Science.gov

Sample records for related bed agglomeration

  1. Bed material agglomeration during fluidized bed combustion

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Noble, S.

    1993-02-01

    The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

  2. Bed material agglomeration during fluidized bed combustion. Final report

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Smeenk, J.L.

    1996-01-01

    The purpose of this project is to determine the physical and chemical reactions which lead to the undesired agglomeration of bed material during fluidized bed combustion of coal and to relate these reactions to specific causes. A survey of agglomeration and deposit formation in industrial fluidized bed combustors (FBCs) indicate that at least five boilers were experiencing some form of bed material agglomeration. Deposit formation was reported at nine sites with deposits most commonly at coal feed locations and in cyclones. Other deposit locations included side walls and return loops. Three general types of mineralogic reactions were observed to occur in the agglomerates and deposits. Although alkalies may play a role with some {open_quotes}high alkali{close_quotes} lignites, we found agglomeration was initiated due to fluxing reactions between iron (II) from pyrites and aluminosilicates from clays. This is indicated by the high amounts of iron, silica, and alumina in the agglomerates and the mineralogy of the agglomerates. Agglomeration likely originated in the dense phase of the FBC bed within the volatile plume which forms when coal is introduced to the boiler. Secondary mineral reactions appear to occur after the agglomerates have formed and tend to strengthen the agglomerates. When calcium is present in high amounts, most of the minerals in the resulting deposits are in the melilite group (gehlenite, melilite, and akermanite) and pyroxene group (diopside and augite). During these solid-phase reactions, the temperature of formation of the melilite minerals can be lowered by a reduction of the partial pressure of CO{sub 2} (Diopside + Calcite {r_arrow}Akermanite).

  3. Bed material agglomeration during fluidized bed combustion. Technical progress report, September 30, 1992--December 31, 1992

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Noble, S.

    1993-02-01

    The purpose of this project is to determine the physical and chemical reactions which led to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. Survey of industrial-scale fluidized bed combustors is being conducted to determine the occurrence of bed agglomeration and the circumstances under which agglomeration took place. This task should be finished by the end of February. Samples of bed material, agglomerate material, and boiler deposits are being requested from boiler operators as part of the survey. Once received, these sample will be analyzed to determine chemical and mineralogic composition. The bulk chemical determination will be performed using x-ray fluorescence and inductively coupled plasma-optical emission (ICP). Mineralogy will be detected by x-ray diffraction (XRD). Chemical and mineral reactions will be determined by scanning electron microscopy, optical microscopy, and electron microprobe.

  4. Agglomeration-Free Distributor for Fluidized Beds

    NASA Technical Reports Server (NTRS)

    Ouyang, F.; Sinica, A.; Levenspiel, O.

    1986-01-01

    New gas distributor for fluidized beds prevents hot particles from reacting on it and forming hard crust. In reduction of iron ore in fluidized bed, ore particles do not sinter on distributor and perhaps clog it or otherwise interfere with gas flow. Distributor also relatively cool. In fluidized-bed production of silicon, inflowing silane does not decompose until within bed of hot silicon particles and deposits on them. Plates of spiral distributor arranged to direct incoming gas into spiral flow. Turbulence in flow reduces frequency of contact between fluidized-bed particles and distributor.

  5. Agglomeration-Free Distributor for Fluidized Beds

    NASA Technical Reports Server (NTRS)

    Ouyang, F.; Sinica, A.; Levenspiel, O.

    1986-01-01

    New gas distributor for fluidized beds prevents hot particles from reacting on it and forming hard crust. In reduction of iron ore in fluidized bed, ore particles do not sinter on distributor and perhaps clog it or otherwise interfere with gas flow. Distributor also relatively cool. In fluidized-bed production of silicon, inflowing silane does not decompose until within bed of hot silicon particles and deposits on them. Plates of spiral distributor arranged to direct incoming gas into spiral flow. Turbulence in flow reduces frequency of contact between fluidized-bed particles and distributor.

  6. Bed material agglomeration during fluidized bed combustion. Technical progress report, January 1, 1993--March 31, 1993

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Noble, S.D.

    1993-04-01

    The purpose of this project is to determine the physical and chemical reactions which lead to the undesired agglomeration of bed material during fluidized bed combustion and to relate these reactions to specific causes. A survey of agglomeration and deposit formation in industrial fluidized bed boilers is in progress. Preliminary results indicate that at least five boilers were experiencing some form of bed material agglomeration. In these instances it was observed that large particles were forming within the bed which were larger that the feed. Four operators could confirm that the larger bed particles had formed due to bed particles sticking together or agglomerating. Deposit formation was reported at nine sites with these deposits being found most commonly at coal feed locations and in cyclones. Other deposit locations included side walls and return loops. Examples of these agglomerates and deposits have been received from five of the surveyed facilities. Also during this quarter, a bulk sample of Illinois No. 6 coal was obtained from the Fossil Energy Program at Ames Laboratory here at Iowa State University and prepared for combustion tests. This sample was first ground to a top-size of 3/8`` using a jaw crusher then a size fraction of 3/8`` {times} 8 (US mesh) was then obtained by sieving using a Gilson Test-Master. This size fraction was selected for the preliminary laboratory-scale experiments designed to simulate the dense bed conditions that exist in the bottom of CFB combustors. To ensure uniformity of fuel composition among combustion runs, the sized coal was riffled using, a cone and long row method and stored in bags for each experiment. During this quarter additional modifications were made to achieve better control of fluidization regimes and to aid in monitoring the hydrodynamic and chemical conditions within the reactor.

  7. Bed material agglomeration during fluidized bed combustion. Technical progress report, January 1, 1994--March 31, 1994

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Smeenk, J.L.

    1994-04-01

    Laboratory combustion tests conducted this quarter support the hypothesis that localized reducing conditions promote formation of agglomerates in the bed of fluidized bed boilers. These tests were designed to simulate localized reducing conditions found in commercial fluidized bed combustors. Localized reducing conditions may occur from either poor lateral bed mixing or oxygen-starved bed conditions due to the coal feed configuration. It was found-that agglomeration can occur at lower theoretical air values while operating temperatures are within the range of fluidized bed boilers. Cohesion of bed particles appears to take place very rapidly when theoretical air in the bed approaches 70%. These tests also indicate that bed temperature, pressure drop, oxygen and carbon dioxide concentrations are affected by agglomeration. Agglomeration appears to result in: (1) An increase in the frequency of pressure fluctuations (bed pressure drop). (2) An increase in the magnitude of pressure fluctuations (bed pressure drop.) (3) A possible decrease in bed pressure differential over time. In addition, there appears to be an increase in the amount of available oxygen and a decrease in CO{sub 2}. Agglomerates formed in the laboratory are being subjected to mineralogical analyses which will then be compared to similar analyses of agglomerates removed from commercial boilers.

  8. Reduced bed agglomeration by co-combustion biomass with peat fuels in a fluidized bed

    SciTech Connect

    Karin Lundholm; Anders Nordin; Marcus Oehman; Dan Bostroem

    2005-12-01

    Fluidized bed combustion is an energy conversion technology that is very suitable for biomass combustion because of its fuel flexibility and low process temperatures. However, agglomeration of bed material may cause severe operating problems. To prevent or at least reduce this, peat has been suggested as an additive to the main fuels. Nevertheless, the characteristics of peat fuels vary and there is limited information of the effect of different peat fuels and of the mechanisms behind the agglomeration prevention. The objectives of the present work were therefore to: (I) quantify the potential positive effect by co-combustion peat with forest fuels in terms of initial agglomeration temperatures; (ii) determine the amount of peat fuel that is needed to significantly reduce the agglomeration tendencies; and, if possible, (iii) elucidate the governing mechanisms. The results showed that all peat fuels prevented agglomeration in the studied interval of 760-1020{sup o}C and even as little as 5% peat fuel was found to have significant effects. The results also indicated that the mechanism of the agglomeration prevention varies between different peat fuels. Possible mechanisms are the minerals in the peat fuel retain alkali, which then is either elutriated up from the bed or captured in the bed; calcium and other refractory elements increase the melting temperature and thereby counteract the melting of alkali; and sulfur reacts with alkali metals and the alkali sulfates is either elutriated up from the bed or prevents agglomeration by increased melting temperature and lowered viscosity. Results from elemental analysis of the coating on bed particles showed that all mixtures with peat fuel resulted in a decreased or unchanged fraction of potassium and an increased fraction of aluminum in the coatings. The results also indicated a complex relationship between the fuel inorganic contents and the agglomeration process. 21 refs., 6 figs., 5 tabs.

  9. Bed agglomeration characteristics of rice straw combustion in a vortexing fluidized-bed combustor.

    PubMed

    Duan, Feng; Chyang, Chien-Song; Zhang, Li-hui; Yin, Siang-Fong

    2015-05-01

    To investigate bed agglomeration characteristics, the combustion of pelletized rice straw was conducted in a bench-scale vortexing fluidized bed. Effects of bed temperature, superficial velocity, secondary gas velocities, and mass blended ratio of coal on the defluidization time were investigated. The alkali concentrations in different sections of the bed zone were also studied. The bed materials and agglomerates were analyzed using SEM/EDX to obtain the surface morphology and the compositions. The results revealed that the defluidization time is increased with superficial gas velocity and is decreased with bed temperature. Eutectic composition with low melting point materials promote defluidization at high temperatures. Effect of the secondary gas velocity on the defluidization time indicates different trends at different bed temperatures. The highest value of alkali concentration appears at upper bubbling zone. Coal ash can avoid the existence of a certain eutectic composition, and increases its melting point. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Bed material agglomeration during fluidized bed combustion. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect

    Brown, R.C.; Dawson, M.R.; Smeenk, J.L.

    1995-04-01

    Experiments performed support the hypothesis that a reducing atmosphere during fluidized bed coal combustion contributes to the formation of agglomerates. Reducing conditions are imposed by controlling the amount of combustion air supplied to the combustor, 50% of theoretical in these experiments. These localized reducing conditions may arise from either poor lateral bed mixing or oxygen-starved conditions due to the coal feed locations. Deviations from steady-state operating conditions in bed pressure drop may be used to detect agglomerate formation. Interpretation of the bed pressure drop was made more straightforward by employing a moving average difference method. During steady-state operation, the difference between the moving point averages should be close to zero, within {plus_minus}0.03 inches of water. Instability within the combustor, experienced once agglomerates begin to form, can be recognized as larger deviations from zero, on the magnitude of {plus_minus}0.15 inches of water.

  11. Modeling agglomeration processes in fluid-bed granulation

    SciTech Connect

    Cryer, S.A.

    1999-10-01

    Many agrochemicals are formulated as water dispersive granules through agglomeration, beginning with a fine powder ({approximately}1 {micro}m) and ending with granules on the order of 500 {micro}m. Powders are charged into a granulation system with a liquid binding agent, and granules are subsequently grown to an appropriate size. Granulation in fluid beds is presented using a mass conserving discretized population balance equation. Coalesce kernels governing the rate and extent of granulation are assumed dependent on the Stokes number, which is indirectly liked to important process variables (air and under flow rate, bed charge, bed geometry) such that the physical processes governing particle coalescence and rebound are correlated to process variables. A new coalescence kernel is proposed based on physical insight, simplicity, and deterministic equivalent modeling to account for uncertainty. This kernel is based on a Stokes number method where uncertainty in the Stokes number is characterized by polynomial chaos expansions. The magnitude of the coalescence kernel is proportional to the probability of the distribution of Stokes number exceeding a critical value. This mechanistic/semiempirical approach to fluid-bed agglomeration fosters an environment for process scaleup by eliminating specific equipment and process variable constraints to focus on the underlying mechanisms for proper scale-up procedures. Model predictions using this new kernel are then compared to experimental pilot-plant observations.

  12. A MODEL FOR FINE PARTICLE AGGLOMERATION IN CIRCULATING FLUIDIZED BED ABSORBERS

    EPA Science Inventory

    A model for fine particle agglomeration in circulating fluidized bed absorbers (CFBAS) has been developed. It can model the influence of different factors on agglomeration, such as the geometry of CFBAs, superficial gas velocity, initial particle size distribution, and type of ag...

  13. A MODEL FOR FINE PARTICLE AGGLOMERATION IN CIRCULATING FLUIDIZED BED ABSORBERS

    EPA Science Inventory

    A model for fine particle agglomeration in circulating fluidized bed absorbers (CFBAS) has been developed. It can model the influence of different factors on agglomeration, such as the geometry of CFBAs, superficial gas velocity, initial particle size distribution, and type of ag...

  14. Experimental development of a two-stage fluidized-bed/cyclonic agglomerating incinerator

    SciTech Connect

    Mensinger, M.C.; Rehmat, A.; Bryan, B.G.; Lau, F.S. ); Shearer, T.L. ); Duggan, P.A. )

    1991-01-01

    The Institute of Gas Technology (IGT) is conducting an experimental program to develop and test through pilot-plant scale of operation, IGT's two-stage fluidized-bed/cyclonic agglomerating incinerator (TSI). The TSI is based on combining the fluidized-bed agglomeration/gasification technology and the cyclonic combustion/incineration technology, which have been developed at IGT over many years. The TSI is a unique and extremely flexible combustor that can operate over a wide range of conditions in the fluidized-bed first stage from low temperature (desorption) to high temperature (agglomeration) including gasification of high-Btu wastes. The TSI can easily and efficiently destroy solid, liquid and gaseous organic wastes, while containing solid inorganic contaminants within an essentially non-leachable glassy matrix, suitable for disposal in an ordinary landfill. This paper presents the results of tests conducted in a batch, fluidized-bed bench-scale unit (BSU) with commercially available clean'' top soil and the same soil spiked with lead and chromium compounds. The objectives of these tests were to determine the operating conditions necessary to achieve soil agglomeration and to evaluate the leaching characteristics of the soil agglomerates formed. 7 refs., 7 figs., 6 tabs.

  15. Two-stage fluidized-bed/cyclonic agglomerating incinerator. Technology spotlight report

    SciTech Connect

    1995-08-01

    The two-stage fluidized-bed/cyclonic agglomerating incinerator combines and improves upon the fluidized-bed, agglomeration/ incineration-technology and the cyclonic-combustion technology developed at Institute of Gas Technolgy (IGT) over many years. The result is a unique and extremely flexible incinerator for solid, liquid, and gaseous wastes. The system can operate over a wide range of conditions and has a destruction and removal efficiency (DRE) greater than 99.99%. Solid inorganic contaminants are contained within aglassy matrix, rendering them benign and suitable for disposal in an ordinary landfill.

  16. Development of a fluidized bed agglomeration modeling methodology to include particle-level heterogeneities in ash chemistry and granular physics

    NASA Astrophysics Data System (ADS)

    Khadilkar, Aditi B.

    . Each particle class undergoes distinct transformations of mineral matter at fluidized bed operating temperatures, as determined by using high temperature X-ray diffraction, thermo-mechanical analysis and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX). For the incorporation of a particle size distribution, bottom ash from an operating plant was divided into four size intervals and the system granular temperatures and dynamic bed height were computed using MFIX, a CFD simulation software. The kinetic theory of granular flow was used to obtain a distribution of binary collision frequencies for the entire particle size distribution. With this distribution of collision frequencies, which is computed based on hydrodynamics and granular physics of the poly-disperse system, as the particles grow, defluidize and decrease in number, the collision frequency also decreases. Under the conditions studied, the growth rate in the latter half of the run decreased to almost 1/5th the initial rate, with this decrease in collision frequency. This interdependent effect of chemistry and physics-based parameters, at the particle-level, was used to predict the agglomerate growth probabilities of Pittsburgh No. 8, Illinois No. 6 and Skidmore anthracite coals in this study, to illustrate the utility of the modeling methodology. The study also showed that agglomerate growth probability significantly increased above 15 to 20 wt. % slag. It was limited by ash chemistry at levels below this amount. Ash agglomerates were generated in a laboratory-scale fluidized bed combustor at Penn State to support the proposed agglomerate growth mechanism. This study also attempted to gain a mechanistic understanding of agglomerate growth with particle-level initiation occurring at the relatively low operating temperatures of about 950 °C, found in some fluidized beds. The results of this study indicated that, for the materials examined, agglomerate growth in fluidized bed

  17. Pilot plant testing of IGT`s two-stage fluidized-bed/cyclonic agglomerating combustor

    SciTech Connect

    Rehmat, A.; Mensinger, M.C.; Richardson, T.L.

    1993-12-31

    The Institute of Gas Technology (IGT) is conducting a multi-year experimental program to develop and test, through pilot-scale operation, IGT`s two-stage fluidized-bed/cyclonic agglomerating combustor (AGGCOM). The AGGCOM process is based on combining the fluidized-bed agglomeration and gasification technology with the cyclonic combustion technology, both of which have been developed at IGT over many years. AGGCOM is a unique and extremely flexible combustor that can operate over a wide range of conditions in the fluidized-bed first stage from low temperature (desorption) to high temperature (agglomeration), including gasification of high-energy-content wastes. The ACCCOM combustor can easily and efficiently destroy solid, liquid, and gaseous organic wastes, while isolating solid inorganic contaminants within an essentially non-leachable glassy matrix, suitable for disposal in ordinary landfills. Fines elutriated from the first stage are captured by a high-efficiency cyclone and returned to the fluidized bed for ultimate incorporation into the agglomerates. Intense mixing in the second-stage cyclonic combustor ensures high destruction and removal efficiencies (DRE) for organic compounds that may be present in the feed material. This paper presents an overview of the experimental development of the AGGCOM process and progress made to date in designing, constructing, and operating the 6-ton/day AGGCOM pilot plant. Results of the bench-scale tests conducted to determine the operating conditions necessary to agglomerate a soil were presented at the 1991 Incineration Conference. On-site construction of the AGGCOM pilot plant was initiated in August 1992 and completed at the end of March 1993, with shakedown testing following immediately thereafter. The initial tests in the AGGCOM pilot plant will focus on the integrated operation of both stages of the combustor and will be conducted with ``clean`` topsoil.

  18. Agglomeration and defluidization in fluidized beds due to thermally induced sintering

    SciTech Connect

    Compo, P.; Pfeffer, R.; Tardos, G.I.

    1987-01-01

    The surfaces of fluidizable particles often soften at temperatures well below the material's bulk solid melting point. When particles come into contact at elevated temperatures, there is a tendency for material bridges to form resulting in an interparticle adhesive force. This phenomenon, known as sintering, is driven by the reduction of excess surface energy and for each material is dependent on factors such as particle size and morphology, the interparticle compression force and most importantly, temperature. High temperature fluidization of cohesive powders results in agglomeration, thereby increasing the effective diameter and changing the hydrodynamic properties of the particles. If interparticle forces become significantly greater than forces generated by particle motion, defluidization will occur. In industrial practice, agglomeration is usually undesirable and must be avoided, although there are cases where controlled agglomeration is useful as in fluid-bed coal gasification where the mineral matter agglomerates and is removed from the reactor. The experimental work reported here consists of dilatometry to determine the sintering behavior of a powder as a function of temperature and high temperature fluidization in a pilot size unit to measure the minimum fluidization velocity (defluidization limit) and the voidage at minimum fluidization in the cohesive temperature range of the material. A wide variety of particles have been studied ranging from pure substances including polymers, salts and glass beads to ores and cracking catalysts obtained from industrial reactors where problematic agglomeration at high temperature fluidization was encountered.

  19. Gasification of palm empty fruit bunch in a bubbling fluidized bed: a performance and agglomeration study.

    PubMed

    Lahijani, Pooya; Zainal, Zainal Alimuddin

    2011-01-01

    Gasification of palm empty fruit bunch (EFB) was investigated in a pilot-scale air-blown fluidized bed. The effect of bed temperature (650-1050 °C) on gasification performance was studied. To explore the potential of EFB, the gasification results were compared to that of sawdust. Results showed that maximum heating values (HHV) of 5.37 and 5.88 (MJ/Nm3), dry gas yield of 2.04 and 2.0 (Nm3/kg), carbon conversion of 93% and 85 % and cold gas efficiency of 72% and 71 % were obtained for EFB and sawdust at the temperature of 1050 °C and ER of 0.25. However, it was realized that agglomeration was the major issue in EFB gasification at high temperatures. To prevent the bed agglomeration, EFB gasification was performed at temperature of 770±20 °C while the ER was varied from 0.17 to 0.32. Maximum HHV of 4.53 was obtained at ER of 0.21 where no agglomeration was observed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Combustion of an oil palm residue with elevated potassium content in a fluidized-bed combustor using alternative bed materials for preventing bed agglomeration.

    PubMed

    Ninduangdee, Pichet; Kuprianov, Vladimir I

    2015-04-01

    Palm kernel shell (PKS) was burned at 45 kg/s and excess air of 20-80% in a fluidized-bed combustor using alumina, dolomite, and limestone as the bed material. Temperature and gas concentrations were recorded along the reactor centerline as well as at stack. A SEM-EDS analysis was performed to investigate morphology and elemental composition of bed particles. An X-ray fluorescence method was used to determine the composition of used/reused bed materials and PM emitted from the combustor at different operating times. Excess air of 40% seems to be most appropriate for burning PKS in this combustor with an alumina bed, whereas 60% excess air is more suitable when using dolomite and limestone, as ensuring high (98.6-98.9%) combustion efficiency and acceptable CO and NO emissions. By using the selected bed materials, bed agglomeration can be prevented in this combustor. However, the bed materials exhibit substantial time-domain changes in physical and chemical properties.

  1. Fluidized-bed catalytic coal-gasification process. [US patent; pretreatment to minimize agglomeration

    DOEpatents

    Euker, C.A. Jr.; Wesselhoft, R.D.; Dunkleman, J.J.; Aquino, D.C.; Gouker, T.R.

    1981-09-14

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents are oxidized by contact with a gas containing between 2 vol % and 21 vol % oxygen at a temperature between 50 and 250/sup 0/C in an oxidation zone and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  2. Bed Agglomeration During the Steam Gasification of a High Lignin Corn Stover Simultaneous Saccharification and Fermentation (SSF) Digester Residue

    SciTech Connect

    Howe, Daniel T.; Taasevigen, Danny J.; Gerber, Mark A.; Gray, Michel J.; Fernandez, Carlos A.; Saraf, Laxmikant; Garcia-Perez, Manuel; Wolcott, Michael P.

    2015-11-13

    This research investigates the bed agglomeration phenomena during the steam gasification of a high lignin residue produced from the simultaneous saccharification and fermentation (SSF) of corn stover in a bubbling fluidized bed. The studies were conducted at 895°C using alumina as bed material. Biomass was fed at 1.5 kg/hr, while steam was fed to give a velocity equal to 2.5 times the minimum fluidization velocity, with a steam/carbon ratio of 0.9. The pelletized feedstock was co-fed with a cooling nitrogen stream to mitigate feed line plugging issues. Tar production was high at 50.3 g/Nm3, and the fraction of C10+ compounds was greater than that seen in the gasification of traditional lignocellulosic feedstocks. Carbon closures over 94 % were achieved for all experiments. Bed agglomeration was found to be problematic, indicated by pressure drop increases observed below the bed and upstream of the feed line. Two size categories of solids were recovered from the reactor, +60 mesh and -60 mesh. After a 2.75-hour experiment, 61.7 wt % was recovered as -60 mesh particles and 38.2 wt% of the recovered reactor solids were +60 mesh. A sizeable percentage, 31.8 wt%, was +20 mesh. The -60 mesh particles were mainly formed by the initial bed material (Al2O3). Almost 50 wt. % of the + 20 mesh particles was found to be formed by organics. The unreacted carbon remaining in the reactor resulted in a low conversion rate to product gas. ICP-AES, SEM, SEM-EDS, and XRD confirmed that the large agglomerates (+ 20 mesh) were not encapsulated bed material but rather un-gasified feedstock pellets with sand particles attached to it.

  3. Development of advanced fluid-bed agglomeration and cyclonic incineration for simultaneous waste disposal and energy recovery

    SciTech Connect

    Rehmat, A.; Khinkis, M.

    1991-01-01

    The Institute of Gas Technology (IGT) is currently developing a two-stage fluidized-bed/cyclonic agglomerating incineration system for waste disposal that is based on combining the fluidized-bed agglomeration/incineration and cyclonic combustion techologies. Both technologies have been developed individually at IGT over many years. This combination has resulted in a unique and extremely flexible incinerator for solid, liquid, and gaseous wastes including municipal sludges. The system can operate over a wide range of conditions in the first stage, from low temperature (desorption) to high temperature (agglomeration), including gasification of wastes. In the combined system, solid, liquid, and gaseous organic wastes are incinerated with ease and great efficiency (>99.99% destruction and removal efficiency (DRE)), while solid inorganic contaminants contained within a glassy matrix are rendered benign and suitable for disposal in an ordinary landfill. The heat generated within the incinerator can be recovered using the state-of-the-art boilers. The development of the two-stage incinerator is a culmination of extensive research and development efforts on each stage of the incinerator. The variety of data obtained with solid, liquid, and gaseous wastes for both stages includes agglomeration of ash, incineration and reclamation of used blast grit and foundry sand, partial combustion of carbonaceous fuels, in-situ desulfurization, combustion of low-Btu gases, incineration of industrial wastewater, and incineration of carbon tetrachloride. 5 refs., 7 figs., 12 tabs.

  4. Control methods for remediation of ash-related problems in fluidized-bed combustors

    SciTech Connect

    Vuthaluru, H.B.; Zhang, D.

    1999-07-01

    The paper reports on investigations into control methodologies for mitigating ash-related problems such as particle agglomeration and bed defluidization during fluidized-bed combustion of low-rank coals. A laboratory scale spouted bed combustor is used to study the effectiveness of control methodologies. In the present work, two control methods are investigated viz., the use of alternative bed materials and pretreatment of coal. Bauxite and calcined sillimanite are used as alternative bed materials in the spouted bed combustor while burning South Australian low-rank coal. Samples of the same coal subjected to Al pretreatment, water washing and acid washing are also tested in the spouted bed combustor. Experiments showed that both methods are effective to different extents in reducing ash-related problems. Tests with calcined sillimanite and bauxite (as the bed material) showed trouble free operation for longer periods (7--12 hr at 800 C and 3--5 hr at 850 C) than with sand runs at the same bed temperatures. Al pretreatment and water-washing were also found to be effective and resulted in extended combustion operation. Al enrichment in ash coating of bed particles has been identified as the main mechanism for prevention of agglomeration and defluidization by these control methodologies. For water-washing, the principal reason behind agglomeration and defluidization control is the reduction in sodium levels.

  5. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system: Topical report, Process analysis, FY 1983

    SciTech Connect

    1987-07-31

    KRW Energy Systems, Inc., is engaged in the continuing development of a pressurized, fluidized-bed gasification process at its Waltz Mill Site in Madison, Pennsylvania. The overall objective of the program is to demonstrate the viability of the KRW process for the environmentally-acceptable production of low- and medium-Btu fuel gas from a variety of fossilized carbonaceous feedstocks and industrial fuels. This report presents process analysis of the 24 ton-per-day Process Development Unit (PDU) operations and is a continuation of the process analysis work performed in 1980 and 1981. Included is work performed on PDU process data; gasification; char-ash separation; ash agglomeration; fines carryover, recycle, and consumption; deposit formation; materials; and environmental, health, and safety issues. 63 figs., 43 tabs.

  6. Intensive drying and the related microstructure features in agglomerate spheres

    NASA Astrophysics Data System (ADS)

    Kudlyk, Rostyslav

    Most metal ore concentrates are fine particulates with a wide particle-size distribution. Industrially they are pelletized by tumbling in balling discs or drums into spheres, an operation which requires the addition of typically up to 10% by weight of water. Further processing of these agglomerates involves first drying and then induration by heating up to 1250°C. The main objective of this thesis was the study of the interrelationship between the microstructure of the agglomerates with, on the one hand, the mechanical and physical properties of the pellets and their behaviour during intensive drying, on the other. The previously developed model of the drying process identified the loss of capillarity, resulting from the vapour lock, to be a critical component of the mechanism of intense as opposed to 'classical' drying. It was shown that the absence of the constant-rate drying period is a natural consequence of this effect. Several significant shortcomings of the previous model have been identified. This model treats the period of transition between surface- and shrinking-core drying as an instantaneous event. The new extended model, which overcomes the original model limitations, was developed in this project. In its formalism, the new model includes the pore-size distribution and thus simulates a gradual surface/shrinking-core transition. It was shown that the nature of the transition between the surface- and shrinking-core drying regimes during intensive drying is fundamentally different from that of classical drying, i.e. carried out at mild temperatures. In the latter case, liquid is being delivered to the surface through the network of interconnected small pores reaching the surface. The transition occurs when the larger pores, also reaching the surface, are being drained. On the other hand, under intense-drying conditions, the rate-limiting factor is the vapour lock. The latter phenomenon will occur in the smaller pores first, as they have smaller liquid

  7. Development of methods to predict agglomeration and deposition in fluidized-bed combustion systems (FBCS). Topical report

    SciTech Connect

    Mann, M.D.; Henderson, A.K.; Swanson, M.L.; Allan, S.E.

    1996-02-01

    The successful design and operation of advanced combustion systems require the ability to control and mitigate ash-related problems. The major ash-related problems are slag flow control, slag attack on the refractory, ash deposition on heat-transfer surfaces, corrosion and erosion of equipment materials, and emissions control. These problems are the result of physical and chemical interactions of the fuels, bed materials, and system components. The interactions that take place and ultimately control ash behavior in fluidized-bed combustion (FBC) systems are controlled by the abundance and association of the inorganic components in coal and by the system conditions. Because of the complexity of the materials and processes involved, the design and operations engineer often lacks the information needed to predict ash behavior and reduce ash-related problems. The deposition of ashes from the fluidized bed combustion of lignite and petroleum coke is described in this paper.

  8. Kinetic energy density and agglomerate abrasion rate during blending of agglomerates into powders.

    PubMed

    Willemsz, Tofan A; Hooijmaijers, Ricardo; Rubingh, Carina M; Tran, Thanh N; Frijlink, Henderik W; Vromans, Herman; van der Voort Maarschalk, Kees

    2012-01-23

    Problems related to the blending of a cohesive powder with a free flowing bulk powder are frequently encountered in the pharmaceutical industry. The cohesive powder often forms lumps or agglomerates which are not dispersed during the mixing process and are therefore detrimental to blend uniformity. Achieving sufficient blend uniformity requires that the blending conditions are able to break up agglomerates, which is often an abrasion process. This study was based on the assumption that the abrasion rate of agglomerates determines the required blending time. It is shown that the kinetic energy density of the moving powder bed is a relevant parameter which correlates with the abrasion rate of agglomerates. However, aspects related to the strength of agglomerates should also be considered. For this reason the Stokes abrasion number (St(Abr)) has been defined. This parameter describes the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. The St(Abr) number is shown to predict the abrasion potential of agglomerates in the dry-mixing process. It appeared possible to include effects of filler particle size and impeller rotational rate into this concept. A clear relationship between abrasion rate of agglomerates and the value of St(Abr) was demonstrated.

  9. Phloem ultrastructure and pressure flow: Sieve-Element-Occlusion-Related agglomerations do not affect translocation.

    PubMed

    Froelich, Daniel R; Mullendore, Daniel L; Jensen, Kåre H; Ross-Elliott, Tim J; Anstead, James A; Thompson, Gary A; Pélissier, Hélène C; Knoblauch, Michael

    2011-12-01

    Since the first ultrastructural investigations of sieve tubes in the early 1960s, their structure has been a matter of debate. Because sieve tube structure defines frictional interactions in the tube system, the presence of P protein obstructions shown in many transmission electron micrographs led to a discussion about the mode of phloem transport. At present, it is generally agreed that P protein agglomerations are preparation artifacts due to injury, the lumen of sieve tubes is free of obstructions, and phloem flow is driven by an osmotically generated pressure differential according to Münch's classical hypothesis. Here, we show that the phloem contains a distinctive network of protein filaments. Stable transgenic lines expressing Arabidopsis thaliana Sieve-Element-Occlusion-Related1 (SEOR1)-yellow fluorescent protein fusions show that At SEOR1 meshworks at the margins and clots in the lumen are a general feature of living sieve tubes. Live imaging of phloem flow and flow velocity measurements in individual tubes indicate that At SEOR1 agglomerations do not markedly affect or alter flow. A transmission electron microscopy preparation protocol has been generated showing sieve tube ultrastructure of unprecedented quality. A reconstruction of sieve tube ultrastructure served as basis for tube resistance calculations. The impact of agglomerations on phloem flow is discussed.

  10. Effect of agglomeration on flowability of baby food powders.

    PubMed

    Szulc, Karolina; Lenart, Andrzej

    2010-06-01

    The aim of this study was to investigate the influence of the wet agglomeration in a fluidized bed on flowability of agglomerated products, such as baby food powders. The agglomeration process was performed in the fluidized bed. The wetting liquid used to the process was: water, 2% lecithin solution, and 50% sugar solution. Food powders flowability was expressed as: Hausner Ratio, pouring time, angles of sliding and of repose and flow function. The composition of materials, used to prepare mixtures, has a significant influence on tested properties. The higher milk powder of the mixtures caused decreasing of their flowability. Wet agglomeration of baby food powders caused an increase in the mean diameter of particles, which made it possible to receive agglomerates with good flowability and decreased bulk density. The increase of milk powder content from 0 to 73% in the mixture before the agglomeration contributed to improve its flowability. Wet agglomeration with 2% lecithin solution and 50% sugar solution reduced particle size and bulk density, improved flowability of received agglomerates in relation to agglomerates received with water as a wetting liquid.

  11. Control methods for mitigating biomass ash-related problems in fluidized beds.

    PubMed

    Vamvuka, D; Zografos, D; Alevizos, G

    2008-06-01

    Embodiment of biomass combustion technologies in the Cretan energy system will play an important role and will contribute to the local development. The main biomass fuels of Crete are the agricultural residues olive kernel and olive tree wood. Future applications of these biofuels may create, among others, operational problems related to ash effects. In this regard, the thermal behavior of the ashes during lab-scale fluidized bed combustion tests was examined, in terms of slagging/fouling and agglomeration of bed material. Control methodologies for mitigating ash problems were applied, such as leaching the raw fuels with water and using different mineral additives during combustion. The ashes and the bed material were characterized in terms of mineralogical, chemical and morphological analyses and the slagging/fouling and agglomeration propensities were determined. The results showed that fly ashes were rich in Ca, Si and Fe minerals and contained substantial amounts of alkali, falling within the range of "certain or probable slagging/fouling". Leaching of the raw fuels with water resulted in a significant reduction of the problematic elements K, Na, Cl and S in the fly ashes. The use of fuel additives decreased the concentrations of alkali and iron minerals in the fly ashes. With clay additives calcium compounds were enriched in the bottom ash, while with carbonate additives they were enriched in the fly ash. Fuel additives or water leaching reduced the slagging/fouling potential due to alkali. Under the conditions of the combustion tests, no signs of ash deposition or bed agglomeration were noticed.

  12. In vitro dosimetry of agglomerates

    NASA Astrophysics Data System (ADS)

    Hirsch, V.; Kinnear, C.; Rodriguez-Lorenzo, L.; Monnier, C. A.; Rothen-Rutishauser, B.; Balog, S.; Petri-Fink, A.

    2014-06-01

    Agglomeration of nanoparticles in biological fluids is a pervasive phenomenon that leads to difficulty in the interpretation of results from in vitro exposure, primarily due to differing particokinetics of agglomerates to nanoparticles. Therefore, well-defined small agglomerates were designed that possessed different particokinetic profiles, and their cellular uptake was compared to a computational model of dosimetry. The approach used here paves the way for a better understanding of the impact of agglomeration on the nanoparticle-cell interaction.Agglomeration of nanoparticles in biological fluids is a pervasive phenomenon that leads to difficulty in the interpretation of results from in vitro exposure, primarily due to differing particokinetics of agglomerates to nanoparticles. Therefore, well-defined small agglomerates were designed that possessed different particokinetic profiles, and their cellular uptake was compared to a computational model of dosimetry. The approach used here paves the way for a better understanding of the impact of agglomeration on the nanoparticle-cell interaction. Electronic supplementary information (ESI) available: ITC data for tiopronin/Au-NP interactions, agglomeration kinetics at different pHs for tiopronin-coated Au-NPs, UV-Vis spectra in water, PBS and DMEM and temporal correlation functions for single Au-NPs and corresponding agglomerates, calculation of diffusion and sedimentation parameters, modelling of relative cell uptake based on the ISDD model and cytotoxicity of single Au-NPs and their agglomerates, and synthesis and cell uptake of large spherical Au-NPs. See DOI: 10.1039/c4nr00460d

  13. Videos, Webinars, Blogs Related to Bed Bugs

    EPA Pesticide Factsheets

    These tools provide practical insight on issues such as integrated pest management (IPM) for schools, bed bug bites, how carpet beetles can help, bed bugs as hitchhikers, and preventing and controlling infestations.

  14. Phloem Ultrastructure and Pressure Flow: Sieve-Element-Occlusion-Related Agglomerations Do Not Affect Translocation[W

    PubMed Central

    Froelich, Daniel R.; Mullendore, Daniel L.; Jensen, Kåre H.; Ross-Elliott, Tim J.; Anstead, James A.; Thompson, Gary A.; Pélissier, Hélène C.; Knoblauch, Michael

    2011-01-01

    Since the first ultrastructural investigations of sieve tubes in the early 1960s, their structure has been a matter of debate. Because sieve tube structure defines frictional interactions in the tube system, the presence of P protein obstructions shown in many transmission electron micrographs led to a discussion about the mode of phloem transport. At present, it is generally agreed that P protein agglomerations are preparation artifacts due to injury, the lumen of sieve tubes is free of obstructions, and phloem flow is driven by an osmotically generated pressure differential according to Münch’s classical hypothesis. Here, we show that the phloem contains a distinctive network of protein filaments. Stable transgenic lines expressing Arabidopsis thaliana Sieve-Element-Occlusion-Related1 (SEOR1)–yellow fluorescent protein fusions show that At SEOR1 meshworks at the margins and clots in the lumen are a general feature of living sieve tubes. Live imaging of phloem flow and flow velocity measurements in individual tubes indicate that At SEOR1 agglomerations do not markedly affect or alter flow. A transmission electron microscopy preparation protocol has been generated showing sieve tube ultrastructure of unprecedented quality. A reconstruction of sieve tube ultrastructure served as basis for tube resistance calculations. The impact of agglomerations on phloem flow is discussed. PMID:22198148

  15. On different regime relations between bed load transport and bed topography

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Ma, H.; Fu, X.; Duan, J. G.

    2016-12-01

    Bed load transport is determined by the effective part of the total shear stress subtracting the form drag that arises from bed topography. Wang et al. (2004) quantified the overall topographic roughness of the channel bed with the parameter Sp and claimed that the increasing Sp corresponds with increasing flow resistance and decreasing bed load transport rate due to increasing form drag and decreasing skin friction. However, the flume experiments for non-uniform sediment transport on steep slope at the University of Arizona show opposite results that bed load transport increases with Sp. We investigate the physical reason of the contrasting results for the full understanding of the different regimes between bed load transport and bed topography. We develop the energy conveyance equation for water flow and bed load transport and apply it to the development of the equilibrium relation between bed load transport and energy dissipation due to the form drag. The energy theory for bed load transport shows that since our flume experiments achieved the equilibrium transport state with water and sediment circulating supplying, the bed topography Sp is determined by the flow and sediment grain size, and the bed load transport is positively related to the energy dissipation rate which is thus positively related to Sp. However, in the field experiment of Wang et al. (2004), at first, the referenced Sp is determined by the most recent significant flood whereas the bed load transport is always below the transport capacity with insufficient sediment supply. After one-time sediment feed, the bed load transport rapidly varies from ephemeral full capacity state to sediment starving state. In this process, the removal of relative fine sediment results in the rapid increment of Sp from the instant equilibrium state to the referenced Sp whereas the coarsen bed leads to decrement of bed load transport. Eventually, the sediment starving state results in the increasing Sp and decreasing

  16. Agglomeration of food powder and applications.

    PubMed

    Dhanalakshmi, K; Ghosal, S; Bhattacharya, S

    2011-05-01

    Agglomeration has many applications in food processing and major applications include easy flow table salt, dispersible milk powder and soup mix, instant chocolate mix, beverage powder, compacted cubes for nutritional-intervention program, health bars using expanded/puffed cereals, etc. The main purpose of agglomeration is to improve certain physical properties of food powders such as bulk density, flowability, dispersability, and stability. Agglomerated products are easy to use by the consumers and hence are preferred over the traditional non-agglomerated products that are usually non-flowable in nature. The properties of food agglomerates and the process of agglomeration like employing pressure, extrusion, rewetting, spray-bed drying, steam jet, heat/sintering, and binders have been reviewed. The physical and instant properties of agglomerated food products have also been discussed.

  17. Chemical Characterization of Bed Material Coatingsby LA-ICP-MS and SEM-EDS

    NASA Astrophysics Data System (ADS)

    Piispanen, M. H.; Mustonen, A. J.; Tiainen, M. S.; Laitinen, R. S.

    Bed material coatings and the consequent agglomeration of bed material are main ash-related problems in FB-boilers. The bed agglomeration is a particular problem when combusting biofuels and waste materials. Whereas SEM-EDS together with automated image processing has proven to be a convenient method to study compositional distribution in coating layers and agglomerates, it is a relatively expensive technique and is not necessarily widely available. In this contribution, we explore the suitability of LA-ICP-MS to provide analogous information of the bed.

  18. Bed-sharing and related factors in early adolescents.

    PubMed

    Jiang, Yanrui; Chen, Wenjuan; Spruyt, Karen; Sun, Wanqi; Wang, Yan; Li, Shenghui; Shen, Xiaoming; Wang, Guanghai; Jiang, Fan

    2016-01-01

    To investigate the prevalence of bed-sharing and examine correlates of bed-sharing habits in early adolescents. Participants were 1452 early adolescents from 10 primary schools in Shanghai, China. Children's health status and past history, family environment and parents' attitude towards bed-sharing, and children's sleep arrangements were surveyed. Sleep was assessed by the Children's Sleep Habit Questionnaire. Tanner stage was determined by the endocrinologist. The median of age was 10.83 years (range: 9.42-12.92; 95% confidence interval [CI]: 10.79-10.83) and boys accounted for 51.17%. The prevalence of bed-sharing was 16.8%. Positive parental attitude toward bed-sharing (OR: 9.87; 95% CI: 6.57-14.83), asthma (OR: 2.15; 95% CI: 1.16-3.98), smaller residential space (OR: 1.90; 95% CI: 1.17-3.09), extended family (OR: 1.59; 95% CI: 1.16-2.18), and being physically less mature (OR: 2.39; 95% CI: 1.16-4.91) increased the likelihood of bed-sharing. Bed-sharers were more likely to have bedtime resistance (OR: 12.20; 95% CI: 8.59-17.33), sleep anxiety (OR: 3.76; 95% CI: 2.74-5.15), and poor sleep quality (OR: 3.21; 95% CI: 2.28-4.81) compared to non-bed-sharers. Furthermore, bed-sharing was associated with daytime sleepiness (OR: 1.53; 95% CI: 1.10-2.13) but not with sleep duration. Bed-sharing is highly prevalent among Chinese early adolescents and is significantly related to sleep quality. Parental positive attitude toward bed-sharing was the most determining factor. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Fuel agglomerates and method of agglomeration

    DOEpatents

    Wen, Wu-Wey

    1986-01-01

    Solid fuel agglomerates are prepared of particulate coal or other carbonaceous material with a binder having a high humic acid or humate salt content. The humic acid is extracted from oxidized carbonaceous material with a mild aqueous alkali solution of, for instance, ammonia. The particulate material is blended with the extract which serves as the binder for the agglomerates. The water-resistant agglomerates are formed such as by pelletizing, followed by drying to remove moisture and solidify the humic acid binder throughout the agglomerate.

  20. Relative role of bed roughness change and bed erosion on peak discharge increase in hyperconcentrated floods

    NASA Astrophysics Data System (ADS)

    Li, W.; Wang, Z. B.; van Maren, D. S.; Wu, B. S.

    2014-04-01

    River floods are usually featured by a downstream flattening discharge peak whereas a downstream increasing discharge peak is observed at a rate exceeding the tributary discharge during highly silt-laden floods (hyperconcentrated floods) in China's Yellow River. It entails a great challenge in the downstream flood defence and the underlying mechanisms need to be unravelled. Previous study on this issue only focuses on one possible mechanism, while the present work aims to reveal the relative importance of bed roughness change and bed erosion in the hyperconcentrated flood. Using a newly developed fully coupled morphodynamic model, we have conducted a numerical study for the 2004 hyperconcentrated flood in the Xiaolangdi-Jiahetan reach of the Lower Yellow River. In order to focus on the physical mechanism and to reduce uncertainty from low-resolution topography data, the numerical modeling was carried out in a schematized 1-D channel of constant width. The basic understanding that bed roughness decreases with concentration at moderate concentrations (e.g. several 10 s to 100 s g L-1) was incorporated by a simple power-law relation between Manning roughness coefficient and sediment concentration. The feedback between the bed deformation and the turbid flow, however, was fully accounted for, in the constituting equations as well as in the numerical solutions. The model successfully reproduced the downstream flood peak increase for the 2004 flood when considering the hyperconcentration-induced bed roughness reduction. As the hyperconcentration lags shortly behind the flood peak, later parts of the flood wave may experience less friction and overtake the wave front, leading to the discharge increase. In comparison, bed erosion is much less important to the discharge increase, at least for hyperconcentrated flood of moderate sediment concentration.

  1. Apparatus for feeding fluidized bed incinerator, and method of autogenic operation of same

    SciTech Connect

    Nelson, J.F.

    1981-09-29

    This invention relates to an improved method and apparatus for continuous autogenic incineration of high-moisture easily friable combustible agglomerates in a fluidized-bed. The improvement comprises introducing the waste materials into the bed in a tube of air provided by supplemental air means which surrounds the in-bed feed means.

  2. ASSESSING RELATIVE BED STABILITY AND EXCESS FINE SEDIMENTS IN STREAMS

    EPA Science Inventory

    Excess fine sedimentation is recognized as a leading cause of water quality impairment in surface waters in the United States. We developed an index of Relative Bed Stability (RBS) that factors out natural controls on streambed particle size to allow evaluation of the role of hu...

  3. ASSESSING RELATIVE BED STABILITY AND EXCESS FINE SEDIMENTS IN STREAMS

    EPA Science Inventory

    Excess fine sedimentation is recognized as a leading cause of water quality impairment in surface waters in the United States. We developed an index of Relative Bed Stability (RBS) that factors out natural controls on streambed particle size to allow evaluation of the role of hu...

  4. Powder agglomeration in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Cawley, James D.

    1994-01-01

    This is the final report for NASA Grant NAG3-755 entitled 'Powder Agglomeration in a Microgravity Environment.' The research program included both two types of numerical models and two types of experiments. The numerical modeling included the use of Monte Carlo type simulations of agglomerate growth including hydrodynamic screening and molecular dynamics type simulations of the rearrangement of particles within an agglomerate under a gravitational field. Experiments included direct observation of the agglomeration of submicron alumina and indirect observation, using small angle light scattering, of the agglomeration of colloidal silica and aluminum monohydroxide. In the former class of experiments, the powders were constrained to move on a two-dimensional surface oriented to minimize the effect of gravity. In the latter, some experiments involved mixture of suspensions containing particles of opposite charge which resulted in agglomeration on a very short time scale relative to settling under gravity.

  5. Unraveling bed slope from relative roughness in initial sediment motion

    NASA Astrophysics Data System (ADS)

    Prancevic, Jeff P.; Lamb, Michael P.

    2015-03-01

    Understanding incipient sediment transport is crucial for predicting landscape evolution, mitigating flood hazards, and restoring riverine habitats. Observations show that the critical Shields stress increases with increasing channel bed slope, and proposed explanations for this counterintuitive finding include enhanced form drag from bed forms, particle interlocking across the channel width, and large bed sediment relative to flow depth (relative roughness). Here we use scaled flume experiments with variable channel widths, bed slopes, and particle densities to separate these effects which otherwise covary in natural streams. The critical Shields stress increased with bed slope for both natural gravel (ρs = 2.65 g/cm3) and acrylic particles (ρs = 1.15 g/cm3), and adjusting channel width had no significant effect. However, the lighter acrylic particles required a threefold higher critical Shields stress for mobilization relative to the natural gravel at a fixed slope, which is unexpected because particle density is accounted for directly in the definition of Shields stress. A comparison with model predictions indicates that changes in local velocity and turbulence associated with increasing relative roughness for lighter materials are responsible for increasing the critical Shields stress in our experiments. These changes lead to concurrent changes in the hydraulic resistance and a nearly constant critical stream power value at initial motion. Increased relative roughness can explain much of the observed heightened critical Shields stresses and reduced sediment transport rates in steep channels and also may bias paleohydraulic reconstructions in environments with exotic submerged densities such as iron ore, pumice, or ice clasts on Titan.

  6. Advances in food powder agglomeration engineering.

    PubMed

    Cuq, B; Gaiani, C; Turchiuli, C; Galet, L; Scher, J; Jeantet, R; Mandato, S; Petit, J; Murrieta-Pazos, I; Barkouti, A; Schuck, P; Rondet, E; Delalonde, M; Dumoulin, E; Delaplace, G; Ruiz, T

    2013-01-01

    Food powders are used in everyday life in many ways and offer technological solutions to the problem of food production. The natural origin of food powders, diversity in their chemical composition, variability of the raw materials, heterogeneity of the native structures, and physicochemical reactivity under hydrothermal stresses contribute to the complexity in their behavior. Food powder agglomeration has recently been considered according to a multiscale approach, which is followed in the chapter layout: (i) at the particle scale, by a presentation of particle properties and surface reactivity in connection with the agglomeration mechanisms, (ii) at the mechanisms scale, by describing the structuration dynamics of agglomerates, (iii) at the process scale, by a presentation of agglomeration technologies and sensors and by studying the stress transmission mode in the powder bed, and finally (iv) by an integration of the acquired knowledge, thanks to a dimensional analysis carried out at each scale.

  7. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system. Quarterly progress report, October 1-December 31, 1982

    SciTech Connect

    1983-04-21

    The overall objective of the Westinghouse coal gasification program is to demonstrate the viability of the Westinghouse pressurized, fluidized bed, gasification system for the production of medium-Btu fuel gas for syngas, electrical power generation, chemical feedstocks, or industrial fuels and to obtain performance and scaleup data for the process and hardware. Progress reports are presented for the following tasks: (1) operation and maintenance of the process development unit (PDU); (2) process analysis; (3) cold flow scaleup facility; (4) process component engineering and design; and (5) laboratory support studies involving gas solids flow modeling and coal/ash behavior. 9 figures, 19 tables.

  8. An improved theoretical model of acoustic agglomeration

    SciTech Connect

    Song, L. ); Koopmann, G.H. . Center for Acoustics and Vibration); Hoffmann, T.L. )

    1994-04-01

    An improved theoretical model is developed to describe the acoustic agglomeration of particles entrained in a gas medium. The improvements to the present theories are twofold: first, wave scattering is included in the orthokinetic interaction of particles and second, hydrodynamic interaction, shown to be an important agglomeration mechanism for certain operation conditions, is incorporated into the model. The influence of orthokinetic and hydrodynamic interactions introduce associated convergent velocities that cause particles to approach each other and collide. The convergent velocities are related with an acoustic agglomeration frequency function (AAFF) through a semi-statistical method. This function is the key parameter for the theoretical simulation of acoustic agglomeration.

  9. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system: Phase 2, Final report, May 1, 1983-July 31, 1984

    SciTech Connect

    1987-09-15

    KRW Energy Systems Inc. is engaged in the development of a pressurized, fluidized-bed, gasification process at its Waltz Mill Site in Madison, Pennsylvania. The overall objective of the program is to demonstrate the viability of the KRW process for the environmentally acceptable production of low- and medium-Btu fuel gas from a variety of fossilized, carbonaceous feedstocks for electrical power generation, substitute natural gas, chemical feedstocks, and industrial fuels. This report covers Phase II of the contract period (May 1, 1983 to July 31, 1984) and is a continuation of the work performed in 1983 and reported in the Phase I final report, FE-19122-30. Included is work performed in fiscal 1983 to 1984 on PDU testing, process analysis, cold flow scaleup facility, process and component engineering and design, and laboratory support studies.

  10. Quantitative characterization of agglomerate abrasion in a tumbling blender by using the Stokes number approach.

    PubMed

    Willemsz, Tofan A; Nguyen, Tien Thanh; Hooijmaijers, Ricardo; Frijlink, Henderik W; Vromans, Herman; van der Voort Maarschalk, Kees

    2013-03-01

    Removal of microcrystalline cellulose agglomerates in a dry-mixing system (lactose, 100 M) predominantly occurs via abrasion. The agglomerate abrasion rate potential is estimated by the Stokes abrasion (StAbr) number of the system. The StAbr number equals the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. Basically, the StAbr number concept describes the blending condition of the dry-mixing system. The concept has been applied to investigate the relevance of process parameters on agglomerate abrasion in tumbling blenders. Here, process parameters such as blender rotational speed and relative fill volumes were investigated. In this study, the StAbr approach revealed a transition point between abrasion rate behaviors. Below this transition point, a blending condition exists where agglomerate abrasion is dominated by the kinetic energy density of the powder blend. Above this transition point, a blending condition exists where agglomerates show (undesirable) slow abrasion rates. In this situation, the blending condition is mainly determined by the high fill volume of the filler.

  11. Agglomerate properties and dispersibility changes of salmeterol xinafoate from powders for inhalation after storage at high relative humidity.

    PubMed

    Das, Shyamal; Larson, Ian; Young, Paul; Stewart, Peter

    2009-06-28

    This study investigated changes in agglomeration and the mechanism of dispersibility decrease of salmeterol xinafoate (SX) from SX-lactose mixtures for inhalation after storage at 75% RH for 3 months. The dispersibility, PSD and in situ PSD of aerosol plumes of SX alone and SX-coarse lactose (CL) mixtures containing 0, 5, 10 and 20% micronized lactose (ML) before and after storage were determined by a Next Generation Impactor (NGI), a Mastersizer 2000 and a Spraytec, respectively. The PSD of ML increased after storage at 75% RH, but dispersibility of SX using the stored ML increased. After storage, the %SX of the mixture containing 20% ML (M20F) significantly increased (P<0.05) in the throat and mouthpiece, preseparator and stage 1 of NGI, while it significantly decreased in the remaining stages (P<0.05). In situ analysis of aerosol plumes of M20F supported this result with an increased presence of particles of 4-25microm and a decreased respirable particle distribution of <4microm after storage. The decreased dispersibility of M20F after storage was due to the formation of less dispersible agglomerates, probably occurring through enhanced capillary interaction and/or solid bridging of ML, entrapping and preventing the release of SX particles.

  12. Agglomeration of Dust

    SciTech Connect

    Annaratone, B. M.; Arnas, C.; Elskens, Y.

    2008-09-07

    The agglomeration of the matter in plasma, from the atomic level up to millimetre size particles, is here considered. In general we identify a continuous growth, due to deposition, and two agglomeration steps, the first at the level of tens of nanometres and the second above the micron. The agglomeration of nano-particles is attributed to electrostatic forces in presence of charge polarity fluctuations. Here we present a model based on discrete currents. With increasing grain size the positive charge permanence decreases, tending to zero. This effect is only important in the range of nanometre for dust of highly dispersed size. When the inter-particle distance is of the order of the screening length another agglomeration mechanism dominates. It is based on attractive forces, shadow forces or dipole-dipole interaction, overcoming the electrostatic repulsion. In bright plasma radiation pressure also plays a role.

  13. Agglomeration of microparticles in complex plasmas

    SciTech Connect

    Du, Cheng-Ran; Thomas, Hubertus M.; Ivlev, Alexei V.; Konopka, Uwe; Morfill, Gregor E.

    2010-11-15

    Agglomeration of highly charged microparticles was observed and studied in complex plasma experiments carried out in a capacitively coupled rf discharge. The agglomeration was caused by strong waves triggered in a particle cloud by decreasing neutral gas pressure. Using a high-speed camera during this unstable regime, it was possible to resolve the motion of individual microparticles and to show that the relative velocities of some particles were sufficiently high to overcome the mutual Coulomb repulsion and hence to result in agglomeration. After stabilizing the cloud again through the increase of the pressure, we were able to observe the aggregates directly with a long-distance microscope. We show that the agglomeration rate deduced from our experiments is in good agreement with theoretical estimates. In addition, we briefly discuss the mechanisms that can provide binding of highly charged microparticles in a plasma.

  14. Agglomeration rate and action forces between atomized particles of agglomerator and inhaled-particles from coal combustion.

    PubMed

    Wei, Feng; Zhang, Jun-ying; Zheng, Chu-guang

    2005-01-01

    In order to remove efficiently haled-particles emissions from coal combustions, a new way was used to put forward the process of agglomeration and the atomization was produced by the nozzle and then sprayed into the flue before precipitation devices of power station boiler in order to make inhaled-particles agglomerate into bigger particles, which can be easily removed but not change existing running conditions of boiler. According to this idea, a model is set up to study agglomeration rate and effect forces between fly ash inhaled-particles and atomized agglomerator particles. The developed agglomeration rate was expressed by relative particle number decreasing speed per unit volume. The result showed that viscosity force and flow resistance force give main influences on agglomeration effect of inhaled-particles, while springiness force and gravity have little effect on agglomeration effect of theirs. Factors influencing the agglomeration rate and effect forces are studied, including agglomerator concentration, agglomerator flux and agglomerator density, atomized-particles diameters and inhaled-particles diameter and so on.

  15. Apparatus for controlling fluidized beds

    DOEpatents

    Rehmat, A.G.; Patel, J.G.

    1987-05-12

    An apparatus and process are disclosed for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance. 2 figs.

  16. Apparatus for controlling fluidized beds

    DOEpatents

    Rehmat, Amirali G.; Patel, Jitendra G.

    1987-05-12

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  17. Backscattering of agglomerate particles

    NASA Astrophysics Data System (ADS)

    Zubko, Evgenij; Ovcharenko, Andrey; Bondarenko, Sergey; Shkuratov, Yuriy; Scotto, Cathy S.; Merritt, Charles; Hart, Matthew B.; Eversole, Jay D.; Videen, Gorden W.

    2004-12-01

    We examine how aggregation affects the light-scattering signatures, especially the polarization in the near-backward-scattering direction. We use the discrete dipole approximation (DDA) to study the backscatter of agglomerate particles consisting of oblong monomers. We examine the effects of monomer number and packing structure on the resulting negative polarization branch at small phase angle. We find large a dependence on the orientation of the monomers within the agglomerate and a smaller dependence on the number of monomers, suggesting that the mechanism producing the negative polarization minimum depends strongly on the interactions between the individual monomers. We also examine experimental measurements of substrates composed of biological cells. We find that the light-scattering signatures in the backward direction are not only different for different spore species, but for spores that have been prepared using different methodologies. These signatures are reproducible in different substrates composed of the spores from the same batches.

  18. Experiment and grey relational analysis of CWS spheres combustion in a fluidized bed

    SciTech Connect

    Hui Wang; Xiumin Jiang; Jianguo Liu; Weigang Lin

    2007-08-15

    In order to study the combustion of coal water slurry (CWS) in fluidized bed boilers, artificial CWS droplet spheres were used for simulation of the spheres formed from CWS droplets which fall from the furnace top to the bed. The artificial spheres were introduced to a bench-scale fluidized bed furnace. Quartz sand was used as the bed material. The influence of the operation conditions (e.g., bed temperature, superficial gas velocity, and bed height) on the combustion characteristics was investigated. The bed temperatures were varied at 650, 750, 850, and 950{sup o}C. The gas velocities were in a range of fluidization numbers W (defined as U/U{sub mf}) of 3, 3.5, 4, and 4.5. The bed heights were varied 30, 50, 70, and 90 mm. The CWS spheres were taken out at five residence times (15, 30, 45, 60, and 75 s). The mass ratio of the residue fixed carbon to parent fixed carbon was calculated for studying the influential factors. Under the reference conditions, it is shown that the burnout time is less than 150 s. The grey relational analysis was used to study the degree of relative importance of the influential factors. The results showed that the influence of the bed height is the least, the fluidization number has the greatest influence in the early and later stages, and the bed temperature contributes most in the intermediate stages. 16 refs., 16 figs., 6 tabs.

  19. Novel Binders and Methods for Agglomeration of Ore

    SciTech Connect

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-09-30

    Heap leaching is one of the methods being used to recover metal from low grade ore deposits. The main problem faced during heap leaching is the migration of fine grained particles through the heap, forming impermeable beds which result in poor solution flow. The poor solution flow leads to less contact between the leach solution and the ore, resulting in low recovery rates. Agglomeration of ore into coarse, porous masses prevents fine particles from migrating and clogging the spaces and channels between the larger ore particles. Currently, there is one facility in the United States which uses agglomeration. This operation agglomerates their ore using leach solution (raffinate), but is still experiencing undesirable metal recovery from the heaps due to agglomerate breakdown. The use of a binder, in addition to the leach solution, during agglomeration would help to produce stronger agglomerates that did not break down during processing. However, there are no known binders that will work satisfactorily in the acidic environment of a heap, at a reasonable cost. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. Increasing copper recovery in heap leaching by the use of binders and agglomeration would result in a significant decrease in the amount of energy consumed. Assuming that 70% of all the leaching heaps would convert to using agglomeration technology, as much as 1.64*10{sup 12} BTU per year would be able to be saved if a 25% increase in copper recovery was experienced, which is equivalent to saving approximately 18% of the energy currently being used in leaching heaps. For every week a leach cycle was decreased, a savings of as much as 1.23*10{sup 11} BTU per week would result. This project has identified several acid-resistant binders and agglomeration procedures. These binders and experimental procedures will be able to be used for use in improving the energy efficiency of

  20. Selective oil agglomeration of lignite

    SciTech Connect

    Halime Abakay Temel; Volkan Bozkurt; Arun Kumar Majumder

    2009-01-15

    In this study, desulfurization and deashing of Adiyaman-Glbai lignite by the agglomeration method were studied. For this purpose, three groups of agglomeration experiments were made. The effects of solid concentration, bridging liquid type and dosage, pH, and screen size on the agglomeration after desliming were investigated in the first group of experiments. The effects of lake water and sea water (the Mediterranean Sea water, the Aegean Sea water, and the Black Sea water) on the agglomeration were investigated in the second group of experiments. The effects of different salts (NaCl, MgCl{sub 2}, and FeCl{sub 3}) on the agglomeration were investigated in the third group of experiments. Agglomeration results showed that the usage of sea waters and soda lake water in the agglomeration medium had a positive effect on the reduction of total sulfur content of agglomerates. In addition, the usage of NaCl, MgCl{sub 2}, and FeCl{sub 3} in the agglomeration medium had a positive effect on the ash content reduction of the agglomerates. 27 refs., 10 figs., 6 tabs.

  1. Sediment transport data and related information for selected coarse-bed streams and rivers in Idaho

    Treesearch

    John G. King; William W. Emmett; Peter J. Whiting; Robert P. Kenworthy; Jeffrey J. Barry

    2004-01-01

    This report and associated web site files provide sediment transport and related data for coarse-bed streams and rivers to potential users. Information on bedload and suspended sediment transport, streamflow, channel geometry, channel bed material, floodplain material, and large particle transport is provided for 33 study reaches in Idaho that represent a wide range of...

  2. Char binder for fluidized beds

    DOEpatents

    Borio, Richard W.; Accortt, Joseph I.

    1981-01-01

    An arrangement that utilizes agglomerating coal as a binder to bond coal fines and recycled char into an agglomerate mass that will have suitable retention time when introduced into a fluidized bed 14 for combustion. The simultaneous use of coal for a primary fuel and as a binder effects significant savings in the elimination of non-essential materials and processing steps.

  3. Test study of salty paper mill waste in a bubbling fluidized bed combustor

    SciTech Connect

    Wu, S.; Sellakumar, K.M.; Chelian, P.K.; Bleice, C.; Shaw, I.

    1999-07-01

    Foster Wheeler Pyropower Inc. has supplied a 73.7 kg/s bubbling fluidized bed boiler to MacMillan Bloedel's Powell River paper mill (now Pacifica Paper). The BFB boiler was designed to fire a fuel mixture of a mill effluent sludge and a hog fuel (bark) that is contaminated with seawater. Due to its very high alkali content and low ash content, the fuel is prone to cause problems such as agglomeration in the fluidized bed. Foster Wheeler and MacMillan Bloedel took a proactive approach to quantify likely problems and to identify solutions. A 200 hour-long test program was carried out at Foster Wheeler Development Corporation in Livingston, New Jersey with the Powell River feedstock. This paper provides the project background, an outline of the test facility, test matrix, fuel and bed material characteristics, followed by a test process overview. A summary of fuel alkali related agglomeration mechanism in fluidized bed is also included. The paper offers further observations on in-bed alkali accumulation as well as examinations of different types of bed material agglomerates found during the tests. A recommended boiler operating strategy for preventing agglomeration in the BFB boiler developed based on the test results is described. These recommendations have been successfully implemented during the start up of the boiler. The boiler has been in operation since November 1997. Boiler performance tests completed in April 1998 have demonstrated all guaranteed process conditions.

  4. Apparatus and process for controlling fluidized beds

    DOEpatents

    Rehmat, Amirali G.; Patel, Jitendra G.

    1985-10-01

    An apparatus and process for control and maintenance of fluidized beds under non-steady state conditions. An ash removal conduit is provided for removing solid particulates from a fluidized bed separate from an ash discharge conduit in the lower portion of the grate supporting such a bed. The apparatus and process of this invention is particularly suitable for use in ash agglomerating fluidized beds and provides control of the fluidized bed before ash agglomeration is initiated and during upset conditions resulting in stable, sinter-free fluidized bed maintenance.

  5. The Relation of Variability in Sand Bed Topography to Sediment Transport

    NASA Astrophysics Data System (ADS)

    McElroy, B.; Mohrig, D.

    2006-05-01

    The estimation of bed material flux by comparing successive bathymetric surveys was developed under a deterministic light. However, an analogous stochastic treatment can be straightforwardly cast as an extension to the original bedload equation. Instead of an analysis that presumes a regular, geometrically defined bed topography, this accepts the natural noisiness of sandy systems and uses it to explicitly calculate sediment flux. Further, the sediment flux can be treated as the sum of 2 components, a translative flux and a deformative flux. The terminology for these two parts is explicitly related to their relative impacts on the bed. Because the translational part is exactly the same as the original, deterministic model, it estimates only the flux that advects the bed topography. In contrast, the deformational part encompasses all of the remaining bed material flux, the component that serves to change the shape or arrangement of the bed topography. Also, the deformative flux is constant of integration obtained a from manipulation of Exner's equation into average flux; this has been assumed null since the inception of the bedload equation. Analysis of data from the N. Loup River, Nebraska, show that the ratio of deformative to translative fluxes is constant over relevant timescales. The consequences of this are twofold. First, the amount of deformation can be directly calculated and the associated estimates of moved sediment volume are valid as the bed translates many characteristic lengths. In this case the Qtotal=1.8*Qtranslative. Second, it suggests that the fraction of deformation can be explicitly related to the characteristic length of beds. If true, it would greatly improve estimates of flux for all sandy systems and not just those for which extensive amounts of data have been collected.

  6. Characterization of Combustion and Emission of Several Kinds of Herbaceous Biomass Pellets in a Circulating Fluidized Bed Combustor

    NASA Astrophysics Data System (ADS)

    Li, S. Y.; Teng, H. P.; Jiao, W. H.; Shang, L. L.; Lu, Q. G.

    Characterizations of combustion and emission of four kinds of herbaceous biomass pellets were investigated in a 0.15 MWt circulating fluidized bed. Corn stalk, wheat stalk, cotton stalk and king grass, which are typical herbaceous biomass in China, were chosen for this study. Temperature profile, emission in flue gas and agglomeration were studied by changing the combustion temperature between 750°C and 880°C. The combustion efficiencies are in the range from 97.4% to 99.4%, which are relatively high due to the homogeneous temperature profiles and good circulating fluidization of bed material. Suitable combustion temperatures for the different herbaceous biomass are mainly depended on the emission and bed agglomeration. SO2 and HCl concentrations in flue gas are in direct proportion to the sulfur and chlorine contents of the herbaceous biomass. Agglomeration at the cyclone leg and the loop seal is the main reason for defluidization in the CFB combustor.

  7. Particle Agglomeration in Bipolar Barb Agglomerator Under AC Electric Field

    NASA Astrophysics Data System (ADS)

    Huang, Chao; Ma, Xiuqin; Sun, Youshan; Wang, Meiyan; Zhang, Changping; Lou, Yueya

    2015-04-01

    The development of an efficient technology for removing fine particles in flue gas is essential as the haze is becoming more and more serious. To improve agglomeration effectiveness of fine particles, a dual zone electric agglomeration device consisting of a charging chamber and an agglomeration chamber with bipolar barb electrodes was developed. The bipolar barb electric agglomerator with a polar distance of 200 mm demonstrates good agglomeration effectiveness for particles with a size less than 8.0 μm under applied AC electric field. An optimal condition for achieving better agglomeration effectiveness was found to be as follows: flue gas flow velocity of 3.00 m/s, particle concentration of 2.00 g/m3, output voltage of 35 kV and length of the barb of 16 mm. In addition, 4.0-6.0 μm particles have the best effectiveness with the variation of particle volume occupancy of -3.2. supported by the Key Technology R&D Program of Hebei, China (No. 13211207D)

  8. Recent Advances in Agglomerated Multigrid

    NASA Technical Reports Server (NTRS)

    Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.; Hammond, Dana P.

    2013-01-01

    We report recent advancements of the agglomerated multigrid methodology for complex flow simulations on fully unstructured grids. An agglomerated multigrid solver is applied to a wide range of test problems from simple two-dimensional geometries to realistic three- dimensional configurations. The solver is evaluated against a single-grid solver and, in some cases, against a structured-grid multigrid solver. Grid and solver issues are identified and overcome, leading to significant improvements over single-grid solvers.

  9. MTCI acoustic agglomeration particulate control

    SciTech Connect

    Chandran, R.R.; Mansour, M.N.; Scaroni, A.W.; Koopmann, G.H.; Loth, J.L.

    1994-10-01

    The overall objective of this project is to demonstrate pulse combination induced acoustic enhancement of coal ash agglomeration and sulfur capture at conditions typical of direct coal-fired turbines and PFBC hot gas cleanup. MTCI has developed an advanced compact pulse combustor island for direct coal-firing in combustion gas turbines. This combustor island comprises a coal-fired pulse combustor, a combined ash agglomeration and sulfur capture chamber (CAASCC), and a hot cyclone. In the MTCI proprietary approach, the pulse combustion-induced high intensity sound waves improve sulfur capture efficiency and ash agglomeration. The resulting agglomerates allow the use of commercial cyclones and achieve very high particulate collection efficiency. In the MTCI proprietary approach, sorbent particles are injected into a gas stream subjected to an intense acoustic field. The acoustic field serves to improve sulfur capture efficiency by enhancing both gas film and intra-particle mass transfer rates. In addition, the sorbent particles act as dynamic filter foci, providing a high density of stagnant agglomerating centers for trapping the finer entrained (in the oscillating flow field) fly ash fractions. A team has been formed with MTCI as the prime contractor and Penn State University and West Virginia University as subcontractors to MTCI. MTCI is focusing on hardware development and system demonstration, PSU is investigating and modeling acoustic agglomeration and sulfur capture, and WVU is studying aerovalve fluid dynamics. Results are presented from all three studies.

  10. Microbial effects on colloidal agglomeration

    SciTech Connect

    Hersman, L.

    1995-11-01

    Colloidal particles are known to enhance the transport of radioactive metals through soil and rock systems. This study was performed to determine if a soil microorganism, isolated from the surface samples collected at Yucca Mountain, NV, could affect the colloidal properties of day particles. The agglomeration of a Wyoming bentonite clay in a sterile uninoculated microbial growth medium was compared to the agglomeration in the medium inoculated with a Pseudomonas sp. In a second experiment, microorganisms were cultured in the succinate medium for 50 h and removed by centrifugation. The agglomeration of the clay in this spent was compared to sterile uninoculated medium. In both experiments, the agglomeration of the clay was greater than that of the sterile, uninoculated control. Based on these results, which indicate that this microorganism enhanced the agglomeration of the bentonite clay, it is possible to say that in the presence of microorganisms colloidal movement through a rock matrix could be reduced because of an overall increase in the size of colloidal particle agglomerates. 32 refs.

  11. Study of the bed fouling problems in a biomass fired commercial CFB boiler

    SciTech Connect

    Tranvik, A.E.; Sanati, M.; Zethraeus, B.; Lyberg, M.

    1999-07-01

    The use of biomass fuels in circulated fluidized bed (CFB) combustion is becoming more important because of increasing energy demand and the polluting nature of existing fossil fuel energy sources. The commercial circulating fluidized bed boiler at VEAB (Baxjo Energy Limited) has a large fuel flexibility, and can be fired with low moisture, high grade fuels, as well as high moisture, low grade fuels like biomass. The major ash-related problem encountered at VEAB is bed agglomeration which, in the worst case, may result in total defluidization and unscheduled shutdown. Non-agglomerated and agglomerated ash samples resulting from the firing of 50% sawdust and 50% forestry residues were analyzed using inductively coupled plasma atomic emission spectroscopy (ICP-AES), x-ray fluorescence analysis (XRF), scaling electron microscopy (SEM) equipped with energy dispersive x-ray spectroscopy (EDS), atomic force microscopy (AFM), and x-ray diffraction (XRD). An increase of the concentration of the trace elements in the agglomerated samples was observed by ICP-AES and XRF. On the basis of the AFM experimental results and evidence of the non-height difference in the topography of the agglomerated samples, formation of binary or ternary eutectic melts was proposed.

  12. Crystal growth and agglomeration of calcium sulfite hemihydrate crystals

    SciTech Connect

    Tai, C.Y.; Chen, P.C.

    1995-04-01

    Flue gas desulfurization (FGD) processes are most commonly utilized to remove sulfur dioxide from stack gases of coal- or oil-fired plants. In the simple slurry technology, SO{sub 2} is absorbed by a slurry of lime/limestone to form calcium sulfite crystals of acicular habit and its strong agglomeration, requiring large clarifiers and filters to dewater the sludge to make an acceptable landfill. Crystal growth and agglomeration of calcium sulfite hemihydrate crystals from solution were studied by reacting Ca(OH){sub 2} with NaHSO{sub 3} in a pH-stat semibatch crystallizer. Single platelet crystals and agglomerates of platelet crystals were produced in the pH range from 5.80 to 6.80. The crystallization mechanism changed from primary nucleation to crystal growth in the progressive precipitation. Using the titration curves, the growth rate was calculated from the titration rate at the final stage of operation. The crystal growth rates of calcium sulfate hemihydrate crystals were found to obey the parabolic rate law in the low supersaturation range. Another point to be noted is that the precipitates of calcium sulfite hemihydrate in agitated suspensions have a tendency to form agglomerates. It was found that the degree of agglomeration is a weak function of relative supersaturation and magma density, while the pH value is a key factor that affects the degree of agglomeration. Addition of EDTA also has an effect on the agglomeration of calcium sulfite hemihydrates.

  13. Development of methods to predict agglomeration and disposition in FBCs

    SciTech Connect

    Mann, M.D.; Henderson, A.K.; Swanson, M.K.; Erickson, T.A.

    1995-11-01

    This 3-year, multiclient program is providing the information needed to determine the behavior of inorganic components in FBC units using advanced methods of analysis coupled with bench-scale combustion experiments. The major objectives of the program are as follows: (1) To develop further our advanced ash and deposit characterization techniques to quantify the effects of the liquid-phase components in terms of agglomerate formation and ash deposits, (2) To determine the mechanisms of inorganic transformations that lead to bed agglomeration and ash deposition in FBC systems, and (3) To develop a better means to predict the behavior of inorganic components as a function of coal composition, bed material characteristics, and combustion conditions.

  14. Agglomerates containing pantoprazole microparticles: modulating the drug release.

    PubMed

    Raffin, Renata P; Colombo, Paolo; Sonvico, Fabio; Rossi, Alessandra; Jornada, Denise S; Pohlmann, Adriana R; Guterres, Silvia S

    2009-01-01

    Pantoprazole-loaded microparticles were prepared using a blend of Eudragit S100 and Methocel F4M. The accelerated stability was carried out during 6 months at 40 degrees C and 75% relative humidity. In order to improve technological characteristics of the pantoprazole-loaded microparticles, soft agglomerates were prepared viewing an oral delayed release and gastro-resistant solid dosage form. The agglomeration was performed by mixing the pantoprazole microparticles with spray-dried mannitol/lecithin powders. The effects of factors such as the amount of lecithin in the spray-dried mannitol/lecithin powders and the ratio between pantoprazole microparticles and spray-dried mannitol/lecithin powders were evaluated. The pantoprazole-loaded microparticles present no significant degradation in 6 months. The agglomerates presented spherical shape, with smooth surface and very small quantity of non-agglomerated particles. The agglomerates presented different yields (35.5-79.0%), drug loading (58-101%), and mechanical properties (tensile strength varied from 44 to 69 mN mm(-2)), when the spray-dried mannitol/lecithin powders with different lecithin amounts were used. The biopharmaceutical characteristics of pantoprazole microparticles, i.e., their delayed-release properties, were not affected by the agglomeration process. The gastro-resistance of the agglomerates was affected by the amount of spray-dried mannitol/lecithin powders. The ratio of lecithin in the spray-dried mannitol/lecithin powders was the key factor in the agglomerate formation and in the drug release profiles. The agglomerates presenting better mechanical and biopharmaceutical characteristics were prepared with 1:2 (w/w) ratio of pantoprazole-loaded microparticles and mannitol/lecithin (80:20) powder.

  15. COAL CLEANING BY GAS AGGLOMERATION

    SciTech Connect

    T.D. Wheelock

    1999-03-01

    The technical feasibility of a gas agglomeration method for cleaning coal was demonstrated by means of bench-scale tests conducted with a mixing system which enabled the treatment of ultra-fine coal particles with a colloidal suspension of microscopic gas bubbles in water. A suitable suspension of microbubbles was prepared by first saturating water with air or carbon dioxide under pressure then reducing the pressure to release the dissolved gas. The formation of microbubbles was facilitated by agitation and a small amount of i-octane. When the suspension of microbubbles and coal particles was mixed, agglomeration was rapid and small spherical agglomerates were produced. Since the agglomerates floated, they were separated from the nonfloating tailings in a settling chamber. By employing this process in numerous agglomeration tests of moderately hydrophobic coals with 26 wt.% ash, it was shown that the ash content would be reduced to 6--7 wt.% while achieving a coal recovery of 75 to 85% on a dry, ash-free basis. This was accomplished by employing a solids concentration of 3 to 5 w/w%, an air saturation pressure of 136 to 205 kPa (5 to 15 psig), and an i-octane concentration of 1.0 v/w% based on the weight of coal.

  16. Post-quasistatic approximation as a test bed for numerical relativity

    SciTech Connect

    Barreto, W.

    2009-05-15

    It is shown that observers in the standard ADM 3+1 treatment of matter are the same as the observers used in the matter treatment of Bondi: they are comoving and local Minkowskian. Bondi's observers are the basis of the post-quasistatic approximation (PQSA) to study a contracting distribution of matter. This correspondence suggests the possibility of using the PQSA as a test bed for numerical relativity. The treatment of matter by the PQSA and its connection with the ADM 3+1 treatment are presented, for its practical use as a calibration tool and as a test bed for numerical relativistic hydrodynamic codes.

  17. Using a relative bed stability index to define a reference condition for assessing anthropogenic sedimentation

    EPA Science Inventory

    We developed an index of relative bed stability (LRBS) based on low flow survey data collected using the U.S. Environmental Protection Agency’s Environmental Monitoring and Assessment Program (EMAP) field methods to assess anthropogenic sedimentation in streams. LRBS is the log ...

  18. Using a relative bed stability index to define a reference condition for assessing anthropogenic sedimentation

    EPA Science Inventory

    We developed an index of relative bed stability (LRBS) based on low flow survey data collected using the U.S. Environmental Protection Agency’s Environmental Monitoring and Assessment Program (EMAP) field methods to assess anthropogenic sedimentation in streams. LRBS is the log ...

  19. Acoustic agglomeration methods and apparatus

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B. (Inventor)

    1984-01-01

    Methods are described for using acoustic energy to agglomerate fine particles on the order of one micron diameter that are suspended in gas, to provide agglomerates large enough for efficient removal by other techniques. The gas with suspended particles, is passed through the length of a chamber while acoustic energy at a resonant chamber mode is applied to set up one or more acoustic standing wave patterns that vibrate the suspended particles to bring them together so they agglomerate. Several widely different frequencies can be applied to efficiently vibrate particles of widely differing sizes. The standing wave pattern can be applied along directions transversed to the flow of the gas. The particles can be made to move in circles by applying acoustic energy in perpendicular directions with the energy in both directions being of the same wavelength but 90 deg out of phase.

  20. Improving the de-agglomeration and dissolution of a poorly water soluble drug by decreasing the agglomerate strength of the cohesive powder.

    PubMed

    Allahham, Ayman; Stewart, Peter J; Das, Shyamal C

    2013-11-30

    Influence of ternary, poorly water-soluble components on the agglomerate strength of cohesive indomethacin mixtures during dissolution was studied to explore the relationship between agglomerate strength and extent of de-agglomeration and dissolution of indomethacin (Ind). Dissolution profiles of Ind from 20% Ind-lactose binary mixtures, and ternary mixtures containing additional dibasic calcium phosphate (1% or 10%; DCP), calcium sulphate (10%) and talc (10%) were determined. Agglomerate strength distributions were estimated by Monte Carlo simulation of particle size, work of cohesion and packing fraction distributions. The agglomerate strength of Ind decreased from 1.19 MPa for the binary Ind mixture to 0.84 MPa for 1DCP:20Ind mixture and to 0.42 MPa for 1DCP:2Ind mixture. Both extent of de-agglomeration, demonstrated by the concentration of the dispersed indomethacin distribution, and extent of dispersion, demonstrated by the particle size of the dispersed indomethacin, were in descending order of 1DCP:2Ind>1DCP:20Ind>binary Ind. The addition of calcium sulphate dihydrate and talc also reduced the agglomerate strength and improved de-agglomeration and dispersion of indomethacin. While not definitively causal, the improved de-agglomeration and dispersion of a poorly water soluble drug by poorly water soluble components was related to the agglomerate strength of the cohesive matrix during dissolution.

  1. Air agglomeration of hydrophobic particles

    SciTech Connect

    Drzymala, J.; Wheelock, T.D.

    1995-12-31

    The agglomeration of hydrophobic particles in an aqueous suspension was accomplished by introducing small amounts of air into the suspension while it was agitated vigorously. The extent of aggregation was proportional both to the air to solids ratio and to the hydrophobicity of the solids. For a given air/solids ratio, the extent of aggregation of different materials increased in the following order: graphite, gilsonite, coal coated with heptane, and Teflon. The structure of agglomerates produced from coarse Teflon particles differed noticeably from the structure of bubble-particle aggregates produced from smaller, less hydrophobic particles.

  2. Incipient Motion of Sand and Oil Agglomerates

    NASA Astrophysics Data System (ADS)

    Nelson, T. R.; Dalyander, S.; Jenkins, R. L., III; Penko, A.; Long, J.; Frank, D. P.; Braithwaite, E. F., III; Calantoni, J.

    2016-12-01

    Weathered oil mixed with sediment in the surf zone in the northern Gulf of Mexico after the 2010 Deepwater Horizon oil spill, forming large mats of sand and oil. Wave action fragmented the mats into sand and oil agglomerates (SOAs) with diameters of about 1 to 10 cm. These SOAs were transported by waves and currents along the Gulf Coast, and have been observed on beaches for years following the spill. SOAs are composed of 70%-95% sand by mass, with an approximate density of 2107 kg/m³. To measure the incipient motion of SOAs, experiments using artificial SOAs were conducted in the Small-Oscillatory Flow Tunnel at the U.S. Naval Research Laboratory under a range of hydrodynamic forcing. Spherical and ellipsoidal SOAs ranging in size from 0.5 to 10 cm were deployed on a fixed flat bed, a fixed rippled bed, and a movable sand bed. In the case of the movable sand bed, SOAs were placed both proud and partially buried. Motion was tracked with high-definition video and with inertial measurement units embedded in some of the SOAs. Shear stress and horizontal pressure gradients, estimated from velocity measurements made with a Nortek Vectrino Profiler, were compared with observed mobility to assess formulations for incipient motion. For SOAs smaller than 1 cm in diameter, incipient motion of spherical and ellipsoidal SOAs was consistent with predicted critical stress values. The measured shear stress at incipient motion of larger, spherical SOAs was lower than predicted, indicating an increased dependence on the horizontal pressure gradient. In contrast, the measured shear stress required to move ellipsoidal SOAs was higher than predicted, even compared to values modified for larger particles in mixed-grain riverine environments. The laboratory observations will be used to improve the prediction of incipient motion, transport, and seafloor interaction of SOAs.

  3. Cross-bedding Related Anisotropy and its Role in the Orientation of Joints in an Aeolian Sandstone

    NASA Astrophysics Data System (ADS)

    Deng, S.; Cilona, A.; Mapeli, C.; Panfilau, A.; Aydin, A.; Prasad, M.

    2014-12-01

    Previous research revealed that the cross-bedding related anisotropy in aeolian sandstones affects the orientation of compaction bands, also known as anticracks. We hypothesize that cross-bedding should a have similar influence on the orientation of the joints within the same rock at the same location. To test this hypothesis, we investigated the relationship between the cross-beds and the cross-bed package confined joints in the Jurassic aeolian Aztec Sandstone cropping out in the Valley of Fire State Park, Nevada. The field data demonstrates that the cross-bed package confined joints occur at high-angle to bedding and trend roughly parallel to the dip direction of the cross-beds. This shows that the cross-bed orientation and the associated anisotropy also exert a strong control on the formation and orientation of the joints. In order to characterize the anisotropy due to cross-bedding in the Aztec Sandstone, we measured the P-wave velocities parallel and perpendicular to bedding from 11 samples in the laboratory using a bench-top ultrasonic assembly. The measured P-wave anisotropy is about 13% on average. Based on these results, a numerical model based on the generalized Hooke's law for anisotropic materials is analyzed assuming the cross-bedded sandstone to be transversely isotropic. Using this model, we tested various cross-bed orientations as well as different strain boundary conditions (uniaxial, axisymmetric and triaxial). It is possible to define a boundary condition under which the modeled results roughly match with the observed relationship between cross-bed package confined joints and cross-beds. These results have important implications for fluid flow through aeolian sandstones in reservoirs and aquifers.

  4. Low-rank coal oil agglomeration product and process

    DOEpatents

    Knudson, Curtis L.; Timpe, Ronald C.; Potas, Todd A.; DeWall, Raymond A.; Musich, Mark A.

    1992-01-01

    A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-decrepitating, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

  5. Low-rank coal oil agglomeration product and process

    DOEpatents

    Knudson, C.L.; Timpe, R.C.; Potas, T.A.; DeWall, R.A.; Musich, M.A.

    1992-11-10

    A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-degradable, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

  6. Low-rank coal oil agglomeration

    DOEpatents

    Knudson, Curtis L.; Timpe, Ronald C.

    1991-01-01

    A low-rank coal oil agglomeration process. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and usually coal derived.

  7. Reducing serious fall-related injuries in acute hospitals: are low-low beds a critical success factor?

    PubMed

    Barker, Anna; Kamar, Jeannette; Tyndall, Tamara; Hill, Keith

    2013-01-01

    This article is a report of a study of associations between occurrence of serious fall-related injuries and implementation of low-low beds at The Northern Hospital, Victoria, Australia. A 9-year evaluation at The Northern Hospital found an important reduction in fall-related injuries after the 6-PACK falls prevention program was implemented. Low-low beds are a key component of the 6-PACK that aims to decrease fall-related injuries. A retrospective cohort study. Retrospective audit of The Northern Hospital inpatients admitted between 1999-2009. Changes in serious fall-related injuries throughout the period and associations with available low-low beds were analysed using Poisson regression. During the observation of 356,158 inpatients, there were 3946 falls and 1005 fall-related injuries of which 60 (5·9%) were serious (55 fractures and five subdural haematomas). Serious fall-related injuries declined significantly throughout the period. When there was one low-low bed to nine or more standard beds there was no statistically significant decrease in serious fall-related injuries. An important reduction only occurred when there was one low-low bed to three standard beds. The 6-PACK program has been in place since 2002 at The Northern Hospital. Throughout this time serious fall-related injuries have decreased. There appears to be an association between serious fall-related injuries and the number of available low-low beds. Threshold numbers of these beds may be required to achieve optimal usability and effectiveness. A randomized controlled trial is required to give additional evidence for use of low-low beds for injury prevention in hospitals. © 2012 Blackwell Publishing Ltd.

  8. Time of elevation of head of bed for patients receiving mechanical ventilation and its related factors.

    PubMed

    Martí-Hereu, L; Arreciado Marañón, A

    2017-06-08

    The semirecumbent position is a widespread recommendation for the prevention of pneumonia associated with mechanical ventilation. To identify the time of elevation of head of bed for patients under mechanical ventilation and the factors related to such elevation in an intensive care unit. An observational, descriptive cross-sectional study. Conducted in an intensive care unit of a tertiary hospital from April to June 2015. The studied population were mechanically ventilated patients. Daily hours in which patients remained with the head of the bed elevated (≥30°), socio-demographic data and clinical variables were recorded. 261 head elevation measurements were collected. The average daily hours that patients remained at ≥30° was 16h28' (SD ±5h38'), equivalent to 68.6% (SD ±23.5%) of the day. Factors related to elevations ≥30° for longer were: enteral nutrition, levels of deep sedation, cardiac and neurocritical diagnostics. Factors that hindered the position were: sedation levels for agitation and abdominal pathologies. Sex, age and ventilation mode did not show a significant relationship with bed head elevation. Although raising the head of the bed is an easy to perform, economical and measurable preventive measure, its compliance is low due to specific factors specific related o the patient's clinical condition. Using innovations such as continuous measurement of the head position helps to evaluate clinical practice and allows to carry out improvement actions whose impact is beneficial to the patient. Copyright © 2017 Sociedad Española de Enfermería Intensiva y Unidades Coronarias (SEEIUC). Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Using a Relative Bed Stability Index to Define Reference Conditions for Assessing Anthropogenic Sedimentation

    NASA Astrophysics Data System (ADS)

    Faustini, J. M.; Kaufmann, P. R.; Larsen, D. P.

    2008-12-01

    We developed an index of relative bed stability (LRBS) based on low flow survey data collected using the U.S. Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP) field methods to assess anthropogenic sedimentation in streams. LRBS is the log of the ratio of bed surface geometric mean particle diameter (Dgm) to the estimated critical diameter (D*cbf) at bankfull flow, based on a modified Shield's criterion for incipient motion that explicitly accounts for reductions in bed shear stress resulting from channel form roughness due to pools and large wood. We hypothesized that human activities that augment sediment supply (particularly of fine sediments) without correspondingly increasing runoff or decreasing channel roughness should lead to reductions in LRBS as a result of textural fining of the streambed. Thus, LRBS values outside the range commonly observed in least- disturbed sites within a given region or class of streams could indicate potential human-caused sedimentation impacts. We tested the LRBS index using EMAP data from the Pacific Northwest Coast (PNW) and Mid- Atlantic regions of the United States. In both regions, LRBS was strongly inversely related to measures of anthropogenic disturbance intensity both at the watershed scale and in local riparian zone. In the PNW, streams draining relatively erodible sedimentary lithology (sandstone, siltstone) showed greater reductions in LRBS associated with disturbance than did those having more resistant volcanic lithology (basalt) with similar levels of basin and riparian disturbance. Correlations between Dgm and land disturbance were stronger than those observed between D*cbf and land disturbance in both regions, suggesting that land use has augmented sediment supplies and increased streambed fine sediments in the most disturbed streams. However, we also show evidence that some of the apparent reductions in LRBS in some streams (e.g., volcanic drainages in the PNW) may have

  10. Microstickies agglomeration by electric field.

    PubMed

    Du, Xiaotang Tony; Hsieh, Jeffery S

    2016-01-01

    Microstickies deposits on both paper machine and paper products when it agglomerates under step change in ionic strength, pH, temperature and chemical additives. These stickies increase the down time of the paper mill and decrease the quality of paper. The key property of microstickies is its smaller size, which leads to low removal efficiency and difficulties in measurement. Thus the increase of microstickies size help improve both removal efficiency and reduce measurement difficulty. In this paper, a new agglomeration technology based on electric field was investigated. The electric treatment could also increase the size of stickies particles by around 100 times. The synergetic effect between electric field treatment and detacky chemicals/dispersants, including polyvinyl alcohol, poly(diallylmethylammonium chloride) and lignosulfonate, was also studied.

  11. Coal Beneficiation by Gas Agglomeration

    SciTech Connect

    Thomas D. Wheelock; Meiyu Shen

    2000-03-15

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  12. Coal beneficiation by gas agglomeration

    DOEpatents

    Wheelock, Thomas D.; Meiyu, Shen

    2003-10-14

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  13. Agglomeration tendency in dry pharmaceutical granular systems.

    PubMed

    Lachiver, Emilie DesRosiers; Abatzoglou, Nicolas; Cartilier, Louis; Simard, Jean-Sébastien

    2006-10-01

    The agglomeration tendency of dry pharmaceutical mixtures containing various concentrations of Xylitab 100 (Xylitol), calcium carbonate precipitated (CCP) and magnesium stearate (MgSt) was evaluated statistically as a function of mixing time. A Ro-Tap tester was employed to mix the three pharmaceutical components, and the agglomerates formed were measured with respect to their weight and size. An experimental design was devised and applied to structure and then statistically analyze the results. Xylitab was found not to be influential in the formation of agglomerates, but aided in deagglomeration when mixed with other components. CCP and MgSt formed agglomerates over time and showed positive interactions favouring agglomeration. The agglomerates started to fracture when they reached a critical size, at which stage the particles' attraction forces (cohesion forces) were weaker than both gravity and inertia. It has been shown and quantitatively demonstrated that the mixing time and ingredient concentrations of a three-component pharmaceutical mixture can affect agglomeration tendency.

  14. Centrifugal air-assisted melt agglomeration for fast-release "granulet" design.

    PubMed

    Wong, Tin Wui; Musa, Nafisah

    2012-07-01

    Conventional melt pelletization and granulation processes produce round and dense, and irregularly shaped but porous agglomerates respectively. This study aimed to design centrifugal air-assisted melt agglomeration technology for manufacture of spherical and yet porous "granulets" for ease of downstream manufacturing and enhancing drug release. A bladeless agglomerator, which utilized shear-free air stream to mass the powder mixture of lactose filler, polyethylene glycol binder and poorly water-soluble tolbutamide drug into "granulets", was developed. The inclination angle and number of vane, air-impermeable surface area of air guide, processing temperature, binder content and molecular weight were investigated with reference to "granulet" size, shape, texture and drug release properties. Unlike fluid-bed melt agglomeration with vertical processing air flow, the air stream in the present technology moved centrifugally to roll the processing mass into spherical but porous "granulets" with a drug release propensity higher than physical powder mixture, unprocessed drug and dense pellets prepared using high shear mixer. The fast-release attribute of "granulets" was ascribed to porous matrix formed with a high level of polyethylene glycol as solubilizer. The agglomeration and drug release outcomes of centrifugal air-assisted technology are unmet by the existing high shear and fluid-bed melt agglomeration techniques.

  15. Effects of bedding systems selected by manual muscle testing on sleep and sleep-related respiratory disturbances.

    PubMed

    Tsai, Ling-Ling; Liu, Hau-Min

    2008-03-01

    In this study, we investigated the feasibility of applying manual muscle testing (MMT) for bedding selection and examined the bedding effect on sleep. Four lay testers with limited training in MMT performed muscle tests for the selection of the bedding systems from five different mattresses and eight different pillows for 14 participants with mild sleep-related respiratory disturbances. For each participant individually, two bedding systems-one inducing stronger muscle forces and the other inducing weaker forces-were selected. The tester-participant pairs showed 85% and 100% agreement, respectively, for the selection of mattresses and pillows that induced the strongest muscle forces. The firmness of the mattress and the height of the pillow were significantly correlated with the body weight and body mass index of the participants for the selected strong bedding system but not for the weak bedding system. Finally, differences were observed between the strong and the weak bedding systems with regard to sleep-related respiratory disturbances and the percentage of slow-wave sleep. It was concluded that MMT can be performed by inexperienced testers for the selection of bedding systems.

  16. The effect of bedding system selected by manual muscle testing on sleep-related cardiovascular functions.

    PubMed

    Kuo, Terry B J; Li, Jia-Yi; Lai, Chun-Ting; Huang, Yu-Chun; Hsu, Ya-Chuan; Yang, Cheryl C H

    2013-01-01

    Different types of mattresses affect sleep quality and waking muscle power. Whether manual muscle testing (MMT) predicts the cardiovascular effects of the bedding system was explored using ten healthy young men. For each participant, two bedding systems, one inducing the strongest limb muscle force (strong bedding system) and the other inducing the weakest limb force (weak bedding system), were identified using MMT. Each bedding system, in total five mattresses and eight pillows of different firmness, was used for two continuous weeks at the participant's home in a random and double-blind sequence. A sleep log, a questionnaire, and a polysomnography were used to differentiate the two bedding systems. Heart rate variability and arterial pressure variability analyses showed that the strong bedding system resulted in decreased cardiovascular sympathetic modulation, increased cardiac vagal activity, and increased baroreceptor reflex sensitivity during sleep as compared to the weak bedding system. Different bedding systems have distinct cardiovascular effects during sleep that can be predicted by MMT.

  17. Mechanisms for selective agglomeration of coals

    SciTech Connect

    Wheelock, T.D.; Drzymala, J.; Allen, R.W.; Hu, Y.-C.; Tyson, D.; Xiaoping, Qiu; Lessa, A.

    1989-05-01

    Work continued on the basic mechanisms which underlie various processes for beneficiating aqueous suspensions of coal by selective agglomeration with oil. A new method was demonstrated for characterizing the agglomerability of coal suspensions. This method utilizes a photometric dispersion analyzer to monitor changes in the turbidity of a particle suspension as increasing amounts of oil are added to the suspension in a batch agglomeration test. Agglomeration of the particles leads to a marked decrease in the turbidity of the suspension. Another experimental technique was also demonstrated for characterizing oil agglomeration. This technique involves measuring the rate of growth of agglomerates in a continuous flow system operating under stead-state conditions. The data are analyzed by means of a population balance. The results of a preliminary set of experiments in which Indiana V seam coal was agglomerated with tetralin seemed to fit a particular growth model very well. Equipment was also constructed for studying the kinetics of agglomeration in a batch process. While earlier work showed that quebracho (a commercially available dispersant) is a strong agglomeration depressant for pyrite, recent experiments with mixtures of Upper Freeport coal and mineral pyrite showed that quebracho does not appear to be sufficiently selective. Further consideration was given to the separation of mixtures of coal and pyrite agglomeration with heptane. 2 refs., 17 figs., 1 tab.

  18. Sintering of model aerosol agglomerates

    SciTech Connect

    Lunden, M.M.; Flagan, R.C.

    1995-12-31

    Many processes form particles from vapor phase precursors, whereby particles nucleate and grow primarily by coagulation in the solid state. In some industries, such as those that produce fumed titania, silica, and carbon black, these particles are the desired end product. In other processes particle formation can be deleterious, such as the ashes produced by combustion processes which can foul heat transfer surfaces and be environmentally hazardous. Regardless of process, it is important to be able to understand and predict the structure of the particles being produced. The evolving particle population often only partially coalesces (or sinters) during coagulation, leading to agglomerate structures. Although the extent sintering during agglomeration has been described in a number of modeling studies and demonstrated qualitatively in several experimental investigations, no direct validation of those models has been reported. We report on controlled experimental investigations of the structural evolution of model agglomerate particles aimed at providing the necessary data base for such validation as well as a new modeling ideas designed to give a better physical understanding of the sintering process. Aggregate particle densification studies have been performed using mobility classified particles produced by low temperature, non-coalescent coagulation. Initial experiments were performed with small aggregates, primarily bispheres. The particles were thermally processed while still entrained in a carrier gas flow, and subsequently collected for electron microscope analysis of neck growth and other structural parameters. Larger aggregate particles, also produced by low temperature coagulation, have been similarly processed. Changes in the physical structure and aerodynamic drag of the particles have been examined. We have developed a model to describe the structural evolution of simple aggregates during sintering.

  19. Effects of prolonged hypoxia and bed rest on appetite and appetite-related hormones.

    PubMed

    Debevec, Tadej; Simpson, Elizabeth J; Mekjavic, Igor B; Eiken, Ola; Macdonald, Ian A

    2016-12-01

    Environmental hypoxia and inactivity have both been shown to modulate appetite. To elucidate the independent and combined effects of hypoxia and bed rest-induced inactivity on appetite-related hormones and subjective appetite, eleven healthy, non-obese males underwent three experimental interventions in a cross-over and randomized fashion: 1) Hypoxic confinement combined with daily moderate-intensity exercise (HAMB, FiO2 = 0.141 ± 0.004; PiO2 = 90.0 ± 0.4 mmHg) 2) Bed rest in normoxia (NBR, FiO2 = 0.209; PiO2 = 133.1 ± 0.3 mmHg) and 3) Bed rest in hypoxia (HBR, FiO2 = 0.141 ± 0.004; PiO2 = 90.0 ± 0.4 mmHg). A mixed-meal tolerance test (MTT), followed by an ad libitum meal were performed before (Pre) and after 16-days (Post) of each intervention. Composite satiety scores (CSS) during the MTT were calculated from visual analogue scores, while fasting and postprandial concentrations of total ghrelin, peptide YY (PYY), glucagon-like peptide-1 (GLP-1) and leptin were quantified from arterialized-venous samples. Postprandial CSS were significantly lower at Post compared to Pre in NBR only (P < 0.05) with no differences observed in ad libitum meal intakes. Postprandial concentrations and incremental area under the curve (AUC) for total ghrelin and PYY were unchanged following all interventions. Postprandial GLP-1 concentrations were only reduced at Post following HBR (P < 0.05) with resulting AUC changes being significantly lower compared to HAMB (P < 0.01). Fasting leptin was reduced following HAMB (P < 0.05) with no changes observed following NBR and HBR. These findings suggest that independently, 16-day of simulated altitude exposure (∼4000 m) and bed rest-induced inactivity do not significantly alter subjective appetite or ad libitum intakes. The measured appetite-related hormones following both HAMB and HBR point to a situation of hypoxia-induced appetite stimulation, although this did not reflect in higher ad libitum intakes.

  20. Ice slurry cooling research: Storage tank ice agglomeration and extraction

    SciTech Connect

    Kasza, K.; Hayashi, Kanetoshi

    1999-08-01

    A new facility has been built to conduct research and development on important issues related to implementing ice slurry cooling technology. Ongoing studies are generating important information on the factors that influence ice particle agglomeration in ice slurry storage tanks. The studies are also addressing the development of methods to minimize and monitor agglomeration and improve the efficiency and controllability of tank extraction of slurry for distribution to cooling loads. These engineering issues impede the utilization of the ice slurry cooling concept that has been under development by various groups.

  1. Tensiomygraphic Measurement of Atrophy Related Processes During Bed Rest and Recovery

    NASA Astrophysics Data System (ADS)

    Simunic, B. ostjan; Degens, Hans; Rittweger, Jorn; Narici, Marcco; Pisot, Venceslav; Mekjavic, Igor B.; Pisot, Rado

    2013-02-01

    Tensiomyographic (TMG) parameters were recently proposed for a non-invasive estimation of MHC distribution in human vastus lateralis muscle. However, TMG potential is even higher, offers additional insight into the skeletal muscle physiology, especially in the field of atrophy and hypertrophy. The purpose of this study is in developing time dynamics of TMG-measured contraction time (Tc) and maximal response amplitude (Dm), together with muscle belly thickness, measure thoroughly during 35-day bed rest and followed in 30-day recovery (N = 10 males; age 24.3 ± 2.6 years). Measurements were performed in two postural muscles (vastus medialis and lateralis) and one non-postural muscle (biceps femoris). During bed rest period we found different dynamics of muscle thickness decrease and Dm increase. Tc was unchanged in postural muscles, but in non-postural muscle increased significantly and stayed as such even at the end of recovery. We could conclude that TMG related parameters are more sensitive in measuring muscle atrophic and hypertrophic processes than biomedical imaging technique. However, a mechanism that regulates Dm still needs to be identified.

  2. Development of a gas-promoted oil agglomeration process. Quarterly technical progress report, July 1, 1995--September 30, 1995

    SciTech Connect

    Wheelock, T.D.

    1995-12-31

    The preliminary laboratory-scale development of a gas-promoted, oil agglomeration process for cleaning coal advanced in three major research areas. One area of research resulted in the development of a method for measuring the rate of agglomeration of dilute particle suspensions and using the method to relate the rate of agglomeration of coal particles to various key parameters. A second area of research led to the development of a method for monitoring a batch agglomeration process by measuring changes in agitator torque. With this method it was possible to show that the agglomeration of a concentrated coal particle suspension is triggered by the introduction of a small amount of gas. The method was also used in conjunction with optical microscopy to study the mechanism of agglomeration. A third area of research led to the discovery that highly hydrophobic particles in an aqueous suspension can be agglomerated by air alone.

  3. Agglomerating combustor-gasifier method and apparatus for coal gasification

    DOEpatents

    Chen, Joseph L. P.; Archer, David H.

    1976-09-21

    A method and apparatus for gasifying coal wherein the gasification takes place in a spout fluid bed at a pressure of about 10 to 30 atmospheres and a temperature of about 1800.degree. to 2200.degree.F and wherein the configuration of the apparatus and the manner of introduction of gases for combustion and fluidization is such that agglomerated ash can be withdrawn from the bottom of the apparatus and gas containing very low dust loading is produced. The gasification reaction is self-sustaining through the burning of a stoichiometric amount of coal with air in the lower part of the apparatus to form the spout within the fluid bed. The method and apparatus are particularly suitable for gasifying coarse coal particles.

  4. Low-rank coal oil agglomeration

    DOEpatents

    Knudson, C.L.; Timpe, R.C.

    1991-07-16

    A low-rank coal oil agglomeration process is described. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and is usually coal-derived.

  5. The Volume-Outcome Relationship in Critically Ill Patients in Relation to the ICU-to-Hospital Bed Ratio.

    PubMed

    Sasabuchi, Yusuke; Yasunaga, Hideo; Matsui, Hiroki; Lefor, Alan K; Horiguchi, Hiromasa; Fushimi, Kiyohide; Sanui, Masamitsu

    2015-06-01

    A volume-outcome relationship in ICU patients has been suggested in recent studies. However, it is unclear whether the ICU-to-hospital bed ratio affects the volume-outcome relationship. The aim of this study is to investigate the relationship between hospital volume and in-hospital mortality of adult ICU patients in relation to the ratio of ICU beds to regular hospital beds. Retrospective cohort study. Four hundred seventy-seven Japanese hospitals from 2007 to 2012 in the Japanese Diagnosis Procedure Combination database. A total of 596,143 patients discharged from acute care hospitals. None. We analyzed data from 596,143 ICU patients from 2007 through 2012 using a nationwide administrative database. Patients were categorized into nine subgroups (the tertiles of hospital volume of ICU patients combined with the tertiles of ICU-to-hospital bed ratio). Multivariable logistic regression analyses were performed to examine the concurrent effects of hospital volume of ICU patients and ICU-to-hospital bed ratio on in-hospital mortality, with adjustment for patient and hospital characteristics. Higher hospital volume of ICU patients and a higher ICU-to-hospital bed ratio were independently associated with lower mortality. When patients were stratified by ICU-to-hospital bed ratio categories, in-hospital mortality was significantly lower in the high-volume subgroup (odds ratio, 0.74; 95% CI, 0.58-0.93) compared with the low-volume subgroup in hospitals with a high ICU-to-hospital bed ratio. However, these relationships were not significant in hospitals with low ICU-to-hospital bed ratios (odds ratio, 0.94; 95% CI, 0.59-1.50) or in hospitals with intermediate ICU-to-hospital bed ratios (odds ratio, 0.80; 95% CI, 0.71-1.08). An inverse relationship between hospital volume of ICU patients and mortality was seen only when the ICU-to-hospital bed ratio was sufficiently high. Regionalization and increasing the number of ICU beds in referral centers may improve patient outcomes.

  6. Soot agglomeration in isolated, free droplet combustion

    NASA Technical Reports Server (NTRS)

    Choi, M. Y.; Dryer, F. L.; Green, G. J.; Sangiovanni, J. J.

    1993-01-01

    Under the conditions of an isolated, free droplet experiment, hollow, carbonaceous structures, called soot spheres, were observed to form during the atmospheric pressure, low Reynolds number combustion of 1-methylnaphthalene. These structures which are agglomerates composed of smaller spheroidal units result from both thermophoretic effects induced by the envelope flame surrounding each drop and aerodynamic effects caused by changes in the relative gas/drop velocities. A chemically reacting flow model was used to analyze the process of sootshell formation during microgravity droplet combustion. The time-dependent temperature and gas property field surrounding the droplet was determined, and the soot cloud location for microgravity combustion of n-heptane droplets was predicted. Experiments showed that the sooting propensity of n-alkane fuel droplets can be varied through diluent substitution, oxygen-index variations, and ambient pressure reductions.

  7. Engineering development of selective agglomeration. Final report

    SciTech Connect

    Not Available

    1993-04-01

    This report presents the findings of the project entitled ``Engineering Development of Selective Agglomeration.`` The purpose is to develop selective agglomeration technology to a commercially acceptable level by 1993. Engineering development included bench-scale process development, component development adaptation or modification of existing unit operations, proof-of-concept (POC) module design, fabrication, testing, data evaluation, and conceptual design of a commercial facility. The information obtained during POC operation resulted in a technical and economic design base sufficient to support construction and operation of a commercial plant. Throughout this project performance targets for the engineering development of selective agglomeration process were to achieve 85% or greater Btu recovery at 85% or greater pyritic sulfur rejection (PSR). Additional objectives included producing a final clean-coal product with an ash content of 6% or less which is suitable for conventional coal handling systems. The selective agglomeration process, as applied to coal cleaning, is based on differences in the surface chemistry of coal and its associated impurities. Coal particles are hydrophobic (i.e., repel water) while the majority of its impurities are hydrophilic (i.e., stabilized in water). During selective agglomeration, a liquid (the agglomerant) that is immiscible with water is introduced into a coal-water slurry and agitated to disperse it in the slurry, thereby allowing it to come into contact with all particles in the slurry. The coal particles, due to their hydrophobic nature, are attracted to the agglomerant phase. The hydrophilic mineral impurities remain in the water phase. Continued agitation of the agglomerant-coated coal particles causes them to coalesce to form agglomerates. Once the agglomerates are formed, they are separated from the mineral matter-bearing aqueous phase by subsequent processing steps.

  8. The Effect of Bedding System Selected by Manual Muscle Testing on Sleep-Related Cardiovascular Functions

    PubMed Central

    Kuo, Terry B. J.; Li, Jia-Yi; Lai, Chun-Ting; Huang, Yu-Chun; Hsu, Ya-Chuan; Yang, Cheryl C. H.

    2013-01-01

    Background. Different types of mattresses affect sleep quality and waking muscle power. Whether manual muscle testing (MMT) predicts the cardiovascular effects of the bedding system was explored using ten healthy young men. Methods. For each participant, two bedding systems, one inducing the strongest limb muscle force (strong bedding system) and the other inducing the weakest limb force (weak bedding system), were identified using MMT. Each bedding system, in total five mattresses and eight pillows of different firmness, was used for two continuous weeks at the participant's home in a random and double-blind sequence. A sleep log, a questionnaire, and a polysomnography were used to differentiate the two bedding systems. Results and Conclusion. Heart rate variability and arterial pressure variability analyses showed that the strong bedding system resulted in decreased cardiovascular sympathetic modulation, increased cardiac vagal activity, and increased baroreceptor reflex sensitivity during sleep as compared to the weak bedding system. Different bedding systems have distinct cardiovascular effects during sleep that can be predicted by MMT. PMID:24371836

  9. Interventions designed to prevent healthcare bed-related injuries in patients.

    PubMed

    Anderson, Oliver; Boshier, Piers R; Hanna, George B

    2012-01-18

    Every patient in residential healthcare has a bed. Falling out of bed is associated with preventable patient harm. Various interventions to prevent injury are available. Bed rails are the most common intervention designed to prevent patients falling out of bed; however, their effectiveness is uncertain and bed rail entrapment can also result in injuries. To assess the effectiveness of interventions designed to prevent patient injuries and falls from their beds. We searched the Cochrane Injuries Group Specialised Register, Cochrane Central Register of Controlled Trials 2010, Issue 2 (The Cochrane Library), MEDLINE (Ovid), EMBASE (Ovid), CINAHL (EBSCO), ISOI Web of Science and Web-based trials registers (all to December 2010) as well as reference lists. Randomised controlled trials of interventions designed to prevent patient injuries from their beds which were conducted in hospitals, nursing care facilities or rehabilitation units were eligible for inclusion. Two review authors independently assessed the risk of bias and extracted data from the included studies. Authors contacted investigators to obtain missing information. Two studies met the inclusion criteria, involving a total of 22,106 participants. One study tested low height beds and the other tested bed exit alarms. Both studies used standard care for their control group and both studies were conducted in hospitals. No study investigating bed rails met the inclusion criteria. Due to the clinical heterogeneity of the interventions in the included studies pooling of data and meta-analysis was inappropriate, and so the results of the studies are described.A single cluster randomised trial of low height beds in 18 hospital wards, including 22,036 participants, found no significant reduction in the frequency of patient injuries due to their beds (there were no injuries in either group), patient falls in the bedroom (rate ratio 0.69, 95% CI 0.35 to 1.34), all falls (rate ratio 1.26, 95% CI 0.83 to 1.90) or patient

  10. Interventions designed to prevent healthcare bed-related injuries in patients.

    PubMed

    Anderson, Oliver; Boshier, Piers R; Hanna, George B

    2011-11-09

    Every patient in residential healthcare has a bed. Falling out of bed is associated with preventable patient harm. Various interventions to prevent injury are available. Bed rails are the most common intervention designed to prevent patients falling out of bed; however, their effectiveness is uncertain and bed rail entrapment can also result in injuries. To assess the effectiveness of interventions designed to prevent patient injuries and falls from their beds. We searched the Cochrane Injuries Group Specialised Register, Cochrane Central Register of Controlled Trials 2010, Issue 2 (The Cochrane Library), MEDLINE (Ovid), EMBASE (Ovid), CINAHL (EBSCO), ISOI Web of Science and Web-based trials registers (all to December 2010) as well as reference lists. Randomised controlled trials of interventions designed to prevent patient injuries from their beds which were conducted in hospitals, nursing care facilities or rehabilitation units were eligible for inclusion. Two review authors independently assessed the risk of bias and extracted data from the included studies. Authors contacted investigators to obtain missing information. Two studies met the inclusion criteria, involving a total of 22,106 participants. One study tested low height beds and the other tested bed exit alarms. Both studies used standard care for their control group and both studies were conducted in hospitals. No study investigating bed rails met the inclusion criteria. Due to the clinical heterogeneity of the interventions in the included studies pooling of data and meta-analysis was inappropriate, and so the results of the studies are described.A single cluster randomised trial of low height beds in 18 hospital wards, including 22,036 participants, found no significant reduction in the frequency of patient injuries due to their beds (there were no injuries in either group), patient falls in the bedroom (rate ratio 0.69, 95% CI 0.35 to 1.34), all falls (rate ratio 1.26, 95% CI 0.83 to 1.90) or patient

  11. An examination of flame shape related to convection heat transfer in deep-fuel beds

    Treesearch

    Kara M. Yedinak; Jack D. Cohen; Jason M. Forthofer; Mark A. Finney

    2010-01-01

    Fire spread through a fuel bed produces an observable curved combustion interface. This shape has been schematically represented largely without consideration for fire spread processes. The shape and dynamics of the flame profile within the fuel bed likely reflect the mechanisms of heat transfer necessary for the pre-heating and ignition of the fuel during fire spread....

  12. Modeling of particle agglomeration in nanofluids

    SciTech Connect

    Krishna, K. Hari; Neti, S.; Oztekin, A.; Mohapatra, S.

    2015-03-07

    Agglomeration strongly influences the stability or shelf life of nanofluid. The present computational and experimental study investigates the rate of agglomeration quantitatively. Agglomeration in nanofluids is attributed to the net effect of various inter-particle interaction forces. For the nanofluid considered here, a net inter-particle force depends on the particle size, volume fraction, pH, and electrolyte concentration. A solution of the discretized and coupled population balance equations can yield particle sizes as a function of time. Nanofluid prepared here consists of alumina nanoparticles with the average particle size of 150 nm dispersed in de-ionized water. As the pH of the colloid was moved towards the isoelectric point of alumina nanofluids, the rate of increase of average particle size increased with time due to lower net positive charge on particles. The rate at which the average particle size is increased is predicted and measured for different electrolyte concentration and volume fraction. The higher rate of agglomeration is attributed to the decrease in the electrostatic double layer repulsion forces. The rate of agglomeration decreases due to increase in the size of nano-particle clusters thus approaching zero rate of agglomeration when all the clusters are nearly uniform in size. Predicted rates of agglomeration agree adequate enough with the measured values; validating the mathematical model and numerical approach is employed.

  13. Modeling of particle agglomeration in nanofluids

    NASA Astrophysics Data System (ADS)

    Krishna, K. Hari; Neti, S.; Oztekin, A.; Mohapatra, S.

    2015-03-01

    Agglomeration strongly influences the stability or shelf life of nanofluid. The present computational and experimental study investigates the rate of agglomeration quantitatively. Agglomeration in nanofluids is attributed to the net effect of various inter-particle interaction forces. For the nanofluid considered here, a net inter-particle force depends on the particle size, volume fraction, pH, and electrolyte concentration. A solution of the discretized and coupled population balance equations can yield particle sizes as a function of time. Nanofluid prepared here consists of alumina nanoparticles with the average particle size of 150 nm dispersed in de-ionized water. As the pH of the colloid was moved towards the isoelectric point of alumina nanofluids, the rate of increase of average particle size increased with time due to lower net positive charge on particles. The rate at which the average particle size is increased is predicted and measured for different electrolyte concentration and volume fraction. The higher rate of agglomeration is attributed to the decrease in the electrostatic double layer repulsion forces. The rate of agglomeration decreases due to increase in the size of nano-particle clusters thus approaching zero rate of agglomeration when all the clusters are nearly uniform in size. Predicted rates of agglomeration agree adequate enough with the measured values; validating the mathematical model and numerical approach is employed.

  14. Effect of particle agglomeration in nanotoxicology.

    PubMed

    Bruinink, Arie; Wang, Jing; Wick, Peter

    2015-05-01

    The emission of engineered nanoparticles (ENPs) into the environment in increasing quantity and variety raises a general concern regarding potential effects on human health. Compared with soluble substances, ENPs exhibit additional dimensions of complexity, that is, they exist not only in various sizes, shapes and chemical compositions but also in different degrees of agglomeration. The effect of the latter is the topic of this review in which we explore and discuss the role of agglomeration on toxicity, including the fate of nanomaterials after their release and the biological effects they may induce. In-depth investigations of the effect of ENP agglomeration on human health are still rare, but it may be stated that outside the body ENP agglomeration greatly reduces human exposure. After uptake, agglomeration of ENPs reduces translocation across primary barriers such as lungs, skin or the gastrointestinal tract, preventing exposure of "secondary" organs. In analogy, also cellular ENP uptake and intracellular distribution are affected by agglomeration. However, agglomeration may represent a risk factor if it occurs after translocation across the primary barriers, and ENPs are able to accumulate within the tissue and thus reduce clearance efficiency.

  15. Percolative fragmentation and spontaneous agglomeration

    SciTech Connect

    Hurt, R.; Davis, K.

    1999-03-01

    Captive particle imaging experiments were performed on over 200 coal and char particles in the pulverized size range from four coals of various rank at oxygen concentration from 3--19 mol% and at gas temperatures of about 1250 K. Despite wide variations in single-particle behavior, the data set reveals two clear trends that provide new information on the nature of char combustion. First, the low-rank coal chars are observed to maintain their high reactivity through the late stages of combustion, thus avoiding the near-extinction events and long burnout tails observed for bituminous coal chars. Secondly, percolative fragmentation in the late stages of combustion is a rare event under these conditions. Some particles reach a percolation threshold rate in combustion, but typically undergo spontaneous agglomeration rather than liberation of the incipient fragments. It is concluded that percolative fragmentation behavior in the pulverized size range is determined not only by solid-phase connectivity, but also by a real competition between disruptive and cohesive forces present at the time of formation of the colloidal-sized incipient fragments.

  16. Anthropogenic sedimentation in Pacific Northwest streams inferred from Aquatic Habitat Survey datausing a relative bed stability index

    EPA Science Inventory

    We evaluated anthropogenic sedimentation in U.S. Pacific Northwest coastal streams using an index of relative bed stability (LRBS*) based on low flow survey data collected using the U.S. Environmental Protection Agency’s Environmental Monitoring and Assessment Program (EMAP) fiel...

  17. Anthropogenic sedimentation in Pacific Northwest streams inferred from Aquatic Habitat Survey datausing a relative bed stability index

    EPA Science Inventory

    We evaluated anthropogenic sedimentation in U.S. Pacific Northwest coastal streams using an index of relative bed stability (LRBS*) based on low flow survey data collected using the U.S. Environmental Protection Agency’s Environmental Monitoring and Assessment Program (EMAP) fiel...

  18. Agglomeration in Stripper Ash Coolers and Its Possible Remedial Solutions: a Case Study

    NASA Astrophysics Data System (ADS)

    Singh, Ravi Inder

    2016-04-01

    The bottom ash of circulating fluidized bed (CFB) boiler contains large amounts of physical heat. When low quality coals are used in these types of boilers, the ash content is normally more than 40 % and the physical heat loss is approximately 3 % if the bottom ash is discharged without cooling. Bottom ash cooler (BAC) is often used to treat the high temperature bottom ash to reclaim heat, and to facilitate the easily handling and transportation of ash. The CFB boiler at BLA Power, Newari, MP (India) is facing problems of clinker formation in strip ash coolers of plant since the installation of unit. These clinkers are basically agglomerates, which leads to defluidization of stripper ash cooler (BAC) units. There are two strip ash coolers in unit. Each strip ash cooler is capable of working independently. The proper functioning of both strip coolers is very important as it is going to increase the combustion efficiency of boiler by stripping of fine unburnt coal particles from ash, which are injected into the furnace. In this paper causes, characterization of agglomerates, thermo gravimetric analysis of fuel used, particular size distribution of coal and sand and possible remedial solution to overcome these agglomerates in strip ash coolers has also been presented. High temperature in compact separators, non uniform supply of coal and not removing small agglomerates from stripper ash cooler are among main causes of agglomeration in stripper ash cooler. Control of compact separator temperature, replacing 10-12 % of bed material and cleaning stripper ash cooler periodically will decrease agglomeration in stripper ash cooler of unit.

  19. Development of a gas-promoted oil agglomeration process. Technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Wheelock, T.D.

    1995-12-01

    Several scale model mixing systems have been built and are being utilized to study the gas-promoted, oil agglomeration process for cleaning coal. Numerous batch agglomeration tests have been conducted with these systems. During an individual test the progress of agglomeration has been monitored by observing either changes in agitator torque in the case of concentrated particle suspensions or changes in turbidity in the case of dilute suspensions. A mathematical model has been developed for relating the rate of agglomeration of coal particles to the rate of change of turbidity of a dilute particle suspension undergoing agglomeration. The model has been utilized for analyzing and interpreting the results of a number of oil agglomeration tests in which several different system parameters were varied.

  20. Significant bed elevation changes related to Gulf Stream dynamics on the South Carolina continental shelf

    USGS Publications Warehouse

    Gelfenbaum, G.; Noble, M.

    1993-01-01

    Photographs of the seabed taken from an instrumented bottom tripod located approximately 100 km east of Charleston, South Carolina, reveal bed elevation changes of over 20 cm between July and November 1978. The tripod was in 85 m of water and was equipped with two current meters at 38.7 and 100 cm from the bed, a pressure sensor, a transmissometer, which fouled early during the deployment, a temperature sensor and a camera. The sediment under the tripod was composed of poorly sorted sand, some shell debris and numerous small biological tubes. Bed roughness varied throughout the deployment from biologically-produced mounds (2-5 cm high and 5-20 cm diameter) to streaks to a smooth bed, depending upon the frequency and magnitude of the sediment transporting events. Even though these events were common, especially during the later part of the deployment, the bed was rarely rippled, and there was no evidence of large bedforms such as dunes or sand waves migrating through the field of view of the camera. Photographs did clearly show, however, a gradual net deposition of the bed of nearly 20 cm, followed by erosion of approximately 5 cm. The flow field near the bed was dominated by sub-tidal period currents. Hourly-averaged currents at 100 cm from the bed typically varied between 10 and 30 cm s-1 and occasionally were as high as 60 cm s-1. The large flow events were predominantly toward the southwest along the shelf in the opposite direction of the northeast flowing Gulf Stream. The cross-shore component of the flow near the bed was predominantly directed offshore due to a local topographic steering effect. Current, temperature and satellite data suggest that the largest flow events were associated with the advection of Gulf Stream filaments past the tripod. Erosion events, as seen from the photographs, were highly correlated with the passage of these Gulf Stream filaments past the tripod. Gradual deposition of sediment, which occurred during the first half of the

  1. Binge Eating Disorder (BED) in Relation to Addictive Behaviors and Personality Risk Factors

    PubMed Central

    Davis, Caroline; Mackew, Laura; Levitan, Robert D.; Kaplan, Allan S.; Carter, Jacqueline C.; Kennedy, James L.

    2017-01-01

    While there is good evidence that binge eating disorder (BED) is linked to higher-than-expected use of a broad range of addictive behaviors, mechanisms underlying this association are not well understood. Using a mediation-analytical approach with three age- and gender-matched groups – overweight/obese adults with (n = 42) and without (n = 104) BED, and normal-weight control participants (n = 73) – we tested the hypothesis that adults with BED would engage in more addictive behaviors and have higher scores on a personality-risk index than the two control groups. We also anticipated that the relationship between BED and addictive behaviors would be mediated by a high-risk personality profile. The predicted mediation effect was strongly supported. Contrary to expectation, BED participants did not engage in more addictive behaviors or have higher personality-risk scores than their weight-matched counterparts. However, both overweight/obese groups did have significantly higher scores than the normal-weight group. The relationships among personality risk, elevated body mass index (BMI), and addictive behaviors have important clinical implications, especially for treatments that target psycho-behavioral intervention for compulsive overeating and substance-use disorders. PMID:28487663

  2. Binge Eating Disorder (BED) in Relation to Addictive Behaviors and Personality Risk Factors.

    PubMed

    Davis, Caroline; Mackew, Laura; Levitan, Robert D; Kaplan, Allan S; Carter, Jacqueline C; Kennedy, James L

    2017-01-01

    While there is good evidence that binge eating disorder (BED) is linked to higher-than-expected use of a broad range of addictive behaviors, mechanisms underlying this association are not well understood. Using a mediation-analytical approach with three age- and gender-matched groups - overweight/obese adults with (n = 42) and without (n = 104) BED, and normal-weight control participants (n = 73) - we tested the hypothesis that adults with BED would engage in more addictive behaviors and have higher scores on a personality-risk index than the two control groups. We also anticipated that the relationship between BED and addictive behaviors would be mediated by a high-risk personality profile. The predicted mediation effect was strongly supported. Contrary to expectation, BED participants did not engage in more addictive behaviors or have higher personality-risk scores than their weight-matched counterparts. However, both overweight/obese groups did have significantly higher scores than the normal-weight group. The relationships among personality risk, elevated body mass index (BMI), and addictive behaviors have important clinical implications, especially for treatments that target psycho-behavioral intervention for compulsive overeating and substance-use disorders.

  3. Operational source receptor calculations for large agglomerations

    NASA Astrophysics Data System (ADS)

    Gauss, Michael; Shamsudheen, Semeena V.; Valdebenito, Alvaro; Pommier, Matthieu; Schulz, Michael

    2016-04-01

    reduction measures but they also indicate the relative importance of indigenous versus imported air pollution. The calculations are currently performed weekly by MET Norway for the Paris, London, Berlin, Oslo, Po Valley and Rhine-Ruhr regions and the results are provided free of charge at the MACC website (http://www.gmes-atmosphere.eu/services/aqac/policy_interface/regional_sr/). A proposal to extend this service to all EU capitals on a daily basis within the Copernicus Atmosphere Monitoring Service is currently under review. The tool is an important example illustrating the increased application of scientific tools to operational services that support Air Quality policy. This paper will describe this tool in more detail, focusing on the experimental setup, underlying assumptions, uncertainties, computational demand, and the usefulness for air quality for policy. Options to apply the tool for agglomerations outside the EU will also be discussed (making reference to, e.g., PANDA, which is a European-Chinese collaboration project).

  4. Diffusion and reaction in microbead agglomerates.

    PubMed

    Nunes Kirchner, Carolina; Träuble, Markus; Wittstock, Gunther

    2010-04-01

    Scanning electrochemical microscopy has been used to analyze the flux of p-aminonophenol (PAP) produced by agglomerates of polymeric microbeads modified with galactosidase as a model system for the bead-based heterogeneous immunoassays. With the use of mixtures of enzyme-modified and bare beads in defined ratio, agglomerates with different saturation levels of the enzyme modification were produced. The PAP flux depends on the intrinsic kinetics of the galactosidase, the local availability of the substrate p-aminophenyl-beta-D-galactopyranoside (PAPG), and the external mass transport conditions in the surrounding of the agglomerate and the internal mass transport within the bead agglomerate. The internal mass transport is influenced by the diffusional shielding of the modified beads by unmodified beads. SECM in combination with optical microscopy was used to determine experimentally the external flux. These data are in quantitative agreement with boundary element simulation considering the SECM microelectrode as an interacting probe and treating the Michaelis-Menten kinetics of the enzyme as nonlinear boundary conditions with two independent concentration variables [PAP] and [PAPG]. The PAPG concentration at the surface of the bead agglomerate was taken as a boundary condition for the analysis of the internal mass transport condition as a function of the enzyme saturation in the bead agglomerate. The results of this analysis are represented as PAP flux per contributing modified bead and the flux from freely suspended galactosidase-modified beads. These numbers are compared to the same number from the SECM experiments. It is shown that depending on the enzyme saturation level a different situation can arise where either beads located at the outer surface of the agglomerate dominate the contribution to the measured external flux or where the contribution of buried beads cannot be neglected for explaining the measured external flux.

  5. No sex-related differences in mortality in bed bugs (Hemiptera: Cimicidae) exposed to deltamethrin, and surviving bed bugs can recover.

    PubMed

    Feldlaufer, Mark F; Ulrich, Kevin R; Kramer, Matthew

    2013-04-01

    Exposure of a pyrethroid-susceptible strain of bed bugs, Cimex lectularius L. (Hemiptera: Cimicidae) to varying concentrations of deltamethrin for 24 h indicated no significant difference in mortality between males, females, and nymphs at 24 nor at 168 h postexposure when bed bugs were removed to untreated surfaces at 24 h. In addition, many bed bugs classified as morbid or moribund at 24 h and removed to untreated surfaces at this time, recovered by 336 h (2 wk) and were capable of feeding when given the opportunity. Adult female bed bugs that survived were able to lay eggs and the resulting nymphs blood-fed. By contrast, all bed bugs classified as morbid or moribund at 24 h that remained on deltamethrin-treated surfaces for 336 h either died or were still classified as morbid or moribund at the end of this time. No bed bugs classified as morbid or moribund blood-fed when given the opportunity at 2 wk, regardless of whether they remained on the treated surfaces or were removed to untreated surfaces. A power analysis demonstrated we would have detected even moderate differences in mortality between males and females, had differences existed. Therefore, using males exclusively in efficacy assays is a suitable strategy to preserve females for laboratory colony purposes. Results also indicated there is little reason to assess efficacy beyond 1 wk, even when bed bugs are exposed for only 24 h.

  6. Use of glow discharge in fluidized beds

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Wood, P. C.; Ballou, E. V.; Spitze, L. A. (Inventor)

    1981-01-01

    Static charges and agglomerization of particles in a fluidized bed systems are minimized by maintaining in at least part of the bed a radio frequency glow discharge. This approach is eminently suitable for processes in which the conventional charge removing agents, i.e., moisture or conductive particle coatings, cannot be used. The technique is applied here to the disproportionation of calcium peroxide diperoxyhydrate to yield calcium superoxide, an exceptionally water and heat sensitive reaction.

  7. Divestment of Beds and Related Ambulatory Services to Other Communities While Maintaining a Patient- and Family-Centred Approach.

    PubMed

    Corring, Deborah J; Gibson, Deborah; MustinPowell, Jill

    2016-01-01

    Individuals living with serious mental illness who require acute and/or tertiary mental healthcare services represent one of the most complex patient groups in the healthcare service delivery system. Provincial mental health policy has been committed to providing services closer to home and in the community rather than an institution wherever possible for some time. This paper articulates the strategies used by one organization to ensure the successful transfer of beds and related ambulatory services to four separate communities. In addition a case study is also provided to describe in more detail the complex changes that took place in order to accomplish the divestments of beds and related ambulatory services to one of the partner hospitals.

  8. Development of a full scale selective oil agglomeration plant

    SciTech Connect

    Donnelly, J.C.; Cooney, B.; Hoare, I.; Waugh, B.; Robinson, R.

    1998-12-31

    A research and development program managed by Australian Mining Investments Limited (AMI) on behalf of an investment syndicate was conducted with the objective of improving the efficiency and economy of the Selective Oil Agglomeration Process (SOAP), and developing viable commercial sized operating plants. Fewer than half the coal preparation plants in Australia beneficiate fine coal by froth flotation, the only viable alternative to SOAP for the recovery of low ash, fine and ultra fine coal. Those plants without flotation generally dispose of the ultra fine material, approximately {minus}100{micro}m in size, as tailings to waste. In the majority of cases this ultra fine waste contains more than 50% relatively low ash coal of saleable quality. It is believed that this coal constitutes a loss of 8--10 million tonnes per annum and that the coal mining industry would welcome a recovery process which has low capital and operating costs and will function automatically with minimal operator attention. The authors carried out a comprehensive literature study of selective oil agglomeration in order to gain a full understanding of the process and to plan the research program. Extensive studies were then undertaken on oil dispersion in the water phase, formation of oil water emulsions with surfactants and the optimization of surfactant selection. Oil and emulsion properties were investigated including stability, viscosity, temperature, concentration of components, time of formation, and cost. This work was followed by characterization studies on coals from the Gunnedah Basin and agglomeration test work on these coals. These agglomeration studies were performed firstly at bench level and then by using a small, 200 kg/hr continuous process development unit. The results were sufficiently encouraging to justify the design and construction of a fully instrumented, PLC controlled, 2 tph pilot plant at Gunnedah Colliery Coal Preparation Plant. Extensive trials were carried out on

  9. Contact mechanics of highly porous oxide nanoparticle agglomerates

    NASA Astrophysics Data System (ADS)

    Fabre, Andrea; Salameh, Samir; Ciacchi, Lucio Colombi; Kreutzer, Michiel T.; van Ommen, J. Ruud

    2016-07-01

    Efficient nanopowder processing requires knowledge of the powder's mechanical properties. Due to the large surface area to volume ratio, nanoparticles experience relatively strong attractive interactions, leading to the formation of micron-size porous structures called agglomerates. Significant effort has been directed towards the development of models and experimental procedures to estimate the elasticity of porous objects such as nanoparticle agglomerates; however, none of the existing models has been validated for solid fractions below 0.1. Here, we measure the elasticity of titania (TiO_2, 22 nm), alumina (Al_2O_3, 8 nm), and silica (SiO_2, 16 nm) nanopowder agglomerates by Atomic Force Microscopy, using a 3.75 μm glass colloid for the stress-strain experiments. Three sample preparations with varying degree of powder manipulation are assessed. The measured Young's moduli are in the same order of magnitude as those predicted by the model of Kendall et al., thus validating it for the estimation of the Young's modulus of structures with porosity above 90 %.

  10. Investigation on Agropellet Combustion in the Fluidized Bed

    NASA Astrophysics Data System (ADS)

    Isemin, R. L.; Konayahin, V. V.; Kuzmin, S. N.; Zorin, A. T.; Mikhalev, A. V.

    Agricultural wastes (straw, sunflower or millet husk, etc.) are difficult to use as fuel because of low bulk density and relatively big ash content with a low melting point. It is possible to produce agropellets of agricultural wastes which are suggested to combust in a fluidized bed of pellets alone, their char particles and ash. The characteristics of the process of fluidization of agropellets are investigated at room temperature. The experiments on agropellet combustion in a fluidized bed are carried out in an experimental set-up. The results of the experiments have shown that in such a bed the pellets produced of straw and millet husk combust with the same rate as those of wood though the latter contain 8.76 - 19.4 times less ash. The duration of combustion of the same portion of straw pellets in a fluidized bed is 3.74 - 7.01 times less than the duration of combustion of cut straw in a fixed bed. Besides, the movement of agropellets prevents agglomeration and slagging of a boiler furnace.

  11. Development of fireside performance indices, Task 7.33, Development of methods to predict agglomeration and deposition in FBCS, Task 7.36, Enhanced air toxics control, Task 7.45

    SciTech Connect

    Zygarlicke, C.J.; Mann, M.D.; Laudal, D.L.; Miller, S.J.

    1994-01-01

    The Energy & Environmental Research Center (EERC) has been developing advanced indices that rank coals according to their fouling and slagging propensity in utility boilers. The indices are based on sophisticated analytical techniques for identifying and quantifying coal inorganics and are useful in predicting the effects of proposed operational changes on ash deposition in coal-fired boilers. These indices are intended to provide an economical way to reduce the amount of full-scale testing needed to determine the best means of minimizing ash-related problems. The successful design and operation of the fluidized-bed combustor requires the ability to control and mitigate ash-related problems. The major ash-related problems in FBC are agglomeration of bed material, ash deposition on heat-transfer surfaces, ash deposition on refractory and uncooled surfaces, corrosion, and erosion. The focus of the Development of Methods to Predict Agglomeration and Deposition in FBCs is on the agglomeration and deposition problems in atmospheric bubbling and circulating beds. The 1990 Clean Air Act Amendments require study of air toxic emissions from coal combustion systems. Since most of the toxic metals present in coal will be in particulate form, a high level of fine-particle control appears to be the best approach to achieving a high level of air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and are not typically collected in particulate control devices. Therefore, the goal of this project is to develop methods that capture the vapor-phase metals while simultaneously achieving ultrahigh collection efficiency of particulate air toxics.

  12. Bed Bugs

    EPA Pesticide Factsheets

    Prevent, identify, and treat bed bug infestations using EPA’s step-by-step guides, based on IPM principles. Find pesticides approved for bed bug control, check out the information clearinghouse, and dispel bed bug myths.

  13. Effects of baffle configuration and tank size on spherical agglomerates of dimethyl fumarate in a common stirred tank.

    PubMed

    Lin, Po Yen; Lee, Hung Lin; Chen, Chih Wei; Lee, Tu

    2015-11-30

    To pave the way for technology transfer and scale up of the spherical agglomeration (SA) process for dimethyl fumarate, effects of the US, European and Kawashima type baffles and 0.5, 2.0 and 10 L-sized common stirred tank were studied. It was found that the particle size distribution varied significantly. However, the size-related properties such as dissolution profile and flowability of agglomerates from the same size cut after sieving could remain unchanged. The interior structure-related properties such as particle density and mechanical property of agglomerates upon baffle change and scale up from the same size cut were decayed and the agglomerates could become denser and stronger by prolonged maturation time. To maintain the same size distribution, agglomerates from any batch could have been separated and classified by sieving and then blended back together artificially by the desired weight% of each cut.

  14. Differentiating submarine channel-related thin-bedded turbidite facies: Outcrop examples from the Rosario Formation, Mexico

    NASA Astrophysics Data System (ADS)

    Hansen, Larissa; Callow, Richard; Kane, Ian; Kneller, Ben

    2017-08-01

    bioturbation intensities that are recorded from external levee environments where Scolicia is typically absent. Multiple blocks of external levee material are observed in the depositional terrace area where the proximal part of the external levee has collapsed into the channel-belt; their presence characterizes the channel-belt boundary zone. The development of recognition criteria for different types of channel-related thin-bedded turbidites is critical for the interpretation of sedimentary environments both at outcrop and in the subsurface, which can reduce uncertainty during hydrocarbon field appraisal and development.

  15. Timing of chopper herbicide site preparation relative to bedding in the establishment of lower coastal plain pine plantations

    Treesearch

    Dwight K. Lauer; Harold E. Quicke

    2006-01-01

    The timing of Chopper® (BASF Corporation, Research Triangle Park, NC) herbicide applications before and after bedding was examined at four Lower Coastal Plain locations. Two bedding regimes, mid-season and late-season, were included at each location. Mid-season bedding occurred between May and July and late-season bedding between September and November. No post-plant...

  16. Effect of hydration repulsion on nanoparticle agglomeration evaluated via a constant number Monte-Carlo simulation

    NASA Astrophysics Data System (ADS)

    Haven Liu, Haoyang; Lanphere, Jacob; Walker, Sharon; Cohen, Yoram

    2015-01-01

    The effect of hydration repulsion on the agglomeration of nanoparticles in aqueous suspensions was investigated via the description of agglomeration by the Smoluchowski coagulation equation using constant number Monte-Carlo simulation making use of the classical DLVO theory extended to include the hydration repulsion energy. Evaluation of experimental DLS measurements for TiO2, CeO2, SiO2, and α-Fe2O3 (hematite) at high IS (up to 900 mM) or low |ζ-potential| (≥1.35 mV) demonstrated that hydration repulsion energy can be above electrostatic repulsion energy such that the increased overall repulsion energy can significantly lower the agglomerate diameter relative to the classical DLVO prediction. While the classical DLVO theory, which is reasonably applicable for agglomeration of NPs of high |ζ-potential| (˜>35 mV) in suspensions of low IS (˜<1 mM), it can overpredict agglomerate sizes by up to a factor of 5 at high IS or low |ζ-potential|. Given the potential important role of hydration repulsion over a range of relevant conditions, there is merit in quantifying this repulsion energy over a wide range of conditions as part of overall characterization of NP suspensions. Such information would be of relevance to improved understanding of NP agglomeration in aqueous suspensions and its correlation with NP physicochemical and solution properties.

  17. Effect of the Additives on the Desulphurization Rate of Flash Hydrated and Agglomerated CFB Fly Ash

    NASA Astrophysics Data System (ADS)

    Li, D. X.; Li, H. L.; Xu, M.; Lu, J. F.; Liu, Q.; Zhang, J. S.; Yue, G. X.

    CFB fly ash from separators was mixed with water or the mixture of water and additives under the temperature of 363K by use of a blender. Then, this compound of fly ash and water or additives was pumped into a CFB combustion chamber by a sludge pump. Because the temperature of flue gas was high in CFB, the fly ash was hydrated fast and agglomerated in the same time. Through this process, the size of agglomerating fly ash is larger than the original particle and the relative residence time of agglomerated fly ash in CFB becomes longer. Therefore, the rate of utility of calcium in fly ash improves and the content of carbon in fly ash decreases. This results in a low Ca/S and low operational cost for CFB boiler. The additive is one key factor, which affects the rate of desulfurization of agglomerated fly ash. Effect of different additives on rate of desulfurization is not same. Cement and limestone are beneficiated to sulfur removal of agglomerated fly ash, but sodium silicate does not devote to the rate of sulfur removal of agglomerated fly ash.

  18. Soft- and hard-agglomerate aerosols made at high temperatures.

    PubMed

    Tsantilis, Stavros; Pratsinis, Sotiris E

    2004-07-06

    Criteria for aerosol synthesis of soft-agglomerate, hard-agglomerate, or even nonagglomerate particles are developed on the basis of particle sintering and coalescence. Agglomerate (or aggregate) particles are held together by weak, physical van der Waals forces (soft agglomerates) or by stronger chemical or sintering bonds (hard agglomerates). Accounting for simultaneous gas phase chemical reaction, coagulation, and sintering during the formation and growth of silica (SiO2) nanoparticles by silicon tetrachloride (SiCl4) oxidation and neglecting the spread of particle size distribution, the onset of hard-agglomerate formation is identified at the end of full coalescence, while the onset of soft-agglomerate formation is identified at the end of sintering. Process conditions such as the precursor initial volume fraction, maximum temperature, residence time, and cooling rate are explored, identifying regions for the synthesis of particles with a controlled degree of agglomeration (ratio of collision to primary particle diameters).

  19. Cross-bedding related anisotropy and its interplay with various boundary conditions in the formation and orientation of joints in an aeolian sandstone

    NASA Astrophysics Data System (ADS)

    Deng, Shang; Cilona, Antonino; Morrow, Carolyn; Mapeli, Cesar; Liu, Chun; Lockner, David; Prasad, Manika; Aydin, Atilla

    2015-08-01

    Previous research revealed that the cross-bedding related anisotropy in Jurassic aeolian Aztec Sandstone cropping out in the Valley of Fire State Park, Nevada, affects the orientation of compaction bands, also known as anti-cracks or closing mode structures. We hypothesize that cross-bedding should have a similar influence on the orientation of the opening mode joints within the same rock at the same location. To test this hypothesis, we investigated the relationship between the orientation of cross-beds and the orientation of different categories of joint sets including cross-bed package confined joints and joint zones in the Aztec Sandstone. The field data show that the cross-bed package confined joints occur at high-angle to bedding and trend roughly parallel to the dip direction of the cross-beds. In comparison, the roughly N-S trending joint zones appear not to be influenced by the cross-beds in any significant way but frequently truncate against the dune boundaries. To characterize the anisotropy due to cross-bedding in the Aztec Sandstone, we measured the P-wave velocities parallel and perpendicular to bedding from 11 samples and determined an average P-wave anisotropy to be slightly larger than 13%. From these results, a model based on the generalized Hooke's law for anisotropic materials is used to analyze deformation of cross-bedded sandstone as a transversely isotropic material. In the analysis, the dip angle of cross-beds is assumed to be constant and the strike orientation varying from 0° to 359° in the east (x), north (y), and up (z) coordinate system. We find qualitative agreement between most of the model results and the observed field relations between cross-beds and the corresponding joint sets. The results also suggest that uniaxial extension (εzz > εxx = εyy = 0) and axisymmetric extension (εxx = εyy < εzz and εxx = εyy > εzz) would amplify the influence of cross-bedding associated anisotropy on the joint orientation whereas a

  20. Prediction of Agglomeration, Fouling, and Corrosion Tendency of Fuels in CFB Co-Combustion

    NASA Astrophysics Data System (ADS)

    Barišć, Vesna; Zabetta, Edgardo Coda; Sarkki, Juha

    Prediction of agglomeration, fouling, and corrosion tendency of fuels is essential to the design of any CFB boiler. During the years, tools have been successfully developed at Foster Wheeler to help with such predictions for the most commercial fuels. However, changes in fuel market and the ever-growing demand for co-combustion capabilities pose a continuous need for development. This paper presents results from recently upgraded models used at Foster Wheeler to predict agglomeration, fouling, and corrosion tendency of a variety of fuels and mixtures. The models, subject of this paper, are semi-empirical computer tools that combine the theoretical basics of agglomeration/fouling/corrosion phenomena with empirical correlations. Correlations are derived from Foster Wheeler's experience in fluidized beds, including nearly 10,000 fuel samples and over 1,000 tests in about 150 CFB units. In these models, fuels are evaluated based on their classification, their chemical and physical properties by standard analyses (proximate, ultimate, fuel ash composition, etc.;.) alongside with Foster Wheeler own characterization methods. Mixtures are then evaluated taking into account the component fuels. This paper presents the predictive capabilities of the agglomeration/fouling/corrosion probability models for selected fuels and mixtures fired in full-scale. The selected fuels include coals and different types of biomass. The models are capable to predict the behavior of most fuels and mixtures, but also offer possibilities for further improvements.

  1. Effects of gasifying conditions and bed materials on fluidized bed steam gasification of wood biomass.

    PubMed

    Weerachanchai, Piyarat; Horio, Masayuki; Tangsathitkulchai, Chaiyot

    2009-02-01

    The effect of steam gasification conditions on products properties was investigated in a bubbling fluidized bed reactor, using larch wood as the starting material. For bed material effect, calcined limestone and calcined waste concrete gave high content of H(2) and CO(2), while silica sand provided the high content of CO. At 650 degrees C, calcined limestone proved to be most effective for tar adsorption and showed high ability to adsorb CO(2) in bed. At 750 degrees C it could not capture CO(2) but still gave the highest cold gas efficiency (% LHV) of 79.61%. Steam gasification gave higher amount of gas product and higher H(2)/CO ratio than those obtained with N(2) pyrolysis. The combined use of calcined limestone and calcined waste concrete with equal proportion contributed relatively the same gas composition, gas yield and cold gas efficiency as those of calcined limestone, but showed less attrition, sintering, and agglomeration propensities similar to the use of calcined waste concrete alone.

  2. Effect of temperature on wet agglomeration of crystals

    PubMed Central

    Maghsoodi, Maryam; Yari, Zahra

    2014-01-01

    Objective(s): This study dealt with the wet agglomeration process in which a small quantity of binder liquid was added into a suspension of crystals, directly in the stirring vessel where the crystallization took place. The purpose of this investigation was evaluation of the effect of temperature on the agglomeration process in order to gain insight into the mechanism of the formation of the agglomerates. Materials and Methods: Carbamazepine was used as a model drug and water/ethanol and isopropyl acetate were used as crystallization system and binder liquid, respectively. The agglomeration of crystals was carried out at various temperatures and the agglomerates were characterized in terms of size, morphology, density and mechanical strength. Results: Evaluation of the agglomerates along the course of agglomeration shows that the properties of the particles change gradually but substantially. Higher temperature of the system during agglomeration process favors the formation of more regular agglomerates with mechanically stronger and denser structure; this can be explained by the promotion effect of temperature on the agglomeration process. Conclusion: With optimized wet agglomeration temperature, spherical, dense, and strong agglomerates can be obtained. PMID:24967063

  3. Method for providing improved solid fuels from agglomerated subbituminous coal

    DOEpatents

    Janiak, Jerzy S.; Turak, Ali A.; Pawlak, Wanda; Ignasiak, Boleslaw L.

    1989-01-01

    A method is provided for separating agglomerated subbituminous coal and the heavy bridging liquid used to form the agglomerates. The separation is performed by contacting the agglomerates with inert gas or steam at a temperature in the range of 250.degree. to 350.degree. C. at substantially atmospheric pressure.

  4. Bed bugs.

    PubMed

    Foulke, Galen T; Anderson, Bryan E

    2014-09-01

    The term bed bug is applied to 2 species of genus Cimex: lectularius describes the common or temperate bed bug, and hemipterus its tropical cousin. Cimex lectularius is aptly named; its genus and species derive from the Latin words for bug and bed, respectively. Though the tiny pest is receiving increased public attention and scrutiny, the bed bug is hardly a new problem.

  5. Coupled changes in sand grain size and sand transport driven by changes in the upstream supply of sand in the Colorado River: relative importance of changes in bed-sand grain size and bed-sand area

    USGS Publications Warehouse

    Topping, D.J.; Rubin, D.M.; Melis, T.S.

    2007-01-01

    Sand transport in the Colorado River in Marble and Grand canyons was naturally limited by the upstream supply of sand. Prior to the 1963 closure of Glen Canyon Dam, the river exhibited the following four effects of sand supply limitation: (1) hysteresis in sediment concentration, (2) hysteresis in sediment grain size coupled to the hysteresis in sediment concentration, (3) production of inversely graded flood deposits, and (4) development or modification of a lag between the time of a flood peak and the time of either maximum or minimum (depending on reach geometry) bed elevation. Construction and operation of the dam has enhanced the degree to which the first two of these four effects are evident, and has not affected the degree to which the last two effects of sand supply limitation are evident in the Colorado River in Marble and Grand canyons. The first three of the effects involve coupled changes in suspended-sand concentration and grain size that are controlled by changes in the upstream supply of sand. During tributary floods, sand on the bed of the Colorado River fines; this causes the suspended sand to fine and the suspended-sand concentration to increase, even when the discharge of water remains constant. Subsequently, the bed is winnowed of finer sand, the suspended sand coarsens, and the suspended-sand concentration decreases independently of discharge. Also associated with these changes in sand supply are changes in the fraction of the bed that is covered by sand. Thus, suspended-sand concentration in the Colorado River is likely regulated by both changes in the bed-sand grain size and changes in the bed-sand area. A physically based flow and suspended-sediment transport model is developed, tested, and applied to data from the Colorado River to evaluate the relative importance of changes in the bed-sand grain size and changes in the bed-sand area in regulating suspended-sand concentration. Although the model was developed using approximations for steady

  6. Quantifying Retail Agglomeration using Diverse Spatial Data.

    PubMed

    Piovani, Duccio; Zachariadis, Vassilis; Batty, Michael

    2017-07-14

    Newly available data on the spatial distribution of retail activities in cities makes it possible to build models formalized at the level of the single retailer. Current models tackle consumer location choices at an aggregate level and the opportunity new data offers for modeling at the retail unit level lacks an appropriate theoretical framework. The model we present here helps to address these issues. Based on random utility theory, we have built it around the idea of quantifying the role of floor-space and agglomeration in retail location choice. We test this model on the inner area of Greater London. The results are consistent with a super linear scaling of a retailer's attractiveness with its floorspace, and with an agglomeration effect approximated as the total retail floorspace within a 300 m radius from each shop. Our model illustrates many of the issues involved in testing and validating urban simulation models involving spatial data and its aggregation to different spatial scales.

  7. Encapsulation of hazardous wastes into agglomerates

    SciTech Connect

    Guloy, A.

    1992-01-28

    The objective of this study was to investigate the feasibility of using the cementitious properties and agglomeration characteristics of coal conversion byproducts to encapsulate and immobilize hazardous waste materials. The intention was to establish an economical way of co-utilization and co-disposal of wastes. In addition, it may aid in the eradication of air pollution problems associated with the fine-powdery nature of fly ash. Encapsulation into agglomerates is a novel approach of treating toxic waste. Although encapsulation itself is not a new concept, existing methods employ high-cost resins that render them economically unfeasible. In this investigation, the toxic waste was contained in a concrete-like matrix whereby fly ash and other cementitious waste materials were utilized. The method incorporates the principles of solidification, stabilization and agglomeration. Another aspect of the study is the evaluation of the agglomeration as possible lightweight aggregates. Since fly ash is commercially used as an aggregate, it would be interesting to study the effect of incorporating toxic wastes in the strength development of the granules. In the investigation, the fly ash self-cementation process was applied to electroplating sludges as the toxic waste. The process hoped to provide a basis for delisting of the waste as hazardous and, thereby greatly minimize the cost of its disposal. Owing to the stringent regulatory requirements for hauling and disposal of hazardous waste, the cost of disposal is significant. The current practice for disposal is solidifying the waste with portland cement and dumping the hardened material in the landfill where the cost varies between $700--950/ton. Partially replacing portland cement with fly ash in concrete has proven beneficial, therefore applying the same principles in the treatment of toxic waste looked very promising.

  8. Agglomeration and Sedimentation of MWCNTS in Chloroform

    NASA Astrophysics Data System (ADS)

    Eremin, Yu. S.; Kolesnikova, A. A.; Grekhov, A. M.

    The kinetics of agglomeration of multiwalled carbon nanotubes dispersed in chloroform has been studied by the methods of optical spectroscopy and dynamic light scattering. With the use of the models of the diffusion of cylindrical particles, the sizes of particles obtained by this method can be recalculated to the DLS data and the concentration at which the dispersion of individual МWCNTs occurs can be determined.

  9. Iron oxide nanoparticle agglomeration influences dose rates and modulates oxidative stress-mediated dose–response profiles in vitro

    PubMed Central

    Sharma, Gaurav; Kodali, Vamsi; Gaffrey, Matthew; Wang, Wei; Minard, Kevin R.; Karin, Norman J.; Teeguarden, Justin G.; Thrall, Brian D.

    2014-01-01

    Spontaneous agglomeration of engineered nanoparticles (ENPs) is a common problem in cell culture media which can confound interpretation of in vitro nanotoxicity studies. The authors created stable agglomerates of iron oxide nanoparticles (IONPs) in conventional culture medium, which varied in hydrodynamic size (276 nm–1.5 μm) but were composed of identical primary particles with similar surface potentials and protein coatings. Studies using C10 lung epithelial cells show that the dose rate effects of agglomeration can be substantial, varying by over an order of magnitude difference in cellular dose in some cases. Quantification by magnetic particle detection showed that small agglomerates of carboxylated IONPs induced greater cytotoxicity and redox-regulated gene expression when compared with large agglomerates on an equivalent total cellular IONP mass dose basis, whereas agglomerates of amine-modified IONPs failed to induce cytotoxicity or redox-regulated gene expression despite delivery of similar cellular doses. Dosimetry modelling and experimental measurements reveal that on a delivered surface area basis, large and small agglomerates of carboxylated IONPs have similar inherent potency for the generation of ROS, induction of stress-related genes and eventual cytotoxicity. The results suggest that reactive moieties on the agglomerate surface are more efficient in catalysing cellular ROS production than molecules buried within the agglomerate core. Because of the dynamic, size and density-dependent nature of ENP delivery to cells in vitro, the biological consequences of agglomeration are not discernible from static measures of exposure concentration (μg/ml) alone, highlighting the central importance of integrated physical characterisation and quantitative dosimetry for in vitro studies. The combined experimental and computational approach provides a quantitative framework for evaluating relationships between the biocompatibility of nanoparticles and their

  10. Iron Oxide Nanoparticle Agglomeration Influences Dose-Rates and Modulates Oxidative Stress Mediated Dose-Response Profiles In Vitro

    SciTech Connect

    Sharma, Gaurav; Kodali, Vamsi K.; Gaffrey, Matthew J.; Wang, Wei; Minard, Kevin R.; Karin, Norman J.; Teeguarden, Justin G.; Thrall, Brian D.

    2013-07-31

    Spontaneous agglomeration of engineered nanoparticles (ENPs) is a common problem in cell culture media which can confound interpretation of in vitro nanotoxicity studies. The authors created stable agglomerates of iron oxide nanoparticles (IONPs) in conventional culture medium, which varied in hydrodynamic size (276 nm-1.5 μm) but were composed of identical primary particles with similar surface potentials and protein coatings. Studies using C10 lung epithelial cells show that the dose rate effects of agglomeration can be substantial, varying by over an order of magnitude difference in cellular dose in some cases. Quantification by magnetic particle detection showed that small agglomerates of carboxylated IONPs induced greater cytotoxicity and redox-regulated gene expression when compared with large agglomerates on an equivalent total cellular IONP mass dose basis, whereas agglomerates of amine-modified IONPs failed to induce cytotoxicity or redox-regulated gene expression despite delivery of similar cellular doses. Dosimetry modelling and experimental measurements reveal that on a delivered surface area basis, large and small agglomerates of carboxylated IONPs have similar inherent potency for the generation of ROS, induction of stress-related genes and eventual cytotoxicity. The results suggest that reactive moieties on the agglomerate surface are more efficient in catalysing cellular ROS production than molecules buried within the agglomerate core. Because of the dynamic, size and density-dependent nature of ENP delivery to cells in vitro, the biological consequences of agglomeration are not discernible from static measures of exposure concentration (μg/ml) alone, highlighting the central importance of integrated physical characterisation and quantitative dosimetry for in vitro studies. The combined experimental and computational approach provides a quantitative framework for evaluating relationships between the biocompatibility of nanoparticles and their

  11. Combustion of single and agglomerated aluminum particles in solid rocket motor flows

    NASA Astrophysics Data System (ADS)

    Melcher, John Charles, IV

    2001-07-01

    Single and agglomerated aluminum droplets were studied in a solid rocket motor (SRM) test chamber with optical access to the internal flow at 6--22 atm and 2300 K. The chamber was pressurized by burning a main grain AP/HTPB propellant, and the burning aluminum droplets were generated by a smaller aluminized solid propellant sample, center-mounted in the flow. A 35 mm camera was used with a chopper wheel to give droplet flame diameter vs. time measurements of the burning droplets in flight, from which bum-rate laws were developed. A high-speed video CCD was used with high-magnification optics in order to image the flame/smoke cloud surrounding the burning liquid droplets. The intensity profiles of the droplet images were de-convoluted using an Abel inversion to give true intensity profiles. Both single and agglomerated droplets were studied, where agglomerates are comprised of hundreds of parent particles or more. The Abel inversion results show that the relative smoke cloud size is not constant with diameter, but instead grows as the droplet shrinks, by ˜D -0.5, for both the single and agglomerated droplets. Measured diameter trajectories show that for single droplets, the diameter law is D 0.75 = DO0.75 = 8·t [mu m, msec], and for agglomerated droplets, D 1.0 = Do1.0 - 20·t, such that the single droplets burn faster than the agglomerates. For both single and agglomerated droplets, the burning rate slope k did not change significantly over the chamber pressure studied. Lastly, a model was developed to describe the oxide cap accumulation on the droplet surface from the oxide smoke cloud surrounding the droplet. Results suggest that less oxide accumulates in high-pressure SRMs when considering mass burning rates for different relative cap sizes. The thermophoretic force, which can control oxide transport only over the cap, decreases with pressure.

  12. Coal hydrogenation and deashing in ebullated bed catalytic reactor

    DOEpatents

    Huibers, Derk T. A.; Johanson, Edwin S.

    1983-01-01

    An improved process for hydrogenation of coal containing ash with agglomeration and removal of ash from an ebullated bed catalytic reactor to produce deashed hydrocarbon liquid and gas products. In the process, a flowable coal-oil slurry is reacted with hydrogen in an ebullated catalyst bed reaction zone at elevated temperature and pressure conditions. The upward velocity and viscosity of the reactor liquid are controlled so that a substantial portion of the ash released from the coal is agglomerated to form larger particles in the upper portion of the reactor above the catalyst bed, from which the agglomerated ash is separately withdrawn along with adhering reaction zone liquid. The resulting hydrogenated hydrocarbon effluent material product is phase separated to remove vapor fractions, after which any ash remaining in the liquid fraction can be removed to produce substantially ash-free coal-derived liquid products.

  13. Laboratory observations of artificial sand and oil agglomerates video and velocity data

    USGS Publications Warehouse

    Jenkins, Robert; Dalyander, P. Soupy; Penko, Allison; Long, Joseph W.; Nelson, Timothy

    2017-01-01

    The U.S. Geological Survey conducted experiments during March of 2014 to expand the available data on sand and oil agglomerate motion; test shear stress based incipient motion parameterizations in a controlled, laboratory setting; and directly observe sand and oil agglomerate exhumation and burial processes. Experiments were carried out at the Naval Research Laboratory, Stennis Space Center, Stennis, Mississippi using a small-oscillatory flow tunnel. HD Video data was collected by two Canon 7D DSLR cameras. 3D flow velocity data was captured by a Vectrino acoustic Doppler current profiler. Additional video data was captured by a GoPro camera placed within the small-oscillatory flow tunnel. For the false-floor incipient motion experiment, movies which combine video data, flow velocity data, calculations of shear stress, and the instant of incipient motion were created. For the movable bed sea-floor interaction experiment, movies which combine video data and flow velocity data were created.

  14. Age-related differences in lean mass, protein synthesis and skeletal muscle markers of proteolysis after bed rest and exercise rehabilitation.

    PubMed

    Tanner, Ruth E; Brunker, Lucille B; Agergaard, Jakob; Barrows, Katherine M; Briggs, Robert A; Kwon, Oh Sung; Young, Laura M; Hopkins, Paul N; Volpi, Elena; Marcus, Robin L; LaStayo, Paul C; Drummond, Micah J

    2015-09-15

    Bed rest-induced muscle loss and impaired muscle recovery may contribute to age-related sarcopenia. It is unknown if there are age-related differences in muscle mass and muscle anabolic and catabolic responses to bed rest. A secondary objective was to determine if rehabilitation could reverse bed rest responses. Nine older and fourteen young adults participated in a 5-day bed rest challenge (BED REST). This was followed by 8 weeks of high intensity resistance exercise (REHAB). Leg lean mass (via dual-energy X-ray absorptiometry; DXA) and strength were determined. Muscle biopsies were collected during a constant stable isotope infusion in the postabsorptive state and after essential amino acid (EAA) ingestion on three occasions: before (PRE), after bed rest and after rehabilitation. Samples were assessed for protein synthesis, mTORC1 signalling, REDD1/2 expression and molecular markers related to muscle proteolysis (MURF1, MAFBX, AMPKα, LC3II/I, Beclin1). We found that leg lean mass and strength decreased in older but not younger adults after bedrest (P < 0.05) and was restored after rehabilitation. EAA-induced mTORC1 signalling and protein synthesis increased before bed rest in both age groups (P < 0.05). Although both groups had blunted mTORC1 signalling, increased REDD2 and MURF1 mRNA after bedrest, only older adults had reduced EAA-induced protein synthesis rates and increased MAFBX mRNA, p-AMPKα and the LC3II/I ratio (P < 0.05). We conclude that older adults are more susceptible than young persons to muscle loss after short-term bed rest. This may be partially explained by a combined suppression of protein synthesis and a marginal increase in proteolytic markers. Finally, rehabilitation restored bed rest-induced deficits in lean mass and strength in older adults. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  15. Development of a Gas-Promoted Oil Agglomeration Process

    SciTech Connect

    C. Nelson; F. Zhang; J. Drzymala; M. Shen; R. Abbott; T. D. Wheelock

    1997-11-01

    The preliminary laboratory-scale development of a gas-promoted, oil agglomeration process for cleaning coal was carried out with scale model mixing systems in which aqueous suspensions of ultrafine coal particles were treated with a liquid hydrocarbon and a small amount of air. The resulting agglomerates were recovered by screening. During a batch agglomeration test the progress of agglomeration was monitored by observing changes in agitator torque in the case of concentrated suspensions or by observing changes in turbidity in the case of dilute suspensions. Dilute suspensions were employed for investigating the kinetics of agglomeration, whereas concentrated suspensions were used for determining parameters that characterize the process of agglomeration. A key parameter turned out to be the minimum time te required to produce compact spherical agglomerates. Other important parameters included the projected area mean particle diameter of the agglomerates recovered at the end of a test as well as the ash content and yield of agglomerates. Batch agglomeration tests were conducted with geometrically similar mixing tanks which ranged in volume from 0.346 to 11.07 liters. Each tank was enclosed to control the amount of air present. A variable speed agitator fitted with a six blade turbine impeller was used for agitation. Tests were conducted with moderately hydrophobic Pittsburgh No. 8 coal and with more hydrophobic Upper Freeport coal using either n-heptane, i-octane, or hexadecane as an agglomerant.

  16. Aluminum agglomeration involving the second mergence of agglomerates on the solid propellants burning surface: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Ao, Wen; Liu, Xin; Rezaiguia, Hichem; Liu, Huan; Wang, Zhixin; Liu, Peijin

    2017-07-01

    The agglomeration of aluminum particles usually occurs on the burning surface of aluminized composite propellants. It leads to low propellant combustion efficiency and high two-phase flow losses. To reach a thorough understanding of aluminum agglomeration behaviors, agglomeration processes, and particles size distribution of Al/AP/RDX/GAP propellants were studied by using a cinephotomicrography experimental technique, under 5 MPa. Accumulation, aggregation, and agglomeration phenomena of aluminum particles have been inspected, as well as the flame asymmetry of burning agglomerates. Results reveals that the dependency of the mean and the maximum agglomeration diameter to the burning rate and the virgin aluminum size have the same trend. A second-time mergence of multiple agglomerates on the burning surface is unveiled. Two typical modes of second mergence are concluded, based upon vertical and level movement of agglomerates, respectively. The latter mode is found to be dominant and sometimes a combination of the two modes may occur. A new model of aluminum agglomeration on the burning surface of composite propellants is derived to predict the particulates size distribution with a low computational amount. The basic idea is inspired from the well-known pocket models. The pocket size of the region formed by adjacent AP particles is obtained through scanning electron microscopy of the propellant cross-section coupled to an image processing method. The second mergence mechanism, as well as the effect of the burning rate on the agglomeration processes, are included in the present model. The mergence of two agglomerates is prescribed to occur only if their separation distance is less than a critical value. The agglomerates size distribution resulting from this original model match reasonably with the experimental data. Moreover, the present model gives superior results for mean agglomeration diameter compared to common empirical and pocket models. The average prediction

  17. Single domain PEMFC model based on agglomerate catalyst geometry

    NASA Astrophysics Data System (ADS)

    Siegel, N. P.; Ellis, M. W.; Nelson, D. J.; von Spakovsky, M. R.

    A steady two-dimensional computational model for a proton exchange membrane (PEM) fuel cell is presented. The model accounts for species transport, electrochemical kinetics, energy transport, current distribution, and water uptake and release in the catalyst layer. The governing differential equations are solved over a single computational domain, which consists of a gas channel, gas diffusion layer, and catalyst layer for both the anode and cathode sides of the cell as well as the solid polymer membrane. The model for the catalyst regions is based on an agglomerate geometry, which requires water species to exist in both dissolved and gaseous forms simultaneously. Data related to catalyst morphology, which was required by the model, was obtained via a microscopic analysis of a commercially available membrane electrode assembly (MEA). The coupled set of differential equations is solved with the commercial computational fluid dynamics (CFD) solver, CFDesign™, and is readily adaptable with respect to geometry and material property definitions. The results show that fuel cell performance is highly dependent on catalyst structure, specifically the relative volume fractions of gas pores and polymer membrane contained within the active region as well as the geometry of the individual agglomerates.

  18. Paleontologic and stratigraphic relations of phosphate beds in Upper Cretaceous rocks of the Cordillera Oriental, Colombia

    USGS Publications Warehouse

    Maughan, Edwin K.; Zambrano O., Francisco; Mojica G., Pedro; Abozaglo M., Jacob; Pachon P., Fernando; Duran R., Raul

    1979-01-01

    Phosphorite crops out in the Cordillera Oriental of the Colombian Andes in rocks of Late Cretaceous age as strata composed mostly of pelletal carbonate fluorapatite. One stratum of Santonian age near the base of the Galembo Member of the La Luna Formation crops out at many places in the Departments of Santander and Norte de Santander and may be of commercial grade. This stratum is more than one meter thick at several places near Lebrija and near Sardinata, farther south it is locally one meter thick or more near the base of the Guadalupe Formation in the Department of Boyaca. Other phosphorite beds are found at higher stratigraphic levels in the Galembo Member and the Guadalupe Formation, and at some places these may be commercial also. A stratigraphically lower phosphorite occurs below the Galembo Member in the Capacho Formation (Cenomanian age) in at least one area near the town of San Andres, Santander. A phosphorite or pebbly phosphate conglomerate derived from erosion of the Galembo Member forms the base of the Umir Shale and the equivalent Colon Shale at many places. Deposition of the apatite took place upon the continental shelf in marine water of presumed moderate depth between the Andean geosyncline and near-shore detrital deposits adjacent to the Guayana shield. Preliminary calculations indicate phosphorite reserves of approximately 315 million metric tons in 9 areas, determined from measurements of thickness, length of the outcrop, and by projecting the reserves to a maximum of 1,000 meters down the dip of the strata into the subsurface. Two mines were producing phosphate rock in 1969; one near Turmeque, Boyaca, and the other near Tesalia, Huila.

  19. Development and application of a process window for achieving high-quality coating in a fluidized bed coating process.

    PubMed

    Laksmana, F L; Hartman Kok, P J A; Vromans, H; Frijlink, H W; Van der Voort Maarschalk, K

    2009-01-01

    Next to the coating formulation, process conditions play important roles in determining coating quality. This study aims to develop an operational window that separates layering from agglomeration regimes and, furthermore, the one that leads to the best coating quality in a fluidized bed coater. The bed relative humidity and the droplet size of the coating aerosol were predicted using a set of engineering models. The coating quality was characterized using a quantitative image analysis method, which measures the coating thickness distribution, the total porosity, and the pore size in the coating. The layering regime can be achieved by performing the coating process at a certain excess of the viscous Stokes number (DeltaSt(v)). This excess is dependent on the given bed relative humidity and droplet size. The higher the bed relative humidity, the higher is the DeltaSt(v) required to keep the process in the layering regime. Further, it is shown that using bed relative humidity and droplet size alone is not enough to obtain constant coating quality. The changes in bed relative humidity and droplet size have been identified to correlate to the fractional area of particles sprayed per unit of time. This parameter can effectively serve as an additional parameter to be considered for a better control on the coating quality. High coating quality is shown to be achieved by performing the process close to saturation and spraying droplets small enough to obtain high spraying rate, but not too small to cause incomplete coverage of the core particles.

  20. Stable nanoparticle aggregates/agglomerates of different sizes and the effect of their size on hemolytic cytotoxicity.

    PubMed

    Zook, Justin M; Maccuspie, Robert I; Locascio, Laurie E; Halter, Melissa D; Elliott, John T

    2011-12-01

    To study the toxicity of nanoparticles under relevant conditions, it is critical to disperse nanoparticles reproducibly in different agglomeration states in aqueous solutions compatible with cell-based assays. Here, we disperse gold, silver, cerium oxide, and positively-charged polystyrene nanoparticles in cell culture media, using the timing between mixing steps to control agglomerate size in otherwise identical media. These protein-stabilized dispersions are generally stable for at least two days, with mean agglomerate sizes of ∼23 nm silver nanoparticles ranging from 43-1400 nm and average relative standard deviations of less than 10%. Mixing rate, timing between mixing steps and nanoparticle concentration are shown to be critical for achieving reproducible dispersions. We characterize the size distributions of agglomerated nanoparticles by further developing dynamic light scattering theory and diffusion limited colloidal aggregation theory. These theories frequently affect the estimated size by a factor of two or more. Finally, we demonstrate the importance of controlling agglomeration by showing that large agglomerates of silver nanoparticles cause significantly less hemolytic toxicity than small agglomerates.

  1. Nearshore dynamics of artificial sand and oil agglomerates

    USGS Publications Warehouse

    Dalyander, P. Soupy; Plant, Nathaniel G.; Long, Joseph W.; McLaughlin, Molly R.

    2015-01-01

    Weathered oil can mix with sediment to form heavier-than-water sand and oil agglomerates (SOAs) that can cause beach re-oiling for years after a spill. Few studies have focused on the physical dynamics of SOAs. In this study, artificial SOAs (aSOAs) were created and deployed in the nearshore, and shear stress-based mobility formulations were assessed to predict SOA response. Prediction sensitivity to uncertainty in hydrodynamic conditions and shear stress parameterizations were explored. Critical stress estimates accounting for large particle exposure in a mixed bed gave the best predictions of mobility under shoaling and breaking waves. In the surf zone, the 10-cm aSOA was immobile and began to bury in the seafloor while smaller size classes dispersed alongshore. aSOAs up to 5 cm in diameter were frequently mobilized in the swash zone. The uncertainty in predicting aSOA dynamics reflects a broader uncertainty in applying mobility and transport formulations to cm-sized particles.

  2. Micro-agglomerate flotation for deep cleaning of coal. Final report

    SciTech Connect

    Chander, S.; Hogg, R.

    1997-01-15

    The development of practical technologies for the deep cleaning of coal has been seriously hampered by the problems of carrying out efficient coal/mineral separations at the very fine sizes (often finer than 10 {micro}m) needed to achieve adequate liberation of the mineral matter from the coal matrix. In this investigation a hybrid process--Micro-agglomerate flotation--which is a combination of oil-agglomeration and froth flotation was studied. The basic concept is to use small quantities of oil to promote the formation of dense micro-agglomerates with minimal entrapment of water and mineral particles and to use froth flotation to separate these micro-agglomerates from the water/dispersed-mineral phase. Since the floating units will be relatively large agglomerates (30--50 {micro}m in size) rather than fine coal particles (1--10 {micro}m) the problems of froth overload and water/mineral carryover should be significantly alleviated. There are, however, complications. The process involves at least five phases: two or more solids (coal and mineral), two liquids (oil and water) and one gas (air). It is demonstrated in this study that the process is very sensitive to fluctuations in operating parameters. It is necessary to maintain precise control over the chemistry of the liquid phases as well as the agitation conditions in order to promote selectivity. Both kinetics as well as thermodynamic factors play a critical role in determining overall system response.

  3. Hydrodynamic chromatography coupled with single particle-inductively coupled plasma mass spectrometry for investigating nanoparticles agglomerates.

    PubMed

    Rakcheev, Denis; Philippe, Allan; Schaumann, Gabriele E

    2013-11-19

    Studying the environmental fate of engineered or natural colloids requires efficient methods for measuring their size and quantifying them in the environment. For example, an ideal method should maintain its correctness, accuracy, reproducibility, and robustness when applied to samples contained in complex matrixes and distinguish the target particles from the natural colloidal background signals. Since it is expected that a large portion of nanoparticles will form homo- or heteroagglomerates when released into environmental media, it is necessary to differentiate agglomerates from primary particles. At present, most sizing techniques do not fulfill these requirements. In this study, we used online coupling of two promising complementary sizing techniques: hydrodynamic chromatography (HDC) and single-particle ICPMS analysis to analyze gold nanoparticles agglomerated under controlled conditions. We used the single-particle mode of the ICPMS detector to detect single particles eluted from an HDC-column and determine a mass and an effective diameter for each particle using a double calibration approach. The average agglomerate relative density and fractal dimension were calculated using these data and used to follow the morphological evolution of agglomerates over time during the agglomeration process. The results demonstrate the ability of HDC coupled to single-particle analysis to identify and characterize nanoparticle homoagglomerates and is a very promising technique for the analysis of colloids in complex media.

  4. Chemiluminescence in the Agglomeration of Metal Clusters

    PubMed

    König; Rabin; Schulze; Ertl

    1996-11-22

    The agglomeration of copper or silver atoms in a matrix of noble gas atoms to form small clusters may be accompanied by the emission of visible light. Spectral analysis reveals the intermediate formation of electronically excited atoms and dimers as the source of the chemiluminescence. A mechanism is proposed, according to which the gain in binding energy upon cluster formation may even lead to the ejection of excited fragments as a result of unstable intermediate configurations. A similar concept was introduced in the field of nuclear reactions by Niels Bohr 60 years ago.

  5. Dreissena polymorpha Pall. postveligers in submersed macrophyte beds of Put-in-Bay, Ohio, as related to rate and density of settlement, macrophyte preference, water depth, and position within beds

    SciTech Connect

    Moore, D.L.

    1995-06-01

    Increased water clarity due in large part to the invasion and spread of Dreissena polymorpha Pall., has allowed reestablishment of nearly continuous beds of submersed macrophytes in Put-in-Bay, Ohio. These beds now serve as sites for settlement by Dreissena veligers. Four transects extending from a maximum depth of 4.0 m to a minimum depth of 0.5 m were established in 1994, to document the time of recruitment, density of postveliger settlement, preferred macrophyte as a substrate, and effects of water depth and location within transects on recruitment. Settlement densities were determined for 100 g wet weight samples of macrophytes harvested along transects by snorkel and scuba. Peak settlement occurred 23 August, 11 days after the second planktonic veliger peak, but continued until early October. Maximum densities were greatest in 1.5-3.5 m water nearer the lakeward end of the transects and decreased in 1.0 m water or shoreward in dense submersed macrophyte beds. A maximum density of 15,150 Dreissena/100 g macrophyte occurred on the perennial Myriophyllum spicatum L., although mean settlement densities were greatest for the perennials M. spicatum, Ceratophyllum demersum L., and the annuals Vallisneria americana Michx. and Najas quadalupensis (Spreng.) Magnus. Macrophyte preference as a settling substrate is most probably a reflection of relative macrophyte abundance and position within dense beds rather than a particular plant architecture. Assessment of densities after autumnal vegetational growth is not yet complete.

  6. Triggered release of ciprofloxacin from nanostructured agglomerated vesicles

    PubMed Central

    Bhavane, Rohan; Karathanasis, Efstathios; Annapragada, Ananth V

    2007-01-01

    Nanostructured agglomerated vesicles encapsulating ciprofloxacin were evaluated for modulated delivery from the lungs in a healthy rabbit model. An aliphatic disulfide crosslinker, cleavable by cysteine was used to form cross-links between nanosized liposomes to form the agglomerates. The blood levels of drug after pulmonary instillation of free ciprofloxacin, liposomal ciprofloxacin, and the agglomerated liposomes encapsulating ciprofloxacin were evaluated. The liposomes and agglomerated vesicles showed extended release of drug into the blood over 24 hours, while the free ciprofloxacin did not. The agglomerates also allowed modulation of the drug release rate upon the introduction of cysteine into the lungs post-drug instillation; the cysteine-cleavable agglomerates accelerated their drug release rate, indicated by an increased level of drug in the blood. This technology holds promise for the post-administration modulation of antibiotic release, for the prevention and treatment of pulmonary and systemic infections. PMID:18019839

  7. Apparatus and method for compacting, degassing and carbonizing carbonaceous agglomerates

    SciTech Connect

    Theodore, F.W.

    1980-08-19

    An apparatus for compacting, degassing and carbonizing carbonaceous agglomerates is described. The apparatus comprises a rotary kiln having an agglomerate inlet means for introducing green agglomerates into the kiln near the inlet of the kiln and a heating medium inlet for introducing a heating medium comprising a finely divided solid into the kiln at a preselected location intermediate the inlet end of the kiln and the outlet end of the kiln to produce a mixture at a temperature above the carbonizing temperature of the agglomerates and a sieve positioned to receive the products from the rotary kiln and separate the heating medium and the compacted, degassed, carbonized agglomerate product. A method for producing compacted, degassed, carbonized carbonaceous agglomerates by the use of the apparatus is also disclosed.

  8. Multifrequency scanning probe microscopy study of nanodiamond agglomerates

    NASA Astrophysics Data System (ADS)

    Aravind, Vasudeva; Lippold, Stephen; Li, Qian; Strelcov, Evgheny; Okatan, Baris; Legum, Benjamin; Kalinin, Sergei; Clarion University Team; Oak Ridge National Laboratory Team

    Due to their rich surface chemistry and excellent mechanical properties and non-toxic nature, nanodiamond particles have found applications such as biomedicine, tribology and lubrication, targeted drug delivery systems, tissue scaffolds and surgical implants. Although single nanodiamond particles have diameters about 4-5nm, they tend to form agglomerates. While these agglomerates can be useful for some purposes, many applications of nanodiamonds require single particle, disaggregated nanodiamonds. This work is oriented towards studying forces and interactions that contribute to agglomeration in nanodiamonds. In this work, using multifrequency scanning probe microscopy techniques, we show that agglomerate sizes can vary between 50-100nm in raw nanodiamonds. Extremeties of particles and Interfaces between agglomerates show dissipative forces with scanning probe microscope tip, indicating agglomerates could act as points of increased adhesion, thus reducing lubricating efficiency when nanodiamonds are used as lubricant additives. This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  9. Analysis and synthesis of solutions for the agglomeration process modeling

    NASA Astrophysics Data System (ADS)

    Babuk, V. A.; Dolotkazin, I. N.; Nizyaev, A. A.

    2013-03-01

    The present work is devoted development of model of agglomerating process for propellants based on ammonium perchlorate (AP), ammonium dinitramide (ADN), HMX, inactive binder, and nanoaluminum. Generalization of experimental data, development of physical picture of agglomeration for listed propellants, development and analysis of mathematical models are carried out. Synthesis of models of various phenomena taking place at agglomeration implementation allows predicting of size and quantity, chemical composition, structure of forming agglomerates and its fraction in set of condensed combustion products. It became possible in many respects due to development of new model of agglomerating particle evolution on the surface of burning propellant. Obtained results correspond to available experimental data. It is supposed that analogical method based on analysis of mathematical models of particular phenomena and their synthesis will allow implementing of the agglomerating process modeling for other types of metalized solid propellants.

  10. Molecular dynamics study of self-agglomeration of charged fullerenes in solvents.

    PubMed

    Banerjee, Soumik

    2013-01-28

    The agglomeration of fullerenes in solvents is an important phenomenon that is relevant to controlled synthesis of fullerene-based nanowires as well as fullerene-based composites. The molecular aggregation in solvents depends on the atomistic interactions of fullerene with the solvent and is made complicated by the fact that fullerenes accrue negative surface charges when present in solvents such as water. In the present work, we simulated fullerenes of varying size and shape (C60, C180, C240, and C540) with and without surface charges in polar protic (water), polar aprotic (acetone), and nonpolar (toluene) solvents using molecular dynamics method. Our results demonstrate that uncharged fullerenes form agglomerates in polar solvents such as water and acetone and remain relatively dispersed in nonpolar toluene. The presence of surface charge significantly reduces agglomerate size in water and acetone. Additionally, the relative influence of surface charge on fullerene agglomeration depends on the size and geometry of the fullerene with larger fullerenes forming relatively smaller agglomerates. We evaluated the diffusion coefficients of solvent molecules within the solvation shell of fullerenes and observed that they are much lower than the bulk solvent and are strongly associated with the fullerenes as seen in the corresponding radial distribution functions. To correlate agglomerate size with the binding energy between fullerenes, we evaluated the potential of mean force between fullerenes in each solvent. Consistent with the solubility of fullerenes, binding energy between fullerenes is the greatest in water followed by acetone and toluene. The presence of charge decreases the binding energy of fullerenes in water and thus results in dispersed fullerenes.

  11. The impact of agglomeration and storage on flavor and flavor stability of whey protein concentrate 80% and whey protein isolate.

    PubMed

    Wright, B J; Zevchak, S E; Wright, J M; Drake, M A

    2009-01-01

    The impact of agglomeration on flavor and flavor stability of whey protein concentrates 80% (WPC80) and whey protein isolates (WPI) has not been widely addressed. This study examined the impact of agglomeration on the flavor and flavor stability of commercial WPC80 and WPI across 18 mo of storage. Duplicate agglomerated and nonagglomerated WPC80 and WPI were collected from 4 facilities and stored at 21 degrees C, 50% relative humidity. Volatile analysis using solid phase microextraction (SPME) with gas chromatography-mass spectrometry (GC-MS) and descriptive sensory analysis were conducted every 2 mo. Solubility index, bulk volume, dispersibility, moisture, and color (L, a, b) were tested every 3 or 6 mo. Consumer acceptance testing with protein beverages was conducted with fresh and stored whey proteins. Higher intensities and more rapid development of lipid oxidation flavors (cardboard, raisin/brothy, cucumber, and fatty) were noted in agglomerated powders compared to nonagglomerated powders (P < 0.05). Volatile analysis results confirmed sensory results, which indicated increased formation of aldehydes and ketones in agglomerated products compared to nonagglomerated powders (P < 0.05). Consumer acceptance scores for protein beverages were lower for beverages made with agglomerated WPC80 stored for 12 mo and agglomerated or nonagglomerated WPI stored for 18 mo compared to fresh products while trained panelists detected differences among beverages and rehydrated proteins earlier. Agglomeration with or without lecithin decreased the storage stability of whey proteins. These results indicate that the optimum shelf life at 21 degrees C for nonagglomerated whey proteins is 12 to 15 mo and 8 to 12 mo for agglomerated whey proteins.

  12. Method for producing ceramic particles and agglomerates

    DOEpatents

    Phillips, Jonathan; Gleiman, Seth S.; Chen, Chun-Ku

    2001-01-01

    A method for generating spherical and irregularly shaped dense particles of ceramic oxides having a controlled particle size and particle size distribution. An aerosol containing precursor particles of oxide ceramics is directed into a plasma. As the particles flow through the hot zone of the plasma, they melt, collide, and join to form larger particles. If these larger particles remain in the hot zone, they continue melting and acquire a spherical shape that is retained after they exit the hot zone, cool down, and solidify. If they exit the hot zone before melting completely, their irregular shape persists and agglomerates are produced. The size and size distribution of the dense product particles can be controlled by adjusting several parameters, the most important in the case of powder precursors appears to be the density of powder in the aerosol stream that enters the plasma hot zone. This suggests that particle collision rate is responsible for determining ultimate size of the resulting sphere or agglomerate. Other parameters, particularly the gas flow rates and the microwave power, are also adjusted to control the particle size distribution.

  13. Cluster agglomeration induced by dust-density waves in complex plasmas.

    PubMed

    Dap, Simon; Lacroix, David; Hugon, Robert; de Poucques, Ludovic; Briancon, Jean-Luc; Bougdira, Jamal

    2012-12-14

    Experimental results showing the agglomeration of large carbonaceous particles in a dusty plasma are reported. Experiments were performed in a capacitively coupled rf argon plasma. Acetylene was injected to produce dust particles. When a sufficient amount of nanoparticles is present in the cathodic sheath, self-excited dust-density waves occur. The latter ones induce the motion of larger clusters, which vertically oscillate with the displacement of wave fronts. In some cases, the relative velocity of large particles was high enough to overcome the Coulomb repulsion forces, and agglomeration can be observed. The mechanisms underlying this process are discussed.

  14. Development and Application of Agglomerated Multigrid Methods for Complex Geometries

    NASA Technical Reports Server (NTRS)

    Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.

    2010-01-01

    We report progress in the development of agglomerated multigrid techniques for fully un- structured grids in three dimensions, building upon two previous studies focused on efficiently solving a model diffusion equation. We demonstrate a robust fully-coarsened agglomerated multigrid technique for 3D complex geometries, incorporating the following key developments: consistent and stable coarse-grid discretizations, a hierarchical agglomeration scheme, and line-agglomeration/relaxation using prismatic-cell discretizations in the highly-stretched grid regions. A signi cant speed-up in computer time is demonstrated for a model diffusion problem, the Euler equations, and the Reynolds-averaged Navier-Stokes equations for 3D realistic complex geometries.

  15. Modeling of crushed ore agglomeration for heap leach operations

    NASA Astrophysics Data System (ADS)

    Dhawan, Nikhil

    The focus of this dissertation is modeling of the evolution of size distribution in batch agglomeration drum. There has been no successful work on modeling of crushed ore agglomeration although the framework for population balance modeling of pelletization and granulation is readily available. In this study three different batch agglomeration drums were used to study the agglomeration kinetics of copper, gold and nickel ores. The agglomerate size distribution is inherently subject to random fluctuation due the very nature of the process. Yet, with careful experimentation and size analysis the evolution of size distribution can be followed. The population balance model employing the random coalesce model with a constant rate kernel was shown to work well in a micro and lab scale agglomerator experiments. In small drums agglomerates begin to break in a short time, whereas the growth is uniform in the lab scale drum. The experimental agglomerate size distributions exhibit self-preserving size spectra which confirms the applicability of coalescence rate based model. The same spectra became a useful fact for predicting the size distribution with an empirical model. Since moisture is a principal variable, the absolute deviation from optimum moisture was used as the primary variable in the empirical model. Having established a model for the size distribution, the next step was to delve into the internal constituents of each agglomerate size class. To this end, an experimental scheme known as dip test was devised. The outcome of the test was the size distribution of progeny particles which make up a given size class of agglomerate. The progeny size distribution was analyzed with a model that partitions the particles into a host and guest category. The ensuing partition coefficient is a valuable in determining how a particle in a size class participates in larger agglomerates. This dissertation lays out the fundamentals for applying the population balance concept to batch

  16. Rapid determination of plasmonic nanoparticle agglomeration status in blood.

    PubMed

    Jenkins, Samir V; Qu, Haiou; Mudalige, Thilak; Ingle, Taylor M; Wang, Rongrong; Wang, Feng; Howard, Paul C; Chen, Jingyi; Zhang, Yongbin

    2015-05-01

    Plasmonic nanomaterials as drug delivery or bio-imaging agents are typically introduced to biological systems through intravenous administration. However, the potential for agglomeration of nanoparticles in biological systems could dramatically affect their pharmacokinetic profile and toxic potential. Development of rapid screening methods to evaluate agglomeration is urgently needed to monitor the physical nature of nanoparticles as they are introduced into blood. Here, we establish novel methods using darkfield microscopy with hyperspectral detection (hsDFM), single particle inductively-coupled plasma mass spectrometry (spICP-MS), and confocal Raman microscopy (cRM) to discriminate gold nanoparticles (AuNPs) and their agglomerates in blood. Rich information about nanoparticle agglomeration in situ is provided by hsDFM monitoring of the plasmon resonance of primary nanoparticles and their agglomerates in whole blood; cRM is an effective complement to hsDFM to detect AuNP agglomerates in minimally manipulated samples. The AuNPs and the particle agglomerates were further distinguished in blood for the first time by quantification of particle mass using spICP-MS with excellent sensitivity and specificity. Furthermore, the agglomeration status of synthesized and commercial NPs incubated in blood was successfully assessed using the developed methods. Together, these complementary methods enable rapid determination of the agglomeration status of plasmonic nanomaterials in biological systems, specifically blood.

  17. Method for recovering light hydrocarbons from coal agglomerates

    DOEpatents

    Huettenhain, Horst; Benz, August D.; Getsoian, John

    1991-01-01

    A method and apparatus for removing light hydrocarbons, such as heptane, from coal agglomerates includes an enclosed chamber having a substantially horizontal perforate surface therein. The coal agglomerates are introduced into a water bath within the chamber. The agglomerates are advanced over the surface while steam is substantially continuously introduced through the surface into the water bath. Steam heats the water and causes volatilization of the light hydrocarbons, which may be collected from the overhead of the chamber. The resulting agglomerates may be collected at the opposite end from the surface and subjected to final draining processes prior to transportation or use.

  18. Rapid Determination of Plasmonic Nanoparticle Agglomeration Status in Blood

    PubMed Central

    Jenkins, Samir V.; Qu, Haiou; Mudalige, Thilak; Ingle, Taylor; Wang, RongRong; Wang, Feng; Howard, Paul C.; Chen, Jingyi; Zhang, Yongbin

    2015-01-01

    Plasmonic nanomaterials as drug delivery or bio-imaging agents are typically introduced to biological systems through intravenous administration. However, the potential for agglomeration of nanoparticles in biological systems could dramatically affect their pharmacokinetic profile and toxic potential. Development of rapid screening methods to evaluate agglomeration is urgently needed to monitor the physical nature of nanoparticles as they are introduced into blood. Here, we establish novel methods using darkfield microscopy with hyperspectral detection (hsDFM), single particle inductively-coupled plasma mass spectrometry (spICP-MS), and confocal Raman microscopy (cRM) to discriminate gold nanoparticles (AuNPs) and their agglomerates in blood. Rich information about nanoparticle agglomeration in situ is provided by hsDFM monitoring of the plasmon resonance of primary nanoparticles and their agglomerates in whole blood; cRM is an effective complement to hsDFM to detect AuNP agglomerates in minimally manipulated samples. The AuNPs and the particle agglomerates were further distinguished in blood for the first time by quantification of particle mass using spICP-MS with excellent sensitivity and specificity. Furthermore, the agglomeration status of synthesized and commercial NPs incubated in blood was successfully assessed using the developed methods. Together, these complementary methods enable rapid determination of the agglomeration status of plasmonic nanomaterials in biological systems, specifically blood. PMID:25771013

  19. Relatively Small Quantities of CO2, Ammonium Bicarbonate, and a Blend of (E)-2-Hexenal Plus (E)-2-Octenal Attract Bed Bugs (Hemiptera: Cimicidae).

    PubMed

    Anderson, John F; Ferrandino, Francis J; Vasil, Michael P; Bedoukian, Robert H; Maher, Marie; Mckenzie, Karen

    2017-03-01

    Bed bugs, Cimex lectularius L., feed on humans, have increased exponentially in the past two decades in many major cities throughout the world, have caused intense infestations, and have become a significant health concern. Improved traps are needed to detect early infestations, to assess control programs, and for control of bed bugs. Carbon dioxide released alone or simultaneously with other attractants into three types of traps at the relatively low rate of 1 ml/min caught significantly more bed bugs than untreated controls in a 183- by 183-cm arena. This finding may enable CO2 to be used more economically in traps. Three percent ammonium bicarbonate released at a rate of ≤0.03 ml/h also caught significantly more bed bugs than untreated controls. A blend of (E)-2-hexenal and (E)-2-octenal at concentrations of 0.025% or 0.1% each and released at 0.02 ml/h attracted significantly more bed bugs than untreated controls. These findings ought to improve detection of bed bugs. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. A roughness-corrected index of relative bed stability for regional stream surveys

    EPA Science Inventory

    Quantitative regional assessments of streambed sedimentation and its likely causes are hampered because field investigations typically lack the requisite sample size, measurements, or precision for sound geomorphic and statistical interpretation. We adapted an index of relative b...

  1. A roughness-corrected index of relative bed stability for regional stream surveys

    EPA Science Inventory

    Quantitative regional assessments of streambed sedimentation and its likely causes are hampered because field investigations typically lack the requisite sample size, measurements, or precision for sound geomorphic and statistical interpretation. We adapted an index of relative b...

  2. Acoustic bed velocity and bed load dynamics in a large sand bed river

    USGS Publications Warehouse

    Gaeuman, D.; Jacobson, R.B.

    2006-01-01

    Development of a practical technology for rapid quantification of bed load transport in large rivers would represent a revolutionary advance for sediment monitoring and the investigation of fluvial dynamics. Measurement of bed load motion with acoustic Doppler current profiles (ADCPs) has emerged as a promising approach for evaluating bed load transport. However, a better understanding of how ADCP data relate to conditions near the stream bed is necessary to make the method practical for quantitative applications. In this paper, we discuss the response of ADCP bed velocity measurements, defined as the near-bed sediment velocity detected by the instrument's bottom-tracking feature, to changing sediment-transporting conditions in the lower Missouri River. Bed velocity represents a weighted average of backscatter from moving bed load particles and spectral reflections from the immobile bed. The ratio of bed velocity to mean bed load particle velocity depends on the concentration of the particles moving in the bed load layer, the bed load layer thickness, and the backscatter strength from a unit area of moving particles relative to the echo strength from a unit area of unobstructed bed. A model based on existing bed load transport theory predicted measured bed velocities from hydraulic and grain size measurements with reasonable success. Bed velocities become more variable and increase more rapidly with shear stress when the transport stage, defined as the ratio of skin friction to the critical shear stress for particle entrainment, exceeds a threshold of about 17. This transition in bed velocity response appears to be associated with the appearance of longer, flatter bed forms at high transport stages.

  3. Elevated relative humidity increases the incidence of boron deficiency in bedding plants

    USDA-ARS?s Scientific Manuscript database

    High relative humidity (RH) can cause lower concentrations of B accumulating in plants. The common greenhouse practice of controlling excess temperatures by applying mist irrigation to youngplants (plugs) results in elevated RH levels. Reports of boron (B) deficiency have become more prevalent ove...

  4. A laboratory study of sex- and stage-related mortality and morbidity in bed bugs (hemiptera: cimicidae) exposed to deltamethrin

    USDA-ARS?s Scientific Manuscript database

    Exposure of a pyrethroid-susceptible strain of bed bugs, Cimex lectularius L. (Hemiptera: Cimicidae) to varying concentrations of deltamethrin for 24h indicated there was no significant difference in mortality between males, females, and nymphs at 24h or 168h post-exposure. Most bed bugs classified ...

  5. Performance of bed-load transport equations relative to geomorphic significance: Predicting effective discharge and its transport rate

    Treesearch

    Jeffrey J. Barry; John M. Buffington; Peter Goodwin; John .G. King; William W. Emmett

    2008-01-01

    Previous studies assessing the accuracy of bed-load transport equations have considered equation performance statistically based on paired observations of measured and predicted bed-load transport rates. However, transport measurements were typically taken during low flows, biasing the assessment of equation performance toward low discharges, and because equation...

  6. Influence of excipients and processing conditions on the development of agglomerates of racecadotril by crystallo-co-agglomeration

    PubMed Central

    Garala, Kevin; Patel, Jaydeep; Patel, Anjali; Raval, Mihir; Dharamsi, Abhay

    2012-01-01

    Purpose: The purpose of the present investigation was to improve the flow and mechanical properties of racecadotril by a crystallo-co-agglomeration (CCA) technique. Direct tableting is a requirement of pharmaceutical industries. Poor mechanical properties of crystalline drug particles require wet granulation which is uneconomical, laborious, and tedious. Materials and Methods: The objective of this work was to study the influence of various polymers/excipients and processing conditions on the formation of directly compressible agglomerates of the water-insoluble drug, racecadotril, an antidiarrheal agent. The agglomerates of racecadotril were prepared using dichloromethane (DCM)–water as the crystallization system. DCM acted as a good solvent for racecadotril as well as a bridging liquid for the agglomeration of the crystallized drug and water as the nonsolvent. The prepared agglomerates were tested for micromeritic and mechanical properties. Results: The process yielded ~90 to 96% wt/ wt spherical agglomerates containing racecadotril with the diameter between 299 and 521 μ. A higher rotational speed of crystallization system reduces the size of the agglomerates and disturbs the sphericity. Spherical agglomerates were generated with a uniform dispersion of the crystallized drug. CCA showed excellent flowability and crushing strength. Conclusion: Excipients and processing conditions can play a key role in preparing spherical agglomerates of racecadotril by CCA, an excellent alternative to the wet granulation process to prepare intermediates for direct compression. PMID:23580935

  7. A study on cow comfort and risk for lameness and mastitis in relation to different types of bedding materials.

    PubMed

    van Gastelen, S; Westerlaan, B; Houwers, D J; van Eerdenburg, F J C M

    2011-10-01

    The aim was to obtain data regarding the effects of 4 freestall bedding materials (i.e., box compost, sand, horse manure, and foam mattresses) on cow comfort and risks for lameness and mastitis. The comfort of freestalls was measured by analyzing the way cows entered the stalls, the duration and smoothness of the descent movement, and the duration of the lying bout. The cleanliness of the cows was evaluated on 3 different body parts: (1) udder, (2) flank, and (3) lower rear legs, and the bacteriological counts of the bedding materials were determined. The combination of the cleanliness of the cows and the bacteriological count of the bedding material provided an estimate of the risk to which dairy cows are exposed in terms of intramammary infections. The results of the hock assessment revealed that the percentage of cows with healthy hocks was lower (20.5 ± 6.7), the percentage of cows with both damaged and swollen hocks was higher (26.8 ± 3.2), and the severity of the damaged hock was higher (2.32 ± 0.17) on farms using foam mattresses compared with deep litter materials [i.e., box compost (64.0 ± 10.4, 3.5 ± 4.7, 1.85 ± 0.23, respectively), sand (54.6 ± 8.2, 2.0 ± 2.8, 1.91 ± 0.09, respectively), and horse manure (54.6 ± 4.5, 5.5 ± 5.4, 1.85 ± 0.17, respectively)]. In addition, cows needed more time to lie down (140.2 ± 84.2s) on farms using foam mattresses compared with the deep litter materials sand and horse manure (sand: 50.1 ± 31.6s, horse manure: 32.9 ± 0.8s). Furthermore, the duration of the lying bout was shorter (47.9 ± 7.4 min) on farms using foam mattresses compared to sand (92.0 ± 12.9 min). These results indicate that deep litter materials provide a more comfortable lying surface compared with foam mattresses. The 3 deep litter bedding materials differed in relation to each other in terms of comfort and their estimate of risk to which cows were exposed in terms of intramammary infections [box compost: 17.8 cfu (1.0(4)) ± 19.4/g

  8. Agglomeration multigrid for viscous turbulent flows

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Venkatakrishnan, V.

    1994-01-01

    Agglomeration multigrid, which has been demonstrated as an efficient and automatic technique for the solution of the Euler equations on unstructured meshes, is extended to viscous turbulent flows. For diffusion terms, coarse grid discretizations are not possible, and more accurate grid transfer operators are required as well. A Galerkin coarse grid operator construction and an implicit prolongation operator are proposed. Their suitability is evaluated by examining their effect on the solution of Laplace's equation. The resulting strategy is employed to solve the Reynolds-averaged Navier-Stokes equations for aerodynamic flows. Convergence rates comparable to those obtained by a previously developed non-nested mesh multigrid approach are demonstrated, and suggestions for further improvements are given.

  9. Pulse combusted acoustic agglomeration apparatus and process

    DOEpatents

    Mansour, Momtaz N.; Chandran, Ravi

    1994-01-01

    An improved apparatus and process for removal of particulates entrained in a gas stream are provided. The removal process employs a pulse combustor to provide an acoustic pressure wave to acoustically enhance agglomeration of particulates which may be collected and removed using a conventional separation apparatus. The apparatus may be employed as a direct fired system for improved operation of gas-operated equipment such as a gas turbine, or may, alternatively, be employed as an add-on subsystem for combustion exhaust clean-up. Additionally, added particulates may include a sorbent for effecting sorption of other contaminants such as sulfur. Various other particulates for contaminant removal may also be introduced into the system as exemplified by alkali-gettering agents.

  10. Pulse combusted acoustic agglomeration apparatus and process

    DOEpatents

    Mansour, Momtaz N.

    1993-01-01

    An improved apparatus and process for removal of particulates entrained in a gas stream are provided. The removal process employs a pulse combustor to provide an acoustic pressure wave to acoustically enhance bimodal agglomeration of particulates which may be collected and removed using a conventional separation apparatus. A particulate having a size different from the size of the particulate in the gas stream to be cleaned is introduced into the system to effectuate the bimodal process. The apparatus may be employed as a direct fired system for improved operation of gas-operated equipment such as a gas turbine, or may, alternatively, be employed as an add-on subsystem for combustion exhaust clean-up. Additionally, the added particulate may be a sorbent for effecting sorption of other contaminants such as sulfur. Various other particulates for contaminant removal may also be introduced into the system as exemplified by alkali-gettering agents.

  11. Age-related differences in lean mass, protein synthesis and skeletal muscle markers of proteolysis after bed rest and exercise rehabilitation

    PubMed Central

    Tanner, Ruth E; Brunker, Lucille B; Agergaard, Jakob; Barrows, Katherine M; Briggs, Robert A; Kwon, Oh Sung; Young, Laura M; Hopkins, Paul N; Volpi, Elena; Marcus, Robin L; LaStayo, Paul C; Drummond, Micah J

    2015-01-01

    Abstract Bed rest-induced muscle loss and impaired muscle recovery may contribute to age-related sarcopenia. It is unknown if there are age-related differences in muscle mass and muscle anabolic and catabolic responses to bed rest. A secondary objective was to determine if rehabilitation could reverse bed rest responses. Nine older and fourteen young adults participated in a 5-day bed rest challenge (BED REST). This was followed by 8 weeks of high intensity resistance exercise (REHAB). Leg lean mass (via dual-energy X-ray absorptiometry; DXA) and strength were determined. Muscle biopsies were collected during a constant stable isotope infusion in the postabsorptive state and after essential amino acid (EAA) ingestion on three occasions: before (PRE), after bed rest and after rehabilitation. Samples were assessed for protein synthesis, mTORC1 signalling, REDD1/2 expression and molecular markers related to muscle proteolysis (MURF1, MAFBX, AMPKα, LC3II/I, Beclin1). We found that leg lean mass and strength decreased in older but not younger adults after bedrest (P < 0.05) and was restored after rehabilitation. EAA-induced mTORC1 signalling and protein synthesis increased before bed rest in both age groups (P < 0.05). Although both groups had blunted mTORC1 signalling, increased REDD2 and MURF1 mRNA after bedrest, only older adults had reduced EAA-induced protein synthesis rates and increased MAFBX mRNA, p-AMPKα and the LC3II/I ratio (P < 0.05). We conclude that older adults are more susceptible than young persons to muscle loss after short-term bed rest. This may be partially explained by a combined suppression of protein synthesis and a marginal increase in proteolytic markers. Finally, rehabilitation restored bed rest-induced deficits in lean mass and strength in older adults. Key points Five days of bed rest resulted in a reduction in leg lean mass and strength in older adults. After bed rest, older (but not younger) adults had reduced amino acid

  12. Overpopulated, Underdeveloped Urban Agglomerations: Tomorrow’s Unstable Operating Environment

    DTIC Science & Technology

    2012-05-08

    DATES COVERED (From - To) 4. TITLE AND SUBTITLE Overpopulated , Underdeveloped Urban Agglomerations: Tomorrow’s 5a. CONTRACT NUMBER...ABSTRACT This paper asserts that a unique future operational environment is developing: overpopulated , underdeveloped urban agglomerations. A...proposed definition for this operating environment is (or would be) an overpopulated urban area which is located within a developing or underdeveloped

  13. Effect of 21-day head down bed rest on urine proteins related to endothelium: Correlations with changes in carbohydrate metabolism

    NASA Astrophysics Data System (ADS)

    Kashirina, D.; Pastushkova, L.; Custaud, M. A.; Dobrokhotov, I.; Brzhozovsky, A.; Navasiolava, N.; Nosovsky, A.; Kononikhin, A.; Nikolaev, E.; Larina, I.

    2017-08-01

    We performed liquid chromatography-mass spectrometric study of the urine proteome in 8 healthy volunteers aged between 20 and 44 y.o. who have completed 21-day head-down bed rest. ANDSystem software which builds associative networks was used to identify the urinary proteins functionally related to the endothelium. We identified 7 endothelium-related biological processes, directly linked to 13 urine proteins. We performed manual annotation of the proteins which were the most important in terms of endothelial functions. Analysis of the correlations with biochemical variables revealed a positive correlation between fasting blood glucose and the following urine proteins: albumin, CD44 antigen, endothelial protein C receptor, mucin-1, osteopontin, receptor tyrosine kinase. As well, we found a positive correlation between HOMA-insulin resistance index and the following urine proteins: endothelial protein C receptor and syndecan-4. These results might suggest the involvement of above-mentioned proteins in glucose metabolism and their participation in the response to changes in blood glucose level.

  14. Markers of bone resorption and calcium metabolism are related to dietary intake patterns in male and female bed rest subjects

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Zwart, S. R.; Hargens, A. r.

    2006-01-01

    Dietary potassium and protein intakes predict net endogenous acid production in humans. Intracellular buffers, including exchangeable bone mineral, play a crucial role in balancing chronic acid-base perturbations in the body; subsequently, chronic acid loads can potentially contribute to bone loss. Bone is lost during space flight, and a dietary countermeasure would be desirable for many reasons. We studied the ability of diet protein and potassium to predict levels of bone resorption markers in males and females. Identical twin pairs (8 M, 7 F) were assigned to 2 groups: bed rest (sedentary, SED) or bed rest with supine treadmill exercise in a lower body negative pressure chamber (EX). Diet was controlled for 3 d before and 30 d of bed rest (BR). Urinary Ca, N-telopeptide (NTX), and pyridinium crosslinks (PYD) were measured before and on days 5, 12, 19, and 26 of BR. Data were analyzed by Pearson correlation (P<0.05). The ratio of dietary animal protein/potassium intake was not correlated with NTX before BR for males or females, but they were positively correlated in both groups of males during bed rest. Dietary animal protein/potassium and urine Ca were correlated before and during bed rest for the males, and only during bed rest for the females. Conversely, the ratio of dietary vegetable protein/potassium intake was negatively correlated with urinary calcium during bed rest for the females, but there was no relationship between vegetable protein/potassium intake and bone markers for the males. These data suggest that the ratio of animal protein/potassium intake may affect bone, particularly in bed rest subjects. These data show that the type of protein and gender may be additional factors that modulate the effect of diet on bone metabolism during bed rest. Altering this ratio may help prevent bone loss on Earth and during space flight.

  15. Markers of bone resorption and calcium metabolism are related to dietary intake patterns in male and female bed rest subjects

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Zwart, S. R.; Hargens, A. r.

    2006-01-01

    Dietary potassium and protein intakes predict net endogenous acid production in humans. Intracellular buffers, including exchangeable bone mineral, play a crucial role in balancing chronic acid-base perturbations in the body; subsequently, chronic acid loads can potentially contribute to bone loss. Bone is lost during space flight, and a dietary countermeasure would be desirable for many reasons. We studied the ability of diet protein and potassium to predict levels of bone resorption markers in males and females. Identical twin pairs (8 M, 7 F) were assigned to 2 groups: bed rest (sedentary, SED) or bed rest with supine treadmill exercise in a lower body negative pressure chamber (EX). Diet was controlled for 3 d before and 30 d of bed rest (BR). Urinary Ca, N-telopeptide (NTX), and pyridinium crosslinks (PYD) were measured before and on days 5, 12, 19, and 26 of BR. Data were analyzed by Pearson correlation (P<0.05). The ratio of dietary animal protein/potassium intake was not correlated with NTX before BR for males or females, but they were positively correlated in both groups of males during bed rest. Dietary animal protein/potassium and urine Ca were correlated before and during bed rest for the males, and only during bed rest for the females. Conversely, the ratio of dietary vegetable protein/potassium intake was negatively correlated with urinary calcium during bed rest for the females, but there was no relationship between vegetable protein/potassium intake and bone markers for the males. These data suggest that the ratio of animal protein/potassium intake may affect bone, particularly in bed rest subjects. These data show that the type of protein and gender may be additional factors that modulate the effect of diet on bone metabolism during bed rest. Altering this ratio may help prevent bone loss on Earth and during space flight.

  16. Agglomeration multigrid for the three-dimensional Euler equations

    NASA Technical Reports Server (NTRS)

    Venkatakrishnan, V.; Mavriplis, D. J.

    1994-01-01

    A multigrid procedure that makes use of coarse grids generated by the agglomeration of control volumes is advocated as a practical approach for solving the three dimensional Euler equations on unstructured grids about complex configurations. It is shown that the agglomeration procedure can be tailored to achieve certain coarse grid properties such as the sizes of the coarse grids and aspect ratios of the coarse grid cells. The agglomeration is done as a preprocessing step and runs in linear time. The implications for multigrid of using arbitrary polyhedral coarse grids are discussed. The agglomeration multigrid technique compares very favorably with existing multigrid procedures both in terms of convergence rates and elapsed times. The main advantage of the present approach is the ease with which coarse grids of any desired degree of coarseness may be generated in three dimensions, without being constrained by considerations of geometry. Inviscid flows over a variety of complex configurations are computed using the agglomeration multigrid strategy.

  17. AMG by element agglomeration and constrained energy minimization interpolation

    SciTech Connect

    Kolev, T V; Vassilevski, P S

    2006-02-17

    This paper studies AMG (algebraic multigrid) methods that utilize energy minimization construction of the interpolation matrices locally, in the setting of element agglomeration AMG. The coarsening in element agglomeration AMG is done by agglomerating fine-grid elements, with coarse element matrices defined by a local Galerkin procedure applied to the matrix assembled from the individual fine-grid element matrices. This local Galerkin procedure involves only the coarse basis restricted to the agglomerated element. To construct the coarse basis, one exploits previously proposed constraint energy minimization procedures now applied to the local matrix. The constraints are that a given set of vectors should be interpolated exactly, not only globally, but also locally on every agglomerated element. The paper provides algorithmic details, as well as a convergence result based on a ''local-to-global'' energy bound of the resulting multiple-vector fitting AMG interpolation mappings. A particular implementation of the method is illustrated with a set of numerical experiments.

  18. Development of a Gas-Promoted Oil Agglomeration Process

    SciTech Connect

    M. Shen; T. D. Wheelock

    1998-10-30

    Further agglomeration tests were conducted in a series of tests designed to determine the effects of various parameters on the size and structure of the agglomerates formed, the rate of agglomeration, coal recovery, and ash rejection. For this series of tests, finely ground Pittsburgh No. 8 coal has been agglomerated with i-octane in a closed mixing system with a controlled amount of air present to promote particle agglomeration. The present results provide further evidence of the role played by air. As the concentration of air in the system was increased from 4.5 to 18 v/w% based on the weight of coal, coal recovery and ash rejection both increased. The results also show that coal recovery and ash rejection were improved by increasing agitator speed. On the other hand, coal recovery was not affected by a change in solids concentration from 20 to 30 w/w%.

  19. Molecular dynamics simulations of the effect of waviness and agglomeration of CNTs on interface strength of thermoset nanocomposites.

    PubMed

    Alian, A R; Meguid, S A

    2017-02-08

    Most existing molecular dynamics simulations in nanoreinforced composites assume carbon nanotubes (CNTs) to be straight and uniformly dispersed within thermoplastics. In reality, however, CNTs are typically curved, agglomerated and aggregated as a result of van der Waal interactions and electrostatic forces. In this paper, we account for both curvature and agglomeration of CNTs in extensive molecular dynamic (MD) simulations. The purpose of these simulations is to evaluate the influence of waviness and agglomeration of these curved and agglomerated CNTs on the interfacial strength of thermoset nanocomposite and upon their load transfer capability. Two aspects of the work were accordingly examined. In the first, realistic carbon nanotubes (CNTs) of the same length but varied curvatures were embedded in thermoset polymer composites and simulations of pull-out tests were conducted to evaluate the corresponding interfacial shear strength (ISS). In the second, the effect of the agglomerate size upon the ISS was determined using bundles of CNTs of different diameters. The results of our MD simulations revealed the following. The pull-out force of the curved CNTs is significantly higher than its straight counterpart and increases further with the increase in the waviness of the CNTs. This is attributed to the added pull-out energy dissipated in straightening the CNTs during the pull-out process. It also reveals that agglomeration of CNTs leads to a reduction in the ISS and poor load transferability, and that this reduction is governed by the size of the agglomerate. The simulation results were also used to develop a generalized relation for the ISS that takes into consideration the effect of waviness and agglomeration of CNTs of CNT-polymer composites.

  20. Coverage, use and maintenance of bed nets and related influence factors in Kachin Special Region II, northeastern Myanmar.

    PubMed

    Liu, Hui; Xu, Jian-wei; Guo, Xiang-rui; Havumaki, Joshua; Lin, Ying-xue; Yu, Guo-cui; Zhou, Dai-li

    2015-05-21

    Myanmar is one of the 31 highest burden malaria countries worldwide. Scaling up the appropriate use of insecticide-treated nets (ITNs) is a national policy for malaria prevention and control. However, the data on use, influencing factors and maintenance of bed nets is still lack among the population in Kachin Special Region II (KR2), Northeastern Myanmar. The study combined a quantitative household questionnaire survey and qualitative direct observation of households. A Chi-squared test was used to compare the percentages of ownership, coverage, and rates of use of bed nets. Additionally, multivariate logistic regression analysis (MVLRA) was used to analyse factors that influence the use of bed nets. Finally, covariance compared the mean calibrated hole indexes (MCHI) across potential influence variables. The bed net to person ratio was 1:1.96 (i.e., more than one net for every two people). The long-lasting insecticidal net (LLIN) to person ratio was 1: 2.52. Also, the percentage of households that owned at least one bed net was 99.7% (666/688). Some 3262 (97.3%) residents slept under bed nets the prior night, 2551 (76.1%) of which slept under ITNs/LLINs the prior night (SUITNPN). The poorest families, those with thatched roofing, those who use agriculture as their main source of family income, household heads who knew that mosquitoes transmit malaria and those who used bed nets to prevent malaria, were significantly more likely to be in the SUITNPN group. However, residents in lowlands, and foothills were significantly less likely to be SUITNPNs. Finally, head of household attitude towards fixing bed nets influenced MCHI (F=8.09, P=0.0046). The coverage and usage rates of bed nets were high, especially among children, and pregnant women. Family wealth index, geographical zones, household roofing, source of family income, household head's knowledge of malaria transmission and of using bed nets as tools for malaria prevention are all independent factors which

  1. Spatial Linkage and Urban Expansion: AN Urban Agglomeration View

    NASA Astrophysics Data System (ADS)

    Jiao, L. M.; Tang, X.; Liu, X. P.

    2017-09-01

    Urban expansion displays different characteristics in each period. From the perspective of the urban agglomeration, studying the spatial and temporal characteristics of urban expansion plays an important role in understanding the complex relationship between urban expansion and network structure of urban agglomeration. We analyze urban expansion in the Yangtze River Delta Urban Agglomeration (YRD) through accessibility to and spatial interaction intensity from core cities as well as accessibility of road network. Results show that: (1) Correlation between urban expansion intensity and spatial indicators such as location and space syntax variables is remarkable and positive, while it decreases after rapid expansion. (2) Urban expansion velocity displays a positive correlation with spatial indicators mentioned above in the first (1980-1990) and second (1990-2000) period. However, it exhibits a negative relationship in the third period (2000-2010), i.e., cities located in the periphery of urban agglomeration developing more quickly. Consequently, the hypothesis of convergence of urban expansion in rapid expansion stage is put forward. (3) Results of Zipf's law and Gibrat's law show urban expansion in YRD displays a convergent trend in rapid expansion stage, small and medium-sized cities growing faster. This study shows that spatial linkage plays an important but evolving role in urban expansion within the urban agglomeration. In addition, it serves as a reference to the planning of Yangtze River Delta Urban Agglomeration and regulation of urban expansion of other urban agglomerations.

  2. Novel Binders and Methods for Agglomeration of Ore

    SciTech Connect

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-03-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily at a reasonable cost. A primary example of this is copper heap leaching, where there are no binders currently encountered in this acidic environment process. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching. The active involvement of our industrial partners will help to ensure rapid commercialization of any agglomeration technologies developed by this project.

  3. Novel Binders and Methods for Agglomeration of Ore

    SciTech Connect

    S. K. Kawatra; T. C. Eisele; J. A. Gurtler; K. Lewandowski

    2005-09-30

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily at a reasonable cost. A primary example of this is copper heap leaching, where there are no binders currently encountered in this acidic environment process. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching. The active involvement of our industrial partners will help to ensure rapid commercialization of any agglomeration technologies developed by this project.

  4. Preliminary characterization of a gas-promoted oil agglomeration process

    SciTech Connect

    Drzymala, J.; Wheelock, T.D.

    1996-12-31

    The agglomeration of aqueous suspensions of Pittsburgh No. 8 coal particles with i-octane was studied by employing a scale model mixing system which measured both agitator speed and torque. The progress of agglomeration was monitored by observing changes in agitator torque and was confirmed by examining samples of the suspension with an optical microscope. When a suspension containing 30 w/w% solids was degassed and then conditioned with 20 v/w% i-octane (20 ml i-octane/100 g coal), no agglomeration took place until a small amount of air (e.g., 9 v/w%) was introduced. Subsequent changes in agitator torque indicated that the ensuing process of agglomeration was complex and consisted of several stages involving various interactions between coal particles, oil drops, and gas bubbles. The time required to produce spherical agglomerates was determined for different experimental conditions by conducting a number of agglomeration tests involving different mixing tank sizes and different impeller sizes and speeds. The results indicate that agglomeration time decreases with increasing power input per unit volume and increasing gas concentration.

  5. Development of a Gas-Promoted Oil Agglomeration Process

    SciTech Connect

    M. Shen; R. Abbott; T. D. Wheelock

    1998-10-30

    Two series of agglomeration tests were conducted as part of an effort to find a suitable basis for size scale-up of the mixing system used for a gas-promoted oil agglomeration process. In the first series of tests the agitator impeller diameter and speed were varied among runs so as to vary impeller tip speed and agitator power independently while keeping other conditions constant. In the second series of tests the mixing tank size and agitator speed were varied while the ratio of tank diameter to impeller diameter were held constant. All tests were conducted with finely ground Pittsburgh No. 8 coal and with i-octane as the agglomerant. The results of these tests showed that the minimum time te required to produce spherical agglomerates was predominantly a function of the agitator power input per unit volume. In addition, the size of the agglomerates produced in a given time was also strongly dependent on power input. At lower power input levels, the mean size rose as power input increased until a point was reached where agglomerate breakage became important and the mean size decreased. The results also showed that the ash content of the agglomerates produced in a given time tended to decrease with increasing power input. On the other hand, the recovery of clean coal on a dry, ash-free basis was not greatly affected by power input.

  6. Geometrical determination of the lacunarity of agglomerates with integer fractal dimension.

    PubMed

    Lapuerta, Magín; Martos, Francisco J; Martín-González, Gema

    2010-06-01

    Different agglomerates composed by a variable number of spherical primary particles corresponding to extreme and intermediate values of fractal dimension (D(f)=1, D(f)=2 and D(f)=3) are analysed in this work. In each case, the moment of inertia, diameter of gyration and prefactor of the power-law relationship are determined as a function of the number of composing primary particles. The obtained results constitute the geometrical data base for the development of a method for the determination of the fractal dimension of individual agglomerates from their planar projections, although it is not the aim of this paper to describe the method itself. As a result of these calculations, the prefactor of the power-law relationship was shown not to be a constant parameter, but to tend asymptotically to a limit value with increasing number of primary particles. This limit value is closely related with the compactness of the initial geometrical arrangement in the agglomerate, this justifying the historical association of this parameter with the lacunarity of the agglomerate. A correlation for the determination of the prefactor as a function of the fractal dimension and the number of elementary structures is proposed and compared with other methods proposed in the literature. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Fragmentation and bond strength of airborne diesel soot agglomerates

    PubMed Central

    Rothenbacher, Sonja; Messerer, Armin; Kasper, Gerhard

    2008-01-01

    Background The potential of diesel soot aerosol particles to break up into smaller units under mechanical stress was investigated by a direct impaction technique which measures the degree of fragmentation of individual agglomerates vs. impact energy. Diesel aerosol was generated by an idling diesel engine used for passenger vehicles. Both the aerosol emitted directly and aerosol that had undergone additional growth by Brownian coagulation ("aging") was investigated. Optionally a thermo-desoption technique at 280°C was used to remove all high-volatility and the majority of low-volatility HC adsorbates from the aerosol before aging. Results It was found that the primary soot agglomerates emitted directly from the engine could not be fragmented at all. Soot agglomerates permitted to grow additionally by Brownian coagulation of the primary emitted particles could be fragmented to a maximum of 75% and 60% respectively, depending on whether adsorbates were removed from their surface prior to aging or not. At most, these aged agglomerates could be broken down to roughly the size of the agglomerates from the primary emission. The energy required for a 50% fragmentation probability of all bonds within an agglomerate was reduced by roughly a factor of 2 when aging "dry" agglomerates. Average bond energies derived from the data were 0.52*10-16 and 1.2*10-16 J, respectively. This is about 2 orders of magnitude higher than estimates for pure van-der-Waals agglomerates, but agrees quite well with other observations. Conclusion Although direct conclusions regarding the behavior of inhaled diesel aerosol in contact with body fluids cannot be drawn from such measurements, the results imply that highly agglomerated soot aerosol particles are unlikely to break up into units smaller than roughly the size distribution emitted as tail pipe soot. PMID:18533015

  8. Controlling Agglomeration of Protein Aggregates for Structure Formation in Liquid Oil: A Sticky Business

    PubMed Central

    2017-01-01

    Proteins are known to be effective building blocks when it comes to structure formation in aqueous environments. Recently, we have shown that submicron colloidal protein particles can also be used to provide structure to liquid oil and form so-called oleogels (de VriesA.J. Colloid Interface Sci.2017, 486, 75−83)27693552. To prevent particle agglomeration, a solvent exchange procedure was used to transfer the aggregates from water to the oil phase. The aim of the current paper was to elucidate on the enhanced stability against agglomeration of heat-set whey protein isolate (WPI) aggregates to develop an alternative for the solvent exchange procedure. Protein aggregates were transferred from water to several solvents differing in polarity to investigate the effect on agglomeration and changes in protein composition. We show that after drying protein aggregates by evaporation from solvents with a low polarity (e.g., hexane), the protein powder shows good dispersibility in liquid oil compared to powders dried from solvents with a high polarity. This difference in dispersibility could not be related to changes in protein composition or conformation but was instead related to the reduction of attractive capillary forces between the protein aggregates during drying. Following another route, agglomeration was also prevented by applying high freezing rates prior to freeze-drying. The rheological properties of the oleogels prepared with such freeze-dried protein aggregates were shown to be similar to that of oleogels prepared using a solvent exchange procedure. This Research Article provides valuable insights in how to tune the drying process to control protein agglomeration to allow for subsequent structure formation of proteins in liquid oil. PMID:28225592

  9. Controlling Agglomeration of Protein Aggregates for Structure Formation in Liquid Oil: A Sticky Business.

    PubMed

    de Vries, Auke; Lopez Gomez, Yuly; Jansen, Bas; van der Linden, Erik; Scholten, Elke

    2017-03-22

    Proteins are known to be effective building blocks when it comes to structure formation in aqueous environments. Recently, we have shown that submicron colloidal protein particles can also be used to provide structure to liquid oil and form so-called oleogels ( de Vries , A. J. Colloid Interface Sci. 2017 , 486 , 75 - 83 ) . To prevent particle agglomeration, a solvent exchange procedure was used to transfer the aggregates from water to the oil phase. The aim of the current paper was to elucidate on the enhanced stability against agglomeration of heat-set whey protein isolate (WPI) aggregates to develop an alternative for the solvent exchange procedure. Protein aggregates were transferred from water to several solvents differing in polarity to investigate the effect on agglomeration and changes in protein composition. We show that after drying protein aggregates by evaporation from solvents with a low polarity (e.g., hexane), the protein powder shows good dispersibility in liquid oil compared to powders dried from solvents with a high polarity. This difference in dispersibility could not be related to changes in protein composition or conformation but was instead related to the reduction of attractive capillary forces between the protein aggregates during drying. Following another route, agglomeration was also prevented by applying high freezing rates prior to freeze-drying. The rheological properties of the oleogels prepared with such freeze-dried protein aggregates were shown to be similar to that of oleogels prepared using a solvent exchange procedure. This Research Article provides valuable insights in how to tune the drying process to control protein agglomeration to allow for subsequent structure formation of proteins in liquid oil.

  10. Physical properties of soils in Rostov agglomeration

    NASA Astrophysics Data System (ADS)

    Gorbov, S. N.; Bezuglova, O. S.; Abrosimov, K. N.; Skvortsova, E. B.; Tagiverdiev, S. S.; Morozov, I. V.

    2016-08-01

    Physical properties of natural and anthropogenically transformed soils of Rostov agglomeration were examined. The data obtained by conventional methods and new approaches to the study of soil physical properties (in particular, tomographic study of soil monoliths) were used for comparing the soils of different functional zones of the urban area. For urban territories in the steppe zone, a comparison of humus-accumulative horizons (A, Asod, Ap, and buried [A] horizons) made it possible to trace tendencies of changes in surface soils under different anthropogenic impacts and in the buried and sealed soils. The microtomographic study demonstrated differences in the bulk density and aggregation of urban soils from different functional zones. The A horizon in the forest-park zone is characterized by good aggregation and high porosity, whereas buried humus-accumulative horizons of anthropogenically transformed soils are characterized by poor aggregation and low porosity. The traditional parameters of soil structure and texture also proved to be informative for the identification of urban pedogenesis.

  11. Gravitational Agglomeration of Post-HCDA LMFBR Nonspherical Aerosols.

    DTIC Science & Technology

    1980-12-01

    AD-AIO6 766 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH F/B 13/7 GRAVITATIONAL AGGLOMERATION OF POST- HCDA LMF8R NONSPHFRICAL AER--ETC(U) DEC 80 R...OF REPORT & PERIOD COVERED i Gravitational Agglomeration of Post- HCDA TfIfM/DISSERTATION LMFBR Nonspherical Aerosols . ________O____O______________ S...it to: AFIT/NR Wright-Patterson AFB OH 45433 RESEARCH TITLE: Gravitational Agglomeration of Post- HCDA LMFBR Nonspherical Aerosols AUTHOR: Ronald

  12. Evolution of Zipf's Law for Indian Urban Agglomerations Vis-à-Vis Chinese Urban Agglomerations

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Kausik; Basu, Banasri

    We investigate into the rank-size distributions of urban agglomerations for India between 1981 to 2011. The incidence of a power law tail is prominent. A relevant question persists regarding the evolution of the power tail coefficient. We have developed a methodology to meaningfully track the power law coefficient over time, when a country experience population growth. A relevant dynamic law, Gibrat's law, is empirically tested in this connection. We argue that these empirical findings for India are in contrast with the findings in case of China, another country with population growth but monolithic political system.

  13. CIRCULATING MOVING BED COMBUSTION PROOF OF CONCEPT

    SciTech Connect

    Jukkola, Glen

    2010-06-30

    Circulating Moving Bed (CMB) combustion technology has its roots in traditional circulating fluidized bed technology and involves a novel method of solid fuel combustion and heat transfer. CMB technology represents a step change in improved performance and cost relative to conventional PC and FBC boilers. The CMB heat exchanger preheats the energy cycle working fluid, steam or air, to the high temperature levels required in systems for advanced power generation. Unique features of the CMB are the reduction of the heat transfer surfaces by about 60% as a result of the enhanced heat transfer rates, flexibility of operation, and about 30% lower cost over existing technology. The CMB Phase I project ran from July 2001 through March 2003. Its objective was to continue development of the CMB technology with a series of proof of concept tests. The tests were conducted at a scale that provided design data for scale up to a demonstration plant. These objectives were met by conducting a series of experiments in ALSTOM Power’s Multi-use Test Facility (MTF). The MTF was modified to operate under CMB conditions of commercial interest. The objective of the tests were to evaluate gas-to-solids heat transfer in the upper furnace, assess agglomeration in the high temperature CMB bubbling bed, and evaluate solids-to-tube heat transfer in the moving bed heat exchanger. The Phase I program results showed that there are still some significant technical uncertainties that needed to be resolved before the technology can be confidently scaled up for a successful demonstration plant design. Work remained in three primary areas: • scale up of gas to solid heat transfer • high temperature finned surface design • the overall requirements of mechanical and process design. The CMB Phase II workscope built upon the results of Phase I and specifically addressed the remaining technical uncertainties. It included a scaled MTF heat transfer test to provide the necessary data to scale up gas

  14. Nucleocapsid Protein from Fig Mosaic Virus Forms Cytoplasmic Agglomerates That Are Hauled by Endoplasmic Reticulum Streaming

    PubMed Central

    Ishikawa, Kazuya; Miura, Chihiro; Maejima, Kensaku; Komatsu, Ken; Hashimoto, Masayoshi; Tomomitsu, Tatsuya; Fukuoka, Misato; Yusa, Akira; Yamaji, Yasuyuki

    2014-01-01

    ABSTRACT Although many studies have demonstrated intracellular movement of viral proteins or viral replication complexes, little is known about the mechanisms of their motility. In this study, we analyzed the localization and motility of the nucleocapsid protein (NP) of Fig mosaic virus (FMV), a negative-strand RNA virus belonging to the recently established genus Emaravirus. Electron microscopy of FMV-infected cells using immunogold labeling showed that NPs formed cytoplasmic agglomerates that were predominantly enveloped by the endoplasmic reticulum (ER) membrane, while nonenveloped NP agglomerates also localized along the ER. Likewise, transiently expressed NPs formed agglomerates, designated NP bodies (NBs), in close proximity to the ER, as was the case in FMV-infected cells. Subcellular fractionation and electron microscopic analyses of NP-expressing cells revealed that NBs localized in the cytoplasm. Furthermore, we found that NBs moved rapidly with the streaming of the ER in an actomyosin-dependent manner. Brefeldin A treatment at a high concentration to disturb the ER network configuration induced aberrant accumulation of NBs in the perinuclear region, indicating that the ER network configuration is related to NB localization. Dominant negative inhibition of the class XI myosins, XI-1, XI-2, and XI-K, affected both ER streaming and NB movement in a similar pattern. Taken together, these results showed that NBs localize in the cytoplasm but in close proximity to the ER membrane to form enveloped particles and that this causes passive movements of cytoplasmic NBs by ER streaming. IMPORTANCE Intracellular trafficking is a primary and essential step for the cell-to-cell movement of viruses. To date, many studies have demonstrated the rapid intracellular movement of viral factors but have failed to provide evidence for the mechanism or biological significance of this motility. Here, we observed that agglomerates of nucleocapsid protein (NP) moved rapidly

  15. Nucleocapsid protein from fig mosaic virus forms cytoplasmic agglomerates that are hauled by endoplasmic reticulum streaming.

    PubMed

    Ishikawa, Kazuya; Miura, Chihiro; Maejima, Kensaku; Komatsu, Ken; Hashimoto, Masayoshi; Tomomitsu, Tatsuya; Fukuoka, Misato; Yusa, Akira; Yamaji, Yasuyuki; Namba, Shigetou

    2015-01-01

    Although many studies have demonstrated intracellular movement of viral proteins or viral replication complexes, little is known about the mechanisms of their motility. In this study, we analyzed the localization and motility of the nucleocapsid protein (NP) of Fig mosaic virus (FMV), a negative-strand RNA virus belonging to the recently established genus Emaravirus. Electron microscopy of FMV-infected cells using immunogold labeling showed that NPs formed cytoplasmic agglomerates that were predominantly enveloped by the endoplasmic reticulum (ER) membrane, while nonenveloped NP agglomerates also localized along the ER. Likewise, transiently expressed NPs formed agglomerates, designated NP bodies (NBs), in close proximity to the ER, as was the case in FMV-infected cells. Subcellular fractionation and electron microscopic analyses of NP-expressing cells revealed that NBs localized in the cytoplasm. Furthermore, we found that NBs moved rapidly with the streaming of the ER in an actomyosin-dependent manner. Brefeldin A treatment at a high concentration to disturb the ER network configuration induced aberrant accumulation of NBs in the perinuclear region, indicating that the ER network configuration is related to NB localization. Dominant negative inhibition of the class XI myosins, XI-1, XI-2, and XI-K, affected both ER streaming and NB movement in a similar pattern. Taken together, these results showed that NBs localize in the cytoplasm but in close proximity to the ER membrane to form enveloped particles and that this causes passive movements of cytoplasmic NBs by ER streaming. Intracellular trafficking is a primary and essential step for the cell-to-cell movement of viruses. To date, many studies have demonstrated the rapid intracellular movement of viral factors but have failed to provide evidence for the mechanism or biological significance of this motility. Here, we observed that agglomerates of nucleocapsid protein (NP) moved rapidly throughout the cell, and we

  16. Gender-related Changes in Dorsal Hand and Foot Vein Function Following 60 Days of Head Down Bed Rest

    NASA Technical Reports Server (NTRS)

    Westby, Christian M.; Phillips, Tiffany; Stenger, Michael B.; Platts, Steven H.

    2009-01-01

    It is well known that female astronauts are more likely to experience post-flight orthostatic hypotension and presyncope compared to male astronauts. It has been suggested that the disproportionally higher incidence of presyncope (83% of female vs. 20% male crewmembers) may be due to sex-related differences in vascular function between the upper and lower limbs. However, much of this evidence is specific to changes in resistance vessels. Given that more than 70% of the circulating blood volume resides in compliance vessels, it is conceivable that even small changes in venous function may contribute to post-flight orthostatic hypotension. In spite of this, little is currently known regarding the influence of microgravity exposure on venous function between males and females. PURPOSE: To determine the influence of 60 days of HDBR on dorsal foot and hand vein function between healthy males (M) and females (F). METHODS: Using 2-D ultrasound, dorsal hand and foot vein diameter responses to intravenous infusions phenylephrine (PE), acetylcholine (ACh), and nitroglycerine (NTG) were determined in 26 adults; 10 females (age:37 +/- 2 yr ) and 16 males (age:34 +/- 2 yr ). Changes in venous function were calculated as the difference between diameter at baseline and following each venoactive drug. Differences in venous function between limb and sexes across HDBR were determined using mixed-effects linear regression. RESULTS: In response to 60 days of HDBR, the change in venousconstrictor response to PE in the dorsal hand veins was not significantly different between M and F. Interestingly, the change in constrictor response in the dorsal foot veins (compared to pre HDBR) was approximately 30% greater in the F, whereas the constrictor response was approximately 45% less in the M (p=0.026). HDBR had no influence on the change in dilator response to ACh, or NTG between M and F and between vascular beds. CONCLUSION: These results demonstrate that 60 days of HDBR contributes to sex-related

  17. AFBC bed material performance with low-rank coals

    SciTech Connect

    Goblirsch, G.M.; Benson, S.A.; Karner, F.R.; Rindt, D.K.; Hajicek, D.R.

    1983-01-01

    The purpose of this paper is to describe the reasons for carefully screening any candidate bed material for use in low-rank coal atmospheric fluidized-bed combustion, before the final selection is made. The sections of this paper describe: (1) the experimental equipment used to obtain the data, as well as the experimental and analytical procedures used in evaluation; (2) the results of tests utilizing various bed materials with particular emphasis on the problem of bed material agglomeration; and (3) the conclusions and recommendations for bed material selection and control for use with low-rank coal. Bed materials of aluminum oxide, quartz, limestone, dolomite, granite, gabbro, and mixtures of some of these materials have been used in the testing. Of these materials, gabbro appears most suitable for use with high available sodium lignites. 17 figures, 8 tables. (DMC)

  18. Fragmentation and restructuring of soft-agglomerates under shear.

    PubMed

    Eggersdorfer, M L; Kadau, D; Herrmann, H J; Pratsinis, S E

    2010-02-15

    Soft-agglomerate restructuring, break-up (or fragmentation) and relaxation are studied in a simple shear flow by a discrete element method (DEM). The agglomerates, held together by van der Waals forces, rotate in the shear flow and are stretched into nearly linear structures (fractal dimension approaches unity) until they fracture at their weakest point resulting in lognormally-shaped fragment size distributions asymptotically. Individual fragments relax in the flow towards more compact agglomerates than the parent ones. The evolution of the average number of particles per fragment is described by generalized scaling laws between shear rate, onset (time-lag) of fragmentation, asymptotic fragment mass and size consistent with experimental and theoretical studies in the literature. The initial effective fractal dimension of the agglomerates influences the final one of the fragments. Copyright 2009 Elsevier Inc. All rights reserved.

  19. Leukocyte Agglomeration Reaction in Diagnosis of Allergy Reactions from Antibiotics,

    DTIC Science & Technology

    tested in a clinic on 80 patients with serious allergic anamnesis . The results of the studies indicate that the leukocyte agglomeration reaction is a highly sensitive immunological indicator of hypersensitivity to antibiotics.

  20. Acoustic Agglomeration Process of Fine Particles in a Resonance Structure

    NASA Astrophysics Data System (ADS)

    Shi, Chen-hao; Zhang, Jian; Zhao, Yun; Liang, Jie

    2017-07-01

    It was proved that the acoustic agglomeration technology has a good application prospect in the removal of fine particles. In this paper, a removal system of acoustic agglomeration is constructed by the acoustic resonance structure. With the finite element simulation model, the effect and condition of sound pressure level (SPL) increment of high intensity sound in the resonance structure are defined. In the experiment, the contrast of the sampling weight and particle size distribution changes of fine particles was compared under different operating conditions to examine the effect of acoustic agglomeration on the removal efficiency of fine particles. The results show the SPL increment of 10dB is obtained with SPL 145-165 dB when the working frequency is changed from 400 to 2000 Hz. Under the action of acoustic agglomeration, fine particles in the aerosol were significantly reduced, and the removal effect is markedly improved with the increase of SPL.

  1. Assessment of mercury content in poplar leaves of Novokuznetsk agglomeration

    NASA Astrophysics Data System (ADS)

    Lyapina, E. E.; Yusupov, D. V.; Tursunalieva, E. M.; Osipova, V. V.

    2016-11-01

    In this paper, the content of mercury in poplar leaves in the Novokuznetsk industrial agglomeration and along the automobile route Novokuznetsk-Mezhdurechensk is assessed. The geoecological indicators are also calculated.

  2. In-Situ Agglomeration and De-agglomeration by Milling of Nano-Engineered Lubricant Particulate Composites for Cold Spray Deposition

    NASA Astrophysics Data System (ADS)

    Neshastehriz, M.; Smid, I.; Segall, A. E.

    2014-10-01

    Nano-engineered self-lubricating particles comprised of hexagonal-boron-nitride powder (hBN) encapsulated in nickel have been developed for cold spray coating of aluminum components. The nickel encapsulant consists of several nano-sized layers, which are deposited on the hBN particles by electroless plating. In the cold spray deposition, the nickel becomes the matrix in which hBN acts as the lubricant. The coating demonstrated a very promising performance by reducing the coefficient of friction by almost 50% and increasing the wear resistance more than tenfold. The coatings also exhibited higher bond strength, which was directly related to the hardenability of the particles. During the encapsulation process, the hBN particles agglomerate and form large clusters. De-agglomeration has been studied through low- and high-energy ball milling to create more uniform and consistent particle sizes and to improve the cold spray deposition efficiency. The unmilled and milled particles were characterized with Scanning Electron Microscopy, Energy-Dispersive X-Ray Spectroscopy, BET, and hardness tests. It was found that in low-energy ball milling, the clusters were compacted to a noticeable extent. However, the high-energy ball milling resulted in breakup of agglomerations and destroyed the nickel encapsulant.

  3. Introduction to Bed Bugs

    MedlinePlus

    ... preventing infestations, increased resistance of bed bugs to pesticides, and ineffective pest control practices. The good news ... Bed Bugs — Do-it-yourself Bed Bug Control — Pesticides to Control Bed Bugs Bed Bug Information Clearinghouse ...

  4. Acoustic agglomeration of power plant fly ash. Final report

    SciTech Connect

    Reethof, G.; McDaniel, O.H.

    1982-01-01

    The work has shown that acoustic agglomeration at practical acoustic intensities and frequencies is technically and most likely economically viable. The following studies were performed with the listed results: The physics of acoustic agglomeration is complex particularly at the needed high acoustic intensities in the range of 150 to 160 dB and frequencies in the 2500 Hz range. The analytical model which we developed, although not including nonlinear acoustic efforts, agreed with the trends observed. We concentrated our efforts on clarifying the impact of high acoustic intensities on the generation of turbulence. Results from a special set of tests show that although some acoustically generated turbulence of sorts exists in the 150 to 170 dB range with acoustic streaming present, such turbulence will not be a significant factor in acoustic agglomeration compared to the dominant effect of the acoustic velocities at the fundamental frequency and its harmonics. Studies of the robustness of the agglomerated particles using the Anderson Mark III impactor as the source of the shear stresses on the particles show that the agglomerates should be able to withstand the rigors of flow through commercial cyclones without significant break-up. We designed and developed a 700/sup 0/F tubular agglomerator of 8'' internal diameter. The electrically heated system functioned well and provided very encouraging agglomeration results at acoustic levels in the 150 to 160 dB and 2000 to 3000 Hz ranges. We confirmed earlier results that an optimum frequency exists at about 2500 Hz and that larger dust loadings will give better results. Studies of the absorption of acoustic energy by various common gases as a function of temperature and humidity showed the need to pursue such an investigation for flue gas constituents in order to provide necessary data for the design of agglomerators. 65 references, 56 figures, 4 tables.

  5. The vacancies formation and agglomeration under centrifugal force

    NASA Astrophysics Data System (ADS)

    Wierzba, Bartek

    2017-10-01

    In this paper the vacancies formation and agglomeration under centrifugal force - sedimentation will be analyzed. The evolutionary algorithm for diffusion and vacancy evolution will be shown. The model predicts the location of vacancies agglomeration during the sedimentation process - the most probably place of voids formation. The computed results will be compared with experiments in Cu-brass diffusion couple. The influence of the centrifugal force on the vacancies migration will be presented.

  6. Micro-agglomerate flotation for deep cleaning of coal

    SciTech Connect

    Chander, S.; Hogg, R.

    1993-04-01

    We are investigating the use of a hybrid process, Micro-agglomerate flotation, which is a combination of oil-agglomeration and froth flotation. The basic concept is to use small quantities of oil to promote the formation of dense micro-agglomerates with minimal entrapment of water and mineral particles, and to use froth flotation to extract these micro-agglomerates from the water/dispersed-mineral phase. Since the floating units are agglomerates (about 30--50 [mu]m in size) rather than individual coal particles (1--10 [mu]m) the problems of froth overload and water/mineral carryover should be significantly alleviated.Micro-agglomerate flotation has considerable potential for the practical deep cleaning of coal on a commercial scale. In principle, it should be possible to achieve both high selectivity and high yield at reasonable cost. The process requires only conventional, off-the-shelf equipment and reagent usage (oil, surfactants, etc.) should be small. There are, however, complications. The process involves at least five phases: two or more solids (coal and mineral), two liquids (oil and water) and one gas (air). It is necessary to maintain precise control over the chemistry of the liquid phases in order to promote the interfacial reactions and interactions between phases necessary to ensure selectivity. Kinetics as well as thermodynamic factors may be critical in determining overall system response.

  7. Micro-agglomerate flotation for deep cleaning of coal

    SciTech Connect

    Chander, S.; Hogg, R.

    1993-01-01

    We are investigating the use of a hybrid process - Micro-agglomerate flotation - which is a combination of oil-agglomeration and froth flotation. The basic concept is to use small quantities of oil to promote the formation of dense micro-agglomerates with minimal entrapment of water and mineral particles, and to use froth flotation to extract these micro-agglomerates from the water/dispersed-mineral phase. Since the floating units are agglomerates (about 30--50 [mu]m in size) rather than individual coal particles (1--10 [mu]m) the problems of froth overload and water/mineral carryover should be significantly alleviated. Micro-agglomerate flotation has considerable potential for the practical deep cleaning of coal on a commercial scale. In principle, it should be possible to achieve both high selectivity and high yield at reasonable cost. The process requires only conventional, off-the-shelf equipment and reagent usage (oil, surfactants, etc.) should be small. There are, however, complications. The process involves at least five phases: two or more solids (coal and mineral), two liquids (oil and water) and one gas (air). It is necessary to maintain precise control over the chemistry of the liquid phases in order to promote the interfacial reactions and interactions between phases necessary to ensure selectivity. Kinetics as well as thermodynamic factors may be critical in determining overall system response.

  8. Novel Binders and Methods for Agglomeration of Ore

    SciTech Connect

    S. K. Kawatra; T. C. Eisele; J. A. Gurtler

    2004-03-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. A primary example of this is copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process. As a result, operators of acidic heap-leach facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of other agglomeration applications, particularly advanced primary ironmaking.

  9. NOVEL BINDERS AND METHODS FOR AGGLOMERATION OF ORE

    SciTech Connect

    S.K. Kawatra; T.C. Eisele; J.A. Gurtler; C.A. Hardison; K. Lewandowski

    2004-04-01

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking.

  10. NOVEL BINDERS AND METHODS FOR AGGLOMERATION OF ORE

    SciTech Connect

    S.K. Kawatra; T.C. Eisele; J.A. Gurtler; K. Lewandowski

    2005-04-01

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not breakdown during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process. As a result, operators of many facilities see large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching.

  11. Preparation of norfloxacin spherical agglomerates using the ammonia diffusion system.

    PubMed

    Puechagut, H G; Bianchotti, J; Chiale, C A

    1998-04-01

    Agglomerated crystals of norfloxacin were prepared by a spherical crystallization technique using the ammonia diffusion system (ADS). This technique makes it possible to agglomerate amphoteric drugs like norfloxacin, which cannot be agglomerated by conventional procedures. When an ammonia-water solution of norfloxacin is poured into an acetone dichloromethane mixture under agitation, a small amount of ammonia is liberated in the system. The ammonia-water solution plays a role both as a good solvent for norfloxacin and as a bridging liquid, allowing the crystals' collection to take place in one step. It has been proven that the agglomeration mechanism follows three steps: first acetone enters into the droplets of ammonia-water (this emulsion is formed because of the system characteristics); dissolved norfloxacin is consequently precipitated while the droplets collect the crystals; simultaneously, a part of the ammonia contained in the agglomerates diffuses to the outer organic solvent phase, thereby forming the norfloxacin spherical agglomerates. The correct selection of solvents has enabled us to obtain a suitable stable crystalline shape.

  12. CONSOLIDATION OF K BASIN SLUDGE DATA AND EXPERIENCES ON AGGLOMERATE FORMATION

    SciTech Connect

    HILL SR

    2010-06-10

    canister sludge. The unconfined compressive strength of samples from this testing, measured by a pocket penetrometer, infers that their shear strength may be between 120 kPa and 170 kPa (PNNL-16496). These short-duration hydrothermal tests were conducted at temperatures much greater than the temperature of the T Plant canyon cells (-7 C to 33 C); however, the strength results provide an initial bounding target for sludge stored for many years, and an upper range for simulants (042910-53451-TP02 Rev 1). Sampling and characterization activities conducted in 2009 have measured the total uranium content and speciation for sludge stored in Engineered Containers SCS-CON-220, -240, -250, and -260 (PNNL-19035). Based on on-going testing that has measured the shear strength of uranium samples containing varying uranium (IV) to uranium (VI) ratios and the characterization of the Engineered Containers SCS-CON-220, -240, -250, and -260, it is unlikely that agglomerates will form on a large scale in this sludge. The highest measured total uranium concentration in the Engineered Container SCS-CON-220 sludge is 35.2 wt% and only 4 wt% to 6 wt% (dry) in Engineered Containers SCS-CON -240, -250, and -260. The uranium concentrations in Engineered Containers SCS-CON-220, -240, -250, and -260 sludge are below the threshold for agglomerate formation. Settler sludge however is estimated to contain {approx} 80 wt% (dry) total uranium, which could lead to the formation of high strength agglomerates depending on the relative concentrations of U(IV) and U(VI) compounds. One of the chief concerns of the STP is sludge dry-out. Samples archived in PNNL hot cells have been known to dry out and form hard clods of material, which are then difficult to reconstitute (HNF-6705). In 1996, all but one of the samples archived at the 222-S Laboratory dried out. These samples were composed of sludge collected from the KE Basin floor and Weasel Pit. However, in the STP's current design plans for sludge stored in

  13. Dynamics of nanoparticle agglomeration in a magnetic fluid in a varying magnetic field

    NASA Astrophysics Data System (ADS)

    Usanov, D. A.; Postel'ga, A. E.; Bochkova, T. S.; Gavrilin, V. N.

    2016-03-01

    It is found that the dependence of the magnetic nanoparticle agglomerate length in a magnetic fluid on the applied magnetic field has three characteristic segments: a substantial increase in the agglomerate length with the magnetic field in the range of weak fields, a segment with an insignificant increase in the average length of agglomerates upon an increase in the field, and a sharp increase in the agglomerate length with a further increase in the field. It is shown that the agglomerate length increases in the range of strong magnetic fields due to a decrease in the spacing between adjacent agglomerates down to their complete coalescence. The total number of agglomerates decreases thereby.

  14. Application of acoustic agglomeration to reduce fine particle emissions from coal combustion plants

    SciTech Connect

    Gallego-Juarez, J.A.; Riera-Franco De Sarabia, E.; Rodriguez-Corral, G.

    1999-11-01

    Removal of fine particles (smaller than 2.5 {micro}m) from industrial flue gases is, at present, one of the most important problems in air pollution abatement. These particles which are hazardous because of their ability to penetrate deeply into the lungs, are difficult to remove by conventional separation technology. Sonic energy offers a means to solve this problem. The application of a high-intensity acoustic field to an aerosol induces agglomeration processes which changes the size distribution in favor of larger particles, which are then easier to precipitate with a conventional separator. In this work, the authors present a semiindustrial pilot plant in which this process is applied for reduction of particle emissions in coal combustion fumes. This installation basically consists of an acoustic agglomeration chamber with a rectangular cross-section, driven by four high-power and highly directional acoustic transducers of 10 and/or 20 kHz, and an electrostatic precipitator (ESP). In the experiments, a fluidized bed coal combustor was used as fume generator, and a sophisticated air sampling station was set up to carry out measurements with fume flow rates up to about 2,000 m{sup 3}/h, gas temperatures of about 150 C, and mass concentrations in the range 1--5 g/m{sup 3}. The fine particle reduction produced by the acoustic filter was about 40% of the number concentration.

  15. Novel Binders and Methods for Agglomeration of Ore

    SciTech Connect

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-12-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that will work satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process, and advanced ironmaking processes, where binders must function satisfactorily over an extraordinarily large range of temperatures (from room temperature up to over 1200 C). As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching and advanced primary ironmaking. This project has identified several acid-resistant binders and agglomeration procedures that can be used for improving the energy efficiency of heap leaching, by preventing the ''ponding'' and ''channeling'' effects that currently cause reduced recovery and extended leaching cycle times. Methods have also been developed for iron ore processing which are intended to improve the

  16. Colloidal stability of coal-simulated suspensions in selective agglomeration

    SciTech Connect

    Schurger, M.L.

    1989-01-01

    A coal suspension was simulated by using graphite to simulate the carbonaceous fraction and kaolinite clay to simulate the ash fraction. Separate studies on each material established their response to additions of oxidized pyrite (ferrous sulfate) and a humic acid simulate (salicylic acid) in terms of zeta potentials profiles with pH and Ionic strength. Concentrations of iron and salicylic acid evaluated were 4.5 {times} 10{sup {minus}3} M and 2.0 {times} 10{sup {minus}4} M, respectively. The zeta potentials profiles of graphite, clay and hexadecane were negative throughout the pH ranges studied. The addition of iron lowered the zeta potentials all of the suspensions under all pH and ionic strength conditions. Salicylic acid decreased the graphite and hexadecane zeta potentials but had no effect on the clay zeta potential profiles. Agglomeration of graphite with bridging liquid shows distinct time dependent rate mechanisms, a initial growth of graphite agglomerates followed by consolidation phase. Graphite agglomeration was rapid with the maximum amount of agglomerate volume growth occurring in under 2-4 minutes. Agglomeration in the first two minutes was characterized by a 1st order rate mechanism. The presence of either Iron and salicylic acid generally improved the first order rates. The addition of clay also improved the first order rates except in the presence of salicylic acid. Heteroagglomeration of graphite with clay was found by hydrodynamic arguments to be unfavored. A multicomponent population balance model which had been developed for evaluating collision efficiencies of coal, ash and pyrite selective agglomeration was evaluated to explain these results. The growth and consolidation characteristics of graphite agglomeration for the experimental conditions examined herein revealed the limitations of such as model for this application.

  17. Infant's bed climate and bedding in the Japanese home.

    PubMed

    Nakamura Ikeda, Rie; Fukai, Kiyoko; Okamoto Mizuno, Kazue

    2012-06-01

    to assess the bed climate of infants in their homes in Japan. descriptive, exploratory, non-experimental research design. the data were collected at the participants' homes under normal circumstances. nineteen healthy infants between the ages of two and five months. Their mothers, who joined a parenting class organised by a maternity clinic in Okayama, Japan, consented to participate in this study. we visited the infants' homes and interviewed their mothers concerning the types and use of bedding. The temperature and relative humidity of the bed climate at the back and foot of the bedding, and in the room were measured every minute for four consecutive days. Differences among the bed climates measured during three seasons (spring, summer, and autumn) were assessed by one-way analysis of variance. The bed temperature was higher for infants than for adults. No significant difference in temperature was noted among the three seasons. The bed temperature was about 36.0°C when waterproof sheets and futon mattresses for children or adult were used. The average relative humidity of the bed climate at the back was highest in summer, followed by that in spring and autumn; the differences were significant. The use of waterproof sheets and futon mattresses for children in summer increased the relative humidity to 80% or more. The use of infant beds, sunoko drainboards, and cotton futon mattresses in summer was effective in reducing the bed humidity. these results suggest that nurse-midwives should advise the parents on comfortable bed climates for their infants, as well as how to select and use bedding for them. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Staged fluidized bed

    DOEpatents

    Mallon, R.G.

    1983-05-13

    The invention relates to oil shale retorting and more particularly to staged fluidized bed oil shale retorting. Method and apparatus are disclosed for narrowing the distribution of residence times of any size particle and equalizing the residence times of large and small particles in fluidized beds. Particles are moved up one fluidized column and down a second fluidized column with the relative heights selected to equalize residence times of large and small particles. Additional pairs of columns are staged to narrow the distribution of residence times and provide complete processing of the material.

  19. Gravitational agglomeration of post-HCDA LMFBR nonspherical aerosols

    NASA Astrophysics Data System (ADS)

    Tuttle, R. F.

    1980-12-01

    A theoretical investigation of collisional dynamics of two particle interactions in a gravitational field is reported. This research is unique in that it is the first attempt at modeling the hydrodynamic interactions between a nonspherical particle and a spherical particle undergoing gravitational collisions in an LMFBR environment. Basic definitions and expressions are developed for nonspherical particles and related to spherical particles by means of shape factors. Using volume equivalent diameter as the defining length in the gravitational collision kernel, the aerodynamic shape factor, k, the density correction factor, alpha, and the gravitational collision shape factor, beta, are used to correct the collision kernel for the case of collisions between aerosol agglomerates. The Navier-Stokes equation in oblate spheroidal coordinates is solved to model a nonspherical particle and then the dynamic equations for two particle motions are developed. A computer program NGCEFF is constructed, the Navier-Stokes equation is solved by the finite difference method, and the dynamical equations are solved by Gear's method. It is concluded that the aerosol gravitational collision shape factor can be determined by further theoretical work based on the concepts and methods developed in this dissertation.

  20. Basic principles and mechanisms of selective oil agglomeration. Fossil energy interim report, October 1, 1983--September 30, 1992

    SciTech Connect

    Wheelock, T.D.

    1992-12-31

    Numerous agglomeration tests were conducted with several types of low-ash coal and graphite, high grade mineral pyrite, and other materials. Relatively pure hydrocarbons, including heptane and hexadecane, were used as agglomerants. Access of air to the system was controlled. Particle recovery by agglomeration was observed to depend on a number of system parameters. Among the most important parameters are the hydrophobicity of the particles and the oil dosage, so that the, recovery of solids per unit of oil administered is proportional to the hydrophobicity. The pH and ionic strength of the aqueous suspension affect particle recovery in different ways depending on the surface properties of the particles. On the other hand, the presence of air in the system generally improves particle recovery. The greatest effect of air was observed in a closely related study which showed that air had to be present to produce good agglomerates from a moderately hydrophobic coal in a mixer producing a lower shear rate. The rate of agglomeration was found to be much greater for a strongly hydrophobic coal than for a moderately hydrophobic coal, and the rate was observed to be proportional to the oil dosage. Also the rate was enhanced by the presence of air in the, system. For hydrophobic coals, the rate increased with increasing ionic strength of the aqueous medium, but it was not affected greatly by pH over a wide range. The separation of coal and pyrite particles by selective agglomeration was found to depend on the relative hydrophobicity of the materials, the oil dosage, and the properties of the aqueous medium.

  1. Electrically enhanced fluidized bed heat exchanger

    SciTech Connect

    Lessor, D.L.; Robertus, R.J.; Roberts, G.L.

    1994-05-01

    The experiments have shown that a high level of electrical charging can be achieved in a fluidized bed of two resistive particle types; that bed stabilization rather than increased sensible heat transport dominates low frequency electric field effects on heat transfer with most bed loadings; and, hence, that applying an oscillatory potential difference between tubes or rods in a fluidized bed of two mutual contact-charging particle species gives reduced rather than improved heat transfer. Applying an oscillatory potential difference between rods in a bed of quartz particles fluidized alone did give improved heat transfer, however. With no electric field applied, most fluidized mixes were found to give higher heat transfer rates than the average of the values when each of the two species was fluidized alone. The high level of charging observed in some mixed beds may prove of interest for some air cleanup applications; the results show that simultaneous fluidization of pairs of bipolar charging materials of similar particle size is possible without excessive agglomeration. This would be important for air cleanup.

  2. Evaluation of water security: an integrated approach applied in Wuhan urban agglomeration, China.

    PubMed

    Shao, Dongguo; Yang, Fengshun; Xiao, Chun; Tan, Xuezhi

    2012-01-01

    To evaluate water security, the Water Resources Sustainability Evaluation Model has been developed. The model employs four criteria (economic development, flood control security, water supply security, and water environment security) and has 22 indicators, integrating them using their relative weights. The model is applied to evaluate the water security of Wuhan urban agglomeration, China. The values of the indicators are normalized using the exponential efficacy functions based on the law of diminishing marginal utility. The evaluation results show that, overall, the state of water security in Wuhan urban agglomeration is good, which is in good agreement with the true situation. The comparison between the results of the model and other three evaluation methods by the Spearman coefficient of rank correlation verifies the science and reliability of the developed model. Consequently, it is concluded that the model can be an effective tool for evaluating the states of water security and provide a basis on which to create policies for improving inadequacies in water security.

  3. A Critical Study of Agglomerated Multigrid Methods for Diffusion

    NASA Technical Reports Server (NTRS)

    Thomas, James L.; Nishikawa, Hiroaki; Diskin, Boris

    2009-01-01

    Agglomerated multigrid techniques used in unstructured-grid methods are studied critically for a model problem representative of laminar diffusion in the incompressible limit. The studied target-grid discretizations and discretizations used on agglomerated grids are typical of current node-centered formulations. Agglomerated multigrid convergence rates are presented using a range of two- and three-dimensional randomly perturbed unstructured grids for simple geometries with isotropic and highly stretched grids. Two agglomeration techniques are used within an overall topology-preserving agglomeration framework. The results show that multigrid with an inconsistent coarse-grid scheme using only the edge terms (also referred to in the literature as a thin-layer formulation) provides considerable speedup over single-grid methods but its convergence deteriorates on finer grids. Multigrid with a Galerkin coarse-grid discretization using piecewise-constant prolongation and a heuristic correction factor is slower and also grid-dependent. In contrast, grid-independent convergence rates are demonstrated for multigrid with consistent coarse-grid discretizations. Actual cycle results are verified using quantitative analysis methods in which parts of the cycle are replaced by their idealized counterparts.

  4. Advanced physical fine coal cleaning spherical agglomeration. Final report

    SciTech Connect

    Not Available

    1990-09-01

    The project included process development, engineering, construction, and operation of a 1/3 tph proof-of-concept (POC) spherical agglomeration test module. The POC tests demonstrated that physical cleaning of ultrafine coal by agglomeration using heptane can achieve: (1) Pyritic sulfur reductions beyond that possible with conventional coal cleaning methods; (2) coal ash contents below those which can be obtained by conventional coal cleaning methods at comparable energy recoveries; (3) energy recoveries of 80 percent or greater measured against the raw coal energy content; (4) complete recovery of the heptane bridging liquid from the agglomerates; and (5) production of agglomerates with 3/8-inch size and less than 30 percent moisture. Test results met or exceeded all of the program objectives. Nominal 3/8-inch size agglomerates with less than 20 percent moisture were produced. The clean coal ash content varied between 1.5 to 5.5 percent by weight (dry basis) depending on feed coal type. Ash reductions of the run-of-mine (ROM) coal were 77 to 83 percent. ROM pyritic sulfur reductions varied from 86 to 90 percent for the three test coals, equating to total sulfur reductions of 47 to 72 percent.

  5. A Critical Study of Agglomerated Multigrid Methods for Diffusion

    NASA Technical Reports Server (NTRS)

    Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.

    2011-01-01

    Agglomerated multigrid techniques used in unstructured-grid methods are studied critically for a model problem representative of laminar diffusion in the incompressible limit. The studied target-grid discretizations and discretizations used on agglomerated grids are typical of current node-centered formulations. Agglomerated multigrid convergence rates are presented using a range of two- and three-dimensional randomly perturbed unstructured grids for simple geometries with isotropic and stretched grids. Two agglomeration techniques are used within an overall topology-preserving agglomeration framework. The results show that multigrid with an inconsistent coarse-grid scheme using only the edge terms (also referred to in the literature as a thin-layer formulation) provides considerable speedup over single-grid methods but its convergence deteriorates on finer grids. Multigrid with a Galerkin coarse-grid discretization using piecewise-constant prolongation and a heuristic correction factor is slower and also grid-dependent. In contrast, grid-independent convergence rates are demonstrated for multigrid with consistent coarse-grid discretizations. Convergence rates of multigrid cycles are verified with quantitative analysis methods in which parts of the two-grid cycle are replaced by their idealized counterparts.

  6. The impact of solution agglomeration on the deposition of self-assembled monolayers

    SciTech Connect

    BUNKER,BRUCE C.; CARPICK,ROBERT W.; ASSINK,ROGER A.; THOMAS,MICHAEL L.; HANKINS,MATTHEW G.; VOIGT,JAMES A.; SIPOLA,DIANA L.; DE BOER,MAARTEN P.; GULLEY,GERALD L.

    2000-04-17

    Self-assembled monolayers (SAMS) are commonly produced by immersing substrates in organic solutions containing trichlorosilane coupling agents. Unfortunately, such deposition solutions can also form alternate structures including inverse micelles and lamellar phases. The formation of alternate phases is one reason for the sensitivity of SAM depositions to factors such as the water content of the deposition solvent. If such phases are present, the performance of thin films used for applications such as minimization of friction and stiction in micromachines can be seriously compromised. Inverse micelle formation has been studied in detail for depositions involve 1H-, 1H-, 2H-, 2H-perfluorodecyltrichlorosilane (FDTS) in isooctane. Nuclear magnetic resonance experiments have been used to monitor the kinetics of hydrolysis and condensation reactions between water and FDTS. Light scattering experiments show that when hydrolyzed FDTS concentrations reach a critical concentration, there is a burst of nucleation to form high concentrations of spherical agglomerates. Atomic force microscopy results show that the agglomerates then deposit on substrate surfaces. Deposition conditions leading to monolayer formation involve using deposition times that are short relative to the induction time for agglomeration. After deposition, inverse micelles can be converted into lamellar or monolayer structures with appropriate heat treatments if surface concentrations are relatively low.

  7. Recent satellite-based trends of tropospheric nitrogen dioxide over large urban agglomerations worldwide

    NASA Astrophysics Data System (ADS)

    Schneider, P.; Lahoz, W. A.; van der A, R.

    2015-02-01

    Trends in tropospheric nitrogen dioxide (NO2) columns over 66 large urban agglomerations worldwide have been computed using data from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument onboard the Envisat platform for the period August 2002 to March 2012. A seasonal model including a~linear trend was fitted to the satellite-based time series over each site. The results indicate distinct spatial patterns in trends. While agglomerations in Europe, North America, and some locations in East Asia/Oceania show decreasing tropospheric NO2 levels on the order of -5% yr-1, rapidly increasing levels of tropospheric NO2 are found for agglomerations in large parts of Asia, Africa, and South America. The site with the most rapidly increasing absolute levels of tropospheric NO2 was found to be Tianjin in China with a trend of 3.04 (±0.47) × 1015 molecules cm-2yr-1, whereas the site with the most rapidly increasing relative trend was Kabul in Afghanistan with 14.3 (±2.2) % yr-1. In total, 34 sites exhibited increasing trends of tropospheric NO2 throughout the study period, 24 of which were found to be statistically significant. A total of 32 sites showed decreasing levels of tropospheric NO2 during the study period, of which 20 sites did so at statistically significant magnitudes. Overall, going beyond the relatively small set of megacities investigated previously, this study provides the first consistent analysis of recent changes in tropospheric NO2 levels over most large urban agglomerations worldwide, and indicates that changes in urban NO2 levels are subject to substantial regional differences as well as influenced by economic and demographic factors.

  8. Recent satellite-based trends of tropospheric nitrogen dioxide over large urban agglomerations worldwide

    NASA Astrophysics Data System (ADS)

    Schneider, P.; Lahoz, W. A.; van der A, R.

    2014-09-01

    Trends in tropospheric nitrogen dioxide (NO2) concentrations over 66 large urban agglomerations worldwide have been computed using data from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument onboard the Envisat platform for the period August 2002 to March 2012. A seasonal model including a linear trend was fitted to the satellite-based time series over each site. The results indicate distinct spatial patterns in trends. While agglomerations in Europe, North America, and some locations in East Asia/Oceania show decreasing tropospheric NO2 levels on the order of -5 % yr-1, rapidly increasing levels of tropospheric NO2 are found for agglomerations in large parts of Asia, Africa, and South America. The site with the most rapidly increasing absolute levels of tropospheric NO2 was found to be Tianjin in China with a trend value of 3.04 (±0.47) × 1015 molecules cm-2 yr-1, whereas the site with the most rapidly increasing relative trend was Kabul in Afghanistan with 14.3 (±2.2) % yr-1. In total, 34 sites exhibited increasing trends of tropospheric NO2 throughout the study period, 24 of which were found to be statistically significant. A total of 32 sites showed decreasing levels of tropospheric NO2 during the study period, of which 20 sites did so at statistically significant magnitudes. Overall, going beyond the relatively small set of megacities investigated previously, this study provides the first consistent analysis of recent changes in tropospheric NO2 levels over most large urban agglomerations worldwide.

  9. Concentrations and Distribution of Slag-Related Trace Elements and Mercury in Fine-Grained Beach and Bed Sediments of Lake Roosevelt, Washington, April-May 2001

    USGS Publications Warehouse

    Majewski, Michael S.; Kahle, Sue C.; Ebbert, James C.; Josberger, Edward G.

    2003-01-01

    A series of studies have documented elevated concentrations of trace elements such as arsenic, cadmium, copper, lead, mercury, and zinc in the water, bed sediment, or fish of Lake Roosevelt and the upstream reach of the Columbia River. Elevated concentrations of some trace elements in this region are largely attributable to the transport of slag and metallurgical waste discharged into the Columbia River from a smelter in Canada. Although most recent studies have focused on contamination levels in water, bed sediment, and fish, there is growing concern in the region over the potential threat of airborne contaminants to human health. In response to these concerns, the U.S. Geological Survey conducted an assessment of trace-element concentrations in the relatively shallow fine-grained sediment along the shore of Lake Roosevelt that is exposed annually during periods of reservoir drawdown. During each winter and spring, the water level of Lake Roosevelt is lowered as much as about 80 feet to provide space to capture high river flows from spring runoff, exposing vast expanses of lake-bottom sediment for a period of several months. Upon drying, these exposed areas provide an extremely large source for wind-blown dust. This study concluded that trace elements associated with slag and metallurgical waste are present in the fine-grained fraction (less than 63 micrometers) of bed sediments along the length of Lake Roosevelt, and as such, could be components of the airborne dust resulting from exposure, drying, and wind mobilization of the sediments exposed during the annual drawdowns of the reservoir. Trace-element concentrations in the surficial bed sediment varied, but the major components in slag?arsenic, cadmium, copper, lead, and zinc?showed generally pronounced gradients of decreasing concentrations from near the International Border to the Grand Coulee Dam. The results of this study provide base-line information needed to plan and conduct air monitoring of trace

  10. Effects of crossover hydrogen on platinum dissolution and agglomeration

    NASA Astrophysics Data System (ADS)

    Cheng, Tommy T. H.; Rogers, Erin; Young, Alan P.; Ye, Siyu; Colbow, Vesna; Wessel, Silvia

    2011-10-01

    The durability of catalysts in the polymer-electrolyte membrane fuel cell (PEMFC) is identified as a critical limiting factor for wide commercialization of fuel cells. Even though much progress has been made in understanding the degradation mechanisms, the phenomena of Pt dissolution and agglomeration and their contributing factors are not fully understood. In the present investigation, the effects of crossover hydrogen on Pt degradation are studied using an accelerated stress test (AST). The end-of-test (EOT) membrane-electrode-assemblies (MEAs) were characterized by X-ray diffraction (XRD), scanning-electron microscopy (SEM), and energy-dispersive X-ray (EDX). The results provided mechanistic understanding of Pt dissolution and agglomeration: Pt growth and agglomeration were found to be less severe with more crossover hydrogen due likely to the chemical reduction of Pt oxides by crossover hydrogen and the subsequently decrease in the amount of Pt ions formed via the oxide pathway.

  11. Basic principles and mechanisms of selective oil agglomeration

    SciTech Connect

    Wheelock, T.D.; Drzymala, J.; Allen, R.W.; Hu, Y.-C.; Tyson, D.; Xiaoping, Qiu; Lessa, A.

    1990-01-01

    Numerous measurements of the heat of immersion of coal were conducting using several different particle size fractions of No. 2 Gas Seam coal from Raleigh County, West Virginia. The heat of immersion was determined in water, methanol, heptane, hexadecane and neohexane (2,2-dimethybutane). A comparison of the results with those determined previously for Illinois No. 6 coal is discussed. A number of potential pyrite depressants for use in oil agglomeration of coal were screened by testing the response of sulfidized mineral pyrite to agglomeration with heptane in the presence of the potential depressant. The following were tested; sodium dithionite, sodium thiosulfate, ferrous sulfate, ferric sulfate, titanous chloride, hydrogen peroxide, Oxone (a form of potassium monopersulfate), pyrogallol, quebracho (colloidal dispersant derived from tree bark), milk whey, and several organic thiols. Ferric chloride was applied to mixtures of Upper Freeport coal and sulfidized mineral pyrite before subjecting the mixtures to agglomeration with heptane. 7 refs., 23 figs., 3 tabs.

  12. Hierarchical agglomerates of carbon nanotubes as high-pressure cushions.

    PubMed

    Liu, Yi; Qian, Weizhong; Zhang, Qiang; Cao, Anyuan; Li, Zhifei; Zhou, Weiping; Ma, Yang; Wei, Fei

    2008-05-01

    We report the cushioning behavior of highly agglomerated carbon nanotubes. The nanotube agglomerates can be repeatedly compacted to achieve large volume reduction (>50%) and expanded to nearly original volume without structural failure, like a robust porous cushion. At a higher pressure range (10-125 MPa), the energy absorbed per unit volume is 1 order of magnitude higher than conventional cushion materials such as foamy polystyrene. The structure of hierarchical agglomerates can be controlled for tailoring the cushioning properties and obtaining a lower cushioning coefficient (higher energy absorption) over a wide range of pressures (1-100 MPa). The mechanism was studied in terms of morphology evolution of the nanotube aggregates and pore size distribution during compression.

  13. The Physics of Protoplanetesimal Dust Agglomerates. VIII. Microgravity Collisions between Porous SiO_2 Aggregates and Loosely Bound Agglomerates

    NASA Astrophysics Data System (ADS)

    Whizin, Akbar D.; Blum, Jürgen; Colwell, Joshua E.

    2017-02-01

    We performed laboratory experiments colliding 0.8–1.0 mm and 1.0–1.6 mm SiO2 dust aggregates with loosely bound centimeter-sized agglomerates of those aggregates in microgravity. This work builds on previous microgravity laboratory experiments examining the collisional properties of porous loosely bound dust aggregates. In centimeter-sized aggregates, surface forces dominate self-gravity and may play a large role in aggregate growth beyond this size range. We characterize the properties of protoplanetary aggregate analogs to help place constraints on initial formation mechanisms and environments. We determined several important physical characteristics of these aggregates in a large number of low-velocity collisions. We observed low coefficients of restitution and fragmentation thresholds near 1 m s‑1 for 1–2 cm agglomerates, which are in good agreement with previous findings in the literature. We find the accretion efficiency for agglomerates of loosely bound aggregates to be higher than that for just aggregates themselves. We find sticking thresholds of 6.6 ± 2 cm s‑1, somewhat higher than those in similar studies, which have observed few aggregates stick at speeds of under 3 cm s‑1. Even with highly dissipative collisions, loosely bound agglomerates have difficulty accreting beyond centimeter-sized bodies at typical collision speeds in the disk. Our results indicate agglomerates of porous aggregates have slightly higher sticking thresholds than previously thought, allowing possible growth to decimeter-sized bodies if velocities are low enough.

  14. A pocket model for aluminum agglomeration in composite propellants

    NASA Technical Reports Server (NTRS)

    Cohen, N. S.

    1981-01-01

    This paper presents a model for the purpose of estimating the fraction of aluminum powder that will form agglomerates at the surface of deflagrating composite propellants. The basic idea is that the fraction agglomerated depends upon the amount of aluminum that melts within effective binder pocket volumes framed by oxidizer particles. The effective pocket depends upon the ability of ammonium perchlorate modals to encapsulate the aluminum and provide a local temperature sufficient to ignite the aluminum. Model results are discussed in the light of data showing effects of propellant formulation variables and pressure.

  15. Continuous air agglomeration method for high carbon fly ash beneficiation

    DOEpatents

    Gray, McMahon L.; Champagne, Kenneth J.; Finseth, Dennis H.

    2000-01-01

    The carbon and mineral components of fly ash are effectively separated by a continuous air agglomeration method, resulting in a substantially carboree mineral stream and a highly concentrated carbon product. The method involves mixing the fly ash comprised of carbon and inorganic mineral matter with a liquid hydrocarbon to form a slurry, contacting the slurry with an aqueous solution, dispersing the hydrocarbon slurry into small droplets within the aqueous solution by mechanical mixing and/or aeration, concentrating the inorganic mineral matter in the aqueous solution, agglomerating the carbon and hydrocarbon in the form of droplets, collecting the droplets, separating the hydrocarbon from the concentrated carbon product, and recycling the hydrocarbon.

  16. Quantum dot agglomerates in biological media and their characterization by asymmetrical flow field-flow fractionation.

    PubMed

    Moquin, Alexandre; Neibert, Kevin D; Maysinger, Dusica; Winnik, Françoise M

    2015-01-01

    The molecular composition of the biological environment of nanoparticles influences their physical properties and changes their pristine physicochemical identity. In order to understand, or predict, the interactions of cells with specific nanoparticles, it is critical to know their size, shape, and agglomeration state not only in their nascent state but also in biological media. Here, we use asymmetrical flow field-flow fractionation (AF4) with on-line multiangle light scattering (MALS), dynamic light scattering (DLS) and UV-Visible absorption detections to determine the relative concentration of isolated nanoparticles and agglomerates in the case of three types of semi-conductor quantum dots (QDs) dispersed in Dulbecco's Modified Eagle Media (DMEM) containing 10% of fetal bovine serum (DMEM-FBS). AF4 analysis also yielded the size and size distribution of the agglomerates as a function of the time of QDs incubation in DMEM-FBS. The preferred modes of internalization of the QDs are assessed for three cell-types, N9 microglia, human hepatocellular carcinoma cells (HepG2) and human embryonic kidney cells (Hek293), by confocal fluorescence imaging of live cells, quantitative determination of the intracellular QD concentration, and flow cytometry. There is an excellent correlation between the agglomeration status of the three types of QDs in DMEM-FBS determined by AF4 analysis and their preferred mode of uptake by the three cell lines, which suggests that AF4 yields an accurate description of the nanoparticles as they encounter cells and advocates its use as a means to characterize particles under evaluation.

  17. Fluidized bed coal desulfurization

    NASA Technical Reports Server (NTRS)

    Ravindram, M.

    1983-01-01

    Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.

  18. Explore the influence of agglomeration on electrochemical performance of an amorphous MnO2/C composite by controlling drying process

    NASA Astrophysics Data System (ADS)

    Cui, Mangwei; Kang, Litao; Shi, Mingjie; Xie, Lingli; Wang, Xiaomin; Zhao, Zhe; Yun, Shan; Liang, Wei

    2017-09-01

    Amorphous MnO2/C composite is prepared by a facile redox reaction between potassium permanganate (KMnO4) and commercial black pen ink. Afterwards, two different drying processes, air drying or freeze drying, are employed to adjust the agglomeration state of particles in samples and explore its influence on capacitive performance. Experimental results indicate that the air-dried sample demonstrates much better cycling stability than the freeze-dried one (capacity retention at 5000 cycles: 70.9 vs. 60.7%), probably because of the relatively strong agglomeration between particles in this sample. Nevertheless, strong agglomeration seems to deteriorate the specific capacitance (from 492 down to 440.5 F/g at 1 A/g) due to the decrease of porosity and specific surface area. This study suggests that agglomeration of primary particles plays an important role to balance the specific capacitance and cycling stability for electrode materials.

  19. Rat pulmonary responses to inhaled nano-TiO2: effect of primary particle size and agglomeration state

    PubMed Central

    2013-01-01

    Background The exact role of primary nanoparticle (NP) size and their degree of agglomeration in aerosols on the determination of pulmonary effects is still poorly understood. Smaller NP are thought to have greater biological reactivity, but their level of agglomeration in an aerosol may also have an impact on pulmonary response. The aim of this study was to investigate the role of primary NP size and the agglomeration state in aerosols, using well-characterized TiO2 NP, on their relative pulmonary toxicity, through inflammatory, cytotoxic and oxidative stress effects in Fisher 344 male rats. Methods Three different sizes of TiO2 NP, i.e., 5, 10–30 or 50 nm, were inhaled as small (SA) (< 100 nm) or large agglomerates (LA) (> 100 nm) at 20 mg/m3 for 6 hours. Results Compared to the controls, bronchoalveolar lavage fluids (BALF) showed that LA aerosols induced an acute inflammatory response, characterized by a significant increase in the number of neutrophils, while SA aerosols produced significant oxidative stress damages and cytotoxicity. Data also demonstrate that for an agglomeration state smaller than 100 nm, the 5 nm particles caused a significant increase in cytotoxic effects compared to controls (assessed by an increase in LDH activity), while oxidative damage measured by 8-isoprostane concentration was less when compared to 10–30 and 50 nm particles. In both SA and LA aerosols, the 10–30 nm TiO2 NP size induced the most pronounced pro-inflammatory effects compared to controls. Conclusions Overall, this study showed that initial NP size and agglomeration state are key determinants of nano-TiO2 lung inflammatory reaction, cytotoxic and oxidative stress induced effects. PMID:24090040

  20. Numerical Model for Channel/Floodplain Exchange on a Gravel Bed River: Relative Importance of Upstream and Downstream Boundaries and of Lateral Exchange (Invited)

    NASA Astrophysics Data System (ADS)

    Lauer, J. W.

    2013-12-01

    represent a significant part of the bed material sediment budget. Model runs can assess the relative importance of a) the response of the system to afforestation (through modification of the hydraulic roughness of the floodplain) b) hydrologic impact of the dams (which requires a description of the impact of reservoir management on the full flow duration distribution, an issue addressed statistically using the observed annual flood maxima), c) the effect of sediment starvation, which causes channel incision and the formation of a bed pavement and/or partly alluvial zone, and d) changes in water level in the Rhône River downstream from the confluence. Model runs show that the effects of sediment starvation propagate downstream much more rapidly if the floodplain does not provide sediment to the channel and/or if bedrock is located near the alluvial surface. However, under certain conditions, sand-size sediment eroded from the floodplain can mobilize coarser bed material, leading to more bed incision than is the case without channel/floodplain sediment exchange. In general, runs show that the dynamics of the upstream end of the system depend strongly on sediment supply, while the dynamics of the downstream end (i.e. near the Rhône) are also influenced by floodplain vegetation, downstream water level, and the overall history of incision within the reach.

  1. Spherical agglomerates of lactose with enhanced mechanical properties.

    PubMed

    Lamešić, Dejan; Planinšek, Odon; Lavrič, Zoran; Ilić, Ilija

    2017-01-10

    The aim of this study was to prepare spherical agglomerates of lactose and to evaluate their physicochemical properties, flow properties, particle friability and compaction properties, and to compare them to commercially available types of lactose for direct compression (spray-dried, granulated and anhydrous β-lactose). Porous spherical agglomerates of α-lactose monohydrate with radially arranged prism-like primary particles were prepared exhibiting a high specific surface area. All types of lactose analysed had passable or better flow properties, except for anhydrous β-lactose, which had poor flowability. Particle friability was more pronounced in larger granulated lactose particles; however, particle structure was retained in all samples analysed. The mechanical properties of spherical agglomerates of lactose, in terms of compressibility, established with Walker analysis, and compactibility, established with a compactibility profile, were found to be superior to any commercially available types of lactose. Higher compactibility of spherical agglomerates of lactose is ascribed to significantly higher particle surface area due to a unique internal structure with higher susceptibility to fragmentation.

  2. Universities' Entrepreneurial Performance: The Role of Agglomeration Economies

    ERIC Educational Resources Information Center

    Chen, Ping Penny

    2011-01-01

    In spite of the extensive research on universities' entrepreneurship, whether research strength fosters or dampens their entrepreneurial performance remains controversial. Much research claims an influential role of research universities in regional economy, however, little has been said about what a part that the agglomeration economies may play…

  3. Universities' Entrepreneurial Performance: The Role of Agglomeration Economies

    ERIC Educational Resources Information Center

    Chen, Ping Penny

    2011-01-01

    In spite of the extensive research on universities' entrepreneurship, whether research strength fosters or dampens their entrepreneurial performance remains controversial. Much research claims an influential role of research universities in regional economy, however, little has been said about what a part that the agglomeration economies may play…

  4. Engineering development of selective agglomeration. Site closeout report

    SciTech Connect

    Not Available

    1993-04-01

    The Selective Agglomeration POC facility consisted of a coal crushing and grinding circuit, followed by an agglomeration circuit and product dewatering. (A plot plan of the facility is shown in Figure 1-2.) The coal crushing and grinding system consisted of a hammermill coal crusher, weigh-belt feeder, two ball mills (primary and secondary), and necessary hoppers, pumps, and conveyors. The mills were capable of providing coal over a range of grinds from a d{sub 50} of 125 to 25 microns. Slurry discharged from the ball mills was pumped to the agglomeration circuit. The agglomeration circuit began with a high-shear mixer, where diesel was added to the slurry to begin the formation of microagglomerates. The high-shear mixer was followed by two stages of conventional flotation cells for microagglomerate recovery. The second-stage-flotation-cell product was pumped to either a rotary-drum vacuum filter or a high-G centrifuge for dewatering. The dewatered product was then convoyed to the product pad from which dump trucks were used to transfer it to the utility plant located next to the facility. Plant tailings were pumped to the water clarifier for thickening and then dewatered in plate-and-frame filter presses. These dewatered tailings were also removed to the utility via dump truck. Clarified water (thickener overflow) was recycled to the process via a head tank.

  5. Frequency comparative study of coal-fired fly ash acoustic agglomeration.

    PubMed

    Liu, Jianzhong; Wang, Jie; Zhang, Guangxue; Zhou, Junhu; Cen, Kefa

    2011-01-01

    Particulate pollution is main kind of atmospheric pollution. The fine particles are seriously harmful to human health and environment. Acoustic agglomeration is considered as a promising pretreatment technology for fine particle agglomeration. The mechanisms of acoustic agglomeration are very complex and the agglomeration efficiency is affected by many factors. The most important and controversial factor is frequency. Comparative studies between high-frequency and low-frequency sound source to agglomerate coal-fired fly ash were carried out to investigate the influence of frequency on agglomeration efficiency. Acoustic agglomeration theoretical analysis, experimental particle size distributions (PSDs) and orthogonal design were examined. The results showed that the 20 kHz high-frequency sound source was not suitable to agglomerate coal-fired fly ash. Only within the size ranging from 0.2 to 0.25 microm the particles agglomerated to adhere together, and the agglomerated particles were smaller than 2.5 microm. The application of low-frequency (1000-1800 Hz) sound source was proved as an advisable pretreatment with the highest agglomeration efficiency of 75.3%, and all the number concentrations within the measuring range decreased. Orthogonal design L16 (4)3 was introduced to determine the optimum frequency and optimize acoustic agglomeration condition. According to the results of orthogonal analysis, frequency was the dominant factor of coal-fired fly ash acoustic agglomeration and the optimum frequency was 1400 Hz.

  6. The preparation of calcium superoxide in a flowing gas stream and fluidized bed

    NASA Technical Reports Server (NTRS)

    Wood, P. C.; Ballou, E. V.; Spitze, L. A.; Wydeven, T.

    1980-01-01

    Superoxides can be used as sources of chemically stored oxygen in emergency breathing apparatus. The work reported here describes the use of a low-pressure nitrogen gas sweep through the reactant bed, for temperature control and water vapor removal. For a given set of gas temperature, bed thickness, and reaction time values, the highest purity calcium superoxide, Ca(O2)2, was obtained at the highest space velocity of the nitrogen gas sweep. The purity of the product was further increased by flow conditions that resulted in the fluidization of the reactant bed. However, scale-up of the low-pressure fluidized bed process was limited to the formation of agglomerates of reactant particles, which hindered thermal control by the flowing gas stream. A radiofrequency flow discharge inside the reaction chamber prevented agglomeration, presumably by dissipation of the static charges on the fluidized particles.

  7. Apparatus, components and operating methods for circulating fluidized bed transport gasifiers and reactors

    DOEpatents

    Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang

    2015-02-24

    The improvements proposed in this invention provide a reliable apparatus and method to gasify low rank coals in a class of pressurized circulating fluidized bed reactors termed "transport gasifier." The embodiments overcome a number of operability and reliability problems with existing gasifiers. The systems and methods address issues related to distribution of gasification agent without the use of internals, management of heat release to avoid any agglomeration and clinker formation, specific design of bends to withstand the highly erosive environment due to high solid particles circulation rates, design of a standpipe cyclone to withstand high temperature gasification environment, compact design of seal-leg that can handle high mass solids flux, design of nozzles that eliminate plugging, uniform aeration of large diameter Standpipe, oxidant injection at the cyclone exits to effectively modulate gasifier exit temperature and reduction in overall height of the gasifier with a modified non-mechanical valve.

  8. Phosphate-enhanced cytotoxicity of zinc oxide nanoparticles and agglomerates.

    PubMed

    Everett, W Neil; Chern, Christina; Sun, Dazhi; McMahon, Rebecca E; Zhang, Xi; Chen, Wei-Jung A; Hahn, Mariah S; Sue, H-J

    2014-02-10

    Zinc oxide (ZnO) nanoparticles (NPs) have been found to readily react with phosphate ions to form zinc phosphate (Zn3(PO4)2) crystallites. Because phosphates are ubiquitous in physiological fluids as well as waste water streams, it is important to examine the potential effects that the formation of Zn3(PO4)2 crystallites may have on cell viability. Thus, the cytotoxic response of NIH/3T3 fibroblast cells was assessed following 24h of exposure to ZnO NPs suspended in media with and without the standard phosphate salt supplement. Both particle dosage and size have been shown to impact the cytotoxic effects of ZnO NPs, so doses ranging from 5 to 50 μg/mL were examined and agglomerate size effects were investigated by using the bioinert amphiphilic polymer polyvinylpyrrolidone (PVP) to generate water-soluble ZnO ranging from individually dispersed 4 nm NPs up to micron-sized agglomerates. Cell metabolic activity measures indicated that the presence of phosphate in the suspension media can led to significantly reduced cell viability at all agglomerate sizes and at lower ZnO dosages. In addition, a reduction in cell viability was observed when agglomerate size was decreased, but only in the phosphate-containing media. These metabolic activity results were reflected in separate measures of cell death via the lactate dehydrogenase assay. Our results suggest that, while higher doses of water-soluble ZnO NPs are cytotoxic, the presence of phosphates in the surrounding fluid can lead to significantly elevated levels of cell death at lower ZnO NP doses. Moreover, the extent of this death can potentially be modulated or offset by tuning the agglomerate size. These findings underscore the importance of understanding how nanoscale materials can interact with the components of surrounding fluids so that potential adverse effects of such interactions can be controlled. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. Seasonal changes in soil acidity and related properties in ginseng artificial bed soils under a plastic shade.

    PubMed

    You, Jiangfeng; Liu, Xing; Zhang, Bo; Xie, Zhongkai; Hou, Zhiguang; Yang, Zhenming

    2015-01-01

    In Changbai Mountains, Panax ginseng (ginseng) was cultivated in a mixture of the humus and albic horizons of albic luvisol in a raised garden with plastic shade. This study aimed to evaluate the impact of ginseng planting on soil characteristics. The mixed-bed soils were seasonally collected at intervals of 0-5 cm, 5-10 cm, and 10-15 cm for different-aged ginsengs. Soil physico-chemical characteristics were studied using general methods. Aluminum was extracted from the soil solids with NH4Cl (exchangeable Al) and Na-pyrophosphate (organic Al) and was measured with an atomic absorption spectrophotometer. A remarkable decrease in the pH, concentrations of exchangeable calcium, NH4 (+), total organic carbon (TOC), and organic Al, as well as a pronounced increase in the bulk density were observed in the different-aged ginseng soils from one spring to the next. The decrease in pH in the ginseng soils was positively correlated with the [Formula: see text] (r = 0.463, p < 0.01), exchangeable calcium (r = 0.325, p < 0.01) and TOC (r = 0.292, p < 0.05) concentrations. The [Formula: see text] showed remarkable surface accumulation (0-5 cm) in the summer and even more in the autumn but declined considerably the next spring. The exchangeable Al fluctuated from 0.10 mg g(-1) to 0.50 mg g(-1) for dry soils, which was positively correlated with the [Formula: see text] (r = 0.401, p < 0.01) and negatively correlated with the TOC (r = -0.329, p < 0.05). The Al saturation varied from 10% to 41% and was higher in the summer and autumn, especially in the 0-5 cm and 5-10 cm layers. Taken together, our study revealed a seasonal shift in soil characteristics in ginseng beds with plastic shade.

  10. Seasonal changes in soil acidity and related properties in ginseng artificial bed soils under a plastic shade

    PubMed Central

    You, Jiangfeng; Liu, Xing; Zhang, Bo; Xie, Zhongkai; Hou, Zhiguang; Yang, Zhenming

    2014-01-01

    Background In Changbai Mountains, Panax ginseng (ginseng) was cultivated in a mixture of the humus and albic horizons of albic luvisol in a raised garden with plastic shade. This study aimed to evaluate the impact of ginseng planting on soil characteristics. Methods The mixed-bed soils were seasonally collected at intervals of 0–5 cm, 5–10 cm, and 10–15 cm for different-aged ginsengs. Soil physico-chemical characteristics were studied using general methods. Aluminum was extracted from the soil solids with NH4Cl (exchangeable Al) and Na-pyrophosphate (organic Al) and was measured with an atomic absorption spectrophotometer. Results A remarkable decrease in the pH, concentrations of exchangeable calcium, NH4+, total organic carbon (TOC), and organic Al, as well as a pronounced increase in the bulk density were observed in the different-aged ginseng soils from one spring to the next. The decrease in pH in the ginseng soils was positively correlated with the NH4+ (r = 0.463, p < 0.01), exchangeable calcium (r = 0.325, p < 0.01) and TOC (r = 0.292, p < 0.05) concentrations. The NO3− showed remarkable surface accumulation (0–5 cm) in the summer and even more in the autumn but declined considerably the next spring. The exchangeable Al fluctuated from 0.10 mg g−1 to 0.50 mg g−1 for dry soils, which was positively correlated with the NO3− (r = 0.401, p < 0.01) and negatively correlated with the TOC (r = −0.329, p < 0.05). The Al saturation varied from 10% to 41% and was higher in the summer and autumn, especially in the 0–5 cm and 5–10 cm layers. Conclusion Taken together, our study revealed a seasonal shift in soil characteristics in ginseng beds with plastic shade. PMID:25535481

  11. [Microwave In-situ Regeneration of Cu-Mn-Ce/ZSM Catalyst Adsorbed Toluene and Distribution of Bed Temperature].

    PubMed

    Hu, Xue-jiao; Bo, Long-li; Liang, Xin-xin; Meng, Hai-long

    2015-08-01

    Microwave in-situ regeneration of Cu-Mn-Ce/ZSM catalyst adsorbed toluene, distribution of fixed bed temperature, adsorption breakthrough curves of the catalyst after several regenerations and characterizations of the catalyst by BET and SEM were investigated in this study. The research indicated that regeneration effect of the catalyst adsorbed was excellent under conditions of microwave power 117 W, air flow 0.5 m3 x h(-1) and catalyst dosage of 800 g. Toluene desorbed was oxidized onto the surface of the catalyst, and the adsorption capacity of the catalyst was recovered simultaneously. Under microwave irradiation, bed temperature decreased slowly from inside to outside in horizontal level, and increased gradually from down to up in vertical level so that the highest temperature reached 250-350 degrees C at the upper sites of the bed. Sintering and agglomeration occurred on the surface of the catalyst in the course of regeneration so that the special surface area and micropore volume of the catalyst were reduced and breakthrough time was shortened, which was verified by six adsorption breakthrough curves and related characteristics of the catalyst. However, the structure of the catalyst was steady after two regenerations, and adsorption breakthrough time was kept at 70 min. The result showed that the changes of surface morphology and pore structure were positively correlated with the distribution of bed temperature.

  12. Variability of bed drag on cohesive beds under wave action

    USGS Publications Warehouse

    Safak, Ilgar

    2016-01-01

    Drag force at the bed acting on water flow is a major control on water circulation and sediment transport. Bed drag has been thoroughly studied in sandy waters, but less so in muddy coastal waters. The variation of bed drag on a muddy shelf is investigated here using field observations of currents, waves, and sediment concentration collected during moderate wind and wave events. To estimate bottom shear stress and the bed drag coefficient, an indirect empirical method of logarithmic fitting to current velocity profiles (log-law), a bottom boundary layer model for combined wave-current flow, and a direct method that uses turbulent fluctuations of velocity are used. The overestimation by the log-law is significantly reduced by taking turbulence suppression due to sediment-induced stratification into account. The best agreement between the model and the direct estimates is obtained by using a hydraulic roughness of 10  m in the model. Direct estimate of bed drag on the muddy bed is found to have a decreasing trend with increasing current speed, and is estimated to be around 0.0025 in conditions where wave-induced flow is relatively weak. Bed drag shows an increase (up to fourfold) with increasing wave energy. These findings can be used to test the bed drag parameterizations in hydrodynamic and sediment transport models and the skills of these models in predicting flows in muddy environments.

  13. The relative contribution of methanotrophs to microbial communities and carbon cycling in soil overlying a coal-bed methane seep

    USGS Publications Warehouse

    Mills, Christopher T.; Slater, Gregory F.; Dias, Robert F.; Carr, Stephanie A.; Reddy, Christopher M.; Schmidt, Raleigh; Mandernack, Kevin W.

    2013-01-01

    Seepage of coal-bed methane (CBM) through soils is a potential source of atmospheric CH4 and also a likely source of ancient (i.e. 14C-dead) carbon to soil microbial communities. Natural abundance 13C and 14C compositions of bacterial membrane phospholipid fatty acids (PLFAs) and soil gas CO2 and CH4 were used to assess the incorporation of CBM-derived carbon into methanotrophs and other members of the soil microbial community. Concentrations of type I and type II methanotroph PLFA biomarkers (16:1ω8c and 18:1ω8c, respectively) were elevated in CBM-impacted soils compared with a control site. Comparison of PLFA and 16s rDNA data suggested type I and II methanotroph populations were well estimated and overestimated by their PLFA biomarkers, respectively. The δ13C values of PLFAs common in type I and II methanotrophs were as negative as −67‰ and consistent with the assimilation of CBM. PLFAs more indicative of nonmethanotrophic bacteria had δ13C values that were intermediate indicating assimilation of both plant- and CBM-derived carbon. Δ14C values of select PLFAs (−351 to −936‰) indicated similar patterns of CBM assimilation by methanotrophs and nonmethanotrophs and were used to estimate that 35–91% of carbon assimilated by nonmethanotrophs was derived from CBM depending on time of sampling and soil depth.

  14. The relative contribution of methanotrophs to microbial communities and carbon cycling in soil overlying a coal-bed methane seep.

    PubMed

    Mills, Christopher T; Slater, Gregory F; Dias, Robert F; Carr, Stephanie A; Reddy, Christopher M; Schmidt, Raleigh; Mandernack, Kevin W

    2013-06-01

    Seepage of coal-bed methane (CBM) through soils is a potential source of atmospheric CH4 and also a likely source of ancient (i.e. (14) C-dead) carbon to soil microbial communities. Natural abundance (13) C and (14) C compositions of bacterial membrane phospholipid fatty acids (PLFAs) and soil gas CO2 and CH4 were used to assess the incorporation of CBM-derived carbon into methanotrophs and other members of the soil microbial community. Concentrations of type I and type II methanotroph PLFA biomarkers (16:1ω8c and 18:1ω8c, respectively) were elevated in CBM-impacted soils compared with a control site. Comparison of PLFA and 16s rDNA data suggested type I and II methanotroph populations were well estimated and overestimated by their PLFA biomarkers, respectively. The δ(13) C values of PLFAs common in type I and II methanotrophs were as negative as -67‰ and consistent with the assimilation of CBM. PLFAs more indicative of nonmethanotrophic bacteria had δ(13) C values that were intermediate indicating assimilation of both plant- and CBM-derived carbon. Δ(14) C values of select PLFAs (-351 to -936‰) indicated similar patterns of CBM assimilation by methanotrophs and nonmethanotrophs and were used to estimate that 35-91% of carbon assimilated by nonmethanotrophs was derived from CBM depending on time of sampling and soil depth.

  15. [Sonic Enhanced Ash Agglomeration and Sulfur Capture]. [Quarterly technical progress report, September 27, 1993--January 2, 1994

    SciTech Connect

    Not Available

    1993-12-31

    A major concern with the utilization of coal in directly fired gas turbines is the control of particulate emissions and reduction of sulfur dioxide, and alkali vapor from combustion of coal, upstream of the gas turbine. The Sonic Enhanced Ash Agglomeration and Sulfur Capture program focuses upon the application of an MTCI proprietary invention (Patent No. 5,197,399) for simultaneously enhancing sulfur capture and particulate agglomeration of the combustor effluent. This application can be adapted as either a ``hot flue gas cleanup`` subsystem for the current concepts for combustor islands or as an alternative primary pulse combustor island in which slagging, sulfur capture, particulate agglomeration and control, and alkali gettering as well as NO{sub x} control processes become an integral part of the pulse combustion process. The goal of the program is to support the DOE mission in developing coal-fired combustion gas turbines. In particular, the MTCI proprietary process for bimodal ash agglomeration and simultaneous sulfur capture will be evaluated and developed. The technology embodiment of the invention provides for the use of standard grind, moderately beneficiated coal and WEM for firing the gas turbine with efficient sulfur capture and particulate emission control upstream of the turbine. The process also accommodates injection of alkali gettering material if necessary. This is aimed at utilization of relatively inexpensive coal fuels, thus realizing the primary benefit being sought by direct firing of coal in such gas turbine systems.

  16. THE PHYSICS OF PROTOPLANETESIMAL DUST AGGLOMERATES. VI. EROSION OF LARGE AGGREGATES AS A SOURCE OF MICROMETER-SIZED PARTICLES

    SciTech Connect

    Schraepler, Rainer; Blum, Juergen

    2011-06-20

    Observed protoplanetary disks consist of a large amount of micrometer-sized particles. Dullemond and Dominik pointed out for the first time the difficulty in explaining the strong mid-infrared excess of classical T Tauri stars without any dust-retention mechanisms. Because high relative velocities in between micrometer-sized and macroscopic particles exist in protoplanetary disks, we present experimental results on the erosion of macroscopic agglomerates consisting of micrometer-sized spherical particles via the impact of micrometer-sized particles. We find that after an initial phase, in which an impacting particle erodes up to 10 particles of an agglomerate, the impacting particles compress the agglomerate's surface, which partly passivates the agglomerates against erosion. Due to this effect, the erosion halts for impact velocities up to {approx}30 m s{sup -1} within our error bars. For higher velocities, the erosion is reduced by an order of magnitude. This outcome is explained and confirmed by a numerical model. In a next step, we build an analytical disk model and implement the experimentally found erosive effect. The model shows that erosion is a strong source of micrometer-sized particles in a protoplanetary disk. Finally, we use the stationary solution of this model to explain the amount of micrometer-sized particles in the observational infrared data of Furlan et al.

  17. Packed Bed Reactor Experiment

    NASA Image and Video Library

    The purpose of the Packed Bed Reactor Experiment in low gravity is to determine how a mixture of gas and liquid flows through a packed bed in reduced gravity. A packed bed consists of a metal pipe ...

  18. Preventing ash agglomeration during gasification of high-sodium lignite

    SciTech Connect

    Robert S. Dahlin; Johnny R. Dorminey; WanWang Peng; Roxann F. Leonard; Pannalal Vimalchand

    2009-01-15

    Various additives were evaluated to assess their ability to prevent ash agglomeration during the gasification of high-sodium lignite. Additives that showed promise in simple muffle furnace tests included meta-kaolin, vermiculite, two types of silica fume, and one type of bauxite. Additives that were tested and rejected included dolomite, calcite, sand flour, kaolinite, fine kaolin, and calcined bauxite. Based on the muffle furnace test results, the meta-kaolin was selected for a follow-on demonstration in a pilot-scale coal gasifier. Pilot-scale testing showed that the addition of coarse (minus 14-mesh, 920-{mu}m mean size) meta-kaolin at a feed rate roughly equivalent to the ash content of the lignite (10 wt %) successfully prevented agglomeration and deposition problems during gasification of high-sodium lignite at a maximum operating temperature of 927{sup o}C (1700{sup o}F). 13 refs., 24 figs., 1 tab.

  19. Engineering development of selective agglomeration: Trace element removal study

    SciTech Connect

    Not Available

    1993-09-01

    Southern Company Services, Inc., (SCS) was contracted in 1989 by the US Department of Energy (DOE) to develop a commercially acceptable selective agglomeration technology to enhance the use of high-sulfur coals by 1993. The project scope involved development of a bench-scale process and components, as well as the design, testing, and evaluation of a proof-of-concept (POC) facility. To that end, a two-ton-per-hour facility was constructed and tested near Wilsonville, Alabama. Although it was not the primary focus of the test program, SCS also measured the ability of selective agglomeration to remove trace elements from coal. This document describes the results of that program.

  20. Liquid bridge agglomeration: A fundamental approach to toner deinking

    SciTech Connect

    Snyder, B.A.; Berg, J.C. . Chemical Engineering Dept.)

    1994-05-01

    An alternative agglomeration technique for deinking toner-printed furnishes has been investigated. This technique requires only the addition of an immiscible hydrocarbon oil dispersed in water at dosages of approximately 1% by weight on fiber. The addition is made during repulping: the process appears to be effective at all temperatures of interest (23 C and 70 C are tested) and requires no surfactants or additional chemicals. The result of the oil addition is the agglomeration of the toner particles into spheres of 1 mm to 1 cm in size. These spheres contain the added oil which acts as a binder, holding the toner particles together by liquid bridges. The process is ineffective when the furnish contains highly sized fibers or starched paper, and future work seeks to address these crucial problems.

  1. Flocculation, hydrophobic agglomeration and filtration of ultrafine coal

    NASA Astrophysics Data System (ADS)

    Yu, Zhimin

    In coal preparation plant circuits, fine coal particles are aggregated either by oil agglomeration or by flocculation. In a new hydrophobic agglomeration process, recently developed hydrophobic latices are utilized. While the selectivity of such aggregation processes determines the beneficiation results, the degree of aggregation has a strong effect on fine coal filtration. The aim of this research was to study the fundamentals and analyze the common grounds for these processes, including the potential effect of the coal surface properties. The selective flocculation tests, in which three types of coal, which differed widely in surface wettability, and three additives (hydrophobic latices, a semi-hydrophobic flocculant and a typical hydrophilic polyelectrolyte) were utilized, showed that coal wettability plays a very important role in selective flocculation. The abstraction of a hydrophobic latex on coal and silica revealed that the latex had a much higher affinity towards hydrophobic coal than to hydrophilic mineral matter. As a result, the UBC-1 hydrophobic latex flocculated only hydrophobic coal particles while the polyelectrolyte (PAM) flocculated all the tested coal samples and minerals, showing no selectivity in the fine coal beneficiation. The oil agglomeration was tested using kerosene emulsified with various surfactants (e.g. cationic, anionic and non-ionic). Surfactants enhance not only oil emulsification, hence reducing oil consumption (down to 0.25--0.5%), but also entirely change the electrokinetic properties of the droplets and affect the interaction energy between oil droplets and coal particles. Consequently, the results found in the course of the experimental work strongly indicate that even oxidized coals can be agglomerated if cationic surfactants are used to emulsify the oil. Oil agglomeration of the Ford-4 ultrafine coal showed that even at extremely low oil consumption (0.25 to 0.5%), a clean coal product with an ash content around 5% at over

  2. The impact of agglomeration economies on hospital input prices.

    PubMed

    Friedson, Andrew I; Li, Jing

    2015-12-01

    This paper examines the extent to which agglomeration of the hospital service industry enhances the productivity of producing health care. Specifically, we use a large set of private insurance claims from the FAIR Health database to show that an increasing spatial concentration of hospital services results in a decreased cost of obtaining intermediate medical services. We explicitly test whether the reduced cost at concentrated locations arises from the ability to share intermediate service providers. The identification relies on state variation in medical lab technician licensure requirements, which influence the cost of intermediate services only through the cost of running a lab. Our findings suggest that agglomeration of the hospital service industry attracts specialized medical labs, which in turn help to reduce the cost of producing laboratory tests.

  3. Vectorized image segmentation via trixel agglomeration

    DOEpatents

    Prasad, Lakshman; Skourikhine, Alexei N.

    2006-10-24

    A computer implemented method transforms an image comprised of pixels into a vectorized image specified by a plurality of polygons that can be subsequently used to aid in image processing and understanding. The pixelated image is processed to extract edge pixels that separate different colors and a constrained Delaunay triangulation of the edge pixels forms a plurality of triangles having edges that cover the pixelated image. A color for each one of the plurality of triangles is determined from the color pixels within each triangle. A filter is formed with a set of grouping rules related to features of the pixelated image and applied to the plurality of triangle edges to merge adjacent triangles consistent with the filter into polygons having a plurality of vertices. The pixelated image may be then reformed into an array of the polygons, that can be represented collectively and efficiently by standard vector image.

  4. The fate of Salicaceae seedlings related to the dynamics of alluvial bars during floods: differentiating bed erosion, uprooting and burying.

    NASA Astrophysics Data System (ADS)

    Wintenberger, C. L.; Rodrigues, S.; Bréhéret, J. G.; Juge, P.; Villar, M.

    2014-12-01

    available bed shear stress and sediment size. Then the deposit occurs on the back of the bar before the peak discharge and protects them against uprooting by burying during the higher energy of flow. At the end of the falling limb, sediments are reworked, decreasing the burying height of seedlings and allowing possible uprooting (drag) or erosion of sediments.

  5. [Fire behavior of Mongolian oak leaves fuel bed under no-wind and zero-slope conditions. II. Analysis of the factors affecting flame length and residence time and related prediction models].

    PubMed

    Zhang, Ji-Li; Liu, Bo-Fei; Di, Xue-Ying; Chu, Teng-Fei; Jin, Sen

    2012-11-01

    Taking fuel moisture content, fuel loading, and fuel bed depth as controlling factors, the fuel beds of Mongolian oak leaves in Maoershan region of Northeast China in field were simulated, and a total of one hundred experimental burnings under no-wind and zero-slope conditions were conducted in laboratory, with the effects of the fuel moisture content, fuel loading, and fuel bed depth on the flame length and its residence time analyzed and the multivariate linear prediction models constructed. The results indicated that fuel moisture content had a significant negative liner correlation with flame length, but less correlation with flame residence time. Both the fuel loading and the fuel bed depth were significantly positively correlated with flame length and its residence time. The interactions of fuel bed depth with fuel moisture content and fuel loading had significant effects on the flame length, while the interactions of fuel moisture content with fuel loading and fuel bed depth affected the flame residence time significantly. The prediction model of flame length had better prediction effect, which could explain 83.3% of variance, with a mean absolute error of 7.8 cm and a mean relative error of 16.2%, while the prediction model of flame residence time was not good enough, which could only explain 54% of variance, with a mean absolute error of 9.2 s and a mean relative error of 18.6%.

  6. Parallel Element Agglomeration Algebraic Multigrid and Upscaling Library

    SciTech Connect

    2015-02-19

    ParFELAG is a parallel distributed memory C++ library for numerical upscaling of finite element discretizations. It provides optimal complesity algorithms ro build multilevel hierarchies and solvers that can be used for solving a wide class of partial differential equations (elliptic, hyperbolic, saddle point problems) on general unstructured mesh (under the assumption that the topology of the agglomerated entities is correct). Additionally, a novel multilevel solver for saddle point problems with divergence constraint is implemented.

  7. Agglomeration of Pt thin films on dielectric substrates

    NASA Astrophysics Data System (ADS)

    Galinski, H.; Ryll, T.; Elser, P.; Rupp, J. L. M.; Bieberle-Hütter, A.; Gauckler, L. J.

    2010-12-01

    The agglomeration of metal thin films on dielectric materials is a topic of high technological importance. In this contribution, a coupled morphology-agglomeration approach has been chosen to reveal the basic mechanism of rupture, mass transport, and the substrate dependence of agglomeration. The morphological evolution of Pt thin films has been investigated by means of scanning electron microscopy, atomic force microscopy, and focused ion-beam (FIB) etching techniques. Pt thin films were deposited on amorphous Si3N4 and polycrystalline yttria stabilized ZrO2 substrates and subjected to heat treatments up to 1193 K for 2 h. Three main observations have been made: (i) the early stage of rupture can be described via basic thermodynamics as an order-disorder transition. The dominating mechanism of initial film rupture is a defect associated barrierless nucleation of holes in the spinodal regime of the Pt thin film as shown by means of Minkowski measures. (ii) Up to 1073 K the hole growth is found to be a surface-diffusion limited process, and in first approximation it is in agreement with Brandon and Bradshaw’s theory for the morphological evolution of thin metal films at elevated temperatures. Values for mass transport have been derived. (iii) It is shown that two in general independent physical processes control the morphological evolution and kinetics of thin-film agglomeration: one attributes to the film-ambient interface and the other to the film-substrate interface. Void formation at the film-substrate interface is enhanced by a factor of 9 in the case of the amorphous-crystalline interface due to a lower adhesion energy of the film. The corresponding adhesion energies have been determined experimentally using FIB techniques and the Wulff-Kaishew theorem for equilibrium crystal shapes.

  8. Parallel Element Agglomeration Algebraic Multigrid and Upscaling Library

    SciTech Connect

    2015-02-19

    ParFELAG is a parallel distributed memory C++ library for numerical upscaling of finite element discretizations. It provides optimal complesity algorithms ro build multilevel hierarchies and solvers that can be used for solving a wide class of partial differential equations (elliptic, hyperbolic, saddle point problems) on general unstructured mesh (under the assumption that the topology of the agglomerated entities is correct). Additionally, a novel multilevel solver for saddle point problems with divergence constraint is implemented.

  9. Aluminum Agglomeration and Trajectory in Solid Rocket Motors

    DTIC Science & Technology

    2007-08-30

    cinematography data from China Lake. Task 2.2, Aluminum Agglomeration Model Selection (SEA/BYU/ATK Task) Part of the model selection task has already been... Manual . Software and Engineering Associates, Inc. 1802 N. Carson Street, Suite 200, Carson City, NV 89701. 2005. [DCF-2005b] S. S. Dunn, D. E. Coats, and J...C. French, SPP󈧈 Standard Stability Prediction Method for Solid Rocket Motors; Axial Mode Computer Program User’s Manual . Software and Engineering

  10. Nifedipine Nanoparticle Agglomeration as a Dry Powder Aerosol Formulation Strategy

    PubMed Central

    Plumley, Carl; Gorman, Eric M.; Munson, Eric J.; Berkland, Cory

    2009-01-01

    Efficient administration of drugs represents a leading challenge in pulmonary medicine. Dry powder aerosols are of great interest compared to traditional aerosolized liquid formulations in that they may offer improved stability, ease of administration, and simple device design. Particles 1–5 µm in size typically facilitate lung deposition. Nanoparticles may be exhaled as a result of their small size; however, they are desired to enhance the dissolution rate of poorly soluble drugs. Nanoparticles of the hypertension drug nifedipine were co-precipitated with stearic acid to form a colloid exhibiting negative surface charge. Nifedipine nanoparticle colloids were destabilized by using sodium chloride to disrupt the electrostatic repulsion between particles as a means to achieve the agglomerated nanoparticles of a controlled size. The aerodynamic performance of agglomerated nanoparticles was determined by cascade impaction. The powders were found to be well suited for pulmonary delivery. In addition, nanoparticle agglomerates revealed enhanced dissolution of the drug species suggesting the value of this formulation approach for poorly water soluble pulmonary medicines. Ultimately, nifedipine powders are envisioned as an approach to treat pulmonary hypertension. PMID:19015016

  11. Combustion of metal agglomerates in a solid rocket core flow

    NASA Astrophysics Data System (ADS)

    Maggi, Filippo; Dossi, Stefano; DeLuca, Luigi T.

    2013-12-01

    The need for access to space may require the use of solid propellants. High thrust and density are appealing features for different applications, spanning from boosting phase to other service applications (separation, de-orbiting, orbit insertion). Aluminum is widely used as a fuel in composite solid rocket motors because metal oxidation increases enthalpy release in combustion chamber and grants higher specific impulse. Combustion process of metal particles is complex and involves aggregation, agglomeration and evolution of reacting particulate inside the core flow of the rocket. It is always stated that residence time should be enough in order to grant complete metal oxidation but agglomerate initial size, rocket grain geometry, burning rate, and other factors have to be reconsidered. New space missions may not require large rocket systems and metal combustion efficiency becomes potentially a key issue to understand whether solid propulsion embodies a viable solution or liquid/hybrid systems are better. A simple model for metal combustion is set up in this paper. Metal particles are represented as single drops trailed by the core flow and reacted according to Beckstead's model. The fluid dynamics is inviscid, incompressible, 1D. The paper presents parametric computations on ideal single-size particles as well as on experimental agglomerate populations as a function of operating rocket conditions and geometries.

  12. Population amalgamation and genetic variation: observations on artificially agglomerated tribal populations of Central and South America.

    PubMed Central

    Chakraborty, R; Smouse, P E; Neel, J V

    1988-01-01

    The interpretation of data on genetic variation with regard to the relative roles of different evolutionary factors that produce and maintain genetic variation depends critically on our assumptions concerning effective population size and the level of migration between neighboring populations. In humans, recent population growth and movements of specific ethnic groups across wide geographic areas mean that any theory based on assumptions of constant population size and absence of substructure is generally untenable. We examine the effects of population subdivision on the pattern of protein genetic variation in a total sample drawn from an artificial agglomerate of 12 tribal populations of Central and South America, analyzing the pooled sample as though it were a single population. Several striking findings emerge. (1) Mean heterozygosity is not sensitive to agglomeration, but the number of different alleles (allele count) is inflated, relative to neutral mutation/drift/equilibrium expectation. (2) The inflation is most serious for rare alleles, especially those which originally occurred as tribally restricted "private" polymorphisms. (3) The degree of inflation is an increasing function of both the number of populations encompassed by the sample and of the genetic divergence among them. (4) Treating an agglomerated population as though it were a panmictic unit of long standing can lead to serious biases in estimates of mutation rates, selection pressures, and effective population sizes. Current DNA studies indicate the presence of numerous genetic variants in human populations. The findings and conclusions of this paper are all fully applicable to the study of genetic variation at the DNA level as well. PMID:3189334

  13. Relative Biologic Effectiveness (RBE) of 50 kV X-rays Measured in a Phantom for Intraoperative Tumor-Bed Irradiation

    SciTech Connect

    Liu, Qi; Schneider, Frank; Ma, Lin; Wenz, Frederik; Herskind, Carsten

    2013-03-15

    Purpose: Intraoperative radiation therapy (IORT) with low-energy x-rays is used to treat the tumor bed during breast-conserving surgery. The purpose was to determine the relative biologic effectiveness (RBE) of 50-kV x-rays for inactivation of cells irradiated in a tumor-bed phantom. Methods and Materials: The RBE was determined for clonogenic inactivation of human tumor and normal cells (MCF7, human umbilical vein endothelial cells, normal skin fibroblasts), and hamster V79 cells. The 50-kV x-rays from the Intrabeam machine (Carl Zeiss Surgical) with a spherical 4-cm applicator were used. Cells were irradiated in a water-equivalent phantom at defined distances (8.1-22.9 mm) from the applicator surface. The 50-kV x-rays from a surface therapy machine (Dermopan, Siemens) were included for comparison; 6-MV x-rays were used as reference radiation. Results: At 8.1-mm depth in the phantom (dose rate 15.1 Gy/h), mean RBE values of 50-kV x-rays from Intrabeam were 1.26 to 1.42 for the 4 cell types at doses yielding surviving fractions in the range of 0.01 to 0.5. Confidence intervals were in the range of 1.2 and 1.5. Similar RBE values were found for 50-kV x-rays from Dermopan for V79 (1.30, CI 1.25-1.36, P=.74) and GS4 (1.42, CI 1.30-1.54, P=.67). No significant dependence of RBE on dose was found for Intrabeam, but RBE decreased at a larger distance (12.7 mm; 9.8 Gy/h). Conclusions: An increased clinically relevant RBE was found for cell irradiation with Intrabeam at depths in the tumor bed targeted by IORT. The reduced RBE values at larger distances may be related to increased repair of sublethal damage during protracted irradiation or to hardening of the photon beam energy.

  14. Relative Biologic Effectiveness (RBE) of 50 kV X-rays measured in a phantom for intraoperative tumor-bed irradiation.

    PubMed

    Liu, Qi; Schneider, Frank; Ma, Lin; Wenz, Frederik; Herskind, Carsten

    2013-03-15

    Intraoperative radiation therapy (IORT) with low-energy x-rays is used to treat the tumor bed during breast-conserving surgery. The purpose was to determine the relative biologic effectiveness (RBE) of 50-kV x-rays for inactivation of cells irradiated in a tumor-bed phantom. The RBE was determined for clonogenic inactivation of human tumor and normal cells (MCF7, human umbilical vein endothelial cells, normal skin fibroblasts), and hamster V79 cells. The 50-kV x-rays from the Intrabeam machine (Carl Zeiss Surgical) with a spherical 4-cm applicator were used. Cells were irradiated in a water-equivalent phantom at defined distances (8.1-22.9 mm) from the applicator surface. The 50-kV x-rays from a surface therapy machine (Dermopan, Siemens) were included for comparison; 6-MV x-rays were used as reference radiation. At 8.1-mm depth in the phantom (dose rate 15.1 Gy/h), mean RBE values of 50-kV x-rays from Intrabeam were 1.26 to 1.42 for the 4 cell types at doses yielding surviving fractions in the range of 0.01 to 0.5. Confidence intervals were in the range of 1.2 and 1.5. Similar RBE values were found for 50-kV x-rays from Dermopan for V79 (1.30, CI 1.25-1.36, P=.74) and GS4 (1.42, CI 1.30-1.54, P=.67). No significant dependence of RBE on dose was found for Intrabeam, but RBE decreased at a larger distance (12.7 mm; 9.8 Gy/h). An increased clinically relevant RBE was found for cell irradiation with Intrabeam at depths in the tumor bed targeted by IORT. The reduced RBE values at larger distances may be related to increased repair of sublethal damage during protracted irradiation or to hardening of the photon beam energy. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Agglomeration potential of TiO2 in synthetic leachates made from the fly ash of different incinerated wastes.

    PubMed

    He, Xu; Mitrano, Denise M; Nowack, Bernd; Bahk, Yeon Kyoung; Figi, Renato; Schreiner, Claudia; Bürki, Melanie; Wang, Jing

    2017-04-01

    Material flow studies have shown that a large fraction of the engineered nanoparticles used in products end up in municipal waste. In many countries, this municipal waste is incinerated before landfilling. However, the behavior of engineered nanoparticles (ENPs) in the leachates of incinerated wastes has not been investigated so far. In this study, TiO2 ENPs were spiked into synthetic landfill leachates made from different types of fly ash from three waste incineration plants. The synthetic leachates were prepared by standard protocols and two types of modified procedures with much higher dilution ratios that resulted in reduced ionic strength. The pH of the synthetic leachates was adjusted in a wide range (i.e. pH 3 to 11) to understand the effects of pH on agglomeration. The experimental results indicated that agglomeration of TiO2 in the synthetic landfill leachate simultaneously depend on ionic strength, ionic composition and pH. However, when the ionic strength was high, the effects of the other two factors were masked. The zeta potential of the particles was directly related to the size of the TiO2 agglomerates formed. The samples with an absolute zeta potential value < 10 mV were less stable, with the size of TiO2 agglomerates in excess of 1500 nm. It can be deduced from this study that TiO2 ENPs deposited in the landfill may be favored to form agglomerates and ultimately settle from the water percolating through the landfill and thus remain in the landfill. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The role of agglomeration in the conductivity of carbon nanotube composites near percolation

    NASA Astrophysics Data System (ADS)

    Tarlton, Taylor; Sullivan, Ethan; Brown, Joshua; Derosa, Pedro A.

    2017-02-01

    A detailed study of agglomeration in composite materials containing carbon nanotubes (CNT) is presented. Three dimensional samples with different degrees of agglomeration were created in three different ways, leading to a wider range of geometries available to study. Virtual charges are injected into the computer-generated samples and move through these samples according to a Monte Carlo hopping algorithm. Results show that there is an optimal level of agglomeration that is actually beneficial for charge transport at low volume concentrations, lowering the percolation threshold. It is found that near percolation, a more uniform CNT distribution (less agglomeration) leads to more conductive paths, but with a lower mobility. The optimum level of agglomeration comes from a trade off between these two properties. Beyond this optimum agglomeration state, it is observed that conductivity tends to decrease as dispersion increases at all concentrations studied here. At high concentration (percolated samples), where CNT clumps merge, conductivity seems to be less sensitive to agglomeration.

  17. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    SciTech Connect

    Rokkam, Ram

    2012-01-01

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  18. Facies And Bedding Analysis of Deep-Marine, Arc-Related, Sediementary Rocks Cored on International Ocean Drilling Program Expedition 351.

    NASA Astrophysics Data System (ADS)

    Johnson, K. E.; Marsaglia, K. M.

    2015-12-01

    The Izu-Bonin-Mariana (IBM) Arc System, south of Japan, hosts a multitude of active and extinct (remnant) arc volcanic sediment sources. Core extracted adjacent to the proto-IBM arc (Kyushu-Palau Ridge; KPR) in the Amami-Sankaku Basin on International Ocean Discovery Program (IODP) Expedition 351 contains evidence of the variety of sediment sources that have existed in the area as a result of changing tectonic regimes through arc development, backarc basin formation and remnant arc abandonment. Approximately 1000 meters of Eocene to Oligocene volcaniclastic sedimentary rocks were analyzed via shipboard core photos, core descriptions, and thin sections with the intention of understanding the depositional history at this site. These materials contain a crucial record of arc development complementary to the Neogene history preserved in the active reararc (Expedition 350) and compressed whole-arc record in the current forearc (Expedition 352). A database of stratigraphic columns was created to display grain size trends, facies changes, and bedding characteristics. Individual beds (depositional events) were classified using existing and slightly modified classification schemes for muddy, sandy and gravel-rich gravity flow deposits, as well as muddy debris flows and tuffs. Utilizing the deep marine facies classes presented by Pickering et al. (1986), up section changes are apparent. Through time, as the arc developed, facies and bedding types and their proportions change dramatically and relatively abruptly. Following arc initiation facies are primarily mud-rich with intercalated tuffaceous sand. In younger intervals, sand to gravel gravity-flow deposits dominate, becoming more mud-rich. Muddy gravity flow deposits, however, dominate farther upsection. The overall coarsening-upward pattern (Unit III) is consistent with building of the arc edifice. Farther upsection (Unit II) an abrupt fining-upward trend represents the onset of isolation of the KPR as backarc spreading

  19. Stability of silver nanoparticles: agglomeration and oxidation in biological relevant conditions

    NASA Astrophysics Data System (ADS)

    Valenti, Laura E.; Giacomelli, Carla E.

    2017-05-01

    Silver nanoparticles (Ag-NP) are the most used nanomaterial in consumer products due to the intrinsic antimicrobial capacity of silver. However, Ag-NP may be also harmful to algae, aquatic species, mammalian cells, and higher plants because both Ag+ and nanoparticles are responsible of cell damages. The oxidative dissolution of Ag-NP would proceed to completion under oxic conditions, but the rate and extent of the dissolution depend on several factors. This work correlates the effect of the capping agent (albumin and citrate) with the stability of Ag-NP towards agglomeration in simulated body fluid (SBF) and oxidation in the presence of ROS species (H2O2). Capping provides colloidal stability only through electrostatic means, whereas albumin acts as bulky ligands giving steric and electrostatic repulsion, inhibiting the agglomeration in SBF. However, citrate capping protects Ag-NP from dissolution to a major extent than albumin does because of its reducing power. Moreover, citrate in solution minimizes the oxidation of albumin-coated Ag-NP even after long incubation times. H2O2-induced dissolution proceeds to completion with Ag-NP incubated in SBF, while incubation in citrate leads to an incomplete oxidation. In short, albumin is an excellent capping agent to minimize Ag-NP agglomeration whereas citrate provides a mild-reductive medium that prevents dissolution in biological relevant media as well as in the presence of ROS species. These results provide insight into how the surface properties and media composition affect the release of Ag+ from Ag-NP, related to the cell toxicity and relevant to the storage and lifetime of silver-containing nanomaterials.

  20. Functionalizing titania nanoparticle surfaces in a fluidized bed plasma reactor.

    PubMed

    Deb, B; Kumar, V; Druffel, T L; Sunkara, M K

    2009-11-18

    Functionalizing nanoparticle surfaces is essential for achieving homogeneous dispersions of monodisperse particles in polymer nanocomposites for successful utilization in engineering applications. Functionalization reduces the surface energy of the nanoparticles, thereby limiting the tendency to agglomerate. Moreover, reactive groups on the surface can also participate in the polymerization, creating covalent bonds between the inorganic and organic phases. In this paper, a fluidized bed inductively coupled plasma (FB-ICP) reactor is used to break apart the agglomerates and functionalize commercial TiO2 nanoparticle powders in a batch of several grams. The fluidized bed could be implemented into a continuous flow reactor, potentially making this a viable method to treat larger quantities of commercial powders. The particles are treated with acrylic acid (AA) and tetraethylorthosilicate (TEOS) plasma and the functionalized particles were collected separately from bulk powder. High resolution transmission electron microscopy (HRTEM) analysis showed that the particles were coated uniformly with polymer coatings with thicknesses around a few nanometers. Fourier-transformed infrared spectroscopy (FTIR) studies of the polymer-coated particles showed the presence of different functional groups (poly-acrylic acid/siloxane) similar to that present in the bulk films. The dispersion behavior of the TiO2 nanoparticles showed much improvement with reduced agglomerate size.

  1. Combined Effects of Dam Removal and Past Sediment Mining on a Relatively Large Lowland Sandy Gravelly Bed River (Vienne River, France).

    NASA Astrophysics Data System (ADS)

    Rodrigues, S.; Ursache, O.; Bouchard, J. P.; Juge, P.

    2014-12-01

    Dam removal is of growing interest for the management of sediment fluxes, morphological evolution and ecological restoration of rivers. If dam removal experiments are well documented for small streams, examples of lowland and large rivers are scarce. We present the morphological response of a relatively large lowland river (Vienne River, France) to a dam removal. The objective is to understand and quantify the morphological adaptation on a reach of 50 km and over 15 years associated with the dam removal and the presence of ancient sand pits located along the riverbed. This study is based on field data collected during 7 surveys performed between 1998 and 2013. This dataset focuses on bed geometry, sediment grain size, and bedload fluxes. It was combined with a 1D numerical model to assess flow dynamics and sediment transport before and after dam removal. Results show that dam removal triggered both regressive and progressive erosions and that discharges higher than 100 m3.s-1 were sufficient to erode the sandy sediments trapped by the dam whereas gravels were mobilised for discharges higher than 300 m3.s-1. Since 1999, large bedload sediment waves coming from upstream migrated downstream at an average celerity of 2.2 km.year-1 and were trapped by three ancient sand pits located downstream. Some of these pits constitute efficient sediment traps even 15 years after dam removal. As a result, between 2002 and 2013, the slope of the river bed adjusted gently and observed morphological processes were minors compared with the time period between 1998 and 2002.

  2. Parametric performance studies on fluidized-bed heat exchangers. Task 1: Fouling characteristics

    NASA Astrophysics Data System (ADS)

    Stoeffler, R. C.

    1982-09-01

    Analyses and experiments are being performed to investigate the heat transfer performance of single and multistage shallow fluidized beds for application to the recovery of heat from sources such as waste heat, and coal combustion or coal gasification. Tests were conducted to investigate the effects of liquid condensate fouling on fluidized bed heat exchanger performance. Liquid condensates used in these tests were water and glycerol (which is more viscous than water). The tests showed that fluidized bed heat exchanger performance is degraded by condensation within the bed and the degradation is caused by bed particles adhering to the heat exchanger surface, not by particle agglomeration. Liquid condensate did not continuously build up within the bed. After a period of dry out, heat transfer equal to that obtained prior to condensation was again obtained.

  3. Combustion behaviours of tobacco stem in a thermogravimetric analyser and a pilot-scale fluidized bed reactor.

    PubMed

    Yang, Zixu; Zhang, Shihong; Liu, Lei; Li, Xiangpeng; Chen, Hanping; Yang, Haiping; Wang, Xianhua

    2012-04-01

    Despite its abundant supply, tobacco stem has not been exploited as an energy source in large scale. This study investigates the combustion behaviours of tobacco stem in a thermogravimetric analyser (TGA) and a pilot-scale fluidized bed (FB). Combustion characteristics, including ignition and burnout index, and combustion reaction kinetics were studied. Experiments in the FB investigated the effects of different operating conditions, such as primary air flow, secondary air flow and feeding rates, on the bed temperature profiles and combustion efficiency. Two kinds of bed materials cinder and silica sand were used in FB and the effect of bed materials on agglomeration was studied. The results indicated that tobacco stem combustion worked well in the FB. When operation condition was properly set, the tobacco stem combustion efficiency reached 94%. In addition, compared to silica sand, cinder could inhibit agglomeration during combustion because of its high aluminium content. Copyright © 2012. Published by Elsevier Ltd.

  4. Field observations of artificial sand and oil agglomerates

    USGS Publications Warehouse

    Dalyander, Patricia (Soupy); Long, Joseph W.; Plant, Nathaniel G.; McLaughlin, Molly R.; Mickey, Rangley C.

    2015-01-01

    Oil that comes into the surf zone following spills, such as occurred during the 2010 Deepwater Horizon (DWH) blowout, can mix with local sediment to form heavier-than-water sand and oil agglomerates (SOAs), at times in the form of mats a few centimeters thick and tens of meters long. Smaller agglomerates that form in situ or pieces that break off of larger mats, sometimes referred to as surface residual balls (SRBs), range in size from sand-sized grains to patty-shaped pieces several centimeters (cm) in diameter. These mobile SOAs can cause beach oiling for extended periods following the spill, on the scale of years as in the case of DWH. Limited research, including a prior effort by the U.S. Geological Survey (USGS) investigating SOA mobility, alongshore transport, and seafloor interaction using numerical model output, focused on the physical dynamics of SOAs. To address this data gap, we constructed artificial sand and oil agglomerates (aSOAs) with sand and paraffin wax to mimic the size and density of genuine SOAs. These aSOAs were deployed in the nearshore off the coast of St. Petersburg, Florida, during a field experiment to investigate their movement and seafloor interaction. This report presents the methodology for constructing aSOAs and describes the field experiment. Data acquired during the field campaign, including videos and images of aSOA movement in the nearshore (1.5-meter and 0.5-meter water depth) and in the swash zone, are also presented in this report.

  5. [Development of a "vortex bed" drying apparatus].

    PubMed

    Bibileishvili, V I; Setti, D; Peri, C

    1976-01-01

    Fundamental parameters in dimensioning a "vortex bed" drying apparatus are the pressure drop across the bed and the higher and lower limit of fluidization velocity. The analysis of the Navier-Stokes equations brings to the following functional relations between dimensionless groups: (see journal). These relations define the fluidization conditions in a "vortex bed" apparatus. Experimental tests carried out on a laboratory scale apparatus will provide us with the unknown constants for industrial scale extrapolation.

  6. Removal of phenol in a constructed wetland system and the relative contribution of plant roots, microbial activity and porous bed.

    PubMed

    Kurzbaum, E; Zimmels, Y; Kirzhner, F; Armon, R

    2010-01-01

    Analysis of a low organic load constructed wetland (CW) system was performed in order to understand the relative role of its various components contribution in phenol removal (100 mg/L) under controlled plant biomass/gravel/water experimental ratios (50 g/450 g/100 mL). The results [expressed as phenol50/time (hours) required to remove 50% of the initial phenol concentration] showed that the highest phenol removal occurred by combined biofilms from roots and gravel attached (phenol50=19), followed by gravel biofilm (phenol50=105) and planktonic (suspended in water) bacteria (phenol50=>200). An in depth analysis revealed that plants contribution alone (antibiotics sterilized) was minor (phenol50=>89) while roots supported biofilm resulted in a significant phenol removal (phenol50=15). Therefore in this type of CW, the main phenol removal active fraction could be attributed to plant roots' biofilm bacteria.

  7. Earth-moon Lagrangian points as a test bed for general relativity and effective field theories of gravity

    NASA Astrophysics Data System (ADS)

    Battista, Emmanuele; Dell'Agnello, Simone; Esposito, Giampiero; Di Fiore, Luciano; Simo, Jules; Grado, Aniello

    2015-09-01

    We first analyze the restricted four-body problem consisting of the Earth, the Moon, and the Sun as the primaries and a spacecraft as the planetoid. This scheme allows us to take into account the solar perturbation in the description of the motion of a spacecraft in the vicinity of the stable Earth-Moon libration points L4 and L5 both in the classical regime and in the context of effective field theories of gravity. A vehicle initially placed at L4 or L5 will not remain near the respective points. In particular, in the classical case the vehicle moves on a trajectory about the libration points for at least 700 days before escaping. We show that this is true also if the modified long-distance Newtonian potential of effective gravity is employed. We also evaluate the impulse required to cancel out the perturbing force due to the Sun in order to force the spacecraft to stay precisely at L4 or L5. It turns out that this value is slightly modified with respect to the corresponding Newtonian one. In the second part of the paper, we first evaluate the location of all Lagrangian points in the Earth-Moon system within the framework of general relativity. For the points L4 and L5, the corrections of coordinates are of order a few millimeters and describe a tiny departure from the equilateral triangle. After that, we set up a scheme where the theory which is quantum corrected has as its classical counterpart the Einstein theory, instead of the Newtonian one. In other words, we deal with a theory involving quantum corrections to Einstein gravity, rather than to Newtonian gravity. By virtue of the effective-gravity correction to the long-distance form of the potential among two masses, all terms involving the ratio between the gravitational radius of the primary and its separation from the planetoid get modified. Within this framework, for the Lagrangian points of stable equilibrium, we find quantum corrections of order 2 mm, whereas for Lagrangian points of unstable

  8. Suppression of agglomeration of ciprofloxacin-loaded human serum albumin nanoparticles.

    PubMed

    Kumar, P Vijayaraj; Jain, Narendr K

    2007-03-02

    The present study is aimed at developing and exploring the use of pectin in suppression of agglomeration of ciprofloxacin-loaded human serum albumin (HSA) nanoparticles. The HSA-pectin nanoparticles loaded with ciprofloxacin were prepared by the pH-coacervation method, and various physicochemical parameters such as particle size, morphology, zeta-potential, electrolyte-induced flocculation, pH-dependent zeta-potential, drug loading, in vitro drug release, and stability of nanoparticles, were evaluated. The size of the HSA-pectin nanoparticles (F3) was found to be 180 to 290 nm. The HSA nanoparticles were modified with pectin when the critical flocculation concentration of nanoparticles in Na(2)SO(4) solution was increased from 0.3 M to 0.9 M. The isoelectric points of the formed nanoparticles were found to be relatively lower between pH values 3 and 6. Pectin may be used as a pharmaceutical additive for the suppression of particle agglomeration in HSA nanoparticles, and the effect may be attributed to the pectin segments present on the surface of nanoparticles.

  9. POC-SCALE TESTING OF OIL AGGLOMERATION TECHNIQUES AND EQUIPMENT FOR FINE COAL PROCESSING

    SciTech Connect

    1998-01-01

    This report covers the technical progress achieved from October 1, 1997 to December 31, 1997 on the POC-Scale Testing of Oil Agglomeration Techniques and Equipment for Fine Coal Processing project. Experimental test procedures and the results related to the processing of coal fines originating from process streams generated at the Shoal Creek Mine preparation plant, owned and operated by the Drummond Company Inc. of Alabama, are described. Two samples of coal fines, namely Cyclone Overflow and Pond Fines were investigated. The batch test results showed that by applying the Aglofloat technology a significant ash removal might be achieved at a very high combustible matter recovery: · for the Cyclone Overflow sample the ash reduction was in the range 50 to 55% at combustible matter recovery about 98% · for the Pond Fines sample the ash reduction was up to 48% at combustible matter recovery up to 85%. Additional tests were carried out with the Alberta origin Luscar Mine coal, which will be used for the parametric studies of agglomeration equipment at the 250 kg/h pilot plant. The Luscar coal is very similar to the Mary Lee Coal Group (processed at Shoal Creek Mine preparation plant) in terms of rank and chemical composition.

  10. In situ measurement of the rheological properties and agglomeration on cementitious pastes

    SciTech Connect

    Kim, Jae Hong; Yim, Hong Jae; Ferron, Raissa Douglas

    2016-07-15

    Various factors influence the rheology of cementitious pastes, with the most important being the mixing protocol, mixture proportions, and mixture composition. This study investigated the influence of ground-granulated blast-furnace slag, on the rheological behavior of cementitious pastes. In tandem with the rheological measurements, fresh state microstructural measurements were conducted using three different techniques: A coupled stroboscope-rheometer, a coupled laser backscattering-rheometer, and a conventional laser diffraction technique. Laser diffraction and the coupled stroboscope-rheometer were not good measures of the in situ state of flocculation of a sample. Rather, only the laser backscattering technique allowed for in situ measurement on a highly concentrated suspension (cementitious paste). Using the coupled laser backscattering-rheometer technique, a link between the particle system and rheological behavior was determined through a modeling approach that takes into account agglomeration properties. A higher degree of agglomeration was seen in the ordinary Portland cement paste than pastes containing the slag and this was related to the degree of capillary pressure in the paste systems.

  11. On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations

    NASA Astrophysics Data System (ADS)

    Bassi, F.; Botti, L.; Colombo, A.; Di Pietro, D. A.; Tesini, P.

    2012-01-01

    In this work we show that the flexibility of the discontinuous Galerkin (dG) discretization can be fruitfully exploited to implement numerical solution strategies based on the use of elements with very general shapes. Thanks to the freedom in defining the mesh topology, we propose a new h-adaptive technique based on agglomeration coarsening of a fine mesh. The possibility to enhance the error distribution over the computational domain is investigated on a Poisson problem with the goal of obtaining a mesh independent discretization. The main building block of our dG method consists of defining discrete polynomial spaces directly on physical frame elements. For this purpose we orthonormalize with respect to the L2-product a set of monomials relocated in a specific element frame and we introduce an easy way to reduce the cost related to numerical integration on agglomerated meshes. To complete the dG formulation for second order problems, two extensions of the BR2 scheme to arbitrary polyhedral grids, including an estimate of the stabilization parameter ensuring the coercivity property, are here proposed.

  12. Unraveling the Agglomeration Mechanism in Charged Block Copolymer and Surfactant Complexes

    DOE PAGES

    Borreguero, Jose M.; Pincus, Philip A.; Sumpter, Bobby G.; ...

    2017-01-27

    Here, we report a molecular dynamics simulation investigation of self-assembly and complex formation of charged-neutral double hydrophilic and hydrophobic-hydrophilic block copolymers (BCP) with oppositely charged surfactants. Furthermore, the structure of the surfactant micelles and the BCP aggregation on the micelle surface is systematically studied for five different BCP volume fractions that also mimics a reduction of the surfactant concentration. The local electrostatic interactions between the oppositely charged species encourage the formation of core-shell structures between the surfactant micelles where the surfactants form the cores and the charged blocks of the BCP form the corona. The emergent morphologies of these aggregatesmore » are contingent upon the nature of the BCP neutral blocks. The hydrophilic neutral blocks agglomerate with the micelles as hairy colloidal structures while the hydrophobic neutrals agglomerate in lamellar structures with the surfactant micelles. The distribution of counterion charges along the simulation box show a close-to-normal density distribution for the hydrophilic neutral blocks and a binodal distribution for hydrophobic neutral blocks. No specific surfactant concentration dependent scaling relation is observed as opposed to the simpler case of homo-polyelectrolytes.« less

  13. A micromanipulation particle tester for agglomeration contact mechanism studies in a controlled environment

    NASA Astrophysics Data System (ADS)

    Haider, C. I.; Althaus, T.; Niederreiter, G.; Hounslow, M. J.; Palzer, S.; Salman, A. D.

    2012-10-01

    Pressure agglomeration of powders is widely applied in various industries and an increasing interest lies in the identification and description of contact mechanisms between particles, which are responsible for the compaction product properties. In this paper, the design and development of a novel micromanipulation particle tester (MPT) is presented. This device makes it possible to measure the deformation kinetics and resulting adhesion of two individual particles in contact under load, which are strongly influenced by the applied process conditions. The MPT set-up is, therefore, designed to offer a unique control over the process conditions most relevant to the compaction of powders: external stress, dwell or holding time at constant deformation, compression velocity as well as relative humidity and temperature determining the physical state and mechanical characteristics of hygrosensitive amorphous particles. The latter are often part of powder formulations, e.g. in the food industry, and have been used for force and contact-zone development studies with the MPT. The experimental results on the microscale level will deliver valuable quantitative information for an improved tailoring of pressure agglomeration process conditions of bulk solids.

  14. An accelerated stochastic vortex structure method for particle collision and agglomeration in homogeneous turbulence

    NASA Astrophysics Data System (ADS)

    Dizaji, Farzad F.; Marshall, Jeffrey S.

    2016-11-01

    Modeling the response of interacting particles, droplets, or bubbles to subgrid-scale fluctuations in turbulent flows is a long-standing challenge in multiphase flow simulations using the Reynolds-Averaged Navier-Stokes approach. The problem also arises for large-eddy simulation for sufficiently small values of the Kolmogorov-scale particle Stokes number. This paper expands on a recently proposed stochastic vortex structure (SVS) method for modeling of turbulence fluctuations for colliding or otherwise interacting particles. An accelerated version of the SVS method was developed using the fast multipole expansion and local Taylor expansion approach, which reduces computation speed by two orders of magnitude compared to the original SVS method. Detailed comparisons are presented showing close agreement of the energy spectrum and probability density functions of various fields between the SVS computational model, direct numerical simulation (DNS) results, and various theoretical and experimental results found in the literature. Results of the SVS method for particle collision rate and related measures of particle interaction exhibit excellent agreement with DNS predictions for homogeneous turbulent flows. The SVS method was also used with adhesive particles to simulate formation of particle agglomerates with different values of the particle Stokes and adhesion numbers, and various measures of the agglomerate structure are compared to the DNS results.

  15. 7 CFR 2902.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Bedding, bed linens, and towels. 2902.15 Section 2902... PROCUREMENT Designated Items § 2902.15 Bedding, bed linens, and towels. (a) Definition. (1) Bedding is that..., bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding....

  16. 7 CFR 3201.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Bedding, bed linens, and towels. 3201.15 Section 3201... PROCUREMENT Designated Items § 3201.15 Bedding, bed linens, and towels. (a) Definition. (1) Bedding is that..., bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding....

  17. 7 CFR 3201.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Bedding, bed linens, and towels. 3201.15 Section 3201... PROCUREMENT Designated Items § 3201.15 Bedding, bed linens, and towels. (a) Definition. (1) Bedding is that..., bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding....

  18. 7 CFR 2902.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Bedding, bed linens, and towels. 2902.15 Section 2902... PROCUREMENT Designated Items § 2902.15 Bedding, bed linens, and towels. (a) Definition. (1) Bedding is that..., bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding....

  19. 7 CFR 3201.15 - Bedding, bed linens, and towels.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Bedding, bed linens, and towels. 3201.15 Section 3201... PROCUREMENT Designated Items § 3201.15 Bedding, bed linens, and towels. (a) Definition. (1) Bedding is that..., bedspreads, comforters, and quilts. (2) Bed linens are woven cloth sheets and pillowcases used in bedding....

  20. Development and scale-up of particle agglomeration processes for coal beneficiation

    NASA Astrophysics Data System (ADS)

    Shen, Meiyu

    The development of two modified agglomeration processes for coal beneficiation is presented separately in Parts I and II of this dissertation. Part I is based on research which was conducted to study the mechanism and characteristics of a gas-promoted oil agglomeration process. Part II is based on research which was carried out to develop a newer and more innovative method for agglomerating coal particles with microscopic gas bubbles in aqueous suspensions. In Part I, the development of a gas-promoted oil agglomeration process for cleaning coal was carried out with scale model mixing systems in which aqueous suspensions of ultrafine coal particles were treated with a liquid hydrocarbon and a small amount of air. The resulting agglomerates were recovered by screening. During batch agglomeration tests the progress of agglomeration was monitored by observing changes in agitator torque in the case of concentrated suspension. A key parameter turned out to be the minimum time te required to produce compact spherical agglomerates. Other important parameters included the projected area mean particle diameter of the agglomerates recovered at the end of a test as well as the ash content and yield of agglomerates. Batch agglomeration tests were conducted with geometrically similar mixing tanks which ranged in volume from 0.346 to 11.07 liters. It was shown that gas bubbles trigger the process of agglomeration and participate in a very complex mechanism involving the interaction of particles, oil droplets, and gas bubbles. The process takes place in stages involving dispersion of oil and gas, flocculation, coagulation, and agglomerate building. Numerous agglomeration tests were conducted with two kinds of coal in concentrated suspensions to determine the important characteristics of the process and to study the effects of the following operating parameters: i-octane concentration, air concentration, particle concentration, tank diameter, impeller diameter, and impeller speed

  1. How much drinking water can be saved by using rainwater harvesting on a large urban area? application to Paris agglomeration.

    PubMed

    Belmeziti, Ali; Coutard, Olivier; de Gouvello, Bernard

    2014-01-01

    This paper is based on a prospective scenario of development of rainwater harvesting (RWH) on a given large urban area (such as metropolitan area or region). In such a perspective, a new method is proposed to quantify the related potential of potable water savings (PPWS) indicator on this type of area by adapting the reference model usually used on the building level. The method is based on four setting-up principles: gathering (definition of buildings-types and municipalities-types), progressing (use of an intermediate level), increasing (choice of an upper estimation) and prioritizing (ranking the stakes of RWH). Its application to the Paris agglomeration shows that is possible to save up to 11% of the total current potable water through the use of RWH. It also shows that the residential sector offers the most important part because it holds two-thirds of the agglomeration PPWS.

  2. Combined effects of dam removal and past sediment mining on a relatively large lowland sandy gravel bed river (Vienne River, France)

    NASA Astrophysics Data System (ADS)

    Ursache, Ovidiu; Rodrigues, Stephane; Bouchard, Jean-Pierre; Jugé, Philippe; Richard, Nina

    2014-05-01

    Dam removal is of growing interest for the management of sediment fluxes within fluvial basins, morphological evolution and ecological restoration of rivers. If dam removal experiments are now quite well documented for small streams located in the upstream parts of river networks, examples of lowland and relatively large rivers are still scarce. In this study we present a dam removal operation carried out on the Vienne River (France) to restore both sediment and biotic continuity. The Vienne River is 363 km in length. On its middle reaches the average slope is equal to 0.0003 m.m-1 and the average annual discharge is 195 m3.s-1 at the gauging station of Nouâtre. The river is characterized by a sinuous single channel of an average width of 150 m. The sediments are mainly made of a siliceous mixture of sands and gravels and were intensively mined between years 1930 and 1995's. In 1920, a 4 m height dam was built just downstream the confluence between the Vienne and Creuse Rivers triggering a total sediment deposition upstream of 900 000 m3 in 75 years. Hence, in 1998, the removal of the dam increased severely the sediment supply delivered to the Vienne River. The objective of this study is to understand and quantify the fluvial processes and morphological evolution on a reach of 50 km of the Vienne associated with the dam remova and the presence of ancient sand pits located along the riverbed. This study is based on field data collected during 7 surveys performed between 1998 and 2013. This large dataset focuses on bed geometry (detailed bathymetrical surveys), sediment grain size, and bedload fluxes measured using isokinetic samplers. It was combined with a 1D numerical model developed to assess flow dynamics and sediment transport capacity before and after dam removal. Results show that dam removal triggered both headward and progressive (near the dam) erosions and that discharges higher than 100 m3.s-1 were sufficient to erode the sandy sediments trapped by the

  3. Diamond-like-carbon nanoparticle production and agglomeration following UV multi-photon excitation of static naphthalene/helium gas mixtures.

    PubMed

    Walsh, A J; Tielens, A G G M; Ruth, A A

    2016-07-14

    We report the formation of nanoparticles with significant diamond character after UV multi-photon laser excitation of gaseous naphthalene, buffered in static helium gas, at room temperature. The nanoparticles are identified in situ by their absorption and scattering spectra between 400 and 850 nm, which are modeled using Mie theory. Comparisons of the particles' spectroscopic and optical properties with those of carbonaceous materials indicate a sp(3)/sp(2) hybridization ratio of 8:1 of the particles formed. The particle extinction in the closed static (unstirred) gas-phase system exhibits a complex and quasi-oscillatory time dependence for the duration of up to several hours with periods ranging from seconds to many minutes. The extinction dynamics of the system is based on a combination of transport features and particle interaction, predominantly agglomeration. The relatively long period of agglomeration allows for a unique analysis of the agglomeration process of diamond-like carbon nanoparticles in situ.

  4. Synthesis and agglomeration of gold nanoparticles in reverse micelles

    NASA Astrophysics Data System (ADS)

    Herrera, Adriana P.; Resto, Oscar; Briano, Julio G.; Rinaldi, Carlos

    2005-07-01

    Reverse micelles prepared in the system water, sodium bis-(2-ethylhexyl) sulfoccinate (AOT), and isooctane were investigated as a templating system for the production of gold nanoparticles from Au(III) and the reducing agent sulfite. A core-shell Mie model was used to describe the optical properties of gold nanoparticles in the reverse micelles. Dynamic light scattering of gold colloids in aqueous media and in reverse micelle solution indicated agglomeration of micelles containing particles. This was verified theoretically with an analysis of the total interaction energy between pairs of particles as a function of particle size. The analysis indicated that particles larger than about 8 nm in diameter should reversibly flocculate. Transmission electron microscopy measurements of gold nanoparticles produced in our reverse micelles showed diameters of 8-10 nm. Evidence of cluster formation was also observed. Time-correlated UV-vis absorption measurements showed a red shift for the peak wavelength. This was interpreted as the result of multiple scattering and plasmon interaction between particles due to agglomeration of micelles with particles larger than 8 nm.

  5. Agglomeration of Luminescent Porous Silicon Nanoparticles in Colloidal Solutions.

    PubMed

    Herynková, Kateřina; Šlechta, Miroslav; Šimáková, Petra; Fučíková, Anna; Cibulka, Ondřej

    2016-12-01

    We have prepared colloidal solutions of clusters composed from porous silicon nanoparticles in methanol, water and phosphate-buffered saline (PBS). Even if the size of the nanoclusters is between 60 and 500 nm, due to their highly porous "cauliflower"-like structure, the porous silicon nanoparticles are composed of interconnected nanocrystals having around 2.5 nm in size and showing strong visible luminescence in the orange-red spectral region (centred at 600-700 nm). Hydrophilic behaviour and good solubility of the nanoclusters in water and water-based solutions were obtained by adding hydrogen peroxide into the etching solution during preparation and 16 min long after-bath in hydrogen peroxide. By simple filtration of the solutions with syringe filters, we have extracted smaller nanoclusters with sizes of approx. 60-70 nm; however, these nanoclusters in water and PBS solution (pH neutral) are prone to agglomeration, as was confirmed by zeta potential measurements. When the samples were left at ambient conditions for several weeks, the typical nanocluster size increased to approx. 330-400 nm and then remained stable. However, both freshly filtered and aged samples (with agglomerated porous silicon nanoparticles) of porous silicon in water and PBS solutions can be further used for biological studies or as luminescent markers in living cells.

  6. Flue Dust Agglomeration in the Secondary Lead Industry

    NASA Astrophysics Data System (ADS)

    Schwitzgebel, Klaus

    1981-01-01

    A secondary lead smelter produces several tons of bag-house dust a day. Appropriate handling of this dust is mandatory to meet the proposed OSHA and EPA workroom and ambient standards. Dust agglomeration proved a successful approach. Dusts with a high concentration of PbCl2, or compounds containing PbCl2 can be agglomerated at much lower temperatures than samples with low PbCl2 concentrations. The chlorine sources are polyvinyl chloride (PVC) battery plate separators. Since PVC is used in Europe to a much greater extent than in the U.S., the composition of feedstock must be considered in equipment selection at U.S. secondary smelters. The vapor pressure characteristics of PbCl2 favor its evaporation at blast furnace temperatures. Condensation occurs in the gas cooling system. Recycling of baghouse dust leads to a buildup of PbCl2 in the smelter. Its removal from the system is eventually necessary through leaching, if charges with a high PVC content are processed.

  7. Agglomeration of Luminescent Porous Silicon Nanoparticles in Colloidal Solutions

    NASA Astrophysics Data System (ADS)

    Herynková, Kateřina; Šlechta, Miroslav; Šimáková, Petra; Fučíková, Anna; Cibulka, Ondřej

    2016-08-01

    We have prepared colloidal solutions of clusters composed from porous silicon nanoparticles in methanol, water and phosphate-buffered saline (PBS). Even if the size of the nanoclusters is between 60 and 500 nm, due to their highly porous "cauliflower"-like structure, the porous silicon nanoparticles are composed of interconnected nanocrystals having around 2.5 nm in size and showing strong visible luminescence in the orange-red spectral region (centred at 600-700 nm). Hydrophilic behaviour and good solubility of the nanoclusters in water and water-based solutions were obtained by adding hydrogen peroxide into the etching solution during preparation and 16 min long after-bath in hydrogen peroxide. By simple filtration of the solutions with syringe filters, we have extracted smaller nanoclusters with sizes of approx. 60-70 nm; however, these nanoclusters in water and PBS solution (pH neutral) are prone to agglomeration, as was confirmed by zeta potential measurements. When the samples were left at ambient conditions for several weeks, the typical nanocluster size increased to approx. 330-400 nm and then remained stable. However, both freshly filtered and aged samples (with agglomerated porous silicon nanoparticles) of porous silicon in water and PBS solutions can be further used for biological studies or as luminescent markers in living cells.

  8. Agglomerated silica monolithic column for hydrophilic interaction LC.

    PubMed

    Ibrahim, Mohammed E A; Zhou, Ting; Lucy, Charles A

    2010-03-01

    Hydrophilic interaction LC (HILIC) has gained wide acceptance in recent years due to its ability to retain and separate polar compounds such as pharmaceuticals. Most commercial HILIC phases are particle based, which limit the speed with which HILIC separations can be performed. Herein, agglomerated silica monolithic columns are prepared by electrostatically attaching polyionic latex particles onto a silica monolith by simply flushing a suspension of the ionic latex through a silica monolith. Such phases retain the high efficiency and permeability of the native silica monolith, while the agglomerated phase is easy to introduce and provides excellent mass transfer. High %ACN in the mobile phase dramatically increases the efficiency and retention, consistent with HILIC behavior. Test analytes such as benzoates, nucleotides and amino acids are separated with plate heights of 25-110 microm. The high permeability of monoliths allows HILIC separations to be performed with baseline resolution in less than 15 s. Electrostatic repulsion-hydrophilic liquid interaction chromatographic retention behavior of the latex-coated monoliths is verified using amino acids as test analytes.

  9. Operation of dry-cleaned and agglomerated precompaction system (DAPS)

    SciTech Connect

    Tanaka, Shigemi; Okanishi, Kazuya; Kikuchi, Akio; Yamamura, Yuichi

    1997-12-31

    In order to reduce the manufacturing cost of coke, it is necessary to reduce mainly (1) the material cost and (2) operating cost. Both of these costs can be reduced by lowering the moisture of charging coal. Because dust generation increases with decreasing moisture of charging coal, however, the lower limit of charging coal moisture in the existing coke-oven equipment was about 5%, which yielded good results in coal moisture control (CMC) equipment. Nippon Steel has furthered the development of techniques for lowering the moisture of charging coal as far as possible in the existing coke ovens and has recently succeeded in developing a dry-cleaned and agglomerated precompaction system (DAPS) and incorporating this system in commercial production equipment. In this system, a coal preparation process is undertaken that involves separating coal fines, which cause dust generation, from dried charging coal and agglomerating them. The equipment incorporating this system was installed in the No. 3 and No. 4 coke batteries at Oita Works and brought into full-scale operation in September 1992. The equipment has since been operating smoothly.

  10. Selective agglomeration of a Pittsburgh Seam coal with isooctane

    SciTech Connect

    Lai, R.; Killmeyer, R.; Utz, B.; Richardson, A.; Sinha, K.

    1992-01-01

    The Pittsburgh Energy Technology Center initiated a research program in 1989 to investigate the fundamentals of selective agglomeration as applied to the cleaning of coals. The results of the initial study with Bruceton mine, Pittsburgh seam coal, using isooctane as an agglomerant, have been published. Subsequent to the successful reduction of the ash content of Bruceton coal to less than 0.9% after two cleaning stages, the study was extended to compare a coal from the same seam, but from Ohio. In the previous parameter optimization tests with Bruceton coal, particle size and slurry pH were found to be important parameters governing coal cleanability. Other researchers have obtained similar conclusions of the effects of particle size and coal slurry pH on the cleanability of various coals. In this study, the effects of these parameters on the cleanability of Powhatan coal were examined. Particle size reduction kinetics was examined first. Effects of size reduction (degree of mineral matter liberation), oil (isooctane)-to-coal ratio, and slurry pH on mineral matter rejection and combustible recovery were also examined. A petrographic comparison was conducted on the Powhatan and Bruceton coals to examine the degree of pyrite liberation as a function of particle size to elucidate why one coal from the same seam can be cleaned significantly better than another. (VC)

  11. Hybrid fluidized bed combuster

    DOEpatents

    Kantesaria, Prabhudas P.; Matthews, Francis T.

    1982-01-01

    A first atmospheric bubbling fluidized bed furnace is combined with a second turbulent, circulating fluidized bed furnace to produce heat efficiently from crushed solid fuel. The bed of the second furnace receives the smaller sizes of crushed solid fuel, unreacted limestone from the first bed, and elutriated solids extracted from the flu gases of the first bed. The two-stage combustion of crushed solid fuel provides a system with an efficiency greater than available with use of a single furnace of a fluidized bed.

  12. Hydrophobic Agglomeration of Mineral Fines in Aqueous Suspensions and its Application in Flotation: a Review

    NASA Astrophysics Data System (ADS)

    Yang, Bingqiao; Song, Shaoxian

    2014-05-01

    Hydrophobic agglomeration is originated from the hydrophobic attraction between particles, which is essentially different from electrolyte coagulation and polymer flocculation. It is applied to mineral processing in floc-flotation process to improve the recovery of mineral fines. In this paper, the applications of this phenomenon in mineral fines were summarized, including the origin of hydrophobic agglomeration, the main factors affect hydrophobic agglomeration (particle hydrophobicity, shear rate and duration, nonpolar oil and tank geometry), as well as hydrophobic agglomeration based separation processes (carrier flotation and floc-flotation).

  13. Communication — Modeling polymer-electrolyte fuel-cell agglomerates with double-trap kinetics

    DOE PAGES

    Pant, Lalit M.; Weber, Adam Z.

    2017-04-14

    A new semi-analytical agglomerate model is presented for polymer-electrolyte fuel-cell cathodes. The model uses double-trap kinetics for the oxygen-reduction reaction, which can capture the observed potential-dependent coverage and Tafel-slope changes. An iterative semi-analytical approach is used to obtain reaction rate constants from the double-trap kinetics, oxygen concentration at the agglomerate surface, and overall agglomerate reaction rate. The analytical method can predict reaction rates within 2% of the numerically simulated values for a wide range of oxygen concentrations, overpotentials, and agglomerate sizes, while saving simulation time compared to a fully numerical approach.

  14. Occupancy and patient care quality benefits of private room relative to multi-bed patient room designs for five different children's hospital intensive and intermediate care units.

    PubMed

    Smith, Thomas J

    2016-07-25

    Prior research documents occupancy and patient care quality (OPCQ) benefits for private room (PR) relative to multi-bed (MB) designs in neonatal intensive care units (NICUs). To extend this research design to four additional types of children's hospital units: a cardiovascular care center (CVCC), an infant care center (ICC), a medical/surgical unit (Med/Surg), and a pediatric intensive care unit (PICU). Staff comments, task activities, patient care demands, and perceptual survey rankings for twelve major indicators of OPCQ were assessed with nursing staff on these units plus an NICU. With the PR designs, for 38 of 48 pairwise comparisons for the twelve major OPCQ indicators, CVCC staff rankings are significantly lower than those by staff on the other four units. For 47 of 48 pairwise comparisons for the twelve major OPCQ indicators, NICU, ICC, Med/Surg, and PICU staff rankings for PR designs do not differ significantly from those for MB designs. Comments by staff on all five units target numerous PR OPCQ defects. Design, operation and management of the patient care environments on the five different PR units evaluated in this research confront a challenge in realizing OPCQ benefits that match experience with PR NICU designs in other contexts.

  15. Development of a gas-promoted oil agglomeration process. Quarterly technical progress report, July 1--September 30, 1996

    SciTech Connect

    Wheelock, T.D.

    1996-09-01

    The series of agglomeration tests designed to study the agglomeration characteristics of Pittsburgh No. 8 coal with i-octane was continued using a larger agitated tank. This series is designed to determine the effects of various parameters on the size and structure of the agglomerates formed, the rate of agglomeration, coal recovery, and ash rejection. The results reported here show that once spherical agglomerates are formed they continue to grow at almost a constant rate which is proportional to the concentration of i-octane. The constant growth rate is interrupted when spherical agglomerates combine to form large clusters. This only seems to occur with a large concentration of i-octane (e.g., 30 v/w%) and limited agitator power. The present results also show that coal recovery and ash rejection are highly dependent on agglomerate size when the mean agglomerate diameter is less than the size of the openings in the screen used for recovering the agglomerates.

  16. Fuel bed characteristics of Sierra Nevada conifers

    USGS Publications Warehouse

    van Wagtendonk, J.W.; Benedict, J.M.; Sydoriak, W.M.

    1998-01-01

    A study of fuels in Sierra Nevada conifer forests showed that fuel bed depth and fuel bed weight significantly varied by tree species and developmental stage of the overstory. Specific values for depth and weight of woody, litter, and duff fuels are reported. There was a significant positive relationship between fuel bed depth and weight. Estimates of woody fuel weight using the planar intercept method were significantly related to sampled values. These relationships can be used to estimate fuel weights in the field.

  17. Bed Bugs and Schools

    EPA Pesticide Factsheets

    Bed bugs have long been a pest – feeding on blood, causing itchy bites and generally irritating their human hosts. They are successful hitchhikers, and can move from an infested site to furniture, bedding, baggage, boxes, and clothing.

  18. Bed bugs: they are back! The role of the school nurse in bed bug management.

    PubMed

    Sciscione, Patricia

    2012-09-01

    Recently there has been a resurgence of bed bugs in all facets of our society. Bed bugs have even been found in schools, causing unnecessary exclusion of students and unfounded hysteria. School nurses are again called upon to be front-line sources of information to quell the hysteria and confusion related to this unsavory condition. By arming themselves with the best evidence regarding proper identification of bed bugs and their bites and information about integrated prevention measures to control transmission of infestations, school nurses can contribute to the control and management of bed bugs and aid in the overall battle against this "new and improved" invasion of the bed bugs.

  19. Different bed surface and flow resistance characteristics for gravel and sand bed

    NASA Astrophysics Data System (ADS)

    Fan, N.; Yang, K.; Nie, R.; Liu, X.

    2014-12-01

    Bed forms affect both bed load transport and flow resistance strongly and change their shapes and sizes depending on underlying grain size distribution and shear stress. A series of flume experiments were conducted at the Saint Anthony Falls Laboratory to study the effect of bed form dynamics on flow turbulence and sediment transport with both gravel and sand as bed material and different flow conditions. From the experimental data, the spectrum of bed elevation time series, the PDFs of bed elevation increments and the flow resistance characteristics are all analyzed. The wavelet-based spectral analysis shows that the slopes of the elevation spectrums are -2 and -3 for gravel and sand bed surfaces, respectively. The slope -3 indicates that the surface is self-similar, in another words, the ratios of bed form heights and lengths for different bed forms are the same; however, the slope of -2 indicates that the surface is self-affine, and in such case (-2) the ratios of bed form heights and lengths for different bed forms are not correlated at all. We interpret that the relative size of grain and boundary layer affects the bed form characteristics significantly, e.g., grain size of sand is of the same scale as the thickness of boundary layer, but both are much smaller than the grain size of gravel. Our results suggest that the PDFs of bed elevation increments for both gravel and sand beds can be fitted well with two-sided asymmetric exponential function. Furthermore, we show that the flow resistance (Darcy-Weisbach coefficients f) are much higher for sand bed than gravel bed, and the former is contributed by form drags, which is much larger than grain drags. For gravel bed, f and the skewness of bed elevation increments increases with flow discharge whereas for the sand bed, both f and the skewness of bed elevation increments decreases which corresponds to the transition in hydraulic conditions for dune to dynamic flat surface in our experiments. The analysis

  20. On minimal energy dipole moment distributions in regular polygonal agglomerates

    NASA Astrophysics Data System (ADS)

    Rosa, Adriano Possebon; Cunha, Francisco Ricardo; Ceniceros, Hector Daniel

    2017-01-01

    Static, regular polygonal and close-packed clusters of spherical magnetic particles and their energy-minimizing magnetic moments are investigated in a two-dimensional setting. This study focuses on a simple particle system which is solely described by the dipole-dipole interaction energy, both without and in the presence of an in-plane magnetic field. For a regular polygonal structure of n sides with n ≥ 3 , and in the absence of an external field, it is proved rigorously that the magnetic moments given by the roots of unity, i.e. tangential to the polygon, are a minimizer of the dipole-dipole interaction energy. Also, for zero external field, new multiple local minima are discovered for the regular polygonal agglomerates. The number of found local extrema is proportional to [ n / 2 ] and these critical points are characterized by the presence of a pair of magnetic moments with a large deviation from the tangential configuration and whose particles are at least three diameters apart. The changes induced by an in-plane external magnetic field on the minimal energy, tangential configurations are investigated numerically. The two critical fields, which correspond to a crossover with the linear chain minimal energy and with the break-up of the agglomerate, respectively are examined in detail. In particular, the numerical results are compared directly with the asymptotic formulas of Danilov et al. (2012) [23] and a remarkable agreement is found even for moderate to large fields. Finally, three examples of close-packed structures are investigated: a triangle, a centered hexagon, and a 19-particle close packed cluster. The numerical study reveals novel, illuminating characteristics of these compact clusters often seen in ferrofluids. The centered hexagon is energetically favorable to the regular hexagon and the minimal energy for the larger 19-particle cluster is even lower than that of the close packed hexagon. In addition, this larger close packed agglomerate has two

  1. Study on GIS Visualization in Evaluation of the Human Living Environment in Shenyang-Dalian Urban Agglomeration

    PubMed Central

    Hou, Kang; Zhou, Jieting; Li, Xuxiang; Ge, Shengbin

    2016-01-01

    Analysis of human living environmental quality of Shenyang-Dalian urban agglomerations has important theoretical and practical significance in rapid development region. A lot of investigations have been carried for Shenyang-Dalian urban agglomerations, including 38 counties. Based on the carrying capacity of resources, natural and socioeconomic environmental factors and regional changes of human living environmental evaluation are analyzed with the application of geographic information systems (GIS) software. By using principal component analysis (PCA) model and natural breaks classification (NBC) method, the evaluation results are divided into five categories. The results show that the human living environmental evaluation (HLEE) indexes of Dalian, Shenyang, and Liaoyang are higher than other counties. Among these counties, the human living environmental evaluation (HLEE) indexes of coastal counties are significantly higher than inland counties. The range of the human living environmental evaluation index in most of the study area is at III, IV, and V levels, accounting for 80.01%. Based on these results, it could illustrate the human living environment is in relatively suitable condition in Shenyang-Dalian urban agglomeration. PMID:27200212

  2. [A Systematic Review of the Literature Related to Elevating the Head of the Bed for Patients With Gastroesophageal Reflux Disease: Applications in Patients After Esophageal Cancer Surgery].

    PubMed

    Huang, Hui-Chen; Fang, Su-Ying

    2016-06-01

    Acid regurgitation typically worsens during nighttime sleep, which influences the quality of life of patients and potentially causes pathological changes. As much as 80% of esophageal cancer patients experience acid regurgitation following esophagectomy and reconstruction surgery. Thus, improving this symptom is important to improving the quality of life of these patients. The purpose of the present study was to evaluate the effect of elevating the head of the bed for patients with gastroesophageal reflux disease (GERD). A systematic review was used. Electronic databases including CINAHL (Cumulative Index to Nursing and Allied Health Literature), Cochrane Library, ProQuest, and PubMed/MEDLINE were retrieved for relevant articles that were published prior to June 2015. Keywords included "elevating the head of the bed/bed position/body position", "flat", "reflux", and the MeSh term "gastroesophageal reflux". A total of 37 articles that matched the search criteria were extracted. After screening the topics and deleting repetitions, three randomized controlled studies and one quasi-experimental designed study were selected. Results of this systemic review revealed that elevating the head of the bed for patients with GERD reduced the duration of exposure of the the esophagus to an acid environment. Furthermore, patients perceived that this intervention not only improved symptoms such as regurgitation and burn sensation without medication but also relieved symptoms better than taking medications alone. The reviewed studies support that elevating the head of the bed is an easy and effective way to alleviate the symptoms of acid regurgitation. A height of elevation of 20 to 28 cm is recommended in the literature. The slope of the elevated bed must also be considered. Elevating the head of the bed may be useful for improving acid regurgitation among esophageal cancer patients after surgery. A randomized controlled study may be used to validate this effect in the future.

  3. Making a Bed

    ERIC Educational Resources Information Center

    Wexler, Anthony; Stein, Sherman

    2005-01-01

    The origins of this paper lay in making beds by putting pieces of plywood on a frame: If beds need to be 4 feet 6 inches by 6 feet 3 inches, and plywood comes in 4-foot by 8-foot sheets, how should one cut the plywood to minimize waste (and have stable beds)? The problem is of course generalized.

  4. Making a Bed

    ERIC Educational Resources Information Center

    Wexler, Anthony; Stein, Sherman

    2005-01-01

    The origins of this paper lay in making beds by putting pieces of plywood on a frame: If beds need to be 4 feet 6 inches by 6 feet 3 inches, and plywood comes in 4-foot by 8-foot sheets, how should one cut the plywood to minimize waste (and have stable beds)? The problem is of course generalized.

  5. Remediation of Sucarnoochee soil by agglomeration with fine coal

    SciTech Connect

    Narayanan, P.S.; Arnold, D.W.; Rahnama, M.B. )

    1994-01-01

    Fine-sized Blue Creek coal was used to remove high molecular weight hydrocarbons from Sucarnoochee soil, a fine-sized high-organic soil. Fine coal in slurry form was blended with Sucarnoochee soil contaminated with 15.0% by wt of crude oil, and agglomerates were removed in a standard flotation cell. Crude oil in the remediated soil was reduced from the original 15.0% to less than a tenth of a wt% by a two-step process. Oil removal of approx. 99.3% was obtained. An added benefit was that the low-grade coal used in the process was simultaneously upgraded. The final level of cleaning was not affected by initial oil concentration. The process compared favorably with a hot water wash technique used to recovery oils from contaminated soil.

  6. Innovations in thermoelectric materials research: Compound agglomeration, testing and preselection

    NASA Astrophysics Data System (ADS)

    Lopez de Cardenas, Hugo Francisco Lopez

    Thermoelectric materials have the capacity to convert a temperature differential into electrical power and vice versa. They will represent the next revolution in alternative energies once their efficiencies are enhanced so they can complement other forms of green energies that depend on sources other than a temperature differential. Progress in materials science depends on the ability to discover new materials to eventually understand them and to finally improve their properties. The work presented here is aimed at dynamizing the screening of materials of thermoelectric interest. The results of this project will enable: theoretical preselection of thermoelectric compounds based on their bandgap and a rapid agglomeration method that does not require melting or sintering. A special interest will be given to Iodine-doped TiSe2 that generated extraordinary results and a new set of equations are proposed to accurately describe the dependence of the power factor and the figure of merit on the intrinsic properties of the materials.

  7. Identification of micro parameters for discrete element simulation of agglomerates

    NASA Astrophysics Data System (ADS)

    Palis, Stefan; Antonyuk, Sergiy; Dosta, Maksym; Heinrich, Stefan

    2013-06-01

    The mechanical behaviour of solid particles like agglomerates, granules or crystals strongly depends on their micro structure, e.g. structural defects and porosity. In order to model the mechanical behaviour of these inhomogeneous media the discrete element method has been proven to be an appropriate tool. The model parameters used are typically micro parameters like bond stiffness, particle-particle contact stiffness, strength of the bonds. Due to the lack of general methods for a direct micro parameter determination, normally laborious parameter adaptation has to be done in order to fit experiment and simulation. In this contribution a systematic and automatic way for parameter adaptation using real experiments is proposed. Due to the fact, that discrete element models are typically systems of differential equations of very high order, gradient based methods are not suitable. Hence, the focus will be on derivative free methods.

  8. Quantification of patient migration in bed: catalyst to improve hospital bed design to reduce shear and friction forces and nurses' injuries.

    PubMed

    Kotowski, Susan E; Davis, Kermit G; Wiggermann, Neal; Williamson, Rachel

    2013-02-01

    The study objective was to quantify the movement of hospital bed occupants relative to the bed in typical bed articulations. Movement of a patient in bed results in two common adverse events: (a) increase in shear and friction forces between the patient and bed, which are extrinsic pressure ulcer risk factors, and (b) musculoskeletal injuries to nurses, resulting from repositioning patients who have migrated down in bed. The study involved 12 participants who lay supine in three hospital beds, which were articulated to common positions. Body movement relative to the bed was quantified with the use of motion capture. Cumulative movement, net displacement, and torso compression (shoulder to trochanter distance) were calculated for different bed types and bed movements. Bed design and bed movement had a significant effect on most of the dependent variables. Bed design (e.g., type) influenced cumulative movement by up to 115%, net displacement by up to 70%, and torso compression by about 20%. Bed movement (e.g., knee elevation) reduced cumulative migration by up to 35%. The quantification of patient migration provides a metric for evaluating the interaction between body and bed surfaces. Overall, the measures were sensitive to design changes in bed frames, bed articulations, and mattress inflation. Documentation of the cumulative movement, net displacement, and torso compression provides hospital bed designers quantifiable measures for reducing migration and potentially shear and friction forces when designing bed frames, bed articulations, and mattresses. Optimization of these metrics may ultimately have an impact on patient and caregiver health.

  9. Molecular mechanisms responsible for hydrate anti-agglomerant performance.

    PubMed

    Phan, Anh; Bui, Tai; Acosta, Erick; Krishnamurthy, Pushkala; Striolo, Alberto

    2016-09-28

    Steered and equilibrium molecular dynamics simulations were employed to study the coalescence of a sI hydrate particle and a water droplet within a hydrocarbon mixture. The size of both the hydrate particle and the water droplet is comparable to that of the aqueous core in reverse micelles. The simulations were repeated in the presence of various quaternary ammonium chloride surfactants. We investigated the effects due to different groups on the quaternary head group (e.g. methyl vs. butyl groups), as well as different hydrophobic tail lengths (e.g. n-hexadecyl vs. n-dodecyl tails) on the surfactants' ability to prevent coalescence. Visual inspection of sequences of simulation snapshots indicates that when the water droplet is not covered by surfactants it is more likely to approach the hydrate particle, penetrate the protective surfactant film, reach the hydrate surface, and coalesce with the hydrate than when surfactants are present on both surfaces. Force-distance profiles obtained from steered molecular dynamics simulations and free energy profiles obtained from umbrella sampling suggest that surfactants with butyl tripods on the quaternary head group and hydrophobic tails with size similar to the solvent molecules can act as effective anti-agglomerants. These results qualitatively agree with macroscopic experimental observations. The simulation results provide additional insights, which could be useful in flow assurance applications: the butyl tripod provides adhesion between surfactants and hydrates; when the length of the surfactant tail is compatible with that of the hydrocarbon in the liquid phase a protective film can form on the hydrate; however, once a molecularly thin chain of water molecules forms through the anti-agglomerant film, connecting the water droplet and the hydrate, water flows to the hydrate and coalescence is inevitable.

  10. Collaborative Strategy on Bed Bugs

    EPA Pesticide Factsheets

    The Collaborative Strategy on Bed Bugs was developed by the Federal Bed Bug Workgroup to clarify the federal role in bed bug control and highlight ways that government, community, academia and private industry can work together on bed bug issues.

  11. Partitioning of sodium, chlorine and sulfur during coal and char combustion in a fluid bed

    SciTech Connect

    Bhattacharya, S.P.; He, Y.

    1998-12-31

    Advanced power generation technologies (IGCC, Advanced PFBC) using high moisture low-rank coals require gasification of coal followed by combustion of char in a fluid bed. A study was undertaken to investigate the bed behaviour of char during combustion in a fluid bed. Three high moisture Australian low-rank coals, which are currently used in Victorian power stations, were chosen for this study. These were air dried, ground and sieved to 1--4 mm size. Char was prepared from these coals by devolatilising in a 76-mm diameter spouted bed at 700 C in presence of nitrogen. Char samples were combusted in the same spouted bed under hydrodynamic conditions similar to that in an atmospheric circulating fluid bed at temperatures of 800 C and 900 C. The three coal samples were also combusted under similar conditions to compare with the combustion behaviour of the char. No significant agglomeration problems were observed during combustion of these coals for periods of up to four hours. For one char, the bed defluidized 70 minutes after combustion at 900 C, while the two remaining chars didn`t present any significant agglomeration during the test period of four hours. Ultimate and inorganic analyses were carried out for the coal and char samples before the tests. The bed materials and cyclone ash after each combustion test were analyzed for inorganics and phases using chemical analysis, XRD and DTA techniques. A significant separation of the sodium and chlorine in coal was observed during pyrolysis of the coal to char. During combustion of char, most of the sodium (in char) was captured in the bed materials. This information was used to explain the bed behaviour observed during char combustion. This paper discusses the results and suggest strategies for mitigation of defluidization, that are currently under trial.

  12. Effects of stratification in a fluidized bed bioreactor during treatment of metalworking wastewater

    SciTech Connect

    Schreyer, H.B.; Coughlin, R.W.

    1999-04-20

    During wastewater treatment, biofilm-coated sand particles stratified in a fluidized bed bioreactor (FBB); particles coated by thicker biofilm segregated toward the top of the bed. Stratification was so well developed that at least two co-existing regions of significantly different mean biofilm thickness were visually distinct within the operating FBB. The observed stratification is attributed to differences in forces of drag, buoyancy, shear, and collisional impact, as well as differences of collision rate within the different regions. Particles with thick biofilm near the top of the bed consumed substrate at significantly lower rates per unit biomass than particles with thin biofilm near the bottom of the bed, thereby suggesting that substrate mass-transfer resistance through biofilm may limit biodegradation rates in the upper portion of the FBB. Large agglomerates of biomass floc and sand, which formed at the top of the fluidized bed, and sand particles with thick biofilm were susceptible to washout from the FBB, causing operational and treatment instability. Radial injection of supplemental liquid feed near the top of the bed increased shear and mixing, thereby preventing formation and washout of agglomerates and thickly coated sand particles. Supplemental liquid injection caused the mean specific biomass loading on the sand to increase and also increased the total biomass inventory in the FBB. Rates of biodegradation in the FBB appeared to be limited by penetration of substrates into the biofilm and absorption of oxygen from air into the wastewater.

  13. Effect of Structure on Strength of Agglomerates using Distinct Element Method

    NASA Astrophysics Data System (ADS)

    Bonakdar, Tina; Ghadiri, Mojtaba

    2017-06-01

    Knowledge of agglomerate strength is highly desirable for compression and tableting, dissolution and dispersion and mitigation of dust formation. The behaviour of agglomerates is affected by parameters such as density, agglomerate size, primary particle size, and interparticle bond strength. The method of agglomeration influences the evolution of structure, and this in turn affects its strength. Furthermore, the methods of strength characterisation, i.e. quasi-static or impact produce different results. To understand the role of structure and the influence of test method, agglomerate failure behaviour has been analysed by the use of the Distinct Element Method (DEM). We report on our work on the simulation of the breakage of the agglomerates for different porosities and impact conditions, where the role of impact speed and angle and type of contact bonding model have been evaluated. The adhesive contact model of JKR is used to form an agglomerate. The effect of the bonding level on the strength and size distribution of the clusters released as a result of failure has been investigated. This work also evaluates the effect of structure (porosity) on the strength of the agglomerates.

  14. Influence of the pan pelletizer rotational velocity and the particles size on the agglomeration of alumina oxide granules

    NASA Astrophysics Data System (ADS)

    Radeva, Zheni; Müller, Peter; Tomas, Juergen

    2013-06-01

    High fraction of agglomerates and better agglomerate strength are main purpose for every agglomeration process. For optimizing the agglomeration process of industrial produced granules, using liquid binders, it is necessary to understand the microinteractions between primary particles and binder and the marcointeractions between the agglomerates themselves. In order to investigate the influence of the rotational velocity of the pan pelletizer and the primary particle size on the fraction of agglomerates and the mechanical properties of the produced agglomerates, the obtained structures have to be basically analyzed. Agglomeration of industrial produced Alumina Oxide (γ-Al2O3) granules is carried out in a rotating pan pelletizer. A 6 mass-% solution of viscoelastic polymer - hydroxypropyl methylcellulose (HPMC) is used as binder. The rotational velocity of the pelletizer pan is previously measured and calibrated. By changing the rotational velocity of the process chamber it was found that there are critical speed limits for the pan. The minimum critical velocity of the pelletizer plate does not provide enough contact collisions between the particles and the necessary kinetic level for agglomeration cannot be reached. The maximum critical velocity leads to higher rotational kinetic energy and this causes breakages of the agglomerates. It was also proven that the breakage strength of the agglomerates decreases with the reduction of the agglomerate size. The conclusions from the experimental work help us to understand the basics of agglomeration process and tend to develop and facilitate the operating with particle collectives in science and industry.

  15. Mechanics/heat-transfer relation for particulate materials. [Measure of particle pressure generated in a bed of FCC catalyst that is undergoing particulate fluidization

    SciTech Connect

    Campbell, C.S.

    1991-07-01

    The major emphasis this quarter has been in two areas. The first is to continue working the bugs out of the new particle pressure transducer. The second was to try and measure the particle pressures generated in a bed of FCC catalyst that is undergoing particulate fluidization. The results indicate that the stabilization of fluidized beds in that regime cannot be explained in terms of particle pressure generation. Instead, consistent with other recent observations,the observations can be explained by a material is that not completely fluidized but, instead, retains much of the properties of a solid and, in particular, can transmit particle pressure like a solid. 2 figs.

  16. Acoustic agglomeration of power-plant fly ash. A comprehensive semi-annual progress report

    SciTech Connect

    Reethof, G.

    1980-02-01

    Results obtained during the reporting period are presented. The agglomeration of submicron fly ash particles has been studied as a function of sound pressure level, sound frequency, loading, and exposure time. A second generation model of the agglomeration process is being developed. A high-frequency, high-intensity variable speed siren delivering at least 600 W at frequencies up to 4000 Hz has been developed and tested. Details on the design and operation are presented. The agglomeration chamber has been completely cleaned and the aerosol generating system has been rebuilt. A mathematical model of the acoustics of agglomeration is being developed. Preliminary results of computerized electron microscopic scanning of fly ash particles during agglomeration are presented. (DMC)

  17. Morphological characterization of diesel soot agglomerates based on the Beer-Lambert law

    NASA Astrophysics Data System (ADS)

    Lapuerta, Magín; Martos, Francisco J.; José Expósito, Juan

    2013-03-01

    A new method is proposed for the determination of the number of primary particles composing soot agglomerates emitted from diesel engines as well as their individual fractal dimension. The method is based on the Beer-Lambert law and it is applied to micro-photographs taken in high resolution transmission electron microscopy. Differences in the grey levels of the images lead to a more accurate estimation of the geometry of the agglomerate (in this case radius of gyration) than other methods based exclusively on the planar projections of the agglomerates. The method was validated by applying it to different images of the same agglomerate observed from different angles of incidence, and proving that the effect of the angle of incidence is minor, contrary to other methods. Finally, the comparisons with other methods showed that the size, number of primary particles and fractal dimension (the latter depending on the particle size) are usually underestimated when only planar projections of the agglomerates are considered.

  18. Influence of individual ionic components on the agglomeration kinetics of silver nanoparticles.

    PubMed

    Gebauer, J S; Treuel, L

    2011-02-15

    The precise characteristic of the agglomeration behavior of colloidal suspensions is of paramount interest to many current studies in nanoscience. This work seeks to elucidate the influence that differently charged salts have on the agglomeration state of a Lee-Meisel-type silver colloid. Moreover, we investigate the influence of the chemical nature of individual ions on their potential to induce agglomeration. Raman spectroscopy and surface-enhanced Raman spectroscopy are used to give insights into mechanistic aspects of the agglomeration process and to assess the differences in the influence of different salts on the agglomeration behavior. Finally, we demonstrate the potential of the measurement procedure used in this work to determine the elementary charge on colloidal NPs. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Impact on Granular Beds

    NASA Astrophysics Data System (ADS)

    van der Meer, Devaraj

    2017-01-01

    The impact of an object on a granular solid is an ubiquitous phenomenon in nature, the scale of which ranges from the impact of a raindrop onto sand all the way to that of a large asteroid on a planet. Despite the obvious relevance of these impact events, the study of the underlying physics mechanisms that guide them is relatively young, with most work concentrated in the past decade. Upon impact, an object starts to interact with a granular bed and experiences a drag force from the sand. This ultimately leads to phenomena such as crater formation and the creation of a transient cavity that upon collapse may cause a jet to appear from above the surface of the sand. This review provides an overview of research that targets these phenomena, from the perspective of the analogous but markedly different impact of an object on a liquid. It successively addresses the drag an object experiences inside a granular bed, the expansion and collapse of the cavity created by the object leading to the formation of a jet, and the remarkable role played by the air that resides within the pores between the grains.

  20. Clinical physiology of bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    1993-01-01

    Maintenance of optimal health in humans requires the proper balance between exercise, rest, and sleep as well as time in the upright position. About one-third of a lifetime is spent sleeping; and it is no coincidence that sleeping is performed in the horizontal position, the position in which gravitational influence on the body is minimal. Although enforced bed rest is necessary for the treatment of some ailments, in some cases it has probably been used unwisely. In addition to the lower hydrostatic pressure with the normally dependent regions of the cardiovascular system, body fuid compartments during bed rest in the horizontal body position, and virtual elimination of compression on the long bones of the skeletal system during bed rest (hypogravia), there is often reduction in energy metabolism due to the relative confinement (hypodynamia) and alteration of ambulatory circadian variations in metabolism, body temperature, and many hormonal systems. If patients are also moved to unfamiliar surroundings, they probably experience some feelings of anxiety and some sociopsychological problems. Adaptive physiological responses during bed rest are normal for that environment. They are attempts by the body to reduce unnecessary energy expenditure, to optimize its function, and to enhance its survival potential. Many of the deconditioning responses begin within the first day or two of bed rest; these early responses have prompted physicians to insist upon early resumption of the upright posture and ambulation of bedridden patients.

  1. Characteristics of Stratified Bedded Pack Dairy Manure

    USDA-ARS?s Scientific Manuscript database

    "Compost" dairy barns are a relatively new housing system that generates a deep (0.9 to 1.5 m), stratified bedded pack (SBP) manure source. Bedding composed of sawdust, wood chips, or crop residues accumulates as additions are made to maintain a dry surface. Surface drying is promoted by a combinati...

  2. An equation for bed-load transport capacities in gravel-bed rivers

    NASA Astrophysics Data System (ADS)

    Gao, Peng

    2011-05-01

    SummaryDetailed hydraulic and sedimentary information is needed to accurately predict bed-load transport rates in natural gravel-bed rivers. Yet, being able to estimate maximum transport rates from simple measurements would greatly benefit various sediment-related river management practices. To this end, a new concept of bed-load transport capacity for heterogeneous grains in gravel-bed rivers was introduced as the maximum possible transport rate a gravel-bed river can have for a given value of dimensionless shear stress, calculated using the median size of bed-load grains. Flows that can transport bed load at capacity may be identified by the criterion that the median size of bed-load grains must be greater than or equal to that of the bed substrate. Then, a single coefficient, power equation was developed to predict such capacities using bed-load capacity data covering both low flows with an armor layer and high flows without it. The good performance of this empirical equation was confirmed by comparing its predictability with that of Mayer Peter and Muller's and Bagnold's bed-load equations. Using an independent data compiled from six gravel-bed rivers in Idaho, not only was the empirical equation validated but also the criterion for identifying the condition under which bed load is transported at capacity was tested. In practice, the empirical equation can be used to estimate the maximum possible bed-load transport rates during high flow events, which is useful for various sediment-related river managements.

  3. The relative importance of mangroves and seagrass beds as feeding habitats for resident and transient fishes from Florida and Belize:: evidence from dietary and stable isotope analyses

    EPA Science Inventory

    In the western Atlantic region, the contribution of mangrove food-sources to fish diets has been considered of more limited importance then previously expected due to their constant flooding and proximity to adjacent coastal habitats such as seagrass beds which provide potential ...

  4. The relative importance of mangroves and seagrass beds as feeding habitats for resident and transient fishes from Florida and Belize:: evidence from dietary and stable isotope analyses

    EPA Science Inventory

    In the western Atlantic region, the contribution of mangrove food-sources to fish diets has been considered of more limited importance then previously expected due to their constant flooding and proximity to adjacent coastal habitats such as seagrass beds which provide potential ...

  5. Relative heat sensitivities of certain Phytophthora spp. and the potential for soil solarization to disinfest nursery beds in West Coast states

    Treesearch

    Jennifer L. Parke; Fumiaki Funahashi; Clara Weidman; Ebba K. Peterson

    2017-01-01

    Soilborne Phytophthora spp. can be important for initiating disease through movement of inoculum with surface water to roots or splashing onto foliage. Nursery beds infested with Phytophthora spp. can contaminate container plants set on them, causing disease year after year and posing a risk of additional spread....

  6. A Discussion of Behavioral Technology Laboratories CAI Projects In Relation to a CAI Test-Bed Concept. Technical Report Number 71.

    ERIC Educational Resources Information Center

    Rigney, Joseph W.

    The elements of an instructional system are discussed and some literature bearing on these is reviewed. The discussion is intended to stimulate thought about an instructional system as a computer-assisted instructional (CAI) test-bed and to point out some noteworthy laboratory research results, particularly in cognitive psychology. Following this,…

  7. Micro-agglomerate flotation for deep cleaning of coal. Quarterly progress report, October 1--December 30, 1995

    SciTech Connect

    Chandler, S.; Hogg, R.

    1996-04-01

    Goals are to demonstrate the technical and economic feasibility of a micro-agglomerate flotation process (combination of oil-agglomeration and froth flotation) and to establish the essential criteria for reagent selection and system design and operation. The research program was organized into the following tasks: interfacial studies, emulsification, agglomerate growth and structure, and agglomerate flotation. Work on the first two tasks has been completed.

  8. Internal dust recirculation system for a fluidized bed heat exchanger

    DOEpatents

    Gamble, Robert L.; Garcia-Mallol, Juan A.

    1981-01-01

    A fluidized bed heat exchanger in which air is passed through a bed of particulate material containing fuel disposed in a housing. A steam/water natural circulation system is provided in a heat exchange relation to the bed and includes a steam drum disposed adjacent the bed and a tube bank extending between the steam drum and a water drum. The tube bank is located in the path of the effluent gases exiting from the bed and a baffle system is provided to separate the solid particulate matter from the effluent gases. The particulate matter is collected and injected back into the fluidized bed.

  9. Fluidized bed combustor modeling

    NASA Technical Reports Server (NTRS)

    Horio, M.; Rengarajan, P.; Krishnan, R.; Wen, C. Y.

    1977-01-01

    A general mathematical model for the prediction of performance of a fluidized bed coal combustor (FBC) is developed. The basic elements of the model consist of: (1) hydrodynamics of gas and solids in the combustor; (2) description of gas and solids contacting pattern; (3) kinetics of combustion; and (4) absorption of SO2 by limestone in the bed. The model is capable of calculating the combustion efficiency, axial bed temperature profile, carbon hold-up in the bed, oxygen and SO2 concentrations in the bubble and emulsion phases, sulfur retention efficiency and particulate carry over by elutriation. The effects of bed geometry, excess air, location of heat transfer coils in the bed, calcium to sulfur ratio in the feeds, etc. are examined. The calculated results are compared with experimental data. Agreement between the calculated results and the observed data are satisfactory in most cases. Recommendations to enhance the accuracy of prediction of the model are suggested.

  10. Grate assembly for fixed-bed coal gasifier

    DOEpatents

    Notestein, John E.

    1993-01-01

    A grate assembly for a coal gasifier of a moving-bed or fixed-bed type is provided for crushing agglomerates of solid material such as clinkers, tailoring the radial distribution of reactant gases entering the gasification reaction zone, and control of the radial distribution of downwardly moving solid velocities in the gasification and combustion zone. The clinker crushing is provided by pinching clinkers between vertically oriented stationary bars and angled bars supported on the upper surface of a rotating conical grate. The distribution of the reactant gases is provided by the selective positioning of horizontally oriented passageways extending through the grate. The radial distribution of the solids is provided by mounting a vertically and generally radially extending scoop mechanism on the upper surface of the grate near the apex thereof.

  11. Nanosized rods agglomerates as a new approach for formulation of a dry powder inhaler

    PubMed Central

    Salem, HF; Abdelrahim, ME; Eid, K Abo; Sharaf, MA

    2011-01-01

    Background: Nanosized dry powder inhalers provide higher stability for poorly water-soluble drugs as compared with liquid formulations. However, the respirable particles must have a diameter of 1–5 μm in order to deposit in the lungs. Controlled agglomeration of the nanoparticles increases their geometric particle size so they can deposit easily in the lungs. In the lungs, they fall apart to reform nanoparticles, thus enhancing the dissolution rate of the drugs. Theophylline is a bronchodilator with poor solubility in water. Methods: Nanosized theophylline colloids were formed using an amphiphilic surfactant and destabilized using dilute sodium chloride solutions to form the agglomerates. Results: The theophylline nanoparticles thus obtained had an average particle size of 290 nm and a zeta potential of −39.5 mV, whereas the agglomerates were 2.47 μm in size with a zeta potential of −28.9 mV. The release profile was found to follow first-order kinetics (r2 > 0.96). The aerodynamic characteristics of the agglomerated nanoparticles were determined using a cascade impactor. The behavior of the agglomerate was significantly better than unprocessed raw theophylline powder. In addition, the nanoparticles and agglomerates resulted in a significant improvement in the dissolution of theophylline. Conclusion: The results obtained lend support to the hypothesis that controlled agglomeration strategies provide an efficient approach for the delivery of poorly water-soluble drugs into the lungs. PMID:21383856

  12. Evaluation of physico-mechanical properties of drug-excipients agglomerates obtained by crystallization.

    PubMed

    Maghsoodi, M; Tajalli Bakhsh, A S

    2011-06-01

    Spherical crystallization (SC) of carbamazepine (CBZ) was carried out for preparation of the agglomerates using the solvent change method. The potential of the intraagglomerate addition of sodium starch glycolate (SSG) as a disintegrant agent and povidone (PVP) as a hydrophilic polymer was also evaluated. The process of SC involved recrystallization of CBZ and its simultaneous agglomeration with additives. An ethanol:isopropyl acetate:water system was used where isopropyl acetate acted as a bridging liquid and ethanol and water as good and bad solvents, respectively. The agglomerates were characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (XRPD), and Scanning electron microscopy and were evaluated for yield, flowability, disintegration time and drug release. CBZ agglomerates exhibited significantly improved micromeritic properties as well as dissolution behavior in comparison to conventional drug crystals. The dissolution rate of drug from agglomerates was enhanced by inclusion of SSG, while addition of PVP to CBZ/SSG agglomerates led to reduction in the release rate of CBZ even below that of the conventional drug crystals. SC process can be considered as a suitable alternative to conventional granulation process to obtain agglomerates of CBZ with excipients with improved micromeritic properties and modified dissolution rate.

  13. Modifying drug release and tablet properties of starch acetate tablets by dry powder agglomeration.

    PubMed

    Mäki, Riikka; Suihko, Eero; Rost, Susanne; Heiskanen, Minna; Murtomaa, Matti; Lehto, Vesa-Pekka; Ketolainen, Jarkko

    2007-02-01

    In this study three model drugs (N-acetyl-D-glucosamine (NAG), anhydrous caffeine, and propranolol hydrochloride) were agglomerated with starch acetate (SA) by mixing the binary powders on a stainless steel (SS) plate. Agglomeration was induced by triboelectrification of the particles during mixing, and it was evaluated as a method to achieve controlled drug release rate. These agglomerates, mixed with different amounts of a disintegrant, were compressed into tablets whose dissolution characteristics were determined. Triboelectric measurements showed that when the drugs were in contact with SS, charges of the opposite polarity were generated to SA (+) and caffeine and NAG (-) promoting adhesion. Instead, propranolol HCl was charged with the same polarity as SA. SEM micrographs showed that smaller caffeine particles, in spite of their larger negative charge, agglomerated less efficiently with SA than larger NAG particles. This emphasizes the importance of particle size in the agglomeration process. Propranolol HCl did not form agglomerates with SA since their particle sizes and charges were identical. As a result, agglomeration of powders prior to tablet compression allows for modification and control of the release rate of the drugs from the SA matrix tablets as well as the tensile strength of the tablets.

  14. A Spouted Bed Reactor Monitoring System for Particulate Nuclear Fuel

    SciTech Connect

    D. S. Wendt; R. L. Bewley; W. E. Windes

    2007-06-01

    Conversion and coating of particle nuclear fuel is performed in spouted (fluidized) bed reactors. The reactor must be capable of operating at temperatures up to 2000°C in inert, flammable, and coating gas environments. The spouted bed reactor geometry is defined by a graphite retort with a 2.5 inch inside diameter, conical section with a 60° included angle, and a 4 mm gas inlet orifice diameter through which particles are removed from the reactor at the completion of each run. The particles may range from 200 µm to 2 mm in diameter. Maintaining optimal gas flow rates slightly above the minimum spouting velocity throughout the duration of each run is complicated by the variation of particle size and density as conversion and/or coating reactions proceed in addition to gas composition and temperature variations. In order to achieve uniform particle coating, prevent agglomeration of the particle bed, and monitor the reaction progress, a spouted bed monitoring system was developed. The monitoring system includes a high-sensitivity, low-response time differential pressure transducer paired with a signal processing, data acquisition, and process control unit which allows for real-time monitoring and control of the spouted bed reactor. The pressure transducer is mounted upstream of the spouted bed reactor gas inlet. The gas flow into the reactor induces motion of the particles in the bed and prevents the particles from draining from the reactor due to gravitational forces. Pressure fluctuations in the gas inlet stream are generated as the particles in the bed interact with the entering gas stream. The pressure fluctuations are produced by bulk movement of the bed, generation and movement of gas bubbles through the bed, and the individual motion of particles and particle subsets in the bed. The pressure fluctuations propagate upstream to the pressure transducer where they can be monitored. Pressure fluctuation, mean differential pressure, gas flow rate, reactor

  15. Speedy standing wave design of size-exclusion simulated moving bed: Solvent consumption and sorbent productivity related to material properties and design parameters.

    PubMed

    Weeden, George S; Wang, Nien-Hwa Linda

    2015-10-30

    Size-exclusion simulated moving beds (SEC-SMB) have been used for large-scale separations of linear alkanes from branched alkanes. While SEC-SMBs are orders of magnitude more efficient than batch chromatography, they are not widely used. One key barrier is the complexity in design and optimization. A four-zone SEC-SMB for a binary separation has seven material properties and 14 design parameters (two yields, five operating parameters, and seven equipment parameters). Previous optimization studies using numerical methods do not guarantee global optima or explicitly express solvent consumption (D/F) or sorbent productivity (PR) as functions of the material properties and design parameters. The standing wave concept is used to develop analytical expressions for D/F and PR as functions of 14 dimensionless groups, which consist of 21 material and design parameters. The resulting speedy standing wave design (SSWD) solutions are simplified for two limiting cases: diffusion or dispersion controlled. An example of SEC-SMB for insulin purification is used to illustrate how D/F and PR change with the dimensionless groups. The results show that maximum PR for both diffusion and dispersion controlled systems is mainly determined by yields, equipment parameters, material properties, and two key dimensionless groups: (1) the ratio of step time to diffusion time and (2) the ratio of diffusion time to pressure-limited convection time. A sharp trade off of D/F and PR occurs when the yield is greater than 99%. The column configuration for maximum PR is analytically related to the diffusivity ratio and the selectivity. To achieve maximum sorbent productivity, one should match step time, diffusion time, and pressure-limited convection time for diffusion controlled systems. For dispersion controlled systems, the axial dispersion time should be about 10 times the step time and about 50 times the pressure-limited convection time. Its value can be estimated from given yields, material

  16. Method and apparatus for gasifying with a fluidized bed gasifier having integrated pretreating facilities

    DOEpatents

    Rice, Louis F.

    1981-01-01

    An integral gasifier including a pretreater section and a gasifier section separated by a distribution grid is defined by a single vessel. The pretreater section pretreats coal or other carbon-containing material to be gasified to prevent caking and agglomeration of the coal in the gasifier. The level of the coal bed of the pretreater section and thus the holding or residence time in said bed is selectively regulated by the amount of pretreated coal which is lifted up a lift pipe into the gasifier section. Thus, the holding time in the pretreater section can be varied according to the amount of pretreat necessary for the particular coal to be gasified.

  17. River bed transport measurements show bed dilation and contraction

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-04-01

    A new study of bed load transport—the movement of the gravel or other grains on a stream bed—has turned up a previously undetected effect. Marquis and Roy used several different methods to monitor bed load activity in a gravel bed river, Beard Creek in Quebec, Canada. They examined streamfow, bed load, and bed morphology before, during, and after 20 food events. The researchers found that two of the methods—measuring changes in bed topography between successive foods and surveying bed activity—gave inconsistent results. Changes in elevation of the bed did not always correspond to movement of bed load.

  18. Monitoring of odor nuisance in the tri-city agglomeration

    NASA Astrophysics Data System (ADS)

    Gebicki, Jacek; Dymerski, Tomasz; Namieśnik, Jacek

    2016-11-01

    The paper describes a principle of operation of odor nuisance monitoring network, which is being designed in the tri-city agglomeration. Moreover, it presents the preliminary results of an investigation on ambient air quality with respect to odour nuisance in a vicinity of the municipal landfill. The investigation was performed during spring-winter season using a prototype of electronic nose and the Nasal Ranger field olfactometers. The prototype was equipped with a set of six semiconductor sensors by FIGARO Co. and one PID-type sensor. The field olfactometers were used to determine mean concentration of odorants, which amounted from 2.2 to 30.2 ou/m3 depending on the place of measurement. In case of the investigation with the electronic nose prototype a classification of the ambient air samples with respect to the place of sampling was performed utilizing kNN algorithm supported with a cross-validation method. Correct classification of the ambient air samples was at the level of 66.7%. Performed investigation revealed that discrimination of the ambient air samples differing in concentration of odorants and place of origin was possible.

  19. Reducing adhesion and agglomeration within a cloud of combustible particles

    NASA Technical Reports Server (NTRS)

    Ross, Howard D.

    1988-01-01

    The study of combustible particle clouds inside flame tubes is of fundamental scientific interest as well as a practical concern. Only the suspended concentration is important to the combustion process, so that assurances must be provided that a minimum of particles adheres to the tube wall. This paper demonstrates experimentally the ability to minimize adhesion and agglomeration of acoustically-mixed lycopodium particles within a 5-cm diameter lexan flame tube. The area density of particles (ADP) adhering to the wall of bare lexan tubes was measured at greater than 100 particles/sq mm. The nature of adhesion was found to be clearly electrostatic, with the ADP level aggravated by increased mixing time, vigor, and the concentration of particles. Increases in the conductivity of the air and the tube wall did not affect ADP levels substantially. However, the observed adhesion was reduced to less than 10 p/sq mm when the air was ionized by use of an alpha emitter mounted on the inner walls of the flame tube.

  20. Noise action plan of agglomerations: sustainable hypothesis or utopy?

    PubMed

    Magri, S L; Masera, S; Fogola, J

    2009-12-01

    European and Italian laws establish that agglomerations of more than 100 000 inhabitants must adopt an action plan in order to manage noise issues and effects. The plan aim is to reduce population exposure to environmental noise, which is defined as the outdoor sound created by human activities, including noise emitted by road traffic, rail traffic and air traffic, and noise from sites of industrial activity. Although acoustic pollution represents one of the main causes of annoyance for inhabitants of urban areas, the political agenda does not acknowledge it among the main environmental issues. Thus, acoustic reclamation is often considered a duty to be accomplished rather than a way to improve quality of life for citizens. Furthermore, financial resources are generally very poor while the acoustic critical situations are numerous and serious in terms of exceeding the limit. In this situation, what is the meaning of an urban area noise action plan? What are the concrete actions that municipalities can realise to reduce urban noise pollution? This study tries to answer these questions, starting from the analysis carried out for the action plan of the city of Turin.

  1. Agglomeration Multigrid for an Unstructured-Grid Flow Solver

    NASA Technical Reports Server (NTRS)

    Frink, Neal; Pandya, Mohagna J.

    2004-01-01

    An agglomeration multigrid scheme has been implemented into the sequential version of the NASA code USM3Dns, tetrahedral cell-centered finite volume Euler/Navier-Stokes flow solver. Efficiency and robustness of the multigrid-enhanced flow solver have been assessed for three configurations assuming an inviscid flow and one configuration assuming a viscous fully turbulent flow. The inviscid studies include a transonic flow over the ONERA M6 wing and a generic business jet with flow-through nacelles and a low subsonic flow over a high-lift trapezoidal wing. The viscous case includes a fully turbulent flow over the RAE 2822 rectangular wing. The multigrid solutions converged with 12%-33% of the Central Processing Unit (CPU) time required by the solutions obtained without multigrid. For all of the inviscid cases, multigrid in conjunction with an explicit time-stepping scheme performed the best with regard to the run time memory and CPU time requirements. However, for the viscous case multigrid had to be used with an implicit backward Euler time-stepping scheme that increased the run time memory requirement by 22% as compared to the run made without multigrid.

  2. Nanoparticle embedded chitosan film for agglomeration free TEM images.

    PubMed

    Dogan, Üzeyir; Çiftçi, Hakan; Cetin, Demet; Suludere, Zekiye; Tamer, Ugur

    2017-02-01

    Transmission electron microscopy (TEM) is a very useful and commonly used microscopy technique, used especially for the characterization of nanoparticles. However, the identification of the magnetic nanoparticle could be thought problematic in TEM analysis, due to the fact that the magnetic nanoparticles are usually form aggregates on the TEM grid to form bigger particles generating higher stability. This prevents to see exact shape and size of each nanoparticle. In order to overcome this problem, a simple process for the formation of well-dispersed nanoparticles was conducted, by covering chitosan film on the unmodified copper grid, it was said to result in aggregation-free TEM images. It is also important to fix the magnetic nanoparticles on the TEM grids, due to possible contamination of TEM filament which is operated under high vacuum conditions. The chitosan film matrix also helps to protect the TEM filament from contact with magnetic nanoparticles during the imaging process. The proposed procedure offers a quick method to fix the nanoparticles in a conventional copper TEM grid and chitosan matrix prevents agglomeration of nanoparticles, and thus getting TEM images showing well-dispersed individual nanoparticles. © 2016 Wiley Periodicals, Inc.

  3. Assessment of Traffic Noise on Highway Passing from Urban Agglomeration

    NASA Astrophysics Data System (ADS)

    Vijay, Ritesh; Kori, Chandan; Kumar, Manoj; Chakrabarti, T.; Gupta, Rajesh

    2014-09-01

    Assessment of traffic noise pollution in developing countries is complex due to heterogeneity in traffic conditions like traffic volume, road width, honking, etc. To analyze the impact of such variables, a research study was carried out on a national highway passing from an urban agglomeration. Traffic volume and noise levels (L10, Lmin, Lmax, Leq and L90) were measured during morning and evening peak hours. Contribution of noise by individual vehicle was estimated using passenger car noise unit. Extent of noise pollution and impact of noisy vehicles were estimated using noise pollution level and traffic noise index, respectively. Noise levels were observed to be above the prescribed Indian and International standards. As per audio spectrum analysis of traffic noise, honking contributed an additional 3-4 dB(A) noise. Based on data analysis, a positive relationship was observed between noise levels and honking while negative correlation was observed between noise levels and road width. The study suggests that proper monitoring and analysis of traffic data is required for better planning of noise abatement measures.

  4. Combustion and agglomeration of aluminized high-energy compositions

    NASA Astrophysics Data System (ADS)

    Korotkikh, A. G.; Arkhipov, V. A.; Glotov, O. G.; Slyusarskiy, K. V.

    2015-10-01

    The results of combustion study for high-energy compositions (HECs) based on ammonium perchlorate (AP), butadiene rubber and ultrafine powder (UFP) aluminum Alex, and agglomeration of metal particles on the burning surface and composition of condensed combustion products (CCPs) are presented. It was found that partial replacement 2 wt. % of Alex by iron UFP in HEC increases the burning rate 1.3—1.4 times at the range of nitrogen pressure 2.0-7.5 MPa and reduces the mean diameter of CCPs particles d43 from 37.4 μm to 33.5 μm at pressure ∼ 4 MPa. Upon partial replacement 2 wt. % of Alex by boron UFP in HEC the recoil force of gasification products outflow from burning surface is increased by 9 % and the burning rate of HEC does not change in the above pressure range, while the mean diameter of CCPs particles is reduced to 32.6 μm at p ∼ 4 MPa.

  5. CALCITONIN GENE-RELATED PEPTIDE IN THE BED NUCLEUS OF THE STRIA TERMINALIS PRODUCES AN ANXIETY-LIKE PATTERN OF BEHAVIOR AND INCREASES NEURAL ACTIVATION IN ANXIETY-RELATED STRUCTURES

    PubMed Central

    Sink, KS; Walker, DL; Yang, Y; Davis, M

    2011-01-01

    Calcitonin gene-related peptide (CGRP) evokes anxiety-like responses when infused into the lateral ventricle of rats. Because the bed nucleus of the stria terminalis (BNST) lies immediately adjacent to the lateral ventricle, is rich in CGRP receptors, and has itself been implicated in anxiety, we evaluated the hypothesis that these effects are attributable to stimulation of CGRP receptors within the BNST itself. Bilateral intra-BNST, but not dorsal, CGRP infusions (0, 200, 400, 800 ng/side) dose-dependently enhanced startle amplitude, and produced an anxiety-like response on the elevated plus maze. Intra-BNST infusion of the CGRP antagonist, αCGRP8-37, blocked the effect of CGRP on startle, and also blocked startle potentiation produced by exposure to trimethylthiazoline (TMT – a component of fox feces that induces anxiety-like behavior in rats). Intra-BNST, but not dorsal, CGRP infusions also increased c-Fos immunoreactivity in a number of anxiety-related brain areas (central nucleus of the amygdala, locus coeruleus, ventrolateral septal nucleus, paraventricular hypothalamic nucleus, lateral hypothalamus, lateral parabrachial nucleus, dorsal raphe nucleus, and nucleus accumbens shell), all of which receive direct projections from the BNST. Together, the results indicate that the activation of BNST CGRP receptors is both necessary and sufficient for some anxiety responses and that these effects may be mediated by activation of a wider network of BNST efferent structures. If so, inhibition of CGRP receptors may be a clinically useful strategy for anxiety reduction. PMID:21289190

  6. Magnetic agglomeration method for size control in the synthesis of magnetic nanoparticles

    DOEpatents

    Huber, Dale L.

    2011-07-05

    A method for controlling the size of chemically synthesized magnetic nanoparticles that employs magnetic interaction between particles to control particle size and does not rely on conventional kinetic control of the reaction to control particle size. The particles are caused to reversibly agglomerate and precipitate from solution; the size at which this occurs can be well controlled to provide a very narrow particle size distribution. The size of particles is controllable by the size of the surfactant employed in the process; controlling the size of the surfactant allows magnetic control of the agglomeration and precipitation processes. Agglomeration is used to effectively stop particle growth to provide a very narrow range of particle sizes.

  7. POC-Scale Testing of Oil Agglomeration Techniques and Equipment for Fine Coal Processing

    SciTech Connect

    1998-11-12

    The objective of this project is to develop and demonstrate a Proof-of-Concept (POC) scale oil agglomeration technology capable of increasing the recovery and improving the quality of fine coal strearrts. Two distinct agglomeration devices will be tested, namely, a conventional high shear mixer and a jet processor. To meet the overall objective an eleven task work plan has been designed. The work ranges from batch and continuous bench-scale testing through the design, commissioning and field testing of POC-scale agglomeration equipment.

  8. Engineering development of selective agglomeration: Task 5, Bench- scale process testing

    SciTech Connect

    Not Available

    1991-09-01

    Under the overall objectives of DOE Contract ``Engineering Development of Selective Agglomeration,`` there were a number of specific objectives in the Task 5 program. The prime objectives of Task 5 are highlighted below: (1) Maximize process performance in pyritic sulfur rejection and BTU recovery, (2) Produce a low ash product, (3) Compare the performance of the heavy agglomerant process based on diesel and the light agglomerant process using heptane, (4) Define optimum processing conditions for engineering design, (5) Provide first-level evaluation of product handleability, and (6) Explore and investigate process options/ideas which may enhance process performance and/or product handleability.

  9. Engineering development of selective agglomeration: Task 5, Bench- scale process testing

    SciTech Connect

    Not Available

    1991-09-01

    Under the overall objectives of DOE Contract Engineering Development of Selective Agglomeration,'' there were a number of specific objectives in the Task 5 program. The prime objectives of Task 5 are highlighted below: (1) Maximize process performance in pyritic sulfur rejection and BTU recovery, (2) Produce a low ash product, (3) Compare the performance of the heavy agglomerant process based on diesel and the light agglomerant process using heptane, (4) Define optimum processing conditions for engineering design, (5) Provide first-level evaluation of product handleability, and (6) Explore and investigate process options/ideas which may enhance process performance and/or product handleability.

  10. Coal beneficiation kinetics of a gas-promoted oil agglomeration process

    SciTech Connect

    Zhang, F.; Wheelock, T.D.

    1996-12-31

    The kinetics of a gas-promoted oil agglomeration process were investigated by monitoring the change in the turbidity of an aqueous particle suspension as the particles were agglomerated with heptane in a closed tank fitted with baffles and an agitator. Measured amounts of air and heptane were added to a suspension of Pittsburgh No. 8 coal under vigorous agitation. The subsequent rate of change of particle concentration was taken to be an indication of the rate of agglomeration. The rate was found to be proportional to the particle number concentration raised to a power and dependent on agitator speed and the amounts of air and oil added.

  11. Diffusion-Limited Agglomeration and Defect Generation during Chemical Mechanical Planarization

    SciTech Connect

    Biswas, R.; Han, Y.; Karra, P.; Sherman, P.; Chandra, A.

    2008-06-06

    Chemical mechanical planarization (CMP) of copper involves removal of surface asperities with abrasive particles and polishing processes. This leads to copper-containing nanoparticles extruded into the solution. We model the diffusion-limited agglomeration (DLA) of such nanoparticles which can rapidly grow to large sizes. These large particles are detrimental because they can participate in polishing, causing scratches and surface defects during CMP. The agglomeration is much slower in the reaction-limited agglomeration process. Under realistic conditions the defect generation probability can increase significantly over time scales of {approx}10 to 20 min from DLA, unless prevented by slurry rejuvenation or process modification measures.

  12. Meat and bone meal as secondary fuel in fluidized bed combustion

    SciTech Connect

    L. Fryda; K. Panopoulos; P. Vourliotis; E. Kakaras; E. Pavlidou

    2007-07-01

    Meat and Bone Meal (MBM) was co-fired in a laboratory scale fluidized bed combustion (FBC) apparatus with two coals. Several fuel blends were combusted under different conditions to study how primary fuel substitution by MBM affects flue gas emissions as well as fluidized bed (FB) agglomeration tendency. MBM, being a highly volatile fuel, caused significant increase of CO emissions and secondary air should be used in industrial scale applications to conform to regulations. The high N-content of MBM is moderately reflected on the increase of nitrogen oxides emissions which are reduced by MBM derived volatiles. The MBM ash, mainly containing bone material rich in Ca, did not create any noteworthy desulphurization effect. The observed slight decrease in SO{sub 2} emissions is predominantly attributed to the lower sulphur content in the coal/MBM fuel mixtures. The SEM/EDS analysis of bed material samples from the coal/MBM tests revealed the formation of agglomerates of bed material debris and ash with sizes that do not greatly exceed the original bed inventory and thus not problematic. 37 refs., 9 figs., 3 tabs.

  13. The Physics of Protoplanetesimal Dust Agglomerates. V. Multiple Impacts of Dusty Agglomerates at Velocities Above the Fragmentation Threshold

    NASA Astrophysics Data System (ADS)

    Kothe, Stefan; Güttler, Carsten; Blum, Jürgen

    2010-12-01

    In recent years, a number of new experiments have advanced our knowledge on the early growth phases of protoplanetary dust aggregates. Some of these experiments have shown that collisions between porous and compacted agglomerates at velocities above the fragmentation threshold velocity can lead to growth of the compact body, when the porous collision partner fragments upon impact and transfers mass to the compact agglomerate. To obtain a deeper understanding of this potentially important growth process, we performed laboratory and drop tower experiments to study multiple impacts of small, highly porous dust-aggregate projectiles onto sintered dust targets. The projectile and target consisted of 1.5 μm monodisperse, spherical SiO2 monomers with volume filling factors of 0.15 ± 0.01 and 0.45 ± 0.05, respectively. The fragile projectiles were accelerated by a solenoid magnet and combined with a projectile magazine with which 25 impacts onto the same spot on the target could be performed in vacuum. We measured the mass-accretion efficiency and the volume filling factor for different impact velocities between 1.5 and 6.0 m s^{-1}. The experiments at the lowest impact speeds were performed in the Bremen drop tower under microgravity conditions to allow partial mass transfer also for the lowest adhesion case. Within this velocity range, we found a linear increase of the accretion efficiency with increasing velocity. In the laboratory experiments, the accretion efficiency increases from 0.12 to 0.21 in units of the projectile mass. The recorded images of the impacts showed that the mass transfer from the projectile to the target leads to the growth of a conical structure on the target after less than 100 impacts. From the images, we also measured the volume filling factors of the grown structures, which ranged from 0.15 (uncompacted) to 0.40 (significantly compacted) with increasing impact speed. The velocity dependency of the mass-transfer efficiency and the packing

  14. Investigation into adsorption and photocatalytic degradation of gaseous benzene in an annular fluidized bed photocatalytic reactor.

    PubMed

    Geng, Qijin; Tang, Shankang; Wang, Lintong; Zhang, Yunchen

    2015-01-01

    The adsorption and photocatalytic degradation of gaseous benzene were investigated considering the operating variables and kinetic mechanism using nano-titania agglomerates in an annular fluidized bed photocatalytic reactor (AFBPR) designed. The special adsorption equilibrium constant, adsorption active sites, and apparent reaction rate coefficient of benzene were determined by linear regression analysis at various gas velocities and relative humidities (RH). Based on a series of photocatalytic degradation kinetic equations, the influences of operating variables on degradation efficiency, apparent reaction rate coefficient and half-life were explored. The findings indicated that the operating variables have obviously influenced the adsorption/photocatalytic degradation and corresponding kinetic parameters. In the photocatalytic degradation process, the relationship between photocatalytic degradation efficiency and RH indicated that water molecules have a dual-function which was related to the structure characteristics of benzene. The optimal operating conditions for photocatalytic degradation of gaseous benzene in AFBPR were determined as the fluidization number at 1.9 and RH required related to benzene concentration. This investigation highlights the importance of controlling RH and benzene concentration in order to obtain the desired synergy effect in photocatalytic degradation processes.

  15. Fundamental aspects related to batch and fixed-bed sulfate sorption by the macroporous type 1 strong base ion exchange resin Purolite A500.

    PubMed

    Guimarães, Damaris; Leão, Versiane A

    2014-12-01

    Acid mine drainage is a natural process occurring when sulfide minerals such as pyrite are exposed to water and oxygen. The bacterially catalyzed oxidation of pyrite is particularly common in coal mining operations and usually results in a low-pH water polluted with toxic metals and sulfate. Although high sulfate concentrations can be reduced by gypsum precipitation, removing lower concentrations (below 1200 mg/L) remains a challenge. Therefore, this work sought to investigate the application of ion exchange resins for sulfate sorption. The macroporous type 1 strong base IX resin Purolite A500 was selected for bath and fixed-bed sorption experiments using synthetic sulfate solutions. Equilibrium experiments showed that sulfate loading on the resin can be described by the Langmuir isotherm with a maximum uptake of 59 mg mL-resin(-1). The enthalpy of sorption was determined as +2.83 kJ mol(-1), implying an endothermic physisorption process that occurred with decreasing entropy (-15.5 J mol(-1).K(-1)). Fixed-bed experiments were performed at different bed depths, flow rates, and initial sulfate concentrations. The Miura and Hashimoto model predicted a maximum bed loading of 25-30 g L-bed(-1) and indicated that both film diffusion (3.2 × 10(-3) cm s(-1) to 22.6 × 10(-3) cm s(-1)) and surface diffusion (1.46 × 10(-7) cm(2) s(-1) to 5.64 × 10(-7) cm(2) s(-1)) resistances control the sorption process. It was shown that IX resins are an alternative for the removal of sulfate from mine waters; they ensure very low residual concentrations, particularly in effluents where the sulfate concentration is below the gypsum solubility threshold. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Fluidized bed calciner apparatus

    DOEpatents

    Owen, Thomas J.; Klem, Jr., Michael J.; Cash, Robert J.

    1988-01-01

    An apparatus for remotely calcining a slurry or solution feed stream of toxic or hazardous material, such as ammonium diurante slurry or uranyl nitrate solution, is disclosed. The calcining apparatus includes a vertical substantially cylindrical inner shell disposed in a vertical substantially cylindrical outer shell, in which inner shell is disposed a fluidized bed comprising the feed stream material to be calcined and spherical beads to aid in heat transfer. Extending through the outer and inner shells is a feed nozzle for delivering feed material or a cleaning chemical to the beads. Disposed in and extending across the lower portion of the inner shell and upstream of the fluidized bed is a support member for supporting the fluidized bed, the support member having uniform slots for directing uniform gas flow to the fluidized bed from a fluidizing gas orifice disposed upstream of the support member. Disposed in the lower portion of the inner shell are a plurality of internal electric resistance heaters for heating the fluidized bed. Disposed circumferentially about the outside length of the inner shell are a plurality of external heaters for heating the inner shell thereby heating the fluidized bed. Further, connected to the internal and external heaters is a means for maintaining the fluidized bed temperature to within plus or minus approximately 25.degree. C. of a predetermined bed temperature. Disposed about the external heaters is the outer shell for providing radiative heat reflection back to the inner shell.

  17. Fluidized-bed boilers

    SciTech Connect

    Makansi, J.; Schwieger, B.

    1982-08-01

    This report reviews the current state of atmospheric fluidized-bed combustion. The fundamentals of fluidized-bed combustion and design considerations are first discussed. Tables provide details of manufacturers, worldwide, and of the boilers now installed. Eight plants in various countries and burning a variety of fuels, are described more fully.

  18. Bed Bugs FAQs

    MedlinePlus

    ... allow them to fit into the smallest of spaces and stay there for long periods of time, even without a blood meal. Bed bugs are usually transported from place to place as people travel. The bed bugs travel in the seams and ...

  19. Improved lignin pyrolysis for phenolics production in a bubbling bed reactor--Effect of bed materials.

    PubMed

    Li, Dongbing; Briens, Cedric; Berruti, Franco

    2015-01-01

    Lignin pyrolysis was studied in a bubbling fluidized bed reactor equipped with a fractional condensation train, using nitrogen as the fluidization gas. The effect of different bed materials (silica sand, lignin char, activated lignin char, birch bark char, and foamed glass beads) on bio-oil yield and quality was investigated for a pyrolysis temperature of 550 °C. Results how that a bed of activated lignin char is preferable to the commonly used silica sand: pyrolysis of Kraft lignin with a bed of activated lignin char not only provides a pure char product, but also a higher dry bio-oil yield (with a relative increase of 43%), lower pyrolytic water production, and better bio-oil quality. The bio-oil obtained from Kraft lignin pyrolysis with a bed of activated lignin char has a lower average molecular weight, less tar, more phenolics, and less acidity than when sand is used as bed material.

  20. THE PHYSICS OF PROTOPLANETESIMAL DUST AGGLOMERATES. VII. THE LOW-VELOCITY COLLISION BEHAVIOR OF LARGE DUST AGGLOMERATES

    SciTech Connect

    Schraepler, Rainer; Blum, Juergen; Seizinger, Alexander; Kley, Wilhelm

    2012-10-10

    We performed micro-gravity collision experiments in our laboratory drop tower using 5 cm sized dust agglomerates with volume filling factors of 0.3 and 0.4, respectively. This work is an extension of our previous experiments reported in Beitz et al. to aggregates of more than one order of magnitude higher masses. The dust aggregates consisted of micrometer-sized silica particles and were macroscopically homogeneous. We measured the coefficient of restitution for collision velocities ranging from 1 cm s{sup -1} to 0.5 m s{sup -1}, and determined the fragmentation velocity. For low velocities, the coefficient of restitution decreases with increasing impact velocity, in contrast to findings by Beitz et al. At higher velocities, the value of the coefficient of restitution becomes constant, before the aggregates break at the onset of fragmentation. We interpret the qualitative change in the coefficient of restitution as the transition from a solid-body-dominated to a granular-medium-dominated behavior. We complement our experiments by molecular-dynamics simulations of porous aggregates and obtain a reasonable match to the experimental data. We discuss the importance of our experiments for protoplanetary disks, debris disks, and planetary rings. This work is an extension to the previous work of our group and gives new insight into the velocity dependency of the coefficient of restitution due to improved measurements, better statistics, and a theoretical approach.

  1. The origin and distribution of HAPs elements in relation to maceral composition of the A1 lignite bed (Paleocene, Calvert Bluff Formation, Wilcox Group), Calvert mine area, east-central Texas

    USGS Publications Warehouse

    Crowley, S.S.; Warwick, P.D.; Ruppert, L.F.; Pontolillo, J.

    1997-01-01

    The origin and distribution of twelve potentially Hazardous Air Pollutants (HAPs; As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb Sb, Se, and U) identified in the 1990 Clean Air Act Amendments were examined in relation to the maceral composition of the A1 bed (Paleocene, Calvert Bluff Formation, Wilcox Group) of the Calvert mine in east-central Texas. The 3.2 m-thick A1 bed was divided into nine incremental channel samples (7 lignite samples and 2 shaley coal samples) on the basis of megascopic characteristics. Results indicate that As, Cd, Cr, Ni, Pb, Sb, and U are strongly correlated with ash yield and are enriched in the shaley coal samples. We infer that these elements are associated with inorganic constituents in the coal bed and may be derived from a penecontemporaneous stream channel located several kilometers southeast of the mining block. Of the HAPs elements studied, Mn and Hg are the most poorly correlated to ash yield. We infer an organic association for Mn; Hg may be associated with pyrite. The rest of the trace elements (Be, Co, and Se) are weakly correlated with ash yield. Further analytical work is necessary to determine the mode of occurrence for these elements. Overall, concentrations of the HAPs elements are generally similar to or less than those reported in previous studies of lignites of the Wilcox Group, east-central region, Texas. Petrographic analysis indicates the following ranges in composition for the seven lignite samples: liptinites (5-8%), huminites (88-95%), and inertinites (trace amounts to 7%). Samples from the middle portion of the A1 bed contain abundant crypto-eugelinite compared to the rest of the samples; this relationship suggests that the degradation of plant material was an important process during the development of the peat mire. With the exception of Hg and Mn, relatively low levels of the HAPs elements studied are found in the samples containing abundant crypto-eugelinite. We infer that the peat-forming environment for this portion

  2. Shallow-source aeromagnetic anomalies observed over the West Antarctic Ice Sheet compared with coincident bed topography from radar ice sounding - New evidence for glacial "removal" of subglacially erupted late Cenozoic rift-related volcanic edifices

    USGS Publications Warehouse

    Behrendt, John C.; Blankenship, D.D.; Morse, D.L.; Bell, R.E.

    2004-01-01

    Aeromagnetic and radar ice sounding results from the 1991-1997 Central West Antarctica (CWA) aerogeophysical survey over part of the West Antarctic Ice Sheet (WAIS) and subglacial area of the volcanically active West Antarctic rift system have enabled detailed examination of specific anomaly sources. These anomalies, previously interpreted as caused by late Cenozoic subglacial volcanic centers, are compared to newly available glacial bed-elevation data from the radar ice sounding compilation of the entire area of the aeromagnetic survey to test this hypothesis in detail. We examined about 1000 shallow-source magnetic anomalies for bedrock topographic expression. Using very conservative criteria, we found over 400 specific anomalies which correlate with bed topography directly beneath each anomaly. We interpret these anomalies as indicative of the relative abundance of volcanic anomalies having shallow magnetic sources. Of course, deeper source magnetic anomalies are present, but these have longer wavelengths, lower gradients and mostly lower amplitudes from those caused by the highly magnetic late Cenozoic volcanic centers. The great bulk of these >400 (40-1200-nT) anomaly sources at the base of the ice have low bed relief (60-600 m, with about 80%10 million years ago. Eighteen of the anomalies examined, about half concentrated in the area of the WAIS divide, have high-topographic expression (as great as 400 m above sea level) and high bed relief (up to 1500 m). All of these high-topography anomaly sources at the base of the ice would isostatically rebound to elevations above sea level were the ice removed. We interpret these 18 anomaly sources as evidence of subaerial eruption of volcanoes whose topography was protected from erosion by competent volcanic flows similar to prominent volcanic peaks that are exposed above the surface of the WAIS. Further, we infer these volcanoes as possibly erupted at a time when the WAIS was absent. In contrast, at the other extreme

  3. Shallow-source aeromagnetic anomalies observed over the West Antarctic Ice Sheet compared with coincident bed topography from radar ice sounding—new evidence for glacial "removal" of subglacially erupted late Cenozoic rift-related volcanic edifices

    NASA Astrophysics Data System (ADS)

    Behrendt, John C.; Blankenship, Donald D.; Morse, David L.; Bell, Robin E.

    2004-07-01

    Aeromagnetic and radar ice sounding results from the 1991-1997 Central West Antarctica (CWA) aerogeophysical survey over part of the West Antarctic Ice Sheet (WAIS) and subglacial area of the volcanically active West Antarctic rift system have enabled detailed examination of specific anomaly sources. These anomalies, previously interpreted as caused by late Cenozoic subglacial volcanic centers, are compared to newly available glacial bed-elevation data from the radar ice sounding compilation of the entire area of the aeromagnetic survey to test this hypothesis in detail. We examined about 1000 shallow-source magnetic anomalies for bedrock topographic expression. Using very conservative criteria, we found over 400 specific anomalies which correlate with bed topography directly beneath each anomaly. We interpret these anomalies as indicative of the relative abundance of volcanic anomalies having shallow magnetic sources. Of course, deeper source magnetic anomalies are present, but these have longer wavelengths, lower gradients and mostly lower amplitudes from those caused by the highly magnetic late Cenozoic volcanic centers. The great bulk of these >400 (40-1200-nT) anomaly sources at the base of the ice have low bed relief (60-600 m, with about 80%<200 m). We interpret this relief as an indication of residual topography after glacial removal of volcanic edifices comprising hyaloclastite, pillow breccia and other volcanic debris erupted into the moving ice during volcanism since the initiation of the WAIS >10 million years ago. Eighteen of the anomalies examined, about half concentrated in the area of the WAIS divide, have high-topographic expression (as great as 400 m above sea level) and high bed relief (up to 1500 m). All of these high-topography anomaly sources at the base of the ice would isostatically rebound to elevations above sea level were the ice removed. We interpret these 18 anomaly sources as evidence of subaerial eruption of volcanoes whose topography

  4. Evaluation of the effect of some additives on the efficiency of binder liquid in wet agglomeration of crystals.

    PubMed

    Maghsoodi, Maryam; Nabizadeh, Hassan; Nokhodchi, Ali

    2017-09-01

    Wet agglomeration is a process wherein dispersed particles are held together in an aggregated form by the presence of a small quantity of solvent which acts as binder liquid. In this work, the efficiency of binder liquid was tested in the presence of various additives. Solid state of carbamazepine (CBZ) agglomerates was characterized by DSC and FT-IR. The obtained agglomerates were also investigated in terms of yield, size distribution, friability, and drug release. CBZ agglomerates formed only in the presence of talc, span, and croscarmellose sodium (CCS), whereas ethyl cellulose and eudragit RS100 failed to make CBZ agglomerates. The presence of talc decreased the agglomerate size and produced CBZ agglomerates with a poor strength. However, span and CCS led to larger agglomerates with superior strength. In contrast to CCS samples, span and talc altered the dissolution rate of CBZ. FT-IR results showed that there is an interaction between CCS and drug. This study suggests that care must be taken when additives are used to manufacture agglomerates as the type of additives even in low concentrations can have a big impact on the efficiency of the binder liquid in forming agglomerates thereby affecting the quality of agglomerates.

  5. Capture of alkali during pressurized fluidized-bed combustion using in-bed sorbents

    SciTech Connect

    Mann, M.D.; Ludlow, D.K.

    1997-12-31

    The primary focus of this research was the removal of alkali from PFBC flue gases to a level specified by turbine manufactures. The target level was less than 24 ppbw. Several of the aluminosilicate minerals have the potential to capture alkalis, especially sodium and potassium, under conditions typical of fluid-bed operation. Other goals of this work were to investigate the potential for simultaneously removing SO{sub 2} and Cl from the PFBC gas stream. The initial work focused primarily on one class of sorbents, sodalites, with the goal of determining whether sodalites can be used as an in-bed sorbent to simultaneously remove alkali and sulfur. Thermo gravimetric analysis (TGA) was used to study the mechanism of alkali capture using sodalite. Further testing was performed on a 7.6 cm (3-in.)-diameter pressurized fluid-bed reactor (PFBR). Early results indicated that simultaneous removal of alkali and sulfur and/or chlorine was not practical under the conditions for commercial PFBC operations. Therefore, the focus of the latter part of this work was on sorbents that have been shown to capture alkali in other systems. The effectiveness of bauxite and kaolinite to reduce vapor-phase alkali concentrations was determined. In addition to studying the gettering capability of the sorbent, the impact of the getter on operational performance was evaluated. This evaluation included examining potential agglomeration of bed particles, deposition on heat-transfer surfaces, and the bridging and blinding of ceramic candle filters. The focus of this paper is on the work performed on the PFBR.

  6. Dynamic forces on agglomerated particles caused by high-intensity ultrasound.

    PubMed

    Knoop, Claas; Fritsching, Udo

    2014-03-01

    In this paper the acoustic forces on particles and agglomerates caused by high-intensity ultrasound in gaseous atmosphere are derived by means of computational fluid dynamics (CFD). Sound induced forces cause an oscillating stress scenario where the primary particles of an agglomerate are alternatingly pressed together and torn apart with the frequency of the applied wave. A comparison of the calculated acoustic forces with respect to the inter particle adhesion forces from Van-der-Waals and liquid bridge interactions reveals that the separation forces may reach the same order of magnitude for 80 μm sized SiO2-particles. Hence, with finite probability acoustically agitated gases may de-agglomerate/disperse solid agglomerate structures. This effect is confirmed by dispersion experiments in an acoustic particle levitation setup. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. A uHPLC-MS mathematical modeling approach to dry powder inhaler single agglomerate analysis.

    PubMed

    Pennington, Justin; Lena, John; Medendorp, Joseph; Ewing, Gary

    2011-10-01

    Demonstration of content uniformity (CU) is critical toward the successful development of dry powder inhalers (DPIs). Methods for unit dose CU determination for DPI products are well-established within the field of respiratory science. Recent advances in the area include a uHPLC-MS method for high-throughput uniformity analysis, which allows for a greater understanding of blending operations as the industry transitions to a quality-by-design approach to development. Further enhancements to this uHPLC-MS method now enable it to determine CU and sample weight at the single agglomerate level, which is roughly 50× smaller than a unit dose. When coupled with optical microscopy-based agglomerate sizing, the enhanced uHPLC-MS method can also predict the density and porosity of individual agglomerates. Expanding analytical capabilities to the single agglomerate level provides greater insights and confidence in the DPI manufacturing process.

  8. Zirconia nanoceramic via redispersion of highly agglomerated nanopowder and spark plasma sintering.

    PubMed

    Suárez, Gustavo; Borodianska, Hanna; Sakka, Yoshio; Aglietti, Esteban F; Vasylkiv, Oleg

    2010-10-01

    A 2.7 mol% yttria stabilizing tetragonal zirconia (2.7Y-TZP) nanopowder was synthesized and stored for five years. Humidity and unsatisfactory storage conditions gradually caused heavy agglomeration. Within a few months, 2.7Y-TZP nanopowder became useless for any technological application. A bead-milling deagglomeration technique was applied to recover the heavily agglomerated yttria-stabilized zirconia nanopowder. Low-temperature sintering and spark plasma sintering (SPS) were performed, resulting in fully dense nanostructured ceramics. Compacts formed with heavily agglomerated powder present low sinterability and poor mechanical properties. Bead-milling suspension formed compacts exhibit mechanical properties in the range of the values reported for nanostructured zirconia. This observation confirms the effectiveness of bead-milling in the deagglomeration of highly agglomerated nanopowders. The high value of Vickers hardness of 13.6 GPa demonstrates the success of the processing technique for recovering long-time-stored oxide nanopowders.

  9. Nanoparticle agglomerates of fluticasone propionate in combination with albuterol sulfate as dry powder aerosols

    PubMed Central

    El-Gendy, Nashwa; Pornputtapitak, Warangkana; Berkland, Cory

    2015-01-01

    Particle engineering strategies remain at the forefront of aerosol research for localized treatment of lung diseases and represent an alternative for systemic drug therapy. With the hastily growing popularity and complexity of inhalation therapy, there is a rising demand for tailor-made inhalable drug particles capable of affording the most proficient delivery to the lungs and the most advantageous therapeutic outcomes. To address this formulation demand, nanoparticle agglomeration was used to develop aerosols of the asthma therapeutics, fluticasone or albuterol. In addition, a combination aerosol was formed by drying agglomerates of fluticasone nanoparticles in the presence of albuterol in solution. Powders of the single drug nanoparticle agglomerates or of the combined therapeutics possessed desirable aerodynamic properties for inhalation. Powders were efficiently aerosolized (~75% deposition determined by cascade impaction) with high fine particle fraction and rapid dissolution. Nanoparticle agglomeration offers a unique approach to obtain high performance aerosols from combinations of asthma therapeutics. PMID:21964203

  10. An analysis of precipitation climatology over Indian urban agglomeration

    NASA Astrophysics Data System (ADS)

    Bisht, Deepak Singh; Chatterjee, Chandranath; Raghuwanshi, Narendra Singh; Sridhar, Venkataramana

    2017-06-01

    While urban areas in India are rapidly expanding, the analysis of how the precipitation regimes are changing is very limited. In the present study, an attempt has been made to explore the trends in rainfall pattern over 20 most populated urban agglomeration (cities) of India using high resolution gridded, daily rainfall product (0.25° × 0.25°) obtained from India Meteorological Department (IMD). The analysis comprised of annual and monsoonal rainfall and rainy days; 1- and 10-day annual maximum rainfall; 95 and 99 percentile extreme threshold rainfall magnitude in 30 years moving window; and number of events above 95 and 99 percentile threshold in each year during 1901-2015. The Mann-Kendall (Modified Mann-Kendall) test at 0.1 significance level to detect trends, and the Thiel-Sen's approach to estimate % change over mean have been used. Annual and monsoonal rainfall are found to be increasing with shrinking rainy days during the same period that infers rise in heavy rainfall events. Besides, the majority of the cities show increasing trends in 1- and 10-day annual maximum rainfall, number of extreme threshold events, and magnitude of extreme threshold rainfall in 30-year moving window. The Pettitt-Mann-Whitney (PMW) test was used to detect change point year. Cities with significant change point at probability level ≥90% were selected to analyze pre- and post-change point year trend in time series. In addition, the trend in precipitation variables for multiple climatic windows of 30 years with an advancement of 5 years in each window (1901-1930, 1906-1935 …, 1986-2015) show that unlike a unique long-term trend, different climatic windows have varying trend direction over the period of time. Overall, the analysis reveals the rising trend in extreme rainfall events over majority of the cities in long term (1901-2015); however, mixed pattern of trends are observed in moving climatic windows.

  11. Simulation of deterministic energy-balance particle agglomeration in turbulent liquid-solid flows

    NASA Astrophysics Data System (ADS)

    Njobuenwu, Derrick O.; Fairweather, Michael

    2017-08-01

    An efficient technique to simulate turbulent particle-laden flow at high mass loadings within the four-way coupled simulation regime is presented. The technique implements large-eddy simulation, discrete particle simulation, a deterministic treatment of inter-particle collisions, and an energy-balanced particle agglomeration model. The algorithm to detect inter-particle collisions is such that the computational costs scale linearly with the number of particles present in the computational domain. On detection of a collision, particle agglomeration is tested based on the pre-collision kinetic energy, restitution coefficient, and van der Waals' interactions. The performance of the technique developed is tested by performing parametric studies on the influence of the restitution coefficient (en = 0.2, 0.4, 0.6, and 0.8), particle size (dp = 60, 120, 200, and 316 μm), Reynolds number (Reτ = 150, 300, and 590), and particle concentration (αp = 5.0 × 10-4, 1.0 × 10-3, and 5.0 × 10-3) on particle-particle interaction events (collision and agglomeration). The results demonstrate that the collision frequency shows a linear dependency on the restitution coefficient, while the agglomeration rate shows an inverse dependence. Collisions among smaller particles are more frequent and efficient in forming agglomerates than those of coarser particles. The particle-particle interaction events show a strong dependency on the shear Reynolds number Reτ, while increasing the particle concentration effectively enhances particle collision and agglomeration whilst having only a minor influence on the agglomeration rate. Overall, the sensitivity of the particle-particle interaction events to the selected simulation parameters is found to influence the population and distribution of the primary particles and agglomerates formed.

  12. Cell agglomeration in the wells of a 24-well plate using acoustic streaming.

    PubMed

    Kurashina, Yuta; Takemura, Kenjiro; Friend, James

    2017-02-28

    Cell agglomeration is essential both to the success of drug testing and to the development of tissue engineering. Here, a MHz-order acoustic wave is used to generate acoustic streaming in the wells of a 24-well plate to drive particle and cell agglomeration. Acoustic streaming is known to manipulate particles in microfluidic devices, and even provide concentration in sessile droplets, but concentration of particles or cells in individual wells has never been shown, principally due to the drag present along the periphery of the fluid in such a well. The agglomeration time for a range of particle sizes suggests that shear-induced migration plays an important role in the agglomeration process. Particles with a diameter of 45 μm agglomerated into a suspended pellet under exposure to 2.134 MHz acoustic waves at 1.5 W in 30 s. Additionally, BT-474 cells also agglomerated as adherent masses at the center bottom of the wells of tissue-culture treated 24-well plates. By switching to low cell binding 24-well plates, the BT-474 cells formed suspended agglomerations that appeared to be spheroids, fully fifteen times larger than any cell agglomerates without the acoustic streaming. In either case, the viability and proliferation of the cells were maintained despite acoustic irradiation and streaming. Intermittent excitation was effective in avoiding temperature excursions, consuming only 75 mW per well on average, presenting a convenient means to form fully three-dimensional cellular masses potentially useful for tissue, cancer, and drug research.

  13. Sonic enhanced ash agglomeration and sulfur capture. Technical progress report, January 1992--March 1992

    SciTech Connect

    Not Available

    1992-12-31

    This program will demonstrate the effectiveness of a unique approach which uses a bimodal distribution composed of large sorbent particles and fine fly ash particles to enhance ash agglomeration and sulfur capture at conditions found in direct coal-fired turbines. Under the impact of high-intensity sound waves, sorbent reactivity and utilization, it is theorized, will increase while agglomerates of fly ash and sorbents are formed which are readily collected in commercial cyclones.

  14. Particle size variations between bed load and bed material in natural gravel bed channels

    Treesearch

    Thomas E. Lisle

    1995-01-01

    Abstract - Particle sizes of bed load and bed material that represent materials transported and stored over a period of years are used to investigate selective transport in 13 previously sampled, natural gravel bed channels. The ratio (D*) of median particle size of bed material to the transport- and frequency-weighted mean of median bed load size decreases to unity...

  15. Performance of bed load transport equations in mountain gravel-bed rivers: A re-analysis

    Treesearch

    Jeffrey J. Barry; John M. Buffington; John G. King; Peter Goodwin

    2006-01-01

    Our recent examination of bed load transport data from mountain gravel-bed rivers in the western United States shows that the data can be fit by a simple power function of discharge, with the coefficient being a function of drainage area (a surrogate for basin sediment supply) and the exponent being a function of supply-related channel armoring (transport capacity in...

  16. How to Find Bed Bugs

    MedlinePlus

    ... or mattresses caused by bed bugs being crushed. Dark spots (about this size: •), which are bed bug ... to ensure sustained heat reaches the bugs no matter where they are hiding. Common bed bugs are ...

  17. Factors affecting the oil agglomeration of Sivas-Divrigi Ulucayir lignite

    SciTech Connect

    Unal, I.; Gorgun Ersan, M.

    2007-07-01

    In the coal industry, the coal particles need to be decreased to a very fine size because of the need of removing inorganic materials from coal. Oil agglomeration is a kind of coal cleaning technique that is used for separation of organic and inorganic parts of fine sized coal. In this study, the oil agglomeration of Sivas-Divrigi (S-D) Ulucayir lignite was carried out by using kerosene, diesel oil, fuel oil, poppy oil, and sunflower oil. The amount of bridging oil was varied from 5% to 25% of the amount of lignite. The effect of oil amount, oil type, solid content, agitation rate and time, pH on agglomeration performance was investigated. Maximum recovery value of 98.18% was observed by using poppy oil. In order to investigate the effect of pH on agglomeration NaOH and HCl is added to the slurry in various amounts. It is decided that the best agglomeration condition is obtained at low pH values. The effect of nonionic surface active agent (Igepal-CA 630) on agglomeration is investigated by adding to the slurry and it is observed that the grade is increased with the amount of surface active agent.

  18. Preparation of submicron-sized gold particles using laser-induced agglomeration-fusion process

    NASA Astrophysics Data System (ADS)

    Tsuji, T.; Higashi, Y.; Tsuji, M.; Ishikawa, Y.; Koshizaki, N.

    2014-03-01

    Recently, laser irradiation (LI) of colloidal nanoparticles (NPs) using a non-focused laser beam at moderate fluence attracts much attention as a novel and simple technique to obtain submicron-sized spherical particles. In the present study, we applied this technique to prepare gold SMPs. It was revealed that agglomeration of the source nanoparticles prior to laser irradiation is necessary to produce SMPs. However, when the agglomeration occurred in too much extent, significant amount of the source particles remained as the sediment after LI, leading to the lowering of the formation efficiency of SMPs. Therefore, the control of the agglomeration conditions of the source NPs is necessary to obtain SMPs efficiently. In the present study, we tried to adjust the agglomeration conditions of the source NPs by adjusting the concentration of citrate that was used as the stabilizing reagent of the source NPs. It was revealed that SMPs were obtained efficiently while the sedimentation of the source NPs were suppressed when the concentration of citrate was adjusted around 0.01-0.005 mM. In addition, observation of the temporal change in the shape of the colloidal particles during LI revealed that there is an induction period in which no formation of SMPs is brought about by LI. This finding suggested that LI removes the citrate ligands from the source NPs and induces the agglomeration of the source NPs, i.e. the agglomeration condition of the source NPs is also controlled by LI.

  19. Combined deterministic-stochastic framework for modeling the agglomeration of colloidal particles

    NASA Astrophysics Data System (ADS)

    Mortuza, S. M.; Kariyawasam, Lahiru K.; Banerjee, Soumik

    2015-07-01

    We present a multiscale model, based on molecular dynamics (MD) and kinetic Monte Carlo (kMC), to study the aggregation driven growth of colloidal particles. Coarse-grained molecular dynamics (CGMD) simulations are employed to detect key agglomeration events and calculate the corresponding rate constants. The kMC simulations employ these rate constants in a stochastic framework to track the growth of the agglomerates over longer time scales and length scales. One of the hallmarks of the model is a unique methodology to detect and characterize agglomeration events. The model accounts for individual cluster-scale effects such as change in size due to aggregation as well as local molecular-scale effects such as changes in the number of neighbors of each molecule in a colloidal cluster. Such definition of agglomeration events allows us to grow the cluster to sizes that are inaccessible to molecular simulations as well as track the shape of the growing cluster. A well-studied system, comprising fullerenes in NaCl electrolyte solution, was simulated to validate the model. Under the simulated conditions, the agglomeration process evolves from a diffusion limited cluster aggregation (DLCA) regime to percolating cluster in transition and finally to a gelation regime. Overall the data from the multiscale numerical model shows good agreement with existing theory of colloidal particle growth. Although in the present study we validated our model by specifically simulating fullerene agglomeration in electrolyte solution, the model is versatile and can be applied to a wide range of colloidal systems.

  20. The agglomeration state of nanosecond laser-generated aerosol particles entering the ICP.

    PubMed

    Kuhn, Hans-Rudolf; Günther, Detlef

    2005-10-01

    Fundamental understanding of aerosol formation and particle transport are important aspects of understanding and improving laser-ablation ICP-MS. To obtain more information about particles entering the ICP, laser aerosols generated under different ablation conditions were collected on membrane filters. The particles and agglomerates were then visualised using scanning electron microscope (SEM) imaging. To determine variations between different sample matrices, opaque (USGS BCR-2G) and transparent (NIST SRM 610) glass, CaF(2), and brass (MBH B26) samples were ablated using two different laser wavelengths, 193 and 266 nm. This study showed that the condensed nano-particles ( approximately 10 nm in diameter) formed by laser ablation reach the ICP as micron-sized agglomerates; this is apparent from filters which contain only a few well-separated particles and particle agglomerates. Ablation experiments on different metals and non-metals show that the structure of the agglomerates is matrix-dependent. Laser aerosols generated from silicates and metals form linear agglomerates whereas particle-agglomerates of ablated CaF(2) have cotton-like structures. Amongst other conditions, this study shows that the absorption characteristics of the sample and the laser wavelength determine the production of micron-sized spherical particles formed by liquid droplet ejection.

  1. Analysis of nanoparticle agglomeration in aqueous suspensions via constant-number Monte Carlo simulation.

    PubMed

    Liu, Haoyang Haven; Surawanvijit, Sirikarn; Rallo, Robert; Orkoulas, Gerassimos; Cohen, Yoram

    2011-11-01

    A constant-number direct simulation Monte Carlo (DSMC) model was developed for the analysis of nanoparticle (NP) agglomeration in aqueous suspensions. The modeling approach, based on the "particles in a box" simulation method, considered both particle agglomeration and gravitational settling. Particle-particle agglomeration probability was determined based on the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and considerations of the collision frequency as impacted by Brownian motion. Model predictions were in reasonable agreement with respect to the particle size distribution and average agglomerate size when compared with dynamic light scattering (DLS) measurements for aqueous TiO(2), CeO(2), and C(60) nanoparticle suspensions over a wide range of pH (3-10) and ionic strength (0.01-156 mM). Simulations also demonstrated, in quantitative agreement with DLS measurements, that nanoparticle agglomerate size increased both with ionic strength and as the solution pH approached the isoelectric point (IEP). The present work suggests that the DSMC modeling approach, along with future use of an extended DLVO theory, has the potential for becoming a practical environmental analysis tool for predicting the agglomeration behavior of aqueous nanoparticle suspensions.

  2. Experimental validation of light scattering and absorption theories of fractal-like carbonaceous aerosol agglomerates

    NASA Astrophysics Data System (ADS)

    Chakrabarty, R.; Moosmuller, H.; Arnott, W. P.; Garro, M.; Slowik, J.; Cross, E.; Han, J.; Davidovits, P.; Onasch, T.; Worsnop, D.

    2007-12-01

    The optical coefficients of size-selected carbonaceous aerosol agglomerates measured at a wavelength of 870 nm are compared with those predicted by three theories, namely Rayleigh-Debye-Gans (RDG) approximation, volume-equivalent Mie theory, and integral equation formulation for scattering (IEFS). Carbonaceous agglomerates, produced via flame synthesis, were size-selected using two differential mobility analyzers (DMAs) in series, and their scattering and absorption coefficients were measured with nephelometry and photoacoustic spectroscopy. Scanning electron microscopy, along with image processing techniques, were used for the parameterization of the structural properties of the fractal-like agglomerates. The agglomerate structural parameters were used to evaluate the predictions of the optical coefficients based on the three light scattering and absorption theories. The results indicate that the RDG approximation agrees within 10% of the experimental results and the exact electromagnetic calculations of the IEFS theory. The experimental scattering coefficient is over predicted by the volume-equivalent Mie theory by a factor of ~3.2. Also, the RDG approximation-predicted optical coefficients showed pronounced sensitivity to changes in monomer mean diameter, the count median diameter of the agglomerates, and the geometric standard deviation of the agglomerate number size distribution.

  3. Acute psychiatric beds: distribution and staffing in NSW and ACT.

    PubMed

    Rosenman, S

    1995-06-01

    This study examined the availability and staffing of acute psychiatry beds in NSW and ACT. "Gazetted" acute psychiatry hospitals (which take compulsory admissions under mental health law) were polled directly for bed numbers, occupancy and staffing for the year 1990-1991. The NSW Department of Health provided beds numbers for non-gazetted and private hospitals. Four analyses sequentially reallocated beds according to the origin of patients to estimate acute bed availability and use by regional populations. Socio-demographic determinants of acute admission rates were measured. Acute "gazetted" beds averaged 13.2 per 100,000 population but ranged from 6.9 to 49.1 per 100,000 when cross-regional flows were considered. "Non-gazetted" beds raised the provision to 15.5 per 100,000 and private beds raised provision further to 24.5 per 100,000. Inner metropolitan provision was higher than rural or provincial provision. The only determinant of the admission rate to gazetted beds was the number of available beds. Bed availability did not affect either bed occupancy or referral of patients to remote hospitals. Nursing staffing of gazetted units was reasonably uniform, although smaller units had significantly more nurses per bed. Medical staffing was highly variable and appears determined by staff availability. The average provision of acute psychiatric beds approximates lowest levels seen in international models for psychiatric services. Average occupancy rates suggest that there is not an overall shortfall of acute psychiatric beds, but uneven bed distribution creates barriers to access. Referral of patients to remote hospitals is not related to actual bed provision in the regions, but appears to reflect attitudes to ensuring local care. Recommendations about current de facto standards are made. Current average nursing and medical staffing standards are reported.

  4. Fluidized bed combustion of pelletized biomass and waste-derived fuels

    SciTech Connect

    Chirone, R.; Scala, F.; Solimene, R.; Salatino, P.; Urciuolo, M.

    2008-10-15

    distribution of primary ash particles liberated upon complete carbon burnoff largely reflected the combustion pattern of each fuel. Primary ash particles of size nearly equal to that of the parent fuel were generated upon complete burnoff of the pelletized sludge. Nonetheless, secondary attrition of primary ash from pelletized sludge is large, to the point where generation of fine ash would be extensive over the typical residence time of bed ash in fluidized bed combustors. Very few and relatively fine primary ash particles were released after complete burnoff of wood pellets. Primary ash particles remaining after complete burnoff of pelletized straw had sizes and shapes that were largely controlled by the occurrence of ash agglomeration phenomena. (author)

  5. Parametric performance studies on fluidized-bed heat exchangers

    NASA Astrophysics Data System (ADS)

    Stoeffler, R. C.

    1982-01-01

    The performance of single and multistage shallow fluidized beds is investigated for possible application to the recovery of heat from sources such as waste heat, and coal combustion or coal gasification. Tests are conducted to (1) investigate the effects of fouling due to liquid condensate in the gas stream on fluidized bed heat exchanger performance, (2) investigate the performance of fluidized beds which are staged using baffle plates, and (3) investigate the effects of different heat exchanger surface geometries. Work is progressing in selecting the conditions for that portion of the program involving fouling by a liquid condensate, and in modifying the fluidized bed heat exchanger facility for the fouling experiments. Preliminary tests were conducted with water vapor injection. Water vapor and glycerol vapor were chosen as the condensates. The results are summarized as follows: (1) heat exchanger performance is seriously degraded by condensation when the dew point temperature exceeds the heat exchanger wall temperature; and (2) the performance decrease occurs as a result of particle adherence to the heat exchanger surface and not as a result of particle agglomeration.

  6. Moving granular-bed filter development program, Option III: Development of moving granular-bed filter technology for multi-contaminant control. Task 14: Test plan; Topical report

    SciTech Connect

    Haas, J.C.; Olivo, C.A.; Wilson, K.B.

    1994-04-01

    An experimental test plan has been prepared for DOE/METC review and approval to develop a filter media suitable for multi-contaminant control in granular-bed filter (GBF) applications. The plan includes identification, development, and demonstration of methods for enhanced media morphology, chemical reactivity, and mechanical strength. The test plan includes media preparation methods, physical and chemical characterization methods for fresh and reacted media, media evaluation criteria, details of test and analytical equipment, and test matrix of the proposed media testing. A filter media composed of agglomerated limestone and clay was determined to be the best candidate for multi-contaminate control in GBF operation. The combined limestone/clay agglomerate has the potential to remove sulfur and alkali species, in addition to particulate, and possibly halogens and trace heavy metals from coal process streams.

  7. Fluidized bed catalytic coal gasification process

    DOEpatents

    Euker, Jr., Charles A.; Wesselhoft, Robert D.; Dunkleman, John J.; Aquino, Dolores C.; Gouker, Toby R.

    1984-01-01

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents (16) are oxidized by contact with a gas containing between 2 volume percent and 21 volume percent oxygen at a temperature between 50.degree. C. and 250.degree. C. in an oxidation zone (24) and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone (44) at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  8. Bed Bug Tips

    EPA Pesticide Factsheets

    How to deal with bed bugs in one printable page. Ten tips include ensuring correct insect identification, reducing clutter, understand integrated pest management, using mattress and box spring encasements, and heat treatment.

  9. Bed rest during pregnancy

    MedlinePlus

    ... pregnancy problems, including: High blood pressure Premature or preterm changes in the cervix Problems with the placenta ... shown that being on bed rest can prevent preterm birth or other pregnancy problems. And some complications ...

  10. Bed Bug Information Clearinghouse

    EPA Pesticide Factsheets

    Its purpose is to help states, communities, and consumers in efforts to prevent and control bed bug infestations. Currently includes only reviewed material from federal/state/local government agencies, extension services, and universities.

  11. Particle fuel bed tests

    SciTech Connect

    Horn, F.L.; Powell, J.R.; Savino, J.M.

    1985-01-01

    Gas-cooled reactors, using packed beds of small diameter coated fuel particles have been proposed for compact, high-power systems. The particulate fuel used in the tests was 800 microns in diameter, consisting of a thoria kernel coated with 200 microns of pyrocarbon. Typically, the bed of fuel particles was contained in a ceramic cylinder with porous metallic frits at each end. A dc voltage was applied to the metallic frits and the resulting electric current heated the bed. Heat was removed by passing coolant (helium or hydrogen) through the bed. Candidate frit materials, rhenium, nickel, zirconium carbide, and zirconium oxide were unaffected, while tungsten and tungsten-rhenium lost weight and strength. Zirconium-carbide particles were tested at 2000 K in H/sub 2/ for 12 hours with no visible reaction or weight loss.

  12. Tapered bed bioreactor

    DOEpatents

    Scott, Charles D.; Hancher, Charles W.

    1977-01-01

    A vertically oriented conically shaped column is used as a fluidized bed bioreactor wherein biologically catalyzed reactions are conducted in a continuous manner. The column utilizes a packing material a support having attached thereto a biologically active catalytic material.

  13. Moving-bed sorbents

    SciTech Connect

    Ayala, R.E.; Gupta, R.P.; Chuck, T.

    1995-12-01

    The objective of this program is to develop mixed-metal oxide sorbent formulations that are suitable for moving-bed, high-temperature, desulfurization of coal gas. Work continues on zinc titanates formulations and Z-sorb III sorbent.

  14. Bed Bugs - Multiple Languages

    MedlinePlus

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Bed Bugs URL of this page: https://medlineplus.gov/languages/bedbugs.html Other topics A-Z Expand Section ...

  15. Practice Hospital Bed Safety

    MedlinePlus

    ... 1, 1985 and January 1, 2013, FDA received reports of 901 incidents of patients caught, trapped, entangled, or strangled in ... Use Todd says there have been very few reports of safety incidents with hospital beds used in private residences. "This ...

  16. Test Bed For Telerobots

    NASA Technical Reports Server (NTRS)

    Matijevic, Jacob R.; Zimmerman, Wayne F.; Dolinsky, Shlomo

    1990-01-01

    Assembly of electromechanical and electronic equipment (including computers) constitutes test bed for development of advanced robotic systems for remote manipulation. Combines features not found in commercial systems. Its architecture allows easy growth in complexity and level of automation. System national resource for validation of new telerobotic technology. Intended primarily for robots used in outer space, test bed adapted to development of advanced terrestrial telerobotic systems for handling radioactive materials, dangerous chemicals, and explosives.

  17. Bed exit alarms.

    PubMed

    2004-09-01

    Bed-exit alarms alert caregivers that a patient who should not get out of bed unassisted is doing so. These alarms can help reduce the likelihood of falls and can promote speedy assistance to patients who have already fallen. But as we described in our May 2004 Guidance Article on bed-exit alarms, they don't themselves prevent falls. They are only effective if used as part of an overall fall-prevention program and with a clear understanding of their limitations. This Evaluation examines the effectiveness of 16 bed-exit alarms from seven suppliers. Our ratings focus primarily on each product's reliability in detecting bed-exit events and alerting caregivers, its ability to minimize nuisance alarms (alarms that sound even though the patient isn't leaving the bed or that sound while a caregiver is helping the patient to leave the bed), and its resistance to deliberate or inadvertent tampering. Twelve of the products use pressure-sensor-activated alarms (mainly sensor pads placed on or under the mattress); three use a cord that can attach to the patient's garment, alarming if the cord is pulled loose from the control unit; and one is a position-sensitive alarm attached to a leg cuff. All the products reliably detect attempted or successful bed exits. But they vary greatly in how effectively they alert staff, minimize nuisance alarms, and resist tampering. Ease of use and battery performance also vary for many units. Of the pressure-sensor units, three are rated Preferred. Those units meet most of our criteria and have no significant disadvantages. Five of the other pressure-sensor products are Acceptable, and the remaining four are Not Recommended. All three cord-activated alarms are rated Acceptable, as is the patient-worn alarm.

  18. Bed rest and immunity

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Gerald; Aviles, Hernan; Butel, Janet S.; Shearer, William T.; Niesel, David; Pandya, Utpal; Allen, Christopher; Ochs, Hans D.; Blancher, Antoine; Abbal, Michel

    2007-02-01

    Space flight has been shown to result in altered immune responses. The current study was designed to investigate this possibility by using the bed rest model of some space flight conditions. A large number of women are included as subjects in the study. The hypothesis being tested is: 60 days head-down tilt bed rest of humans will affect the immune system and resistance to infection. Blood, urine and saliva samples will be obtained from bed rest subjects prior to, at intervals during, and after completion of 60 days of head-down tilt bed rest. Leukocyte blastogenesis, cytokine production and virus reactivation will be assessed. The ability of the subjects to respond appropriately to immunization with the neoantigen bacteriophage φX-174 will also be determined. Bed rest is being carried out at MEDES, Toulouse France, and the University of Texas Medical Branch, Galveston, TX. The studies to be carried out in France will also allow assessment of the effects of muscle/bone exercise and nutritional countermeasures on the immune system in addition to the effects of bed rest.

  19. Method for in situ gasification of a subterranean coal bed

    DOEpatents

    Shuck, Lowell Z.

    1977-05-31

    The method of the present invention relates to providing controlled directional bores in subterranean earth formations, especially coal beds for facilitating in situ gasification operations. Boreholes penetrating the coal beds are interconnected by laser-drilled bores disposed in various arrays at selected angles to the major permeability direction in the coal bed. These laser-drilled bores are enlarged by fracturing prior to the gasification of the coal bed to facilitate the establishing of combustion zones of selected configurations in the coal bed for maximizing the efficiency of the gasification operation.

  20. Transport and Deposition of Welding Fume Agglomerates in a Realistic Human Nasal Airway.

    PubMed

    Tian, Lin; Inthavong, Kiao; Lidén, Göran; Shang, Yidan; Tu, Jiyuan

    2016-07-01

    Welding fume is a complex mixture containing ultra-fine particles in the nanometer range. Rather than being in the form of a singular sphere, due to the high particle concentration, welding fume particles agglomerate into long straight chains, branches, or other forms of compact shapes. Understanding the transport and deposition of these nano-agglomerates in human respiratory systems is of great interest as welding fumes are a known health hazard. The neurotoxin manganese (Mn) is a common element in welding fumes. Particulate Mn, either as soluble salts or oxides, that has deposited on the olfactory mucosa in human nasal airway is transported along the olfactory nerve to the olfactory bulb within the brain. If this Mn is further transported to the basal ganglia of the brain, it could accumulate at the part of the brain that is the focal point of its neurotoxicity. Accounting for various dynamic shape factors due to particle agglomeration, the current computational study is focused on the exposure route, the deposition pattern, and the deposition efficiency of the inhaled welding fume particles in a realistic human nasal cavity. Particular attention is given to the deposition pattern and deposition efficiency of inhaled welding fume agglomerates in the nasal olfactory region. For particles in the nanoscale, molecular diffusion is the dominant transport mechanism. Therefore, Brownian diffusion, hydrodynamic drag, Saffman lift force, and gravitational force are included in the model study. The deposition efficiencies for single spherical particles, two kinds of agglomerates of primary particles, two-dimensional planar and straight chains, are investigated for a range of primary particle sizes and a range of number of primary particles per agglomerate. A small fraction of the inhaled welding fume agglomerates is deposited on the olfactory mucosa, approximately in the range 0.1-1%, and depends on particle size and morphology. The strong size dependence of the deposition

  1. A kinetic study of the mechanism of radiation induced agglomeration of ovalbumin in aqueous solution

    NASA Astrophysics Data System (ADS)

    Tuce, Zorana; Janata, Eberhard; Radojcic, Marija; Milosavljevic, Bratoljub H.

    2001-10-01

    The effect of concentration on the protein radiolytic damage resulting in a change in molecular mass was measured in the concentration range from 0.2 to 2 mmol×dm -3 ovalbumin in phosphate buffered solutions saturated with N 2O. The electrophoretic analysis of samples on discontinuous SDS-polyacrylamide gels in the presence or absence of 5% β-mercaptoethanol showed an expected result, i.e. that the protein scission did not take place in the absence of oxygen. Only ovalbumin agglomerates, bonded by covalent bonds other than S-S bridges, were observed. The G-value for the formation of ovalbumin agglomerates increased linearly from 1.1 to 2.4 by increasing the ovalbumin concentration from 0.2 to 2 mmol×dm -3. The result is interpreted as to be owing to the competition between ovalbumin agglomeration and some intramolecular reactions which did not lead to the change in the molecular mass. It was also found that the G-value is independent of irradiation dose rate. The result was rationalized as a kinetic evidence that the agglomeration is not a cross-linking process, i.e. it does not occur via recombination of the protein radicals produced in the interaction of ovalbumin and rad OH radical. The result suggested that the agglomeration takes place via the process of grafting, i.e. it occurs in the reaction of ovalbumin radical and an intact ovalbumin molecule. The time-resolved light scattering experiments provided an additional proof, supporting the reaction scheme of radiation-induced protein agglomeration. The biological consequences of the proposed mechanism of protein agglomeration are also discussed.

  2. Film Coating of Nifedipine Extended Release Pellets in a Fluid Bed Coater with a Wurster Insert

    PubMed Central

    de Souza, Luciane Franquelin Gomes; Nitz, Marcello; Taranto, Osvaldir Pereira

    2014-01-01

    The objective of this work was to study the coating process of nifedipine extended release pellets using Opadry and Opadry II, in a fluid bed coater with a Wurster insert. The coating process was studied using a complete experimental design of two factors at two levels for each polymer. The variables studied were the inlet air temperature and the coating suspension flow rate. The agglomerate fraction and coating efficiency were the analyzed response variables. The air temperature was the variable that most influenced the coating efficiency for both polymers. In addition, a study of the dissolution profiles of coated and uncoated pellets using 0.5% sodium lauryl sulfate in simulated gastric fluid without enzymes (pH 1.2) was conducted. The results showed a prolonged release profile for the coated and uncoated pellets that was very similar to the standards established by the U.S. Pharmacopoeia. The drug content and the release profiles were not significantly affected by storage at 40°C and 75% relative humidity. However, when exposed to direct sunlight and fluorescent light (light from fluorescent bulbs), the coated pellets lost only 5% of the drug content, while the uncoated ones lost more than 35%; furthermore, the dissolution profile of the uncoated pellets was faster. PMID:24772426

  3. Control of bed height in a fluidized bed gasification system

    DOEpatents

    Mehta, Gautam I.; Rogers, Lynn M.

    1983-12-20

    In a fluidized bed apparatus a method for controlling the height of the fdized bed, taking into account variations in the density of the bed. The method comprises taking simultaneous differential pressure measurements at different vertical elevations within the vessel, averaging the differential pressures, determining an average fluidized bed density, then periodically calculating a weighting factor. The weighting factor is used in the determination of the actual bed height which is used in controlling the fluidizing means.

  4. Effectiveness of bed bug monitors for detecting and trapping bed bugs in apartments.

    PubMed

    Wang, Changlu; Tsai, Wan-Tien; Cooper, Richard; White, Jeffrey

    2011-02-01

    Bed bugs, Cimex lectularius L., are now considered a serious urban pest in the United States. Because they are small and difficult to find, there has been strong interest in developing and using monitoring tools to detect bed bugs and evaluate the results of bed bug control efforts. Several bed bug monitoring devices were developed recently, but their effectiveness is unknown. We comparatively evaluated three active monitors that contain attractants: CDC3000, NightWatch, and a home-made dry ice trap. The Climbup Insect Interceptor, a passive monitor (without attractants), was used for estimating the bed bug numbers before and after placing active monitors. The results of the Interceptors also were compared with the results of the active monitors. In occupied apartments, the relative effectiveness of the active monitors was: dry ice trap > CDC3000 > NightWatch. In lightly infested apartments, the Interceptor (operated for 7 d) trapped similar number of bed bugs as the dry ice trap (operated for 1 d) and trapped more bed bugs than CDC3000 and NightWatch (operated for 1 d). The Interceptor was also more effective than visual inspections in detecting the presence of small numbers of bed bugs. CDC3000 and the dry ice trap operated for 1 d were equally as effective as the visual inspections for detecting very low level of infestations, whereas 1-d deployment of NightWatch detected significantly lower number of infestations compared with visual inspections. NightWatch was designed to be able to operate for several consecutive nights. When operated for four nights, NightWatch trapped similar number of bed bugs as the Interceptors operated for 10 d after deployment of NightWatch. We conclude these monitors are effective tools in detecting early bed bug infestations and evaluating the results of bed bug control programs.

  5. Micro-agglomerate flotation for deep cleaning of coal. Quarterly progress report, July 1-September 30, 1996

    SciTech Connect

    Chander, S.; Hogg, R.

    1996-12-01

    The goals of this research program are to demonstrate the technical and economic feasibility of a micro-agglomerate flotation process and to establish the essential criteria for reagent selection and system design and operation. We are investigating the use of a hybrid process - Micro-agglomerate flotation - which is a combination of oil-agglomeration and froth flotation. The basic concept is to use small quantities of oil to promote the formation of dense micro- agglomerates with minimal entrapment of water and mineral particles, and to use froth flotation to extract these micro-agglomerates from the water/dispersed-mineral phase. Since the floating units are agglomerates (about 30-50 mm in size) rather than individual coal particles (1-10 mm) the problems of froth overload and water/mineral carryover should be significantly alleviated.

  6. HVOF and HVAF Coatings of Agglomerated Tungsten Carbide-Cobalt Powders for Water Droplet Erosion Application

    NASA Astrophysics Data System (ADS)

    Tarasi, F.; Mahdipoor, M. S.; Dolatabadi, A.; Medraj, M.; Moreau, C.

    2016-12-01

    Water droplet erosion (WDE) is a phenomenon caused by impingement of water droplets of several hundred microns to a few millimeters diameter at velocities of hundreds of meters per second on the edges and surfaces of the parts used in such services. The solution to this problem is sought especially for the moving compressor blades in gas turbines and those operating at the low-pressure end of steam turbines. Thermal-sprayed tungsten carbide-based coatings have been the focus of many studies and are industrially accepted for a multitude of wear and erosion resistance applications. In the present work, the microstructure, phase analysis and mechanical properties (micro-hardness and fracture toughness) of WC-Co coatings are studied in relation with their influence on the WDE resistance of such coatings. The coatings are deposited by high-velocity oxygen fuel (HVOF) and high-velocity air fuel (HVAF) processes. The agglomerated tungsten carbide-cobalt powders were in either sintered or non-sintered conditions. The WDE tests were performed using 0.4 mm water droplets at 300 m/s impact velocity. The study shows promising results for this cermet as WDE-resistant coating when the coating can reach its optimum quality using the right thermal spray process and parameters.

  7. Elasticity and electrical properties of porous bodies described as an agglomerate-of-spheres

    NASA Astrophysics Data System (ADS)

    Höpfinger, H.; Winsel, A.

    The phenomenological characterization of a sintered, pressed or electrolytically produced porous body as an 'agglomerate-of-spheres' (AOS), estimated by the properties of their connections — the so-called necks—, was used to predict its break-force, elasticity and resistance. To this, the previous theoretical description of the AOS could be expanded by the definition of an ideal AOS. Furthermore, it could be shown, that the behaviour of the AOS is re-inforced by the relation of the radii of the sphere and neck. The description of the mechanical properties correlates well in the case of elasticity and breaktension with data of experiments at the University of Kassel with PbO 2-electrodes. The theoretically predicted values of the electrical properties are about a hundred times smaller than the experimental ones. This may be caused by the material-specific circuit capacity used for the PbO 2, since there are no data concerning the stoichiometric variance of the oxygen phase width in the neck region. An attempt to approach to real electrodes is only a trial, which, for the first time, takes experimental data into consideration. The lack of dependable material-specific sizes of lead dioxide is still the greatest inaccuracy in comparison with experimental data.

  8. Acoustic agglomeration of power plant fly ash: Quarterly technical report, November 5, 1986--February 5, 1987

    SciTech Connect

    Reethof, G.

    1987-03-20

    The objective of this project is to complete the investigations on the use of high intensity acoustic energy to agglomerate micron and submicron sized particulates in fly ash aerosols in order to provide the necessary scientific knowledge and design criteria for the specification of technically and economically viable intermediate flue gas treatment of coal fired power plants. The results of the project are to provide technical and economic information for the better development and evaluation of potential fine particulate control systems. The goals of the proposed work are to further the understanding of certain fundamental processes by means of theoretical and experimental investigations, to include this knowledge in an advanced computerized model of the agglomeration processes. Tests with the two acoustic agglomerators available in Penn State's new High Intensity Acoustics Laboratory will be used to verify the results from the agglomeration simulation. Research work will continue on high power, high efficiency sirens with special emphasis on the nonlinear acoustic phenomena and novel means of significantly increasing siren efficiency. A study will be carried out to evaluate the economics of conventional coal fired power plant clean-up systems using acoustic agglomerators as intermediate flue gas treatment.

  9. Acoustic agglomeration of power plant fly ash for environmental and hot gas cleanup

    SciTech Connect

    Reethof, G.; Koopmann, G.H.

    1989-12-01

    This two year research program has the objectives of completing the several investigations associated with the use of high intensity acoustic energy to agglomerate micron and submicron sized particles in fly ash aerosols in order to provide the necessary scientific knowledge and design criteria for the specification of technically and economically viable intermediate flue gas treatment of coal fired power plants. Goals are to further the understanding of certain fundamental processes by means of theoretical and experimental investigations to include this knowledge in an advanced computerized model of the agglomeration processes. Tests with the acoustic agglomeration facilities available in Penn State's new High Intensity Acoustic Laboratory were to be used to verify the results from the acoustic agglomeration simulations. Research work continued on high power, high efficiency sirens with special emphasis on the nonlinear acoustic phenomena and novel means of significantly increasing siren efficiency. A study was carried out to evaluate the economics of conventional coal fired power plant clean-up systems using acoustic agglomeration as an intermediate flue gas treatment. 154 refs., 152 figs., 30 tabs.

  10. h-multigrid agglomeration based solution strategies for discontinuous Galerkin discretizations of incompressible flow problems

    NASA Astrophysics Data System (ADS)

    Botti, L.; Colombo, A.; Bassi, F.

    2017-10-01

    In this work we exploit agglomeration based h-multigrid preconditioners to speed-up the iterative solution of discontinuous Galerkin discretizations of the Stokes and Navier-Stokes equations. As a distinctive feature h-coarsened mesh sequences are generated by recursive agglomeration of a fine grid, admitting arbitrarily unstructured grids of complex domains, and agglomeration based discontinuous Galerkin discretizations are employed to deal with agglomerated elements of coarse levels. Both the expense of building coarse grid operators and the performance of the resulting multigrid iteration are investigated. For the sake of efficiency coarse grid operators are inherited through element-by-element L2 projections, avoiding the cost of numerical integration over agglomerated elements. Specific care is devoted to the projection of viscous terms discretized by means of the BR2 dG method. We demonstrate that enforcing the correct amount of stabilization on coarse grids levels is mandatory for achieving uniform convergence with respect to the number of levels. The numerical solution of steady and unsteady, linear and non-linear problems is considered tackling challenging 2D test cases and 3D real life computations on parallel architectures. Significant execution time gains are documented.

  11. Thermal conductivity and particle agglomeration in alumina nanofluids: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Timofeeva, Elena V.; Gavrilov, Alexei N.; McCloskey, James M.; Tolmachev, Yuriy V.; Sprunt, Samuel; Lopatina, Lena M.; Selinger, Jonathan V.

    2007-12-01

    In recent years many experimentalists have reported an anomalously enhanced thermal conductivity in liquid suspensions of nanoparticles. Despite the importance of this effect for heat transfer applications, no agreement has emerged about the mechanism of this phenomenon, or even about the experimentally observed magnitude of the enhancement. To address these issues, this paper presents a combined experimental and theoretical study of heat conduction and particle agglomeration in nanofluids. On the experimental side, nanofluids of alumina particles in water and ethylene glycol are characterized using thermal conductivity measurements, viscosity measurements, dynamic light scattering, and other techniques. The results show that the particles are agglomerated, with an agglomeration state that evolves in time. The data also show that the thermal conductivity enhancement is within the range predicted by effective medium theory. On the theoretical side, a model is developed for heat conduction through a fluid containing nanoparticles and agglomerates of various geometries. The calculations show that elongated and dendritic structures are more efficient in enhancing the thermal conductivity than compact spherical structures of the same volume fraction, and that surface (Kapitza) resistance is the major factor resulting in the lower than effective medium conductivities measured in our experiments. Together, these results imply that the geometry, agglomeration state, and surface resistance of nanoparticles are the main variables controlling thermal conductivity enhancement in nanofluids.

  12. Cross hospital bed management system.

    PubMed

    Abedian, S; Kazemi, H; Riazi, H; Bitaraf, E

    2014-01-01

    The lack of adequate numbers of hospital beds to accommodate the injured is a main problem in public hospitals. For control of occupancy of bed, we design a dynamic system that announces status of bed when it change with admission or discharge of a patient. This system provide a wide network in country for bed management, especially for ICU and CCU beds that help us to distribute injured patient in the hospitals.

  13. Detection of patient's bed statuses in 3D using a Microsoft Kinect.

    PubMed

    Li, Yun; Berkowitz, Lyle; Noskin, Gary; Mehrotra, Sanjay

    2014-01-01

    Patients spend the vast majority of their hospital stay in an unmonitored bed where various mobility factors can impact patient safety and quality. Specifically, bed positioning and a patient's related mobility in that bed can have a profound impact on risks such as pneumonias, blood clots, bed ulcers and falls. This issue has been exacerbated as the nurse-per-bed (NPB) ratio has decreased in recent years. To help assess these risks, it is critical to monitor a hospital bed's positional status (BPS). Two bed positional statuses, bed height (BH) and bed chair angle (BCA), are of critical interests for bed monitoring. In this paper, we develop a bed positional status detection system using a single Microsoft Kinect. Experimental results show that we are able to achieve 94.5% and 93.0% overall accuracy of the estimated BCA and BH in a simulated patient's room environment.

  14. Bed Stability and Debris Flow Erosion: A Dynamic "Shields Criterion" Associated with Bed Structure

    NASA Astrophysics Data System (ADS)

    Longjas, A.; Hill, K. M.

    2015-12-01

    Debris flows are mass movements that play an important role in transporting sediment from steep uplands to rivers at lower slopes. As the debris flow moves downstream, it entrains materials such as loose boulders, gravel, sand and mud deposited locally by shorter flows such as slides and rockfalls. To capture the conditions under which debris flows entrain bed sediment, some models use something akin to the Shields' criterion and an excess shear stress of the flow. However, these models typically neglect granular-scale effects in the bed which can modify the conditions under which a debris flow is erosional or depositional. For example, it is well known that repeated shearing causes denser packing in loose dry soils, which undoubtedly changes their resistance to shear. Here, we present laboratory flume experiments showing that the conditions for entrainment by debris flows is significantly dependent on the aging of an erodible bed even for narrowly distributed spherical particles. We investigate this quantitatively using particle tracking measurements to quantify instantaneous erosion rates and the evolving bed structure or "fabric". With progressive experiments we find a signature that emerges in the bed fabric that is correlated with an increasing apparent "fragility" of the bed. Specifically, a system that is originally depositional may become erosional after repeated debris flow events, and an erodible bed becomes increasingly erodible with repeated flows. We hypothesize that related effects of bed aging at the field scale may be partly responsible for the increasing destructiveness of secondary flows of landslides and debris flows.

  15. Effect of bed rest and exercise on body balance

    NASA Technical Reports Server (NTRS)

    Haines, R. F.

    1974-01-01

    A battery of 11 body balance tests was administered to 7 men before and after 14 days of bedrest. Seven men who had not undergone bed rest served as controls. During bed rest, each subject underwent daily either isotonic, isometric, or no leg exercise. The results showed that, for the bed-rested no exercise, isotonic exercise, and isometric exercise groups, 2 weeks of bed rest produces significant body balance decrements on 3, 4, and 5 of the 11 tests, respectively. Daily leg exercise did not prevent the debilitating effects of bed rest on body balance. After bed rest, balance skill was relearned rapidly so that in most tests, performance had reached prebed-rest levels by the third recovery day. These data suggest that balance impairment is not due to loss of muscular strength in the legs but, perhaps, to a bed-rest-related change in the neurally coded information to postural control centers.

  16. Evaluation of fluid bed heat exchanger optimization parameters. Final report

    SciTech Connect

    Not Available

    1980-03-01

    Uncertainty in the relationship of specific bed material properties to gas-side heat transfer in fluidized beds has inhibited the search for optimum bed materials and has led to over-conservative assumptions in the design of fluid bed heat exchangers. An experimental program was carried out to isolate the effects of particle density, thermal conductivity, and heat capacitance upon fluid bed heat transfer. A total of 31 tests were run with 18 different bed material loads on 12 material types; particle size variations were tested on several material types. The conceptual design of a fluidized bed evaporator unit was completed for a diesel exhaust heat recovery system. The evaporator heat transfer surface area was substantially reduced while the physical dimensions of the unit increased. Despite the overall increase in unit size, the overall cost was reduced. A study of relative economics associated with bed material selection was conducted. For the fluidized bed evaporator, it was found that zircon sand was the best choice among materials tested in this program, and that the selection of bed material substantially influences the overall system costs. The optimized fluid bed heat exchanger has an estimated cost 19% below a fin augmented tubular heat exchanger; 31% below a commercial design fluid bed heat exchanger; and 50% below a conventional plain tube heat exchanger. The comparisons being made for a 9.6 x 10/sup 6/ Btu/h waste heat boiler. The fluidized bed approach potentially has other advantages such as resistance to fouling. It is recommended that a study be conducted to develop a systematic selection of bed materials for fluidized bed heat exchanger applications, based upon findings of the study reported herein.

  17. Bed load fluctuations in a steep channel

    NASA Astrophysics Data System (ADS)

    Ghilardi, Tamara; Franca, Mário J.; Schleiss, Anton J.

    2014-08-01

    Bed load transport rate fluctuations have been observed over time in steep rivers and flumes with wide grain size distributions even under constant sediment feeding and water discharge. The observed bed load transport rate pulses are periodic and a consequence of grain sorting. Moreover, the presence of large, relatively immobile boulders, such as erratic stones, which are often present in mountain streams, has an impact on flow conditions. The detailed analysis of a 13 h laboratory experiment is presented in this paper. Boulders were randomly placed in a flume with a steep slope (6.7%), and water and sediment were constantly supplied to the flume. Along with the sediment transport and bulk mean flow velocity, the boulder protrusion, boulder surface, and number of hydraulic jumps, which are indicators of the channel morphology, were measured regularly during the experiment. Periodic bed load transport rate pulses are clearly visible in the data collected during this long-duration experiment, along with correlated fluctuations in the flow velocity and bed morphology. The links among the bulk velocity, the time evolution of the morphology variables, and the bed load transport rate are analyzed via correlational analysis, showing that the fluctuations are strongly related. A phase analysis of all observed variables is performed, and the average shapes of the time cycles of the fluctuations are shown. Observations indicate that the detected periodic fluctuations correspond to different bed states. Furthermore, the grain size distribution through the channel, which varies in time and space, clearly influences these bed load transport rate pulses. Finally, known bed load transport rate formulae are tested, showing that only the application of a drag shear stress allows a correct estimation of the time fluctuations.

  18. Combustion of peanut and tamarind shells in a conical fluidized-bed combustor: a comparative study.

    PubMed

    Kuprianov, Vladimir I; Arromdee, Porametr

    2013-07-01

    Combustion of peanut and tamarind shells was studied in the conical fluidized-bed combustor using alumina sand as the bed material to prevent bed agglomeration. Morphological, thermogravimetric and kinetic characteristics were investigated to compare thermal and combustion reactivity between the biomass fuels. The thermogravimetric kinetics of the biomasses was fitted using the Coats-Redfern method. Experimental tests on the combustor were performed at 60 and 45 kg/h fuel feed rates, with excess air within 20-80%. Temperature and gas concentrations were measured along radial and axial directions in the reactor and at stack. The axial temperature and gas concentration profiles inside the combustor exhibited sensible effects of fuel properties and operating conditions on combustion and emission performance. High (≈ 99%) combustion efficiency and acceptable levels of CO, CxHy, and NO emissions are achievable when firing peanut shells at excess air of about 40%, whereas 60% is more preferable for burning tamarind shells.

  19. Silicon Chemical Vapor Deposition on macro and submicron powders in a fluidized bed

    SciTech Connect

    Cadoret, L.; Reuge, N; Pannala, Sreekanth; Syamlal, M; Rossignol, C; Dexpert-Ghys, J; Coufort, C; Caussat, B

    2009-01-01

    Titanium oxide (TiO2) submicron powders have been treated by Chemical Vapor Deposition (CVD) in a vibro-fluidized bed in order to deposit silicon layers of nanometer scale on each individual grain from silane (SiH4). Experimental results show that for the conditions tested, the original granular structure of the powders is preserved for 90% of the initial bed weight while the remaining 10% consisted of agglomerates in millimetre range found near the distributor of the reactor. A comparison between experimental and modelling results using the MFIX code shows that for Geldart's Group B alumina particles (Al2O3), the model represents both the bed hydrodynamics and silane conversion rates quite well. The future objective is to extend the simulation capability to cohesive submicron powders in order to achieve better predictability of the phenomena governing ultrafine particles.

  20. Particle-based simulations of powder coating in additive manufacturing suggest increase in powder bed roughness with coating speed

    NASA Astrophysics Data System (ADS)

    Parteli, Eric J. R.; Pöschel, Thorsten

    2017-06-01

    We have developed the first particle-based numerical tool to simulate the coating of powder particles in additive manufacturing devices. Our Discrete Element Method considers realistic particle shapes and incorporates attractive interaction (van-der-Waals) forces between the particles. From simulations of powder coating using a roller as coating device, we find that the surface roughness of the powder bed scales with the square of coating speed. Moreover, we find that using fine, highly polydisperse powders may lead to larger powder bed roughness, compared to process simulations using coarser powders, due to the formation of agglomerates resulting from cohesive forces.

  1. Process development for production of coal/sorbent agglomerates

    SciTech Connect

    Rapp, D.M.

    1991-01-01

    The goal of this work was to develop a process flow diagram to economically produce a clean-burning fuel from fine Illinois coal. To accomplish this, the process of pelletizing fine coal with calcium hydroxide, a sulfur capturing sorbent, was investigated. Carbonation, which is the reaction of calcium hydroxide with carbon dioxide (in the presence of moisture) to produce a bonding matrix of calcium carbonate, was investigated as a method for improving pellet quality and reducing binder costs. Proper moisture level is critical to allow the reaction to occur. If too much moisture is present in a pellet, the pore spaces are filled and carbon dioxide must diffuse through the water to reach the calcium hydroxide and react. This severely slows or stops the reaction. The ideal situation is when there is just enough moisture to coat the calcium hydroxide allowing for the reaction to proceed. The process has been successfully demonstrated on a pilot-scale as a method of hardening iron ore pellets (Imperato, 1966). Two potential combustion options are being considered for the coal/calcium hydroxide pellets: fluidized bed combustors and industrial stoker boilers.

  2. Treatment bed microbiological control

    NASA Technical Reports Server (NTRS)

    Janauer, Gilbert E.; Fitzpatrick, Timothy W.; Kril, Michael B.; Wilber, Georgia A.; Sauer, Richard L.

    1987-01-01

    The effects of microbial fouling on treatment bed (TB) performance are being studied. Fouling of activated carbon (AC) and ion exchange resins (IEX) by live and devitalized bacteria can cause decreased capacity for selected sorbates with AC and IEX TB. More data are needed on organic species removal in the trace region of solute sorption isotherms. TB colonization was prevented by nonclassical chemical disinfectant compositions (quaternary ammonium resins) applied in suitable configurations. Recently, the protection of carbon beds via direct disinfectant impregnation has shown promise. Effects (of impregnation) upon bed sorption/removal characteristics are to be studied with representative contaminants. The potential need to remove solutes added or produced during water disinfection and/or TB microbiological control must be investigated.

  3. Treatment bed microbiological control

    NASA Technical Reports Server (NTRS)

    Janauer, Gilbert E.; Fitzpatrick, Timothy W.; Kril, Michael B.; Wilber, Georgia A.; Sauer, Richard L.

    1987-01-01

    The effects of microbial fouling on treatment bed (TB) performance are being studied. Fouling of activated carbon (AC) and ion exchange resins (IEX) by live and devitalized bacteria can cause decreased capacity for selected sorbates with AC and IEX TB. More data are needed on organic species removal in the trace region of solute sorption isotherms. TB colonization was prevented by nonclassical chemical disinfectant compositions (quaternary ammonium resins) applied in suitable configurations. Recently, the protection of carbon beds via direct disinfectant impregnation has shown promise. Effects (of impregnation) upon bed sorption/removal characteristics are to be studied with representative contaminants. The potential need to remove solutes added or produced during water disinfection and/or TB microbiological control must be investigated.

  4. A Novel Equivalent Agglomeration Model for Heat Conduction Enhancement in Nanofluids

    NASA Astrophysics Data System (ADS)

    Sui, Jize; Zheng, Liancun; Zhang, Xinxin; Chen, Ying; Cheng, Zhengdong

    2016-01-01

    We propose a multilevel equivalent agglomeration (MEA) model in which all particles in an irregular cluster are treated as a new particle with equivalent volume, the liquid molecules wrapping the cluster and in the gaps are considered to assemble on the surface of new particle as mixing nanolayer (MNL), the thermal conductivity in MNL is assumed to satisfy exponential distribution. Theoretical predictions for thermal conductivity enhancement are highly in agreement with the classical experimental data. Also, we first try to employ TEM information quantitatively to offer probable reference agglomeration ratio (not necessary a very precise value) to just test rational estimations range by present model. The comparison results indicate the satisfactory priori agglomeration ratio estimations range from renovated model.

  5. A Novel Equivalent Agglomeration Model for Heat Conduction Enhancement in Nanofluids

    PubMed Central

    Sui, Jize; Zheng, Liancun; Zhang, Xinxin; Chen, Ying; Cheng, Zhengdong

    2016-01-01

    We propose a multilevel equivalent agglomeration (MEA) model in which all particles in an irregular cluster are treated as a new particle with equivalent volume, the liquid molecules wrapping the cluster and in the gaps are considered to assemble on the surface of new particle as mixing nanolayer (MNL), the thermal conductivity in MNL is assumed to satisfy exponential distribution. Theoretical predictions for thermal conductivity enhancement are highly in agreement with the classical experimental data. Also, we first try to employ TEM information quantitatively to offer probable reference agglomeration ratio (not necessary a very precise value) to just test rational estimations range by present model. The comparison results indicate the satisfactory priori agglomeration ratio estimations range from renovated model. PMID:26777389

  6. Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers

    PubMed Central

    Atif, Rasheed

    2016-01-01

    Summary One of the main issues in the production of polymer nanocomposites is the dispersion state of filler as multilayered graphene (MLG) and carbon nanotubes (CNTs) tend to agglomerate due to van der Waals forces. The agglomeration can be avoided by using organic solvents, selecting suitable dispersion and production methods, and functionalizing the fillers. Another proposed method is the use of hybrid fillers as synergistic effects can cause an improvement in the dispersion state of the fillers. In this review article, various aspects of each process that can help avoid filler agglomeration and improve dispersion state are discussed in detail. This review article would be helpful for both current and prospective researchers in the field of MLG- and CNT-based polymer nanocomposites to achieve maximum enhancement in mechanical, thermal, and electrical properties of produced polymer nanocomposites. PMID:27826492

  7. Flower-like agglomerates of hydroxyapatite crystals formed on an egg-shell membrane.

    PubMed

    Zhang, Ying; Liu, Yong; Ji, Xiaobo; Banks, Craig E; Song, Jiangfeng

    2011-02-01

    Flower-like hydroxyapatite agglomerates formed on the upper side and lower side of an egg-shell membrane were intensively investigated using a uniquely designed crystallizer. First the ion driving force was calculated in theory. In addition the influences of various factors, such as temperature, pH value, and holding time, on the morphology and crystallinity of the agglomerates were studied in detail by means of FESEM, TEM and XRD. It was found that flower-like hydroxyapatite agglomerates with high crystallinity can be produced under higher temperature, larger pH value, and moderated holding time. The information generated is relevant to the formation process of bone. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  8. Effect of whey protein agglomeration on spray dried microcapsules containing Saccharomyces boulardii.

    PubMed

    Duongthingoc, Diep; George, Paul; Katopo, Lita; Gorczyca, Elizabeth; Kasapis, Stefan

    2013-12-01

    This work investigates the effect of whey protein agglomeration on the survivability of Saccharomyces boulardii within spray dried microcapsules. It attempts to go beyond phenomenological observations by establishing a relationship between physicochemical characteristics of the polymeric matrix and its effect on probiotic endurance upon spray drying. It is well known that this type of thermal shock has lethal consequences on the yeast cells. To avoid such undesirable outcome, we take advantage of the early agglomeration phenomenon observed for whey protein by adjusting the pH value of preparations close to isoelectric point (pH 4-5). During the subsequent process of spray drying, development of whey protein agglomerates induces formation of an early crust, and the protein in this molten globular state creates a cohesive network encapsulating the yeast cells. It appears that the early crust formation at a given sample pH and temperature regime during spray drying benefits the survivability of S. boulardii within microcapsules.

  9. Directional Agglomeration Multigrid Techniques for High-Reynolds Number Viscous Flows

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    1998-01-01

    A preconditioned directional-implicit agglomeration algorithm is developed for solving two- and three-dimensional viscous flows on highly anisotropic unstructured meshes of mixed-element types. The multigrid smoother consists of a pre-conditioned point- or line-implicit solver which operates on lines constructed in the unstructured mesh using a weighted graph algorithm. Directional coarsening or agglomeration is achieved using a similar weighted graph algorithm. A tight coupling of the line construction and directional agglomeration algorithms enables the use of aggressive coarsening ratios in the multigrid algorithm, which in turn reduces the cost of a multigrid cycle. Convergence rates which are independent of the degree of grid stretching are demonstrated in both two and three dimensions. Further improvement of the three-dimensional convergence rates through a GMRES technique is also demonstrated.

  10. On the Mechanism of Ultrasound-Driven Deagglomeration of Nanoparticle Agglomerates in Aluminum Melt

    NASA Astrophysics Data System (ADS)

    Kudryashova, Olga; Vorozhtsov, Sergey

    2016-05-01

    One of the promising directions in the technology of composite alloys with improved mechanical properties is reinforcement of the metallic matrix with nanopowders introduced in the liquid metal. Ultrasonic processing is known to significantly improve the introduction of submicrone particles to the metallic melt. This study focuses on the mechanisms of deagglomeration and wettability of such particles by the melt under the action of ultrasound. The suggested mechanism involves the penetration of the liquid metal into the pores and cracks of the agglomerates under the excess pressure created by imploding cavitation bubbles and further destruction of the agglomerate by the sound wave. The main dependences connecting the acoustic parameters and processing time with the physical and chemical properties of particles and the melt are obtained through analytical modeling. The mathematical description of the ultrasonic deagglomeration in liquid metal is presented; a dependence of the threshold intensity of ultrasound for the break-up of agglomerates on their size is reported.

  11. Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers.

    PubMed

    Atif, Rasheed; Inam, Fawad

    2016-01-01

    One of the main issues in the production of polymer nanocomposites is the dispersion state of filler as multilayered graphene (MLG) and carbon nanotubes (CNTs) tend to agglomerate due to van der Waals forces. The agglomeration can be avoided by using organic solvents, selecting suitable dispersion and production methods, and functionalizing the fillers. Another proposed method is the use of hybrid fillers as synergistic effects can cause an improvement in the dispersion state of the fillers. In this review article, various aspects of each process that can help avoid filler agglomeration and improve dispersion state are discussed in detail. This review article would be helpful for both current and prospective researchers in the field of MLG- and CNT-based polymer nanocomposites to achieve maximum enhancement in mechanical, thermal, and electrical properties of produced polymer nanocomposites.

  12. The effect of weathering in the Buyukmelen River basin on the geochemistry of suspended and bed sediments and the hyrogeochemical characteristics of river water, Duzce, Turkey

    NASA Astrophysics Data System (ADS)

    Pehlivan, Rustem

    2010-07-01

    , and to quality class 2 based on Mn concentration in summer period. Chemical index of alteration (CIA) indices observed in the suspended and bed sediments (average of 55) suggest that their source area underwent moderate degrees of chemical weathering processes. According to Upper Continental Crust (UCC) values, the suspended sediment was rich in elements such as Fe 2O 3, CaO, MgO, MnO, TiO 2, P 2O 5, V, Cr, Co, Cu, Zn, As, Cd, Sb, Hg and Pb. The element concentrations of the suspended sediments were related to size fractionation, mainly of clay content. The mentioned enrichment was contributed by agglomerate, basalt, volcanic sandstone and graywacke from rocks in the study area. Source of ions such as Al, Fe, Mn, Ba, Cr, Co, Cu, Ni, Ti and Hg and major in the Buyukmelen River is interaction with rocks such as the agglomerate, basalt, andesite, volcanic sandstone and graywacke. As suggested by Singh et al. (2005), before weathering of some rocks in the Buyukmelen River basin, it was determined that they were graywacke and literanite based on the geochemistry of the suspended and bed sediments.

  13. Investigation of nanoparticle agglomeration on the effective thermal conductivity of a composite material

    NASA Astrophysics Data System (ADS)

    Webb, Anthony J.

    Phase Change Materials (PCMs), like paraffin wax, can be used for passive thermal management of portable electronics if their overall bulk thermal conductivity is increased through the addition of highly conducting nanoparticles. Finite Element Analysis (FEA) is used to investigate the influence of nanoparticle agglomeration on the overall conductive thermal transport in a nanoenhanced composite by dictating the thermal conductivity of individual elements according to their local inclusion volume fraction and characteristics inside a low conducting PCM matrix. The inclusion density distribution is dictated by an agglomeration factor, and the effective thermal conductivity of each element is calculated from the nanoparticle volume fraction using a method similar to the Representative Volume Element (RVE) methodology. FEA studies are performed for 2-D and 3-D models. In the 2-D model, the grain boundary is fixed at x = 0 for simplicity. For the 3-D model, the grain boundary geometry is randomly varied. A negligible 2-D effect on thermal transport in the 2-D model is seen, so a 1-D thermal resistance network is created for comparison, and the results agree within 4%.The influence of the agglomeration factor and contact Biot number on the overall bulk thermal conductivity is determined by applying Fourier's Law on the entire simulated composite. For the 2-D and 3-D models with a contact Biot number above 1, the overall bulk thermal conductivity decreases prior to the percolation threshold being met and then increases with increasing agglomeration. Finally, a MatlabRTM based image processing tool is created to estimate the agglomeration factor based on an experimental image of a nanoparticle distribution, with a calculated approximate agglomeration value of Beta*L = 5 which results in a bulk thermal conductivity of 0.278 W/(m-K).

  14. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies

    NASA Astrophysics Data System (ADS)

    Jiang, Jingkun; Oberdörster, Günter; Biswas, Pratim

    2009-01-01

    Characterizing the state of nanoparticles (such as size, surface charge, and degree of agglomeration) in aqueous suspensions and understanding the parameters that affect this state are imperative for toxicity investigations. In this study, the role of important factors such as solution ionic strength, pH, and particle surface chemistry that control nanoparticle dispersion was examined. The size and zeta potential of four TiO2 and three quantum dot samples dispersed in different solutions (including one physiological medium) were characterized. For 15 nm TiO2 dispersions, the increase of ionic strength from 0.001 M to 0.1 M led to a 50-fold increase in the hydrodynamic diameter, and the variation of pH resulted in significant change of particle surface charge and the hydrodynamic size. It was shown that both adsorbing multiply charged ions (e.g., pyrophosphate ions) onto the TiO2 nanoparticle surface and coating quantum dot nanocrystals with polymers (e.g., polyethylene glycol) suppressed agglomeration and stabilized the dispersions. DLVO theory was used to qualitatively understand nanoparticle dispersion stability. A methodology using different ultrasonication techniques (bath and probe) was developed to distinguish agglomerates from aggregates (strong bonds), and to estimate the extent of particle agglomeration. Probe ultrasonication performed better than bath ultrasonication in dispersing TiO2 agglomerates when the stabilizing agent sodium pyrophosphate was used. Commercially available Degussa P25 and in-house synthesized TiO2 nanoparticles were used to demonstrate identification of aggregated and agglomerated samples.

  15. The Safety of Hospital Beds

    PubMed Central

    Gervais, Pierre; Pooler, Charlotte; Merryweather, Andrew; Doig, Alexa K.; Bloswick, Donald

    2015-01-01

    To explore the safety of the standard and the low hospital bed, we report on a microanalysis of 15 patients’ ability to ingress, move about the bed, and egress. The 15 participants were purposefully selected with various disabilities. Bed conditions were randomized with side rails up or down and one low bed with side rails down. We explored the patients’ use of the side rails, bed height, ability to lift their legs onto the mattress, and ability to turn, egress, and walk back to the chair. The standard bed was too high for some participants, both for ingress and egress. Side rails were used by most participants when entering, turning in bed, and exiting. We recommend that side rails be reconsidered as a means to facilitate in-bed movement, ingress, and egress. Furthermore, single deck height settings for all patients are not optimal. Low beds as a safety measure must be re-evaluated. PMID:28462302

  16. Detailed analysis of a quench bomb for the study of aluminum agglomeration in solid propellants

    NASA Astrophysics Data System (ADS)

    Gallier, S.; Kratz, J.-G.; Quaglia, N.; Fouin, G.

    2016-07-01

    A standard quench bomb (QB) - widely used to characterize condensed phase from metalized solid propellant combustion - is studied in detail. Experimental and numerical investigations proved that collected particles are mostly unburned aluminum (Al) agglomerates despite large quenching distances. Particles are actually found to quench early as propellant surface is swept by inert pressurant. Further improvements of the QB are proposed which allow measuring both Al agglomerates and alumina residue with the same setup. Finally, the results obtained on a typical aluminized ammonium perchlorate (AP) / hydroxyl-terminated polybutadiene (HTPB) propellant are briefly discussed.

  17. Cross-channel patterns of bed material transport in a poorly sorted sand-bed channel

    NASA Astrophysics Data System (ADS)

    Haschenburger, J. K.

    2016-11-01

    Understanding of sediment transport comes largely from studies conducted on well-sorted sand-bed and poorly sorted gravel-bed channels. The aim of this study is to evaluate cross-channel patterns of transport rate and grain size in a poorly sorted sand-bed channel. Transport observations were collected from the San Antonio River using a Helley-Smith sampler during flows from 0.02 to 1.1 times bankfull capacity. Resulting transport rates and grain size distributions were pooled to describe eight sections across a channel transect that includes the lower bank and compared to local boundary material. Maximum transport rates are concentrated in the central zone of the streambed regardless of flow level, but gravels and coarse sands are conveyed preferentially on one side of the bed. Grain size distributions change relatively little with flow and approximate the local bed material supply. The size distributions associated with smaller transport rates near the channel margin become finer and more closely approximate the size characteristics of bank material at higher flows. Results extend patterns of differential routing of grain sizes to channel banks and establish the relative fluxes between the bed and bank environments. The small gravel content in poorly sorted sand beds requires further attention because it can contribute to cross-channel variation in sediment fluxes, limit the development of sandy bedforms, and influence the quality of streambed habitat.

  18. Water produced with coal-bed methane

    USGS Publications Warehouse

    ,

    2000-01-01

    Natural gas produced from coal beds (coal-bed methane, CBM) accounts for about 7.5 percent of the total natural gas production in the United States. Along with this gas, water is also brought to the surface. The amount of water produced from most CBM wells is relatively high compared to conventional natural gas wells because coal beds contain many fractures and pores that can contain and transmit large volumes of water. In some areas, coal beds may function as regional or local aquifers and important sources for ground water. The water in coal beds contributes to pressure in the reservoir that keeps methane gas adsorbed to the surface of the coal. This water must be removed by pumping in order to lower the pressure in the reservoir and stimulate desorption of methane from the coal (fi g. 1). Over time, volumes of pumped water typically decrease and the production of gas increases as coal beds near the well bore are dewatered.

  19. Sunburn related to UV radiation exposure, age, sex, occupation, and sun bed use based on time-stamped personal dosimetry and sun behavior diaries.

    PubMed

    Thieden, Elisabeth; Philipsen, Peter A; Sandby-Møller, Jane; Wulf, Hans Christian

    2005-04-01

    To assess when sunburn occurs and who experiences sunburn by personal UV dosimetry and diaries. Open prospective observational study. University hospital. A convenience sample of 340 Danish volunteers: children, adolescents, indoor workers, sun worshippers, golfers, and gardeners (age range, 4-68 years). Subjects recorded sunburn and sun-exposure behavior in diaries and carried personal, electronic, wristwatch UV radiation (UVR) dosimeters that measured time-stamped UVR doses continuously for a median of 119 days covering 346 sun-years (1 sun-year equals 1 subject participating during 1 summer half-year). A typical sunburn day was a day off work (91%; odds ratio, 4.1) with risk behavior (sunbathing/exposing shoulders) (79%; odds ratio, 15.9) in May, June, or July (90%) for 6.4 exposure hours (interquartile range, 5-7.7 hours), of which 2.8 hours fell between noon and 3 pm. Subjects had a median of 1 sunburn per sun-year; adolescents, sun worshippers, and indoor workers had more than children, golfers, and gardeners (P<.05). Sunburn peaked at age 20 years, and female subjects had more sunburns than male subjects (P<.01). Skin type IV had fewer sunburns than types I through III (P<.01). Sunburned persons had more risk-behavior days and lower skin type (P<.01) than nonsunburned persons. The median UVR doses received were significantly higher on sunburn days than on nonsunburn days with risk behavior (P<.01). There was a significant correlation between sunburn size and severity; sunburn and sunscreen use; and sunburn and sun-bed use (P<.01 for all 3 comparisons). Sunburn was highly correlated with risk behavior. Reduction of risk-behavior days and/or exposure hours around noon can reduce sunburn. Sunburn was not found during breaks on normal full-time indoor work or school days.

  20. Distributor for multistage fluidized beds

    SciTech Connect

    Wormser, A.

    1992-06-16

    This patent describes a multibed fluidized bed system. It comprises a fluidized bed vessel having a casing surrounding a first distributor and a second distributor downstream from the first distributor; a first bed material placed on the first distributor and a second bed material placed on the second distributor; each of the bed materials having an angle of repose; and wherein the angle formed by the substantially straight elongated tubular passages and the upper surface is less than the angle of repose of the second bed material.

  1. Fluid bed material transfer method

    DOEpatents

    Pinske, Jr., Edward E.

    1994-01-01

    A fluidized bed apparatus comprising a pair of separated fluid bed enclosures, each enclosing a fluid bed carried on an air distributor plate supplied with fluidizing air from below the plate. At least one equalizing duct extending through sidewalls of both fluid bed enclosures and flexibly engaged therewith to communicate the fluid beds with each other. The equalizing duct being surrounded by insulation which is in turn encased by an outer duct having expansion means and being fixed between the sidewalls of the fluid bed enclosures.

  2. MICROTURBULENCE IN GRAVEL BED STREAMS

    NASA Astrophysics Data System (ADS)

    Papanicolaou, T.; Tsakiris, A. G.; Kramer, C. M.

    2009-12-01

    The overarching objective of this investigation was to evaluate the role of relative submergence on the formation and evolution of cluster microforms in gravel bed streams and its implications to bedload transport. Secondary objectives of this research included (1) a detailed analysis of mean flow measurements around a clast; and (2) a selected number of experimental runs where the mean flow characteristics are linked together with the bed micro-topography observations around a clast. It is hypothesized that the relative submergence is an important parameter in defining the feedback processes between the flow and clasts, which governs the flow patterns around the clasts, thus directly affecting the depositional patterns of the incoming sediments. To examine the validity of the hypothesis and meet the objectives of this research, 19 detailed experimental runs were conducted in a tilting, water recirculating laboratory flume under well-controlled conditions. A fixed array of clast-obstacles were placed atop a well-packed bed with uniform size glass beads. During the runs, multifractional spherical particles were fed upstream of the clast section at a predetermined rate. State-of-the-art techniques/instruments, such as imaging analysis software, Large Scale Particle Velocimeter (LSPIV) and an Acoustic Doppler Velocimetry (ADV) were employed to provide unique quantitative measurements for bedload fluxes, clast/clusters geomorphic patterns, and mean flow characteristics in the vicinity of the clusters. Different flow patterns were recorded for the high relative submergence (HRS) and low relative submergence (LRS) experimental runs. The ADV measurements provided improved insight about the governing flow mechanisms for the HRS runs. These mechanisms were described with flow upwelling at the center of the flume and downwelling occurring along the flume walls. Flow downwelling corresponded to an increase in the free surface velocity. Additionally, the visual observations

  3. Method and equipment for treatment of fuel for fluidized bed combustion

    SciTech Connect

    Beranek, J.; Cermak, J.; Dobrozemsky, J.; Fibinger, V.

    1982-04-20

    The invention relates to the method and equipment for treatment of fuel for fluidized bed combustion, which includes drying, classification and crushing of the fuel. The method for treatment of fuel comprises mixing the fuel with hot ash removed from the fluidized bed combustor and drying said mixture in a fluidized bed dryer in which the velocity of the fluidization fluid equals or is lower than the minimum fluidization velocity of particles in the fluidized bed combustor. The equipment for treatment of fuel comprises a bunker, crusher and dryer, comprising a fluidized bed dryer provided with appropriate piping for interconnection of the fluidized bed dryer, fluidized bed combuster, fuel bunker and crusher.

  4. Method and equipment for treatment of fuel for fluidized bed combustion

    SciTech Connect

    Beranek, J.; Dobrozemsky, J.; Fibinger, V.; Germak, J.

    1983-11-15

    The invention relates to the method and equipment for treatment of fuel for fluidized bed combustion, which includes drying, classification and crushing of the fuel. The method for treatment of fuel comprises mixing the fuel with hot ash removed from the fluidized bed combustor and drying said mixture in a fluidized bed dryer in which the velocity of the fluidization fluid equals or is lower than the minimum fluidization velocity of particles in the fluidized bed combustor. The equipment for treatment of fuel comprises a bunker, crusher and dryer, comprising a fluidized bed dryer provided with appropriate piping for interconnection of the fluidized bed dryer, fluidized bed combustor, fuel bunker and crusher.

  5. Bed Bug Myths

    EPA Pesticide Factsheets

    Learn the truth about bed bugs, such as how easy they are to see with the naked eye, their preferred habitat, whether they transmit diseases, their public health effects, and whether pesticides are the best way to deal with an infestation.

  6. MULTISTAGE FLUIDIZED BED REACTOR

    DOEpatents

    Jonke, A.A.; Graae, J.E.A.; Levitz, N.M.

    1959-11-01

    A multistage fluidized bed reactor is described in which each of a number of stages is arranged with respect to an associated baffle so that a fluidizing gas flows upward and a granular solid downward through the stages and baffles, whereas the granular solid stopsflowing downward when the flow of fluidizing gas is shut off.

  7. Deep Space Test Bed

    NASA Technical Reports Server (NTRS)

    Milton, Martha E.

    2005-01-01

    This viewgraph presentation describes the Deep Space Test Bed (DSTB), a balloon-borne device which can expose multiple payloads to the interplanetary Galactic Cosmic Ray environment on high altitude polar balloon flights. The DSTB is carried by National Scientific Balloon Facility (NSBF) Long Duration Balloons on polar flights so that its balloon-borne experiments can avoid geomagnetic cut-offs.

  8. Influence of bedding material on ammonia emissions from cattle excreta.

    PubMed

    Misselbrook, T H; Powell, J M

    2005-12-01

    Dairy cattle barns are a major source of NH3 emissions to the atmosphere. Previous studies have shown that the bedding material used in the barn can influence the magnitude of NH3 emissions, but little is known about which bedding characteristics are important in this respect. The aims of this study were to assess, at a laboratory scale, the relative importance of the chemical [pH, cation exchange capacity (CEC), C:N] and physical (urine absorbance capacity, bulk density) characteristics of 5 bedding materials (chopped wheat straw, sand, pine shavings, chopped newspaper, chopped corn stalks, and recycled manure solids) on NH3 emissions from dairy cattle urine. Recycled manure solids were the most absorbent of the bedding types (4.2 g of urine/g of bedding), and sand was the least (0.3 g of urine/g of bedding). When beddings were soaked in urine to their absorbance capacities, NH3 emissions over 48 h (expressed as a proportion of the urine N absorbed) were not significantly different among bedding types, despite differences in initial bedding pH, CEC, and C:N. When equal volumes of urine were applied to equal depths of dry bedding, NH3 emissions over 48 h were significantly less from sand and pine shavings (23 and 42% of applied urine N, respectively) than from chopped newspaper, chopped corn stalks, and recycled manure solids (62, 68, and 65% of applied urine N, respectively), whereas emissions from chopped wheat straw (55% applied urine N) only differed significantly from that from sand. Differences in the chemical characteristics of the beddings did not explain differences in emission; NH3 emissions increased linearly with CEC contrary to expectations, and there was no significant relationship with initial bedding pH. The physical characteristics of bedding materials were of more importance, as NH3 emissions increased linearly with absorbance capacity and decreased as the bulk density of the packed beddings increased.

  9. The ebbs and flows of changing acute bed capacity delays.

    PubMed

    Zeitz, Kathryn M; Carter, Libby; Robinson, Craig

    2013-02-01

    This case study provides a summary of changes in acute hospital bed delays that have occurred over a 4-year period as identified through a Capacity Audit process. Royal Adelaide Hospital (RAH) designed a Capacity Audit process and tool that provides a systematic method to evaluate factors limiting access to inpatient bed capacity. The aim of the audit is to improve understanding of bed capacity by identifying key causes of delay for hospital inpatients and quantify the most frequent causes of blocked bed capacity. This can then be used to underpin targeted improvement work. The Capacity Audit has been undertaken at the RAH over three cycles. The Capacity Audit involves a survey of every open and staffed bed, identifying how the bed is being used: for acute care or treatment, if there was a delay to the patient for discharge, or if the bed was unavailable. The first and second cycle of the audit (2007-2008) involved a twice-daily survey over a 2-week period and the third audit cycle in 2010 occurred once daily for 1 week. On average, 620 beds were surveyed daily with an audit compliance rate ranging from 85-97%. This process has revealed almost 75% of beds are used positively for care. Of the remaining 25% of hidden capacity identified, non-clinical discharge delays account for 10% of total beds surveyed. Waiting for post-acute beds has consistently remained the main cause of acute bed delay. The Capacity Audit process and tool has been used to track progress, trends and change resulting from service improvement efforts, and to provide the evidence to commence strategies to reduce the hidden capacity issues. This case study has shown that whilst overall bed stock usage for positive care has not changed significantly there are various ebbs and flows over time in relation to the reasons for bed delays.

  10. Urban influence on increasing ozone concentrations in a characteristic Mediterranean agglomeration

    NASA Astrophysics Data System (ADS)

    Escudero, M.; Lozano, A.; Hierro, J.; Valle, J. del; Mantilla, E.

    2014-12-01

    Air quality in cities has been extensively studied due to the high population density potentially exposed to high levels of pollutants. The main problems in urban areas have been related to particulate matter (PM) and NO2. Less attention has been directed towards O3 because urban levels are generally lower than those recorded in rural areas. The implementation of air quality plans, together with technological improvements, have resulted in reductions of PM and NO2 levels in many European cities. In contrast, urban O3 levels have experimented increases which may respond to declining NOx emission trends. It is therefore necessary to intensify the study of urban O3 and its potential relation with NOx variations. In the agglomeration of Zaragoza (NE Spain), traffic circulation through the centre has dropped by 28.3% since 2008 due to several factors such as the implementation of a mobility plan, the completion of major construction projects and the economic crisis in Spain. The study of this case offers a unique opportunity to evaluate the impact of reductions in NOx emissions on the levels of O3 in a characteristic Mediterranean city. This work analyses the variability and trends of ambient air levels of O3 and NOx in Zaragoza and the Ebro valley from 2007 to 2012. Results demonstrate that, although the main factor explaining O3 variability is still linked to meteorology, changes in NOx emissions strongly influence O3 variability and trends, mainly due to interaction with fresh NO. Specific analysis of the O3 "weekend effect" show a significant correlation (r2 = 0.81) between the drop of NO concentrations (associated to emissions) and the increment of O3 levels during weekends. Moreover, trend analyses reveal that the decline in NOx emissions in Zaragoza from 2007 to 2012 can be associated with significant increments in O3 levels.

  11. Fine bed material in pools of natural gravel bed channels

    Treesearch

    Thomas E. Lisle; Sue Hilton

    1999-01-01

    Abstract - Natural gravel bed channels commonly contain a fine mode of sand and fine gravel that fills voids of the bed framework of coarser gravel. If the supply of fine bed material exceeds the storage capacity of framework voids, excess fine material forms surficial patches, which can be voluminous in pools during low flow. Data collected in 34 natural channels in...

  12. Bed load transport in gravel-bed rivers

    Treesearch

    Jeffrey J. Barry

    2007-01-01

    Bed load transport is a fundamental physical process in alluvial rivers, building and maintaining a channel geometry that reflects both the quantity and timing of water and the volume and caliber of sediment delivered from the watershed. A variety of formulae have been developed to predict bed load transport in gravel-bed rivers, but testing of the equations in natural...

  13. Application of Dynamic Light Scattering to Characterize Nanoparticle Agglomeration in Alumina Nanofluids and its Effect on Thermal Conductivity

    DTIC Science & Technology

    2012-07-11

    Application of Dynamic Light Scattering to Characterize Nanoparticle Agglomeration in Alumina Nanofluids and its Effect on Thermal Conductivity Bridget...increased thermal conductivity and increased heat transfer potential. In practical applications, these particles agglomerate in nanofluid to form...aggregates, as opposed to completely dispersing in the base fluid. The resulting nanofluid has a size distribution of aggregated nanoparticles at different

  14. Micro-agglomerate flotation for deep cleaning of coal. Quarterly progress report, April 1--June 30, 1993

    SciTech Connect

    Chander, S.; Hogg, R.

    1993-07-01

    The goals of this research program are to demonstrate the technical and economic feasibility of a micro-agglomerate flotation process and to establish the essential criteria for reagent selection and system design and operation. The development of practical technologies for the deep cleaning of coal has been seriously hampered by the problems of carrying out efficient coal/mineral separations at the very fine sizes (often finer than 10 {mu}m) needed to achieve adequate liberation of the mineral matter from the coal matrix. It is generally recognized that surface-based separation processes such as froth flotation or selective agglomeration offer considerable potential for such applications but there remain many problems in obtaining the required selectivity with acceptable recovery of combustible matter. In froth flotation, selectivity is substantially reduced at fine sizes due, primarily, to overloading of the froth phase which leads to excessive carryover of water and entrained mineral matter. Oil agglomeration, on the other hand, can provide good selectivity at low levels of oil addition but the agglomerates tend to be too fragile for separation by the screening methods normally used. The addition of larger amounts of oil can yield large, strong agglomerates which are easily separated but the selectivity is reduced and reagent costs can become excessive. We are investigating the use of a hybrid process -- Micro-agglomerate flotation -- which is a combination of oil agglomeration and froth flotation. The basic concept is to use small quantities of oil to promote the formation of dense micro-agglomerates.

  15. Bed occupancy. Don't take it lying down.

    PubMed

    Jones, R

    2001-04-26

    There is no standard optimum occupancy rate for hospitals. Bed occupancy rates must be considered in relation to the number of beds in a hospital. In general, a large hospital operating the same occupancy rate as a small one will have to turn away fewer patients. The bed needs of each trust need to be analysed in greater detail than has previously been the case.

  16. Bed Bug Clearinghouse by Topic

    EPA Pesticide Factsheets

    This information is intended to help states, communities, and consumers prevent and control bed bug infestations. Topics include bed bug biology and behavior, detection and monitoring, non-chemical techniques such as heat treatment, and pesticides.

  17. Characterization and separation of ash from CANMET coprocessing residue by oil phase agglomeration techniques

    SciTech Connect

    Majid, A.; Coleman, R.D.; Toll, R.; Pleizier, G.; Deslandes, Y.; Sparks, B.D.; Ikura, M.

    1993-12-31

    CANMET`s coal/heavy oil coprocessing unit yields a solid residue that contains most of the ash originally associated with the feed coal as well as reacted catalyst solids. Removal of these ash solids would make it possible to recycle the material to extinction, thereby increasing production of lighter oils. In this investigation the authors have used surface characterization techniques such as Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis (EDXA) and X-ray Photoelectron Spectroscopy (XPS) to characterize toluene insoluble solids associated with the pitch residue, in order to evaluate the separation potential using oil phase agglomeration techniques. Washability studies using float-sink tests were also carried out to determine empirically the level of ash separation attainable. Based on the results of these studies several tests were carried out to beneficiate the organic matter in the residue pitch, by using liquid phase agglomeration techniques. Levels of ash rejection in these tests ranged from 20% to 40%. SEM and EDXA analysis of the agglomerated product and the reject material and Inductively Coupled Plasma (ICP) analysis of the ash from both materials suggest that most of the iron from added catalyst is retained in the agglomerates.

  18. Direct numerical simulations of agglomeration of circular colloidal particles in two-dimensional shear flow

    SciTech Connect

    Choi, Young Joon Djilali, Ned

    2016-01-15

    Colloidal agglomeration of nanoparticles in shear flow is investigated by solving the fluid-particle and particle-particle interactions in a 2D system. We use an extended finite element method in which the dynamics of the particles is solved in a fully coupled manner with the flow, allowing an accurate description of the fluid-particle interfaces without the need of boundary-fitted meshes or of empirical correlations to account for the hydrodynamic interactions between the particles. Adaptive local mesh refinement using a grid deformation method is incorporated with the fluid-structure interaction algorithm, and the particle-particle interaction at the microscopic level is modeled using the Lennard-Jones potential. Motivated by the process used in fabricating fuel cell catalysts from a colloidal ink, the model is applied to investigate agglomeration of colloidal particles under external shear flow in a sliding bi-periodic Lees-Edwards frame with varying shear rates and particle fraction ratios. Both external shear and particle fraction are found to have a crucial impact on the structure formation of colloidal particles in a suspension. Segregation intensity and graph theory are used to analyze the underlying agglomeration patterns and structures, and three agglomeration regimes are identified.

  19. Agglomeration of Celecoxib by Quasi Emulsion Solvent Diffusion Method: Effect of Stabilizer.

    PubMed

    Maghsoodi, Maryam; Nokhodchi, Ali

    2016-12-01

    Purpose: The quasi-emulsion solvent diffusion (QESD) has evolved into an effective technique to manufacture agglomerates of API crystals. Although, the proposed technique showed benefits, such as cost effectiveness, that is considerably sensitive to the choice of a stabilizer, which agonizes from a absence of systemic understanding in this field. In the present study, the combination of different solvents and stabilizers were compared to investigate any connections between the solvents and stabilizers. Methods: Agglomerates of celecoxib were prepared by QESD method using four different stabilizers (Tween 80, HPMC, PVP and SLS) and three different solvents (methyl acetate, ethyl acetate and isopropyl acetate). The solid state of obtained particles was investigated by differential scanning calorimetry (DSC) and Fourier transform infrared (FT-IR) spectroscopy. The agglomerated were also evaluated in term of production yield, distribution of particles and dissolution behavior. Results: The results showed that the effectiveness of stabilizer in terms of particle size and particle size distribution is specific to each solvent candidate. A stabilizer with a lower HLB value is preferred which actually increased its effectiveness with the solvent candidates with higher lipophilicity. HPMC appeared to be the most versatile stabilizer because it showed a better stabilizing effect compared to other stabilizers in all solvents used. Conclusion: This study demonstrated that the efficiency of stabilizers in forming the celecoxib agglomerates by QESD was influenced by the HLB of the stabilizer and lipophilicity of the solvents.

  20. Preparation of agglomeration-free hematite particles coated with silica and their reduction behavior in hydrogen.

    PubMed

    Iijima, Motoyuki; Yonemochi, Yuichi; Kimata, Mitsumasa; Hasegawa, Masahiro; Tsukada, Mayumi; Kamiya, Hidehiro

    2005-07-15

    To prepare silica-coated hematite particles without agglomeration, the effects of solid fraction, ion content in solution, and designed layer thickness on agglomeration and dispersion behavior after silica coating were examined. Since the ion concentration remained high in suspension after the hematite particles were prepared, these particles formed aggregates by the compression of an electric double layer on the hematite and silica layer produced a solid bridge between primary hematite particles. Silica bridge formation and agglomeration were almost completely prevented by decreasing the ion concentration and solid fraction of the hematite particles. Furthermore, the effects of the silica-layer thickness and structure on the reduction of hematite to iron under hydrogen gas flow and the iron core stability under air were discussed. When the solid fraction was low in suspension to prevent agglomeration during coating, a densely packed structure of nanoparticles formed by heterogeneous nucleation was observed on the silica-layer surface. Since this structure could not completely prevent oxide diffusion, the layer thickness was increased to 40 nm to obtain a stable iron core under air. Although a dense uniform layer was produced at a high solid fraction during coating, its thickness was reduced to 20 nm to completely reduce hematite to iron.