we demonstrate that electron work function (EWF), which largely reflects the electron behavior of materials, could be used as a guide parameter for material modification or design. Adding Ni having a higher electron work function to X70 steel brings more "free" electrons to the steel, leading to increased overall work function, accompanied with enhanced e(-)-nuclei interactions or higher atomic bond strength. Young's modulus and hardness increase correspondingly. However, the free electron density and work function decrease as the Ni content is continuously increased, accompanied with the formation of a second phase, FeNi3, which is softer with a lower work function. The decrease in the overall work function corresponds to deterioration of the mechanical strength of the steel. It is expected that EWF, a simple but fundamental parameter, may lead to new methodologies or supplementary approaches for metallic materials design or tailoring on a feasible electronic base.

  5. A multi-element approach for cathodic protection of reinforced concrete

    SciTech Connect

    Polder, R.B.; Nuiten, P.C. )

    1994-06-01

    A cathodic protection (CP) system was designed and installed on precast concrete cantilever beams that were suffering severe reinforcement corrosion due to mixed-in chloride. Activated titanium strip anodes were placed with a geometry based on laboratory current distribution experiments. The CP system was divided into relatively small zones for easy control and monitoring. Two years of monitoring has shown that the system functions satisfactorily.

  6. Every reinforcer counts: reinforcer magnitude and local preference.

    PubMed Central

    Davison, Michael; Baum, William M

    2003-01-01

    Six pigeons were trained on concurrent variable-interval schedules. Sessions consisted of seven components, each lasting 10 reinforcers, with the conditions of reinforcement differing between components. The component sequence was randomly selected without replacement. In Experiment 1, the concurrent-schedule reinforcer ratios in components were all equal to 1.0, but across components reinforcer-magnitude ratios varied from 1:7 through 7:1. Three different overall reinforcer rates were arranged across conditions. In Experiment 2, the reinforcer-rate ratios varied across components from 27:1 to 1:27, and the reinforcer-magnitude ratios for each alternative were changed across conditions from 1:7 to 7:1. The results of Experiment 1 replicated the results for changing reinforcer-rate ratios across components reported by Davison and Baum (2000, 2002): Sensitivity to reinforcer-magnitude ratios increased with increasing numbers of reinforcers in components. Sensitivity to magnitude ratio, however, fell short of sensitivity to reinforcer-rate ratio. The degree of carryover from component to component depended on the reinforcer rate. Larger reinforcers produced larger and longer postreinforcer preference pulses than did smaller reinforcers. Similar results were found in Experiment 2, except that sensitivity to reinforcer magnitude was considerably higher and was greater for magnitudes that differed more from one another. Visit durations following reinforcers measured either as number of responses emitted or time spent responding before a changeover were longer following larger than following smaller reinforcers, and were longer following sequences of same reinforcers than following other sequences. The results add to the growing body of research that informs model building at local levels. PMID:13677611

  7. Refining Linear Fuzzy Rules by Reinforcement Learning

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap S.; Malkani, Anil

    1996-01-01

    Linear fuzzy rules are increasingly being used in the development of fuzzy logic systems. Radial basis functions have also been used in the antecedents of the rules for clustering in product space which can automatically generate a set of linear fuzzy rules from an input/output data set. Manual methods are usually used in refining these rules. This paper presents a method for refining the parameters of these rules using reinforcement learning which can be applied in domains where supervised input-output data is not available and reinforcements are received only after a long sequence of actions. This is shown for a generalization of radial basis functions. The formation of fuzzy rules from data and their automatic refinement is an important step in closing the gap between the application of reinforcement learning methods in the domains where only some limited input-output data is available.

  8. Nuclear Safety Functions of ITER Gas Injection System Instrumentation and Control and the Concept Design

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Maruyama, S.; Fossen, A.; Villers, F.; Kiss, G.; Zhang, Bo; Li, Bo; Jiang, Tao; Huang, Xiangmei

    2016-08-01

    The ITER Gas Injection System (GIS) plays an important role on fueling, wall conditioning and distribution for plasma operation. Besides that, to support the safety function of ITER, GIS needs to implement three nuclear safety Instrumentation and Control (I&C) functions. In this paper, these three functions are introduced with the emphasis on their latest safety classifications. The nuclear I&C design concept is briefly discussed at the end.

  9. Inventing and improving ribozyme function: rational design versus iterative selection methods

    NASA Technical Reports Server (NTRS)

    Breaker, R. R.; Joyce, G. F.

    1994-01-01

    Two major strategies for generating novel biological catalysts exist. One relies on our knowledge of biopolymer structure and function to aid in the 'rational design' of new enzymes. The other, often called 'irrational design', aims to generate new catalysts, in the absence of detailed physicochemical knowledge, by using selection methods to search a library of molecules for functional variants. Both strategies have been applied, with considerable success, to the remodeling of existing ribozymes and the development of ribozymes with novel catalytic function. The two strategies are by no means mutually exclusive, and are best applied in a complementary fashion to obtain ribozymes with the desired catalytic properties.

  10. Mapping the Pareto Optimal Design Space for a Functionally Deimmunized Biotherapeutic Candidate

    PubMed Central

    Salvat, Regina S.; Parker, Andrew S.; Choi, Yoonjoo; Bailey-Kellogg, Chris; Griswold, Karl E.

    2015-01-01

    The immunogenicity of biotherapeutics can bottleneck development pipelines and poses a barrier to widespread clinical application. As a result, there is a growing need for improved deimmunization technologies. We have recently described algorithms that simultaneously optimize proteins for both reduced T cell epitope content and high-level function. In silico analysis of this dual objective design space reveals that there is no single global optimum with respect to protein deimmunization. Instead, mutagenic epitope deletion yields a spectrum of designs that exhibit tradeoffs between immunogenic potential and molecular function. The leading edge of this design space is the Pareto frontier, i.e. the undominated variants for which no other single design exhibits better performance in both criteria. Here, the Pareto frontier of a therapeutic enzyme has been designed, constructed, and evaluated experimentally. Various measures of protein performance were found to map a functional sequence space that correlated well with computational predictions. These results represent the first systematic and rigorous assessment of the functional penalty that must be paid for pursuing progressively more deimmunized biotherapeutic candidates. Given this capacity to rapidly assess and design for tradeoffs between protein immunogenicity and functionality, these algorithms may prove useful in augmenting, accelerating, and de-risking experimental deimmunization efforts. PMID:25568954

  11. Mapping the Pareto optimal design space for a functionally deimmunized biotherapeutic candidate.

    PubMed

    Salvat, Regina S; Parker, Andrew S; Choi, Yoonjoo; Bailey-Kellogg, Chris; Griswold, Karl E

    2015-01-01

    The immunogenicity of biotherapeutics can bottleneck development pipelines and poses a barrier to widespread clinical application. As a result, there is a growing need for improved deimmunization technologies. We have recently described algorithms that simultaneously optimize proteins for both reduced T cell epitope content and high-level function. In silico analysis of this dual objective design space reveals that there is no single global optimum with respect to protein deimmunization. Instead, mutagenic epitope deletion yields a spectrum of designs that exhibit tradeoffs between immunogenic potential and molecular function. The leading edge of this design space is the Pareto frontier, i.e. the undominated variants for which no other single design exhibits better performance in both criteria. Here, the Pareto frontier of a therapeutic enzyme has been designed, constructed, and evaluated experimentally. Various measures of protein performance were found to map a functional sequence space that correlated well with computational predictions. These results represent the first systematic and rigorous assessment of the functional penalty that must be paid for pursuing progressively more deimmunized biotherapeutic candidates. Given this capacity to rapidly assess and design for tradeoffs between protein immunogenicity and functionality, these algorithms may prove useful in augmenting, accelerating, and de-risking experimental deimmunization efforts.

  12. What is the role of reinforcement in early language acquisition?

    PubMed

    Whitehurst, G J; Valdez-Menchaca, M C

    1988-04-01

    Monolingual American and Mexican 2- and 3-year-old children were exposed to a foreign language in a naturalistic but controlled environment. Children were randomly assigned to 2 groups. 1 group was differentially reinforced throughout the study for the use of foreign vocabulary. The control group was first reinforced nondifferentially for use of the native language or the foreign language and later was switched to differential reinforcement for the foreign language. Frequencies of spontaneous foreign word production and other verbal responses were computed, and formal assessments of comprehension and production of the foreign words were conducted. Differential reinforcement resulted in accelerating frequencies of spontaneous foreign language use and better performance on both comprehension and production tests. Under nondifferential reinforcement, rates of spontaneous foreign language use were low and static. Results are interpreted as evidence that the acquisition of expressive vocabulary is a function of socially mediated reinforcement.

  13. Covalent organic frameworks: a materials platform for structural and functional designs

    NASA Astrophysics Data System (ADS)

    Huang, Ning; Wang, Ping; Jiang, Donglin

    2016-10-01

    Covalent organic frameworks (COFs) are a class of crystalline porous polymer that allows the atomically precise integration of organic units into extended structures with periodic skeletons and ordered nanopores. One important feature of COFs is that they are designable; that is, the geometry and dimensions of the building blocks can be controlled to direct the topological evolution of structural periodicity. The diversity of building blocks and covalent linkage topology schemes make COFs an emerging materials platform for structural control and functional design. Indeed, COF architectures offer confined molecular spaces for the interplay of photons, excitons, electrons, holes, ions and guest molecules, thereby exhibiting unique properties and functions. In this Review, we summarize the major progress in the field of COFs and recent achievements in developing new design principles and synthetic strategies. We highlight cutting-edge functional designs and identify fundamental issues that need to be addressed in conjunction with future research directions from chemistry, physics and materials perspectives.

  14. Function-based design process for an intelligent ground vehicle vision system

    NASA Astrophysics Data System (ADS)

    Nagel, Robert L.; Perry, Kenneth L.; Stone, Robert B.; McAdams, Daniel A.

    2010-10-01

    An engineering design framework for an autonomous ground vehicle vision system is discussed. We present both the conceptual and physical design by following the design process, development and testing of an intelligent ground vehicle vision system constructed for the 2008 Intelligent Ground Vehicle Competition. During conceptual design, the requirements for the vision system are explored via functional and process analysis considering the flows into the vehicle and the transformations of those flows. The conceptual design phase concludes with a vision system design that is modular in both hardware and software and is based on a laser range finder and camera for visual perception. During physical design, prototypes are developed and tested independently, following the modular interfaces identified during conceptual design. Prototype models, once functional, are implemented into the final design. The final vision system design uses a ray-casting algorithm to process camera and laser range finder data and identify potential paths. The ray-casting algorithm is a single thread of the robot's multithreaded application. Other threads control motion, provide feedback, and process sensory data. Once integrated, both hardware and software testing are performed on the robot. We discuss the robot's performance and the lessons learned.

  15. Origins of altered reinforcement effects in ADHD

    PubMed Central

    Johansen, Espen Borgå; Killeen, Peter R; Russell, Vivienne A; Tripp, Gail; Wickens, Jeff R; Tannock, Rosemary; Williams, Jonathan; Sagvolden, Terje

    2009-01-01

    Attention-deficit/hyperactivity disorder (ADHD), characterized by hyperactivity, impulsiveness and deficient sustained attention, is one of the most common and persistent behavioral disorders of childhood. ADHD is associated with catecholamine dysfunction. The catecholamines are important for response selection and memory formation, and dopamine in particular is important for reinforcement of successful behavior. The convergence of dopaminergic mesolimbic and glutamatergic corticostriatal synapses upon individual neostriatal neurons provides a favorable substrate for a three-factor synaptic modification rule underlying acquisition of associations between stimuli in a particular context, responses, and reinforcers. The change in associative strength as a function of delay between key stimuli or responses, and reinforcement, is known as the delay of reinforcement gradient. The gradient is altered by vicissitudes of attention, intrusions of irrelevant events, lapses of memory, and fluctuations in dopamine function. Theoretical and experimental analyses of these moderating factors will help to determine just how reinforcement processes are altered in ADHD. Such analyses can only help to improve treatment strategies for ADHD. PMID:19226460

  16. The Halogen Bond in the Design of Functional Supramolecular Materials: Recent Advances

    PubMed Central

    2013-01-01

    Halogen bonding is an emerging noncovalent interaction for constructing supramolecular assemblies. Though similar to the more familiar hydrogen bonding, four primary differences between these two interactions make halogen bonding a unique tool for molecular recognition and the design of functional materials. First, halogen bonds tend to be much more directional than (single) hydrogen bonds. Second, the interaction strength scales with the polarizability of the bond-donor atom, a feature that researchers can tune through single-atom mutation. In addition, halogen bonds are hydrophobic whereas hydrogen bonds are hydrophilic. Lastly, the size of the bond-donor atom (halogen) is significantly larger than hydrogen. As a result, halogen bonding provides supramolecular chemists with design tools that cannot be easily met with other types of noncovalent interactions and opens up unprecedented possibilities in the design of smart functional materials. This Account highlights the recent advances in the design of halogen-bond-based functional materials. Each of the unique features of halogen bonding, directionality, tunable interaction strength, hydrophobicity, and large donor atom size, makes a difference. Taking advantage of the hydrophobicity, researchers have designed small-size ion transporters. The large halogen atom size provided a platform for constructing all-organic light-emitting crystals that efficiently generate triplet electrons and have a high phosphorescence quantum yield. The tunable interaction strengths provide tools for understanding light-induced macroscopic motions in photoresponsive azobenzene-containing polymers, and the directionality renders halogen bonding useful in the design on functional supramolecular liquid crystals and gel-phase materials. Although halogen bond based functional materials design is still in its infancy, we foresee a bright future for this field. We expect that materials designed based on halogen bonding could lead to

  17. Aggression as Positive Reinforcement in People with Intellectual Disabilities

    ERIC Educational Resources Information Center

    May, Michael E.

    2011-01-01

    From an applied behavior-analytic perspective, aggression in people with intellectual disabilities is mostly maintained by social reinforcement consequences. However, nonsocial consequences have also been identified in functional assessments on aggression. Behaviors producing their own reinforcement have been labeled "automatic" or "nonsocial" in…

  18. The Distinction between Positive and Negative Reinforcement: Use with Care

    ERIC Educational Resources Information Center

    Baron, A.; Galizio, M.

    2006-01-01

    It is customary in behavior analysis to distinguish between positive and negative reinforcement in terms of whether the reinforcing event involves onset or offset of a stimulus. In a previous article (Baron & Galizio, 2005), we concluded that a distinction of these terms is not only ambiguous but has little if any functional significance. Here, we…

  19. The effects of extinction, noncontingent reinforcement and differential reinforcement of other behavior as control procedures.

    PubMed Central

    Thompson, Rachel H; Iwata, Brian A; Hanley, Gregory P; Dozier, Claudia L; Samaha, Andrew L

    2003-01-01

    Several techniques have been used in applied research as controls for the introduction of a reinforcement contingency, including extinction, noncontingent reinforcement (NCR), and differential reinforcement of other behavior (DRO). Little research, however, has examined the relative strengths and limitations of these "reversal" controls. We compared the effects of extinction with those of NCR and DRO in both multi-element and reversal designs, with respect to (a) rate and amount of response decrement, (b) rate of response recovery following reintroduction of reinforcement, and (c) any positive or negative side effects associated with transitions. Results indicated that extinction generally produced the most consistent and rapid reversal effects, with few observed negative side effects. PMID:12858986

  20. Verbal Reinforcement During Therapy with Stutterers.

    ERIC Educational Resources Information Center

    1972

    Presented is a series of studies in which the efficacy of applying operant conditioning methodologies to the problem of stuttering was examined. One requirement was that the designed therapeutic programs utilize only verbal contingent stimuli (reinforcers and punishers) in the traditional therapeutic setting (client and therapist seated together…