Science.gov

Sample records for related human engineering

  1. DRUMS: a human disease related unique gene mutation search engine.

    PubMed

    Li, Zuofeng; Liu, Xingnan; Wen, Jingran; Xu, Ye; Zhao, Xin; Li, Xuan; Liu, Lei; Zhang, Xiaoyan

    2011-10-01

    With the completion of the human genome project and the development of new methods for gene variant detection, the integration of mutation data and its phenotypic consequences has become more important than ever. Among all available resources, locus-specific databases (LSDBs) curate one or more specific genes' mutation data along with high-quality phenotypes. Although some genotype-phenotype data from LSDB have been integrated into central databases little effort has been made to integrate all these data by a search engine approach. In this work, we have developed disease related unique gene mutation search engine (DRUMS), a search engine for human disease related unique gene mutation as a convenient tool for biologists or physicians to retrieve gene variant and related phenotype information. Gene variant and phenotype information were stored in a gene-centred relational database. Moreover, the relationships between mutations and diseases were indexed by the uniform resource identifier from LSDB, or another central database. By querying DRUMS, users can access the most popular mutation databases under one interface. DRUMS could be treated as a domain specific search engine. By using web crawling, indexing, and searching technologies, it provides a competitively efficient interface for searching and retrieving mutation data and their relationships to diseases. The present system is freely accessible at http://www.scbit.org/glif/new/drums/index.html.

  2. Training in Human Relations for Engineers at the Ecole Superieure D'Informatique-Electronique-Automatique (ESIEA).

    ERIC Educational Resources Information Center

    Lafargue, M.; And Others

    1986-01-01

    Points out the need to provide engineers with training in human relations. Describes the process of developing a document defining the problem and steps to be taken toward solution, submitted to students for their evaluation. (JM)

  3. Training in Human Relations for Engineers at the Ecole Superieure D'Informatique-Electronique-Automatique (ESIEA).

    ERIC Educational Resources Information Center

    Lafargue, M.; And Others

    1986-01-01

    Points out the need to provide engineers with training in human relations. Describes the process of developing a document defining the problem and steps to be taken toward solution, submitted to students for their evaluation. (JM)

  4. Engineered human vaccines

    SciTech Connect

    Sandhu, J.S. . Div. of Immunology and Neurobiology)

    1994-01-01

    The limitations of human vaccines in use at present and the design requirements for a new generation of human vaccines are discussed. The progress in engineering of human vaccines for bacteria, viruses, parasites, and cancer is reviewed, and the data from human studies with the engineered vaccines are discussed, especially for cancer and AIDS vaccines. The final section of the review deals with the possible future developments in the field of engineered human vaccines and the requirement for effective new human adjuvants.

  5. Technical issues related to NUREG 0800, Chapter 18: Human Factors Engineering/Standard Review Plan

    SciTech Connect

    Savage, J.W.

    1982-11-05

    The revision of Chapter 18 of NUREG 0800, Human Factors Engineering Standard Review Plan (SRP) will be based on SECY 82-111 and guidance contained in NUREG 0700, NUREG 0801 and NUREG 0835, plus other references. In conducting field reviews of control rooms, the NRC has identified technical issues which can be used to enhance the development of the revised version of NUREG 0800, and to establish priorities among the list of possible Branch Technical Positions (BTP) in NUREG 0800, Rev. 0, Table 18.0-2. This report is a compilation of comments and suggestions from the people who used NUREG 0700 in the Control Room field reviews. This information was used to establish possible BTP topic priorities so that the most important BTPs could be issued first. The comments and suggestions are included for HFEB review in conjunction with the table of priorities.

  6. Software Engineering for Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven E.

    2014-01-01

    The Spacecraft Software Engineering Branch of NASA Johnson Space Center (JSC) provides world-class products, leadership, and technical expertise in software engineering, processes, technology, and systems management for human spaceflight. The branch contributes to major NASA programs (e.g. ISS, MPCV/Orion) with in-house software development and prime contractor oversight, and maintains the JSC Engineering Directorate CMMI rating for flight software development. Software engineering teams work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements. They seek to infuse automation and autonomy into missions, and apply new technologies to flight processor and computational architectures. This presentation will provide an overview of key software-related projects, software methodologies and tools, and technology pursuits of interest to the JSC Spacecraft Software Engineering Branch.

  7. ANTHROPOMETRY AND HUMAN ENGINEERING.

    DTIC Science & Technology

    de l’armee de l’air francaise; Sheldon types and success in flight performance; Adapting the aeroplane to the pilot; Instrument dials, instrument...establishment of a longitudinal study of the medical and psychological aspects of the U.S. naval aviator; Somatotyping ; Human factors in aircraft design.

  8. Tissue engineering a human phalanx.

    PubMed

    Landis, W J; Chubinskaya, S; Tokui, T; Wada, Y; Isogai, N; Jacquet, R

    2016-03-21

    A principal purpose of tissue engineering is the augmentation, repair or replacement of diseased or injured human tissue. This study was undertaken to determine whether human biopsies as a cell source could be utilized for successful engineering of human phalanges consisting of both bone and cartilage. This paper reports the use of cadaveric human chondrocytes and periosteum as a model for the development of phalanx constructs. Two factors, osteogenic protein-1 [OP-1/bone morphogenetic protein-7 (BMP7)], alone or combined with insulin-like growth factor (IGF-1), were examined for their potential enhancement of chondrocytes and their secreted extracellular matrices. Design of the study included culture of chondrocytes and periosteum on biodegradable polyglycolic acid (PGA) and poly-l-lactic acid (PLLA)-poly-ε-caprolactone (PCL) scaffolds and subsequent implantation in athymic nu/nu (nude) mice for 5, 20, 40 and 60 weeks. Engineered constructs retrieved from mice were characterized with regard to genotype and phenotype as a function of developmental (implantation) time. Assessments included gross observation, X-ray radiography or microcomputed tomography, histology and gene expression. The resulting data showed that human cell-scaffold constructs could be successfully developed over 60 weeks, despite variability in donor age. Cartilage formation of the distal phalanx models enhanced with both OP-1 and IGF-1 yielded more cells and extracellular matrix (collagen and proteoglycans) than control chondrocytes without added factors. Summary data demonstrated that human distal phalanx models utilizing cadaveric chondrocytes and periosteum were successfully fabricated and OP-1 and OP-1/IGF-1 accelerated construct development and mineralization. The results suggest that similar engineering and transplantation of human autologous tissues in patients are clinically feasible. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Genome engineering in human cells.

    PubMed

    Song, Minjung; Kim, Young-Hoon; Kim, Jin-Soo; Kim, Hyongbum

    2014-01-01

    Genome editing in human cells is of great value in research, medicine, and biotechnology. Programmable nucleases including zinc-finger nucleases, transcription activator-like effector nucleases, and RNA-guided engineered nucleases recognize a specific target sequence and make a double-strand break at that site, which can result in gene disruption, gene insertion, gene correction, or chromosomal rearrangements. The target sequence complexities of these programmable nucleases are higher than 3.2 mega base pairs, the size of the haploid human genome. Here, we briefly introduce the structure of the human genome and the characteristics of each programmable nuclease, and review their applications in human cells including pluripotent stem cells. In addition, we discuss various delivery methods for nucleases, programmable nickases, and enrichment of gene-edited human cells, all of which facilitate efficient and precise genome editing in human cells.

  10. Tissue Engineered Human Skin Equivalents

    PubMed Central

    Zhang, Zheng; Michniak-Kohn, Bozena B.

    2012-01-01

    Human skin not only serves as an important barrier against the penetration of exogenous substances into the body, but also provides a potential avenue for the transport of functional active drugs/reagents/ingredients into the skin (topical delivery) and/or the body (transdermal delivery). In the past three decades, research and development in human skin equivalents have advanced in parallel with those in tissue engineering and regenerative medicine. The human skin equivalents are used commercially as clinical skin substitutes and as models for permeation and toxicity screening. Several academic laboratories have developed their own human skin equivalent models and applied these models for studying skin permeation, corrosivity and irritation, compound toxicity, biochemistry, metabolism and cellular pharmacology. Various aspects of the state of the art of human skin equivalents are reviewed and discussed. PMID:24300178

  11. Human Genetic Engineering: A Survey of Student Value Stances

    ERIC Educational Resources Information Center

    Wilson, Sara McCormack; And Others

    1975-01-01

    Assesses the values of high school and college students relative to human genetic engineering and recommends that biology educators explore instructional strategies merging human genetic information with value clarification techniques. (LS)

  12. Human Genetic Engineering: A Survey of Student Value Stances

    ERIC Educational Resources Information Center

    Wilson, Sara McCormack; And Others

    1975-01-01

    Assesses the values of high school and college students relative to human genetic engineering and recommends that biology educators explore instructional strategies merging human genetic information with value clarification techniques. (LS)

  13. Human Systems Engineering and Program Success - A Retrospective Content Analysis

    DTIC Science & Technology

    2016-01-01

    costs related to human performance (e.g., Human Total Ownership Cost) early in the life cycle will lead to schedule overruns, diminished system...FIGURE 1. VENN DIAGRAM OF INTERRELATIONSHIPS AMONG WEAPON SYSTEMS, HSI, AND LIFE-CYCLE COST, PERFORMANCE , AND SCHEDULE Weapon Systems Human ...MANPRINT) Human Factors Engineering fatigue, human , people, perform , performance , performed , performing , performs , situational awareness, troops

  14. Human progenitor cells for bone engineering applications.

    PubMed

    de Peppo, G M; Thomsen, P; Karlsson, C; Strehl, R; Lindahl, A; Hyllner, J

    2013-06-01

    In this report, the authors review the human skeleton and the increasing burden of bone deficiencies, the limitations encountered with the current treatments and the opportunities provided by the emerging field of cell-based bone engineering. Special emphasis is placed on different sources of human progenitor cells, as well as their pros and cons in relation to their utilization for the large-scale construction of functional bone-engineered substitutes for clinical applications. It is concluded that, human pluripotent stem cells represent a valuable source for the derivation of progenitor cells, which combine the advantages of both embryonic and adult stem cells, and indeed display high potential for the construction of functional substitutes for bone replacement therapies.

  15. Engineered autonomous human variable domains

    PubMed Central

    Nilvebrant, Johan; Tessier, Peter M.; Sidhu, Sachdev S.

    2017-01-01

    The complex multi-chain architecture of antibodies has spurred interest in smaller derivatives that retain specificity but can be more easily produced in bacteria. Domain antibodies consisting of single variable domains are the smallest antibody fragments and have been shown to possess enhanced ability to target epitopes that are difficult to access using multidomain antibodies. However, in contrast to natural camelid antibody domains, human variable domains typically suffer from low stability and high propensity to aggregate. This review summarizes strategies to improve the biophysical properties of heavy chain variable domains from human antibodies with an emphasis on aggregation resistance. Several protein engineering approaches have targeted antibody frameworks and complementarity determining regions to stabilize the native state and prevent aggregation of the denatured state. Recent findings enable the construction of highly diverse libraries enriched in aggregation-resistant variants that are expected to provide binders to diverse antigens. Engineered domain antibodies possess unique advantages in expression, epitope preference and flexibility of formatting over conventional immunoreagents and are a promising class of antibody fragments for biomedical development. PMID:27655414

  16. Key Future Engineering Capabilities for Human Capital Retention

    NASA Astrophysics Data System (ADS)

    Sivich, Lorrie

    Projected record retirements of Baby Boomer generation engineers have been predicted to result in significant losses of mission-critical knowledge in space, national security, and future scientific ventures vital to high-technology corporations. No comprehensive review or analysis of engineering capabilities has been performed to identify threats related to the specific loss of mission-critical knowledge posed by the increasing retirement of tenured engineers. Archival data from a single diversified Fortune 500 aerospace manufacturing engineering company's engineering career database were analyzed to ascertain whether relationships linking future engineering capabilities, engineering disciplines, and years of engineering experience could be identified to define critical knowledge transfer models. Chi square, logistic, and linear regression analyses were used to map patterns of discipline-specific, mission-critical knowledge using archival data of engineers' perceptions of engineering capabilities, key developmental experiences, and knowledge learned from their engineering careers. The results from the study were used to document key engineering future capabilities. The results were then used to develop a proposed human capital retention plan to address specific key knowledge gaps of younger engineers as veteran engineers retire. The potential for social change from this study involves informing leaders of aerospace engineering corporations on how to build better quality mentoring or succession plans to fill the void of lost knowledge from retiring engineers. This plan can secure mission-critical knowledge for younger engineers for current and future product development and increased global competitiveness in the technology market.

  17. Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line

    SciTech Connect

    Monteiro-Riviere, N.A.; Inman, A.O.; Zhang, L.W.

    2009-01-15

    Single-walled carbon nanotubes (SWCNT), fullerenes (C{sub 60}), carbon black (CB), nC{sub 60}, and quantum dots (QD) have been studied in vitro to determine their toxicity in a number of cell types. Here, we report that classical dye-based assays such as MTT and neutral red (NR) that determine cell viability produce invalid results with some NM (nanomaterials) due to NM/dye interactions and/or NM adsorption of the dye/dye products. In this study, human epidermal keratinocytes (HEK) were exposed in vitro to CB, SWCNT, C{sub 60}, nC{sub 60}, and QD to assess viability with calcein AM (CAM), Live/Dead (LD), NR, MTT, Celltiter 96 AQueous One (96 AQ), alamar Blue (aB), Celltiter-Blue (CTB), CytoTox One{sup TM} (CTO), and flow cytometry. In addition, trypan blue (TB) was quantitated by light microscopy. Assay linearity (R{sup 2} value) was determined with HEK plated at concentrations from 0 to 25,000 cells per well in 96-well plates. HEK were treated with serial dilutions of each NM for 24 h and assessed with each of the viability assays. TB, CAM and LD assays, which depend on direct staining of living and/or dead cells, were difficult to interpret due to physical interference of the NM with cells. Results of the dye-based assays varied a great deal, depending on the interactions of the dye/dye product with the carbon nanomaterials (CNM). Results show the optimal high throughput assay for use with carbon and noncarbon NM was 96 AQ. This study shows that, unlike small molecules, CNM interact with assay markers to cause variable results with classical toxicology assays and may not be suitable for assessing nanoparticle cytotoxicity. Therefore, more than one assay may be required when determining nanoparticle toxicity for risk assessment.

  18. Local control stations: Human engineering issues and insights

    SciTech Connect

    Brown, W.S.; Higgins, J.C.; O`Hara, J.M.

    1994-09-01

    The objective of this research project was to evaluate current human engineering at local control stations (LCSs) in nuclear power plants, and to identify good human engineering practices relevant to the design of these operator interfaces. General literature and reports of operating experience were reviewed to determine the extent and type of human engineering deficiencies at LCSs in nuclear power plants. In-plant assessments were made of human engineering at single-function as well as multifunction LCSs. Besides confirming the existence of human engineering deficiencies at LCSs, the in-plant assessments provided information about the human engineering upgrades that have been made at nuclear power plants. Upgrades were typically the result of any of three influences regulatory activity, broad industry initiatives such as INPO, and specific in-plant programs (e.g. activities related to training). It is concluded that the quality of LCSs is quite variable and might be improved if there were greater awareness of good practices and existing human engineering guidance relevant to these operator interfaces, which is available from a variety of sources. To make such human engineering guidance more readily accessible, guidelines were compiled from such sources and included in the report as an appendix.

  19. RAS signaling and anti-RAS therapy: lessons learned from genetically engineered mouse models, human cancer cells, and patient-related studies.

    PubMed

    Fang, Bingliang

    2016-01-01

    Activating mutations of oncogenic RAS genes are frequently detected in human cancers. The studies in genetically engineered mouse models (GEMMs) reveal that Kras-activating mutations predispose mice to early onset tumors in the lung, pancreas, and gastrointestinal tract. Nevertheless, most of these tumors do not have metastatic phenotypes. Metastasis occurs when tumors acquire additional genetic changes in other cancer driver genes. Studies on clinical specimens also demonstrated that KRAS mutations are present in premalignant tissues and that most of KRAS mutant human cancers have co-mutations in other cancer driver genes, including TP53, STK11, CDKN2A, and KMT2C in lung cancer; APC, TP53, and PIK3CA in colon cancer; and TP53, CDKN2A, SMAD4, and MED12 in pancreatic cancer. Extensive efforts have been devoted to develop therapeutic agents that target enzymes involved in RAS posttranslational modifications, that inhibit downstream effectors of RAS signaling pathways, and that kill RAS mutant cancer cells through synthetic lethality. Recent clinical studies have revealed that sorafenib, a pan-RAF and VEGFR inhibitor, has impressive benefits for KRAS mutant lung cancer patients. Combination therapy of MEK inhibitors with either docetaxel, AKT inhibitors, or PI3K inhibitors also led to improved clinical responses in some KRAS mutant cancer patients. This review discusses knowledge gained from GEMMs, human cancer cells, and patient-related studies on RAS-mediated tumorigenesis and anti-RAS therapy. Emerging evidence demonstrates that RAS mutant cancers are heterogeneous because of the presence of different mutant alleles and/or co-mutations in other cancer driver genes. Effective subclassifications of RAS mutant cancers may be necessary to improve patients' outcomes through personalized precision medicine. © The Author 2015. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology

  20. Launch Deployment Assembly Human Engineering Analysis

    NASA Technical Reports Server (NTRS)

    Loughead, T.

    1996-01-01

    This report documents the human engineering analysis performed by the Systems Branch in support of the 6A cargo element design. The human engineering analysis is limited to the extra vehicular activities (EVA) which are involved in removal of various cargo items from the LDA and specific activities concerning deployment of the Space Station Remote Manipulator System (SSRMS).

  1. Human Flesh Search Engine and Online Privacy.

    PubMed

    Zhang, Yang; Gao, Hong

    2016-04-01

    Human flesh search engine can be a double-edged sword, bringing convenience on the one hand and leading to infringement of personal privacy on the other hand. This paper discusses the ethical problems brought about by the human flesh search engine, as well as possible solutions.

  2. The Human Relations School.

    ERIC Educational Resources Information Center

    Fox, Robert S.; Lippitt, Ronald

    As an expansion of ED 026 320, the model for a Human Relations School sketched in this document is an attempt to answer these questions: What would it be like if a school were to see itself as a laboratory for living and learning in which the test that is known about human interaction were utilized? How would it be organized? What would be its…

  3. Lessons in Human Relations.

    ERIC Educational Resources Information Center

    Glenn, Joanne Lozar

    2003-01-01

    Explores the importance of relationship literacy--the ability to create good relationships with others--in the next economy and offers perspectives on how business education instructors can help students develop and improve their human relations skills for business success. (Author/JOW)

  4. Lessons in Human Relations.

    ERIC Educational Resources Information Center

    Glenn, Joanne Lozar

    2003-01-01

    Explores the importance of relationship literacy--the ability to create good relationships with others--in the next economy and offers perspectives on how business education instructors can help students develop and improve their human relations skills for business success. (Author/JOW)

  5. Bridging Resilience Engineering and Human Reliability Analysis

    SciTech Connect

    Ronald L. Boring

    2010-06-01

    There has been strong interest in the new and emerging field called resilience engineering. This field has been quick to align itself with many existing safety disciplines, but it has also distanced itself from the field of human reliability analysis. To date, the discussion has been somewhat one-sided, with much discussion about the new insights afforded by resilience engineering. This paper presents an attempt to address resilience engineering from the perspective of human reliability analysis (HRA). It is argued that HRA shares much in common with resilience engineering and that, in fact, it can help strengthen nascent ideas in resilience engineering. This paper seeks to clarify and ultimately refute the arguments that have served to divide HRA and resilience engineering.

  6. Human Factors Engineering Guidelines for Overhead Cranes

    NASA Technical Reports Server (NTRS)

    Chandler, Faith; Delgado, H. (Technical Monitor)

    2001-01-01

    This guideline provides standards for overhead crane cabs that can be applied to the design and modification of crane cabs to reduce the potential for human error due to design. This guideline serves as an aid during the development of a specification for purchases of cranes or for an engineering support request for crane design modification. It aids human factors engineers in evaluating existing cranes during accident investigations or safety reviews.

  7. Weighting Relations Using Web Search Engine

    NASA Astrophysics Data System (ADS)

    Oka, Mizuki; Matsuo, Yutaka

    Measuring the weight of the relation between a pair of entities is necessary to use social networks for various purposes. Intuitively, a pair of entities has a stronger relation than another. It should therefore be weighted higher. We propose a method, using a Web search engine, to compute the weight of the relation existing between a pair of entities. Our method receives a pair of entities and various relations that exist between entities as input. It then outputs the weighted value for the pair of entities. The method explores how search engine results can be used as evidence for how strongly the two entities pertain to the relation.

  8. Some NASA contributions to human factors engineering: A survey

    NASA Technical Reports Server (NTRS)

    Behan, R. A.; Wendhausen, H. W.

    1973-01-01

    This survey presents the NASA contributions to the state of the art of human factors engineering, and indicates that these contributions have a variety of applications to nonaerospace activities. Emphasis is placed on contributions relative to man's sensory, motor, decisionmaking, and cognitive behavior and on applications that advance human factors technology.

  9. Shortened Engineered Human Antibody CH2 Domains

    PubMed Central

    Gong, Rui; Wang, Yanping; Feng, Yang; Zhao, Qi; Dimitrov, Dimiter S.

    2011-01-01

    The immunoglobulin (Ig) constant CH2 domain is critical for antibody effector functions. Isolated CH2 domains are promising scaffolds for construction of libraries containing diverse binders that could also confer some effector functions. We have shown previously that an isolated human CH2 domain is relatively unstable to thermally induced unfolding, but its stability can be improved by engineering an additional disulfide bond (Gong, R., Vu, B. K., Feng, Y., Prieto, D. A., Dyba, M. A., Walsh, J. D., Prabakaran, P., Veenstra, T. D., Tarasov, S. G., Ishima, R., and Dimitrov, D. S. (2009) J. Biol. Chem. 284, 14203–14210). We have hypothesized that the stability of this engineered antibody domain could be further increased by removing unstructured residues. To test our hypothesis, we removed the seven N-terminal residues that are in a random coil as suggested by our analysis of the isolated CH2 crystal structure and NMR data. The resulting shortened engineered CH2 (m01s) was highly soluble, monomeric, and remarkably stable, with a melting temperature (Tm) of 82.6 °C, which is about 10 and 30 °C higher than those of the original stabilized CH2 (m01) and CH2, respectively. m01s and m01 were more resistant to protease digestion than CH2. A newly identified anti-CH2 antibody that recognizes a conformational epitope bound to m01s significantly better (>10-fold higher affinity) than to CH2 and slightly better than to m01. m01s bound to a recombinant soluble human neonatal Fc receptor at pH 6.0 more strongly than CH2. These data suggest that shortening the m01 N terminus significantly increases stability without disrupting its conformation and that our approach for increasing stability and decreasing size by removing unstructured regions may also apply to other proteins. PMID:21669873

  10. Relations between information system engineering and software engineering

    NASA Technical Reports Server (NTRS)

    Callender, E. D.; Hartsough, C.; Morris, R. V.

    1981-01-01

    This paper examines some of the relations between information system engineering and software engineering. A model for the development process of an information system is presented that focuses on problems common to both disciplines. The concepts of complexity, multiplicity of view, distortion in communication, and concurrency and iteration in implementation are treated. A set of design constructs for the description of an information system is presented. The role of project management is treated. The issue of how to characterize requirements analysis is answered by making it a design activity from the point of view of a user of the product system.

  11. Human Modeling For Ground Processing Human Factors Engineering Analysis

    NASA Technical Reports Server (NTRS)

    Tran, Donald; Stambolian, Damon; Henderson, Gena; Barth, Tim

    2011-01-01

    There have been many advancements and accomplishments over that last few years using human modeling for human factors engineering analysis for design of spacecraft and launch vehicles. The key methods used for this are motion capture and computer generated human models. The focus of this paper is to explain the different types of human modeling used currently and in the past at Kennedy Space Center (KSC) currently, and to explain the future plans for human modeling for future spacecraft designs.

  12. Human Modeling for Ground Processing Human Factors Engineering Analysis

    NASA Technical Reports Server (NTRS)

    Stambolian, Damon B.; Lawrence, Brad A.; Stelges, Katrine S.; Steady, Marie-Jeanne O.; Ridgwell, Lora C.; Mills, Robert E.; Henderson, Gena; Tran, Donald; Barth, Tim

    2011-01-01

    There have been many advancements and accomplishments over the last few years using human modeling for human factors engineering analysis for design of spacecraft. The key methods used for this are motion capture and computer generated human models. The focus of this paper is to explain the human modeling currently used at Kennedy Space Center (KSC), and to explain the future plans for human modeling for future spacecraft designs

  13. Human Factors Engineering. Student Supplement,

    DTIC Science & Technology

    1981-08-01

    Psychologists as Division 21 of the APA . It seems fitting, now that engineering psychology has been recognized as a viable entity, that we examine this new...34INFIC 161ST SCALE ___________ P CIUUIOIC POP40 3 SMTCPWONSI OARIA C0" NORMA . IN. AIDS AMU Ls". PLA0D 11aw Lu". FILM PACK CLR so. RAW MOTIVE LIS mm’ 7

  14. Relational Reasoning in Science, Medicine, and Engineering

    ERIC Educational Resources Information Center

    Dumas, Denis

    2017-01-01

    This review brings together the literature that pertains to the role of relational reasoning, or the ability to discern meaningful patterns within any stream of information, in the mental work of scientists, medical doctors, and engineers. Existing studies that measure four forms of relational reasoning--analogy, anomaly, antinomy, and…

  15. Relational Reasoning in Science, Medicine, and Engineering

    ERIC Educational Resources Information Center

    Dumas, Denis

    2017-01-01

    This review brings together the literature that pertains to the role of relational reasoning, or the ability to discern meaningful patterns within any stream of information, in the mental work of scientists, medical doctors, and engineers. Existing studies that measure four forms of relational reasoning--analogy, anomaly, antinomy, and…

  16. Bone tissue engineering with human stem cells

    PubMed Central

    2010-01-01

    Treatment of extensive bone defects requires autologous bone grafting or implantation of bone substitute materials. An attractive alternative has been to engineer fully viable, biological bone grafts in vitro by culturing osteogenic cells within three-dimensional scaffolds, under conditions supporting bone formation. Such grafts could be used for implantation, but also as physiologically relevant models in basic and translational studies of bone development, disease and drug discovery. A source of human cells that can be derived in large numbers from a small initial harvest and predictably differentiated into bone forming cells is critically important for engineering human bone grafts. We discuss the characteristics and limitations of various types of human embryonic and adult stem cells, and their utility for bone tissue engineering. PMID:20637059

  17. Human Microbiome Engineering: The Future and Beyond

    PubMed Central

    2015-01-01

    Microbial flora of skin and mucosal surface are vital component of human biology. Current research indicates that this microbial constellation, rather than being inert commensals, has greater implications in health and disease. They play essential role in metabolism, immunity, inflammation, neuro-endocrine regulation and even moderate host response to cancer. Genetic engineering was a major breakthrough in medical research in 1970’s and it opened up newer dimensions in vaccinology, large-scale synthesis of bio-molecule and drug development. Engineering human microbiome is a novel concept. Recombinant DNA technology can be employed to modify the genome of critical components of resident microflora to achieve unprecedented goals. PMID:26500908

  18. Human Microbiome Engineering: The Future and Beyond.

    PubMed

    Kali, Arunava

    2015-09-01

    Microbial flora of skin and mucosal surface are vital component of human biology. Current research indicates that this microbial constellation, rather than being inert commensals, has greater implications in health and disease. They play essential role in metabolism, immunity, inflammation, neuro-endocrine regulation and even moderate host response to cancer. Genetic engineering was a major breakthrough in medical research in 1970's and it opened up newer dimensions in vaccinology, large-scale synthesis of bio-molecule and drug development. Engineering human microbiome is a novel concept. Recombinant DNA technology can be employed to modify the genome of critical components of resident microflora to achieve unprecedented goals.

  19. Factors Related to Successful Engineering Team Design

    NASA Technical Reports Server (NTRS)

    Nowaczyk, Ronald H.; Zang, Thomas A.

    1998-01-01

    The perceptions of a sample of 49 engineers and scientists from NASA Langley Research Center toward engineering design teams were evaluated. The respondents rated 60 team behaviors in terms of their relative importance for team success. They also completed a profile of their own perceptions of their strengths and weaknesses as team members. Behaviors related to team success are discussed in terms of those involving the organizational culture and commitment to the team and those dealing with internal team dynamics. The latter behaviors included the level and extent of debate and discussion regarding methods for completing the team task and the efficient use of team time to explore and discuss methodologies critical to the problem. Successful engineering teams may find their greatest challenges occurring during the early stages of their existence. In contrast to the prototypical business team, members on an engineering design share expertise and knowledge which allows them to deal with task issues sooner. However, discipline differences among team members can lead to conflicts regarding the best method or approach to solving the engineering problem.

  20. Engineering Safety-Related Requirements for Software-Intensive Systems

    DTIC Science & Technology

    2006-03-01

    Requirements Specialty Engineering Subsystem Requirements Stakeholder ( Business ) Requirements Engineering Safety-Related Requirements for Software-Intensive...Requirements Software Requirements Hardware Requirements Stakeholder ( Business ) Requirements Engineering Safety-Related Requirements for Software-Intensive

  1. Addressing Issues Related to Technology and Engineering

    ERIC Educational Resources Information Center

    Technology Teacher, 2008

    2008-01-01

    This article presents an interview with Michael Hacker and David Burghardt, codirectors of Hoftra University's Center for Technological Literacy. Hacker and Burghardt address issues related to technology and engineering. They argue that teachers need to be aware of the problems kids are facing, and how to present these problems in an engaging…

  2. Addressing Issues Related to Technology and Engineering

    ERIC Educational Resources Information Center

    Technology Teacher, 2008

    2008-01-01

    This article presents an interview with Michael Hacker and David Burghardt, codirectors of Hoftra University's Center for Technological Literacy. Hacker and Burghardt address issues related to technology and engineering. They argue that teachers need to be aware of the problems kids are facing, and how to present these problems in an engaging…

  3. Human performance models for computer-aided engineering

    NASA Technical Reports Server (NTRS)

    Elkind, Jerome I. (Editor); Card, Stuart K. (Editor); Hochberg, Julian (Editor); Huey, Beverly Messick (Editor)

    1989-01-01

    This report discusses a topic important to the field of computational human factors: models of human performance and their use in computer-based engineering facilities for the design of complex systems. It focuses on a particular human factors design problem -- the design of cockpit systems for advanced helicopters -- and on a particular aspect of human performance -- vision and related cognitive functions. By focusing in this way, the authors were able to address the selected topics in some depth and develop findings and recommendations that they believe have application to many other aspects of human performance and to other design domains.

  4. Relation between irrigation engineering and bilharziasis*

    PubMed Central

    Lanoix, Joseph N.

    1958-01-01

    The author discusses the relation between irrigation systems and the transmission of bilharziasis, with special reference to the important part the irrigation engineer can play in checking the spread of the disease. He points out that, in the past, there has been little co-operation between health departments and public works agencies in respect of the setting-up of irrigation systems, and stresses the advantages to be gained from an active collaboration between malacologists, epidemiologists and irrigation engineers at the planning stage of irrigation schemes. The author also puts forward some suggestions for research on irrigation-system design and outlines the role of WHO in bilharziasis control. PMID:13573123

  5. Advanced Human Factors Engineering Tool Technologies.

    DTIC Science & Technology

    1988-03-01

    representing the government, the military, academe, and private industry were surveyed to identify those tools that are most frequently used or viewed...tools by HFE researchers and practitioners within the academic, industrial , and military settings. % .. J. &@ossion For XTIS GR&&I DTIC TAS 0...267 E. Human Factors Engineering Tools Questionnaire .. ......... . 279 F. Listing of Industry , Government, and Academe

  6. Human Factors Interface with Systems Engineering for NASA Human Spaceflights

    NASA Technical Reports Server (NTRS)

    Wong, Douglas T.

    2009-01-01

    This paper summarizes the past and present successes of the Habitability and Human Factors Branch (HHFB) at NASA Johnson Space Center s Space Life Sciences Directorate (SLSD) in including the Human-As-A-System (HAAS) model in many NASA programs and what steps to be taken to integrate the Human-Centered Design Philosophy (HCDP) into NASA s Systems Engineering (SE) process. The HAAS model stresses systems are ultimately designed for the humans; the humans should therefore be considered as a system within the systems. Therefore, the model places strong emphasis on human factors engineering. Since 1987, the HHFB has been engaging with many major NASA programs with much success. The HHFB helped create the NASA Standard 3000 (a human factors engineering practice guide) and the Human Systems Integration Requirements document. These efforts resulted in the HAAS model being included in many NASA programs. As an example, the HAAS model has been successfully introduced into the programmatic and systems engineering structures of the International Space Station Program (ISSP). Success in the ISSP caused other NASA programs to recognize the importance of the HAAS concept. Also due to this success, the HHFB helped update NASA s Systems Engineering Handbook in December 2007 to include HAAS as a recommended practice. Nonetheless, the HAAS model has yet to become an integral part of the NASA SE process. Besides continuing in integrating HAAS into current and future NASA programs, the HHFB will investigate incorporating the Human-Centered Design Philosophy (HCDP) into the NASA SE Handbook. The HCDP goes further than the HAAS model by emphasizing a holistic and iterative human-centered systems design concept.

  7. Human Factors Engineering and School Furniture: A Circular Odyssey.

    ERIC Educational Resources Information Center

    Lane, Kenneth E.; Richardson, Michael D.

    1993-01-01

    A search reveals only six articles that concern human-factors engineering as it relates to student furniture. Contacts with five school-furniture manufacturers disclose that designs were basically unaltered for years and are claimed to reflect what schools want in furniture. Proposes recommendations to design and secure furniture to meet students'…

  8. Genetically Engineered Pig Models for Human Diseases

    PubMed Central

    Prather, Randall S.; Lorson, Monique; Ross, Jason W.; Whyte, Jeffrey J.; Walters, Eric

    2015-01-01

    Although pigs are used widely as models of human disease, their utility as models has been enhanced by genetic engineering. Initially, transgenes were added randomly to the genome, but with the application of homologous recombination, zinc finger nucleases, and transcription activator-like effector nuclease (TALEN) technologies, now most any genetic change that can be envisioned can be completed. To date these genetic modifications have resulted in animals that have the potential to provide new insights into human diseases for which a good animal model did not exist previously. These new animal models should provide the preclinical data for treatments that are developed for diseases such as Alzheimer's disease, cystic fibrosis, retinitis pigmentosa, spinal muscular atrophy, diabetes, and organ failure. These new models will help to uncover aspects and treatments of these diseases that were otherwise unattainable. The focus of this review is to describe genetically engineered pigs that have resulted in models of human diseases. PMID:25387017

  9. SSME model, engine dynamic characteristics related to Pogo

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A linear model of the space shuttle main engine for use in Pogo studies was presented. A digital program is included from which engine transfer functions are determined relative to the engine operating level.

  10. Engineering anatomically shaped human bone grafts.

    PubMed

    Grayson, Warren L; Fröhlich, Mirjam; Yeager, Keith; Bhumiratana, Sarindr; Chan, M Ete; Cannizzaro, Christopher; Wan, Leo Q; Liu, X Sherry; Guo, X Edward; Vunjak-Novakovic, Gordana

    2010-02-23

    The ability to engineer anatomically correct pieces of viable and functional human bone would have tremendous potential for bone reconstructions after congenital defects, cancer resections, and trauma. We report that clinically sized, anatomically shaped, viable human bone grafts can be engineered by using human mesenchymal stem cells (hMSCs) and a "biomimetic" scaffold-bioreactor system. We selected the temporomandibular joint (TMJ) condylar bone as our tissue model, because of its clinical importance and the challenges associated with its complex shape. Anatomically shaped scaffolds were generated from fully decellularized trabecular bone by using digitized clinical images, seeded with hMSCs, and cultured with interstitial flow of culture medium. A bioreactor with a chamber in the exact shape of a human TMJ was designed for controllable perfusion throughout the engineered construct. By 5 weeks of cultivation, tissue growth was evidenced by the formation of confluent layers of lamellar bone (by scanning electron microscopy), markedly increased volume of mineralized matrix (by quantitative microcomputer tomography), and the formation of osteoids (histologically). Within bone grafts of this size and complexity cells were fully viable at a physiologic density, likely an important factor of graft function. Moreover, the density and architecture of bone matrix correlated with the intensity and pattern of the interstitial flow, as determined in experimental and modeling studies. This approach has potential to overcome a critical hurdle-in vitro cultivation of viable bone grafts of complex geometries-to provide patient-specific bone grafts for craniofacial and orthopedic reconstructions.

  11. Human Factors Engineering Program Review Model

    DTIC Science & Technology

    2004-02-01

    AA NUREG -0711,Rev. 2 Human Factors Engineering Program Review Model 20081009191 I i m To] Bi U.S. Nuclear Regulatory Commission Office of...Material As of November 1999, you may electronically access NUREG -series publications and other NRC records at NRC’s Public Electronic Reading Room at...http://www.nrc.qov/readinq-rm.html. Publicly released records include, to name a few, NUREG -series publications; Federal Register notices; applicant

  12. An Empirical Methodology for Engineering Human Systems Integration

    DTIC Science & Technology

    2009-12-01

    Human factors engineering HFI ...................................... Human factors integration HMI .................................... Human...AIRPRINT AFRL/RH INCOSE Defense Acquisition Guide MANPRINT IEEE SMC ACM UK HFI Program Manpower X X X X X X X Personnel X X X “Personal...systems engineering human systems integration NATO, some use USAF, ISO HFI Human factors integration Confused with HSI, but only the interface

  13. Hydrogen Fuel Cell Engines and Related Technologies

    NASA Astrophysics Data System (ADS)

    2001-12-01

    The Hydrogen Fuel Cell Engines and Related Technologies report documents the first training course ever developed and made available to the transportation community and general public on the use hydrogen fuel cells in transportation. The course is designed to train a new generation of technicians in gaining a more complete understanding of the concepts, procedures, and technologies involved with hydrogen fuel cell use in transportation purposes. The manual contains 11 modules (chapters). The first eight modules cover (1) hydrogen properties, use and safety; and (2) fuel cell technology and its systems, fuel cell engine design and safety, and design and maintenance of a heavy duty fuel cell bus engine. The different types of fuel cells and hybrid electric vehicles are presented, however, the system descriptions and maintenance procedures focus on proton-exchange-membrane (PEM) fuel cells with respect to heavy duty transit applications. Modules 9 and 10 are intended to provide a better understanding of the acts, codes, regulations and guidelines concerning the use of hydrogen, as well as the safety guidelines for both hydrogen maintenance and fueling facilities. Module 11 presents a glossary and conversions.

  14. Improving Safety through Human Factors Engineering.

    PubMed

    Siewert, Bettina; Hochman, Mary G

    2015-10-01

    Human factors engineering (HFE) focuses on the design and analysis of interactive systems that involve people, technical equipment, and work environment. HFE is informed by knowledge of human characteristics. It complements existing patient safety efforts by specifically taking into consideration that, as humans, frontline staff will inevitably make mistakes. Therefore, the systems with which they interact should be designed for the anticipation and mitigation of human errors. The goal of HFE is to optimize the interaction of humans with their work environment and technical equipment to maximize safety and efficiency. Special safeguards include usability testing, standardization of processes, and use of checklists and forcing functions. However, the effectiveness of the safety program and resiliency of the organization depend on timely reporting of all safety events independent of patient harm, including perceived potential risks, bad outcomes that occur even when proper protocols have been followed, and episodes of "improvisation" when formal guidelines are found not to exist. Therefore, an institution must adopt a robust culture of safety, where the focus is shifted from blaming individuals for errors to preventing future errors, and where barriers to speaking up-including barriers introduced by steep authority gradients-are minimized. This requires creation of formal guidelines to address safety concerns, establishment of unified teams with open communication and shared responsibility for patient safety, and education of managers and senior physicians to perceive the reporting of safety concerns as a benefit rather than a threat. © RSNA, 2015.

  15. Human factors engineering and patient safety

    PubMed Central

    Gosbee, J

    2002-01-01

    

 The case study and analyses presented here illustrate the crucial role of human factors engineering (HFE) in patient safety. HFE is a framework for efficient and constructive thinking which includes methods and tools to help healthcare teams perform patient safety analyses, such as root cause analyses. The literature on HFE over several decades contains theories and applied studies to help to solve difficult patient safety problems and design issues. A case study is presented which illustrates the vulnerabilities of human factors design in a transport monitor. The subsequent analysis highlights how to move beyond the more obvious contributing factors like training to design problems and the establishment of informal norms. General advice is offered to address these issues and design issues specific to this case are discussed. PMID:12468696

  16. Use of human engineering standards in design

    NASA Technical Reports Server (NTRS)

    Rogers, J. G.; Armstrong, R.

    1977-01-01

    Results are presented for a research study intended to assess the impact of present human engineering standards on product design. The approach consisted of three basic steps: a comparison of two display panels to determine if, in fact, products designed to the same standards are truly standardized; a review of two existing standards to determine how well their information can be used to solve design problems; and a survey of human factors specialists to assess their opinions about standards. It is shown that standards have less than the desired influence on product design. This is evidenced by a lack of standardization between hardware designed under common standards, by deficiencies within the standards that detract from their usefulness and encourage users to ignore them, and by the respondents of the survey who consider standards less valuable than other reference sources for design implementation. Recommendations aimed at enhancing the use of standards are set forth.

  17. Human Relations Class. A Syllabus.

    ERIC Educational Resources Information Center

    Guillen, Mary A.

    A junior high level human relations class develops human interaction and oral communication skills. A week-by-week syllabus contains the following components: introduction of the students to each other and to the principles of body language, transactional analysis, and group interaction; behavior contracts; group dynamics topics and exercises;…

  18. International Conference on Human Relations.

    DTIC Science & Technology

    2007-11-02

    Festinger , Sherif, Ex, Rohrer, Pinto, Singh, and Mailhiot. One outcome of the Conference was the formation of a working committee to establish an International Documentation and Information Center for the field of Human Relations.

  19. Tracing insights into human metabolism using chemical engineering approaches.

    PubMed

    Cordes, Thekla; Metallo, Christian M

    2016-11-01

    Metabolism coordinates the conversion of available nutrients toward energy, biosynthetic intermediates, and signaling molecules to mediate virtually all biological functions. Dysregulation of metabolic pathways contributes to many diseases, so a detailed understanding of human metabolism has significant therapeutic implications. Over the last decade major technological advances in the areas of analytical chemistry, computational estimation of intracellular fluxes, and biological engineering have improved our ability to observe and engineer metabolic pathways. These approaches are reminiscent of the design, operation, and control of industrial chemical plants. Immune cells have emerged as an intriguing system in which metabolism influences diverse biological functions. Application of metabolic flux analysis and related approaches to macrophages and T cells offers great therapeutic opportunities to biochemical engineers.

  20. Human Factors Engineering and Ergonomics in Systems Engineering

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban

    2017-01-01

    The study, discovery, and application of information about human abilities, human limitations, and other human characteristics to the design of tools, devices, machines, systems, job tasks and environments for effective human performance.

  1. Role of Human Factors and Engineering Psychology in Undergraduate and Graduate Engineering Curriculum

    SciTech Connect

    Piyush Sabharwall; Jesse Rebol

    2010-12-01

    The engineering discipline is a profession of acquiring and applying technical knowledge, and the focus of engineering psychology is to optimize the effectiveness and efficiency with which human activities are conducted. Having human factors and engineering psychology be a permanent part of the engineering curriculum will make students aware of them, so they can learn from past experiences and avoid making the same mistakes their peers made. (Should be close to 200 words)

  2. Medical error and human factors engineering: where are we now?

    PubMed

    Gawron, Valerie J; Drury, Colin G; Fairbanks, Rollin J; Berger, Roseanne C

    2006-01-01

    The goal of human factors engineering is to optimize the relationship between humans and systems by studying human behavior, abilities, and limitations and using this knowledge to design systems for safe and effective human use. With the assumption that the human component of any system will inevitably produce errors, human factors engineers design systems and human/machine interfaces that are robust enough to reduce error rates and the effect of the inevitable error within the system. In this article, we review the extent and nature of medical error and then discuss human factors engineering tools that have potential applicability. These tools include taxonomies of human and system error and error data collection and analysis methods. Finally, we describe studies that have examined medical error, and on the basis of these studies, present conclusions about how human factors engineering can significantly reduce medical errors and their effects.

  3. Human-Centered Software Engineering: Software Engineering Architectures, Patterns, and Sodels for Human Computer Interaction

    NASA Astrophysics Data System (ADS)

    Seffah, Ahmed; Vanderdonckt, Jean; Desmarais, Michel C.

    The Computer-Human Interaction and Software Engineering (CHISE) series of edited volumes originated from a number of workshops and discussions over the latest research and developments in the field of Human Computer Interaction (HCI) and Software Engineering (SE) integration, convergence and cross-pollination. A first volume in this series (CHISE Volume I - Human-Centered Software Engineering: Integrating Usability in the Development Lifecycle) aims at bridging the gap between the field of SE and HCI, and addresses specifically the concerns of integrating usability and user-centered systems design methods and tools into the software development lifecycle and practices. This has been done by defining techniques, tools and practices that can fit into the entire software engineering lifecycle as well as by defining ways of addressing the knowledge and skills needed, and the attitudes and basic values that a user-centered development methodology requires. The first volume has been edited as Vol. 8 in the Springer HCI Series (Seffah, Gulliksen and Desmarais, 2005).

  4. Human factors engineering program review model

    SciTech Connect

    Not Available

    1994-07-01

    The staff of the Nuclear Regulatory Commission is performing nuclear power plant design certification reviews based on a design process plan that describes the human factors engineering (HFE) program elements that are necessary and sufficient to develop an acceptable detailed design specification and an acceptable implemented design. There are two principal reasons for this approach. First, the initial design certification applications submitted for staff review did not include detailed design information. Second, since human performance literature and industry experiences have shown that many significant human factors issues arise early in the design process, review of the design process activities and results is important to the evaluation of an overall design. However, current regulations and guidance documents do not address the criteria for design process review. Therefore, the HFE Program Review Model (HFE PRM) was developed as a basis for performing design certification reviews that include design process evaluations as well as review of the final design. A central tenet of the HFE PRM is that the HFE aspects of the plant should be developed, designed, and evaluated on the basis of a structured top-down system analysis using accepted HFE principles. The HFE PRM consists of ten component elements. Each element in divided into four sections: Background, Objective, Applicant Submittals, and Review Criteria. This report describes the development of the HFE PRM and gives a detailed description of each HFE review element.

  5. Engineered human dicentric chromosomes show centromere plasticity.

    PubMed

    Higgins, Anne W; Gustashaw, Karen M; Willard, Huntington F

    2005-01-01

    The centromere is essential for the faithful distribution of a cell's genetic material to subsequent generations. Despite intense scrutiny, the precise genetic and epigenetic basis for centromere function is still unknown. Here, we have used engineered dicentric human chromosomes to investigate mammalian centromere structure and function. We describe three classes of dicentric chromosomes isolated in different cell lines: functionally monocentric chromosomes, in which one of the two genetically identical centromeres is consistently inactivated; functionally dicentric chromosomes, in which both centromeres are consistently active; and dicentric chromosomes heterogeneous with respect to centromere activity. A study of serial single cell clones from heterogeneous cell lines revealed that while centromere activity is usually clonal, the centromere state (i.e. functionally monocentric or dicentric) in some lines can switch within a growing population of cells. Because pulsed field gel analysis indicated that the DNA at the centromeres of these chromosomes did not change detectably, this switching of the centromere state is most likely due to epigenetic changes. Inactivation of one of the two active centromeres in a functionally dicentric chromosome was observed in a percentage of cells after treatment with Trichostatin A, an inhibitor of histone deacetylation. This study provides evidence that the activity of human centromeres, while largely stable, can be subject to dynamic change, most likely due to epigenetic modification.

  6. Space Human Factors Engineering Gap Analysis Project Final Report

    NASA Technical Reports Server (NTRS)

    Hudy, Cynthia; Woolford, Barbara

    2006-01-01

    Humans perform critical functions throughout each phase of every space mission, beginning with the mission concept and continuing to post-mission analysis (Life Sciences Division, 1996). Space missions present humans with many challenges - the microgravity environment, relative isolation, and inherent dangers of the mission all present unique issues. As mission duration and distance from Earth increases, in-flight crew autonomy will increase along with increased complexity. As efforts for exploring the moon and Mars advance, there is a need for space human factors research and technology development to play a significant role in both on-orbit human-system interaction, as well as the development of mission requirements and needs before and after the mission. As part of the Space Human Factors Engineering (SHFE) Project within the Human Research Program (HRP), a six-month Gap Analysis Project (GAP) was funded to identify any human factors research gaps or knowledge needs. The overall aim of the project was to review the current state of human factors topic areas and requirements to determine what data, processes, or tools are needed to aid in the planning and development of future exploration missions, and also to prioritize proposals for future research and technology development.

  7. A systems engineering view of the human in space

    NASA Technical Reports Server (NTRS)

    Anderson, John L.

    1987-01-01

    A model of the human as an 'engineered' system provides a starting point for determining human requirements and performance on an equivalent basis with technological systems. The human as an engineered system with performance requirements is defined to consist of four subsystems: cognitive, psychological, biomechanical, and biomedical. It is suggested that the treatment of the psychological subsystem as one that modulates the efficiency and quality of human performance offers a particular approach for examining and characterizing psychological effects.

  8. A systems engineering view of the human in space

    NASA Technical Reports Server (NTRS)

    Anderson, John L.

    1987-01-01

    A model of the human as an 'engineered' system provides a starting point for determining human requirements and performance on an equivalent basis with technological systems. The human as an engineered system with performance requirements is defined to consist of four subsystems: cognitive, psychological, biomechanical, and biomedical. It is suggested that the treatment of the psychological subsystem as one that modulates the efficiency and quality of human performance offers a particular approach for examining and characterizing psychological effects.

  9. TRENDS IN ENGINEERING GEOLOGIC AND RELATED MAPPING.

    USGS Publications Warehouse

    Varnes, David J.; Keaton, Jeffrey R.

    1983-01-01

    Progress is reviewed that has been made during the period 1972-1982 in producing medium- and small-scale engineering geologic maps with a variety of content. Improved methods to obtain and present information are evolving. Standards concerning text and map content, soil and rock classification, and map symbols have been proposed. Application of geomorphological techniques in terrain evaluation has increased, as has the use of aerial photography and other remote sensing. Computers are being used to store, analyze, retrieve, and print both text and map information. Development of offshore resources, especially petroleum, has led to marked improvement and growth in marine engineering geology and geotechnology. Coordinated planning for societal needs has required broader scope and increased complexity of both engineering geologic and environmental geologic studies. Refs.

  10. [Projective identification in human relations].

    PubMed

    Göka, Erol; Yüksel, Fatih Volkan; Göral, F Sevinç

    2006-01-01

    Melanie Klein, one of the pioneers of Object Relations Theory, first defined "projective identification", which is regarded as one of the most efficacious psychoanalytic concepts after the discovery of the "unconscious". Examination of the literature on "projective identification" shows that there are various perspectives and theories suggesting different uses of this concept. Some clinicians argue that projective identification is a primitive defense mechanism observed in severe psychopathologies like psychotic disorder and borderline personality disorder, where the intra-psychic structure has been damaged severely. Others suggest it to be an indispensable part of the transference and counter-transference between the therapist and the patient during psychotherapy and it can be used as a treatment material in the therapy by a skillful therapist. The latter group expands the use of the concept through normal daily relationships by stating that projective identification is one type of communication and part of the main human relation mechanism operating in all close relationships. Therefore, they suggest that projective identification has benign forms experienced in human relations as well as malign forms seen in psychopathologies. Thus, discussions about the definition of the concept appear complex. In order to clarify and overcome the complexity of the concept, Melanie Klein's and other most important subsequent approaches are discussed in this review article. Thereby, the article aims to explain its important function in understanding the psychopathologies, psychotherapeutic relationships and different areas of normal human relations.

  11. Some relations among engineering constants of wood

    Treesearch

    Jen Y. Liu; Robert J. Ross

    1998-01-01

    Wood may be described as an orthotropic material with unique and independent mechanical properties in the directions of three mutually perpendicular axes– longitudinal ( L ), radial ( R ), and tangential (T ). These mechanical properties are also called engineering constants. Orthotropic materials are of special relevance to composite materials. Therefore, mathematical...

  12. 47 CFR 73.190 - Engineering charts and related formulas.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Engineering charts and related formulas. 73.190 Section 73.190 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.190 Engineering charts and related formulas. (a...

  13. 47 CFR 73.190 - Engineering charts and related formulas.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Engineering charts and related formulas. 73.190 Section 73.190 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.190 Engineering charts and related formulas. (a...

  14. 47 CFR 73.190 - Engineering charts and related formulas.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Engineering charts and related formulas. 73.190 Section 73.190 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.190 Engineering charts and related formulas. (a...

  15. 47 CFR 73.190 - Engineering charts and related formulas.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Engineering charts and related formulas. 73.190 Section 73.190 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.190 Engineering charts and related formulas. (a...

  16. 47 CFR 73.190 - Engineering charts and related formulas.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Engineering charts and related formulas. 73.190 Section 73.190 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.190 Engineering charts and related formulas. (a...

  17. Factors Relating to Faculty Engagement in Cooperative Engineering Education

    ERIC Educational Resources Information Center

    Friedrich, Bernadette J.

    2011-01-01

    The purpose of this study was to explore the factors that may relate to engineering faculty engagement in Cooperative Education (Co-op). My intent was to identify specific personal attributes and environmental conditions that relate to faculty engagement in cooperative education. I compared the engagement level of engineering faculty from programs…

  18. Human Engineering Modeling and Performance Lab Study Project

    NASA Technical Reports Server (NTRS)

    Oliva-Buisson, Yvette J.

    2014-01-01

    The HEMAP (Human Engineering Modeling and Performance) Lab is a joint effort between the Industrial and Human Engineering group and the KAVE (Kennedy Advanced Visualiations Environment) group. The lab consists of sixteen camera system that is used to capture human motions and operational tasks, through te use of a Velcro suit equipped with sensors, and then simulate these tasks in an ergonomic software package know as Jac, The Jack software is able to identify the potential risk hazards.

  19. Seeking perfection: a Kantian look at human genetic engineering.

    PubMed

    Gunderson, Martin

    2007-01-01

    It is tempting to argue that Kantian moral philosophy justifies prohibiting both human germ-line genetic engineering and non-therapeutic genetic engineering because they fail to respect human dignity. There are, however, good reasons for resisting this temptation. In fact, Kant's moral philosophy provides reasons that support genetic engineering-even germ-line and non-therapeutic. This is true of Kant's imperfect duties to seek one's own perfection and the happiness of others. It is also true of the categorical imperative. Kant's moral philosophy does, however, provide limits to justifiable genetic engineering.

  20. Gender and Achievement-Related Beliefs among Engineering Students

    NASA Astrophysics Data System (ADS)

    Heyman, Gail D.; Martyna, Bryn; Bhatia, Sangeeta

    Achievement-related beliefs were examined among a group of 238 college students in engineering (38 female, 104 male) and nonengineering majors (57 female, 39 male) to understand why women enter engineering majors at a low rate and are more likely than men to leave such majors. The results indicated that (a) among the engineering majors, women were more likely than men to identify engineering aptitude as a fixed ability, a belief that was associated with a tendency to drop classes when faced with difficulty; (b) female engineering majors were more likely to perceive male and female engineering students as receiving different treatment than their male counterparts; and (c) female engineering majors tended to place more emphasis on extrinsic factors and less emphasis on intrinsic factors than female nonengineering majors, a pattern not seen among men. Implications for intervention programs are discussed.

  1. Inspiring engineering minds to advance human health: the Henry Samueli School of Engineering's Department of BME.

    PubMed

    Lee, Abraham; Wirtanen, Erik

    2012-07-01

    The growth of biomedical engineering at The Henry Samueli School of Engineering at the University of California, Irvine (UCI) has been rapid since the Center for Biomedical Engineering was first formed in 1998 [and was later renamed as the Department of Biomedical Engineering (BME) in 2002]. Our current mission statement, “Inspiring Engineering Minds to Advance Human Health,” serves as a reminder of why we exist, what we do, and the core principles that we value and by which we abide. BME exists to advance the state of human health via engineering innovation and practices. To attain our goal, we are empowering our faculty to inspire and mobilize our students to address health problems. We treasure the human being, particularly the human mind and health. We believe that BME is where minds are nurtured, challenged, and disciplined, and it is also where the health of the human is held as a core mission value that deserves our utmost priority (Figure 1). Advancing human health is not a theoretical practice; it requires bridging between disciplines (engineering and medicine) and between communities (academic and industry).

  2. 11. BUILDING NO. 18 (ENGINEERING BUILDING), CENTER, IN RELATION TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. BUILDING NO. 18 (ENGINEERING BUILDING), CENTER, IN RELATION TO BUILDING NO. 19 (BENDING SHOP AND OVEN) AT FAR LEFT, AND TO THE WET BASIN AT FAR RIGHT. VIEW TO NORTH-NORTHWEST. - United Engineering Company Shipyard, 2900 Main Street, Alameda, Alameda County, CA

  3. On "bettering humanity" in science and engineering education.

    PubMed

    Stieb, James A

    2007-06-01

    Authors such as Krishnasamy Selvan argue that "all human endeavors including engineering and science" have a single primary objective: "bettering humanity." They favor discussing "the history of science and measurement uncertainty." This paper respectfully disagrees and argues that "human endeavors including engineering and science" should not pursue "bettering humanity" as their primary objective. Instead these efforts should first pursue individual betterment. One cannot better humanity without knowing what that means. However, there is no one unified theory of what is to the betterment of humanity. Simultaneously, there is no one field (neither science, nor engineering, nor philosophy) entitled to rule univocally. Perhaps if theorists tended their own gardens, the common weal would be tended thereby.

  4. A human factors evaluation using tools for automated knowledge engineering

    NASA Technical Reports Server (NTRS)

    Gomes, Marie E.; Lind, Stephanie

    1994-01-01

    A human factors evaluation of the MH-53J helicopter cockpit is described. This evaluation was an application and futher development of Tools for Automated Knowledge Engineering (TAKE). TAKE is used to acquire and analyze knowledge from domain experts (aircrew members, system designers, maintenance personnel, human factors engineers, or others). TAKE was successfully utilized for the purpose of recommending improvements for the man-machine interfaces (MMI) in the MH-53J cockpit.

  5. Profile of the Engineer of 2001: The Engineer's Full Human Responsibility.

    ERIC Educational Resources Information Center

    Kihlman, Tor

    1988-01-01

    Discusses a change in engineering education emphasizing human responsibility for environment, natural resources and reactions concerning technology. Describes the Swedish education system and a change in the curricula at Chalmers University of Technology in Sweden. (Author/YP)

  6. Profile of the Engineer of 2001: The Engineer's Full Human Responsibility.

    ERIC Educational Resources Information Center

    Kihlman, Tor

    1988-01-01

    Discusses a change in engineering education emphasizing human responsibility for environment, natural resources and reactions concerning technology. Describes the Swedish education system and a change in the curricula at Chalmers University of Technology in Sweden. (Author/YP)

  7. The Systems Engineering Process for Human Support Technology Development

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2005-01-01

    Systems engineering is designing and optimizing systems. This paper reviews the systems engineering process and indicates how it can be applied in the development of advanced human support systems. Systems engineering develops the performance requirements, subsystem specifications, and detailed designs needed to construct a desired system. Systems design is difficult, requiring both art and science and balancing human and technical considerations. The essential systems engineering activity is trading off and compromising between competing objectives such as performance and cost, schedule and risk. Systems engineering is not a complete independent process. It usually supports a system development project. This review emphasizes the NASA project management process as described in NASA Procedural Requirement (NPR) 7120.5B. The process is a top down phased approach that includes the most fundamental activities of systems engineering - requirements definition, systems analysis, and design. NPR 7120.5B also requires projects to perform the engineering analyses needed to ensure that the system will operate correctly with regard to reliability, safety, risk, cost, and human factors. We review the system development project process, the standard systems engineering design methodology, and some of the specialized systems analysis techniques. We will discuss how they could apply to advanced human support systems development. The purpose of advanced systems development is not directly to supply human space flight hardware, but rather to provide superior candidate systems that will be selected for implementation by future missions. The most direct application of systems engineering is in guiding the development of prototype and flight experiment hardware. However, anticipatory systems engineering of possible future flight systems would be useful in identifying the most promising development projects.

  8. The Systems Engineering Process for Human Support Technology Development

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2005-01-01

    Systems engineering is designing and optimizing systems. This paper reviews the systems engineering process and indicates how it can be applied in the development of advanced human support systems. Systems engineering develops the performance requirements, subsystem specifications, and detailed designs needed to construct a desired system. Systems design is difficult, requiring both art and science and balancing human and technical considerations. The essential systems engineering activity is trading off and compromising between competing objectives such as performance and cost, schedule and risk. Systems engineering is not a complete independent process. It usually supports a system development project. This review emphasizes the NASA project management process as described in NASA Procedural Requirement (NPR) 7120.5B. The process is a top down phased approach that includes the most fundamental activities of systems engineering - requirements definition, systems analysis, and design. NPR 7120.5B also requires projects to perform the engineering analyses needed to ensure that the system will operate correctly with regard to reliability, safety, risk, cost, and human factors. We review the system development project process, the standard systems engineering design methodology, and some of the specialized systems analysis techniques. We will discuss how they could apply to advanced human support systems development. The purpose of advanced systems development is not directly to supply human space flight hardware, but rather to provide superior candidate systems that will be selected for implementation by future missions. The most direct application of systems engineering is in guiding the development of prototype and flight experiment hardware. However, anticipatory systems engineering of possible future flight systems would be useful in identifying the most promising development projects.

  9. Human Factors Engineering Standards at NASA

    NASA Technical Reports Server (NTRS)

    Russo, Dane; Tillman, Barry; Pickett, Lynn

    2008-01-01

    NASA has begun a new approach to human factors design standards. For years NASA-STD-3000, Manned Systems Integration Standards, has been a source of human factors design guidance for space systems. In order to better meet the needs of the system developers, NASA is revising its human factors standards system. NASA-STD-3000 will be replaced by two documents: set of broad human systems design standards (including both human factors and medical topics) and a human factors design handbook. At the present time the standards document is in final review with some disagreement on several critical issues. The handbook is progressing with November 2008 as the anticipated completion date.

  10. Rapid Prototyping and the Human Factors Engineering Process

    DTIC Science & Technology

    2016-08-29

    qr-..2. 9 Rapid prototyping or ’virtual prototyping’ of human- machine interfaces offers the possibility of putting the human operator ’in the loop...facilitates an iterative approach to the development of the human- machine interface, and that is most applicable to the early stages of systems...factors engineering (HFE) process re- commended for the development of human- machine systems is based on a series of increasin¥ly detailed analyses of

  11. Engineering studies related to the Skylab program

    NASA Technical Reports Server (NTRS)

    Hayne, G. S.

    1974-01-01

    The problem of analysis and interpretation of the waveform related data from the radar altimeter experiment is presented. The computer programs developed or modified for the realignment processes are briefly discussed.

  12. Macrophages modulate engineered human tissues for enhanced vascularization and healing

    PubMed Central

    Spiller, Kara L.; Freytes, Donald O.; Vunjak-Novakovic, Gordana

    2014-01-01

    Tissue engineering is increasingly based on recapitulating human physiology, through integration of biological principles into engineering designs. In spite of all progress in engineering functional human tissues, we are just beginning to develop effective methods for establishing blood perfusion and controlling the inflammatory factors following implantation into the host. Functional vasculature largely determines tissue survival and function in vivo. The inflammatory response is a major regulator of vascularization and overall functionality of engineered tissues, through the activity of different types of macrophages and the cytokines they secrete. We discuss cell-scaffold-bioreactor systems for harnessing the inflammatory response for enhanced tissue vascularization and healing. To this end, inert scaffolds that have been considered for many decades a “gold standard” in regenerative medicine are beginning to be replaced by a new generation of “smart” tissue engineering systems designed to actively mediate tissue survival and function. PMID:25331098

  13. Human factors engineering for designing the next in medicine.

    PubMed

    Lai, Fuji

    2007-01-01

    Good design of emerging medical technology in an increasingly complex clinical and technological environment requires an understanding of the context of use, workload, and environment as well as appreciation for ease of use, fit into clinical workflow, and the need for user feedback in the design process. This is where human factors engineering can come into play for good design. Human factors engineering involves the application of principles about human behaviors, abilities, and limitations to the design of tools, devices, environments, and training in order to optimize human performance and safety. The human factors engineering process should be an integral part of the emerging technology development process and needs to be included upfront. This can help ensure that the new product is safe, functional, natural to use, seamlessly integrated into existing clinical workflow, and embraced by users to be incorporated into practice for maximum benefit to patient safety and healthcare quality.

  14. Relations between Corporate Social Responsibility and Engineering Ethics

    NASA Astrophysics Data System (ADS)

    Yasui, Itaru

    Environmental responsibility of corporations has been changed drastically in the last 20 years. In 1980s, pollution prevention was the main mandate for corporations and in 1990s global scale environmental issues such as global warming must be also considered by at least industries. In the year of 2000, United Nations decided to make a challenge towards sustainability of human activities on the Earth, and since then, every corporation must take this concept into account when policy for its own business is described. Within this framework, some companies have succeeded to be evaluated as “environmental conscious companies” and enjoyed success also in their business. The reality of sustainability is very complex and any company must consider rather long future, say more than 30 years, in the strategy of its operation. All engineers should watch the direction and the norm carefully, which their own company is now aiming at, with enough knowledge regarding the trend of total human activities in relation to the limitation of the Earth.

  15. Arctic Engineering--Through Human Eyes.

    ERIC Educational Resources Information Center

    Simmonds, W. H. C.

    Adopting technology to people and examining projects through the eyes of those concerned are two ways new technology and engineering can be installed and successfully operated under the adverse conditions of northern Canada and in the face of predicted labor shortages in the 1980's. Adopting a more flexible technology provides the opportunity for…

  16. "Human Nature": Chemical Engineering Students' Ideas about Human Relationships with the Natural World

    ERIC Educational Resources Information Center

    Goldman, Daphne; Assaraf, Orit Ben-Zvi; Shemesh, Julia

    2014-01-01

    While importance of environmental ethics, as a component of sustainable development, in preparing engineers is widely acknowledged, little research has addressed chemical engineers' environmental concerns. This study aimed to address this void by exploring chemical engineering students' values regarding human-nature relationships. The study was…

  17. "Human Nature": Chemical Engineering Students' Ideas about Human Relationships with the Natural World

    ERIC Educational Resources Information Center

    Goldman, Daphne; Assaraf, Orit Ben-Zvi; Shemesh, Julia

    2014-01-01

    While importance of environmental ethics, as a component of sustainable development, in preparing engineers is widely acknowledged, little research has addressed chemical engineers' environmental concerns. This study aimed to address this void by exploring chemical engineering students' values regarding human-nature relationships. The study was…

  18. Genetic engineering of human pluripotent cells using TALE nucleases.

    PubMed

    Hockemeyer, Dirk; Wang, Haoyi; Kiani, Samira; Lai, Christine S; Gao, Qing; Cassady, John P; Cost, Gregory J; Zhang, Lei; Santiago, Yolanda; Miller, Jeffrey C; Zeitler, Bryan; Cherone, Jennifer M; Meng, Xiangdong; Hinkley, Sarah J; Rebar, Edward J; Gregory, Philip D; Urnov, Fyodor D; Jaenisch, Rudolf

    2011-07-07

    Targeted genetic engineering of human pluripotent cells is a prerequisite for exploiting their full potential. Such genetic manipulations can be achieved using site-specific nucleases. Here we engineered transcription activator-like effector nucleases (TALENs) for five distinct genomic loci. At all loci tested we obtained human embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) clones carrying transgenic cassettes solely at the TALEN-specified location. Our data suggest that TALENs employing the specific architectures described here mediate site-specific genome modification in human pluripotent cells with similar efficiency and precision as do zinc-finger nucleases (ZFNs).

  19. Buried waste integrated demonstration human engineered control station. Final report

    SciTech Connect

    Not Available

    1994-09-01

    This document describes the Human Engineered Control Station (HECS) project activities including the conceptual designs. The purpose of the HECS is to enhance the effectiveness and efficiency of remote retrieval by providing an integrated remote control station. The HECS integrates human capabilities, limitations, and expectations into the design to reduce the potential for human error, provides an easy system to learn and operate, provides an increased productivity, and reduces the ultimate investment in training. The overall HECS consists of the technology interface stations, supporting engineering aids, platform (trailer), communications network (broadband system), and collision avoidance system.

  20. Trends in cardiovascular engineering: organizing the human heart.

    PubMed

    Tulloch, Nathaniel L; Murry, Charles E

    2013-11-01

    The regulation of heart growth through the interaction of cell types, matrix molecules, and mechanical cues is poorly understood, yet is necessary for the heart to reach its proper size and function. Using mechanical load and vascular cell co-culture in combination with a tissue engineering approach, we have recently been able to generate organized human myocardium in vitro and to modulate cardiomyocyte alignment, proliferation, and hypertrophy within the engineered tissue construct; further, we measured contractile function and the force-length dependence of the engineered tissue as a whole. The goal of these studies has been to characterize in vitro models of human cardiac development and to work towards human therapeutics using organized, vascularized, contractile human cardiac tissue. This review will touch on the current state of knowledge in this field, give an overview of the results of our own recent findings, and present areas of active investigation and new directions for future research. © 2013 Elsevier Inc. All rights reserved.

  1. Antibodies and genetically engineered related molecules: production and purification.

    PubMed

    Roque, A Cecília A; Lowe, Christopher R; Taipa, M Angela

    2004-01-01

    Antibodies and antibody derivatives constitute 20 % of biopharmaceutical products currently in development, and despite early failures of murine products, chimeric and humanized monoclonal antibodies are now viable therapeutics. A number of genetically engineered antibody constructions have emerged, including molecular hybrids or chimeras that can deliver a powerful toxin to a target such as a tumor cell. However, the general use in clinical practice of antibody therapeutics is dependent not only on the availability of products with required efficacy but also on the costs of therapy. As a rule, a significant percentage (50-80%) of the total manufacturing cost of a therapeutic antibody is incurred during downstream processing. The critical challenges posed by the production of novel antibody therapeutics include improving process economics and efficiency, to reduce costs, and fulfilling increasingly demanding quality criteria for Food and Drug Administration (FDA) approval. It is anticipated that novel affinity-based separations will emerge from the development of synthetic ligands tailored to specific biotechnological needs. These synthetic affinity ligands include peptides obtained by synthesis and screening of peptide combinatorial libraries and artificial non-peptidic ligands generated by a de novo process design and synthesis. The exceptional stability, improved selectivity, and low cost of these ligands can lead to more efficient, less expensive, and safer procedures for antibody purification at manufacturing scales. This review aims to highlight the current trends in the design and construction of genetically engineered antibodies and related molecules, the recombinant systems used for their production, and the development of novel affinity-based strategies for antibody recovery and purification.

  2. Genetically Engineered Humanized Mouse Models for Preclinical Antibody Studies

    PubMed Central

    Proetzel, Gabriele; Wiles, Michael V.; Roopenian, Derry C.

    2015-01-01

    The use of genetic engineering has vastly improved our capabilities to create animal models relevant in preclinical research. With the recent advances in gene-editing technologies, it is now possible to very rapidly create highly tunable mouse models as needs arise. Here, we provide an overview of genetic engineering methods, as well as the development of humanized neonatal Fc receptor (FcRn) models and their use for monoclonal antibody in vivo studies. PMID:24150980

  3. Engineering Complex Human-Technological Work Systems: A Sensemaking Approach

    DTIC Science & Technology

    2007-06-01

    of the systems analyst. Here, the systems engineer must begin to consider various types of knowledge - based systems, including (1) work control...sequence of both formal and informal activities and knowledge products through which an organization projects and guides its actions into the future, and...system engineer with deeper insight into the structures and activities associated with knowledge creation. Complex human-technological work systems

  4. How bioinformatics can help reverse engineer human aging.

    PubMed

    de Magalhães, João Pedro; Toussaint, Olivier

    2004-04-01

    To study human aging is an enormous challenge. The complexity of the aging phenotype and the near impossibility of studying aging directly in humans oblige researchers to resort to models and extrapolations. Computational approaches offer a powerful set of tools to study human aging. In one direction we have data-mining methods, from comparative genomics to DNA microarrays, to retrieve information in large amounts of data. Afterwards, tools from systems biology to reverse engineering algorithms allow researchers to integrate different types of information to increase our knowledge about human aging. Computer methodologies will play a crucial role to reconstruct the genetic network of human aging and the associated regulatory mechanisms.

  5. [Advancement and goals of the aviation human engineering].

    PubMed

    Stupakov, G P; Ushakov, I B; Turzin, P S

    1997-01-01

    Analyzed were the efforts of the State Scientific-Research Test Institute of Aviation and Space Medicine to weigh and account the human factor in designing and upgrading avionics and aviation machinery. Described are the policy of human engineering support to the development, evaluation, and operation of aviation machinery, and the benefits from the human factor knowledge to the specifications for aviation machinery and allowance for the psychophysiological aptitudes of human on different phases of development of ergatic aviation systems. Outlined is the mainstream of ergonomic enhancement of the quality and safety, and humanization of the activities of different aviation specialists.

  6. Plant-derived human collagen scaffolds for skin tissue engineering.

    PubMed

    Willard, James J; Drexler, Jason W; Das, Amitava; Roy, Sashwati; Shilo, Shani; Shoseyov, Oded; Powell, Heather M

    2013-07-01

    Tissue engineering scaffolds are commonly formed using proteins extracted from animal tissues, such as bovine hide. Risks associated with the use of these materials include hypersensitivity and pathogenic contamination. Human-derived proteins lower the risk of hypersensitivity, but possess the risk of disease transmission. Methods engineering recombinant human proteins using plant material provide an alternate source of these materials without the risk of disease transmission or concerns regarding variability. To investigate the utility of plant-derived human collagen (PDHC) in the development of engineered skin (ES), PDHC and bovine hide collagen were formed into tissue engineering scaffolds using electrospinning or freeze-drying. Both raw materials were easily formed into two common scaffold types, electrospun nonwoven scaffolds and lyophilized sponges, with similar architectures. The processing time, however, was significantly lower with PDHC. PDHC scaffolds supported primary human cell attachment and proliferation at an equivalent or higher level than the bovine material. Interleukin-1 beta production was significantly lower when activated THP-1 macrophages where exposed to PDHC electrospun scaffolds compared to bovine collagen. Both materials promoted proper maturation and differentiation of ES. These data suggest that PDHC may provide a novel source of raw material for tissue engineering with low risk of allergic response or disease transmission.

  7. Plant-Derived Human Collagen Scaffolds for Skin Tissue Engineering

    PubMed Central

    Willard, James J.; Drexler, Jason W.; Das, Amitava; Roy, Sashwati; Shilo, Shani; Shoseyov, Oded

    2013-01-01

    Tissue engineering scaffolds are commonly formed using proteins extracted from animal tissues, such as bovine hide. Risks associated with the use of these materials include hypersensitivity and pathogenic contamination. Human-derived proteins lower the risk of hypersensitivity, but possess the risk of disease transmission. Methods engineering recombinant human proteins using plant material provide an alternate source of these materials without the risk of disease transmission or concerns regarding variability. To investigate the utility of plant-derived human collagen (PDHC) in the development of engineered skin (ES), PDHC and bovine hide collagen were formed into tissue engineering scaffolds using electrospinning or freeze-drying. Both raw materials were easily formed into two common scaffold types, electrospun nonwoven scaffolds and lyophilized sponges, with similar architectures. The processing time, however, was significantly lower with PDHC. PDHC scaffolds supported primary human cell attachment and proliferation at an equivalent or higher level than the bovine material. Interleukin-1 beta production was significantly lower when activated THP-1 macrophages where exposed to PDHC electrospun scaffolds compared to bovine collagen. Both materials promoted proper maturation and differentiation of ES. These data suggest that PDHC may provide a novel source of raw material for tissue engineering with low risk of allergic response or disease transmission. PMID:23298216

  8. Patient Safety: The Role of Human Factors and Systems Engineering

    PubMed Central

    Carayon, Pascale; Wood, Kenneth E.

    2011-01-01

    Patient safety is a global challenge that requires knowledge and skills in multiple areas, including human factors and systems engineering. In this chapter, numerous conceptual approaches and methods for analyzing, preventing and mitigating medical errors are described. Given the complexity of healthcare work systems and processes, we emphasize the need for increasing partnerships between the health sciences and human factors and systems engineering to improve patient safety. Those partnerships will be able to develop and implement the system redesigns that are necessary to improve healthcare work systems and processes for patient safety. PMID:20543237

  9. Patient safety - the role of human factors and systems engineering.

    PubMed

    Carayon, Pascale; Wood, Kenneth E

    2010-01-01

    Patient safety is a global challenge that requires knowledge and skills in multiple areas, including human factors and systems engineering. In this chapter, numerous conceptual approaches and methods for analyzing, preventing and mitigating medical errors are described. Given the complexity of healthcare work systems and processes, we emphasize the need for increasing partnerships between the health sciences and human factors and systems engineering to improve patient safety. Those partnerships will be able to develop and implement the system redesigns that are necessary to improve healthcare work systems and processes for patient safety.

  10. Human papillomaviruses-related cancers

    PubMed Central

    Al Moustafa, Ala-Eddin; Al-Awadhi, Rana; Missaoui, Nabiha; Adam, Ishag; Durusoy, Raika; Ghabreau, Lina; Akil, Nizar; Ahmed, Hussain Gadelkarim; Yasmeen, Amber; Alsbeih, Ghazi

    2014-01-01

    Human papillomavirus (HPV) infections are estimated to be the most common sexually transmitted infections worldwide. Meanwhile, it is well established that infection by high-risk HPVs is considered the major cause of cervical cancer since more than 96% of these cancers are positive for high-risk HPVs, especially types 16 and 18. Moreover, during the last 2 decades, numerous studies pointed-out the possible involvement of high-risk HPV in several human carcinomas including head and neck, colorectal and breast cancers. The association between high-risk HPVs and cervical cancer and potentially other human malignancies would necessitate the introduction of vaccines which were generated against the 2 most frequent high-risk HPVs (types 16 and 18) worldwide, including the Middle East (ME) as well as North African countries. The presence of high-risk HPVs in the pathogenesis of human cancers in the ME, which is essential in order to evaluate the importance of vaccination against HPVs, has not been fully investigated yet. In this review, we present an overview of the existing epidemiological evidence regarding the presence of HPV in human cancers in the ME and the potential impact of vaccination against HPV infections and its outcome on human health in this region. PMID:25424787

  11. Automating the Human Factors Engineering and Evaluation Processes

    SciTech Connect

    Mastromonico, C.

    2002-05-28

    The Westinghouse Savannah River Company (WSRC) has developed a software tool for automating the Human Factors Engineering (HFE) design review, analysis, and evaluation processes. The tool provides a consistent, cost effective, graded, user-friendly approach for evaluating process control system Human System Interface (HSI) specifications, designs, and existing implementations. The initial set of HFE design guidelines, used in the tool, was obtained from NUREG- 0700. Each guideline was analyzed and classified according to its significance (general concept vs. supporting detail), the HSI technology (computer based vs. non-computer based), and the HSI safety function (safety vs. non-safety). Approximately 10 percent of the guidelines were determined to be redundant or obsolete and were discarded. The remaining guidelines were arranged in a Microsoft Access relational database, and a Microsoft Visual Basic user interface was provided to facilitate the HFE design review. The tool also provides the capability to add new criteria to accommodate advances in HSI technology and incorporate lessons learned. Summary reports produced by the tool can be easily ported to Microsoft Word and other popular PC office applications. An IBM compatible PC with Microsoft Windows 95 or higher is required to run the application.

  12. Engineered LINE-1 retrotransposition in nondividing human neurons.

    PubMed

    Macia, Angela; Widmann, Thomas J; Heras, Sara R; Ayllon, Veronica; Sanchez, Laura; Benkaddour-Boumzaouad, Meriem; Muñoz-Lopez, Martin; Rubio, Alejandro; Amador-Cubero, Suyapa; Blanco-Jimenez, Eva; Garcia-Castro, Javier; Menendez, Pablo; Ng, Philip; Muotri, Alysson R; Goodier, John L; Garcia-Perez, Jose L

    2017-03-01

    Half the human genome is made of transposable elements (TEs), whose ongoing activity continues to impact our genome. LINE-1 (or L1) is an autonomous non-LTR retrotransposon in the human genome, comprising 17% of its genomic mass and containing an average of 80-100 active L1s per average genome that provide a source of inter-individual variation. New LINE-1 insertions are thought to accumulate mostly during human embryogenesis. Surprisingly, the activity of L1s can further impact the somatic human brain genome. However, it is currently unknown whether L1 can retrotranspose in other somatic healthy tissues or if L1 mobilization is restricted to neuronal precursor cells (NPCs) in the human brain. Here, we took advantage of an engineered L1 retrotransposition assay to analyze L1 mobilization rates in human mesenchymal (MSCs) and hematopoietic (HSCs) somatic stem cells. Notably, we have observed that L1 expression and engineered retrotransposition is much lower in both MSCs and HSCs when compared to NPCs. Remarkably, we have further demonstrated for the first time that engineered L1s can retrotranspose efficiently in mature nondividing neuronal cells. Thus, these findings suggest that the degree of somatic mosaicism and the impact of L1 retrotransposition in the human brain is likely much higher than previously thought. © 2017 Macia et al.; Published by Cold Spring Harbor Laboratory Press.

  13. Engineering large animal models of human disease.

    PubMed

    Whitelaw, C Bruce A; Sheets, Timothy P; Lillico, Simon G; Telugu, Bhanu P

    2016-01-01

    The recent development of gene editing tools and methodology for use in livestock enables the production of new animal disease models. These tools facilitate site-specific mutation of the genome, allowing animals carrying known human disease mutations to be produced. In this review, we describe the various gene editing tools and how they can be used for a range of large animal models of diseases. This genomic technology is in its infancy but the expectation is that through the use of gene editing tools we will see a dramatic increase in animal model resources available for both the study of human disease and the translation of this knowledge into the clinic. Comparative pathology will be central to the productive use of these animal models and the successful translation of new therapeutic strategies.

  14. Electronic cigarettes: incorporating human factors engineering into risk assessments

    PubMed Central

    Yang, Ling; Rudy, Susan F; Cheng, James M; Durmowicz, Elizabeth L

    2014-01-01

    Objective A systematic review was conducted to evaluate the impact of human factors (HF) on the risks associated with electronic cigarettes (e-cigarettes) and to identify research gaps. HF is the evaluation of human interactions with products and includes the analysis of user, environment and product complexity. Consideration of HF may mitigate known and potential hazards from the use and misuse of a consumer product, including e-cigarettes. Methods Five databases were searched through January 2014 and publications relevant to HF were incorporated. Voluntary adverse event (AE) reports submitted to the US Food and Drug Administration (FDA) and the package labelling of 12 e-cigarette products were analysed. Results No studies specifically addressing the impact of HF on e-cigarette use risks were identified. Most e-cigarette users are smokers, but data on the user population are inconsistent. No articles focused specifically on e-cigarette use environments, storage conditions, product operational requirements, product complexities, user errors or misuse. Twelve published studies analysed e-cigarette labelling and concluded that labelling was inadequate or misleading. FDA labelling analysis revealed similar concerns described in the literature. AE reports related to design concerns are increasing and fatalities related to accidental exposure and misuse have occurred; however, no publications evaluating the relationship between AEs and HF were identified. Conclusions The HF impacting e-cigarette use and related hazards are inadequately characterised. Thorough analyses of user–product–environment interfaces, product complexities and AEs associated with typical and atypical use are needed to better incorporate HF engineering principles to inform and potentially reduce or mitigate the emerging hazards associated with e-cigarette products. PMID:24732164

  15. Human Engineering Design Criteria for Military Systems, Equipment and Facilities

    DTIC Science & Technology

    1995-01-01

    QFOXGHDUHDFRGH 1995 Special Human Engineering Design Criteria for Military Systems, Equipment and Facilities: MIL- STD -1472D Checklist Lockheed...a sequential listing of all major MIL- STD -1472D Section 5.0 paragraph headings. The main paragraph headings serve as easy reminders to make sure no

  16. Human Systems Engineering: A Leadership Model for Collaboration and Change.

    ERIC Educational Resources Information Center

    Clark, Karen L.

    Human systems engineering (HSE) was created to introduce a new way of viewing collaboration. HSE emphasizes the role of leaders who welcome risk, commit to achieving positive change, and help others achieve change. The principles of HSE and its successful application to the collaborative process were illustrated through a case study representing a…

  17. Human factors engineering design demonstrations can enlighten your RCA team

    PubMed Central

    Gosbee, J; Anderson, T

    2003-01-01

    

 A case study is presented, based on the experience of the US Veterans Affairs health system, which shows the benefits of healthcare personnel understanding human factors engineering (HFE) and how it relates to patient safety. After HFE training, personnel are better able to use a systems-oriented approach during adverse event analysis. Without some appreciation of HFE, the focus of adverse event analyses (e.g. root cause analysis (RCA)) is often misguided towards policies or an individual's shortcomings, leading to ineffective solutions. The case study followed the investigation by an RCA team of a retained sponge following cardiac surgery. The team began with a focus on the specific failings of the surgical nurse and outdated policies. HFE design demonstrations were used to redirect the team's focus to more systems-oriented issues, which could be uncovered even when events appeared to be related to policy or training, and to point them towards examining the design of systems that contributed to the event. The team was thus able to identify design flaws and make improvements to the design of the forms and computer systems that were key to preventing such events from recurring. PMID:12679508

  18. Integrating the human element into the systems engineering process and MBSE methodology.

    SciTech Connect

    Tadros, Michael Samir.

    2013-12-01

    In response to the challenges related to the increasing size and complexity of systems, organizations have recognized the need to integrate human considerations in the beginning stages of systems development. Human Systems Integration (HSI) seeks to accomplish this objective by incorporating human factors within systems engineering (SE) processes and methodologies, which is the focus of this paper. A representative set of HSI methods from multiple sources are organized, analyzed, and mapped to the systems engineering Vee-model. These methods are then consolidated and evaluated against the SE process and Models-Based Systems Engineering (MBSE) methodology to determine where and how they could integrate within systems development activities in the form of specific enhancements. Overall conclusions based on these evaluations are presented and future research areas are proposed.

  19. Variation in tissue outcome of ovine and human engineered heart valve constructs: relevance for tissue engineering.

    PubMed

    van Geemen, Daphne; Driessen-Mol, Anita; Grootzwagers, Leonie G M; Soekhradj-Soechit, R Sarita; Riem Vis, Paul W; Baaijens, Frank P T; Bouten, Carlijn V C

    2012-01-01

    Clinical application of tissue engineered heart valves requires precise control of the tissue culture process to predict tissue composition and mechanical properties prior to implantation, and to understand the variation in tissue outcome. To this end we investigated cellular phenotype and tissue properties of ovine (n = 8) and human (n = 7) tissue engineered heart valve constructs to quantify variations in tissue outcome within species, study the differences between species and determine possible indicators of tissue outcome. Tissue constructs consisted of polyglycolic acid/poly-4-hydroxybutyrate scaffolds, seeded with myofibroblasts obtained from the jugular vein (sheep) or the saphenous vein (from humans undergoing cardiac surgery) and cultured under static conditions. Prior to seeding, protein expression of α-smooth muscle actin, vimentin, nonmuscle myosin heavy chain and heat shock protein 47 were determined to identify differences at an early stage of the tissue engineering process. After 4 weeks of culture, tissue composition and mechanical properties were quantified as indicators of tissue outcome. After 4 weeks of tissue culture, tissue properties of all ovine constructs were comparable, while there was a larger variation in the properties of the human constructs, especially the elastic modulus and collagen content. In addition, ovine constructs differed in composition from the human constructs. An increased number of α-smooth muscle actin-positive cells before seeding was correlated with the collagen content in the engineered heart valve constructs. Moreover, tissue stiffness increased with increasing collagen content. The results suggest that the culture process of ovine tissues can be controlled, whereas the mechanical properties, and hence functionality, of tissues originating from human material are more difficult to control. On-line evaluation of tissue properties during culture or more early cellular markers to predict the properties of autologous

  20. Human factors engineering approaches to patient identification armband design.

    PubMed

    Probst, C Adam; Wolf, Laurie; Bollini, Mara; Xiao, Yan

    2016-01-01

    The task of patient identification is performed many times each day by nurses and other members of the care team. Armbands are used for both direct verification and barcode scanning during patient identification. Armbands and information layout are critical to reducing patient identification errors and dangerous workarounds. We report the effort at two large, integrated healthcare systems that employed human factors engineering approaches to the information layout design of new patient identification armbands. The different methods used illustrate potential pathways to obtain standardized armbands across healthcare systems that incorporate human factors principles. By extension, how the designs have been adopted provides examples of how to incorporate human factors engineering into key clinical processes. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  1. Status of human factors engineering system design in Europe

    SciTech Connect

    Ives, G. )

    1990-01-01

    A review of the European status of human factors engineering has been carried out covering a wide scope of activities which includes psychology, cognitive science, ergonomics, design, training, procedure writing, operating, artificial intelligence and expert systems. There is an increasing awareness of the part that human factors play in major nuclear power plant accidents. The emphasis of attention in human factors is changing. In some areas there are encouraging signs of progress and development, but in other areas there is still scope for improvement.

  2. Incremental Scheduling Engines for Human Exploration of the Cosmos

    NASA Technical Reports Server (NTRS)

    Jaap, John; Phillips, Shaun

    2005-01-01

    As humankind embarks on longer space missions farther from home, the requirements and environments for scheduling the activities performed on these missions are changing. As we begin to prepare for these missions it is appropriate to evaluate the merits and applicability of the different types of scheduling engines. Scheduling engines temporally arrange tasks onto a timeline so that all constraints and objectives are met and resources are not overbooked. Scheduling engines used to schedule space missions fall into three general categories: batch, mixed-initiative, and incremental. This paper presents an assessment of the engine types, a discussion of the impact of human exploration of the moon and Mars on planning and scheduling, and the applicability of the different types of scheduling engines. This paper will pursue the hypothesis that incremental scheduling engines may have a place in the new environment; they have the potential to reduce cost, to improve the satisfaction of those who execute or benefit from a particular timeline (the customers), and to allow astronauts to plan their own tasks and those of their companion robots.

  3. Engineering human neo-tendon tissue in vitro with human dermal fibroblasts under static mechanical strain.

    PubMed

    Deng, Dan; Liu, Wei; Xu, Feng; Yang, Yang; Zhou, Guangdong; Zhang, Wen Jie; Cui, Lei; Cao, Yilin

    2009-12-01

    Proper cell source is one of the key issues for tendon engineering. Our previous study showed that dermal fibroblasts could be used to successfully engineer tendon in vivo and tenocytes could engineer neo-tendon in vitro with static strain. This study further investigated the possibility of engineering human neo-tendon tissue in vitro using dermal fibroblasts. Human dermal fibroblasts were seeded on polyglycolic acid (PGA) fibers pre-fixed on a U-shape as a mechanical loading group, or simply cultured in a dish as a tension-free group. In addition, human tenocytes were also seeded on PGA fibers with tension as a comparison to human dermal fibroblasts. The results showed that human neo-tendon tissue could be generated using dermal fibroblasts during in vitro culture under static strain and the tissue structure became more mature with the increase of culture time. Longitudinally aligned collagen fibers and spindle shape cells were observed histologically and collagen fibril diameter and tensile strength increased with time and reached a peak at 14 weeks. In contrast, the dermal fibroblast-PGA constructs failed to form neo-tendon, but formed disorganized fibrous tissue in tension-free condition with significantly weaker strength and poor collagen fiber formation. Interestingly, neo-tendon tissues generated with human dermal fibroblasts were indistinguishable from the counterpart engineered with human tenocytes, which supports the viewpoint that human dermal fibroblasts is likely to replace tenocytes for future tendon graft development in vitro with dynamic mechanical loading in a bioreactor system.

  4. Appendix O. The Human Relations School.

    ERIC Educational Resources Information Center

    Fox Robert S.; Lippitt, Ronald

    This document presents a model for a Human Relations School, an educational system in which attention is formally focused on the human relations aspects of the school, those aspects traditionally subordinated to cognitive objectives. Ten basic assumptions are listed which led to the identification of a set of goal areas. Five to 10…

  5. The Computerized Human Relations Program - Humrelat -

    ERIC Educational Resources Information Center

    Cassel, Russell N.; And Others

    1973-01-01

    This is the report of a study accomplished in two separate parts: (1) Part I dealt with evaluation of an existing course of instruction in human relations at The Moraine Park Technical Institute, and (2) Part II dealt with the development of a proposed course of instruction in human relations for the technical institute. (Author)

  6. Human Factors Engineering at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Dunn, M. C.; Hutchinson, Sonya L.

    1999-01-01

    The mission of NASA Marshall Space Flight Center (MSFC) is to develop, implement, and maintain systems for space transportation and microgravity research. Factors impacting the MSFC position as a leader in advancing science and technology include: (1) heightened emphasis on safety; (2) increased interest in effective resource utilization; and (3) growing importance of employing systems and procedures that pragmatically support mission science. In light of these factors, MSFC is integrating human factors engineering (HFE) into the systems engineering process. This paper describes the HFE program, applications of HFE in MSFC projects, and the future of HFE at MSFC.

  7. Improving the human-computer interface: a human factors engineering approach.

    PubMed

    Salvemini, A V

    1998-01-01

    Human factors engineering involves the application of information about human behavior and characteristics in the design and testing of products, systems, and environments. A computing system's interface is developed on the basis of potential users' capabilities and limitations, the users' tasks, and the environment in which those tasks are performed. When human factors engineers work with users, subject-matter experts, and developers to design and test a system, they analyze and document users' tasks and requirements and develop prototype designs. Usability studies are conducted and user errors are analyzed to identify problems and develop recommendations for improving the human-computer interface.

  8. The Principal and Human Relations.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of Human Relations.

    This booklet offers general guidelines and recommendations on how to develop and exercise the interpersonal skills required of a successful school principal. Attention is devoted to the basic principles of effective communication and personal interaction, with emphasis on the principal's relations with students, teachers, and members of the…

  9. 2014 Space Human Factors Engineering Standing Review Panel

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan

    2014-01-01

    The 2014 Space Human Factors Engineering (SHFE) Standing Review Panel (from here on referred to as the SRP) participated in a WebEx/teleconference with members of the Space Human Factors and Habitability (SHFH) Element, representatives from the Human Research Program (HRP), the National Space Biomedical Research Institute (NSBRI), and NASA Headquarters on November 17, 2014 (list of participants is in Section XI of this report). The SRP reviewed the updated research plans for the Risk of Incompatible Vehicle/Habitat Design (HAB Risk) and the Risk of Performance Errors Due to Training Deficiencies (Train Risk). The SRP also received a status update on the Risk of Inadequate Critical Task Design (Task Risk), the Risk of Inadequate Design of Human and Automation/Robotic Integration (HARI Risk), and the Risk of Inadequate Human-Computer Interaction (HCI Risk).

  10. Human alcohol-related neuropathology

    PubMed Central

    Kril, Jillian J.

    2015-01-01

    Alcohol-related diseases of the nervous system are caused by excessive exposures to alcohol, with or without co-existing nutritional or vitamin deficiencies. Toxic and metabolic effects of alcohol (ethanol) vary with brain region, age/developmental stage, dose, and duration of exposures. In the mature brain, heavy chronic or binge alcohol exposures can cause severe debilitating diseases of the central and peripheral nervous systems, and skeletal muscle. Most commonly, long-standing heavy alcohol abuse leads to disproportionate loss of cerebral white matter and impairments in executive function. The cerebellum (especially the vermis), cortical-limbic circuits, skeletal muscle, and peripheral nerves are also important targets of chronic alcohol-related metabolic injury and degeneration. Although all cell types within the nervous system are vulnerable to the toxic, metabolic, and degenerative effects of alcohol, astrocytes, oligodendrocytes, and synaptic terminals are major targets, accounting for the white matter atrophy, neural inflammation and toxicity, and impairments in synaptogenesis. Besides chronic degenerative neuropathology, alcoholics are predisposed to develop severe potentially life-threatening acute or subacute symmetrical hemorrhagic injury in the diencephalon and brainstem due to thiamine deficiency, which exerts toxic/metabolic effects on glia, myelin, and the microvasculature. Alcohol also has devastating neurotoxic and teratogenic effects on the developing brain in association with fetal alcohol spectrum disorder/fetal alcohol syndrome. Alcohol impairs function of neurons and glia, disrupting a broad array of functions including neuronal survival, cell migration, and glial cell (astrocytes and oligodendrocytes) differentiation. Further progress is needed to better understand the pathophysiology of this exposure-related constellation of nervous system diseases and better correlate the underlying pathology with in vivo imaging and biochemical lesions

  11. Human alcohol-related neuropathology.

    PubMed

    de la Monte, Suzanne M; Kril, Jillian J

    2014-01-01

    Alcohol-related diseases of the nervous system are caused by excessive exposures to alcohol, with or without co-existing nutritional or vitamin deficiencies. Toxic and metabolic effects of alcohol (ethanol) vary with brain region, age/developmental stage, dose, and duration of exposures. In the mature brain, heavy chronic or binge alcohol exposures can cause severe debilitating diseases of the central and peripheral nervous systems, and skeletal muscle. Most commonly, long-standing heavy alcohol abuse leads to disproportionate loss of cerebral white matter and impairments in executive function. The cerebellum (especially the vermis), cortical-limbic circuits, skeletal muscle, and peripheral nerves are also important targets of chronic alcohol-related metabolic injury and degeneration. Although all cell types within the nervous system are vulnerable to the toxic, metabolic, and degenerative effects of alcohol, astrocytes, oligodendrocytes, and synaptic terminals are major targets, accounting for the white matter atrophy, neural inflammation and toxicity, and impairments in synaptogenesis. Besides chronic degenerative neuropathology, alcoholics are predisposed to develop severe potentially life-threatening acute or subacute symmetrical hemorrhagic injury in the diencephalon and brainstem due to thiamine deficiency, which exerts toxic/metabolic effects on glia, myelin, and the microvasculature. Alcohol also has devastating neurotoxic and teratogenic effects on the developing brain in association with fetal alcohol spectrum disorder/fetal alcohol syndrome. Alcohol impairs function of neurons and glia, disrupting a broad array of functions including neuronal survival, cell migration, and glial cell (astrocytes and oligodendrocytes) differentiation. Further progress is needed to better understand the pathophysiology of this exposure-related constellation of nervous system diseases and better correlate the underlying pathology with in vivo imaging and biochemical lesions.

  12. Site-Specific Genome Engineering in Human Pluripotent Stem Cells.

    PubMed

    Merkert, Sylvia; Martin, Ulrich

    2016-06-24

    The possibility to generate patient-specific induced pluripotent stem cells (iPSCs) offers an unprecedented potential of applications in clinical therapy and medical research. Human iPSCs and their differentiated derivatives are tools for diseases modelling, drug discovery, safety pharmacology, and toxicology. Moreover, they allow for the engineering of bioartificial tissue and are promising candidates for cellular therapies. For many of these applications, the ability to genetically modify pluripotent stem cells (PSCs) is indispensable, but efficient site-specific and safe technologies for genetic engineering of PSCs were developed only recently. By now, customized engineered nucleases provide excellent tools for targeted genome editing, opening new perspectives for biomedical research and cellular therapies.

  13. Site-Specific Genome Engineering in Human Pluripotent Stem Cells

    PubMed Central

    Merkert, Sylvia; Martin, Ulrich

    2016-01-01

    The possibility to generate patient-specific induced pluripotent stem cells (iPSCs) offers an unprecedented potential of applications in clinical therapy and medical research. Human iPSCs and their differentiated derivatives are tools for diseases modelling, drug discovery, safety pharmacology, and toxicology. Moreover, they allow for the engineering of bioartificial tissue and are promising candidates for cellular therapies. For many of these applications, the ability to genetically modify pluripotent stem cells (PSCs) is indispensable, but efficient site-specific and safe technologies for genetic engineering of PSCs were developed only recently. By now, customized engineered nucleases provide excellent tools for targeted genome editing, opening new perspectives for biomedical research and cellular therapies. PMID:27347935

  14. Engineering aspects of rate-related processes in food manufacturing.

    PubMed

    Adachi, Shuji

    2015-01-01

    Many rate-related phenomena occur in food manufacturing processes. This review addresses four of them, all of which are topics that the author has studied in order to design food manufacturing processes that are favorable from the standpoint of food engineering. They include chromatographic separation through continuous separation with a simulated moving adsorber, lipid oxidation kinetics in emulsions and microencapsulated systems, kinetic analysis and extraction in subcritical water, and water migration in pasta.

  15. Human factors engineering report for the cold vacuum drying facility

    SciTech Connect

    IMKER, F.W.

    1999-06-30

    The purpose of this report is to present the results and findings of the final Human Factors Engineering (HFE) technical analysis and evaluation of the Cold Vacuum Drying Facility (CVDF). Ergonomics issues are also addressed in this report, as appropriate. This report follows up and completes the preliminary work accomplished and reported by the Preliminary HFE Analysis report (SNF-2825, Spent Nuclear Fuel Project Cold Vacuum Drying Facility Human Factors Engineering Analysis: Results and Findings). This analysis avoids redundancy of effort except for ensuring that previously recommended HFE design changes have not affected other parts of the system. Changes in one part of the system may affect other parts of the system where those changes were not applied. The final HFE analysis and evaluation of the CVDF human-machine interactions (HMI) was expanded to include: the physical work environment, human-computer interface (HCI) including workstation and software, operator tasks, tools, maintainability, communications, staffing, training, and the overall ability of humans to accomplish their responsibilities, as appropriate. Key focal areas for this report are the process bay operations, process water conditioning (PWC) skid, tank room, and Central Control Room operations. These key areas contain the system safety-class components and are the foundation for the human factors design basis of the CVDF.

  16. Engineering data compendium. Human perception and performance, volume 3

    NASA Technical Reports Server (NTRS)

    Boff, Kenneth R. (Editor); Lincoln, Janet E. (Editor)

    1988-01-01

    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design of military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by system designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is Volume 3, containing sections on Human Language Processing, Operator Motion Control, Effects of Environmental Stressors, Display Interfaces, and Control Interfaces (Real/Virtual).

  17. Computer aided systems human engineering: A hypermedia tool

    NASA Technical Reports Server (NTRS)

    Boff, Kenneth R.; Monk, Donald L.; Cody, William J.

    1992-01-01

    The Computer Aided Systems Human Engineering (CASHE) system, Version 1.0, is a multimedia ergonomics database on CD-ROM for the Apple Macintosh II computer, being developed for use by human system designers, educators, and researchers. It will initially be available on CD-ROM and will allow users to access ergonomics data and models stored electronically as text, graphics, and audio. The CASHE CD-ROM, Version 1.0 will contain the Boff and Lincoln (1988) Engineering Data Compendium, MIL-STD-1472D and a unique, interactive simulation capability, the Perception and Performance Prototyper. Its features also include a specialized data retrieval, scaling, and analysis capability and the state of the art in information retrieval, browsing, and navigation.

  18. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology.

    PubMed

    Liu, Ying; Deng, Wenbin

    2016-05-01

    and to complement the iPSC-based approach for ALS disease modeling studies. Much knowledge has been generated from the study of both ALS iPSCs and ESCs. As these methods have advantages and disadvantages that should be balanced on experimental design in order for them to complement one another, combining the diverse methods would help build an expanded knowledge of ALS pathophysiology. The goals are to reverse engineer the human disease using ESCs and iPSCs, generate lineage reporter lines and in vitro disease models, target disease related genes, in order to better understand the molecular and cellular mechanisms of differentiation regulation along neural (neuronal versus glial) lineages, to unravel the pathogenesis of the neurodegenerative disease, and to provide appropriate cell sources for replacement therapy. This article is part of a Special Issue entitled SI: PSC and the brain. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Department Of Defense Design Criteria Standard: Human Engineering. Notice 1

    DTIC Science & Technology

    2003-12-05

    AMSC N/A AREA HFAC DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. NOTICE OF CHANGE METRIC MIL- STD -1472F...NOTICE 1 05 December 2003 DEPARTMENT OF DEFENSE DESIGN CRITERIA STANDARD HUMAN ENGINEERING TO ALL HOLDERS OF MIL- STD -1472F: 1. THE...FOLLOWING PAGES OF MIL- STD -1472F HAVE BEEN REVISED AND SUPERSEDE THE PAGES LISTED: NEW PAGE DATE SUPERSEDED PAGE DATE 1 31 July 2003 1 23 August 1999

  20. Handbook of human engineering design data for reduced gravity conditions

    NASA Technical Reports Server (NTRS)

    Marton, T.; Rudek, F. P.; Miller, R. A.; Norman, D. G.

    1971-01-01

    A Handbook is presented for the use of engineers, designers, and human factors specialists during the developmental and detailed design phases of manned spacecraft programs. Detailed and diverse quantified data on man's capabilities and tolerances for survival and productive effort in the extraterrestrial environment are provided. Quantified data and information on the space environment as well as the characteristics of the vehicular or residential environment required to support man in outer space are also given.

  1. Human Factors Engineering Bibliographic Series. Volume 5, 1967 Literature

    DTIC Science & Technology

    1976-03-01

    tions, planning Period (PP) and Control , wet run In a single sesion with ;0 simple prob- 𔃾 ~loms todetermine whether a single 2-nn. ps oting period... control system which can be employed from pre-liInIry planning wages through prodction and delivery of a given quantity of Items. Basic elameis phetes...University, Medford, Massachusetts 2RPOTAT 11. CONTROLLING OFFICE NAME AND ADDRESS12REOTDE U. S. Army Human Engineering Laboratory March 1976 Aberdeen Proving

  2. Tissue engineered humanized bone supports human hematopoiesis in vivo.

    PubMed

    Holzapfel, Boris M; Hutmacher, Dietmar W; Nowlan, Bianca; Barbier, Valerie; Thibaudeau, Laure; Theodoropoulos, Christina; Hooper, John D; Loessner, Daniela; Clements, Judith A; Russell, Pamela J; Pettit, Allison R; Winkler, Ingrid G; Levesque, Jean-Pierre

    2015-08-01

    Advances in tissue-engineering have resulted in a versatile tool-box to specifically design a tailored microenvironment for hematopoietic stem cells (HSCs) in order to study diseases that develop within this setting. However, most current in vivo models fail to recapitulate the biological processes seen in humans. Here we describe a highly reproducible method to engineer humanized bone constructs that are able to recapitulate the morphological features and biological functions of the HSC niches. Ectopic implantation of biodegradable composite scaffolds cultured for 4 weeks with human mesenchymal progenitor cells and loaded with rhBMP-7 resulted in the development of a chimeric bone organ including a large number of human mesenchymal cells which were shown to be metabolically active and capable of establishing a humanized microenvironment supportive of the homing and maintenance of human HSCs. A syngeneic mouse-to-mouse transplantation assay was used to prove the functionality of the tissue-engineered ossicles. We predict that the ability to tissue engineer a morphologically intact and functional large-volume bone organ with a humanized bone marrow compartment will help to further elucidate physiological or pathological interactions between human HSCs and their native niches. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  3. Cellular Localization of Engineered Human LINE-1 RNA and Proteins.

    PubMed

    Doucet, Aurélien J; Basyuk, Eugénia; Gilbert, Nicolas

    2016-01-01

    The human LINE-1 retrotransposon has the ability to mobilize into a new genomic location through an intracellular replication cycle. Immunofluorescence and in situ hybridization experiments have been developed to detect subcellular localization of retrotransposition intermediates (i.e., ORF1p, ORF2p, and L1 mRNA). Currently, these protocols are also used to validate the interaction between retrotransposition complex components and potential cellular partners involved in L1 replication. Here, we describe in details methods for the identification of LINE-1 proteins and/or RNA in cells transfected with vectors expressing engineered human LINE-1 elements.

  4. TEPCO's Approach to Power-Engineer Human Resource Development

    NASA Astrophysics Data System (ADS)

    Sato, Masaki

    We think 'human resources and technology' is developed only by self-training continuously, keeping higher motivation and practicing repeatedly. Moreover it is indispensable for sustainable development of company. Management vision, top-down message with vertical communication, and bottom-up systematic approaches are necessary for sustainable human resource development, sharing the value with coordination, and in addition, OJT and Off-JT method should be used effectively. This paper shows TEPCO's attempts to develop engineers' technical skills as a reference of a in-company continuing professional development.

  5. Engineering Education Development to Enhance Human Skill in DENSO

    NASA Astrophysics Data System (ADS)

    Isogai, Emiko; Nuka, Takeji

    Importance of human skills such as communication or instruction capability to their staff members has recently been highlighted in a workplace, due to decreasing opportunity of face-to-face communication between supervisors and their staff, or Instruction capability through OJT (On the Job Training) . Currently, communication skills are being reinforced mainly through OJT at DENSO. Therefore, as part of supplemental support tools, DENSO has established comprehensive engineers training program on off-JT basis for developing human skills, covering from newly employeed enginners up to managerial class since 2003. This paper describes education activities and reports the results.

  6. Efficient genetic engineering of human intestinal organoids using electroporation.

    PubMed

    Fujii, Masayuki; Matano, Mami; Nanki, Kosaku; Sato, Toshiro

    2015-10-01

    Gene modification in untransformed human intestinal cells is an attractive approach for studying gene function in intestinal diseases. However, because of the lack of practical tools, such studies have largely depended upon surrogates, such as gene-engineered mice or immortalized human cell lines. By taking advantage of the recently developed intestinal organoid culture method, we developed a methodology for modulating genes of interest in untransformed human colonic organoids via electroporation of gene vectors. Here we describe a detailed protocol for the generation of intestinal organoids by culture with essential growth factors in a basement membrane matrix. We also describe how to stably integrate genes via the piggyBac transposon, as well as precise genome editing using the CRISPR-Cas9 system. Beginning with crypt isolation from a human colon sample, genetically modified organoids can be obtained in 3 weeks.

  7. Human Engineering of Space Vehicle Displays and Controls

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Holden, Kritina L.; Boyer, Jennifer; Stephens, John-Paul; Ezer, Neta; Sandor, Aniko

    2010-01-01

    Proper attention to the integration of the human needs in the vehicle displays and controls design process creates a safe and productive environment for crew. Although this integration is critical for all phases of flight, for crew interfaces that are used during dynamic phases (e.g., ascent and entry), the integration is particularly important because of demanding environmental conditions. This panel addresses the process of how human engineering involvement ensures that human-system integration occurs early in the design and development process and continues throughout the lifecycle of a vehicle. This process includes the development of requirements and quantitative metrics to measure design success, research on fundamental design questions, human-in-the-loop evaluations, and iterative design. Processes and results from research on displays and controls; the creation and validation of usability, workload, and consistency metrics; and the design and evaluation of crew interfaces for NASA's Crew Exploration Vehicle are used as case studies.

  8. A Model for Professional Education in the 21st Century: Integrating Humanities and Engineering through Writing.

    ERIC Educational Resources Information Center

    Olds, Barbara M.; Miller, Ronald L.

    The "HumEn" (Humanities/Engineering Integration) program developed at the Colorado School of Mines integrates humanities and engineering through reading and writing. Through integrative reading and writing engineering students are led to make appropriate connections between the humanities and their technical work, connections that will…

  9. Cultivating Engineers' Humanity: Fostering Cosmopolitanism in a Technical University

    ERIC Educational Resources Information Center

    Boni, Alejandra; MacDonald, Penny; Peris, Jordi

    2012-01-01

    This paper aims to explore the potential of a curriculum designed to develop Nussbaum's cosmopolitan abilities through two elective subjects offered to future engineers in a Spanish Technical University. To this end, Nussbaum's proposition of cosmopolitan abilities is presented in relation to the broader academic literature on cosmopolitanism and…

  10. Human Relations Education Project. Final Evaluation Report.

    ERIC Educational Resources Information Center

    Buffalo Board of Education, NY.

    This project did the planning and pilot phases of an effort to improve the teaching of human relations in grades K-12 of public and private schools in the Buffalo-Niagara Falls metropolitan area. In the pilot phase, the project furnished on-the-job training for approximately 70 schools. The training was given by teams of human relations…

  11. Relevance and safety of telomerase for human tissue engineering

    PubMed Central

    Klinger, Rebecca Y.; Blum, Juliana L.; Hearn, Bevin; Lebow, Benjamin; Niklason, Laura E.

    2006-01-01

    Tissue engineering holds the promise of replacing damaged or diseased tissues and organs. The use of autologous donor cells is often not feasible because of the limited replicative lifespan of cells, particularly those derived from elderly patients. Proliferative arrest can be overcome by the ectopic expression of telomerase via human telomerase reverse transcriptase (hTERT) gene transfection. To study the efficacy and safety of this potentially valuable technology, we used differentiated vascular smooth muscle cells (SMC) and vascular tissue engineering as a model system. Although we previously demonstrated that vessels engineered with telomerase-expressing SMC had improved mechanics over those grown with control cells, it is critical to assess the phenotypic impact of telomerase expression in donor cells, because telomerase up-regulation is observed in >95% of human malignancies. To study the impact of telomerase in tissue engineering, expression of hTERT was retrovirally induced in SMC from eight elderly patients and one young donor. In hTERT SMC, significant lifespan extension beyond that of control was achieved without population doubling time acceleration. Karyotype changes were seen in both control and hTERT SMC but were not clonal nor representative of cancerous change. hTERT cells also failed to show evidence of neoplastic transformation in functional assays of tumorigenicity. In addition, the impact of donor age on cellular behavior, particularly the synthetic capability of SMC, was not affected by hTERT expression. Hence, this tissue engineering model system highlights the impact of donor age on cellular synthetic function that appears to be independent of lifespan extension by hTERT. PMID:16477025

  12. Engineering of human hepatic tissue with functional vascular networks.

    PubMed

    Takebe, Takanori; Koike, Naoto; Sekine, Keisuke; Fujiwara, Ryoji; Amiya, Takeru; Zheng, Yun-Wen; Taniguchi, Hideki

    2014-01-01

    Although absolute organ shortage highlights the needs of alternative organ sources for regenerative medicine, the generation of a three-dimensional (3D) and complex vital organ, such as well-vascularized liver, remains a challenge. To this end, tissue engineering holds great promise; however, this approach is significantly limited by the failure of early vascularization in vivo after implantation. Here, we established a stable 3D in vitro pre-vascularization platform to generate human hepatic tissue after implantation in vivo. Human fetal liver cells (hFLCs) were mixed with human umbilical vein endothelial cells (HUVECs) and mesenchymal stem cells (hMSCs) and were implanted into a collagen/fibronectin matrix composite that was used as a 3-D carrier. After a couple of days, the fluorescent HUVECs developed premature vascular networks in vitro, which were stabilized by hMSCs. The establishment of functional vessels inside the pre-vascularized constructs was proven using dextran infusion studies after implantation under a transparency cranial window. Furthermore, dynamic morphological changes during embryonic liver cell maturation were intravitaly quantified with high-resolution confocal microscope analysis. The engineered human hepatic tissue demonstrated multiple liver-specific features, both structural and functional. Our new techniques discussed here can be implemented in future clinical uses and industrial uses, such as drug testing.

  13. Human Factors Engineering: Current and Emerging Dual-Use Applications

    NASA Technical Reports Server (NTRS)

    Chandlee, G. O.; Goldsberry, B. S.

    1994-01-01

    Human Factors Engineering is a multidisciplinary endeavor in which information pertaining to human characteristics is used in the development of systems and machines. Six representatives considered to be experts from the public and private sectors were surveyed in an effort to identify the potential dual-use of human factors technology. Each individual was asked to provide a rating as to the dual-use of 85 identified NASA technologies. Results of the survey were as follows: nearly 75 percent of the technologies were identified at least once as high dual-use by one of the six survey respondents, and nearly 25 percent of the identified NASA technologies were identified as high dual-use technologies by a majority of the respondents. The perceived level of dual-use appeared to be independent of the technology category. Successful identification of dual-use technology requires expanded input from industry. As an adjunct, cost-benefit analysis should be conducted to identify the feasibility of the dual-use technology. Concurrent with this effort should be an examination of precedents established by other technologies in other industrial settings. Advances in human factors and systems engineering are critical to reduce risk in any workplace and to enhance industrial competitiveness.

  14. Human factors engineering checklists for application in the SAR process

    SciTech Connect

    Overlin, T.K.; Romero, H.A.; Ryan, T.G.

    1995-03-01

    This technical report was produced to assist the preparers and reviewers of the human factors portions of the SAR in completing their assigned tasks regarding analysis and/or review of completed analyses. The checklists, which are the main body of the report, and the subsequent tables, were developed to assist analysts in generating the needed analysis data to complete the human engineering analysis for the SAR. The technical report provides a series of 19 human factors engineering (HFE) checklists which support the safety analyses of the US Department of Energy`s (DOE) reactor and nonreactor facilities and activities. The results generated using these checklists and in the preparation of the concluding analyses provide the technical basis for preparing the human factors chapter, and subsequent inputs to other chapters, required by DOE as a part of the safety analysis reports (SARs). This document is divided into four main sections. The first part explains the origin of the checklists, the sources utilized, and other information pertaining to the purpose and scope of the report. The second part, subdivided into 19 sections, is the checklists themselves. The third section is the glossary which defines terms that could either be unfamiliar or have specific meanings within the context of these checklists. The final section is the subject index in which the glossary terms are referenced back to the specific checklist and page the term is encountered.

  15. Mechanical stimulation improves tissue-engineered human skeletal muscle

    NASA Technical Reports Server (NTRS)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  16. Mechanical stimulation improves tissue-engineered human skeletal muscle.

    PubMed

    Powell, Courtney A; Smiley, Beth L; Mills, John; Vandenburgh, Herman H

    2002-11-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  17. Mechanical stimulation improves tissue-engineered human skeletal muscle

    NASA Technical Reports Server (NTRS)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  18. Engineering melanoma progression in a humanized environment in vivo.

    PubMed

    Kiowski, Gregor; Biedermann, Thomas; Widmer, Daniel S; Civenni, Gianluca; Burger, Charlotte; Dummer, Reinhard; Sommer, Lukas; Reichmann, Ernst

    2012-01-01

    To overcome the lack of effective therapeutics for aggressive melanoma, new research models closely resembling the human disease are required. Here we report the development of a fully orthotopic, humanized in vivo model for melanoma, faithfully recapitulating human disease initiation and progression. To this end, human melanoma cells were seeded into engineered human dermo-epidermal skin substitutes. Transplantation onto the back of immunocompromised rats consistently resulted in the development of melanoma, displaying the hallmarks of their parental tumors. Importantly, all initial steps of disease progression were recapitulated, including the incorporation of the tumor cells into their physiological microenvironment, transition of radial to vertical growth, and establishment of highly vascularized, aggressive tumors with dermal involvement. Because all cellular components can be individually accessed using this approach, it allows manipulation of the tumor cells, as well as of the keratinocyte and stromal cell populations. Therefore, in one defined model system, tumor cell-autonomous and non-autonomous pathways regulating human disease progression can be investigated in a humanized, clinically relevant context.

  19. HOW DO RADIOLOGISTS USE THE HUMAN SEARCH ENGINE?

    PubMed

    Wolfe, Jeremy M; Evans, Karla K; Drew, Trafton; Aizenman, Avigael; Josephs, Emilie

    2016-06-01

    Radiologists perform many 'visual search tasks' in which they look for one or more instances of one or more types of target item in a medical image (e.g. cancer screening). To understand and improve how radiologists do such tasks, it must be understood how the human 'search engine' works. This article briefly reviews some of the relevant work into this aspect of medical image perception. Questions include how attention and the eyes are guided in radiologic search? How is global (image-wide) information used in search? How might properties of human vision and human cognition lead to errors in radiologic search? © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Unit on Human Feelings and Relations.

    ERIC Educational Resources Information Center

    Wellesley Public Schools, MA.

    The human relations units, intended especially for the benefit of slow learners who may have emotional problems but also valuable for other children, help students become more aware of the dynamics of intra and interpersonal relations. Emphasis is upon involving all class members in participation at their own level. Discussion of all common…

  1. Engineering Data Compendium. Human Perception and Performance, Volume 1

    NASA Technical Reports Server (NTRS)

    Boff, Kenneth R. (Editor); Lincoln, Janet E. (Editor)

    1988-01-01

    The concept underlying the Engineering Data Compendium was the product an R and D program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design of military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by system designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is Volume 1, which contains sections on Visual Acquisition of Information, Auditory Acquisition of Information, and Acquisition of Information by Other Senses.

  2. Engineering Data Compendium. Human Perception and Performance, Volume 2

    NASA Technical Reports Server (NTRS)

    Boff, Kenneth R. (Editor); Lincoln, Janet E. (Editor)

    1988-01-01

    The concept underlying the Engineering Data Compendium was the product of a Research and Development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design of military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by system designers. The present volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is Volume 2, which contains sections on Information Storage and Retrieval, Spatial Awareness, Perceptual Organization, and Attention and Allocation of Resources.

  3. Engineering data compendium. Human perception and performance. User's guide

    NASA Technical Reports Server (NTRS)

    Boff, Kenneth R. (Editor); Lincoln, Janet E. (Editor)

    1988-01-01

    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use.

  4. Engineering data compendium. Human perception and performance, volume 1

    NASA Technical Reports Server (NTRS)

    Boff, Kenneth R. (Editor); Lincoln, Janet E. (Editor)

    1988-01-01

    The concept underlying the Engineering Data Compendium was the product an R and D program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design of military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by system designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is Volume 1, which contains sections on Visual Acquisition of Information, Auditory Acquisition of Information, and Acquisition of Information by Other Senses.

  5. Engineering data compendium. Human perception and performance, volume 2

    NASA Technical Reports Server (NTRS)

    Boff, Kenneth R. (Editor); Lincoln, Janet E. (Editor)

    1988-01-01

    The concept underlying the Engineering Data Compendium was the product of a Research and Development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design of military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by system designers. The present volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is Volume 2, which contains sections on Information Storage and Retrieval, Spatial Awareness, Perceptual Organization, and Attention and Allocation of Resources.

  6. Characteristics of tissue-engineered cartilage from human auricular chondrocytes.

    PubMed

    Park, Stephen S; Jin, Hong Ryul; Chi, David H; Taylor, Ray S

    2004-05-01

    This study was done to define the mechanical and histological properties of tissue-engineered cartilage (TEC) derived from human chondrocytes and to compare these findings with those of native cartilage. Chondrocytes were obtained from 10 human auricular cartilages and seeded onto a biodegradable template of polyglycolic acid and poly L-lactic acid. Each template was shaped into a 1 cm x 2 cm rectangle. The templates were implanted in athymic mice for 8 weeks. Eight human auricular cartilages were used for comparison. Mechanical analysis with a tensile testing device provided values of ultimate tensile strength (UTS), stiffness, and resilience. Statistical analysis was performed with the Student's t-test. Histological assessment was done with hematoxylin-eosin staining along with other special stains. The TEC had UTS of 2.07 MPa, stiffness of 3.7 MPa, and resilience of 0.37 J/m3. The control specimens had UTS of 2.18 MPa, stiffness of 5.11 MPa, and resilience of 0.42 J/m3. No statistical difference was found between the experimental and control groups for each of the three parameters. Histological analysis showed mature cartilage with characteristic collagen, glycosaminoglycans, and elastin in the TEC. The neo-cartilage showed slightly smaller size and more irregular distribution of chondrocytes and unique fibrous capsule formation with peripheral infiltration of fibrous tissue. This study showed that the mechanical qualities of TEC from human chondrocytes are similar to those of native auricular cartilage. It suggests that the engineered cartilage from human chondrocytes may have sufficient strength and durability for clinical uses. The histological findings revealed some differences with neo-cartilage.

  7. Engineering aspects of the Stanford relativity gyro experiment

    NASA Technical Reports Server (NTRS)

    Everitt, C. W. F.; Debra, D. B.

    1981-01-01

    According to certain theoretical predictions, the Newtonian laws of motion must be corrected for the effect of a gravitational field. Schiff (1960) proposed an experiment which would demonstrate the effect predicted by Einstein's Theory of General Relativity on a gyroscope. The experiment has been under development at Stanford University since 1961. The requirements involved make it necessary that the test be performed in a satellite to take advantage of weightlessness in space. In a discussion of engineering developments related to the experiment, attention is given to the development of proportional helium thrusters, the simulation of the attitude control system, aspects of inner loop control, the mechanization of the two-loop attitude control system, the effects of helium slosh on spacecraft pointing, and the data instrumentation system.

  8. Engineering aspects of the Stanford relativity gyro experiment

    NASA Technical Reports Server (NTRS)

    Everitt, C. W. F.; Debra, D. B.

    1981-01-01

    According to certain theoretical predictions, the Newtonian laws of motion must be corrected for the effect of a gravitational field. Schiff (1960) proposed an experiment which would demonstrate the effect predicted by Einstein's Theory of General Relativity on a gyroscope. The experiment has been under development at Stanford University since 1961. The requirements involved make it necessary that the test be performed in a satellite to take advantage of weightlessness in space. In a discussion of engineering developments related to the experiment, attention is given to the development of proportional helium thrusters, the simulation of the attitude control system, aspects of inner loop control, the mechanization of the two-loop attitude control system, the effects of helium slosh on spacecraft pointing, and the data instrumentation system.

  9. `Human nature': Chemical engineering students' ideas about human relationships with the natural world

    NASA Astrophysics Data System (ADS)

    Goldman, Daphne; Ben-Zvi Assaraf, Orit; Shemesh, Julia

    2014-05-01

    While importance of environmental ethics, as a component of sustainable development, in preparing engineers is widely acknowledged, little research has addressed chemical engineers' environmental concerns. This study aimed to address this void by exploring chemical engineering students' values regarding human-nature relationships. The study was conducted with 247 3rd-4th year chemical engineering students in Israeli Universities. It employed the New Ecological Paradigm (NEP)-questionnaire to which students added written explanations. Quantitative analysis of NEP-scale results shows that the students demonstrated moderately ecocentric orientation. Explanations to the NEP-items reveal diverse, ambivalent ideas regarding the notions embodied in the NEP, strong scientific orientation and reliance on technology for addressing environmental challenges. Endorsing sustainability implies that today's engineers be equipped with an ecological perspective. The capacity of Higher Education to enable engineers to develop dispositions about human-nature interrelationships requires adaptation of curricula towards multidisciplinary, integrative learning addressing social-political-economic-ethical perspectives, and implementing critical-thinking within the socio-scientific issues pedagogical approach.

  10. [Moral aspects of human cloning and relations between humans].

    PubMed

    Lukow, P

    2001-01-01

    It is usually assumed that there is a strong logical relationship between traditional worldviews and attitudes towards human cloning. I argue that the association is contingent, which can be seen in the analysis of arguments of such leading bioethicists as G. J. Annas, H. Jonas, and J. A. Robertson. Traditional worldviews lack conceptual resources that would enable them to provide normative conclusions about cloning. It is therefore mistake to look to these traditional worldviews in search for moral instruction. Instead, one should appeal to knowledge of psychological and social aspects of human life, and in particular to the process of emotional ties which form relations between humans.

  11. Human dignity: intrinsic or relative value?

    PubMed

    Thiel, Marie-Jo

    2010-09-01

    Is human dignity an intrinsic value? Or is it a relative value, depending on the perception or assessment of quality of life? History had delineated some of its key features, but the advent of human rights and the Holocaust put special emphasis on this notion, particularly in the field of bioethics. But if modern medicine regards human dignity as crucial, it tends to support this notion while assessing and measuring it. The quality of life becomes the gauge for measuring human dignity, starting from a distinction between a viable and a non-viable existence, which may eventually lead to assisted death, or to letting die. This article argues that the concept of quality of life is of great relevant for medical practice, but on the condition of not being used as a standard to measure the dignity of the individual. Rather, the quality of life should be regarded as an imperative posed by human dignity, which is necessarily intrinsic. If the quality of life measures dignity, humankind is divided into two categories: lives worthy of living, and lives unworthy of living, and society becomes a jungle. Raising the quality of life as a requirement of the inherent human dignity does not solve automatically all problems and does not eliminate a feeling of unworthiness. But it ensures its 'human' value: the equal respect for every human being.

  12. 40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Specifications I. Basic Engine Parameters—Reciprocating Engines. 1. Compression ratio. 2. Type of air aspiration...-liquid). b. Type of liquid cooling (engine coolant, dedicated cooling system). c. Performance (charge air... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Emission Related Locomotive and Engine...

  13. 40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Specifications I. Basic Engine Parameters—Reciprocating Engines. 1. Compression ratio. 2. Type of air aspiration...-liquid). b. Type of liquid cooling (engine coolant, dedicated cooling system). c. Performance (charge air... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Emission Related Locomotive and Engine...

  14. Engineering bone tissue substitutes from human induced pluripotent stem cells.

    PubMed

    de Peppo, Giuseppe Maria; Marcos-Campos, Iván; Kahler, David John; Alsalman, Dana; Shang, Linshan; Vunjak-Novakovic, Gordana; Marolt, Darja

    2013-05-21

    Congenital defects, trauma, and disease can compromise the integrity and functionality of the skeletal system to the extent requiring implantation of bone grafts. Engineering of viable bone substitutes that can be personalized to meet specific clinical needs represents a promising therapeutic alternative. The aim of our study was to evaluate the utility of human-induced pluripotent stem cells (hiPSCs) for bone tissue engineering. We first induced three hiPSC lines with different tissue and reprogramming backgrounds into the mesenchymal lineages and used a combination of differentiation assays, surface antigen profiling, and global gene expression analysis to identify the lines exhibiting strong osteogenic differentiation potential. We then engineered functional bone substitutes by culturing hiPSC-derived mesenchymal progenitors on osteoconductive scaffolds in perfusion bioreactors and confirmed their phenotype stability in a subcutaneous implantation model for 12 wk. Molecular analysis confirmed that the maturation of bone substitutes in perfusion bioreactors results in global repression of cell proliferation and an increased expression of lineage-specific genes. These results pave the way for growing patient-specific bone substitutes for reconstructive treatments of the skeletal system and for constructing qualified experimental models of development and disease.

  15. Design Considerations for Human Rating of Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Parkinson, Douglas

    2010-01-01

    I.Human-rating is specific to each engine; a. Context of program/project must be understood. b. Engine cannot be discussed independently from vehicle and mission. II. Utilize a logical combination of design, manufacturing, and test approaches a. Design 1) It is crucial to know the potential ways a system can fail, and how a failure can propagate; 2) Fault avoidance, fault tolerance, DFMR, caution and warning all have roles to play. b. Manufacturing and Assembly; 1) As-built vs. as-designed; 2) Review procedures for assembly and maintenance periodically; and 3) Keep personnel trained and certified. c. There is no substitute for test: 1) Analytical tools are constantly advancing, but still need test data for anchoring assumptions; 2) Demonstrate robustness and explore sensitivities; 3) Ideally, flight will be encompassed by ground test experience. III. Consistency and repeatability is key in production a. Maintain robust processes and procedures for inspection and quality control based upon development and qualification experience; b. Establish methods to "spot check" quality and consistency in parts: 1) Dedicated ground test engines; 2) Random components pulled from the line/lot to go through "enhanced" testing.

  16. Design Considerations for Human Rating of Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Parkinson, Douglas

    2010-01-01

    I.Human-rating is specific to each engine; a. Context of program/project must be understood. b. Engine cannot be discussed independently from vehicle and mission. II. Utilize a logical combination of design, manufacturing, and test approaches a. Design 1) It is crucial to know the potential ways a system can fail, and how a failure can propagate; 2) Fault avoidance, fault tolerance, DFMR, caution and warning all have roles to play. b. Manufacturing and Assembly; 1) As-built vs. as-designed; 2) Review procedures for assembly and maintenance periodically; and 3) Keep personnel trained and certified. c. There is no substitute for test: 1) Analytical tools are constantly advancing, but still need test data for anchoring assumptions; 2) Demonstrate robustness and explore sensitivities; 3) Ideally, flight will be encompassed by ground test experience. III. Consistency and repeatability is key in production a. Maintain robust processes and procedures for inspection and quality control based upon development and qualification experience; b. Establish methods to "spot check" quality and consistency in parts: 1) Dedicated ground test engines; 2) Random components pulled from the line/lot to go through "enhanced" testing.

  17. Human resources in science and engineering: Policy implications

    SciTech Connect

    Leggon, C.B.

    1995-12-31

    Recently, there has been much debate concerning the adequacy of the United States` (U.S.) human resources base to meet its future needs for science and engineering (S/E) talent. Science policy analysts - and scientists and engineers themselves - disagree about whether there will be any shortages of scientists and engineers, and if so, what they will mean for the U.S. Whether or not these shortages materialize, it is necessary for the U.S. to expand the pool from which it recruits its S/E talent. This paper addresses the question of how to increases the diversity of the S/E talent pool to include those who are projected by the year 2000 to be the majority of entry-level workers in the U.S. workforce: women and racial/ethnic minorities. Market forces alone cannot increase the size and diversity of the U.S. S/E workforce. Policy intervention will continue to be required to increase the diversity of the S/E workforce.

  18. Human Factors Engineering Review Model for advanced nuclear power reactors

    SciTech Connect

    O'Hara, J.; Higgins, J. ); Goodman, C.; Galletti, G.: Eckenrode, R. )

    1993-01-01

    One of the major issues to emerge from the initial design reviews under the certification process was that detailed human-systems interface (HSI) design information was not available for staff review. To address the lack of design detail issue. The Nuclear Regulatory Commission (NRC) is performing the design certification reviews based on a design process plan which describes the human factors engineering (HFE) program elements that are necessary and sufficient to develop an acceptable detailed design specification. Since the review of a design process is unprecedented in the nuclear industry. The criteria for review are not addressed by current regulations or guidance documents and. therefore, had to be developed. Thus, an HFE Program Review Model was developed. This paper will describe the model's rationale, scope, objectives, development, general characteristics. and application.

  19. Human Factors Engineering Review Model for advanced nuclear power reactors

    SciTech Connect

    O`Hara, J.; Higgins, J.; Goodman, C.; Galletti, G.: Eckenrode, R.

    1993-05-01

    One of the major issues to emerge from the initial design reviews under the certification process was that detailed human-systems interface (HSI) design information was not available for staff review. To address the lack of design detail issue. The Nuclear Regulatory Commission (NRC) is performing the design certification reviews based on a design process plan which describes the human factors engineering (HFE) program elements that are necessary and sufficient to develop an acceptable detailed design specification. Since the review of a design process is unprecedented in the nuclear industry. The criteria for review are not addressed by current regulations or guidance documents and. therefore, had to be developed. Thus, an HFE Program Review Model was developed. This paper will describe the model`s rationale, scope, objectives, development, general characteristics. and application.

  20. Human factors in remote control engineering development activities

    SciTech Connect

    Clarke, M.M.; Hamel, W.R.; Draper, J.V.

    1983-01-01

    Human factors engineering, which is an integral part of the advanced remote control development activities at the Oak Ridge National Laboratory, is described. First, work at the Remote Systems Development Facility (RSDF) has shown that operators can perform a wide variety of tasks, some of which were not specifically designed for remote systems, with a dextrous electronic force-reflecting servomanipulator and good television remote viewing capabilities. Second, the data collected during mock-up remote maintenance experiments at the RSDF have been analyzed to provide guidelines for the design of human interfaces with an integrated advanced remote maintenance system currently under development. Guidelines have been provided for task allocation between operators, remote viewing systems, and operator controls. 6 references, 5 figures, 2 tables.

  1. Advancing biomaterials of human origin for tissue engineering

    PubMed Central

    Chen, Fa-Ming; Liu, Xiaohua

    2015-01-01

    Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for

  2. Characterization of human myoblast cultures for tissue engineering.

    PubMed

    Stern-Straeter, Jens; Bran, Gregor; Riedel, Frank; Sauter, Alexander; Hörmann, Karl; Goessler, Ulrich Reinhart

    2008-01-01

    Skeletal muscle tissue engineering, a promising specialty, aims at the reconstruction of skeletal muscle loss. In vitro tissue engineering attempts to achieve this goal by creating differentiated, functional muscle tissue through a process in which stem cells are extracted from the patient, e.g. by muscle biopsies, expanded and differentiated in a controlled environment, and subsequently re-implanted. A prerequisite for this undertaking is the ability to cultivate and differentiate human skeletal muscle cell cultures. Evidently, optimal culture conditions must be investigated for later clinical utilization. We therefore analysed the proliferation of human cells in different environments and evaluated the differentiation potential of different culture media. It was shown that human myoblasts have a higher rate of proliferation in the alamarBlue assay when cultured on gelatin-coated culture flasks rather than polystyrene-coated flasks. We also demonstrated that myoblasts treated with a culture medium with a high concentration of growth factors [growth medium (GM)] showed a higher proliferation compared to cultures treated with a culture medium with lower amounts of growth factors [differentiation medium (DM)]. Differentiation of human myoblast cell cultures treated with GM and DM was analysed until day 16 and myogenesis was verified by expression of MyoD, myogenin, alpha-sarcomeric actin and myosin heavy chain by semi-quantitative RT-PCR. Immunohistochemical staining for desmin, Myf-5 and alpha-sarcomeric actin was performed to verify the myogenic phenotype of extracted satellite cells and to prove the maturation of cells. Cultures treated with DM showed positive staining for alpha-sarcomeric actin. Notably, markers of differentiation were also detected in cultures treated with GM, but there was no formation of myotubes. In the enzymatic assay of creatine phosphokinase, cultures treated with DM showed a higher activity, evidencing a higher degree of differentiation

  3. Advancing biomaterials of human origin for tissue engineering.

    PubMed

    Chen, Fa-Ming; Liu, Xiaohua

    2016-02-01

    Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for

  4. Kuwaiti engineers' perspectives of the engineering senior design (Capstone) course as related to their professional experiences

    NASA Astrophysics Data System (ADS)

    Alsagheer, Abdullah

    This study looks into transfer of learning and its application in the actual employment of engineering students after graduation. At Kuwait University, a capstone course is being offered that aims to ensure that students amalgamate all kinds of engineering skills to apply to their work. Within a basic interpretive, qualitative study-design methodology, I interviewed 12 engineers who have recently experienced the senior design course at Kuwait University and are presently working in industry. From the analysis, four basic themes emerged that further delineate the focus of the entire study. The themes are 1) need for the capstone course, 2) applicability of and problems with the capstone course, 3) industry problems with training, and 4) students' attitudes toward the capstone course. The study concludes that participants are not transferring engineering skills; rather, they are transferring all types of instructions they have been given during their course of study at the university. A frequent statement is that the capstone course should be improved and specifically that it is necessary to improve upon the timing, schedule, teachers' behavior, contents, and format. The study concludes that Kuwaiti engineers on the whole face problems with time management and management support. The study includes some implications for Kuwait University and recommendations that can provide significant support for the development of the Senior Design (Capstone) Course. For examples: the project must be divided into phases to ensure timely completion of deliverables. In order to motivate students for hard work and to achieve true transfer of learning, Kuwait University is required to communicate with certain organizations to place its students at their research centers for capstone projects. All universities, including Kuwait University, should hire faculty specifically to run the capstone course. In conclusion, the study includes some suggestions for further research studies focused

  5. Engineered cell-laden human protein-based elastomer

    PubMed Central

    Annabi, Nasim; Mithieux, Suzanne M.; Zorlutuna, Pinar; Camci-Unal, Gulden; Weiss, Anthony S.; Khademhosseini, Ali

    2013-01-01

    Elastic tissue equivalence is a vital requirement of synthetic materials proposed for many resilient, soft tissue engineering applications. Here we present a bioelastomer made from tropoelastin, the human protein that naturally facilitates elasticity and cell interactions in all elastic tissues. We combined this protein’s innate versatility with fast non-toxic fabrication techniques to make highly extensible, cell compatible hydrogels. These hydrogels can be produced in less than a minute through photocrosslinking of methacrylated tropoelastin (MeTro) in an aqueous solution. The fabricated MeTro gels exhibit high extensibility (up to 400%) and superior mechanical properties that outperform other photocrosslinkable hydrogels. MeTro gels were used to encapsulate cells within a flexible 3D environment and to manufacture highly elastic 2D films for cell attachment, growth, and proliferation. In addition, the physical properties of this fabricated bioelastomer such as elasticity, stiffness, and pore characteristics were tuned through manipulation of the methacrylation degree and protein concentration. This photocrosslinkable, functional tissue mimetic gel benefits from the innate biological properties of a human elastic protein and opens new opportunities in tissue engineering. PMID:23639533

  6. Tissue engineered human tracheas for in vivo implantation.

    PubMed

    Baiguera, Silvia; Jungebluth, Phillip; Burns, Alan; Mavilia, Carmelo; Haag, Johannes; De Coppi, Paolo; Macchiarini, Paolo

    2010-12-01

    Two years ago we performed the first clinical successful transplantation of a fully tissue engineered trachea. Despite the clinically positive outcome, the graft production took almost 3 months, a not feasible period of time for patients with the need of an urgent transplantation. We have then improved decellularization process and herein, for the first time, we completely describe and characterize the obtainment of human tracheal bioactive supports. Histological and molecular biology analysis demonstrated that all cellular components and nuclear material were removed and quantitative PCR confirmed it. SEM analysis revealed that the decellularized matrices retained the hierarchical structures of native trachea, and biomechanical tests showed that decellularization approach did not led to any influence on tracheal morphological and mechanical properties. Moreover immunohistological staining showed the preservation of angiogenic factors and angiogenic assays demonstrated that acellular human tracheal scaffolds exert an in vitro chemo-active action and induce strong in vivo angiogenic response (CAM analysis). We are now able to obtained, in a short and clinically useful time (approximately 3 weeks), a bioengineered trachea that is structurally and mechanically similar to native trachea, which exert chemotactive and pro-angiogenic properties and which could be successfully used for clinical tissue engineered airway clinical replacements.

  7. ENGINES: exploring single nucleotide variation in entire human genomes

    PubMed Central

    2011-01-01

    Background Next generation ultra-sequencing technologies are starting to produce extensive quantities of data from entire human genome or exome sequences, and therefore new software is needed to present and analyse this vast amount of information. The 1000 Genomes project has recently released raw data for 629 complete genomes representing several human populations through their Phase I interim analysis and, although there are certain public tools available that allow exploration of these genomes, to date there is no tool that permits comprehensive population analysis of the variation catalogued by such data. Description We have developed a genetic variant site explorer able to retrieve data for Single Nucleotide Variation (SNVs), population by population, from entire genomes without compromising future scalability and agility. ENGINES (ENtire Genome INterface for Exploring SNVs) uses data from the 1000 Genomes Phase I to demonstrate its capacity to handle large amounts of genetic variation (>7.3 billion genotypes and 28 million SNVs), as well as deriving summary statistics of interest for medical and population genetics applications. The whole dataset is pre-processed and summarized into a data mart accessible through a web interface. The query system allows the combination and comparison of each available population sample, while searching by rs-number list, chromosome region, or genes of interest. Frequency and FST filters are available to further refine queries, while results can be visually compared with other large-scale Single Nucleotide Polymorphism (SNP) repositories such as HapMap or Perlegen. Conclusions ENGINES is capable of accessing large-scale variation data repositories in a fast and comprehensive manner. It allows quick browsing of whole genome variation, while providing statistical information for each variant site such as allele frequency, heterozygosity or FST values for genetic differentiation. Access to the data mart generating scripts and to

  8. The Humanistic Side of Engineering: Considering Social Science and Humanities Dimensions of Engineering in Education and Research

    ERIC Educational Resources Information Center

    Hynes, Morgan; Swenson, Jessica

    2013-01-01

    Mathematics and science knowledge/skills are most commonly associated with engineering's pre-requisite knowledge. Our goals in this paper are to argue for a more systematic inclusion of social science and humanities knowledge in the introduction of engineering to K-12 students. As part of this argument, we present a construct for framing the…

  9. Information Presentation: Human Research Program - Space Human Factors and Habitability, Space Human Factors Engineering Project

    NASA Technical Reports Server (NTRS)

    Holden, Kristina L.; Sandor, Aniko; Thompson, Shelby G.; Kaiser, Mary K.; McCann, Robert S.; Begault, D. R.; Adelstein, B. D.; Beutter, B. R.; Wenzel, E. M.; Godfroy, M.; hide

    2010-01-01

    The goal of the Information Presentation Directed Research Project (DRP) is to address design questions related to the presentation of information to the crew. The major areas of work, or subtasks, within this DRP are: 1) Displays, 2) Controls, 3) Electronic Procedures and Fault Management, and 4) Human Performance Modeling. This DRP is a collaborative effort between researchers atJohnson Space Center and Ames Research Center. T

  10. Genetic Engineering

    ERIC Educational Resources Information Center

    Phillips, John

    1973-01-01

    Presents a review of genetic engineering, in which the genotypes of plants and animals (including human genotypes) may be manipulated for the benefit of the human species. Discusses associated problems and solutions and provides an extensive bibliography of literature relating to genetic engineering. (JR)

  11. Genetic Engineering

    ERIC Educational Resources Information Center

    Phillips, John

    1973-01-01

    Presents a review of genetic engineering, in which the genotypes of plants and animals (including human genotypes) may be manipulated for the benefit of the human species. Discusses associated problems and solutions and provides an extensive bibliography of literature relating to genetic engineering. (JR)

  12. Relative Importance of Professional Practice and Engineering Management Competencies

    ERIC Educational Resources Information Center

    Pons, Dirk

    2016-01-01

    Problem: The professional practice of engineering always involves engineering management, but it is difficult to know what specifically to include in the undergraduate curriculum. Approach: The population of New Zealand practising engineers was surveyed to determine the importance they placed on specific professional practice and engineering…

  13. Relative Importance of Professional Practice and Engineering Management Competencies

    ERIC Educational Resources Information Center

    Pons, Dirk

    2016-01-01

    Problem: The professional practice of engineering always involves engineering management, but it is difficult to know what specifically to include in the undergraduate curriculum. Approach: The population of New Zealand practising engineers was surveyed to determine the importance they placed on specific professional practice and engineering…

  14. Human Intergroup Relations. Certification Requirement #69.

    ERIC Educational Resources Information Center

    Northcentral Technical Coll., Wausau, WI.

    This document provides materials for a course in human intergroup relations for preservice or inservice teachers preparing to work with a diverse, disadvantaged group of students. The information in the guide is drawn from the faculty and student support staff of Northcentral Technical College (NTC) in Wausau, Wisconsin, which serves a variety of…

  15. Using human factors engineering in designing and assessing nursing personnel responses to mock code training.

    PubMed

    Wilson, Barbara L; Phelps, Connie; Downs, Brenda; Wilson, Kim

    2010-01-01

    Because timely and efficient responses of nurses are paramount to patient survival in cardiac and respiratory codes, it is crucial to determine best methods of training nursing personnel to respond effectively to code situations. Human factors engineering (HFE) is a relatively new approach in health care that attempts to understand human vulnerabilities that contribute to error and then design systems that minimize the likelihood of error occurring. This study embedded the principles of HFE in the design, implementation, and evaluation of mock code training to determine whether mock codes using HFE were helpful and if so, which inpatient units would benefit the most from such drills.

  16. Controlling the didactic relation: a case in process engineering education

    NASA Astrophysics Data System (ADS)

    Jaako, Juha

    2014-07-01

    A case study was conducted during 1994-2013 on several groups of process engineering students to see what was needed to transform a single course from a teacher-centred to a student-centred learning environment (SCLE). Development work was done incrementally, using Herbart's didactic triangle as a theoretical framework. The effects of the changes in learning environment were analysed using quantitative (student attendance, pass rate, attrition, grades) and qualitative data (student feedback). Guiding the didactic relation, i.e. the studying done by students, by continuous assessment was found to be very useful. Using SCLEs that emphasise student responsibility and activity in learning has been found in this case to enhance student learning considerably.

  17. Human Factors Engineering. Part 2. HEDGE (Human Factors Engineering Data Guide for Evaluation)

    DTIC Science & Technology

    1983-11-30

    by color, sie Point%. provided. fibeled . 6 Jack. Toaist poinfts WWI d. sign advertising of trotanki othsn, lit I -s.. n Io,,-Ieho lin..a 6_ plosg. r.pfs...DATA r EmlL-sTo- I ’.712£ L C’ T 1y FIGURE 8.8.1 COUNTERS , FLAGS, PRINTERS, AND PLOTTERS ISAII AC~tMA84. o ~- -~1ACION LoY TVl 0T1l 11I.o 8IIOA 0.-. wo...IDRST-P70-0 Test Operations Procedure 1-2-610 AD I ," ( , HUMAN FACTORS ENG PAR I I ... ..... Reproduced From Best Available Copy . ,.frpbi ees;dsrbto

  18. 2015 Space Human Factors Engineering Standing Review Panel

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan

    2015-01-01

    The 2015 Space Human Factors Engineering (SHFE) Standing Review Panel (from here on referred to as the SRP) met for a site visit in Houston, TX on December 2 - 3, 2015. The SRP reviewed the updated research plans for the Risk of Inadequate Design of Human and Automation/Robotic Integration (HARI Risk), the Risk of Inadequate Human-Computer Interaction (HCI Risk), and the Risk of Inadequate Mission, Process and Task Design (MPTask Risk). The SRP also received a status update on the Risk of Incompatible Vehicle/Habitat Design (Hab Risk) and the Risk of Performance Errors Due to Training Deficiencies (Train Risk). The SRP is pleased with the progress and responsiveness of the SHFE team. The presentations were much improved this year. The SRP is also pleased with the human-centered design approach. Below are some of the more extensive comments from the SRP. We have also made comments in each section concerning gaps/tasks in each. The comments below reflect more significant changes that impact more than just one particular section.

  19. Relational Human Ecology: Reconciling the Boundaries of Humans and Nature

    NASA Astrophysics Data System (ADS)

    McNiel, J.; Lopes, V. L.

    2010-12-01

    Global change is transforming the planet at unprecedented rates. Global warming, massive species extinction, increasing land degradation, overpopulation, poverty and injustice, are all the result of human choices and non-sustainable ways of life. What do we have to do and how much do we have to change to allow a transition to a more ecologically-conscious and just society? While these questions are of central concern, they cannot be fully addressed under the current paradigm, which hinders both our collection of knowledge and derivation of solutions. This paper attempts to develop a new variant of ecological thinking based on a relational ontological/epistemological approach. This is offered as a foundation for the political initiative to strive for a more fulfilling, sustainable and just society. This new approach, theoretically conceptualized as ‘relational human ecology,’ offers a relational (holistic) framework for overcoming mechanistic thinking and exploring questions regarding the long-term attainment of sustainability. Once established, we illustrate how the relational framework offers a new holistic approach centered on participatory inquiry within the context of a community workshop. We conclude with discussing possible directions for future relational human ecological participatory research, conducted from the intersection of myriad participants (i.e. agencies, academics, and community residents), and the ways in which this will allow for the derivation of accurate and sustainable solutions for global change. Key words: relational thinking, human ecology, complex adaptive systems, participatory inquiry, sustainability Vicente L. Lopes (corresponding author) Department of Biology Texas State University San Marcos, TX, USA e-mail: vlopes@txstate.edu Jamie N. McNiel Department of Sociology Texas State University San Marcos, TX, USATable 2 - Comparing Orthodox versus Relational Approaches to Ecological Inquiry * Retroduction, logical reasoning that

  20. Human Research Program Space Human Factors Engineering (SHFE) Standing Review Panel (SRP)

    NASA Technical Reports Server (NTRS)

    Wichansky, Anna; Badler, Norman; Butler, Keith; Cummings, Mary; DeLucia, Patricia; Endsley, Mica; Scholtz, Jean

    2009-01-01

    The Space Human Factors Engineering (SHFE) Standing Review Panel (SRP) evaluated 22 gaps and 39 tasks in the three risk areas assigned to the SHFE Project. The area where tasks were best designed to close the gaps and the fewest gaps were left out was the Risk of Reduced Safety and Efficiency dire to Inadequate Design of Vehicle, Environment, Tools or Equipment. The areas where there were more issues with gaps and tasks, including poor or inadequate fit of tasks to gaps and missing gaps, were Risk of Errors due to Poor Task Design and Risk of Error due to Inadequate Information. One risk, the Risk of Errors due to Inappropriate Levels of Trust in Automation, should be added. If astronauts trust automation too much in areas where it should not be trusted, but rather tempered with human judgment and decision making, they will incur errors. Conversely, if they do not trust automation when it should be trusted, as in cases where it can sense aspects of the environment such as radiation levels or distances in space, they will also incur errors. This will be a larger risk when astronauts are less able to rely on human mission control experts and are out of touch, far away, and on their own. The SRP also identified 11 new gaps and five new tasks. Although the SRP had an extremely large quantity of reading material prior to and during the meeting, we still did not feel we had an overview of the activities and tasks the astronauts would be performing in exploration missions. Without a detailed task analysis and taxonomy of activities the humans would be engaged in, we felt it was impossible to know whether the gaps and tasks were really sufficient to insure human safety, performance, and comfort in the exploration missions. The SRP had difficulty evaluating many of the gaps and tasks that were not as quantitative as those related to concrete physical danger such as excessive noise and vibration. Often the research tasks for cognitive risks that accompany poor task or

  1. Women Engineers: Factors and Obstacles Related to the Pursuit of a Degree in Engineering

    NASA Astrophysics Data System (ADS)

    Wentling, Rose Mary; Camacho, Cristina

    Research on women in engineering confirms the presence of gender barriers that affect the recruitment and retention of women in engineering. These barriers stop some women from choosing engineering as a field of study, and impede some women from completing a degree in engineering. However, there are some young female students who complete their engineering education despite the presence of obstacles throughout their college years. This study addressed the factors that have hindered, motivated, and assisted women who graduated with a degree in engineering. By studying and understanding the barriers that hinder women in deciding to pursue and in completing a degree in engineering, as well as the factors that assist and encourage them, we can learn how to break down the barriers and how to facilitate the educational journey of female engineering students. This study provides valuable insights and created a framework from which high schools, universities, researchers, and female students can directly benefit.

  2. Educational and Demographic Characteristics of Energy-Related Scientists and Engineers, 1976.

    ERIC Educational Resources Information Center

    Finn, Michael G.; Bain, Trevor

    Presented is an analysis of the education, training, and age distribution of experienced scientists, engineers, energy-related scientists, and energy-related engineers. Data are from the 1976 National Survey of Natural and Social Scientists and Engineers, which is one of a series of longitudinal studies of 50,000 scientists in the labor force at…

  3. Engineering Retina from Human Retinal Progenitors (Cell Lines)

    PubMed Central

    Cao, Yang

    2009-01-01

    Retinal degeneration resulting in the loss of photoreceptors is the leading cause of blindness. Several therapeutic protocols are under consideration for treatment of this disease. Tissue replacement is one such strategy currently being explored. However, availability of tissues for transplant poses a major obstacle. Another strategy with great potential is the use of adult stem cells, which could be expanded in culture and then utilized to engineer retinal tissue. In this study, we have explored a spontaneously immortalized human retinal progenitor cell line for its potential in retinal engineering using rotary cultures to generate three-dimensional (3D) structures. Retinal progenitors cultured alone or cocultured with retinal pigment epithelial cells form aggregates. The aggregate size increases between days 1 and 10. The cells grown as a 3D culture rotary system, which promotes cell–cell interaction, retain a spectrum of differentiation capability. Photoreceptor differentiation in these cultures is confirmed by significant upregulation of rhodopsin and AaNat, an enzyme implicated in melatonin synthesis (immunohistochemistry and Western blot analysis). Photoreceptor induction and differentiation is further attested to by the upregulation of rod transcription factor Nrl, Nr2e3, expression of interstitial retinal binding protein, and rhodopsin kinase by reverse transcription–polymerase chain reaction. Differentiation toward other cell lineages is confirmed by the expression of tyrosine hydroxylase in amacrine cells, thy 1.1 expression in ganglion cells and calbindin, and GNB3 expression in cone cells. The capability of retinal progenitors to give rise to several retinal cell types when grown as aggregated cells in rotary culture offers hope that progenitor stem cells under appropriate culture conditions will be valuable to engineer retinal constructs, which could be further tested for their transplant potential. The fidelity with which this multipotential cell

  4. Engineer Ethics Education that Treated Safety Problem to Promote Development of General Human Competence and Independent Engineer

    NASA Astrophysics Data System (ADS)

    Hotta, Genji

    The human race came to expect the engineer‧s international activity by an international extension of the risk. The engineer should provide with “Overall ability” and “Independent ability” to answer the demand of the society. The engineer ethics education is effective to the acquisition of the ability that the society demands. Because the engineer ethics education teaches the engineer to develop “Ethics action as the individual” to “Ethics activity as the enterprise” . In the point of development of the comprehensive capacity, it can be said that the engineer ethics education is training that supports the action power that accomplishes the social responsibility. However, it is easy to make the engineer ethics education a polite fiction. Then, we propose to take the safety problem to the ethics education for the prevention of making to the polite fiction of the education.

  5. Energy-related doctoral scientists and engineers in the United States, 1977

    SciTech Connect

    Not Available

    1980-04-01

    Information is compiled about the number and characteristics of doctoral-level engineers and scientists in primarily energy-related activities. These data are for the year 1977 and are part of the data base for a program of continuing studies on the employment and utilization of all scientists and engineers involved in energy-related activities. Data on mathematics, physics, chemistry, environmental engineering, engineering, life sciences, psychology, and social sciences doctoral degree specialties are included.

  6. Gender and engineering aptitude: Is the color of science, technology, engineering, and math materials related to children's performance?

    PubMed

    Mulvey, Kelly Lynn; Miller, Bridget; Rizzardi, Victoria

    2017-08-01

    To investigate gender stereotypes, demonstrated engineering aptitude, and attitudes, children (N=105) solved an engineering problem using either pastel-colored or primary-colored materials. Participants also evaluated the acceptability of denial of access to engineering materials based on gender and counter-stereotypic preferences (i.e., a boy who prefers pastel-colored materials). Whereas material color was not related to differences in female participants' performance, younger boys assigned to pastel materials demonstrated lower engineering aptitude than did other participants. In addition, results documented age- and gender-related differences; younger participants, and sometimes boys, exhibited less flexibility regarding gender stereotypes than did older and female participants. The findings suggest that attempts to enhance STEM (science, technology, engineering, and math) engagement or performance through the color of STEM materials may have unintended consequences. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. An Integrated Suite of Tools to support Human Factors Engineering

    SciTech Connect

    Jacques V Hugo

    2001-08-01

    Human Factors Engineering (HFE) work for the nuclear industry imposes special demands on the practitioner in terms of the scope, complexity and safety requirements for humans in nuclear installations. Unfortunately HFE lags behind other engineering disciplines in the development and use of modern, powerful tools for the full range of analysis and design processes. HFE does not appear to be an attractive market for software and hardware developers and as a result, HFE practitioners usually have to rely on inefficient general-purpose tools like standard office software, or they have to use expensive special-purpose tools that offer only part of the solution they require and which also do not easily integrate with other tools. There have been attempts to develop generic software tools to support the HFE analyst and also to achieve some order and consistency in format and presentation. However, in spite of many years of development, very few tools have emerged that have achieved these goals. This would suggest the need for special tools, but existing commercial products have been found inadequate and to date not a single tool has been developed that adequately supports the special requirements of HFE work for the nuclear industry. This paper describes an integrated suite of generic as well as purpose-built tools that facilitate information solicitation, issues tracking, work domain analysis, functional requirements analysis, function allocation, operational sequence analysis, task analysis and development of HSI design requirements. In combination, this suite of tools supports the analytical as well as the representational aspects of key HFE activities primarily for new NPPs, including capturing information from subject matter experts and various source documents directly into the appropriate tool and then linking, analyzing and extending that information further to represent detailed functional and task information, and ultimately HSI design requirements. The paper

  8. EmptyHeaded: A Relational Engine for Graph Processing.

    PubMed

    Aberger, Christopher R; Tu, Susan; Olukotun, Kunle; Ré, Christopher

    2016-01-01

    There are two types of high-performance graph processing engines: low- and high-level engines. Low-level engines (Galois, PowerGraph, Snap) provide optimized data structures and computation models but require users to write low-level imperative code, hence ensuring that efficiency is the burden of the user. In high-level engines, users write in query languages like datalog (SociaLite) or SQL (Grail). High-level engines are easier to use but are orders of magnitude slower than the low-level graph engines. We present EmptyHeaded, a high-level engine that supports a rich datalog-like query language and achieves performance comparable to that of low-level engines. At the core of EmptyHeaded's design is a new class of join algorithms that satisfy strong theoretical guarantees but have thus far not achieved performance comparable to that of specialized graph processing engines. To achieve high performance, EmptyHeaded introduces a new join engine architecture, including a novel query optimizer and data layouts that leverage single-instruction multiple data (SIMD) parallelism. With this architecture, EmptyHeaded outperforms high-level approaches by up to three orders of magnitude on graph pattern queries, PageRank, and Single-Source Shortest Paths (SSSP) and is an order of magnitude faster than many low-level baselines. We validate that EmptyHeaded competes with the best-of-breed low-level engine (Galois), achieving comparable performance on PageRank and at most 3× worse performance on SSSP.

  9. EmptyHeaded: A Relational Engine for Graph Processing

    PubMed Central

    Aberger, Christopher R.; Tu, Susan; Olukotun, Kunle; Ré, Christopher

    2016-01-01

    There are two types of high-performance graph processing engines: low- and high-level engines. Low-level engines (Galois, PowerGraph, Snap) provide optimized data structures and computation models but require users to write low-level imperative code, hence ensuring that efficiency is the burden of the user. In high-level engines, users write in query languages like datalog (SociaLite) or SQL (Grail). High-level engines are easier to use but are orders of magnitude slower than the low-level graph engines. We present EmptyHeaded, a high-level engine that supports a rich datalog-like query language and achieves performance comparable to that of low-level engines. At the core of EmptyHeaded’s design is a new class of join algorithms that satisfy strong theoretical guarantees but have thus far not achieved performance comparable to that of specialized graph processing engines. To achieve high performance, EmptyHeaded introduces a new join engine architecture, including a novel query optimizer and data layouts that leverage single-instruction multiple data (SIMD) parallelism. With this architecture, EmptyHeaded outperforms high-level approaches by up to three orders of magnitude on graph pattern queries, PageRank, and Single-Source Shortest Paths (SSSP) and is an order of magnitude faster than many low-level baselines. We validate that EmptyHeaded competes with the best-of-breed low-level engine (Galois), achieving comparable performance on PageRank and at most 3× worse performance on SSSP. PMID:28077912

  10. The suitability of human adipose-derived stem cells for the engineering of ligament tissue.

    PubMed

    Eagan, Michael J; Zuk, Patricia A; Zhao, Ke-Wei; Bluth, Benjamin E; Brinkmann, Elyse J; Wu, Benjamin M; McAllister, David R

    2012-10-01

    Rupture of the anterior cruciate ligament (ACL) is the one of the most common sports-related injuries. With its poor healing capacity, surgical reconstruction using either autografts or allografts is currently required to restore function. However, serious complications are associated with graft reconstructions and the number of such reconstructions has steadily risen over the years, necessitating the search for an alternative approach to ACL repair. Such an approach may likely be tissue engineering. Recent engineering approaches using ligament-derived fibroblasts have been promising, but the slow growth rate of such fibroblasts in vitro may limit their practical application. More promising results are being achieved using bone marrow mesenchymal stem cells (MSCs). The adipose-derived stem cell (ASC) is often proposed as an alternative choice to the MSC and, as such, may be a suitable stem cell for ligament engineering. However, the use of ASCs in ligament engineering still remains relatively unexplored. Therefore, in this study, the potential use of human ASCs in ligament tissue engineering was initially explored by examining their ability to express several ligament markers under growth factor treatment. ASC populations treated for up to 4 weeks with TGFβ1 or IGF1 did not show any significant and consistent upregulation in the expression of collagen types 1 and 3, tenascin C and scleraxis. While treatment with EGF or bFGF resulted in increased tenascin C expression, increased expression of collagens 1 and 3 were never observed. Therefore, simple in vitro treatment of human ASC populations with growth factors may not stimulate their ligament differentiative potential. Copyright © 2011 John Wiley & Sons, Ltd.

  11. Manpower assessment brief: Employment of energy related doctoral scientists and engineers increased between 1981 and 1985

    SciTech Connect

    Not Available

    1987-01-01

    In 1985, the nearly 45,000 energy-related doctoral scientists and engineers represented 11% of all employed doctoral scientists and engineers. Engineers comprised 40%, physical scientists, 21%, and earth scientists, almost 10% of those involved in energy-related activities - a significantly different distribution than occurs among all Ph.D. scientists and engineers. Between 1981 and 1985, by far the largest increase in energy-related Ph.D.'s occurred in employment in the life sciences - up over 120%. Employment in the social sciences and pyschology (primarily the latter) grew by 17% and in engineering by 7%.

  12. Revisiting the case for genetically engineered mouse models in human myelodysplastic syndrome research

    PubMed Central

    Zhou, Ting; Kinney, Marsha C.; Scott, Linda M.; Zinkel, Sandra S.

    2015-01-01

    Much-needed attention has been given of late to diseases specifically associated with an expanding elderly population. Myelodysplastic syndrome (MDS), a hematopoietic stem cell-based blood disease, is one of these. The lack of clear understanding of the molecular mechanisms underlying the pathogenesis of this disease has hampered the development of efficacious therapies, especially in the presence of comorbidities. Mouse models could potentially provide new insights into this disease, although primary human MDS cells grow poorly in xenografted mice. This makes genetically engineered murine models a more attractive proposition, although this approach is not without complications. In particular, it is unclear if or how myelodysplasia (abnormal blood cell morphology), a key MDS feature in humans, presents in murine cells. Here, we evaluate the histopathologic features of wild-type mice and 23 mouse models with verified myelodysplasia. We find that certain features indicative of myelodysplasia in humans, such as Howell-Jolly bodies and low neutrophilic granularity, are commonplace in healthy mice, whereas other features are similarly abnormal in humans and mice. Quantitative hematopoietic parameters, such as blood cell counts, are required to distinguish between MDS and related diseases. We provide data that mouse models of MDS can be genetically engineered and faithfully recapitulate human disease. PMID:26077396

  13. Translational issues for human corneal endothelial tissue engineering.

    PubMed

    Soh, Yu Qiang; Peh, Gary S L; Mehta, Jodhbir S

    2017-09-01

    Corneal endothelial disorders collectively represent a significant healthcare burden in most developed nations, and corneal transplantation is currently the only treatment available for patients with poor visual acuity and corneal blindness secondary to endothelial failure. Although vision in these patients can be restored by transplantation, the global demand for donor human corneas is far in excess of what can be provided for by eye banks around the world, and this deficit is set to increase with an ageing global population. As such, there has been a pressing need to explore novel and more sustainable options for the treatment of corneal endothelial diseases. In recent years, significant progress has been made not only in the development of corneal endothelial cell culture techniques, but also in the exploration of various translational strategies. Considered together, we are now much closer to attaining success in the treatment of corneal endothelial diseases via a cell-based, tissue-engineering approach. The aim of this review article is to provide an update of the translational issues currently facing human corneal endothelial cell therapy. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. 40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Specifications I Appendix I to Part 94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Pt. 94, App. I Appendix I to Part 94—Emission-Related Engine Parameters and Specifications I. Basic Engine...

  15. 40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Specifications I Appendix I to Part 94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Pt. 94, App. I Appendix I to Part 94—Emission-Related Engine Parameters and Specifications I. Basic Engine...

  16. 40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Specifications I Appendix I to Part 94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Pt. 94, App. I Appendix I to Part 94—Emission-Related Engine Parameters and Specifications I. Basic Engine...

  17. 40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...—Reciprocating Engines. 1. Compression ratio. 2. Type of air aspiration (natural, Roots blown, supercharged... calibration. 2. Charge air cooling. a. Type (air-to-air; air-to-liquid). b. Type of liquid cooling (engine... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Emission-Related Engine Parameters and...

  18. Human Immunodeficiency Virus and Related Retroviruses

    PubMed Central

    Nájera, Rafael; Herrera, M. I.; Andrés, R. de

    1987-01-01

    This paper summarizes the current knowledge on the human immunodeficiency virus (HIV) and related retroviruses, describing basic characteristics of this new group of viruses such as morphologic and genetic structure, biological and cultural properties, virus growth characteristics, genetic variability and virus replication. The discovery of new human and simian retroviruses has prompted the World Health Organization (WHO) to convene a group of experts to establish criteria for their characterization. This will allow rapid identification of new variants that may arise and allow public health measures to be implemented accordingly. Different approaches are made to nomenclature in view of the evolution of knowledge about these viruses, and a system of nomenclature has been proposed by the WHO working group. This system, inspired by the one developed for the influenza viruses, is practical and descriptive, providing information on the origins of the organism and its type. Images PMID:2829446

  19. Kuwaiti Engineers' Perspectives of the Engineering Senior Design (Capstone) Course as Related to Their Professional Experiences

    ERIC Educational Resources Information Center

    AlSagheer, Abdullah

    2010-01-01

    This study looks into transfer of learning and its application in the actual employment of engineering students after graduation. At Kuwait University, a capstone course is being offered that aims to ensure that students amalgamate all kinds of engineering skills to apply to their work. Within a basic interpretive, qualitative study-design…

  20. Relational and Transcendental Humanism: Exploring the Consequences of a Thoroughly Pragmatic Humanism

    ERIC Educational Resources Information Center

    Hansen, James T.

    2007-01-01

    The relational and transcendental elements of humanism are considered. Although the relational component of humanism is extraordinarily valuable, the author argues that the transcendental portion of humanism should be abandoned. The implications of a thoroughly pragmatic humanism are explored.

  1. Relational and Transcendental Humanism: Exploring the Consequences of a Thoroughly Pragmatic Humanism

    ERIC Educational Resources Information Center

    Hansen, James T.

    2007-01-01

    The relational and transcendental elements of humanism are considered. Although the relational component of humanism is extraordinarily valuable, the author argues that the transcendental portion of humanism should be abandoned. The implications of a thoroughly pragmatic humanism are explored.

  2. Knowledge-based personalized search engine for the Web-based Human Musculoskeletal System Resources (HMSR) in biomechanics.

    PubMed

    Dao, Tien Tuan; Hoang, Tuan Nha; Ta, Xuan Hien; Tho, Marie Christine Ho Ba

    2013-02-01

    Human musculoskeletal system resources of the human body are valuable for the learning and medical purposes. Internet-based information from conventional search engines such as Google or Yahoo cannot response to the need of useful, accurate, reliable and good-quality human musculoskeletal resources related to medical processes, pathological knowledge and practical expertise. In this present work, an advanced knowledge-based personalized search engine was developed. Our search engine was based on a client-server multi-layer multi-agent architecture and the principle of semantic web services to acquire dynamically accurate and reliable HMSR information by a semantic processing and visualization approach. A security-enhanced mechanism was applied to protect the medical information. A multi-agent crawler was implemented to develop a content-based database of HMSR information. A new semantic-based PageRank score with related mathematical formulas were also defined and implemented. As the results, semantic web service descriptions were presented in OWL, WSDL and OWL-S formats. Operational scenarios with related web-based interfaces for personal computers and mobile devices were presented and analyzed. Functional comparison between our knowledge-based search engine, a conventional search engine and a semantic search engine showed the originality and the robustness of our knowledge-based personalized search engine. In fact, our knowledge-based personalized search engine allows different users such as orthopedic patient and experts or healthcare system managers or medical students to access remotely into useful, accurate, reliable and good-quality HMSR information for their learning and medical purposes. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Relative importance of professional practice and engineering management competencies

    NASA Astrophysics Data System (ADS)

    Pons, Dirk

    2016-09-01

    Problem: The professional practice of engineering always involves engineering management, but it is difficult to know what specifically to include in the undergraduate curriculum. Approach: The population of New Zealand practising engineers was surveyed to determine the importance they placed on specific professional practice and engineering management competencies. Findings: Results show that communication and project planning were the two most important topics, followed by others as identified. The context in which practitioners use communication skills was found to be primarily with project management, with secondary contexts identified. The necessity for engineers to develop the ability to use multiple soft skills in an integrative manner is strongly supported by the data. Originality: This paper is one of only a few large-scale surveys of practising engineers to have explored the soft skill attributes. It makes a didactic contribution of providing a ranked list of topics which can be used for designing the curriculum and prioritising teaching effort, which has not previously been achieved. It yields the new insight that combinations of topics are sometimes more important than individual topics.

  4. Magnetic Resonance Imaging of Human Tissue-Engineered Adipose Substitutes

    PubMed Central

    Proulx, Maryse; Aubin, Kim; Lagueux, Jean; Audet, Pierre; Auger, Michèle

    2015-01-01

    Adipose tissue (AT) substitutes are being developed to answer the strong demand in reconstructive surgery. To facilitate the validation of their functional performance in vivo, and to avoid resorting to excessive number of animals, it is crucial at this stage to develop biomedical imaging methodologies, enabling the follow-up of reconstructed AT substitutes. Until now, biomedical imaging of AT substitutes has scarcely been reported in the literature. Therefore, the optimal parameters enabling good resolution, appropriate contrast, and graft delineation, as well as blood perfusion validation, must be studied and reported. In this study, human adipose substitutes produced from adipose-derived stem/stromal cells using the self-assembly approach of tissue engineering were implanted into athymic mice. The fate of the reconstructed AT substitutes implanted in vivo was successfully followed by magnetic resonance imaging (MRI), which is the imaging modality of choice for visualizing soft ATs. T1-weighted images allowed clear delineation of the grafts, followed by volume integration. The magnetic resonance (MR) signal of reconstructed AT was studied in vitro by proton nuclear magnetic resonance (1H-NMR). This confirmed the presence of a strong triglyceride peak of short longitudinal proton relaxation time (T1) values (200±53 ms) in reconstructed AT substitutes (total T1=813±76 ms), which establishes a clear signal difference between adjacent muscle, connective tissue, and native fat (total T1 ∼300 ms). Graft volume retention was followed up to 6 weeks after implantation, revealing a gradual resorption rate averaging at 44% of initial substitute's volume. In addition, vascular perfusion measured by dynamic contrast-enhanced-MRI confirmed the graft's vascularization postimplantation (14 and 21 days after grafting). Histological analysis of the grafted tissues revealed the persistence of numerous adipocytes without evidence of cysts or tissue necrosis. This study

  5. Structure-property relations in engineered semiconductor nanomaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hollingsworth, Jennifer A.; Htoon, Han

    2016-09-01

    Particle-size or `quantum-confinement' effects have been used for decades to tune semiconductor opto-electronic properties. More recently, particle size control as the primary means for properties control has been succeeded by nanoscale hetero-structuring. In this case, the nanosized particle is modified to include internal, nanoscale interfaces, generally defined by compositional variations that induce additional changes to semiconductor properties. These changes can entail enhancements to the size-induced properties as well as unexpected or `emergent' behaviors. Common structural motifs include enveloping a spherical semiconductor nanocrystal, i.e., a quantum dot, within a shell of a different composition. In this talk, I will discuss how solution-phase synthesis can be used to create these structures with precisely `engineered' complexity. Most notably, I will review our experiences with so-called `giant' quantum dots that, due to their internal nanoscale structure, exhibit a range of novel behaviors, including being non-blinking and non-photobleaching (Chen et al. J. Am. Chem. Soc. 2008, 130, 5026; Ghosh et al. J. Am. Chem. Soc. 2012, 134, 9634; Dennis et al. Nano Lett. 2012 12, 5545; Acharya et al. J. Am. Chem. Soc. 2015, 137, 3755), and remarkably efficient emitters of `multi-excitons' due to extreme suppression of Auger recombination (Mangum et al. Nanoscale 2014, 6, 3712; Gao et al. Adv. Optical Mater. 2015, 3, 39). I will discuss recent work extending non-blinking behavior to the blue/green and "dual-color" emission, and show how correlated optical/structural characterization can reveal new information regarding structure-property relations to guide new nanomaterials development (Orfield et al. ACS Nano, Article ASAP).

  6. Relation of Fuel-Air Ratio to Engine Performance

    NASA Technical Reports Server (NTRS)

    Sparrow, Stanwood W

    1925-01-01

    The tests upon which this report is based were made at the Bureau of Standards between October 1919 and May 1923. From these it is concluded that: (1) with gasoline as a fuel, maximum power is obtained with fuel-air mixtures of from 0.07 to 0.08 pound of fuel per pound of air; (2) maximum power is obtained with approximately the same ratio over the range of air pressures and temperatures encountered in flight; (3) nearly minimum specific fuel consumption is secured by decreasing the fuel content of the charge until the power is 95 per cent of its maximum value. Presumably this information is of most direct value to the carburetor engineer. A carburetor should supply the engine with a suitable mixture. This report discusses what mixtures have been found suitable for various engines. It also furnishes the engine designer with a basis for estimating how much greater piston displacement an engine operating with a maximum economy mixture should have than one operating with a maximum power mixture in order for both to be capable of the same power development.

  7. Human fetal bone cells in delivery systems for bone engineering.

    PubMed

    Tenorio, Diene M H; Scaletta, Corinne; Jaccoud, Sandra; Hirt-Burri, Nathalie; Pioletti, Dominique P; Jaques, Bertrand; Applegate, Lee Ann

    2011-11-01

    The aim of this study was to culture human fetal bone cells (dedicated cell banks of fetal bone derived from 14 week gestation femurs) within both hyaluronic acid gel and collagen foam, to compare the biocompatibility of both matrices as potential delivery systems for bone engineering and particularly for oral application. Fetal bone cell banks were prepared from one organ donation and cells were cultured for up to 4 weeks within hyaluronic acid (Mesolis®) and collagen foams (TissueFleece®). Cell survival and differentiation were assessed by cell proliferation assays and histology of frozen sections stained with Giemsa, von Kossa and ALP at 1, 2 and 4 weeks of culture. Within both materials, fetal bone cells could proliferate in three-dimensional structure at ∼70% capacity compared to monolayer culture. In addition, these cells were positive for ALP and von Kossa staining, indicating cellular differentiation and matrix production. Collagen foam provides a better structure for fetal bone cell delivery if cavity filling is necessary and hydrogels would permit an injectable technique for difficult to treat areas. In all, there was high biocompatibility, cellular differentiation and matrix deposition seen in both matrices by fetal bone cells, allowing for easy cell delivery for bone stimulation in vivo. Copyright © 2011 John Wiley & Sons, Ltd.

  8. Tools to Support Human Factors and Systems Engineering Interactions During Early Analysis

    NASA Technical Reports Server (NTRS)

    Thronesbery, Carroll; Malin, Jane T.; Holden, Kritina; Smith, Danielle Paige

    2006-01-01

    We describe an approach and existing software tool support for effective interactions between human factors engineers and systems engineers in early analysis activities during system acquisition. We examine the tasks performed during this stage, emphasizing those tasks where system engineers and human engineers interact. The Concept of Operations (ConOps) document is an important product during this phase, and particular attention is paid to its influences on subsequent acquisition activities. Understanding this influence helps ConOps authors describe a complete system concept that guides subsequent acquisition activities. We identify commonly used system engineering and human engineering tools and examine how they can support the specific tasks associated with system definition. We identify possible gaps in the support of these tasks, the largest of which appears to be creating the ConOps document itself. Finally, we outline the goals of our future empirical investigations of tools to support system concept definition.

  9. Tools to Support Human Factors and Systems Engineering Interactions During Early Analysis

    NASA Technical Reports Server (NTRS)

    Thronesbery, Carroll; Malin, Jane T.; Holden, Kritina; Smith, Danielle Paige

    2005-01-01

    We describe an approach and existing software tool support for effective interactions between human factors engineers and systems engineers in early analysis activities during system acquisition. We examine the tasks performed during this stage, emphasizing those tasks where system engineers and human engineers interact. The Concept of Operations (ConOps) document is an important product during this phase, and particular attention is paid to its influences on subsequent acquisition activities. Understanding this influence helps ConOps authors describe a complete system concept that guides subsequent acquisition activities. We identify commonly used system engineering and human engineering tools and examine how they can support the specific tasks associated with system definition. We identify possible gaps in the support of these tasks, the largest of which appears to be creating the ConOps document itself. Finally, we outline the goals of our future empirical investigations of tools to support system concept definition.

  10. An Integrated Neuroscience and Engineering Approach to Classifying Human Brain-States

    DTIC Science & Technology

    2015-12-22

    AFRL-AFOSR-VA-TR-2016-0037 An Integrated Neuroscience and Engineering Approach to Classifying Human Brain -States Adrian Lee UNIVERSITY OF WASHINGTON...to 14-09-2015 4. TITLE AND SUBTITLE An Integrated Neuroscience and Engineering Approach to Classifying Human Brain - States 5a.  CONTRACT NUMBER 5b...states. While the scientific quest to map human brain function has exploded in the last two decades, the ability to link patterns in EEG signals to

  11. Index of Government Standards on Human Engineering Design Criteria, Processes, and Procedures. Version 1

    DTIC Science & Technology

    2004-11-01

    Document Number Title Date Scope Source NUREG -0700 (Rev 2) Human-System Interface Design Review Guidelines May 2002 The U.S. Nuclear Regulatory...Commission staff reviews the human factors engineering aspects of nuclear power plants. Detailed design review procedures are provided in NUREG ... nuregs /staff/sr0700 NUREG -0711 (Rev 1) Human Factors Engineering Program Review Model May 2002 This document is used by the staff of the Nuclear

  12. Identifying Indicators Related to Constructs for Engineering Design Outcome

    ERIC Educational Resources Information Center

    Wilhelmsen, Cheryl A.; Dixon, Raymond A.

    2016-01-01

    This study ranked constructs articulated by Childress and Rhodes (2008) and identified the key indicators for each construct as a starting point to explore what should be included on an instrument to measure the engineering design process and outcomes of students in high schools that use the PLTW and EbDTM curricula in Idaho. A case-study design…

  13. Factors Related to Study Success in Engineering Education

    ERIC Educational Resources Information Center

    Tynjala, Paivi; Salminen, Risto T.; Sutela, Tuula; Nuutinen, Anita; Pitkanen, Seppo

    2005-01-01

    Recent studies on student learning in higher education have paid attention to the relationships between characteristics of the learning environment and students' study orientations and study success. The purpose of the present paper is to examine these relationships in university level engineering education. The data were collected from…

  14. Controlling the Didactic Relation: A Case in Process Engineering Education

    ERIC Educational Resources Information Center

    Jaako, Juha

    2014-01-01

    A case study was conducted during 1994-2013 on several groups of process engineering students to see what was needed to transform a single course from a teacher-centred to a student-centred learning environment (SCLE). Development work was done incrementally, using Herbart's didactic triangle as a theoretical framework. The effects of the…

  15. Controlling the Didactic Relation: A Case in Process Engineering Education

    ERIC Educational Resources Information Center

    Jaako, Juha

    2014-01-01

    A case study was conducted during 1994-2013 on several groups of process engineering students to see what was needed to transform a single course from a teacher-centred to a student-centred learning environment (SCLE). Development work was done incrementally, using Herbart's didactic triangle as a theoretical framework. The effects of the…

  16. Noninvasive PET Imaging and Tracking of Engineered Human Muscle Precursor Cells for Skeletal Muscle Tissue Engineering.

    PubMed

    Haralampieva, Deana; Betzel, Thomas; Dinulovic, Ivana; Salemi, Souzan; Stoelting, Meline; Krämer, Stefanie D; Schibli, Roger; Sulser, Tullio; Handschin, Christoph; Eberli, Daniel; Ametamey, Simon M

    2016-09-01

    Transplantation of human muscle precursor cells (hMPCs) is envisioned for the treatment of various muscle diseases. However, a feasible noninvasive tool to monitor cell survival, migration, and integration into the host tissue is still missing. In this study, we designed an adenoviral delivery system to genetically modify hMPCs to express a signaling-deficient form of human dopamine D2 receptor (hD2R). The gene expression levels of the receptor were evaluated by reverse transcriptase polymerase chain reaction, and infection efficiency was evaluated by fluorescent microscopy. The viability, proliferation, and differentiation capacity of the transduced cells, as well as their myogenic phenotype, were determined by flow cytometry analysis and fluorescent microscopy. (18)F-fallypride and (18)F-fluoromisonidazole, two well-established PET radioligands, were assessed for their potential to image engineered hMPCs in a mouse model and their uptakes were evaluated at different time points after cell inoculation in vivo. Biodistribution studies, autoradiography, and PET experiments were performed to determine the extent of signal specificity. To address feasibility for tracking hMPCs in an in vivo model, the safety of the adenoviral gene delivery was evaluated. Finally, the harvested tissues were histologically examined to determine whether survival of the transplanted cells was sustained at different time points. Adenoviral gene delivery was shown to be safe, with no detrimental effects on the primary human cells. The viability, proliferation, and differentiation capacity of the transduced cells were confirmed, and flow cytometry analysis and fluorescent microscopy showed that their myogenic phenotype was sustained. (18)F-fallypride and (18)F-fluoromisonidazole were successfully synthesized. Specific binding of (18)F-fallypride to hD2R hMPCs was demonstrated in vitro and in vivo. Furthermore, the (18)F-fluoromisonidazole signal was high at the early stages. Finally

  17. Actinomyces and Related Organisms in Human Infections

    PubMed Central

    Wade, William G.

    2015-01-01

    SUMMARY Actinomyces israelii has long been recognized as a causative agent of actinomycosis. During the past 3 decades, a large number of novel Actinomyces species have been described. Their detection and identification in clinical microbiology laboratories and recognition as pathogens in clinical settings can be challenging. With the introduction of advanced molecular methods, knowledge about their clinical relevance is gradually increasing, and the spectrum of diseases associated with Actinomyces and Actinomyces-like organisms is widening accordingly; for example, Actinomyces meyeri, Actinomyces neuii, and Actinomyces turicensis as well as Actinotignum (formerly Actinobaculum) schaalii are emerging as important causes of specific infections at various body sites. In the present review, we have gathered this information to provide a comprehensive and microbiologically consistent overview of the significance of Actinomyces and some closely related taxa in human infections. PMID:25788515

  18. 40 CFR 90.615 - Model year restrictions related to imported engines and equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Model year restrictions related to... OR BELOW 19 KILOWATTS Importation of Nonconforming Engines § 90.615 Model year restrictions related... to apply if the engines or equipment were built before the emission standards took effect....

  19. 40 CFR 90.615 - Model year restrictions related to imported engines and equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Model year restrictions related to... OR BELOW 19 KILOWATTS Importation of Nonconforming Engines § 90.615 Model year restrictions related... to apply if the engines or equipment were built before the emission standards took effect....

  20. 40 CFR 90.615 - Model year restrictions related to imported engines and equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Model year restrictions related to... OR BELOW 19 KILOWATTS Importation of Nonconforming Engines § 90.615 Model year restrictions related... to apply if the engines or equipment were built before the emission standards took effect....

  1. 40 CFR 90.615 - Model year restrictions related to imported engines and equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Model year restrictions related to... OR BELOW 19 KILOWATTS Importation of Nonconforming Engines § 90.615 Model year restrictions related... to apply if the engines or equipment were built before the emission standards took effect....

  2. The Regional Distribution of Energy-Related Scientists and Engineers, 1976. Research Memorandum.

    ERIC Educational Resources Information Center

    Finn, Michael G.; Blair, Philip

    Examined are several factors related to regional variations in the number of energy-related scientists and engineers and how this subgroup differs from the base group of scientists and engineers. The emphasis of this research project was to determine the influence of regional differences in industry mix and in staffing patterns within industries…

  3. NRC Reviewer Aid for Evaluating the Human Factors Engineering Aspects of Small Modular Reactors

    SciTech Connect

    OHara J. M.; Higgins, J.C.

    2012-01-13

    Small modular reactors (SMRs) are a promising approach to meeting future energy needs. Although the electrical output of an individual SMR is relatively small compared to that of typical commercial nuclear plants, they can be grouped to produce as much energy as a utility demands. Furthermore, SMRs can be used for other purposes, such as producing hydrogen and generating process heat. The design characteristics of many SMRs differ from those of current conventional plants and may require a distinct concept of operations (ConOps). The U.S. Nuclear Regulatory Commission (NRC) conducted research to examine the human factors engineering (HFE) and the operational aspects of SMRs. The research identified thirty potential human-performance issues that should be considered in the NRC's reviews of SMR designs and in future research activities. The purpose of this report is to support NRC HFE reviewers of SMR applications by identifying some of the questions that can be asked of applicants whose designs have characteristics identified in the issues. The questions for each issue were identified and organized based on the review elements and guidance contained in Chapter 18 of the Standard Review Plan (NUREG-0800), and the Human Factors Engineering Program Review Model (NUREG-0711).

  4. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes.

    PubMed

    Yang, Xiulan; Pabon, Lil; Murry, Charles E

    2014-01-31

    The discovery of human pluripotent stem cells (hPSCs), including both human embryonic stem cells and human-induced pluripotent stem cells, has opened up novel paths for a wide range of scientific studies. The capability to direct the differentiation of hPSCs into functional cardiomyocytes has provided a platform for regenerative medicine, development, tissue engineering, disease modeling, and drug toxicity testing. Despite exciting progress, achieving the optimal benefits has been hampered by the immature nature of these cardiomyocytes. Cardiac maturation has long been studied in vivo using animal models; however, finding ways to mature hPSC cardiomyocytes is only in its initial stages. In this review, we discuss progress in promoting the maturation of the hPSC cardiomyocytes, in the context of our current knowledge of developmental cardiac maturation and in relation to in vitro model systems such as rodent ventricular myocytes. Promising approaches that have begun to be examined in hPSC cardiomyocytes include long-term culturing, 3-dimensional tissue engineering, mechanical loading, electric stimulation, modulation of substrate stiffness, and treatment with neurohormonal factors. Future studies will benefit from the combinatorial use of different approaches that more closely mimic nature's diverse cues, which may result in broader changes in structure, function, and therapeutic applicability.

  5. Unifying Human Centered Design and Systems Engineering for Human Systems Integration

    NASA Technical Reports Server (NTRS)

    Boy, Guy A.; McGovernNarkevicius, Jennifer

    2013-01-01

    Despite the holistic approach of systems engineering (SE), systems still fail, and sometimes spectacularly. Requirements, solutions and the world constantly evolve and are very difficult to keep current. SE requires more flexibility and new approaches to SE have to be developed to include creativity as an integral part and where the functions of people and technology are appropriately allocated within our highly interconnected complex organizations. Instead of disregarding complexity because it is too difficult to handle, we should take advantage of it, discovering behavioral attractors and the emerging properties that it generates. Human-centered design (HCD) provides the creativity factor that SE lacks. It promotes modeling and simulation from the early stages of design and throughout the life cycle of a product. Unifying HCD and SE will shape appropriate human-systems integration (HSI) and produce successful systems.

  6. Construction of tissue engineered skin with human amniotic mesenchymal stem cells and human amniotic epithelial cells.

    PubMed

    Yu, S-C; Xu, Y-Y; Li, Y; Xu, B; Sun, Q; Li, F; Zhang, X-G

    2015-12-01

    To establish a new model for construction of tissue engineered skin with human amniotic mesenchymal stem cells (hAMSCs) and human amniotic epithelial cells (hAECs). hAMSCs and hAECs were isolated from amniotic membrane. The morphology and phenotype of hAMSCs and hAECs were confirmed by microscope and flow cytometry, respectively. Then, we performed RT-PCR and immunofluorescence staining to assess the expression of stem cells and keratinocyte markers. Moreover, cell co-culture was performed to observe the growth and phenotype characteristics of hAMSCs and hAECs in vitro. In addition, tissue engineered skin with hAMSCs and hAECs was constructed and assessed with histological methods. hAMSCs and hAECs were successfully isolated, exhibiting fibroblast-like morphous and cobblestone-shape epithelial morphous, respectively. The surface biomarker analysis showed that hAMSCs and hAECs were both positive for CD73, CD90 and CD105, and negative for CD34 and HLA-DR. The RT-PCR showed that hAMSCs expressed stem cell marker Nanog and c-MYC, and keratinocyte marker K19, β1 integrin and K8, whereas hAECs expressed stem cell marker KLF4 and c-MYC, and keratinocyte marker K19, β1 integrin, K5 and K8. The expression of keratinocyte proliferation antigen K14 was also found on hAECs. Furthermore, we found co-culture has no impact on the phenotype of hAMSCs and hAECs, but increased the proliferation activity of hAECs and decreased the proliferation activity of hAMSCs. Finally, the histological analysis showed that the tissue engineered skin exhibited similar structure as normal skin. Tissue engineered skin with hAMSCs and hAECs was successfully constructed and shown a similar feature as a skin equivalent. The tissue engineered skin might have good application prospects in regenerative medicine.

  7. Enhancing human spermine synthase activity by engineered mutations.

    PubMed

    Zhang, Zhe; Zheng, Yueli; Petukh, Margo; Pegg, Anthony; Ikeguchi, Yoshihiko; Alexov, Emil

    2013-01-01

    Spermine synthase (SMS) is an enzyme which function is to convert spermidine into spermine. It was shown that gene defects resulting in amino acid changes of the wild type SMS cause Snyder-Robinson syndrome, which is a mild-to-moderate mental disability associated with osteoporosis, facial asymmetry, thin habitus, hypotonia, and a nonspecific movement disorder. These disease-causing missense mutations were demonstrated, both in silico and in vitro, to affect the wild type function of SMS by either destabilizing the SMS dimer/monomer or directly affecting the hydrogen bond network of the active site of SMS. In contrast to these studies, here we report an artificial engineering of a more efficient SMS variant by transferring sequence information from another organism. It is confirmed experimentally that the variant, bearing four amino acid substitutions, is catalytically more active than the wild type. The increased functionality is attributed to enhanced monomer stability, lowering the pKa of proton donor catalytic residue, optimized spatial distribution of the electrostatic potential around the SMS with respect to substrates, and increase of the frequency of mechanical vibration of the clefts presumed to be the gates toward the active sites. The study demonstrates that wild type SMS is not particularly evolutionarily optimized with respect to the reaction spermidine → spermine. Having in mind that currently there are no variations (non-synonymous single nucleotide polymorphism, nsSNP) detected in healthy individuals, it can be speculated that the human SMS function is precisely tuned toward its wild type and any deviation is unwanted and disease-causing.

  8. Generation and characterization of a human acellular meniscus scaffold for tissue engineering.

    PubMed

    Sandmann, G H; Eichhorn, S; Vogt, S; Adamczyk, C; Aryee, S; Hoberg, M; Milz, S; Imhoff, A B; Tischer, T

    2009-11-01

    Meniscus tears are frequent indications for arthroscopic evaluation which can result in partial or total meniscectomy. Allografts or synthetic meniscus scaffolds have been used with varying success to prevent early degenerative joint disease in these cases. Problems related to reduced initial and long-term stability, as well as immunological reactions prevent widespread clinical use so far. Therefore, the aim of this study was to develop a new construct for tissue engineering of the human meniscus based on an acellular meniscus allograft. Human menisci (n = 16) were collected and acellularized using the detergent sodium dodecyl sulfate as the main ingredient or left untreated as control group. These acellularized menisci were characterized biomechanically using a repetitive ball indentation test (Stiffness N/mm, residual force N, relative compression force N) and by histological (hematoxylin-eosin, phase-contrast) as well as immunohistochemical (collagen I, II, VI) investigation. The processed menisci histologically appeared cell-free and had biomechanical properties similar to the intact meniscus samples (p > 0.05). The collagen fiber arrangement was not altered, according to phase-contrast microscopy and immunohistochemical labeling. The removal of the immunogenic cell components combined with the preservation of the mechanically relevant parts of the extracellular matrix could make these scaffolds ideal implants for future tissue engineering of the meniscus.

  9. International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015)

    NASA Astrophysics Data System (ADS)

    2015-09-01

    The International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015) took place in the Technological Educational Institute (TEI) of Athens, Greece on June 18-20, 2015 and was organized by the Department of Biomedical Engineering. The scope of the conference was to provide a forum on the latest developments in Biomedical Instrumentation and related principles of Physical and Engineering sciences. Scientists and engineers from academic, industrial and health disciplines were invited to participate in the Conference and to contribute both in the promotion and dissemination of the scientific knowledge.

  10. Engineering of routes to heparin and related polysaccharides

    PubMed Central

    Bhaskar, Ujjwal; Sterner, Eric; Hickey, Anne Marie; Onishi, Akihiro; Zhang, Fuming; Dordick, Jonathan S.; Linhardt, Robert J.

    2011-01-01

    Anticoagulant heparin has been shown to possess important biological functions that vary according to its fine structure. Variability within heparin's structure occurs owing to its biosynthesis and animal tissue-based recovery, and adds another dimension to its complex polymeric structure. The structural variations in chain length and sulfation patterns mediate its interaction with many heparin-binding proteins, thereby, eliciting complex biological responses. The advent of novel chemical and enzymatic approaches for polysaccharide synthesis coupled with high throughput combinatorial approaches for drug discovery have facilitated an increased effort to understand heparin's structure-activity relationships. An improved understanding would offer potential for new therapeutic development through the engineering of polysaccharides. Such a bioengineering approach requires the amalgamation of several different disciplines including carbohydrate synthesis, applied enzymology, metabolic engineering, and process biochemistry. PMID:22048616

  11. Commercial Aircraft Maintenance Experience Relating to Engine External Hardware

    NASA Technical Reports Server (NTRS)

    Soditus, Sharon M.

    2006-01-01

    Airlines are extremely sensitive to the amount of dollars spent on maintaining the external engine hardware in the field. Analysis reveals that many problems revolve around a central issue, reliability. Fuel and oil leakage due to seal failure and electrical fault messages due to wire harness failures play a major role in aircraft delays and cancellations (D&C's) and scheduled maintenance. Correcting these items on the line requires a large investment of engineering resources and manpower after the fact. The smartest and most cost effective philosophy is to build the best hardware the first time. The only way to do that is to completely understand and model the operating environment, study the field experience of similar designs and to perform extensive testing.

  12. Human Motion Tracking at Marshall Space Flight Center's Collaborative Engineering Center ANVIL

    NASA Technical Reports Server (NTRS)

    Henderson, Steven J.; Hamilton, George S.

    2004-01-01

    The installation and use of electromagnetic human motion trackers requires a specially designed and metal-free environment for optimal performance. Such an area is not readily available at the Marshall Space Flight Center Collaborative Engineering Center ANVIL. Our paper details a systems engineering approach to installing and operating Ascension Technologies Ethernet MotionStar tracking system in a sub-optimal environment, used with the JACK human computer model's motion capture capabilities. We also discuss how this system is integrated into the Marshall Space Flight Center's Human Engineering process.

  13. New dimensions in tissue engineering: possible models for human physiology.

    PubMed

    Baar, Keith

    2005-11-01

    Tissue engineering is a discipline of great promise. In some areas, such as the cornea, tissues engineered in the laboratory are already in clinical use. In other areas, where the tissue architecture is more complex, there are a number of obstacles to manoeuvre before clinically relevant tissues can be produced. However, even in areas where clinically relevant tissues are decades away, the tissues being produced at the moment provide powerful new models to aid the understanding of complex physiological processes. This article provides a personal view of the role of tissue engineering in advancing our understanding of physiology, with specific attention being paid to musculoskeletal tissues.

  14. Ideas in Practice: The Mississippi River: Humanities and Civil Engineering.

    ERIC Educational Resources Information Center

    Vonalt, Larry; And Others

    1980-01-01

    Describes a course offered for the freshman civil engineering major at the University of Missouri-Rolla. The rationale of developing the course which focuses on the symbolic, social, and technological aspects of the Mississippi River is included. (HM)

  15. Ideas in Practice: The Mississippi River: Humanities and Civil Engineering.

    ERIC Educational Resources Information Center

    Vonalt, Larry; And Others

    1980-01-01

    Describes a course offered for the freshman civil engineering major at the University of Missouri-Rolla. The rationale of developing the course which focuses on the symbolic, social, and technological aspects of the Mississippi River is included. (HM)

  16. Human stem cells and articular cartilage tissue engineering.

    PubMed

    Stoltz, J-F; Huselstein, C; Schiavi, J; Li, Y Y; Bensoussan, D; Decot, V; De Isla, N

    2012-12-01

    Injuries to articular cartilage are one of the most challenging issues of musculoskeletal medicine due to the poor intrinsic ability of this tissue for repair. Despite progress in orthopaedic surgery, cell-based surgical therapies such as autologous chondrocyte transplantation (ACT) have been in clinical use for cartilage repair for over a decade but this approach has shown mixed results. Moreover, the lack of efficient modalities of treatment for large chondral defects has prompted research on cartilage tissue engineering combining cells, scaffold materials and environmental factors. This paper focuses on the main parameters in tissue engineering and in particular, on the potential of mesenchymal stem cells (MSCs) as an alternative to cells derived from patient tissues in autologous transplantation and tissue engineering. We discussed the prospects of using autologous chondrocytes or MSCs in regenerative medicine and summarized the advantages and disadvantages of these cells in articular cartilage engineering.

  17. Human papillomavirus-related esophageal cancer survival

    PubMed Central

    Guo, Lanwei; Liu, Shuzheng; Zhang, Shaokai; Chen, Qiong; Zhang, Meng; Quan, Peiliang; Sun, Xi-Bin

    2016-01-01

    Abstract Background: Human papillomavirus (HPV) has been identified to be related to progression of esophageal cancer. However, the results remain controversial. A meta-analysis of epidemiologic studies was therefore conducted to address this issue. Methods: The electronic databases of MEDLINE and Excerpta Medica database were searched till April 30, 2016. Study-specific risk estimates were pooled using a random-effects model. Results: Ten studies involving a total of 1184 esophageal cancer cases were included in this meta-analysis. The pooled hazard ratio comparing HPV-positive to HPV-negative esophageal cancers was 1.03 (95% confidence interval 0.78–1.37), which was not significantly correlated with improved survival. However, HPV-16-positive patients might have a significantly favorable survival (hazard ratio 0.73, 95% confidence interval 0.44–1.21). Conclusion: The meta-analysis indicated that HPV infection may not be of prognostic utility in the evaluation of factors contributing to esophageal cancer. Further large prospective studies are encouraged to stratify survival analysis by HPV type. PMID:27861358

  18. Profiles--Mechanical Engineering: Human Resources and Funding. Special Report. Surveys of Science Resources Series.

    ERIC Educational Resources Information Center

    Lane, Melissa J.

    This report was developed by the National Science Foundation to focus attention on a particular field of engineering. It addresses the human resources and funding for mechanical engineering programs through several perspectives. The first major section, "Personnel," discusses employment levels and trends, salaries, sectors of employment,…

  19. Social Control and Human Engineering: A Framework for Decision-Making.

    ERIC Educational Resources Information Center

    Van Patten, James J.

    Social control and human engineering are vital factors in providing balanced, controlled, planned directions for educational decisionmaking. Designed to encourage individual growth, these factors are morally neutral; the way in which they are implemented determines their worth. (Author)

  20. Engineering related neutron diffraction measurements probing strains, texture and microstructure

    SciTech Connect

    Clausen, Bjorn; Brown, Donald W; Tome, Carlos N; Balogh, Levente; Vogel, Sven C

    2010-01-01

    Neutron diffraction has been used for engineering applications for nearly three decades. The basis of the technique is powder diffraction following Bragg's Law. From the measured diffraction patterns information about internal, or residual, strain can be deduced from the peak positions, texture information can be extracted from the peak intensities, and finally the peak widths can provide information about the microstructure, e.g. dislocation densities and grain sizes. The strains are measured directly from changes in lattice parameters, however, in many cases it is non-trivial to determine macroscopic values of stress or strain from the measured data. The effects of intergranular strains must be considered, and combining the neutron diffraction measurements with polycrystal deformation modeling has proven invaluable in determining the overall stress and strain values of interest in designing and dimensioning engineering components. Furthelmore, the combined use of measurements and modeling has provided a tool for elucidating basic material properties, such as critical resolved shear stresses for the active deformation modes and their evolution as a function of applied deformation.

  1. Instructive nanofibrous scaffold comprising runt-related transcription factor 2 gene delivery for bone tissue engineering.

    PubMed

    Monteiro, Nelson; Ribeiro, Diana; Martins, Albino; Faria, Susana; Fonseca, Nuno A; Moreira, João N; Reis, Rui L; Neves, Nuno M

    2014-08-26

    Inducer molecules capable of regulating mesenchymal stem cell differentiation into specific lineages have proven effective in basic science and in preclinical studies. Runt-related transcription factor 2 (RUNX2) is considered to be the central gene involved in the osteoblast phenotype induction, which may be advantageous for inducing bone tissue regeneration. This work envisions the development of a platform for gene delivery, combining liposomes as gene delivery devices, with electrospun nanofiber mesh (NFM) as a tissue engineering scaffold. pDNA-loaded liposomes were immobilized at the surface of functionalized polycaprolactone (PCL) NFM. Human bone-marrow-derived mesenchymal stem cells (hBMSCs) cultured on RUNX2-loaded liposomes immobilized at the surface of electrospun PCL NFM showed enhanced levels of metabolic activity and total protein synthesis. RUNX2-loaded liposomes immobilized at the surface of electrospun PCL NFMs induce a long-term gene expression of eGFP and RUNX2 by cultured hBMSCs. Furthermore, osteogenic differentiation of hBMSCs was also achieved by the overexpression of other osteogenic markers in medium free of osteogenic supplementation. These findings demonstrate that surface immobilization of RUNX2 plasmid onto elestrospun PCL NFM can produce long-term gene expression in vitro, which may be employed to enhance the osteoinductive properties of scaffolds used for bone tissue engineering strategies.

  2. Engineering, Scientific, and Related Occupations. Occupational Outlook Handbook Reprints. Bulletin 2450-3.

    ERIC Educational Resources Information Center

    Bureau of Labor Statistics, Washington, DC.

    This document provides a description of engineering, scientific, and related occupations. Descriptions may include: (1) information on the nature of the work; (2) training required; (3) earnings; (4) job prospects, and (5) sources of additional information. Among the occupations described, the following job titles are included: Engineering,…

  3. Engineering and Related Occupations. Reprinted from the Occupational Outlook Handbook, 1978-79 Edition.

    ERIC Educational Resources Information Center

    Bureau of Labor Statistics (DOL), Washington, DC.

    Focusing on engineering and related occupations, this document is one in a series of forty-one reprints from the Occupational Outlook Handbook providing current information and employment projections for individual occupations and industries through 1985. The specific occupations covered in this document include aerospace engineers, agricultural…

  4. Energy-Related Scientists and Engineers: Statistical Profile of New Entrants Into the Work Force, 1976.

    ERIC Educational Resources Information Center

    Rall, Jane E.

    Reported are data which describe the 1976 employment and educational characteristics of recent science and engineering graduates involved in energy-related activities. This information is from the 1976 National Survey of Recent Science and Engineering Graduates, a survey of about 9,800 persons who received bachelor's or master's degrees between…

  5. Human Factors Engineering Evaluation of the CH-47F Horizontal Situation Display Hover

    DTIC Science & Technology

    2012-01-01

    Human Factors Engineering Evaluation of the CH-47F Horizontal Situation Display Hover by Jared Sapp , Sage Jessee, Jonathan Crutcher, Mary...Hover Jared Sapp , Sage Jessee, Jonathan Crutcher, Mary Carolyn King, and Anthony Morris Human Research and Engineering Directorate, ARL...GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jared Sapp , Sage Jessee, Jonathan Crutcher, Mary Carolyn King, and Anthony Morris 5d

  6. Implications of the new Food and Drug Administration draft guidance on human factors engineering for diabetes device manufacturers.

    PubMed

    Wilcox, Stephen B; Drucker, Daniel

    2012-03-01

    This article discusses the implications of the new Food and Drug Administration's draft guidance on human factors and usability engineering for the development of diabetes-related devices. Important considerations include the challenge of identifying users, when the user population is so dramatically broad, and the challenge of identifying use environments when the same can be said for use environments. Another important consideration is that diabetes-related devices, unlike many other medical devices, are used constantly as part of the user's lifestyle--adding complexity to the focus on human factors and ease of use emphasized by the draft guidance. © 2012 Diabetes Technology Society.

  7. Work, Productivity, and Human Performance: Practical Case Studies in Ergonomics, Human Factors and Human Engineering.

    ERIC Educational Resources Information Center

    Fraser, T. M.; Pityn, P. J.

    This book contains 12 case histories, each based on a real-life problem, that show how a manager can use common sense, knowledge, and interpersonal skills to solve problems in human performance at work. Each case study describes a worker's problem and provides background information and an assignment; solutions are suggested. The following cases…

  8. Engineering a humanized bone organ model in mice to study bone metastases.

    PubMed

    Martine, Laure C; Holzapfel, Boris M; McGovern, Jacqui A; Wagner, Ferdinand; Quent, Verena M; Hesami, Parisa; Wunner, Felix M; Vaquette, Cedryck; De-Juan-Pardo, Elena M; Brown, Toby D; Nowlan, Bianca; Wu, Dan Jing; Hutmacher, Cosmo Orlando; Moi, Davide; Oussenko, Tatiana; Piccinini, Elia; Zandstra, Peter W; Mazzieri, Roberta; Lévesque, Jean-Pierre; Dalton, Paul D; Taubenberger, Anna V; Hutmacher, Dietmar W

    2017-04-01

    Current in vivo models for investigating human primary bone tumors and cancer metastasis to the bone rely on the injection of human cancer cells into the mouse skeleton. This approach does not mimic species-specific mechanisms occurring in human diseases and may preclude successful clinical translation. We have developed a protocol to engineer humanized bone within immunodeficient hosts, which can be adapted to study the interactions between human cancer cells and a humanized bone microenvironment in vivo. A researcher trained in the principles of tissue engineering will be able to execute the protocol and yield study results within 4-6 months. Additive biomanufactured scaffolds seeded and cultured with human bone-forming cells are implanted ectopically in combination with osteogenic factors into mice to generate a physiological bone 'organ', which is partially humanized. The model comprises human bone cells and secreted extracellular matrix (ECM); however, other components of the engineered tissue, such as the vasculature, are of murine origin. The model can be further humanized through the engraftment of human hematopoietic stem cells (HSCs) that can lead to human hematopoiesis within the murine host. The humanized organ bone model has been well characterized and validated and allows dissection of some of the mechanisms of the bone metastatic processes in prostate and breast cancer.

  9. GN&C Engineering Best Practices for Human-Rated Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Lebsock, Kenneth; West, John

    2007-01-01

    The NASA Engineering and Safety Center (NESC) recently completed an in-depth assessment to identify a comprehensive set of engineering considerations for the Design, Development, Test and Evaluation (DDT&E) of safe and reliable human-rated spacecraft systems. Reliability subject matter experts, discipline experts, and systems engineering experts were brought together to synthesize the current "best practices" both at the spacecraft system and subsystems levels. The objective of this paper is to summarize, for the larger Community of Practice, the initial set of Guidance, Navigation and Control (GN&C) engineering Best Practices as identified by this NESC assessment process.

  10. GN&C Engineering Best Practices For Human-Rated Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Lebsock, Kenneth; West, John

    2007-01-01

    The NASA Engineering and Safety Center (NESC) recently completed an in-depth assessment to identify a comprehensive set of engineering considerations for the Design, Development, Test and Evaluation (DDT&E) of safe and reliable human-rated spacecraft systems. Reliability subject matter experts, discipline experts, and systems engineering experts were brought together to synthesize the current "best practices" both at the spacecraft system and subsystems levels. The objective of this paper is to summarize, for the larger Community of Practice, the initial set of Guidance, Navigation and Control (GN&C) engineering Best Practices as identified by this NESC assessment process.

  11. GN&C Engineering Best Practices for Human-Rated Spacecraft System

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Lebsock, Kenneth; West, John

    2008-01-01

    The NASA Engineering and Safety Center (NESC) recently completed an in-depth assessment to identify a comprehensive set of engineering considerations for the Design, Development, Test and Evaluation (DDT&E) of safe and reliable human-rated spacecraft systems. Reliability subject matter experts, discipline experts, and systems engineering experts were brought together to synthesize the current "best practices" both at the spacecraft system and subsystems levels. The objective of this paper is to summarize, for the larger Community of Practice, the initial set of Guidance, Navigation and Control (GN&C) engineering Best Practices as identified by this NESC assessment process.

  12. Cartilage tissue engineering of nasal septal chondrocyte-macroaggregates in human demineralized bone matrix.

    PubMed

    Liese, Juliane; Marzahn, Ulrike; El Sayed, Karym; Pruss, Axel; Haisch, Andreas; Stoelzel, Katharina

    2013-06-01

    Tissue Engineering is an important method for generating cartilage tissue with isolated autologous cells and the support of biomaterials. In contrast to various gel-like biomaterials, human demineralized bone matrix (DBM) guarantees some biomechanical stability for an application in biomechanically loaded regions. The present study combined for the first time the method of seeding chondrocyte-macroaggregates in DBM for the purpose of cartilage tissue engineering. After isolating human nasal chondrocytes and creating a three-dimensional macroaggregate arrangement, the DBM was cultivated in vitro with the macroaggregates. The interaction of the cells within the DBM was analyzed with respect to cell differentiation and the inhibitory effects of chondrocyte proliferation. In contrast to chondrocyte-macroaggregates in the cell-DBM constructs, morphologically modified cells expressing type I collagen dominated. The redifferentiation of chondrocytes, characterized by the expression of type II collagen, was only found in low amounts in the cell-DBM constructs. Furthermore, caspase 3, a marker for apoptosis, was detected in the chondrocyte-DBM constructs. In another experimental setting, the vitality of chondrocytes as related to culture time and the amount of DBM was analyzed with the BrdU assay. Higher amounts of DBM tended to result in significantly higher proliferation rates of the cells within the first 48 h. After 96 h, the vitality decreased in a dose-dependent fashion. In conclusion, this study provides the proof of concept of chondrocyte-macroaggregates with DBM as an interesting method for the tissue engineering of cartilage. The as-yet insufficient redifferentiation of the chondrocytes and the sporadic initiation of apoptosis will require further investigations.

  13. The interface between plant metabolic engineering and human health.

    PubMed

    Martin, Cathie

    2013-04-01

    The data on the benefits of consuming high levels of phytonutrients in fruit and vegetables to prevent or ameliorate chronic disease are very persuasive. To underpin reliable dietary recommendations and future campaigns for preventive medicine, significant fundamental research is required to define phytonutrients, their physiological effects following consumption, their mechanisms of action, the impact of the food matrix and synergistic interactions between phytonutrients. This information will set goals for biofortifying phytonutrients in crops, which can be achieved by metabolic engineering, either using natural variation or genetic engineering. Genetic engineering has potential to enrich diets significantly in phytonutrients to reduce the risk of chronic disease, even against an overall decline in the nutritional value of diets, in both the developing and developed worlds.

  14. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery

    PubMed Central

    Lin, Steven; Staahl, Brett T; Alla, Ravi K; Doudna, Jennifer A

    2014-01-01

    The CRISPR/Cas9 system is a robust genome editing technology that works in human cells, animals and plants based on the RNA-programmed DNA cleaving activity of the Cas9 enzyme. Building on previous work (Jinek et al., 2013), we show here that new genetic information can be introduced site-specifically and with high efficiency by homology-directed repair (HDR) of Cas9-induced site-specific double-strand DNA breaks using timed delivery of Cas9-guide RNA ribonucleoprotein (RNP) complexes. Cas9 RNP-mediated HDR in HEK293T, human primary neonatal fibroblast and human embryonic stem cells was increased dramatically relative to experiments in unsynchronized cells, with rates of HDR up to 38% observed in HEK293T cells. Sequencing of on- and potential off-target sites showed that editing occurred with high fidelity, while cell mortality was minimized. This approach provides a simple and highly effective strategy for enhancing site-specific genome engineering in both transformed and primary human cells. DOI: http://dx.doi.org/10.7554/eLife.04766.001 PMID:25497837

  15. Heart research advances using database search engines, Human Protein Atlas and the Sydney Heart Bank.

    PubMed

    Li, Amy; Estigoy, Colleen; Raftery, Mark; Cameron, Darryl; Odeberg, Jacob; Pontén, Fredrik; Lal, Sean; Dos Remedios, Cristobal G

    2013-10-01

    This Methodological Review is intended as a guide for research students who may have just discovered a human "novel" cardiac protein, but it may also help hard-pressed reviewers of journal submissions on a "novel" protein reported in an animal model of human heart failure. Whether you are an expert or not, you may know little or nothing about this particular protein of interest. In this review we provide a strategic guide on how to proceed. We ask: How do you discover what has been published (even in an abstract or research report) about this protein? Everyone knows how to undertake literature searches using PubMed and Medline but these are usually encyclopaedic, often producing long lists of papers, most of which are either irrelevant or only vaguely relevant to your query. Relatively few will be aware of more advanced search engines such as Google Scholar and even fewer will know about Quertle. Next, we provide a strategy for discovering if your "novel" protein is expressed in the normal, healthy human heart, and if it is, we show you how to investigate its subcellular location. This can usually be achieved by visiting the website "Human Protein Atlas" without doing a single experiment. Finally, we provide a pathway to discovering if your protein of interest changes its expression level with heart failure/disease or with ageing.

  16. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery.

    PubMed

    Lin, Steven; Staahl, Brett T; Alla, Ravi K; Doudna, Jennifer A

    2014-12-15

    The CRISPR/Cas9 system is a robust genome editing technology that works in human cells, animals and plants based on the RNA-programmed DNA cleaving activity of the Cas9 enzyme. Building on previous work (Jinek et al., 2013), we show here that new genetic information can be introduced site-specifically and with high efficiency by homology-directed repair (HDR) of Cas9-induced site-specific double-strand DNA breaks using timed delivery of Cas9-guide RNA ribonucleoprotein (RNP) complexes. Cas9 RNP-mediated HDR in HEK293T, human primary neonatal fibroblast and human embryonic stem cells was increased dramatically relative to experiments in unsynchronized cells, with rates of HDR up to 38% observed in HEK293T cells. Sequencing of on- and potential off-target sites showed that editing occurred with high fidelity, while cell mortality was minimized. This approach provides a simple and highly effective strategy for enhancing site-specific genome engineering in both transformed and primary human cells.

  17. Notification: Evaluation of EPA's Management of Resistance Issues Related to Herbicide Tolerant Genetically Engineered Crops

    EPA Pesticide Factsheets

    Project #OPE-FY16-0023, March 25, 2016. The EPA OIG plans to begin preliminary research to assess the EPA's management and oversight of resistance issues related to herbicide tolerant genetically engineered crops.

  18. Educated Public Relations: School Safety 101. With Engineering Consent.

    ERIC Educational Resources Information Center

    Greenbaum, Stuart; And Others

    This book is designed to enable school administrators to actively participate in planning and implementing school safety and public relations activities. It provides a conceptual framework of the public relations process and shows its practical application to the problems of school crime and student misbehavior, through discussion of school public…

  19. Human Rights in Sino-American Relations

    DTIC Science & Technology

    2002-12-01

    unidentified injections, the insertion of pepper , chili powder, or other substances into the nose, mouth, or genitals, and the insertion of horse hairs or...and the Empty Fortress: China’s Search For Security, (New York: W.W. Norton & Company, 1997), p. 186. 3 “Opposed to Any Hegemonic Activities on the...internal human rights conditions, as well as to play a more active role in the international human rights movement. However, in spite of China’s

  20. Engineering of surfaces for energy-related applications

    NASA Astrophysics Data System (ADS)

    Umeda, Grant Asano

    Finding solutions to today's energy challenges will be spearheaded by the development of novel materials systems. This dissertation examines the engineering of surfaces for both energy collection and energy storage. Energy collection research, such as the development of more efficient photovoltaic devices, has received much attention in recent literature, however, achieving inexpensive efficiency improvements in other parts of the photovoltaic system has not been well documented. The first part of this dissertation examines the possibility of utilizing a sol-gel approach to fabricate a single-layer abrasion-resistant antireflective coating for cover glass for solar cell arrays. By controlling the porosity of the film to reduce reflection from the substrate, and by controlling the chemistry of the sol-gel formation, we have achieved a film that is both durable and exhibits excellent antireflection properties. The second part of this dissertation examines a novel approach to the protection of lithium metal for use in secondary batteries. Current lithium-ion technologies utilize carbon anodes which have a low energy density compared to lithium metal. However, the interaction between lithium metal and commercially available non-aqueous electrolytes produces an inhomogeneous layer on the surface of the lithium which results in poor cycle life. A novel coating is presented which uses sol-gel precursors to stabilize the surface of lithium metal and results in a film that protects a lithium metal surface for over 100 cycles of stripping and plating.

  1. Application of GPS for transportation related engineering surveys

    NASA Astrophysics Data System (ADS)

    Merrell, Roger L.

    1986-09-01

    The Texas State Department of Highways and Public Transportation (SDHPT) has been using GPS for over two years to establish primary geodetic reference points for engineering projects and mapping control. In accordance with a Five Year GPS Implementation Plant developed in 1982, four GPS, unmanned, automatic Regional Reference Point (RRP) stations will be installed by September 1, 1986. Five additional stations are planned as justified. Each RRP will consist of a dual frequency GPS receiver that will ultimately track the satellites continuously. Operation of the receiver, telecommunications and other station keeping chores will be handled by a microcomputer. The RRP station network will be controlled through another centrally located microcomputer which is also interfaced with a larger mainframe system. Each RRP is designed to service an area bounded by a 200 KM radius and will act as the “other” receiver for roving field units operating in a GPS differential measurement mode. In order to meet the installation schedule, early decisions are being made concerning satellite tracking rates, operational scenarios, and telecommunications to facilitate development of the basic hardware and software systems. A period of continual enhancement to hardware, software and RRP operational procedures is expected as GPS technology expands.

  2. Human Resources Development in the Field of Electrical Engineering

    NASA Astrophysics Data System (ADS)

    Ishigame, Atsushi

    It is becoming increasingly clear that the decline in popularity in the field of electrical engineering is undergoing rapidly due to the fact that more young people are moving away from the science. The primary goal of this paper is to recognize the importance of educational new effort and, second, suggest social-provided education support needed to meet this challenge.

  3. Computer-aided tissue engineering of a human vertebral body.

    PubMed

    Wettergreen, M A; Bucklen, B S; Sun, W; Liebschner, M A K

    2005-10-01

    Tissue engineering is developing into a less speculative science involving the careful interplay of numerous design parameters and multidisciplinary professionals. Problem solving abilities and state of the art research tools are required to develop solutions for a wide variety of clinical issues. One area of particular interest is orthopedic biomechanics, a field that is responsible for the treatment of over 700,000 vertebral fractures in the United States alone last year. Engineers are currently lacking the technology and knowledge required to govern the subsistence of cells in vivo, let alone the knowledge to create a functional tissue replacement for a whole organ. Despite this, advances in computer-aided tissue engineering are continually growing. Using a combinatory approach to scaffold design, patient-specific implants may be constructed. Computer-aided design, optimization of geometry using voxel finite element models or other optimization routines, creation of a library of architectures with specific material properties, rapid prototyping, and determination of a defect site using imaging modalities highlight the current availability of design resources. This study proposes a novel methodology from start to finish which could, in the future, be used to design a tissue-engineered construct for the replacement of an entire vertebral body.

  4. Musculoskeletal tissue engineering with human umbilical cord mesenchymal stromal cells

    PubMed Central

    Wang, Limin; Ott, Lindsey; Seshareddy, Kiran; Weiss, Mark L; Detamore, Michael S

    2011-01-01

    Multipotent mesenchymal stromal cells (MSCs) hold tremendous promise for tissue engineering and regenerative medicine, yet with so many sources of MSCs, what are the primary criteria for selecting leading candidates? Ideally, the cells will be multipotent, inexpensive, lack donor site morbidity, donor materials should be readily available in large numbers, immunocompatible, politically benign and expandable in vitro for several passages. Bone marrow MSCs do not meet all of these criteria and neither do embryonic stem cells. However, a promising new cell source is emerging in tissue engineering that appears to meet these criteria: MSCs derived from Wharton’s jelly of umbilical cord MSCs. Exposed to appropriate conditions, umbilical cord MSCs can differentiate in vitro along several cell lineages such as the chondrocyte, osteoblast, adipocyte, myocyte, neuronal, pancreatic or hepatocyte lineages. In animal models, umbilical cord MSCs have demonstrated in vivo differentiation ability and promising immunocompatibility with host organs/tissues, even in xenotransplantation. In this article, we address their cellular characteristics, multipotent differentiation ability and potential for tissue engineering with an emphasis on musculoskeletal tissue engineering. PMID:21175290

  5. Systems integrated human engineering on the Navy's rapid acquisition of manufactured parts/test and integration facility

    NASA Technical Reports Server (NTRS)

    Gallaway, Glen R.

    1987-01-01

    Human Engineering in many projects is at best a limited support function. In this Navy project the Human Engineering function is an integral component of the systems design and development process. Human Engineering is a member of the systems design organization. This ensures that people considerations are: (1) identified early in the project; (2) accounted for in the specifications; (3) incorporated into the design; and (4) the tested product meets the needs and expectations of the people while meeting the overall systems requirements. The project exemplifies achievements that can be made by the symbiosis between systems designers, engineers and Human Engineering. This approach increases Human Engineering's effectiveness and value to a project because it becomes an accepted, contributing team member. It is an approach to doing Human Engineering that should be considered for most projects. The functional and organizational issues giving this approach strength are described.

  6. Toward a psychology of human-animal relations.

    PubMed

    Amiot, Catherine E; Bastian, Brock

    2015-01-01

    Nonhuman animals are ubiquitous to human life, and permeate a diversity of social contexts by providing humans with food and clothing, serving as participants in research, improving healing, and offering entertainment, leisure, and companionship. Despite the impact that animals have on human lives and vice versa, the field of psychology has barely touched upon the topic of human-animal relations as an important domain of human activity. We review the current state of research on human-animal relations, showing how this body of work has implications for a diverse range of psychological themes including evolutionary processes, development, normative factors, gender and individual differences, health and therapy, and intergroup relations. Our aim is to highlight human-animal relations as a domain of human life that merits theoretical and empirical attention from psychology as a discipline. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  7. Human flexor tendon tissue engineering: decellularization of human flexor tendons reduces immunogenicity in vivo.

    PubMed

    Raghavan, Shyam S; Woon, Colin Y L; Kraus, Armin; Megerle, Kai; Choi, Matthew S S; Pridgen, Brian C; Pham, Hung; Chang, James

    2012-04-01

    In mutilating hand injuries, tissue engineered tendon grafts may provide a reconstructive solution. We have previously described a method to decellularize cadaveric human flexor tendons while preserving mechanical properties and biocompatibility. The purpose of this study is to evaluate the immunogenicity and strength of these grafts when implanted into an immunocompetent rat model. Cadaveric human flexor tendons were divided into two groups. Group 1 was untreated, and Group 2 was decellularized by treatment with sodium dodecyl sulfate (SDS), ethylenediaminetetraacetic acid (EDTA), and peracetic acid (PAA). Both groups were then analyzed for the presence of major histocompatibility complexes by immunohistochemistry (IHC). Pair-matched tendons from each group were then placed into the dorsal subcutaneous tissue and anchored to the spinal ligaments of Wistar rats for 2 or 4 weeks, and harvested. The infiltration of B-cells and macrophages was determined using IHC. The explants where then subjected to mechanical testing to determine the ultimate tensile stress (UTS) and elastic modulus (EM). Statistical analysis was performed using a paired Student's t-test. The decellularization protocol successfully removed cells and MHC-1 complexes. At 2 weeks after implantation, there was increased infiltration of B-cells in Group 1 (untreated) compared with Group 2 (acellular), both in the capsule and tendon substance. There was improved ultimate tensile stress (UTS, 42.7 ± 8.3 vs. 22.8 ± 7.8 MPa, p<0.05) and EM (830.2 ± 206.7 vs. 421.2 ± 171.3 MPa, p<0.05) in tendons that were decellularized. At 4 weeks, there was continued B-cell infiltration in Group 1 (untreated) compared with Group 2 (acellular). There was no appreciable difference in macrophage infiltration at both time points. At 4 weeks Group 2 (acellular) demonstrated persistently greater UTS (40.5 ± 9.1 vs. 14.6 ± 4.2 MPa, p<0.05) and EM (454.05 ± 101.5 vs. 204.6 ± 91.3 MPa, p<0.05) compared with Group 1

  8. Space Human Factors Engineering Challenges in Long Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Garland, Daniel J.; Endsley, Mica R.; Ellison, June; Caldwell, Barrett S.; Mount, Frances E.; Bond, Robert L. (Technical Monitor)

    1999-01-01

    The focus of this panel is on identifying and discussing the critical human factors challenges facing long duration space flight. Living and working aboard the International Space Station (ISS) will build on the experience humans have had to date aboard the Shuttle and MIR. More extended missions, involving lunar and planetary missions to Mars are being planned. These missions will involve many human factors challenges regarding a number of issues on which more research is needed.

  9. Space Human Factors Engineering Challenges in Long Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Garland, Daniel J.; Endsley, Mica R.; Ellison, June; Caldwell, Barrett S.; Mount, Frances E.; Bond, Robert L. (Technical Monitor)

    1999-01-01

    The focus of this panel is on identifying and discussing the critical human factors challenges facing long duration space flight. Living and working aboard the International Space Station (ISS) will build on the experience humans have had to date aboard the Shuttle and MIR. More extended missions, involving lunar and planetary missions to Mars are being planned. These missions will involve many human factors challenges regarding a number of issues on which more research is needed.

  10. Decellularization of human and porcine lung tissues for pulmonary tissue engineering.

    PubMed

    O'Neill, John D; Anfang, Rachel; Anandappa, Annabelle; Costa, Joseph; Javidfar, Jeffrey; Wobma, Holly M; Singh, Gopal; Freytes, Donald O; Bacchetta, Matthew D; Sonett, Joshua R; Vunjak-Novakovic, Gordana

    2013-09-01

    The only definitive treatment for end-stage organ failure is orthotopic transplantation. Lung extracellular matrix (LECM) holds great potential as a scaffold for lung tissue engineering because it retains the complex architecture, biomechanics, and topologic specificity of the lung. Decellularization of human lungs rejected from transplantation could provide "ideal" biologic scaffolds for lung tissue engineering, but the availability of such lungs remains limited. The present study was designed to determine whether porcine lung could serve as a suitable substitute for human lung to study tissue engineering therapies. Human and porcine lungs were procured, sliced into sheets, and decellularized by three different methods. Compositional, ultrastructural, and biomechanical changes to the LECM were characterized. The suitability of LECM for cellular repopulation was evaluated by assessing the viability, growth, and metabolic activity of human lung fibroblasts, human small airway epithelial cells, and human adipose-derived mesenchymal stem cells over a period of 7 days. Decellularization with 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) showed the best maintenance of both human and porcine LECM, with similar retention of LECM proteins except for elastin. Human and porcine LECM supported the cultivation of pulmonary cells in a similar way, except that the human LECM was stiffer and resulted in higher metabolic activity of the cells than porcine LECM. Porcine lungs can be decellularized with CHAPS to produce LECM scaffolds with properties resembling those of human lungs, for pulmonary tissue engineering. We propose that porcine LECM can be an excellent screening platform for the envisioned human tissue engineering applications of decellularized lungs. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  11. [Biosynthesis and isolation of a recombinant protein for producing genetically-engineered human proinsulin].

    PubMed

    Ivankin, A N; Mitaleva, S I; Nekliudov, A D

    1998-01-01

    Isolation of the recombinant protein from a genetically engineered Escherichia coli 1854 producer for further chemical enzymatic transformation into human insulin through proinsulin was studied. Under optimal conditions, the recombinant protein formation was more than 35% of the total cell proteins. Structures of the polypeptides obtained and purified chromatographically were confirmed by amino acid analysis. Human proinsulin was derived from the recombinant protein isolated.

  12. Explore the Human-Based Teaching for the Professional Course of Materials Science and Engineering

    ERIC Educational Resources Information Center

    Zhao, Yiping; Chen, Li; Zhang, Yufeng

    2008-01-01

    As viewed from two sides such as teacher and student, in this article, we explore the human-based teaching reform for the college professional course of materials Science and Engineering, point out the qualities and conditions that professional teacher should possess in the process of human-based teaching reform of professional course and the…

  13. Engineering human cells for in vivo secretion of antibody and non-antibody therapeutic proteins.

    PubMed

    Sánchez-Martín, David; Sanz, Laura; Álvarez-Vallina, Luis

    2011-12-01

    Purified proteins such as antibodies are widely used as therapeutic agents in clinical medicine. However, clinical-grade proteins for therapeutic use require sophisticated technologies and are extremely expensive to produce. In vivo secretion of therapeutic proteins by genetically engineered human cells may advantageously replace injection of highly purified proteins. The use of gene transfer methods circumvents problems related to large-scale production and purification and offers additional benefits by achieving sustained concentrations of therapeutic protein with a syngenic glycosylation pattern that make the protein potentially less immunogenic. The feasibility of the in vivo production of therapeutic proteins by diverse cells/tissues has now been demonstrated using different techniques, such as ex vivo genetically modified cells and in vivo gene transfer mediated by viral vectors.

  14. Using ethnographic methods to carry out human factors research in software engineering.

    PubMed

    Karn, J S; Cowling, A J

    2006-08-01

    This article describes how ethnographic methods were used to observe and analyze student teams working on software engineering (SE) projects. The aim of this research was to uncover the effects of the interplay of different personality types, as measured by a test based on the Myers-Briggs Type Indicator (MBTI), on the workings of an SE team. Using ethnographic methods allowed the researchers to record the effects of personality type on behavior toward teammates and how this related to the amount of disruption and positive ideas brought forward from each member, also examined in detail were issues that were either dogged by disruption or that did not have sufficient discussion devoted to them and the impact that they had on the outcomes of the project. Initial findings indicate that ethnographic methods are a valuable weapon to have in one's arsenal when carrying out research into human factors of SE.

  15. 40 CFR 1027.115 - What special provisions apply for certification related to nonroad and stationary engines?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... marine diesel engines to the standards that apply to land-based nonroad diesel engines under 40 CFR 94.912, the certification fee is based on the rate that applies for land-based nonroad diesel engines. ... certification related to nonroad and stationary engines? 1027.115 Section 1027.115 Protection of...

  16. 40 CFR 1027.115 - What special provisions apply for certification related to nonroad and stationary engines?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... marine diesel engines to the standards that apply to land-based nonroad diesel engines under 40 CFR 94.912, the certification fee is based on the rate that applies for land-based nonroad diesel engines... certification related to nonroad and stationary engines? 1027.115 Section 1027.115 Protection of...

  17. 40 CFR 1027.115 - What special provisions apply for certification related to nonroad and stationary engines?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... marine diesel engines to the standards that apply to land-based nonroad diesel engines under 40 CFR 94.912, the certification fee is based on the rate that applies for land-based nonroad diesel engines. ... certification related to nonroad and stationary engines? 1027.115 Section 1027.115 Protection of...

  18. 40 CFR 1027.115 - What special provisions apply for certification related to nonroad and stationary engines?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... marine diesel engines to the standards that apply to land-based nonroad diesel engines under 40 CFR 94.912, the certification fee is based on the rate that applies for land-based nonroad diesel engines. ... certification related to nonroad and stationary engines? 1027.115 Section 1027.115 Protection of...

  19. 40 CFR 1027.115 - What special provisions apply for certification related to nonroad and stationary engines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with different types of nonroad or stationary engines. (f) If your application for certification... certification fee for the different types of engines is different, the fee that applies for these engines is... certification related to nonroad and stationary engines? 1027.115 Section 1027.115 Protection of Environment...

  20. Human factors and systems engineering approach to patient safety for radiotherapy.

    PubMed

    Rivera, A Joy; Karsh, Ben-Tzion

    2008-01-01

    The traditional approach to solving patient safety problems in healthcare is to blame the last person to touch the patient. But since the publication of To Err is Human, the call has been instead to use human factors and systems engineering methods and principles to solve patient safety problems. However, an understanding of the human factors and systems engineering is lacking, and confusion remains about what it means to apply their principles. This paper provides a primer on them and their applications to patient safety.

  1. Paradoxical Double Binds in Human-Relations Training.

    ERIC Educational Resources Information Center

    Becvar, Raphael J.

    1978-01-01

    Paradoxical double binds are discussed relative to their efficacy in helping systematic human-relations trainees integrate the skills more quickly and with less pain and frustration. An explanation and examples of paradoxical double binds used in human-relations training are presented. (Author)

  2. Measuring Human-Relations Attitudes and Values with Situational Inventories.

    ERIC Educational Resources Information Center

    Furst, Edward J.

    Little use has been made of the process of problematic situations as an evaluative measure in studying human relations. This paper reports on work carried out by the author to further research and development of this measure related to human relations. An analysis is made based on three elements which are necessary for defining interest…

  3. Understanding human factors in rail engineering: re-analysis of detailed, qualitative data on functions and risks.

    PubMed

    Ryan, Brendan; Wilsona, John R; Schock, Alex

    2012-01-01

    The paper reports on the review and re-analysis of information that has been collected in earlier field studies on the functions and associated risks in rail engineering and maintenance. Two methods of Cognitive Work Analysis have been adapted and used to identify and represent important components of the rail engineering system and the situations in which activities occur. Additional classification exercises have been used to determine issues of strategic importance to the organisation, related to the functions and human factors risks in performing these functions. The effectiveness of the methods in this industrial context has been evaluated. Conclusions are drawn on how this type of approach can be used to produce relevant findings on the following: What the organisation knows about roles, functions and descriptions of tasks that are relevant for engineering and maintenance work; (2) the HF risks for today's (and unless things change), tomorrow's railway; (3) how this knowledge can help in determining organisational priorities for future work.

  4. [Tissue engineering and construction of human skin in vitro].

    PubMed

    Arvelo, Francisco

    2007-09-01

    Tissue engineering is the new science that has come to make possible the growth of new organ tissue from small fragments of healthy tissue, thus partially or totally restoring the lost functions of ill tissues or organs, as shown by the achievements made with the culture of skin, cornea or cartilage. Thus far, this new science is able to ensure the recovery of lost functions and, doubtlessly, in a near future will be capable of developing tissues and organs not unlike natural ones. In our laboratory we have began the development of tissue engineering techniques for the successful construction of in vitro skin with the aim at mid term of producing cornea and cartilage. In a first clinical trial, these techniques were applied in the treatment of chronic skin lesions and the advantages and reach of these new tools were demonstrated for the effective solution of problems with would otherwise not be easily solved through the use of conventional treatments.

  5. Using human factors engineering to improve the effectiveness of infection prevention and control.

    PubMed

    Anderson, Judith; Gosbee, Laura Lin; Bessesen, Mary; Williams, Linda

    2010-08-01

    Human factors engineering is a discipline that studies the capabilities and limitations of humans and the design of devices and systems for improved performance. The principles of human factors engineering can be applied to infection prevention and control to study the interaction between the healthcare worker and the system that he or she is working with, including the use of devices, the built environment, and the demands and complexities of patient care. Some key challenges in infection prevention, such as delayed feedback to healthcare workers, high cognitive workload, and poor ergonomic design, are explained, as is how human factors engineering can be used for improvement and increased compliance with practices to prevent hospital-acquired infections.

  6. Human-factors engineering-control-room design review: Shoreham Nuclear Power Station. Draft audit report

    SciTech Connect

    Peterson, L.R.; Preston-Smith, J.; Savage, J.W.; Rousseau, W.F.

    1981-04-24

    A human factors engineering preliminary design review of the Shoreham control room was performed at the site on March 30 through April 3, 1981. This design review was carried out by a team from the Human Factors Engineering Branch, Division of Human Factors Safety. This report was prepared on the basis of the HFEB's review of the applicant's Preliminary Design Assessment and the human factors engineering design review/audit performed at the site. The presented sections are numbered to conform to the guidelines of the draft version of NUREG-0700. They summarize the teams's observations of the control room design and layout, and of the control room operators' interface with the control room environment.

  7. Is Law a Humanity: (Or Is It More like Engineering)?

    ERIC Educational Resources Information Center

    Howarth, David

    2004-01-01

    Law often appears to be in a limbo between the Social Sciences and the Humanities. Movements within legal scholarship itself, the law and economics movement and the law and literature movement, represent efforts to portray law as a social science or as a humanity. But if one looks at what lawyers do, one finds that law is more like…

  8. Reverse Engineering Human Pathophysiology with Organs-on-Chips.

    PubMed

    Ingber, Donald E

    2016-03-10

    While studies of cultured cells have led to new insights into biological control, greater understanding of human pathophysiology requires the development of experimental systems that permit analysis of intercellular communications and tissue-tissue interactions in a more relevant organ context. Human organs-on-chips offer a potentially powerful new approach to confront this long-standing problem.

  9. NASA's Man-Systems Integration Standards: A Human Factors Engineering Standard for Everyone in the Nineties

    NASA Technical Reports Server (NTRS)

    Booher, Cletis R.; Goldsberry, Betty S.

    1994-01-01

    During the second half of the 1980s, a document was created by the National Aeronautics and Space Administration (NASA) to aid in the application of good human factors engineering and human interface practices to the design and development of hardware and systems for use in all United States manned space flight programs. This comprehensive document, known as NASA-STD-3000, the Man-Systems Integration Standards (MSIS), attempts to address, from a human factors engineering/human interface standpoint, all of the various types of equipment with which manned space flight crew members must deal. Basically, all of the human interface situations addressed in the MSIS are present in terrestrially based systems also. The premise of this paper is that, starting with this already created standard, comprehensive documents addressing human factors engineering and human interface concerns could be developed to aid in the design of almost any type of equipment or system which humans interface with in any terrestrial environment. Utilizing the systems and processes currently in place in the MSIS Development Facility at the Johnson Space Center in Houston, TX, any number of MSIS volumes addressing the human factors / human interface needs of any terrestrially based (or, for that matter, airborne) system could be created.

  10. NASA's Man-Systems Integration Standards: A Human Factors Engineering Standard for Everyone in the Nineties

    NASA Technical Reports Server (NTRS)

    Booher, Cletis R.; Goldsberry, Betty S.

    1994-01-01

    During the second half of the 1980s, a document was created by the National Aeronautics and Space Administration (NASA) to aid in the application of good human factors engineering and human interface practices to the design and development of hardware and systems for use in all United States manned space flight programs. This comprehensive document, known as NASA-STD-3000, the Man-Systems Integration Standards (MSIS), attempts to address, from a human factors engineering/human interface standpoint, all of the various types of equipment with which manned space flight crew members must deal. Basically, all of the human interface situations addressed in the MSIS are present in terrestrially based systems also. The premise of this paper is that, starting with this already created standard, comprehensive documents addressing human factors engineering and human interface concerns could be developed to aid in the design of almost any type of equipment or system which humans interface with in any terrestrial environment. Utilizing the systems and processes currently in place in the MSIS Development Facility at the Johnson Space Center in Houston, TX, any number of MSIS volumes addressing the human factors / human interface needs of any terrestrially based (or, for that matter, airborne) system could be created.

  11. Design, Development, Testing, and Evaluation: Human Factors Engineering

    NASA Technical Reports Server (NTRS)

    Adelstein, Bernard; Hobbs, Alan; OHara, John; Null, Cynthia

    2006-01-01

    While human-system interaction occurs in all phases of system development and operation, this chapter on Human Factors in the DDT&E for Reliable Spacecraft Systems is restricted to the elements that involve "direct contact" with spacecraft systems. Such interactions will encompass all phases of human activity during the design, fabrication, testing, operation, and maintenance phases of the spacecraft lifespan. This section will therefore consider practices that would accommodate and promote effective, safe, reliable, and robust human interaction with spacecraft systems. By restricting this chapter to what the team terms "direct contact" with the spacecraft, "remote" factors not directly involved in the development and operation of the vehicle, such as management and organizational issues, have been purposely excluded. However, the design of vehicle elements that enable and promote ground control activities such as monitoring, feedback, correction and reversal (override) of on-board human and automation process are considered as per NPR8705.2A, Section 3.3.

  12. Cartilage graft engineering by co-culturing primary human articular chondrocytes with human bone marrow stromal cells.

    PubMed

    Sabatino, Maria Antonietta; Santoro, Rosaria; Gueven, Sinan; Jaquiery, Claude; Wendt, David James; Martin, Ivan; Moretti, Matteo; Barbero, Andrea

    2015-12-01

    Co-culture of mesenchymal stromal cells (MSCs) with articular chondrocytes (ACs) has been reported to improve the efficiency of utilization of a small number of ACs for the engineering of implantable cartilaginous tissues. However, the use of cells of animal origin and the generation of small-scale micromass tissues limit the clinical relevance of previous studies. Here we investigated the in vitro and in vivo chondrogenic capacities of scaffold-based constructs generated by combining primary human ACs with human bone marrow MSCs (BM-MSCs). The two cell types were cultured in collagen sponges (2 × 6 mm disks) at the BM-MSCs:ACs ratios: 100:0, 95:5, 75:25 and 0:100 for 3 weeks. Scaffolds freshly seeded or further precultured in vitro for 2 weeks were also implanted subcutaneously in nude mice and harvested after 8 or 6 weeks, respectively. Static co-culture of ACs (25%) with BM-MSCs (75%) in scaffolds resulted in up to 1.4-fold higher glycosaminoglycan (GAG) content than what would be expected based on the relative percentages of the different cell types. In vivo GAG induction was drastically enhanced by the in vitro preculture and maximal at the ratio 95:5 (3.8-fold higher). Immunostaining analyses revealed enhanced accumulation of type II collagen and reduced accumulation of type X collagen with increasing ACs percentage. Constructs generated in the perfusion bioreactor system were homogeneously cellularized. In summary, human cartilage grafts were successfully generated, culturing BM-MSCs with a relatively low fraction of non-expanded ACs in porous scaffolds. The proposed co-culture strategy is directly relevant towards a single-stage surgical procedure for cartilage repair. Copyright © 2012 John Wiley & Sons, Ltd.

  13. [Human machines--mechanical humans? The industrial arrangement of the relation between human being and machine on the basis of psychotechnik and Georg Schlesingers work with disabled soldiers].

    PubMed

    Patzel-Mattern, Katja

    2005-01-01

    The 20th Century is the century of of technical artefacts. With their existance and use they create an artificial reality, within which humans have to position themselves. Psychotechnik is an attempt to enable humans for this positioning. It gained importance in Germany after World War I and had its heyday between 1919 and 1926. On the basis of the activity of the engineer and supporter of Psychotechnik Georg Schlesinger, whose particular interest were disabled soldiers, the essay on hand will investigate the understanding of the body and the human being of Psychotechnik as an applied science. It turned out, that the biggest achievement of Psychotechnik was to establish a new view of the relation between human being and machine. Thus it helped to show that the human-machine-interface is a shapable unit. Psychotechnik sees the human body and its physique as the last instance for the design of machines. Its main concern is to optimize the relation between human being and machine rather than to standardize human beings according to the construction of machines. After her splendid rise during the Weimar Republic and her rapid decline since the late 1920s Psychotechnik nowadays gains scientifical attention as a historical phenomenon. The main attention in the current discourse lies on the aspects conserning philosophy of science: the unity of body and soul, the understanding of the human-machine-interface as a shapable unit and the human being as a last instance of this unit.

  14. Intuitive engineering, human factors, and the design of future interfaces (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Sampson, James B.

    2005-05-01

    Human factors engineering (HFE) professionals complain that they are often called in after-the-fact to help correct human interface problems. They believe many design flaws can be avoided if design teams involve them early on. However, in the case of innovative technology, such post hoc human factors may not be avoidable unless the inventor is also a human factors engineer or the prospective user. In rare cases an inventor of a new technology has an intuitive understanding of human engineering principles and knows well the capabilities and limitations of operators. This paper outlines the importance of focusing on the user-system interface and encouraging engineers to develop their own intuitive sense of users through mental imagery. If design engineers start with a clear mental picture of a specific user and task rather than generalities of use, fewer interface problems are likely to be encountered later in development. Successful technology innovators often use a visual thinking approach in the development of new concepts. Examples are presented to illustrate the successful application of intuitive design. An approach is offered on how designers can improve their non-verbal thinking skills. The author shares the view that the mission of HFE should not be to make system developers dependent on the small community of HF experts but rather to help them learn the value of applying user-centered design techniques.

  15. Estimation of the combustion-related noise transfer matrix of a multi-cylinder diesel engine

    NASA Astrophysics Data System (ADS)

    Lee, Moohyung; Bolton, J. Stuart; Suh, Sanghoon

    2009-01-01

    In the present paper, a procedure for estimating an engine-platform-dependent transfer matrix that relates in-cylinder pressures to radiated noise resulting from processes associated with the combustion process is described. A knowledge of that transfer matrix allows the combustion-related component of the noise radiated by a diesel engine to be estimated from a knowledge of cylinder pressure signals. The procedure makes use of multi-input/multi-output (MIMO) system modeling concepts in conjunction with cross-spectral measurements. To date, the empirical prediction of diesel engine combustion noise has usually been achieved by combining a cylinder pressure with a single, smooth structural attenuation function (e.g., the Lucas combustion noise meter) regardless of the specifications of the engine. In comparison, the procedure described in the present work provides the structural attenuation characteristics of a particular engine in the form of a transfer matrix, thus allowing accurate prediction by accounting fully for inter-cylinder correlation, cylinder-to-cylinder variation and the detailed characteristics of an engine structure. The procedure was applied to a six-cylinder diesel engine, and the various aspects of the new procedure are described.

  16. Structure-function relations of human hemoglobins

    PubMed Central

    2006-01-01

    In 1949 Pauling and his associates showed that sickle cell hemoglobin (HbS) belonged to an abnormal molecular species. In 1958 Ingram, who used a two-dimensional system of electrophoresis and chromatography to break down the hemoglobin molecule into a mixture of smaller peptides, defined the molecular defect in HbS by showing that it differed from normal adult hemoglobin by only a single peptide. Since then, more than 200 variant and abnormal hemoglobins have been described. Furthermore, the construction of an atomic model of the hemoglobin molecule based on a high-resolution x-ray analysis by Dr. Max Perutz at Cambridge has permitted the study of the stereochemical part played by the amino acid residues, which were replaced, deleted, or added to in each of the hemoglobin variants. Some of the variants have been associated with clinical conditions. The demonstration of a molecular basis for a disease was a significant turning point in medicine. A new engineered hemoglobin derived from crocodile blood, with markedly reduced oxygen affinity and increased oxygen delivery to the tissues, points the way for future advances in medicine. PMID:17252042

  17. Relation of Hydrogen and Methane to Carbon Monoxide in Exhaust Gases from Internal-Combustion Engines

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C; Tessmann, Arthur M

    1935-01-01

    The relation of hydrogen and methane to carbon monoxide in the exhaust gases from internal-combustion engines operating on standard-grade aviation gasoline, fighting-grade aviation gasoline, hydrogenated safety fuel, laboratory diesel fuel, and auto diesel fuel was determined by analysis of the exhaust gases. Two liquid-cooled single-cylinder spark-ignition, one 9-cylinder radial air-cooled spark-ignition, and two liquid-cooled single-cylinder compression-ignition engines were used.

  18. Unsolved issues related to human mitochondrial diseases.

    PubMed

    Lombès, Anne; Auré, Karine; Bellanné-Chantelot, Christine; Gilleron, Mylène; Jardel, Claude

    2014-05-01

    Human mitochondrial diseases, defined as the diseases due to a mitochondrial oxidative phosphorylation defect, represent a large group of very diverse diseases with respect to phenotype and genetic causes. They present with many unsolved issues, the comprehensive analysis of which is beyond the scope of this review. We here essentially focus on the mechanisms underlying the diversity of targeted tissues, which is an important component of the large panel of these diseases phenotypic expression. The reproducibility of genotype/phenotype expression, the presence of modifying factors, and the potential causes for the restricted pattern of tissular expression are reviewed. Special emphasis is made on heteroplasmy, a specific feature of mitochondrial diseases, defined as the coexistence within the cell of mutant and wild type mitochondrial DNA molecules. Its existence permits unequal segregation during mitoses of the mitochondrial DNA populations and consequently heterogeneous tissue distribution of the mutation load. The observed tissue distributions of recurrent human mitochondrial DNA deleterious mutations are diverse but reproducible for a given mutation demonstrating that the segregation is not a random process. Its extent and mechanisms remain essentially unknown despite recent advances obtained in animal models.

  19. Human milk and related oligosaccharides as prebiotics.

    PubMed

    Barile, Daniela; Rastall, Robert A

    2013-04-01

    Human milk oligosaccharides (HMO) are believed to have a range of biological activities beyond providing nutrition to the infant. Principal among these is that they may act as prebiotics. Prebiotics are dietary ingredients, usually oligosaccharides that provide a health benefit to the host mediated by the modulation of the human gut microbiota. While it is clear that such oligosaccharides may have potential applications in infants and adults alike, this potential is limited by the difficulties in manufacturing HMO. Consequently functional alternatives such as galacto-oligosaccharides (GOS) are under investigation. GOS are produced enzymatically from lactose for commercial use in food applications--including addition to infant formulae--as similar to breast milk oligosaccharides, they encourage a gut bacteria population that promotes health and reduces the incidence of intestinal infections. New methods for separation and concentration of complex, breast milk-like oligosaccharides from bovine milk industrial streams that contain only low amounts of these valuable oligosaccharides are providing the opportunity to investigate other viable sources of specific oligosaccharides for use as prebiotics in supplements or food products.

  20. Chromosome 1 in relation to human disease.

    PubMed Central

    Povey, S; Parrington, J M

    1986-01-01

    Chromosome 1 is thought to represent about 6% of the total human genome and the 85 loci so far identified may constitute about 1% of the genes present on this chromosome. The existence of at least 22 loci sufficiently polymorphic in Europeans to be useful as genetic markers has allowed the construction of an elementary genetic map. This permits comparisons with physical and chiasma maps and has demonstrated striking homologies between different regions of chromosome 1 and mouse chromosomes 1, 3, and 4. The existence of a map should be of great help in developing a more systematic approach to further mapping studies. A wide range of disease can be attributed to allelic variation on chromosome 1 and the homologies with the mouse may be useful in predicting the position of other genes involved in human disease. Rearrangements of this chromosome are a common finding in many different types of malignancy. Loss of material from the short arm and activation of one or more of the four oncogenes in this region may play an important role in the later stages of tumour development. Polymorphic markers of all kinds will be useful in the future for investigating the somatic events which have occurred during the malignant process. PMID:3519970

  1. Design Principles for Engineering of Tissues from Human Pluripotent Stem Cells

    PubMed Central

    Matthys, Oriane B.; Hookway, Tracy A.; McDevitt, Todd C.

    2016-01-01

    Recent advances in human pluripotent stem cell (hPSC) technologies have enabled the engineering of human tissue constructs for developmental studies, disease modeling, and drug screening platforms. In vitro tissue formation can be generally described at three levels of cellular organization. Multicellular hPSC constructs are initially formed either with polymeric scaffold materials or simply via self-assembly, adhesive mechanisms. Heterotypic interactions within hPSC tissue constructs can be achieved by physically mixing independently differentiated cell populations or coaxed to simultaneously co-emerge from a common population of undifferentiated cells. Higher order tissue architecture can be engineered by imposing external spatial constraints, such as molds and scaffolds, or depend upon cell-driven organization that exploits endogenous innate developmental mechanisms. The multicellular, heterogeneous, and highly organized structure of hPSC constructs ultimately dictates the resulting form and function of in vitro engineered human tissue models. PMID:27330934

  2. Complex human disorders and molecular system engineering: historical perspective and potential impacts.

    PubMed

    Emamian, Effat S; Abdi, Ali

    2009-01-01

    The challenging nature of complex human disorders has taught us that we can not untangle a disorder unless we understand how the "engine" of molecular systems works. After learning the basic physiology of different organs in the human body, a "molecular revolution" occurred, which has now generated a huge amount of information regarding the function of individual molecules in human cells. The difficult task, however, is to understand how thousands of molecules communicate and work together to deliver a specific function, and more importantly, what goes wrong when the system fails and causes different diseases. The emerging field of systems biology is now opening the door for engineers, to join molecular biologists and enter the era of molecular biomedical engineering.

  3. A Human Relations Approach to the Practice of Educational Leadership.

    ERIC Educational Resources Information Center

    Rebore, Ronald W.

    This book centers on the human-relation skills and knowledge that educational leaders need to lead public schools effectively. The purpose of the book is to help administrators and those studying to become administrators enhance their human-relations skills. The content and method of this book are centered on the first four of the six Interstate…

  4. A Human Relations Model for a Desegregated Group.

    ERIC Educational Resources Information Center

    Johnson, Nathan E.; Bash, James H.

    The human relation model discussed in this booklet serves the dual purpose of facilitating the development of equal human relations and the myriad aspects associated with desegregation. This is not considered a scientific report, but a guide to group discussion. Although the model presented is based on the most advanced findings from interaction…

  5. A Human Relations Approach to the Practice of Educational Leadership.

    ERIC Educational Resources Information Center

    Rebore, Ronald W.

    This book centers on the human-relation skills and knowledge that educational leaders need to lead public schools effectively. The purpose of the book is to help administrators and those studying to become administrators enhance their human-relations skills. The content and method of this book are centered on the first four of the six Interstate…

  6. Teacher Leader Human Relations Skills: A Comparative Study

    ERIC Educational Resources Information Center

    Roby, Douglas E.

    2012-01-01

    In this study, 142 graduate school teachers working in schools throughout southwestern Ohio assessed their human relation skills. A human relations survey was used for the study, and results were compared with colleagues assessing the teachers in the study. The survey was developed using a Likert-type scale, and was based on key elements affecting…

  7. Human Relations Education; A Guidebook to Learning Activities.

    ERIC Educational Resources Information Center

    Buffalo Public Schools, NY. Human Relations Project of Western New York.

    This guidebook is designed to acquaint teachers with human relations classroom materials, extracurricular activities, and an inservice approach to self-evaluation. A product of an ESEA Title III program, it contains human relations-oriented lessons--divided by grade level and subject matter--intended to supplement or enrich existing curricula and…

  8. Teacher Leader Human Relations Skills: A Comparative Study

    ERIC Educational Resources Information Center

    Roby, Douglas E.

    2012-01-01

    In this study, 142 graduate school teachers working in schools throughout southwestern Ohio assessed their human relation skills. A human relations survey was used for the study, and results were compared with colleagues assessing the teachers in the study. The survey was developed using a Likert-type scale, and was based on key elements affecting…

  9. Small Engine and Related Equipment Repair Curriculum Guide. Michigan Trade and Industrial Education.

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Coll. of Agriculture and Natural Resources Education Inst.

    This task-based curriculum guide for small engine and related equipment repair is intended to help the teacher develop a classroom management system where students learn by doing. Introductory materials include a Dictionary of Occupational Titles job code and title sheet, a career ladder, a matrix relating duty/task numbers to job titles, and a…

  10. Small Engine and Related Equipment Repair Curriculum Guide. Michigan Trade and Industrial Education.

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Coll. of Agriculture and Natural Resources Education Inst.

    This task-based curriculum guide for small engine and related equipment repair is intended to help the teacher develop a classroom management system where students learn by doing. Introductory materials include a Dictionary of Occupational Titles job code and title sheet, a career ladder, a matrix relating duty/task numbers to job titles, and a…

  11. Effects of mechanical loading on human mesenchymal stem cells for cartilage tissue engineering.

    PubMed

    Choi, Jane Ru; Yong, Kar Wey; Choi, Jean Yu

    2017-05-19

    Today, articular cartilage damage is a major health problem, affecting people of all ages. The existing conventional articular cartilage repair techniques, such as autologous chondrocyte implantation (ACI), microfracture, and mosaicplasty, have many shortcomings which negatively affect their clinical outcomes. Therefore, it is essential to develop an alternative and efficient articular repair technique that can address those shortcomings. Cartilage tissue engineering, which aims to create a tissue-engineered cartilage derived from human mesenchymal stem cells (MSCs), shows great promise for improving articular cartilage defect therapy. However, the use of tissue-engineered cartilage for the clinical therapy of articular cartilage defect still remains challenging. Despite the importance of mechanical loading to create a functional cartilage has been well demonstrated, the specific type of mechanical loading and its optimal loading regime is still under investigation. This review summarizes the most recent advances in the effects of mechanical loading on human MSCs. First, the existing conventional articular repair techniques and their shortcomings are highlighted. The important parameters for the evaluation of the tissue-engineered cartilage, including chondrogenic and hypertrophic differentiation of human MSCs are briefly discussed. The influence of mechanical loading on human MSCs is subsequently reviewed and the possible mechanotransduction signaling is highlighted. The development of non-hypertrophic chondrogenesis in response to the changing mechanical microenvironment will aid in the establishment of a tissue-engineered cartilage for efficient articular cartilage repair. © 2017 Wiley Periodicals, Inc.

  12. Enhancing the Human Factors Engineering Role in an Austere Fiscal Environment

    NASA Technical Reports Server (NTRS)

    Stokes, Jack W.

    2003-01-01

    An austere fiscal environment in the aerospace community creates pressures to reduce program costs, often minimizing or sometimes even deleting the human interface requirements from the design process. With an assumption that the flight crew can recover real time from a poorly human factored space vehicle design, the classical crew interface requirements have been either not included in the design or not properly funded, though carried as requirements. Cost cuts have also affected quality of retained human factors engineering personnel. In response to this concern, planning is ongoing to correct the acting issues. Herein are techniques for ensuring that human interface requirements are integrated into a flight design, from proposal through verification and launch activation. This includes human factors requirements refinement and consolidation across flight programs; keyword phrases in the proposals; closer ties with systems engineering and other classical disciplines; early planning for crew-interface verification; and an Agency integrated human factors verification program, under the One NASA theme. Importance is given to communication within the aerospace human factors discipline, and utilizing the strengths of all government, industry, and academic human factors organizations in an unified research and engineering approach. A list of recommendations and concerns are provided in closing.

  13. Human Factors Vehicle Displacement Analysis: Engineering In Motion

    NASA Technical Reports Server (NTRS)

    Atencio, Laura Ashley; Reynolds, David; Robertson, Clay

    2010-01-01

    While positioned on the launch pad at the Kennedy Space Center, tall stacked launch vehicles are exposed to the natural environment. Varying directional winds and vortex shedding causes the vehicle to sway in an oscillating motion. The Human Factors team recognizes that vehicle sway may hinder ground crew operation, impact the ground system designs, and ultimately affect launch availability . The objective of this study is to physically simulate predicted oscillation envelopes identified by analysis. and conduct a Human Factors Analysis to assess the ability to carry out essential Upper Stage (US) ground operator tasks based on predicted vehicle motion.

  14. Engineering human tumour-associated chromosomal translocations with the RNA-guided CRISPR-Cas9 system.

    PubMed

    Torres, R; Martin, M C; Garcia, A; Cigudosa, Juan C; Ramirez, J C; Rodriguez-Perales, S

    2014-06-03

    Cancer-related human chromosomal translocations are generated through the illegitimate joining of two non-homologous chromosomes affected by double-strand breaks (DSB). Effective methodologies to reproduce precise reciprocal tumour-associated chromosomal translocations are required to gain insight into the initiation of leukaemia and sarcomas. Here we present a strategy for generating cancer-related human chromosomal translocations in vitro based on the ability of the RNA-guided CRISPR-Cas9 system to induce DSBs at defined positions. Using this approach we generate human cell lines and primary cells bearing chromosomal translocations resembling those described in acute myeloid leukaemia and Ewing's sarcoma at high frequencies. FISH and molecular analysis at the mRNA and protein levels of the fusion genes involved in these engineered cells reveal the reliability and accuracy of the CRISPR-Cas9 approach, providing a powerful tool for cancer studies.

  15. Design for risk control: the role of usability engineering in the management of use-related risks.

    PubMed

    van der Peijl, Jorien; Klein, Jan; Grass, Christian; Freudenthal, Adinda

    2012-08-01

    The majority of medical device incident reports can primarily be attributed to use error. Greater attention to human factors and usability during development of a medical device could improve this situation. However, recent studies have shown that companies do not find the application of a sound usability engineering process according to international standards a simple task. The purpose of this collaborative research project between a medical device company, two universities and a university hospital was to study the practical application of the International Standard for Application of Usability Engineering to Medical Devices, IEC 62366, by means of a case study in industrial practice. This paper describes the user studies in the case and reveals the factors important to success. Also, the paper demonstrates how to apply an iterative usability engineering process within a linear product development process in industry. Management support and careful planning of resources and activities proved essential. To control use-related risks, the usability engineer should 'design for risk control' in a structured manner, while the risk manager should remain responsible for acceptable levels of residual risk. The paper concludes with recommendations for the improvement of IEC 62366 and ISO 14971, the standard for the risk management of medical devices.

  16. Liquid crystal engineering--new complex mesophase structures and their relations to polymer morphologies, nanoscale patterning and crystal engineering.

    PubMed

    Tschierske, Carsten

    2007-12-01

    This critical review focuses on recent progress in the field of T-shaped ternary amphiphiles. These molecules can self-assemble into a series of new liquid crystalline (LC) phases with polygonal cylinder structures, new lamellar phases and LC phases combining columns and layers. These structures are analyzed on the basis of symmetry, net topology and tiling pattern (Laves and Archimedean tilings) and discussed in relation to morphologies of multiblock copolymers, self organized DNA super-lattices, metal-organic frameworks, crystal-engineering and self-assembled periodic superstructures on surfaces (210 references).

  17. Survey Result of the Engineering Undergraduate Student's “Human Performance”

    NASA Astrophysics Data System (ADS)

    Nakayama, Minoru; Takahashi, Hideaki; Kusakabe, Osamu; Ohtaguchi, Kazuhisa; Mizutani, Nobuyasu

    Development of engineer's “Human Performance” is being required to respond to various changes. “Human Performace” is defined as an ability of putting own knowledge and skill to a practical issue. Current engineering undergraduate education promotes to learn this ability. To examine effectiveness of the educational program, a questionnaire consisting of 66 items was developed and the survey was conducted across eight universities. As results, most students recognize importance of the ability, but their achievement is lower for English communication skill and adaptation of cultural difference. They learned the ability on laboratory experience for their thesis, experiment class, club activities, part-time jobs and other activities.

  18. Helmet-mounted display human factor engineering design issues: past, present, and future

    NASA Astrophysics Data System (ADS)

    Licina, Joseph R.; Rash, Clarence E.; Mora, John C.; Ledford, Melissa H.

    1999-07-01

    An often overlooked area of helmet-mounted display (HMD) design is that of good human factors engineering. Systems which pass bench testing with flying colors can often find less enthusiastic acceptance during fielding when good human factors engineering principles are not adhered to throughout the design process. This paper addresses lessons learned on the fielding of the AH-64 Apache Integrated Helmet and Display Sight System (IHADSS) and the Aviator's Night Vision Imaging System (ANVIS). These lessons are used to develop guidance for future HMDs in such diverse areas as: user adjustments, anthropometry, fit and comfort, manpower and personnel requirements, and equipment compatibility.

  19. A Virtual Campus Based on Human Factor Engineering

    ERIC Educational Resources Information Center

    Yang, Yuting; Kang, Houliang

    2014-01-01

    Three Dimensional or 3D virtual reality has become increasingly popular in many areas, especially in building a digital campus. This paper introduces a virtual campus, which is based on a 3D model of The Tourism and Culture College of Yunnan University (TCYU). Production of the virtual campus was aided by Human Factor and Ergonomics (HF&E), an…

  20. Grand challenge commentary: Synthetic immunology to engineer human immunity.

    PubMed

    Spiegel, David A

    2010-12-01

    Rationally designing new strategies to control the human immune response stands as a key challenge for the scientific community. Chemical biologists have the opportunity to address specific issues in this area that have important implications for both basic science and clinical medicine.

  1. A Virtual Campus Based on Human Factor Engineering

    ERIC Educational Resources Information Center

    Yang, Yuting; Kang, Houliang

    2014-01-01

    Three Dimensional or 3D virtual reality has become increasingly popular in many areas, especially in building a digital campus. This paper introduces a virtual campus, which is based on a 3D model of The Tourism and Culture College of Yunnan University (TCYU). Production of the virtual campus was aided by Human Factor and Ergonomics (HF&E), an…

  2. Relative sound localisation abilities in human listeners

    PubMed Central

    Wood, Katherine C.; Bizley, Jennifer K.

    2015-01-01

    Spatial acuity varies with sound-source azimuth, signal-to-noise ratio, and the spectral characteristics of the sound source. Here, the spatial localisation abilities of listeners were assessed using a relative localisation task. This task tested localisation ability at fixed angular separations throughout space using a two-alternative forced-choice design across a variety of listening conditions. Subjects were required to determine whether a target sound originated to the left or right of a preceding reference in the presence of a multi-source noise background. Experiment 1 demonstrated that subjects' ability to determine the relative location of two sources declined with less favourable signal-to-noise ratios and at peripheral locations. Experiment 2 assessed performance with both broadband and spectrally restricted stimuli designed to limit localisation cues to predominantly interaural level differences or interaural timing differences (ITDs). Predictions generated from topographic, modified topographic, and two-channel models of sound localisation suggest that for low-pass stimuli, where ITD cues were dominant, the two-channel model provides an adequate description of the experimental data, whereas for broadband and high frequency bandpass stimuli none of the models was able to fully account for performance. Experiment 3 demonstrated that relative localisation performance was uninfluenced by shifts in gaze direction. PMID:26328685

  3. Relative sound localisation abilities in human listeners.

    PubMed

    Wood, Katherine C; Bizley, Jennifer K

    2015-08-01

    Spatial acuity varies with sound-source azimuth, signal-to-noise ratio, and the spectral characteristics of the sound source. Here, the spatial localisation abilities of listeners were assessed using a relative localisation task. This task tested localisation ability at fixed angular separations throughout space using a two-alternative forced-choice design across a variety of listening conditions. Subjects were required to determine whether a target sound originated to the left or right of a preceding reference in the presence of a multi-source noise background. Experiment 1 demonstrated that subjects' ability to determine the relative location of two sources declined with less favourable signal-to-noise ratios and at peripheral locations. Experiment 2 assessed performance with both broadband and spectrally restricted stimuli designed to limit localisation cues to predominantly interaural level differences or interaural timing differences (ITDs). Predictions generated from topographic, modified topographic, and two-channel models of sound localisation suggest that for low-pass stimuli, where ITD cues were dominant, the two-channel model provides an adequate description of the experimental data, whereas for broadband and high frequency bandpass stimuli none of the models was able to fully account for performance. Experiment 3 demonstrated that relative localisation performance was uninfluenced by shifts in gaze direction.

  4. Human biomonitoring issues related to lead exposure.

    PubMed

    Nieboer, Evert; Tsuji, Leonard J S; Martin, Ian D; Liberda, Eric N

    2013-10-01

    Lead as a toxic environmental metal has been an issue of concern for 30-40 years. Even though the exposures experienced by the general public have been significantly reduced, so have the acceptable blood lead concentrations assessed to safeguard health (specifically of children). The impact of these concurrent changes are reviewed and discussed in terms of the following: blood lead as the primary biomarker of exposure; pertinent toxicokinetic issues including modelling; legacy and newer sources of this toxic metal; improvements in lead quantification techniques and its characterization (chemical forms) in exposure media; and in vivo markers of lead sources. It is concluded that the progress in the quantification of lead and its characterization in exposure media have supported the efforts to identify statistical associations of lead in blood and tissues with adverse health outcomes, and have guided strategies to reduce human exposure (especially for children). To clarify the role of lead as a causative factor in disease, greater research efforts in biomarkers of effect and susceptibility seem timely.

  5. Human papillomavirus related diseases in Malaysians.

    PubMed

    Cheah, P L

    1994-06-01

    The surge of information on the aetiological association of the human papillomavirus (HPV) with some epithelial tumours emanating from various centres has prompted the initiation of a large-scale retrospective study at the Department of Pathology, University Hospital Kuala Lumpur to determine the prevalence and importance of this virus in some epithelial tumours of Malaysian patients. A retrospective analysis of 100 cases of large cell non-keratinising carcinoma of the uterine cervix by in-situ hybridisation on archival formalin-fixed, paraffin-embedded tissue has revealed the presence of HPV type 16 in 47% and type 18 in 41% of cases. This gives an overall detection rate of 88% of the two HPV types most commonly encountered in cervical carcinomas. Except for the unusually high frequency of HPV 18 detected in the cases, the overall prevalence is comparable to that reported in studies from most other centres. Although this higher frequency of HPV 18 may be due to geographical variation, the selection of the large cell non-keratinising type of squamous cell cervical carcinoma for study remains a possible reason for this phenomenon. In comparison to cervical carcinomas, HPV appears to be uncommon in penile carcinomas and HPV 6 was detected in only 1 of 23 cases studied.

  6. Biomarkers related to aging in human populations.

    PubMed

    Crimmins, Eileen; Vasunilashorn, Sarinnapha; Kim, Jung Ki; Alley, Dawn

    2008-01-01

    Biomarkers are increasingly employed in empirical studies of human populations to understand physiological processes that change with age, diseases whose onset appears linked to age, and the aging process itself. In this chapter, we describe some of the most commonly used biomarkers in population aging research, including their collection, associations with other markers, and relationships to health outcomes. We discuss biomarkers of the cardiovascular system, metabolic processes, inflammation, activity in the hypothalamic-pituitary axis (HPA) and sympathetic nervous system (SNS), and organ functioning (including kidney, lung, and heart). In addition, we note that markers of functioning of the central nervous system and genetic markers are now becoming part of population measurement. Where possible, we detail interrelationships between these markers by providing correlations between high risk levels of each marker from three population-based surveys: the National Health and Nutrition Examination Survey (NHANES) III, NHANES 1999-2002, and the MacArthur Study of Successful Aging. NHANES III is used instead of NHANES 1999-2002 when specific markers of interest are available only in NHANES III and when we examine the relationship of biomarkers to mortality which is only known for NHANES III. We also describe summary measures combining biomarkers across systems. Finally, we examine associations between individual markers and mortality and provide information about biomarkers of growing interest for future research in population aging and health.

  7. [Ethics and laws related to human subject research].

    PubMed

    Chiu, Hui-Ju; Lee, Ya-Ling; Chang, Su-Fen

    2011-10-01

    Advances in medical technology rely on human subject research to test the effects on real patients of unproven new drugs, equipment and techniques. Illegal human subject research happens occasionally and has led to subject injury and medical disputes. Familiarity with the laws and established ethics related to human subject research can minimize both injury and disputes. History is a mirror that permits reflection today on past experience. Discussing the Nuremberg Code, the Declaration of Helsinki and Belmont Report, this article describes the laws, ethics, history and news related to human subject research as well as the current definition and characteristics of human subject research. Increasing numbers of nurses serve as research nurses and participate in human subject research. The authors hope this article can increase research nurse knowledge regarding laws and ethics in order to protect human research subjects adequately.

  8. Human engineered heart tissue as a model system for drug testing.

    PubMed

    Eder, Alexandra; Vollert, Ingra; Hansen, Arne; Eschenhagen, Thomas

    2016-01-15

    Drug development is time- and cost-intensive and, despite extensive efforts, still hampered by the limited value of current preclinical test systems to predict side effects, including proarrhythmic and cardiotoxic effects in clinical practice. Part of the problem may be related to species-dependent differences in cardiomyocyte biology. Therefore, the event of readily available human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CM) has raised hopes that this human test bed could improve preclinical safety pharmacology as well as drug discovery approaches. However, hiPSC-CM are immature and exhibit peculiarities in terms of ion channel function, gene expression, structural organization and functional responses to drugs that limit their present usefulness. Current efforts are thus directed towards improving hiPSC-CM maturity and high-content readouts. Culturing hiPSC-CM as 3-dimensional engineered heart tissue (EHT) improves CM maturity and anisotropy and, in a 24-well format using silicone racks, enables automated, multiplexed high content readout of contractile function. This review summarizes the principal technology and focuses on advantages and disadvantages of this technology and its potential for preclinical drug screening.

  9. Engineering Data Compendium. Human Perception and Performance. Volume 3

    DTIC Science & Technology

    1988-01-01

    Human Language Processing Thomas H. Carr Michigan State University Daryle Jean Gardner Kearney State College, NE Phyllis Kossak St. Vincent’s...including the binders, volume size, internal organization, composition and type design, is based on field test results and agency guidance...Compendium. This included the complete design of the document (artwork de- sign, type style and layout of text, binder design), type composition

  10. NATO Guidelines on Human Engineering Testing and Evaluation

    DTIC Science & Technology

    2001-05-01

    controls to reduce manual control overload. Presented at the American Helicopter Society National Specialists’ Meeting-Automation Applications in...Hollnagel (Eds.), Eighth European Annual Conference on Human Decision Making and Manual Control (pp. 64-75). Lingby: Technical University of Denmark...about the methods. References Dyer, R.F., Matthews, J.J., Wright, C.E., and Yudowitch, K.L. (1976). Questionnaire construction manual . U. S. Army

  11. Rolling the Human Amnion to Engineer Laminated Vascular Tissues

    PubMed Central

    Amensag, Salma

    2012-01-01

    The prevalence of cardiovascular disease and the limited availability of suitable autologous transplant vessels for coronary and peripheral bypass surgeries is a significant clinical problem. A great deal of progress has been made over recent years to develop biodegradable materials with the potential to remodel and regenerate vascular tissues. However, the creation of functional biological scaffolds capable of withstanding vascular stress within a clinically relevant time frame has proved to be a challenging proposition. As an alternative approach, we report the use of a multilaminate rolling approach using the human amnion to generate a tubular construct for blood vessel regeneration. The human amniotic membrane was decellularized by agitation in 0.03% (w/v) sodium dodecyl sulfate to generate an immune compliant material. The adhesion of human umbilical vein endothelial cells (EC) and human vascular smooth muscle cells (SMC) was assessed to determine initial binding and biocompatibility (monocultures). Extended cultures were either assessed as flat membranes, or rolled to form concentric multilayered conduits. Results showed positive EC adhesion and a progressive repopulation by SMC. Functional changes in SMC gene expression and the constructs' bulk mechanical properties were concomitant with vessel remodeling as assessed over a 40-day culture period. A significant advantage with this approach is the ability to rapidly produce a cell-dense construct with an extracellular matrix similar in architecture and composition to natural vessels. The capacity to control physical parameters such as vessel diameter, wall thickness, shape, and length are critical to match vessel compliance and tailor vessel specifications to distinct anatomical locations. As such, this approach opens new avenues in a range of tissue regenerative applications that may have a much wider clinical impact. PMID:22616610

  12. Volume Expansion of Tissue Engineered Human Nasal Septal Cartilage

    PubMed Central

    Reuther, Marsha S; Briggs, Kristen K; Neuman, Monica K; Masuda, Koichi; Sah, Robert L; Watson, Deborah

    2014-01-01

    Importance Cartilaginous craniofacial defects range in size and autologous cartilaginous tissue is preferred for repair of these defects. Therefore, it is important to have the ability to produce large size cartilaginous constructs for repair of cartilaginous abnormalities. Objectives To produce autologous human septal neocartilage constructs substantially larger in size than previously produced constructs To demonstrate that volume expanded neocartilage constructs possess comparable histological and biochemical properties to standard size constructs To show that volume expanded neocartilage constructs retain similar biomechanical properties to standard size constructs Design Prospective, basic science Setting Laboratory Participants The study used remnant human septal specimens removed during routine surgery at the University of California, San Diego Medical Center or San Diego Veterans Affairs Medical Center. Cartilage from a total of 8 donors was collected. Main Outcomes Measured Human septal chondrocytes from 8 donors were used to create 12mm and 24mm neocartilage constructs. These were cultured for a total of 10 weeks. Photo documentation, histological, biochemical, and biomechanical properties were measured and compared. Results The 24mm diameter constructs were qualitatively similar to the 12mm constructs. They possessed adequate strength and durability to be manually manipulated. Histological analysis of the constructs demonstrated similar staining patterns in standard and volume expanded constructs. Proliferation, as measured by DNA content, was similar in 24mm and 12mm constructs. Additionally, glycosaminoglycan (GAG) and total collagen content did not significantly differ between the two construct sizes. Biomechanical analysis of the 24mm and 12mm constructs demonstrated comparable compressive and tensile properties. Conclusion and Relevance Volume expanded human septal neocartilage constructs are qualitatively and histologically similar to standard 12mm

  13. Rolling the human amnion to engineer laminated vascular tissues.

    PubMed

    Amensag, Salma; McFetridge, Peter S

    2012-11-01

    The prevalence of cardiovascular disease and the limited availability of suitable autologous transplant vessels for coronary and peripheral bypass surgeries is a significant clinical problem. A great deal of progress has been made over recent years to develop biodegradable materials with the potential to remodel and regenerate vascular tissues. However, the creation of functional biological scaffolds capable of withstanding vascular stress within a clinically relevant time frame has proved to be a challenging proposition. As an alternative approach, we report the use of a multilaminate rolling approach using the human amnion to generate a tubular construct for blood vessel regeneration. The human amniotic membrane was decellularized by agitation in 0.03% (w/v) sodium dodecyl sulfate to generate an immune compliant material. The adhesion of human umbilical vein endothelial cells (EC) and human vascular smooth muscle cells (SMC) was assessed to determine initial binding and biocompatibility (monocultures). Extended cultures were either assessed as flat membranes, or rolled to form concentric multilayered conduits. Results showed positive EC adhesion and a progressive repopulation by SMC. Functional changes in SMC gene expression and the constructs' bulk mechanical properties were concomitant with vessel remodeling as assessed over a 40-day culture period. A significant advantage with this approach is the ability to rapidly produce a cell-dense construct with an extracellular matrix similar in architecture and composition to natural vessels. The capacity to control physical parameters such as vessel diameter, wall thickness, shape, and length are critical to match vessel compliance and tailor vessel specifications to distinct anatomical locations. As such, this approach opens new avenues in a range of tissue regenerative applications that may have a much wider clinical impact.

  14. Engineered human broncho-epithelial tissue-like assemblies

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor)

    2012-01-01

    Three-dimensional human broncho-epithelial tissue-like assemblies (TLAs) are produced in a rotating wall vessel (RWV) with microcarriers by coculturing mesenchymal bronchial-tracheal cells (BTC) and bronchial epithelium cells (BEC). These TLAs display structural characteristics and express markers of in vivo respiratory epithelia. TLAs are useful for screening compounds active in lung tissues such as antiviral compounds, cystic fibrosis treatments, allergens, and cytotoxic compounds.

  15. Human Evolution and Osteoporosis-Related Spinal Fractures

    PubMed Central

    Cotter, Meghan M.; Loomis, David A.; Simpson, Scott W.; Latimer, Bruce; Hernandez, Christopher J.

    2011-01-01

    The field of evolutionary medicine examines the possibility that some diseases are the result of trade-offs made in human evolution. Spinal fractures are the most common osteoporosis-related fracture in humans, but are not observed in apes, even in cases of severe osteopenia. In humans, the development of osteoporosis is influenced by peak bone mass and strength in early adulthood as well as age-related bone loss. Here, we examine the structural differences in the vertebral bodies (the portion of the vertebra most commonly involved in osteoporosis-related fractures) between humans and apes before age-related bone loss occurs. Vertebrae from young adult humans and chimpanzees, gorillas, orangutans, and gibbons (T8 vertebrae, n = 8–14 per species, male and female, humans: 20–40 years of age) were examined to determine bone strength (using finite element models), bone morphology (external shape), and trabecular microarchitecture (micro-computed tomography). The vertebrae of young adult humans are not as strong as those from apes after accounting for body mass (p<0.01). Human vertebrae are larger in size (volume, cross-sectional area, height) than in apes with a similar body mass. Young adult human vertebrae have significantly lower trabecular bone volume fraction (0.26±0.04 in humans and 0.37±0.07 in apes, mean ± SD, p<0.01) and thinner vertebral shells than apes (after accounting for body mass, p<0.01). Since human vertebrae are more porous and weaker than those in apes in young adulthood (after accounting for bone mass), even modest amounts of age-related bone loss may lead to vertebral fracture in humans, while in apes, larger amounts of bone loss would be required before a vertebral fracture becomes likely. We present arguments that differences in vertebral bone size and shape associated with reduced bone strength in humans is linked to evolutionary adaptations associated with bipedalism. PMID:22028933

  16. Isolating and defining cells to engineer human blood vessels

    PubMed Central

    Critser, P. J.; Voytik-Harbin, S. L.; Yoder, M. C.

    2012-01-01

    A great deal of attention has been recently focused on understanding the role that bone marrow-derived putative endothelial progenitor cells (EPC) may play in the process of neoangiogenesis. However, recent data indicate that many of the putative EPC populations are comprised of various haematopoietic cell subsets with proangiogenic activity, but these marrow-derived putative EPC fail to display vasculogenic activity. Rather, this property is reserved for a rare population of circulating viable endothelial cells with colony-forming cell (ECFC) ability. Indeed, human ECFC possess clonal proliferative potential, display endothelial and not haematopoietic cell surface antigens, and display in vivo vasculogenic activity when suspended in an extracellular matrix and implanted into immunodeficient mice. Furthermore, human vessels derived became integrated into the murine circulatory system and eventually were remodelled into arterial and venous vessels. Identification of this population now permits determination of optimal type I collagen matrix microenvironment into which the cells should be embedded and delivered to accelerate and even pattern number and size of blood vessels formed, in vivo. Indeed, altering physical properties of ECFC-collagen matrix implants changed numerous parameters of human blood vessel formation, in host mice. These recent discoveries may permit a strategy for patterning vascular beds for eventual tissue and organ regeneration. PMID:21481038

  17. Human Participants in Engineering Research: Notes from a Fledgling Ethics Committee.

    PubMed

    Koepsell, David; Brinkman, Willem-Paul; Pont, Sylvia

    2015-08-01

    For the past half-century, issues relating to the ethical conduct of human research have focused largely on the domain of medical, and more recently social-psychological research. The modern regime of applied ethics, emerging as it has from the Nuremberg trials and certain other historical antecedents, applies the key principles of: autonomy, respect for persons, beneficence, non-maleficence, and justice to human beings who enter trials of experimental drugs and devices (Martensen in J Hist Med Allied Sci 56(2):168-175, 2001). Institutions such as Institutional Review Boards (in the U.S.) and Ethics Committees (in Europe and elsewhere) oversee most governmentally-funded medical research around the world, in more than a hundred nations that are signers of the Declaration of Helsinki (World Medical Association 2008). Increasingly, research outside of medicine has been recognized to pose potential risks to human subjects of experiments. Ethics committees now operate in the US, Canada, the U.K. and Australia to oversee all governmental-funded research, and in other jurisdictions, the range of research covered by such committees is expanding. Social science, anthropology, and other fields are falling under more clear directives to conduct a formal ethical review for basic research involving human participants (Federman et al. in Responsible research: a systems approach to protecting research participants. National Academies Press, Washington, 2003, p. 36). The legal and institutional response for protecting human subjects in the course of developing non-medical technologies, engineering, and design is currently vague, but some universities are establishing ethics committees to oversee their human subjects research even where the experiments involved are non-medical and not technically covered by the Declaration of Helsinki. In The Netherlands, as in most of Europe, Asia, Latin America, or Africa, no laws mandate an ethical review of non-medical research. Yet, nearly 2

  18. Tritium Method Oil Consumption and its Relation to Oil Film Thickness in a Production Diesel Engine

    DTIC Science & Technology

    1990-06-01

    34 iC FILE COPY TRITIUM METHOD OIL CONSUMPTION AND ITS RELATION TO OIL FILM THICKNESSES IN A PRODUCTION DIESEL ENGINE (0by 11 RICHARD M. HARTMAN...releasoe L0 9 2ted 90 09 24 059 2 TRITIUM NIET1t(D OIL CONSUMPTION AND ITS RELATION TO OIL FILM THICKNESSES IN A PRODUCTION DIESEL ENGINE by RICHARD M...using tritium as a radiotracer. The measurements were made primarily at two speeds and one load using first a single-grade lubricant and then a multi

  19. Human urinary bladder regeneration through tissue engineering - an analysis of 131 clinical cases.

    PubMed

    Pokrywczynska, Marta; Adamowicz, Jan; Sharma, Arun K; Drewa, Tomasz

    2014-03-01

    Replacement of urinary bladder tissue with functional equivalents remains one of the most challenging problems of reconstructive urology over the last several decades. The gold standard treatment for urinary diversion after radical cystectomy is the ileal conduit or neobladder; however, this technique is associated with numerous complications including electrolyte imbalances, mucus production, and the potential for malignant transformation. Tissue engineering techniques provide the impetus to construct functional bladder substitutes de novo. Within this review, we have thoroughly perused the literature utilizing PubMed in order to identify clinical studies involving bladder reconstruction utilizing tissue engineering methodologies. The idea of urinary bladder regeneration through tissue engineering dates back to the 1950s. Many natural and synthetic biomaterials such as plastic mold, gelatin sponge, Japanese paper, preserved dog bladder, lyophilized human dura, bovine pericardium, small intestinal submucosa, bladder acellular matrix, or composite of collagen and polyglycolic acid were used for urinary bladder regeneration with a wide range of outcomes. Recent progress in the tissue engineering field suggest that in vitro engineered bladder wall substitutes may have expanded clinical applicability in near future but preclinical investigations on large animal models with defective bladders are necessary to optimize the methods of bladder reconstruction by tissue engineering in humans.

  20. Saving Humanity from Catastrophic Cooling with Geo-Engineering

    NASA Astrophysics Data System (ADS)

    Haapala, K.; Singer, S. F.

    2016-02-01

    There are two kinds of ice ages; they are fundamentally different and therefore require different methods of mitigation: (i) Major (Milankovitch-style) glaciations occur on a 100,000-year time-scale and are controlled astronomically. (ii) "Little" ice ages were discovered in ice cores; they have been occurring on an approx. 1000-1500-yr cycle and are likely controlled by the Sun [Ref: Singer & Avery 2007. Unstoppable Global Warming: Every 1500 years]. The current cycle's cooling phase may be imminent - hence there may be urgent need for action. To stop onset of a major (Milankovitch) glaciation 1. Locate a "trigger" - a growing perennial snow/ice field - using satellites 2. Spread soot, to lower the albedo, and use Sun to melt 3. How much soot? How to apply soot? Learn by experimentation To lessen (regional, intermittent) cooling of DOB (Dansgaard-Oeschger-Bond) cycles1. Use greenhouse effect of manmade cirrus (ice particles) [Ref: Singer 1988. Meteorology and Atmospheric Physics 38:228 - 239]2. Inject water droplets (mist) near tropopause 3. Trace dispersion of cirrus cloud by satellite and observe warming at surface 4. How much water; over what area? How often to inject? Learn by experimentation Many scientific questions remain. While certainly interesting and important, there is really no need to delay the crucial and urgent tests of geo-engineering, designed to validate schemes of mitigation. Such proposed tests involve only minor costs and present negligible risks to the environment.

  1. Tissue engineering potential of human dermis-isolated adult stem cells from multiple anatomical locations.

    PubMed

    Kwon, Heenam; Haudenschild, Anne K; Brown, Wendy E; Vapniarsky, Natalia; Paschos, Nikolaos K; Arzi, Boaz; Hu, Jerry C; Athanasiou, Kyriacos A

    2017-01-01

    Abundance and accessibility render skin-derived stem cells an attractive cell source for tissue engineering applications. Toward assessing their utility, the variability of constructs engineered from human dermis-isolated adult stem (hDIAS) cells was examined with respect to different anatomical locations (foreskin, breast, and abdominal skin), both in vitro and in a subcutaneous, athymic mouse model. All anatomical locations yielded hDIAS cells with multi-lineage differentiation potentials, though adipogenesis was not seen for foreskin-derived hDIAS cells. Using engineered cartilage as a model, tissue engineered constructs from hDIAS cells were compared. Construct morphology differed by location. The mechanical properties of human foreskin- and abdominal skin-derived constructs were similar at implantation, remaining comparable after 4 additional weeks of culture in vivo. Breast skin-derived constructs were not mechanically testable. For all groups, no signs of abnormality were observed in the host. Addition of aggregate redifferentiation culture prior to construct formation improved chondrogenic differentiation of foreskin-derived hDIAS cells, as evident by increases in glycosaminoglycan and collagen contents. More robust Alcian blue staining and homogeneous cell populations were also observed compared to controls. Human DIAS cells elicited no adverse host responses, reacted positively to chondrogenic regimens, and possessed multi-lineage differentiation potential with the caveat that efficacy may differ by anatomical origin of the skin. Taken together, these results suggest that hDIAS cells hold promise as a potential cell source for a number of tissue engineering applications.

  2. The experimental study of genetic engineering human neural stem cells mediated by lentivirus to express multigene.

    PubMed

    Cai, Pei-qiang; Tang, Xun; Lin, Yue-qiu; Martin, Oudega; Sun, Guang-yun; Xu, Lin; Yang, Yun-kang; Zhou, Tian-hua

    2006-02-01

    To explore the feasibility to construct genetic engineering human neural stem cells (hNSCs) mediated by lentivirus to express multigene in order to provide a graft source for further studies of spinal cord injury (SCI). Human neural stem cells from the brain cortex of human abortus were isolated and cultured, then gene was modified by lentivirus to express both green fluorescence protein (GFP) and rat neurotrophin-3 (NT-3); the transgenic expression was detected by the methods of fluorescence microscope, dorsal root ganglion of fetal rats and slot blot. Genetic engineering hNSCs were successfully constructed. All of the genetic engineering hNSCs which expressed bright green fluorescence were observed under the fluorescence microscope. The conditioned medium of transgenic hNSCs could induce neurite flourishing outgrowth from dorsal root ganglion (DRG). The genetic engineering hNSCs expressed high level NT-3 which could be detected by using slot blot. Genetic engineering hNSCs mediated by lentivirus can be constructed to express multigene successfully.

  3. Optimal Configuration of Human Motion Tracking Systems: A Systems Engineering Approach

    NASA Technical Reports Server (NTRS)

    Henderson, Steve

    2005-01-01

    Human motion tracking systems represent a crucial technology in the area of modeling and simulation. These systems, which allow engineers to capture human motion for study or replication in virtual environments, have broad applications in several research disciplines including human engineering, robotics, and psychology. These systems are based on several sensing paradigms, including electro-magnetic, infrared, and visual recognition. Each of these paradigms requires specialized environments and hardware configurations to optimize performance of the human motion tracking system. Ideally, these systems are used in a laboratory or other facility that was designed to accommodate the particular sensing technology. For example, electromagnetic systems are highly vulnerable to interference from metallic objects, and should be used in a specialized lab free of metal components.

  4. Cognitive work analysis: An influential legacy extending beyond human factors and engineering.

    PubMed

    Naikar, Neelam

    2017-03-01

    Jens Rasmussen's multifaceted legacy includes cognitive work analysis (CWA), a framework for the analysis, design, and evaluation of complex sociotechnical systems. After considering the framework's origins, this paper reviews its progress, predictably covering experimental research on ecological interface design, case studies of the application of CWA to human factors and engineering problems in industry, and methods and modelling tools for CWA. Emphasis is placed, however, on studying the nexus between some of the recent results obtained with CWA and the original field studies of human problem-solving that motivated the framework's development. Of particular interest is a case study of the use of CWA for military doctrine development, a problem commonly regarded as lying outside the fields of human factors and engineering. It is concluded that the value of CWA, even for such diverse problems, is likely to result from its conceptual grounding in empirical observations of patterns of human reasoning in complex systems.

  5. Use of an engineered ribozyme to produce a circular human exon.

    PubMed Central

    Mikheeva, S; Hakim-Zargar, M; Carlson, D; Jarrell, K

    1997-01-01

    We report the use of an engineered ribozyme to produce a circular human exon in vitro. Specifically, we have designed a derivative of a yeast self-splicing group II intron that is able to catalyze the formation of a circular exon encoding the first kringle domain (K1) of the human tissue plasminogen activator protein. We show that the circular K1 exon is formed with high fidelity in vitro. Furthermore, the system is designed such that the circular exon that is produced consists entirely of human exon sequence. Thus, our results demonstrate that all yeast exon sequences are dispensable for group II intron catalyzed inverse splicing. This is the first demonstration that an engineered ribozyme can be used to create a circular exon containing only human sequences, linked together at a precise desired ligation point. We expect these results to be generalizable, so that similar ribozymes can be designed to precisely create circular derivatives of any nucleotide sequence. PMID:9396820

  6. Human outposts on Mars: engineering and scientific lessons learned from history

    NASA Astrophysics Data System (ADS)

    Gruenwald, J.

    2014-06-01

    There are several planned projects that aim to send humans to Mars which are currently developed by the ESA, the NASA or by initiatives from the private sector (e.g. The Mars One Project). Some of these projects include long-term stays or even permanent human outposts on the red planet. To achieve the necessary habitats on Mars, a vast amount of different engineering and scientific problems has to be solved. This paper identifies some of the most important issues by analyzing a similar endeavor from human history—the colonization of the American continent by the Europeans. This might seem to be an unconventional approach, but some valuable insights can be gathered by studying the significant dangers and drawbacks experienced by the early settlers in America. These historical records can help scientists and engineers to set up some guidelines for avoiding some of the risks for the first human beings on Mars.

  7. Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells

    DTIC Science & Technology

    2015-10-01

    Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells PRINCIPAL INVESTIGATOR: Jeffrey Engelman MD PhD CONTRACTING...SUBTITLE Developiing Novel Therapeutic Approaches in Small Cell Lung 5a. CONTRACT NUMBER Carcinoma Using Genetically Engineered Mouse Models and 5b...biomarkers. 15. SUBJECT TERMS Small cell lung cancer (SCLC), Genetically engineered mouse model (GEMM), BH3 mimetic, TORC inhibitor, Apoptosis

  8. Human Systems Engineering for Launch processing at Kennedy Space Center (KSC)

    NASA Technical Reports Server (NTRS)

    Henderson, Gena; Stambolian, Damon B.; Stelges, Katrine

    2012-01-01

    Launch processing at Kennedy Space Center (KSC) is primarily accomplished by human users of expensive and specialized equipment. In order to reduce the likelihood of human error, to reduce personal injuries, damage to hardware, and loss of mission the design process for the hardware needs to include the human's relationship with the hardware. Just as there is electrical, mechanical, and fluids, the human aspect is just as important. The focus of this presentation is to illustrate how KSC accomplishes the inclusion of the human aspect in the design using human centered hardware modeling and engineering. The presentations also explain the current and future plans for research and development for improving our human factors analysis tools and processes.

  9. Bibliography of Research Reports and Publications Issued by the Human Engineering Division, January 1987 - December 1993

    DTIC Science & Technology

    1994-03-01

    Annual Meeting, 1, 332-336. Boff, K. R., Polzella , D. J., & Morton, K. (1990). Crew system ergonomics information analysis center: A gateway for technology...A209396) Licht, D. M., Polzella , D. J., & Boff, K. R. (1991). Human factors, ergonomics, and human factors engineering: An analysis of definitions (Report...DTIC No. A262576) Polzella , D. J., Masline, P. J., Amell, J. R., Perez, W. A., & Ranmey, E. G. (1987). The development of a spatial orientation task for

  10. Draft audit report, human factors engineering control room design review: Saint Lucie Nuclear Power Plant, Unit No. 2

    SciTech Connect

    Peterson, L.R.; Lappa, D.A.; Moore, J.W.

    1981-09-03

    A human factors engineering preliminary design review of the Saint Lucie Unit 2 control room was performed at the site on August 3 through August 7, 1981. This design review was carried out by a team from the Human Factors Engineering Branch, Division of Human Factors Safety. This report was prepared on the basis of the HFEB's review of the applicant's Preliminary Design Assessment and the human factors engineering design review/audit performed at the site. The review team included human factors consultants from BioTechnology, Inc., Falls Church, Virginia, and from Lawrence Livermore National Laboratory (University of California), Livermore, California.

  11. Decellularization of human stromal refractive lenticules for corneal tissue engineering

    PubMed Central

    Yam, Gary Hin-Fai; Yusoff, Nur Zahirah Binte M.; Goh, Tze-Wei; Setiawan, Melina; Lee, Xiao-Wen; Liu, Yu-Chi; Mehta, Jodhbir S.

    2016-01-01

    Small incision lenticule extraction (SMILE) becomes a procedure to correct myopia. The extracted lenticule can be used for other clinical scenarios. To prepare for allogeneic implantation, lenticule decellularization with preserved optical property, stromal architecture and chemistry would be necessary. We evaluated different methods to decellularize thin human corneal stromal lenticules created by femtosecond laser. Treatment with 0.1% sodium dodecylsulfate (SDS) followed by extensive washes was the most efficient protocol to remove cellular and nuclear materials. Empty cell space was found inside the stroma, which displayed aligned collagen fibril architecture similar to native stroma. The SDS-based method was superior to other treatments with hyperosmotic 1.5 M sodium chloride, 0.1% Triton X-100 and nucleases (from 2 to 10 U/ml DNase and RNase) in preserving extracellular matrix content (collagens, glycoproteins and glycosaminoglycans). The stromal transparency and light transmittance was indifferent to untreated lenticules. In vitro recellularization showed that the SDS-treated lenticules supported corneal stromal fibroblast growth. In vivo re-implantation into a rabbit stromal pocket further revealed the safety and biocompatibility of SDS-decellularized lenticules without short- and long-term rejection risk. Our results concluded that femtosecond laser-derived human stromal lenticules decellularized by 0.1% SDS could generate a transplantable bioscaffold with native-like stromal architecture and chemistry. PMID:27210519

  12. Normal human epithelial cells regulate the size and morphology of tissue-engineered capillaries.

    PubMed

    Rochon, Marie-Hélène; Fradette, Julie; Fortin, Véronique; Tomasetig, Florence; Roberge, Charles J; Baker, Kathleen; Berthod, François; Auger, François A; Germain, Lucie

    2010-05-01

    The survival of thick tissues/organs produced by tissue engineering requires rapid revascularization after grafting. Although capillary-like structures have been reconstituted in some engineered tissues, little is known about the interaction between normal epithelial cells and endothelial cells involved in the in vitro angiogenic process. In the present study, we used the self-assembly approach of tissue engineering to examine this relationship. An endothelialized tissue-engineered dermal substitute was produced by adding endothelial cells to the tissue-engineered dermal substitute produced by the self-assembly approach. The latter consists in culturing fibroblasts in the medium supplemented with serum and ascorbic acid. A network of tissue-engineered capillaries (TECs) formed within the human extracellular matrix produced by dermal fibroblasts. To determine whether epithelial cells modify TECs, the size and form of TECs were studied in the endothelialized tissue-engineered dermal substitute cultured in the presence or absence of epithelial cells. In the presence of normal keratinocytes from skin, cornea or uterine cervix, endothelial cells formed small TECs (cross-sectional area estimated at less than 50 microm(2)) reminiscent of capillaries found in the skin's microcirculation. In contrast, TECs grown in the absence of epithelial cells presented variable sizes (larger than 50 microm(2)), but the addition of keratinocyte-conditioned media or exogenous vascular endothelial growth factor induced their normalization toward a smaller size. Vascular endothelial growth factor neutralization inhibited the effect of keratinocyte-conditioned media. These results provide new direct evidence that normal human epithelial cells play a role in the regulation of the underlying TEC network, and advance our knowledge in tissue engineering for the production of TEC networks in vitro.

  13. Comparative DNA damage and transcriptomic effects of engineered nanoparticles in human lung cells in vitro

    EPA Science Inventory

    A series of six titanium dioxide and two cerium oxide engineered nanomaterials were assessed for their ability to induce cytotoxicity, reactive oxygen species (ROS), various types of DNA damage, and transcriptional changes in human respiratory BEAS-2B cells exposed in vitro at se...

  14. Human factors engineering for the TERF (Tritium Emissions Reduction Facility) project. [Tritium Emissions Reduction Facility

    SciTech Connect

    Hedley, W.H.; Adams, F.S. ); Wells, J.E. )

    1990-12-14

    The Tritium Emissions Reduction Facility (TERF) is being built by EG G Mound Applied Technologies to provide improved control of the tritium emissions from gas streams being processed. Mound handles tritium in connection with production, development, research, disassembly, recovery, and surveillance operations. During these operations, a small fraction of the tritium being processed escapes from its original containment. The objective of this report is to describe the human factors engineering as performed in connection with the design, construction, and testing of the TERF as required in DOE Order 6430.1A, section 1300-12. Human factors engineering has been involved at each step of the process and was considered during the preliminary research on tritium capture before selecting the specific process to be used. Human factors engineering was also considered in determining the requirements for the TERF and when the specific design work was initiated on the facility and the process equipment. Finally, human factors engineering was used to plan the specific acceptance tests that will be made during TERF installation and after its completion. These tests will verify the acceptability of the final system and its components. 16 refs., 8 figs.

  15. Comparative DNA damage and transcriptomic effects of engineered nanoparticles in human lung cells in vitro

    EPA Science Inventory

    A series of six titanium dioxide and two cerium oxide engineered nanomaterials were assessed for their ability to induce cytotoxicity, reactive oxygen species (ROS), various types of DNA damage, and transcriptional changes in human respiratory BEAS-2B cells exposed in vitro at se...

  16. ARL Human Factors Engineering Technology: Overview of 6.2 Efforts for Dr. Lemnios, DDRE

    DTIC Science & Technology

    2012-03-01

    interaction research funded under the R2A designator PE62716AH70 (Human Factors Engineering) and comprises four areas of research: (1) Information Processing...requested. This report focuses on the 6.2 funding for the Soldier performance and Soldier-machine interaction research funded under the R2A designator

  17. Engineering Ethics and Self-Organizing Models of Human Development: Opportunities and Challenges.

    PubMed

    Hyun, Insoo

    2017-09-12

    Incorporating engineering ethics early during the planning stages of organoid and gastruloid research may help prevent future confusion about the moral status of complex models of human development. However, the intrinsic self-organizing behavior of organoids and gastruloids may pose a slight challenge to this novel ethical approach. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Human Systems Engineering: A Learning Model Designed To Converge Education, Business, and Industry.

    ERIC Educational Resources Information Center

    Hanson, Karen L.

    The Human Systems Engineering (HSE) Model was created to facilitate collaboration among education, business, and industry. It emphasized the role of leaders who converge with others to accomplish their goals while paying attention to the key elements that create successful partnerships. The partnership of XXsys Technologies, Inc., University of…

  19. Human Factors Engineering in Designing the Passengers' Cockpit of the Malaysian Commercial Suborbital Spaceplane

    NASA Astrophysics Data System (ADS)

    Ridzuan Zakaria, Norul; Mettauer, Adrian; Abu, Jalaluddin; Hassan, Mohd Roshdi; Ismail, Anwar Taufeek; Othman, Jamaluddin; Shaari, Che Zhuhaida; Nasron, Nasri

    2010-09-01

    The design of the passengers’ cabin or cockpit of commercial suborbital spaceplane is a new and exciting frontier in human factors engineering, which emphasizes on comfort and safety. There is a program to develop small piloted 3 seats commercial suborbital spaceplane by a group of Malaysians with their foreign partners, and being relatively small and due to its design philosophy, the spaceplane does not require a cabin, but only a cockpit for its 2 passengers. In designing the cockpit, human factors engineering and safety principles are given priority. The cockpit is designed with the intention to provide comfort and satisfaction to the passengers without compromising the safety, in such a way that there are passenger-view wide angled video camera to observe the passengers at all time in flight, “rear-view”, “under-the-floor-view” and “fuselage-view” video cameras for the passengers, personalized gauges and LCDs on the dashboard to provide vital and useful information during the flight to the passengers, and biomedical engineered products which not only entertain the passengers, but also provide important information on the passengers to the ground crews who are responsible in the comfort and safety of the passengers. The passenger-view video-camera, which record the passengers with Earth visible through the glass canopy as the background, not only provides live visual of the passengers for safety reason, but also provide the most preferred memorable video collection for the passengers, while other video cameras provide the opportunity to view at various angles from unique positions to both the passengers and the ground observers. The gauges and LCDs on the dashboard provide access to the passengers to information such as the gravity, orientation, rate of climb and flight profile of the spaceplane, graphical presentation of the spaceplane in flight, and live video from the onboard video cameras. There is also a control stick for each passenger to

  20. Therapy of Human Papillomavirus-Related Disease

    PubMed Central

    Stern, Peter L.; van der Burg, Sjoerd H.; Hampson, Ian N.; Broker, Thomas; Fiander, Alison; Lacey, Charles J.; Kitchener, Henry C.; Einstein, Mark H.

    2014-01-01

    and broad systemic HPV-specific T cell response and modulation of key local immune factors. Treatments that can shift the balance of immune effectors locally in combination with vaccination are now being tested. This article forms part of a special supplement entitled “Opportunities for comprehensive control of HPV infections and related diseases” Vaccine Volume 30, Supplement X, 2012. PMID:23199967

  1. Ergonomics and human factors: the paradigms for science, engineering, design, technology and management of human-compatible systems.

    PubMed

    Karwowski, W

    2005-04-15

    This paper provides a theoretical perspective on human factors and ergonomics (HFE), defined as a unique and independent discipline that focuses on the nature of human-artefact interactions, viewed from the unified perspective of the science, engineering, design, technology and management of human-compatible systems. Such systems include a variety of natural and artificial products, processes and living environments. The distinguishing features of the contemporary HFE discipline and profession are discussed and a concept of ergonomics literacy is proposed. An axiomatic approach to ergonomics design and a universal measure of system-human incompatibility are also introduced. It is concluded that the main focus of the HFE discipline in the 21st century will be the design and management of systems that satisfy human compatibility requirements.

  2. Strategies for Optimizing the Serum Persistence of Engineered Human Arginase I for Cancer Therapy

    PubMed Central

    Stone, Everett; Chantranupong, Lynne; Gonzalez, Candice; O'Neal, Jamye; Rani, Mridula; VanDenBerg, Carla; Georgiou, George

    2011-01-01

    Systemic l-Arginine depletion following intravenous administration of l-Arginine hydrolyzing enzymes has been shown to selectively impact tumors displaying urea-cycle defects including a large fraction of hepatocellular carcinomas, metastatic melanomas and small cell lung carcinomas. However, the human arginases display poor serum stability (t1/2 =4.8 hrs) whereas a bacterial arginine deiminase evaluated in phase II clinical trials was reported to be immunogenic, eliciting strong neutralizing antibody responses. Recently, we showed that substitution of the Mn2+ metal center in human Arginase I with Co2+ (Co-hArgI) results in an enzyme that displays 10-fold higher catalytic efficiency for l-Arg hydrolysis, 12–15 fold reduction in the IC50 towards a variety of malignant cell lines and, importantly a t1/2= 22 hrs in serum. To investigate the utility of Co-hArgI for l-Arg depletion therapy in cancer we systematically investigated three strategies for enhancing the persistence of the enzyme in circulation: (i) site specific conjugation of Co-hArgI engineered with an accessible N-terminal Cys residue to 20 KDa PEG-maleimide (Co-hArgI-CPEG-20K); (ii) engineering of the homotrimeric Co-hArgI into a linked, monomeric 110 KDa polypeptide (Co-hArgI ×3) and (iii) lysyl conjugation of 5 KDa PEG-N-hydroxysuccinimide (NHS) ester (Co-hArgI-KPEG-5K). Surprisingly, even though all three formulations resulted in proteins with a predicted hydrodynamic radius larger than the cut-off for renal filtration, only CohArgI amine conjugated to 5 KDa PEG remained in circulation for sufficiently long durations. Using CohArgI-KPEG-5K labeled with an end-terminal fluorescein for easy detection, we demonstrated that following intraperitoneal administration at 6 mg/kg weight, a well tolerated dose, the circulation t1/2 of the protein in Balb/c mice is 63 ± 10 hrs. Very low levels of serum l-Arg (<5 μM) could be sustained for over 75 hrs after injection, representing a 9-fold increase in

  3. A Dynamic Conception of Humanity, Intercultural Relation and Cooperative Learning

    ERIC Educational Resources Information Center

    Noaparast, Khosrow Bagheri; Khosravi, Zohreh

    2010-01-01

    The main focus of this paper relates to the conceptualizations of human identity and intercultural relations needed for cooperative learning (CL) to occur. At one extreme, some have argued that the relation between different cultures should be conceptualized in terms of incommensurability. At the other extreme, a standardization and unification…

  4. Fire as an engineering tool of early modern humans.

    PubMed

    Brown, Kyle S; Marean, Curtis W; Herries, Andy I R; Jacobs, Zenobia; Tribolo, Chantal; Braun, David; Roberts, David L; Meyer, Michael C; Bernatchez, Jocelyn

    2009-08-14

    The controlled use of fire was a breakthrough adaptation in human evolution. It first provided heat and light and later allowed the physical properties of materials to be manipulated for the production of ceramics and metals. The analysis of tools at multiple sites shows that the source stone materials were systematically manipulated with fire to improve their flaking properties. Heat treatment predominates among silcrete tools at approximately 72 thousand years ago (ka) and appears as early as 164 ka at Pinnacle Point, on the south coast of South Africa. Heat treatment demands a sophisticated knowledge of fire and an elevated cognitive ability and appears at roughly the same time as widespread evidence for symbolic behavior.

  5. Genetic engineering of human embryonic stem cells with lentiviral vectors.

    PubMed

    Xiong, Chen; Tang, Dong-Qi; Xie, Chang-Qing; Zhang, Li; Xu, Ke-Feng; Thompson, Winston E; Chou, Wayne; Gibbons, Gary H; Chang, Lung-Ji; Yang, Li-Jun; Chen, Yuqing E

    2005-08-01

    Human embryonic stem (hES) cells present a valuable source of cells with a vast therapeutic potential. However, the low efficiency of directed differentiation of hES cells remains a major obstacle in their uses for regenerative medicine. While differentiation may be controlled by the genetic manipulation, effective and efficient gene transfer into hES cells has been an elusive goal. Here, we show stable and efficient genetic manipulations of hES cells using lentiviral vectors. This method resulted in the establishment of stable gene expression without loss of pluripotency in hES cells. In addition, lentiviral vectors were effective in conveying the expression of an U6 promoter-driven small interfering RNA (siRNA), which was effective in silencing its specific target. Taken together, our results suggest that lentiviral gene delivery holds great promise for hES cell research and application.

  6. [Obtention of human skin sheets by means of tissue engineering].

    PubMed

    Arvelo, Francisco; Pérez, Pedro; Cotte, Carlos

    2004-01-01

    The aim of this "in vitro" study was to develop a new system for keratinocyte culture on a dermal equivalent that enables treatment of different skin injuries. The keratinocyte where obtained from primary cell cultures derived from skin biopsies, seeded over a fibrin matrix enhanced with live human fibroblast. Cells growing over the dermal equivalent, rapidly confluences and a stratified epithelium was obtained within 20-25 days culture. Detachment of composite culture from flask is a simple and quick procedure with no need for chemical or enzyme treatments. The method described provides a number of advantages which include the large expansion of keratinocyte from the primary cell cultures without the need of a feeder layer, the availability of plasma from blood banks, and the versatile and safe manipulation of composite obtained "in vitro". All these facts allow to assure that this system could result very efficient for the treatment of all type of skin injuries.

  7. Engineering musculoskeletal tissues with human embryonic germ cell derivatives.

    PubMed

    Varghese, Shyni; Hwang, Nathaniel S; Ferran, Angela; Hillel, Alexander; Theprungsirikul, Parnduangjai; Canver, Adam C; Zhang, Zijun; Gearhart, John; Elisseeff, Jennifer

    2010-04-01

    The cells derived from differentiating embryoid bodies of human embryonic germ (hEG) cells express a broad spectrum of gene markers and have been induced toward ecto- and endodermal lineages. We describe here in vitro and in vivo differentiation of hEG-derived cells (LVEC line) toward mesenchymal tissues. The LVEC cells express many surface marker proteins characteristic of mesenchymal stem cells and differentiated into cartilage, bone, and fat. Homogenous hyaline cartilage was generated from cells after 63 population doublings. In vivo results demonstrate cell survival, differentiation, and tissue formation. The high proliferative capacity of hEG-derived cells and their ability to differentiate and form three-dimensional mesenchymal tissues without teratoma formation underscores their significant potential for regenerative medicine. The adopted coculture system also provides new insights into how a microenvironment comprised of extracellular and cellular components may be harnessed to generate hierarchically complex tissues from pluripotent cells.

  8. Conversion of human choriogonadotropin into a follitropin by protein engineering

    SciTech Connect

    Campbell, R.K.; Dean-Emig, D.M.; Moyle, W.R. )

    1991-02-01

    Human reproduction is dependent upon the action of follicle-stimulating hormone (hFSH), luteinizing hormone (hLH), and chorionic gonadotropin (hCG). While the {alpha} subunits of these heterodimeric proteins can be interchanged without effect on receptor-binding specificity, their {beta} subunits differ and direct hormone binding to either LH/CG or FSH receptors. Previous studies employing chemical modifications of the hormones, monoclonal antibodies, or synthetic peptides have implicated hCG {beta}-subunit residues between Cys-38 and Cys-57 and corresponding regions of hLH{beta} and hFSH{beta} in receptor recognition and activation. Since the {beta} subunits of hCG or hLH and hFSH exhibit very little sequence similarity in this region, the authors postulated that these residues might contribute to hormone specificity. To test this hypothesis the authors constructed chimeric hCG/hFSH {beta} subunits, coexpressed them with the human {alpha} subunit, and examined their ability to interact with LH and FSH receptors and hormone-specific monoclonal antibodies. Surprisingly, substitution of hFSH{beta} residues 33-52 for hCG{beta} residues 39-58 had no effect on receptor binding or stimulation. However, substitution of hFSH{beta} residues 88-108 in place of the carboxyl terminus of hCG{beta} (residues 94-145) resulted in a hormone analog identical to hFSH in its ability to bind and stimulate FSH receptors. The altered binding specificity displayed by this analog is not attributable solely to the replacement of hCG{beta} residues 108-145 or substitution of residues in the determinant loop located between hCD{beta} residues 93 and 100.

  9. Conversion of human choriogonadotropin into a follitropin by protein engineering.

    PubMed Central

    Campbell, R K; Dean-Emig, D M; Moyle, W R

    1991-01-01

    Human reproduction is dependent upon the actions of follicle-stimulating hormone (hFSH), luteinizing hormone (hLH), and chorionic gonadotropin (hCG). While the alpha subunits of these heterodimeric proteins can be interchanged without effect on receptor-binding specificity, their beta subunits differ and direct hormone binding to either LH/CG or FSH receptors. Previous studies employing chemical modifications of the hormones, monoclonal antibodies, or synthetic peptides have implicated hCG beta-subunit residues between Cys-38 and Cys-57 and corresponding regions of hLH beta and hFSH beta in receptor recognition and activation. Since the beta subunits of hCG or hLH and hFSH exhibit very little sequence similarity in this region, we postulated that these residues might contribute to hormone specificity. To test this hypothesis we constructed chimeric hCG/hFSH beta subunits, coexpressed them with the human alpha subunit, and examined their ability to interact with LH and FSH receptors and hormone-specific monoclonal antibodies. Surprisingly, substitution of hFSH beta residues 33-52 for hCG beta residues 39-58 had no effect on receptor binding or stimulation. However, substitution of hFSH beta residues 88-108 in place of the carboxyl terminus of hCG beta (residues 94-145) resulted in a hormone analog identical to hFSH in its ability to bind and stimulate FSH receptors. The altered binding specificity displayed by this analog is not attributable solely to the replacement of hCG beta residues 108-145 or substitution of residues in the "determinant loop" located between hCG beta residues 93 and 100. PMID:1899483

  10. Stationary Engineers Apprenticeship. Related Training Modules. 11.1-11.2 Lubrication.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with lubrication. Addressed in the individual instructional packages included in the module are the various types of lubricants, lubricant standards, and criteria for selecting lubricants. Each instructional package in the module…

  11. Stationary Engineers Apprenticeship. Related Training Modules. 13.1-13.7 Pumps.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with pumps. Addressed in the individual instructional packages included in the module are the following topics: types, classifications, and applications of pumps; pump construction; procedures for calculating pump heat and pump flow;…

  12. Stationary Engineers Apprenticeship. Related Training Modules. 12.1-12.9. Boilers.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with boilers. Addressed in the individual instructional packages included in the module are the following topics: firetube and watertube boilers; boiler construction; procedures for operating and cleaning boilers; and boiler fittings,…

  13. Stationary Engineers Apprenticeship. Related Training Modules. 18.1-18.2 Generators.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with generators. Addressed in the individual instructional packages included in the module are the following topics: different types of generators, generator construction, and procedures for operating a generator. Each instructional…

  14. Stationary Engineers Apprenticeship. Related Training Modules. 17.1-17.3 Feedwater.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with feedwater. Addressed in the individual instructional packages included in the module are the following topics: types of feedwater, equipment for use in working with feedwater, water treatments, and procedures for testing feedwater.…

  15. Stationary Engineers Apprenticeship. Related Training Modules. 14.1-14.4 Steam.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with steam. Addressed in the individual instructional packages included in the module are the following topics: steam formation and evaporation, types of steam, and steam transport and purification. Each instructional package in the…

  16. Stationary Engineers Apprenticeship. Related Training Modules. 19.1-19.2 Air Compressors.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with air compressors. Addressed in the individual instructional packages included in the module are types of air compressors and the maintenance and operation of air compressors. Each instructional package in the module contains some or…

  17. Stationary Engineers Apprenticeship. Related Training Modules. 15.1-15.5 Turbines.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with turbines. addressed in the individual instructional packages included in the module are the following topics: types and components of steam turbines, steam turbine auxiliaries, operation and maintenance of steam turbines, and gas…

  18. Tools for Large-Scale Data Analytic Examination of Relational and Epistemic Networks in Engineering Education

    ERIC Educational Resources Information Center

    Madhavan, Krishna; Johri, Aditya; Xian, Hanjun; Wang, G. Alan; Liu, Xiaomo

    2014-01-01

    The proliferation of digital information technologies and related infrastructure has given rise to novel ways of capturing, storing and analyzing data. In this paper, we describe the research and development of an information system called Interactive Knowledge Networks for Engineering Education Research (iKNEER). This system utilizes a framework…

  19. A Study of Current Trends and Issues Related to Technical/Engineering Design Graphics.

    ERIC Educational Resources Information Center

    Clark, Aaron C.; Scales Alice

    2000-01-01

    Presents results from a survey of engineering design graphics educators who responded to questions related to current trends and issues in the profession of graphics education. Concludes that there is a clear trend in institutions towards the teaching of constraint-based modeling and computer-aided manufacturing. (Author/YDS)

  20. An Investigation of Factors Related to Self-Efficacy for Java Programming among Engineering Students

    ERIC Educational Resources Information Center

    Askar, Petek; Davenport, David

    2009-01-01

    The purpose of this study was to examine the factors related to self-efficacy for Java programming among first year engineering students. An instrument assessing Java programming self-efficacy was developed from the computer programming self-efficacy scale of Ramalingam & Wiedenbeck. The instrument was administered at the beginning of the…

  1. Stationary Engineers Apprenticeship. Related Training Modules. 16.1-16.5 Combustion.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with combustion. Addressed in the individual instructional packages included in the module are the following topics: the combustion process, types of fuel, air and flue gases, heat transfer during combustion, and wood combustion. Each…

  2. A Study of Current Trends and Issues Related to Technical/Engineering Design Graphics.

    ERIC Educational Resources Information Center

    Clark, Aaron C.; Scales Alice

    2000-01-01

    Presents results from a survey of engineering design graphics educators who responded to questions related to current trends and issues in the profession of graphics education. Concludes that there is a clear trend in institutions towards the teaching of constraint-based modeling and computer-aided manufacturing. (Author/YDS)

  3. Recent Science and Engineering Graduates Working in Energy-Related Activities, 1979 and 1980.

    ERIC Educational Resources Information Center

    Bell, Sharon E.

    Employment and professional activities of recent science and engineering graduates who described their work as energy-related were examined. The survey included graduates who received bachelor's or master's degrees between 1972 and 1979 and was conducted in 1976, 1978, 1979, and 1980. Data indicated that the number of graduates who reported…

  4. The Relative Efficiency of Departments at a Turkish Engineering College: A Data Envelopment Analysis

    ERIC Educational Resources Information Center

    Koksal, Gulser; Nalcaci, Burak

    2006-01-01

    In this study, Data Envelopment Analysis is used to measure relative efficiencies of academic departments of an engineering college. Input and output criteria are determined and measured utilizing the academic personnel performance measurement scheme of the College. New measures are developed to compare departments of different disciplines. The…

  5. Transactional, Cooperative, and Communal: Relating the Structure of Engineering Engagement Programs with the Nature of Partnerships

    ERIC Educational Resources Information Center

    Thompson, Julia D.; Jesiek, Brent K.

    2017-01-01

    This paper examines how the structural features of engineering engagement programs (EEPs) are related to the nature of their service-learning partnerships. "Structure" refers to formal and informal models, processes, and operations adopted or used to describe engagement programs, while "nature" signifies the quality of…

  6. Stationary Engineers Apprenticeship. Related Training Modules. 20.1-23.1 Miscellaneous.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with miscellaneous job skills needed by persons working in power plants. Addressed in the individual instructional packages included in the module are the following topics: transformers, circuit protection, construction of foundations…

  7. Magnetic Resonance Imaging of Cardiac Strain Pattern Following Transplantation of Human Tissue Engineered Heart Muscles

    PubMed Central

    Qin, Xulei; Riegler, Johannes; Tiburcy, Malte; Zhao, Xin; Chour, Tony; Ndoye, Babacar; Nguyen, Michael; Adams, Jackson; Ameen, Mohamed; Denney, Thomas S.; Yang, Phillip C.; Nguyen, Patricia; Zimmermann, Wolfram H.; Wu, Joseph C.

    2017-01-01

    Background The use of tissue engineering approaches in combination with exogenously produced cardiomyocytes offers the potential to restore contractile function after myocardial injury. However, current techniques assessing changes in global cardiac performance following such treatments are plagued by relatively low detection ability. As the treatment is locally performed, this detection could be improved by myocardial strain imaging that measures regional contractility. Methods and Results Tissue engineered heart muscles (EHMs) were generated by casting human embryonic stem cell-derived cardiomyocytes with collagen in preformed molds. EHMs were transplanted (n=12) to cover infarct and border zones of recipient rat hearts one month after ischemia reperfusion injury. A control group (n=10) received only sham placement of sutures without EHMs. To assess the efficacy of EHMs, MRI and ultrasound-based strain imaging were performed prior to and four weeks after transplantation. In addition to strain imaging, global cardiac performance was estimated from cardiac MRI. Although no significant differences were found with global changes in left ventricular ejection fraction (EF) (Control −9.6±1.3% vs. EHM −6.2±1.9%, P=0.17), regional myocardial strain from tagged MRI was able to detect preserved systolic function in EHM-treated animals compared to control (Control 4.4±1.0% vs. EHM 1.0±0.6%, P=0.04). However, ultrasound-based strain failed to detect any significant change (Control 2.1±3.0% vs. EHM 6.3±2.9%, P=0.46). Conclusions This study highlights the feasibility of using cardiac strain from tagged MRI to assess functional changes in rat models due to localized regenerative therapies, which may not be detected by conventional measures of global systolic performance. PMID:27903535

  8. A Human Relations Approach to Custodial and Maintenance Training.

    ERIC Educational Resources Information Center

    Parker, Woodrow M.; And Others

    1983-01-01

    Describes a training program for residence hall custodial and maintenance supervisors and staff which combines human relations and technical skills. The sessions dealt with communication skills, leadership strategies, performance appraisal, self-understanding, advancement, and fringe benefits. (JAC)

  9. The Relation Between Audition and Vision in the Human Newborn

    ERIC Educational Resources Information Center

    Mendelson, Morton J.; Haith, Marshall M.

    1976-01-01

    Four studies were conducted to investigate the relation between audition and vision in the human newborn. In all four studies visual activity was recorded with infrared corneal-reflection techniques in 1- to 4-day-old infants. (MS)

  10. The Relation Between Audition and Vision in the Human Newborn

    ERIC Educational Resources Information Center

    Mendelson, Morton J.; Haith, Marshall M.

    1976-01-01

    Four studies were conducted to investigate the relation between audition and vision in the human newborn. In all four studies visual activity was recorded with infrared corneal-reflection techniques in 1- to 4-day-old infants. (MS)

  11. Analysis of Human Factors Engineering Experiments: Characteristics, Results, and Applications

    DTIC Science & Technology

    1976-08-01

    than was available from the published reports, attempts to examine more complex relationships would have been an unjusti- fied over-analysis of the...contributes to design, do- velopment and operation of man-machine, weapons or other complex systems concepts; utilizes psychological principles of...performed. Several efforts to make more complex analyses, such as relating results to design charac- teristics with a regression equation, were aborted. The

  12. Reverse engineering validation using a benchmark synthetic gene circuit in human cells.

    PubMed

    Kang, Taek; White, Jacob T; Xie, Zhen; Benenson, Yaakov; Sontag, Eduardo; Bleris, Leonidas

    2013-05-17

    Multicomponent biological networks are often understood incompletely, in large part due to the lack of reliable and robust methodologies for network reverse engineering and characterization. As a consequence, developing automated and rigorously validated methodologies for unraveling the complexity of biomolecular networks in human cells remains a central challenge to life scientists and engineers. Today, when it comes to experimental and analytical requirements, there exists a great deal of diversity in reverse engineering methods, which renders the independent validation and comparison of their predictive capabilities difficult. In this work we introduce an experimental platform customized for the development and verification of reverse engineering and pathway characterization algorithms in mammalian cells. Specifically, we stably integrate a synthetic gene network in human kidney cells and use it as a benchmark for validating reverse engineering methodologies. The network, which is orthogonal to endogenous cellular signaling, contains a small set of regulatory interactions that can be used to quantify the reconstruction performance. By performing successive perturbations to each modular component of the network and comparing protein and RNA measurements, we study the conditions under which we can reliably reconstruct the causal relationships of the integrated synthetic network.

  13. Reverse Engineering Validation using a Benchmark Synthetic Gene Circuit in Human Cells

    PubMed Central

    Kang, Taek; White, Jacob T.; Xie, Zhen; Benenson, Yaakov; Sontag, Eduardo; Bleris, Leonidas

    2013-01-01

    Multi-component biological networks are often understood incompletely, in large part due to the lack of reliable and robust methodologies for network reverse engineering and characterization. As a consequence, developing automated and rigorously validated methodologies for unraveling the complexity of biomolecular networks in human cells remains a central challenge to life scientists and engineers. Today, when it comes to experimental and analytical requirements, there exists a great deal of diversity in reverse engineering methods, which renders the independent validation and comparison of their predictive capabilities difficult. In this work we introduce an experimental platform customized for the development and verification of reverse engineering and pathway characterization algorithms in mammalian cells. Specifically, we stably integrate a synthetic gene network in human kidney cells and use it as a benchmark for validating reverse engineering methodologies. The network, which is orthogonal to endogenous cellular signaling, contains a small set of regulatory interactions that can be used to quantify the reconstruction performance. By performing successive perturbations to each modular component of the network and comparing protein and RNA measurements, we study the conditions under which we can reliably reconstruct the causal relationships of the integrated synthetic network. PMID:23654266

  14. Human mesenchymal stem cell-engineered hepatic cell sheets accelerate liver regeneration in mice

    PubMed Central

    Itaba, Noriko; Matsumi, Yoshiaki; Okinaka, Kaori; Ashla, An Afida; Kono, Yohei; Osaki, Mitsuhiko; Morimoto, Minoru; Sugiyama, Naoyuki; Ohashi, Kazuo; Okano, Teruo; Shiota, Goshi

    2015-01-01

    Mesenchymal stem cells (MSCs) are an attractive cell source for cell therapy. Based on our hypothesis that suppression of Wnt/β-catenin signal enhances hepatic differentiation of human MSCs, we developed human mesenchymal stem cell-engineered hepatic cell sheets by a small molecule compound. Screening of 10 small molecule compounds was performed by WST assay, TCF reporter assay, and albumin mRNA expression. Consequently, hexachlorophene suppressed TCF reporter activity in time- and concentration-dependent manner. Hexachlorophene rapidly induced hepatic differentiation of human MSCs judging from expression of liver-specific genes and proteins, PAS staining, and urea production. The effect of orthotopic transplantation of human mesenchymal stem cell-engineered hepatic cell sheets against acute liver injury was examined in one-layered to three-layered cell sheets system. Transplantation of human mesenchymal stem cell-engineered hepatic cell sheets enhanced liver regeneration and suppressed liver injury. The survival rates of the mice were significantly improved. High expression of complement C3 and its downstream signals including C5a, NF-κB, and IL-6/STAT-3 pathway was observed in hepatic cell sheets-grafted tissues. Expression of phosphorylated EGFR and thioredoxin is enhanced, resulting in reduction of oxidative stress. These findings suggest that orthotopic transplantation of hepatic cell sheets manufactured from MSCs accelerates liver regeneration through complement C3, EGFR and thioredoxin. PMID:26553591

  15. Engineering physiologically stiff and stratified human cartilage by fusing condensed mesenchymal stem cells

    PubMed Central

    Bhumiratana, Sarindr; Vunjak-Novakovic, Gordana

    2015-01-01

    For a long time, clinically sized and mechanically functional cartilage could be engineered from young animal chondrocytes, but not from adult human mesenchymal stem cells that are of primary clinical interest. The approaches developed for primary chondrocytes were not successful when used with human mesenchymal cells. The method discussed here was designed to employ a mechanism similar to pre-cartilaginous condensation and fusion of mesenchymal stem cells at a precisely defined time. The formation of cartilage was initiated by press-molding the mesenchymal bodies onto the surface of a bone substrate. By image-guided fabrication of the bone substrate and the molds, the osteochondral constructs were engineered in anatomically precise shapes and sizes. After 5 weeks of cultivation, the cartilage layer assumed physiologically stratified histomorphology, and contained lubricin at the surface, proteoglycans and type II collagen in the bulk phase, collagen type X at the interface with the bone substrate, and collagen type I within the bone phase. For the first time, the Young’s modulus and the friction coefficient of human cartilage engineered from mesenchymal stem cells reached physiological levels for adult human cartilage. We propose that this method can be effective for generating human osteochondral tissue constructs. PMID:25828645

  16. Engineering physiologically stiff and stratified human cartilage by fusing condensed mesenchymal stem cells.

    PubMed

    Bhumiratana, Sarindr; Vunjak-Novakovic, Gordana

    2015-08-01

    For a long time, clinically sized and mechanically functional cartilage could be engineered from young animal chondrocytes, but not from adult human mesenchymal stem cells that are of primary clinical interest. The approaches developed for primary chondrocytes were not successful when used with human mesenchymal cells. The method discussed here was designed to employ a mechanism similar to pre-cartilaginous condensation and fusion of mesenchymal stem cells at a precisely defined time. The formation of cartilage was initiated by press-molding the mesenchymal bodies onto the surface of a bone substrate. By image-guided fabrication of the bone substrate and the molds, the osteochondral constructs were engineered in anatomically precise shapes and sizes. After 5 weeks of cultivation, the cartilage layer assumed physiologically stratified histomorphology, and contained lubricin at the surface, proteoglycans and type II collagen in the bulk phase, collagen type X at the interface with the bone substrate, and collagen type I within the bone phase. For the first time, the Young's modulus and the friction coefficient of human cartilage engineered from mesenchymal stem cells reached physiological levels for adult human cartilage. We propose that this method can be effective for generating human osteochondral tissue constructs.

  17. Human Corneal Endothelial Cells Expanded In Vitro Are a Powerful Resource for Tissue Engineering.

    PubMed

    Liu, Yongsong; Sun, Hong; Hu, Min; Zhu, Min; Tighe, Sean; Chen, Shuangling; Zhang, Yuan; Su, Chenwei; Cai, Subo; Guo, Ping

    2017-01-01

    Human corneal endothelial cells have two major functions: barrier function mediated by proteins such as ZO-1 and pump function mediated by Na-K-ATPase which help to maintain visual function. However, human corneal endothelial cells are notorious for their limited proliferative capability in vivo and are therefore prone to corneal endothelial dysfunction that eventually may lead to blindness. At present, the only method to cure corneal endothelial dysfunction is by transplantation of a cadaver donor cornea with normal corneal endothelial cells. Due to the global shortage of donor corneas, it is vital to engineer corneal tissue in vitro that could potentially be transplanted clinically. In this review, we summarize the advances in understanding the behavior of human corneal endothelial cells, their current engineering strategy in vitro and their potential applications.

  18. Muscular dystrophy in a dish: engineered human skeletal muscle mimetics for disease modeling and drug discovery

    PubMed Central

    Smith, Alec S.T.; Davis, Jennifer; Lee, Gabsang; Mack, David L.

    2016-01-01

    Engineered in vitro models using human cells, particularly patient-derived induced pluripotent stem cells (iPSCs), offer a potential solution to issues associated with the use of animals for studying disease pathology and drug efficacy. Given the prevalence of muscle diseases in human populations, an engineered tissue model of human skeletal muscle could provide a biologically accurate platform to study basic muscle physiology, disease progression, and drug efficacy and/or toxicity. Such platforms could be used as phenotypic drug screens to identify compounds capable of alleviating or reversing congenital myopathies, such as Duchene muscular dystrophy (DMD). Here, we review current skeletal muscle modeling technologies with a specific focus on efforts to generate biomimetic systems for investigating the pathophysiology of dystrophic muscle. PMID:27109386

  19. Human Corneal Endothelial Cells Expanded In Vitro Are a Powerful Resource for Tissue Engineering

    PubMed Central

    Liu, Yongsong; Sun, Hong; Hu, Min; Zhu, Min; Tighe, Sean; Chen, Shuangling; Zhang, Yuan; Su, Chenwei; Cai, Subo; Guo, Ping

    2017-01-01

    Human corneal endothelial cells have two major functions: barrier function mediated by proteins such as ZO-1 and pump function mediated by Na-K-ATPase which help to maintain visual function. However, human corneal endothelial cells are notorious for their limited proliferative capability in vivo and are therefore prone to corneal endothelial dysfunction that eventually may lead to blindness. At present, the only method to cure corneal endothelial dysfunction is by transplantation of a cadaver donor cornea with normal corneal endothelial cells. Due to the global shortage of donor corneas, it is vital to engineer corneal tissue in vitro that could potentially be transplanted clinically. In this review, we summarize the advances in understanding the behavior of human corneal endothelial cells, their current engineering strategy in vitro and their potential applications. PMID:28260988

  20. A Systems Engineering Based Methodology for Analyzing Human Electrocortical Responses.

    DTIC Science & Technology

    1987-07-20

    D f Lh modeling provided a promising approach for hiandling obse ved r n the dcita. Model Parameter values were found to relate- tr S ...designed to be similar. Due to the nature of the two 121 FiR 5 5a0 Fig 5 0 0.. .. . . LO ° s .. . " R "R " - " - ,". ’. ’Io rpc ("IM O’CY 1. - g e -lip le e...w d - A’ --- • -A N - 46 .- - Iv e s -a S8ECT 32 -400 -1100 j ’.J - 00 000 - LIGHTS ONLY DECISION EASY DECISION HARD "* - U ".. FP[OUttu Y H

  1. Experimental therapy of human glioma by means of a genetically engineered virus mutant

    SciTech Connect

    Martuza, R.L.; Malick, A.; Markert, J.M.; Ruffner, K.L.; Coen, D.M. )

    1991-05-10

    Malignant gliomas are the most common malignant brain tumors and are almost always fatal. A thymidine kinase-negative mutant of herpes simplex virus-1 (dlsptk) that is attenuated for neurovirulence was tested as a possible treatment for gliomas. In cell culture, dlsptk killed two long-term human glioma lines and three short-term human glioma cell populations. In nude mice with implanted subcutaneous and subrenal U87 human gliomas, intraneoplastic inoculation of dlsptk caused growth inhibition. In nude mice with intracranial U87 gliomas, intraneoplastic inoculation of dlsptk prolonged survival. Genetically engineered viruses such as dlsptk merit further evaluation as novel antineoplastic agents.

  2. Tissue-engineered human bioartificial muscles expressing a foreign recombinant protein for gene therapy

    NASA Technical Reports Server (NTRS)

    Powell, C.; Shansky, J.; Del Tatto, M.; Forman, D. E.; Hennessey, J.; Sullivan, K.; Zielinski, B. A.; Vandenburgh, H. H.

    1999-01-01

    Murine skeletal muscle cells transduced with foreign genes and tissue engineered in vitro into bioartificial muscles (BAMs) are capable of long-term delivery of soluble growth factors when implanted into syngeneic mice (Vandenburgh et al., 1996b). With the goal of developing a therapeutic cell-based protein delivery system for humans, similar genetic tissue-engineering techniques were designed for human skeletal muscle stem cells. Stem cell myoblasts were isolated, cloned, and expanded in vitro from biopsied healthy adult (mean age, 42 +/- 2 years), and elderly congestive heart failure patient (mean age, 76 +/- 1 years) skeletal muscle. Total cell yield varied widely between biopsies (50 to 672 per 100 mg of tissue, N = 10), but was not significantly different between the two patient groups. Percent myoblasts per biopsy (73 +/- 6%), number of myoblast doublings prior to senescence in vitro (37 +/- 2), and myoblast doubling time (27 +/- 1 hr) were also not significantly different between the two patient groups. Fusion kinetics of the myoblasts were similar for the two groups after 20-22 doublings (74 +/- 2% myoblast fusion) when the biopsy samples had been expanded to 1 to 2 billion muscle cells, a number acceptable for human gene therapy use. The myoblasts from the two groups could be equally transduced ex vivo with replication-deficient retroviral expression vectors to secrete 0.5 to 2 microg of a foreign protein (recombinant human growth hormone, rhGH)/10(6) cells/day, and tissue engineered into human BAMs containing parallel arrays of differentiated, postmitotic myofibers. This work suggests that autologous human skeletal myoblasts from a potential patient population can be isolated, genetically modified to secrete foreign proteins, and tissue engineered into implantable living protein secretory devices for therapeutic use.

  3. Tissue-engineered human bioartificial muscles expressing a foreign recombinant protein for gene therapy

    NASA Technical Reports Server (NTRS)

    Powell, C.; Shansky, J.; Del Tatto, M.; Forman, D. E.; Hennessey, J.; Sullivan, K.; Zielinski, B. A.; Vandenburgh, H. H.

    1999-01-01

    Murine skeletal muscle cells transduced with foreign genes and tissue engineered in vitro into bioartificial muscles (BAMs) are capable of long-term delivery of soluble growth factors when implanted into syngeneic mice (Vandenburgh et al., 1996b). With the goal of developing a therapeutic cell-based protein delivery system for humans, similar genetic tissue-engineering techniques were designed for human skeletal muscle stem cells. Stem cell myoblasts were isolated, cloned, and expanded in vitro from biopsied healthy adult (mean age, 42 +/- 2 years), and elderly congestive heart failure patient (mean age, 76 +/- 1 years) skeletal muscle. Total cell yield varied widely between biopsies (50 to 672 per 100 mg of tissue, N = 10), but was not significantly different between the two patient groups. Percent myoblasts per biopsy (73 +/- 6%), number of myoblast doublings prior to senescence in vitro (37 +/- 2), and myoblast doubling time (27 +/- 1 hr) were also not significantly different between the two patient groups. Fusion kinetics of the myoblasts were similar for the two groups after 20-22 doublings (74 +/- 2% myoblast fusion) when the biopsy samples had been expanded to 1 to 2 billion muscle cells, a number acceptable for human gene therapy use. The myoblasts from the two groups could be equally transduced ex vivo with replication-deficient retroviral expression vectors to secrete 0.5 to 2 microg of a foreign protein (recombinant human growth hormone, rhGH)/10(6) cells/day, and tissue engineered into human BAMs containing parallel arrays of differentiated, postmitotic myofibers. This work suggests that autologous human skeletal myoblasts from a potential patient population can be isolated, genetically modified to secrete foreign proteins, and tissue engineered into implantable living protein secretory devices for therapeutic use.

  4. Reconstruction of a human cornea by the self-assembly approach of tissue engineering using the three native cell types.

    PubMed

    Proulx, Stéphanie; d'Arc Uwamaliya, Jeanne; Carrier, Patrick; Deschambeault, Alexandre; Audet, Caroline; Giasson, Claude J; Guérin, Sylvain L; Auger, François A; Germain, Lucie

    2010-10-29

    The purpose of this study was to produce and characterize human tissue-engineered corneas reconstructed using all three corneal cell types (epithelial, stromal, and endothelial cells) by the self-assembly approach. Fibroblasts cultured in medium containing serum and ascorbic acid secreted their own extracellular matrix and formed sheets that were superposed to reconstruct a stromal tissue. Endothelial and epithelial cells were seeded on each side of the reconstructed stroma. After culturing at the air-liquid interface, the engineered corneas were fixed for histology and transmission electron microscopy (TEM). Immunofluorescence labeling of epithelial keratins, basement membrane components, Na+/K+-ATPase α1, and collagen type I was also performed. Epithelial and endothelial cells adhered to the reconstructed stroma. After 10 days at the air-liquid interface, the corneal epithelial cells stratified (4 to 5 cell layers) and differentiated into well defined basal and wing cells that also expressed Na+/K+-ATPase α1 protein, keratin 3/12, and basic keratins. Basal epithelial cells from the reconstructed epithelium formed many hemidesmosomes and secreted a well defined basement membrane rich in laminin V and collagen VII. Endothelial cells formed a monolayer of tightly-packed cells and also expressed the function related protein Na+/K+-ATPase α1. This study demonstrates the feasibility of producing a complete tissue-engineered human cornea, similar to native corneas, using untransformed fibroblasts, epithelial and endothelial cells, without the need for exogenous biomaterial.

  5. The significance of cell-related challenges in the clinical application of tissue engineering.

    PubMed

    Almela, Thafar; Brook, Ian M; Moharamzadeh, Keyvan

    2016-12-01

    Tissue engineering is increasingly being recognized as a new approach that could alleviate the burden of tissue damage currently managed with transplants or synthetic devices. Making this novel approach available in the future for patients who would potentially benefit is largely dependent on understanding and addressing all those factors that impede the translation of this technology to the clinic. Cell-associated factors in particular raise many challenges, including those related to cell sources, up- and downstream techniques, preservation, and the creation of in vitro microenvironments that enable cells to grow and function as far as possible as they would in vivo. This article highlights the main confounding issues associated with cells in tissue engineering and how these issues may hinder the advancement of therapeutic tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3157-3163, 2016. © 2016 Wiley Periodicals, Inc.

  6. Band structure engineering strategies of metal oxide semiconductor nanowires and related nanostructures: A review

    NASA Astrophysics Data System (ADS)

    Piyadasa, Adimali; Wang, Sibo; Gao, Pu-Xian

    2017-07-01

    The electronic band structure of a solid state semiconductor determines many of its physical and chemical characteristics such as electrical, optical, physicochemical, and catalytic activity. Alteration or modification of the band structure could lead to significant changes in these physical and chemical characteristics, therefore we introduce new mechanisms of creating novel solid state materials with interesting properties. Over the past three decades, research on band structure engineering has allowed development of various methods to modify the band structure of engineered materials. Compared to bulk counterparts, nanostructures generally exhibit higher band structure modulation capabilities due to the quantum confinement effect, prominent surface effect, and higher strain limit. In this review we will discuss various band structure engineering strategies in semiconductor nanowires and other related nanostructures, mostly focusing on metal oxide systems. Several important strategies of band structure modulation are discussed in detail, such as doping, alloying, straining, interface and core-shell nanostructuring.

  7. [The application progress of human urine derived stem cells in bone tissue engineering].

    PubMed

    Gao, Peng; Jiang, Dapeng; Li, Zhaozhu

    2016-04-01

    The research of bone tissue engineering bases on three basic directions of seed cells, scaffold materials and growth information. Stem cells have been widely studied as seed cells. Human urine-derived stem cell (hUSC) is extracted from urine and described to be adhesion growth, cloning, expression of the majority of mesenchymal stem cell markers and peripheral cell markers, multi-potential and no tumor but stable karyotype with passaging many times. Some researches proposed that hUSC might be a new source of seed cells in tissue engineering because of their invasive and convenient obtention, stable culture and multiple differentiation potential.

  8. Civil engineering airman at increased risk for injuries and injury-related musculoskeletal disorders.

    PubMed

    Webb, Timothy S; Wells, Timothy S

    2011-03-01

    With the advent of electronic records, the opportunity to conduct research on workplace-related injuries and musculoskeletal disorders has increased dramatically. The purpose of this study was to examine the United States Air Force Civil Engineering career field to determine if they are negatively impacted by their work environment. Specifically, the objective of this study was to determine if enlisted Civil Engineering Airmen (n = 25,385) were at increased risk for injury or injury-related musculoskeletal disorders compared to enlisted Information Management/Communications Airmen (n = 28,947). Using an historical prospective design, electronic data were assembled and analyzed using Cox's proportional hazards modeling. Models were stratified by gender and adjusted for race/ethnicity, marital status, birth year, and deployment status. Male Civil Engineers were observed to be at greater risk for both inpatient injury-related musculoskeletal disorders (HR = 1.86; 95% CI = 1.54-2.26) and injuries (HR = 1.77; 95% CI = 1.48-2.11), while female Civil Engineers were more than double the risk for both inpatient injury-related musculoskeletal disorders (HR = 2.18; 95% CI = 1.28-3.73) and injuries (HR = 2.22; 95% CI = 1.27-3.88) compared to Information Management/Communications Airmen. Although analyses do not allow exploration of specific causes, they highlight the utility of using electronic data to identify occupations for further evaluation. Based on these results, additional resources were allocated to survey Civil Engineers on their physical work demands and job requirements to identify key problem areas for further study and mitigation. Copyright © 2010 Wiley-Liss, Inc.

  9. The relative performance obtained with several methods of control of an overcompressed engine using gasoline

    NASA Technical Reports Server (NTRS)

    Gardiner, Arthur W; Whedon, William E

    1928-01-01

    This report presents some results obtained during an investigation to determine the relative characteristics for several methods of control of an overcompressed engine using gasoline and operating under sea-level conditions. For this work, a special single cylinder test engine, 5-inch bore by 7-inch stroke, and designed for ready adjustment of compression ratio, valve timing and valve lift while running, was used. This engine has been fully described in NACA-TR-250. Tests were made at an engine speed of 1,400 R. P. M. for compression ratios ranging from 4.0 to 7.6. The air-fuel ratios were on the rich side of the chemically correct mixture and were approximately those giving maximum power. When using plain domestic gasoline, detonation was controlled to a constant, predetermined amount (audible), such as would be permissible for continuous operation, by (a) throttling the carburetor, (b) maintaining full throttle but greatly retarding the ignition, and (c) varying the timing of the inlet valve to reduce the effective compression ratio. From the results of the tests, it may be concluded that method (b) gives the best all-round performance and, being easily employed in service, appears to be the most practicable method for controlling an overcompressed engine using gasoline at low altitudes.

  10. Genomic signatures of diet-related shifts during human origins

    PubMed Central

    Babbitt, Courtney C.; Warner, Lisa R.; Fedrigo, Olivier; Wall, Christine E.; Wray, Gregory A.

    2011-01-01

    There are numerous anthropological analyses concerning the importance of diet during human evolution. Diet is thought to have had a profound influence on the human phenotype, and dietary differences have been hypothesized to contribute to the dramatic morphological changes seen in modern humans as compared with non-human primates. Here, we attempt to integrate the results of new genomic studies within this well-developed anthropological context. We then review the current evidence for adaptation related to diet, both at the level of sequence changes and gene expression. Finally, we propose some ways in which new technologies can help identify specific genomic adaptations that have resulted in metabolic and morphological differences between humans and non-human primates. PMID:21177690

  11. Genomic signatures of diet-related shifts during human origins.

    PubMed

    Babbitt, Courtney C; Warner, Lisa R; Fedrigo, Olivier; Wall, Christine E; Wray, Gregory A

    2011-04-07

    There are numerous anthropological analyses concerning the importance of diet during human evolution. Diet is thought to have had a profound influence on the human phenotype, and dietary differences have been hypothesized to contribute to the dramatic morphological changes seen in modern humans as compared with non-human primates. Here, we attempt to integrate the results of new genomic studies within this well-developed anthropological context. We then review the current evidence for adaptation related to diet, both at the level of sequence changes and gene expression. Finally, we propose some ways in which new technologies can help identify specific genomic adaptations that have resulted in metabolic and morphological differences between humans and non-human primates.

  12. Thymoma related myasthenia gravis in humans and potential animal models.

    PubMed

    Marx, Alexander; Porubsky, Stefan; Belharazem, Djeda; Saruhan-Direskeneli, Güher; Schalke, Berthold; Ströbel, Philipp; Weis, Cleo-Aron

    2015-08-01

    Thymoma-associated Myasthenia gravis (TAMG) is one of the anti-acetylcholine receptor MG (AChR-MG) subtypes. The clinico-pathological features of TAMG and its pathogenesis are described here in comparison with pathogenetic models suggested for the more common non-thymoma AChR-MG subtypes, early onset MG and late onset MG. Emphasis is put on the role of abnormal intratumorous T cell selection and activation, lack of intratumorous myoid cells and regulatory T cells as well as deficient expression of the autoimmune regulator (AIRE) by neoplastic thymic epithelial cells. We review spontaneous and genetically engineered thymoma models in a spectrum of animals and the extensive clinical and immunological overlap between canine, feline and human TAMG. Finally, limitations and perspectives of the transplantation of human and murine thymoma tissue into nude mice, as potential models for TAMG, are addressed. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Interstitial Calcinosis in Renal Papillae of Genetically Engineered Mouse Models: Relation to Randall’s Plaques

    PubMed Central

    Wu, Xue-Ru

    2014-01-01

    Genetically engineered mouse models (GEMMs) have been highly instrumental in elucidating gene functions and molecular pathogenesis of human diseases, although their use in studying kidney stone formation or nephrolithiasis remains relatively limited. This review intends to provide an overview of several knockout mouse models that develop interstitial calcinosis in the renal papillae. Included herein are mice deficient for Tamm-Horsfall protein (THP; also named uromodulin), osteopontin (OPN), both THP and OPN, Na+-phosphate cotransporter Type II (Npt2a) and Na+/H+ exchanger regulatory factor (NHERF-1). The baseline information of each protein is summarized, along with key morphological features of the interstitial calcium deposits in mice lacking these proteins. Attempts are made to correlate the papillary interstitial deposits found in GEMMs with Randall’s plaques, the latter considered precursors of idiopathic calcium stones in patients. The pathophysiology that underlies the renal calcinosis in the knockout mice are also discussed wherever information is available. Not all the knockout models are allocated equal space because some are more extensively characterized than others. Despite the inroads already made, the exact physiological underpinning, origin, evolution and fate of the papillary interstitial calcinosis in the GEMMs remain incompletely defined. Greater investigative efforts are warranted in order to pin down the precise role of the papillary interstitial calcinosis in nephrolithiasis using the existing models. Additionally, more sophisticated, second-generation GEMMs that allow gene inactivation in a time-controlled manner and “compound mice” that bear several genetic alterations are urgently needed, in light of mounting evidence that nephrolithiasis is a multifactorial, multi-stage and polygenic disease. PMID:25096800

  14. From Precaution to Peril: Public Relations Across Forty Years of Genetic Engineering.

    PubMed

    Hogan, Andrew J

    2016-12-01

    The Asilomar conference on genetic engineering in 1975 has long been pointed to by scientists as a model for internal regulation and public engagement. In 2015, the organizers of the International Summit on Human Gene Editing in Washington, DC looked to Asilomar as they sought to address the implications of the new CRISPR gene editing technique. Like at Asilomar, the conveners chose to limit the discussion to a narrow set of potential CRISPR applications, involving inheritable human genome editing. The adoption by scientists in 2015 of an Asilomar-like script for discussing genetic engineering offers historians the opportunity to analyze the adjustments that have been made since 1975, and to identify the blind spots that remain in public engagement. Scientists did take important lessons from the fallout of their limited engagement with public concerns at Asilomar. Nonetheless, the scientific community has continued to overlook some of the longstanding public concerns about genetic engineering, in particular the broad and often covert genetic modification of food products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The Current Situation and Future Prospects of International Relations in Japanese Higher Education Related Engineering Field

    NASA Astrophysics Data System (ADS)

    Taguchi, Shigenori

    With ongoing globalization, the role of higher education in developing excellent human resources who can play an active role in international society, among other things is becoming increasingly important. Recently, the international competition among higher education institutions to recruit the best and brightest students has been heating up increasingly. In this section, we present the outline of recent trend of internationalization in higher education with reference to policy of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) .

  16. Human hypertrophic and keloid scar models: principles, limitations and future challenges from a tissue engineering perspective

    PubMed Central

    van den Broek, Lenie J; Limandjaja, Grace C; Niessen, Frank B; Gibbs, Susan

    2014-01-01

    Most cutaneous wounds heal with scar formation. Ideally, an inconspicuous normotrophic scar is formed, but an abnormal scar (hypertrophic scar or keloid) can also develop. A major challenge to scientists and physicians is to prevent adverse scar formation after severe trauma (e.g. burn injury) and understand why some individuals will form adverse scars even after relatively minor injury. Currently, many different models exist to study scar formation, ranging from simple monolayer cell culture to 3D tissue-engineered models even to humanized mouse models. Currently, these high-/medium-throughput test models avoid the main questions referring to why an adverse scar forms instead of a normotrophic scar and what causes a hypertrophic scar to form rather than a keloid scar and also, how is the genetic predisposition of the individual and the immune system involved. This information is essential if we are to identify new drug targets and develop optimal strategies in the future to prevent adverse scar formation. This viewpoint review summarizes the progress on in vitro and animal scar models, stresses the limitations in the current models and identifies the future challenges if scar-free healing is to be achieved in the future. PMID:24750541

  17. Human hypertrophic and keloid scar models: principles, limitations and future challenges from a tissue engineering perspective.

    PubMed

    van den Broek, Lenie J; Limandjaja, Grace C; Niessen, Frank B; Gibbs, Susan

    2014-06-01

    Most cutaneous wounds heal with scar formation. Ideally, an inconspicuous normotrophic scar is formed, but an abnormal scar (hypertrophic scar or keloid) can also develop. A major challenge to scientists and physicians is to prevent adverse scar formation after severe trauma (e.g. burn injury) and understand why some individuals will form adverse scars even after relatively minor injury. Currently, many different models exist to study scar formation, ranging from simple monolayer cell culture to 3D tissue-engineered models even to humanized mouse models. Currently, these high-/medium-throughput test models avoid the main questions referring to why an adverse scar forms instead of a normotrophic scar and what causes a hypertrophic scar to form rather than a keloid scar and also, how is the genetic predisposition of the individual and the immune system involved. This information is essential if we are to identify new drug targets and develop optimal strategies in the future to prevent adverse scar formation. This viewpoint review summarizes the progress on in vitro and animal scar models, stresses the limitations in the current models and identifies the future challenges if scar-free healing is to be achieved in the future. © 2014 The Authors. Experimental Dermatology. Published by John Wiley & Sons Ltd.

  18. Numerical field calculations considering the human subject for engineering and safety assurance in MRI

    PubMed Central

    Collins, Christopher M.

    2010-01-01

    Numerical calculations of static, switched, and radiofrequency (RF) electromagnetic (EM) fields considering the geometry and EM properties of the human body are used increasingly in MRI to explain observed phenomena, explore the limitations of various approaches, engineer improved techniques and technology, and assure safety. As the static field strengths and RF field frequencies in MRI have increased in recent years, the value of these methods has become more pronounced and their use has become more widespread. With the recent growth in parallel reception techniques and the advent of transmit RF arrays, the utility of these calculations will become only more critical to continued progress of MRI. Proper relation of field calculation results to the MRI experiment can require significant understanding of MRI physics, EM field principles, MRI coil hardware, and EM field safety. Here some fundamental principles are reviewed and current approaches and applications are catalogued to aid the reader in finding resources valuable in beginning field calculations for their own applications in MR, with an eye to the current needs and future utility of numerical field calculations in MRI. PMID:18384179

  19. Pathway-Specific Engineered Mouse Allograft Models Functionally Recapitulate Human Serous Epithelial Ovarian Cancer

    PubMed Central

    Szabova, Ludmila; Bupp, Sujata; Kamal, Muhaymin; Householder, Deborah B.; Hernandez, Lidia; Schlomer, Jerome J.; Baran, Maureen L.; Yi, Ming; Stephens, Robert M.; Annunziata, Christina M.; Martin, Philip L.; Van Dyke, Terry A.

    2014-01-01

    The high mortality rate from ovarian cancers can be attributed to late-stage diagnosis and lack of effective treatment. Despite enormous effort to develop better targeted therapies, platinum-based chemotherapy still remains the standard of care for ovarian cancer patients, and resistance occurs at a high rate. One of the rate limiting factors for translation of new drug discoveries into clinical treatments has been the lack of suitable preclinical cancer models with high predictive value. We previously generated genetically engineered mouse (GEM) models based on perturbation of Tp53 and Rb with or without Brca1 or Brca2 that develop serous epithelial ovarian cancer (SEOC) closely resembling the human disease on histologic and molecular levels. Here, we describe an adaptation of these GEM models to orthotopic allografts that uniformly develop tumors with short latency and are ideally suited for routine preclinical studies. Ovarian tumors deficient in Brca1 respond to treatment with cisplatin and olaparib, a PARP inhibitor, whereas Brca1-wild type tumors are non-responsive to treatment, recapitulating the relative sensitivities observed in patients. These mouse models provide the opportunity for evaluation of effective therapeutics, including prediction of differential responses in Brca1-wild type and Brca1–deficient tumors and development of relevant biomarkers. PMID:24748377

  20. Baboons, like humans, solve analogy by categorical abstraction of relations.

    PubMed

    Flemming, Timothy M; Thompson, Roger K R; Fagot, Joël

    2013-05-01

    Reasoning by analogy is one of the most complex and highly adaptive cognitive processes in abstract thinking. For humans, analogical reasoning entails the judgment and conceptual mapping of relations-between-relations and is facilitated by language (Gentner in Cogn Sci 7:155-170, 1983; Premack in Thought without language, Oxford University Press, New York, 1986). Recent evidence, however, shows that monkeys like "language-trained" apes exhibit similar capacity to match relations-between-relations (Fagot and Thompson in Psychol Sci 22:1304-1309, 2011; Flemming et al. in J Exp Psychol: Anim Behav Process 37:353-360, 2011; Truppa et al. in Plos One 6(8):e23809, 2011). Whether this behavior is driven by the abstraction of categorical relations or alternatively by direct perception of variability (entropy) is crucial to the debate as to whether nonhuman animals are capable of analogical reasoning. In the current study, we presented baboons (Papio papio) and humans (Homo sapiens) with a computerized same/different relational-matching task that in principle could be solved by either strategy. Both baboons and humans produced markedly similar patterns of responding. Both species responded different when the perceptual variability of a stimulus array fell exactly between or even closer to that of a same display. Overall, these results demonstrate that categorical abstraction trumped perceptual properties and, like humans, Old World monkeys can solve the analogical matching task by judging the categorical abstract equivalence of same/different relations-between-relations.

  1. The Student Teacher and Human Relations. AST Bulletin Number 26.

    ERIC Educational Resources Information Center

    Ramsey, Irvin L.

    The student teacher must develop and incorporate into his behavior human relations skills to enable him to relate effectively to members of his classroom and of the school community. Serving as a basis for evaluation, a method of gaining the fullest satisfaction from teaching, and a prerequisite to more effective teaching, these skills are…

  2. Engineering of human hepatocyte lines for cell therapies in humans: prospects and remaining hurdles.

    PubMed

    Kobayashit, Naoya; Tanaka, Noriaki

    2002-01-01

    Hepatocyte-based biological therapies are increasingly envisioned for temporary support in acute liver failure and provision of specific-liver functions in liver-based metabolic deficiency. One of the hurdles to develop such therapies is severe shortage of human livers for hepatocyte isolation. To address the issue, we have focused on reversible immortalization of human hepatocytes. Such technology can allow rapid preparation of functional and uniform human hepatocytes. Here we present our strategy to construct transplantable human hepatocyte cell lines.

  3. Engineering of Human Hepatocyte Lines for Cell Therapies in Humans: Prospects and Remaining Hurdles.

    PubMed

    Kobayashi, Naoya; Tanaka, Noriaki

    2002-07-01

    Hepatocyte-based biological therapies are increasingly envisioned for temporary support in acute liver failure and provision of specific-liver functions in liver-based metabolic deficiency. One of the hurdles to develop such therapies is severe shortage of human livers for hepatocyte isolation. To address the issue, we have focused on reversible immortalization of human hepatocytes. Such technology can allow rapid preparation of functional and uniform human hepatocytes. Here we present our strategy to construct transplantable human hepatocyte cell lines.

  4. Vascularized subcutaneous human liver tissue from engineered hepatocyte/fibroblast sheets in mice.

    PubMed

    Sakai, Yusuke; Yamanouchi, Kosho; Ohashi, Kazuo; Koike, Makiko; Utoh, Rie; Hasegawa, Hideko; Muraoka, Izumi; Suematsu, Takashi; Soyama, Akihiko; Hidaka, Masaaki; Takatsuki, Mitsuhisa; Kuroki, Tamotsu; Eguchi, Susumu

    2015-10-01

    Subcutaneous liver tissue engineering is an attractive and minimally invasive approach used to curative treat hepatic failure and inherited liver diseases. However, graft failure occurs frequently due to insufficient infiltration of blood vessels (neoangiogenesis), while the maintenance of hepatocyte phenotype and function requires in vivo development of the complex cellular organization of the hepatic lobule. Here we describe a subcutaneous human liver construction allowing for rapidly vascularized grafts by transplanting engineered cellular sheets consisting of human primary hepatocytes adhered onto a fibroblast layer. The engineered hepatocyte/fibroblast sheets (EHFSs) showed superior expression levels of vascularization-associated growth factors (vascular endothelial growth factor, transforming growth factor beta 1, and hepatocyte growth factor) in vitro. EHFSs developed into vascularized subcutaneous human liver tissues contained glycogen stores, synthesized coagulation factor IX, and showed significantly higher synthesis rates of liver-specific proteins (albumin and alpha 1 anti-trypsin) in vivo than tissues from hepatocyte-only sheets. The present study describes a new approach for vascularized human liver organogenesis under mouse skin. This approach could prove valuable for establishing novel cell therapies for liver diseases.

  5. Human and mouse tissue-engineered small intestine both demonstrate digestive and absorptive function.

    PubMed

    Grant, Christa N; Mojica, Salvador Garcia; Sala, Frederic G; Hill, J Ryan; Levin, Daniel E; Speer, Allison L; Barthel, Erik R; Shimada, Hiroyuki; Zachos, Nicholas C; Grikscheit, Tracy C

    2015-04-15

    Short bowel syndrome (SBS) is a devastating condition in which insufficient small intestinal surface area results in malnutrition and dependence on intravenous parenteral nutrition. There is an increasing incidence of SBS, particularly in premature babies and newborns with congenital intestinal anomalies. Tissue-engineered small intestine (TESI) offers a therapeutic alternative to the current standard treatment, intestinal transplantation, and has the potential to solve its biggest challenges, namely donor shortage and life-long immunosuppression. We have previously demonstrated that TESI can be generated from mouse and human small intestine and histologically replicates key components of native intestine. We hypothesized that TESI also recapitulates native small intestine function. Organoid units were generated from mouse or human donor intestine and implanted into genetically identical or immunodeficient host mice. After 4 wk, TESI was harvested and either fixed and paraffin embedded or immediately subjected to assays to illustrate function. We demonstrated that both mouse and human tissue-engineered small intestine grew into an appropriately polarized sphere of intact epithelium facing a lumen, contiguous with supporting mesenchyme, muscle, and stem/progenitor cells. The epithelium demonstrated major ultrastructural components, including tight junctions and microvilli, transporters, and functional brush-border and digestive enzymes. This study demonstrates that tissue-engineered small intestine possesses a well-differentiated epithelium with intact ion transporters/channels, functional brush-border enzymes, and similar ultrastructural components to native tissue, including progenitor cells, whether derived from mouse or human cells.

  6. Comparison of therapeutic antibiotic treatments on tissue-engineered human skin substitutes.

    PubMed

    Gibson, Angela L; Schurr, Michael J; Schlosser, Sandy J; Comer, Allen R; Allen-Hoffmann, B Lynn

    2008-05-01

    For regenerative medicine to gain clinical acceptance, the effects of commonly used treatment regimens on bioengineered organs must be considered. The antibiotics mafenide acetate (mafenide) and neomycin plus polymyxin (neo/poly) are routinely used to irrigate postoperative skin grafts on contaminated wounds. The effects of these clinically used antibiotics were investigated using tissue-engineered human skin substitutes generated with primary human keratinocytes or the near-diploid human keratinocyte cell line, Near-diploid Immortal Keratinocytes. Following topical or dermal treatment, the skin substitutes were assayed for viability, tissue morphology, glycogen content, and the expression of active caspase 3. Mafenide, but not neo/poly, induced morphological and biochemical changes in tissue-engineered skin substitutes. Keratinocytes in all histological layers of mafenide-treated skin substitutes exhibited ballooning degeneration and glycogen depletion. Mafenide-treatment also triggered separation of basal keratinocytes from the underlying dermis. None of the antibiotic treatments induced apoptosis, as measured by active caspase 3 immunostaining. The results demonstrate that mafenide, but not neo/poly, is detrimental to the viability and structural integrity of tissue-engineered human skin substitutes. These findings highlight the need to identify treatment regimens that are compatible with and hence enable the therapeutic efficacy of first-generation bioengineered organs such as skin.

  7. Human Factors Engineering and Ergonomics Analysis for the Canister Storage Building (CSB) Results and Findings

    SciTech Connect

    GARVIN, L.J.

    1999-09-20

    The purpose for this supplemental report is to follow-up and update the information in SNF-3907, Human Factors Engineering (HFE) Analysis: Results and Findings. This supplemental report responds to applicable U.S. Department of Energy Safety Analysis Report review team comments and questions. This Human Factors Engineering and Ergonomics (HFE/Erg) analysis was conducted from April 1999 to July 1999; SNF-3907 was based on analyses accomplished in October 1998. The HFE/Erg findings presented in this report and SNF-3907, along with the results of HNF-3553, Spent Nuclear Fuel Project, Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report,'' Chapter A3.0, ''Hazards and Accidents Analyses,'' provide the technical basis for preparing or updating HNF-3553. Annex A, Chaptex A13.0, ''Human Factors Engineering.'' The findings presented in this report allow the HNF-3553 Chapter 13.0, ''Human Factors,'' to respond fully to the HFE requirements established in DOE Order 5480.23, Nuclear Safety Analysis Reports.

  8. Enzymatic cross-linking of human recombinant elastin (HELP) as biomimetic approach in vascular tissue engineering.

    PubMed

    Bozzini, Sabrina; Giuliano, Liliana; Altomare, Lina; Petrini, Paola; Bandiera, Antonella; Conconi, Maria Teresa; Farè, Silvia; Tanzi, Maria Cristina

    2011-12-01

    The use of polymers naturally occurring in the extracellular matrix (ECM) is a promising strategy in regenerative medicine. If compared to natural ECM proteins, proteins obtained by recombinant DNA technology have intrinsic advantages including reproducible macromolecular composition, sequence and molecular mass, and overcoming the potential pathogens transmission related to polymers of animal origin. Among ECM-mimicking materials, the family of recombinant elastin-like polymers is proposed for drug delivery applications and for the repair of damaged elastic tissues. This work aims to evaluate the potentiality of a recombinant human elastin-like polypeptide (HELP) as a base material of cross-linked matrices for regenerative medicine. The cross-linking of HELP was accomplished by the insertion of cross-linking sites, glutamine and lysine, in the recombinant polymer and generating ε-(γ-glutamyl) lysine links through the enzyme transglutaminase. The cross-linking efficacy was estimated by infrared spectroscopy. Freeze-dried cross-linked matrices showed swelling ratios in deionized water (≈2500%) with good structural stability up to 24 h. Mechanical compression tests, performed at 37°C in wet conditions, in a frequency sweep mode, indicated a storage modulus of 2/3 kPa, with no significant changes when increasing number of cycles or frequency. These results demonstrate the possibility to obtain mechanically resistant hydrogels via enzymatic crosslinking of HELP. Cytotoxicity tests of cross-linked HELP were performed with human umbilical vein endothelial cells, by use of transwell filter chambers for 1-7 days, or with its extracts in the opportune culture medium for 24 h. In both cases no cytotoxic effects were observed in comparison with the control cultures. On the whole, the results suggest the potentiality of this genetically engineered HELP for regenerative medicine applications, particularly for vascular tissue regeneration.

  9. Collagen in Human Tissues: Structure, Function, and Biomedical Implications from a Tissue Engineering Perspective

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Preethi; Prabhakaran, Molamma P.; Sireesha, Merum; Ramakrishna, Seeram

    The extracellular matrix is a complex biological structure encoded with various proteins, among which the collagen family is the most significant and abundant of all, contributing 30-35% of the whole-body protein. "Collagen" is a generic term for proteins that forms a triple-helical structure with three polypeptide chains, and around 29 types of collagen have been identified up to now. Although most of the members of the collagen family form such supramolecular structures, extensive diversity exists between each type of collagen. The diversity is not only based on the molecular assembly and supramolecular structures of collagen types but is also observed within its tissue distribution, function, and pathology. Collagens possess complex hierarchical structures and are present in various forms such as collagen fibrils (1.5-3.5 nm wide), collagen fibers (50-70 nm wide), and collagen bundles (150-250 nm wide), with distinct properties characteristic of each tissue providing elasticity to skin, softness of the cartilage, stiffness of the bone and tendon, transparency of the cornea, opaqueness of the sclera, etc. There exists an exclusive relation between the structural features of collagen in human tissues (such as the collagen composition, collagen fibril length and diameter, collagen distribution, and collagen fiber orientation) and its tissue-specific mechanical properties. In bone, a transverse collagen fiber orientation prevails in regions of higher compressive stress whereas longitudinally oriented collagen fibers correlate to higher tensile stress. The immense versatility of collagen compels a thorough understanding of the collagen types and this review discusses the major types of collagen found in different human tissues, highlighting their tissue-specific uniqueness based on their structure and mechanical function. The changes in collagen during a specific tissue damage or injury are discussed further, focusing on the many tissue engineering applications for

  10. The Case for Applying Tissue Engineering Methodologies to Instruct Human Organoid Morphogenesis.

    PubMed

    Marti-Figueroa, Carlos R; Ashton, Randolph S

    2017-03-15

    Three-dimensional organoids derived from human pluripotent stem cell (hPSC) derivatives have become widely used in vitro models for studying development and disease. Their ability to recapitulate facets of normal human development during in vitro morphogenesis produces tissue structures with unprecedented biomimicry. Current organoid derivation protocols primarily rely on spontaneous morphogenesis processes to occur within 3-D spherical cell aggregates with minimal to no exogenous control. This yields organoids containing microscale regions of biomimetic tissues, but at the macroscale (i.e. 100's of microns to millimeters), the organoids' morphology, cytoarchitecture, and cellular composition are non-biomimetic and variable. The current lack of control over in vitro organoid morphogenesis at the microscale induces aberrations at the macroscale, which impedes realization of the technology's potential to reproducibly form anatomically correct human tissue units that could serve as optimal human in vitro models and even transplants. Here, we review tissue engineering methodologies that could be used to develop powerful approaches for instructing multiscale, 3-D human organoid morphogenesis. Such technological mergers are critically needed to harness organoid morphogenesis as a tool for engineering functional human tissues with biomimetic anatomy and physiology.

  11. Professional and veterinary competencies: addressing human relations and the human-animal bond in veterinary medicine.

    PubMed

    Adams, Cindy L; Conlon, Peter D; Long, Kendra C

    2004-01-01

    The purpose of this study was to determine the nature and degree of coverage of human relations and the human-animal bond in veterinary curricula across North America. The attitudes and opinions of a cohort of veterinary students and alumni about human relations skills and human-animal bond training in the veterinary program was also investigated. Twenty veterinary schools across North America were contacted and data were collected regarding their coverage of human relations and the human-animal bond in the curriculum. A survey was developed to measure attitudes and opinions about this type of training. The survey was disseminated to students in years 1 to 4 and alumni from the Ontario Veterinary College (OVC). Data were analyzed descriptively. Based on availability of contact people, 20 schools in North America were contacted, and all participated in the study. Each of the veterinary schools surveyed has incorporated strategies for teaching human relations skills through required courses, electives, guest speakers, and/or community service programs. The overall participation rate for OVC students was 53%. Ninety-nine percent of all students surveyed agreed that their ability to deal with people using effective human relations skills was a concern, and all students said they would like to receive more training in this area. There was a 41% participation rate for OVC alumni. Fifty-five percent of alumni said they had learned enough in the veterinary program to employ effective human relations skills in practice, yet 65% felt they had not received enough instruction in addressing the human-animal bond specifically. It is apparent that veterinary schools recognize the need to prepare entry-level practitioners to deal with the human-animal bond and with human relations. It is also evident that students and practitioners value receiving information of this nature in the curriculum and desire further training. Specific learning objectives for veterinary curricula have

  12. Tissue engineering of human nasal alar cartilage precisely by using three-dimensional printing.

    PubMed

    Xu, Yihao; Fan, Fei; Kang, Ning; Wang, Sheng; You, Jianjun; Wang, Huan; Zhang, Bo

    2015-02-01

    Tissue engineering strategies hold promise for the restoration of damaged cartilage. However, the results of most studies report irregularly shaped beads of cartilage, which are not precise enough. Thus, a precise shape of cartilage graft must be taken into consideration. The goal of this study was to develop a simple method of creating a precisely predetermined nasal alar shape with the aid of three-dimensional printing. Lower lateral cartilage from cadavers was observed and scanned by computed tomography. Molds of the lower lateral cartilage were achieved by using three-dimensional printing. Human nasal cartilage was obtained and chondrocytes were harvested. Then, the mixture of cells and poly(glycolic acid)/poly-L-lactic acid was cultured in vitro and implanted into the subcutaneous tissue of nude mice. After subcutaneous implantation, the length and width of the samples were measured, and the results were not statistically significantly different from the native lower lateral cartilage (p > 0.05). Their thickness was measured and the results were statistically different from the native lower lateral cartilage (p < 0.05). Histologic examination of the engineered constructs revealed that both the cell and tissue morphologic features of engineered cartilage were similar to those of native lower lateral cartilage. The biomechanical properties of the engineered cartilage exceeded those of native cartilage. This study demonstrates that three-dimensional printing-aided tissue engineering can achieve precise three-dimensional shapes of human nasal alar cartilage. To our knowledge, this is the first reported creation of a precise nasal alar cartilage with a tissue-engineering strategy and three-dimensional printing technique.

  13. Computational human factors in human-machine engineering - The Army-NASA aircrew/aircraft integration (A3I) program

    NASA Technical Reports Server (NTRS)

    Hartzell, E. James; Lakowske, Stephen

    1988-01-01

    The A3I program is a joint US Army-NASA exploratory program to develop a rational predictive methodology for helicopter cockpit system design, including mission requirements and training-system implications, that integrates human factors engineering with other vehicle system design disciplines at an early stage in the development process. The program will produce a prototye human factors/computer-aided engineering (HF/CAE) workstation suite for use by design professionals. This interactive environment will include computational and expert systems for the analysis and estimation of the impact of cockpit design and mission specification on system performance by considering the performance consequences from the human component of the system, especially as an integral part of the overall system operation, and from the very beginning of the design process. The central issues of pilot workload, performance, and training needs, and appropriate uses of automation are interrelated to affect all integrated design considerations in future man-machine systems. The goal is to aid designers in understanding these complex interactions and in optimally matching human capabilities with advanced cockpit systems.

  14. Computational human factors in human-machine engineering - The Army-NASA aircrew/aircraft integration (A3I) program

    NASA Technical Reports Server (NTRS)

    Hartzell, E. James; Lakowske, Stephen

    1988-01-01

    The A3I program is a joint US Army-NASA exploratory program to develop a rational predictive methodology for helicopter cockpit system design, including mission requirements and training-system implications, that integrates human factors engineering with other vehicle system design disciplines at an early stage in the development process. The program will produce a prototye human factors/computer-aided engineering (HF/CAE) workstation suite for use by design professionals. This interactive environment will include computational and expert systems for the analysis and estimation of the impact of cockpit design and mission specification on system performance by considering the performance consequences from the human component of the system, especially as an integral part of the overall system operation, and from the very beginning of the design process. The central issues of pilot workload, performance, and training needs, and appropriate uses of automation are interrelated to affect all integrated design considerations in future man-machine systems. The goal is to aid designers in understanding these complex interactions and in optimally matching human capabilities with advanced cockpit systems.

  15. Examination of engineering design teacher self-efficacy and knowledge base in secondary technology education and engineering-related courses

    NASA Astrophysics Data System (ADS)

    Vessel, Kanika Nicole

    2011-12-01

    There is an increasing demand for individuals with engineering education and skills of varying fields in everyday life. With the proper education students of high-needs schools can help meet the demand for a highly skilled and educated workforce. Researchers have assumed the supply and demand has not been met within the engineering workforce as a result of students' collegiate educational experiences, which are impacted by experiences in K-12 education. Although factors outside of the classroom contribute to the inability of universities to meet the increasing demand for the engineering workforce, most noted by researchers is the academic unpreparedness of freshman engineering students. The unpreparedness of entering freshman engineering students is a result of K-12 classroom experiences. This draws attention not only to the quality and competence of teachers present in the K-12 classroom, but the type of engineering instruction these students are receiving. This paper was an effort to systematically address one of the more direct and immediate factors impacting freshman engineering candidates, the quality of secondary engineering educators. Engineers develop new ideas using the engineering design process, which is taught at the collegiate level, and has been argued to be the best approach to teach technological literacy to all K-12 students. However, it is of importance to investigate whether technology educators have the knowledge and understanding of engineering design, how to transfer that knowledge in the classroom to students through instructional strategies, and their perception of their ability to do that. Therefore, the purpose of this study is to show the need for examining the degree to which technology and non-technology educators are implementing elements of engineering design in the curriculum.

  16. Tissue engineering potential of human dermis-isolated adult stem cells from multiple anatomical locations

    PubMed Central

    Brown, Wendy E.; Vapniarsky, Natalia; Paschos, Nikolaos K.; Arzi, Boaz; Hu, Jerry C.

    2017-01-01

    Abundance and accessibility render skin-derived stem cells an attractive cell source for tissue engineering applications. Toward assessing their utility, the variability of constructs engineered from human dermis-isolated adult stem (hDIAS) cells was examined with respect to different anatomical locations (foreskin, breast, and abdominal skin), both in vitro and in a subcutaneous, athymic mouse model. All anatomical locations yielded hDIAS cells with multi-lineage differentiation potentials, though adipogenesis was not seen for foreskin-derived hDIAS cells. Using engineered cartilage as a model, tissue engineered constructs from hDIAS cells were compared. Construct morphology differed by location. The mechanical properties of human foreskin- and abdominal skin-derived constructs were similar at implantation, remaining comparable after 4 additional weeks of culture in vivo. Breast skin-derived constructs were not mechanically testable. For all groups, no signs of abnormality were observed in the host. Addition of aggregate redifferentiation culture prior to construct formation improved chondrogenic differentiation of foreskin-derived hDIAS cells, as evident by increases in glycosaminoglycan and collagen contents. More robust Alcian blue staining and homogeneous cell populations were also observed compared to controls. Human DIAS cells elicited no adverse host responses, reacted positively to chondrogenic regimens, and possessed multi-lineage differentiation potential with the caveat that efficacy may differ by anatomical origin of the skin. Taken together, these results suggest that hDIAS cells hold promise as a potential cell source for a number of tissue engineering applications. PMID:28767737

  17. Antinociceptive Effect of Intrathecal Injection of Genetically Engineered Human Bone Marrow Stem Cells Expressing the Human Proenkephalin Gene in a Rat Model of Bone Cancer Pain

    PubMed Central

    Tian, Yuke; Li, Haifeng; Zhang, Dengwen; Sun, Qiang

    2017-01-01

    Background. This study aimed to investigate the use of human bone marrow mesenchymal stem cells (hBMSCs) genetically engineered with the human proenkephalin (hPPE) gene to treat bone cancer pain (BCP) in a rat model. Methods. Primary cultured hBMSCs were passaged and modified with hPPE, and the cell suspensions (6 × 106) were then intrathecally injected into a rat model of BCP. Paw mechanical withdrawal threshold (PMWT) was measured before and after BCP. The effects of hPPE gene transfer on hBMSC bioactivity were analyzed in vitro and in vivo. Results. No changes were observed in the surface phenotypes and differentiation of hBMSCs after gene transfer. The hPPE-hBMSC group showed improved PMWT values on the ipsilateral side of rats with BCP from day 12 postoperatively, and the analgesic effect was reversed by naloxone. The levels of proinflammatory cytokines such as IL-1β and IL-6 were ameliorated, and leucine-enkephalin (L-EK) secretion was augmented, in the hPPE-engineered hBMSC group. Conclusion. The intrathecal administration of BMSCs modified with the hPPE gene can effectively relieve pain caused by bone cancer in rats and might be a potentially therapeutic tool for cancer-related pain in humans. PMID:28286408

  18. Human factors engineering in healthcare systems: the problem of human error and accident management.

    PubMed

    Cacciabue, P C; Vella, G

    2010-04-01

    This paper discusses some crucial issues associated with the exploitation of data and information about health care for the improvement of patient safety. In particular, the issues of human factors and safety management are analysed in relation to exploitation of reports about non-conformity events and field observations. A methodology for integrating field observation and theoretical approaches for safety studies is described. Two sample cases are discussed in detail: the first one makes reference to the use of data collected in the aviation domain and shows how these can be utilised to define hazard and risk; the second one concerns a typical ethnographic study in a large hospital structure for the identification of most relevant areas of intervention. The results show that, if national authorities find a way to harmonise and formalize critical aspects, such as the severity of standard events, it is possible to estimate risk and define auditing needs, well before the occurrence of serious incidents, and to indicate practical ways forward for improving safety standards. (c) 2008. Published by Elsevier Ireland Ltd. All rights reserved.

  19. A systems engineering perspective on the human-centered design of health information systems.

    PubMed

    Samaras, George M; Horst, Richard L

    2005-02-01

    The discipline of systems engineering, over the past five decades, has used a structured systematic approach to managing the "cradle to grave" development of products and processes. While elements of this approach are typically used to guide the development of information systems that instantiate a significant user interface, it appears to be rare for the entire process to be implemented. In fact, a number of authors have put forth development lifecycle models that are subsets of the classical systems engineering method, but fail to include steps such as incremental hazard analysis and post-deployment corrective and preventative actions. In that most health information systems have safety implications, we argue that the design and development of such systems would benefit by implementing this systems engineering approach in full. Particularly with regard to bringing a human-centered perspective to the formulation of system requirements and the configuration of effective user interfaces, this classical systems engineering method provides an excellent framework for incorporating human factors (ergonomics) knowledge and integrating ergonomists in the interdisciplinary development of health information systems.

  20. Three-Dimensionally Engineered Normal Human Lung Tissue-Like Assemblies: Target Tissues for Human Respiratory Viral Infections

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J.; McCarthy, M.; Lin, Y-H.; Deatly, A. M.

    2008-01-01

    In vitro three-dimensional (3D) human lung epithelio-mesenchymal tissue-like assemblies (3D hLEM TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and the detection of membrane bound glycoproteins over time confirm productive infection with the virus. Therefore, we assert TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host s immune system.

  1. Three-Dimensionally Engineered Normal Human Broncho-epithelial Tissue-Like Assemblies: Target Tissues for Human Respiratory Viral Infections

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; McCarthy, M.; Lin, Y-H

    2006-01-01

    In vitro three-dimensional (3D) human broncho-epithelial (HBE) tissue-like assemblies (3D HBE TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and parainfluenza virus type 3 (wtPIV3 JS) and the detection of membrane bound glycoproteins over time confirm productive infections with both viruses. Therefore, TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host's immune system.

  2. Three-Dimensionally Engineered Normal Human Broncho-epithelial Tissue-Like Assemblies: Target Tissues for Human Respiratory Viral Infections

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; McCarthy, M.; Lin, Y-H

    2006-01-01

    In vitro three-dimensional (3D) human broncho-epithelial (HBE) tissue-like assemblies (3D HBE TLAs) from this point forward referred to as TLAs were engineered in Rotating Wall Vessel (RWV) technology to mimic the characteristics of in vivo tissues thus providing a tool to study human respiratory viruses and host cell interactions. The TLAs were bioengineered onto collagen-coated cyclodextran microcarriers using primary human mesenchymal bronchial-tracheal cells (HBTC) as the foundation matrix and an adult human bronchial epithelial immortalized cell line (BEAS-2B) as the overlying component. The resulting TLAs share significant characteristics with in vivo human respiratory epithelium including polarization, tight junctions, desmosomes, and microvilli. The presence of tissue-like differentiation markers including villin, keratins, and specific lung epithelium markers, as well as the production of tissue mucin, further confirm these TLAs differentiated into tissues functionally similar to in vivo tissues. Increasing virus titers for human respiratory syncytial virus (wtRSVA2) and parainfluenza virus type 3 (wtPIV3 JS) and the detection of membrane bound glycoproteins over time confirm productive infections with both viruses. Therefore, TLAs mimic aspects of the human respiratory epithelium and provide a unique capability to study the interactions of respiratory viruses and their primary target tissue independent of the host's immune system.

  3. Nature and biosynthesis of galacto-oligosaccharides related to oligosaccharides in human breast milk

    PubMed Central

    Intanon, Montira; Arreola, Sheryl Lozel; Pham, Ngoc Hung; Kneifel, Wolfgang; Haltrich, Dietmar; Nguyen, Thu-Ha

    2014-01-01

    Human milk oligosaccharides (HMO) are prominent among the functional components of human breast milk. While HMO have potential applications in both infants and adults, this potential is limited by the difficulties in manufacturing these complex structures. Consequently, functional alternatives such as galacto-oligosaccharides are under investigation, and nowadays, infant formulae are supplemented with galacto-oligosaccharides to mimic the biological effects of HMO. Recently, approaches toward the production of defined human milk oligosaccharide structures using microbial, fermentative methods employing single, appropriately engineered microorganisms were introduced. Furthermore, galactose-containing hetero-oligosaccharides have attracted an increasing amount of attention because they are structurally more closely related to HMO. The synthesis of these novel oligosaccharides, which resemble the core of HMO, is of great interest for applications in the food industry. PMID:24571717

  4. Engineering and commercialization of human-device interfaces, from bone to brain.

    PubMed

    Knothe Tate, Melissa L; Detamore, Michael; Capadona, Jeffrey R; Woolley, Andrew; Knothe, Ulf

    2016-07-01

    Cutting edge developments in engineering of tissues, implants and devices allow for guidance and control of specific physiological structure-function relationships. Yet the engineering of functionally appropriate human-device interfaces represents an intractable challenge in the field. This leading opinion review outlines a set of current approaches as well as hurdles to design of interfaces that modulate transfer of information, i.a. forces, electrical potentials, chemical gradients and haptotactic paths, between endogenous and engineered body parts or tissues. The compendium is designed to bridge across currently separated disciplines by highlighting specific commonalities between seemingly disparate systems, e.g. musculoskeletal and nervous systems. We focus on specific examples from our own laboratories, demonstrating that the seemingly disparate musculoskeletal and nervous systems share common paradigms which can be harnessed to inspire innovative interface design solutions. Functional barrier interfaces that control molecular and biophysical traffic between tissue compartments of joints are addressed in an example of the knee. Furthermore, we describe the engineering of gradients for interfaces between endogenous and engineered tissues as well as between electrodes that physically and electrochemically couple the nervous and musculoskeletal systems. Finally, to promote translation of newly developed technologies into products, protocols, and treatments that benefit the patients who need them most, regulatory and technical challenges and opportunities are addressed on hand from an example of an implant cum delivery device that can be used to heal soft and hard tissues, from brain to bone. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  5. Concise Review: Human Dermis as an Autologous Source of Stem Cells for Tissue Engineering and Regenerative Medicine

    PubMed Central

    Vapniarsky, Natalia; Arzi, Boaz; Hu, Jerry C.; Nolta, Jan A.

    2015-01-01

    The exciting potential for regenerating organs from autologous stem cells is on the near horizon, and adult dermis stem cells (DSCs) are particularly appealing because of the ease and relative minimal invasiveness of skin collection. A substantial number of reports have described DSCs and their potential for regenerating tissues from mesenchymal, ectodermal, and endodermal lineages; however, the exact niches of these stem cells in various skin types and their antigenic surface makeup are not yet clearly defined. The multilineage potential of DSCs appears to be similar, despite great variability in isolation and in vitro propagation methods. Despite this great potential, only limited amounts of tissues and clinical applications for organ regeneration have been developed from DSCs. This review summarizes the literature on DSCs regarding their niches and the specific markers they express. The concept of the niches and the differentiation capacity of cells residing in them along particular lineages is discussed. Furthermore, the advantages and disadvantages of widely used methods to demonstrate lineage differentiation are considered. In addition, safety considerations and the most recent advancements in the field of tissue engineering and regeneration using DSCs are discussed. This review concludes with thoughts on how to prospectively approach engineering of tissues and organ regeneration using DSCs. Our expectation is that implementation of the major points highlighted in this review will lead to major advancements in the fields of regenerative medicine and tissue engineering. Significance Autologous dermis-derived stem cells are generating great excitement and efforts in the field of regenerative medicine and tissue engineering. The substantial impact of this review lies in its critical coverage of the available literature and in providing insight regarding niches, characteristics, and isolation methods of stem cells derived from the human dermis. Furthermore, it

  6. Concise Review: Human Dermis as an Autologous Source of Stem Cells for Tissue Engineering and Regenerative Medicine.

    PubMed

    Vapniarsky, Natalia; Arzi, Boaz; Hu, Jerry C; Nolta, Jan A; Athanasiou, Kyriacos A

    2015-10-01

    The exciting potential for regenerating organs from autologous stem cells is on the near horizon, and adult dermis stem cells (DSCs) are particularly appealing because of the ease and relative minimal invasiveness of skin collection. A substantial number of reports have described DSCs and their potential for regenerating tissues from mesenchymal, ectodermal, and endodermal lineages; however, the exact niches of these stem cells in various skin types and their antigenic surface makeup are not yet clearly defined. The multilineage potential of DSCs appears to be similar, despite great variability in isolation and in vitro propagation methods. Despite this great potential, only limited amounts of tissues and clinical applications for organ regeneration have been developed from DSCs. This review summarizes the literature on DSCs regarding their niches and the specific markers they express. The concept of the niches and the differentiation capacity of cells residing in them along particular lineages is discussed. Furthermore, the advantages and disadvantages of widely used methods to demonstrate lineage differentiation are considered. In addition, safety considerations and the most recent advancements in the field of tissue engineering and regeneration using DSCs are discussed. This review concludes with thoughts on how to prospectively approach engineering of tissues and organ regeneration using DSCs. Our expectation is that implementation of the major points highlighted in this review will lead to major advancements in the fields of regenerative medicine and tissue engineering. Autologous dermis-derived stem cells are generating great excitement and efforts in the field of regenerative medicine and tissue engineering. The substantial impact of this review lies in its critical coverage of the available literature and in providing insight regarding niches, characteristics, and isolation methods of stem cells derived from the human dermis. Furthermore, it provides

  7. Recommendations to the NRC on human engineering guidelines for nuclear power plant maintainability

    SciTech Connect

    Badalamente, R.V.; Fecht, B.A.; Blahnik, D.E.; Eklund, J.D.; Hartley, C.S.

    1986-03-01

    This document contains human engineering guidelines which can enhance the maintainability of nuclear power plants. The guidelines have been derived from general human engineering design principles, criteria, and data. The guidelines may be applied to existing plants as well as to plants under construction. They apply to nuclear power plant systems, equipment and facilities, as well as to maintenance tools and equipment. The guidelines are grouped into seven categories: accessibility and workspace, physical environment, loads and forces, maintenance facilities, maintenance tools and equipment, operating equipment design, and information needs. Each chapter of the document details specific maintainability problems encountered at nuclear power plants, the safety impact of these problems, and the specific maintainability design guidelines whose application can serve to avoid these problems in new or existing plants.

  8. Human factors engineering design review acceptance criteria for the safety parameter display

    SciTech Connect

    McGevna, V.; Peterson, L.R.

    1981-10-02

    This report contains human factors engineering design review acceptance criteria developed by the Human Factors Engineering Branch (HFEB) of the Nuclear Regulatory Commission (NRC) to use in evaluating designs of the Safety Parameter Display System (SPDS). These criteria were developed in response to the functional design criteria for the SPDS defined in NUREG-0696, Functional Criteria for Emergency Response Facilities. The purpose of this report is to identify design review acceptance criteria for the SPDS installed in the control room of a nuclear power plant. Use of computer driven cathode ray tube (CRT) displays is anticipated. General acceptance criteria for displays of plant safety status information by the SPDS are developed. In addition, specific SPDS review criteria corresponding to the SPDS functional criteria specified in NUREG-0696 are established.

  9. US Army Human Engineering Laboratory Communications Survey-A Pilot Study (HELCOMS-PS).

    DTIC Science & Technology

    1984-11-01

    AD-Ai5i 434 US ARMY HUMAN ENGINEERING LABORATORY COMMUNICATIONS i/I. SURVEY-A PILOT STUDY (HELCOMS- PS )(U) RRMAMENT SYSTEMS INC ABERDEEN ND R M PHELPS...P gITT)Y ( HIE1JY)i1- PS S VtW A 1 ,’ ii ’ M TT))’ jn kj I DTI itprov, f or ’ , 1 19𔃿 , ’t r ih),I t ni-til re m l " U. S. ARMY HUMAN ENGINEERING...Final % VE-A P {1,0T STUDY (HEI :OMS- PS ) Y PERFORMING ORG. REPORT N, MREIR 7 A 8 CONTRACT OR GRANT NUMHLFP-,|j1 ,I (ell 𔃻. Phelps ( eorfi- A. Kupets, Sr

  10. [Relation between radiation safety criteria of human and the environment].

    PubMed

    Kazakov, S V; Utkin, S S

    2008-01-01

    System approach is used for developing of procedures of complex radiation safety of human and the environment. Relation between radiation safety criteria of human and the environment is considered by the example of different strategies of water bodies using. It is demonstrated that as to water bodies (though the methodology and conclusions are correct to terrestrial ecosystems too) observance of human radiation safety standards on condition that environment resources are used unrestrictedly (considering radiation factor) is necessary and sufficient to protection of objects of the environment. It allows reaching compromise between anthropocentric and ecological approaches to radiation protection of the environment from general biospheric principles.

  11. Superior In vivo Transduction of Human Hepatocytes Using Engineered AAV3 Capsid.

    PubMed

    Vercauteren, Koen; Hoffman, Brad E; Zolotukhin, Irene; Keeler, Geoffrey D; Xiao, Jing W; Basner-Tschakarjan, Etiena; High, Katherine A; Ertl, Hildegund Cj; Rice, Charles M; Srivastava, Arun; de Jong, Ype P; Herzog, Roland W

    2016-06-01

    Adeno-associated viral (AAV) vectors are currently being tested in multiple clinical trials for liver-directed gene transfer to treat the bleeding disorders hemophilia A and B and metabolic disorders. The optimal viral capsid for transduction of human hepatocytes has been under active investigation, but results across various models are inconsistent. We tested in vivo transduction in "humanized" mice. Methods to quantitate percent AAV transduced human and murine hepatocytes in chimeric livers were optimized using flow cytometry and confocal microscopy with image analysis. Distinct transduction efficiencies were noted following peripheral vein administration of a self-complementary vector expressing a gfp reporter gene. An engineered AAV3 capsid with two amino acid changes, S663V+T492V (AAV3-ST), showed best efficiency for human hepatocytes (~3-times, ~8-times, and ~80-times higher than for AAV9, AAV8, and AAV5, respectively). AAV5, 8, and 9 were more efficient in transducing murine than human hepatocytes. AAV8 yielded the highest transduction rate of murine hepatocytes, which was 19-times higher than that for human hepatocytes. In summary, our data show substantial differences among AAV serotypes in transduction of human and mouse hepatocytes, are the first to report on AAV5 in humanized mice, and support the use of AAV3-based vectors for human liver gene transfer.

  12. Engineer’s Guide to the Use of Human Resources in Electronic System Design: an Evaluation.

    DTIC Science & Technology

    1980-11-01

    AD-A093 539 ANACAPA SCIENCES INC SANTA BARBARA CA F6 /5 ENGINEER’S GUIDE TO THE USE OF HUMAN RESOURCES 7N ELECTRONC ST ETC(U) 0 NOV 80 R A DICK, E A...Anacapa Sciences , Inc. in support of Navy Decision aooroinating -paper 1 -PN, subprojectZll77-PN.05, Reducing Manpower Costs Through Better System...operators and maintainers for sophisticated shipboard electronic systems. Manpower problems in operating and maintaining these systems are widely

  13. Enhancing healthcare process design with human factors engineering and reliability science, part 1: setting the context.

    PubMed

    Boston-Fleischhauer, Carol

    2008-01-01

    The design and implementation of efficient, effective, and safe processes are never-ending challenges in healthcare. Less than optimal performance levels and rising concerns about patient safety suggest that traditional process design methods are insufficient to meet design requirements. In this 2-part series, the author presents human factors engineering and reliability science as important knowledge to enhance existing operational and clinical process design methods in healthcare. An examination of these theories, application approaches, and examples are presented.

  14. Engineering Safety- and Security-Related Requirements for Software-Intensive Systems

    DTIC Science & Technology

    2007-05-31

    touchdown sensor behavior • Therac – 25 Radiation Therapy Machine — Timing of unusual input sequence results in unexpected output • Patriot Missile...attack. 25 Engineering Safety- & Security-Related Requirements Donald Firesmith, 31 May 2007 © 2007 Carnegie Mellon University Use Case, Use Case Path...be no greater than 25 mm (1.0 in.) and the height of the vehicle floor shall be within plus/minus 12 mm (0.5 in.) of the platform height under all

  15. Glycosaminoglycans in the Human Cornea: Age-Related Changes

    PubMed Central

    Pacella, Elena; Pacella, Fernanda; De Paolis, Giulio; Parisella, Francesca Romana; Turchetti, Paolo; Anello, Giulia; Cavallotti, Carlo

    2015-01-01

    AIM To investigate possible age-related changes in glycosaminoglycans (GAGs) in the human cornea. The substances today called GAGs were previously referred to as mucopolysaccharides. METHODS Samples of human cornea were taken from 12 younger (age 21 ± 1.2) and 12 older (age 72 ± 1.6) male subjects. Samples were weighed, homogenized, and used for biochemical and molecular analyses. All the quantitative results were statistically analyzed. RESULTS The human cornea appears to undergo age-related changes, as evidenced by our biochemical and molecular results. The total GAG and hyaluronic acid counts were significantly higher in the younger subjects than in the older subjects. The sulfated heavy GAGs, such as chondroitin, dermatan, keratan, and heparan sulfate, were lower in the younger subjects than in the older subjects. DISCUSSION GAGs of the human cornea undergo numerous age-related changes. Their quantity is significantly altered in the elderly in comparison with younger subjects. GAGs play an important role in age-related diseases of the human cornea. PMID:25674020

  16. Efficient CRISPR/Cas9-based Genome Engineering in Human Pluripotent Stem Cells

    PubMed Central

    Kime, Cody; Mandegar, Mohammad A.; Srivastava, Deepak; Yamanaka, Shinya; Conklin, Bruce R.; Rand, Tim A.

    2016-01-01

    Human pluripotent stem cells (hPSCs) are rapidly emerging as a powerful tool for biomedical discovery. The advent of human induced pluripotent stem (hiPS) cells with human embryonic stem (hES) cell-like properties has led to hPSCs with disease-specific genetic backgrounds for in-vitro disease modeling, drug discovery, mechanistic and developmental studies. To fully realize this potential it will be necessary to modify the genome of hPSCs with precision and flexibility. Pioneering experiments utilizing site-specific double strand break (DSB)-mediated genome engineering tools, including Zinc Finger Nucleases (ZFNs) and Transcription Activator-Like Effector Nucleases (TALENs), have paved the way to genome engineering in previously recalcitrant systems such as hPSCs. However, these methods are technically cumbersome and require significant expertise, which limited adoption. A major recent advance involving the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) endonuclease has dramatically simplified the effort required for genome engineering and will likely be adopted widely as the most rapid and flexible system for genome editing in hPSCs. Herein, we describe commonly practiced methods for CRISPR endonuclease genomic editing of hPSCs to cell lines containing genomes altered by Insertion/Deletion (INDEL) mutagenesis or insertion of recombinant genomic DNA. PMID:26724721

  17. Scaffold-free cartilage tissue engineering with a small population of human nasoseptal chondrocytes.

    PubMed

    Chiu, Loraine L Y; To, William T H; Lee, John M; Waldman, Stephen D

    2017-03-01

    Cartilage tissue engineering is a promising approach to provide suitable materials for nasal reconstruction; however, it typically requires large numbers of cells. We have previously shown that a small number of chondrocytes cultivated within a continuous flow bioreactor can elicit substantial tissue growth, but translation to human chondrocytes is not trivial. Here, we aimed to demonstrate the application of the bioreactor to generate large-sized tissues from a small population of primary human nasoseptal chondrocytes. Experimental study. Chondrocytes were cultured in the bioreactor using different medium compositions, with varying amounts of serum and with or without growth factors. Resulting engineered tissues were analyzed for physical properties, biochemical composition, tissue microstructure, and protein localization. Bioreactor-cultivated constructs grown with serum and growth factors (basic fibroblast growth factor and transforming growth factor beta 2) had greater thickness, as well as DNA and glycosaminoglycan (GAG) contents, compared to low serum and no growth factor controls. These constructs also showed the most intense proteoglycan and collagen II staining. The combination of bioreactor conditions, serum, and growth factors allowed the generation of large, thick scaffold-free human cartilaginous tissues that resembled the native nasoseptal cartilage. There also may be implications for patient selection in future clinical applications of these engineered tissues because their GAG content decreased with donor age. NA. Laryngoscope, 127:E91-E99, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  18. Human chondrocyte migration behaviour to guide the development of engineered cartilage.

    PubMed

    O'Connell, Grace D; Tan, Andrea R; Cui, Victoria; Bulinski, J Chloe; Cook, James L; Attur, Mukundan; Abramson, Steven B; Ateshian, Gerard A; Hung, Clark T

    2017-03-01

    Tissue-engineering techniques have been successful in developing cartilage-like tissues in vitro using cells from animal sources. The successful translation of these strategies to the clinic will likely require cell expansion to achieve sufficient cell numbers. Using a two-dimensional (2D) cell migration assay to first identify the passage at which chondrocytes exhibited their greatest chondrogenic potential, the objective of this study was to determine a more optimal culture medium for developing three-dimensional (3D) cartilage-like tissues using human cells. We evaluated combinations of commonly used growth factors that have been shown to promote chondrogenic growth and development. Human articular chondrocytes (AC) from osteoarthritic (OA) joints were cultured in 3D environments, either in pellets or encapsulated in agarose. The effect of growth factor supplementation was dependent on the environment, such that matrix deposition differed between the two culture systems. ACs in pellet culture were more responsive to bone morphogenetic protein (BMP2) alone or combinations containing BMP2 (i.e. BMP2 with PDGF or FGF). However, engineered cartilage development within agarose was better for constructs cultured with TGFβ3. These results with agarose and pellet culture studies set the stage for the development of conditions appropriate for culturing 3D functional engineered cartilage for eventual use in human therapies. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Efficient CRISPR/Cas9-Based Genome Engineering in Human Pluripotent Stem Cells.

    PubMed

    Kime, Cody; Mandegar, Mohammad A; Srivastava, Deepak; Yamanaka, Shinya; Conklin, Bruce R; Rand, Tim A

    2016-01-01

    Human pluripotent stem cells (hPS cells) are rapidly emerging as a powerful tool for biomedical discovery. The advent of human induced pluripotent stem cells (hiPS cells) with human embryonic stem (hES)-cell-like properties has led to hPS cells with disease-specific genetic backgrounds for in vitro disease modeling and drug discovery as well as mechanistic and developmental studies. To fully realize this potential, it will be necessary to modify the genome of hPS cells with precision and flexibility. Pioneering experiments utilizing site-specific double-strand break (DSB)-mediated genome engineering tools, including zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), have paved the way to genome engineering in previously recalcitrant systems such as hPS cells. However, these methods are technically cumbersome and require significant expertise, which has limited adoption. A major recent advance involving the clustered regularly interspaced short palindromic repeats (CRISPR) endonuclease has dramatically simplified the effort required for genome engineering and will likely be adopted widely as the most rapid and flexible system for genome editing in hPS cells. In this unit, we describe commonly practiced methods for CRISPR endonuclease genomic editing of hPS cells into cell lines containing genomes altered by insertion/deletion (indel) mutagenesis or insertion of recombinant genomic DNA.

  20. Tools for developing a quality management program: human factors and systems engineering tools.

    PubMed

    Caldwell, Barrett S

    2008-01-01

    During the past 10 years, there has been growing acceptance and encouragement of partnerships between medical teams and engineers. Using human factors and systems engineering descriptions of process flows and operational sequences, the author's research laboratory has helped highlight opportunities for reducing adverse events and improving performance in health care and other high-consequence environments. This research emphasized studying human behavior that enhances system performance and a range of factors affecting adverse events, rather than a sole emphasis on human error causation. Developing a balanced evaluation requires novel approaches to causal analyses of adverse events and, more importantly, methods of recovery from adverse conditions. Recent work by the author's laboratory in collaboration with the Regenstrief Center for Healthcare Engineering has started to address possible improvements in taxonomies describing health care tasks. One major finding includes enhanced understanding of events and how event dynamics influence provider tasks and constraints. Another element of this research examines team coordination tasks that strongly affect patient care and quality management, but may be undervalued as "indirect patient care" activities.

  1. Tools for Developing a Quality Management Program: Human Factors and Systems Engineering Tools

    SciTech Connect

    Caldwell, Barrett S.

    2008-05-01

    During the past 10 years, there has been growing acceptance and encouragement of partnerships between medical teams and engineers. Using human factors and systems engineering descriptions of process flows and operational sequences, the author's research laboratory has helped highlight opportunities for reducing adverse events and improving performance in health care and other high-consequence environments. This research emphasized studying human behavior that enhances system performance and a range of factors affecting adverse events, rather than a sole emphasis on human error causation. Developing a balanced evaluation requires novel approaches to causal analyses of adverse events and, more importantly, methods of recovery from adverse conditions. Recent work by the author's laboratory in collaboration with the Regenstrief Center for Healthcare Engineering has started to address possible improvements in taxonomies describing health care tasks. One major finding includes enhanced understanding of events and how event dynamics influence provider tasks and constraints. Another element of this research examines team coordination tasks that strongly affect patient care and quality management, but may be undervalued as 'indirect patient care' activities.

  2. Factors Shaping the Human Exposome in the Built Environment: Opportunities for Engineering Control.

    PubMed

    Dai, Dongjuan; Prussin, Aaron J; Marr, Linsey C; Vikesland, Peter J; Edwards, Marc A; Pruden, Amy

    2017-07-18

    The "exposome" is a term describing the summation of one's lifetime exposure to microbes and chemicals. Such exposures are now recognized as major drivers of human health and disease. Because humans spend ∼90% of their time indoors, the built environment exposome merits particular attention. Herein we utilize an engineering perspective to advance understanding of the factors that shape the built environment exposome and its influence on human wellness and disease, while simultaneously informing development of a framework for intentionally controlling the exposome to protect public health. Historically, engineers have been focused on controlling chemical and physical contaminants and on eradicating microbes; however, there is a growing awareness of the role of "beneficial" microbes. Here we consider the potential to selectively control the materials and chemistry of the built environment to positively influence the microbial and chemical components of the indoor exposome. Finally, we discuss research gaps that must be addressed to enable intentional engineering design, including the need to define a "healthy" built environment exposome and how to control it.

  3. Development of NASA Technical Standards Program Relative to Enhancing Engineering Capabilities

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Vaughan, William W.

    2003-01-01

    The enhancement of engineering capabilities is an important aspect of any organization; especially those engaged in aerospace development activities. Technical Standards are one of the key elements of this endeavor. The NASA Technical Standards Program was formed in 1997 in response to the NASA Administrator s directive to develop an Agencywide Technical Standards Program. The Program s principal objective involved the converting Center-unique technical standards into Agency wide standards and the adoption/endorsement of non-Government technical standards in lieu of government standards. In the process of these actions, the potential for further enhancement of the Agency s engineering capabilities was noted relative to value of being able to access Agencywide the necessary full-text technical standards, standards update notifications, and integration of lessons learned with technical standards, all available to the user from one Website. This was accomplished and is now being enhanced based on feedbacks from the Agency's engineering staff and supporting contractors. This paper addresses the development experiences with the NASA Technical Standards Program and the enhancement of the Agency's engineering capabilities provided by the Program s products. Metrics are provided on significant aspects of the Program.

  4. Examination of Engineering Design Teacher Self-Efficacy and Knowledge Base in Secondary Technology Education and Engineering-Related Courses

    ERIC Educational Resources Information Center

    Vessel, Kanika Nicole

    2011-01-01

    There is an increasing demand for individuals with engineering education and skills of varying fields in everyday life. With the proper education students of high-needs schools can help meet the demand for a highly skilled and educated workforce. Researchers have assumed the supply and demand has not been met within the engineering workforce as a…

  5. The Design of the Internet's Architecture by the Internet Engineering Task Force (IETF) and Human Rights.

    PubMed

    Cath, Corinne; Floridi, Luciano

    2017-04-01

    The debate on whether and how the Internet can protect and foster human rights has become a defining issue of our time. This debate often focuses on Internet governance from a regulatory perspective, underestimating the influence and power of the governance of the Internet's architecture. The technical decisions made by Internet Standard Developing Organisations (SDOs) that build and maintain the technical infrastructure of the Internet influences how information flows. They rearrange the shape of the technically mediated public sphere, including which rights it protects and which practices it enables. In this article, we contribute to the debate on SDOs' ethical responsibility to bring their work in line with human rights. We defend three theses. First, SDOs' work is inherently political. Second, the Internet Engineering Task Force (IETF), one of the most influential SDOs, has a moral obligation to ensure its work is coherent with, and fosters, human rights. Third, the IETF should enable the actualisation of human rights through the protocols and standards it designs by implementing a responsibility-by-design approach to engineering. We conclude by presenting some initial recommendations on how to ensure that work carried out by the IETF may enable human rights.

  6. Meganucleases Revolutionize the Production of Genetically Engineered Pigs for the Study of Human Diseases.

    PubMed

    Redel, Bethany K; Prather, Randall S

    2016-04-01

    Animal models of human diseases are critically necessary for developing an in-depth knowledge of disease development and progression. In addition, animal models are vital to the development of potential treatments or even cures for human diseases. Pigs are exceptional models as their size, physiology, and genetics are closer to that of humans than rodents. In this review, we discuss the use of pigs in human translational research and the evolving technology that has increased the efficiency of genetically engineering pigs. With the emergence of the clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated (Cas) protein 9 system technology, the cost and time it takes to genetically engineer pigs has markedly decreased. We will also discuss the use of another meganuclease, the transcription activator-like effector nucleases , to produce pigs with severe combined immunodeficiency by developing targeted modifications of the recombination activating gene 2 (RAG2).RAG2mutant pigs may become excellent animals to facilitate the development of xenotransplantation, regenerative medicine, and tumor biology. The use of pig biomedical models is vital for furthering the knowledge of, and for treating human, diseases.

  7. Applications of human factors engineering to LNG release prevention and control

    SciTech Connect

    Shikiar, R.; Rankin, W.L.; Rideout, T.B.

    1982-06-01

    The results of an investigation of human factors engineering and human reliability applications to LNG release prevention and control are reported. The report includes a discussion of possible human error contributions to previous LNG accidents and incidents, and a discussion of generic HF considerations for peakshaving plants. More specific recommendations for improving HF practices at peakshaving plants are offered based on visits to six facilities. The HF aspects of the recently promulgated DOT regulations are reviewed, and recommendations are made concerning how these regulations can be implemented utilizing standard HF practices. Finally, the integration of HF considerations into overall system safety is illustrated by a presentation of human error probabilities applicable to LNG operations and by an expanded fault tree analysis which explicitly recognizes man-machine interfaces.

  8. Human Engineering Operations and Habitability Assessment: A Process for Advanced Life Support Ground Facility Testbeds

    NASA Technical Reports Server (NTRS)

    Connolly, Janis H.; Arch, M.; Elfezouaty, Eileen Schultz; Novak, Jennifer Blume; Bond, Robert L. (Technical Monitor)

    1999-01-01

    Design and Human Engineering (HE) processes strive to ensure that the human-machine interface is designed for optimal performance throughout the system life cycle. Each component can be tested and assessed independently to assure optimal performance, but it is not until full integration that the system and the inherent interactions between the system components can be assessed as a whole. HE processes (which are defining/app lying requirements for human interaction with missions/systems) are included in space flight activities, but also need to be included in ground activities and specifically, ground facility testbeds such as Bio-Plex. A unique aspect of the Bio-Plex Facility is the integral issue of Habitability which includes qualities of the environment that allow humans to work and live. HE is a process by which Habitability and system performance can be assessed.

  9. Human Engineering Operations and Habitability Assessment: A Process for Advanced Life Support Ground Facility Testbeds

    NASA Technical Reports Server (NTRS)

    Connolly, Janis H.; Arch, M.; Elfezouaty, Eileen Schultz; Novak, Jennifer Blume; Bond, Robert L. (Technical Monitor)

    1999-01-01

    Design and Human Engineering (HE) processes strive to ensure that the human-machine interface is designed for optimal performance throughout the system life cycle. Each component can be tested and assessed independently to assure optimal performance, but it is not until full integration that the system and the inherent interactions between the system components can be assessed as a whole. HE processes (which are defining/app lying requirements for human interaction with missions/systems) are included in space flight activities, but also need to be included in ground activities and specifically, ground facility testbeds such as Bio-Plex. A unique aspect of the Bio-Plex Facility is the integral issue of Habitability which includes qualities of the environment that allow humans to work and live. HE is a process by which Habitability and system performance can be assessed.

  10. Supply, Human Capital, and the Average Quality Level of the Science and Engineering Labor Force.

    ERIC Educational Resources Information Center

    Tuckman, Howard P.

    1988-01-01

    This paper explores how institutional and technological change affect the quality of the science and engineering labor force. Sources of imbalance between demand and supply are considered, along with the effects of institutional and technological change. A model is introduced to relate changes in market imbalance to both labor force quality and…

  11. [Studies on genetic engineering of human insulin-purification and characterization of human proinsulin and insulin].

    PubMed

    Guo, L H; Zhou, M Y; Shen, M H; Wang, E B; Liu, J F; Yu, Y J

    1992-06-01

    E. coli DH 5 alpha cells harboring a plasmid pWR 590-BCA 4 for fused human proinsulin production were cultured. The fused human proinsulin was isolated from the fermented cells and then subjected it to cleavage with BrCN. The cleaved product was then converted to crude proinsulin-S-sulfonate using oxidative sulfitolysis. The isolation of human proinsulin-S-sulfonate was accomplished by ion exchange chromatography on QAE-sephadex A-25, followed by gel filtration on sephadex G-50. The purified human proinsulin-S-sulfonate was folded using a disulfide interchange method. The folding mixture was then chromatographed on sephadex G-50 and purified proinsulin was obtained. The proinsulin was then converted to human insulin and C-peptide by a combination cleavage with trypsin and carboxypeptidase B. The total yield of human insulin was about 5 mg/L The Zinc insulin crystals were obtained with amorphous human insulin using citrate method. The amino acid composition N-terminal sequences as well as C-terminal amino acid residues are in agreement with expected results. The hypoglycemic activity of purified human insulin is 26-27 U/mg, as judged by mouse convulsion assay, and the RIA activity is about 99% of that of porcine insulin.

  12. A Path to Planetary Protection Requirements for Human Exploration: A Literary Analysis and Systems Engineering Approach

    NASA Astrophysics Data System (ADS)

    Johnson, James; Conley, Catharine; Siegel, Bette

    As systems, technologies, and plans for the human exploration of Mars and other destinations beyond low Earth orbit begin to coalesce, it is imperative that frequent and early consideration is given to how planetary protection practices and policy will be upheld. While the development of formal planetary protection requirements for future human space systems and operations may still be a few years from fruition, guidance to appropriately influence mission and system design will be needed soon to avoid costly design and operational changes. The path to constructing such requirements is a journey that espouses key systems engineering practices of understanding shared goals, objectives and concerns, identifying key stakeholders, and iterating a draft requirement set to gain community consensus. This paper traces through each of these practices, beginning with a literary analysis of nearly three decades of publications addressing planetary protection concerns with respect to human exploration. Key goals, objectives and concerns, particularly with respect to notional requirements, required studies and research, and technology development needs have been compiled and categorized to provide a current ‘state of knowledge’. This information, combined with the identification of key stakeholders in upholding planetary protection concerns for human missions, has yielded a draft requirement set that might feed future iteration among space system designers, exploration scientists, and the mission operations community. Combining the information collected with a proposed forward path will hopefully yield a mutually agreeable set of timely, verifiable, and practical requirements for human space exploration that will uphold international commitment to planetary protection. Keywords: planetary protection, human spaceflight requirements, human space exploration, human space operations, systems engineering, literature analysis

  13. Advancing functional engineered cardiac tissues toward a preclinical model of human myocardium

    PubMed Central

    Turnbull, Irene C.; Karakikes, Ioannis; Serrao, Gregory W.; Backeris, Peter; Lee, Jia-Jye; Xie, Chaoqin; Senyei, Grant; Gordon, Ronald E.; Li, Ronald A.; Akar, Fadi G.; Hajjar, Roger J.; Hulot, Jean-Sébastien; Costa, Kevin D.

    2014-01-01

    Cardiac experimental biology and translational research would benefit from an in vitro surrogate for human heart muscle. This study investigated structural and functional properties and interventional responses of human engineered cardiac tissues (hECTs) compared to human myocardium. Human embryonic stem cell-derived cardiomyocytes (hESC-CMs, >90% troponin-positive) were mixed with collagen and cultured on force-sensing elastomer devices. hECTs resembled trabecular muscle and beat spontaneously (1.18±0.48 Hz). Microstructural features and mRNA expression of cardiac-specific genes (α-MHC, SERCA2a, and ACTC1) were comparable to human myocardium. Optical mapping revealed cardiac refractoriness with loss of 1:1 capture above 3 Hz, and cycle length dependence of the action potential duration, recapitulating key features of cardiac electrophysiology. hECTs reconstituted the Frank-Starling mechanism, generating an average maximum twitch stress of 660 μN/mm2 at Lmax, approaching values in newborn human myocardium. Dose-response curves followed exponential pharmacodynamics models for calcium chloride (EC50 1.8 mM) and verapamil (IC50 0.61 μM); isoproterenol elicited a positive chronotropic but negligible inotropic response, suggesting sarcoplasmic reticulum immaturity. hECTs were amenable to gene transfer, demonstrated by successful transduction with Ad.GFP. Such 3-D hECTs recapitulate an early developmental stage of human myocardium and promise to offer an alternative preclinical model for cardiology research.—Turnbull, I. C., Karakikes, I., Serrao, G. W., Backeris, P., Lee, J.-J., Xie, C., Senyei, G., Gordon, R. E., Li, R. A., Akar, F. G., Hajjar, R. J., Hulot, J.-S., Costa, K. D. Advancing functional engineered cardiac tissues toward a preclinical model of human myocardium. PMID:24174427

  14. Species-Specific Chromosome Engineering Greatly Improves Fully Human Polyclonal Antibody Production Profile in Cattle.

    PubMed

    Matsushita, Hiroaki; Sano, Akiko; Wu, Hua; Wang, Zhongde; Jiao, Jin-An; Kasinathan, Poothappillai; Sullivan, Eddie J; Kuroiwa, Yoshimi

    2015-01-01

    Large-scale production of fully human IgG (hIgG) or human polyclonal antibodies (hpAbs) by transgenic animals could be useful for human therapy. However, production level of hpAbs in transgenic animals is generally very low, probably due to the fact that evolutionarily unique interspecies-incompatible genomic sequences between human and non-human host species may impede high production of fully hIgG in the non-human environment. To address this issue, we performed species-specific human artificial chromosome (HAC) engineering and tested these engineered HAC in cattle. Our previous study has demonstrated that site-specific genomic chimerization of pre-B cell receptor/B cell receptor (pre-BCR/BCR) components on HAC vectors significantly improves human IgG expression in cattle where the endogenous bovine immunoglobulin genes were knocked out. In this report, hIgG1 class switch regulatory elements were subjected to site-specific genomic chimerization on HAC vectors to further enhance hIgG expression and improve hIgG subclass distribution in cattle. These species-specific modifications in a chromosome scale resulted in much higher production levels of fully hIgG of up to 15 g/L in sera or plasma, the highest ever reported for a transgenic animal system. Transchromosomic (Tc) cattle containing engineered HAC vectors generated hpAbs with high titers against human-origin antigens following immunization. This study clearly demonstrates that species-specific sequence differences in pre-BCR/BCR components and IgG1 class switch regulatory elements between human and bovine are indeed functionally distinct across the two species, and therefore, are responsible for low production of fully hIgG in our early versions of Tc cattle. The high production levels of fully hIgG with hIgG1 subclass dominancy in a large farm animal species achieved here is an important milestone towards broad therapeutic applications of hpAbs.

  15. Species-Specific Chromosome Engineering Greatly Improves Fully Human Polyclonal Antibody Production Profile in Cattle

    PubMed Central

    Wu, Hua; Wang, Zhongde; Jiao, Jin-an; Kasinathan, Poothappillai; Sullivan, Eddie J.; Kuroiwa, Yoshimi

    2015-01-01

    Large-scale production of fully human IgG (hIgG) or human polyclonal antibodies (hpAbs) by transgenic animals could be useful for human therapy. However, production level of hpAbs in transgenic animals is generally very low, probably due to the fact that evolutionarily unique interspecies-incompatible genomic sequences between human and non-human host species may impede high production of fully hIgG in the non-human environment. To address this issue, we performed species-specific human artificial chromosome (HAC) engineering and tested these engineered HAC in cattle. Our previous study has demonstrated that site-specific genomic chimerization of pre-B cell receptor/B cell receptor (pre-BCR/BCR) components on HAC vectors significantly improves human IgG expression in cattle where the endogenous bovine immunoglobulin genes were knocked out. In this report, hIgG1 class switch regulatory elements were subjected to site-specific genomic chimerization on HAC vectors to further enhance hIgG expression and improve hIgG subclass distribution in cattle. These species-specific modifications in a chromosome scale resulted in much higher production levels of fully hIgG of up to 15 g/L in sera or plasma, the highest ever reported for a transgenic animal system. Transchromosomic (Tc) cattle containing engineered HAC vectors generated hpAbs with high titers against human-origin antigens following immunization. This study clearly demonstrates that species-specific sequence differences in pre-BCR/BCR components and IgG1 class switch regulatory elements between human and bovine are indeed functionally distinct across the two species, and therefore, are responsible for low production of fully hIgG in our early versions of Tc cattle. The high production levels of fully hIgG with hIgG1 subclass dominancy in a large farm animal species achieved here is an important milestone towards broad therapeutic applications of hpAbs. PMID:26107496

  16. Glaucoma related Proteomic Alterations in Human Retina Samples

    PubMed Central

    Funke, Sebastian; Perumal, Natarajan; Beck, Sabine; Gabel-Scheurich, Silke; Schmelter, Carsten; Teister, Julia; Gerbig, Claudia; Gramlich, Oliver W.; Pfeiffer, Norbert; Grus, Franz H.

    2016-01-01

    Glaucoma related proteomic changes have been documented in cell and animal models. However, proteomic studies investigating on human retina samples are still rare. In the present work, retina samples of glaucoma and non-glaucoma control donors have been examined by a state-of-the-art mass spectrometry (MS) workflow to uncover glaucoma related proteomic changes. More than 600 proteins could be identified with high confidence (FDR < 1%) in human retina samples. Distinct proteomic changes have been observed in 10% of proteins encircling mitochondrial and nucleus species. Numerous proteins showed a significant glaucoma related level change (p < 0.05) or distinct tendency of alteration (p < 0.1). Candidates were documented to be involved in cellular development, stress and cell death. Increase of stress related proteins and decrease of new glaucoma related candidates, ADP/ATP translocase 3 (ANT3), PC4 and SRFS1-interacting protein 1 (DFS70) and methyl-CpG-binding protein 2 (MeCp2) could be documented by MS. Moreover, candidates could be validated by Accurate Inclusion Mass Screening (AIMS) and immunostaining and supported for the retinal ganglion cell layer (GCL) by laser capture microdissection (LCM) in porcine and human eye cryosections. The workflow allowed a detailed view into the human retina proteome highlighting new molecular players ANT3, DFS70 and MeCp2 associated to glaucoma. PMID:27425789

  17. Superior In vivo Transduction of Human Hepatocytes Using Engineered AAV3 Capsid

    PubMed Central

    Vercauteren, Koen; Hoffman, Brad E; Zolotukhin, Irene; Keeler, Geoffrey D; Xiao, Jing W; Basner-Tschakarjan, Etiena; High, Katherine A; Ertl, Hildegund CJ; Rice, Charles M; Srivastava, Arun; de Jong, Ype P; Herzog, Roland W

    2016-01-01

    Adeno-associated viral (AAV) vectors are currently being tested in multiple clinical trials for liver-directed gene transfer to treat the bleeding disorders hemophilia A and B and metabolic disorders. The optimal viral capsid for transduction of human hepatocytes has been under active investigation, but results across various models are inconsistent. We tested in vivo transduction in “humanized” mice. Methods to quantitate percent AAV transduced human and murine hepatocytes in chimeric livers were optimized using flow cytometry and confocal microscopy with image analysis. Distinct transduction efficiencies were noted following peripheral vein administration of a self-complementary vector expressing a gfp reporter gene. An engineered AAV3 capsid with two amino acid changes, S663V+T492V (AAV3-ST), showed best efficiency for human hepatocytes (~3-times, ~8-times, and ~80-times higher than for AAV9, AAV8, and AAV5, respectively). AAV5, 8, and 9 were more efficient in transducing murine than human hepatocytes. AAV8 yielded the highest transduction rate of murine hepatocytes, which was 19-times higher than that for human hepatocytes. In summary, our data show substantial differences among AAV serotypes in transduction of human and mouse hepatocytes, are the first to report on AAV5 in humanized mice, and support the use of AAV3-based vectors for human liver gene transfer. PMID:27019999

  18. Murine and Human Tissue-Engineered Esophagus Form from Sufficient Stem/Progenitor Cells and Do Not Require Microdesigned Biomaterials

    PubMed Central

    Spurrier, Ryan Gregory; Speer, Allison L.; Hou, Xiaogang; El-Nachef, Wael N.

    2015-01-01

    Purpose: Tissue-engineered esophagus (TEE) may serve as a therapeutic replacement for absent foregut. Most prior esophagus studies have favored microdesigned biomaterials and yielded epithelial growth alone. None have generated human TEE with mesenchymal components. We hypothesized that sufficient progenitor cells might only require basic support for successful generation of murine and human TEE. Materials and Methods: Esophageal organoid units (EOUs) were isolated from murine or human esophagi and implanted on a polyglycolic acid/poly-l-lactic acid collagen-coated scaffold in adult allogeneic or immune-deficient mice. Alternatively, EOU were cultured for 10 days in vitro prior to implantation. Results: TEE recapitulated all key components of native esophagus with an epithelium and subjacent muscularis. Differentiated suprabasal and proliferative basal layers of esophageal epithelium, muscle, and nerve were identified. Lineage tracing demonstrated that multiple EOU could contribute to the epithelium and mesenchyme of a single TEE. Cultured murine EOU grew as an expanding sphere of proliferative basal cells on a neuromuscular network that demonstrated spontaneous peristalsis in culture. Subsequently, cultured EOU generated TEE. Conclusions: TEE forms after transplantation of mouse and human organ-specific stem/progenitor cells in vivo on a relatively simple biodegradable scaffold. This is a first step toward future human therapies. PMID:25298083

  19. Recent trends related to the use of formal methods in software engineering

    NASA Technical Reports Server (NTRS)

    Prehn, Soren

    1986-01-01

    An account is given of some recent developments and trends related to the development and use of formal methods in software engineering. Ongoing activities in Europe are focussed on, since there seems to be a notable difference in attitude towards industrial usage of formal methods in Europe and in the U.S. A more detailed account is given of the currently most widespread formal method in Europe: the Vienna Development Method. Finally, the use of Ada is discussed in relation to the application of formal methods, and the potential for constructing Ada-specific tools based on that method is considered.

  20. DB90: A Fortran Callable Relational Database Routine for Scientific and Engineering Computer Programs

    NASA Technical Reports Server (NTRS)

    Wrenn, Gregory A.

    2005-01-01

    This report describes a database routine called DB90 which is intended for use with scientific and engineering computer programs. The software is written in the Fortran 90/95 programming language standard with file input and output routines written in the C programming language. These routines should be completely portable to any computing platform and operating system that has Fortran 90/95 and C compilers. DB90 allows a program to supply relation names and up to 5 integer key values to uniquely identify each record of each relation. This permits the user to select records or retrieve data in any desired order.