Science.gov

Sample records for reinforcing steel evaluations

  1. 221-U Facility concrete and reinforcing steel evaluations specification for the canyon disposition initiative (CDI)

    SciTech Connect

    Baxter, J.T.

    1998-05-28

    This describes a test program to establish the in-situ material properties of the reinforced concrete in Building 221-U for comparison to the original design specifications. Field sampling and laboratory testing of concrete and reinforcing steel structural materials in Building 221-U for design verification will be undertaken. Forty seven samples are to be taken from radiologically clean exterior walls of the canyon. Laboratory testing program includes unconfined compressive strength of concrete cores, tensile strength of reinforcing steel, and petrographic examinations of concrete cores taken from walls below existing grade.

  2. Evaluation of passivation method and corrosion inhibitors for steel-reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Brown, Richard; Lee, K. Wayne; Cao, Yong

    1999-02-01

    Corrosion of reinforcing steel due to the ingression of chloride ions from deicing salt and/or seawater has been a major cause of the deterioration of reinforced concrete structures. Typically reinforcing steel is protected from corrosion by the formation of passive film because of highly alkaline concrete environment. The film can be damaged with the introduction of chloride ions to concrete, then corrosion occurs. There are mainly three approaches to tackle this problem, i.e., protective coating, cathodic protection and corrosion inhibitors.

  3. Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC)

    NASA Astrophysics Data System (ADS)

    Aslani, Farhad; Nejadi, Shami

    2012-09-01

    Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths (τ (app)) and slip coefficient (β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle (ϕ). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers

  4. Bond characteristics of steel fiber and deformed reinforcing steel bar embedded in steel fiber reinforced self-compacting concrete (SFRSCC)

    NASA Astrophysics Data System (ADS)

    Aslani, Farhad; Nejadi, Shami

    2012-09-01

    Steel fiber reinforced self-compacting concrete (SFRSCC) is a relatively new composite material which congregates the benefits of the self-compacting concrete (SCC) technology with the profits derived from the fiber addition to a brittle cementitious matrix. Steel fibers improve many of the properties of SCC elements including tensile strength, ductility, toughness, energy absorption capacity, fracture toughness and cracking. Although the available research regarding the influence of steel fibers on the properties of SFRSCC is limited, this paper investigates the bond characteristics between steel fiber and SCC firstly. Based on the available experimental results, the current analytical steel fiber pullout model (Dubey 1999) is modified by considering the different SCC properties and different fiber types (smooth, hooked) and inclination. In order to take into account the effect of fiber inclination in the pullout model, apparent shear strengths ( τ ( app)) and slip coefficient ( β) are incorporated to express the variation of pullout peak load and the augmentation of peak slip as the inclined angle increases. These variables are expressed as functions of the inclined angle ( ϕ). Furthurmore, steel-concrete composite floors, reinforced concrete floors supported by columns or walls and floors on an elastic foundations belong to the category of structural elements in which the conventional steel reinforcement can be partially replaced by the use of steel fibers. When discussing deformation capacity of structural elements or civil engineering structures manufactured using SFRSCC, one must be able to describe thoroughly both the behavior of the concrete matrix reinforced with steel fibers and the interaction between this composite matrix and discrete steel reinforcement of the conventional type. However, even though the knowledge on bond behavior is essential for evaluating the overall behavior of structural components containing reinforcement and steel fibers

  5. Corrosion control of steel-reinforced concrete

    NASA Astrophysics Data System (ADS)

    Chung, D. D. L.

    2000-10-01

    The methods and materials for corrosion control of steel-reinforced concrete are reviewed. The methods are steel surface treatment, the use of admixtures in concrete, surface coating on concrete, and cathodic protection.

  6. Performance evaluation of a novel rotational damper for structural reinforcement steel frames subjected to lateral excitations

    NASA Astrophysics Data System (ADS)

    Sanati, M.; Khadem, S. E.; Mirzabagheri, S.; Sanati, H.; Khosravieh, M. Y.

    2014-03-01

    In this study, a novel rotational damper called a Rotational Friction Viscoelastic Damper (RFVD) is introduced. Some viscoelastic pads are added to the Rotational Friction Damper (RFD) in addition to the friction discs used in this conventional device. Consequently, the amount of energy dissipated by the damper increases in low excitation frequencies. In fact, the input energy to the structure is simultaneously dissipated in the form of friction and heat by frictional discs and viscoelastic pads. In order to compare the performance of this novel damper with the earlier types, a set of experiments were carried out. According to the test results, the RFVD showed a better performance in dissipating input energy to the structure when compared to the RFD. The seismic behavior of steel frames equipped with these dampers was also numerically evaluated based on a nonlinear time history analysis. The numerical results verified the performance of the dampers in increasing the energy dissipation and decreasing the energy input to the structural elements. In order to achieve the maximum dissipated energy, the dampers need to be installed in certain places called critical points in the structure. An appropriate approach is presented to properly find these points. Finally, the performance of the RFVDs installed at these critical points was investigated in comparison to some other configurations and the validity of the suggested method in increasing the energy dissipation was confirmed.

  7. Steel - Structural, reinforcing; Pressure vessel, railway

    SciTech Connect

    Not Available

    1986-01-01

    This book contains specifications for structural steel used in various constructions; concrete reinforcement; plate and forgings for boilers and pressure vesseles; rails, axles, wheels and other accessories for railway service.

  8. Evaluation of Polyester Resin, Epoxy, and Cement Grouts for Embedding Reinforcing Steel Bars in Hardened Concrete

    DTIC Science & Technology

    1990-01-01

    Ultg IFILE COPY REPAIR, EVALUATION, MAINTENANCE, AND REHABILITATION RESEARCH PROGRAM ofEn in s TECHNICAL REPORT REMR-CS-23 EVALUATION OF POLYESTER...WESSC-85-01/TV-66369A Civil Works Research Work Unit 32303 The following two letters used a5 part of the number designating technical reports of... research publisher? under the Repair, Evaluation, Maintenance, and Rehabilitation (REMR) Research Progr-m identify the problem area under which the report

  9. TiC reinforced cast Cr steels

    SciTech Connect

    Dogan, O.N.; Hawk, J.A.; Schrems, K.K.

    2006-06-01

    A new class of materials, namely TiC-reinforced cast chromium (Cr) steels, was developed for applications requiring high abrasion resistance and good fracture toughness. The research approach was to modify the carbide structure of commercial AISI 440C steel for better fracture resistance while maintaining the already high abrasion resistance. The new alloys contained 12Cr, 2.5–4.5Ti, and 1–1.5C (wt.%) and were melted in a vacuum induction furnace. Their microstructure was composed primarily of a martensitic matrix with a dispersion of TiC precipitates. Modification of TiC morphology was accomplished through changing the cooling rate during solidification. Wear rates of the TiC-reinforced Cr steels were comparable to that of AISI 440C steel, but the impact resistance was much improved.

  10. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    PubMed Central

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion. PMID:24558346

  11. Monitoring corrosion of steel bars in reinforced concrete structures.

    PubMed

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion.

  12. TiC reinforced cast chromium steels

    SciTech Connect

    Dogan, Omer N.; Rawers, James C.; Hawk, Jeffrey A.; Schrems, Karol K.

    2003-11-01

    A series of new titanium carbide reinforced cast chromium steels were developed for wear applications. Objective of the program was to enhance wear resistant alloys and, if possible, improve mechanical properties. The new steels which were melted in a vacuum induction furnace contained 12 Cr, 3-5 Ti, 1-2 C in weight percent. Alloying with Ti changed the precipitate microstructure from Cr carbide to TiC dispersed in a martensitic matrix. Yield strength and impact resistance improved with Ti alloying. Wear rates of the cast Cr/TiC steels, (determined from high- and low-stress abrasion tests, erosion test, and scratch tests) were generally lower than both the as-cast and heat-treated AISI type 440°C steel and were often further reduced by increasing the Ti alloy concentration. The exceptions were the erosion test for which all materials had similar wear rate.

  13. Producing Durable Continuously Reinforced Concrete Pavement using Glass-ceramic Coated Reinforcing Steel

    DTIC Science & Technology

    2010-02-01

    BUILDING STRONG® Producing Durable Continuously Reinforced Concrete Pavement using Glass- ceramic Coated Reinforcing Steel Principal Investigator... ceramic Coated Reinforcing Steel 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER...Vitreous- Ceramic Coating  Ease of Application to Reinforcement Steel  Bond Strength and Corrosion-Resistance  Field Demonstration Program  Testing in

  14. Corrosion inhibition of reinforcing steel by using acrylic latex

    SciTech Connect

    Wang, S.X.; Lin, W.W.; Ceng, S.A.; Zhang, J.Q.

    1998-05-01

    Acrylic latex was introduced into steel-reinforcing steel concrete as concrete admixtures or rebar coatings in order to prevent corrosion of steel reinforcements. The results showed that applying the latex by both methods took effect in different ways, while the latter was more noticeable. The corrosion prevention mechanism and the surface state of the steel rebar were also explored, based on which suggestions for enhancing the corrosion-resistant ability were made.

  15. 5. GENERAL PLAN OF STRUCTURAL AND REINFORCING STEEL, PIERS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. GENERAL PLAN OF STRUCTURAL AND REINFORCING STEEL, PIERS AND DETAILS FOR SWIMMING POOL Drawing 103-21 - Glen Echo Park, Crystal Swimming Pool, 7300 McArthur Boulevard, Glen Echo, Montgomery County, MD

  16. 62. photographer unknown undated ERECTING FORMS, PLACING REINFORCING STEEL, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. photographer unknown undated ERECTING FORMS, PLACING REINFORCING STEEL, AND CONCRETING DRAFT PIER OF POWERHOUSE. - Bonneville Project, Powerhouse No.1, Spanning Bradford Slough, from Bradford Island, Bonneville, Multnomah County, OR

  17. Characterization and design of steel fiber reinforced shotcrete in tunnelling

    SciTech Connect

    Casanova, P.A.; Rossi, P.C.

    1995-12-31

    A design procedure of steel fiber reinforced shotcrete tunnel linings is proposed. It is based on the analysis of a cracked section. The tensile behavior of shotcrete after cracking is obtained by a uniaxial tension test on cored notched samples. As for usual reinforced concrete structures an interaction diagram (moment-axial load) is determined.

  18. Wear of Cast Chromium Steels With TiC Reinforcement

    SciTech Connect

    Dogan,O.N.; Hawk, J.A.; Tylczak, J.H.

    2001-10-01

    Wear resistance of a series of new titanium carbide reinforced cast chromium steels was investigated under various wear conditions. The steels which were melted in a vacuum induction furnace contained 12 Cr, 3-5 Ti, 1-2 C in weight percent. Microstructure of these materials was characterized using scanning electron microscopy, light optical microscopy, and X-ray diffraction. Microstructure of steels consisted of TiC phase dispersed in a martensitic matrix. High-stress and low-stress abrasion tests, and an erosion test, were utilized to understand the wear behavior of these materials under different environments. The steels were tested in as-cast and heat treated conditions. Wear rates of the cast Cr/TiC steels were compared to those of an AISI type 440C steel and P/M composites reinforced with TiC.

  19. 78 FR 55755 - Steel Concrete Reinforcing Bar From Mexico and Turkey; Institution of Antidumping and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Steel Concrete Reinforcing Bar From Mexico and Turkey; Institution of Antidumping and... from Mexico and Turkey of steel concrete reinforcing bar, primarily provided for in subheadings...

  20. 76 FR 48802 - Certain Steel Concrete Reinforcing Bars From Turkey; Notice of Amended Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-09

    ... International Trade Administration Certain Steel Concrete Reinforcing Bars From Turkey; Notice of Amended Final... antidumping duty order on certain steel concrete reinforcing bars (rebar) from Turkey. See Certain Steel Concrete Reinforcing Bars From Turkey; Final Results of Antidumping Duty Administrative Review...

  1. 77 FR 70140 - Steel Concrete Reinforcing Bars From Belarus, Indonesia, Latvia, Moldova, Poland, People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-23

    ...] Steel Concrete Reinforcing Bars From Belarus, Indonesia, Latvia, Moldova, Poland, People's Republic of...'') initiated the second Sunset Reviews of the antidumping duty orders on steel concrete reinforcing bars from.... SUPPLEMENTARY INFORMATION: Background The antidumping duty orders on steel concrete reinforcing bars...

  2. 78 FR 60831 - Steel Concrete Reinforcing Bar From Turkey: Initiation of Countervailing Duty Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... International Trade Administration Steel Concrete Reinforcing Bar From Turkey: Initiation of Countervailing Duty... (``CVD'') petition \\1\\ concerning imports of steel concrete reinforcing bar (``rebar'') from the Republic... Countervailing Duties on Imports of Steel Concrete Reinforcing Bar from the Republic of Turkey, dated September...

  3. 78 FR 60827 - Steel Concrete Reinforcing Bar From Mexico and Turkey: Initiation of Antidumping Duty Investigations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... International Trade Administration Steel Concrete Reinforcing Bar From Mexico and Turkey: Initiation of... imports of steel concrete reinforcing bar (``rebar'') from Mexico and Turkey filed in proper form on... Duties on Steel Concrete Reinforcing Bar from Mexico and Turkey and the Imposition of...

  4. Damage evaluation of fiber reinforced plastic-confined circular concrete-filled steel tubular columns under cyclic loading using the acoustic emission technique

    NASA Astrophysics Data System (ADS)

    Li, Dongsheng; Du, Fangzhu; Ou, Jinping

    2017-03-01

    Glass-fiber reinforced plastic (GFRP)-confined circular concrete-filled steel tubular (CCFT) columns comprise of concrete, steel, and GFRP and show complex failure mechanics under cyclic loading. This paper investigated the failure mechanism and damage evolution of GFRP–CCFT columns by performing uniaxial cyclic loading tests that were monitored using the acoustic emission (AE) technique. Characteristic AE parameters were obtained during the damage evolution of GFRP–CCFT columns. Based on the relationship between the loading curve and these parameters, the damage evolution of GFRP–CCFT columns was classified into three stages that represented different damage degrees. Damage evolution and failure mode were investigated by analyzing the b-value and the ratio of rise time to waveform amplitude and average frequency. The damage severity of GFRP–CCFT columns were quantitatively estimated according to the modified index of damage and NDIS-2421 damage assessment criteria corresponding to each loading step. The proposed method can explain the damage evolution and failure mechanism for GFRP–CCFT columns and provide critical warning information for composite structures.

  5. VIEW OF EAST GUN EMPLACEMENT. NOTE THE STEEL REINFORCING RODS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF EAST GUN EMPLACEMENT. NOTE THE STEEL REINFORCING RODS PROTRUDING FROM THE BROKEN TOP OF THE RETAINING WALL. VIEW FACING NORTHEAST - U.S. Naval Base, Pearl Harbor, Ford Island 5-Inch Antiaircraft Battery, East Gun Emplacement, Ford Island, Pearl City, Honolulu County, HI

  6. RETENTION BASIN. ERECTING REINFORCING STEEL FOR CONCRETE DECK. STACK RISES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    RETENTION BASIN. ERECTING REINFORCING STEEL FOR CONCRETE DECK. STACK RISES AT TOP LEFT. CAMERA FACES WEST. INL NEGATIVE NO. 2581. Unknown Photographer, 6/18/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  7. Experimental and analytical behavior of strengthened reinforced concrete columns with steel angles and strips

    NASA Astrophysics Data System (ADS)

    Khalifa, Essam S.; Al-Tersawy, Sherif H.

    2014-06-01

    The need of strengthening reinforced concrete columns, due to loss of strength and/or stiffness, is an essential requirement due to variation of the loads and environmental conditions applied on these columns. Steel jackets around the reinforced concrete (RC) columns are usually made by means of steel plates covering all over the column surface area. For the value of engineering purposes, another technique was developed using steel angles at the corners of the RC columns connected with discrete steel strips. In this paper, an experimental program is designed to evaluate the improvement in load-carrying capacity, stiffness and ductility of strengthened RC columns, concomitant with steel angles and strips. Despite of prevailing a substantially increased loading capacity and strength a pronounced enhancement in ductility and stiffness has been reported. A need for experimental test results with low value of concrete strength to mimic the local old-age structures condition that required strengthening in local countries. Seven columns specimens are tested to evaluate the strength improvement provided by steel strengthening of columns. The method of strengthened steel angles with strips is compared with another strengthening technique. This technique includes connected and unconnected steel-casing specimens. The observed experimental results describe load-shortening curves, horizontal strains in stirrups and steel strips, as well as description of failure mode. The extra-confinement pressure, due to existence of steel cage, of the strengthened RC column can be also observed from experimental results. The code provisions that predict the load-carrying capacity of the strengthened RC composite column has a discrepancy in the results. For this reason, an analytical model is developed in this paper to compare the code limit with experimental observed results. The proposed model accounts for the composite action for concrete confinement and enhancement of the local buckling

  8. Corrosion resistance and development length of steel reinforcement with cementitious coatings

    NASA Astrophysics Data System (ADS)

    Pei, Xiaofei

    This research program focused on the corrosion resistance and development length of reinforcing steel coated with Cementitious Capillary Crystalline Waterproofing (CCCW) materials. The first part of this research program involved using the half-cell potential method to evaluate the corrosion resistance of CCCW coating materials. One hundred and two steel bars were embedded in concrete cylinders and monitored. In total, 64 steel reinforcing bars were coated with CCCW prior to embedment, 16 mortar cylinders were externally coated with CCCW, and 22 control (uncoated) samples were tested. All the samples were immersed in a 3.5% concentration chloride solution for a period of one year. Three coating types were studied: CCCW-B, CCCW-B+ C and CCCW-C+D. The test results showed that the CCCW coating materials delayed the corrosion activity to varying degrees. In particular, CCCW-C+D applied on the reinforcing steel surface dramatically delayed the corrosion activity when compared to the control samples. After being exposed to the chloride solution for a period of one year, no sign of corrosion was observed for the cylinders where the concrete surface was coated. The second part of this research evaluated the bond strength and development length of reinforcing steel coated with two types of CCCW coating materials (CCCW-B+C and CCCW-C+D) using a modified pull-out test method. A self-reacting inverted T-shaped beam was designed to avoid compression in the concrete surrounding the reinforcing steel. Steel reinforcing bars were embedded along the web portion of the T-beam with various embedded lengths and were staggered side by side. In total, six T-beams were fabricated and each beam contained 8 samples. Both short-term (7 days) and long-term (3 months) effects of water curing were evaluated. The reinforcing steel bars coated with CCCW-B+C demonstrated a higher bond strength than did samples coated with CCCW-C+D. However, the bond strengths of samples with coating materials

  9. CP systems for steel reinforced concrete bridges

    SciTech Connect

    Bullard, Sophie J.; Cramer, Stephen D.; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Ziomek-Moroz, Margaret; Soltesz, Steven M.

    2004-01-01

    Thermal-sprayed zinc anodes are used for cathodic protection (CP) systems in Oregon?s reinforced concrete coastal bridges to prevent chloride-induced corrosion damage. Thermal-sprayed zinc performs well as an ICCP anode but the service life of the zinc anode is directly related to the average current density used to operate the systems. Oregon Department of Transportation (DOT) is investigating ways of monitoring the rebar corrosion in reinforced concrete bridges to identify conditions when protection of the rebar is needed. This approach reflects the fact that external protection may not be needed for all environmental conditions, leading Oregon DOT to examine the use of intermittent, galvanic, and constant voltage cathodic protection systems. Results from these types of systems are reported.

  10. Investigation of Mechanical Properties of Steel Fibre- Reinforced Concrete

    NASA Astrophysics Data System (ADS)

    Ryabchikov, A.; Tamme, V.; Laurson, M.

    2015-11-01

    Steel fibre-reinforced concrete (SFRC) is widely used in the structural elements of buildings: industrial floors, slabs, walls, foundation, etc. When a load is applied to a fibre- reinforced composite consisting of a low-modulus matrix reinforced with high-strength, high- modulus fibres, the plastic flow of the matrix under stress transfers the load to the fibre; this results in high-strength, high-modulus material which determines the stiffness and stress of the composite. In this study the equivalent flexural strength, equivalent flexural ratio Re,3 and the compressing strength of SFRC are investigated. Notched test specimens with five different dosages of steel fibres (20, 25, 30, 35, 40 kg/m3) were prepared using industrial concrete. Determination of flexural tension strength was carried out according to the EU norm EVS-EN 14651:2005+A1:2007. The equivalent flexural strength and subsequent equivalent flexural ratio Re,3 of SFRC with a dosage of 20, 25, 30, 35 kg/m3 similar to their average values and with a dosage of 40 kg/m3 were 31% higher than their average values. The compressive strength of the steel fibre-reinforced concrete was slightly higher compared to plain concrete, except specimens with the dosage of 40 kg/m3 where the increase was 30%.

  11. PSpice Model of Lightning Strike to a Steel Reinforced Structure

    NASA Astrophysics Data System (ADS)

    Koone, Neil; Condren, Brian

    2003-12-01

    Surges and arcs from lightning can pose hazards to personnel and sensitive equipment, and processes. Steel reinforcement in structures can act as a Faraday cage mitigating lightning effects. Knowing a structure's response to a lightning strike allows hazards associated with lightning to be analyzed. A model of lightning's response in a steel reinforced structure has been developed using PSpice (a commercial circuit simulation). Segments of rebar are modeled as inductors and resistors in series. A program has been written to take architectural information of a steel reinforced structure and "build" a circuit network that is analogous to the network of reinforcement in a facility. A severe current waveform (simulating a 99th percentile lightning strike), modeled as a current source, is introduced in the circuit network, and potential differences within the structure are determined using PSpice. A visual three-dimensional model of the facility displays the voltage distribution across the structure using color to indicate the potential difference relative to the floor. Clear air arcing distances can be calculated from the voltage distribution using a conservative value for the dielectric breakdown strength of air. Potential validation tests for the model will be presented.

  12. Reinforcement magnitude: an evaluation of preference and reinforcer efficacy.

    PubMed

    Trosclair-Lasserre, Nicole M; Lerman, Dorothea C; Call, Nathan A; Addison, Laura R; Kodak, Tiffany

    2008-01-01

    Consideration of reinforcer magnitude may be important for maximizing the efficacy of treatment for problem behavior. Nonetheless, relatively little is known about children's preferences for different magnitudes of social reinforcement or the extent to which preference is related to differences in reinforcer efficacy. The purpose of the current study was to evaluate the relations among reinforcer magnitude, preference, and efficacy by drawing on the procedures and results of basic experimentation in this area. Three children who engaged in problem behavior that was maintained by social positive reinforcement (attention, access to tangible items) participated. Results indicated that preference for different magnitudes of social reinforcement may predict reinforcer efficacy and that magnitude effects may be mediated by the schedule requirement.

  13. 10. View of Riverside Bridge with Steel Reinforcing Rods in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. View of Riverside Bridge with Steel Reinforcing Rods in Place and with 'Tower for Concrete' in the Background. The function of the 'tower for concrete' is uncertain, but may have to do with the transport of concrete from the point of mixing to the point of use (suggestion by NDOT Bridge Section personnel, February 1990). Original snapshot taken July, 1920. - Riverside Bridge, Spanning Truckee River at Booth Street, Reno, Washoe County, NV

  14. Fatigue testing of reinforced-concrete steel bars

    NASA Astrophysics Data System (ADS)

    Maropoulos, S.; Fasnakis, D.; Voulgaraki, Ch; Papanikolaou, S.; Maropoulos, A.; Antonatos, A.

    2016-11-01

    A number of low-cycle fatigue tests were conducted on reinforced-concrete steel bars of various diameters to study their behaviour under axial loading according to EN 10080 and EN 1421-3. Scanning electron microscopy was used to study the specimen fracture surfaces. The problems faced during testing are presented and a specimen preparation method is described that will aid researchers on fatigue testing to obtain accurate test results and save on material and time.

  15. 77 FR 64127 - Steel Concrete Reinforcing Bar From Belarus, China, Indonesia, Latvia, Moldova, Poland, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-18

    ... COMMISSION Steel Concrete Reinforcing Bar From Belarus, China, Indonesia, Latvia, Moldova, Poland, and... determine whether revocation of the antidumping duty orders on steel concrete reinforcing bar from Belarus... concrete reinforcing bar from Latvia and Moldova. The Commission found that the respondent interested...

  16. 77 FR 39254 - Steel Concrete Reinforcing Bar From Belarus, China, Indonesia, Latvia, Moldova, Poland, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-02

    ... COMMISSION Steel Concrete Reinforcing Bar From Belarus, China, Indonesia, Latvia, Moldova, Poland, and Ukraine; Institution of Five-Year Reviews Concerning the Antidumping Duty Orders on Steel Concrete... determine whether revocation of the antidumping duty orders on steel concrete reinforcing bar from...

  17. 78 FR 68090 - Steel Concrete Reinforcing Bar from Mexico and Turkey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ... COMMISSION Steel Concrete Reinforcing Bar from Mexico and Turkey Determinations On the basis of the record \\1... injured by reason of imports from Mexico and Turkey of steel concrete reinforcing bar, provided for in... alleged to be sold in the United States at less than fair value (LTFV), and by imports of steel...

  18. 78 FR 73838 - Steel Concrete Reinforcing Bar From Turkey: Postponement of Preliminary Determination in the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-09

    ... International Trade Administration Steel Concrete Reinforcing Bar From Turkey: Postponement of Preliminary... Department of Commerce (the Department) initiated a countervailing duty investigation on steel concrete... December 16, 2013.\\3\\ \\1\\ See Steel Concrete Reinforcing Bar from Turkey: Initiation of Countervailing...

  19. 77 FR 71631 - Steel Concrete Reinforcing Bar From Belarus, China, Indonesia, Latvia, Moldova, Poland, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-03

    ... COMMISSION Steel Concrete Reinforcing Bar From Belarus, China, Indonesia, Latvia, Moldova, Poland, and Ukraine; Scheduling of Full Five-Year Reviews Concerning the Antidumping Duty Orders on Steel Concrete...) to determine whether revocation of the antidumping duty orders on steel concrete reinforcing bar...

  20. Performance of Straight Steel Fibres Reinforced Alkali Activated Concrete

    NASA Astrophysics Data System (ADS)

    Faris, Meor Ahmad; Bakri Abdullah, Mohd Mustafa Al; Nizar Ismail, Khairul; Muniandy, Ratnasamy; Putra Jaya, Ramadhansyah

    2016-06-01

    This paper focus on the performance of alkali activated concrete produced by using fly ash activated by sodium silicate and sodium hydroxide solutions. These alkali activated concrete were reinforced with straight steel fibres with different weight percentage starting from 0 % up to 5 %. Chemical composition of raw material in the production alkali activated concrete which is fly ash was first identified by using X-ray fluorescence. Results reveal there have an effect of straight steel fibres inclusion to the alkali activated concrete. Highest compressive strength of alkali activated concrete which is 67.72 MPa was obtained when 3 % of straight fibres were added. As well as flexural strength, highest flexural strength which is 6.78 MPa was obtained at 3 % of straight steel fibres inclusions.

  1. Acoustic Nondestructive Testing and Measurement of Tension for Steel Reinforcing Members: Part 1-Theory

    DTIC Science & Technology

    2014-09-01

    structural steel reinforcing members. In large concrete structures such as locks and dams, the corrosion of tensioned steel components can lead to...loss of tension and consequent severe problems such as cracking of the concrete or fracturing of the steel. The theory and application address the...problem of determining tension in concrete - embedded pre- and post-tensioned steel reinforcement rods. BACKGROUND: Many concrete structures contain

  2. Effect of Steel Fibres Distribution on Impact Resistance Performance of Steel Fibre Reinforced Concrete (SFRC)

    NASA Astrophysics Data System (ADS)

    Che Muda, Zakaria; Liyana Mohd Kamal, Nur; Syamsir, Agusril; Shao Yang, Chen; Beddu, Salmia; Nasharuddin Mustapha, Kamal; Thiruchelvam, Sivadass; Usman, Fathoni; Itam, Zarina; Ashraful Alam, Md; Birima, Ahmed H.; Zaroog, O. S.

    2016-03-01

    This paper investigate the effect of the mesh distribution on the impact performance of steel fibre reinforced concrete (SFRC) for the concrete slab of 300mm × 300mm size reinforced with varied thickness and fraction volume subjected to low impact projectile test. A self-fabricated drop-weight impact test rig with a steel ball weight of 1.236 kg drop at 0.57 m height has been used in this research work. The objective of this research is to study the effect of the mesh distribution on the impact resistance SFRC for various slab thickness and fraction volume. Random fibre distribution is the more effective than the top and bottom fibre distribution in terms of absorption of impact energy, crack resistance, the ability to control crack formation and propagation against impact energy.

  3. 7 CFR 1755.702 - Copper coated steel reinforced (CCSR) aerial service wire.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 11 2014-01-01 2014-01-01 false Copper coated steel reinforced (CCSR) aerial service wire. 1755.702 Section 1755.702 Agriculture Regulations of the Department of Agriculture (Continued..., ACCEPTABLE MATERIALS, AND STANDARD CONTRACT FORMS § 1755.702 Copper coated steel reinforced (CCSR)...

  4. 7 CFR 1755.702 - Copper coated steel reinforced (CCSR) aerial service wire.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 11 2011-01-01 2011-01-01 false Copper coated steel reinforced (CCSR) aerial service wire. 1755.702 Section 1755.702 Agriculture Regulations of the Department of Agriculture (Continued..., ACCEPTABLE MATERIALS, AND STANDARD CONTRACT FORMS § 1755.702 Copper coated steel reinforced (CCSR)...

  5. 7 CFR 1755.702 - Copper coated steel reinforced (CCSR) aerial service wire.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 11 2013-01-01 2013-01-01 false Copper coated steel reinforced (CCSR) aerial service wire. 1755.702 Section 1755.702 Agriculture Regulations of the Department of Agriculture (Continued..., ACCEPTABLE MATERIALS, AND STANDARD CONTRACT FORMS § 1755.702 Copper coated steel reinforced (CCSR)...

  6. 7 CFR 1755.702 - Copper coated steel reinforced (CCSR) aerial service wire.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Copper coated steel reinforced (CCSR) aerial service wire. 1755.702 Section 1755.702 Agriculture Regulations of the Department of Agriculture (Continued..., ACCEPTABLE MATERIALS, AND STANDARD CONTRACT FORMS § 1755.702 Copper coated steel reinforced (CCSR)...

  7. 7 CFR 1755.702 - Copper coated steel reinforced (CCSR) aerial service wire.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 11 2012-01-01 2012-01-01 false Copper coated steel reinforced (CCSR) aerial service wire. 1755.702 Section 1755.702 Agriculture Regulations of the Department of Agriculture (Continued..., ACCEPTABLE MATERIALS, AND STANDARD CONTRACT FORMS § 1755.702 Copper coated steel reinforced (CCSR)...

  8. Steel reinforcement corrosion detection with coaxial cable sensors

    NASA Astrophysics Data System (ADS)

    Muchaidze, Iana; Pommerenke, David; Chen, Genda

    2011-04-01

    Corrosion processes in the steel reinforced structures can result in structural deficiency and with time create a threat to human lives. Millions of dollars are lost each year because of corrosion. According to the U. S. Federal Highway Administration (FHWA) the average annual cost of corrosion in the infrastructure sector by the end of 2002 was estimated to be $22.6 billion. Timely remediation/retrofit and effective maintenance can extend the structure's live span for much less expense. Thus the considerable effort should be done to deploy corrosion monitoring techniques to have realistic information on the location and the severity of damage. Nowadays commercially available techniques for corrosion monitoring require costly equipment and certain interpretational skills. In addition, none of them is designed for the real time quality assessment. In this study the crack sensor developed at Missouri University of Science and Technology is proposed as a distributed sensor for real time corrosion monitoring. Implementation of this technology may ease the pressure on the bridge owners restrained with the federal budget by allowing the timely remediation with the minimal financial and labor expenses. The sensor is instrumented in such a way that the location of any discontinuity developed along its length can be easily detected. When the sensor is placed in immediate vicinity to the steel reinforcement it is subjected to the same chemical process as the steel reinforcement. And corrosion pitting is expected to develop on the sensor exactly at the same location as in the rebar. Thus it is expected to be an effective tool for active corrosion zones detection within reinforced concrete (RC) members. A series of laboratory tests were conducted to validate the effectiveness of the proposed methodology. Nine sensors were manufactured and placed in the artificially created corrosive environment and observed over the time. To induce accelerated corrosion 3% and 5% Na

  9. Brillouin Corrosion Expansion Sensors for Steel Reinforced Concrete Structures Using a Fiber Optic Coil Winding Method

    PubMed Central

    Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping

    2011-01-01

    In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring. PMID:22346672

  10. Brillouin corrosion expansion sensors for steel reinforced concrete structures using a fiber optic coil winding method.

    PubMed

    Zhao, Xuefeng; Gong, Peng; Qiao, Guofu; Lu, Jie; Lv, Xingjun; Ou, Jinping

    2011-01-01

    In this paper, a novel kind of method to monitor corrosion expansion of steel rebars in steel reinforced concrete structures named fiber optic coil winding method is proposed, discussed and tested. It is based on the fiber optical Brillouin sensing technique. Firstly, a strain calibration experiment is designed and conducted to obtain the strain coefficient of single mode fiber optics. Results have shown that there is a good linear relationship between Brillouin frequency and applied strain. Then, three kinds of novel fiber optical Brillouin corrosion expansion sensors with different fiber optic coil winding packaging schemes are designed. Sensors were embedded into concrete specimens to monitor expansion strain caused by steel rebar corrosion, and their performance was studied in a designed electrochemical corrosion acceleration experiment. Experimental results have shown that expansion strain along the fiber optic coil winding area can be detected and measured by the three kinds of sensors with different measurement range during development the corrosion. With the assumption of uniform corrosion, diameters of corrosion steel rebars were obtained using calculated average strains. A maximum expansion strain of 6,738 με was monitored. Furthermore, the uniform corrosion analysis model was established and the evaluation formula to evaluate mass loss rate of steel rebar under a given corrosion rust expansion rate was derived. The research has shown that three kinds of Brillouin sensors can be used to monitor the steel rebar corrosion expansion of reinforced concrete structures with good sensitivity, accuracy and monitoring range, and can be applied to monitor different levels of corrosion. By means of this kind of monitoring technique, quantitative corrosion expansion monitoring can be carried out, with the virtues of long durability, real-time monitoring and quasi-distribution monitoring.

  11. The Use of Vitreous Enamel Coatings to Improve Bonding and Reduce Corrosion in Concrete Reinforcing Steel

    DTIC Science & Technology

    2009-02-01

    concrete apart • All normal reinforced concrete (cast-in-place and precast ) may have a short service life due to corrosion U S A r m y E n g i n e e...the Army, the Nation The Use of Vitreous Enamel Coatings to Improve Bonding and Reduce Corrosion in Concrete Reinforcing Steel Sean W. Morefield1...TITLE AND SUBTITLE The Use of Vitreous Enamel Coatings to Improve Bonding and Reduce Corrosion in Concrete Reinforcing Steel 5a. CONTRACT NUMBER

  12. Acoustic Nondestructive Testing and Measurement of Tension for Steel Reinforcing Members: Part 2 - Field Testing

    DTIC Science & Technology

    2014-09-01

    BACKGROUND: Many reinforced concrete structures contain embedded pre- and post- tensioned steel members that are subject to corrosion and fracturing...Tension for Steel Reinforcing Members Part 2 – Field Testing by Michael K. McInerney PURPOSE: This Coastal and Hydraulics Engineering Technical...Specifically, the technology application addresses the problem of determining tension in concrete -embedded pre- and post-tensioned reinforcement rods

  13. 75 FR 47260 - Certain Steel Concrete Reinforcing Bars from Turkey: Notice of Amended Final Results Pursuant to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-05

    ... International Trade Administration (A-489-807) Certain Steel Concrete Reinforcing Bars from Turkey: Notice of...) in the 2005-2006 administrative review of certain steel concrete reinforcing bars (rebar) from Turkey..., through March 31, 2006. See Certain Steel Concrete Reinforcing Bars From Turkey; Final Results...

  14. 75 FR 7562 - Certain Steel Concrete Reinforcing Bars From Turkey: Notice of Court Decision Not in Harmony With...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-22

    ... International Trade Administration Certain Steel Concrete Reinforcing Bars From Turkey: Notice of Court Decision... certain steel concrete reinforcing bars (rebar) from Turkey covering the period of review (POR) of April 1, 2003, through March 31, 2004. See Certain Steel Concrete Reinforcing Bars From Turkey; Final...

  15. 75 FR 22552 - Certain Steel Concrete Reinforcing Bars from Turkey; Notice of Amended Final Results Pursuant to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... International Trade Administration Certain Steel Concrete Reinforcing Bars from Turkey; Notice of Amended Final... Department) in the 2003-2004 administrative review of certain steel concrete of reinforcing bars (rebar) from...) of April 1, 2003, through March 31, 2004. See Certain Steel Concrete Reinforcing Bars From...

  16. 78 FR 41079 - Steel Concrete Reinforcing Bar From Belarus, China, Indonesia, Latvia, Moldova, Poland, and Ukraine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... COMMISSION Steel Concrete Reinforcing Bar From Belarus, China, Indonesia, Latvia, Moldova, Poland, and... Tariff Act of 1930 (19 U.S.C. 1675(c)), that revocation of the antidumping duty orders on steel concrete... views of the Commission are contained in USITC Publication 4409 (July 2013), entitled Steel...

  17. 78 FR 43858 - Steel Concrete Reinforcing Bars From Belarus, Indonesia, Latvia, Moldova, Poland, the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ...] Steel Concrete Reinforcing Bars From Belarus, Indonesia, Latvia, Moldova, Poland, the People's Republic... Department of Commerce (``Department'') that revocation of the antidumping duty orders \\1\\ on steel concrete... of the continuation of the antidumping duty orders. \\1\\ See Antidumping Duty Orders: Steel...

  18. Load carrying capacity of RCC beams by replacing steel reinforcement bars with shape memory alloy bars

    NASA Astrophysics Data System (ADS)

    Bajoria, Kamal M.; Kaduskar, Shreya S.

    2016-04-01

    In this paper the structural behavior of reinforced concrete (RC) beams with smart rebars under two point loading system has been numerically studied, using Finite Element Method. The material used in this study is Super-elastic Shape Memory Alloys (SE SMAs) which contains nickel and titanium. In this study, different quantities of steel and SMA rebars have been used for reinforcement and the behavior of these models under two point bending loading system is studied. A comparison of load carrying capacity for the model between steel reinforced concrete beam and the beam reinforced with S.M.A and steel are performed. The results show that RC beams reinforced with combination of shape memory alloy and steel show better performance.

  19. Design guidelines for steel-reinforced polymer concrete using resins based on recycled PET

    SciTech Connect

    Rebeiz, K.S.; Fowler, D.W.

    1996-10-01

    Very little research has been done on the structural behavior of steel-reinforced polymer concrete (PC). In all the previous studies, it was generally assumed that the structural behavior of reinforced PC is similar to the structural behavior of reinforced portland cement concrete because both are composite materials consisting of a binder and inorganic aggregates. However, the design equations developed for steel-reinforced portland cement concrete yield very conservative results when applied to reinforced PC. The objective of this paper is to recommend simple, yet effective design guidelines in shear and flexure for steel-reinforced PC. The recommended design procedures are mostly based on test results performed on PC beams using resins based on recycled poly(ethyleneterephthalate), PET, plastic waste (the PET waste is mainly recovered from used beverage bottles). Previous studies have shown that polyester resins based on recycled PET can produce very good quality PC at a potentially lower cost.

  20. New NDE technologies for evaluating reinforced concrete masonry

    SciTech Connect

    Alexander, A.M.; Haskins, R.W.

    1999-07-01

    Researchers at the Waterways' Experiment Station (WES) have demonstrated that two new nondestructive evaluation technologies show promise in making a more accurate diagnosis of the structural condition of concrete masonry walls than prior technologies. Traditionally, sounding with a hammer has been used to determine the presence and quality of the grout fill around the reinforcing bars in concrete masonry units (CMU's). First, WES has developed a new grout detection system, which senses the reverberating energy in the CMU's with a microphone. This energy is introduced into the CMU by using a pistol to fire a metal BB against the face of the block. A microphone and spectrum analyzer replaces the function of the human ear to distinguish different pitches of sound through sounding. Since a technician is more likely to get consistent results with the new system, it is not as subjective as sounding. Next, WES has evaluated the new digital steel detectors. A reinforced concrete masonry structure can contain many combinations of steel: vertical bars, horizontal bars, size of bar, number of bars, splices, etc. Digital steel detectors with microprocessors have the potential to provide much more information than traditional analog types.

  1. Existing Steel Railway Bridges Evaluation

    NASA Astrophysics Data System (ADS)

    Vičan, Josef; Gocál, Jozef; Odrobiňák, Jaroslav; Koteš, Peter

    2016-12-01

    The article describes general principles and basis of evaluation of existing railway bridges based on the concept of load-carrying capacity determination. Compared to the design of a new bridge, the modified reliability level for existing bridges evaluation should be considered due to implementation of the additional data related to bridge condition and behaviour obtained from regular inspections. Based on those data respecting the bridge remaining lifetime, a modification of partial safety factors for actions and materials could be respected in the bridge evaluation process. A great attention is also paid to the specific problems of determination of load-caring capacity of steel railway bridges in service. Recommendation for global analysis and methodology for existing steel bridge superstructure load-carrying capacity determination are described too.

  2. Behavior of Concrete Panels Reinforced with Synthetic Fibers, Mild Steel, and GFRP Composites Subjected to Blasts

    SciTech Connect

    C. P. Pantelides; T. T. Garfield; W. D. Richins; T. K. Larson; J. E. Blakeley

    2012-03-01

    The paper presents experimental data generated for calibrating finite element models to predict the performance of reinforced concrete panels with a wide range of construction details under blast loading. The specimens were 1.2 m square panels constructed using Normal Weight Concrete (NWC) or Fiber Reinforced Concrete (FRC). FRC consisted of macro-synthetic fibers dispersed in NWC. Five types of panels were tested: NWC panels with steel bars; FRC panels without additional reinforcement; FRC panels with steel bars; NWC panels with glass fiber reinforced polymer (GFRP) bars; and NWC panels reinforced with steel bars and external GFRP laminates on both faces. Each panel type was constructed with three thicknesses: 152 mm, 254 mm, and 356 mm. FRC panels with steel bars had the best performance for new construction. NWC panels reinforced with steel bars and external GFRP laminates on both faces had the best performance for strengthening or rehabilitation of existing structures. The performance of NWC panels with GFRP bars was strongly influenced by the bar spacing. The behavior of the panels is classified in terms of damage using immediate occupancy, life safety, and near collapse performance levels. Preliminary dynamic simulations are compared to the experimental results.

  3. Nondestructive inspection of corrosion and delamination at the concrete-steel reinforcement interface

    NASA Astrophysics Data System (ADS)

    Miller, Tri Huu

    The proposed study explores the feasibility of detecting and quantifying corrosion and delamination (physical separation) at the interface between reinforcing steel bars and concrete using ultrasonic guided waves. The problem of corrosion of the reinforcing steel in structures has increased significantly in recent years. The emergence of this type of concrete deterioration, which was first observed in marine structures and chemical manufacturing plants, coincided with the increased applications of deicing salts (sodium and calcium chlorides) to roads and bridges during winter months in those states where ice and snow are of major concern. Concrete is strengthened by the inclusion of the reinforcement steel such as deformed or corrugated steel bars. Bonding between the two materials plays a vital role in maximizing performance capacity of the structural members. Durability of the structure is of concern when it is exposed to aggressive environments. Corrosion of reinforcing steel has led to premature deterioration of many concrete members before their design life is attained. It is therefore, important to be able to detect and measure the level of corrosion in reinforcing steel or delamination at the interface. The development and implementation of damage detection strategies, and the continuous health assessment of concrete structures then become a matter of utmost importance. The ultimate goal of this research is to develop a nondestructive testing technique to quantify the amount of corrosion in the reinforcing steel. The guided mechanical wave approach has been explored towards the development of such methodology. The use of an embedded ultrasonic network for monitoring corrosion in real structures is feasible due to its simplicity. The ultrasonic waves, specifically cylindrical guided waves can p ropagate a long distance along the reinforcing steel bars and are found to be sensitive to the interface conditions between steel bars and concrete. Ultrasonic

  4. Use of steel fibres recovered from waste tyres as reinforcement in concrete: pull-out behaviour, compressive and flexural strength.

    PubMed

    Aiello, M A; Leuzzi, F; Centonze, G; Maffezzoli, A

    2009-06-01

    The increasing amount of waste tyres worldwide makes the disposition of tyres a relevant problem to be solved. In the last years over three million tons of waste tyres were generated in the EU states [ETRA, 2006. Tyre Technology International - Trends in Tyre Recycling. http://www.etra-eu.org]; most of them were disposed into landfills. Since the European Union Landfill Directive (EU Landfill, 1999) aims to significantly reduce the landfill disposal of waste tyres, the development of new markets for the tyres becomes fundamental. Recently some research has been devoted to the use of granulated rubber and steel fibres recovered from waste tyres in concrete. In particular, the concrete obtained by adding recycled steel fibres evidenced a satisfactory improvement of the fragile matrix, mostly in terms of toughness and post-cracking behaviour. As a consequence RSFRC (recycled steel fibres reinforced concrete) appears a promising candidate for both structural and non-structural applications. Within this context a research project was undertaken at the University of Salento (Italy) aiming to investigate the mechanical behaviour of concrete reinforced with RSF (recycled steel fibres) recovered from waste tyres by a mechanical process. In the present paper results obtained by the experimental work performed up to now are reported. In order to evaluate the concrete-fibres bond characteristics and to determine the critical fibre length, pull-out tests were initially carried out. Furthermore compressive strength of concrete was evaluated for different volume ratios of added RSF and flexural tests were performed to analyze the post-cracking behaviour of RSFRC. For comparison purposes, samples reinforced with industrial steel fibres (ISF) were also considered. Satisfactory results were obtained regarding the bond between recycled steel fibres and concrete; on the other hand compressive strength of concrete seems unaffected by the presence of fibres despite their irregular

  5. [Study of an optical fiber grating sensor for monitoring corrosion of reinforcing steel].

    PubMed

    Li, Jun; Wu, Jin; Gao, Jun-qi

    2010-01-01

    Based on the principle of the fiber Bragg grating strain sensor as well as the volume expansion of the reinforcing steel due to corrosion, an optical fiber grating sensor for monitoring corrosion of reinforcing steel and the method of temperature compensation were studied in the present paper. The sensor construction is that one Bragg grating is stuck on the inner center of two bars against each other, and the reinforcement volume as well as the diameter will expand due to corrosion. Based upon sensing mechanism, monitoring will be carried out by transforming the diameter increase to the fiber strain, and as a result the degree and rate of reinforcement corrosion can be obtained. The principle of corrosion monitoring is that the strain induced by corrosion and temperature fluctuation is measured by a reinforcing steel fiber grating sensor. At the same time, the strain induced by temperature fluctuation is also measured by an individual stainless fiber grating sensor. Therefore by two independent fiber grating sensors, the volume changed by corrosion can be separated. By the concrete encapsulating and embedding method of FBG corrosion sensor, the degree of corrosion of reinforcing reinforcement will be measured directly, which is not affected by corrosion factors and can be used in the early corrosion monitoring of reinforcement in concrete structures. Finally the relationship between corrosion rate and shift in center wavelength was calibrated by experiment.

  6. Reinforcement Magnitude: An Evaluation of Preference and Reinforcer Efficacy

    ERIC Educational Resources Information Center

    Trosclair-Lasserre, Nicole M.; Lerman, Dorothea C.; Call, Nathan A.; Addison, Laura R.; Kodak, Tiffany

    2008-01-01

    Consideration of reinforcer magnitude may be important for maximizing the efficacy of treatment for problem behavior. Nonetheless, relatively little is known about children's preferences for different magnitudes of social reinforcement or the extent to which preference is related to differences in reinforcer efficacy. The purpose of the current…

  7. Arrangement for connecting a fiber-reinforced plastic pipe to a stainless steel flange

    DOEpatents

    Allais, Arnaud; Hoffmann, Ernst

    2008-02-05

    Arrangement for connecting a fiber-reinforced plastic pipe (18) to a stainless steel flange (12, 16), in which the end of the fiber-reinforced plastic pipe (18) is accommodated in a ring-shaped groove (12a, 16a) in the flange (12, 16), the groove conforming to the dimensions of the fiber-reinforced plastic pipe (18), where the gap remaining between the end of the fiber-reinforced plastic pipe (18) and the ring-shaped groove (12a, 16a) is filled with a sealant (19).

  8. Reinforcement learning improves behaviour from evaluative feedback

    NASA Astrophysics Data System (ADS)

    Littman, Michael L.

    2015-05-01

    Reinforcement learning is a branch of machine learning concerned with using experience gained through interacting with the world and evaluative feedback to improve a system's ability to make behavioural decisions. It has been called the artificial intelligence problem in a microcosm because learning algorithms must act autonomously to perform well and achieve their goals. Partly driven by the increasing availability of rich data, recent years have seen exciting advances in the theory and practice of reinforcement learning, including developments in fundamental technical areas such as generalization, planning, exploration and empirical methodology, leading to increasing applicability to real-life problems.

  9. Strength and Fracture Behavior of a Particle-Reinforced Transformation-Toughened Trip Steel/ZrO2 Composite

    NASA Astrophysics Data System (ADS)

    Eckner, R.; Krampf, M.; Segel, C.; Krüger, L.

    2016-01-01

    A newly developed particle-reinforced composite based on a high-alloy metastable CrMnNi TRIP steel was investigated concerning its fracture toughness behavior. The particle reinforcement was done using 10 vol.% of metastable MgO-partially-stabilized ZrO 2 (Mg-PSZ), which has the capability of a stress-induced transformation from the tetragonal to the monoclinic phase. Moreover, the alloying concept of the steel matrix enables a strain-induced transformation from the metastable γ-austenite phase to the α'-martensite phase leading to an increase in strength and ductility. Both effects in combination are intended to dissipate energy and increase the fracture toughness of the composite material (R-curve behavior). To evaluate the mechanical performance of the composite, tensile and fracture mechanics tests according to ISO 12135 were performed, followed by microstructural investigations. The fracture process was analyzed in an in situ tensile test with simultaneous recording of SEM micrographs and subsequent optical analysis of deformation. The results obtained show that the toughness of the composite is primarily determined by the presence of reinforcement particles. The low interfacial strength between the steel and ceramic associated with small interparticle spaces leads to an accelerated fracture process and a low overall toughness. This behavior is amplified as soon as particle clusters are formed during processing.

  10. A&M. TAN607. Construction detail showing structural steel framework with reinforcing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A&M. TAN-607. Construction detail showing structural steel framework with reinforcing steel in place prior to pouring concrete for biparting doors between hot shop and special equipment service (SES) room. Facing north. Hot shop to left, SES room to right. slot for north half of door shows at upper left of view. Date: May 21, 1954. INEEL negative no. 10548 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  11. Reactive Silicate Coatings for Protecting and Bonding Reinforcing Steel in Cement-Based Composites

    DTIC Science & Technology

    2008-12-01

    Bentur, Diamond and Mindess , 1985; Wei, Mandel and Said, 1986; Horne, Richardson and Brydson, 2007). Most research have concluded that the...around a steel fiber. (after Bentur, Diamond and Mindess , 1985.) The ITZ is typically on the order of 100µm in thickness and the exact...International, West Conshohocken, PA. Bentur, A. Diamond, S. and Mindess , S., 1985: Cracking Processes in Steel Fibre Reinforced Cement Pastes

  12. Detection and Inspection of Steel Bars in Reinforced Concrete Structures Using Active Infrared Thermography with Microwave Excitation and Eddy Current Sensors

    PubMed Central

    Szymanik, Barbara; Frankowski, Paweł Karol; Chady, Tomasz; John Chelliah, Cyril Robinson Azariah

    2016-01-01

    The purpose of this paper is to present a multi-sensor approach to the detection and inspection of steel bars in reinforced concrete structures. In connection with our past experience related to non-destructive testing of different materials, we propose using two potentially effective methods: active infrared thermography with microwave excitation and the eddy current technique. In this article active infrared thermography with microwave excitation is analyzed both by numerical modeling and experiments. This method, based on thermal imaging, due to its characteriatics should be considered as a preliminary method for the assessment of relatively shallowly located steel bar reinforcements. The eddy current technique, on the other hand, allows for more detailed evaluation and detection of deeply located rebars. In this paper a series of measurement results, together with the initial identification of certain features of steel reinforcement bars will be presented. PMID:26891305

  13. Detection and Inspection of Steel Bars in Reinforced Concrete Structures Using Active Infrared Thermography with Microwave Excitation and Eddy Current Sensors.

    PubMed

    Szymanik, Barbara; Frankowski, Paweł Karol; Chady, Tomasz; John Chelliah, Cyril Robinson Azariah

    2016-02-16

    The purpose of this paper is to present a multi-sensor approach to the detection and inspection of steel bars in reinforced concrete structures. In connection with our past experience related to non-destructive testing of different materials, we propose using two potentially effective methods: active infrared thermography with microwave excitation and the eddy current technique. In this article active infrared thermography with microwave excitation is analyzed both by numerical modeling and experiments. This method, based on thermal imaging, due to its characteriatics should be considered as a preliminary method for the assessment of relatively shallowly located steel bar reinforcements. The eddy current technique, on the other hand, allows for more detailed evaluation and detection of deeply located rebars. In this paper a series of measurement results, together with the initial identification of certain features of steel reinforcement bars will be presented.

  14. Preliminary evaluation of fiber composite reinforcement of truck frame rails

    NASA Technical Reports Server (NTRS)

    Faddoul, J. R.

    1977-01-01

    The use of graphite fiber/resin matrix composite to effectively reinforce a standard steel truck frame rail is studied. A preliminary design was made and it was determined that the reinforcement weight could be reduced by a factor of 10 when compared to a steel reinforcement. A section of a 1/3 scale reinforced rail was fabricated to demonstrate low cost manufacturing techniques. The scale rail section was then tested and increased stiffness was confirmed. No evidence of composite fatigue was found after 500,000 cycles to a fiber stress of 34,000 psi. The test specimen failed in bending in a static test at a load 50 percent greater than that predicted for a non-reinforced rail.

  15. Evaluation of capillary reinforced composites

    NASA Technical Reports Server (NTRS)

    Cahill, J. E.; Halase, J. F.; South, W. K.; Stoffer, L. J.

    1985-01-01

    Anti-icing of the inlet of jet engines is generally performed with high pressure heated air that is directed forward from the compressor through a series of pipes to various manifolds located near the structures to be anti-iced. From these manifolds, the air is directed to all flowpath surfaces that may be susceptible to ice formation. There the anti-icing function may be performed by either heat conduction or film heating. Unfortunately, the prospect of utilizing lighweight, high strength composites for inlet structures of jet engines has been frustrated by the low transverse thermal conductivity of such materials. It was the objective of this program to develop an advanced materials and design concept for anti-icing composite structures. The concept that was evaluated used capillary glass tubes embedded on the surface of a composite structure with heated air ducted through the tubes. An analytical computer program was developed to predict the anti-icing performance of such tubes and a test program was conducted to demonstrate actual performance of this system. Test data and analytical code results were in excellent agreement. Both indicate feasibility of using capillary tubes for surface heating as a means for composite engine structures to combat ice accumulation.

  16. The Non-Destructive Test of Steel Corrosion in Reinforced Concrete Bridges Using a Micro-Magnetic Sensor

    PubMed Central

    Zhang, Hong; Liao, Leng; Zhao, Ruiqiang; Zhou, Jianting; Yang, Mao; Xia, Runchuan

    2016-01-01

    This paper presents a non-destructive test method for steel corrosion in reinforced concrete bridges by using a 3-dimensional digital micro-magnetic sensor to detect and analyze the self-magnetic field leakage from corroded reinforced concrete. The setup of the magnetic scanning device and the measurement mode of the micro-magnetic sensor are introduced. The numerical analysis model is also built based on the linear magnetic charge theory. Compared to the self-magnetic field leakage data obtained from magnetic sensor-based measurement and numerical calculation, it is shown that the curves of tangential magnetic field at different lift-off height all intersect near the edge of the steel corrosion zone. The result indicates that the intersection of magnetic field curves can be used to detect and evaluate the range of the inner steel corrosion in engineering structures. The findings of this work propose a new and effective non-destructive test method for steel corrosion, and therefore enlarge the application of the micro-magnetic sensor. PMID:27608029

  17. The Non-Destructive Test of Steel Corrosion in Reinforced Concrete Bridges Using a Micro-Magnetic Sensor.

    PubMed

    Zhang, Hong; Liao, Leng; Zhao, Ruiqiang; Zhou, Jianting; Yang, Mao; Xia, Runchuan

    2016-09-06

    This paper presents a non-destructive test method for steel corrosion in reinforced concrete bridges by using a 3-dimensional digital micro-magnetic sensor to detect and analyze the self-magnetic field leakage from corroded reinforced concrete. The setup of the magnetic scanning device and the measurement mode of the micro-magnetic sensor are introduced. The numerical analysis model is also built based on the linear magnetic charge theory. Compared to the self-magnetic field leakage data obtained from magnetic sensor-based measurement and numerical calculation, it is shown that the curves of tangential magnetic field at different lift-off height all intersect near the edge of the steel corrosion zone. The result indicates that the intersection of magnetic field curves can be used to detect and evaluate the range of the inner steel corrosion in engineering structures. The findings of this work propose a new and effective non-destructive test method for steel corrosion, and therefore enlarge the application of the micro-magnetic sensor.

  18. The Impact of Corrosion on the Mechanical Behavior of Welded Splices of Reinforcing Steel S400 and B500c

    NASA Astrophysics Data System (ADS)

    Apostolopoulos, Ch. Alk.; Michalopoulos, D.; Dimitrov, L.

    2008-02-01

    The reinforcing steel, used in concrete structures, when corroded causes reduction of the strength properties and especially drastic reduction of ductility. Steel corrosion constitutes an important factor of progressive devaluation of its mechanical properties and serious reduction of the integrity of structures. The problem becomes more evident specifically for structures near coastal areas where salt corrosion is predominant. Reinforced concrete columns and beams are quite often extended by welding new steel reinforcement to the already corroded existing steel. In the present article the impact of corrosion on the mechanical properties of welded splices of reinforcing Steel S400 and B500c is examined. An experimental investigation was conducted and tensile and compressive results are presented for welded precorroded S400 and noncorroded B500c steel splices. The mechanical behavior of welded splices in tension are different in compression and depend strongly on the level of corrosion of the S400 bars.

  19. Application of headed studs in steel fiber reinforced cementitious composite slab of steel beam-column connection

    NASA Astrophysics Data System (ADS)

    Yao, Cui; Nakashima, Masayoshi

    2012-03-01

    Steel fiber reinforced cementitous composites (SFRCC) is a promising material with high strength in both compression and tension compared with normal concrete. The ductility is also greatly improved because of 6% volume portion of straight steel fibers. A steel beam-column connection with Steel fiber reinforced cementitous composites (SFRCC) slab diaphragms is proposed to overcome the damage caused by the weld. The push-out test results suggested that the application of SFRCC promises larger shear forces transferred through headed studs allocated in a small area in the slab. Finite element models were developed to simulate the behavior of headed studs. The failure mechanism of the grouped arrangement is further discussed based on a series of parametric analysis. In the proposed connection, the SFRCC slab is designed as an exterior diaphragm to transfer the beam flange load to the column face. The headed studs are densely arranged on the beam flange to connect the SFRCC slab diaphragms and steel beams. The seismic performance and failure mechanism of the SFRCC slab diaphragm beam-column connection were investigated based on the cyclic loading test. Beam hinge mechanism was achieved at the end of the SFRCC slab diaphragm by using sufficient studs and appropriate rebars in the SFRCC slab.

  20. Corrosion Assessment of Steel Bars Used in Reinforced Concrete Structures by Means of Eddy Current Testing

    PubMed Central

    de Alcantara, Naasson P.; da Silva, Felipe M.; Guimarães, Mateus T.; Pereira, Matheus D.

    2015-01-01

    This paper presents a theoretical and experimental study on the use of Eddy Current Testing (ECT) to evaluate corrosion processes in steel bars used in reinforced concrete structures. The paper presents the mathematical basis of the ECT sensor built by the authors; followed by a finite element analysis. The results obtained in the simulations are compared with those obtained in experimental tests performed by the authors. Effective resistances and inductances; voltage drops and phase angles of wound coil are calculated using both; simulated and experimental data; and demonstrate a strong correlation. The production of samples of corroded steel bars; by using an impressed current technique is also presented. The authors performed experimental tests in the laboratory using handmade sensors; and the corroded samples. In the tests four gauges; with five levels of loss-of-mass references for each one were used. The results are analyzed in the light of the loss-of-mass and show a strong linear behavior for the analyzed parameters. The conclusions emphasize the feasibility of the proposed technique and highlight opportunities for future works. PMID:26712754

  1. Corrosion Assessment of Steel Bars Used in Reinforced Concrete Structures by Means of Eddy Current Testing.

    PubMed

    de Alcantara, Naasson P; da Silva, Felipe M; Guimarães, Mateus T; Pereira, Matheus D

    2015-12-24

    This paper presents a theoretical and experimental study on the use of Eddy Current Testing (ECT) to evaluate corrosion processes in steel bars used in reinforced concrete structures. The paper presents the mathematical basis of the ECT sensor built by the authors; followed by a finite element analysis. The results obtained in the simulations are compared with those obtained in experimental tests performed by the authors. Effective resistances and inductances; voltage drops and phase angles of wound coil are calculated using both; simulated and experimental data; and demonstrate a strong correlation. The production of samples of corroded steel bars; by using an impressed current technique is also presented. The authors performed experimental tests in the laboratory using handmade sensors; and the corroded samples. In the tests four gauges; with five levels of loss-of-mass references for each one were used. The results are analyzed in the light of the loss-of-mass and show a strong linear behavior for the analyzed parameters. The conclusions emphasize the feasibility of the proposed technique and highlight opportunities for future works.

  2. Quantitative analysis of the microstructure of interfaces in steel reinforced concrete

    SciTech Connect

    Horne, A.T.; Richardson, I.G. Brydson, R.M.D.

    2007-12-15

    This article reports the results of a backscattered electron imaging study of the microstructure of the steel- and aggregate-cement paste interfaces in concrete containing 9 mm ribbed reinforcing bars. The water to cement (w/c) ratio, hydration age, steel orientation, and surface finish were varied. For vertically cast bars, there was more calcium hydroxide (CH) and porosity and less unreacted cement at both the steel- and aggregate-cement paste interfaces when compared to the bulk cement paste. As the hydration age increased, the porosity near the interfaces decreased, and the CH increased with more CH close to the steel than to the aggregate. Horizontal bars had more porosity and less CH under them than above. An increase in the w/c ratio produced interfaces of higher porosity and lower levels of CH. Wire-brush cleaned bars had higher levels of CH at the steel-cement paste interface at 365 days when compared to uncleaned bars.

  3. Practical experience of steel fiber reinforced wet shotcrete in large underground construction projects

    SciTech Connect

    Garshol, K.

    1995-12-31

    The paper discusses advantages of SFRS (steel fiber reinforced shotcrete) in underground construction projects, including trends in rock support design; quality and durability of wet mix shotcrete; advantages in safety and working environment and the technical properties of SFRS. Key data from cases illustrate the above. Cost and time factors are highlighted.

  4. Natural Corrosion Inhibitors for Steel Reinforcement in Concrete — a Review

    NASA Astrophysics Data System (ADS)

    Raja, Pandian Bothi; Ghoreishiamiri, Seyedmojtaba; Ismail, Mohammad

    2015-04-01

    Reinforced concrete is one of the widely used construction materials for bridges, buildings, platforms and tunnels. Though reinforced concrete is capable of withstanding a large range of severe environments including marine, industrial and alpine conditions, there are still a large number of failures in concrete structures for many reasons. Either carbonation or chloride attack is the main culprit which is due to depassivation of reinforced steel and subsequently leads to rapid steel corrosion. Among many corrosion prevention measures, application of corrosion inhibitors play a vital role in metal protection. Numerous range of corrosion inhibitors were reported for concrete protection that were also used commercially in industries. This review summarizes the application of natural products as corrosion inhibitors for concrete protection and also scrutinizes various factors influencing its applicability.

  5. Internal impedance of steel-reinforced helically stranded conductors at commercial frequency

    NASA Astrophysics Data System (ADS)

    Merkushev, A. G.; Elagin, I. A.

    2015-04-01

    An original simplified mathematical model is proposed that describes the distribution of a harmonic electromagnetic field at a commercial frequency in steel-reinforced high-voltage cables with helically stranded single-layer winding. In the framework of the idealized physical concepts on which the proposed model is based, stranded conductors are treated as an anisotropic conducting layer. It is shown that taking into account the helical twist of conductors leads to the appearance of an axial magnetic field, the presence of which can significantly influence the level of ac losses. The model has been used to calculate the dependence of the internal impedance on the magnetic permeability of the steel core for commercial AS-70 grade steel-reinforced stranded aluminum cable. The results are compared to those obtained using a hollow cylinder model and full-scale numerical calculations using the finite element method.

  6. Prospects of increasing the strength of aluminum by reinforcing it with stainless steel wire (a review)

    NASA Technical Reports Server (NTRS)

    Botvina, L. R.; Ivanova, V. S.; Kopev, I. M.

    1982-01-01

    The theoretical and experimental strength of aluminum reinforced with stainless steel wire is analyzed. Various methods of producing the composite material and it's static and cyclical strengths are considered. The reinforcement of aluminum with stainless steel wire was accomplished from the perspective of increasing the specific strength of aluminum and it's alloys, increasing the strength of the material with respect to high and low temperatures, as well as increasing the cyclical strength. The production of the composite aluminum-stainless steel wire material with approximated or calculated strengthening is possible by any of the considered methods. The selection of the proper production technology depends on precise details and conditions of application of the material.

  7. Evaluation of post-fire strength of concrete flexural members reinforced with glass fiber reinforced polymer (GFRP) bars

    NASA Astrophysics Data System (ADS)

    Ellis, Devon S.

    Owing to their corrosion resistance and superior strength to weight ratio, there has been, over the past two decades, increased interest in the use of fiber-reinforced polymer (FRP) reinforcing bars in reinforced concrete structural members. The mechanical behavior of FRP reinforcement differs from that of steel reinforcement. For example, FRP reinforcement exhibit a linear stress-strain behavior until the bar ruptures and the strength, stiffness and bond properties of FRP reinforcement are affected more adversely by elevated temperatures. All structures are subject to the risk of damage by fire and fires continue to be a significant cause of damage to structures. Many structures do not collapse after being exposed to fire. The safety of the structure for any future use is dependent on the ability to accurately estimate the post-fire load capacity of the structure. Assuming that the changes, due to fire exposure, in the mechanical behavior of the GFRP reinforcing bar and concrete, and the bond between the reinforcing bar and the concrete are understood, an analytical procedure for estimating the post-fire strength of GFRP reinforced concrete flexural elements can be developed. This thesis investigates the changes in: a) tensile properties and bond of GFRP bars; and b) the flexural behavior of GFRP reinforced concrete beams flexural after being exposed to elevated temperatures up to 400°C and cooled to ambient temperature. To this end, twelve tensile tests, twelve pullout bond tests and ten four-point beam tests were performed. The data from the tests were used to formulate analytical procedures for evaluating the post-fire strength of GFRP reinforced concrete beams. The procedure produced conservative results when compared with the experimental data. In general, the residual tensile strength and modulus of elasticity of GFRP bars decrease as the exposure temperature increases. The loss in properties is however, smaller than that observed by other researchers when

  8. Co-extrusion of Discontinuously, Non-centric Steel-reinforced Aluminum

    SciTech Connect

    Foydl, A.; Haase, M.; Khalifa, N. Ben; Tekkaya, A. E.

    2011-05-04

    The process of manufacturing discontinuously non-centric steel reinforced aluminum by means of co-extrusion has been examined. By this process semi-finished reinforced profiles can be fabricated for further treatment through forging techniques. Therefore, steel reinforcement elements consisting of E295GC were inserted into conventional aluminum billets and co-extruded into two different solid profiles; a rectangle one by an extrusion ratio of 10.1:1 and a round one by 4.8:1. The used aluminum alloy is EN AW-6060. The billet temperature as well as the ram speed were varied to investigate their influence on the position of the reinforcement elements inside the strand. The measurement was done by a video measurement system, called Optomess A250, after milling off the strand. The distances between the elements in longitudinal direction were nearly constant, apart from the rear part of the strand. The same was observed for the distance of the steel elements to the profile edge. This due to the inhomogeneous material flow in the transverse weld, related to the billet-to-billet extrusion. The rotation of the reinforcement elements occurs because the elements flow nearby the shear zone. Further, micrographs were made to investigate the embedding situation and the grain size distribution. The embedding of the reinforcement elements were good in the solid round profile, but in the rectangle profile were found some kind of air pocket. The grain size of the aluminum alloy close to the steel elements is much smaller than in the other parts of the solid round profile.

  9. Model of lightning strike to a steel reinforce structure using PSpice

    NASA Astrophysics Data System (ADS)

    Koone, Neil; Condren, Brian

    2003-03-01

    Surges and arcs from lightning can pose hazards to personnel and sensitive equipment and processes. Steel reinforcement in structures can act as a Faraday cage mitigating lightning effects. Knowing a structure's response to a lightning strike allows hazards associated with lightning to be analyzed. A model of lightning's response in a steel reinforced structure has been developed using PSpice (a commercial circuit simulation). Segments of rebar are modeled as inductors and resistors in series. A program has been written to take architectural information of a steel reinforced structure and "build" a circuit network that is analogous to the network of reinforcement in a facility. A severe current waveform (simulating a 99th percentile lightning strike), modeled as a current source, is introduced in the circuit network, and potential differences within the structure are determined using PSpice. A visual three-dimensional model of the facility displays the voltage distribution across the structure using color to indicate the potential difference relative to the floor. Clear air arcing distances can be calculated from the voltage distribution using a conservative value for the dielectric breakdown strength of air.

  10. Fracture analysis of a high-strength concrete and a high-strength steel-fiber-reinforced concrete

    NASA Astrophysics Data System (ADS)

    Ferreira, L. E. T.

    2007-09-01

    This paper addresses the use of R-curves to study the fracture behavior of high-strength concrete and steel-fiber-reinforced concrete subjected to crack ing in a three-point bending configuration. The R-curves are modeled through an effective approach based on the equations of linear-elastic fracture mechanics (LEFM), which relates the applied load to the fundamental displacements of notched-through beams loaded monotonically. It is initially shown that, for quasi-brittle materials, the R-curves responses can be evaluated in a quasi-analytical way, using the load-crack mouth opening, the load-load line displacement, or exclusively the displacement responses obtained experimentally. Afterward, the methodology is used to obtain the fracture responses of high-strength and fiber-reinforced concretes, up to the final stages of rupture.

  11. Effect of Reinforcement Using Stainless Steel Mesh, Glass Fibers, and Polyethylene on the Impact Strength of Heat Cure Denture Base Resin - An In Vitro Study

    PubMed Central

    Murthy, H B Mallikarjuna; Shaik, Sharaz; Sachdeva, Harleen; Khare, Sumit; Haralur, Satheesh B; Roopa, K T

    2015-01-01

    Background: The impact strength of denture base resin is of great concern and many approaches have been made to strengthen acrylic resin dentures. The objective of this study was to compare the impact strength of the denture base resin with and without reinforcement and to evaluate the impact strength of denture base resin when reinforced with stainless steel mesh, glass fiber, and polyethylene fibers in the woven form. Materials and Methods: The specimens (maxillary denture bases) were fabricated using a standard polyvinylsiloxane mold with conventional heat cured polymethyl methacrylate resin. The specimens were divided into four groups (n = 10). Group I specimens or control group were not reinforced. Group II specimens were reinforced with stainless steel mesh and Group III and Group IV specimens were reinforced with three percent by weight of glass fibers and polyethylene fibers in weave form respectively. All the specimens were immersed in water for 1-week before testing. The impact strength was measured with falling weight impact testing machine. One-way analysis of variance and Tukey’s post-hoc test were used for statistical analysis. Results: Highest impact strength values were exhibited by the specimens reinforced with polyethylene fibers followed by glass fibers, stainless steel mesh, and control group. Conclusions: Reinforcement of maxillary complete dentures showed a significant increase in impact strength when compared to unreinforced dentures. Polyethylene fibers exhibit better impact strength followed by glass fibers and stainless steel mesh. By using pre-impregnated glass and polyethylene fibers in woven form (prepregs) the impact strength of the denture bases can be increased effectively. PMID:26124604

  12. Buckling of steel cylinders containing circular cutouts reinforced according to the area-replacement method

    SciTech Connect

    Dove, R.C.; Bennett, J.G.; Butler, T.A.

    1982-01-01

    The effect of the use of the area replacement method (ARM) for reinforcing circular penetrations in cylindrical steel shells has been studied both experimentally and analyticaly. How this type of reinforcement affects the buckling strength of a shell subjected to uniform axial compression is the specific area of investigation. In shells that are of such a quality that the penetration reduces the buckling strength, the use of the ARM will increase the bucking strength of the shell. In any case, the conservative knockdown factors suggested for buckling design by the American Society of Mechanical Engineer's (ASME) Boiler and Pressure Vessel Code should ensure an adequate margin to failure under this loading condition.

  13. Vertical impedance measurements on concrete bridge decks for assessing susceptibility of reinforcing steel to corrosion.

    PubMed

    Bartholomew, Paul D; Guthrie, W Spencer; Mazzeo, Brian A

    2012-08-01

    Corrosion is a pressing problem for aging concrete infrastructure, especially bridge decks. Because of its sensitivity to factors that affect corrosion of reinforcing steel in concrete, resistivity is an important structural health indicator for reinforced concrete structures. In this research, an instrument was developed to measure vertical impedance on concrete bridge decks. Measurements of vertical impedance on slabs prepared in the laboratory, on slabs removed from decommissioned bridge decks, and on an in-service bridge deck in the field demonstrate the utility of the new apparatus.

  14. Vertical impedance measurements on concrete bridge decks for assessing susceptibility of reinforcing steel to corrosion

    NASA Astrophysics Data System (ADS)

    Bartholomew, Paul D.; Guthrie, W. Spencer; Mazzeo, Brian A.

    2012-08-01

    Corrosion is a pressing problem for aging concrete infrastructure, especially bridge decks. Because of its sensitivity to factors that affect corrosion of reinforcing steel in concrete, resistivity is an important structural health indicator for reinforced concrete structures. In this research, an instrument was developed to measure vertical impedance on concrete bridge decks. Measurements of vertical impedance on slabs prepared in the laboratory, on slabs removed from decommissioned bridge decks, and on an in-service bridge deck in the field demonstrate the utility of the new apparatus.

  15. Assessment of Steel Reinforcement Corrosion State by Parameters of Potentiodynamic Diagrams

    NASA Astrophysics Data System (ADS)

    Krajči, Ľudovít; Jerga, Ján

    2015-12-01

    The environment of the steel reinforcement has a significant impact on the durability and service life of a concrete structure. It is not only the presence of aggressive substances from the environment, but also the own composition of concrete mixture. The use of new types of cements, additives and admixtures must be preceded by verification, if they themselves shall not initiate the corrosion. There is a need for closer physical expression of the parameters of the potentiodynamic diagrams allowing reliable assessment of the influence of the surrounding environment on electrochemical behaviour of reinforcement. The analysis of zero retardation limits of potentiodynamic curves is presented.

  16. Intermittent cathodic protection for steel reinforced concrete bridges

    SciTech Connect

    Bullard, Sophie J.; Ziomek-Moroz, Margaret; Cramer, Stephen D.; Covino, Bernard S., Jr.; Holcomb, Gordon R.; Russell, James H.; Soltesz, S.M.

    2002-01-01

    Thermal-sprayed zinc anodes are used for impressed current cathodic protection (ICCP) systems on Oregon's reinforced concrete coastal bridges to prevent chloride-induced corrosion damage. Thermal-sprayed zinc performs well as an ICCP anode but the service life of the zinc anode is directly related to the average current density used to operate the systems. After a ICCP system is turned off, the rebar in the concrete remains passive and protected for a period of time. Intermittent operation of CP systems is possible when continuous corrosion rate monitoring is used to identify conditions when the CP system needs to be turned on to reestablish protection conditions for the rebar. This approach applies CP protection only when needed and reflects the fact that external protection may not be needed for a range of environmental conditions. In doing so, intermittent CP would lower the average current necessary to protect rebar, increase the anode service life, and reduce the lifetime costs for protecting reinforced concrete bridges.

  17. A micromorphic model for steel fiber reinforced concrete.

    PubMed

    Oliver, J; Mora, D F; Huespe, A E; Weyler, R

    2012-10-15

    A new formulation to model the mechanical behavior of high performance fiber reinforced cement composites with arbitrarily oriented short fibers is presented. The formulation can be considered as a two scale approach, in which the macroscopic model, at the structural level, takes into account the mesostructural phenomenon associated with the fiber-matrix interface bond/slip process. This phenomenon is contemplated by including, in the macroscopic description, a micromorphic field representing the relative fiber-cement displacement. Then, the theoretical framework, from which the governing equations of the problem are derived, can be assimilated to a specific case of the material multifield theory. The balance equation derived for this model, connecting the micro stresses with the micromorphic forces, has a physical meaning related with the fiber-matrix bond slip mechanism. Differently to previous procedures in the literature, addressed to model fiber reinforced composites, where this equation has been added as an additional independent ingredient of the methodology, in the present approach it arises as a natural result derived from the multifield theory. Every component of the composite is defined with a specific free energy and constitutive relation. The mixture theory is adopted to define the overall free energy of the composite, which is assumed to be homogeneously constituted, in the sense that every infinitesimal volume is occupied by all the components in a proportion given by the corresponding volume fraction. The numerical model is assessed by means of a selected set of experiments that prove the viability of the present approach.

  18. Friction and wear of hydroxyapatite reinforced high density polyethylene against the stainless steel counterface.

    PubMed

    Wang, M; Chandrasekaran, M; Bonfield, W

    2002-06-01

    Hydroxyapatite (HA) reinforced high density polyethylene (HDPE) was invented as a biomaterial for skeletal applications. In this investigation, tribological properties (e.g. wear rate and coefficient of friction) of unfilled HDPE and HA/HDPE composites were evaluated against the duplex stainless steel in dry and lubricated conditions, with distilled water or aqueous solutions of proteins (egg albumen or glucose) being lubricants. Wear tests were conducted in a custom-built test rig for HDPE and HA/HDPE containing up to 40 vol % of HA. It was found that HA/HDPE composites had lower coefficients of friction than unfilled HDPE under certain conditions. HA/HDPE also exhibited less severe fatigue failure marks than HDPE. The degradation and fatigue failure of HDPE due to the presence of proteins were severe for low speed wear testing (100 rpm) as compared to high speed wear testing (200 rpm). This was due possibly to the high shear rate at the contact which could remove any degraded film instantaneously at high sliding speed, while with a low sliding speed the build-up of a degraded layer of protein could occur. The degraded protein layer would stay at the contact for a longer time and mechanical activation would induce adverse reactions, weakening the surface layer of HDPE. Both egg albumen and glucose were found to be corrosive to steel and adversely reactive for HDPE and HA/HDPE composites. The wear modes observed were similar to that of ultra-high molecular weight polyethylene. Specimens tested with egg albumen also displayed higher wear rates, which was again attributed to corrosion accelerated wear.

  19. Effect of Thickness and Fibre Volume Fraction on Impact Resistance of Steel Fibre Reinforced Concrete (SFRC)

    NASA Astrophysics Data System (ADS)

    Che Muda, Zakaria; Usman, Fathoni; Syamsir, Agusril; Shao Yang, Chen; Nasharuddin Mustapha, Kamal; Beddu, Salmia; Thiruchelvam, Sivadass; Liyana Mohd Kamal, Nur; Ashraful Alam, Md; Birima, Ahmed H.; Itam, Zarina; Zaroog, O. S.

    2016-03-01

    This paper investigate the effect of the thickness and fibre volume fraction (VF) on the impact performance of steel fibre reinforced concrete (SFRC) for the concrete slab of 300mm × 300mm size reinforced subjected to low impact projectile test. A self-fabricated drop-weight impact test rig with a steel ball weight of 1.236 kg drop at 0.57 m height has been used in this research work. The objective of this research is to study the relationship of impact resistance SFRC against slab thickness and volume fraction. There is a good linear correlation between impact resistances of SFRC against slab thickness. However the impact resistance of SFRC against percentage of volume fraction exhibit a non-linear relationship.

  20. PERFORMANCE OF RC AND FRC WALL PANELS REINFORCED WITH MILD STEEL AND GFRP COMPOSITES IN BLAST EVENTS

    SciTech Connect

    Timothy Garfield; William D. Richins; Thomas K. Larson; Chris P. Pantelides; James E. Blakeley

    2011-06-01

    The structural integrity of reinforced concrete structures in blast events is important for critical facilities. This paper presents experimental data generated for calibrating detailed finite element models that predict the performance of reinforced concrete wall panels with a wide range of construction details under blast loading. The test specimens were 1.2 m square wall panels constructed using Normal Weight Concrete (NWC) or Fiber Reinforced Concrete (FRC). FRC consists of macro-synthetic fibers dispersed in NWC. Five types of panels were tested: NWC panels with steel bar reinforcement (Type A); FRC panels without additional reinforcement (Type B); FRC panels with steel bar reinforcement (Type C); NWC panels with glass fiber reinforced polymer (GFRP) bar reinforcement (Type D); and NWC panels reinforced with steel bar reinforcement and external bidirectional GFRP overlays on both faces (Type E). An additional three Type C panels were used as control specimens (CON). Each panel type was constructed with three thicknesses: 152 mm, 254 mm, and 356 mm. The panels were instrumented with strain gauges, and accelerometers; in addition, pressure sensors and high speed videos were employed during the blast events. Panel types C and E had the best performance, whereas panel type B did not perform well. Preliminary dynamic simulations show crack patterns similar to the experimental results.

  1. Seismic performance of steel reinforced ultra high-strength concrete composite frame joints

    NASA Astrophysics Data System (ADS)

    Yan, Changwang; Jia, Jinqing

    2010-09-01

    To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirrup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.

  2. Application of nanoindentation testing to study of the interfacial transition zone in steel fiber reinforced mortar

    SciTech Connect

    Wang Xiaohui Jacobsen, Stefan; He Jianying; Zhang Zhiliang; Lee, Siaw Foon; Lein, Hilde Lea

    2009-08-15

    The characteristics of the profiles of elastic modulus and hardness of the steel fiber-matrix and fiber-matrix-aggregate interfacial zones in steel fiber reinforced mortars have been investigated by using nanoindentation and Scanning Electron Microscopy (SEM), where two sets of parameters, i.e. water/binder ratio and content of silica fume were considered. Different interfacial bond conditions in the interfacial transition zones (ITZ) are discussed. For sample without silica fume, efficient interfacial bonds across the steel fiber-matrix and fiber-matrix-aggregate interfaces are shown in low water/binder ratio mortar; while in high water/binder ratio mortar, due to the discontinuous bleeding voids underneath the fiber, the fiber-matrix bond is not very good. On the other hand, for sample with silica fume, the addition of 10% silica fume leads to no distinct presence of weak ITZ in the steel fiber-matrix interface; but the effect of the silica fume on the steel fiber-matrix-aggregate interfacial zone is not obvious due to voids in the vicinity of steel fiber.

  3. An Experimental Study on Strengthening of Reinforced Concrete Flexural Members using Steel Wire Mesh

    NASA Astrophysics Data System (ADS)

    Al Saadi, Hamza Salim Mohammed; Mohandas, Hoby P.; Namasivayam, Aravind

    2017-01-01

    One of the major challenges and contemporary research in the field of structural engineering is strengthening of existing structural elements using readily available materials in the market. Several investigations were conducted on strengthening of various structural components using traditional and advanced materials. Many researchers tried to enhance the reinforced concrete (RC) beams strength using steel plate, Glass and Carbon Fibre Reinforced Polymers (GFRP & CFRP). For the reason that high weight to the strength ratio and compatibility in strength between FRP composites and steel bars, steel plates and GFRP and CFRP composites are not used for strengthening works practically. Hence, in this present work the suitability of using wire mesh for the purpose of strengthening the RC flexural members is studied by conducting experimental works. New technique of strengthening system using wire mesh with a view to improve sectional properties and subsequently flexural strength of RC beams is adopted in this work. The results for experimental and theoretical analysis were compared and found that good correlation exists between them. The experimental results indicate that RC beams strengthened with steel wire mesh are easy technique for strengthening of existing flexural members.

  4. The Application of Magneto Inductive Sensors for Non-Destructive Testing of Steel Reinforcing Bars Embedded Within Pre-Stressed and Reinforced Concrete

    SciTech Connect

    Benitez, D. S.; Quek, S.; Gaydecki, P.; Torres, V.; Fernandes, B.

    2006-03-06

    This paper demonstrates the feasibility of using solid-state magneto-inductive probes for detecting and imaging of steel reinforcing bars embedded within pre-stressed and reinforced concrete. Changes in the inductance of the sensor material are directly proportional to the strength of the measured magnetic field parallel to the sensor. Experimental results obtained by scanning steel bars specimens are presented. General performance characteristics and sensor output limitations are investigated by using different orientations, sensing distance, excitation intensity, bar sizes and geometries.

  5. Performance of epoxy-coated reinforced steel in the deck of the Perley Bridge

    SciTech Connect

    Covino, Bernard S., Jr.; Cramer, Stephen D.; Holcomb, Gordon R.; Russell, James H.; Bullard, Sophie J.; Dahlin, Cheryl L.; Tinnea, J.S.

    2001-01-01

    The Perley Bridge spanned the Ottawa River between the Canadian provinces of Ontario and Quebec from 1931 to 1999. Epoxy-coated steel reinforcing bar (ECR) was used in 1979 in an effort to extend the service life of span 17. Patches were needed to repair corrosion of the west lane as little as 7 to 11 years later. No patches were needed for the east lane which had twice the cover concrete of the west lane. Examinations showed that the original concrete in both lanes and the patch concrete in the west lane were of good quality. Epoxy adhesion to the steel reinforcing bar was good to fair over much of the reinforcing bar, but poor to failed in isolated areas. Analytical scanning electron microscopy (ASEM) identified voids, rust, cracked epoxy, and cracked concrete at some ECR locations. Chloride profiling of the concrete in both lanes, coupled with the corrosion threshold level of chloride, indicated that the time required for corrosion to cause visible damage of the deck was 6.2 years for the west lane and 18.9 years for the east lane.

  6. Experimental Study on the Strength Characteristics and Water Permeability of Hybrid Steel Fibre Reinforced Concrete

    PubMed Central

    Singh, M. P.; Singh, S. P.; Singh, A. P.

    2014-01-01

    Results of an investigation conducted to study the effect of fibre hybridization on the strength characteristics such as compressive strength, split tensile strength, and water permeability of steel fibre reinforced concrete (SFRC) are presented. Steel fibres of different lengths, that is, 12.5 mm, 25 mm, and 50 mm, having constant diameter of 0.6 mm, were systematically combined in different mix proportions to obtain mono, binary, and ternary combinations at each of 0.5%, 1.0%, and 1.5% fibre volume fraction. A concrete mix containing no fibres was also cast for reference purpose. A total number of 1440 cube specimens of size 100∗100∗100 mm were tested, 480 each for compressive strength, split tensile strength, and water permeability at 7, 28, 90, and 120 days of curing. It has been observed from the results of this investigation that a fibre combination of 33% 12.5 mm + 33% 25 mm + 33% 50 mm long fibres can be adjudged as the most appropriate combination to be employed in hybrid steel fibre reinforced concrete (HySFRC) for optimum performance in terms of compressive strength, split tensile strength and water permeability requirements taken together. PMID:27379298

  7. Experimental Study on the Strength Characteristics and Water Permeability of Hybrid Steel Fibre Reinforced Concrete.

    PubMed

    Singh, M P; Singh, S P; Singh, A P

    2014-01-01

    Results of an investigation conducted to study the effect of fibre hybridization on the strength characteristics such as compressive strength, split tensile strength, and water permeability of steel fibre reinforced concrete (SFRC) are presented. Steel fibres of different lengths, that is, 12.5 mm, 25 mm, and 50 mm, having constant diameter of 0.6 mm, were systematically combined in different mix proportions to obtain mono, binary, and ternary combinations at each of 0.5%, 1.0%, and 1.5% fibre volume fraction. A concrete mix containing no fibres was also cast for reference purpose. A total number of 1440 cube specimens of size 100∗100∗100 mm were tested, 480 each for compressive strength, split tensile strength, and water permeability at 7, 28, 90, and 120 days of curing. It has been observed from the results of this investigation that a fibre combination of 33% 12.5 mm + 33% 25 mm + 33% 50 mm long fibres can be adjudged as the most appropriate combination to be employed in hybrid steel fibre reinforced concrete (HySFRC) for optimum performance in terms of compressive strength, split tensile strength and water permeability requirements taken together.

  8. EMPLACEMENT DRIFT INVERT-LOW STEEL EVALUATION

    SciTech Connect

    M. E. Taylor and D. H. Tang

    2000-09-29

    This technical report evaluates and develops options for reducing the amount of steel in the emplacement drift invert. Concepts developed in the ''Invert Configuration and Drip Shield Interface'' were evaluated to determine material properties required for the proposed invert concepts. Project requirements documents prescribe the use of a carbon steel frame for the invert with a granular material of crushed tuff as ballast. The ''Invert Configuration and Drip Shield Interface'' developed three concepts: (1) All-Ballast Invert; (2) Modified Steel Invert with Ballast; and (3) Steel Tie with Ballast Invert. Analysis of the steel frame members, runway beams, and guide beams, for the modified steel invert with ballast, decreased the quantity of steel in the emplacement drift invert, however a substantial steel support frame for the gantry and waste package/pallet assembly is still required. Use of one of the other two concepts appears to be an alternative to the steel frame and each of the concepts uses considerably less steel materials. Analysis of the steel tie with ballast invert shows that the bearing pressure on the ballast under the single steel tie, C 9 x 20, loaded with the waste package/pallet assembly, drip shield, and backfill exceeds the upper bound of the allowable bearing capacity for tuff used in this study. The single tie, C 10 x 20, will also fail for the same loading condition except for the tie length of 4.2 meters and longer. Analysis also shows that with two ties, C 9 or 10 x 20's, the average ballast pressure is less than the allowable bearing capacity. Distributing the waste package/pallet, drip shield, and backfill loads to two steel ties reduces the contact bearing pressure. Modifying the emplacement pallet end beams to a greater width, reducing the tie spacing, and increasing the width of the ties would ensure that the pallet beams are always supported by two steel ties. Further analysis is required to determine compatible tie size and spacing

  9. Performance Evaluation for Enhancement of Some of the Engineering Properties of Bamboo as Reinforcement in Concrete

    NASA Astrophysics Data System (ADS)

    Kute, S. Y.; Wakchaure, M. R.

    2013-11-01

    Bamboo is one of the alternative materials with strong potential for reinforcing the cement matrices. Unlike steel, during casting and curing of concrete, reinforced bamboo absorbs water and expands, which results in radial cracking of surrounding concrete. When curing is stopped, bamboo starts shrinking slowly loosing the contact with concrete. The dimensional changes of bamboo resulting from moisture and temperature variations, causes de-bonding which affects the bond strength severely. This paper presents the results of experimental investigations made to evaluate potential of bamboo to be used as concrete reinforcement. Specimens with and without node were extracted from well seasoned Dendrocalamus strictus variety of bamboo. They were tested for water absorption, dimensional changes, tensile and bond strength in M20 concrete with twenty different treatments. The paper also presents the comparison of bond strength of mild steel, TMT steel and untreated bamboo with that of bamboo having different low cost treatments for reducing the water absorption thereby enhancing bond strength of bamboo in concrete.

  10. Statistical variations in impact resistance of steel fiber-reinforced concrete subjected to drop weight test

    SciTech Connect

    Nataraja, M.C.; Dhang, N.; Gupta, A.P.

    1999-07-01

    The variation in impact resistance of steel fiber-reinforced concrete and plain concrete as determined from a drop weight test is reported. The observed coefficients of variation are about 57 and 46% for first-crack resistance and the ultimate resistance in the case of fiber concrete and the corresponding values for plain concrete are 54 and 51%, respectively. The goodness-of-fit test indicated poor fitness of the impact-resistance test results produced in this study to normal distribution at 95% level of confidence for both fiber-reinforced and plain concrete. However, the percentage increase in number of blows from first crack to failure for both fiber-reinforced concrete and as well as plain concrete fit to normal distribution as indicated by the goodness-of-fit test. The coefficient of variation in percentage increase in the number of blows beyond first crack for fiber-reinforced concrete and plain concrete is 51.9 and 43.1%, respectively. Minimum number of tests required to reliably measure the properties of the material can be suggested based on the observed levels of variation.

  11. Evaluation of RC Bridge Piers Retrofitted using Fiber-Reinforced Polymer (FRP)

    SciTech Connect

    Shayanfar, M. A.; Zarrabian, M. S.

    2008-07-08

    For many long years, steel reinforcements have been considered as the only tool for concrete confinements and studied widely, but nowadays application of Fiber Reinforced Polymer (FRP) as an effective alternative is well appreciated. Many bridges have been constructed in the past that are necessary to be retrofitted for resisting against the earthquake motions. The objective of this research is evaluation of nonlinear behavior of RC bridge piers. Eight RC bridge piers have been modeled by ABAQUS software under micromechanical model for homogeneous anisotropic fibers. Also the Bilinear Confinement Model by Nonlinear Transition Zone of Mirmiran has been considered. Then types and angles of fibers and their effects on the final responses were evaluated. Finally, effects of retrofitting are evaluated and some suggestions presented.

  12. Finite element analysis of bridge steel pedestal anchor bolts in reinforced concrete

    NASA Astrophysics Data System (ADS)

    Logan Hancock, B.; Hite Head, Monique

    2009-10-01

    Steel pedestals are short, column-like structures currently being used to elevate highway bridges to reduce the risk of collisions with over-height vehicles. Previous full-scale experimental research has been done to examine the efficacy of these steel pedestals and their components under quasi-static loading to evaluate any added instability in the event of an earthquake. As part of the Undergraduate Summer Research Grant (USRG) program at Texas A&M University, this specific project was focused on observing the behavior of the post-installed steel pedestal anchor bolts under applied shear and tensile loading using the finite element (FE) software Abaqus. The results from some of the preliminary analyses are compared to theoretical anchorage calculations with the aim of producing a benchmark for future steel pedestal anchor bolt embedment design. Future research improvements regarding FE modeling and structural design suggestions are proposed as well.

  13. Microstructural study and densification analysis of hot work tool steel matrix composites reinforced with TiB{sub 2} particles

    SciTech Connect

    Fedrizzi, A.; Pellizzari, M.; Zadra, M.; Marin, E.

    2013-12-15

    Hot work tool steels are characterized by good toughness and high hot hardness but are less wear resistant than other tooling materials, such as high speed steel. Metal matrix composites show improved tribological behavior, but not much work has been done in the field of hot work tool steels. In this paper TiB{sub 2}-reinforced hot work tool steel matrix composites were produced by spark plasma sintering (SPS). Mechanical alloying (MA) was proposed as a suited process to improve the composite microstructure. Density measurements and microstructure confirmed that MA promotes sintering and produces a fine and homogeneous dispersion of reinforcing particles. X-ray diffraction patterns of the sintered composites highlighted the formation of equilibrium Fe{sub 2}B and TiC, as predicted by thermodynamic calculations using Thermo-Calc® software. Scanning electron microscopy as well as scanning Kelvin probe force microscopy highlighted the reaction of the steel matrix with TiB{sub 2} particles, showing the formation of a reaction layer at the TiB{sub 2}-steel interface. Phase investigations pointed out that TiB{sub 2} is not chemically stable in steel matrix because of the presence of carbon even during short time SPS. - Highlights: • TiB{sub 2} reinforced steel matrix composites were produced by spark plasma sintering. • TiB{sub 2} was successfully dispersed in the steel matrix by mechanical alloying. • Steel and TiB{sub 2} react during sintering forming equilibrium Fe{sub 2}B and TiC. • The new phases were investigated by means of AFM, Volta potential and XRD analyses.

  14. The surgical treatment of reinforced steel bar injury penetrating the skull base and maxilla-mandibular area.

    PubMed

    Wang, Yanliang; Pan, Lini; Xu, Hui

    2014-11-01

    Penetrating injuries with reinforced screwed steel bar in the skull base represent a unique challenge for oral maxillofacial surgeons. Management of these injuries is complicated by associated injuries and the proximity to vital neurovascular structures. A 35-year-old man was admitted to our hospital because of injury due to a downward fall upon a reinforced steel rod. Radiologic studies of the skull base revealed that the steel bar traversed the temporomandibular space between the left cervical spine and the mastoid process to the space between the inner side of the left mandibular ramus and the maxilla. We performed osteotomy of the left mastoid process tip and the left mandibular ramus to take out the steel bar from the maxilla and repaired the left mandible with internal fixation. Appropriate preoperative planning, including three-dimensional computed tomographic images, is integral in the surgical approach for the safe removal of such objects.

  15. Inductively coupled corrosion potential sensor for steel reinforced concrete with time domain gating interrogation

    NASA Astrophysics Data System (ADS)

    Thomson, D. J.; Perveen, K.; Bridges, G. E.; Bhadra, S.

    2012-04-01

    Corrosion is a major problem for civil infrastructure and is one of the leading factors in infrastructure deterioration. Techniques such as half-cell potential can be used to periodically monitor corrosion, but can be difficult to reliably interpret. Wired systems have large installation cost and long-term reliability issues due to wire corrosion. In this paper an embedded inductively coupled coil sensor able to monitor the corrosion potential of reinforcement steel in concrete is presented. The sensor is based on a coil resonator whose resonant frequency changes due to the corrosion potential being applied across a parallel varactor diode. The corrosion potential can be monitored externally using an inductively coupled coil. An accelerated corrosion test shows that it can measure corrosion potentials with a resolution of less than 10 mV. This sensor will detect corrosion at the initiation stage before observable corrosion has taken place. The wireless sensor is passive and simple in design, making it an inexpensive, battery less option for long-term monitoring of the corrosion potential of reinforcing steel.

  16. Vertical impedance measurements of concrete bridge deck cover condition without a direct electrical connection to the reinforcing steel

    NASA Astrophysics Data System (ADS)

    Mazzeo, Brian A.; Baxter, Jared; Barton, Jeffrey; Guthrie, W. Spencer

    2017-02-01

    Vertical impedance measurements provide significant quantitative information about the ability of concrete cover to slow the penetration of chloride ions that can corrode steel reinforcement in a bridge deck. The primary limitations preventing the widespread adoption of vertical impedance for assessment of concrete bridge decks are (1) the necessity to have a direct electrical connection to the embedded steel reinforcement and (2) the low speeds of data acquisition. This work presents solutions to both limitations. A method using a large-area electrode as a reference electrode for vertical impedance testing is validated using both simulations and measurements in the field.

  17. Orientation factor and number of fibers at failure plane in ring-type steel fiber reinforced concrete

    SciTech Connect

    Lee, C.; Kim, H.

    2010-05-15

    Considering the probabilistic distributions of fibers in ring-type steel fiber reinforced concrete, the orientation factor and the number of ring-type steel fibers crossing the failure plane were theoretically derived as a function of fiber geometry, specimen dimensions, and fiber volume fraction. A total number of 24 specimens were tested incorporating different fiber types, specimen geometry, and fiber volume fractions of 0.2% and 0.4%: 5 beams and 5 panels containing straight steel fibers; and 6 beams and 8 panels containing ring-type steel fibers. Measurements were made to assess the number of fibers at fractured surfaces of steel fiber reinforced concrete. The developed theoretical expressions reasonably predicted the orientation factor and the number of ring-type steel fibers at failure plane: the average and the standard deviation for the ratios of the test to theory were 1.03 and 0.26, respectively. Theoretical investigations and comparisons were made for the values of orientation factor and the number of fibers at failure plane for straight steel fibers and ring-type steel fibers.

  18. Flexural Strength and Toughness of Austenitic Stainless Steel Reinforced High-Cr White Cast Iron Composite

    NASA Astrophysics Data System (ADS)

    Sallam, H. E. M.; Abd El-Aziz, Kh.; Abd El-Raouf, H.; Elbanna, E. M.

    2013-12-01

    Flexural behavior of high-Cr white cast iron (WCI) reinforced with different shapes, i.e., I- and T-sections, and volume fractions of austenitic stainless steel (310 SS) were examined under three-point bending test. The dimensions of casted beams used for bending test were (50 × 100 × 500 mm3). Carbon and alloying elements diffusion enhanced the metallurgical bond across the interface of casted beams. Carbon diffusion from high-Cr WCI into 310 SS resulted in the formation of Cr-carbides in 310 SS near the interface and Ni diffusion from 310 SS into high-Cr WCI led to the formation of austenite within a network of M7C3 eutectic carbides in high-Cr WCI near the interface. Inserting 310 SS plates into high-Cr WCI beams resulted in a significant improvement in their toughness. All specimens of this metal matrix composite failed in a ductile mode with higher plastic deformation prior to failure. The high-Cr WCI specimen reinforced with I-section of 310 SS revealed higher toughness compared to that with T-section at the same volume fraction. The presence of the upper flange increased the reinforcement efficiency for delaying the crack growth.

  19. Effect of confining pressure due to external jacket of steel plate or shape memory alloy wire on bond behavior between concrete and steel reinforcing bars.

    PubMed

    Choi, Eunsoo; Kim, Dongkyun; Park, Kyoungsoo

    2014-12-01

    For external jackets of reinforced concrete columns, shape memory alloy (SMA) wires are easy to install, and they provide active and passive confining pressure; steel plates, on the other hand, only provide passive confining pressure, and their installation on concrete is not convenient because of the requirement of a special device. To investigate how SMA wires distinctly impact bond behavior compared with steel plates, this study conducted push-out bond tests of steel reinforcing bars embedded in concrete confined by SMA wires or steel plates. For this purpose, concrete cylinders were prepared with dimensions of 100 mm x 200 mm, and D-22 reinforcing bars were embedded at the center of the concrete cylinders. External jackets of 1.0 mm and 1.5 mm thickness steel plates were used to wrap the concrete cylinders. Additionally, NiTiNb SMA wire with a diameter of 1.0 mm was wound around the concrete cylinders. Slip of the reinforcing bars due to pushing force was measured by using a displacement transducer, while the circumferential deformation of specimens was obtained by using an extensometer. The circumferential deformation was used to calculate the circumferential strains of the specimens. This study assessed the radial confining pressure due to the external jackets on the reinforcing bars at bond strength from bond stress-slip curves and bond stress-circumferential strain curves. Then, the effects of the radial confining pressure on the bond behavior of concrete are investigated, and an equation is suggested to estimate bond strength using the radial confining pressure. Finally, this study focused on how active confining pressure due to recovery stress of the SMA wires influences bond behavior.

  20. Using Fuzzy Logic for Performance Evaluation in Reinforcement Learning

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap S.

    1992-01-01

    Current reinforcement learning algorithms require long training periods which generally limit their applicability to small size problems. A new architecture is described which uses fuzzy rules to initialize its two neural networks: a neural network for performance evaluation and another for action selection. This architecture is applied to control of dynamic systems and it is demonstrated that it is possible to start with an approximate prior knowledge and learn to refine it through experiments using reinforcement learning.

  1. German guidelines for steel fiber reinforced shotcrete in tunnels with special consideration of design and statical aspects

    SciTech Connect

    Schmidt-Schleicher, H.

    1995-12-31

    Steel fiber reinforced concrete can undoubtedly absorb tensile forces. The utilization of this characteristic for the design and specifications of support structures for underground tunnels is regulated by the new Guidelines from the German Concrete Association. Recommendations are given in these guidelines for construction design and for construction itself. The required tests for classification, suitability and quality monitoring are presented.

  2. Impressed-current cathodic protection of steel-reinforced concrete pilings: Protection criteria and the threshold for hydrogen embrittlement

    SciTech Connect

    Enos, D.G.; Williams, A.J. Jr.; Scully, J.R.; Clemena, G.G.

    1998-05-01

    Safe cathodic protection (CP) limits for prestressing steel in concrete and the adequacy of CP using established criteria were evaluated in regard to hydrogen embrittlement (HE). Impressed-current CP was applied to laboratory scale pilings at current densities from 0.1 {micro}A/cm{sup 2} to 3.0 {micro}A/cm{sup 2} via a skirt anode located at the waterline. Adequate CP was achieved at positions 25 cm (9.8 in.) above to 50 cm (19.7 in.) below the waterline, according to the 100-mV depolarization criterion, at an apparent applied current density of 0.33 {micro}A/cm{sup 2}. However, the {minus}780 mV{sub SCE} criterion was not met for currents as high as 1.33 {micro}A/cm{sup 2} for these positions. Hydrogen production, absorption, and permeation in steel first was observed via embedded hydrogen sensors 50 cm and 25 cm above the water line at an applied current density of 0.33 {micro}A/cm{sup 2}. Observation of hydrogen production verified concerns that the local oxygen concentration might be depleted readily at modest CP levels and that local pH levels may be below 12.5. Experimentation demonstrated that steel crevice corrosion was initiated readily within chloride (Cl{sup {minus}})-contaminated concrete prior to CP application and that this corrosion was accompanied by acidification of the local environment to pH {le} 6 as a result of ferrous ion (Fe{sup 2+}) hydrolysis. The mobile subsurface hydrogen concentration present within the steel reinforcement was determined for each applied cathodic current density. Although hydrogen production and uptake occurred at current densities as low as 0.33 {micro}A/cm{sup 2}, the critical hydrogen concentration for embrittlement (i.e., 2 {times} 10{sup {minus}7} mol H/cm{sup 3}, as determined in prior research for bluntly notched prestressing steel) was not exceeded at area averaged current densities <1.33 {micro}A/cm{sup 2}.

  3. Modelling of steel fiber-reinforced concrete under multi-axial loads

    SciTech Connect

    Swaddiwudhipong, Somsak . E-mail: cvesomsa@nus.edu.sg; Seow, Puay Eng Constance

    2006-07-15

    Fifty-four plain concrete and steel fiber-reinforced concrete (SFRC) plate specimens containing 0.5%, 1.0% and 1.5% of hooked fibers were tested under biaxial compression. The experimental results obtained were used to verify a failure surface developed earlier by the authors for SFRC under multi-axial loads. An equation has also been proposed in this study to predict the strain at failure for SFRC under multi-axial loads, {epsilon} {sub ci}. The proposed failure criterion and equation to predict {epsilon} {sub ci} were incorporated into a constitutive model in a well-established finite-element software, ABAQUS. Experiments of SFRC plate specimens under multi-axial loads and beams under two-point load were modeled to illustrate the application of the failure surface to SFRC under varying load conditions. Good agreement between analytical and experimental results is observed.

  4. Characterization of bond in steel-fiber-reinforced cementitious composites under tensile loads

    SciTech Connect

    Namur, G.G.

    1989-01-01

    Investigated was bonding in steel fiber reinforced cementitious composites, like fiber-reinforced mortar. The study was basically analytical, consisting primarily of two analytical models that predict the bond shear stress distribution at the interface between the fibers and the matrix, as well as the normal tensile distributions in the fibers and the matrix. The two models were, however, based on separate assumptions. While the first model assumed a known bond shear stress versus slip relationship at the interface between the fibers and the surrounding matrix, the second model was based on a mechanism of force transfer between the fibers and the matrix, hence circumventing the rather complex task of determining the relationship between the bond stress and the slip for the given type of fiber and matrix. Some applications to this second model, such as the bond modulus, the debonding stress, the length of the debonded zone were also investigated. A theoretical study of the pull-out process of steel fibers in cementitious matrices is included. The problem consisted of relating an idealized bond shear stress versus slip relationship to a pull-out curve. The derivation as based on the assumption that this relationship is linearly elastic-perfectly frictional, and then extended to the case of a fiction decaying linearly with the slip. The problem was subdivided into two components: a primal problem, whereby the pull-out curve is predicted from an assumed bond shear stress-slip relationship, and the dual problem, in which an experimentally obtained pull-out curve was used to predict the interfacial constitutive model, namely the bond-slip curve. Model application was illustrated by three examples of pull-out tests. The pull-out curves obtained in the laboratory, which featured the pull-out force versus the end slip of the pull-out fiber, were used to predict bond shear stress-slip relationships.

  5. Non-linear finite element-based material constitutive law for zero slump steel fiber reinforced concrete pipe structures

    NASA Astrophysics Data System (ADS)

    Mikhaylova, Alena

    This study presents a comprehensive investigation of performance and behavior of steel-fiber reinforced concrete pipes (SFRCP). The main goal of this study is to develop the material constitutive model for steel fiber reinforced concrete used in dry-cast application. To accomplish this goal a range of pipe sizes varying from 15 in. (400 mm) to 48 in. (1200 mm) in diameter and fiber content of 0.17%, 0.25%, 0.33%, 0.5%, 0.67% and 83% by volume were produced. The pipes were tested in three-edge bearing condition to obtain the load-deformation response and overall performance of the pipe. The pipes were also subjected to hydrostatic joint and joint shear tests to evaluate the performance of the fiber-pipe joints for water tightness and under differential displacements, respectively. In addition, testing on hardened concrete was performed to obtain the basic mechanical material properties. High variation in the test results for material testing was identified as a part of experimental investigation. A three-dimensional non-linear finite element model of the pipe under the three edge bearing condition was developed to identify the constitutive material relations of fiber-concrete composite. A constitutive model of concrete implementing the concrete plasticity and continuum fracture mechanics was considered for defining the complex non-linear behavior of fiber-concrete. Three main concrete damage algorithms were examined: concrete brittle cracking, concrete damaged plasticity with adaptive meshing technique and concrete damaged plasticity with visco-plastic regularization. The latter was identified as the most robust and efficient to model the post-cracking behavior of fiber reinforced concrete and was used in the subsequent studies. The tension stiffening material constitutive law for composite concrete was determined by converging the FEM solution of load-deformation response with the results of experimental testing. This was achieved by iteratively modifying the non

  6. Reinforced Pulsed Laser-Deposited Hydroxyapatite Coating on 316 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Bajpai, Shubhra; Gupta, Ankur; Pradhan, Siddhartha Kumar; Mandal, Tapendu; Balani, Kantesh

    2014-10-01

    Hydroxyapatite (HA) is a widely used bioceramic known for its chemical similarity with that of bone and teeth (Ca/P ratio of 1.67). But, owing to its extreme brittleness, α-Al2O3 is reinforced with HA and processed as a coating via pulsed laser deposition (PLD). Reinforcement of α-Al2O3 (50 wt.%) in HA via PLD on 316L steel substrate has shown modulus increase by 4% and hardness increase by 78%, and an improved adhesion strength of 14.2 N (improvement by 118%). Micro-scratching has shown an increase in the coefficient-of-friction from 0.05 (pure HA) to 0.17 (with 50 wt.% Al2O3) with enhancement in the crack propagation resistance (CPR) up to 4.5 times. Strong adherence of PLD HA-Al2O3 coatings (~4.5 times than that of HA coating) is attributed to efficient release of stored tensile strain energy (~17 × 10-3 J/m2) in HA-Al2O3 composites, making it a potential damage-tolerant bone-replacement surface coating.

  7. Research on the Mechanical Properties of a Glass Fiber Reinforced Polymer-Steel Combined Truss Structure

    PubMed Central

    Liu, Pengfei; Zhao, Qilin; Li, Fei; Liu, Jinchun; Chen, Haosen

    2014-01-01

    An assembled plane truss structure used for vehicle loading is designed and manufactured. In the truss, the glass fiber reinforced polymer (GFRP) tube and the steel joint are connected by a new technology featuring a pretightened tooth connection. The detailed description for the rod and node design is introduced in this paper, and a typical truss panel is fabricated. Under natural conditions, the short-term load test and long-term mechanical performance test for one year are performed to analyze its performance and conduct a comparative analysis for a reasonable FEM model. The study shows that the design and fabrication for the node of an assembled truss panel are convenient, safe, and reliable; because of the creep control design of the rods, not only does the short-term structural stiffness meet the design requirement but also the long-term creep deformation tends towards stability. In addition, no significant change is found in the elastic modules, so this structure can be applied in actual engineering. Although the safety factor for the strength of the composite rods is very large, it has a lightweight advantage over the steel truss for the low density of GFRP. In the FEM model, simplifying the node as a hinge connection relatively conforms to the actual status. PMID:25247203

  8. Heat treatment response of TiC-reinforced steel matrix composite

    NASA Astrophysics Data System (ADS)

    Kim, Seong Hoon; Kim, Dae Ha; Hwang, Keum-Cheol; Lee, Sang-Bok; Lee, Sang-Kwan; Hong, Hyun Uk; Suh, Dong-Woo

    2016-09-01

    A particulate TiC-reinforced SKD11 steel matrix composite is fabricated by using a pressure infiltration casting, achieving a homogeneous distribution of the particles with 60 vol%. The retained austenite fraction in the composite matrix is approximately 19% after quenching from the austenitization temperature of 1010 °C, which is larger than 13% in as-quenched condition of unreinforced SKD11. A combined analysis on the austenite lattice parameter using XRD profiles and first-principle calculation suggests the increase of carbon content in the steel matrix possibly by partial dissolution of TiC during casting. The change of carbon content and prior austenite grain size reasonably accounts for the increase of retained austenite fraction in the composite matrix. In the austenitizing temperatures ranging from 950 °C to 1040 °C, the retained austenite fraction in the composite matrix in as-quenched condition increases more rapidly than that of unreinforced SKD11 with the increase of austenitization temperature, while the hardness of the composite is less sensitive to the austenitization temperature. This suggests that it is advantageous to conduct the austenitization at a temperature below 1010 °C, which is typical practice of austenitization of the unreinforced SKD11, because the retention of austenite is effectively suppressed while minimizing the loss of hardness.

  9. Research on the mechanical properties of a glass fiber reinforced polymer-steel combined truss structure.

    PubMed

    Liu, Pengfei; Zhao, Qilin; Li, Fei; Liu, Jinchun; Chen, Haosen

    2014-01-01

    An assembled plane truss structure used for vehicle loading is designed and manufactured. In the truss, the glass fiber reinforced polymer (GFRP) tube and the steel joint are connected by a new technology featuring a pretightened tooth connection. The detailed description for the rod and node design is introduced in this paper, and a typical truss panel is fabricated. Under natural conditions, the short-term load test and long-term mechanical performance test for one year are performed to analyze its performance and conduct a comparative analysis for a reasonable FEM model. The study shows that the design and fabrication for the node of an assembled truss panel are convenient, safe, and reliable; because of the creep control design of the rods, not only does the short-term structural stiffness meet the design requirement but also the long-term creep deformation tends towards stability. In addition, no significant change is found in the elastic modules, so this structure can be applied in actual engineering. Although the safety factor for the strength of the composite rods is very large, it has a lightweight advantage over the steel truss for the low density of GFRP. In the FEM model, simplifying the node as a hinge connection relatively conforms to the actual status.

  10. Experimental Study on Mechanical Property of Steel Reinforced Concrete L-Shaped Short Columns

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Qin, Hao; Dang, Hui; Li, Hui; Zhang, Jian-Shan

    The horizontal press performance of column is deteriorated because of its special-shaped section. Moreover, because the antiseismic performance of column is worse, special-shaped column is only used in regions where seismic intensity is lower. So the main problem is to enhance the ductility and shear capacity. This test study on mechanical performance has been carried out through 14 SRCLSSC and 2 RCLSSC. The study focuses on the impacts of test axial load ratio (nt), hooped reinforcement ratio (ρv), shear span ratio (λ) and steel ratio (ρss) on the shear strength and the antiseismic performance of SRCLSSC. It can be concluded that the shear strength of SRCLSSC is increasing with the increasing of nt and ρss, but the degree of increasing is small when nt is a certainty value, and that the shear strength of SRCLSSC is decreasing with increasing of λ The shear resistance formula of L-shaped column is derived through tests, the calculated results are in correspondence with those of the tests. It also can be concluded that the hysteretic loops of the SRCLSSC are full and the hysteretic behaviors are improved; the displacement ductility is increasing with increasing of ρv and ρss, but decreasing with the increasing of nt; the degree of variety in high axial load ratio is larger than that in low axial load ratio. If steel bars are added, the shear strength and displacement ductility of SRCLSSC are increased in a large degree.

  11. The performance analysis of distributed Brillouin corrosion sensors for steel reinforced concrete structures.

    PubMed

    Wei, Heming; Zhao, Xuefeng; Kong, Xianglong; Zhang, Pinglei; Cui, Yanjun; Sun, Changsen

    2013-12-27

    The Brillouin optical time-domain analysis (BOTDA)-based optical fiber method has been proposed to measure strain variations caused by corrosion expansion. Spatial resolutions of 1 m can be achieved with this kind of Brillouin sensor for detecting the distributed strain. However, when the sensing fiber is wound around the steel rebar in a number of circles in a range of several meters, this spatial resolution still has limitations for corrosion monitoring. Here, we employed a low-coherent fiber-optic strain sensor (LCFS) to survey the performance of Brillouin sensors based on the fact that the deformation measured by the LCFS equals the integral of the strains obtained from Brillouin sensors. An electrochemical accelerated corrosion experiment was carried out and the corrosion expansion was monitored by both BOTDA and the LCFS. Results demonstrated that the BOTDA can only measure the expansion strain of about 1,000 με, which was generated by the 18 mm steel rebar corrosion, but, the LCFS had high sensitivity from the beginning of corrosion to the destruction of the structure, and no obvious difference in expansion speed was observed during the acceleration stage of the corrosion developed in the reinforced concrete (RC) specimens. These results proved that the BOTDA method could only be employed to monitor the corrosion inside the structure in the early stage.

  12. Self-immunity microcapsules for corrosion protection of steel bar in reinforced concrete

    NASA Astrophysics Data System (ADS)

    Wang, Yanshuai; Fang, Guohao; Ding, Weijian; Han, Ningxu; Xing, Feng; Dong, Biqin

    2015-12-01

    A novel microcapsule-based self-immunity system for reinforced concrete is proposed. Its feasibility for hindering the corrosion of steel rebar by means of lifting the threshold value of [Cl-]/[OH-] is discussed. Precisely controlled release behavior enables corrosion protection in the case of depassivation. The release process is characterized over a designated range of pH values, and its release characteristics of the microcapsules, triggered by decreasing pH value, are captured by observing that the core crystals are released when exposed to a signal (stimulus). The aim of corrosion protection of steel bar is achieved through the constantly-stabilized passive film, and its stability is promoted using continuous calcium hydroxide released from the microcapsule, restoring alkaline conditions. The test results exhibited that the release process of the microcapsules is a function of time. Moreover, the release rate of core materials could interact with environmental pH value, in which the release rate is found to increase remarkably with decreasing pH value, but is inhibited by high pH levels.

  13. Effect of Waste Plastic Shreds on Bond Resistance between Concrete and Steel Reinforcement

    NASA Astrophysics Data System (ADS)

    Osifala, K. B.; Salau, M. A.; Adeniyi, A. A.

    2015-11-01

    This paper investigates the effect of waste plastic shreds on steel-concrete bond. Forty RILEM test specimens with 16mm and 20mm diameter high-yield reinforcing bars were cast and tested. Fifteen specimens with 16mm and 20mm each were cast with the addition of waste plastic shreds at varying percentages of 1%, 1.5% and 2%; another ten RILEM specimens with 16mm and 20mm diameter bars at 0% of waste plastic shreds were cast as reference. Nine 150mm cubes, with three taken from each batch of various percentages of waste plastic shreds, were used to monitor the concrete strength. From the test results and analysis, the compressive strength of concrete was found to reduce with increased percentages of waste plastic shreds, while the waste plastic shreds material was found not to improve the bond resistance between concrete and steel. However, though lower than normal concrete, there was an increase in the bond resistance with increase in the percent of plastic shreds. The bond resistance of 16mm was also found to be higher than that of 20mm in all the specimens tested.

  14. Self-immunity microcapsules for corrosion protection of steel bar in reinforced concrete.

    PubMed

    Wang, Yanshuai; Fang, Guohao; Ding, Weijian; Han, Ningxu; Xing, Feng; Dong, Biqin

    2015-12-17

    A novel microcapsule-based self-immunity system for reinforced concrete is proposed. Its feasibility for hindering the corrosion of steel rebar by means of lifting the threshold value of [Cl(-)]/[OH(-)] is discussed. Precisely controlled release behavior enables corrosion protection in the case of depassivation. The release process is characterized over a designated range of pH values, and its release characteristics of the microcapsules, triggered by decreasing pH value, are captured by observing that the core crystals are released when exposed to a signal (stimulus). The aim of corrosion protection of steel bar is achieved through the constantly-stabilized passive film, and its stability is promoted using continuous calcium hydroxide released from the microcapsule, restoring alkaline conditions. The test results exhibited that the release process of the microcapsules is a function of time. Moreover, the release rate of core materials could interact with environmental pH value, in which the release rate is found to increase remarkably with decreasing pH value, but is inhibited by high pH levels.

  15. Self-immunity microcapsules for corrosion protection of steel bar in reinforced concrete

    PubMed Central

    Wang, Yanshuai; Fang, Guohao; Ding, Weijian; Han, Ningxu; Xing, Feng; Dong, Biqin

    2015-01-01

    A novel microcapsule-based self-immunity system for reinforced concrete is proposed. Its feasibility for hindering the corrosion of steel rebar by means of lifting the threshold value of [Cl−]/[OH−] is discussed. Precisely controlled release behavior enables corrosion protection in the case of depassivation. The release process is characterized over a designated range of pH values, and its release characteristics of the microcapsules, triggered by decreasing pH value, are captured by observing that the core crystals are released when exposed to a signal (stimulus). The aim of corrosion protection of steel bar is achieved through the constantly-stabilized passive film, and its stability is promoted using continuous calcium hydroxide released from the microcapsule, restoring alkaline conditions. The test results exhibited that the release process of the microcapsules is a function of time. Moreover, the release rate of core materials could interact with environmental pH value, in which the release rate is found to increase remarkably with decreasing pH value, but is inhibited by high pH levels. PMID:26673425

  16. The Performance Analysis of Distributed Brillouin Corrosion Sensors for Steel Reinforced Concrete Structures

    PubMed Central

    Wei, Heming; Zhao, Xuefeng; Kong, Xianglong; Zhang, Pinglei; Cui, Yanjun; Sun, Changsen

    2014-01-01

    The Brillouin optical time-domain analysis (BOTDA)-based optical fiber method has been proposed to measure strain variations caused by corrosion expansion. Spatial resolutions of 1 m can be achieved with this kind of Brillouin sensor for detecting the distributed strain. However, when the sensing fiber is wound around the steel rebar in a number of circles in a range of several meters, this spatial resolution still has limitations for corrosion monitoring. Here, we employed a low-coherent fiber-optic strain sensor (LCFS) to survey the performance of Brillouin sensors based on the fact that the deformation measured by the LCFS equals the integral of the strains obtained from Brillouin sensors. An electrochemical accelerated corrosion experiment was carried out and the corrosion expansion was monitored by both BOTDA and the LCFS. Results demonstrated that the BOTDA can only measure the expansion strain of about 1,000 με, which was generated by the 18 mm steel rebar corrosion, but, the LCFS had high sensitivity from the beginning of corrosion to the destruction of the structure, and no obvious difference in expansion speed was observed during the acceleration stage of the corrosion developed in the reinforced concrete (RC) specimens. These results proved that the BOTDA method could only be employed to monitor the corrosion inside the structure in the early stage. PMID:24379048

  17. Hysteretic behavior of special shaped columns composed of steel and reinforced concrete (SRC)

    NASA Astrophysics Data System (ADS)

    Chen, Zongping; Xu, Jinjun; Xue, Jianyang

    2015-06-01

    This paper describes a series of experimental investigations on seventeen specimens of steel reinforced concrete special shaped (SRCSS) columns under low cyclic reversed loading using parallel crosshead equipment. Nine T-shaped SRC columns, four L-shaped SRC columns and four +-shaped SRC columns were tested to examine the effects of shape steel configuration, loading angle, axial compressive ratio and shear-span ratio on the behavior (strength, stiffness, energy dissipation, ductility, etc.) of SRCSS column specimens. The failure modes and hysteretic performance of all the specimens were obtained in the tests. Test results demonstrate that the shear-span ratio is the main parameter affecting the failure modes of SRCSS columns. The specimens with small shear-span ratio are prone to shear failure, and the primary failure planes in SRCSS columns are parallel to the loading direction. As a result, there is a symmetry between positive and negative loading directions in the hysteretic curves of the SRCSS columns. The majority of displacement ductility coefficients for all the specimens are over 3.0, so that the SRCSS columns demonstrate a better deformation capacity. In addition, the equivalent viscous damping coefficients of all the specimens are greater than 0.2, indicating that the seismic behavior of SRCSS columns is adequate. Finally, the superposition theory was used to calculate the limits of axial compressive ratio for the specimens, and it is found that the test axial compressive ratio is close to or smaller than the calculated axial compressive ratio limit.

  18. Shear Strength at 75 F to 500 F of Fourteen Adhesives Used to Bond a Glass-fabric-reinforced Phenolic Resin Laminate to Steel

    NASA Technical Reports Server (NTRS)

    Davidson, John R

    1956-01-01

    Fourteen adhesives used to bond a glass-fabric-reinforced phenolic resin laminate to steel were tested in order to determine their shear strengths at temperatures from 75 F to 500 F. Fabrication methods were varied to evaluate the effect of placing cloth between the facing surfaces to maintain a uniform bond-line thickness. One glass-fabric supported phenolic adhesive was found to have a shear strength of 3,400 psi at 300 F and over 1,000 psi at 500 F. Strength and fabrication data are tabulated for all adhesives tested.

  19. Corrosive effect of carbon-fibre reinforced plastic on stainless-steel screws during implantation into man.

    PubMed

    Tayton, K

    1983-01-01

    The corrosion of stainless-steel screws used to fix carbon-fibre reinforced plastic (CFRP) plates to human fractures was compared with the corrosion on similar screws used to fix stainless-steel AO plates. Corrosive changes were noted in both sets of screws with similar frequency and severity; however, the stainless-steel plates were 'in situ' almost twice as long as the CFRP ones, showing that the corrosive changes occurred more rapidly on screws in contact with CFRP. Nevertheless, over the implantation time necessary for bone healing, corrosion was very mild and there is no clinical contra-indication to the use of stainless-steel and CFRP together in this particular application.

  20. Evaluation of Direct Diode Laser Deposited Stainless Steel 316L on 4340 Steel Substrate for Aircraft Landing Gear Application

    DTIC Science & Technology

    2010-03-01

    AFRL-RX-WP-TP-2010-4149 EVALUATION OF DIRECT DIODE LASER DEPOSITED STAINLESS STEEL 316L ON 4340 STEEL SUBSTRATE FOR AIRCRAFT LANDING GEAR...March 2010 – 01 March 2010 4. TITLE AND SUBTITLE EVALUATION OF DIRECT DIODE LASER DEPOSITED STAINLESS STEEL 316L ON 4340 STEEL SUBSTRATE FOR...Code) N/A Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39-18 Evaluation of Direct Diode Laser Deposited Stainless Steel 316L on

  1. Evaluating the Role of Contingency in Differentially Reinforced Tic Suppression

    ERIC Educational Resources Information Center

    Himle, Michael B.; Woods, Douglas W.; Bunaciu, Liviu

    2008-01-01

    The current study evaluated the effects of tokens delivered on differential reinforcement of zero-rate behavior (DRO) schedules or noncontingently on tic suppression in 4 children with tics. Tic frequency was lower in 3 of 4 children when tokens were delivered contingent on the absence of tics than when tokens were delivered noncontingently.…

  2. Perceived Objectivity and the Effects of Evaluative Reinforcement upon Compliance and Self-Evaluation in Blacks

    ERIC Educational Resources Information Center

    Banks, W. Curtis; And Others

    1977-01-01

    Two experiments were conducted to investigate the effects of positive and negative reinforcements upon black college students. The perceived objectivity of white evaluators was compared to that of black evaluators. Perceived objectivity being the social reinforcement likely to be accepted, internalized, and complied with in proportion to the…

  3. Evaluation of Fiber Reinforced Cement Using Digital Image Correlation

    PubMed Central

    Melenka, Garrett W.; Carey, Jason P.

    2015-01-01

    The effect of short fiber reinforcements on the mechanical properties of cement has been examined using a splitting tensile – digital image correlation (DIC) measurement method. Three short fiber reinforcement materials have been used in this study: fiberglass, nylon, and polypropylene. The method outlined provides a simple experimental setup that can be used to evaluate the ultimate tensile strength of brittle materials as well as measure the full field strain across the surface of the splitting tensile test cylindrical specimen. Since the DIC measurement technique is a contact free measurement this method can be used to assess sample failure. PMID:26039590

  4. Cyclotriphosphazene and TiO2 reinforced nanocomposite coated on mild steel plates for antibacterial and corrosion resistance applications

    NASA Astrophysics Data System (ADS)

    Krishnadevi, Krishnamoorthy; Selvaraj, Vaithilingam

    2016-03-01

    The mild steel surface has been modified to impart anticorrosion and antibacterial properties through a dip coating method followed by thermal curing of a mixture containing amine terminated cyclotriphosphazene and functionalized titanium dioxide nanoparticles reinforced benzoxazine based cyanate ester composite (ATCP/FTiO2/Bz-CE). The corrosion resistance behavior of coating material has been investigated by electrochemical and antibacterial studies by disc diffusion method. The nanocomposites coated mild steels have displayed a good chemical stability over long immersion in a corrosive environment. The protection efficiency has found to be high for ATCP/FTiO2/Bz-CE composites, which can be used in microelectronics and marine applications.

  5. Experimental Investigation of the Capacity of Steel Fibers to Ensure the Structural Integrity of Reinforced Concrete Specimens Coated with CFRP Sheets

    NASA Astrophysics Data System (ADS)

    Gribniak, V.; Arnautov, A. K.; Norkus, A.; Tamulenas, V.; Gudonis, E.; Sokolov, A.

    2016-07-01

    The capacity of steel fibers to ensure the structural integrity of reinforced concrete specimens coated with CFRP sheets was investigated. Test data for four ties and eight beams reinforced with steel or glass-FRP bars are presented. Experiments showed that the fibers significantly increased the cracking resistance and altered the failure character from the splitting of concrete to the debonding of the external sheets, which noticeably increased the load-carrying capacity of the strengthened specimens.

  6. Influence of calcium sulfoaluminate cement on the pullout performance of reinforcing fibers: An evaluation of the micro-mechanical behavior

    NASA Astrophysics Data System (ADS)

    Jewell, Robert Benjamin

    The objective of this research was to determine the influence of calcium sulfoaluminate (CSA) cement on reinforcing fibers by evaluating the fiber pullout behavior, and bonding characteristics, of a single fiber embedded in a cementitious paste matrix. Four types of fibers commonly used in industry were evaluated: 1) Polyvinyl alcohol; 2) Polypropylene; 3) Coated Steel; and 4) Plain Steel. Upward trends in energy costs and potential greenhouse gas regulations favor an increased use of construction materials that require lower energy and lower CO2 emissions to fabricate, such as CSA cement, as opposed to the production of ordinary portland cement (OPC), which is more energy intensive and produces more CO2 emissions. However, widespread use of CSA cement requires a more in-depth understanding of the engineering characteristics that govern its performance, including interaction with reinforcing fibers. The overarching objective of this research was to provide the engineering base needed for the utilization of reinforcing fibers in CSA cement-based construction materials. The aims of the research were (1) to develop an ettringite-rich calcium sulfoaluminate cement, and (2) evaluate the pullout characteristics of reinforcing fibers embedded in a CSA-cement matrix. Key elements of the strategy included (1) Compare the performance of a laboratory-fabricated CSA cement to a commercial CSA cement and OPC, (2) Evaluate the peak load, and toughness of reinforcing fibers in CSA cement and OPC, (3) Evaluate the debonding-energy density and multiple-cracking behavior of fibers in CSA cement and OPC, and (4) Evaluate the shear bond strength of reinforcing fibers in CSA cement and OPC. Based on the findings of this PhD dissertation, calcium sulfoaluminate cement has a significant influence on the characteristics and behavior of embedded reinforcing fibers. An important factor contributing to the bond strength between fiber and matrix was the ability to transfer interfacial

  7. Evaluation of the Benefits of HSLA Steels

    DTIC Science & Technology

    1989-03-01

    quenched and tempered steels , such as HY80 and HY1OO, require preheat and interpass temperature controls during welding of plates thicker than 1/2 inch...interpass tempera- tures and heat input limitations. Strict adherence to these requirements is mandatory to avoid cracking in hydrogen- sensitive steels ...requirement and excellent weldability of this steel will probably lower produc- tion costs and cracking -related repairs enough to overcome the slight

  8. Retrofit of hollow concrete masonry infilled steel frames using glass fiber reinforced plastic laminates

    NASA Astrophysics Data System (ADS)

    Hakam, Zeyad Hamed-Ramzy

    2000-11-01

    This study focuses on the retrofit of hollow concrete masonry infilled steel frames subjected to in-plane lateral loads using glass fiber reinforced plastic (GFRP) laminates that are epoxy-bonded to the exterior faces of the infill walls. An extensive experimental investigation using one-third scale modeling was conducted and consisted of two phases. In the first phase, 64 assemblages, half of which were retrofitted, were tested under various combined in-plane loading conditions similar to those which different regions of a typical infill wall are subjected to. In the second phase, one bare and four masonry-infilled steel frames representative of a typical single-story, single-bay panel were tested under diagonal loading to study the overall behavior and the infill-frame interaction. The relative infill-to-frame stiffness was varied as a test parameter by using two different steel frame sections. The laminates altered the failure modes of the masonry assemblages and reduced the variability and anisotropic nature of the masonry. For the prisms which failed due to shear and/or mortar joint slip, significant strength increases were observed. For those exhibiting compression failure modes, a marginal increase in strength resulted. Retrofitting the infilled frames resulted in an average increase in initial stiffness of two-fold compared to the unretrofitted infilled frames, and seemed independent of the relative infill-to-frame stiffness. However, the increase in the load-carrying capacity of the retrofitted frames compared to the unretrofitted counterparts was higher for those with the larger relative infill-to-frame stiffness parameter. Unlike the unretrofitted infill walls, the retrofitted panels demonstrated almost identical failure modes that were characterized as "strictly comer crushing" in the vicinity of the loaded comers whereas no signs of distress were evident throughout the remainder of the infill. The laminates also maintained the structural integrity of

  9. Braided reinforced composite rods for the internal reinforcement of concrete

    NASA Astrophysics Data System (ADS)

    Gonilho Pereira, C.; Fangueiro, R.; Jalali, S.; Araujo, M.; Marques, P.

    2008-05-01

    This paper reports on the development of braided reinforced composite rods as a substitute for the steel reinforcement in concrete. The research work aims at understanding the mechanical behaviour of core-reinforced braided fabrics and braided reinforced composite rods, namely concerning the influence of the braiding angle, the type of core reinforcement fibre, and preloading and postloading conditions. The core-reinforced braided fabrics were made from polyester fibres for producing braided structures, and E-glass, carbon, HT polyethylene, and sisal fibres were used for the core reinforcement. The braided reinforced composite rods were obtained by impregnating the core-reinforced braided fabric with a vinyl ester resin. The preloading of the core-reinforced braided fabrics and the postloading of the braided reinforced composite rods were performed in three and two stages, respectively. The results of tensile tests carried out on different samples of core-reinforced braided fabrics are presented and discussed. The tensile and bending properties of the braided reinforced composite rods have been evaluated, and the results obtained are presented, discussed, and compared with those of conventional materials, such as steel.

  10. Probabilistic lifetime assessment of marine reinforced concrete with steel corrosion and cover cracking

    NASA Astrophysics Data System (ADS)

    Lu, Chun-Hua; Jin, Wei-Liang; Liu, Rong-Gui

    2011-06-01

    In order to study the durability behavior of marine reinforced concrete structure suffering from chloride attack, the structural service life is assumed to be divided into three critical stages, which can be characterized by steel corrosion and cover cracking. For each stage, a calculated model used to predict the lifetime is developed. Based on the definition of durability limit state, a probabilistic lifetime model and its time-dependent reliability analytical method are proposed considering the random natures of influencing factors. Then, the probabilistic lifetime prediction models are applied to a bridge pier located in the Hangzhou Bay with Monte Carlo simulation. It is found that the time to corrosion initiation t 0 follows a lognormal distribution, while that the time from corrosion initiation to cover cracking t 1 and the time for crack to develop from hairline crack to a limit crack width t 2 can be described by Weibull distributions. With the permitted failure probability of 5.0%, it is also observed that the structural durability lifetime mainly depends on the durability life t 0 and that the percentage of participation of the life t 0 to the total service life grows from 61.5% to 83.6% when the cover thickness increases from 40 mm to 80 mm. Therefore, for any part of the marine RC bridge, the lifetime predictions and maintenance efforts should also be directed toward controlling the stage of corrosion initiation induced by chloride ion.

  11. Measurement and simulation of millimeter wave scattering cross-sections from steel-reinforced concrete

    NASA Astrophysics Data System (ADS)

    Hassan, A. M.; Martys, N. S.; Garboczi, E. J.; McMichael, R. D.; Stiles, M. D.; Plusquellic, D. F.; Stutzman, P. E.; Wang, S.; Provenzano, V.; Surek, J. T.; Novotny, D. R.; Coder, J. B.; Janezic, M. D.; Kim, S.

    2014-02-01

    Some iron oxide corrosion products exhibit antiferromagnetic magnetic resonances (AFMR) at frequencies on the order of 100 GHz at ambient temperatures. AFMR can be detected in laboratory conditions, which serves as the basis for a new non-destructive spectroscopic method for detecting early corrosion. When attempting to measure the steel corrosion in reinforced concrete in the field, rebar geometry must be taken into account. Experiments and numerical simulations have been developed at frequencies near 100 GHz to sort out these effects. The experimental setup involves a vector network analyzer with converter heads to up-convert the output frequency, which is then connected to a horn antenna followed by a 7.5 cm diameter polymer lens to focus the waves on the sample. Two sets of samples were studied: uniform cylindrical rods and rebar corrosion samples broken out of concrete with different kinds of coatings. Electromagnetic scattering from uniform rods were calculated numerically using classical modal expansion. A finite-element electromagnetic solver was used to model more complex rebar geometry and non-uniform corrosion layers. Experimental and numerical data were compared to help quantify and understand the anticipated effect of local geometrical features on AFMR measurements.

  12. Numerical analysis on seismic behavior of reinforced concrete beam to concrete filled steel tubular column connections with ring-beam

    NASA Astrophysics Data System (ADS)

    Zhao, Yi.; Xu, Li. Hua.

    2016-06-01

    This paper presents numerical study of the seismic behavior of reinforced concrete beam to concrete filled steel tube column connections with ring-beam. The material stress-strain relations, element type and boundary condition are selected, which are consistent with actual situation. Then the seismic behavior of this type of joint are researched by ABAQUS, and finite element analyses are conducted under cyclic loading. Its parameters are discussed including thickness of steel tubular column wall, sectional dimension of the ring-beam and strength of the core concrete. The results show that the ultimate capacity of the connections is improved with sectional dimension of the ring-beam increased. In the meanwhile, the influence on skeleton curve of the joints is slight of which included thickness of steel tubular column wall and strength of the core concrete.

  13. Assessment of high performance concrete containing fly ash and calcium nitrite based corrosion inhibitor as a mean to prevent the corrosion of reinforcing steel

    NASA Astrophysics Data System (ADS)

    Montes-García, P.; Jiménez-Quero, V.; López-Calvo, H.

    2015-01-01

    This research analyses the effectiveness of the water-to-cement ratio (w/c), fly ash and a calcium nitrite based corrosion inhibitor to prevent the corrosion of reinforcing steel embedded in high performance concrete. The interactive effect between the inhibitor and fly ash was evaluated because the occurrence of a negative effect when both ingredients are added together in a concrete mixture has been reported. All the concrete mixtures studied in this investigation had 8.2% of silica fume. Twenty seven prismatic concrete specimens were fabricated with dimensions of 55 × 230 × 300 mm each containing two steel rods embedded for the purpose of corrosion monitoring. The specimens were exposed to a simulated marine environment with two daily cycles of wetting and drying for one year. To evaluate the deterioration of the specimens corrosion potentials and linear polarization resistance tests were carried out. The results indicate that the use of a low w/c, the addition of fly ash and the addition of the corrosion inhibitor contributed to the reduction of the corrosion of steel in the concrete specimens. The results further suggest that the combination of fly ash and corrosion inhibitor does not promote the deterioration of the concrete matrix.

  14. Evaluation of the Technical-Economic Potential of Particle- Reinforced Aluminum Matrix Composites and Electrochemical Machining

    NASA Astrophysics Data System (ADS)

    Schubert, A.; Götze, U.; Hackert-Oschätzchen, M.; Lehnert, N.; Herold, F.; Meichsner, G.; Schmidt, A.

    2016-03-01

    Compared to conventional cutting, the processing of materials by electrochemical machining offers some technical advantages like high surface quality, no thermal or mechanical impact on the work piece and preservation of the microstructure of the work piece material. From the economic point of view, the possibility of process parallelization and the absence of any process-related tool wear are mentionable advantages of electrochemical machining. In this study, based on experimental results, it will be evaluated to what extent the electrochemical machining is technically and economically suitable for the finish-machining of particle- reinforced aluminum matrix composites (AMCs). Initial studies showed that electrochemical machining - in contrast to other machining processes - has the potential to fulfil demanding requirements regarding precision and surface quality of products or components especially when applied to AMCs. In addition, the investigations show that processing of AMCs by electrochemical machining requires less energy than the electrochemical machining of stainless steel. Therefore, an evaluation of electrochemically machined AMCs - compared to stainless steel - from a technical and an economic perspective will be presented in this paper. The results show the potential of electro-chemically machined AMCs and contribute to the enhancement of instruments for technical-economic evaluations as well as a comprehensive innovation control.

  15. Ultrasonic phased array transducers for nondestructive evaluation of steel structures

    NASA Astrophysics Data System (ADS)

    Song, Sung-Jin; Shin, Hyeon Jae; Jang, You Hyun

    2000-05-01

    An ultrasonic phased array transducer has been developed and demonstrated for the nondestructive evaluation of steel structures. The number of array elements is 64 and the center frequency is about 5 MHz. This phased array transducer is designed to use with the phased array system that does steering, transmission focusing and dynamic receive focusing. Each of the array elements is individually excited according to the focal laws and steering angles. Measurements of ultrasonic beam profiles for the array transducer in a reference steel block are presented and compared with theoretical predictions. Some of the phased array transducer design concepts for the application in steel structures are discussed. The two-dimensional ultrasonic images of the sample steel block including flat bottom holes and side drilled holes are presented. Experimental and theoretical results demonstrate excellent feasibility of the utility of the phased array transducer in imaging and detection of defects in steel structures.

  16. DISTRIBUTED AND ACCUMULATED REINFORCEMENT ARRANGEMENTS: EVALUATIONS OF EFFICACY AND PREFERENCE

    PubMed Central

    DELEON, ISER G.; CHASE, JULIE A.; FRANK-CRAWFORD, MICHELLE A.; CARREAU-WEBSTER, ABBEY B.; TRIGGS, MANDY M.; BULLOCK, CHRISTOPHER E.; JENNETT, HEATHER K.

    2015-01-01

    We assessed the efficacy of, and preference for, accumulated access to reinforcers, which allows uninterrupted engagement with the reinforcers but imposes an inherent delay required to first complete the task. Experiment 1 compared rates of task completion in 4 individuals who had been diagnosed with intellectual disabilities when reinforcement was distributed (i.e., 30-s access to the reinforcer delivered immediately after each response) and accumulated (i.e., 5-min access to the reinforcer after completion of multiple consecutive responses). Accumulated reinforcement produced response rates that equaled or exceeded rates during distributed reinforcement for 3 participants. Experiment 2 used a concurrent-chains schedule to examine preferences for each arrangement. All participants preferred delayed, accumulated access when the reinforcer was an activity. Three participants also preferred accumulated access to edible reinforcers. The collective results suggest that, despite the inherent delay, accumulated reinforcement is just as effective and is often preferred by learners over distributed reinforcement. PMID:24782203

  17. Distributed and accumulated reinforcement arrangements: evaluations of efficacy and preference.

    PubMed

    DeLeon, Iser G; Chase, Julie A; Frank-Crawford, Michelle A; Carreau-Webster, Abbey B; Triggs, Mandy M; Bullock, Christopher E; Jennett, Heather K

    2014-01-01

    We assessed the efficacy of, and preference for, accumulated access to reinforcers, which allows uninterrupted engagement with the reinforcers but imposes an inherent delay required to first complete the task. Experiment 1 compared rates of task completion in 4 individuals who had been diagnosed with intellectual disabilities when reinforcement was distributed (i.e., 30-s access to the reinforcer delivered immediately after each response) and accumulated (i.e., 5-min access to the reinforcer after completion of multiple consecutive responses). Accumulated reinforcement produced response rates that equaled or exceeded rates during distributed reinforcement for 3 participants. Experiment 2 used a concurrent-chains schedule to examine preferences for each arrangement. All participants preferred delayed, accumulated access when the reinforcer was an activity. Three participants also preferred accumulated access to edible reinforcers. The collective results suggest that, despite the inherent delay, accumulated reinforcement is just as effective and is often preferred by learners over distributed reinforcement.

  18. Acoustic inspection of bond strength of steel-reinforced mortar after exposure to elevated temperatures

    PubMed

    Chiang; Tsai; Kan

    2000-03-01

    In order to evaluate the bond strength between the reinforcement and concrete after fire damage, a combination of acoustic through-transmission and pull-out tests were used. Previous studies have shown a 25% decrease in the ultrasonic pulse velocity at 90% of the maximum load at room temperature. The specimens were kept in the oven at an elevated temperature for 1, 2, or 3 h. They were then removed and cooled to room temperature. Inspection was conducted using a high-power ultrasonic pulse velocity system while a pull-out load was applied. The correlation between preheated temperature, acoustic wave velocity, and the applied load was analyzed. Initial results show that bond strength and pulse velocity decreased substantially as the temperature or the heating time increased.

  19. Corrosion resistance of enamel coating modified by calcium silicate and sand particle for steel reinforcement in concrete

    NASA Astrophysics Data System (ADS)

    Tang, Fujian

    Porcelain enamel has stable chemical property in harsh environments such as high temperature, acid and alkaline, and it can also chemically react with substrate reinforcing steel resulting in improved adherence strength. In this study, the corrosion resistances of enamel coating modified by calcium silicate and sand particles, which are designed for improved bond strength with surrounding concrete, were investigated in 3.5 wt% NaCl solution. It consists of two papers that describe the results of the study. The first paper investigates the corrosion behavior of enamel coating modified by calcium silicate applied to reinforcing steel bar in 3.5 wt% NaCl solution by OCP, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The coatings include a pure enamel, a mixed enamel that consists of 50% pure enamel and 50% calcium silicate by weight, and a double enamel that has an inner pure enamel layer and an outer mixed enamel layer. Electrochemical tests demonstrates that both pure and double enamel coatings can significantly improve corrosion resistance, while the mixed enamel coating offers very little protection due to connected channels. The second paper is focused on the electrochemical characteristics of enamel coating modified by sand particle applied to reinforcing steel bar in 3.5 wt% NaCl solution by EIS. Six percentages by weight are considered including 5%, 10%, 20%, 30%, 50%, and 70%. Results reveal that addition of sand particle does not affect its corrosion resistance significantly. Most of the sand particles can wet very well with enamel body, while some have a weak zone which is induced during the cooling stage due to different coefficient of thermal expansion. Therefore, quality control of sand particle is the key factor to improve its corrosion resistance.

  20. Stainless Steel Microstructure and Mechanical Properties Evaluation

    SciTech Connect

    Switzner, Nathan T

    2010-06-01

    A nitrogen strengthened 21-6-9 stainless steel plate was spinformed into hemispherical test shapes. A battery of laboratory tests was used to characterize the hemispheres. The laboratory tests show that near the pole (axis) of a spinformed hemisphere the yield strength is the lowest because this area endures the least “cold-work” strengthening, i.e., the least deformation. The characterization indicated that stress-relief annealing spinformed stainless steel hemispheres does not degrade mechanical properties. Stress-relief annealing reduces residual stresses while maintaining relatively high mechanical properties. Full annealing completely eliminates residual stresses, but reduces yield strength by about 30%.

  1. Field Trial of impressed current, sacrificial anode, constant voltage and intermittent cathodic protection on a steel reinforced coastal bridge

    SciTech Connect

    Bullard, S.J.; Covino, B.S., Jr.; Williamson, K.M.; Holcomb, G.R.; Ziomek-Moroz, M.; Eden, D.A.; Cryer, C.B.; Tran, H.

    2007-03-01

    Equipment has been designed and installed for a field trial being conducted on a coastal reinforced concrete bridge with a newly installed cathodic protection (CP) system. The purpose of the field trial is to determine the optimum form of intermittent CP for protecting coastal bridges. The forms of CP that were considered for the field trial are: (1) impressed current CP as the control; (2) currentinterrupted ICCP; (3) corrosion rate monitoring device controlled ICCP; (4) constant voltage CP; and (5) sacrificial anode CP. Once the test is initiated, the performance of these four forms of CP on a coastal RC bridge and their effectiveness in providing protection to reinforcing steel will be is compared with that achieved by present Oregon Department of Transportation ICCP practices. Details are presented on the set up of the experiment and the logic used to control CP intermittently. The field trial is scheduled to be started early 2007.

  2. Strain measurement in a concrete beam by use of the Brillouin-scattering-based distributed fiber sensor with single-mode fibers embedded in glass fiber reinforced polymer rods and bonded to steel reinforcing bars.

    PubMed

    Zeng, Xiaodong; Bao, Xiaoyi; Chhoa, Chia Yee; Bremner, Theodore W; Brown, Anthony W; DeMerchant, Michael D; Ferrier, Graham; Kalamkarov, Alexander L; Georgiades, Anastasis V

    2002-08-20

    The strain measurement of a 1.65-m reinforced concrete beam by use of a distributed fiber strain sensor with a 50-cm spatial resolution and 5-cm readout resolution is reported. The strain-measurement accuracy is +/-15 microepsilon (microm/m) according to the system calibration in the laboratory environment with non-uniform-distributed strain and +/-5 microepsilon with uniform strain distribution. The strain distribution has been measured for one-point and two-point loading patterns for optical fibers embedded in pultruded glass fiber reinforced polymer (GFRP) rods and those bonded to steel reinforcing bars. In the one-point loading case, the strain deviations are +/-7 and +/-15 microepsilon for fibers embedded in the GFRP rods and fibers bonded to steel reinforcing bars, respectively, whereas the strain deviation is +/-20 microepsilon for the two-point loading case.

  3. Corrosion detection of steel reinforced concrete using combined carbon fiber and fiber Bragg grating active thermal probe

    NASA Astrophysics Data System (ADS)

    Li, Weijie; Ho, Siu Chun Michael; Song, Gangbing

    2016-04-01

    Steel reinforcement corrosion is one of the dominant causes for structural deterioration for reinforced concrete structures. This paper presents a novel corrosion detection technique using an active thermal probe. The technique takes advantage of the fact that corrosion products have poor thermal conductivity, which will impede heat propagation generated from the active thermal probe. At the same time, the active thermal probe records the temperature response. The presence of corrosion products can thus be detected by analyzing the temperature response after the injection of heat at the reinforcement-concrete interface. The feasibility of the proposed technique was firstly analyzed through analytical modeling and finite element simulation. The active thermal probe consisted of carbon fiber strands to generate heat and a fiber optic Bragg grating (FBG) temperature sensor. Carbon fiber strands are used due to their corrosion resistance. Wet-dry cycle accelerated corrosion experiments were performed to study the effect of corrosion products on the temperature response of the reinforced concrete sample. Results suggest a high correlation between corrosion severity and magnitude of the temperature response. The technique has the merits of high accuracy, high efficiency in measurement and excellent embeddability.

  4. Evaluation of capillary reinforced composites for anti-icing

    NASA Technical Reports Server (NTRS)

    Ciardullo, Samuel W.; Mitchell, Stephen C.; Zerkle, Ronald D.

    1987-01-01

    This paper discusses the evaluation of glass capillary reinforced advanced composite structures for anti-icing purposes. The concept involves embedding glass capillary tubes on the surface of a composite structure and ducting heated air through the tubes. A computer program was developed to predict the anti-icing performance of such tubes and a test program was conducted to demonstrate the actual performance of this system. Test data and analytical code results were in excellent agreement. Both indicate the feasibility of using capillary tubes for surface heating in order to combat ice accumulation on advanced composite structures.

  5. Strain measurement in concrete structure using distributed fiber optic sensing based on Brillouin scattering with single-mode fibers embedded in glass fiber reinforcing vinyl ester rod and bonded to steel reinforcing bars

    NASA Astrophysics Data System (ADS)

    Chhoa, Cia Y.; Bao, Xiaoyi; Bremner, Theodore W.; Brown, Anthony W.; DeMerchant, Michael D.; Kalamkarov, Alexander L.; Georgiades, Anastasis V.

    2001-08-01

    The strain distribution in a 1.65m long reinforced concrete beam was measured using the distributed fiber optic sensing system developed by Dr. Bao's Fiber Optic Group at the University of New Brunswick (UNB) with center point and two point loading pattern. A spatial resolution of 0.5m was used. Past experience has shown that the bare optical fiber is too fragile to act as a sensor in a reinforced concrete structure. Therefore, in this experiment, two methods of protecting the fibers were incorporated into the concrete beam to increase the fibers' resistance to mechanical damages and prevent chemical reaction from occurring between the fibers and the concrete. The fibers were either embedded in pultruded glass fiber reinforced vinyl ester (GFRP) rods or bonded to the steel reinforcing bars with an epoxy adhesive. The strain at midspan of the beam as measured by the distributed sensing system was compared with the readings of electrical resistance strain (ERS) and mechanical strain (MS) gauges. The experimental results showed that the pultruded GFRP rods effectively protected the fibers, but the strain readings from the GFRP rods did not agree with the strain measurement of the ERS on the steel reinforcing bars due to the possible slippage of the rods in the concrete. However, the fiber bonded to steel reinforcing bars produced more accurate results and confirmed the potential of this technology to accurately measure strain in a reinforced concrete structure. As expected, the fiber with direct contact to the concrete and steel reinforcing bar, can effectively measured the strain under center point or two point loading.

  6. Flexural Toughness of Steel Fiber Reinforced High Performance Concrete Containing Nano-SiO2 and Fly Ash

    PubMed Central

    Zhao, Ya-Nan; Li, Qing-Fu; Wang, Peng; Zhang, Tian-Hang

    2014-01-01

    This paper aims to clarify the effect of steel fiber on the flexural toughness of the high performance concrete containing fly ash and nano-SiO2. The flexural toughness was evaluated by two methods, which are based on ASTM C1018 and DBV-1998, respectively. By means of three-point bending method, the flexural toughness indices, variation coefficients of bearing capacity, deformation energy, and equivalent flexural strength of the specimen were measured, respectively, and the relational curves between the vertical load and the midspan deflection (PV-δ) were obtained. The results indicate that steel fiber has great effect on the flexural toughness parameters and relational curves (PV-δ) of the three-point bending beam specimen. When the content of steel fiber increases from 0.5% to 2%, the flexural toughness parameters increase gradually and the curves are becoming plumper and plumper with the increase of steel fiber content, respectively. However these flexural toughness parameters begin to decrease and the curves become thinner and thinner after the steel fiber content exceeds 2%. It seems that the contribution of steel fiber to the improvement of flexural toughness of the high performance concrete containing fly ash and nano-SiO2 is well performed only when the steel fiber content is less than 2%. PMID:24883395

  7. Flexural toughness of steel fiber reinforced high performance concrete containing nano-SiO2 and fly ash.

    PubMed

    Zhang, Peng; Zhao, Ya-Nan; Li, Qing-Fu; Wang, Peng; Zhang, Tian-Hang

    2014-01-01

    This paper aims to clarify the effect of steel fiber on the flexural toughness of the high performance concrete containing fly ash and nano-SiO2. The flexural toughness was evaluated by two methods, which are based on ASTM C1018 and DBV-1998, respectively. By means of three-point bending method, the flexural toughness indices, variation coefficients of bearing capacity, deformation energy, and equivalent flexural strength of the specimen were measured, respectively, and the relational curves between the vertical load and the midspan deflection (P(V)-δ) were obtained. The results indicate that steel fiber has great effect on the flexural toughness parameters and relational curves (P(V)-δ) of the three-point bending beam specimen. When the content of steel fiber increases from 0.5% to 2%, the flexural toughness parameters increase gradually and the curves are becoming plumper and plumper with the increase of steel fiber content, respectively. However these flexural toughness parameters begin to decrease and the curves become thinner and thinner after the steel fiber content exceeds 2%. It seems that the contribution of steel fiber to the improvement of flexural toughness of the high performance concrete containing fly ash and nano-SiO2 is well performed only when the steel fiber content is less than 2%.

  8. Part I. Corrosion studies of continuous alumina fiber reinforced aluminum-matrix composites. Part II. Galvanic corrosion between continuous alumina fiber reinforced aluminum-matrix composites and 4340 steel

    NASA Astrophysics Data System (ADS)

    Zhu, Jun

    Part I. The corrosion performance of continuous alumina fiber reinforced aluminum-matrix composites (CF-AMCs) was investigated in both the laboratory and field environments by comparing them with their respective monolithic matrix alloys, i.e., pure Al, A1-2wt%Cu T6, and Al 6061 T6. The corrosion initiation sites were identified by monitoring the changes in the surface morphology. Corrosion current densities and pH profiles at localized corrosion sites were measured using the scanning-vibrating electrode technique and the scanning ion-selective electrode technique, respectively. The corrosion damage of the materials immersed in various electrolytes, as well as those exposed in a humidity chamber and outdoor environments, was evaluated. Potentiodynamic polarization behavior was also studied. The corrosion initiation for the composites in 3.15 wt% NaCl occurred primarily around the Fe-rich intermetallic particles, which preferentially existed around the fiber/matrix interface on the composites. The corrosion initiation sites were also caused by physical damage (e.g., localized deformation) to the composite surface. At localized corrosion sites, the buildup of acidity was enhanced by the formation of micro-crevices resulting from fibers left in relief as the matrix corroded. The composites that were tested in exposure experiments exhibited higher corrosion rates than their monolithic alloys. The composites and their monolithic alloys were subjected to pitting corrosion when anodically polarized in the 3.15 wt% NaCl, while they passivated when anodically polarized in 0.5 M Na2SO4. The experimental results indicated that the composites exhibited inferior corrosion resistance compared to their monolithic matrix alloys. Part II. Galvanic corrosion studies were conducted on CF-AMCs coupled to 4340 steel since CF-AMCs have low density and excellent mechanical properties and are being considered as potential jacketing materials for reinforcing steel gun barrels. Coupled and

  9. Evaluation of Flash Bainite in 4130 Steel

    DTIC Science & Technology

    2011-07-01

    austenitized) to above 1050°C (>A3) using either oxy-propane or induction heating . After heating , the material is purportedly quenched within...and Gleeble heat affected zone tests were performed on AISI 4130 steel plate. When possible, testing was baselined against conventional quench and...observed on the fracture surface of some the Flash Bainite impact toughness specimens. The impact toughness testing on the Gleeble heat affected zone

  10. Initial evaluation of continuous fiber reinforced NiAl composites

    NASA Technical Reports Server (NTRS)

    Noebe, R. D.; Bowman, R. R.; Eldridge, J. I.

    1990-01-01

    NiAl is being evaluated as a potential matrix material as part of an overall program to develop and understand high-temperature structural composites. Currently, continuous fiber composites have been fabricated by the powder cloth technique incorporating either W(218) or single crystal Al2O3 fibers as reinforcements in both binary NiAl and a solute strengthened NiAl(.05 at. pct Zr) matrix. Initial evaluation of these composite systems have included: fiber push-out testing to measure matrix/fiber bond strengths, bend testing to determine strength as a function of temperature and composite structure, and thermal cycling to establish the effect of matrix and fiber properties on composite life. The effect of matrix/fiber bond strength and matrix strength on several composite properties will be discussed.

  11. Static and Fatigue Strength Evaluations for Bolted Composite/Steel Joints for Heavy Vehicle Chassis Components

    SciTech Connect

    Sun, Xin; Stephens, Elizabeth V.; Herling, Darrell R.

    2004-09-14

    In May 2003, ORNL and PNNL began collaboration on a four year research effort focused on developing joining techniques to overcome the technical issues associated with joining lightweight materials in heavy vehicles. The initial focus of research is the development and validation of joint designs for a composite structural member attached to a metal member that satisfy the structural requirements both economically and reliably. Huck-bolting is a common joining method currently used in heavy truck chassis structures. The initial round of testing was conducted to establish a performance benchmark by evaluating the static and fatigue behavior of an existing steel/steel chassis joint at the single huck-bolt level. Both tension and shear loading conditions were considered, and the resulting static and fatigue strengths will be used to guide the joint design for a replacement composite/steel joint. A commercially available, pultruded composite material was chosen to study the generic issues related to composite/steel joints. Extren is produced by STRONGWELL, and it is a combination of fiberglass reinforcement and thermosetting polyester or vinyl ester resin systems. Extren sheets of 3.2 mm thick were joined to 1.4 mm SAE1008 steel sheets with a standard grade 5 bolt with 6.35 mm diameter. Both tension and shear loading modes were considered for the single hybrid joint under static and fatigue loading conditions. Since fiberglass reinforced thermoset polymer composites are a non-homogenous material, their strengths and behavior are dependent upon the design of the composite and reinforcement. The Extren sheet stock was cut along the longitudinal direction to achieve maximum net-section strength. The effects of various manufacturing factors and operational conditions on the static and fatigue strength of the hybrid joint were modeled and experimentally verified. It was found that loading mode and washer size have significant influence on the static and fatigue strength of

  12. Evaluation of Additive Manufacturing for Stainless Steel Components

    SciTech Connect

    Peter, William H.; Lou, Xiaoyuan; List, III, Frederick Alyious; Webber, David

    2016-09-01

    This collaboration between Oak Ridge National Laboratory and General Electric Company aimed to evaluate the mechanical properties, microstructure, and porosity of the additively manufactured 316L stainless steel by ORNL’s Renishaw AM250 machine for nuclear application. The program also evaluated the stress corrosion cracking and corrosion fatigue crack growth rate of the same material in high temperature water environments. Results show the properties of this material to be similar to the properties of 316L stainless steel fabricated additively with equipment from other manufacturers with slightly higher porosity. The stress corrosion crack growth rate is similar to that for wrought 316L stainless steel for an oxygenated high temperature water environment and slightly higher for a hydrogenated high temperature water environment. Optimized heat treatment of this material is expected to improve performance in high temperature water environments.

  13. Evaluation of Glass Fiber Reinforced Concrete Panels for Use in Military Construction.

    DTIC Science & Technology

    1984-06-01

    AD-A158 134 UNCLASSIFIED EVALUATION OF GLASS FIBER REINFORCED CONCRETE PANELS FOR USE IN MILITARY. . (U) CONSTRUCTION ENGINEERING RESEARCH LAB...Construction Engineering Research Laboratory i=h-C=iU. TECHNICAL REPORT M-85/15 June 1985 AD-A158 134 0~- 8 Evaluation of Glass Fiber ...Reinforced Concrete Panels for Use in Military Construction by Gilbert R. Williamson Glass fiber reinforced concrete (GFRC) materials are investigated

  14. STRUCTURAL PERFORMANCE OF DEGRADED REINFORCED CONCRETE MEMBERS.

    SciTech Connect

    Braverman, J.I.; Miller, C.A.; Ellingwood, B.R.; Naus, D.J.; Hofmayer, C.H.; Bezler, P.; Chang, T.Y.

    2001-03-22

    This paper describes the results of a study to evaluate, in probabilistic terms, the effects of age-related degradation on the structural performance of reinforced concrete members at nuclear power plants. The paper focuses on degradation of reinforced concrete flexural members and shear walls due to the loss of steel reinforcing area and loss of concrete area (cracking/spalling). Loss of steel area is typically caused by corrosion while cracking and spalling can be caused by corrosion of reinforcing steel, freeze-thaw, or aggressive chemical attack. Structural performance in the presence of uncertainties is depicted by a fragility (or conditional probability of failure). The effects of degradation on the fragility of reinforced concrete members are calculated to assess the potential significance of various levels of degradation. The fragility modeling procedures applied to degraded concrete members can be used to assess the effects of degradation on plant risk and can lead to the development of probability-based degradation acceptance limits.

  15. Thermal-sprayed zinc anodes for cathodic protection of steel-reinforced concrete bridges

    SciTech Connect

    Bullard, Sophie J.; Covino, Bernard S., Jr.; Cramer, Stephen D.; McGill, Galen E.

    1996-01-01

    Thermal-sprayed zinc anodes are being used in Oregon in impressed current cathodic protection (ICCP) systems for reinforced concrete bridges. The U.S. Department of Energy, Albany Research Center, is collaborating with the Oregon Department of Transportation (ODOT) to evaluate the long-term performance and service life of these anodes. Laboratory studies were conducted on concrete slabs coated with 0.5 mm (20 mil) thick, thermal-sprayed zinc anodes. The slabs were electrochemically aged at an accelerated rate using an anode current density of 0.032 A/m2 (3mA/ft2). Half the slabs were preheated before thermal-spraying with zinc; the other half were unheated. Electrochemical aging resulted in the formation at the zinc-concrete interface of a thin, low pH zone (relative to cement paste) consisting primarily of ZnO and Zn(OH)2, and in a second zone of calcium and zinc aluminates and silicates formed by secondary mineralization. Both zones contained elevated concentrations of sulfate and chloride ions. The original bond strength of the zinc coating decreased due to the loss of mechanical bond to the concrete with the initial passage of electrical charge (aging). Additional charge led to an increase in bond strength to a maximum as the result of secondary mineralization of zinc dissolution products with the cement paste. Further charge led to a decrease in bond strength and ultimately coating disbondment as the interfacial reaction zones continued to thicken. This occurred at an effective service life of 27 years at the 0.0022 A/m2 (0.2 mA/ft2) current density typically used by ODOT in ICCP systems for coastal bridges. Zinc coating failure under tensile stress was primarily cohesive within the thickening reaction zones at the zinc-concrete interface. There was no difference between the bond strength of zinc coatings on preheated and unheated concrete surfaces after long service times.

  16. The effect of recycled concrete aggregate properties on the bond strength between RCA concrete and steel reinforcement

    SciTech Connect

    Butler, L. West, J.S.; Tighe, S.L.

    2011-10-15

    The purpose of this study was to investigate the influence that replacing natural coarse aggregate with recycled concrete aggregate (RCA) has on concrete bond strength with reinforcing steel. Two sources of RCA were used along with one natural aggregate source. Numerous aggregate properties were measured for all aggregate sources. Two types of concrete mixture proportions were developed replacing 100% of the natural aggregate with RCA. The first type maintained the same water-cement ratios while the second type was designed to achieve the same compressive strengths. Beam-end specimens were tested to determine the relative bond strength of RCA and natural aggregate concrete. On average, natural aggregate concrete specimens had bond strengths that were 9 to 19% higher than the equivalent RCA specimens. Bond strength and the aggregate crushing value seemed to correlate well for all concrete types.

  17. Microanalytical evaluation of a prototype stainless bearing steel

    NASA Astrophysics Data System (ADS)

    Kinkus, T. J.; Olson, G. B.

    1992-04-01

    A novel bearing steel composition intended for a space shuttle main engine turbopump application has been designed by computer-aided thermodynamic modelling. Property objectives for the martensitic stainless steel are a doubling of KIC toughness and KISCC stress-corrosion resistance relative to existing bearing steels. The composition is designed to achieve sufficient refinement of M 2C carbides to provide the required hardness of RC = 60 at 0.30C, and to achieve a high stability austenite dispersion for transformation toughening. Microanalytical study of the prototype steel of composition Fe-22.5Co-12Cr-8.5Ni- 0.3Mo-0.25V-0.30C has tested key model predictions. STEM microanalysis of extracted Cr and CrMo carbides was used to evaluate solution treatment response between 1100 and 1150°C. Atom-probe microanalysis was employed to measure compositions of fine M 2C carbides in cryogenically-formed martensitic material tempered at 500°C to a slightly c raged condition promoting high toughness. The observed composition of (Cr 0.88Mo 0.03V 0.03Fe 0.06) 2 C 0.92 lies between computed values corresponding to coherent and incoherent equilibrium. The prototype steel exceeds the design toughness objectives, giving a KIC toughness of 47 MPa √ m at RC = 60.4 hardness.

  18. Galvanic interaction between carbon fiber reinforced plastic (CFRP) composites and steel in chloride contaminated concretes

    SciTech Connect

    Torres-Acosta, A.A.; Sagues, A.A.; Sen, R.

    1998-12-31

    Experiments were performed to determine the possible extent of galvanic corrosion when CFRP and steel are in contact in chloride contaminated concrete. Three concrete environments (water-to-cement (w/c) ratio of 0.41) at relative humidities (RH) of {approx}60%, {approx}80% and {approx}95%, and 14 kg/m{sup 3} chloride were investigated. The CFRP composite potential reached between {minus}180 and {minus}590 mV (vsCSE) when it was in contact with steel at these environments. Results showed significant galvanic action in the 80% RH chloride contaminated concrete (nominal steel current densities as high as 0.3 {micro}A/cm{sup 2}).

  19. An evaluation of methylphenidate as a potential establishing operation for some common classroom reinforcers.

    PubMed

    Northup, J; Fusilier, I; Swanson, V; Roane, H; Borrero, J

    1997-01-01

    We conducted reinforcer assessments for 3 boys with a diagnosis of attention deficit hyperactivity disorder who alternately received either placebo or previously prescribed methylphenidate. Our purpose was to evaluate whether methylphenidate altered the relative reinforcing effectiveness of various stimuli that are often used in classroom-based behavioral treatment programs (e.g., activities, tangible items). Results showed clear differences for some stimuli between reinforcer assessments conducted when participants had received methylphenidate compared to placebo. Results suggest that methylphenidate might act as an establishing operation for some common classroom reinforcers. Implications for the development and evaluation of behavioral treatments are discussed.

  20. Evaluation of Hybrid Reinforcement (Fiber-Reinforced-Plastic Rod with Steel Core)

    DTIC Science & Technology

    1993-08-01

    SR24 Figure A4. K(64/13.0 mm/SBPR8O 85 FIBRA Hybric ( Tenisile Tgst K G4-+PC Rod Figure A5. Photo K64/9.2 mm/SBPR8O Figure A6. Photo K(96/9.2 mm...Curves for Beams with K48/9.0 mm Hybrid Rod 70 Mweore~titcal car 60 50 .40 S30-" 10 0 5 10 15 20 25 30 35 40 45 Deflection Oma) Figure B39

  1. Evaluating the effects of discriminability on behavioral persistence during and following time-based reinforcement.

    PubMed

    Saini, Valdeep; Fisher, Wayne W

    2016-11-01

    With four children with autism we evaluated a refinement to time-based reinforcement designed to reduce response persistence when we simultaneously introduced time-based reinforcement and extinction. We further evaluated whether this refinement mitigated response recurrence when all reinforcer deliveries ceased during an extinction-only disruptor phase. The refinement involved increasing the saliency of the contingency change from contingent reinforcement (during baseline) to time-based reinforcement by delivering different colored reinforcers during time-based reinforcement. Behavioral momentum theory predicts that increasing the discriminability of the change from variable-interval to variable-time reinforcement should lead to faster reductions in responding. We present data on four participants, three of whom displayed response patterns consistent with the predictions of behavioral momentum theory during time-based reinforcement. However, the participants showed more varied patterns of recurrent behavior during extinction. We discuss these results within a translational research framework focusing on strategies used to mitigate treatment relapse for severe destructive behavior, as time-based reinforcement is one of the most commonly prescribed interventions for destructive behavior displayed by individuals with intellectual and developmental disabilities.

  2. The long term effects of cathodic protection on corroding, pre-stressed concrete structures: Hydrogen embrittlement of the reinforcing steel

    NASA Astrophysics Data System (ADS)

    Enos, David George

    Assessment of the effect of cathodic protection on a chloride contaminated bridge pile involves the definition of the hydrogen embrittlement behavior of the pearlitic reinforcement combined with quantification of the local (i.e., at the steel/concrete interface) chemical and electrochemical conditions, both prior to and throughout the application of cathodic protection. The hydrogen embrittlement behavior of the reinforcement was assessed through a combination of Devanathan/Stachurski permeation experiments to quantify subsurface hydrogen concentrations, CsbH, as a function of the applied hydrogen overpotential, eta, and crack initiation tests for bluntly notched and fatigue pre-cracked tensile specimens employing elastic-plastic finite element analysis and linear elastic fracture mechanics, respectively. A threshold mobile lattice hydrogen concentration for embrittlement of 2×10sp{-7} mol/cmsp3 was established for bluntly notched and fatigue pre-cracked specimens. Crack initiation occurred by the formation of shear cracks oriented at an angle approaching 45sp° from the tensile axis, as proposed by Miller and Smith (Miller, 1970), in regions where both the longitudinal and shear stresses were maximized (i.e., near the notch root). These Miller cracks then triggered longitudinal splitting which continued until fast fracture of the remaining ligament occurred. Instrumented laboratory scale piles were constructed and partially immersed in ASTM artificial ocean water. With time, localized corrosion (crevicing) was initiated along the reinforcement, and was accompanied by an acidic shift in the pH of the occluded environment due to ferrous ion hydrolysis. Cathodic protection current densities from -0.1 muA/cmsp2 to -3.0 muA/cmsp2 were applied via a skirt anode located at the waterline. Current densities as low as 0.66 muA/cmsp2 were sufficient to deplete the dissolved oxygen concentration at the steel/concrete interface and result in the observance of hydrogen

  3. Prestressing effect of cold-drawn short NiTi SMA fibres in steel reinforced mortar beams

    NASA Astrophysics Data System (ADS)

    Choi, Eunsoo; Kim, Dong Joo; Hwang, Jin-Ha; Kim, Woo Jin

    2016-08-01

    This study investigated the prestressing effect of cold-drawn short NiTi shape memory alloy (SMA) fibres in steel reinforced mortar beams. The SMA fibres were mixed with 1.5% volume content in a mortar matrix with the compressive strength of 50 MPa. The SMA fibres had an average length of 34 mm, and they were manufactured with a dog-bone shape: the diameters of the end- and middle-parts were 1.024 and 1.0 mm, respectively. Twenty mortar beams with the dimensions of 40 mm × 40 mm × 160 mm (B × H × L) were prepared. Two types of tests were conducted. One was to investigate the prestressing effect of the SMA fibres, and the beams with the SMA fibres were heated at the bottom. The other was to assess the bending behaviour of the beams prestressed by the SMA fibres. The SMA fibres induced upward deflection and cracking at the top surface by heating at the bottom; thus, they achieved an obvious prestressing effect. The beams that were prestressed by the SMA fibres did not show a significant difference in bending behaviour from that of the SMA fibre reinforced beams that were not subjected to heating. Stress analysis of the beams indicated that the prestressing effect decreased in relation to the cooling temperature.

  4. 1993 Evaluation of steel ring standards for magnetic particle inspection

    SciTech Connect

    Bates, B.; Hagemaier, D.; Petty, J.; Armstrong, C.

    1996-10-01

    The Ketos ring standard manufactured from AISI Type 01 (.90 carbon) tool steel has become part of certain US magnetic particle standards such as MIL-STD-1949. The rings are used to verify system performance and for sensitivity evaluation for magnetic particle materials. Some controversy exists concerning the use of the steel ring as a reference standard for the following reasons: inconsistencies in hole detectability have been noted between various rings caused by differences in magnetic permeability as a result of variations in annealing; the use of magnetic particle indication evaluation for ring standard certification is subject to variations in particle concentration, sensitivity, and visual subjectivity; and the proposed introduction of new materials in the manufacture of ring standards. This report describes an evaluation of rings manufactured of different materials and different annealed states. A suggested method for qualifying a newly manufactured ring as a certified reference standard is also described.

  5. Reinforced wind turbine blades--an environmental life cycle evaluation.

    PubMed

    Merugula, Laura; Khanna, Vikas; Bakshi, Bhavik R

    2012-09-04

    A fiberglass composite reinforced with carbon nanofibers (CNF) at the resin-fiber interface is being developed for potential use in wind turbine blades. An energy and midpoint impact assessment was performed to gauge impacts of scaling production to blades 40 m and longer. Higher loadings force trade-offs in energy return on investment and midpoint impacts relative to the base case while remaining superior to thermoelectric power generation in these indicators. Energy-intensive production of CNFs forces impacts disproportionate to mass contribution. The polymer nanocomposite increases a 2 MW plant's global warming potential nearly 100% per kWh electricity generated with 5% CNF by mass in the blades if no increase in electrical output is realized. The relative scale of impact must be compensated by systematic improvements whether by deployment in higher potential zones or by increased life span; the trade-offs are expected to be significantly lessened with CNF manufacturing maturity. Significant challenges are faced in evaluating emerging technologies including uncertainty in future scenarios and process scaling. Inventories available for raw materials and monte carlos analysis have been used to gain insight to impacts of this development.

  6. An evaluation of two differential reinforcement procedures with escape extinction to treat food refusal.

    PubMed

    Patel, Meeta R; Piazza, Cathleen C; Martinez, Cheryl J; Volkert, Valerie M; Christine, M Santana

    2002-01-01

    Consumption of solids and liquids occurs as a chain of behaviors that may include accepting, swallowing, and retaining the food or drink. In the current investigation, we evaluated the relative effectiveness of differential reinforcement of the first behavior in the chain (acceptance) versus differential reinforcement for the terminal behavior in the chain (mouth clean). Three children who had been diagnosed with a feeding disorder participated. Acceptance remained at zero when differential reinforcement contingencies were implemented for acceptance or mouth clean. Acceptance and mouth clean increased for all 3 participants once escape extinction was added to the differential reinforcement procedures, independent of whether reinforcement was provided for acceptance or for mouth clean. Maintenance was observed in 2 children when escape extinction was removed from the treatment package. The mechanism by which consumption increased is discussed in relation to positive and negative reinforcement contingencies.

  7. An evaluation of two differential reinforcement procedures with escape extinction to treat food refusal.

    PubMed Central

    Patel, Meeta R; Piazza, Cathleen C; Martinez, Cheryl J; Volkert, Valerie M; Christine, M Santana

    2002-01-01

    Consumption of solids and liquids occurs as a chain of behaviors that may include accepting, swallowing, and retaining the food or drink. In the current investigation, we evaluated the relative effectiveness of differential reinforcement of the first behavior in the chain (acceptance) versus differential reinforcement for the terminal behavior in the chain (mouth clean). Three children who had been diagnosed with a feeding disorder participated. Acceptance remained at zero when differential reinforcement contingencies were implemented for acceptance or mouth clean. Acceptance and mouth clean increased for all 3 participants once escape extinction was added to the differential reinforcement procedures, independent of whether reinforcement was provided for acceptance or for mouth clean. Maintenance was observed in 2 children when escape extinction was removed from the treatment package. The mechanism by which consumption increased is discussed in relation to positive and negative reinforcement contingencies. PMID:12555908

  8. Constitutive Relations of Randomly Oriented Steel Fiber Reinforced Concrete under Multiaxial Compressive Loadings,

    DTIC Science & Technology

    1981-12-01

    Plastic Hardening Material [Mould (89)] ....................... 381 5.40 Post-Failure Strain Rate Vectors of Mortar from Steel Plate Series [ Andenes (8...A good review of that was done by Andenes (8) and Starovisky (119). Another good review describing different multiaxial test apparatuses in detail up...contraction of the specimen during hydrostatic compression. Andenes (8) measured these plastic strain increment vectors from biaxial compression

  9. Evaluation of several micromechanics models for discontinuously reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. Steven; Birt, M. J.

    1990-01-01

    A systematic experimental evaluation of whisker and particulate reinforced aluminum matrix composites was conducted to assess the variation in tensile properties with reinforcement type, volume fraction, and specimen thickness. Each material was evaluated in three thicknesses, 1.8, 3.18, and 6.35 mm, to determine the size, distribution, and orientation of the reinforcements. This information was used to evaluate several micromechanical models that predict composite moduli. The longitudinal and transverse moduli were predicted for reinforced aluminum. The Paul model, the Cox model and the Halpin-Tsai model were evaluated. The Paul model gave a good upper bound prediction for the particulate reinforced composites but under predicted whisker reinforced composite moduli. The Cox model gave good moduli predictions for the whisker reinforcement, but was too low for the particulate. The Halpin-Tsai model gave good results for both whisker and particulate reinforced composites. An approach using a trigonometric projection of whisker length to predict the fiber contribution to the modulus in the longitudinal and transverse directions was compared to the more conventional lamination theory approach.

  10. Evaluating the Separate and Combined Effects of Positive and Negative Reinforcement on Task Compliance

    ERIC Educational Resources Information Center

    Bouxsein, Kelly J.; Roane, Henry S.; Harper, Tara

    2011-01-01

    Positive and negative reinforcement are effective for treating escape-maintained destructive behavior. The current study evaluated the separate and combined effects of these contingencies to increase task compliance. Results showed that a combination of positive and negative reinforcement was most effective for increasing compliance. (Contains 1…

  11. Evaluating the separate and combined effects of positive and negative reinforcement on task compliance.

    PubMed

    Bouxsein, Kelly J; Roane, Henry S; Harper, Tara

    2011-01-01

    Positive and negative reinforcement are effective for treating escape-maintained destructive behavior. The current study evaluated the separate and combined effects of these contingencies to increase task compliance. Results showed that a combination of positive and negative reinforcement was most effective for increasing compliance.

  12. Rehabilitation of notch damaged steel beam using a carbon fiber reinforced multiphase-matrix composite

    SciTech Connect

    Zhou, HongYu; Attard, Dr. Thomas L.; Wang, Yanli; Wang, Jy-An John; Ren, Fei

    2013-01-01

    The retrofit of notch damaged steel beams is investigated via the experimental testing of nine wide-flange steel beam specimens and finite element simulation. Three notch configurations representing various damage levels were identified, and the beam specimens were retrofitted using CFRP laminates and a recently developed polymeric matrix composite - CarbonFlex - that exhibits superior energy dissipation and ductility properties, where the peak-load deflections were between 49.4% and 65.2% higher using the CarbonFlex-retrofitted beams. The results are attributed to the substantially higher damage tolerance capability of CarbonFlex than conventional CFRP. Finite element models were developed to investigate the damage processes and strain/ stress distributions near the notch tips. The numerical results match closely with the experimentally determined load-deflection curves and the strain fields obtained by the digital imaging correlations (DIC) system. Both experimental and numerical results clearly indicate the effectiveness of CarbonFlex, as a candidate retrofitting material, to retrofit damaged steel structures. Lastly, the micro-mechanisms by which CarbonFlex could sufficiently sustain a significant amount of the peak strength at large displacement ductility values are discussed with the aid of scanning electron microscopy (SEM) pictures.

  13. Evaluating the presence versus absence of the reinforcer during extinction.

    PubMed

    Castillo, Mariana I; Borrero, John C; Mendres-Smith, Amber E

    2014-01-01

    The purpose of this study was to assess the effects of extinction when the reinforcer was present versus absent. These effects were examined with 2 human operant procedures (i.e., a computer program and a mechanical apparatus) with college students as participants. Discriminable properties of the apparatus appeared to influence responding during extinction. In general, responding during extinction was less likely with the mechanical apparatus when the reinforcer was absent and more likely with the computer program.

  14. 2 CFR 176.110 - Evaluating proposals of foreign iron, steel, and/or manufactured goods.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 2 Grants and Agreements 1 2011-01-01 2011-01-01 false Evaluating proposals of foreign iron, steel... American Recovery and Reinvestment Act of 2009 § 176.110 Evaluating proposals of foreign iron, steel, and... cost of certain domestic iron, steel, and/or manufactured goods being unreasonable, in accordance...

  15. 2 CFR 176.110 - Evaluating proposals of foreign iron, steel, and/or manufactured goods.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 2 Grants and Agreements 1 2010-01-01 2010-01-01 false Evaluating proposals of foreign iron, steel... Evaluating proposals of foreign iron, steel, and/or manufactured goods. (a) If the award official receives a request for an exception based on the cost of certain domestic iron, steel, and/or manufactured...

  16. Kinetic evaluation of intergranular fracture in austenitic stainless steels

    SciTech Connect

    Simonen, E.P.; Bruemmer, S.M.

    1995-12-31

    A second, higher-dose threshold exists for irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels in non-oxidizing environments. The data supporting this concept have stimulated interest in the mechanical aspects of intergranular (IG) fracture. Cracking in a non-oxidizing environment suggests that mechanically-induced IG fracture may play an important role in the IASCC mechanism under these conditions. Radiation alters deformation processes in austenitic alloys and may influence the fracture mode during either in-situ or post-irradiation straining. Radiation effects that must be considered include radiation strengthening, radiation creep and radiation-induced flow localization. The present evaluation relates these radiation-induced phenomena to IG fracture relevant to IASCC. The evaluation indicates that radiation strengthening retards matrix deformation and allows intergranular fracture to occur at higher stresses and lower temperatures than expected for unirradiated stainless steel.

  17. Development and evaluation of a cleanable high efficiency steel filter

    SciTech Connect

    Bergman, W.; Larsen, G.; Weber, F.; Wilson, P.; Lopez, R.; Valha, G.; Conner, J.; Garr, J.; Williams, K.; Biermann, A.; Wilson, K.; Moore, P.; Gellner, C.; Rapchun, D. ); Simon, K.; Turley, J.; Frye, L.; Monroe, D. )

    1993-01-01

    We have developed a high efficiency steel filter that can be cleaned in-situ by reverse air pulses. The filter consists of 64 pleated cylindrical filter elements packaged into a 6l0 [times] 6l0 [times] 292 mm aluminum frame and has 13.5 m[sup 2] of filter area. The filter media consists of a sintered steel fiber mat using 2 [mu]m diameter fibers. We conducted an optimization study for filter efficiency and pressure drop to determine the filter design parameters of pleat width, pleat depth, outside diameter of the cylinder, and the total number of cylinders. Several prototype cylinders were then built and evaluated in terms of filter cleaning by reverse air pulses. The results of these studies were used to build the high efficiency steel filter. We evaluated the prototype filter for efficiency and cleanability. The DOP filter certification test showed the filter has a passing efficiency of 99.99% but a failing pressure drop of 0.80 kPa at 1,700 m[sup 3]/hr. Since we were not able to achieve a pressure drop less than 0.25 kPa, the steel filter does not meet all the criteria for a HEPA filter. Filter loading and cleaning tests using AC Fine dust showed the filter could be repeatedly cleaned by reverse air pulses. The next phase of the prototype evaluation consisted of installing the unit and support housing in the exhaust duct work of a uranium grit blaster for a field evaluation at the Y-12 Plant in Oak Ridge, TN. The grit blaster is used to clean the surface of uranium parts and generates a cloud of UO[sub 2] aerosols. We used a 1,700 m[sup 3]/hr slip stream from the 10,200 m[sup 3]/hr exhaust system.

  18. Development and evaluation of a cleanable high efficiency steel filter

    SciTech Connect

    Bergman, W.; Larsen, G.; Weber, F.; Wilson, P.; Lopez, R.; Valha, G.; Conner, J.; Garr, J.; Williams, K.; Biermann, A.; Wilson, K.; Moore, P.; Gellner, C.; Rapchun, D.; Simon, K.; Turley, J.; Frye, L.; Monroe, D.

    1993-01-01

    We have developed a high efficiency steel filter that can be cleaned in-situ by reverse air pulses. The filter consists of 64 pleated cylindrical filter elements packaged into a 6l0 {times} 6l0 {times} 292 mm aluminum frame and has 13.5 m{sup 2} of filter area. The filter media consists of a sintered steel fiber mat using 2 {mu}m diameter fibers. We conducted an optimization study for filter efficiency and pressure drop to determine the filter design parameters of pleat width, pleat depth, outside diameter of the cylinder, and the total number of cylinders. Several prototype cylinders were then built and evaluated in terms of filter cleaning by reverse air pulses. The results of these studies were used to build the high efficiency steel filter. We evaluated the prototype filter for efficiency and cleanability. The DOP filter certification test showed the filter has a passing efficiency of 99.99% but a failing pressure drop of 0.80 kPa at 1,700 m{sup 3}/hr. Since we were not able to achieve a pressure drop less than 0.25 kPa, the steel filter does not meet all the criteria for a HEPA filter. Filter loading and cleaning tests using AC Fine dust showed the filter could be repeatedly cleaned by reverse air pulses. The next phase of the prototype evaluation consisted of installing the unit and support housing in the exhaust duct work of a uranium grit blaster for a field evaluation at the Y-12 Plant in Oak Ridge, TN. The grit blaster is used to clean the surface of uranium parts and generates a cloud of UO{sub 2} aerosols. We used a 1,700 m{sup 3}/hr slip stream from the 10,200 m{sup 3}/hr exhaust system.

  19. Multiple determinants of transfer of evaluative function after conditioning with free-operant schedules of reinforcement.

    PubMed

    Dack, Charlotte; Reed, Phil; McHugh, Louise

    2010-11-01

    The aim of the four present experiments was to explore how different schedules of reinforcement influence schedule-induced behavior, their impact on evaluative ratings given to conditioned stimuli associated with each schedule through evaluative conditioning, and the transfer of these evaluations through derived stimulus networks. Experiment 1 compared two contrasting response reinforcement rules (variable ratio [VR], variable interval [VI]). Experiment 2 varied the response to reinforcement rule between two schedules but equated the outcome to response rate (differential reinforcement of high rate [DRH] vs. VR). Experiment 3 compared molar and molecular aspects of contingencies of reinforcement (tandem VIVR vs. tandem VRVI). Finally, Experiment 4 employed schedules that induced low rates of responding to determine whether, under these circumstances, responses were more sensitive to the molecular aspects of a schedule (differential reinforcement of low rate [DRL] vs. VI). The findings suggest that the transfer of evaluative functions is determined mainly by differences in response rate between the schedules and the molar aspects of the schedules. However, when neither schedule was based on a strong response reinforcement rule, the transfer of evaluative judgments came under the control of the molecular aspects of the schedule.

  20. Flexural Upgrading of Steel-Concrete Composite Girders Using Externally Bonded CFRP Reinforcement

    NASA Astrophysics Data System (ADS)

    Kabir, Mohammad Z.; Eshaghian, M.

    2010-04-01

    This study focuses on the flexural performance of composite steel-concrete beam girders retrofitted with CFRP. The current work is a numerical study of the load carrying capacity of a section which is strengthened by externally bonding of CFRP to the tension flange. At the primarily stage of the work, the model is verified by published experimental data. The three dimensional interactive failure Tsai-Wu criteria was implemented to retrofitted composite girder in order to identify the failure mode. Then a detailed parametric study is carried out to investigate the effects of geometry parameters and material characteristics on flexural performance of a composite section.

  1. Optimization of a Hybrid-Fiber-Reinforced High-Strength Concrete

    NASA Astrophysics Data System (ADS)

    Ferreira, L. E. T.; de Hanai, J. B.; Ferrari, V. J.

    2016-07-01

    The fracture performance of a high-strength concrete reinforced with steel fibers was studied. Tests of notched beams subjected to fracture in the three-point bend configuration were conducted in accordance with RILEM recommendations TC 162-TDF. The R-curve concepts based on load-CMOD responses and the RILEM criteria were used for the performance evaluation of concrete beams reinforced with steel fiber mixtures and loaded up to fracture. Steel fibers of different types (regular and microfibers), in different proportions were employed as the reinforcement. The hybrid-fiber-reinforced concrete demonstrated a superior performance regarding their resistance and toughness properties as a result of interaction between the fibers.

  2. Strain measurement in a concrete beam by use of the Brillouin-scattering-based distributed fiber sensor with single-mode fibers embedded in glass fiber reinforced polymer rods and bonded to steel reinforcing bars

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaodong; Bao, Xiaoyi; Chhoa, Chia Yee; Bremner, Theodore W.; Brown, Anthony W.; DeMerchant, Michael D.; Ferrier, Graham; Kalamkarov, Alexander L.; Georgiades, Anastasis V.

    2002-08-01

    The strain measurement of a 1.65-m reinforced concrete beam by use of a distributed fiber strain sensor with a 50-cm spatial resolution and 5-cm readout resolution is reported. The strain-measurement accuracy is plus-or-minus15 mu][epsilon (mum/m) according to the system calibration in the laboratory environment with non-uniform-distributed strain and plus-or-minus5 mu][epsilon with uniform strain distribution. The strain distribution has been measured for one-point and two-point loading patterns for optical fibers embedded in pultruded glass fiber reinforced polymer (GFRP) rods and those bonded to steel reinforcing bars. In the one-point loading case, the strain deviations are plus-or-minus7 and plus-or-minus15 mu][epsilon for fibers embedded in the GFRP rods and fibers bonded to steel reinforcing bars, respectively, whereas the strain deviation is plus-or-minus20 mu][epsilon for the two-point loading case.

  3. Application of microwave 3D SAR imaging technique for evaluation of corrosion in steel rebars embedded in cement-based structures

    NASA Astrophysics Data System (ADS)

    Kharkovsky, S.; Case, J. T.; Ghasr, M. T.; Zoughi, R.; Bae, S. W.; Belarbi, A.

    2012-05-01

    This paper presents and discusses the attributes and results of using wideband microwave 3D SAR-based imaging technique for evaluation of reinforced cement-based structures. The technique was used to detect corrosion and thinning of reinforcing steel bars and its potential was demonstrated through experiments for different bar sizes, depth of rebar locations, and spacing between rebars. The results of a limited and preliminary investigation in which thinning of rebars with and without rust in two mortar samples were obtained at three frequency bands covering the frequency range from 8.2 GHz-26.5 GHz.

  4. Evaluation of tantalum 316 stainless steel transition joints

    NASA Technical Reports Server (NTRS)

    Stoner, D. R.

    1972-01-01

    Tubular transition joints providing a metallurgically bonded connection between tantalum and 316 stainless steel pipe sections were comparatively evaluated for durability under thermal cycling conditions approximating the operation of a SNAP-8 mercury boiler. Both coextruded and vacuum brazed transition joints of 50mm (2 inch) diameter were tested by thermal cycling 100 times between 730 C and 120 C(1350 F and 250 F) in a high vacuum environment. The twelve evaluated transition joints survived the full test sequence without developing leaks, although liquid penetrant bond line indications eventually developed in all specimens. The brazed transition joints exhibited the best dimensional stability and bond line durability.

  5. The Strength and Behavior of Steel Fiber-Reinforced Concrete under Combined Tension-Compression Loading.

    DTIC Science & Technology

    1983-05-01

    4 m 040 4O -1 La. 00t - . - - k - 4 4- ) 4 Ui 140- 4 -4o0 :c-% oL >. 0 -C nW0 o - C : mt -2 o 4)CI V t CA -0-- a *a -cn o A C- 0C 00 a . L- 4 $A = L...stresses assumed from the applied 26 CD -OR 8 SAM -OP No -DP NMU -OP K RIOIDITY:OO N.M L -LP U C -OP -- CL -L, cu DP ;’- • N ou -LP on UCD -LP ~0 0 -, o- 4-8...07 Z; Plain mortar, no fiber Steel percentage 2.0 volume percent 0 K 0.2 0 Calculated Fiber Spacing. in. Fig. 1.15 Relationships Between Flexural

  6. Evaluation of Contextual Variability in Prediction of Reinforcer Effectiveness

    ERIC Educational Resources Information Center

    Pino, Olimpia; Dazzi, Carla

    2005-01-01

    Previous research has shown that stimulus preference assessments based on caregiver-opinion did not coincide with results of a more systematic method of assessing reinforcing value unless stimuli that were assessed to represent preferences were also preferred on paired stimulus presentation format, and that the relative preference based on the…

  7. A galvanic sensor for monitoring the corrosion condition of the concrete reinforcing steel: relationship between the galvanic and the corrosion currents.

    PubMed

    Pereira, Elsa Vaz; Figueira, Rita Bacelar; Salta, Maria Manuela Lemos; da Fonseca, Inês Teodora Elias

    2009-01-01

    This work reports a study carried out on the design and performance of galvanic and polarization resistance sensors to be embedded in concrete systems for permanent monitoring of the corrosion condition of reinforcing steel, aiming to establish a correlation between the galvanic currents, I(gal), and the corrosion currents, I(corr), estimated from the polarization resistance, R(p). Sensors have been tested in saturated Ca(OH)(2) aqueous solutions, under a variety of conditions, simulating the most important parameters that can accelerate the corrosion of concrete reinforcing steel, such as carbonation, ingress of chloride ions, presence or absence of O(2). For all the conditions, the influence of temperature (20 to 55 °C) has also been considered. From this study, it could be concluded that the galvanic currents are sensitive to the various parameters following a trend similar to that of the R(p) values. A relationship between the galvanic and the corrosion current densities was obtained and the limiting values of the I(gal), indicative of the state condition of the reinforcing steel for the designed sensor, were established.

  8. A Galvanic Sensor for Monitoring the Corrosion Condition of the Concrete Reinforcing Steel: Relationship Between the Galvanic and the Corrosion Currents

    PubMed Central

    Pereira, Elsa Vaz; Figueira, Rita Bacelar; Salta, Maria Manuela Lemos; da Fonseca, Inês Teodora Elias

    2009-01-01

    This work reports a study carried out on the design and performance of galvanic and polarization resistance sensors to be embedded in concrete systems for permanent monitoring of the corrosion condition of reinforcing steel, aiming to establish a correlation between the galvanic currents, Igal, and the corrosion currents, Icorr, estimated from the polarization resistance, Rp. Sensors have been tested in saturated Ca(OH)2 aqueous solutions, under a variety of conditions, simulating the most important parameters that can accelerate the corrosion of concrete reinforcing steel, such as carbonation, ingress of chloride ions, presence or absence of O2. For all the conditions, the influence of temperature (20 to 55 °C) has also been considered. From this study, it could be concluded that the galvanic currents are sensitive to the various parameters following a trend similar to that of the Rp values. A relationship between the galvanic and the corrosion current densities was obtained and the limiting values of the Igal, indicative of the state condition of the reinforcing steel for the designed sensor, were established. PMID:22291514

  9. 2 CFR 176.110 - Evaluating proposals of foreign iron, steel, and/or manufactured goods.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 2 Grants and Agreements 1 2014-01-01 2014-01-01 false Evaluating proposals of foreign iron, steel... iron, steel, and/or manufactured goods. (a) If the award official receives a request for an exception based on the cost of certain domestic iron, steel, and/or manufactured goods being unreasonable,...

  10. 2 CFR 176.110 - Evaluating proposals of foreign iron, steel, and/or manufactured goods.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 2 Grants and Agreements 1 2013-01-01 2013-01-01 false Evaluating proposals of foreign iron, steel... proposals of foreign iron, steel, and/or manufactured goods. (a) If the award official receives a request for an exception based on the cost of certain domestic iron, steel, and/or manufactured goods...

  11. 2 CFR 176.110 - Evaluating proposals of foreign iron, steel, and/or manufactured goods.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 2 Grants and Agreements 1 2012-01-01 2012-01-01 false Evaluating proposals of foreign iron, steel... proposals of foreign iron, steel, and/or manufactured goods. (a) If the award official receives a request for an exception based on the cost of certain domestic iron, steel, and/or manufactured goods...

  12. Nondestructive Evaluation of Advanced Fiber Reinforced Polymer Matrix Composites: A Technology Assessment

    NASA Technical Reports Server (NTRS)

    Yolken, H. Thomas; Matzkanin, George A.

    2009-01-01

    Because of their increasing utilization in structural applications, the nondestructive evaluation (NDE) of advanced fiber reinforced polymer composites continues to receive considerable research and development attention. Due to the heterogeneous nature of composites, the form of defects is often very different from a metal and fracture mechanisms are more complex. The purpose of this report is to provide an overview and technology assessment of the current state-of-the-art with respect to NDE of advanced fiber reinforced polymer composites.

  13. Damage evaluation of reinforced concrete frame based on a combined fiber beam model

    NASA Astrophysics Data System (ADS)

    Shang, Bing; Liu, ZhanLi; Zhuang, Zhuo

    2014-04-01

    In order to analyze and simulate the impact collapse or seismic response of the reinforced concrete (RC) structures, a combined fiber beam model is proposed by dividing the cross section of RC beam into concrete fiber and steel fiber. The stress-strain relationship of concrete fiber is based on a model proposed by concrete codes for concrete structures. The stress-strain behavior of steel fiber is based on a model suggested by others. These constitutive models are implemented into a general finite element program ABAQUS through the user defined subroutines to provide effective computational tools for the inelastic analysis of RC frame structures. The fiber model proposed in this paper is validated by comparing with experiment data of the RC column under cyclical lateral loading. The damage evolution of a three-dimension frame subjected to impact loading is also investigated.

  14. Do Children Prefer Contingencies? An Evaluation of the Efficacy of and Preference for Contingent versus Noncontingent Social Reinforcement during Play

    ERIC Educational Resources Information Center

    Luczynski, Kevin C.; Hanley, Gregory P.

    2009-01-01

    Discovering whether children prefer reinforcement via a contingency or independent of their behavior is important considering the ubiquity of these programmed schedules of reinforcement. The current study evaluated the efficacy of and preference for social interaction within differential reinforcement of alternative behavior (DRA) and…

  15. Fatigue evaluation of composite-reinforced, integrally stiffened metal panels

    NASA Technical Reports Server (NTRS)

    Dumesnil, C. E.

    1973-01-01

    The fatigue behavior of composite-reinforced, integrally stiffened metal panels was investigated in combined metal and composite materials subjected to fatigue loading. The systems investigated were aluminum-graphite/epoxy, and aluminum-S glass/epoxy. It was found that the composite material would support the total load at limit stress after the metal had completely failed, and the weight of the composite-metal system would be equal to that of an all metal system which would carry the same total load at limit stress.

  16. Phyllanthus muellerianus and C6H15NO3 synergistic effects on 0.5 M H2SO4-immersed steel-reinforced concrete: Implication for clean corrosion-protection of wind energy structures in industrial environment

    NASA Astrophysics Data System (ADS)

    Okeniyi, Joshua Olusegun; Omotosho, Olugbenga Adeshola; Popoola, Abimbola Patricia Idowu; Loto, Cleophas Akintoye

    2016-07-01

    This paper investigates Phyllanthus muellerianus leaf-extract and C6H15NO3 (triethanolamine: TEA) synergistic effects on reinforcing-steel corrosion-inhibition and the compressive-strength of steel-reinforced concrete immersed in 0.5 M H2SO4. This is to assess suitability of the synergistic admixture usage for wind-energy steel-reinforced concrete structures designed for industrial environments. Steel-reinforced concrete specimens were admixed with individual and synergistic designs of Phyllanthus muellerianus leaf-extract and C6H15NO3 admixtures and immersed in the 0.5 M H2SO4. Electrochemical monitoring of corrosion potential, as per ASTM C876-91 R99, and corrosion current were obtained and statistically analysed, as per ASTM G16-95 R04, for modelling noise resistance. Post-immersion compressive-strength testing then followed, as per ASTM C39/C39M-03, for detailing the admixture effect on load-bearing strength of the steel-reinforced concrete specimens. Results showed that while individual Phyllanthus muellerianus leaf-extract concentrations exhibited better inhibition-efficiency performance than C6H15NO3, synergistic additions of C6H15NO3 to Phyllanthus muellerianus leaf-extract improved steel-rebar corrosion-inhibition. Thus, 6 g Phyllanthus muellerianus + 2 g C6H15NO3 synergistically improved inhibition-efficiency to η = 84.17%, from η = 55.28% by the optimal chemical or from η = 74.72% by the optimal plant-extract admixtures. The study also established that improved compressive strength of steel-reinforced concrete with acceptable inhibition of the steel-rebar corrosion could be attained through optimal combination of the Phyllanthus muellerianus leaf-extract and C6H15NO3 admixtures.

  17. Finite element analysis of steel fiber-reinforced concrete (SFRC): validation of experimental tensile capacity of dog-bone specimens

    NASA Astrophysics Data System (ADS)

    Islam, Md. Mashfiqul; Chowdhury, Md. Arman; Sayeed, Md. Abu; Hossain, Elsha Al; Ahmed, Sheikh Saleh; Siddique, Ashfia

    2014-09-01

    Finite element analyses are conducted to model the tensile capacity of steel fiber-reinforced concrete (SFRC). For this purpose dog-bone specimens are casted and tested under direct and uniaxial tension. Two types of aggregates (brick and stone) are used to cast the SFRC and plain concrete. The fiber volume ratio is maintained 1.5 %. Total 8 numbers of dog-bone specimens are made and tested in a 1000-kN capacity digital universal testing machine (UTM). The strain data are gathered employing digital image correlation technique from high-definition images and high-speed video clips. Then, the strain data are synthesized with the load data obtained from the load cell of the UTM. The tensile capacity enhancement is found 182-253 % compared to control specimen to brick SFRC and in case of stone SFRC the enhancement is 157-268 %. Fibers are found to enhance the tensile capacity as well as ductile properties of concrete that ensures to prevent sudden brittle failure. The dog-bone specimens are modeled in the ANSYS 10.0 finite element platform and analyzed to model the tensile capacity of brick and stone SFRC. The SOLID65 element is used to model the SFRC as well as plain concretes by optimizing the Poisson's ratio, modulus of elasticity, tensile strength and stress-strain relationships and also failure pattern as well as failure locations. This research provides information of the tensile capacity enhancement of SFRC made of both brick and stone which will be helpful for the construction industry of Bangladesh to introduce this engineering material in earthquake design. Last of all, the finite element outputs are found to hold good agreement with the experimental tensile capacity which validates the FE modeling.

  18. REVERSAL CYCLIC LOADING TEST OF REINFORCED CONCRETE COLUMN WITH HIGH DENSITY LONGITUDINAL REINFORCEMENT CONFINED BY SPIRAL REINFORCEMENT

    NASA Astrophysics Data System (ADS)

    Ohba, Mitsuaki; Sato, Akiko; Ishibashi, Tadayoshi

    In case of that column diameter is restricted by the narrow construction space, Concrete filled steel tube column is used. Authors developed new arrangement of bars that the range of longitudinal reinforcement ratio is from 14.8% to 24.7% and the longitudinal reinforcements are reinforced by spiral reinforcement. For the confirmation of the damage form and the deformation performance of the column with new bar arrangement at the earthquake, static reversal cyclic loading test was carried out. The parameters are longitudinal reinforcement ratio, shear span ratio and strength ratio. As the result, the damage form showed different trends due to longitudinal reinforcement ratio, shear span ratio and flexural strength and shear strength ratio. And specimens with the new bar arrangement had a good ductility with rotation angle of the column more than 1/10 and no rapid decline of strength. And, it is possible to evaluate ultimate bending capacity by considering the damage situation at maximum load.

  19. PILOT-SCALE EVALUATION OF NEW RESIN APPLICATION EQUIPMENT FOR FIBER- REINFORCED PLASTICS

    EPA Science Inventory

    The article gives results of a pilot-scale evaluation of new resin application equipment for fiber- reinforced plastics. The study, an evaluation and comparison of styrene emissions, utilized Magnum's FIT(TM) nozzle with conventional spray guns and flow coaters (operated at both ...

  20. Objective Surface Evaluation of Fiber Reinforced Polymer Composites

    NASA Astrophysics Data System (ADS)

    Palmer, Stuart; Hall, Wayne

    2013-08-01

    The mechanical properties of advanced composites are essential for their structural performance, but the surface finish on exterior composite panels is of critical importance for customer satisfaction. This paper describes the application of wavelet texture analysis (WTA) to the task of automatically classifying the surface finish properties of two fiber reinforced polymer (FRP) composite construction types (clear resin and gel-coat) into three quality grades. Samples were imaged and wavelet multi-scale decomposition was used to create a visual texture representation of the sample, capturing image features at different scales and orientations. Principal components analysis was used to reduce the dimensionality of the texture feature vector, permitting successful classification of the samples using only the first principal component. This work extends and further validates the feasibility of this approach as the basis for automated non-contact classification of composite surface finish using image analysis.

  1. Preliminary field evaluation of high efficiency steel filters

    SciTech Connect

    Bergman, W.; Larsen, G.; Lopez, R.

    1995-02-01

    We have conducted an evaluation of two high efficiency steel filters in the exhaust of an uranium oxide grit blaster at the Y-12 Plant in Oak Ridge Tennessee. The filters were installed in a specially designed filter housing with a reverse air-pulse cleaning system for automatically cleaning the filters in-place. Previous tests conducted on the same filters and housing at LLNL under controlled conditions using Arizona road dust showed good cleanability with reverse air pulses. Two high efficiency steel filters, containing 64 pleated cartridge elements housed in the standard 2` x 2` x 1` HEPA frame, were evaluated in the filter test housing using a 1,000 cfm slip stream containing a high concentration of depleted uranium oxide dust. One filter had the pleated cartridges manufactured to our specifications by the Pall Corporation and the other by Memtec Corporation. Test results showed both filters had a rapid increase in pressure drop with time, and reverse air pulses could not decrease the pressure drop. We suspected moisture accumulation in the filters was the problem since there were heavy rains during the evaluations, and the pressure drop of the Memtec filter decreased dramatically after passing clean, dry air through the filter and after the filter sat idle for one week. Subsequent laboratory tests on a single filter cartridge confirmed that water accumulation in the filter was responsible for the increase in filter pressure drop and the inability to lower the pressure drop by reverse air pulses. No effort was made to identify the source of the water accumulation and correct the problem because the available funds were exhausted.

  2. Evaluation of a metal fuselage frame selectively reinforced with filamentary composites for space shuttle application

    NASA Technical Reports Server (NTRS)

    Oken, S.; Skoumal, D. E.; Straayer, J. W.

    1974-01-01

    The development of metal structures reinforced with filamentary composites as a weight saving feature of the space shuttle components is discussed. A frame was selected for study that was representative of the type of construction used in the bulk frames of the orbiter vehicle. Theoretical and experimental investigations were conducted. Component tests were performed to evaluate the critical details used in the designs and to provide credibility to the weight saving results. A model frame was constructed of the reinforced metal material to provide a final evaluation of the construction under realistic load conditions.

  3. A trapped field of 17.6 T in melt-processed, bulk Gd-Ba-Cu-O reinforced with shrink-fit steel

    NASA Astrophysics Data System (ADS)

    Durrell, J. H.; Dennis, A. R.; Jaroszynski, J.; Ainslie, M. D.; Palmer, K. G. B.; Shi, Y.-H.; Campbell, A. M.; Hull, J.; Strasik, M.; Hellstrom, E. E.; Cardwell, D. A.

    2014-08-01

    The ability of large-grain (RE)Ba2Cu3O7-δ ((RE)BCO; RE = rare earth) bulk superconductors to trap magnetic fields is determined by their critical current. With high trapped fields, however, bulk samples are subject to a relatively large Lorentz force, and their performance is limited primarily by their tensile strength. Consequently, sample reinforcement is the key to performance improvement in these technologically important materials. In this work, we report a trapped field of 17.6 T, the largest reported to date, in a stack of two silver-doped GdBCO superconducting bulk samples, each 25 mm in diameter, fabricated by top-seeded melt growth and reinforced with shrink-fit stainless steel. This sample preparation technique has the advantage of being relatively straightforward and inexpensive to implement, and offers the prospect of easy access to portable, high magnetic fields without any requirement for a sustaining current source.

  4. Do children prefer contingencies? An evaluation of the efficacy of and preference for contingent versus noncontingent social reinforcement during play.

    PubMed

    Luczynski, Kevin C; Hanley, Gregory P

    2009-01-01

    Discovering whether children prefer reinforcement via a contingency or independent of their behavior is important considering the ubiquity of these programmed schedules of reinforcement. The current study evaluated the efficacy of and preference for social interaction within differential reinforcement of alternative behavior (DRA) and noncontingent reinforcement (NCR) schedules with typically developing children. Results showed that 7 of the 8 children preferred the DRA schedule; 1 child was indifferent. We also demonstrated a high degree of procedural fidelity, which suggested that preference is influenced by the presence of a contingency under which reinforcement can be obtained. These findings are discussed in terms of (a) the selection of reinforcement schedules in practice, (b) variables that influence children's preferences for contexts, and (c) the selection of experimental control procedures when evaluating the effects of reinforcement.

  5. Evaluation of Alternate Stainless Steel Surface Passivation Methods

    SciTech Connect

    Clark, Elliot A.

    2005-05-31

    Stainless steel containers were assembled from parts passivated by four commercial vendors using three passivation methods. The performance of these containers in storing hydrogen isotope mixtures was evaluated by monitoring the composition of initially 50% H{sub 2} 50% D{sub 2} gas with time using mass spectroscopy. Commercial passivation by electropolishing appears to result in surfaces that do not catalyze hydrogen isotope exchange. This method of surface passivation shows promise for tritium service, and should be studied further and considered for use. On the other hand, nitric acid passivation and citric acid passivation may not result in surfaces that do not catalyze the isotope exchange reaction H{sub 2} + D{sub 2} {yields} 2HD. These methods should not be considered to replace the proprietary passivation processes of the two current vendors used at the Savannah River Site Tritium Facility.

  6. Fracture properties evaluation of stainless steel piping for LBB applications

    SciTech Connect

    Kim, Y.J.; Seok, C.S.; Chang, Y.S.

    1997-04-01

    The objective of this paper is to evaluate the material properties of SA312 TP316 and SA312 TP304 stainless steels and their associated welds manufactured for shutdown cooling line and safety injection line of nuclear generating stations. A total of 82 tensile tests and 58 fracture toughness tests on specimens taken from actual pipes were performed and the effect of various parameters such as the pipe size, the specimen orientation, the test temperature and the welding procedure on the material properties are discussed. Test results show that the effect of the test temperature on the fracture toughness was significant while the effects of the pipe size and the specimen orientation on the fracture toughness were negligible. The material properties of the GTAW weld metal was in general higher than those of the base metal.

  7. Development of reinforced in-situ anti-corrosion and wear Zn-TiO2/ZnTiB2 coatings on mild steel

    NASA Astrophysics Data System (ADS)

    Fayomi, O. S. I.; Popoola, A. P. I.; Kanyane, L. R.; Monyai, T.

    The development of reinforced composite coating has resulted into advanced engineering application because of the exceptional properties and increase service life. In this study, we investigated the effect of Solanum tuberosum (ST) as additive to Zn-TiO2/Zn-TiB2 sulphate bath coating by co-deposition route on mild steel. The structural characteristics and surface profile of the produced coating were examined using scanning electron microscope coupled with energy dispersive spectroscopy (SEM/EDS) and PosiTector (SPG) respectively. The anti-corrosion resistance activities of the deposited coatings were evaluated on a 101 AUTOLAB potentiostat/galvanostat device in a 3.65 wt% NaCl. The wear characteristics of the Zn-TiO2/TiB2 composite coatings were examined on a dry abrasive MTR-300 test rig. The thermal stability of the produced coatings was studied in an isothermal furnace at 600 °C and further characterized using a high tech optical microscope. From the results, it was found that Zn-TiO2/Zn-TiB2 were compassed with needle like pattern and perhaps a compact and distinctive structure was found with Zn-TiO2/Zn-TiB2/ST coatings. The microhardness deposited coatings increased with TiO2 and TiB2 interference in the plating bath, more significant improvement was noticed in the presence of natural bath-additive and the addition of ST lead to changes in the morphologies of the composite coatings. A massive decrease in corrosion and wear rate in all coatings produced as against the control sample was noticed. This was attributed to the dispersive strengthening activities of the embedded TiO2/TiB2/ST additive on the bath formed.

  8. Filament-reinforced metal composite pressure vessel evaluation and performance demonstration

    NASA Technical Reports Server (NTRS)

    Landes, R. E.

    1976-01-01

    Two different Kevlar-49 filament-reinforced metal sphere designs were developed, and six vessels of each type were fabricated and subjected to fatigue cycling, sustained loading, and hydrostatic burst. The 61 cm (24 inch) diameter Kevlar-49/cryoformed 301 stainless steel pressure vessels demonstrated the required pressure cycle capability, burst factor of safety, and a maximum pressure times volume divided by weight (pV/W) performance of 210 J/g (834 000 in-lb/lbm) at burst; this represented a 25 to 30% weight saving over the lightest weight comparable, 6A1-4V Ti, homogeneous pressure vessel. Both the Kevlar/stainless steel design and the 97 cm (38 inch) diameter Kevlar-49/2219-T62 aluminum sphere design demonstrated nonfragmentation and controlled failure mode features when pressure cycled to failure at operating pressure. When failure occurred during pressure cycling, the mode was localized leakage and not catastrophic. Kevlar/stainless steel vessels utilized a unique conical boss design, and Kevlar/aluminum vessels incorporated a tie-rod to carry port loads; both styles of polar fittings performed as designed during operational testing of the vessels.

  9. Evaluation of stainless steel cladding for use in current design LWRs. Final report

    SciTech Connect

    Strasser, A.; Santucci, J.; Lindquist, K.; Yario, W.; Stern, G.; Goldstein, L.; Joseph, L.

    1982-12-01

    The design of stainless steel-clad LWR fuel and its performance at steady-state, transient, and accident conditions were reviewed. The objective was to evaluate the potential benefits and disadvantages of substituting stainless steel-clad fuel for the currently used Zircaloy-clad fuel. For a large, modern PWR, the technology and the fuel-cycle costs of stainless steel- and Zircaloy-clad fuels were compared.

  10. Landmine-detection rats: an evaluation of reinforcement procedures under simulated operational conditions.

    PubMed

    Mahoney, Amanda; Lalonde, Kate; Edwards, Timothy; Cox, Christophe; Weetjens, Bart; Poling, Alan

    2014-05-01

    Because the location of landmines is initially unknown, it is impossible to arrange differential reinforcement for accurate detection of landmines by pouched rats working on actual minefields. Therefore, provision must be made for maintenance of accurate responses by an alternative reinforcement strategy. The present experiment evaluated a procedure in which a plastic bag containing 2,4,6-trinitrotoluene (TNT), the active ingredient in most landmines, was placed in contact with the ground in a disturbed area, then removed, to establish opportunities for reinforcement. Each of five rats continued to accurately detect landmines when extinction was arranged for landmine-detection responses and detections of TNT-contaminated locations were reinforced under a fixed-ratio 1 schedule. The results of this translational research study suggest that the TNT-contamination procedure is a viable option for arranging reinforcement opportunities for rats engaged in actual landmine-detection activities and the viability of this procedure is currently being evaluated on minefields in Angola and Mozambique.

  11. An In Vitro Comparative Evaluation of Fracture Resistance of Custom Made, Metal, Glass Fiber Reinforced and Carbon Reinforced Posts in Endodontically Treated Teeth

    PubMed Central

    Sonkesriya, Subhash; Olekar, Santosh T; Saravanan, V; Somasunderam, P; Chauhan, Rashmi Singh; Chaurasia, Vishwajit Rampratap

    2015-01-01

    Background: Posts are used to enhance crown buildup in pulpless teeth with destructed crown portion. Different types of post are used in endodontically treated teeth. The aim of the present in vitro study was to evaluate fracture resistance of custom made, metal, glass fiber reinforced and carbon reinforced posts in endodontically treated teeth. Materials and Methods: An in vitro study was carried out on extracted 40 human maxillary central incisor teeth, which was divided into four groups with 10 samples in each group with custom made, metal post, glass fiber reinforced, and carbon reinforced posts. The samples were decoronated at cemento-enamel junction and endodontically treated. Post space was prepared and selected posts were cemented. The composite cores were prepared at the height of 5 mm and samples mounted on acrylic blocks. Later fracture resistance to the compressive force of samples was measured using Universal Testing Machine. Results: The maximum resistance to the compressive force was observed in carbon reinforced and glass fiber reinforced posts compared others which is statistically significant (P > 0.001) and least was seen in custom fabricated post. Conclusion: It is concluded that carbon reinforced fiber post and glass fiber posts showed good fracture resistance compared to custom made and metal posts. PMID:26028904

  12. Effect of zinc phosphate chemical conversion coating on corrosion behaviour of mild steel in alkaline medium: protection of rebars in reinforced concrete.

    PubMed

    Simescu, Florica; Idrissi, Hassane

    2008-12-01

    We outline the ability of zinc phosphate coatings, obtained by chemical conversion, to protect mild steel rebars against localized corrosion, generated by chloride ions in alkaline media. The corrosion resistance of coated steel, in comparison with uncoated rebars and coated and uncoated steel rebars embedded in mortar, were evaluated by open-circuit potential, potentiodynamic polarization, cronoamperometry and electrochemical impedance spectroscopy. The coated surfaces were characterized by x-ray diffraction and scanning electron microscopy. First, coated mild steel rebars were studied in an alkaline solution with and without chloride simulating a concrete pore solution. The results showed that the slow dissolution of the coating generates hydroxyapatite Ca10(PO4)6(OH)2. After a long immersion, the coating became dense and provided an effective corrosion resistance compared with the mild steel rebar. Secondly, the coated and uncoated steel rebars embedded in mortar and immersed in chloride solution showed no corrosion or deterioration of the coated steel. Corrosion rate is considerably lowered by this phosphate coating.

  13. Evaluation of stainless steels for their resistance to intergranular corrosion

    NASA Astrophysics Data System (ADS)

    Korostelev, A. B.; Abramov, V. Ya.; Belous, V. N.

    1996-10-01

    Austenitic stainless steels are being considered as structural materials for first wall/blanket systems in the International Thermonuclear Reactor (ITER). The uniform corrosion of stainless steels in water is well known and is not a critical issue limiting its application for the ITER design. The sensitivity of austenitic steels to intergranular corrosion (IGC) can be estimated rather accurately by means of calculation methods, considering structure and chemical composition of steel. There is a maximum permissible carbon content level, at which sensitization of stainless steel is eliminated: K = Cr eff - αC eff, where α-thermodynamic coefficient, Cr eff-effective chromium content (regarding molybdenum influence) and C eff-effective carbon content (taking into account nickel and stabilizing elements). Corrosion tests for 16Cr11Ni3MoTi, 316L and 316LN steel specimens, irradiated up to 2 × 10 22 n/cm 2 fluence have proved the effectiveness of this calculation technique for determination of austenitic steels tendency to IGC. This method is directly applicable in austenitic stainless steel production and enables one to exclude complicated experiments on determination of stainless steel susceptibility to IGC.

  14. Evaluation of the reactor pressure vessel steels by positron annihilation

    NASA Astrophysics Data System (ADS)

    Slugeň, V.; Hein, H.; Sojak, S.; Simeg Veterníková, J.; Petriska, M.; Sabelová, V.; Pavúk, M.; Hinca, R.; Stacho, M.

    2013-11-01

    This paper presents a comparison of commercially used German and Russian reactor pressure vessel steels from the positron annihilation spectroscopy (PAS) point of view, having in mind knowledge obtained also from other techniques from the last decades. The second generation of Russian RPV steels seems to be fully comparable with German steels and their quality allows prolongation of NPP operating lifetime over projected 40 years. The embrittlement of CrMoV steels is relatively low due to effect of higher temperature which implies partial in situ annealing of primary microstructural point defects and therefore delays the degradation processes caused by neutron irradiation.

  15. An Evaluation of Simultaneous Presentation and Differential Reinforcement with Response Cost to Reduce Packing

    ERIC Educational Resources Information Center

    Buckley, Scott D.; Newchok, Debra K.

    2005-01-01

    We evaluated the effects of multiple treatment procedures, including simultaneous presentation of preferred foods, on the packing behavior of a 9-year-old girl with autism. A reversal design was used to assess the effects of differential reinforcement with response cost alone and with simultaneous presentation. In addition, simultaneous…

  16. The Role of Context in the Evaluation of Reinforcer Efficacy: Implications for the Preference Assessment Outcomes

    ERIC Educational Resources Information Center

    Mangum, Aphrodite; Fredrick, Laura; Pabico, Robert; Roane, Henry

    2012-01-01

    Highly preferred stimuli were identified via two preference assessments (based on Fisher et al., 1992), the second of which included stimuli that were ranked low in the initial preference assessment. Following the preference assessments, a subset of stimuli was evaluated as reinforcers in single- and concurrent-operant arrangements. In general,…

  17. Influencing Preschoolers' Free-Play Activity Preferences: An Evaluation of Satiation and Embedded Reinforcement

    ERIC Educational Resources Information Center

    Hanley, Gregory P.; Tiger, Jeffrey H.; Ingvarsson, Einar T.; Cammilleri, Anthony P.

    2009-01-01

    The present study evaluated the effects of classwide satiation and embedded reinforcement procedures on preschoolers' activity preferences during scheduled free-play periods. The goal of the study was to increase time allocation to originally nonpreferred, but important, activities (instructional zone, library, and science) while continuing to…

  18. Evaluation of the Rate of Problem Behavior Maintained by Different Reinforcers across Preference Assessments

    ERIC Educational Resources Information Center

    Kang, Soyeon; O'Reilly, Mark F.; Fragale, Christina L.; Aguilar, Jeannie M.; Rispoli, Mandy; Lang, Russell

    2011-01-01

    The rates of problem behavior maintained by different reinforcers were evaluated across 3 preference assessment formats (i.e., paired stimulus, multiple-stimulus without replacement, and free operant). The experimenter administered each assessment format 5 times in a random order for 7 children with developmental disabilities whose problem…

  19. The effect of zeolite and diatomite on the corrosion of reinforcement steel in 1 M HCl solution

    NASA Astrophysics Data System (ADS)

    Gerengi, Husnu; Kurtay, Mine; Durgun, Hatice

    The greatest disadvantage of reinforced concrete structures is the corrosion occurring in the reinforcement which, over time, causes a reduction in the reinforcement-concrete adherence and eventual sectional loss. The purpose of this study was to reveal the corrosion mechanism of ribbed reinforcement inside additive-free (reference), 20% zeolite-doped and 20% diatomite-doped concrete samples after exposure to 1 M HCl over 240 days. Electrochemical impedance spectroscopy (EIS) measurements were made every 10 days. Consequently, it was determined that the 20% zeolite-doped concrete samples had higher concrete and reinforcement resistance compared to the 20% diatomite-doped and the reference concrete, i.e. they exhibited less corrosion.

  20. Processing of Hybrid Structures Consisting of Al-Based Metal Matrix Composites (MMCs) With Metallic Reinforcement of Steel or Titanium

    DTIC Science & Technology

    2013-09-01

    titanium - and steel-based metals, high specific stiffness, high specific strength , tailorable coefficient of thermal...to titanium and steel- based metals, high specific stiffuess, high specific strength , tailorable coefficient of thermal expansion (CTE), and high ...hollow, periodic cellular structures are of interest due to their very high stiffness to weight ratio and high damage tolerance (e.g., very high

  1. Electrochemical Evaluation of Stainless Steels in Acidified Sodium Chloride Solutions

    NASA Technical Reports Server (NTRS)

    Calle, L. M.; MacDowell, L. G.; Vinje, R. D.

    2004-01-01

    This paper presents the results of an investigation in which several 300-series stainless steels (SS): AISI S30403 SS (UNS S30403), AISI 316L SS (UNS S31603), and AISI 317L SS (LINS S31703), as well as highly-alloyed: SS 254-SMO (UNS S32154), AL-6XN (N08367) and AL29-4C (UNS S44735), were evaluated using DC electrochemical techniques in three different electrolyte solutions. The solutions consisted of neutral 3.55% NaCl, 3.55% NaCl in 0.1N HCl, and 3.55% NaCl in 1.0N HCl. These solutions were chosen to simulate environments that are less, similar, and more aggressive, respectively, than the conditions at the Space Shuttle launch pads. The electrochemical test results were compared to atmospheric exposure data and evaluated for their ability to predict the long-term corrosion performance of the subject alloys. The electrochemical measurements for the six alloys indicated that the higher-alloyed SS 254-SMO, AL29-4C, and AL-6XN exhibited significantly higher resistance to localized corrosion than the 300-series SS. There was a correlation between the corrosion performance of the alloys during a two-year atmospheric exposure and the corrosion rates calculated from electrochemical (polarization resistance) measurements.

  2. Evaluation and control of environmental corrosion for aluminum and steel alloys

    NASA Technical Reports Server (NTRS)

    Franklin, D. B.

    1977-01-01

    Corrosion protection systems for aerospace application and the effects of surface treatments and methods of controlling stress corrosion are evaluated. Chromate pigmented systems were found to be most effective for aluminum alloys; zinc-rich coatings gave the greatest protection to steel alloys. Various steel and aluminum alloys are rated for stress corrosion resistance.

  3. Evaluation of Mand-Reinforcer Relations Following Long-Term Functional Communication Training

    PubMed Central

    Wacker, David P.; Harding, Jay W.; Berg, Wendy K.

    2008-01-01

    The investigators evaluated the relation between mands and positive reinforcement in the form of parent attention following long-term in-home treatment with functional communication training (FCT) for destructive behavior. Participants were 3 five-year-old children (2 boys, 1 girl) with developmental disabilities who manded to obtain different levels of parent attention (Phase 1). To determine whether the children's rate of manding would vary based on the amount of reinforcement received, the investigators adjusted the duration of parent attention (12 s vs. 30 s) provided to each child for manding on an FR1 schedule (Phase 2) using a reversal design. All 3 children changed their rates of manding so that each child maintained consistent levels of reinforcement across Phase 2 conditions. PMID:19043601

  4. Strength Evaluation and Failure Prediction of Short Carbon Fiber Reinforced Nylon Spur Gears by Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Hu, Zhong; Hossan, Mohammad Robiul

    2013-06-01

    In this paper, short carbon fiber reinforced nylon spur gear pairs, and steel and unreinforced nylon spur gear pairs have been selected for study and comparison. A 3D finite element model was developed to simulate the multi-axial stress-strain behaviors of the gear tooth. Failure prediction has been conducted based on the different failure criteria, including Tsai-Wu criterion. The tooth roots, where has stress concentration and the potential for failure, have been carefully investigated. The modeling results show that the short carbon fiber reinforced nylon gear fabricated by properly controlled injection molding processes can provide higher strength and better performance.

  5. Efficient Nondestructive Evaluation of Prototype Carbon Fiber Reinforced Structures

    NASA Technical Reports Server (NTRS)

    Russell, Samuel S.; Walker, James L.; Workman, Gary; Thom, Robert (Technical Monitor)

    2002-01-01

    Thermography inspection is an optic based technology that can reduce the time and cost required to inspect propellant tanks or aero structures fabricated from composite materials. Usually areas identified as suspect in the thermography inspection are examined with ultrasonic methods to better define depth, orientation and the nature of the anomaly. This combination of nondestructive evaluation techniques results in a rapid and comprehensive inspection of composite structures. Examples of application of this inspection philosophy to prototype will be presented. Methods organizing the inspection and evaluating the results will be considered.

  6. The effect of temperature and moisture on electrical resistance, strain sensitivity and crack sensitivity of steel fiber reinforced smart cement composite

    NASA Astrophysics Data System (ADS)

    Teomete, Egemen

    2016-07-01

    Earthquakes, material degradations and other environmental factors necessitate structural health monitoring (SHM). Metal foil strain gages used for SHM have low durability and low sensitivity. These factors motivated researchers to work on cement based strain sensors. In this study, the effects of temperature and moisture on electrical resistance, compressive and tensile strain gage factors (strain sensitivity) and crack sensitivity were determined for steel fiber reinforced cement based composite. A rapid increase of electrical resistance at 200 °C was observed due to damage occurring between cement paste, aggregates and steel fibers. The moisture—electrical resistance relationship was investigated. The specimens taken out of the cure were saturated with water and had a moisture content of 9.49%. The minimum electrical resistance was obtained at 9% moisture at which fiber-fiber and fiber-matrix contact was maximum and the water in micro voids was acting as an electrolyte, conducting electrons. The variation of compressive and tensile strain gage factors (strain sensitivities) and crack sensitivity were investigated by conducting compression, split tensile and notched bending tests with different moisture contents. The highest gage factor for the compression test was obtained at optimal moisture content, at which electrical resistance was minimum. The tensile strain gage factor for split tensile test and crack sensitivity increased by decreasing moisture content. The mechanisms between moisture content, electrical resistance, gage factors and crack sensitivity were elucidated. The relations of moisture content with electrical resistance, gage factors and crack sensitivities have been presented for the first time in this study for steel fiber reinforced cement based composites. The results are important for the development of self sensing cement based smart materials.

  7. Studies on Geometries for Inducing Homogeneous Magnetic Fields in the Application of Real Time Imaging of Steel Reinforcing Bars Embedded Within Pre-Stressed and Reinforced Concrete

    SciTech Connect

    Quek, S.; Benitez, D.; Gaydecki, P.; Torres, V.

    2006-03-06

    This paper addresses fundamental issues associated with the development of a real time inductive scanning system for non-destructive testing of pre-stressed and reinforced concrete. Simulated results has indicated that given a coil dimension of 300mmx300mmx2.5mm, 10mm rebars can be imaged down to a depth of 100 mm. Studies also indicate that the vertical component of the induced magnetic field is most favourable as it can be readily reconstructed to yield geometry and dimensional information pertaining to the rebar structure.

  8. Stress corrosion cracking evaluation of precipitation-hardening stainless steel

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1970-01-01

    Accelerated test program results show which precipitation hardening stainless steels are resistant to stress corrosion cracking. In certain cases stress corrosion susceptibility was found to be associated with the process procedure.

  9. Corrosion Evaluation of Carbon Steels Using Nondestructive Technique

    NASA Astrophysics Data System (ADS)

    Lee, Jin Kyung; Lee, Sang Pill; Lee, Moon Hee; Lee, Joon Hyun; Park, Jun Young

    Primary water stress corrosion crack (PWSCC) in the piping used at the nuclear power plant has been one of the major issues for the safety of plant. The major objective in this paper is to clarify the corrosion degree and damage by the PWSCC using nondestructive technique. The instrument of the tube typed reactor with the internal conditions of the temperature of 473K under pressure of 10 MPa was designed for corrosion of the material. The tensile specimens of the same material with the reactor were corroded in the reactor for evaluation of mechanical properties according to the corrosion. The corrosion of the specimen was maintained over one year, and an acoustic emission technique was applied to inspect the corrosion damage of the specimen periodically. A tensile test was performed for the corroded specimen, and then the elastic waves caused the deformation of the corroded specimen were analyzed. With the increase of the corrosion time the elastic waves generated in the specimen due to the tensile load showed a little difference, and these differences of the waves work as a cause of the change of acoustic emission (AE) parameters. The number of AE events at the beginning of the load increased with the corrosion time. AE parameters of amplitude and energy decreased as the corrosion times increased, while the level of duration time and count were increased with the corrosion periods. The velocity and attenuation of the elastic wave were also analyzed for the specimen, and these factors showed a close relation with the corrosion times. In addition, SEM and XRD analysis were performed to evaluate the damage behavior of the carbon steel due to corrosion.

  10. Clinical evaluation of bond failures and survival between mandibular canine-to-canine retainers made of flexible spiral wire and fiber-reinforced composite

    PubMed Central

    Sfondrini, Maria F.; Fraticelli, Danilo; Castellazzi, Linda; Gandini, Paola

    2014-01-01

    Objectives: The purpose of this longitudinal prospective randomized study was to evaluate the clinical reliability of two different types of postorthodontic treatment retainers: a silanised-treated glass fibers-reinforced resin composite (FRC) and a directly bonded multistranded stainless steel wire. The hypothesis of the study was to assess if significant differences are present between failure rates of the two retainers. Study Design: This prospective study was based on an assessment of 87 patients (35 men and 52 women),with an average age of 24 years who required a lower arch fixed retainer after orthodontic treatment. Patients were divided in two groups. Assignment was carried out with random tables. A follow-up examination was carried out once a month. The number, cause, and date of single bond adhesive failures were recorded for both retainers over 12 months. Teeth that were rebonded after failure were not included in the success analysis. Statistical analysis was performed by means of a Fisher’s exact test, Kaplan-Meier survival estimates, and log rank test. Results: Bond failure rate was significantly higher (P=0.0392) for multistranded metallic wire than for FRC. Conclusions: Glass fiber-reinforced resin composite retainers and multistranded metallic wires showed no significant difference in single bond failure rates over a one-year follow up. Key words:Fiber reinforced composite, fixed retention, multistranded wire, orthodontics, retainer, splint. PMID:24790714

  11. Mechanical characterization of a short fiber-reinforced polymer at room temperature: experimental setups evaluated by an optical measurement system

    NASA Astrophysics Data System (ADS)

    Röhrig, C.; Scheffer, T.; Diebels, S.

    2017-02-01

    Composite materials are of great interest for industrial applications because of their outstanding properties. Each composite material has its own characteristics due to the large number of possible combinations of matrix and filler. As a result of their compounding, composites usually show a complex material behavior. This work is focused on the experimental testing of a short fiber-reinforced thermoplastic composite at room temperature. The characteristic behavior of this material class is often based on a superposition of typical material effects. The predicted characteristic material properties such as elasto-plasticity, damage and anisotropy of the investigated material are obtained from results of cyclic uniaxial tensile tests at constant strain rate. Concerning the manufacturing process as well as industrial applications, the experimental investigations are extended to multiaxial loading situations. Therefore, the composite material is examined with a setup close to a deep-drawing process, the Nakajima test (Nakazima et al. in Study on the formability of steel sheets. Yawate Technical Report No. 264, pp 8517-8530, 1968). The evaluation of the experimental investigations is provided by an optical analysis system using a digital image correlation software. Finally, based on the results of the uniaxial tensile tests, a one-dimensional macroscopic model is introduced and first results of the simulation are provided.

  12. Evaluation of a Shape Memory Alloy Reinforced Annuloplasty Band for Minimally Invasive Mitral Valve Repair

    PubMed Central

    Purser, Molly F.; Richards, Andrew L.; Cook, Richard C.; Osborne, Jason A.; Cormier, Denis R.; Buckner, Gregory D.

    2013-01-01

    Purpose An in vitro study using explanted porcine hearts was conducted to evaluate a novel annuloplasty band, reinforced with a two-phase, shape memory alloy, designed specifically for minimally invasive mitral valve repair. Description In its rigid (austenitic) phase, this band provides the same mechanical properties as the commercial semi-rigid bands. In its compliant (martensitic) phase, this band is flexible enough to be introduced through an 8-mm trocar and is easily manipulated within the heart. Evaluation In its rigid phase, the prototype band displayed similar mechanical properties to commercially available semi-rigid rings. Dynamic flow testing demonstrated no statistical differences in the reduction of mitral valve regurgitation. In its flexible phase, the band was easily deployed through an 8-mm trocar, robotically manipulated and sutured into place. Conclusions Experimental results suggest that the shape memory alloy reinforced band could be a viable alternative to flexible and semi-rigid bands in minimally invasive mitral valve repair. PMID:19766827

  13. The experimental evaluation of FBG sensors for strain measurement of prestressed steel strand

    NASA Astrophysics Data System (ADS)

    Li, Enbang; Xi, Jiangtao; Chicharo, Joe F.; Liu, Tiegen; Li, Xin; Jiang, Junfeng; Li, Lina; Wang, Yunxin; Zhang, Yimo

    2005-02-01

    Multi-wire steel strands have been widely used in various prestressed concrete structures. In this study, experimental evaluation of fiber Bragg grating (FBG) sensors for strain measurements in a seven-wire prestressed steel strand has been carried out. An installation technique of FBG sensors has been developed to fulfill the special requirements of the prestressed steel strand. The experiment results show that fiber Bragg gratings can represent the overall stress of the prestressed steel strand without being affected by the specific structure of the strand when it is only fixed on one wire. It is also demonstrated that the maximum strain that the FBG sensor can measure is 6260 μɛ, while the prestressed steel strand usually endures the strain greater than 10000 μɛ. This means that an offset of about 4000 μɛ is necessary to measure the maximum strain that the strand could experience in its applications.

  14. Evaluation of the Steel Creek ecosystem in relation to the proposed restart of L reactor

    SciTech Connect

    Smith, M.H.; Sharitz, R.R.; Gladden, J.B.

    1981-10-01

    Information is presented on the following subjects: habitat and vegetation, the avifauna, semi-aquatic and terrestrial vertebrates, and aquatic communities of Steel Creek, species of special concern, and radiocesium in Steel Creek. Two main goals of the study were the compilation of a current inventory of the flora and fauna of the Steel Creek ecosystem and an assessment of the probable impacts of radionuclides, primarily /sup 137/Cs, that were released into Steel Creek during earlier reactor operations. Although a thorough evaluation of the impacts of the L reactor restart is impossible at this time, it is concluded that the effects on the Steel Creek ecosystem will be substantial if no mitigative measures are taken. (JGB)

  15. Evaluation of metal landing gear door assembly selectively reinforced with filamentary composite for space shuttle application

    NASA Technical Reports Server (NTRS)

    Kong, S. J.; Freeman, V. L.

    1972-01-01

    The development and evaluation of a main landing gear door for space shuttle applications are discussed. The door is constructed on composite materials using a rib-stiffened titanium panel selectively reinforced with boron/epoxy composite. A weight comparison between the hybrid design and the all-titanium baseline design showed a weight saving of approximately fifteen percent. Detailed descriptions of the door structure and method of manufacture are presented.

  16. Influence of fiber interconnections on the thermomechanical behavior of metal matrix composites consisting of Zn-Al alloy reinforced with steel fibers

    SciTech Connect

    Tao, L.; Delannay, F.

    1998-11-20

    Interconnected fiber networks presenting transverse isotropic symmetry with variable fiber interconnectivity were prepared by sintering assemblies of low carbon steel fibers. The strength and stiffness of these fiber preforms was found to increase very much when increasing sintering temperature or sintering time. Squeeze cast composites were prepared by infiltrating these preforms with alloy ZA8. Creep tests and tensile tests were carried out at 150 C. Both the creep strength and the back-flow strains at unloading drastically increase with increasing preform sintering temperature or time. Also thermal expansion is much affected by fiber interconnectivity. Especially, during cooling, the matrix dilatation strains brought about by thermal mismatches increase with increasing fiber interconnectivity. These results demonstrate that plastic and viscoplastic behaviors of network reinforced composites depend on the mechanical properties of the network as a whole.

  17. Evaluation of the wear properties of high interstitial stainless steels

    SciTech Connect

    Tylczak, J.H.; Rawers, J.C.; Alman, D.E.

    2007-04-01

    Adding carbon to high nitrogen steels increases interstitial concentrations over what can be obtained with nitrogen addition alone. This can results in an increase in hardness, strength, and wear resistance. The alloys produced for this study were all based on commercially available high-nitrogen Fe-18Cr-18Mn stainless steel. This study is the first significant wear study of these new high interstitial nitrogen-carbon stainless steel alloys. Wear tests included: scratch, pin-on-disk abrasion, dry sand/rubber wheel abrasion, impeller impact, and jet erosion. Increasing interstitial concentration increased strength and hardness and improved wear resistance under all test conditions. The results are discussed in terms of overall interstitial alloy concentration.

  18. Local hardening evaluation of carbon steels by using frequency sweeping excitation and spectrogram method

    NASA Astrophysics Data System (ADS)

    Tsuchida, Yuji; Kudo, Yuki; Enokizono, Masato

    2017-02-01

    This paper presents our proposed frequency sweeping excitation and spectrogram method (FSES method) by a magnetic sensor for non-destructive testing of hardened low carbon steels. This method can evaluate the magnetic properties of low carbon steels which were changed after induction heating treatment. It was examined by our proposed method that the degrees of yield strength of low carbon steels were varied depending on hardened conditions. Moreover, it was made clear that the maximum magnetic field strength, Hmax, derived from the measured B-H loops was very sensitive to the hardening if the surface of the samples were flat.

  19. Crack Propagation Resistance of α-Al2O3 Reinforced Pulsed Laser-Deposited Hydroxyapatite Coating on 316 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Bajpai, Shubhra; Gupta, Ankur; Pradhan, Siddhartha Kumar; Mandal, Tapendu; Balani, Kantesh

    2014-09-01

    Hydroxyapatite (HA) is a widely used bioceramic known for its chemical similarity with that of bone and teeth (Ca/P ratio of 1.67). But, owing to its extreme brittleness, α-Al2O3 is reinforced with HA and processed as a coating via pulsed laser deposition (PLD). Reinforcement of α-Al2O3 (50 wt.%) in HA via PLD on 316L steel substrate has shown modulus increase by 4% and hardness increase by 78%, and an improved adhesion strength of 14.2 N (improvement by 118%). Micro-scratching has shown an increase in the coefficient-of-friction from 0.05 (pure HA) to 0.17 (with 50 wt.% Al2O3) with enhancement in the crack propagation resistance (CPR) up to 4.5 times. Strong adherence of PLD HA-Al2O3 coatings (~4.5 times than that of HA coating) is attributed to efficient release of stored tensile strain energy (~17 × 10-3 J/m2) in HA-Al2O3 composites, making it a potential damage-tolerant bone-replacement surface coating.

  20. In situ measurement of Cl- concentrations and pH at the reinforcing steel/concrete interface by combination sensors.

    PubMed

    Du, Rong-Gui; Hu, Rong-Gang; Huang, Ruo-Shuang; Lin, Chang-Jian

    2006-05-01

    This paper presents an in situ, nondestructive method of monitoring Cl- concentrations and pH values at the steel/concrete interface. The Ag/AgCl electrodes prepared by the electrochemical anodization and the Ir/IrO2 electrodes prepared by thermal oxidation in carbonate served as Cl- concentration and pH sensors, respectively. The potentiometric response of the Ag/AgCl electrode to the logarithm of Cl- concentrations ranging from 1 x 10(-4) to 2 M in saturated Ca(OH)2 solution simulating the inner electrolytic medium of concrete shows good linearity. The Ir/IrO2 electrode also exhibits an ideal Nernstian response in the range of pH 1-14. The Ag/AgCl and Ir/IrO2 electrodes were combined into a multiplex Cl-/pH sensor, and the sensor was embedded in concrete close to the steel/concrete interface to realize an in situ and long-term measurement of Cl- concentrations and pH values. The results indicate that the combined sensor is robust and sensitive enough to in situ measure Cl- concentrations and pH quantitatively at the steel/concrete interface, which is of indispensable importance to the study of corrosion and protection of the steel in concrete.

  1. Evaluation of tensile strength of hybrid fiber (jute/gongura) reinforced hybrid polymer matrix composites

    NASA Astrophysics Data System (ADS)

    Venkatachalam, G.; Gautham Shankar, A.; Vijay, Kumar V.; Chandan, Byral R.; Prabaharan, G. P.; Raghav, Dasarath

    2015-07-01

    The polymer matrix composites attract many industrial applications due to its light weight, less cost and easy for manufacturing. In this paper, an attempt is made to prepare and study of the tensile strength of hybrid (two natural) fibers reinforced hybrid (Natural + Synthetic) polymer matrix composites. The samples were prepared with hybrid reinforcement consists of two different fibers such as jute and Gongura and hybrid polymer consists of polyester and cashew nut shell resins. The hybrid composites tensile strength is evaluated to study the influence of various fiber parameters on mechanical strength. The parameters considered here are the duration of fiber treatment, the concentration of alkali in fiber treatment and nature of fiber content in the composites.

  2. Nondestructive evaluation of residual stress in low-carbon steel

    NASA Technical Reports Server (NTRS)

    Salama, K.

    1984-01-01

    The effects of the preferred orientation on the temperature dependence of ultrasonic velocity in low carbon steels are investigated. The sensitivity of the acousto-elastic constant to changes in microstructure is assessed as well as the possibility of determining some mechanical properties of a material by measuring the acousto-elastic constant.

  3. An evaluation of resistance to change with unconditioned and conditioned reinforcers.

    PubMed

    Vargo, Kristina K; Ringdahl, Joel E

    2015-09-01

    Several reinforcer-related variables influence a response's resistance to change (Nevin, 1974). Reinforcer type (i.e., conditioned or unconditioned) is a reinforcer-related variable that has not been studied with humans but may have clinical implications. In Experiment 1, we identified unconditioned and conditioned reinforcers of equal preference. In Experiments 2, 3, and 4, we reinforced participants' behavior during a baseline phase using a multiple variable-interval (VI) 30-s VI 30-s schedule with either conditioned (i.e., token) or unconditioned (i.e., food; one type of reinforcement in each component) reinforcement. After equal reinforcement rates across components, we introduced a disruptor. Results of Experiments 2 and 3 showed that behaviors were more resistant to extinction and distraction, respectively, with conditioned than with unconditioned reinforcers. Results of Experiment 4, however, showed that when prefeeding disrupted responding, behaviors were more resistant to change with unconditioned reinforcers than with conditioned reinforcers.

  4. Clinical evaluation of fiber-reinforced composite crowns in pulp-treated primary molars: 12-month results

    PubMed Central

    Mohammadzadeh, Zahra; Parisay, Iman; Mehrabkhani, Maryam; Madani, Azam Sadat; Mazhari, Fatemeh

    2016-01-01

    Objective: The aim of this study was to evaluate the clinical performance of tooth-colored fiber-reinforced composite (FRC) crowns in pulp-treated second primary mandibular teeth. Materials and Methods: This split-mouth randomized, clinical trial performed on 67 children between 3 and 6 years with two primary mandibular second molars requiring pulp treatment. After pulp therapy, the teeth were randomly assigned to stainless steel crown (SSC) or FRC crown groups. Modified United States Public Health Service criteria were used to evaluate marginal integrity, marginal discoloration, and secondary caries in FRC crowns at intervals of 3, 6, and 12 months. Retention rate and gingival health were also compared between the two groups. The data were analyzed using Friedman, Cochran, and McNemar's tests at a significance level of 0.05. Results: Intact marginal integrity in FRC crowns at 3, 6, and 12 months were 93.2%, 94.8%, and 94.2%, respectively. Marginal discoloration and secondary caries were not found at any of the FRC crowns. The retention rates of the FRC crowns were 100%, 98.3%, and 89.7% at 3, 6 and 12 months, respectively, whereas all the SSCs were found to be present and intact after 12 months (P = 0.016). There was no statistically significant difference between the two groups in gingival health. Conclusion: According to the results of this study, it seems that when esthetics is a concern, in cooperative patients with good oral hygiene, FRC crowns can be considered as a valuable procedure. PMID:28042269

  5. In Vitro Evaluation of Carbon-Nanotube-Reinforced Bioprintable Vascular Conduits

    PubMed Central

    Dolati, Farzaneh; Yu, Yin; Zhang, Yahui; De Jesus, Aribet M; Sander, Edward A.; Ozbolat, Ibrahim T.

    2014-01-01

    Vascularization of thick engineered tissue and organ constructs like the heart, liver, pancreas or kidney remains a major challenge in tissue engineering. Vascularization is needed to supply oxygen and nutrients and remove waste in living tissues and organs through a network that should possess high perfusion ability and significant mechanical strength and elasticity. In this paper, we introduce a fabrication process to print vascular conduits directly, where conduits were reinforced with carbon-nanotubes (CNTs) to enhance their mechanical properties and bioprintability. In vitro evaluation of printed conduits encapsulated in human coronary artery smooth muscle cells (HCASMCs) was performed to characterize the effects of CNT reinforcement on the mechanical, perfusion and biological performance of the conduits. Perfusion and permeability, cell viability, extracellular matrix formation and tissue histology were assessed and discussed, and it was concluded that CNT-reinforced vascular conduits provided a foundation for mechanically appealing constructs where CNTs could be replaced with natural protein nanofibers for further integration of these conduits in large-scale tissue fabrication. PMID:24632802

  6. In vitro evaluation of carbon-nanotube-reinforced bioprintable vascular conduits

    NASA Astrophysics Data System (ADS)

    Dolati, Farzaneh; Yu, Yin; Zhang, Yahui; De Jesus, Aribet M.; Sander, Edward A.; Ozbolat, Ibrahim T.

    2014-04-01

    Vascularization of thick engineered tissue and organ constructs like the heart, liver, pancreas or kidney remains a major challenge in tissue engineering. Vascularization is needed to supply oxygen and nutrients and remove waste in living tissues and organs through a network that should possess high perfusion ability and significant mechanical strength and elasticity. In this paper, we introduce a fabrication process to print vascular conduits directly, where conduits were reinforced with carbon nanotubes (CNTs) to enhance their mechanical properties and bioprintability. In vitro evaluation of printed conduits encapsulated in human coronary artery smooth muscle cells was performed to characterize the effects of CNT reinforcement on the mechanical, perfusion and biological performance of the conduits. Perfusion and permeability, cell viability, extracellular matrix formation and tissue histology were assessed and discussed, and it was concluded that CNT-reinforced vascular conduits provided a foundation for mechanically appealing constructs where CNTs could be replaced with natural protein nanofibers for further integration of these conduits in large-scale tissue fabrication.

  7. Microstructure of arc brazed and diffusion bonded joints of stainless steel and SiC reinforced aluminum matrix composite

    NASA Astrophysics Data System (ADS)

    Elßner, M.; Weis, S.; Grund, T.; Wagner, G.; Habisch, S.; Mayr, P.

    2016-03-01

    Joint interfaces of aluminum and stainless steel often exhibit intermetallics of Al-Fe, which limit the joint strength. In order to reduce these brittle phases in joints of aluminum matrix composites (AMC) and stainless steel, diffusion bonding and arc brazing are used. Due to the absence of a liquid phase, diffusion welding can reduce the formation of these critical in- termetallics. For this joining technique, the influence of surface treatments and adjusted time- temperature-surface-pressure-regimes is investigated. On the other hand, arc brazing offers the advantage to combine a localized heat input with the application of a low melting filler and was conducted using the system Al-Ag-Cu. Results of the joining tests using both approaches are described and discussed with regard to the microstructure of the joints and the interfaces.

  8. Evaluation of in-situ deformation experiments of TRIP steel

    NASA Astrophysics Data System (ADS)

    Procházka, J.; Kučerová, L.; Bystrianský, M.

    2017-02-01

    The paper reports on the behaviour of low alloyed TRIP (transformation induced plasticity) steel with Niobium during tensile test. The structures were analysed using in-situ tensile testing coupled with electron backscattering diffraction (EBSD) analysis carried out in scanning electron microscope (SEM). Steel specimens were of same chemical composition; however three different annealing temperatures, 800 °C, 850 °C and 950 °C, were applied to the material during the heat treatment. The treatment consisted of annealing for 20 minutes in the furnace; cooling in salt bath after the heating and holding at 425 °C for 20 minutes for all the samples. Untreated bar was used as reference material. Flat samples for deformation stage were cut out of the heat-treated bars. In situ documentation of microstructure and crystallography development were carried out during the deformation experiments. High deformation lead to significant degradation of EBSD signal.

  9. Milling and Drilling Evaluation of Stainless Steel Powder Metallurgy Alloys

    SciTech Connect

    Lazarus, L.J.

    2001-12-10

    Near-net-shape components can be made with powder metallurgy (PM) processes. Only secondary operations such as milling and drilling are required to complete these components. In the past and currently production components are made from powder metallurgy (PM) stainless steel alloys. process engineers are unfamiliar with the difference in machining properties of wrought versus PM alloys and have had to make parts to develop the machining parameters. Design engineers are not generally aware that some PM alloy variations can be furnished with machining additives that greatly increase tool life. Specimens from a MANTEC PM alloy property study were made available. This study was undertaken to determine the machining properties of a number of stainless steel wrought and PM alloys under the same conditions so that comparisons of their machining properties could be made and relative tool life determined.

  10. Evaluation of steel slag coarse aggregate in hot mix asphalt concrete.

    PubMed

    Ahmedzade, Perviz; Sengoz, Burak

    2009-06-15

    This paper presents the influences of the utilization of steel slag as a coarse aggregate on the properties of hot mix asphalt. Four different asphalt mixtures containing two types of asphalt cement (AC-5; AC-10) and coarse aggregate (limestone; steel slag) were used to prepare Marshall specimens and to determine optimum bitumen content. Mechanical characteristics of all mixtures were evaluated by Marshall stability, indirect tensile stiffness modulus, creep stiffness, and indirect tensile strength tests. The electrical sensitivity of the specimens were also investigated in accordance with ASTM D257-91. It was observed that steel slag used as a coarse aggregate improved the mechanical properties of asphalt mixtures. Moreover, volume resistivity values demonstrated that the electrical conductivity of steel slag mixtures were better than that of limestone mixtures.

  11. Evaluation of silver-coated stainless steel bipolar plates for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Huang, Ing-Bang

    In this study, computer-aided design and manufacturing (CAD/CAM) technology were applied to develop and produce stainless steel bipolar plates for DMFC (direct methanol fuel cell). Effect of surface modification on the cell performance of DMFC was investigated. Surface modifications of the stainless steel bipolar plates were made by the electroless plating method. A DMFC consisting of silver coated stainless steel as anode and uncoated stainless steel as cathode was assembled and evaluated. The methanol crossover rate (R c) of the proton exchange membrane (PEM) was decreased by about 52.8%, the efficiency (E f) of DMFC increased about 7.1% and amounts of methanol electro-oxidation at the cathode side (M co) were decreased by about 28.6%, as compared to uncoated anode polar plates. These measurements were determined by the transient current and mathematical analysis.

  12. Stress corrosion cracking evaluation of martensitic precipitation hardening stainless steels

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The resistance of the martensitic precipitation hardening stainless steels PH13-8Mo, 15-5PH, and 17-4PH to stress corrosion cracking was investigated. Round tensile and c-ring type specimens taken from several heats of the three alloys were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, to salt spray, and to a seacoast environment. The results indicate that 15-5PH is highly resistant to stress corrosion cracking in conditions H1000 and H1050 and is moderately resistant in condition H900. The stress corrosion cracking resistance of PH13-8Mo and 17-4PH stainless steels in conditions H1000 and H1050 was sensitive to mill heats and ranged from low to high among the several heats included in the tests. Based on a comparison with data from seacoast environmental tests, it is apparent that alternate immersion in 3.5 percent salt water is not a suitable medium for accelerated stress corrosion testing of these pH stainless steels.

  13. COMMERCIAL SUPERSONIC TRANSPORT PROGRAM. PHASE II-C REPORT. HIGH STRENGTH STEEL EVALUATION FOR SUPERSONIC AIRCRAFT.

    DTIC Science & Technology

    following types of tests: tensile, precracked charpy impact , plane strain fracture toughness, stress corrosion, hydrogen embrittlement susceptibility...heats of 300M were evaluated to provide high strength steel alloy selection data for heavy section aircraft components. The evaluation included the

  14. Evaluating the influence of residual stresses on the magnetic properties of electrical steel

    SciTech Connect

    Korzunin, G.S.; Chistyakov, V.K.

    1995-04-01

    The method described for evaluating the influence of residual stresses on the magnetic properties of coiled cold-rolled electrical steel consists in measuring the ratio of the magnetic characteristics that are and are not sensitive to the effect of residual stresses. The evaluation is made from the value of the ratio, using the correlations between its value and the magnetic characteristics studied.

  15. Nondestructive Evaluation of Carbon Fiber Reinforced Polymer Composites Using Reflective Terahertz Imaging.

    PubMed

    Zhang, Jin; Li, Wei; Cui, Hong-Liang; Shi, Changcheng; Han, Xiaohui; Ma, Yuting; Chen, Jiandong; Chang, Tianying; Wei, Dongshan; Zhang, Yumin; Zhou, Yufeng

    2016-06-14

    Terahertz (THz) time-domain spectroscopy (TDS) imaging is considered a nondestructive evaluation method for composite materials used for examining various defects of carbon fiber reinforced polymer (CFRP) composites and fire-retardant coatings in the reflective imaging modality. We demonstrate that hidden defects simulated by Teflon artificial inserts are imaged clearly in the perpendicular polarization mode. The THz TDS technique is also used to measure the thickness of thin fire-retardant coatings on CFRP composites with a typical accuracy of about 10 micrometers. In addition, coating debonding is successfully imaged based on the time-delay difference of the time-domain waveforms between closely adhered and debonded sample locations.

  16. Evaluation of the rate of problem behavior maintained by different reinforcers across preference assessments.

    PubMed

    Kang, Soyeon; O'Reilly, Mark F; Fragale, Christina L; Aguilar, Jeannie M; Rispoli, Mandy; Lang, Russell

    2011-01-01

    The rates of problem behavior maintained by different reinforcers were evaluated across 3 preference assessment formats (i.e., paired stimulus, multiple-stimulus without replacement, and free operant). The experimenter administered each assessment format 5 times in a random order for 7 children with developmental disabilities whose problem behavior was maintained by attention, tangible items, or escape. Results demonstrated different effects related to the occurrence of problem behavior, suggesting an interaction between function of problem behavior and assessment format. Implications for practitioners are discussed with respect to assessing preferences of individuals with developmental disabilities who exhibit problem behavior.

  17. EVALUATION OF THE RATE OF PROBLEM BEHAVIOR MAINTAINED BY DIFFERENT REINFORCERS ACROSS PREFERENCE ASSESSMENTS

    PubMed Central

    Kang, Soyeon; O'Reilly, Mark F; Fragale, Christina L; Aguilar, Jeannie M; Rispoli, Mandy; Lang, Russell

    2011-01-01

    The rates of problem behavior maintained by different reinforcers were evaluated across 3 preference assessment formats (i.e., paired stimulus, multiple-stimulus without replacement, and free operant). The experimenter administered each assessment format 5 times in a random order for 7 children with developmental disabilities whose problem behavior was maintained by attention, tangible items, or escape. Results demonstrated different effects related to the occurrence of problem behavior, suggesting an interaction between function of problem behavior and assessment format. Implications for practitioners are discussed with respect to assessing preferences of individuals with developmental disabilities who exhibit problem behavior. PMID:22219533

  18. Full-scale Experimental Evaluation of Partially Grouted, Minimally Reinforced Concrete Masonry Unit (CMU) Walls Against Blast Demands

    DTIC Science & Technology

    2010-11-30

    research under this program was “to develop blast protection data for concrete building products (e.g. insulated form walls , precast /prestressed panels...AFRL-RX-TY-TR-2011-0025-01 FULL-SCALE EXPERIMENTAL EVALUATION OF PARTIALLY GROUTED, MINIMALLY REINFORCED CONCRETE MASONRY UNIT (CMU) WALLS ...Minimally Reinforced Concrete Masonry Unit (CMU) Walls Against Blast Demands FA8903-08-D-8768-0002 0909999F GOVT F0 QF101000 # Davidson, James S

  19. Evaluation of a metal shear web selectively reinforced with filamentary composites for space shuttle application

    NASA Technical Reports Server (NTRS)

    Laakso, J. H.; Straayer, J. W.

    1974-01-01

    A final program summary is reported for test and evaluation activities that were conducted for space shuttle web selection. Large scale advanced composite shear web components were tested and analyzed to evaluate application of advanced composite shear web construction to a space shuttle orbiter thrust structure. The shear web design concept consisted of a titanium-clad + or - 45 deg boron/epoxy web laminate stiffened with vertical boron-epoxy reinforced aluminum stiffeners and logitudinal aluminum stiffening. The design concept was evaluated to be efficient and practical for the application that was studied. Because of the effects of buckling deflections, a requirement is identified for shear buckling resistant design to maximize the efficiency of highly-loaded advanced composite shear webs.

  20. Monitoring the fatigue state of steel by evaluating the quasistatic and dynamic magnetic behavior

    SciTech Connect

    Vandenbossche, Lode; Dupre, Luc; Melkebeek, Jan

    2005-05-15

    For the evaluation of fatigue damage progression the application of quasistatic and dynamic magnetic measurements combined with the Preisach hysteresis model and the statistical loss theory is investigated. Throughout the fatigue lifetime hysteresis and excess magnetic behavior, both known to be sensitive to microstructural variations, are monitored. The magnetic evaluation results for fatigue tests executed on two steels depend on their initial microstructure and chemical composition. In addition the effect of low stress amplitude cyclic loading on the magnetic properties of electrical steel is investigated: after 1000 cycles the excess losses are slightly decreased, while hysteresis properties stay invariant.

  1. Evaluation of High Temperature Properties and Microstructural Characterization of Resistance Spot Welded Steel Lap Shear Joints

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Anil Kumar, V.; Panicker, Paul G.

    2016-02-01

    Joining of thin sheets (0.5 mm) of stainless steel 304 and 17-4PH through resistance spot welding is highly challenging especially when joint is used for high temperature applications. Various combinations of stainless steel sheets of thickness 0.5 mm are spot welded and tested at room temperature as well as at high temperatures (800 K, 1,000 K, 1,200 K). Parent metal as well as spot welded joints are tested and characterized. It is observed that joint strength of 17-4PH steel is highest and then dissimilar steel joint of 17-4PH with SS-304 is moderate and of SS-304 is lowest at all the temperatures. Joint strength of 17-4PH steel is found to be >80% of parent metal properties up to 1,000 K then drastic reduction in strength is noted at 1,200 K. Gradual reduction in strength of SS-304 joint with increase in temperature from 800 to 1,200 K is noted. At 1,200 K, joint strength of all combinations of joints is found to be nearly same. Microstructural evaluation of weld nugget after testing at different temperatures shows presence of tempered martensite in 17-4PH containing welds and homogenized structure in stainless steel 304 weld.

  2. Fracture toughness evaluation of high-strength cold-drawn eutectoid steel wires used in wire ropes

    NASA Astrophysics Data System (ADS)

    Pourladian, Bamdad

    High carbon (eutectoid) steel wires are used in many modern engineering applications which require high strength and durability. The most demanding applications are those for wire ropes, tire reinforcements, engine valve springs, and structural strands used for long span cable stayed bridges. In this study, a test method based on Linear Elastic Fracture Mechanics (LEFM) was used to evaluate fracture toughness, KC, for various grades of wire which were of 0.072″ nominal diameter. An extensive review of literature on mechanical behavior of wire ropes is presented. Also a very thorough review of technical literature on the applications of LEFM in high strength rods and wires is provided. Various stress intensity factor solutions (K-solutions) are evaluated and compared. The most applicable K-solutions for application in KC determination in circular rods and wires with semi-elliptical surface cracks are recommended. Plane-stress K-solutions for straight-edge surface cracks in 0.072″ diameter steel wire were also developed by a 3D FEA model. An experimental fracture toughness test procedure based on principles of LEFM is described in detail. Experimental tensile fracture data is presented for 285 pre-cracked fracture samples. SEM fractographs documenting fracture surface topography of various fracture modes are described and characterized. For each wire grade and condition an average value of KC was determined. Statistical treatment of data and 90% confidence intervals are also provided. Average KC values ranged from 52Ksiin to 60Ksiin for wires ranging in tensile strength from 289 Ksi to 336 Ksi. Delamination toughening phenomenon was observed in some wire fracture samples and documented. As high as 60% increase in KC value was observed for some delaminated wires. The effect of crack aspect ratio in semi-elliptical cracks was considered and found to be very significant.

  3. Non-vacuum sintering process of WC/W2C reinforced Ni-based coating on steel

    NASA Astrophysics Data System (ADS)

    Lyu, Yezhe; Sun, Yufu; Yang, Yong

    2016-03-01

    Ni-based composite coatings containing varied contents of tungsten carbides on low carbon steel were fabricated. Effects of sintering temperature and tungsten carbides contents on the surface, interface, microstructure and wear resistance of the coatings were investigated using scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, Vickers microhardness tester, bulk hardness tester and pin-on-disc tribometer. The results indicated that with appropriate sintering temperature (1230 °C), smooth coating surfaces can be achieved. Favorable interfaces about 200 μm can be got that both the chemical composition and property of the interfacial region showed gradual transitions from the substrates to the coatings. Microstructure of the coatings consists of tungsten carbides and M7C3/M23C6 in the matrix. With excessive sintering temperature, tungsten carbides tend to dissolve. Ni-based coatings containing tungsten carbides showed much higher level of bulk hardness and wear resistance than ISO Fe360A and ASTM 1566 steels. With increasing contents of tungsten carbides from 25% to 40%, bulk hardness of Ni-based coatings gradually increased. Ni-based coating with 35% tungsten carbides performed the best wear resistance.

  4. Behavior of Partially Restrained Reinforced Concrete Slabs.

    DTIC Science & Technology

    1986-09-01

    Experimental Deflections and Coupling Forces. ........ 72 3.4 Method of Approximating Support Rotations . . . 76 3.5 Free-Body Diagram Used in Computing...common types of structural elements. Slabs are found in practically every type of structural system, ’ whether steel or concrete, single -story or...Because of the nature of reinforced concrete slabs, accurate evaluations of stresses, strains, and deflections are difficult to make by elasticity

  5. Nondestructive evaluation of stresses within AISI stainless steel 304 material -- A magnetometric approach

    SciTech Connect

    Manglik, V.K.; Vaghmare, R.; Modi, H.M.

    1995-12-31

    Stainless steel is widely used industrial material and also used in fabrication of satellite components. The use of optimum section of components calls for Non-Destructive Evaluation of structure to avoid catastrophic failures which are predominantly due to the high stress level. The effect of cold working and/or stress on the magnetic properties of stainless steel was discussed in the past. An attempt is made in present work to correlate the induced magnetic flux density in stainless steel AISI-304 with the stress level. In the present work, various samples of stainless steel were prepared for experiment after confirming the material belongs to AISI-304 by detailed chemical and physical analysis. These samples were also heat treated at 1,066 deg. C. to eliminate presence of initial stresses and obtain austenitic structure. Stresses in identical samples were generated by torsional deformation and induced magnetic flux density were measured in a very well configured test set up which has the resolution of 1 nT (nano-tesla). Finally, a correlation is presented between the induced magnetic flux density and stress level which could be very helpful tool in non-destructive evaluation of stresses in stainless steel AISI-304.

  6. Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag--An overview.

    PubMed

    Song, Ha-Won; Saraswathy, Velu

    2006-11-16

    The partial replacement of clinker, the main constituent of ordinary Portland cement by pozzolanic or latent hydraulic industrial by-products such as ground granulated blast furnace slag (GGBFS), effectively lowers the cost of cement by saving energy in the production process. It also reduces CO2 emissions from the cement plant and offers a low priced solution to the environmental problem of depositing industrial wastes. The utilization of GGBFS as partial replacement of Portland cement takes advantage of economic, technical and environmental benefits of this material. Recently offshore, coastal and marine concrete structures were constructed using GGBFS concrete because high volume of GGBFS can contribute to the reduction of chloride ingress. In this paper, the influence of using GGBFS in reinforced concrete structures from the durability aspects such as chloride ingress and corrosion resistance, long term durability, microstructure and porosity of GGBFS concrete has been reviewed and discussed.

  7. The effect of the electrochemical chloride extraction treatment on steel-reinforced mortar. Part II: Microstructural characterization

    SciTech Connect

    Marcotte, T.D.; Hansson, C.M.; Hope, B.B.

    1999-10-01

    A study has been made of the changes in cement composition and microstructures resulting from electrochemical chloride extraction applied to mortar samples in which the chlorides were added with the mixing water, ingressed by ponding with an NaCl solution, or both. After exposure for 1 year, specimens with and without chlorides were subjected to an electrochemical chloride extraction treatment. Microstructural analyses of fracture surfaces through the steel/mortar interface revealed a significant alteration of the cementitious phases. In untreated samples, calcium-silicon-rich phases consistent with Types I and II calcium silicate hydrate were observed. After the extraction treatment, these phases were not detectable and instead, sodium-rich, iron-rich, and calcium-aluminum-rich phases were observed.

  8. The Application of Conjugate Reinforcement Techniques to Evaluate Student Preference for Alternate Media. Special Report Number 742.

    ERIC Educational Resources Information Center

    Winchell, Walter H.

    Research evaluated captioned educational films for the deaf for possible use in classes with normal hearing slow learners. Specifically, the project sought to determine the effects of captioning on attention, vocabulary level and reading ability, using conjugate reinforcement as an evaluation procedure. The results indicated that, under certain…

  9. An evaluation of response cost in the treatment of inappropriate vocalizations maintained by automatic reinforcement.

    PubMed

    Falcomata, Terry S; Roane, Henry S; Hovanetz, Alyson N; Kettering, Tracy L; Keeney, Kris M

    2004-01-01

    In the current study, we examined the utility of a procedure consisting of noncontingent reinforcement with and without response cost in the treatment of inappropriate vocalizations maintained by automatic reinforcement. Results are discussed in terms of examining the variables that contribute to the effectiveness of response cost as treatment for problem behavior maintained by automatic reinforcement.

  10. Single-Case Evaluation of a Negative Reinforcement Toilet Training Intervention

    ERIC Educational Resources Information Center

    Luiselli, James K.

    2007-01-01

    A negative reinforcement intervention was used to toilet train a child with multiple disabilities. The child appeared to actively withhold urinating in the toilet and was unresponsive to two positive reinforcement training programs. Negative reinforcement required that the child remain in the bathroom during toileting opportunities until he…

  11. Electrophoretic co-deposition of polyvinyl alcohol (PVA) reinforced alginate-Bioglass® composite coating on stainless steel: mechanical properties and in-vitro bioactivity assessment.

    PubMed

    Chen, Qiang; Cabanas-Polo, Sandra; Goudouri, Ourania-Menti; Boccaccini, Aldo R

    2014-07-01

    PVA reinforced alginate-bioactive glass (BG) composite coatings were produced on stainless steel by a single step electrophoretic deposition (EPD) process. The present paper discusses the co-deposition mechanism of the three components and presents a summary of the relevant properties of the composite coatings deposited from suspensions with different PVA concentrations. Homogeneous composite coatings with compact microstructure and increased thickness, i.e. as high as 10 μm, were observed by scanning electron microscopy (SEM). The surface roughness of coatings with different PVA contents was slightly increased, while a significant increase of water contact angles due to PVA addition was detected and discussed. Improved adhesion strength of coatings containing different amounts of PVA was quantitatively and qualitatively confirmed by pull-off adhesion and cycled bending tests, respectively. In-vitro bioactivity tests were performed in simulated body fluid (SBF) for 0.5, 1, 2, 4, 7, and 14 days, respectively. The decomposition rate of the coatings was reduced with PVA content, and rapid hydroxyapatite forming ability of the composite coatings in SBF was confirmed by FTIR and XRD analyses. According to the results of this study, composite alginate-Bioglass® bioactive coatings combined with PVA are proposed as promising candidates for dental and orthopedic applications.

  12. EVALUATING THE POTENTIAL EFFICACY OF AN ANTIMICROBIAL-CONTAINING SEALANT ON DUCT LINER AND GALVANIZED STEEL

    EPA Science Inventory

    The article gives results of an evaluation of the potential efficacy of an antimicrobial-containing sealant on fibrous-glass duct liner (FGDL) and galvanized steel (GS) as used in heating, ventilating, and air-conditioning (HVAC) systems. HVAC systems become dirty to various degr...

  13. Evaluation of Oxidation and Hydrogen Permeation of Al Containing Duplex Stainless Steels

    SciTech Connect

    Adams, Thad M.; Korinko, Paul; Duncan, Andrew

    2005-06-17

    As the National Hydrogen Economy continues to develop and evolve the need for structural materials that can resist hydrogen assisted degradation will become critical. To date austenitic stainless steel materials have been shown to be mildly susceptible to hydrogen attack which results in lower mechanical and fracture strengths. As a result, hydrogen permeation barrier coatings are typically applied to these steel to retard hydrogen ingress. The focal point of the reported work was to evaluate the potential for intentional alloying of commercial 300-series stainless steels to promote hydrogen permeation resistant oxide scales. Previous research on the Cr- and Fe-oxide scales inherent to 300-series stainless steels has proven to be inconsistent in effecting permeation resistance. The approach undertaken in this research was to add aluminum to the 300-series stainless steels in an attempt to promote a pure Al-oxide or and Al-rich oxide scale. Aloxide had been previously demonstrated to be an effective hydrogen permeation barrier. Results for 304L and 347H alloys doped with Al in concentration from 0.5-3.0 wt% with respect to oxidation kinetic studies, cyclic oxidation and characterization of the oxide scale chemistry are reported herein. Gaseous hydrogen permeation testing of the Al-doped alloys in both the unoxidized and oxidized (600 C, 30 mins) conditions are reported. A critical finding from this work is that at concentration as low as 0.5 wt% Al, the Al stabilizes the ferrite phase in these steels thus producing duplex austenitic-ferritic microstructures. As the Al-content increases the amount of measured ferrite increases thus resulting in hydrogen permeabilities more closely resembling ferritic steels.

  14. Electrochemical evaluation of sensitization in austenitic stainless steels using miniaturized specimens*1

    NASA Astrophysics Data System (ADS)

    Inazumi, T.; Bell, G. E. C.; Kiuchi, K.

    1991-03-01

    An electrochemical testing system was developed to evaluate the sensitization of neutron-irradiated austenitic stainless steels using miniaturized disk-type specimens, 3 mm in diameter and 0.25 mm thick. The system consists of a specimen holder in which a miniaturized specimen is mounted as the working electrode, a test cell designed to handle radioactive materials and waste, a computer-controlled potentiostat/galvanostat and a surface preparation equipment. Sensitization of a thermally-aged Ti-modified austenitic stainless steel was successfully detected by the single-loop electrochemical potentiokinetic reactivation (SL-EPR) method.

  15. Micromagnetic nondestructive evaluation of isochronally tempered 12% CrMoV steel

    SciTech Connect

    Jaekyung Yi; Byongwhi Lee . Dept. of Nuclear Engineering); Kim, H.C. . Dept. of Physics)

    1994-02-01

    The martensitic stainless steels, based on the nominal 12% Cr alloy composition, have been used at temperatures up to about 800 K, because of their non-oxidizing and superior high temperature mechanical properties. Literature established the microstructural evolution of 12% Cr steel during heat treatment and related it to the mechanisms of material degradation due to aging in high temperature environment. The purpose of the present investigation is to evaluate mechanical properties, like hardness and microstructural evolution due to thermal aging, by measuring structure-sensitive magnetic properties and BN.

  16. Clinical evaluation of carbon fiber reinforced carbon endodontic post, glass fiber reinforced post with cast post and core: A one year comparative clinical study

    PubMed Central

    Preethi, GA; Kala, M

    2008-01-01

    Aim: Restoring endodontically treated teeth is one of the major treatments provided by the dental practitioner. Selection and proper use of restorative materials continues to be a source of frustration for many clinicians. There is controversy surrounding the most suitable choice of restorative material and the placement method that will result in the highest probability of successful treatment. This clinical study compares two different varieties of fiber posts and one cast post and core in terms of mobility of crown margin under finger pressure, recurrent caries detected at the crown margin, fracture of the restoration, fracture of the root and periapical and periodontal pathology requiring crown removal over the period of 12months as evaluated by clinical and radiographical examination. Materials and Methods: 30 root canal treated, single rooted maxillary anterior teeth of 25 patients in the age range of 18–60 years where a post retained crown was indicated were selected for the study between January 2007 and August 2007; and prepared in a standard clinical manner. It was divided into 3 groups of 10 teeth in each group. After post space preparation, the Carbon fiber and Glass fiber reinforced posts were cemented with Scotch bond multipurpose plus bonding agent and RelyX adhesive resin cement in the first and second groups respectively. The Cast post and cores were cemented with Zinc Phosphate cement in the third group. Following post- cementation, the preparation was further refined and a rubber base impression was taken for metal-ceramic crowns which was cemented with Zinc Phosphate cement. A baseline periapical radiograph was taken once each crown was cemented. All patients were evaluated after one week (baseline), 3 months, 6 months and one year for following characteristics mobility of crown margin under finger pressure, recurrent caries detected at the crown margin, fracture of the restoration, fracture of the root and periapical and periodontal pathology

  17. Evaluation of steel shafts for magnetostrictive torque sensors (abstract)

    SciTech Connect

    Koga, F.; Yoshida, K.; Sasada, I.

    1997-04-01

    Based on the magnetostrictive effect in steel, a robust, noncontacting shaft torque sensor can be obtained. A fundamental problem is compatibility between mechanical strength required for a shaft and a magnetic one needed for a torque sensor. To find shaft material accommodating these two requirements, we investigated basic characteristics, such as hysteresis, linearity, and zero-level fluctuation associated with shaft rotation, of the magnetostrictive torque sensor for various nickel chromium molybdenum steel shafts (SNCM in Japanese Industrial Standard) subjected to case hardening. We prepared three kinds of shafts of 25 mm in diameter: SNCM 420 (Ni=1.69{percent}, C=0.2{percent}), SNCM 616 (Ni=2.91{percent}, C=0.15{percent}), and SNCM 447 (Ni=1.67{percent}, C=0.49{percent}). Shafts of the first two materials were carburized, whereas those of the last one were quenched. We used a magnetic head-type torque sensor consisting of a pair of cross-coupled figure-eight coils (14 turn). The hysteresis in the input{endash}output relationship was measured for the excitation current from 0.1 to 1.0 A at 60 kHz. The hysteresis of the SNCM 420 shaft changes from negative to positive with the increase in excitation current and that of the SNCM 616 shaft decreases monotonically but never reaches zero, whereas that of the SNCM 447 shaft exhibits minimum. The smallest values obtained are nearly zero for the SNCM 420 shaft at 0.3 A, 1.5{percent}/(full scale (FS)=400 Nm) for the SNCM 616 shaft at 1.0 A and 0.7{percent}/FS for the SNCM 447 shaft at 0.8 A, respectively. The linearity measured for the SNCM 420 shaft, which has the smallest hysteresis of the three, at 0.3 A and 60 kHz was virtually straight for the applied torque range {minus}400{endash}400 Nm and 0.8{percent} of nonlinearity error for the range {minus}1000{endash}1000 Nm. The zero-level fluctuation was measured for the SNCM 420 shaft by rotating the shaft without applying torque. (Abstract Truncated)

  18. Final Report, Volume 1, Metallurgical Evaluation of Cast Duplex Stainless Steels and their Weldments

    SciTech Connect

    Wen, Songqing; Lundin, Carl, W.; Batten, Greg, W.

    2005-09-30

    Duplex stainless steels (DSS) are being specified for chloride containing environments due to their enhanced pitting and stress corrosion cracking resistance. They exhibit improved corrosion performance over the austenitic stainless steels. Duplex stainless steels also offer improved strength properties and are available in various wrought and cast forms. Selected grades of duplex stainless steel castings and their welds, in comparison with their wrought counterparts, were evaluated, regarding corrosion performance and mechanical properties and weldability. Multiple heats of cast duplex stainless steel were evaluated in the as-cast, solution annealed (SA) static cast and SA centrifugal cast conditions, while their wrought counterparts were characterized in the SA condition and in the form of as-rolled plate. Welding, including extensive assessment of autogenous welds and a preliminary study of composite welds (shielded metal arc weld (SMAW)), was performed. The evaluations included critical pitting temperature (CPT) testing, intergranular corrosion (IGC) testing, ASTM A923 (Methods A, B and C), Charpy impact testing, weldability testing (ASTM A494), ferrite measurement and microstructural evaluations. In the study, the corrosion performances of DSS castings were characterized and assessed, including the wrought counterparts for comparison. The evaluation filled the pore of lack of data for cast duplex stainless steels compared to wrought materials. A database of the pitting corrosion and IGC behavior of cast and wrought materials was generated for a greater depth of understanding for the behavior of cast duplex stainless steel. In addition, improved evaluation methods for DSS castings were developed according to ASTM A923, A262, G48 and A494. The study revealed that when properly heat treated according to the specification, (1) DSS castings have equal or better pitting and intergranular corrosion resistance than their wrought counterparts; (2) Welding reduces the

  19. Final Report, Volume 1, Metallurgical Evaluation of Cast Duplex Stainless Steels and their Weldments

    SciTech Connect

    Wen, Songqing; Lundin, Carl, W.; Batten, Greg, W.

    2005-09-30

    Duplex stainless steels (DSS) are being specified for chloride containing environments due to their enhanced pitting and stress corrosion cracking resistance. They exhibit improved corrosion performance over the austenitic stainless steels. Duplex stainless steels also offer improved strength properties and are available in various wrought and cast forms. Selected grades of duplex stainless steel castings and their welds, in comparison with their wrought counterparts, were evaluated, regarding corrosion performance and mechanical properties and weldability. Multiple heats of cast duplex stainless steel were evaluated in the as-cast, solution annealed (SA) static cast and SA centrifugal cast conditions, while their wrought counterparts were characterized in the SA condition and in the form of as-rolled plate. Welding, including extensive assessment of autogenous welds and a preliminary study of composite welds (shielded metal arc weld (SMAW)), was performed. The evaluations included critical pitting temperature (CPT) testing, intergranular corrosion (IGC) testing, ASTM A923 (Methods A, B and C), Charpy impact testing, weldability testing (ASTM A494), ferrite measurement and microstructural evaluations. In the study, the corrosion performances of DSS castings were characterized and assessed, including the wrought counterparts for comparison. The evaluation filled the pore of lack of data for cast duplex stainless steels compared to wrought materials. A database of the pitting corrosion and IGC behavior of cast and wrought materials was generated for a greater depth of understanding for the behavior of cast duplex stainless steel. In addition, improved evaluation methods for DSS castings were developed according to ASTM A923, A262, G48 and A494. The study revealed that when properly heat treated according to the specification, (1) DSS castings have equal or better pitting and intergranular corrosion resistance than their wrought counterparts; (2) Welding reduces the

  20. Further evaluation of the high-probability instructional sequence with and without programmed reinforcement.

    PubMed

    Wilder, David A; Majdalany, Lina; Sturkie, Latasha; Smeltz, Lindsay

    2015-09-01

    In 2 experiments, we examined the effects of programmed reinforcement for compliance with high-probability (high-p) instructions on compliance with low-probability (low-p) instructions. In Experiment 1, we compared the high-p sequence with and without programmed reinforcement (i.e., edible items) for compliance with high-p instructions. Results showed that the high-p sequence increased compliance with low-p instructions only when compliance with high-p instructions was followed by reinforcement. In Experiment 2, we examined the role of reinforcer quality by delivering a lower quality reinforcer (praise) for compliance with high-p instructions. Results of Experiment 2 showed that the high-p sequence with lower quality reinforcement did not improve compliance with low-p instructions; the addition of a higher quality reinforcer (i.e., edible items) contingent on compliance with high-p instructions did increase compliance with low-p instructions.

  1. Evaluating Pillar Industry's Transformation Capability: A Case Study of Two Chinese Steel-Based Cities.

    PubMed

    Li, Zhidong; Marinova, Dora; Guo, Xiumei; Gao, Yuan

    2015-01-01

    Many steel-based cities in China were established between the 1950s and 1960s. After more than half a century of development and boom, these cities are starting to decline and industrial transformation is urgently needed. This paper focuses on evaluating the transformation capability of resource-based cities building an evaluation model. Using Text Mining and the Document Explorer technique as a way of extracting text features, the 200 most frequently used words are derived from 100 publications related to steel- and other resource-based cities. The Expert Evaluation Method (EEM) and Analytic Hierarchy Process (AHP) techniques are then applied to select 53 indicators, determine their weights and establish an index system for evaluating the transformation capability of the pillar industry of China's steel-based cities. Using real data and expert reviews, the improved Fuzzy Relation Matrix (FRM) method is applied to two case studies in China, namely Panzhihua and Daye, and the evaluation model is developed using Fuzzy Comprehensive Evaluation (FCE). The cities' abilities to carry out industrial transformation are evaluated with concerns expressed for the case of Daye. The findings have policy implications for the potential and required industrial transformation in the two selected cities and other resource-based towns.

  2. Evaluation of aging of cast stainless steel components

    SciTech Connect

    Chung, H.M.

    1991-02-01

    Cast stainless steel is used extensively in nuclear reactors for primary-pressure-boundary components such as primary coolant pipes, elbows, valves, pumps, and safe ends. These components are, however, susceptible to thermal aging embrittlement in light water reactors because of the segregation of Cr atoms from Fe and Ni by spinodal decomposition in ferrite and the precipitation of Cr-rich carbides on ferrite/austenite boundaries. A recent advance in understanding the aging kinetics is presented. Aging kinetics are strongly influenced by the synergistic effects of other metallurgical reactions that occur in parallel with spinodal decomposition, i.e., clustering of Ni, Mo, and Si solute atoms and the nucleation and growth of G-phase precipitates in the ferrite phase. A number of methods are outlined for estimating aging embrittlement under end-of-life of life-extension conditions, depending on several factors such as degree of permissible conservatism, availability of component archive material, and methods of estimating and verifying the activation energy of aging. 33 refs., 6 figs., 3 tabs.

  3. Laser surface texturing of tool steel: textured surfaces quality evaluation

    NASA Astrophysics Data System (ADS)

    Šugár, Peter; Šugárová, Jana; Frnčík, Martin

    2016-05-01

    In this experimental investigation the laser surface texturing of tool steel of type 90MnCrV8 has been conducted. The 5-axis highly dynamic laser precision machining centre Lasertec 80 Shape equipped with the nano-second pulsed ytterbium fibre laser and CNC system Siemens 840 D was used. The planar and spherical surfaces first prepared by turning have been textured. The regular array of spherical and ellipsoidal dimples with a different dimensions and different surface density has been created. Laser surface texturing has been realized under different combinations of process parameters: pulse frequency, pulse energy and laser beam scanning speed. The morphological characterization of ablated surfaces has been performed using scanning electron microscopy (SEM) technique. The results show limited possibility of ns pulse fibre laser application to generate different surface structures for tribological modification of metallic materials. These structures were obtained by varying the processing conditions between surface ablation, to surface remelting. In all cases the areas of molten material and re-cast layers were observed on the bottom and walls of the dimples. Beside the influence of laser beam parameters on the machined surface quality during laser machining of regular hemispherical and elipsoidal dimple texture on parabolic and hemispherical surfaces has been studied.

  4. Fracture toughness evaluations of TP304 stainless steel pipes

    SciTech Connect

    Rudland, D.L.; Brust, F.W.; Wilkowski, G.M.

    1997-02-01

    In the IPIRG-1 program, the J-R curve calculated for a 16-inch nominal diameter, Schedule 100 TP304 stainless steel (DP2-A8) surface-cracked pipe experiment (Experiment 1.3-3) was considerably lower than the quasi-static, monotonic J-R curve calculated from a C(T) specimen (A8-12a). The results from several related investigations conducted to determine the cause of the observed toughness difference are: (1) chemical analyses on sections of Pipe DP2-A8 from several surface-cracked pipe and material property specimen fracture surfaces indicate that there are two distinct heats of material within Pipe DP2-A8 that differ in chemical composition; (2) SEN(T) specimen experimental results indicate that the toughness of a surface-cracked specimen is highly dependent on the depth of the initial crack, in addition, the J-R curves from the SEN(T) specimens closely match the J-R curve from the surface-cracked pipe experiment; (3) C(T) experimental results suggest that there is a large difference in the quasi-static, monotonic toughness between the two heats of DP2-A8, as well as a toughness degradation in the lower toughness heat of material (DP2-A8II) when loaded with a dynamic, cyclic (R = {minus}0.3) loading history.

  5. Nondestructive Evaluation of Carbon Fiber Reinforced Polymer Composites Using Reflective Terahertz Imaging

    PubMed Central

    Zhang, Jin; Li, Wei; Cui, Hong-Liang; Shi, Changcheng; Han, Xiaohui; Ma, Yuting; Chen, Jiandong; Chang, Tianying; Wei, Dongshan; Zhang, Yumin; Zhou, Yufeng

    2016-01-01

    Terahertz (THz) time-domain spectroscopy (TDS) imaging is considered a nondestructive evaluation method for composite materials used for examining various defects of carbon fiber reinforced polymer (CFRP) composites and fire-retardant coatings in the reflective imaging modality. We demonstrate that hidden defects simulated by Teflon artificial inserts are imaged clearly in the perpendicular polarization mode. The THz TDS technique is also used to measure the thickness of thin fire-retardant coatings on CFRP composites with a typical accuracy of about 10 micrometers. In addition, coating debonding is successfully imaged based on the time-delay difference of the time-domain waveforms between closely adhered and debonded sample locations. PMID:27314352

  6. Further Evaluation of the Use of Multiple Schedules for Behavior Maintained by Negative Reinforcement.

    PubMed

    Campos, Claudia; Leon, Yanerys; Sleiman, Andressa; Urcuyo, Beatriz

    2017-03-01

    One potential limitation of functional communication training (FCT) is that after the functional communication response (FCR) is taught, the response may be emitted at high rates or inappropriate times. Thus, schedule thinning is often necessary. Previous research has demonstrated that multiple schedules can facilitate schedule thinning by establishing discriminative control of the communication response while maintaining low rates of problem behavior. To date, most applied research evaluating the clinical utility of multiple schedules has done so in the context of behavior maintained by positive reinforcement (e.g., attention or tangible items). This study examined the use of a multiple schedule with alternating Fixed Ratio (FR 1)/extinction (EXT) components for two individuals with developmental disabilities who emitted escape-maintained problem behavior. Although problem behavior remained low during all FCT and multiple schedule phases, the use of the multiple schedule alone did not result in discriminated manding.

  7. Nondestructive Evaluation of Irradiation Embrittlement of SQV2A Steel by Using Magnetic Method

    NASA Astrophysics Data System (ADS)

    Shiwa, Mitsuharu; Weiying, Cheng; Nakahigashi, Shigeo; Komura, Ichiro; Fujiwara, Koji; Takahashi, Norio

    2006-03-01

    Irradiation embrittlement of SQV2A steel was evaluated by magnetic methods. Thermal aging (TA) and electron irradiation (EI) specimens were prepared to evaluate the thermal aging and the irradiation damage effects separately. B-H loops changed with TA and EI. Higher harmonics of AC magnetization signals were sensitive to micro-structure changing of specimens. The intensity of the 3rd harmonics increased linearly with over 100 years of equivalent operation time by Larson-Miller parameter of nuclear power plants.

  8. Nondestructive Evaluation of Irradiation Embrittlement of SQV2A Steel by Using Magnetic Method

    SciTech Connect

    Shiwa, Mitsuharu; Cheng Weiying; Nakahigashi, Shigeo; Komura, Ichiro; Fujiwara, Koji; Takahashi, Norio

    2006-03-06

    Irradiation embrittlement of SQV2A steel was evaluated by magnetic methods. Thermal aging (TA) and electron irradiation (EI) specimens were prepared to evaluate the thermal aging and the irradiation damage effects separately. B-H loops changed with TA and EI. Higher harmonics of AC magnetization signals were sensitive to micro-structure changing of specimens. The intensity of the 3rd harmonics increased linearly with over 100 years of equivalent operation time by Larson-Miller parameter of nuclear power plants.

  9. Numerical Evaluation Of Shape Memory Alloy Recentering Braces In Reinforced Concrete Buildings Subjected To Seismic Loading

    NASA Astrophysics Data System (ADS)

    Charles, Winsbert Curt

    Seismic protective techniques utilizing specialized energy dissipation devices within the lateral resisting frames have been successfully used to limit inelastic deformation in reinforced concrete buildings by increasing damping and/or altering the stiffness of these structures. However, there is a need to investigate and develop systems with self-centering capabilities; systems that are able to assist in returning a structure to its original position after an earthquake. In this project, the efficacy of a shape memory alloy (SMA) based device, as a structural recentering device is evaluated through numerical analysis using the OpenSees framework. OpenSees is a software framework for simulating the seismic response of structural and geotechnical systems. OpenSees has been developed as the computational platform for research in performance-based earthquake engineering at the Pacific Earthquake Engineering Research Center (PEER). A non-ductile reinforced concrete building, which is modelled using OpenSees and verified with available experimental data is used for the analysis in this study. The model is fitted with Tension/Compression (TC) SMA devices. The performance of the SMA recentering device is evaluated for a set of near-field and far-field ground motions. Critical performance measures of the analysis include residual displacements, interstory drift and acceleration (horizontal and vertical) for different types of ground motions. The results show that the TC device's performance is unaffected by the type of ground motion. The analysis also shows that the inclusion of the device in the lateral force resisting system of the building resulted in a 50% decrease in peak horizontal displacement, and inter-story drift elimination of residual deformations, acceleration was increased up to 110%.

  10. South Oregon Coast Reinforcement.

    SciTech Connect

    United States. Bonneville Power Administration.

    1998-05-01

    The Bonneville Power Administration is proposing to build a transmission line to reinforce electrical service to the southern coast of Oregon. This FYI outlines the proposal, tells how one can learn more, and how one can share ideas and opinions. The project will reinforce Oregon`s south coast area and provide the necessary transmission for Nucor Corporation to build a new steel mill in the Coos Bay/North Bend area. The proposed plant, which would use mostly recycled scrap metal, would produce rolled steel products. The plant would require a large amount of electrical power to run the furnace used in its steel-making process. In addition to the potential steel mill, electrical loads in the south Oregon coast area are expected to continue to grow.

  11. Evaluation of cast carbon steel and aluminum for rack insert in MCO Mark 1A fuel basket

    SciTech Connect

    Graves, C.E., Fluor Daniel Hanford

    1997-03-21

    This document evaluates the effects ofusing a cast carbon steel or aluminum instead of 3O4L stainless steel in the construction ofthe fuel rack insert for the Spent Nuclear Fuel MCO Mark IA fuel baskets. The corrosion, structural, and cost effects are examined.

  12. Evaluation of examination techniques for ferritic stainless steel feedwater heater tubing

    SciTech Connect

    Nugent, M.J.; Catapano, M.C.

    1995-12-01

    Ferritic stainless steel has been finding increased application in utility plant feedwater heaters due to good strength and corrosion resistance and absence of potential copper contamination of feedwater system. Ferritic stainless steel is highly magnetic and is generally not inspectable using conventional eddy current testing techniques. A variety of techniques have been developed for inspection of this tubing material used in typical heat exchanger applications. Through a project funded by the Empire State Electric Energy Research Corporation (ESEERCO), the evaluation of data generated by four present state of the art NDE testing techniques were evaluated on a controlled mock-up of the heater tubing with service related defects. The primary objective was to determine the strengths and limitations of each method. The testing of two in service feedwater heaters at the Consolidated Edison Company of New York, Inc. (Con Edison`s) Arthur Kill Generating Station also allowed further evaluations based on actual field conditions.

  13. Nondestructive Evaluation of Strain Distribution and Fatigue Distribution from Austenitic Stainless Steel by Using Magnetic Sensors

    SciTech Connect

    Tsuchida, Y.; Enokizono, M.; Oka, M.; Yakushiji, T.

    2007-03-21

    Austenitic stainless steel transforms from austenitic crystal structure to martensitic crystal structure after applying strain or stress. Because martensitic crystal structures have magnetization, strain evaluation and fatigue evaluation can be performed by measuring magnetic properties. This paper describes the measurement of leakage magnetic flux density of remanent magnetization for the strain evaluation and the fatigue evaluation by a typical Hall element sensor for SUS 304 and SUS 304L and by a high-sensitivity thin-film flux-gate magnetic sensor for SUS 316 and SUS 316L.

  14. Evaluation of Stress Loaded Steel Samples Using Selected Electromagnetic Methods

    SciTech Connect

    Chady, T.

    2004-02-26

    In this paper the magnetic leakage flux and eddy current method were used to evaluate changes of materials' properties caused by stress. Seven samples made of ferromagnetic material with different level of applied stress were prepared. First, the leakage magnetic fields were measured by scanning the surface of the specimens with GMR gradiometer. Next, the same samples were evaluated using an eddy current sensor. A comparison between results obtained from both methods was carried out. Finally, selected parameters of the measured signal were calculated and utilized to evaluate level of the applied stress. A strong coincidence between amount of the applied stress and the maximum amplitude of the derivative was confirmed.

  15. Acoustic emission evaluation of reinforced concrete bridge beam with graphite composite laminate

    NASA Astrophysics Data System (ADS)

    Johnson, Dan E.; Shen, H. Warren; Finlayson, Richard D.

    2001-07-01

    A test was recently conducted on August 1, 2000 at the FHwA Non-Destructive Evaluation Validation Center, sponsored by The New York State DOT, to evaluate a graphite composite laminate as an effective form of retrofit for reinforced concrete bridge beam. One portion of this testing utilized Acoustic Emission Monitoring for Evaluation of the beam under test. Loading was applied to this beam using a two-point loading scheme at FHwA's facility. This load was applied in several incremental loadings until the failure of the graphite composite laminate took place. Each loading culminated by either visual crack location or large audible emissions from the beam. Between tests external cracks were located visually and highlighted and the graphite epoxy was checked for delamination. Acoustic Emission data was collected to locate cracking areas of the structure during the loading cycles. To collect this Acoustic Emission data, FHwA and NYSDOT utilized a Local Area Monitor, an Acoustic Emission instrument developed in a cooperative effort between FHwA and Physical Acoustics Corporation. Eight Acoustic Emission sensors were attached to the structure, with four on each side, in a symmetrical fashion. As testing progressed and culminated with beam failure, Acoustic Emission data was gathered and correlated against time and test load. This paper will discuss the analysis of this test data.

  16. Further Evaluations of Functional Communication Training and Chained Schedules of Reinforcement to Treat Multiple Functions of Challenging Behavior

    ERIC Educational Resources Information Center

    Falcomata, Terry S.; Muething, Colin S.; Gainey, Summer; Hoffman, Katherine; Fragale, Christina

    2013-01-01

    We evaluated functional communication training (FCT) combined with a chained schedule of reinforcement procedure for the treatment of challenging behavior exhibited by two individuals diagnosed with Asperger syndrome and autism. Following functional analyses that suggested that challenging behavior served multiple functions for both participants,…

  17. The Evaluation of Interactive Learning Modules to Reinforce Helping Skills in a Web-Based Interview Simulation Training Environment

    ERIC Educational Resources Information Center

    Adcock, Amy B.; Duggan, Molly H.; Perry, Terrell

    2010-01-01

    The research presented in this paper shows the continued evaluation of a web-based interview simulation designed for human services and counseling students. The system allows students to practice empathetic helping skills in their own time. As a possible means to reinforce acquisition and transfer of these skills, interactive learning modules…

  18. An Evaluation of Antecedent Exercise on Behavior Maintained by Automatic Reinforcement Using a Three-Component Multiple Schedule

    ERIC Educational Resources Information Center

    Morrison, Heather; Roscoe, Eileen M.; Atwell, Amy

    2011-01-01

    We evaluated antecedent exercise for treating the automatically reinforced problem behavior of 4 individuals with autism. We conducted preference assessments to identify leisure and exercise items that were associated with high levels of engagement and low levels of problem behavior. Next, we conducted three 3-component multiple-schedule…

  19. Reinforcer magnitude and rate dependency: evaluation of resistance-to-change mechanisms.

    PubMed

    Pinkston, Jonathan W; Ginsburg, Brett C; Lamb, Richard J

    2014-10-01

    Under many circumstances, reinforcer magnitude appears to modulate the rate-dependent effects of drugs such that when schedules arrange for relatively larger reinforcer magnitudes rate dependency is attenuated compared with behavior maintained by smaller magnitudes. The current literature on resistance to change suggests that increased reinforcer density strengthens operant behavior, and such strengthening effects appear to extend to the temporal control of behavior. As rate dependency may be understood as a loss of temporal control, the effects of reinforcer magnitude on rate dependency may be due to increased resistance to disruption of temporally controlled behavior. In the present experiments, pigeons earned different magnitudes of grain during signaled components of a multiple FI schedule. Three drugs, clonidine, haloperidol, and morphine, were examined. All three decreased overall rates of key pecking; however, only the effects of clonidine were attenuated as reinforcer magnitude increased. An analysis of within-interval performance found rate-dependent effects for clonidine and morphine; however, these effects were not modulated by reinforcer magnitude. In addition, we included prefeeding and extinction conditions, standard tests used to measure resistance to change. In general, rate-decreasing effects of prefeeding and extinction were attenuated by increasing reinforcer magnitudes. Rate-dependent analyses of prefeeding showed rate-dependency following those tests, but in no case were these effects modulated by reinforcer magnitude. The results suggest that a resistance-to-change interpretation of the effects of reinforcer magnitude on rate dependency is not viable.

  20. Case study on the evaluation of the ground reinforcement with complex resistivity method

    NASA Astrophysics Data System (ADS)

    Son, J.; Kim, J.; Park, S.

    2008-12-01

    Recently complex resistivity (CR) method is applied to the various engineering purpose mainly due to the development of measurement instruments, which enables the detection of small IP effect in the subsurface. CR method is one of frequency-domain IP method, and it measures the amplitude and absolute phase with respect to the transmitted current. It is known as a spectral IP (SIP) method. With the recent development of instrument, the modeling and analysis algorithm for the CR method were already developed and nearly completed. In this study, we applied CR method to characterize the effect of ground reinforcement which uses grouting with the injection of cement mortar material. As curing the injected cement mortar, the electric conductivity changes, and average conductivity of it is very high. Because of it, we used the DC resistivity monitoring as the way of evaluating the grouting performance. In addition to this, we applied the CR method after that the ground reinforcement with grouting was completed because we thought that cement mortar may show a strong IP effect. For the DC monitoring, we acquired the surface resistivity data before, during and after grouting. Total six data sets were acquired and processed with the recently developed 4D inversion algorithm. CR data is also processed with the developed two-dimensional inversion algorithm and then inverted sections from CR method were compared to the results of DC monitoring data. The area which was identified by 4D DC monitoring as the region where the cement mortar was injected and infiltrated were well matched the anomalous area shown in the phase section of CR method. Resistivity change was not clear with the injection of cement mortar, but phase change was clearly noticeable in the inverted section. From this, we hoped that CR method could provide a way of the quantitative estimation of ground improvement.

  1. Nondestructive evaluation of residual stress in short-fiber reinforced plastics by x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Tanaka, Keisuke; Tokoro, Syouhei; Akiniwa, Yoshiaki; Egami, Noboru

    2014-06-01

    The X-ray diffraction method is used to measure the residual stress in injection-molded plates of short-fiber reinforced plastics (SFRP) made of crystalline thermoplastics, polyphenylene sulphide (PPS), reinforced by carbon fibers with 30 mass%. Based on the orientation of carbon fibers, injection molded plates can be modeled as three-layered lamella where the core layer is sandwiched by skin layers. The stress in the matrix in the skin layer was measured using Cr-Kα radiation with the sin2Ψ method. Since the X-ray penetration depth is shallow, the state of stresses measured by X-rays in FRP can be assumed to be plane stress. The X-ray measurement of stress in carbon fibers was not possible because of high texture. A new method was proposed to evaluate the macrostress in SFRP from the measurement of the matrix stress. According to micromechanics analysis of SFRP, the matrix stresses in the fiber direction, σ1m, and perpendicular to the fiber direction, σ2m, and shear stress τ12m can be expressed as the functions of the applied (macro-) stresses, σ1A, σ2A , τ12A as follows: σ1m = α11σ1A +α12σ2A, σ2m = α21σ1A + α22σ2A, τ12m = α66τ12A, where α11 ,α12, α21, α22, α66 are stress-partitioning coefficients. Using skin-layer strips cut parallel, perpendicular and 45° to the molding direction, the stress in the matrix was measured under the uniaxial applied stress and the stress-partitioning coefficients of the above equations were determined. Once these relations are established, the macrostress in SFRP can be determined from the measurements of the matrix stresses by X-rays.

  2. High-strength stainless steels for corrosion mitigation in prestressed concrete: Development and evaluation

    NASA Astrophysics Data System (ADS)

    Moser, Robert D.

    Corrosion of prestressing reinforcement in concrete structures exposed to marine environments and/or deicing chemicals is a problem of critical concern. While many corrosion mitigation technologies are available for reinforced concrete (RC), those available for use in prestressed concrete (PSC) are limited and in many cases cannot provide the 100+ year service life needed in new construction, particularly when exposed to severe marine environments. The use of stainless steel alloys in RC structures has shown great success in mitigating corrosion in even the most severe of exposures. However, the use of high-strength stainless steels (HSSSs) for corrosion mitigation in PSC structures has received limited attention. To address these deficiencies in knowledge, an experimental study was conducted to investigate the feasibility of using HSSSs for corrosion mitigation in PSC. The study examined mechanical behavior, corrosion resistance, and techniques for the production of HSSS prestressing strands. Stainless steel grades 304, 316, 2101, 2205, 2304, and 17-7 were produced as cold drawn wires with diameters of approximately 4 mm (0.16 in). A 1080 prestressing steel was also included to serve as a control. Tensile strengths of 1250 to 1550 MPa (181 to 225 ksi) were achieved in the cold-drawn candidate HSSSs. Non-ductile failure modes with no post-yield strain hardening were observed in all candidate HSSSs. 1000 hr stress relaxation of all candidate HSSSs was predicted to be between 6 and 8 % based on the results of 200 hr tests conducted at 70 % of the ultimate tensile strength. Residual stresses due to the cold drawing had a significant influence on stress vs. strain behavior and stress relaxation. Electrochemical corrosion testing found that in solutions simulating alkaline concrete, all candidate HSSSs showed exceptional corrosion resistance at chloride (Cl-) concentrations from zero to 0.25 M. However, when exposed to solutions simulating carbonated concrete, corrosion

  3. Evaluation of a multi-layer microbraided polylactic acid fiber-reinforced conduit for peripheral nerve regeneration.

    PubMed

    Lu, Ming-Chin; Huang, Yen-Ting; Lin, Jia-Horng; Yao, Chun-Hsu; Lou, Ching-Wen; Tsai, Chin-Chuan; Chen, Yueh-Sheng

    2009-05-01

    We evaluated peripheral nerve regeneration using a biodegradable multi-layer microbraided polylactic acid (PLA) fiber-reinforced conduit. Biodegradability of the PLA conduit and its effectiveness as a guidance channel were examined as it was used to repair a 10 mm gap in the rat sciatic nerve. As a result, tube fragmentation was not obvious and successful regeneration through the gap occurred in all the conduits at 8 weeks after operation. These results indicate the superiority of the PLA materials and suggest that the multi-layer microbraided PLA fiber-reinforced conduits provide a promising tool for neuro-regeneration.

  4. Nondestructive Evaluation of Fiber Reinforced Composites. A State-of-the-Art Survey. Volume 1. NDE of Graphite Fiber-Reinforced Plastic Composites. Part 1. Radiography and Ultrasonics

    DTIC Science & Technology

    1982-03-01

    composites (Ref. 1) and by the can be large, and secondary operations can be mini- Army on glass fiber reinforced composites (Ref. 2). This mized. Composites...structural characteristics of ceramic materials, and updates of carbon/carbon com- composites. posites and glass fiber reinforced composites. Because of...the large amount of literature available on graphite While glass fiber reinforced plastic composites fiber reinforced composites, this particular volume

  5. Durable fiber reinforced self-compacting concrete

    SciTech Connect

    Corinaldesi, V.; Moriconi, G

    2004-02-01

    In order to produce thin precast elements, a self-compacting concrete was prepared. When manufacturing these elements, homogenously dispersed steel fibers instead of ordinary steel-reinforcing mesh were added to the concrete mixture at a dosage of 10% by mass of cement. An adequate concrete strength class was achieved with a water to cement ratio of 0.40. Compression and flexure tests were carried out to assess the safety of these thin concrete elements. Moreover, serviceability aspects were taken into consideration. Firstly, drying shrinkage tests were carried out in order to evaluate the contribution of steel fibers in counteracting the high concrete strains due to a low aggregate-cement ratio. Secondly, the resistance to freezing and thawing cycles was investigated on concrete specimens in some cases superficially treated with a hydrophobic agent. Lastly, both carbonation and chloride penetration tests were carried out to assess durability behavior of this concrete mixture.

  6. SCC and corrosion evaluations of the F/M steels for a supercritical water reactor

    NASA Astrophysics Data System (ADS)

    Hwang, Seong Sik; Lee, Byung Hak; Kim, Jung Gu; Jang, Jinsung

    2008-01-01

    As one of the Generation IV nuclear reactors, a supercritical water cooled reactor (SCWR) is being considered as a candidate reactor due to its high thermal efficiency and simple reactor design without steam generators and steam separators. For the application of a structural material to a core's internals and a fuel cladding, the material should be evaluated in terms of its corrosion and stress corrosion cracking susceptibility. Stress corrosion cracking and general corrosion tests of ferritic-martensitic (F/M) steels, high Ni alloys and an oxide dispersion strengthened (ODS) alloy were performed. Stress corrosion cracking (SCC) was not observed on the fractured surface of the T 91 steel in the supercritical water at 500, 550 and 600 °C. As the test temperature increased, the ultimate tensile strength (UTS) and yield strength (YS) of T 91 decreased, and a high dissolved oxygen level induced corrosion and low ductility. The F/M steels showed a high corrosion rate whereas the Ni base alloys showed a little corrosion at 500 and 550 °C. Corrosion rate of the F/M steels at 600 °C test was up to three times larger than that at 500 °C. A thin layer composed of Mo and Ni seems to retard the Cr diffusion into the out layer of the corrosion product of T 92 and T 122.

  7. Evaluation of NDE techniques for type 439 stainless steel feedwater heater tubing

    SciTech Connect

    Nugent, M.J.; Catapano, M.C.

    1995-12-31

    Ferritic stainless steel has been finding increased application in utility plant feedwater heaters due to good strength and corrosion resistance and absence of potential copper contamination of feedwater system. Ferritic stainless steel is highly magnetic and is generally not inspectable using conventional eddy current testing techniques. A variety of techniques have been developed for inspection of this tubing material used in typical heat exchanger applications. Through a project completely funded by the Empire State Electric Energy Research Corporation (ESEERCO), the data generated by four present state of the art NDE testing techniques was evaluated on a controlled mock-up of the heater tubing with service related defects. The primary objective was to determine the strengths and limitations of each method. The testing of two (2) in service feedwater heaters at the Consolidated Edison Company of New York, Inc. (Con Edison`s) Arthur Kill Generating Station also allowed further evaluations based on actual field conditions.

  8. Experimental Behavior of Carbon Fiber Reinforced Isolators

    SciTech Connect

    Russo, Gaetano; Pauletta, Margherita; Cortesia, Andrea; Dal Bianco, Alberto

    2008-07-08

    This paper describes an investigation on the experimental behavior of innovative elastomeric isolators reinforced by carbon fiber fabrics. These fabrics are very much lighter than steel plates used in conventional isolators and able to transfer to the adjacent elastomer layers tangential stresses adequate to oppose the transversal deformation of rubber under vertical loads. The isolators are not bonded to the sub- and super-structure (elimination of the steel end-plates), hence their weight and cost are reduced. The experimental investigation is carried out on small-scale isolator prototypes reinforced by quadridirectional carbon fiber fabrics. The isolators are subjected to the following qualification tests prescribed by the Italian Code 'Ordinanza 3274' for steel reinforced isolators: 1) 'Static assessment of the compression stiffness'; 2) 'Static assessment of the shear modulus G'; 3) 'Dynamic assessment of the dynamic shear modulus G{sub din} and of the damping coefficient {xi}; 4) 'Assessment of the G{sub din}-{gamma} and {xi}-{gamma} diagrams by means of dynamic tests'; 5) 'Assessment of creep characteristics'; 6) 'Evaluation of the capacity of sustaining at least 10 cycles'. As a result of the tests, the isolators survived large shear strains, comparable to those expected for conventional isolators.

  9. Evaluation of Fatigue Life of CRM-Reinforced SMA and Its Relationship to Dynamic Stiffness

    PubMed Central

    Mashaan, Nuha Salim; Karim, Mohamed Rehan; Abdel Aziz, Mahrez; Ibrahim, Mohd Rasdan; Katman, Herda Yati

    2014-01-01

    Fatigue cracking is an essential problem of asphalt concrete that contributes to pavement damage. Although stone matrix asphalt (SMA) has significantly provided resistance to rutting failure, its resistance to fatigue failure is yet to be fully addressed. The aim of this study is to evaluate the effect of crumb rubber modifier (CRM) on stiffness and fatigue properties of SMA mixtures at optimum binder content, using four different modification levels, namely, 6%, 8%, 10%, and 12% CRM by weight of the bitumen. The testing undertaken on the asphalt mix comprises the dynamic stiffness (indirect tensile test), dynamic creep (repeated load creep), and fatigue test (indirect tensile fatigue test) at temperature of 25°C. The indirect tensile fatigue test was conducted at three different stress levels (200, 300, and 400 kPa). Experimental results indicate that CRM-reinforced SMA mixtures exhibit significantly higher fatigue life compared to the mixtures without CRM. Further, higher correlation coefficient was obtained between the fatigue life and resilient modulus as compared to permanent strain; thus resilient modulus might be a more reliable indicator in evaluating the fatigue life of asphalt mixture. PMID:25050406

  10. Evaluation of fatigue life of CRM-reinforced SMA and its relationship to dynamic stiffness.

    PubMed

    Mashaan, Nuha Salim; Karim, Mohamed Rehan; Abdel Aziz, Mahrez; Ibrahim, Mohd Rasdan; Katman, Herda Yati; Koting, Suhana

    2014-01-01

    Fatigue cracking is an essential problem of asphalt concrete that contributes to pavement damage. Although stone matrix asphalt (SMA) has significantly provided resistance to rutting failure, its resistance to fatigue failure is yet to be fully addressed. The aim of this study is to evaluate the effect of crumb rubber modifier (CRM) on stiffness and fatigue properties of SMA mixtures at optimum binder content, using four different modification levels, namely, 6%, 8%, 10%, and 12% CRM by weight of the bitumen. The testing undertaken on the asphalt mix comprises the dynamic stiffness (indirect tensile test), dynamic creep (repeated load creep), and fatigue test (indirect tensile fatigue test) at temperature of 25°C. The indirect tensile fatigue test was conducted at three different stress levels (200, 300, and 400 kPa). Experimental results indicate that CRM-reinforced SMA mixtures exhibit significantly higher fatigue life compared to the mixtures without CRM. Further, higher correlation coefficient was obtained between the fatigue life and resilient modulus as compared to permanent strain; thus resilient modulus might be a more reliable indicator in evaluating the fatigue life of asphalt mixture.

  11. An Evaluation of Methylphenidate as a Potential Establishing Operation for Some Common Classroom Reinforcers.

    ERIC Educational Resources Information Center

    Northup, John; Fusilier, Iantha; Swanson, Victoria; Roane, Henry; Borrero, John

    1997-01-01

    A study conducted reinforcer assessments for three boys (ages 7-9) with attention deficit hyperactivity disorder who alternately received either a placebo or methylphenidate. Methylphenidate altered the relative reinforcing effectiveness of various stimuli that are often used in classroom-based behavioral treatment programs, particularly coupons…

  12. An Evaluation of Response Cost in the Treatment of Inappropriate Vocalizations Maintained by Automatic Reinforcement

    ERIC Educational Resources Information Center

    Falcomata, Terry S.; Roane, Henry S.; Hovanetz, Alyson N.; Kettering, Tracy L.; Keeney, Kris M.

    2004-01-01

    In the current study, we examined the utility of a procedure consisting of noncontingent reinforcement with and without response cost in the treatment of inappropriate vocalizations maintained by automatic reinforcement. Results are discussed in terms of examining the variables that contribute to the effectiveness of response cost as treatment for…

  13. Nondestructive evaluation of the interface between ceramic coating and stainless steel by electromagnetic method

    NASA Astrophysics Data System (ADS)

    Savin, A.; Steigmann, R.; Iftimie, N.; Novy, F.; Vizureanu, P.; Craus, M. L.; Fintova, S.

    2016-08-01

    Protecting coatings as thermal barrier coating (TBC) are used for yield improvement of equipment working at high temperature. Zirconia doped with yttria ceramics are considered a good TBC material due of its low thermal conductivity, refractory, chemical inertness and compatible thermal expansion coefficient with metallic support. The paper proposes the use of an electromagnetic method for evaluation of coatings on stainless steel using a sensor with metamaterial lens and comparison of the results with those obtained by complementary methods.

  14. Wear Behaviour of Carbon Nanotubes Reinforced Nanocrystalline AA 4032 Composites

    NASA Astrophysics Data System (ADS)

    Senthil Saravanari, M. S.; Kumaresh Babu, S. P.; Sivaprasad, K.

    2016-09-01

    The present paper emphasizes the friction and wear properties of Carbon Nanotubes reinforced AA 4032 nanocomposites prepared by powder metallurgy technique. CNTs are multi-wall in nature and prepared by electric arc discharge method. Multi-walled CNTs are blended with AA 4032 elemental powders and compaction followed by sintering to get bulk nanocomposites. The strength of the composites has been evaluated by microhardness and the surface contact between the nanocomposites and EN 32 steel has been evaluated by Pin on disk tester. The results are proven that reinforcement of CNTs play a major role in the enhancement of hardness and wear.

  15. Evaluation of Heat-affected Zone Hydrogen-induced Cracking in High-strength Steels

    NASA Astrophysics Data System (ADS)

    Yue, Xin

    Shipbuilding is heavily reliant on welding as a primary fabrication technique. Any high performance naval steel must also possess good weldability. It is therefore of great practical importance to conduct weldability testing of naval steels. Among various weldability issues of high-strength steels, hydrogen-induced cracking (HIC) in the heat-affected zone (HAZ) following welding is one of the biggest concerns. As a result, in the present work, research was conducted to study the HAZ HIC susceptibility of several naval steels. Since the coarse-grained heat-affected zone (CGHAZ) is generally known to be the most susceptible to HIC in the HAZ region, the continuous cooling transformation (CCT) behavior of the CGHAZ of naval steels HSLA-65, HSLA-100, and HY-100 was investigated. The CGHAZ microstructure over a range of cooling rates was characterized, and corresponding CCT diagrams were constructed. It was found that depending on the cooling rate, martensite, bainite, ferrite and pearlite can form in the CGHAZ of HSLA-65. For HSLA-100 and HY-100, only martensite and bainite formed over the range of cooling rates that were simulated. The constructed CCT diagrams can be used as a reference to select welding parameters to avoid the formation of high-hardness martensite in the CGHAZ, in order to ensure resistance to hydrogen-induced cracking. Implant testing was conducted on the naval steels to evaluate their susceptibility to HAZ HIC. Stress vs. time to failure curves were plotted, and the lower critical stress (LCS), normalized critical stress ratio (NCSR) and embrittlement index (EI) for each steel were determined, which were used to quantitatively compare HIC susceptibility. The CGHAZ microstructure of the naval steels was characterized, and the HIC fracture behavior was studied. Intergranular (IG), quasi-cleavage (QC) and microvoid coalescence (MVC) fracture modes were found to occur in sequence during the crack initiation and propagation process. This was

  16. Development and evaluation of a reinforced polymeric biomaterial for use as an orthodontic wire

    NASA Astrophysics Data System (ADS)

    Zufall, Scott William

    Composite archwires have the potential to provide esthetic and functional improvements over conventional wires. As part of an ongoing effort to bring these materials into general use, composite wires were fabricated using a photo-pultrusion manufacturing technique, and subsequently coated with a 10 mum layer of poly(chloro-p-xylylene). Coated and uncoated composites were subjected to several different evaluations to assess their ability to perform the functions of an orthodontic archwire. An investigation of the viscoelastic behavior of uncoated composite wires was conducted at a physiological temperature of 37°C using a bend stress relaxation test. Over 90 day testing periods, energy losses increased with decreasing reinforcement levels from to 8% of the initial wire stress. Final viscous losses were 1% for all reinforcement levels. Relaxed elastic moduli for the composite wires were comparable to the reported elastic moduli of conventional orthodontic wires that are typically used for initial and intermediate alignment procedures. Frictional characteristics were evaluated in passive and active configurations for uncoated composite wires against three contemporary orthodontic brackets. Kinetic coefficients of friction were the same for all wire-bracket combinations tested and were slightly lower than the reported coefficients of other initial and intermediate alignment wires. Wear patterns on the wires, which were largely caused by sharp leading edges of the bracket slots, were characteristic of plowing and cutting wear behaviors. This wear caused glass fibers to be released from the surface of the wires, presenting a potential irritant. Coated composite wires were subjected to the same frictional analysis as the uncoated wires. A mathematical model of the archwire-bracket system was derived using engineering mechanics, and used to define a coefficient of binding. The coating increased the frictional coefficients of the wires by 72%, yet the binding coefficient

  17. 29 CFR 1926.754 - Structural steel assembly.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Structural steel assembly. 1926.754 Section 1926.754 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.754 Structural steel...) Tripping hazards. Shear connectors (such as headed steel studs, steel bars or steel lugs), reinforcing...

  18. 29 CFR 1926.754 - Structural steel assembly.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Structural steel assembly. 1926.754 Section 1926.754 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.754 Structural steel...) Tripping hazards. Shear connectors (such as headed steel studs, steel bars or steel lugs), reinforcing...

  19. 29 CFR 1926.754 - Structural steel assembly.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Structural steel assembly. 1926.754 Section 1926.754 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.754 Structural steel...) Tripping hazards. Shear connectors (such as headed steel studs, steel bars or steel lugs), reinforcing...

  20. 29 CFR 1926.754 - Structural steel assembly.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Structural steel assembly. 1926.754 Section 1926.754 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.754 Structural steel...) Tripping hazards. Shear connectors (such as headed steel studs, steel bars or steel lugs), reinforcing...

  1. 29 CFR 1926.754 - Structural steel assembly.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Structural steel assembly. 1926.754 Section 1926.754 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Steel Erection § 1926.754 Structural steel...) Tripping hazards. Shear connectors (such as headed steel studs, steel bars or steel lugs), reinforcing...

  2. Evaluating the displacement amplification factors of concentrically braced steel frames

    NASA Astrophysics Data System (ADS)

    Mahmoudi, Mussa; Zaree, Mahdi

    2013-12-01

    According to seismic design codes, nonlinear performance of structures is considered during strong earthquakes. Seismic design provisions estimate the maximum roof and story drifts occurring during major earthquakes by amplifying the drifts computed from elastic analysis at the prescribed seismic force level with a displacement amplification factor. The present study tries to evaluate the displacement amplification factors of conventional concentric braced frames (CBFs) and buckling restrained braced frames (BRBFs). As such, static nonlinear (pushover) analysis and nonlinear dynamic time history analysis have been performed on the model buildings with single and double bracing bays, and different stories and brace configurations (chevron V, invert V, and X bracing). It is observed that the displacement amplification factors for BRBFs are higher than that of CBFs. Also, the number of bracing bays and height of buildings have a profound effect on the displacement amplification factors. The evaluated ratios between displacement amplification factors and response modification factors are from 1 to 1.12 for CBFs and from 1 to 1.4 for BRBFs.

  3. Evaluation of Mechanical Properties and Morphological Studies of Rice Husk (Treated/Untreated)-CaCO3 Reinforced Epoxy Hybrid Composites

    NASA Astrophysics Data System (ADS)

    Verma, Deepak; Joshi, Garvit; Gupta, Ayush

    2016-10-01

    Natural fiber reinforced composites are a very popular area of research because of the easy availability and biodegradability of these fibers. The manufacturing of natural fiber composite is done by reinforcing fibers in the particulate form, fiber form or in woven mat form. Natural fiber composites also utilize industrial wastes as a secondary reinforcements like fly ash, sludge etc. By keeping all these point of views in the present investigation the effect of rice husk flour (chemically treated/untreated) and micro sized calcium carbonate with epoxy resin have been evaluated. The diameter of rice husk flour was maintained at 600 µm through mechanical sieving machine. The husk flour was chemically treated with NaOH (5 % w/v). Mechanical properties like hardness, flexural impact and compression strength were evaluated and found to be superior in modified or chemically treated flour as compared to unmodified or untreated flour reinforced composites. Scanning electron microscopy (SEM) study was also undertaken for the developed composites. SEM study shows the distribution of the rice husk flour and calcium carbonate over the matrix.

  4. Evaluation of seismic performance of reinforced concrete (RC) buildings under near-field earthquakes

    NASA Astrophysics Data System (ADS)

    Moniri, Hassan

    2017-03-01

    Near-field ground motions are significantly severely affected on seismic response of structure compared with far-field ground motions, and the reason is that the near-source forward directivity ground motions contain pulse-long periods. Therefore, the cumulative effects of far-fault records are minor. The damage and collapse of engineering structures observed in the last decades' earthquakes show the potential of damage in existing structures under near-field ground motions. One important subject studied by earthquake engineers as part of a performance-based approach is the determination of demand and collapse capacity under near-field earthquake. Different methods for evaluating seismic structural performance have been suggested along with and as part of the development of performance-based earthquake engineering. This study investigated the results of illustrious characteristics of near-fault ground motions on the seismic response of reinforced concrete (RC) structures, by the use of Incremental Nonlinear Dynamic Analysis (IDA) method. Due to the fact that various ground motions result in different intensity-versus-response plots, this analysis is done again under various ground motions in order to achieve significant statistical averages. The OpenSees software was used to conduct nonlinear structural evaluations. Numerical modelling showed that near-source outcomes cause most of the seismic energy from the rupture to arrive in a single coherent long-period pulse of motion and permanent ground displacements. Finally, a vulnerability of RC building can be evaluated against pulse-like near-fault ground motions effects.

  5. Evaluation of seismic performance of reinforced concrete (RC) buildings under near-field earthquakes

    NASA Astrophysics Data System (ADS)

    Moniri, Hassan

    2017-01-01

    Near-field ground motions are significantly severely affected on seismic response of structure compared with far-field ground motions, and the reason is that the near-source forward directivity ground motions contain pulse-long periods. Therefore, the cumulative effects of far-fault records are minor. The damage and collapse of engineering structures observed in the last decades' earthquakes show the potential of damage in existing structures under near-field ground motions. One important subject studied by earthquake engineers as part of a performance-based approach is the determination of demand and collapse capacity under near-field earthquake. Different methods for evaluating seismic structural performance have been suggested along with and as part of the development of performance-based earthquake engineering. This study investigated the results of illustrious characteristics of near-fault ground motions on the seismic response of reinforced concrete (RC) structures, by the use of Incremental Nonlinear Dynamic Analysis (IDA) method. Due to the fact that various ground motions result in different intensity-versus-response plots, this analysis is done again under various ground motions in order to achieve significant statistical averages. The OpenSees software was used to conduct nonlinear structural evaluations. Numerical modelling showed that near-source outcomes cause most of the seismic energy from the rupture to arrive in a single coherent long-period pulse of motion and permanent ground displacements. Finally, a vulnerability of RC building can be evaluated against pulse-like near-fault ground motions effects.

  6. Nondestructive Evaluation (NDE) for Characterizing Oxidation Damage in Cracked Reinforced Carbon-Carbon

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Jacobson, Nathan S.; Rauser, Richard W.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.

    2010-01-01

    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter's thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using nondestructive evaluation (NDE) methods. These specimens were heat treated in air at 1143 C and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3mm. Single-sided NDE methods were used because they might be practical for on-wing inspection, while X-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally cracked coating and subsequent oxidation damage was also studied with X-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating.

  7. Nondestructive Evaluation (NDE) for Characterizing Oxidation Damage in Cracked Reinforced Carbon-Carbon (RCC)

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Rauser, Richard W.; Jacobson, Nathan S.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.

    2009-01-01

    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter's thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using nondestructive evaluation (NDE) methods. These specimens were heat treated in air at 1143 and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3 mm. Single-sided NDE methods were used since they might be practical for on-wing inspection, while x-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally-cracked coating and subsequent oxidation damage was also studied with x-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating.

  8. Development of the magnescope as an instrument for in situ evaluation of steel components of nuclear systems

    SciTech Connect

    Jiles, D.C.; Bi, Y.; Biner, S.B.

    1997-08-01

    Fatigue damage causes continuous, cumulative microstructural changes in materials and the magnetic properties of steels are sensitive to these microstructural changes. The work therefore focused on the relationship between fatigue damage and the measured magnetic properties of different steels under a variety of fatigue conditions. The project also investigated the feasibility and applicability of magnetic inspection techniques for non-destructive evaluation of fatigue damage. From the results of a series of fatigue tests, conducted on different steels under both low-cycle and high-cycle fatigue conditions, the magnetic properties, such as coercivity, remanence and Barkhausen effect, were found to change systematically with fatigue damage. The magnetic properties showed significant changes, especially during early stage of the fatigue and also at the end of the fatigue lifetime. An approximately linear relationship between the mechanical modulus and magnetic remanence was observed and was explained by a model developed in this study to describe the dynamic changes in magnetic and mechanical properties. The results of this research demonstrated that magnetic measurements are suitable for non-destructive evaluation of fatigue damage in steels such as A533B steel and Cr-Mo steels. The magnetic measurement techniques have been incorporated into instrumentation for in-situ evaluation of steel structures and components.

  9. Millimeter Wave Nondestructive Evaluation of Corrosion Under Paint in Steel Structures

    SciTech Connect

    Kharkovsky, S.; Zoughi, R.

    2006-03-06

    Millimeter wave nondestructive evaluation techniques have shown great potential for detection of corrosion under paint in steel structures. They may also provide for detection of other anomalies associated with the corrosion process such as precursor pitting. This paper presents the results of an extensive investigation spanning a frequency range of 30-100 GHz and using magnitude- and phase-sensitive reflectometers. Using 2D automated scanning mechanisms, raster images of two corrosion patches are produced showing the spatial resolution capabilities of these systems as well as their potential for evaluating localized corrosion severity.

  10. Evaluation of IAEA Coordinated Program Steels and Welds for 288 C radiation Embrittlement Resistance.

    DTIC Science & Technology

    1982-02-01

    NRC-IN-B5528 UNCLASSIFIED NRL-MR-4655 NUREG -CR-2487T NL SMENEEEh EhhhhmmhhGIG AD -A .1 z4 Cq NUREG /CR-2487 NRL Memo Rpt 4655 m Evaluation of IAEA...3.00 and Na" al Tech 1 Infor on Servi e ingfi Id, irgi ia 1 NUREG /CR-2487 NRL Memo Rpt 4655 R5 Evaluation of IAEA Coordinated Program Steels and...reports and correspondence; Commission papers; and applicant and licensee documents and correspondence. The following documents in the NUREG series are

  11. In vivo evaluation of immediately loaded stainless steel and titanium orthodontic screws in a growing bone.

    PubMed

    Gritsch, Kerstin; Laroche, Norbert; Bonnet, Jeanne-Marie; Exbrayat, Patrick; Morgon, Laurent; Rabilloud, Muriel; Grosgogeat, Brigitte

    2013-01-01

    The present work intends to evaluate the use of immediate loaded orthodontic screws in a growing model, and to study the specific bone response. Thirty-two screws (half of stainless steel and half of titanium) were inserted in the alveolar bone of 8 growing pigs. The devices were immediately loaded with a 100 g orthodontic force. Two loading periods were assessed: 4 and 12 weeks. Both systems of screws were clinically assessed. Histological observations and histomorphometric analysis evaluated the percent of "bone-to-implant contact" and static and dynamic bone parameters in the vicinity of the devices (test zone) and in a bone area located 1.5 cm posterior to the devices (control zone). Both systems exhibit similar responses for the survival rate; 87.5% and 81.3% for stainless steel and titanium respectively (p = 0.64; 4-week period), and 62.5% and 50.0% for stainless steel and titanium respectively (p = 0.09; 12-week period). No significant differences between the devices were found regarding the percent of "bone-to-implant contact" (p = 0.1) or the static and dynamic bone parameters. However, the 5% threshold of "bone-to-implant contact" was obtained after 4 weeks with the stainless steel devices, leading to increased survival rate values. Bone in the vicinity of the miniscrew implants showed evidence of a significant increase in bone trabecular thickness when compared to bone in the control zone (p = 0.05). In our study, it is likely that increased trabecular thickness is a way for low density bone to respond to the stress induced by loading.

  12. In Vivo Evaluation of Immediately Loaded Stainless Steel and Titanium Orthodontic Screws in a Growing Bone

    PubMed Central

    Gritsch, Kerstin; Laroche, Norbert; Bonnet, Jeanne-Marie; Exbrayat, Patrick; Morgon, Laurent; Rabilloud, Muriel; Grosgogeat, Brigitte

    2013-01-01

    The present work intends to evaluate the use of immediate loaded orthodontic screws in a growing model, and to study the specific bone response. Thirty-two screws (half of stainless steel and half of titanium) were inserted in the alveolar bone of 8 growing pigs. The devices were immediately loaded with a 100 g orthodontic force. Two loading periods were assessed: 4 and 12 weeks. Both systems of screws were clinically assessed. Histological observations and histomorphometric analysis evaluated the percent of “bone-to-implant contact” and static and dynamic bone parameters in the vicinity of the devices (test zone) and in a bone area located 1.5 cm posterior to the devices (control zone). Both systems exhibit similar responses for the survival rate; 87.5% and 81.3% for stainless steel and titanium respectively (p = 0.64; 4-week period), and 62.5% and 50.0% for stainless steel and titanium respectively (p = 0.09; 12-week period). No significant differences between the devices were found regarding the percent of “bone-to-implant contact” (p = 0.1) or the static and dynamic bone parameters. However, the 5% threshold of “bone-to-implant contact” was obtained after 4 weeks with the stainless steel devices, leading to increased survival rate values. Bone in the vicinity of the miniscrew implants showed evidence of a significant increase in bone trabecular thickness when compared to bone in the control zone (p = 0.05). In our study, it is likely that increased trabecular thickness is a way for low density bone to respond to the stress induced by loading. PMID:24124540

  13. Evaluating a tablet application and differential reinforcement to increase eye contact in children with autism.

    PubMed

    Jeffries, Tricia; Crosland, Kimberly; Miltenberger, Raymond

    2016-03-01

    We tested the effectiveness of a tablet application and differential reinforcement to increase eye contact in 3 children with autism. The application required the child to look at a picture of a person's face and identify the number displayed in the person's eyes. Eye contact was assessed immediately after training, 1 hr after training, and in a playroom. The tablet application was not effective; however, differential reinforcement was effective for all participants.

  14. Negative Reinforcement and Premonitory Urges in Youth With Tourette Syndrome: An Experimental Evaluation.

    PubMed

    Capriotti, Matthew R; Brandt, Bryan C; Turkel, Jennifer E; Lee, Han-Joo; Woods, Douglas W

    2014-03-01

    Tourette syndrome (TS) is marked by the chronic presence of motor and vocal tics that are usually accompanied by aversive sensory experiences called "premonitory urges." Phenomenological accounts suggest that these urges occur before tics and diminish following their occurrence. This has led some to suggest that tics are negatively reinforced by removal of premonitory urges. This hypothesis has proven difficult to test experimentally, however, due in part to challenges in measuring premonitory urge strength. We tested predictions of the negative reinforcement conceptualization of premonitory urges using novel experimental tactics within the context of the "tic detector" paradigm. We compared tic rates and ratings of premonitory urge strength exhibited by youth with TS or chronic tic disorder under free-to-tic baseline (BL), reinforced tic suppression (RTS), and reinforced tic suppression with escape (RTS + E) conditions. Results were consistent with previous research and hypotheses of the present study. Participants rated the strength of their premonitory urges as higher during RTS conditions than during BL conditions. Within RTS + E conditions, tic rates were higher during escape portions when the contingency supporting tic suppression was inactive than during components where the contingency was active, and ratings of urge strength were higher at the onset of break periods than at the offset. All participants engaged in some level of escape from reinforced suppression during the course of the experiment. Results of this study support the notion that tics may be negatively reinforced by removal of aversive premonitory urges. Future directions for basic and clinical research are discussed.

  15. Micromechanics Solution for the Elastic Moduli of Fiber-Reinforced Concrete

    NASA Astrophysics Data System (ADS)

    Huan, Yu Jia; Yang, Liu; Jin, Yu; Guang, Jia Lian; Ming, Liu

    2014-09-01

    The overall elastic moduli of fiber-reinforced concrete composite materials are investigated by employing the theory of micromechanics. A method based on the Mori-Tanaka theory and triple inhomogeneities is found to provide a sufficiently accurate evaluation of the average elastic properties of fiber-reinforced concrete composite materials. The inhomogeneities of the materials are divided into three groups: a fine aggregate, a coarse aggregate, and fibers (steel or polymer). The elastic moduli of fiber-reinforced concrete composite materials are determined as functions of the physical properties and volume fraction of sand, gravel, fibers (steel or polymer), and cement paste as a matrix. The theoretical results obtained are compared with published experimental data. The parameters affecting the elastic moduli of fiber-reinforced concrete are discussed in detail.

  16. The application of strain field intensity method in the steel bridge fatigue life evaluation

    NASA Astrophysics Data System (ADS)

    Zhao, Xuefeng; Wang, Yanhong; Cui, Yanjun; Cao, Kaisheng

    2012-04-01

    Asce's survey shows that 80%--90% bridge damage were associated with fatigue and fracture problems. With the operation of vehicle weight and traffic volume increases constantly, the fatigue of welded steel bridge is becoming more and more serious in recent years. A large number of studies show that most prone to fatigue damage of steel bridge is part of the welding position. Thus, it's important to find a more precise method to assess the fatigue life of steel bridge. Three kinds of fatigue analysis method is commonly used in engineering practice, such as nominal stress method, the local stress strain method and field intensity method. The first two methods frequently used for fatigue life assessment of steel bridge, but field intensity method uses less ,and it widely used in fatigue life assessment of aerospace and mechanical. Nominal stress method and the local stress strain method in engineering has been widely applied, but not considering stress gradient and multiaxial stress effects, the accuracy of calculation stability is relatively poor, so it's difficult to fully explain the fatigue damage mechanism. Therefore, it used strain field intensity method to evaluate the fatigue life of steel bridge. The fatigue life research of the steel bridge based on the strain field method and the fatigue life of the I-section plate girder was analyzed. Using Ansys on the elastoplastic finite element analysis determined the dangerous part of the structure and got the stress-strain history of the dangerous point. At the same time, in order to divide the unit more elaborate introduced the sub-structure technology. Finally, it applies K.N. Smith damage equation to calculate the fatigue life of the dangerous point. In order to better simulating the actual welding defects, it dug a small hole in the welding parts. It dug different holds from different view in the welding parts and plused the same load to calculate its fatigue life. Comparing the results found that the welding

  17. A simplified LBB evaluation procedure for austenitic and ferritic steel piping

    SciTech Connect

    Gamble, R.M.; Wichman, K.R.

    1997-04-01

    The NRC previously has approved application of LBB analysis as a means to demonstrate that the probability of pipe rupture was extremely low so that dynamic loads associated with postulated pipe break could be excluded from the design basis (1). The purpose of this work was to: (1) define simplified procedures that can be used by the NRC to compute allowable lengths for circumferential throughwall cracks and assess margin against pipe fracture, and (2) verify the accuracy of the simplified procedures by comparison with available experimental data for piping having circumferential throughwall flaws. The development of the procedures was performed using techniques similar to those employed to develop ASME Code flaw evaluation procedures. The procedures described in this report are applicable to pipe and pipe fittings with: (1) wrought austenitic steel (Ni-Cr-Fe alloy) having a specified minimum yield strength less than 45 ksi, and gas metal-arc, submerged arc and shielded metal-arc austentic welds, and (2) seamless or welded wrought carbon steel having a minimum yield strength not greater than 40 ksi, and associated weld materials. The procedures can be used for cast austenitic steel when adequate information is available to place the cast material toughness into one of the categories identified later in this report for austenitic wrought and weld materials.

  18. EVALUATION OF ALTERNATE STAINLESS STEEL SURFACE TREATMENTS FOR MASS SPECTROSCOPY AND OTHER TRITIUM SYSTEMS

    SciTech Connect

    Clark, E.; Mauldin, C.; Neikirk, K.

    2012-02-29

    There are specific components in the SRS Tritium Facilities that are required to introduce as few chemical impurities (such as protium and methane) as possible into the process gas. Two such components are the inlet systems for the mass spectroscopy facilities and hydrogen isotope mix standard containers. Two vendors now passivate stainless steel components for these systems, and both are relatively small businesses whose future viability can be questioned, which creates the need for new sources. Stainless steel containers were designed to evaluate alternate surface treatment vendors for tritium storage and handling for these high purity tritium systems. Five vendors applied their own 'best' surface treatments to two containers each - one was a current vendor, another was a chemical vapor deposited silicon coating, and the other three were electropolishing and chemical cleaning vendors. Pure tritium gas was introduced into all ten containers and the composition was monitored over time. The only observed impurities in the gas were some HT, less CT{sub 4}, and very small amounts of T{sub 2}O in all cases. The currently used vendor treated containers contained the least impurities. The chemical vapor deposited silicon treatment resulted in the highest impurity levels. Sampling one set of containers after about one month of tritium exposure revealed the impurity level to be nearly the same as that after more than a year of exposure - this result suggests that cleaning new stainless steel components by tritium gas contact for about a month may be a worthy operation.

  19. Computed Tomographic Evaluation of K3 Rotary and Stainless Steel K File Instrumentation in Primary Teeth

    PubMed Central

    Kavitha, Swaminathan; Thomas, Eapen; Anadhan, Vasanthakumari; Vijayakumar, Rajendran

    2016-01-01

    Introduction The intention of root canal preparation is to reduce infected content and create a root canal shape allowing for a well condensed root filling. Therefore, it is not necessary to remove excessive dentine for successful root canal preparation and concern must be taken not to over instrument as perforations can occur in the thin dentinal walls of primary molars. Aim This study was done to evaluate the time preparation, the risk of lateral perforation and dentine removal of the stainless steel K file and K3 rotary instrumentation in primary teeth. Materials and Methods Seventy-five primary molars were selected and divided into three groups. Using spiral computed tomography the teeth were scanned before instrumentation. Teeth were prepared using a stainless steel K file for manual technique. All the canals were prepared up to file size 35. In K3 rotary files (.02 taper) instrumentation was done up to 35 size file. In K3 rotary files (.04 taper) the instrumentation was done up to 25 size file and simultaneously the instrumentation time was recorded. The instrumented teeth were once again scanned and the images were compared with the images of the uninstrumented canals. Statistical Analysis Data was statistically analysed using Kruskal Wallis One-way ANOVA, Mann-Whitney U-Test and Pearson’s Chi-square Test. Results K3 rotary files (.02 taper) removed a significantly less amount of dentine, required less instrumentation time than a stainless steel K file. Conclusion K3 files (.02 taper) generated less dentine removal than the stainless steel K file and K3 files (.04 taper). K3 rotary files (.02 taper) were more effective for root canal instrumentation in primary teeth. PMID:26894166

  20. The fatigue evaluation method for a structural stainless steel using the magnetic sensor composed of three pancake coils

    SciTech Connect

    Oka, M.; Tsuchida, Y.; Enokizono, M.; Yakushiji, T.

    2011-06-23

    May metallic structural materials, such as stainless steels, are currently used in our surroundings. If external force is repeatedly added for many years, it is thought that fatigue damage accumulates in stainless steels. When excessive fatigue damage accumulates in these metals, there is a possibility that they are destroyed by fatigue damage accumulation. Therefore, it is important to know the amount of the fatigue damage they have suffered in order to prevent them from being destroyed. We are developing the fatigue evaluation method for stainless steels with a magnetic sensor composed of three pancake type coils. In this research, the inspection object is ferritic stainless steels such as SUS430. The method of fatigue evaluation for ferritic stainless steels uses the three coil type sensor, and shows a good correlation between the number of stress cycles and the output signal of the sensor, even though the correlation between the output signal and an added stress is not completely accurate. This paper describes the evaluation method of fatigue damage in ferritic stainless steel using a magnetic sensor composed of three pancake-type coils.

  1. An evaluation of alternative cleaning methods for removing an organic contaminant from a stainless steel part

    SciTech Connect

    Boyd, J.L.

    1996-08-01

    As of December 1995, the manufacture of Freon, along with many other chlorofluorocarbons (CFCs), was prohibited by the Clean Air Act of 1990 (CAA). The ban of CFC solvents has forced manufacturers across the country to search for alternative metal cleaning techniques. The objective of this study was to develop a thorough, scientific based approach for resolving one specific manufacturer`s problem of removing organic contamination from a stainless steel part. This objective was accomplished with an approach that involved: (1) defining the problem, (2) identifying the process constraints, (3) researching alternate cleaning methods, (4) researching applicable government regulations, (5) performing a scientific evaluation and (6) drawing conclusions.

  2. Fatigue damage evaluation of austenitic stainless steel using nonlinear ultrasonic waves in low cycle regime

    NASA Astrophysics Data System (ADS)

    Zhang, Jianfeng; Xuan, Fu-Zhen

    2014-05-01

    The interrupted low cycle fatigue test of austenitic stainless steel was conducted and the dislocation structure and fatigue damage was evaluated subsequently by using both transmission electron microscope and nonlinear ultrasonic wave techniques. A "mountain shape" correlation between the nonlinear acoustic parameter and the fatigue life fraction was achieved. This was ascribed to the generation and evolution of planar dislocation structure and nonplanar dislocation structure such as veins, walls, and cells. The "mountain shape" correlation was interpreted successfully by the combined contribution of dislocation monopole and dipole with an internal-stress dependent term of acoustic nonlinearity.

  3. Fatigue damage evaluation of austenitic stainless steel using nonlinear ultrasonic waves in low cycle regime

    SciTech Connect

    Zhang, Jianfeng; Xuan, Fu-Zhen

    2014-05-28

    The interrupted low cycle fatigue test of austenitic stainless steel was conducted and the dislocation structure and fatigue damage was evaluated subsequently by using both transmission electron microscope and nonlinear ultrasonic wave techniques. A “mountain shape” correlation between the nonlinear acoustic parameter and the fatigue life fraction was achieved. This was ascribed to the generation and evolution of planar dislocation structure and nonplanar dislocation structure such as veins, walls, and cells. The “mountain shape” correlation was interpreted successfully by the combined contribution of dislocation monopole and dipole with an internal-stress dependent term of acoustic nonlinearity.

  4. Energy Dissipation Capacity of Reinforced Concrete Beams Strengthened with CFRP Strips

    NASA Astrophysics Data System (ADS)

    Hong, Sungnam; Park, Sun-Kyu

    2016-05-01

    Cyclic loading tests were performed to investigate the energy dissipation capacities of reinforced concrete (RC) beams strengthened with carbon-fiber-reinforced polymer (CFRP) strips. Four RC beams were manufactured and three-point loaded. Responses of the strengthened beams to the cyclic loadings were measured, including deflections at the center of their span and strains of the CFRP strips and reinforcing steel rebars. Based on test results, the energy dissipation capacity of the strengthened beams were evaluated in comparison with that of an unstrengthened control beam.

  5. 150. Credit ER. Building reinforced concrete portion of Coleman Canal ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    150. Credit ER. Building reinforced concrete portion of Coleman Canal inverted siphon #2. Longitudinal steel reinforcing rods are visible at bottom. (ER, v. 64 1911 p. 702). - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  6. Nondestructive evaluation of fatigue damage on low-alloy steel by magnetic technique

    SciTech Connect

    Hirasawa, T.; Komura, I.; Chujow, N.

    1994-12-31

    In the nuclear power plant, fatigue damage is one of the most significant degradation behavior which is expected that the structural components is received during long term operation. In order to estimate the plant life and to ensure the reliability of the plants, nondestructive detection and evaluation of fatigue damage of the components are a key technology. Magneto mechanical acoustic emission (MAE) method was applied to the evaluation of fatigue damage of reactor pressure vessel steel. Several MAE parameters which were obtained from the signal processing and waveform analysis on fatigue specimens, were measured and investigated as a function of cumulative fatigue damage factor. Consequently, these MAE parameters were compared to the results by X-ray diffraction technique, hardness testing and microstructural observation. The usefulness of MAE method as the nondestructive evaluation technique of fatigue damage was discussed.

  7. Wear Evaluation of AISI 4140 Alloy Steel with WC/C Lamellar Coatings Sliding Against EN 8 Using Taguchi Method

    NASA Astrophysics Data System (ADS)

    Kadam, Nikhil Rajendra; Karthikeyan, Ganesarethinam

    2016-10-01

    The purpose of the experiments in this paper is to use the Taguchi methods to investigate the wear of WC/C coated nitrided AISI 4140 alloy steel. A study of lamellar WC/C coating which were deposited by a physical vapor deposition on nitrided AISI 4140 alloy steel. The investigation includes wear evaluation using Pin-on-disk configuration. When WC/C coated AISI 4140 alloy steel slides against EN 8 steel, it was found that carbon-rich coatings show much lower wear of the countersurface than nitrogen-rich coatings. The results were correlated with the properties determined from tribological and mechanical characterization, therefore by probably selecting the proper processing parameters the deposition of WC/C coating results in decreasing the wear rate of the substrate which shows a potential for tribological application.

  8. Evaluation of a Multiple-Stimulus Presentation Format for Assessing Reinforcer Preferences.

    ERIC Educational Resources Information Center

    DeLeon, Iser G.; Iwata, Brian A.

    1996-01-01

    A study of seven adults with profound developmental disabilities compared methods for presenting stimuli during reinforcer-preference assessments. It found that a multiple-stimulus format in which selections were made without replacement may share the advantages of a paired-stimulus format and a multiple-stimulus format with replacement, while…

  9. Evaluating a Tablet Application and Differential Reinforcement to Increase Eye Contact in Children with Autism

    ERIC Educational Resources Information Center

    Jeffries, Tricia; Crosland, Kimberly; Miltenberger, Raymond

    2016-01-01

    We tested the effectiveness of a tablet application and differential reinforcement to increase eye contact in 3 children with autism. The application required the child to look at a picture of a person's face and identify the number displayed in the person's eyes. Eye contact was assessed immediately after training, 1 hr after training, and in a…

  10. An Evaluation of Pedagogical Tutorial Tactics for a Natural Language Tutoring System: A Reinforcement Learning Approach

    ERIC Educational Resources Information Center

    Chi, Min; VanLehn, Kurt; Litman, Diane; Jordan, Pamela

    2011-01-01

    Pedagogical strategies are policies for a tutor to decide the next action when there are multiple actions available. When the content is controlled to be the same across experimental conditions, there has been little evidence that tutorial decisions have an impact on students' learning. In this paper, we applied Reinforcement Learning (RL) to…

  11. An Evaluation of Prompting and Reinforcement for Training Visual Analysis Skills

    ERIC Educational Resources Information Center

    Young, Nicholas D.; Daly, Edward J., III.

    2016-01-01

    This study examined the use of an instructional package consisting of structured criteria, extrastimulus prompts, prompt delay, and reinforcement contingencies to improve decision making based on visual analysis of case-study (A/B) design data. Four participants without backgrounds in behavior analysis received training under two experimental…

  12. Fabrication and evaluation of mechanical properties of alkaline treated sisal/hemp fiber reinforced hybrid composite

    NASA Astrophysics Data System (ADS)

    Venkatesha Gupta, N. S.; Akash; Sreenivasa Rao, K. V.; kumar, D. S. Arun

    2016-09-01

    Fiber reinforced polymer composite have acquired a dominant place in variety of applications because of higher specific strength and modulus, the plant based natural fiber are partially replacing currently used synthetic fiber as reinforcement for polymer composites. In this research work going to develop a new material which posses a strength to weight ratio that for exceed any of the present material. The hybrid composite sisal/hemp reinforced with epoxy matrix has been developed by compression moulding technique according to ASTM standards. Sodium hydroxide (NAOH) was used as alkali for treating the fibers. The amount of reinforcement was varied from 10% to 50% in steps of 10%. Prepared specimens were examined for mechanical properties such as tensile strength, flexural strength, and hardness. Hybrid composite with 40wt% sisal/hemp fiber were found to posses higher strength (tensile strength = 53.13Mpa and flexural strength = 82.07Mpa) among the fabricated hybrid composite specimens. Hardness value increases with increasing the fiber volume. Morphological examinations are carried out to analyze the interfacial characteristics, internal structure and fractured surfaces by using scanning electron microscope.

  13. Evaluation of the Reinforcing Effect of Quetiapine, Alone and in Combination with Cocaine, in Rhesus Monkeys.

    PubMed

    Brutcher, Robert E; Nader, Susan H; Nader, Michael A

    2016-02-01

    There are several case reports of nonmedicinal quetiapine abuse, yet there are very limited preclinical studies investigating quetiapine self-administration. The goal of this study was to investigate the reinforcing effects of quetiapine alone and in combination with intravenous cocaine in monkeys. In experiment 1, cocaine-experienced female monkeys (N = 4) responded under a fixed-ratio (FR) 30 schedule of food reinforcement (1.0-g banana-flavored pellets), and when responding was stable, quetiapine (0.003-0.1 mg/kg per injection) or saline was substituted for a minimum of five sessions; there was a return to food-maintained responding between doses. Next, monkeys were treated with quetiapine (25 mg, by mouth, twice a day) for approximately 30 days, and then the quetiapine self-administration dose-response curve was redetermined. In experiment 2, male monkeys (N = 6) self-administered cocaine under a concurrent FR schedule with food reinforcement (three food pellets) as the alternative to cocaine (0.003-0.3 mg/kg per injection) presentation. Once choice responding was stable, the effects of adding quetiapine (0.03 or 0.1 mg/kg per injection) to the cocaine solution were examined. In experiment 1, quetiapine did not function as a reinforcer, and chronic quetiapine treatment did not alter these effects. In experiment 2, cocaine choice increased in a dose-dependent fashion. The addition of quetiapine to cocaine resulted in increases in low-dose cocaine choice and number of cocaine injections in four monkeys, while not affecting high-dose cocaine preference. Thus, although quetiapine alone does not have abuse potential, there was evidence of enhancement of the reinforcing potency of cocaine. These results suggest that the use of quetiapine in cocaine-addicted patients should be monitored.

  14. Nondestructive evaluation of neutron irradiation embrittlement for reactor vessel steel by magnetomechanical acoustic emission technique

    SciTech Connect

    Maeda, Noriyoshi; Yamaguchi, Atsunori; Saito, Kiyoshi; Hirasawa, Taiji; Komura, Ichiroh; Chujou, Noriyuki

    1999-10-01

    A modified magnetomechanical acoustic emission (MAE) technique denoted Pulse MAE, in which the magnetizing current has a rectangular wave form, was developed as an NDE technique. Its applicability to the radiation damage for reactor pressure vessel steel was evaluated. The reactor pressure vessel steel A533B base metal and weld metal were irradiated to the two fluence levels: 5 {times} 10{sup 22} and 3 {times} 10{sup 23} n/m{sup 2} at 288 C. One side of the specimen was electropolished after irradiation. Pulse MAE signals were measured with a 350 kHz resonance frequency AE sensor at the moment when the magnetizing voltage is applied from zero to the set-up value abruptly. The AE signals were analyzed and the peak voltage Vp was determined for the measuring parameter. The peak voltage Vp showed the tendency to increase monotonically with increasing neutron fluence. The relationship between the Vp and mechanical properties such as yield stress, tensile strength and Charpy transition temperature were also obtained. The Pulse MAE technique proved to have the possibility to detect and evaluate the neutron irradiation embrittlement. The potential of the Pulse MAE as an effective NDE technique and applicability to the actual components are discussed.

  15. A study on rate sensitivity of elasto-plastic fracture toughness of TRIP steel evaluated by a small punch test

    NASA Astrophysics Data System (ADS)

    Iwamoto, T.; Hashimoto, S.-ya; Shi, L.

    2012-08-01

    TRIP steel indicates an excellent characteristic in energy absorption because of its high ductility and strength by strain-induced martensitic transformation (SIMT). Recently, some shock absorption members are being used for automotive industries. For good fuel consumption of the automobile, it would realize the weight reduction without decaying performance if TRIP steel can be applied to those members. It can be considered that the fracture toughness is an important factor to evaluate the performance. To evaluate fracture toughness locally at any point of a product of those members, small punch testing method is quite effective. In the present study, first, an impact small punch testing apparatus is established. In addition, elasto-plastic fracture toughness of TRIP steel under impact loading and its rate sensitivity tested at various deflection rates are challenged to evaluate.

  16. The behavior of pre-rusted steel in concrete

    SciTech Connect

    Gonzalez, J.A.; Bautista, A.; Feliu, S.; Ramirez, E.

    1996-03-01

    This paper explores the possibility of an effective protection for precorroded steel by effect of the high alkalinity of the encasing mortar (by itself or in combination with the action of sodium nitrite). Application of a waterproof coating on the mortar surface was evaluated for this purpose. The behavior of clean steel electrodes and in three different pre-corrosion grades was characterized from periodic measurements of the corrosion potential (E{sub corr}) and polarization resistance (R{sub p}). Neither mortar alkalinity alone nor in combination with the effect of nitride ions was found to passivate the reinforcements in the two higher corrosion grades over 2 years of exposure in an atmosphere of a high relative humidity. Also, immersion of the specimens in a 5% NaNO{sub 2} solution was found not to passivate steel undergoing active corrosion. The effectiveness of the waterproofing treatment for diminishing reinforcement corrosion was found to rely heavily on timely application.

  17. Design and evaluation of a bolted joint for a discrete carbon-epoxy rod-reinforced hat section

    NASA Technical Reports Server (NTRS)

    Rousseau, Carl Q.; Baker, Donald J.

    1996-01-01

    The use of prefabricated pultruded carbon-epoxy rods has reduced the manufacturing complexity and costs of stiffened composite panels while increasing the damage tolerance of the panels. However, repairability of these highly efficient discrete stiffeners has been a concern. Design, analysis, and test results are presented in this paper for a bolted-joint repair for the pultruded rod concept that is capable of efficiently transferring axial loads in a hat-section stiffener on the upper skin segment of a heavily loaded aircraft wing component. A tension and a compression joint design were evaluated. The tension joint design achieved approximately 1.0% strain in the carbon-epoxy rod-reinforced hat-section and failed in a metal fitting at 166% of the design ultimate load. The compression joint design failed in the carbon-epoxy rod-reinforced hat-section test specimen area at approximately 0.7% strain and at 110% of the design ultimate load. This strain level of 0.7% in compression is similar to the failure strain observed in previously reported carbon-epoxy rod-reinforced hat-section column tests.

  18. Design and Evaluation of a Bolted Joint for a Discrete Carbon-Epoxy Rod-Reinforced Hat Section

    NASA Technical Reports Server (NTRS)

    Baker, Donald J.; Rousseau, Carl Q.

    1996-01-01

    The use of pre-fabricated pultruded carbon-epoxy rods has reduced the manufacturing complexity and costs of stiffened composite panels while increasing the damage tolerance of the panels. However, repairability of these highly efficient discrete stiffeners has been a concern. Design, analysis, and test results are presented in this paper for a bolted-joint repair for the pultruded rod concept that is capable of efficiently transferring axial loads in a hat-section stiffener on the upper skin segment of a heavily loaded aircraft wing component. A tension and a compression joint design were evaluated. The tension joint design achieved approximately 1.0 percent strain in the carbon-epoxy rod-reinforced hat-section and failed in a metal fitting at 166 percent of the design ultimate load. The compression joint design failed in the carbon-epoxy rod-reinforced hat-section test specimen area at approximately 0.7 percent strain and at 110 percent of the design ultimate load. This strain level of 0.7 percent in compression is similar to the failure strain observed in previously reported carbon-epoxy rod-reinforced hat-section column tests.

  19. Integrating temporal difference methods and self-organizing neural networks for reinforcement learning with delayed evaluative feedback.

    PubMed

    Tan, A H; Lu, N; Xiao, D

    2008-02-01

    This paper presents a neural architecture for learning category nodes encoding mappings across multimodal patterns involving sensory inputs, actions, and rewards. By integrating adaptive resonance theory (ART) and temporal difference (TD) methods, the proposed neural model, called TD fusion architecture for learning, cognition, and navigation (TD-FALCON), enables an autonomous agent to adapt and function in a dynamic environment with immediate as well as delayed evaluative feedback (reinforcement) signals. TD-FALCON learns the value functions of the state-action space estimated through on-policy and off-policy TD learning methods, specifically state-action-reward-state-action (SARSA) and Q-learning. The learned value functions are then used to determine the optimal actions based on an action selection policy. We have developed TD-FALCON systems using various TD learning strategies and compared their performance in terms of task completion, learning speed, as well as time and space efficiency. Experiments based on a minefield navigation task have shown that TD-FALCON systems are able to learn effectively with both immediate and delayed reinforcement and achieve a stable performance in a pace much faster than those of standard gradient-descent-based reinforcement learning systems.

  20. Evaluation of grain boundary embrittlement of phosphorus added F82H steel by SSTT

    NASA Astrophysics Data System (ADS)

    Kim, Byung Jun; Kasada, Ryuta; Kimura, Akihiko; Tanigawa, Hiroyasu

    2012-02-01

    Non-hardening embrittlement (NHE) can be happened by a large amount of He on grain boundaries over 500-700 appm of bulk He without hardening at fusion reactor condition. Especially, at high irradiation temperatures (>≈420 °C), NHE accompanied by intergranular fracture affects the severe accident and the safety of fusion blanket system. Small specimen tests to evaluate fracture toughness and Charpy impact properties were carried out for F82H steels with different levels of phosphorous addition in order to simulate the effects of NHE on the shift of transition curve. It was found that the ductile to brittle transition temperature (DBTT) and reference temperature ( T0) after phosphorous addition is shifted to higher temperatures and accompanied by intergranular fracture at transition temperatures region. The master curve approach for evaluation of fracture toughness change by the degradation of grain boundary strength was carried out by referring to the ASTM E1921.

  1. A metallurgical evaluation of stress corrosion cracking in large diameter stainless steel piping

    SciTech Connect

    Wheeler, D.A.; Rawl, D.E. Jr.; Louthan, M.R. Jr.

    1990-01-01

    Ultrasonic testing (UT) of the stainless steel piping in the primary coolant water system of SRS reactors indicates the presence of short, partly-through-wall stress corrosion cracks in the heat-affected zone of approximately 7% of the circumferential pipe welds. These cracks are thought to develop by intergranular nucleation and mixed mode propagation. Metallographic evaluations have confirmed the UT indications of crack size and provided evidence that crack growth involved the accumulation of chloride inside the growing crack. It is postulated that the development of an oxygen depletion cell inside the crack results in the migration of chloride ions to the crack tip to balance the accumulation of positively charged metallic ions. The results of this metallurgicial evaluation, combined with structural assessments of system integrity, support the existence of leak-before-break conditions in the SRS reactor piping system. 13 refs., 9 figs.

  2. Comparative Evaluation of Marginal Discrepancy in Tooth Colored Self Cure Acrylic Provisional Restorations With and Without Reinforcement of Glass Beads: An In-Vitro Study

    PubMed Central

    Yasangi, Manoj Kumar; Mannem, Dhanalakshmi; Neturi, Sirisha; Ravoori, Srinivas; Jyothi

    2015-01-01

    Context This invitro study was conducted to compare and evaluate marginal discrepancy in two types of tooth colored self cure provisional restorative materials {DPI&UNIFAST TRAD} before and after reinforcement of glass beads. Aim The aim of the present study was to evaluate and compare marginal discrepancy in two types of provisional restorative materials (DPI and UNI FAST TRAD) before and after reinforcement with Glass beads. Materials and Methods Tooth shaped resin copings were fabricated on custom made brass metal die. A total of 60 resin copings were fabricated in which 30 samples were prepared with DPI and 30 samples with UNIFAST material. Each group of 30 samples were divided in to two sub groups in which 15 samples were prepared with glass bead reinforcement and 15 samples without reinforcement. The marginal discrepancy was evaluated with photomicroscope {Reichet Polyvar 2 met} by placing the resin copings on custom made brass resin coping holder. Results Measurements obtained were statistically analysed by unpaired t-test to know any significance between two variables. Unreinforced DPI specimens had shown lower marginal discrepancy (442.82) than reinforced specimens (585.77). Unreinforced UNIFAST specimens have shown high values of marginal discrepancy (592.83) than reinforced specimens (436.35). p-value between reinforced and unreinforced specimens of DPI (p=0.0013) and UNIFAST (p= 0.0038) has shown statistical significance. Conclusion This in-vitro study revealed that unreinforced DPI specimens have shown lower marginal discrepancy than reinforced specimens and unreinforced UNIFAST specimens have shown higher values of marginal discrepancy than reinforced specimens. PMID:26155574

  3. Evaluation of relapse prevention and reinforcement interventions to promote exercise adherence in sedentary females.

    PubMed

    Marcus, B H; Stanton, A L

    1993-12-01

    An experimental design was employed to assess the effectiveness of a relapse prevention program, a reinforcement program, and an exercise-only control group in increasing exercise program adherence and short-term maintenance in 120 previously sedentary female university employees. The subjects participated in an 18-week exercise program composed of stretching, calisthenics, and aerobic dance. Attendance during the first half of the program was significantly higher for subjects in the relapse prevention group than for those in the control group. A nonsignificant trend in this direction emerged during the second half of the program and at 2-month follow-up. For all treatment groups, attrition (attendance at less than two thirds of the exercise sessions) was substantial, averaging 72% at the end of the 18-week program. These findings indicate that relapse prevention and reinforcement programs may not assist previously sedentary females in long-term adherence to an exercise program.

  4. Damage Evaluation in Shear-Critical Reinforced Concrete Beam using Piezoelectric Transducers as Smart Aggregates

    NASA Astrophysics Data System (ADS)

    Chalioris, Constantin E.; Papadopoulos, Nikos A.; Angeli, Georgia M.; Karayannis, Chris G.; Liolios, Asterios A.; Providakis, Costas P.

    2015-10-01

    Damage detection at early cracking stages in shear-critical reinforced concrete beams, before further deterioration and their inevitable brittle shear failure is crucial for structural safety and integrity. The effectiveness of a structural health monitoring technique using the admittance measurements of piezoelectric transducers mounted on a reinforced concrete beam without shear reinforcement is experimentally investigated. Embedded "smart aggregate" transducers and externally bonded piezoelectric patches have been placed in arrays at both shear spans of the beam. Beam were tested till total shear failure and monitored at three different states; healthy, flexural cracking and diagonal cracking. Test results showed that transducers close to the critical diagonal crack provided sound and graduated discrepancies between the admittance responses at the healthy state and thedamage levels.Damage assessment using statistical indices calculated from the measurements of all transducers was also attempted. Rational changes of the index values were obtained with respect to the increase of the damage. Admittance responses and index values of the transducers located on the shear span where the critical diagonal crack formed provided cogent evidence of damage. On the contrary, negligible indication of damage was yielded by the responses of the transducers located on the other shear span, where no diagonal cracking occurred.

  5. Acoustic diagnosis for nondestructive evaluation of ceramic coatings on steel substrates

    SciTech Connect

    Aizawa, Tatsuhiko; Kihara, Junji; Ito, Manabu

    1995-11-01

    New methodology is proposed and developed to make quantitative nondestructive evaluation of TiN coated SKH steel substrates. Since the measured acoustic structure is in precise correspondence with the multi-layered elastic media, change of elastic properties by degradation and damage can be easily distinguished by the acoustic spectro microscopy. In particular, rather complex acoustic structure can be measured by the present method for ceramic coated steel substrate system, but it is completely described by the two-layer model in two dimensional elasticity. Typical example is the cut-off phenomenon where the dispersion curve for the leaky surface wave velocity is forced to be terminated by alternative activation of shear wave instead of it. The quantitative nondestructive diagnosis was developed on the basis of this predictable acoustic structure. Furthermore, the effect of coating conditions on the acoustic structure is also discussed to make residual stress distribution analysis in coating by the acoustic spectro microscopy with reference to the X-ray stress analysis. Some comments are made on further advancement of the present acoustic spectro microscopy adaptive to precise characterization of ceramic coatings and practical sensing system working in practice.

  6. Low temperature mechanical properties, fractographic and metallographic evaluation of several alloy steels

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1973-01-01

    The mechanical properties are presented of alloy steels, 4130, 4140, 4340, 6150, and 8740. Test specimens were manufactured from approximately 1.00 inch (2.54 cm) diameter bar stock which had been heat treated to two different hardness levels. The following mechanical tests were performed at temperatures of 80 F (+26.7 C), 0 F (-17.8 C), -100 F (-73 C), and -200 F (-129 C): (1) tensile test (Ultimate, yield, modulus, elongation, and reduction of area), (2) notched tensile test, (3) charpy V-notched impact test (impact energy), and (4) double shear strength test (ultimate and yield). The test data indicate excellent tensile strength, notched/unnotched tensile ratios, ductility, impact, and shear properties at all test temperatures, except at -200 F (-129 C) where the impact strength of the higher strength group of alloy steels, 4130 (Rc-37) and 4140 (Rc-44) decreased to approximately 9 ft. lbs. (12 joules) and 6 ft. lbs. (8 joules), respectively. Chemical, metallographic, and fractographic analyses were also performed to evaluate microstructure, microhardness and the effect of decrease in temperature on the ductile to brittle failure transition.

  7. Evaluation of fatigue damage in steel structural components by magnetoelastic Barkhausen signal analysis

    SciTech Connect

    Govindaraju, M.R.; Strom, A.; Jiles, D.C.; Biner, S.B.; Chen, Z. )

    1993-05-15

    This paper is concerned with using a magnetic technique for the evaluation of fatigue damage in steel structural components. It is shown that Barkhausen effect measurements can be used to indicate impending failure due to fatigue under certain conditions. The Barkhausen signal amplitude is known to be highly sensitive to changes in density and distribution of dislocations in materials. The sensitivity of Barkhausen signal amplitude to fatigue damage has been studied in the low-cycle fatigue regime using smooth tensile specimens of a medium strength steel. The Barkhausen measurements were taken at depths of penetration of 0.02, 0.07, and 0.2 mm. It was found that changes in magnetic properties are sensitive to microstructural changes taking place at the surface of the material throughout the fatigue life. The changes in the Barkhausen signals have been attributed to distribution of dislocations in stage I and stage II of fatigue life and the formation of a macrocrack in the final stage of fatigue.

  8. Pitting and Bending Fatigue Evaluations of a New Case-Carburized Gear Steel

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy; Tufts, Brian

    2007-01-01

    The power density of a gearbox is an important consideration for many applications and is especially important for gearboxes used on aircraft. One approach to improving power density of gearing is to improve the steel properties by design of the alloy. The alloy tested in this work was designed to be case-carburized with surface hardness of Rockwell C66 after hardening. Test gear performance was evaluated using surface fatigue tests and single-tooth bending fatigue tests. The performance of gears made from the new alloy was compared to the performance of gears made from two alloys currently used for aviation gearing. The new alloy exhibited significantly better performance in surface fatigue testing, demonstrating the value of the improved properties in the case layer. However, the alloy exhibited lesser performance in single-tooth bending fatigue testing. The fracture toughness of the tested gears was insufficient for use in aircraft applications as judged by the behavior exhibited during the single tooth bending tests. This study quantified the performance of the new alloy and has provided guidance for the design and development of next generation gear steels.

  9. Deposition and Evaluation of Protective PVD Coatings on Ferritic Stainless Steel SOFC Interconnects

    SciTech Connect

    Gorokhovsky, Vladimir I.; Gannon, Paul; Deibert, Max; Smith, Richard J.; Kayani, Asghar N.; Kopczyk, M.; Van Vorous, D.; Yang, Z Gary; Stevenson, Jeffry W.; Visco, s.; jacobson, c.; Kurokawa, H.; Sofie, Stephen W.

    2006-09-21

    Reduced operating temperatures (600-800°C) of Solid Oxide Fuel Cells (SOFCs) may enable the use of inexpensive ferritic steels as interconnects. Due to the demanding SOFC interconnect operating environment, protective coatings are gaining attention to increase longterm stability. In this study, large area filtered arc deposition (LAFAD) and hybrid filtered arc assisted electron beam physical vapor deposition (FA-EBPVD) technologies were used for deposition of two-segment coatings with Cr-Co-Al-O-N based sublayer and Mn-Co-O top layer. Coatings were deposited on ferritic steel and subsequently annealed in air for various time intervals. Surface oxidation was investigated using RBS, SEM and EDS analyses. Cr volatilization was evaluated using a transpiration apparatus and ICP-MS analysis of the resultant condensate. Electrical conductivity (Area Specific Resistance) was studied as a function of time using the four-point technique with Ag electrodes. The oxidation behavior, Cr volatilization rate, and electrical conductivity of the coated and uncoated samples are reported. Transport mechanisms for various oxidizing species and coating diffusion barrier properties are discussed.

  10. Project STEEL. A Special Project To Develop and Implement a Computer-Based Special Teacher Education and Evaluation Laboratory. Final Report. Executive Summary.

    ERIC Educational Resources Information Center

    Frick, Theodore W.; And Others

    The document presents the executive summary of the final report of Project STEEL (Special Teacher Education and Evaluation Laboratory), a 3-year study at Indiana University. Project STEEL achieved four major goals: (1) development, implementation, and evaluation of a microcomputer-based observation system for codification, storage, and…

  11. In Vitro Evaluation of Veneering Composites and Fibers on the Color of Fiber-Reinforced Composite Restorations

    PubMed Central

    Hasani Tabatabaei, Masoomeh; Hasani, Zahra; Ahmadi, Elham

    2014-01-01

    Objective: Color match between fiber-reinforced composite (FRC) restorations and teeth is an imperative factor in esthetic dentistry. The purpose of this study is to evaluate the influence of veneering composites and fibers on the color change of FRC restorations. Materials and Methods: Glass and polyethylene fibers were used to reinforce a direct microhybrid composite (Z250, 3M ESPE) and a microfilled composite (Gradia Indirect, GC). There were eight experimental groups (n=5 disks per group). Four groups were used as the controls (non-FRC control) and the others were used as experimental groups. CIELAB parameters (L*, a* and b*) of specimens were evaluated against a white background using a spectrophotometer to assess the color change. The color difference (ΔE*) and color coordinates were (L*, a* and b*) analyzed by two-way ANOVA and Tukey’s test. Results: Both types of composite and fiber influenced the color parameters (ΔL*, Δa*). The incorporation of fibers into the composite in the experimental groups made them darker than the control groups, except in the Gradia Indirect+ glass fibers group. Δb* is affected by types of fibers only in direct fiber reinforced composite. No statistically significant differences were recognized in ΔE* among the groups (p>0.05). Conclusion: The findings of the present study suggest that the tested FRC restorations exhibited no difference in color in comparison with non-FRC restoration. Hence, the types of veneering composites and fibers did not influence the color change (ΔE*) of FRC restorations. PMID:25584060

  12. Mechanical and Metallurgical Evaluation of Carburized, Conventionally and Intensively Quenched Steels

    NASA Astrophysics Data System (ADS)

    Giordani, T.; Clarke, T. R.; Kwietniewski, C. E. F.; Aronov, M. A.; Kobasko, N. I.; Totten, G. E.

    2013-08-01

    Steels subjected to carburizing, quenching, and tempering are widely used for components that require hardness and superficial mechanical resistance together with good core toughness. Intensive quenching is a method that includes advantages including crack prevention, increased mechanical resistance, and improvement in fatigue performance when subjected to very fast (intensive) cooling. However, achieving these advantages requires the formation of sufficiently high surface compressive residual stresses and fine grains at the core of steel components. If the cooling rate is sufficiently high after intensive quenching, then low-hardenability, killed plain carbon steels may be used instead of higher-cost, low alloy steels because compressive residual stresses are formed at the surface of steel parts. The objective of this study was to compare between carburized non-killed AISI 1020 steel samples, which were not modified by Al that were subsequently conventionally and also intensively quenched to determine the effect of quenching on achieving the necessary formation of fine grain size. For comparison, carburized AISI 8620 steel test specimens were conventionally quenched. After quenching, all test specimens were characterized by metallurgical and mechanical analyses. The results of this study showed that when the two quenching methods were compared for carburized non-killed AISI 1020 steel, intensive quenching method was found to be superior with respect to mechanical and metallurgical properties. When comparing the different steels, it was found that intensively quenched, non-killed, AISI 1020 steel yielded grain sizes which were three times greater than those obtained with conventionally quenched, carburized AISI 8620 steel. Therefore, the benefits of intensive quenching were negated. These results show that plain carbon steels must be modified by Al to make fine grains if intensively quenched plain-carbon steel is to replace alloyed AISI 8620 steel.

  13. AN ULTRASONIC PHASED ARRAY EVALUATION OF CAST AUSTENITIC STAINLESS STEEL PRESSURIZER SURGE LINE PIPING WELDS

    SciTech Connect

    Diaz, Aaron A.; Cinson, Anthony D.; Crawford, Susan L.; Moran, Traci L.; Anderson, Michael T.

    2010-07-22

    A set of circumferentially oriented thermal fatigue cracks (TFCs) were implanted into three cast austenitic stainless steel (CASS) pressurizer (PZR) surge-line specimens (pipe-to-elbow welds) that were fabricated using vintage CASS materials formed in the 1970s, and flaw responses from these cracks were used to evaluate detection and sizing performance of the phased-array (PA) ultrasonic testing (UT) methods applied. Four different custom-made PA probes were employed in this study, operating nominally at 800 kHz, 1.0 MHz, 1.5 MHz, and 2.0 MHz center frequencies. The CASS PZR surge-line specimens were polished and chemically etched to bring out the microstructures of both pipe and elbow segments. Additional studies were conducted and documented to address baseline CASS material noise and observe possible ultrasonic beam redirection phenomena.

  14. Evaluation of weldment sensitization on Type 304 and 304L stainless steel spent-fuel canisters

    SciTech Connect

    Filippio, A.M.

    1980-01-01

    Sensitization was evaluated on welded Type 304 and 304L stainless steel canisters produced for the Commercial Waste Spent Fuel Packaging Program (CWSFPP) and the Nevada Nuclear Waste Storage Program (NNWSP). The canister weldments which were made under conditions having the greatest potential for causing sensitization were examined using metallographic and corrosion test practices described in Specification ASTM A-262, and also by exposure to hypothetical conditions simulating continuous boiling water immersion at the storage sites. When tested to ASTM A-262, the Type 304 weldments displayed classical evidence of sensitization; i.e., loss of corrosion resistance at heat affected zones, but no evidence of sensitizations was uncovered on the Type 304L weldments. Both the Type 304 and 304L weldments were totally unaffected by exposure for 1500 hours under conditions of continuous boiling water immersion, indicating that the CWSFPP and NNWSP canisters have adequate corrosion resistance for the intended applications.

  15. Stress corrosion evaluation of HP 9Ni-4Co-0.20C steel

    NASA Technical Reports Server (NTRS)

    Torres, Pablo D.

    1993-01-01

    A stress corrosion cracking (SCC) evaluation was undertaken on HP 9Ni-4Co-0.20C steel in support of the Advanced Solid Rocket Motor (ASRM) program. This alloy was tested in plate, bar, and ring forging forms. Several heat treating procedures yielded ultimate tensile strengths ranging from 1,407 to 1,489 MPa (204 to 216 ksi). The test environments were high humidity, alternate immersion in 3.5-percent NaCl, and 5-percent salt spray. Stress levels ranged from 25 to 90 percent of the yield strengths. The majority of the tests were conducted for 90 days. Even though the specimens rusted significantly in salt spray and alternate immersion, no failures occurred. Therefore, it can be concluded that this alloy, in the forms and at the strength levels tested, is highly resistant to SCC in salt and high humidity environments.

  16. Evaluation of Cavitation-Erosion Resistance of 316LN Stainless Steel in Mercury Containing Metallic Solutes

    SciTech Connect

    Pawel, Steven J; Mansur, Louis K

    2006-08-01

    Room temperature cavitation tests of vacuum annealed type 316LN stainless steel were performed in pure Hg and in Hg with various amounts of metallic solute to evaluate potential mitigation of erosion/wastage. Tests were performed using an ultrasonic vibratory horn with specimens attached at the tip. All of the solutes examined, which included 5 wt% In, 10 wt% In, 4.4 wt% Cd, 2 wt% Ga, and a mixture that included 1 wt% each of Pb, Sn, and Zn, were found to increase cavitation-erosion as measured by increased weight loss and/or surface profile development compared to exposures for the same conditions in pure Hg. Qualitatively, each solute appeared to increase the post-test wetting tenacity of the Hg solutions and render the Hg mixture susceptible to manipulation of droplet shape.

  17. Development and Evaluation of Novel Coupling Agents for Kenaf-Fiber-Reinforced Unsaturated Polyester Composites

    NASA Astrophysics Data System (ADS)

    Ren, Xiaofeng

    Natural fibers are gaining popularity as reinforcement materials for thermoset resins over the last two decades. Natural fibers are inexpensive, abundant, renewable and environmentally friendly. Kenaf fibers are one of the natural fibers that can potentially be used for reinforcing unsaturated polyester (UPE). As a polymer matrix, UPE enjoys a 40% market share of all the thermoset composites. This widespread application is due to many favorable characteristics including low cost, ease of cure at room temperature, ease of molding, a good balance of mechanical, electrical and chemical properties. One of the barriers for the full utilization of the kenaf fiber reinforced UPE composites, however, is the poor interfacial adhesion between the natural fibers and the UPE resins. The good interfacial adhesion between kenaf fibers and UPE matrix is essential for generating the desired properties of kenaf-UPE composites for most of the end applications. Use of a coupling agent is one of the most effective ways of improving the interfacial adhesion. In this study, six novel effective coupling agents were developed and investigated for kenaf-UPE composites: DIH-HEA, MFA, NMA, AESO-DIH, AESO-MDI, and AESO-PMDI. All the coupling agents were able to improve the interfacial adhesion between kanaf and UPE resins. The coupling agents were found to significantly enhance the flexural properties and water resistance of the kenaf-UPE composites. Fourier transform infrared spectroscopy (FTIR) confirmed all the coupling agents were covalently bonded onto kenaf fibers. Scanning electron microscopy (SEM) images of the composites revealed the improved interfacial adhesion between kanaf fibers and UPE resins.

  18. Evaluation of cryogenic fracture toughness in SMA-welded 9% Ni steels through modified CTOD test

    NASA Astrophysics Data System (ADS)

    Jang, Jae-il; Yang, Young-chul; Kim, Woo-sik; Kwon, Dongil

    1997-08-01

    As the first step of the study for the safety performance of LNG storage tank based on the concept of fitness-for-purpose, the change of cryogenic toughness within the X-grooved weld HAZ (heat-affected zone) of SMA (shielded metal arc)-welded QLT (quenching, lamellarizing, and tempering)-processed 9% Ni steels, was investigated qualitatively and quantitatively. In general, CTOD (crack tip opening displacement) test is widely used to determine the fracture toughness of steel weldments. But there is no standard or draft for evaluating the toughness of thick weldment with X-groove such as in this case. Therefore, in this study, modified CTOD testing method for fatigue precracking. calculation of CTOD, examination of fractured specimen was proposed and used. And the results of modified test were compared with those of conventional CTOD test and Charpy V-notch impact test. In addition, the relationship between the fracture toughness and microstructure was analyzed by OM, SEM and XRD. The cryogenic toughness in HAZ decreased as the evaluated region approached the fusion line from base metal. The decrease in toughness was apparently caused by the reduction of the retained austenite content and the absence of grain refinement effect in the coarse-grained zone in HAZ. The austenite reduction resulted from the decrease in nucleation sites for α'γ reverse transformation due to the increase in fraction of coarse-grained zone within HAZ. More complex thermal cycles in the mixed zone of weld metal and base metal caused the poor stability of retained austenite in the zone by the redistribution of alloying element in retained austenite. Due to this reason, the toughness drop with decreasing test temperature in F.L. (fusion line)-F.L.+3 mm was larger than that in F.L.+5 mm and F.L.+7 mm.

  19. Creep-Fatigue Evaluation by Hysteresis Energy in Modified 9Cr-1Mo Steel

    NASA Astrophysics Data System (ADS)

    Nagae, Yuji; Takaya, Shigeru; Asayama, Tai

    Researchers proposed the methods of creep-fatigue evaluation, such as time fraction rules or ductility exhaustion rules. However, the microstructure change during creep-fatigue should not be directly considered in these methods. The hysteresis energy contributes to the microstructure change before the crack initiation and the crack initiation and propagation. The creep-fatigue has evaluated by the hysteresis energy in modified 9Cr-1Mo steel which is a candidate for structural material in Fast Breeder Reactor (FBR) plant. Creep-fatigue and fatigue tests were carried out at 723-873K in air. The hysteresis energy per hour at the middle of life (Nf / 2, Nf is the number of cycles to failure) has been evaluated. It is clear that the relationship between this parameter and the time to failure can be expressed by the power-law function. The creep-fatigue life can be evaluated based on the hysteresis energy an hour at Nf / 2 using this relation.

  20. 75 FR 13543 - Decision To Evaluate a Petition To Designate a Class of Employees for the Simonds Saw and Steel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... Special Exposure Cohort under the Energy Employees Occupational Illness Compensation Program Act of 2000... evaluation, is as follows: Facility: Simonds Saw and Steel Co. Location: Lockport, New York. Job Titles and... and residual periods. Period of Employment: January 1, 1951 through December 31, 2006. FOR...

  1. Evaluation of five sampling methods for Liposcelis entomophila (Enderlein) and L. decolor (Pearman) (Psocoptera: Liposcelididae) in steel bins containing wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An evaluation of five sampling methods for studying psocid population levels was conducted in two steel bins containing 32.6 metric tonnes of wheat in Manhattan, KS. Psocids were sampled using a 1.2-m open-ended trier, corrugated cardboard refuges placed on the underside of the bin hatch or the surf...

  2. Material property evaluations of bimetallic welds, stainless steel saw fusion lines, and materials affected by dynamic strain aging

    SciTech Connect

    Rudland, D.; Scott, P.; Marschall, C.; Wilkowski, G.

    1997-04-01

    Pipe fracture analyses can often reasonably predict the behavior of flawed piping. However, there are material applications with uncertainties in fracture behavior. This paper summarizes work on three such cases. First, the fracture behavior of bimetallic welds are discussed. The purpose of the study was to determine if current fracture analyses can predict the response of pipe with flaws in bimetallic welds. The weld joined sections of A516 Grade 70 carbon steel to F316 stainless steel. The crack was along the carbon steel base metal to Inconel 182 weld metal fusion line. Material properties from tensile and C(T) specimens were used to predict large pipe response. The major conclusion from the work is that fracture behavior of the weld could be evaluated with reasonable accuracy using properties of the carbon steel pipe and conventional J-estimation analyses. However, results may not be generally true for all bimetallic welds. Second, the toughness of austenitic steel submerged-arc weld (SAW) fusion lines is discussed. During large-scale pipe tests with flaws in the center of the SAW, the crack tended to grow into the fusion line. The fracture toughness of the base metal, the SAW, and the fusion line were determined and compared. The major conclusion reached is that although the fusion line had a higher initiation toughness than the weld metal, the fusion-line J-R curve reached a steady-state value while the SAW J-R curve increased. Last, carbon steel fracture experiments containing circumferential flaws with periods of unstable crack jumps during steady ductile tearing are discussed. These instabilities are believed to be due to dynamic strain aging (DSA). The paper discusses DSA, a screening criteria developed to predict DSA, and the ability of the current J-based methodologies to assess the effect of these crack instabilities. The effect of loading rate on the strength and toughness of several different carbon steel pipes at LWR temperatures is also discussed.

  3. Evaluating the addition of positive reinforcement for learning a frightening task: a pilot study with horses.

    PubMed

    Heleski, Camie; Bauson, Laura; Bello, Nora

    2008-01-01

    Horse training often relies upon negative reinforcement (NR). This study tested the hypothesis that adding positive reinforcement (PR) to NR would enhance learning in horses (n = 34) being taught to walk over a tarp (novel/typically frightening task). Subjects were Arabians, and the same person handled all of them. This person handled half "traditionally" (NR only)--that is, halter/lead were pulled; when horse stepped forward, pressure was released; process repeated until criterion met (horse crossed the tarp with little/no obvious anxiety). The same person handled the other half traditionally--but with addition of PR < food + verbal praise > (NR + PR). Subjects "failed" the task if they refused to walk onto the tarp after 10 min. Nine horses failed; 6 of 9 failures were from NR only--no significant difference detected (p = .41). The study detected no difference in time to first crossing of the tarp (p = .30) or total time to achieve calmness criterion (p = .67). Overall, adding PR did not significantly enhance learning this task. However, there were practical implications--adding PR made the task safer/less fatiguing for the handler.

  4. Physicochemical evaluation of silica-glass fiber reinforced polymers for prosthodontic applications.

    PubMed

    Meriç, Gökçe; Dahl, Jon E; Ruyter, I Eystein

    2005-06-01

    This investigation was designed to formulate silica-glass fiber reinforced polymeric materials. Fused silica-glass fibers were chosen for the study. They were heat-treated at various temperatures (500 degrees C, 800 degrees C and 1100 degrees C), silanized, sized and incorporated in two modified resin mixtures (A and B). The flexural properties in dry and wet conditions were tested and statistically analyzed, and the content of residual methyl methacrylate (MMA) monomer, dimensional changes with temperature, water sorption and solubility were determined. Woven fibers [36.9% (wt/wt)], heat-treated at 500 degrees C, gave the highest strength values for the polymeric composites (an ultimate transverse strength of 200 Mpa and a flexural modulus of 10 GPa) compared with the fibers heat-treated at other temperatures. There was no statistically significant difference in the measured flexural properties between resins A and B regarding fiber treatment and water storage time. These fiber composites had a small quantity of residual MMA content [0.37 +/- 0.007% (wt/wt)] and very low water solubility, indicating good biocompatibility. It was suggested that silica-glass fibers could be used for reinforcement as a result of their anticipated good qualities in aqueous environments, such as the oral environment.

  5. Evaluation of Crack Arrest Fracture Toughness of Parent Plate, Weld Metal and Heat Affected Zone of BIS 812 EMA Ship Plate Steel

    DTIC Science & Technology

    1993-10-01

    34- EVALUATION OF CRACK ARREST FRACTURE TOUGHNESS OF PARENT PLATE, WELD METAL 0 AND HEAT AFFECTED ZONE OF BIS 812 EMA SHIP PLATE STEEL IA BURCH MRL-TR...had a deleterious effect on the crack arrest properties of this particular steel . Tests on each of these regions revealed that, far the combination of...fracture toughness assessment is not a requirement for qualification for this steel , crack arrest fracture toughness, Kj, can be used to • 0 characterise the

  6. An evaluation of antecedent exercise on behavior maintained by automatic reinforcement using a three-component multiple schedule.

    PubMed

    Morrison, Heather; Roscoe, Eileen M; Atwell, Amy

    2011-01-01

    We evaluated antecedent exercise for treating the automatically reinforced problem behavior of 4 individuals with autism. We conducted preference assessments to identify leisure and exercise items that were associated with high levels of engagement and low levels of problem behavior. Next, we conducted three 3-component multiple-schedule sequences: an antecedent-exercise test sequence, a noncontingent leisure-item control sequence, and a social-interaction control sequence. Within each sequence, we used a 3-component multiple schedule to evaluate preintervention, intervention, and postintervention effects. Problem behavior decreased during the postintervention component relative to the preintervention component for 3 of the 4 participants during the exercise-item assessment; however, the effects could not be attributed solely to exercise for 1 of these participants.

  7. Quantitative evaluation of dynamic precipitation kinetics in a complex Nb-Ti-V microalloyed steel using electrical resistivity measurements

    NASA Astrophysics Data System (ADS)

    Jung, Jae-Gil; Bae, Jin-Ho; Lee, Young-Kook

    2013-09-01

    The kinetics of dynamic precipitation in austenite of a complex Nb-Ti-V microalloyed steel during hot compression at 900 °C with a strain rate of 6.7 s-1 was quantitatively investigated through electrical resistivity measurements. The dynamic precipitation in the Nb-Ti-V microalloyed steel started at a strain of 0.15. The amount of tiny Nb-rich (Nb,Ti,V)C carbides, which were precipitated at crystal defects gradually increased up to 0.02 wt% at a maximum strain of 0.67. The electrical resistivity was successfully applied to the quantitative evaluation of dynamic precipitation kinetics in microalloyed steel by excluding the effects of crystal defects and interstitial atoms on the electrical resistivity.

  8. A comparative evaluation of welding consumables for dissimilar weids between 316LN austenitic stainless steel and Alloy 800

    NASA Astrophysics Data System (ADS)

    Sireesha, M.; Albert, Shaju K.; Shankar, V.; Sundaresan, S.

    2000-03-01

    Transition joints in power plants between ferritic steels and austenitic stainless steels suffer from a mismatch in coefficients of thermal expansion (CTE) and the migration of carbon during service from the ferritic to the austenitic steel. To overcome these, nickel-based consumables are commonly used. The use of a trimetallic combination with an insert piece of intermediate CTE provides for a more effective lowering of thermal stresses. The current work envisages a trimetallic joint involving modified 9Cr-1Mo steel and 316LN austenitic stainless steel as the base materials and Alloy 800 as the intermediate piece. Of the two joints involved, this paper describes the choice of welding consumables for the joint between Alloy 800 and 316LN. Four consumables were examined: 316, 16-8-2, Inconel 82 and Inconel 182. The comparative evaluation was based on hot cracking tests and estimation of mechanical properties and coefficient of thermal expansion. While 16-8-2 exhibited highest resistance to solidification cracking, the Inconel filler materials also showed adequate resistance; additionally, the latter were superior from the mechanical property and coefficient of thermal expansion view-points. It is therefore concluded that for the joint between Alloy 800 and 316LN the Inconel filler materials offer the best compromise.

  9. Studies of Evaluation of Hydrogen Embrittlement Property of High-Strength Steels with Consideration of the Effect of Atmospheric Corrosion

    NASA Astrophysics Data System (ADS)

    Akiyama, Eiji; Wang, Maoqiu; Li, Songjie; Zhang, Zuogui; Kimura, Yuuji; Uno, Nobuyoshi; Tsuzaki, Kaneaki

    2013-03-01

    Hydrogen embrittlement of high-strength steels was investigated by using slow strain rate test (SSRT) of circumferentially notched round bar specimens after hydrogen precharging. On top of that, cyclic corrosion tests (CCT) and outdoor exposure tests were conducted prior to SSRT to take into account the effect of hydrogen uptake under atmospheric corrosion for the evaluation of the susceptibility of high-strength steels. Our studies of hydrogen embrittle properties of high-strength steels with 1100 to 1500 MPa of tensile strength and a prototype ultrahigh-strength steel with 1760 MPa containing hydrogen traps using those methods are reviewed in this article. A power law relationship between notch tensile strength of hydrogen-precharged specimens and diffusible hydrogen content has been found. It has also been found that the local stress and the local hydrogen concentration are controlling factors of fracture. The results obtained by using SSRT after CCT and outdoor exposure test were in good agreement with the hydrogen embrittlement fracture property obtained by means of long-term exposure tests of bolts made of the high-strength steels.

  10. Evaluating Pillar Industry’s Transformation Capability: A Case Study of Two Chinese Steel-Based Cities

    PubMed Central

    Li, Zhidong; Marinova, Dora; Guo, Xiumei; Gao, Yuan

    2015-01-01

    Many steel-based cities in China were established between the 1950s and 1960s. After more than half a century of development and boom, these cities are starting to decline and industrial transformation is urgently needed. This paper focuses on evaluating the transformation capability of resource-based cities building an evaluation model. Using Text Mining and the Document Explorer technique as a way of extracting text features, the 200 most frequently used words are derived from 100 publications related to steel- and other resource-based cities. The Expert Evaluation Method (EEM) and Analytic Hierarchy Process (AHP) techniques are then applied to select 53 indicators, determine their weights and establish an index system for evaluating the transformation capability of the pillar industry of China’s steel-based cities. Using real data and expert reviews, the improved Fuzzy Relation Matrix (FRM) method is applied to two case studies in China, namely Panzhihua and Daye, and the evaluation model is developed using Fuzzy Comprehensive Evaluation (FCE). The cities’ abilities to carry out industrial transformation are evaluated with concerns expressed for the case of Daye. The findings have policy implications for the potential and required industrial transformation in the two selected cities and other resource-based towns. PMID:26422266

  11. Design and evaluation of low-cost stainless steel fiberglass foam blades for large wind driven generating systems

    NASA Technical Reports Server (NTRS)

    Eggert, W. S.

    1982-01-01

    A low cost wind turbine blade based on a stainless steel fiberglass foam Budd blade design concept, was evaluated for its principle characteristics, low cost features, and its advantages and disadvantages. A blade structure was designed and construction methods and materials were selected. A complete blade tooling concepts, various technical and economic analysis, and evaluations of the blade design were performed. A comprehensive fatigue test program is conducted to provide data to verify the design stress allowables.

  12. An evaluation of the effects of matched stimuli on behaviors maintained by automatic reinforcement.

    PubMed Central

    Piazza, C C; Adelinis, J D; Hanley, G P; Goh, H L; Delia, M D

    2000-01-01

    The purpose of the current investigation was to extend the literature on matched stimuli to three dissimilar forms of aberrant behavior (dangerous climbing and jumping, saliva manipulation, and hand mouthing). The results of functional analyses suggested that each behavior was automatically reinforced. Preference assessments were used to identify two classes of stimuli: items that matched the hypothesized sensory consequences of aberrant behavior (matched stimuli) and items that produced sensory consequences that were not similar to those produced by the aberrant behavior (unmatched stimuli). The effects of providing continuous and noncontingent access to either the most highly preferred matched or the most highly preferred unmatched stimuli were assessed relative to a condition in which no stimuli were available. Overall results suggested that providing access to items that matched the hypothesized sensory consequences of aberrant behavior may be more effective than simply selecting stimuli either arbitrarily or based on the results of preference assessments alone. PMID:10738949

  13. Nondestructive evaluation of fatigue damage on low alloy steel by magnetomechanical acoustic emission technique

    SciTech Connect

    Hiraasawa, T.; Saito, K.; Komura, I.

    1995-08-01

    A modified magnetomechanical acoustic emission (MAE) technique, denoted Pulse-MAE, in which the magnetization by current pulse was adopted, was newly developed and its applicability was assessed for the nondestructive detection and evaluation of fatigue damage in reactor pressure vessel steel SFVV2 and SA508 class2. MAE signals were measured with both conventional MAE and Pulse-MAE technique for fatigue damaged specimens having several damage fractions, and peak voltage ratio Vp/Vo, where Vp and Vo were the peak voltage for damaged and undamaged specimen respectively, was chosen as a measure. Vp/Vo was found to increase monotonously at the early stage of fatigue process and the rate of increase in Vp/Vo during the fatigue process was larger in Pulse-MAE than conventional MAE. Therefore, Pulse-MAE technique proved to have higher sensitivity for the detection of fatigue damage compared with the conventional MAE and to have the potential of a practical technique for nondestructive detection and evaluation of fatigue damage in actual components.

  14. Parametric analysis of delayed primary and conditioned reinforcers.

    PubMed

    Leon, Yanerys; Borrero, John C; DeLeon, Iser G

    2016-09-01

    We examined the effects of delayed reinforcement on the responding of individuals with intellectual disabilities. Three conditions were evaluated: (a) food reinforcement, (b) token reinforcement with a postsession exchange opportunity, and (c) token reinforcement with a posttrial exchange opportunity. Within each condition, we assessed responding given (a) a no-reinforcement baseline, (b) immediate reinforcement, and (c) delayed reinforcement, in which responses produced a reinforcer after 1 of 6 delays. Results suggest that delayed food produced greater response persistence than did delayed tokens.

  15. Evaluating a humane alternative to the bark collar: Automated differential reinforcement of not barking in a home-alone setting.

    PubMed

    Protopopova, Alexandra; Kisten, Dmitri; Wynne, Clive

    2016-12-01

    The aim of this study was to develop a humane alternative to the traditional remote devices that deliver punishers contingent on home-alone dog barking. Specifically, we evaluated the use of remote delivery of food contingent on intervals of not barking during the pet owner's absence. In Experiment 1, 5 dogs with a history of home-alone nuisance barking were recruited. Using an ABAB reversal design, we demonstrated that contingent remote delivery of food decreased home-alone barking for 3 of the dogs. In Experiment 2, we demonstrated that it is possible to thin the differential-reinforcement-of-other-behavior (DRO) schedule gradually, resulting in a potentially more acceptable treatment. Our results benefit the dog training community by providing a humane tool to combat nuisance barking.

  16. An evaluation of fiber-reinforced titanium matrix composites for advanced high-temperature aerospace applications

    SciTech Connect

    Larsen, J.M.; Russ, S.M.; Jones, J.W.

    1995-12-01

    The current capabilities of continuous silicon-carbide fiber-reinforced titanium matrix composites (TMCs) are reviewed with respect to application needs and compared to the capabilities of conventional high-temperature monolithic alloys and aluminides. In particular, the properties of a first-generation titanium aluminide composite, SCS-6/Ti-24Al-11Nb, and a second-generation metastable beta alloy composite, SCS-6/TIMETAL 21S, are compared with the nickel-base superalloy IN100, the high-temperature titanium alloy Ti-1100, and a relatively new titanium aluminide alloy. Emphasis is given to life-limiting cyclic and monotonic properties and to the influence of time-dependent deformation and environmental effects on these properties. The composite materials offer a wide range of performance capabilities, depending on laminate architecture. In many instances, unidirectional composites exhibit outstanding properties, although the same materials loaded transverse to the fiber direction typically exhibit very poor properties, primarily due to the weak fiber/matrix interface. Depending on the specific mechanical property under consideration, composite cross-ply laminates often show no improvement over the capability of conventional monolithic materials. Thus, it is essential that these composite materials be tailored to achieve a balance of properties suitable to the specific application needs if these materials are to be attractive candidates to replace more conventional materials.

  17. Mechanical evaluation of gradient electrospun scaffolds with 3D printed ring reinforcements for tracheal defect repair.

    PubMed

    Ott, Lindsey M; Zabel, Taylor A; Walker, Natalie K; Farris, Ashley L; Chakroff, Jason T; Ohst, Devan G; Johnson, Jed K; Gehrke, Steven H; Weatherly, Robert A; Detamore, Michael S

    2016-04-21

    Tracheal stenosis can become a fatal condition, and current treatments include augmentation of the airway with autologous tissue. A tissue-engineered approach would not require a donor source, while providing an implant that meets both surgeons' and patients' needs. A fibrous, polymeric scaffold organized in gradient bilayers of polycaprolactone (PCL) and poly-lactic-co-glycolic acid (PLGA) with 3D printed structural ring supports, inspired by the native trachea rings, could meet this need. The purpose of the current study was to characterize the tracheal scaffolds with mechanical testing models to determine the design most suitable for maintaining a patent airway. Degradation over 12 weeks revealed that scaffolds with the 3D printed rings had superior properties in tensile and radial compression, with at least a three fold improvement and 8.5-fold improvement, respectively, relative to the other scaffold groups. The ringed scaffolds produced tensile moduli, radial compressive forces, and burst pressures similar to or exceeding physiological forces and native tissue data. Scaffolds with a thicker PCL component had better suture retention and tube flattening recovery properties, with the monolayer of PCL (PCL-only group) exhibiting a 2.3-fold increase in suture retention strength (SRS). Tracheal scaffolds with ring reinforcements have improved mechanical properties, while the fibrous component increased porosity and cell infiltration potential. These scaffolds may be used to treat various trachea defects (patch or circumferential) and have the potential to be employed in other tissue engineering applications.

  18. Aging Degradation of Austenitic Stainless Steel Weld Probed by Electrochemical Method and Impact Toughness Evaluation

    NASA Astrophysics Data System (ADS)

    Singh, Raghuvir; Das, Goutam; Mahato, B.; Singh, P. K.

    2017-01-01

    The present study discriminates the spinodal decomposition and G-phase precipitation in stainless steel welds by double loop electrochemical potentio-kinetic reactivation method and correlates it with the degradation in toughness property. The welds produced with different heat inputs were aged up to 10,000 hours at 673 K to 723 K (400 to 450 °C) and evaluated subsequently for the degree of sensitization (DOS) and impact toughness. The DOS values obtained were attributed to the spinodal decomposition and precipitation of G-phase. Study shows that the DOS correlates well with the impact toughness of the 304LN weld. Prolonged aging at 673 K and 723 K (400 °C and 450 °C) increased the DOS values while the impact toughness was decreased. The weld fabricated at 1 kJ/mm of heat input, produced higher DOS, compared to that at 3 kJ/mm. The geometrical location along the weld is shown to influence the DOS; higher values were obtained at the root than at the topside of the weld. Vermicular and columnar microstructure, in addition to the spinodal decomposition and G-phase precipitation, observed in the root side of the weld appear risky for the impact toughness.

  19. Evaluation of physicochemical properties of SiO2-coated stainless steel after sterilization.

    PubMed

    Walke, Witold; Paszenda, Zbigniew; Pustelny, Tadeusz; Opilski, Zbigniew; Drewniak, Sabina; Kościelniak-Ziemniak, Magdalena; Basiaga, Marcin

    2016-06-01

    The study of most of the literature devoted to the use of coronary stents indicates that their efficiency is determined by the physicochemical properties of the implant surface. Therefore, the authors of this study suggested conditions for the formation of SiO2 layers obtained with the use of sol-gel methodology showing physicochemical properties adequate to the specific conditions of the cardio-vascular system. Previous experience of authors helped them much to optimize the coating of 316LVM steel surface with SiO2. The values of parameters that determine the usefulness of the coating in medical applications have been determined. In order to identify the phenomena taking place at the boundary of phases and to evaluate the usefulness of the proposed surface modification, taking into consideration the medical sterilization (steam or ethylene oxide (EO)), the potentiodynamic, impedance, adhesion, surface morphology and biological assessment characterizations were performed. Regardless of the usage of the sterilizing agent (steam, EO) the study showed the reduction of critical force causing layer's delamination. The research results of corrosion resistance study also confirmed a slight decrease of SiO2 barrier properties of the samples after sterilization in contact with the artificial plasma. SiO2 layers after the sterilization process did not show significant features of cytotoxicity and had no negative influence on blood cell counts, which confirmed the results of quantitative and qualitative studies.

  20. A mechanical property and stress corrosion evaluation of Custom 455 stainless steel alloy

    NASA Technical Reports Server (NTRS)

    Montano, J. W.

    1972-01-01

    The mechanical and stress corrosion properties are presented of vacuum melted Custom 455 stainless steel alloy bar (1.0-inch diameter) and sheet (0.083-inch thick) material aged at 950 F, 1000 F, and 1050 F. Low temperature mechanical properties were determined at temperatures of 80 F, 0 F, -100 F, and -200 F. For all three aging treatments, the ultimate tensile and 0.2 percent offset yield strengths increased with decreasing test temperatures while the elongation held fairly constant down to -100 F and decreased at -200 F. Reduction in Area decreased moderately with decreasing temperature for the longitudinal round (0.250-inch diameter) specimens. Notched tensile strength and charpy V-notched impact strength decreased with decreasing test temperature. For all three aging treatments, no failures were observed in the unstressed specimens or the specimens stressed to 50, 75, and 100 percent of their yield strengths for 180 days of alternate immersion testing in a 3.5 percent NaCl solution. As indicated by the results of tensile tests performed after alternate immersion testing, the mechanical properties of Custom 455 alloy were not affected by stress or exposure under the conditions of the evaluation.

  1. Nondestructive Evaluation of Friction Stir-Welded Aluminum Alloy to Coated Steel Sheet Lap Joint

    NASA Astrophysics Data System (ADS)

    Das, H.; Kumar, A.; Rajkumar, K. V.; Saravanan, T.; Jayakumar, T.; Pal, Tapan Kumar

    2015-11-01

    Dissimilar lap joints of aluminum sheet (AA 6061) of 2 mm thickness and zinc-coated steel sheet of 1 mm thickness were produced by friction stir welding with different combinations of rotational speed and travel speed. Ultrasonic C- and B-scanning, and radiography have been used in a complementary manner for detection of volumetric (cavity and flash) and planar (de bond) defects as the defects are in micron level. Advanced ultrasonic C-scanning did not provide any idea about the defects, whereas B-scanning cross-sectional image showed an exclusive overview of the micron-level defects. A digital x-ray radiography methodology is proposed for quality assessment of the dissimilar welds which provide three-fold increase in signal-to-noise ratio with improved defect detection sensitivity. The present study clearly shows that the weld tool rotational speed and travel speed have a decisive role on the quality of the joints obtained by the friction stir welding process. The suitability of the proposed NDE techniques to evaluate the joint integrity of dissimilar FSW joints is thus established.

  2. Aging Degradation of Austenitic Stainless Steel Weld Probed by Electrochemical Method and Impact Toughness Evaluation

    NASA Astrophysics Data System (ADS)

    Singh, Raghuvir; Das, Goutam; Mahato, B.; Singh, P. K.

    2017-03-01

    The present study discriminates the spinodal decomposition and G-phase precipitation in stainless steel welds by double loop electrochemical potentio-kinetic reactivation method and correlates it with the degradation in toughness property. The welds produced with different heat inputs were aged up to 10,000 hours at 673 K to 723 K (400 to 450 °C) and evaluated subsequently for the degree of sensitization (DOS) and impact toughness. The DOS values obtained were attributed to the spinodal decomposition and precipitation of G-phase. Study shows that the DOS correlates well with the impact toughness of the 304LN weld. Prolonged aging at 673 K and 723 K (400 °C and 450 °C) increased the DOS values while the impact toughness was decreased. The weld fabricated at 1 kJ/mm of heat input, produced higher DOS, compared to that at 3 kJ/mm. The geometrical location along the weld is shown to influence the DOS; higher values were obtained at the root than at the topside of the weld. Vermicular and columnar microstructure, in addition to the spinodal decomposition and G-phase precipitation, observed in the root side of the weld appear risky for the impact toughness.

  3. SIMS evaluation of poly crystal boron nitride tool effect in thermo-mechanically affected zone of friction stir weld steels

    NASA Astrophysics Data System (ADS)

    Kim, JaeNam; Lee, SangUp; Kwun, HyoegDae; Shin, KwangSoo; Kang, ChangYong

    2014-11-01

    The effect of the poly crystal boron nitride (PCBN) tool in friction stir weld (FSW) steels was evaluated using the secondary ion mass spectroscopy (SIMS) technique. This study focused on the quantitative SIMS analysis of impurity boron through a resistive anode encoder (RAE) image. The RAE images were transformed retrospective depth profile by profiler. The relative sensitivity factors (RSFs) for boron varied heavily according to by the polarity of secondary voltage and matrix materials. The RAE images of cluster-polyatomic secondary ion species, 11B16O2, properly map the distribution of impurity boron in the thermo-mechanically affected zone (TMAZ) of FSW steels using negative secondary polarity 4.5 kV. A combination of cluster-polyatomic ion, 11B16O2 and 56Fe16O provided a good calibration curve by 3 SRMs with the least matrix effect. The boron concentrations of TMAZ in FSW steels were determined through the calibration curve by taking the corresponding boron concentration value (CB) of the intensity ratio (Ii/Im) from unknown samples. The new SIMS quantification technique of impurity boron from RAE images is found to be effective for a more quantitative understanding of the wear mechanism of the PCBN tool in TMAZ of FSW steels.

  4. Magnetic properties evaluation of ageing behaviour in water-quenched 5Cr-0.5Mo steel

    NASA Astrophysics Data System (ADS)

    Mohapatra, J. N.; Panda, A. K.; Mitra, A.

    2009-05-01

    Magnetic Barkhausen emissions and magnetic hysteresis measurements were carried out on water-quenched 5Cr-0.5Mo steel subjected to ageing at 600 °C up to 5000 h. During initial ageing, this steel exhibited magnetic softening, which was attributed to relaxation of quenching stress in the material as well as decrease in dislocation density and migration of interstitial carbon atoms towards the grain boundary. Further ageing resulted in magnetic hardening owing to the restricted movement of the domain wall by the precipitation of carbides such as M3C2, M2C, M7C3 where M stands for Fe, Cr or a combination of them. At longer ageing periods, magnetic behaviour was affected by a change in the composition and morphology of the carbides. Massive M23C6 types of carbides were formed during longer periods of ageing. The coarsening of carbides decreased the pinning density for the domain wall motion and affected the magnetic properties of the steel. The effect of demagnetizing field from voids and non-magnetic massive carbides also affected the magnetic behaviour. Magnetic behaviour and Vickers hardness measurements during ageing have been effectively supported by microstructural evaluations suggesting the capability of the magnetic techniques for assessment of damage during ageing in high temperature 5Cr-0.5Mo steel components.

  5. Evaluation of the Biocompatibility of New Fiber-Reinforced Composite Materials for Craniofacial Bone Reconstruction.

    PubMed

    Lazar, Mădălina-Anca; Rotaru, Horaţiu; Bâldea, Ioana; Boşca, Adina B; Berce, Cristian P; Prejmerean, Cristina; Prodan, Doina; Câmpian, Radu S

    2016-10-01

    This study aims to assess the biocompatibility of new advanced fiber-reinforced composites (FRC) to be used for custom-made cranial implants. Four new formulations of FRC were obtained using polymeric matrices (combinations of monomers bisphenol A glycidylmethacrylate [bis-GMA], urethane dimethacrylate [UDMA], triethylene glycol dimethacrylate [TEGDMA], hydroxyethyl methacrylate [HEMA]) and E-glass fibers (300 g/mp). Every FRC contains 65% E-glass and 35% polymeric matrix. Composition of polymeric matrices are: bis-GMA (21%), TEGDMA (14%) for FRC1; bis-GMA (21%), HEMA (14%) for FRC2; bis-GMA (3.5%), UDMA (21%), TEGDMA (10.5%) for FRC3, and bis-GMA (3.5%), UDMA (21%), HEMA (10.5%) for FRC4. Cytotoxicity test was performed on both human dental pulp stem cells and dermal fibroblasts. Viability was assessed by tetrazolium dye colorimetric assay. Subcutaneous implantation test was carried out on 40 male Wistar rats, randomly divided into 4 groups, according to the FRC tested. Each group received subcutaneous dorsal implants. After 30 days, intensity of the inflammatory reaction, tissue repair status, and presence of the capsule were the main criteria assessed. Both cell populations showed no signs of cytotoxicity following the FRC exposures. In terms of cytotoxicity, the best results were obtained by FRC3 followed by FRC2, FRC4, and FRC1. FRC3 showed also the mildest inflammatory reaction and this correlated both with the noncytotoxic behavior and the presence of a well-organized capsule. The composite biomaterials developed may constitute an optimized alternative of the similar materials used for the reconstruction of craniofacial bone defects. According to authors' studies, the authors conclude that FRC3 is the best formulation regarding the biological behavior.

  6. Prediction of reinforcement corrosion using corrosion induced cracks width in corroded reinforced concrete beams

    SciTech Connect

    Khan, Inamullah; François, Raoul; Castel, Arnaud

    2014-02-15

    This paper studies the evolution of reinforcement corrosion in comparison to corrosion crack width in a highly corroded reinforced concrete beam. Cracking and corrosion maps of the beam were drawn and steel reinforcement was recovered from the beam to observe the corrosion pattern and to measure the loss of mass of steel reinforcement. Maximum steel cross-section loss of the main reinforcement and average steel cross-section loss between stirrups were plotted against the crack width. The experimental results were compared with existing models proposed by Rodriguez et al., Vidal et al. and Zhang et al. Time prediction models for a given opening threshold are also compared to experimental results. Steel cross-section loss for stirrups was also measured and was plotted against the crack width. It was observed that steel cross-section loss in the stirrups had no relationship with the crack width of longitudinal corrosion cracks. -- Highlights: •Relationship between crack and corrosion of reinforcement was investigated. •Corrosion results of natural process and then corresponds to in-situ conditions. •Comparison with time predicting model is provided. •Prediction of load-bearing capacity from crack pattern was studied.

  7. An Evaluation of the Interaction between Quality of Attention and Negative Reinforcement with Children Who Display Escape-Maintained Problem Behavior

    ERIC Educational Resources Information Center

    Gardner, Andrew W.; Wacker, David P.; Boelter, Eric W.

    2009-01-01

    The choice-making behavior of 2 typically developing children who engaged in problem behavior maintained by negative reinforcement was evaluated within a concurrent-operants assessment that varied the quality of attention across free-play and demand conditions. The results demonstrated that it was possible to bias responding towards academic…

  8. PERFORMANCE EVALUATION OF AN INNOVATIVE FIBER REINFORCED GEOPOLYMER SPRAY-APPLIED MORTAR FOR LARGE DIAMETER WASTEWATER MAIN REHABILITATION IN HOUSTON, TX

    EPA Science Inventory

    This report describes the performance evaluation of a fiber reinforced geopolymer spray-applied mortar, which has potential as a structural alternative to traditional open cut techniques used in large-diameter sewer pipes. Geopolymer is a sustainable green material that incorpor...

  9. EVALUATION OF THE ROCKWELL ’C’ 70 HIGH SPEED STEEL CUTTING TOOLS.

    DTIC Science & Technology

    TOOL STEEL, CUTTING TOOLS , HARDNESS, CHROMIUM ALLOYS, MOLYBDENUM ALLOYS, VANADIUM ALLOYS, HOT WORKING, PERFORMANCE(ENGINEERING), MACHINING, LIFE EXPECTANCY(SERVICE LIFE), WEAR RESISTANCE, HEAT RESISTANT ALLOYS, COBALT ALLOYS.

  10. Evaluation of the Characteristics of Hardening of Heat-Resistant Steel Subjected to Combined Thermochemical Treatment

    NASA Astrophysics Data System (ADS)

    Semenov, M. Yu.; Fakhurtdinov, R. S.; Lashnev, M. M.; Gromov, V. I.; Demidov, P. N.

    2013-11-01

    Computation by known models of hardening by particles of excess phase is used to determine dependences of the shear yield strength of carburized and nitrided layers in complexly alloyed steels on the size and quantitative characteristics of carbides and nitrides.

  11. Evaluation of Cavitation Erosion Behavior of Commercial Steel Grades Used in the Design of Fluid Machinery

    NASA Astrophysics Data System (ADS)

    Tzanakis, I.; Bolzoni, L.; Eskin, D. G.; Hadfield, M.

    2017-03-01

    The erosion response under cavitation of different steel grades was assessed by studying the erosion rate, the volume removal, the roughness evolution, and the accumulated strain energy. A 20 kHz ultrasonic transducer with a probe diameter of 5 mm and peak-to-peak amplitude of 50 μm was deployed in distilled water to induce damage on the surface of commercial chromium and carbon steel samples. After a relatively short incubation period, cavitation induced the formation of pits, cracks, and craters whose features strongly depended on the hardness and composition of the tested steel. AISI 52100 chromium steel showed the best performance and is, therefore, a promising design candidate for replacing the existing fluid machinery materials that operate within potential cavitating environments.

  12. Computational Evaluation of Cyclic Strength of Carburized Gears from Heat-Resistant Steels

    NASA Astrophysics Data System (ADS)

    Semenov, M. Yu.

    2014-11-01

    An advanced model for computing the fatigue bending strength of gears fabricated from a complexly alloyed heat-resistant steel 16Kh3NVFMB-Sh (VKS-5) subjected to vacuum carburizing in acetylene is suggested. The model matches experimental data satisfactorily and has been used to develop a mode for vacuum carburizing of gears from the heat-resistant steel to provide a high fatigue resistance.

  13. An Evaluation of the Corrosion and Mechanical Performance of Interstitially Surface Hardened Stainless Steel

    DTIC Science & Technology

    2013-05-10

    deep circumferential notches, created with a thread cutting tool , were machined to expose the base metal during SSRT tests conducted in air and...interstitial carbon atoms into stainless steel surfaces without the formation of carbides . Surface hardening of machine elements such as impellors or...developed to introduce interstitial carbon atoms into stainless steel surfaces without the formation of carbides . Surface hardening of machine elements

  14. An evaluation of the interaction between quality of attention and negative reinforcement with children who display escape-maintained problem behavior.

    PubMed

    Gardner, Andrew W; Wacker, David P; Boelter, Eric W

    2009-01-01

    The choice-making behavior of 2 typically developing children who engaged in problem behavior maintained by negative reinforcement was evaluated within a concurrent-operants assessment that varied the quality of attention across free-play and demand conditions. The results demonstrated that it was possible to bias responding towards academic demands for both participants by providing high-quality attention, despite the continuous availability of negative reinforcement. The current study extended brief clinical methods with typically developing children and demonstrated how different qualities of attention provided across concurrent schedules could bias responding.

  15. Modeling of concrete cracking due to corrosion process of reinforcement bars

    SciTech Connect

    Bossio, Antonio; Monetta, Tullio; Bellucci, Francesco; Lignola, Gian Piero; Prota, Andrea

    2015-05-15

    The reinforcement corrosion in Reinforced Concrete (RC) is a major reason of degradation for structures and infrastructures throughout the world leading to their premature deterioration before design life was attained. The effects of corrosion of reinforcement are: (i) the reduction of the cross section of the bars, and (ii) the development of corrosion products leading to the appearance of cracks in the concrete cover and subsequent cover spalling. Due to their intrinsic complex nature, these issues require an interdisciplinary approach involving both material science and structural design knowledge also in terms on International and National codes that implemented the concept of durability and service life of structures. In this paper preliminary FEM analyses were performed in order to simulate pitting corrosion or general corrosion aimed to demonstrate the possibility to extend the results obtained for a cylindrical specimen, reinforced by a single bar, to more complex RC members in terms of geometry and reinforcement. Furthermore, a mechanical analytical model to evaluate the stresses in the concrete surrounding the reinforcement bars is proposed. In addition, a sophisticated model is presented to evaluate the non-linear development of stresses inside concrete and crack propagation when reinforcement bars start to corrode. The relationships between the cracking development (mechanical) and the reduction of the steel section (electrochemical) are provided. Finally, numerical findings reported in this paper were compared to experimental results available in the literature and satisfactory agreement was found.

  16. Long-term corrosion evaluation of stainless steels in Space Shuttle iodinated resin and water

    NASA Technical Reports Server (NTRS)

    Krohn, Douglas D.

    1992-01-01

    The effects of stainless steel exposure to iodinated water is a concern in developing the Integrated Water System (IWS) for Space Station Freedom. The IWS has a life requirement of 30 years, but the effects of general and localized corrosion over such a long period have not been determined for the candidate materials. In 1978, Umpqua Research Center immersed stainless steel 316L, 321, and 347 specimens in a solution of deionized water and the Space Shuttle microbial check valve resin. In April 1990, the solution was chemically analyzed to determine the level of corrosion formed, and the surface of each specimen was examined with scanning electron microscopy and metallography to determine the extent of general and pitting corrosion. This examination showed that the attack on the stainless steels was negligible and never penetrated past the first grain boundary layer. Of the three alloys, 316L performed the best; however, all three materials proved to be compatible with an aqueous iodine environment. In addition to the specimens exposed to aqueous iodine, a stainless steel specimen (unspecified alloy) was exposed to moist microbial check valve resin and air for a comparable period. This environment allowed contact of the metal to the resin as well as to the iodine vapor. Since the particular stainless steel alloy was not known, energy dispersive spectroscopy was used to determine that this alloy was stainless steel 301. The intergranular corrosion found on the specimen was limited to the first grain boundary layer.

  17. A Metallurgical Evaluation of the Powder-Bed Laser Additive Manufactured 4140 Steel Material

    NASA Astrophysics Data System (ADS)

    Wang, Wesley; Kelly, Shawn

    2016-03-01

    Using laser powder bed fusion (PBF-L) additive manufacturing (AM) process for steel or iron powder has been attempted for decades. This work used a medium carbon steel (AISI 4140) powder to explore the feasibility of AM. The high carbon equivalent of 4140 steel (CEIIW ≈ 0.83) has a strong tendency toward cold cracking. As such, the process parameters must be carefully controlled to ensure the AM build quality. Through an orthogonally designed experimental matrix, a laser-welding procedure was successfully developed to produce 4140 steel AM builds with no welding defects. In addition, the microstructure and micro-cleanliness of the as-welded PBF-L AM builds were also examined. The results showed an ultra-fine martensite lath structure and an ultra-clean internal quality with minimal oxide inclusion distribution. After optimizing the PBF-L AM process parameters, including the laser power and scan speed, the as-welded AM builds yielded an average tensile strength higher than 1482 MPa and an average 33 J Charpy V-notch impact toughness at -18°C. The surface quality, tensile strength, and Charpy V-notch impact toughness of AM builds were comparable to the wrought 4140 steel. The excellent mechanical properties of 4140 steel builds created by the PBF-L AM AM process make industrial production more feasible, which shows great potential for application in the aerospace, automobile, and machinery industries.

  18. Carbon fiber reinforced plastic (CFRP) plates versus stainless steel dynamic compression plates in the treatment of fractures of the tibiae in dogs.

    PubMed

    Skirving, A P; Day, R; Macdonald, W; McLaren, R

    1987-11-01

    In a series of 14 dogs, fractures of both tibiae were caused by a "bone-breaker" designed in the authors' department and observed to produce a consistent and realistic canine fracture. One tibia was plated with a carbon fiber reinforced plastic (CFRP) plate and the other with a dynamic compression (DC) plate. Roentgenographic examination demonstrated healing of the CFRP-plated tibiae with abundant callus, and almost total remodeling of the fracture callus between ten and 20 weeks. Biomechanical testing by three-point bending revealed little difference between the strength of union of the fractures at 12-16 weeks. At 20 weeks, although the numbers were too small for statistical confirmation, the CFRP-plated tibiae were consistently stronger than the DC-plated tibiae.

  19. Dosimetric evaluation of hybrid brass/stainless-steel apertures for proton therapy

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Matysiak, Witold; Flampouri, Stella; Slopsema, Roelf; Li, Zuofeng

    2014-09-01

    In passive scattering proton therapy, patient specific collimators (apertures) are used to laterally shape the proton beam, and compensators are employed to distally conform proton dose to the target. Brass is a commonly used material for apertures and recently a hybrid brass/stainless-steel (BR/SST) aperture design has been introduced to reduce treatment cost without clinical flow change. We measured stopping power and leakage dose for apertures made of stainless steel and brass in the Proton Therapy system. The linear stopping power ratios for stainless steel (type 304) and brass to water were calculated to be 5.46 and 5.51, respectively. Measured stopping power ratios of SST and BR were 5.51  ±  0.04 and 5.56  ±  0.08, respectively, which agrees with the calculated values within 1%. Leakage dose on the downstream surface of two slabs of Ø18 cm stainless steel apertures (total thickness of 6.5 cm) for the maximum available proton energy (235 MeV) was 1.283% ± 0.004% of the prescription dose, and was smaller compared to the 1.358% ± 0.005% leakage dose measured for existing brass apertures of identical physical dimensions. Therefore, the existing beam range limits for brass aperture slabs used at our institution with safety margin allowances for material composition and delivered beam range uncertainties can be safely applied for the new BR/SST aperture design. Potential range differences in the brass and stainless steel interface regions of the hybrid design were further investigated using EBT3 GafChromic film. Film dosimetry revealed no discernible range variations across the brass and stainless steel interface regions. Neutron dose to the patient from brass and stainless steel apertures was simulated using the Monte Carlo method. The results indicate that stainless steel produces similar patient neutron dose compared to brass. Material activation dose rates of stainless steel were measured over a period of 7 d after irradiation. The

  20. Dosimetric evaluation of hybrid brass/stainless-steel apertures for proton therapy.

    PubMed

    Chen, Hao; Matysiak, Witold; Flampouri, Stella; Slopsema, Roelf; Li, Zuofeng

    2014-09-07

    In passive scattering proton therapy, patient specific collimators (apertures) are used to laterally shape the proton beam, and compensators are employed to distally conform proton dose to the target. Brass is a commonly used material for apertures and recently a hybrid brass/stainless-steel (BR/SST) aperture design has been introduced to reduce treatment cost without clinical flow change. We measured stopping power and leakage dose for apertures made of stainless steel and brass in the Proton Therapy system. The linear stopping power ratios for stainless steel (type 304) and brass to water were calculated to be 5.46 and 5.51, respectively. Measured stopping power ratios of SST and BR were 5.51  ±  0.04 and 5.56  ±  0.08, respectively, which agrees with the calculated values within 1%. Leakage dose on the downstream surface of two slabs of Ø18 cm stainless steel apertures (total thickness of 6.5 cm) for the maximum available proton energy (235 MeV) was 1.283% ± 0.004% of the prescription dose, and was smaller compared to the 1.358% ± 0.005% leakage dose measured for existing brass apertures of identical physical dimensions. Therefore, the existing beam range limits for brass aperture slabs used at our institution with safety margin allowances for material composition and delivered beam range uncertainties can be safely applied for the new BR/SST aperture design. Potential range differences in the brass and stainless steel interface regions of the hybrid design were further investigated using EBT3 GafChromic film. Film dosimetry revealed no discernible range variations across the brass and stainless steel interface regions. Neutron dose to the patient from brass and stainless steel apertures was simulated using the Monte Carlo method. The results indicate that stainless steel produces similar patient neutron dose compared to brass. Material activation dose rates of stainless steel were measured over a period of 7 d after irradiation. The

  1. Reinforced Concrete Modeling

    DTIC Science & Technology

    1982-07-01

    AFWL-TR-82-9 AFWL-TR-82-9 REINFORCED CONCRETE MODELING H. L. Schreyer J. W. Jeter, Jr. New Mexico Engineering Reseprch Institute University of New...Subtitle) S. TYPE OF REPORT & PERIOD COVERED REINFORCED CONCRETE MODELING Final Report 6. PERFORMING OtG. REPORT NUMBER NMERI TA8-9 7. AUTHORg) S...loading were identified and used to evaluate current concrete models . Since the endochronic and viscoplastic models provide satisfactory descriptions

  2. Characterization of MWCNT/Nanoclay Binary Nanoparticles Modified Composites and Fatigue Performance Evaluation of Nanoclay Modified Fiber Reinforced Composites

    DTIC Science & Technology

    2014-04-21

    modified with binary nanoparticles consist of multi-walled carbon nanotubes (MWCNTs) and nanoclays together. First, epoxy SC-15 resin was reinforced...modified with binary nanoparticles consist of multi-walled carbon nanotubes (MWCNTs) and nanoclays together. First, epoxy SC-15 resin was reinforced with...7 2.2.1 Carbon Nanotube

  3. BEHAVIORAL EVALUATION OF PERINATAL EXPOSURE TO AROCLOR 1254 IN RATS: FIXED-INTERVAL PERFORMANCE AND REINFORCEMENT-OMISSION.

    EPA Science Inventory

    Mele et al. (1986) reported exposure to Aroclor 1248 (A1248) in rhesus monkeys produced an increased rate of responding under a fixed-interval (FI) schedule of reinforcement in which 25% of the scheduled reinforcers were omitted. The purpose of this work was to determine whether...

  4. Evaluation of a Lag Schedule of Reinforcement in a Group Contingency to Promote Varied Naming of Categories Items with Children

    ERIC Educational Resources Information Center

    Wiskow, Katie M.; Donaldson, Jeanne M.

    2016-01-01

    We compared the effects of Lag 0 and Lag 1 schedules of reinforcement on children's responses naming category items in a group context and subsequent responses emitted during individual testing in which the schedule of reinforcement remained Lag 0. Specifically, we measured response variability and novel responses to categories for 3 children who…

  5. An Annotated Bibliography on Social Reinforcement: Evaluative Abstracts of Research and Theory. Interim Report, June 1972-October 1973.

    ERIC Educational Resources Information Center

    Klimoski, Richard J.; And Others

    An annotated bibliography of studies dealing with social reinforcement in diverse psychological and educational contexts is given. The research reviewed covers the period from 1964 to 1972, and individual studies are classified according to classes of variables which have been found to moderate the effectiveness of social reinforcement. All told,…

  6. Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite reinforced with short natural fibers

    NASA Astrophysics Data System (ADS)

    Santos, Jonnathan D.; Fajardo, Jorge I.; Cuji, Alvaro R.; García, Jaime A.; Garzón, Luis E.; López, Luis M.

    2015-09-01

    A polymeric natural fiber-reinforced composite is developed by extrusion and injection molding process. The shrinkage and warpage of high-density polyethylene reinforced with short natural fibers of Guadua angustifolia Kunth are analyzed by experimental measurements and computer simulations. Autodesk Moldflow® and Solid Works® are employed to simulate both volumetric shrinkage and warpage of injected parts at different configurations: 0 wt.%, 20 wt.%, 30 wt.% and 40 wt.% reinforcing on shrinkage and warpage behavior of polymer composite. Become evident the restrictive effect of reinforcing on the volumetric shrinkage and warpage of injected parts. The results indicate that volumetric shrinkage of natural composite is reduced up to 58% with fiber increasing, whereas the warpage shows a reduction form 79% to 86% with major fiber content. These results suggest that it is a highly beneficial use of natural fibers to improve the assembly properties of polymeric natural fiber-reinforced composites.

  7. A review of issues and strategies in nondestructive evaluation of fiber reinforced structural composites

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1979-01-01

    Techniques for quantitative assessment of the mechanical strength and integrity of fiber composites during manufacture and service and following repair operations are presented. Problems and approaches are discussed relative to acceptance criteria, calibrating standards, and methods for nondestructive evaluation of composites in strength-critical applications. Acousto-ultrasonic techniques provide the methods of choice in this area.

  8. Evaluation of Physico-mechanical Properties of Mycelium Reinforced Green Biocomposites made from Cellulosic Fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodegradable and sustainable feedstock’s are increasingly replacing petroleum based materials commonly used for single or multi use packaging applications. A study was conducted to evaluate the potential of an innovative biocomposite material patented by Ecovative Design LLC for use in commercial p...

  9. Constitutive flow behaviour of austenitic stainless steels under hot deformation: artificial neural network modelling to understand, evaluate and predict

    NASA Astrophysics Data System (ADS)

    Mandal, Sumantra; Sivaprasad, P. V.; Venugopal, S.; Murthy, K. P. N.

    2006-09-01

    An artificial neural network (ANN) model is developed to predict the constitutive flow behaviour of austenitic stainless steels during hot deformation. The input parameters are alloy composition and process variables whereas flow stress is the output. The model is based on a three-layer feed-forward ANN with a back-propagation learning algorithm. The neural network is trained with an in-house database obtained from hot compression tests on various grades of austenitic stainless steels. The performance of the model is evaluated using a wide variety of statistical indices. Good agreement between experimental and predicted data is obtained. The correlation between individual alloying elements and high temperature flow behaviour is investigated by employing the ANN model. The results are found to be consistent with the physical phenomena. The model can be used as a guideline for new alloy development.

  10. Evaluation of electropolished stainless steel electrodes for use in DC high voltage photoelectron guns

    DOE PAGES

    BastaniNejad, Mahzad; Elmustafa, Abdelmageed A.; Forman, Eric; ...

    2015-07-01

    DC high voltage photoelectron guns are used to produce polarized electron beams for accelerator-based nuclear and high-energy physics research. Low-level field emission (~nA) from the cathode electrode degrades the vacuum within the photogun and reduces the photoelectron yield of the delicate GaAs-based photocathode used to produce the electron beams. High-level field emission (>μA) can cause significant damage the photogun. To minimize field emission, stainless steel electrodes are typically diamond-paste polished, a labor-intensive process often yielding field emission performance with a high degree of variability, sample to sample. As an alternative approach and as comparative study, the performance of electrodes electropolishedmore » by conventional commercially available methods is presented. Our observations indicate the electropolished electrodes exhibited less field emission upon the initial application of high voltage, but showed less improvement with gas conditioning compared to the diamond-paste polished electrodes. In contrast, the diamond-paste polished electrodes responded favorably to gas conditioning, and ultimately reached higher voltages and field strengths without field emission, compared to electrodes that were only electropolished. The best performing electrode was one that was both diamond-paste polished and electropolished, reaching a field strength of 18.7 MV/m while generating less than 100 pA of field emission. The speculate that the combined processes were the most effective at reducing both large and small scale topography. However, surface science evaluation indicates topography cannot be the only relevant parameter when it comes to predicting field emission performance.« less

  11. Evaluation of electropolished stainless steel electrodes for use in DC high voltage photoelectron guns

    SciTech Connect

    BastaniNejad, Mahzad Elmustafa, Abdelmageed A.; Forman, Eric; Covert, Steven; Hansknecht, John; Hernandez-Garcia, Carlos; Poelker, Matthew; Das, Lopa; Kelley, Michael; Williams, Phillip

    2015-07-15

    DC high voltage photoelectron guns are used to produce polarized electron beams for accelerator-based nuclear and high-energy physics research. Low-level field emission (∼nA) from the cathode electrode degrades the vacuum within the photogun and reduces the photoelectron yield of the delicate GaAs-based photocathode used to produce the electron beams. High-level field emission (>μA) can cause significant damage the photogun. To minimize field emission, stainless steel electrodes are typically diamond-paste polished, a labor-intensive process often yielding field emission performance with a high degree of variability, sample to sample. As an alternative approach and as comparative study, the performance of electrodes electropolished by conventional commercially available methods is presented. Our observations indicate the electropolished electrodes exhibited less field emission upon the initial application of high voltage, but showed less improvement with gas conditioning compared to the diamond-paste polished electrodes. In contrast, the diamond-paste polished electrodes responded favorably to gas conditioning, and ultimately reached higher voltages and field strengths without field emission, compared to electrodes that were only electropolished. The best performing electrode was one that was both diamond-paste polished and electropolished, reaching a field strength of 18.7 MV/m while generating less than 100 pA of field emission. The authors speculate that the combined processes were the most effective at reducing both large and small scale topography. However, surface science evaluation indicates topography cannot be the only relevant parameter when it comes to predicting field emission performance.

  12. Evaluation of electropolished stainless steel electrodes for use in DC high voltage photoelectron guns

    SciTech Connect

    BastaniNejad, Mahzad; Elmustafa, Abdelmageed A.; Forman, Eric; Covert, Steven; Hansknecht, John; Hernandez-Garcia, Carlos; Poelker, Matthew; Das, Lopa; Kelley, Michael; Williams, Phillip

    2015-07-01

    DC high voltage photoelectron guns are used to produce polarized electron beams for accelerator-based nuclear and high-energy physics research. Low-level field emission (~nA) from the cathode electrode degrades the vacuum within the photogun and reduces the photoelectron yield of the delicate GaAs-based photocathode used to produce the electron beams. High-level field emission (>μA) can cause significant damage the photogun. To minimize field emission, stainless steel electrodes are typically diamond-paste polished, a labor-intensive process often yielding field emission performance with a high degree of variability, sample to sample. As an alternative approach and as comparative study, the performance of electrodes electropolished by conventional commercially available methods is presented. Our observations indicate the electropolished electrodes exhibited less field emission upon the initial application of high voltage, but showed less improvement with gas conditioning compared to the diamond-paste polished electrodes. In contrast, the diamond-paste polished electrodes responded favorably to gas conditioning, and ultimately reached higher voltages and field strengths without field emission, compared to electrodes that were only electropolished. The best performing electrode was one that was both diamond-paste polished and electropolished, reaching a field strength of 18.7 MV/m while generating less than 100 pA of field emission. The speculate that the combined processes were the most effective at reducing both large and small scale topography. However, surface science evaluation indicates topography cannot be the only relevant parameter when it comes to predicting field emission performance.

  13. Effect of Reinforcement Architecture on Fracture of Selectively Reinforced Metallic Compact Tension Specimens

    NASA Technical Reports Server (NTRS)

    Abada, Christopher H.; Farley, Gary L.; Hyer, Michael W.

    2006-01-01

    A computer-based parametric study of the effect of reinforcement architectures on fracture response of aluminum compact-tension (CT) specimens is performed. Eleven different reinforcement architectures consisting of rectangular and triangular cross-section reinforcements were evaluated. Reinforced specimens produced between 13 and 28 percent higher fracture load than achieved with the non-reinforced case. Reinforcements with blunt leading edges (rectangular reinforcements) exhibited superior performance relative to the triangular reinforcements with sharp leading edges. Relative to the rectangular reinforcements, the most important architectural feature was reinforcement thickness. At failure, the reinforcements carried between 58 and 85 percent of the load applied to the specimen, suggesting that there is considerable load transfer between the base material and the reinforcement.

  14. Comparative Evaluation of the Reinforcing Effect of Different Post Systems in the Restoration of Endodontically Treated Human Anterior Teeth at Two Different Lengths of Post Space Preparation- An in Vitro Study

    PubMed Central

    Jindal, Sahil; Jindal, Ritu; Gupta, Kanika; Mahajan, Sandeep; Garg, Sunidhi

    2013-01-01

    Objectives: Comparative evaluation of the reinforcing effect of different post systems in the restoration of endodontically treated human anterior teeth at two different lengths of post space preparation- an in vitro study Materials and Methods: 135 extracted human incisors were endodontically treated, out of which 120 teeth were decoronated 2mm above the cementoenamel junction and divided into four experimental groups based on the post system to be used: Glass fiber post (GFP) and stainless steel post (SSP), titanium post (TTP), cast metal post (CMP). Each group was divided into two sub-groups according to the length of post space preparation: 5mm and 10mm. All the samples were restored with metal crowns. The fracture resistance was measured by applying loads at an angle of 135º to the long axis of teeth in an instron universal testing machine. Fracture mode was analyzed for all the samples. Results from the four test groups were compared and analysed using one-way ANOVA test and the Post-hoc Bonferroni test to demonstrate differences between pairs of groups. Results: The results revealed that SSP group at 10mm post space length showed the significantly (“P-value< 0.05”) highest fracture resistance (793.7787 N). Decrease in post length resulted in the decrease in fracture resistance in all the groups reduced to values even lesser than the control (437.8733N). Conclusion: The different post systems used in the study were able to reinforce endodontically treated teeth only at 10mm post space length. PMID:23724211

  15. Monitoring of Reinforced Concrete Corrosion and Deterioration by Periodic Multi-Sensor Non-Destructive Evaluation

    NASA Astrophysics Data System (ADS)

    Arndt, R. W.; Cui, J.; Huston, D. R.

    2011-06-01

    The paper showcases a collaborative benchmark project evaluating NDE methods for deterioration monitoring of laboratory bridge decks. The focus of this effort is to design and build concrete test specimens, artificially induce and monitor corrosion, periodically perform multi-sensor NDE inspections, followed by 3D imaging and destructive validations. NDE methods used include ultrasonic echo array, ground penetrating radar (GPR), active infrared thermography with induction heating, and time-resolved thermography with induction heating.

  16. Effort provides its own reward: endeavors reinforce subjective expectation and evaluation of task performance.

    PubMed

    Wang, Lei; Zheng, Jiehui; Meng, Liang

    2017-04-01

    Although many studies have investigated the relationship between the amount of effort invested in a certain task and one's attitude towards the subsequent reward, whether exerted effort would impact one's expectation and evaluation of performance feedback itself still remains to be examined. In the present study, two types of calculation tasks that varied in the required effort were adopted, and we resorted to electroencephalography to probe the temporal dynamics of how exerted effort would affect one's anticipation and evaluation of performance feedback. In the high-effort condition, a more salient stimulus-preceding negativity was detected during the anticipation stage, which was accompanied with a more salient FRN/P300 complex (a more positive P300 and a less negative feedback-related negativity) in response to positive outcomes in the evaluation stage. These results suggested that when more effort was invested, an enhanced anticipatory attention would be paid toward one's task performance feedback and that positive outcomes would be subjectively valued to a greater extent.

  17. Efficient evaluation of the material response of tissues reinforced by statistically oriented fibres

    NASA Astrophysics Data System (ADS)

    Hashlamoun, Kotaybah; Grillo, Alfio; Federico, Salvatore

    2016-10-01

    For several classes of soft biological tissues, modelling complexity is in part due to the arrangement of the collagen fibres. In general, the arrangement of the fibres can be described by defining, at each point in the tissue, the structure tensor (i.e. the tensor product of the unit vector of the local fibre arrangement by itself) and a probability distribution of orientation. In this approach, assuming that the fibres do not interact with each other, the overall contribution of the collagen fibres to a given mechanical property of the tissue can be estimated by means of an averaging integral of the constitutive function describing the mechanical property at study over the set of all possible directions in space. Except for the particular case of fibre constitutive functions that are polynomial in the transversely isotropic invariants of the deformation, the averaging integral cannot be evaluated directly, in a single calculation because, in general, the integrand depends both on deformation and on fibre orientation in a non-separable way. The problem is thus, in a sense, analogous to that of solving the integral of a function of two variables, which cannot be split up into the product of two functions, each depending only on one of the variables. Although numerical schemes can be used to evaluate the integral at each deformation increment, this is computationally expensive. With the purpose of containing computational costs, this work proposes approximation methods that are based on the direct integrability of polynomial functions and that do not require the step-by-step evaluation of the averaging integrals. Three different methods are proposed: (a) a Taylor expansion of the fibre constitutive function in the transversely isotropic invariants of the deformation; (b) a Taylor expansion of the fibre constitutive function in the structure tensor; (c) for the case of a fibre constitutive function having a polynomial argument, an approximation in which the

  18. Final Report, Volume 3, Guidance Document for the Evaluation of Cast Super Duplex Stainless Steel

    SciTech Connect

    Hariharan, Vasudevan; Lundin, Carl, W.

    2005-09-30

    Volume 3 is comprised of the Development of Qualification Standards for Cast Super Duplex Stainless Steel (A890-5A) which is equivalent to wrought 2507. The objective of this work was to determine the suitability of ASTM A923 Standard Test methods for Detecting Detrimental Intermetallic Phase in Duplex Austenitic-Ferritic Stainless Steels for 25 Cr Cast Super Duplex Stainless Steels (ASTM A890-5A). The various tests which were carried out were ASTM A923 Test Method A, B and C (Sodium Hydroxide Etch Test, Charpy Impact Test and Ferric Chloride Corrosion Test), ferrite measurement using Feritscope®, ASTM E562 Manual Point Count Method and X-Ray Diffraction, hardness measurement using Rockwell B and C and microstructural analysis using SEM and EDS.

  19. Acoustic Emission Methodology to Evaluate the Fracture Toughness in Heat Treated AISI D2 Tool Steel

    NASA Astrophysics Data System (ADS)

    Mostafavi, Sajad; Fotouhi, Mohamad; Motasemi, Abed; Ahmadi, Mehdi; Sindi, Cevat Teymuri

    2012-10-01

    In this article, fracture toughness behavior of tool steel was investigated using Acoustic Emission (AE) monitoring. Fracture toughness ( K IC) values of a specific tool steel was determined by applying various approaches based on conventional AE parameters, such as Acoustic Emission Cumulative Count (AECC), Acoustic Emission Energy Rate (AEER), and the combination of mechanical characteristics and AE information called sentry function. The critical fracture toughness values during crack propagation were achieved by means of relationship between the integral of the sentry function and cumulative fracture toughness (KICUM). Specimens were selected from AISI D2 cold-work tool steel and were heat treated at four different tempering conditions (300, 450, 525, and 575 °C). The results achieved through AE approaches were then compared with a methodology proposed by compact specimen testing according to ASTM standard E399. It was concluded that AE information was an efficient method to investigate fracture characteristics.

  20. Structural Performance Evaluation of Composite-To-Steel Weld Bonded Joint

    SciTech Connect

    Shah, Bhavesh; Frame, Barbara J; Dove, Caroline; Fuchs, Hannes

    2010-01-01

    The Automotive Composites Consortium (ACC), a collaboration of Chrysler, Ford, General Motors, and the US Department of Energy is conducting a focal project to demonstrate the use of composite materials in high volume structural applications such as an underbody capable of carrying crash loads. One of the critical challenges is to attach the composite part to the steel structure in a high-volume automotive manufacturing environment and meet the complex requirements for crash. Weld-bonding, a combination of adhesive bonding and spot welding, was selected as the primary joining method. A novel concept of bonding doubler steel strips to composite enabled the spot welding to the steel structure, ensuring the compability with the OEM assembly processes. The structural performance of the joint, including durability, was assessed via analytical and physical testing under quasi-static loading at various temperatures. This paper discusses the results of the experiments designed to generate key modeling parameters for Finite Element Analysis of the joint.

  1. Reinforcement magnitude and responding during treatment with differential reinforcement.

    PubMed Central

    Lerman, Dorothea C; Kelley, Michael E; Vorndran, Christina M; Kuhn, Stephanie A C; LaRue, Robert H

    2002-01-01

    Basic findings indicate that the amount or magnitude of reinforcement can influence free-operant responding prior to and during extinction. In this study, the relation between reinforcement magnitude and adaptive behavior was evaluated with 3 children as part of treatment with differential reinforcement. In the first experiment, a communicative response was shaped and maintained by the same reinforcer that was found to maintain problem behavior. Two reinforcement magnitudes (20-s or 60-s access to toys or escape from demands) were compared and found to be associated with similar levels of resistance to extinction. The relation between reinforcement magnitude and response maintenance was further evaluated in the second experiment by exposing the communicative response to 20-s or 300-s access to toys or escape. Results for 2 participants suggested that this factor may alter the duration of postreinforcement pauses. PMID:11936544

  2. Evaluation of irradiated pressure vessel steel by mechanical tests and positron annihilation lineshape analysis

    SciTech Connect

    Nakamura, Noriko; Ohta, Yoshio; Yoshida, Kazuo; Maeda, Noriyoshi

    1999-10-01

    Mechanical test and positron annihilation lineshape analysis have been performed on neutron irradiated pressure vessel steels, A533B1 steel and the weld metal. Marked changes in the mechanical properties were observed for both metals after the neutron exposure. S-parameters, the positron annihilation parameters, also increased after the neutron irradiation but only the small change was observed in the different levels of neutron fluence. The change in S-parameter and the mechanical properties were well correlated. It is concluded that changes in embrittlement induced by radiation can be monitored by positron annihilation lineshape analysis but detectability is dependent on the materials.

  3. A metallographic evaluation of the stainless steel-silver solder joint.

    PubMed

    Rogers, O W

    1979-02-01

    A technique has been developed and described for the examination of the interface between dissimilar metals, utilizing electrolytic etching and gold electro-deposition procedures. This procedure permitted etching of both the constituents of the silver solder-stainless steel interface without differential leveling. The grain boundaries at the surface of the stainless steel interface were accentuated by the chemical action of the flux during the joining procedure and the notched grain boundaries influenced the nucleation of the silver solder. No evidence of alloying was found within the resolution of the instruments used.

  4. Evaluation of ozone for preventing fungal influenced corrosion of reinforced concrete bridges over the River Nile, Egypt.

    PubMed

    Geweely, Neveen S I

    2011-04-01

    Fungal influenced corrosion (FIC) of some corroded sites in three selected bridges [Embaba bridge (E-bridge), Kasr al-Nile-bridge (K-bridge) and University bridge (U-bridge)] located over the River Nile in Egypt were investigated. Six fungal species, belong to 12 fungal genera, were isolated from the corroded reinforced concrete of the three tested bridges. Fourier transform infrared spectroscopy (FTIR) was screened for the most dominant fungal species (Fusarium oxysporium) which showed in all tested bridges that indicated the presence of amine group accompanied with polysaccharides contents. FIC of the most deteriorated bridge (K-bridge) was documented with FTIR. The association of fungal spores with corrosion products was recorded with scanning electron microscope (SEM). Evaluation of ozone for preventing FIC of the K-bridge was carried out by recording the corrosion rate and the corresponding inhibition efficiency (IE%). No mycelial growth with 100% IE was observed at 3 ppm ozone concentration after 120 min exposure time. With longer duration of ozone exposure, the membrane permeability of F. oxysporium was compromised as indicated by protein and nucleic acid leakages accompanied with lipid and tryptophan oxidation. The total intracellular and extracellular proteins of F. oxysporium were run on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) indicated the increasing of the supernatant protein on the expense of the cellular protein bands with extending ozone exposure time (0-80 min).

  5. Development of a geographical information system for risk mapping of reinforced concrete buildings subjected to atmospheric corrosion in Cyprus using optical remote sensing data

    NASA Astrophysics Data System (ADS)

    Neocleous, Kyriacos; Agapiou, Athos; Christofe, Andreas; Themistocleous, Kyriacos; Achillides, Zenon; Panayiotou, Marilia; Hadjimitsis, Diofantos G.

    2014-08-01

    Concrete reinforced with steel rebars remains one of the most widely used construction materials. Despite its excellent mechanical performance and expected service life of at least 50 years, reinforced concrete is subjected to corrosion of the steel rebars which normally leads to concrete spalling, deterioration of the reinforced concrete's (RC) mechanical properties and eventual reduction of the structural load capacity. In Cyprus, especially in coastal regions where almost 60% of the population resides, many structural problems have been identified in RC structures, which are mainly caused by the severe corrosion of steel rebars. Most RC buildings, located in coastal areas, show signs of corrosion within the first 15-20 years of their service life and this affects their structural integrity and reliability, especially against seismic loading. This paper presents the research undertaken as part of the STEELCOR project which aims to extensively evaluate the steel corrosion of RC buildings in coastal areas of Cyprus and conduct a risk assessment relating to steel corrosion. Non-destructive testing of corroded RC structures measurements were used to estimate the simplified index of structural damage. These indices were imported into a Geographical Information System to develop a digital structural integrity map of Cyprus which would show the areas with high risk of steel corrosion of RC buildings. In addition, archive optical remote sensing dataset was used to map the urban expansion footprint during the last 30 years in Cyprus with the aim of undertaking corrosion risk scenarios by utilizing the estimated indices.

  6. Structural Behavior of Concrete Beams Reinforced with Basalt Fiber Reinforced Polymer (BFRP) Bars

    NASA Astrophysics Data System (ADS)

    Ovitigala, Thilan

    The main challenge for civil engineers is to provide sustainable, environmentally friendly and financially feasible structures to the society. Finding new materials such as fiber reinforced polymer (FRP) material that can fulfill the above requirements is a must. FRP material was expensive and it was limited to niche markets such as space shuttles and air industry in the 1960s. Over the time, it became cheaper and spread to other industries such as sporting goods in the 1980-1990, and then towards the infrastructure industry. Design and construction guidelines are available for carbon fiber reinforced polymer (CFRP), aramid fiber reinforced polymer (AFRP) and glass fiber reinforced polymer (GFRP) and they are currently used in structural applications. Since FRP is linear elastic brittle material, design guidelines for the steel reinforcement are not valid for FRP materials. Corrosion of steel reinforcement affects the durability of the concrete structures. FRP reinforcement is identified as an alternative to steel reinforcement in corrosive environments. Although basalt fiber reinforced polymer (BFRP) has many advantages over other FRP materials, but limited studies have been done. These studies didn't include larger BFRP bar diameters that are mostly used in practice. Therefore, larger beam sizes with larger BFRP reinforcement bar diameters are needed to investigate the flexural and shear behavior of BFRP reinforced concrete beams. Also, shear behavior of BFRP reinforced concrete beams was not yet studied. Experimental testing of mechanical properties and bond strength of BFRP bars and flexural and shear behavior of BFRP reinforced concrete beams are needed to include BFRP reinforcement bars in the design codes. This study mainly focuses on the use of BFRP bars as internal reinforcement. The test results of the mechanical properties of BFRP reinforcement bars, the bond strength of BFRP reinforcement bars, and the flexural and shear behavior of concrete beams

  7. Evaluation of the Load-bearing Capacity of Fractured Incisal Edge of Maxillary Permanent Central Incisors restored with a Glass Fiber-reinforced Nanocomposite: An in vitro Study

    PubMed Central

    Srilatha, KT; Nandlal, B; Dhull, Kanika Singh

    2015-01-01

    ABSTRACT Objectives: The aim of this study was to evaluate and compare the load-bearing capacity of fractured incisal edge of maxillary permanent central incisors restored with a nanocomposite and a glass fiber-reinforced nanocomposite. Materials and methods: Thirty-six extracted sound maxillary central incisors randomly divided in three groups were used for the present study. Group I (control) contained untreated teeth. Samples in experimental groups II and III were prepared by cutting the incisal (one-third) part of the crown horizontally and subjected to enamel preparations and restored with a nanocomposite and a glass fiber-reinforced nanocomposite respectively. All restored teeth were stored in distilled water at room temperature for 24 hours. Fracture resistance was evaluated as peak load at failure (Newton) for samples tested in a cantilever-bending test using Hounsfield universal testing machine. Failure modes were microscopically examined. Results: Highest mean peak failure load (Newton) among experimental groups was observed in glass fiber-reinforced nano composite group (863.50 ± 76.12 N) followed by nanocomposite group (633.67 ± 40.14 N). One-way analysis of variance (ANOVA) revealed that the restoration technique significantly affected the load-bearing capacity (p < 0.001). Scheffe’s post-hoc comparison test (subset for α = 0.05) revealed that there was significant difference in the mean peak failure load values of nanocomposite and glass fiber-reinforced nanocomposite groups when considered together (p < 0.001). Experimental groups showed similar types of failure modes with majority occurring ascohesive and mixed type. Fifty-eight percent of the teeth in glass fiber-reinforced nanocomposite group fractured below the cementoenamel junction. Conclusion: By using fiber-reinforced composite substructure under conventional composites in the repair of fractured incisors, the load-bearing capacity of the restored incisal edge could be substantially

  8. Evaluating morphology and mechanical properties of glass-reinforced natural hydroxyapatite composites.

    PubMed

    Yazdanpanah, Z; Bahrololoom, M E; Hashemi, B

    2015-01-01

    Hydroxyapatite has been used in a wide variety of biomedical applications and it can be produced from natural resources such as bovine bone. This material does not have acceptable mechanical properties by itself. In the present work, hydroxyapatite composites with different weight percentages of sodalime glass were made and sintered at different temperatures (800-1200°C). Eventually the properties such as density, micro hardness, compressive strength and wear of specimens were evaluated. Specific percentages of glass additive increased the density and hardness of specimens due to increasing the sintering temperature. The hardness and density of specimens were decreased with higher percentage of glass additive. Moreover, the results of compressive test showed that increasing the glass addition increases the compressive performance. Furthermore, the SEM micrographs on worn specimens showed that the mechanism of wear was abrasive.

  9. Evaluation and optimization of nucleic acid extraction methods for the molecular analysis of bacterial communities associated with corroded carbon steel.

    PubMed

    Marty, Florence; Ghiglione, Jean-François; Païssé, Sandrine; Gueuné, Hervé; Quillet, Laurent; van Loosdrecht, Mark C M; Muyzer, Gerard

    2012-01-01

    Different DNA and RNA extraction approaches were evaluated and protocols optimized on in situ corrosion products from carbon steel in marine environments. Protocols adapted from the PowerSoil DNA/RNA Isolation methods resulted in the best nucleic acid (NA) extraction performances (ie combining high NA yield, quality, purity, representativeness of microbial community and processing time efficiency). The PowerSoil RNA Isolation Kit was the only method which resulted in amplifiable RNA of good quality (ie intact 16S/23S rRNA). Sample homogenization and hot chemical (SDS) cell lysis combined with mechanical (bead-beating) lysis in presence of a DNA competitor (skim milk) contributed to improving substantially (around 23 times) the DNA yield of the PowerSoil DNA Isolation Kit. Apart from presenting NA extraction strategies for optimizing extraction parameters with corrosion samples from carbon steel, this study proposes DNA and RNA extraction procedures suited for comparative molecular analysis of total and active fractions of bacterial communities associated with carbon steel corrosion events, thereby contributing to improved MIC diagnosis and control.

  10. Use of an Electrochemical Split Cell Technique to Evaluate the Influence of Shewanella oneidensis Activities on Corrosion of Carbon Steel

    PubMed Central

    Miller, Robert Bertram; Sadek, Anwar; Rodriguez, Alvaro; Iannuzzi, Mariano; Giai, Carla; Senko, John M.; Monty, Chelsea N.

    2016-01-01

    Microbially induced corrosion (MIC) is a complex problem that affects various industries. Several techniques have been developed to monitor corrosion and elucidate corrosion mechanisms, including microbiological processes that induce metal deterioration. We used zero resistance ammetry (ZRA) in a split chamber configuration to evaluate the effects of the facultatively anaerobic Fe(III) reducing bacterium Shewanella oneidensis MR-1 on the corrosion of UNS G10180 carbon steel. We show that activities of S. oneidensis inhibit corrosion of steel with which that organism has direct contact. However, when a carbon steel coupon in contact with S. oneidensis was electrically connected to a second coupon that was free of biofilm (in separate chambers of the split chamber assembly), ZRA-based measurements indicated that current moved from the S. oneidensis-containing chamber to the cell-free chamber. This electron transfer enhanced the O2 reduction reaction on the coupon deployed in the cell free chamber, and consequently, enhanced oxidation and corrosion of that electrode. Our results illustrate a novel mechanism for MIC in cases where metal surfaces are heterogeneously covered by biofilms. PMID:26824529

  11. An in vitro evaluation of the integrity of stainless steel crown margins cemented with different luting agents.

    PubMed

    Ettinger, R L; Kambhu, P P; Asmussen, C M; Damiano, P C

    1998-01-01

    The elderly population is retaining more teeth which require extensive restorations. The purpose of this study was to identify a luting agent which had the least marginal breakdown when used with stainless steel crowns. Thirty-six caries-free molars were selected, prepared for stainless steel crowns, and embedded in acrylic to support the crown and tooth. The crowns (Unitek/3M) were cemented with 4 different luting agents: (A) Fleck's Cement, (B) Ketac-Cem, (C) All-Bond C & B Cement, and (D) Panavia EX Cement. All the restored teeth were thermocycled and divided into 3 experimental groups. Twelve teeth were stained. The remaining teeth were occlusally loaded and stained. The remaining 12 teeth were thermocycled and stained again. The stainless steel crowns were then sectioned and photographed at 7.5x mag. The dye penetration was evaluated by measurement of the percentage of dye penetration from the crown margin to the cusp tip on each side. Statistical analysis found that the least dye penetration was with All-Bond C & B Cement (p = 0.0001). The most extensive penetration was observed in Ketac-Cem Occlusal loading was a significant factor (p = 0.0001) increasing the dye penetration, but the crown-tooth gap was not.

  12. Use of an Electrochemical Split Cell Technique to Evaluate the Influence of Shewanella oneidensis Activities on Corrosion of Carbon Steel.

    PubMed

    Miller, Robert Bertram; Sadek, Anwar; Rodriguez, Alvaro; Iannuzzi, Mariano; Giai, Carla; Senko, John M; Monty, Chelsea N

    2016-01-01

    Microbially induced corrosion (MIC) is a complex problem that affects various industries. Several techniques have been developed to monitor corrosion and elucidate corrosion mechanisms, including microbiological processes that induce metal deterioration. We used zero resistance ammetry (ZRA) in a split chamber configuration to evaluate the effects of the facultatively anaerobic Fe(III) reducing bacterium Shewanella oneidensis MR-1 on the corrosion of UNS G10180 carbon steel. We show that activities of S. oneidensis inhibit corrosion of steel with which that organism has direct contact. However, when a carbon steel coupon in contact with S. oneidensis was electrically connected to a second coupon that was free of biofilm (in separate chambers of the split chamber assembly), ZRA-based measurements indicated that current moved from the S. oneidensis-containing chamber to the cell-free chamber. This electron transfer enhanced the O2 reduction reaction on the coupon deployed in the cell free chamber, and consequently, enhanced oxidation and corrosion of that electrode. Our results illustrate a novel mechanism for MIC in cases where metal surfaces are heterogeneously covered by biofilms.

  13. Isolation of a sulfide-producing bacterial consortium from cooling-tower water: Evaluation of corrosive effects on galvanized steel.

    PubMed

    Ilhan-Sungur, Esra; Ozuolmez, Derya; Çotuk, Ayşın; Cansever, Nurhan; Muyzer, Gerard

    2017-02-01

    Sulfidogenic Clostridia and sulfate reducing bacteria (SRB) often cohabit in nature. The presence of these microorganisms can cause microbially influenced corrosion (MIC) of materials in different ways. To investigate this aspect, bacteria were isolated from cooling tower water and used in corrosion tests of galvanized steel. The identity of the isolates was determined by comparative sequence analysis of PCR-amplified 16S rDNA gene fragments, separated by denaturing gradient gel electrophoresis (DGGE). This analysis showed that, in spite of the isolation process, colonies were not pure and consisted of a mixture of bacteria affiliated with Desulfosporosinus meridiei and Clostridium sp. To evaluate the corrosive effect, galvanized steel coupons were incubated with a mixed culture for 4, 8, 24, 72, 96, 168, 360 and 744 h, along with a control set in sterile culture medium only. The corrosion rate was determined by weight loss, and biofilm formation and corroded surfaces were observed by scanning electron microscopy (SEM). Although the sulfide-producing bacterial consortium led to a slight increase in the corrosion of galvanized steel coupons, when compared to the previous studies it can be said that Clostridium sp. can reduce the corrosive effect of the Desulfosporosinus sp. strain.

  14. Evaluation of the transfer of Listeria monocytogenes from stainless steel and high-density polyethylene to Bologna and American cheese.

    PubMed

    Rodríguez, Andrés; McLandsborough, Lynne A

    2007-03-01

    The objective of this study was to determine the factors involved in the transfer of Listeria monocytogenes from surfaces to foods. We evaluated the influence of surface type (stainless steel and high-density polyethylene), inoculation method (biofilm growth and attached cells), hydration level (visibly dry and wet), and food type (bologna and American cheese). Each experiment included all 16 combinations and was repeated 11 times. A four-strain cocktail of L. monocytogenes was used to inoculate stainless steel and high-density polyethylene either as growing biofilms or attached cells. Slides were placed on a universal testing machine and brought into contact with food at a constant pressure (45 kPa) and time (30 s). Food slices were blended, the number of transferred cells was determined by plating, and the efficiency of transfer (EOT) was calculated. The results strongly suggest that stainless steel surfaces transferred more L. monocytogenes to foods than did polyethylene (P = 0.05). Independent of the surface, biofilms tended to transfer more L. monocytogenes to foods (EOT = 0.57) than did attached cells (EOT = 0.16). Among foods, L. monocytogenes was transferred to bologna more easily than to cheese (P < 0.05). The impact of hydration on transfer was significantly higher for dried biofilms growing on stainless steel (P < 0.05). No significant differences for hydration were seen under other conditions (P > 0.05). We hypothesize that drying weakens cell-to-cell interactions in biofilms and cell-to-surface interactions of biofilms and thus allows increased transfer of cells to food products.

  15. Evaluation of pitting corrosion resistance of high-alloyed stainless steels welds for FGD plants in Korea

    SciTech Connect

    Baek, K.K.; Sung, H.J.; Im, C.S.; Hong, I.P.; Kim, D.K.

    1998-12-31

    For successful application of high-alloyed stainless steels for Flue Gas Desulfurization (FGD) plants, pitting corrosion resistance of arc welds of N-added 6%Mo austenitic stainless steels (UNS N 08367) and super duplex stainless steels (UNS S 32550) made with various filler metals were evaluated using the Green Death solution. For Gas Tungsten Arc (GTA) and Gas Metal Arc (GMA) welds of N 08367, Critical Pitting Temperature (CPT) of base metal was 65--70 C, whereas weld made by ERNiCrMo-3 filler metal yielded CPT of 50 C. Welds made by ERNiCrMo-10 or ERNiCrMo-4 filler metals showed CPT of 60--65 C and 65--70C, respectively. For GTA and GMA welds of S 32550, CPT of welds made by ERNiCrMo-3 was 45--50 C, indicating that the filler metal can provide pitting corrosion resistance matching the S 32550 alloy. Thus, a proper pitting corrosion resistance of weldments of high-alloy stainless steels can be achieved by selecting filler metals having at least +10 higher Pitting Resistance Equivalent Number (PRE{sub N}) value than the base metal regardless of the type of arc welding process. The over-alloyed filler metals would compensate preferential segregation of Cr, MO along the dendrite boundary, which made the dendrite core more susceptible to pitting. Nitrogen addition to the GTA welds of N 08367 made with ERNiCrMo-3 failed to improve pitting corrosion resistance, which was attributed to the precipitation of nitrogen in the weld metal in the form of Nb-nitride.

  16. Evaluation of a lag schedule of reinforcement in a group contingency to promote varied naming of categories items with children.

    PubMed

    Wiskow, Katie M; Donaldson, Jeanne M

    2016-09-01

    We compared the effects of Lag 0 and Lag 1 schedules of reinforcement on children's responses naming category items in a group context and subsequent responses emitted during individual testing in which the schedule of reinforcement remained Lag 0. Specifically, we measured response variability and novel responses to categories for 3 children who demonstrated the lowest level of variability during an initial individual Lag 0 testing session. An additional 3 children who emitted a high level of variability during initial individual Lag 0 testing sessions served as peers during group sessions. Results showed that participants conformed to the Lag 1 schedule and were more likely to repeat peer responses in the group and during individual testing in the Lag 1 condition. Furthermore, the reinforcement schedule in effect during group sessions affected participants' varied responses during individual testing, during which the reinforcement schedule remained unchanged.

  17. Engineering safety evaluation for 22 ton steel disposal box lifting bail design

    SciTech Connect

    BOEHNKE, W.M.

    1999-11-23

    The objective of this analysis is to design and analyze the lifting bail of the 22 Ton Steel Waste Disposal Box (SWDB). The new design takes the original lifting bail and adds a hinge allowing the top portion of the bail to fold over towards the lid.

  18. Nanoscale evaluation of laser-based surface treated 12Ni maraging steel

    NASA Astrophysics Data System (ADS)

    Grum, J.; Slabe, J. M.

    2005-07-01

    Maraging steels are used in several high-tech areas. Among them are highly thermo-mechanically loaded vital parts of die casting dies for pressure die casting of aluminium and magnesium alloys. From the economic point of view, the operation life of dies is extremely important to the price of the castings. Operational life can be successfully extended by a regular maintenance of die parts. Laser surfacing is a very promising process for rebuilding of worn out surfaces of vital die parts. In this research, the state in the maraging steel 1.2799 (DIN) after the application of laser surfacing process has been analysed using scanning electron microscope. The analysis revealed diverse microstructure through-depth of the laser-surfaced specimens. On the basis of the estimated size and volume fraction of the nano-precipitates in the individual microstructure zones located through-depth of the heat-affected zone, a through-depth variation of microhardness was predicted. The results are supported by Vickers microhardness tests. It was confirmed that the mechanical properties of the 1.2799 maraging steel strongly depend on the characteristic at the nano or micro level. Some of the results obtained can be also applied to laser surface heat treatment of maraging steels.

  19. Evaluation of two matrix materials intended for fiber-reinforced polymers.

    PubMed

    Segerström, Susanna; Meriç, Gökçe; Knarvang, Torbjørn; Ruyter, I Eystein

    2005-10-01

    Two matrix resins for fiber composites that remain in a fluid state during storage and handling before polymerization were evaluated. The resin mixtures, based on methyl methacrylate (MMA), were produced with two different cross-linking agent systems: 1,4-butanediol dimethacrylate and ethylene glycol dimethacrylate or diethylene glycol dimethacrylate. Water sorption, water solubility, water uptake and residual MMA monomer were determined. Thermomechanical analysis was used to determine linear dimensional changes as a function of temperature. Flexural strength and modulus as well as fracture work and the maximum stress intensity factor were determined. The results revealed similar values for both matrix polymers regarding water sorption, water solubility, water uptake, residual MMA monomer (0.5 wt% (+/- 0.03)) and coefficient of linear thermal expansion. Flexural strength for polymer B was 68.7 MPa (+/- 9.8) compared to 56.0 MPa (+/- 13.3) for polymer A when tested dry and 64 MPa (+/- 6.1) compared to (54 MPa (+/- 3.3) when water-saturated. Fracture toughness tests showed higher maximum stress intensity factor values for polymer B (0.75 +/- 0.17) MPa x m1/2 than for polymer A (0.55 +/- 0.12) MPa x m1/2. The resin binders showed an appropriate consistency while remaining in a fluid state during storage and manipulation.

  20. Re-evaluating the role of the orbitofrontal cortex in reward and reinforcement.

    PubMed

    Noonan, M P; Kolling, N; Walton, M E; Rushworth, M F S

    2012-04-01

    The orbitofrontal cortex and adjacent ventromedial prefrontal cortex carry reward representations and mediate flexible behaviour when circumstances change. Here we review how recent experiments in humans and macaques have confirmed the existence of a major difference between the functions of the ventromedial prefrontal cortex and adjacent medial orbitofrontal cortex (mOFC) on the one hand and the lateral orbitofrontal cortex (lOFC) on the other. These differences, however, may not be best accounted for in terms of specializations for reward and error/punishment processing as is commonly assumed. Instead we argue that both lesion and functional magnetic resonance imaging studies reveal that the lOFC is concerned with the assignment of credit for both reward and error outcomes to the choice of specific stimuli and with the linking of specific stimulus representations to representations of specific types of reward outcome. By contrast, we argue that the ventromedial prefrontal cortex/mOFC is concerned with evaluation, value-guided decision-making and maintenance of a choice over successive decisions. Despite the popular view that they cause perseveration of behaviour and inability to inhibit repetition of a previously made choice, we found that lesions in neither orbitofrontal subdivision caused perseveration. On the contrary, lesions in the lOFC made animals switch more rapidly between choices when they were finding it difficult to assign reward values to choices. Lesions in the mOFC caused animals to lose their normal predisposition to repeat previously successful choices, suggesting that the mOFC does not just mediate value comparison in choice but also facilitates maintenance of the same choice if it has been successful.

  1. Biocompatibility evaluation of surface-treated AISI 316L austenitic stainless steel in human cell cultures.

    PubMed

    Martinesi, M; Bruni, S; Stio, M; Treves, C; Bacci, T; Borgioli, F

    2007-01-01

    The effects of AISI 316L austenitic stainless steel, tested in untreated state or subjected to glow-discharge nitriding (at 10 or 20 hPa) and nitriding + post-oxidizing treatments, on human umbilical vein endothelial cells (HUVEC) and on peripheral blood mononuclear cells (PBMC) were evaluated. All the treated samples showed a better corrosion resistance in PBS and higher surface hardness in comparison with the untreated alloy. In HUVEC put in contact for 72 h with the sample types, proliferation and apoptosis decreased and increased, respectively, in the presence of the nitrided + post-oxidized samples, while only slight differences in cytokine (TNF-alpha, IL-6, and TGF-beta1) release were registered. Intercellular adhesion molecule-1 (ICAM-1) increased in HUVEC incubated with all the treated samples, while vascular cell adhesion molecule-1 (VCAM-1) and E-selectin increased in the presence of all the sample types. PBMC incubated for 48 h with the samples showed a decrease in proliferation and an increase in apoptosis in the presence of the untreated samples and the nitrided + post-oxidized ones. All the sample types induced a remarkable increase in TNF-alpha and IL-6 release in PBMC culture medium, while only the untreated sample and the nitrided at 10 hPa induced an increase in ICAM-1 expression. In HUVEC cocultured with PBMC, previously put in contact with the treated AISI 316L samples, increased levels of ICAM-1 were detected. In HUVEC coincubated with the culture medium of PBMC, previously put in contact with the samples under study, a noteworthy increase in ICAM-1, VCAM-1, and E-selectin levels was always registered, with the exception of VCAM-1, which was not affected by the untreated sample. In conclusion, even if the treated samples do not show a marked increase in biocompatibility in comparison with the untreated alloy, their higher corrosion resistance may suggest a better performance as the contact with physiological environment becomes longer.

  2. Comparative evaluation of fracture resistance of glass fiber reinforced, carbon, and quartz post in endodontically treated teeth: An in-vitro study

    PubMed Central

    Sharma, Shweta; Attokaran, George; Singh, Kunwar S.; Jerry, Jeethu J.; Ahmed, Naima; Mitra, Nirban

    2016-01-01

    Aim and Objectives: Use of posts improves the physical properties of endodontically-treated teeth. Different post types are developed such as metal, custom-made, carbon, and quartz. The present study was conducted to evaluate the fracture resistance of glass fiber-reinforced, carbon, and quartz post in endodontically-treated teeth. Materials and Methods: Forty extracted human maxillary incisor teeth were decoronated and endodontically treated and equally divided into 4 groups; control, glass fiber-reinforced, carbon, and quartz posts. No post was used in the control group. Post space was prepared and cemented with different posts and subjected to universal testing machine to check fracture resistance. The data were statistically analyzed using t-test and analysis of variance to compare the mean difference between groups (SPSS version 20, IBM). Results: Quartz type of endodontic post showed good fracture resistance compared to carbon and resin-reinforced post. Least resistance was observed in the control group without post. Conclusion: Quartz, carbon, and glass fiber-reinforced posts show good resistance to fracture, and hence can be used in endodontically-treated teeth to enhance their strength. PMID:27583227

  3. A comparison of wire- and Kevlar-reinforced provisional restorations.

    PubMed

    Powell, D B; Nicholls, J I; Yuodelis, R A; Strygler, H

    1994-01-01

    Stainless steel wire 0.036 inch in diameter was compared with Kevlar 49 polyaramid fiber as a means of reinforcing a four-unit posterior provisional fixed restoration with 2 pontics. Three reinforcement patterns for wire and two for Kevlar 49 were evaluated and compared with the control, which was an unreinforced provisional restoration. A central tensile load was placed on the cemented provisional restoration and the variables were measured: (1) the initial stiffness; (2) the load at initial fracture; and (3) the unit toughness, or the energy stored in the beam at a point where the load had undergone a 1.0-mm deflection. Statistical analysis showed (1) the bent wire configuration had a significantly higher initial stiffness (P < or = .05), (2) there was no difference between designs for load at initial fracture, and (3) the bent wire had a significantly higher unit toughness value (P < or = .05).

  4. Evaluation of varying ductile fracture criteria for 42CrMo steel by compressions at different temperatures and strain rates.

    PubMed

    Quan, Guo-zheng; Luo, Gui-chang; Mao, An; Liang, Jian-ting; Wu, Dong-sen

    2014-01-01

    Fracturing by ductile damage occurs quite naturally in metal forming processes, and ductile fracture of strain-softening alloy, here 42CrMo steel, cannot be evaluated through simple procedures such as tension testing. Under these circumstances, it is very significant and economical to find a way to evaluate the ductile fracture criteria (DFC) and identify the relationships between damage evolution and deformation conditions. Under the guidance of the Cockcroft-Latham fracture criteria, an innovative approach involving hot compression tests, numerical simulations, and mathematic computations provides mutual support to evaluate ductile damage cumulating process and DFC diagram along with deformation conditions, which has not been expounded by Cockcroft and Latham. The results show that the maximum damage value appears in the region of upsetting drum, while the minimal value appears in the middle region. Furthermore, DFC of 42CrMo steel at temperature range of 1123~1348 K and strain rate of 0.01~10 s(-1) are not constant but change in a range of 0.160~0.226; thus, they have been defined as varying ductile fracture criteria (VDFC) and characterized by a function of temperature and strain rate. In bulk forming operations, VDFC help technicians to choose suitable process parameters and avoid the occurrence of fracture.

  5. Magnetic Hysteresis Loop as a Tool for the Evaluation of Microstructure and Mechanical Properties of DP Steels

    NASA Astrophysics Data System (ADS)

    Mohapatra, J. N.; Kumar, Satendra; Akela, Arbind Kumar; Prakash Rao, S.; Kaza, Marutiram

    2016-06-01

    DP steel of 1.3-mm thickness full hard sheet was heat treated at different temperatures in the range of 700-850 °C with 25 °C step for 15 min soaking followed by water quenching. The variation of the soaking temperatures leads to variation of volume fraction of martensite which was measured by image analysis software in optical microscopy. Mechanical properties of the samples were evaluated using micro Vicker's hardness test and tensile test machine. Magnetic properties of the samples were measured by MagStar to correlate with the microstructure and mechanical properties of the samples. It was observed that the coercivity of the samples increased linearly with the increase in volume fraction of martensite and mechanical properties. Hence monitoring coercivity would help non-destructive evaluation of mechanical properties of the DP steels. Additionally, it would also helpful for the non-destructive evaluation of variation in heat treatment conditions since coercivity also found to increase linearly with the increase in soaking temperature.

  6. A Comparative Evaluation of Effect of Different Chemical Solvents on the Shear Bond Strength of Glass Fiber reinforced Post to Core Material

    PubMed Central

    Samadi, Firoza; Jaiswal, JN; Saha, Sonali

    2014-01-01

    ABSTRACT% Aim: To compare the effect of different chemical solvents on glass fiber reinforced posts and to study the effect of these solvents on the shear bond strength of glass fiber reinforced post to core material. Materials and methods: This study was conducted to evaluate the effect of three chemical solvents, i.e. silane coupling agent, 6% H2O2 and 37% phosphoric acid on the shear bond strength of glass fiber post to a composite resin restorative material. The changes in post surface characteristics after different treatments were also observed, using scanning electron microscopy (SEM) and shear bond strength was analyzed using universal testing machine (UTM). Results: Surface treatment with hydrogen peroxide had greatest impact on the post surface followed by 37% phosphoric acid and silane. On evaluation of the shear bond strength, 6% H2O2 exhibited the maximum shear bond strength followed in descending order by 37% phosphoric acid and silane respectively. Conclusion: The surface treatment of glass fiber post enhances the adhesion between the post and composite resin which is used as core material. Failure of a fiber post and composite resin core often occurs at the junction between the two materials. This failure process requires better characterization. How to cite this article: Sharma A, Samadi F, Jaiswal JN, Saha S. A Comparative Evaluation of Effect of Different Chemical Solvents on the Shear Bond Strength of Glass Fiber Reinforced Post to Core Material. Int J Clin Pediatr Dent 2014;7(3):192-196. PMID:25709300

  7. Evaluation of various metallic coatings on steel to mitigate biofilm formation.

    PubMed

    Kanematsu, Hideyuki; Ikigai, Hajime; Yoshitake, Michiko

    2009-02-01

    In marine environments and water systems, it is easy for many structures to form biofilms on their surfaces and to be deteriorated due to the corrosion caused by biofilm formation by bacteria. The authors have investigated the antibacterial effects of metallic elements in practical steels so far to solve food-related problems, using Escherichia coli and Staphylococcus aureus. However, from the viewpoint of material deterioration caused by bacteria and their antifouling measures, we should consider the biofilm behavior as aggregate rather than individual bacterium. Therefore, we picked up Pseudomonas aeruginosa and Pseudoalteromonas carageenovara in this study, since they easily form biofilms in estuarine and marine environments. We investigated what kind of metallic elements could inhibit the biofilm formation at first and then discussed how the thin films of those inhibitory elements on steels could affect biofilm formation. The information would lead to the establishment of effective antifouling measures against corrosion in estuarine and marine environments.

  8. Evaluation of DUSTRAN Software System for Modeling Chloride Deposition on Steel Canisters

    SciTech Connect

    Tran, Tracy T.; Jensen, Philip J.; Fritz, Brad G.; Rutz, Frederick C.; Devanathan, Ram

    2015-07-29

    The degradation of steel by stress corrosion cracking (SCC) when exposed to atmospheric conditions for decades is a significant challenge in the fossil fuel and nuclear industries. SCC can occur when corrosive contaminants such as chlorides are deposited on a susceptible material in a tensile stress state. The Nuclear Regulatory Commission has identified chloride-induced SCC as a potential cause for concern in stainless steel used nuclear fuel (UNF) canisters in dry storage. The modeling of contaminant deposition is the first step in predictive multiscale modeling of SCC that is essential to develop mitigation strategies, prioritize inspection, and ensure the integrity and performance of canisters, pipelines, and structural materials. A multiscale simulation approach can be developed to determine the likelihood that a canister would undergo SCC in a certain period of time. This study investigates the potential of DUSTRAN, a dust dispersion modeling system developed by Pacific Northwest National Laboratory, to model the deposition of chloride contaminants from sea salt aerosols on a steel canister. Results from DUSTRAN simulations run with historical meteorological data were compared against measured chloride data at a coastal site in Maine. DUSTRAN’s CALPUFF model tended to simulate concentrations higher than those measured; however, the closest estimations were within the same order of magnitude as the measured values. The decrease in discrepancies between measured and simulated values as the level of abstraction in wind speed decreased suggest that the model is very sensitive to wind speed. However, the influence of other parameters such as the distinction between open-ocean and surf-zone sources needs to be explored further. Deposition values predicted by the DUSTRAN system were not in agreement with concentration values and suggest that the deposition calculations may not fully represent physical processes. Overall, results indicate that with parameter

  9. Evaluation of Friction Stir Processing of HY-80 Steel Under Wet and Dry Conditions

    DTIC Science & Technology

    2012-03-01

    Welding Institute in Cambridge, United Kingdom in 1991 [3]. FSW /P has been implemented into the U.S. Navy in such applications as joining aluminum ...material on Littoral Combat Ships along with the surface treatment of nickel aluminum bronze propellers. In the last ten years, research on FSW /P...hardenable alloy steel (AISI 4142) in dry ambient conditions and also underwater. He also concluded that the hydrogen concentration in FSW /P material for

  10. Evaluation of the stress corrosion cracking resistance of several high strength low alloy steels

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The stress corrosion cracking resistance was studied for high strength alloy steels 4130, 4340, for H-11 at selected strength levels, and for D6AC and HY140 at a single strength. Round tensile and C-ring type specimens were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, salt spray, the atmosphere at Marshall Space Flight Center, and the seacoast at Kennedy Space Center. Under the test conditions, 4130 and 4340 steels heat treated to a tensile strength of 1240 MPa (180 ksi), H-11 and D6AC heat treated to a tensile strength of 1450 MPa (210 ksi), and HY140 (1020 MPa, 148 ksi) are resistant to stress corrosion cracking because failures were not encountered at stress levels up to 75 percent of their yield strengths. A maximum exposure period of one month for alternate immersion in salt water or salt spray and three months for seacoast is indicated for alloy steel to avoid false indications of stress corrosion cracking because of failure resulting from severe pitting.

  11. Providing alternative reinforcers to facilitate tolerance to delayed reinforcement following functional communication training.

    PubMed

    Austin, Jillian E; Tiger, Jeffrey H

    2015-09-01

    The earliest stages of functional communication training (FCT) involve providing immediate and continuous reinforcement for a communicative response (FCR) that is functionally equivalent to the targeted problem behavior. However, maintaining immediate reinforcement is not practical, and the introduction of delays is associated with increased problem behavior. The present study evaluated the effects of providing alternative reinforcers during delays to reinforcement with a 13-year-old boy with an intellectual disability. Problem behavior was less likely when alternative reinforcers were available during delays.

  12. Evaluation of common tests for fracture characterisation of advanced high-strength sheet steels with the help of the FEA

    NASA Astrophysics Data System (ADS)

    Peshekhodov, I.; Dykiert, M.; Vucetic, M.; Behrens, B.-A.

    2016-11-01

    The paper presents results of evaluation of common tests for fracture characterization of advanced high-strength sheet steels with the help of the FEA. The tests include three in-plane shear tests, two uniaxial tension tests, two plane strain tension tests and two equibiaxial tension tests. Three high-strength steels with different yield loci, strain hardening rates and strengths in three different thicknesses each were used. The evaluation was performed based on the spatial distribution of the equivalent plastic strain and damage variable in the specimen at the moment of crack initiation as well as on the time variation of the stress state at the crack initiation location. For in-plane shear, uniaxial tension and plane strain tension, no test can be unconditionally recommended as disadvantages of all studied tests in these groups cannot be neglected. However, in each of these groups, a test can be chosen, which represents an acceptable compromise between its advantages and disadvantages: the shear test on an IFUM butterfly specimen for in-plane shear, the tensile test on a holed specimen for uniaxial tension and the tensile test on a waisted specimen for plane strain tension. On the contrary, the bulge test on a circular specimen with a punch of Ø 100 mm can be unconditionally recommended for equibiaxial tension. In the future, optimisation of the studied tests for in-plane shear, uniaxial tension and plane strain tension appears to be necessary.

  13. Bond slip model in cylindrical reinforced concrete elements confined with stirrups

    NASA Astrophysics Data System (ADS)

    Coccia, Simona; Di Maggio, Erica; Rinaldi, Zila

    2015-12-01

    An analytical model able to evaluate the bond-slip law of confined reinforced concrete elements is developed and presented in this paper. The model is based on the studies developed by Tepfers and by den Uijl and Bigaj on the thick-walled cylinder model and extended to the case of the presence of transverse reinforcement. The bond strength and the considered failure modes (splitting or pull-out failure) are expressed as a function of the geometrical (concrete cover and transverse reinforcement) and mechanical (concrete strength) parameters of the element. The application of the proposed methodology allows to forecast the failure mode, and equations for the bond-slip law are finally proposed for a range of steel strain lower than the yielding one.

  14. Web-Based Interactive Steel Sculpture for the Google Generation

    ERIC Educational Resources Information Center

    Chou, Karen C.; Moaveni, Saeed

    2009-01-01

    In almost all the civil engineering programs in the United States, a student is required to take at least one design course in either steel or reinforced concrete. One of the topics covered in an introductory steel design course is the design of connections. Steel connections play important roles in the integrity of a structure, and many…

  15. Evaluation of the cytotoxicity of fiber reinforced composite bonded retainers and flexible spiral wires retainers in simulated high and low cariogenic environments

    PubMed Central

    Jahanbin, Arezoo; Shahabi, Mostafa; Ahrari, Farzaneh; Bozorgnia, Yasaman; Shajiei, Arezoo; Shafaee, Hooman; Afshari, Jalil Tavakkol

    2015-01-01

    Objectives: The aim of this study was to evaluate the cytotoxic effects of fiber reinforced composite bonded retainers in comparison with flexible spiral wires (FSWs) under high and low cariogenic-simulated environments using human oral fibroblasts. Materials and Methods: Four types of bonded retainers were evaluated: (1) reinforced with glass fibers: Interlig (Angelus), (2) reinforced with polyethylene fibers: Connect (Kerr), (3) reinforced with quartz fibers: Quartz Splint UD (RTD), and (4) FSW. Twenty specimens of each sample group were prepared with the same surface area and halved. Next, half of them were placed in a high cariogenic environment 60 min in 10% lactic acid 3 times a day and remained in Fusayama Meyer artificial saliva for the rest of the day) and the other half were placed in a low cariogenic environment 20 min in 10% lactic acid 3 times a day and remained in Fusayama Meyer artificial saliva for the rest of the day) for 1, 7 and 30 days. Cell viability was assessed by MTT assay. Data were analyzed using SPSS software (α =0.05). Results: During the 1st month, cytotoxicity reduced gradually. In the low cariogenic-simulated environment, the cytotoxicity of all of the groups were reported to be mild at day 30 and the difference between them was significant (P = 0.016). In the same period in the high cariogenic-simulated environment, the cytotoxicity of Connect and Quartz Splint was mild, and they had lower cytotoxicity than the other groups. Meanwhile, Interlig had moderate (52%) and FSW had severe cytotoxicity (22%) and the difference between the groups was also significant (P = 0.000). Conclusions: FSW retainers are not recommended in those at high-risk for dental caries. However, in those at low-risk, there is no difference from the standpoint of cytotoxicity. PMID:25657987

  16. Basic Oxygen Furnace steel slag aggregates for phosphorus treatment. Evaluation of its potential use as a substrate in constructed wetlands.

    PubMed

    Blanco, Ivan; Molle, Pascal; Sáenz de Miera, Luis E; Ansola, Gemma

    2016-02-01

    Basic Oxygen Furnace (BOF) steel slag aggregates from NW Spain were tested in batch and column experiments to evaluate its potential use as a substrate in constructed wetlands (CWs). The objectives of this study were to identify the main P removal mechanisms of BOF steel slag and determine its P removal capacity. Also, the results were used to discuss the suitability of this material as a substrate to be used in CWs. Batch experiments with BOF slag aggregates and increasing initial phosphate concentrations showed phosphate removal efficiencies between 84 and 99% and phosphate removal capacities from 0.12 to 8.78 mg P/g slag. A continuous flow column experiment filled with BOF slag aggregates receiving an influent synthetic solution of 15 mg P/L during 213 days showed a removal efficiency greater than 99% and a phosphate removal capacity of 3.1 mg P/g slag. In both experiments the main P removal mechanism was found to be calcium phosphate precipitation which depends on Ca(2+) and OH(-) release from the BOF steel slag after dissolution of Ca(OH)2 in water. P saturation of slag was reached within the upper sections of the column which showed phosphate removal capacities between 1.7 and 2.5 mg P/g slag. Once Ca(OH)2 was completely dissolved in these column sections, removal efficiencies declined gradually from 99% until reaching stable outlet concentrations with P removal efficiencies around 7% which depended on influent Ca(2+) for limited continuous calcium phosphate precipitation.

  17. A Comparative Evaluation of the Retention of Tooth Coloured and Stainless Steel Endodontic Posts: An In-vitro Study

    PubMed Central

    Maria, Rahul; Punga, Rohit

    2014-01-01

    Aims: This in vitro study evaluated: a) the retention of stainless steel posts of 1.5 mm diameter which were cemented with Zinc Phosphate cement versus Glass fiber posts with 1.1 mm, 1.3 mm and 1.5 mm diameters which were cemented with resin cement and b) the effect of change in diameter on the retention of Glass fiber posts with 1.1 mm, 1.3 mm and 1.5 mm diameters. Materials and Methods: Sixty extracted mandibular premolar teeth were endodontically treated and randomly assigned to four groups of fifteen teeth each. In Groups I, II and III glass fibre posts with diameters 1.1 mm, 1.3 mm and 1.5 mm were cemented by using resin cement. In Group IV, stainless steel posts with diameter 1.5 mm were cemented by using zinc phosphate cement. The specimens were tested for tensile loading at a cross head speed of 2.0 mm/min, on a universal testing machine. Statistical Analysis Used: One way analysis of variance and Tukey’s (post-hoc) test. Results: Mean tensile strength from highest to lowest was in the order of Group IV, Group II, Group III, Group I. Statistically significant differences were observed between the mean tensile strengths between Groups I and II, Groups I and III, Groups I and IV, Groups II and IV, Groups III and IV, while non significant differences were observed between Groups II and III. Conclusion: Stainless steel posts were more retentive than glass fibre posts. Glass fibre posts with 1.3 mm or 1.5 mm diameters provided significantly greater retention as compared to 1.1 mm diameter posts. PMID:24959506

  18. Investigation of rectangular concrete columns reinforced or prestressed with fiber reinforced polymer (FRP) bars or tendons

    NASA Astrophysics Data System (ADS)

    Choo, Ching Chiaw

    Fiber reinforced polymer (FRP) composites have been increasingly used in concrete construction. This research focused on the behavior of concrete columns reinforced with FRP bars, or prestressed with FRP tendons. The methodology was based the ultimate strength approach where stress and strain compatibility conditions and material constitutive laws were applied. Axial strength-moment (P-M) interaction relations of reinforced or prestressed concrete columns with FRP, a linearly-elastic material, were examined. The analytical results identified the possibility of premature compression and/or brittle-tension failure occurring in FRP reinforced and prestressed concrete columns where sudden and explosive type failures were expected. These failures were related to the rupture of FRP rebars or tendons in compression and/or in tension prior to concrete reaching its ultimate strain and strength. The study also concluded that brittle-tension failure was more likely to occur due to the low ultimate tensile strain of FRP bars or tendons as compared to steel. In addition, the failures were more prevalent when long term effects such as creep and shrinkage of concrete, and creep rupture of FRP were considered. Barring FRP failure, concrete columns reinforced with FRP, in some instances, gained significant moment resistance. As expected the strength interaction of slender steel or FRP reinforced concrete columns were dependent more on column length rather than material differences between steel and FRP. Current ACI minimum reinforcement ratio for steel (rhomin) reinforced concrete columns may not be adequate for use in FRP reinforced concrete columns. Design aids were developed in this study to determine the minimum reinforcement ratio (rhof,min) required for rectangular reinforced concrete columns by averting brittle-tension failure to a failure controlled by concrete crushing which in nature was a less catastrophic and more gradual type failure. The proposed method using rhof

  19. Small punch test evaluation of intergranular embrittlement of an alloy steel

    SciTech Connect

    Baik, J.M.; Buck, O.; Kameda, J.

    1983-12-01

    The ductile-brittle transition temperature in steel is commonly determined using Charpy V-notch impact specimens as specified by ASTM E23-81. In some specific cases, however, the use of this standardized test specimen may be impractical, if not impossible. For instance, it is well known that ferritic steels show a substantial degradation of the mechanical properties after long time exposure to an irradiation environment. Because of the increase in strength and the reduction in ductility due to neutron irradiation, the Charpy V-notch transition temperature is raised causing concern from a safety point of view. To study these radiation effects, a test specimen much smaller than the standard Charpy V-notch specimen would be extremely desirable for two reasons. First, to study neutron damage small specimens take less space within a reactor. Secondly, the damage achieved in simulation experiments, such as proton or electron accelerators, is limited to small penetration depths. Several efforts on the development of such a small test specimen, similar to that used to determine the ductility of sheet metal, as recommended by ASTM E643-78, have been described in the literature. The paper reports on correlations between small punch (SP) and Charpy V-notch (CVN) test results obtained on temper-embrittled NiCr steel. The ductile-brittle transition temperature (DBTT) with intergranular embrittlement being induced by grain boundary segregation of specific impurities was determined. The relation between test results discussed in terms of the micromechanisms of intergranular cracking. It is suggested that in radiation embrittlement investigations similar correlations may be obtained.

  20. Evaluation of hydrogen embrittlement in Cr-Mo pressure vessel steels. Topical report No. 1

    SciTech Connect

    Shaw, B.J.; Johnson, E.W.

    1980-08-24

    Commercial 2-1/4 Cr-1 Mo low strength steel specimens have been tested to measure their susceptibility to hydrogen embrittlement in an environment of H/sub 2/S at 50 psig. It was found that two factors, viz. (i) the plane stress zones on the crack front in compact tension specimens and (ii) incubation time effects, seriously confounded measurements on these steels when tested by conventional rising load experiments. Because of the incubation time effect, K/sub or/ (the stress intensity at which cracking starts in a rising load test) is a loading rate dependent variable and is usually significantly greater than the arrest stress intensity, K/sub arr/ in a bolt loaded test. K/sub arr/ must therefore be used as a measure of hydrogen resistance. The incubation time has been significantly reduced by cyclicly loading in the environment to initiate the crack and K/sub arr/ has been measured by holding the specimen in constant displacement immediately after crack initiation. The plane stress problem has been eliminated by deeply side grooving the compact tension (CT) specimens. As an example of the importance of these effects a 3T CT smooth sided specimen was compared with a side grooved 2T CT specimen of the same steel. Whereas the K/sub or/ value for the smooth 3T was approximately 150 ksi in/sup 1/2/ the K/sub arr/ value for the side notched 2T was approximately 20 ksi in/sup 1/2/. A study of the effect of strength level is included.