Science.gov

Sample records for related prenylated indole

  1. Complementary Flavonoid Prenylations by Fungal Indole Prenyltransferases.

    PubMed

    Zhou, Kang; Yu, Xia; Xie, Xiulan; Li, Shu-Ming

    2015-09-25

    Flavonoids are found mainly in plants and exhibit diverse biological and pharmacological activities, which can often be enhanced by prenylations. In plants, such reactions are catalyzed by membrane-bound prenyltransferases. In this study, the prenylation of nine flavonoids from different classes by a soluble fungal prenyltransferase (AnaPT) involved in the biosynthesis of the prenylated indole alkaloid acetylaszonalenin is demonstrated. The behavior of AnaPT toward flavonoids regarding substrate acceptance and prenylation positions clearly differs from that of the indole prenyltransferase 7-DMATS. The two enzymes are therefore complementary in flavonoid prenylations.

  2. A new prenylated indole diketopiperazine alkaloid from Eurotium cristatum.

    PubMed

    Zou, Xianwei; Li, Ying; Zhang, Xiaona; Li, Qian; Liu, Xuan; Huang, Yun; Tang, Tao; Zheng, Saijing; Wang, Weimiao; Tang, Jintian

    2014-11-03

    A new prenylated indole diketopiperazine alkaloid, cristatumin F (1), and four known metabolites, echinulin (2), dehydroechinulin (3), neoechinulin A (4) and variecolorin O (5), were isolated from the crude extract of the fungus Eurotium cristatum. The structure of 1 was elucidated primarily by NMR and MS methods. The absolute configuration of 1 was assigned using Marfey's method applied to its acid hydrolyzate. Cristatumin F (1) showed modest radical scavenging activity against DPPH radicals, and exhibited marginal attenuation of 3T3L1 pre-adipocytes.

  3. Indole prenyltransferases from fungi: a new enzyme group with high potential for the production of prenylated indole derivatives.

    PubMed

    Steffan, N; Grundmann, A; Yin, W-B; Kremer, A; Li, S-M

    2009-01-01

    Prenylated indole derivatives are hybrid natural products containing both aromatic and isoprenoid moieties and are widely spread in plants, fungi and bacteria. Some of these complex natural products, e.g. the ergot alkaloids ergotamine and fumigaclavine C as well as the diketopiperazine derivative fumitremorgin C and its biosynthetic precursors tryprostatin A and B, show a wide range of biological and pharmacological activities. Prenyl transfer reactions catalysed by prenyltransferases represent key steps in the biosynthesis of these compounds and often result in formation of products which possess biological activities distinct from their non-prenylated precursors. Recently, a series of putative indole prenyltransferase genes could be identified in the genome sequences of different fungal strains including Aspergillus fumigatus. The gene products show significant sequence similarities to dimethylallyltryptophan synthases from fungi. We have cloned and overexpressed six of these genes, fgaPT1, fgaPT2, ftmPT1, ftmPT2, 7-dmats and cdpNPT from A. fumigatus in E. coli and S. cerevisiae. The overproduced enzymes were characterised biochemically. Three additional prenyltransferases, DmaW-Cs, TdiB and MaPT were identified and characterised in a Clavicipitalean fungus, Aspergillus nidulans and Malbranchea aurantiaca, respectively. Sequence analysis and alignments with known aromatic prenyltransferases as well as phylogenetic analysis revealed that these enzymes belong to a new group of "aromatic prenyltransferases". They differ clearly from membrane-bound aromatic prenyltransferases from different sources and soluble prenyltransferases from bacteria. The characterised enzymes are soluble proteins, catalyse different prenyl transfer reactions on indole moieties of various substrates and do not require divalent metal ions for their enzymatic reactions. All of the enzymes accepted only dimethylallyl diphosphate as prenyl donor. On the other hand, they showed broad substrate

  4. Indole prenyltransferases from fungi: a new enzyme group with high potential for the production of prenylated indole derivatives.

    PubMed

    Steffan, N; Grundmann, A; Yin, W-B; Kremer, A; Li, S-M

    2009-01-01

    Prenylated indole derivatives are hybrid natural products containing both aromatic and isoprenoid moieties and are widely spread in plants, fungi and bacteria. Some of these complex natural products, e.g. the ergot alkaloids ergotamine and fumigaclavine C as well as the diketopiperazine derivative fumitremorgin C and its biosynthetic precursors tryprostatin A and B, show a wide range of biological and pharmacological activities. Prenyl transfer reactions catalysed by prenyltransferases represent key steps in the biosynthesis of these compounds and often result in formation of products which possess biological activities distinct from their non-prenylated precursors. Recently, a series of putative indole prenyltransferase genes could be identified in the genome sequences of different fungal strains including Aspergillus fumigatus. The gene products show significant sequence similarities to dimethylallyltryptophan synthases from fungi. We have cloned and overexpressed six of these genes, fgaPT1, fgaPT2, ftmPT1, ftmPT2, 7-dmats and cdpNPT from A. fumigatus in E. coli and S. cerevisiae. The overproduced enzymes were characterised biochemically. Three additional prenyltransferases, DmaW-Cs, TdiB and MaPT were identified and characterised in a Clavicipitalean fungus, Aspergillus nidulans and Malbranchea aurantiaca, respectively. Sequence analysis and alignments with known aromatic prenyltransferases as well as phylogenetic analysis revealed that these enzymes belong to a new group of "aromatic prenyltransferases". They differ clearly from membrane-bound aromatic prenyltransferases from different sources and soluble prenyltransferases from bacteria. The characterised enzymes are soluble proteins, catalyse different prenyl transfer reactions on indole moieties of various substrates and do not require divalent metal ions for their enzymatic reactions. All of the enzymes accepted only dimethylallyl diphosphate as prenyl donor. On the other hand, they showed broad substrate

  5. Substrate promiscuity of secondary metabolite enzymes: prenylation of hydroxynaphthalenes by fungal indole prenyltransferases.

    PubMed

    Yu, Xia; Xie, Xiulan; Li, Shu-Ming

    2011-11-01

    Fungal prenyltransferases of the dimethylallyltryptophan synthase (DMATS) superfamily share no sequence, but structure similarity with the prenyltransferases of the CloQ/NphB group. The members of the DMATS superfamily have been reported to catalyze different prenylations of diverse indole or tyrosine derivatives, while some members of the CloQ/NphB group used hydroxynaphthalenes as prenylation substrates. In this study, we report for the first time the prenylation of hydroxynaphthalenes by the members of the DMATS superfamily. Three tryptophan-containing cyclic dipeptide prenyltransferases (AnaPT, CdpNPT and CdpC3PT), one tryptophan C7-prenyltransferase and one tyrosine O-prenyltransferase (SirD) were incubated with naphthalene and 11 derivatives. The enzyme activity and preference of the tested prenyltransferases towards hydroxynaphthalenes differed clearly from each other. For an accepted substrate, however, different enzymes produced usually the same major prenylation product, i.e. with a regular C-prenyl moiety at para- or ortho-position to a hydroxyl group. Regularly, O-prenylated and diprenylated derivatives were also identified as enzyme products of substrates with low conversion rates and regioselectivity. This was unequivocally proven by mass spectrometry and nuclear magnetic resonance analyses. The K (M) values and turnover numbers (k (cat)) of the enzymes towards selected hydroxynaphthalenes were determined to be in the range of 0.064-2.8 mM and 0.038-1.30 s(-1), respectively. These data are comparable to those obtained using indole derivatives. The results presented in this study expanded the potential usage of the members of the DMATS superfamily for production of prenylated derivatives including hydroxynaphthalenes.

  6. Regioselective cope rearrangement and prenyl transfers on indole scaffold mimicking fungal and bacterial dimethylallyltryptophan synthases.

    PubMed

    Thandavamurthy, Karthikeyan; Sharma, Deepti; Porwal, Suheel K; Ray, Dale; Viswanathan, Rajesh

    2014-11-01

    Aromatic prenyltransferases are an actively mined enzymatic class whose biosynthetic repertoire is growing. Indole prenyltransferases catalyze the formation of a diverse set of prenylated tryptophan and diketopiperazines, leading to the formation of fungal toxins with prolific biological activities. At a fundamental level, the mechanism of C4-prenylation of l-tryptophan recently has surfaced to engage a debate between a "direct" electrophilic alkylation mechanism (for wt DMATS and FgaPT2) versus an indole C3-C4 "Cope" rearrangement followed by rearomatization (for mutant FgaPT2). Herein we provide the first series of regioselectively tunable conditions for a Cope rearrangement between C3 and C4 positions. Biomimetic conditions are reported that effect a [3,3]-sigmatropic shift whose two-step process is interrogated for intramolecularity and rate-limiting general base-promoted mechanism. Solvent polarity serves a crucial role in changing the regioselectivity, resulting in sole [1,3]-shifts under decalin. An intermolecular variant is also reported that effectively prenylates the C3 position of l-tryptophan, resulting in products that mimic the structures accessed by bacterial indole prenyltransferases. We report an elaborate investigation that includes screening various substituents and measuring steric and electronic effects and stereoselectivity with synthetically useful transformations.

  7. Regiospecificities and Prenylation Mode Specificities of the Fungal Indole Diterpene Prenyltransferases AtmD and PaxD

    PubMed Central

    Liu, Chengwei; Minami, Atsushi; Noike, Motoyoshi; Toshima, Hiroaki; Oikawa, Hideaki

    2013-01-01

    We recently reported the function of paxD, which is involved in the paxilline (compound 1) biosynthetic gene cluster in Penicillium paxilli. Recombinant PaxD catalyzed a stepwise regular-type diprenylation at the 21 and 22 positions of compound 1 with dimethylallyl diphosphate (DMAPP) as the prenyl donor. In this study, atmD, which is located in the aflatrem (compound 2) biosynthetic gene cluster in Aspergillus flavus and encodes an enzyme with 32% amino acid identity to PaxD, was characterized using recombinant enzyme. When compound 1 and DMAPP were used as substrates, two major products and a trace of minor product were formed. The structures of the two major products were determined to be reversely monoprenylated compound 1 at either the 20 or 21 position. Because compound 2 and β-aflatrem (compound 3), both of which are compound 1-related compounds produced by A. flavus, have the same prenyl moiety at the 20 and 21 position, respectively, AtmD should catalyze the prenylation in compound 2 and 3 biosynthesis. More importantly and surprisingly, AtmD accepted paspaline (compound 4), which is an intermediate of compound 1 biosynthesis that has a structure similar to that of compound 1, and catalyzed a regular monoprenylation of compound 4 at either the 21 or 22 position, though the reverse prenylation was observed with compound 1. This suggests that fungal indole diterpene prenyltransferases have the potential to alter their position and regular/reverse specificities for prenylation and could be applicable for the synthesis of industrially useful compounds. PMID:24038699

  8. Regiospecificities and prenylation mode specificities of the fungal indole diterpene prenyltransferases AtmD and PaxD.

    PubMed

    Liu, Chengwei; Minami, Atsushi; Noike, Motoyoshi; Toshima, Hiroaki; Oikawa, Hideaki; Dairi, Tohru

    2013-12-01

    We recently reported the function of paxD, which is involved in the paxilline (compound 1) biosynthetic gene cluster in Penicillium paxilli. Recombinant PaxD catalyzed a stepwise regular-type diprenylation at the 21 and 22 positions of compound 1 with dimethylallyl diphosphate (DMAPP) as the prenyl donor. In this study, atmD, which is located in the aflatrem (compound 2) biosynthetic gene cluster in Aspergillus flavus and encodes an enzyme with 32% amino acid identity to PaxD, was characterized using recombinant enzyme. When compound 1 and DMAPP were used as substrates, two major products and a trace of minor product were formed. The structures of the two major products were determined to be reversely monoprenylated compound 1 at either the 20 or 21 position. Because compound 2 and β-aflatrem (compound 3), both of which are compound 1-related compounds produced by A. flavus, have the same prenyl moiety at the 20 and 21 position, respectively, AtmD should catalyze the prenylation in compound 2 and 3 biosynthesis. More importantly and surprisingly, AtmD accepted paspaline (compound 4), which is an intermediate of compound 1 biosynthesis that has a structure similar to that of compound 1, and catalyzed a regular monoprenylation of compound 4 at either the 21 or 22 position, though the reverse prenylation was observed with compound 1. This suggests that fungal indole diterpene prenyltransferases have the potential to alter their position and regular/reverse specificities for prenylation and could be applicable for the synthesis of industrially useful compounds.

  9. Catalytic mechanism of stereospecific formation of cis-configured prenylated pyrroloindoline diketopiperazines by indole prenyltransferases.

    PubMed

    Yu, Xia; Zocher, Georg; Xie, Xiulan; Liebhold, Mike; Schütz, Stefan; Stehle, Thilo; Li, Shu-Ming

    2013-12-19

    Indole prenyltransferases AnaPT, CdpC3PT, and CdpNPT are known to catalyze the formation of prenylated pyrroloindoline diketopiperazines from tryptophan-containing cyclic dipeptides in one-step reactions. In this study, we investigated the different stereoselectivities of these enzymes toward all the stereoisomers of cyclo-Trp-Ala and cyclo-Trp-Pro. The stereoselectivities of AnaPT and CdpC3PT mainly depend on the configuration of the tryptophanyl moiety in the substrates, and they usually introduce the prenyl moiety from the opposite sides. CdpNPT showed lower stereoselectivity, and the structure of the second amino acid moiety in the substrates is important for the stereospecificity in its enzyme catalysis. Moreover, we determined the crystal structure of AnaPT in complex with thiolodiphosphate and compared it with the known structures of CdpNPT. Our results clearly revealed the presence of an indole binding mode that has so far not been characterized.

  10. Prenylated indole diketopiperazine alkaloids from a mangrove rhizosphere soil derived fungus Aspergillus effuses H1-1.

    PubMed

    Gao, Huquan; Zhu, Tianjiao; Li, Dehai; Gu, Qianqun; Liu, Weizhong

    2013-08-01

    One new prenylated indole diketopiperazine alkaloid, named dihydroneochinulin B (1), one known spiro-polyketide-diketopiperazine hybrid cryptoechinuline D (2) and three related known metabolites didehydroechinulin B (3), neoechinulin B (4) and auroglaucin (5) were isolated from the mangrove rhizosphere soil derived fungus, Aspergillus effuses H1-1. The structures were assigned by detailed spectroscopic analysis. The enantiomers of cryptoechinuline D (2) were separated to be (+)-cryptoechinuline D (2a) and (-)-cryptoechinuline D (2b) by chiral HPLC, and their absolute configurations were determined by ECD analysis. The cytotoxic effects of the compounds were preliminarily evaluated on P388, HL-60, BEL-7402 and A-549 cell lines by SRB or MTT methods, and compounds 2, 2a and 3 showed significant activities.

  11. Biochemical characterization of indole prenyltransferases: filling the last gap of prenylation positions by a 5-dimethylallyltryptophan synthase from Aspergillus clavatus.

    PubMed

    Yu, Xia; Liu, Yan; Xie, Xiulan; Zheng, Xiao-Dong; Li, Shu-Ming

    2012-01-01

    The putative prenyltransferase gene ACLA_031240 belonging to the dimethylallyltryptophan synthase superfamily was identified in the genome sequence of Aspergillus clavatus and overexpressed in Escherichia coli. The soluble His-tagged protein EAW08391 was purified to near homogeneity and used for biochemical investigation with diverse aromatic substrates in the presence of different prenyl diphosphates. It has shown that in the presence of dimethylallyl diphosphate (DMAPP), the recombinant enzyme accepted very well simple indole derivatives with L-tryptophan as the best substrate. Product formation was also observed for tryptophan-containing cyclic dipeptides but with much lower conversion yields. In contrast, no product formation was detected in the reaction mixtures of L-tryptophan with geranyl or farnesyl diphosphate. Structure elucidation of the enzyme products by NMR and MS analyses proved unequivocally the highly regiospecific regular prenylation at C-5 of the indole nucleus of the simple indole derivatives. EAW08391 was therefore termed 5-dimethylallyltryptophan synthase, and it filled the last gap in the toolbox of indole prenyltransferases regarding their prenylation positions. K(m) values of 5-dimethylallyltryptophan synthase were determined for L-tryptophan and DMAPP at 34 and 76 μM, respectively. Average turnover number (k(cat)) at 1.1 s(-1) was calculated from kinetic data of L-tryptophan and DMAPP. Catalytic efficiencies of 5-dimethylallyltryptophan synthase for L-tryptophan at 25,588 s(-1)·M(-1) and for other 11 simple indole derivatives up to 1538 s(-1)·M(-1) provided evidence for its potential usage as a catalyst for chemoenzymatic synthesis.

  12. Breaking the regioselectivity of indole prenyltransferases: identification of regular C3-prenylated hexahydropyrrolo[2,3-b]indoles as side products of the regular C2-prenyltransferase FtmPT1.

    PubMed

    Wollinsky, Beate; Ludwig, Lena; Xie, Xiulan; Li, Shu-Ming

    2012-12-14

    The prenyltransferase FtmPT1 from Aspergillus fumigatus is involved in the biosynthesis of fumitremorgin-type alkaloids and catalysed the regular C2-prenylation of brevianamide F (cyclo-L-Trp-L-Pro). It has been shown that FtmPT1 also accepted a number of other tryptophan-containing cyclic dipeptides and prenylated them, in the presence of dimethylallyl diphosphate, at C-2 of the indole nucleus. Detailed analysis of the incubation mixtures of FtmPT1 with these cyclic dipeptides revealed the presence of additional product peaks in the HPLC chromatograms. Seven regularly C3-prenylated hexahydropyrrolo[2,3-b]indoles were isolated and identified by HR-ESI-MS and NMR analyses including HMBC, HMQC and NOESY experiments. Further experiments proved that the C2- and C3-prenylated products are both independent enzyme products. To the best of our knowledge, this is the first report on the enzymatic formation of regularly C3-prenylated indolines. A reaction mechanism for both C2- and C3-prenylated derivatives was proposed.

  13. Mechanistic studies on the indole prenyltransferases.

    PubMed

    Tanner, Martin E

    2015-01-01

    Covering: up to 2014. Prenylated indole alkaloids comprise a large and structurally diverse family of natural products that often display potent biological activities. In recent years a large family of prenyltransferases that install prenyl groups onto the indole core have been discovered. While the vast majority of these enzymes are evolutionarily related and share a common protein fold, they are remarkably versatile in their ability to catalyze reverse and normal prenylations at all positions on the indole ring. This highlight article will focus on recent studies of the mechanisms utilized by indole prenyltransferases. While all of the prenylation reactions may follow a direct electrophilic aromatic substitution mechanism, studies of structure and reactivity suggest that in some cases prenylation may first occur at the nucleophilic C-3 position, and subsequent rearrangements then generate the final product.

  14. Multi-Site Prenylation of 4-Substituted Tryptophans by Dimethylallyltryptophan Synthase

    PubMed Central

    Rudolf, Jeffrey D.; Wang, Hong; Poulter, C. Dale

    2013-01-01

    The aromatic prenyltransferase dimethylallyltryptophan synthase in Claviceps purpurea catalyzes the normal prenylation of tryptophan at C4 of the indole nucleus in the first committed step of ergot alkaloid biosynthesis. 4-Methyltryptophan is a competitive inhibitor of the enzyme that has been used in kinetic studies. Upon investigation of background activity during incubations of 4-methyltryptophan with dimethylallyl diphosphate, we found that the analogue was an alternate substrate, which gave four products. The structures of three of these compounds were established by 1H NMR and 2D NMR studies and revealed that dimethylallyltryptophan synthase catalyzed both normal and reverse prenylation at C3 of the indole ring and normal prenylation of N1. Similarly, 4-methoxytryptophan was an alternate substrate, giving normal prenylation at C5 as the major product. 4-Aminotryptophan, another alternate substrate, gave normal prenylation at C5 and C7. The ability of dimethylallyltryptophan synthase to prenylate at five different sites on the indole nucleus, with normal and reverse prenylation at one of the sites, is consistent with a dissociative electrophilic alkylation of the indole ring where orientation of the substrates within the active site and substituent electronic effects determine the position and type of prenylation. These results suggest a common mechanism for prenylation of tryptophan by all of the members of the structurally related dimethylallyltryptophan synthase family. PMID:23301871

  15. Electron attachment to indole and related molecules

    SciTech Connect

    Modelli, Alberto; Jones, Derek; Pshenichnyuk, Stanislav A.

    2013-11-14

    Gas-phase formation of temporary negative ion states via resonance attachment of low-energy (0–6 eV) electrons into vacant molecular orbitals of indoline (I), indene (II), indole (III), 2-methylen-1,3,3-trimethylindoline (IV), and 2,3,3-trimethyl-indolenine (V) was investigated for the first time by electron transmission spectroscopy (ETS). The description of their empty-level structures was supported by density functional theory and Hartree-Fock calculations, using empirically calibrated linear equations to scale the calculated virtual orbital energies. Dissociative electron attachment spectroscopy (DEAS) was used to measure the fragment anion yields generated through dissociative decay channels of the parent molecular anions of compounds I-V, detected with a mass filter as a function of the incident electron energy in the 0–14 eV energy range. The vertical and adiabatic electron affinities were evaluated at the B3LYP/6-31+G(d) level as the anion/neutral total energy difference. The same theoretical method is also used for evaluation of the thermodynamic energy thresholds for production of the negative fragments observed in the DEA spectra. The loss of a hydrogen atom from the parent molecular anion ([M-H]{sup −}) provides the most intense signal in compounds I-IV. The gas-phase DEAS data can provide support for biochemical reaction mechanisms in vivo involving initial hydrogen abstraction from the nitrogen atom of the indole moiety, present in a variety of biologically important molecules.

  16. Relative Contributions of Prenylation and Postprenylation Processing in Cryptococcus neoformans Pathogenesis.

    PubMed

    Esher, Shannon K; Ost, Kyla S; Kozubowski, Lukasz; Yang, Dong-Hoon; Kim, Min Su; Bahn, Yong-Sun; Alspaugh, J Andrew; Nichols, Connie B

    2016-01-01

    Prenyltransferase enzymes promote the membrane localization of their target proteins by directing the attachment of a hydrophobic lipid group at a conserved C-terminal CAAX motif. Subsequently, the prenylated protein is further modified by postprenylation processing enzymes that cleave the terminal 3 amino acids and carboxymethylate the prenylated cysteine residue. Many prenylated proteins, including Ras1 and Ras-like proteins, require this multistep membrane localization process in order to function properly. In the human fungal pathogen Cryptococcus neoformans, previous studies have demonstrated that two distinct forms of protein prenylation, farnesylation and geranylgeranylation, are both required for cellular adaptation to stress, as well as full virulence in animal infection models. Here, we establish that the C. neoformans RAM1 gene encoding the farnesyltransferase β-subunit, though not strictly essential for growth under permissive in vitro conditions, is absolutely required for cryptococcal pathogenesis. We also identify and characterize postprenylation protease and carboxyl methyltransferase enzymes in C. neoformans. In contrast to the prenyltransferases, deletion of the genes encoding the Rce1 protease and Ste14 carboxyl methyltransferase results in subtle defects in stress response and only partial reductions in virulence. These postprenylation modifications, as well as the prenylation events themselves, do play important roles in mating and hyphal transitions, likely due to their regulation of peptide pheromones and other proteins involved in development. IMPORTANCE Cryptococcus neoformans is an important human fungal pathogen that causes disease and death in immunocompromised individuals. The growth and morphogenesis of this fungus are controlled by conserved Ras-like GTPases, which are also important for its pathogenicity. Many of these proteins require proper subcellular localization for full function, and they are directed to cellular membranes

  17. Relative Contributions of Prenylation and Postprenylation Processing in Cryptococcus neoformans Pathogenesis

    PubMed Central

    Esher, Shannon K.; Ost, Kyla S.; Kozubowski, Lukasz; Yang, Dong-Hoon; Kim, Min Su; Bahn, Yong-Sun; Nichols, Connie B.

    2016-01-01

    ABSTRACT Prenyltransferase enzymes promote the membrane localization of their target proteins by directing the attachment of a hydrophobic lipid group at a conserved C-terminal CAAX motif. Subsequently, the prenylated protein is further modified by postprenylation processing enzymes that cleave the terminal 3 amino acids and carboxymethylate the prenylated cysteine residue. Many prenylated proteins, including Ras1 and Ras-like proteins, require this multistep membrane localization process in order to function properly. In the human fungal pathogen Cryptococcus neoformans, previous studies have demonstrated that two distinct forms of protein prenylation, farnesylation and geranylgeranylation, are both required for cellular adaptation to stress, as well as full virulence in animal infection models. Here, we establish that the C. neoformans RAM1 gene encoding the farnesyltransferase β-subunit, though not strictly essential for growth under permissive in vitro conditions, is absolutely required for cryptococcal pathogenesis. We also identify and characterize postprenylation protease and carboxyl methyltransferase enzymes in C. neoformans. In contrast to the prenyltransferases, deletion of the genes encoding the Rce1 protease and Ste14 carboxyl methyltransferase results in subtle defects in stress response and only partial reductions in virulence. These postprenylation modifications, as well as the prenylation events themselves, do play important roles in mating and hyphal transitions, likely due to their regulation of peptide pheromones and other proteins involved in development. IMPORTANCE Cryptococcus neoformans is an important human fungal pathogen that causes disease and death in immunocompromised individuals. The growth and morphogenesis of this fungus are controlled by conserved Ras-like GTPases, which are also important for its pathogenicity. Many of these proteins require proper subcellular localization for full function, and they are directed to cellular

  18. Tyrosine O-prenyltransferase SirD catalyzes S-, C-, and N-prenylations on tyrosine and tryptophan derivatives.

    PubMed

    Rudolf, Jeffrey D; Poulter, C Dale

    2013-12-20

    The tyrosine O-prenyltransferase SirD in Leptosphaeria maculans catalyzes normal prenylation of the hydroxyl group in tyrosine as the first committed step in the biosynthesis of the phytotoxin sirodesmin PL. SirD also catalyzes normal N-prenylation of 4-aminophenylalanine and normal C-prenylation at C7 of tryptophan. In this study, we found that 4-mercaptophenylalanine and several derivatives of tryptophan are also substrates for prenylation by dimethylallyl diphosphate. Incubation of SirD with 4-mercaptophenylalanine gave normal S-prenylated mercaptophenylalanine. We found that incubation of the enzyme with tryptophan gave reverse prenylation at N1 in addition to the previously reported normal prenylation at C7. 4-Methyltryptophan also gave normal prenylation at C7 and reverse prenylation at N1, whereas 4-methoxytryptophan gave normal and reverse prenylation at C7, and 7-methyltryptophan gave normal prenylation at C6 and reverse prenylation at N1. The ability of SirD to prenylate at three different sites on the indole nucleus, with normal and reverse prenylation at one of the sites, is similar to behavior seen for dimethylallyltryptophan synthase. The multiple products produced by SirD suggests it and dimethylallyltryptophan synthase use a dissociative electrophilic mechanism for alkylation of amino acid substrates.

  19. Prenylated indolediketopiperazine peroxides and related homologues from the marine sediment-derived fungus Penicillium brefeldianum SD-273.

    PubMed

    An, Chun-Yan; Li, Xiao-Ming; Li, Chun-Shun; Xu, Gang-Ming; Wang, Bin-Gui

    2014-02-01

    Three new indolediketopiperazine peroxides, namely, 24-hydroxyverruculogen (1), 26-hydroxyverruculogen (2), and 13-O-prenyl-26-hydroxyverruculogen (3), along with four known homologues (4-7), were isolated and identified from the culture extract of the marine sediment-derived fungus Penicillium brefeldianum SD-273. Their structures were determined based on the extensive spectroscopic analysis and compound 1 was confirmed by X-ray crystallographic analysis. The absolute configuration of compounds 1-3 was determined using chiral HPLC analysis of their acidic hydrolysates. Each of the isolated compounds was evaluated for antibacterial and cytotoxic activity as well as brine shrimp (Artemia salina) lethality. PMID:24473173

  20. Prenylated Indolediketopiperazine Peroxides and Related Homologues from the Marine Sediment-Derived Fungus Penicillium brefeldianum SD-273

    PubMed Central

    An, Chun-Yan; Li, Xiao-Ming; Li, Chun-Shun; Xu, Gang-Ming; Wang, Bin-Gui

    2014-01-01

    Three new indolediketopiperazine peroxides, namely, 24-hydroxyverruculogen (1), 26-hydroxyverruculogen (2), and 13-O-prenyl-26-hydroxyverruculogen (3), along with four known homologues (4–7), were isolated and identified from the culture extract of the marine sediment-derived fungus Penicillium brefeldianum SD-273. Their structures were determined based on the extensive spectroscopic analysis and compound 1 was confirmed by X-ray crystallographic analysis. The absolute configuration of compounds 1–3 was determined using chiral HPLC analysis of their acidic hydrolysates. Each of the isolated compounds was evaluated for antibacterial and cytotoxic activity as well as brine shrimp (Artemia salina) lethality. PMID:24473173

  1. Analytical methods for quantitation of prenylated flavonoids from hops.

    PubMed

    Nikolić, Dejan; van Breemen, Richard B

    2013-01-01

    The female flowers of hops (Humulus lupulus L.) are used as a flavoring agent in the brewing industry. There is growing interest in possible health benefits of hops, particularly as estrogenic and chemopreventive agents. Among the possible active constituents, most of the attention has focused on prenylated flavonoids, which can chemically be classified as prenylated chalcones and prenylated flavanones. Among chalcones, xanthohumol (XN) and desmethylxanthohumol (DMX) have been the most studied, while among flavanones, 8-prenylnaringenin (8-PN) and 6-prenylnaringenin (6-PN) have received the most attention. Because of the interest in medicinal properties of prenylated flavonoids, there is demand for accurate, reproducible and sensitive analytical methods to quantify these compounds in various matrices. Such methods are needed, for example, for quality control and standardization of hop extracts, measurement of the content of prenylated flavonoids in beer, and to determine pharmacokinetic properties of prenylated flavonoids in animals and humans. This review summarizes currently available analytical methods for quantitative analysis of the major prenylated flavonoids, with an emphasis on the LC-MS and LC-MS-MS methods and their recent applications to biomedical research on hops. This review covers all methods in which prenylated flavonoids have been measured, either as the primary analytes or as a part of a larger group of analytes. The review also discusses methodological issues relating to the quantitative analysis of these compounds regardless of the chosen analytical approach. PMID:24077106

  2. Analytical methods for quantitation of prenylated flavonoids from hops

    PubMed Central

    Nikolić, Dejan; van Breemen, Richard B.

    2013-01-01

    The female flowers of hops (Humulus lupulus L.) are used as a flavoring agent in the brewing industry. There is growing interest in possible health benefits of hops, particularly as estrogenic and chemopreventive agents. Among the possible active constituents, most of the attention has focused on prenylated flavonoids, which can chemically be classified as prenylated chalcones and prenylated flavanones. Among chalcones, xanthohumol (XN) and desmethylxanthohumol (DMX) have been the most studied, while among flavanones, 8-prenylnaringenin (8-PN) and 6-prenylnaringenin (6-PN) have received the most attention. Because of the interest in medicinal properties of prenylated flavonoids, there is demand for accurate, reproducible and sensitive analytical methods to quantify these compounds in various matrices. Such methods are needed, for example, for quality control and standardization of hop extracts, measurement of the content of prenylated flavonoids in beer, and to determine pharmacokinetic properties of prenylated flavonoids in animals and humans. This review summarizes currently available analytical methods for quantitative analysis of the major prenylated flavonoids, with an emphasis on the LC-MS and LC-MS-MS methods and their recent applications to biomedical research on hops. This review covers all methods in which prenylated flavonoids have been measured, either as the primary analytes or as a part of a larger group of analytes. The review also discusses methodological issues relating to the quantitative analysis of these compounds regardless of the chosen analytical approach. PMID:24077106

  3. Biochemical Characterization of Indole Prenyltransferases

    PubMed Central

    Yu, Xia; Liu, Yan; Xie, Xiulan; Zheng, Xiao-Dong; Li, Shu-Ming

    2012-01-01

    The putative prenyltransferase gene ACLA_031240 belonging to the dimethylallyltryptophan synthase superfamily was identified in the genome sequence of Aspergillus clavatus and overexpressed in Escherichia coli. The soluble His-tagged protein EAW08391 was purified to near homogeneity and used for biochemical investigation with diverse aromatic substrates in the presence of different prenyl diphosphates. It has shown that in the presence of dimethylallyl diphosphate (DMAPP), the recombinant enzyme accepted very well simple indole derivatives with l-tryptophan as the best substrate. Product formation was also observed for tryptophan-containing cyclic dipeptides but with much lower conversion yields. In contrast, no product formation was detected in the reaction mixtures of l-tryptophan with geranyl or farnesyl diphosphate. Structure elucidation of the enzyme products by NMR and MS analyses proved unequivocally the highly regiospecific regular prenylation at C-5 of the indole nucleus of the simple indole derivatives. EAW08391 was therefore termed 5-dimethylallyltryptophan synthase, and it filled the last gap in the toolbox of indole prenyltransferases regarding their prenylation positions. Km values of 5-dimethylallyltryptophan synthase were determined for l-tryptophan and DMAPP at 34 and 76 μm, respectively. Average turnover number (kcat) at 1.1 s−1 was calculated from kinetic data of l-tryptophan and DMAPP. Catalytic efficiencies of 5-dimethylallyltryptophan synthase for l-tryptophan at 25,588 s−1·m−1 and for other 11 simple indole derivatives up to 1538 s−1·m−1 provided evidence for its potential usage as a catalyst for chemoenzymatic synthesis. PMID:22123822

  4. Friedel-crafts alkylation of acylphloroglucinols catalyzed by a fungal indole prenyltransferase.

    PubMed

    Zhou, Kang; Ludwig, Lena; Li, Shu-Ming

    2015-04-24

    Naturally occurring prenylated acylphloroglucinol derivatives are plant metabolites with diverse biological and pharmacological activities. Prenylation of acylphloroglucinols plays an important role in the formation of these intriguing natural products and is catalyzed in plants by membrane-bound enzymes. In this study, we demonstrate the prenylation of such compounds by a soluble fungal prenyltransferase AnaPT involved in the biosynthesis of prenylated indole alkaloids. The observed activities of AnaPT toward these substrates are much higher than that of a microsomal fraction containing an overproduced prenyltransferase from the plant hop. PMID:25756361

  5. Molecular Cloning and Functional Analysis of Gene Clusters for the Biosynthesis of Indole-Diterpenes in Penicillium crustosum and P. janthinellum.

    PubMed

    Nicholson, Matthew J; Eaton, Carla J; Stärkel, Cornelia; Tapper, Brian A; Cox, Murray P; Scott, Barry

    2015-07-23

    The penitremane and janthitremane families of indole-diterpenes are abundant natural products synthesized by Penicillium crustosum and P. janthinellum. Using a combination of PCR, cosmid library screening, and Illumina sequencing we have identified gene clusters encoding enzymes for the synthesis of these compounds. Targeted deletion of penP in P. crustosum abolished the synthesis of penitrems A, B, D, E, and F, and led to accumulation of paspaline, a key intermediate for paxilline biosynthesis in P. paxilli. Similarly, deletion of janP and janD in P. janthinellum abolished the synthesis of prenyl-elaborated indole-diterpenes, and led to accumulation in the latter of 13-desoxypaxilline, a key intermediate for the synthesis of the structurally related aflatremanes synthesized by Aspergillus flavus. This study helps resolve the genetic basis for the complexity of indole-diterpene natural products found within the Penicillium and Aspergillus species. All indole-diterpene gene clusters identified to date have a core set of genes for the synthesis of paspaline and a suite of genes encoding multi-functional cytochrome P450 monooxygenases, FAD dependent monooxygenases, and prenyl transferases that catalyse various regio- and stereo- specific oxidations that give rise to the diversity of indole-diterpene products synthesized by this group of fungi.

  6. Molecular Cloning and Functional Analysis of Gene Clusters for the Biosynthesis of Indole-Diterpenes in Penicillium crustosum and P. janthinellum

    PubMed Central

    Nicholson, Matthew J.; Eaton, Carla J.; Stärkel, Cornelia; Tapper, Brian A.; Cox, Murray P.; Scott, Barry

    2015-01-01

    The penitremane and janthitremane families of indole-diterpenes are abundant natural products synthesized by Penicillium crustosum and P. janthinellum. Using a combination of PCR, cosmid library screening, and Illumina sequencing we have identified gene clusters encoding enzymes for the synthesis of these compounds. Targeted deletion of penP in P. crustosum abolished the synthesis of penitrems A, B, D, E, and F, and led to accumulation of paspaline, a key intermediate for paxilline biosynthesis in P. paxilli. Similarly, deletion of janP and janD in P. janthinellum abolished the synthesis of prenyl-elaborated indole-diterpenes, and led to accumulation in the latter of 13-desoxypaxilline, a key intermediate for the synthesis of the structurally related aflatremanes synthesized by Aspergillus flavus. This study helps resolve the genetic basis for the complexity of indole-diterpene natural products found within the Penicillium and Aspergillus species. All indole-diterpene gene clusters identified to date have a core set of genes for the synthesis of paspaline and a suite of genes encoding multi-functional cytochrome P450 monooxygenases, FAD dependent monooxygenases, and prenyl transferases that catalyse various regio- and stereo- specific oxidations that give rise to the diversity of indole-diterpene products synthesized by this group of fungi. PMID:26213965

  7. Manipulation of prenylation reactions by structure-based engineering of bacterial indolactam prenyltransferases

    NASA Astrophysics Data System (ADS)

    Mori, Takahiro; Zhang, Lihan; Awakawa, Takayoshi; Hoshino, Shotaro; Okada, Masahiro; Morita, Hiroyuki; Abe, Ikuro

    2016-03-01

    Prenylation reactions play crucial roles in controlling the activities of biomolecules. Bacterial prenyltransferases, TleC from Streptomyces blastmyceticus and MpnD from Marinactinospora thermotolerans, catalyse the `reverse' prenylation of (-)-indolactam V at the C-7 position of the indole ring with geranyl pyrophosphate or dimethylallyl pyrophosphate, to produce lyngbyatoxin or pendolmycin, respectively. Using in vitro analyses, here we show that both TleC and MpnD exhibit relaxed substrate specificities and accept various chain lengths (C5-C25) of the prenyl donors. Comparisons of the crystal structures and their ternary complexes with (-)-indolactam V and dimethylallyl S-thiophosphate revealed the intimate structural details of the enzyme-catalysed `reverse' prenylation reactions and identified the active-site residues governing the selection of the substrates. Furthermore, structure-based enzyme engineering successfully altered the preference for the prenyl chain length of the substrates, as well as the regio- and stereo-selectivities of the prenylation reactions, to produce a series of unnatural novel indolactams.

  8. Manipulation of prenylation reactions by structure-based engineering of bacterial indolactam prenyltransferases.

    PubMed

    Mori, Takahiro; Zhang, Lihan; Awakawa, Takayoshi; Hoshino, Shotaro; Okada, Masahiro; Morita, Hiroyuki; Abe, Ikuro

    2016-01-01

    Prenylation reactions play crucial roles in controlling the activities of biomolecules. Bacterial prenyltransferases, TleC from Streptomyces blastmyceticus and MpnD from Marinactinospora thermotolerans, catalyse the 'reverse' prenylation of (-)-indolactam V at the C-7 position of the indole ring with geranyl pyrophosphate or dimethylallyl pyrophosphate, to produce lyngbyatoxin or pendolmycin, respectively. Using in vitro analyses, here we show that both TleC and MpnD exhibit relaxed substrate specificities and accept various chain lengths (C5-C25) of the prenyl donors. Comparisons of the crystal structures and their ternary complexes with (-)-indolactam V and dimethylallyl S-thiophosphate revealed the intimate structural details of the enzyme-catalysed 'reverse' prenylation reactions and identified the active-site residues governing the selection of the substrates. Furthermore, structure-based enzyme engineering successfully altered the preference for the prenyl chain length of the substrates, as well as the regio- and stereo-selectivities of the prenylation reactions, to produce a series of unnatural novel indolactams. PMID:26952246

  9. Manipulation of prenylation reactions by structure-based engineering of bacterial indolactam prenyltransferases

    PubMed Central

    Mori, Takahiro; Zhang, Lihan; Awakawa, Takayoshi; Hoshino, Shotaro; Okada, Masahiro; Morita, Hiroyuki; Abe, Ikuro

    2016-01-01

    Prenylation reactions play crucial roles in controlling the activities of biomolecules. Bacterial prenyltransferases, TleC from Streptomyces blastmyceticus and MpnD from Marinactinospora thermotolerans, catalyse the ‘reverse' prenylation of (−)-indolactam V at the C-7 position of the indole ring with geranyl pyrophosphate or dimethylallyl pyrophosphate, to produce lyngbyatoxin or pendolmycin, respectively. Using in vitro analyses, here we show that both TleC and MpnD exhibit relaxed substrate specificities and accept various chain lengths (C5–C25) of the prenyl donors. Comparisons of the crystal structures and their ternary complexes with (−)-indolactam V and dimethylallyl S-thiophosphate revealed the intimate structural details of the enzyme-catalysed ‘reverse' prenylation reactions and identified the active-site residues governing the selection of the substrates. Furthermore, structure-based enzyme engineering successfully altered the preference for the prenyl chain length of the substrates, as well as the regio- and stereo-selectivities of the prenylation reactions, to produce a series of unnatural novel indolactams. PMID:26952246

  10. Manipulation of prenylation reactions by structure-based engineering of bacterial indolactam prenyltransferases.

    PubMed

    Mori, Takahiro; Zhang, Lihan; Awakawa, Takayoshi; Hoshino, Shotaro; Okada, Masahiro; Morita, Hiroyuki; Abe, Ikuro

    2016-01-01

    Prenylation reactions play crucial roles in controlling the activities of biomolecules. Bacterial prenyltransferases, TleC from Streptomyces blastmyceticus and MpnD from Marinactinospora thermotolerans, catalyse the 'reverse' prenylation of (-)-indolactam V at the C-7 position of the indole ring with geranyl pyrophosphate or dimethylallyl pyrophosphate, to produce lyngbyatoxin or pendolmycin, respectively. Using in vitro analyses, here we show that both TleC and MpnD exhibit relaxed substrate specificities and accept various chain lengths (C5-C25) of the prenyl donors. Comparisons of the crystal structures and their ternary complexes with (-)-indolactam V and dimethylallyl S-thiophosphate revealed the intimate structural details of the enzyme-catalysed 'reverse' prenylation reactions and identified the active-site residues governing the selection of the substrates. Furthermore, structure-based enzyme engineering successfully altered the preference for the prenyl chain length of the substrates, as well as the regio- and stereo-selectivities of the prenylation reactions, to produce a series of unnatural novel indolactams.

  11. Palladium-Catalyzed Oxidative Sulfenylation of Indoles and Related Electron-Rich Heteroarenes with Aryl Boronic Acids and Elemental Sulfur.

    PubMed

    Li, Jianxiao; Li, Chunsheng; Yang, Shaorong; An, Yanni; Wu, Wanqing; Jiang, Huanfeng

    2016-09-01

    An efficient and convenient palladium-catalyzed C-H bond oxidative sulfenylation of indoles and related electron-rich heteroarenes with aryl boronic acids and elemental sulfur has been described. This procedure provides a useful and direct approach for the assembly of a wide range of structurally diverse 3-sulfenylheteroarenes with moderate to excellent yields from simple and readily available starting materials. Moreover, this synthetic protocol is suitable for N-protected and unprotected indoles. Notably, the construction of two C-S bonds in one step was also achieved in this transformation. PMID:27500941

  12. Asymmetric Total Synthesis of Sarpagine-Related Indole Alkaloids Hydroxygardnerine, Hydroxygardnutine, Gardnerine, (E)-16-epi-Normacusine B, and Koumine.

    PubMed

    Kitajima, Mariko; Watanabe, Keisuke; Maeda, Hiroyuki; Kogure, Noriyuki; Takayama, Hiromitsu

    2016-04-15

    Sarpagine-related indole alkaloids (-)-hydroxygardnerine, (+)-hydroxygardnutine, (-)-gardnerine, (+)-(E)-16-epi-normacusine B, and (-)-koumine were divergently synthesized via a common intermediate possessing a piperidine ring with an exocyclic (E)-ethylidene side chain, which was constructed by a gold(I)-catalyzed 6-exo-dig cyclization strategy.

  13. Prenylated flavones from Artocarpus altilis.

    PubMed

    Shamaun, Shireen Shaharina; Rahmani, Mawardi; Hashim, Najihah Mohd; Ismail, Hazar Bebe Mohd; Sukari, Mohd Aspollah; Lian, Gwendoline Ee Cheng; Go, Rusea

    2010-10-01

    Six prenylated flavones, including one new compound, were isolated and identified from the stem bark extracts of Artocarpus altilis. The new prenylated flavone hydroxyartocarpin (1) was characterized as 3-(gamma,gamma-dimethylallyl)-6-isopentenyl-5,8,2',4'-tetrahydroxy-7-methoxyflavone and the known compounds were artocarpin (2), morusin (3), cycloartobiloxanthone (4), cycloartocarpin A (5) and artoindonesianin V (6). The structures of the compounds were determined by spectroscopic methods (IR, MS, (1)H-NMR and (13)C-NMR) and comparison with published data for the known compounds.

  14. Synthetic approaches to the bicyclo[2.2.2]diazaoctane ring system common to the paraherquamides, stephacidins and related prenylated indole alkaloids.

    PubMed

    Miller, Kenneth A; Williams, Robert M

    2009-11-01

    The bicyclo[2.2.2]diazaoctane ring system is common to a number of highly biologically active secondary metabolites isolated from numerous species of fungi. In this tutorial review, we describe the varied synthetic approaches that have been employed to construct this ring system in the course of recent total synthesis endeavors, and this review should be of interest to synthetic organic chemists and natural product chemists. Detailed herein are a number of synthetic disconnections including intramolecular S(N)2' cyclizations, biomimetic Diels-Alder reactions, radical cyclizations, and cationic cascade reactions. PMID:19847349

  15. Evolution of aromatic prenyltransferases in the biosynthesis of indole derivatives.

    PubMed

    Li, Shu-Ming

    2009-01-01

    A series of putative indole prenyltransferase genes could be identified in the genome sequences of different fungal strains including Aspergillus fumigatus and Neosartorya fischeri. The gene products show significant sequence similarities to dimethylallyltryptophan synthases from different fungi. We have cloned and overexpressed seven of these genes, fgaPT1, fgaPT2, ftmPT1, ftmPT2, 7-dmats, cdpNPT and anaPT in Escherichia coli and Saccharomyces cerevisiae. The overproduced enzymes were characterised biochemically. Three additional indole prenyltransferases, DmaW-Cs, TdiB and MaPT were also identified and characterised in the last years. Sequence analysis and comparison with known aromatic prenyltransferases as well as biochemical investigation revealed that these enzymes belong to a group of aromatic prenyltransferases. The characterised prenyltransferases are soluble proteins, catalyse different prenyl transfer reactions on indole moieties of various substrates and do not require divalent metal ions for their prenyl transfer reactions. In addition, indole prenyltransferases carry tryptophan aminopeptidase activity, which strengths their relationship in the evolution. These properties differ clearly from membrane-bound aromatic prenyltransferases from different sources and soluble prenyltransferases from bacteria. All of the indole prenyltransferases accepted only dimethylallyl diphosphate as prenyl donor. On the other hand, they showed broad substrate specificity towards their aromatic substrates. Diverse simple tryptophan derivatives and tryptophan-containing cyclic dipeptides were accepted by these enzymes, providing a strategy for convenient production of biologically active substances, e.g. by chemoenzymatic synthesis.

  16. Applications of dimethylallyltryptophan synthases and other indole prenyltransferases for structural modification of natural products.

    PubMed

    Li, Shu-Ming

    2009-09-01

    A series of putative indole prenyltransferase genes could be identified in the genome sequences of different fungal strains including Aspergillus fumigatus and Neosartorya fischeri. The gene products show significant sequence similarities to dimethylallyltryptophan synthases from various fungi. These genes belong to different gene clusters and are involved in the biosynthesis of secondary metabolites. Ten of them were cloned and overexpressed in Escherichia coli and Saccharomyces cerevisiae and proven to be soluble proteins. They catalyse different prenyl transfer reactions onto indole moieties of various substrates and do not require divalent metal ions for their prenyl transfer reactions. These enzymes showed broad substrate specificities towards their aromatic substrates. Diverse simple tryptophan derivatives and tryptophan-containing cyclic dipeptides were accepted by several prenyltransferases as substrates and converted to prenylated derivatives. This feature of substrate flexibility was successfully used for regiospecific and stereospecific synthesis of different indole derivatives.

  17. Diurnal Profiles of Melatonin Synthesis-Related Indoles, Catecholamines and Their Metabolites in the Duck Pineal Organ

    PubMed Central

    Lewczuk, Bogdan; Ziółkowska, Natalia; Prusik, Magdalena; Przybylska-Gornowicz, Barbara

    2014-01-01

    This study characterizes the diurnal profiles of ten melatonin synthesis-related indoles, the quantitative relations between these compounds, and daily variations in the contents of catecholamines and their metabolites in the domestic duck pineal organ. Fourteen-week-old birds, which were reared under a 12L:12D cycle, were killed at two-hour intervals. The indole contents were measured using HPLC with fluorescence detection, whereas the levels of catecholamines and their metabolites were measured using HPLC with electrochemical detection. All indole contents, except for tryptophan, showed significant diurnal variations. The 5-hydroxytryptophan level was approximately two-fold higher during the scotophase than during the photophase. The serotonin content increased during the first half of the photophase, remained elevated for approximately 10 h and then rapidly decreased in the middle of the scotophase. N-acetylserotonin showed the most prominent changes, with a more than 15-fold increase at night. The melatonin cycle demonstrated only an approximately 5-fold difference between the peak and nadir. The 5-methoxytryptamine content was markedly elevated during the scotophase. The 5-hydroxyindole acetic acid, 5-hydroxytryptophol, 5-methoxyindole acetic acid and 5-methoxytryptophol profiles were analogous to the serotonin rhythm. The norepinephrine and dopamine contents showed no significant changes. The DOPA, DOPAC and homovanillic acid levels were higher during the scotophase than during the photophase. Vanillylmandelic acid showed the opposite rhythm, with an elevated level during the daytime. PMID:25032843

  18. Diurnal profiles of melatonin synthesis-related indoles, catecholamines and their metabolites in the duck pineal organ.

    PubMed

    Lewczuk, Bogdan; Ziółkowska, Natalia; Prusik, Magdalena; Przybylska-Gornowicz, Barbara

    2014-07-16

    This study characterizes the diurnal profiles of ten melatonin synthesis-related indoles, the quantitative relations between these compounds, and daily variations in the contents of catecholamines and their metabolites in the domestic duck pineal organ. Fourteen-week-old birds, which were reared under a 12L:12D cycle, were killed at two-hour intervals. The indole contents were measured using HPLC with fluorescence detection, whereas the levels of catecholamines and their metabolites were measured using HPLC with electrochemical detection. All indole contents, except for tryptophan, showed significant diurnal variations. The 5-hydroxytryptophan level was approximately two-fold higher during the scotophase than during the photophase. The serotonin content increased during the first half of the photophase, remained elevated for approximately 10 h and then rapidly decreased in the middle of the scotophase. N-acetylserotonin showed the most prominent changes, with a more than 15-fold increase at night. The melatonin cycle demonstrated only an approximately 5-fold difference between the peak and nadir. The 5-methoxytryptamine content was markedly elevated during the scotophase. The 5-hydroxyindole acetic acid, 5-hydroxytryptophol, 5-methoxyindole acetic acid and 5-methoxytryptophol profiles were analogous to the serotonin rhythm. The norepinephrine and dopamine contents showed no significant changes. The DOPA, DOPAC and homovanillic acid levels were higher during the scotophase than during the photophase. Vanillylmandelic acid showed the opposite rhythm, with an elevated level during the daytime.

  19. Prenylated isoflavonoids from Rhynchosia edulis.

    PubMed

    Ogungbe, Ifedayo V; Hill, Gabrielle M; Crouch, Rebecca A; Vogler, Bernhard; Nagarkoti, Meenakshi; Haber, William A; Setzer, William N

    2011-11-01

    Four new prenylated isoflavones, rhynedulins A-C (1-3) and rhynedulinal (4), were isolated by bioassay-guided fractionation of the dichloromethane bark extract of Rhynchosia edulis. Five previously described compounds, scandenal, ulexin B, cajanone, cajanin, and cyclochandalone, were also isolated. These isoflavonoids showed weak inhibitory activity towards rhodesain, the major cathepsin-L like protease in Trypanosoma brucei. They also have weak antiproliferative activity towards MCF-7 cells.

  20. Artoindonesianins A and B, two new prenylated flavones from the root of Artocarpus champeden.

    PubMed

    Hakim, E H; Fahriyati, A; Kau, M S; Achmad, S A; Makmur, L; Ghisalberti, E L; Nomura, T

    1999-04-01

    Two new prenylated flavones, named artoindonesianin A (1) and artoindonesianin B (2), were isolated from the root of Artocarpus champeden, together with a known prenylated flavone, artonin A. The structures of artoindonesianins A and B were determined on the basis of spectral evidence (MS, 1H and 13C NMR) and by comparison with known related compounds. Compounds 1 and 2 exhibited cytotoxic activity against murine leukemia (P-388) cells.

  1. Indole-3-carbinol protects against cisplatin-induced acute nephrotoxicity: role of calcitonin gene-related peptide and insulin-like growth factor-1

    PubMed Central

    El-Naga, Reem N.; Mahran, Yasmen F.

    2016-01-01

    Nephrotoxicity associated with the clinical use of the anticancer drug cisplatin is a limiting problem. Thus, searching for new protective measures is required. Indole-3-carbinol is a powerful anti-oxidant, anti-inflammatory and anti-tumor agent. The present study aimed to investigate the potential protective effect of indole-3-carbinol against cisplatin-induced acute nephrotoxicity in rats. Rats were pre-treated with 20 mg/kg indole-3-carbinol orally before giving cisplatin (7 mg/kg). Cisplatin-induced acute nephrotoxicity was demonstrated where relative kidney weight, BUN and serum creatinine were significantly increased. Increased oxidative stress was evident in cisplatin group where GSH and SOD tissue levels were significantly depleted. Also, lipid peroxidation and NOX-1 were increased as compared to the control. Additionally, renal expression of pro-inflammatory mediators was induced by cisplatin. Cisplatin-induced cell death was shown by increased caspase-3 and decreased expression of EGF, IGF-1 and IGF-1 receptor. Nephrotoxicity, oxidative stress, inflammation and apoptotic effects induced by cisplatin were significantly ameliorated by indole-3-carbinol pre-treatment. Besides, the role of CGRP in cisplatin-induced nephrotoxicity was explored. Furthermore, cisplatin cytotoxic activity was significantly enhanced by indole-3-carbinol pre-treatment in vitro. In conclusion, indole-3-carbinol provides protection against cisplatin-induced nephrotoxicity. Also, reduced expression of CGRP may play a role in the pathogenesis of cisplatin-induced renal injury. PMID:27417335

  2. Synthesis and cytotoxicity of bis(benzo[g]indole-3-carboxamides) and related compounds.

    PubMed

    Pinna, G A; Pirisi, M A; Grella, G E; Gherardini, L; Mussinu, J M; Paglietti, G; Ferrari, A M; Rastelli, G

    2001-11-01

    A series of bis(benzo[g]indoles) bridged by CX-(CH2)nN(Me)(CH2)n-CX (X = O, S, H2; n = 2,3) was synthesized as bifunctional antitumor agents and evaluated for cytotoxic activity against diverse human cancer cell lines by the National Cancer Institute. The parent compounds 2a,b exhibited a good level of activity and derivates 2c-g,i,k demonstrated significant inhibitory effects, all with IC50 values in the low micromolar range. The thioamide analogue 2j showed less potency. It is interesting to note that introduction of substituents on the benzene ring of the benzo[g]indole portion of 2a,b did not affect activity, with the only exception of the 7,8-dichloro derivative 2h which became less potent. One member of this series, 2i, was then tested in the hollow fiber cell assay to evaluate, in a preliminary fashion, its in vivo antineoplastic activity. Molecular modelling studies were performed on amide 2a and thioamide 2j to explain the loss of activity of 2j as to 2a. Finally, compound 2a behaved as a typical DNA intercalating agent, as judged from viscosity measurements with Poly(dA-dT)...poly(dA-dT).

  3. Artoindonesianins N and O, new prenylated stilbene and prenylated arylbenzofuran derivatives from Artocarpus gomezianus.

    PubMed

    Hakim, Euis Holisotan; Ulinnuha, Unsiyah Zulfa; Syah, Yana Maolana; Ghisalberti, Emilio L

    2002-12-01

    A new prenylated stilbene, named artoindonesianin N (1) and a new prenylated arylbenzofuran, named artoindonesianin O (2), were isolated from Artocarpus gomezianus Wall. ex Trec. (Moraceae). Their structures were elucidated as 1 and 2 on the basis of spectroscopic evidence. Along with these new compounds, a known phenolic compound was also isolated from this plant and identified as oxyresveratrol (3).

  4. A new prenylated aurone from Artocarpus altilis.

    PubMed

    Huong, Tran Thu; Cuong, Nguyen Xuan; Tram, Le Huyen; Quang, Tran Thuong; Duong, Le Van; Nam, Nguyen Hoai; Dat, Nguyen Tien; Huong, Phan Thi Thanh; Diep, Chau Ngoc; Kiem, Phan Van; Minh, Chau Van

    2012-01-01

    Phytochemical study of the methanol extract of Artocarpus altilis resulted in the isolation of a new prenylated aurone, artocarpaurone (1), together with eight known compounds including two prenylated chalcones (2 and 3), three prenylated flavanones (4-6), and three triterpenes (7-9). The structure of 1 was elucidated as 6-hydroxy-2-[8-hydroxy-2-methyl-2-(4-methyl-3-pentenyl)-2H-1-benzopyran-5-ylmethylene]-3(2H)-benzofuranone by spectroscopic methods including 1D and 2D NMR spectra and FT-ICR-MS. Compound 1 showed moderate nitric oxide radical scavenging activity, whereas 2 and 3 had moderate 2,2-diphenyl-1-picrylhydrazyl radical scavenging effect, compared with the positive control (+)-catechin.

  5. Site-directed Mutagenesis Switching a Dimethylallyl Tryptophan Synthase to a Specific Tyrosine C3-Prenylating Enzyme*

    PubMed Central

    Fan, Aili; Zocher, Georg; Stec, Edyta; Stehle, Thilo; Li, Shu-Ming

    2015-01-01

    The tryptophan prenyltransferases FgaPT2 and 7-DMATS (7-dimethylallyl tryptophan synthase) from Aspergillus fumigatus catalyze C4- and C7-prenylation of the indole ring, respectively. 7-DMATS was found to accept l-tyrosine as substrate as well and converted it to an O-prenylated derivative. An acceptance of l-tyrosine by FgaPT2 was also observed in this study. Interestingly, isolation and structure elucidation revealed the identification of a C3-prenylated l-tyrosine as enzyme product. Molecular modeling and site-directed mutagenesis led to creation of a mutant FgaPT2_K174F, which showed much higher specificity toward l-tyrosine than l-tryptophan. Its catalytic efficiency toward l-tyrosine was found to be 4.9-fold in comparison with that of non-mutated FgaPT2, whereas the activity toward l-tryptophan was less than 0.4% of that of the wild-type. To the best of our knowledge, this is the first report on an enzymatic C-prenylation of l-tyrosine as free amino acid and altering the substrate preference of a prenyltransferase by mutagenesis. PMID:25477507

  6. Parallel analysis of volatile fatty acids, indole, skatole, phenol, and trimethylamine from waste-related source environments.

    PubMed

    Rahman, Md Mahmudur; Kim, Ki-Hyun

    2013-11-01

    An experimental technique based on sorbent tube-thermal desorption-gas chromatography (ST-TD-GC) was investigated for the simultaneous determination of a cluster of eight volatile odorants (propionic acid, n-butyric acid, i-valeric acid, n-valeric acid, trimethylamine, phenol, indole, and skatole) and a reference compound (benzene). Calibration was made by direct injection of a liquid working standard (L-WS) into a quartz tube packed with three bed sorbent (Tenax TA, Carbopack B, and Carbopack X). To assess the relative performance between different detector systems, a comparative analysis was made using both mass spectrometry (MS) and a flame ionization detector (FID) with the aid of a TD system. In the TD-GC-MS analysis, calibration results were evaluated in two different modes, namely total ion chromatogram (TIC) and extracted ion chromatogram (EIC). In both FID and MS, the elution order of investigated odorants complied with the retention time index (RTI) values for the polar column with a coefficient of determination (R(2)) at or above 0.99. As a means to validate our detection approach, environmental samples from a bathroom and manhole (vacuum samples) as well as cat stool and wastewater (headspace samples) were also collected. The ST-TD method tested for the concurrent analysis of diverse odorants allowed us to measure a list of offensive odorants from those samples.

  7. Parallel analysis of volatile fatty acids, indole, skatole, phenol, and trimethylamine from waste-related source environments.

    PubMed

    Rahman, Md Mahmudur; Kim, Ki-Hyun

    2013-11-01

    An experimental technique based on sorbent tube-thermal desorption-gas chromatography (ST-TD-GC) was investigated for the simultaneous determination of a cluster of eight volatile odorants (propionic acid, n-butyric acid, i-valeric acid, n-valeric acid, trimethylamine, phenol, indole, and skatole) and a reference compound (benzene). Calibration was made by direct injection of a liquid working standard (L-WS) into a quartz tube packed with three bed sorbent (Tenax TA, Carbopack B, and Carbopack X). To assess the relative performance between different detector systems, a comparative analysis was made using both mass spectrometry (MS) and a flame ionization detector (FID) with the aid of a TD system. In the TD-GC-MS analysis, calibration results were evaluated in two different modes, namely total ion chromatogram (TIC) and extracted ion chromatogram (EIC). In both FID and MS, the elution order of investigated odorants complied with the retention time index (RTI) values for the polar column with a coefficient of determination (R(2)) at or above 0.99. As a means to validate our detection approach, environmental samples from a bathroom and manhole (vacuum samples) as well as cat stool and wastewater (headspace samples) were also collected. The ST-TD method tested for the concurrent analysis of diverse odorants allowed us to measure a list of offensive odorants from those samples. PMID:24070624

  8. Humudifucol and Bioactive Prenylated Polyphenols from Hops (Humulus lupulus cv. "Cascade").

    PubMed

    Forino, Martino; Pace, Simona; Chianese, Giuseppina; Santagostini, Laura; Werner, Markus; Weinigel, Christina; Rummler, Silke; Fico, Gelsomina; Werz, Oliver; Taglialatela-Scafati, Orazio

    2016-03-25

    Humulus lupulus (hop plant) has long been used in traditional medicine as a sedative and antimicrobial agent. More recently, attention has been devoted to the phytoestrogenic activity of the plant extracts as well as to the anti-inflammatory and chemopreventive properties of the prenylated chalcones present. In this study, an Italian sample of H. lupulus cv. "Cascade" has been investigated and three new compounds [4-hydroxycolupulone (6), humudifucol (7) and cascadone (8)] have been purified and identified by means of NMR spectroscopy along with four known metabolites. Notably, humudifucol (7) is the first prenylated dimeric phlorotannin discovered in nature. Because structurally related phloroglucinols from natural sources were found previously to inhibit microsomal prostaglandin E2 synthase (mPGES)-1 and 5-lipoxygenase (5-LO), the isolated compounds were evaluated for their bioactivity against these pro-inflammatory target proteins. The prenylated chalcone xanthohumol inhibited both enzymes at low μM concentrations.

  9. Humudifucol and Bioactive Prenylated Polyphenols from Hops (Humulus lupulus cv. "Cascade").

    PubMed

    Forino, Martino; Pace, Simona; Chianese, Giuseppina; Santagostini, Laura; Werner, Markus; Weinigel, Christina; Rummler, Silke; Fico, Gelsomina; Werz, Oliver; Taglialatela-Scafati, Orazio

    2016-03-25

    Humulus lupulus (hop plant) has long been used in traditional medicine as a sedative and antimicrobial agent. More recently, attention has been devoted to the phytoestrogenic activity of the plant extracts as well as to the anti-inflammatory and chemopreventive properties of the prenylated chalcones present. In this study, an Italian sample of H. lupulus cv. "Cascade" has been investigated and three new compounds [4-hydroxycolupulone (6), humudifucol (7) and cascadone (8)] have been purified and identified by means of NMR spectroscopy along with four known metabolites. Notably, humudifucol (7) is the first prenylated dimeric phlorotannin discovered in nature. Because structurally related phloroglucinols from natural sources were found previously to inhibit microsomal prostaglandin E2 synthase (mPGES)-1 and 5-lipoxygenase (5-LO), the isolated compounds were evaluated for their bioactivity against these pro-inflammatory target proteins. The prenylated chalcone xanthohumol inhibited both enzymes at low μM concentrations. PMID:26918635

  10. Properties of Rab5 N-terminal domain dictate prenylation of C-terminal cysteines.

    PubMed Central

    Sanford, J C; Pan, Y; Wessling-Resnick, M

    1995-01-01

    Rab5 is a Ras-related GTP-binding protein that is post-translationally modified by prenylation. We report here that an N-terminal domain contained within the first 22 amino acids of Rab5 is critical for efficient geranylgeranylation of the protein's C-terminal cysteines. This domain is immediately upstream from the "phosphate binding loop" common to all GTP-binding proteins and contains a highly conserved sequence recognized among members of the Rab family, referred to here as the YXYLFK motif. A truncation mutant that lacks this domain (Rab5(23-215) fails to become prenylated. However, a chimeric peptide with the conserved motif replacing cognate Rab5 sequence (MAYDYLFKRab5(23-215) does become post-translationally modified, demonstrating that the presence of this simple six amino acid N-terminal element enables prenylation at Rab5's C-terminus. H-Ras/Rab5 chimeras that include the conserved YXYLFK motif at the N-terminus do not become prenylated, indicating that, while this element may be necessary for prenylation of Rab proteins, it alone is not sufficient to confer properties to a heterologous protein to enable substrate recognition by the Rab geranylgeranyl transferase. Deletion analysis and studies of point mutants further reveal that the lysine residue of the YXYLFK motif is an absolute requirement to enable geranylgeranylation of Rab proteins. Functional studies support the idea that this domain is not required for guanine nucleotide binding since prenylation-defective mutants still bind GDP and are protected from protease digestion in the presence of GTP gamma S. We conclude that the mechanism of Rab geranylgeranylation involves key elements of the protein's tertiary structure including a conserved N-terminal amino acid motif (YXYLFK) that incorporates a critical lysine residue. Images PMID:7749197

  11. Protein prenylation: unique fats make their mark on biology.

    PubMed

    Wang, Mei; Casey, Patrick J

    2016-02-01

    The modification of eukaryotic proteins by isoprenoid lipids, which is known as prenylation, controls the localization and activity of a range of proteins that have crucial functions in biological regulation. The roles of prenylated proteins in cells are well conserved across species, underscoring the biological and evolutionary importance of this lipid modification pathway. Genetic suppression and pharmacological inhibition of the protein prenylation machinery have provided insights into several cellular processes and into the aetiology of diseases in which prenylation is involved. The functional dependence of prenylation substrates, such as RAS proteins, on this modification and the therapeutic potential of targeting the prenylation process in pathological conditions accentuate the need to fully understand this form of post-translational modification.

  12. Prenylated Rab acceptor protein is a receptor for prenylated small GTPases.

    PubMed

    Figueroa, C; Taylor, J; Vojtek, A B

    2001-07-27

    Localization of Ras and Ras-like proteins to the correct subcellular compartment is essential for these proteins to mediate their biological effects. Many members of the Ras superfamily (Ha-Ras, N-Ras, TC21, and RhoA) are prenylated in the cytoplasm and then transit through the endomembrane system on their way to the plasma membrane. The proteins that aid in the trafficking of the small GTPases have not been well characterized. We report here that prenylated Rab acceptor protein (PRA1), which others previously identified as a prenylation-dependent receptor for Rab proteins, also interacts with Ha-Ras, RhoA, TC21, and Rap1a. The interaction of these small GTPases with PRA1 requires their post-translational modification by prenylation. The prenylation-dependent association of PRA1 with multiple GTPases is conserved in evolution; the yeast PRA1 protein associates with both Ha-Ras and RhoA. Earlier studies reported the presence of PRA1 in the Golgi, and we show here that PRA1 co-localizes with Ha-Ras and RhoA in the Golgi compartment. We suggest that PRA1 acts as an escort protein for small GTPases by binding to the hydrophobic isoprenoid moieties of the small GTPases and facilitates their trafficking through the endomembrane system.

  13. Prenylation of proteins in Trypanosoma brucei.

    PubMed

    Yokoyama, K; Lin, Y; Stuart, K D; Gelb, M H

    1997-07-01

    Prenyl modification of proteins by farnesyl and geranylgeranyl isoprenoids occurs in a variety of eukaryotic cells. Culturing of Trypanosoma brucei in the presence of [3H]mevalonolactone (which is hydrolyzed in cells to give mevalonic acid, the precursor of protein prenyl groups) and an inhibitor of mevalonic acid biosynthesis leads to the radiolabeling of a specific set of proteins when analyzed by gel electrophoresis. T. brucei proteins were also labeled when cells were cultured in the presence of [3H]farnesol or [3H]geranylgeraniol, and each prenol labels a distinct set of proteins. Unlike mammalian cells, only a few T. brucei proteins of molecular weights similar to those of the mammalian Ras superfamily of GTPase (20-30 kDa) were labeled with [3H]farnesol or [3H]geranylgeraniol. When the 0-55% ammonium sulfate fraction of T. brucei cytosol was fractionated on anion exchange chromatography, protein farnesyltransferase (PFT) and protein geranylgeranyltransferase-I (PGGT-I) activities were detected and elute as two distinct peaks. Partially purified T. brucei PFT and PGGT-I display partly different specificities toward prenyl acceptor substrates from those of mammalian protein prenyltransferases. As shown previously, rat PFT utilizes proteins ending in CVLS and CVIM as efficient prenyl acceptors and rat PGGT-I utilizes proteins ending in CVLL and CVIM in vitro. On the contrary, T. brucei PFT farnesylates a protein ending in CVIM but not CVLS or CVLL, and T. brucei PGGT-I preferentially geranylgeranylates a protein ending in CVLL.

  14. Halogenated Indole Alkaloids from Marine Invertebrates

    PubMed Central

    Pauletti, Patrícia Mendonça; Cintra, Lucas Silva; Braguine, Caio Guedes; da Silva Filho, Ademar Alves; Silva, Márcio Luís Andrade e; Cunha, Wilson Roberto; Januário, Ana Helena

    2010-01-01

    This review discusses the isolation, structural elucidation, and biological activities of halogenated indole alkaloids obtained from marine invertebrates. Meridianins and related compounds (variolins, psammopemmins, and aplicyanins), as well as aplysinopsins and leptoclinidamines, are focused on. A compilation of the 13C-NMR spectral data of these selected natural indole alkaloids is also provided. PMID:20559487

  15. Structure-activity relationship of prenyl-substituted polyphenols from Artocarpus heterophyllus as inhibitors of melanin biosynthesis in cultured melanoma cells.

    PubMed

    Arung, Enos Tangke; Shimizu, Kuniyoshi; Kondo, Ryuichiro

    2007-09-01

    A series of prenylated, flavone-based polyphenols, compounds 1-8, were isolated from the wood of Artocarpus heterophyllus. These compounds, which have previously been shown not to inhibit tyrosinase activity, were found to be active inhibitors of the in vivo melanin biosynthesis in B16 melanoma cells, with little or no cytotoxicity. To clarify the structural requirement for inhibition, some structure-activity relationships were studied, in comparison with related compounds lacking prenyl side chains. Our experiments indicate that both prenyl and OH groups, as well as the type of substitution pattern, are crucial for the inhibition of melanin production in B16 melanoma cells.

  16. Farnesol-mediated shift in the metabolic origin of prenyl groups used for protein prenylation in plants.

    PubMed

    Huchelmann, Alexandre; Brahim, Mathieu Semir; Gerber, Esther; Tritsch, Denis; Bach, Thomas J; Hemmerlin, Andréa

    2016-08-01

    Little is known about how plant cells regulate the exchange of prenyl diphosphates between the two compartmentalized isoprenoid biosynthesis pathways. Prenylation of proteins is a suitable model to study such interactions between the plastidial methylerythritol phosphate (MEP) and the cytosolic mevalonate (MVA) pathways because prenyl moieties used to modify proteins rely on both origins. Tobacco cells expressing a prenylatable GFP were treated with specific MEP and/or MVA pathways inhibitors to block the formation of prenyl diphosphates and therefore the possibility to modify the proteins. Chemical complementation assays using prenyl alcohol precursors restore the prenylation. Indeed, geranylgeraniol (C20 prenyl alcohol) and to a lesser but significant level C15-farnesol restored the prenylation of a protein bearing a geranylgeranylation CaaX motif, which under standard conditions is modified by a MEP-derived prenyl group. However, the restoration takes place in different ways. While geranylgeraniol operates directly as a metabolic precursor, the C15-prenyl alcohol functions indirectly as a signal that leads to shift the metabolic origin of prenyl groups in modified proteins, here from the plastidial MEP pathway in favor of the cytosolic MVA pathway. Furthermore, farnesol interferes negatively with the MEP pathway in an engineered Escherichia coli strain synthesizing isoprenoids either starting from MVA or from MEP. Following the cellular uptake of a fluorescent analog of farnesol, we showed its close interaction with tobacco plastids and modification of plastid homeostasis. As a consequence, in tobacco farnesol supposedly inhibits the plastidial MEP pathway and activates the cytosolic MVA pathway, leading to the shift in the metabolic origin and thereby acts as a potential regulator of crosstalk between the two pathways. Together, those results suggest a new role for farnesol (or a metabolite thereof) as a central molecule for the regulation of isoprenoid

  17. Regiospecific Prenylation of Hydroxyxanthones by a Plant Flavonoid Prenyltransferase.

    PubMed

    Wang, Ruishan; Chen, Ridao; Li, Jianhua; Liu, Xiao; Xie, Kebo; Chen, Dawei; Peng, Ying; Dai, Jungui

    2016-08-26

    C-Prenylated xanthones are pharmacologically attractive specialized metabolites that are distributed in plants and microorganisms. The prenylation of xanthones often contributes to the structural diversity and biological activities of these compounds. However, efficient regiospecific prenylation of xanthones is still challenging. In this study, the regiospecific prenylation of a number of structurally different hydroxyxanthones (3-10) by MaIDT, a plant flavonoid prenyltransferase with substrate flexibility from Morus alba, is demonstrated. Among the enzymatic products, 2-dimethylallyl-1,3,7-trihydroxyxanthone (3a) effectively attenuated glutamate-induced injury in SK-N-SH neuroblastoma cells. These results suggest a potential approach for the synthesis of bioactive prenylated xanthones by a substrate-relaxed flavonoid prenyltransferase. PMID:27466696

  18. Marine Indole Alkaloids

    PubMed Central

    Netz, Natalie; Opatz, Till

    2015-01-01

    Marine indole alkaloids comprise a large and steadily growing group of secondary metabolites. Their diverse biological activities make many compounds of this class attractive starting points for pharmaceutical development. Several marine-derived indoles were found to possess cytotoxic, antineoplastic, antibacterial and antimicrobial activities, in addition to the action on human enzymes and receptors. The newly isolated indole alkaloids of marine origin since the last comprehensive review in 2003 are reported, and biological aspects will be discussed. PMID:26287214

  19. Tyrosine O-prenyltransferases TyrPT and SirD displaying similar behavior toward unnatural alkyl or benzyl diphosphate as their natural prenyl donor dimethylallyl diphosphate.

    PubMed

    Yu, Huili; Liebhold, Mike; Xie, Xiulan; Li, Shu-Ming

    2015-09-01

    Prenyltransferases of the dimethylallyltryptophan synthase (DMATS) superfamily are involved in the biosynthesis of secondary metabolites and contribute as modification enzymes significantly to structural diversity of natural products. They show usually broad specificity toward their aromatic substrates with regiospecific prenylations on aromatic rings. However, most members of this superfamily exhibit a high specificity toward their prenyl donors and usually accept exclusively dimethylallyl diphosphate (DMAPP). Recently, several indole prenyltransferases from this family were also demonstrated to accept unnatural DMAPP analogs such as methylallyl, 2-pentenyl and benzyl diphosphate for alkylation, or benzylation of the indole ring. Partial or complete shift of the substitution position was observed for these enzymes. In this study, we report the acceptance of these DMAPP analogs by two tyrosine O-prenyltransferases TyrPT from Aspergillus niger and SirD from Leptosphaeria maculans for alkylation or benzylation of tyrosine and derivatives. NMR and mass spectrometry (MS) analyses of nine isolated enzyme products confirmed the regiospecific O- or N-alkylation or benzylation at position C-4 of the aromatic ring, which is the same prenylation position of these enzymes in the presence of DMAPP.

  20. Prenylated 2-arylbenzofurans from Artocarpus petelotii.

    PubMed

    Shen, Hong; Hou, Ai-Jun

    2008-01-01

    Further phytochemical investigation on the root barks of Artocarpus petelotii Gagnep afforded two new prenylated 2-arylbenzofurans, artopetelins L and M (1 and 2), as well as a known compound, lakoochin B (3). Their structures were identified by spectroscopic methods. Artopetelins B-E (5-8), four 2-arylbenzofurans previously isolated from this plant, and lakoochin B (3) were potent against HepG2 (IC(50) = 14.4-44.4 microM) and MCF-7 (IC(50) = 29.7-59.1 microM).

  1. Characterization of prenylated protein methyltransferase in Leishmania.

    PubMed Central

    Hasne, M P; Lawrence, F

    1999-01-01

    Prenylated protein methyltransferase, an enzyme involved in the post-translational modification of many signalling proteins, has been characterized in a parasitic flagellated protozoan, Leishmania donovani. The activity of this enzyme was monitored by the methylation of an artificial substrate, an S-prenylated cysteine analogue, with S-adenosyl-l-[methyl-(3)H]methionine as methyl donor. More than 85% of the methyltransferase activity was associated with membranes. The enzyme methylates N-acetyl-S-trans, trans-farnesyl-l-cysteine and N-acetyl-S-all-trans-geranylgeranyl-l-cysteine, but N-acetyl-S-trans, trans-geranyl-l-cysteine only very weakly. In contrast with the enzyme from mammals, the leishmanial enzyme had a greater affinity for the farnesylated substrate than for the geranylgeranylated one. Activity in vitro was not modulated by cAMP, protein kinase C activator or guanosine 5'-[gamma-thio]triphosphate. An analysis of the endogenous substrates showed that the carboxymethylated proteins were also isoprenylated. The main carboxymethylated proteins have molecular masses of 95, 68, 55, 46, 34-23, 18 and less than 14 kDa. Treatment of cells with N-acetyl-S-trans,trans-farnesyl-l-cysteine decreased the carboxymethylation level, whereas treatment with guanosine 5'-[gamma-thio]triphosphate increased the carboxymethylation of various proteins, particularly those of molecular masses 30-20 kDa. PMID:10477261

  2. Artoindonesianin P, a new prenylated flavone with cytotoxic activity from Artocarpus lanceifolius.

    PubMed

    Hakim, Euis Holisotan; Asnizar; Yurnawilis; Aimi, Norio; Kitajima, Mariko; Takayama, Hiromitsu

    2002-12-01

    A new prenylated flavone, named artoindonesianin P (1), was isolated from the tree bark of Artocarpus lanceifolius, together with three known related compounds, artobiloxanthone (2), cycloartobiloxanthone (3) and artonol B (4). The structure of artoindonesianin P 1 was determined on the basis of spectral evidence (MS, 1H and 13C NMR) and by comparison with known related compounds. Compounds 1-4 exhibited significant cytotoxicity against murine P388 leukemia cells.

  3. Prenyl Ethers: Novel Fungal Volatiles Formed by Penicillium digitatum.

    PubMed

    Amrein, Thomas M; Frey, Peter; Meier, Roberto; Baumann, Heidi; Tanner, Miriam; Gassenmeier, Klaus F

    2014-10-01

    Prenyl ethyl ether (PEE) was previously described as the cause for a solvent-like off-note in ground hazelnuts, but its origin remained unclear. Investigations were carried out by analytical groups of Coop and Givaudan over four years to elucidate this phenomenon. From mouldy citrus fruits a strain of Penicillium digitatum was isolated and found to form PEE. Formation on citrus and other fruits was prominent and contributed to the particular smell of decayed fruits. Several strains of P. digitatum formed PEE, while other fungal species did not. In contrast to citrus fruit, prenyl methyl ether (PME) was formed as dominant prenyl ether on hazelnuts while only small amounts of PEE were found. PME has not been previously described as volatile metabolite of fungi or as a food-taint. Spiking experiments with deuterated ethanol showed that the ethyl group is likely incorporated into PEE via the aldehyde form. On hazelnuts strongly decayed by P. digitatum yet another prenyl ether was tentatively identified: Prenyl isopropyl ether. Prenyl ethers present a novel group of volatile metabolites of P. digitatum. They are likely typical for this species and have not been described before. Prenyl ethers seem to play a significant role in the smell of food decayed by P. digitatum and should be considered in cases of off-notes and taints. PMID:25437159

  4. Prenylated xanthones from the root bark of Cudrania tricuspidata.

    PubMed

    Hwang, Ji Hye; Hong, Seong Su; Han, Xiang Hua; Hwang, Ji Sang; Lee, Dongho; Lee, Heesoon; Yun, Yeo Pyo; Kim, Youngsoo; Ro, Jai Seup; Hwang, Bang Yeon

    2007-07-01

    Four new prenylated xanthones, cudratricusxanthones J-M (1-4), were isolated from the CH2Cl2-soluble extract of the root bark of Cudrania tricuspidata, along with four known prenylated xanthones, isocudraxanthone K (5), cudraxanthone C (6), cudratricusxanthone A (7), and cudraxanthone L (8), and three known prenylated flavonoids, cudraflavone A (9), cudraflavanone A (10), and cudraflavone B (11). The structures of compounds 1-4 were elucidated using spectroscopic methods. Cudratricusxanthone A (7), cudraflavanone A (10), and cudraflavone B (11) showed moderate inhibitory effects on mouse brain monoamine oxidase (MAO) with IC50 values of 88.3, 89.7, and 80.0 microM, respectively.

  5. Biodegradation of indole by a newly isolated Cupriavidus sp. SHE.

    PubMed

    Qu, Yuanyuan; Shen, E; Ma, Qiao; Zhang, Zhaojing; Liu, Ziyan; Shen, Wenli; Wang, Jingwei; Li, Duanxing; Li, Huijie; Zhou, Jiti

    2015-08-01

    Indole, a typical nitrogen heterocyclic aromatic pollutant, is extensively spread in industrial wastewater. Microbial degradation has been proven to be a feasible approach to remove indole, whereas the microbial resources are fairly limited. A bacterial strain designated as SHE was isolated and found to be an efficient indole degrader. It was identified as Cupriavidus sp. according to 16S rRNA gene analysis. Strain SHE could utilize indole as the sole carbon source and almost completely degrade 100mg/L of indole within 24hr. It still harbored relatively high indole degradation capacity within pH4-9 and temperature 25°C-35°C. Experiments also showed that some heavy metals such as Mn(2+), Pb(2+) and Co(2+) did not pose severe inhibition on indole degradation. Based on high performance liquid chromatography-mass spectrum analysis, isatin was identified as a minor intermediate during the process of indole biodegradation. A major yellow product with m/z 265.0605 (C15H8N2O3) was generated and accumulated, suggesting a novel indole conversion pathway existed. Genome analysis of strain SHE indicated that there existed a rich set of oxidoreductases, which might be the key reason for the efficient degradation of indole. The robust degradation ability of strain SHE makes it a promising candidate for the treatment of indole containing wastewater. PMID:26257355

  6. Biodegradation of indole by a newly isolated Cupriavidus sp. SHE.

    PubMed

    Qu, Yuanyuan; Shen, E; Ma, Qiao; Zhang, Zhaojing; Liu, Ziyan; Shen, Wenli; Wang, Jingwei; Li, Duanxing; Li, Huijie; Zhou, Jiti

    2015-08-01

    Indole, a typical nitrogen heterocyclic aromatic pollutant, is extensively spread in industrial wastewater. Microbial degradation has been proven to be a feasible approach to remove indole, whereas the microbial resources are fairly limited. A bacterial strain designated as SHE was isolated and found to be an efficient indole degrader. It was identified as Cupriavidus sp. according to 16S rRNA gene analysis. Strain SHE could utilize indole as the sole carbon source and almost completely degrade 100mg/L of indole within 24hr. It still harbored relatively high indole degradation capacity within pH4-9 and temperature 25°C-35°C. Experiments also showed that some heavy metals such as Mn(2+), Pb(2+) and Co(2+) did not pose severe inhibition on indole degradation. Based on high performance liquid chromatography-mass spectrum analysis, isatin was identified as a minor intermediate during the process of indole biodegradation. A major yellow product with m/z 265.0605 (C15H8N2O3) was generated and accumulated, suggesting a novel indole conversion pathway existed. Genome analysis of strain SHE indicated that there existed a rich set of oxidoreductases, which might be the key reason for the efficient degradation of indole. The robust degradation ability of strain SHE makes it a promising candidate for the treatment of indole containing wastewater.

  7. 3-Prenyl luteolin, a new prenylated flavone with melanin biosynthesis inhibitory activity from wood of Artocarpus heterophyllus.

    PubMed

    Arung, Enos Tangke; Shimizu, Kuniyoshi; Tanaka, Hiroyuki; Kondo, Ryuichiro

    2010-09-01

    In our efforts to find new whitening agent from natural resources, we focused on wood of Artocarpus heterophyllus which shows anti-melanogenesis activity. By activity-guided fractionation of A. heterophyllus wood extract, a new prenylated flavonoid, 3-prenyl luteolin (1) was isolated. The IC(50) of mushroom tyrosinase inhibitory activity of 1 was 76.3 microM. The results of the comparison with that of luteolin showed the prenyl substituent at C-3 position of 1 play an important role for revealing tyrosinase inhibition. In melanin formation inhibition on B16 melanoma cells, IC(50) of 1 was 56.7 microM with less cytotoxicity.

  8. Antibacterial Prenylated Acylphloroglucinols from Psorothamnus fremontii.

    PubMed

    Yu, Qian; Ravu, Ranga Rao; Xu, Qiong-Ming; Ganji, Suresh; Jacob, Melissa R; Khan, Shabana I; Yu, Bo-Yang; Li, Xing-Cong

    2015-11-25

    Psorothatins A-C (1-3), three antibacterial prenylated acylphloroglucinol derivatives, were isolated from the native American plant Psorothamnus fremontii. They feature an unusual α,β-epoxyketone functionality and a β-hydroxy-α,β-unsaturated ketone structural moiety. The latter forms a pseudo-six-membered heterocyclic ring due to strong intramolecular hydrogen bonding, as indicated by the long-range proton-carbon correlations in the NMR experiments. Psorothatin C (3) was the most active compound against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium, with IC50 values in the range 1.4-8.8 μg/mL. The first total synthesis of 3 described herein permits future access to structural analogues with potentially improved antibacterial activities. PMID:26469557

  9. Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis

    PubMed Central

    Pandey, Shiv S.; Singh, Sucheta; Babu, C. S. Vivek; Shanker, Karuna; Srivastava, N. K.; Shukla, Ashutosh K.; Kalra, Alok

    2016-01-01

    Not much is known about the mechanism of endophyte-mediated induction of secondary metabolite production in Catharanthus roseus. In the present study two fungal endophytes, Curvularia sp. CATDLF5 and Choanephora infundibulifera CATDLF6 were isolated from the leaves of the plant that were found to enhance vindoline content by 229–403%. The isolated endophytes did not affect the primary metabolism of the plant as the maximum quantum efficiency of PSII, net CO2 assimilation, plant biomass and starch content of endophyte-inoculated plants was similar to endophyte-free control plants. Expression of terpenoid indole alkaloid (TIA) pathway genes, geraniol 10-hydroxylase (G10H), tryptophan decarboxylase (TDC), strictosidine synthase (STR), 16-hydoxytabersonine-O-methyltransferase (16OMT), desacetoxyvindoline-4-hydroxylase (D4H), deacetylvindoline-4-O-acetyltransferase (DAT) were upregulated in endophyte-inoculated plants. Endophyte inoculation upregulated the expression of the gene for transcriptional activator octadecanoid-responsive Catharanthus AP2-domain protein (ORCA3) and downregulated the expression of Cys2/His2-type zinc finger protein family transcriptional repressors (ZCTs). The gene for the vacuolar class III peroxidase (PRX1), responsible for coupling vindoline and catharanthine, was upregulated in endophyte-inoculated plants. These endophytes may enhance vindoline production by modulating the expression of key structural and regulatory genes of vindoline biosynthesis without affecting the primary metabolism of the host plant. PMID:27220774

  10. Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis.

    PubMed

    Pandey, Shiv S; Singh, Sucheta; Babu, C S Vivek; Shanker, Karuna; Srivastava, N K; Shukla, Ashutosh K; Kalra, Alok

    2016-01-01

    Not much is known about the mechanism of endophyte-mediated induction of secondary metabolite production in Catharanthus roseus. In the present study two fungal endophytes, Curvularia sp. CATDLF5 and Choanephora infundibulifera CATDLF6 were isolated from the leaves of the plant that were found to enhance vindoline content by 229-403%. The isolated endophytes did not affect the primary metabolism of the plant as the maximum quantum efficiency of PSII, net CO2 assimilation, plant biomass and starch content of endophyte-inoculated plants was similar to endophyte-free control plants. Expression of terpenoid indole alkaloid (TIA) pathway genes, geraniol 10-hydroxylase (G10H), tryptophan decarboxylase (TDC), strictosidine synthase (STR), 16-hydoxytabersonine-O-methyltransferase (16OMT), desacetoxyvindoline-4-hydroxylase (D4H), deacetylvindoline-4-O-acetyltransferase (DAT) were upregulated in endophyte-inoculated plants. Endophyte inoculation upregulated the expression of the gene for transcriptional activator octadecanoid-responsive Catharanthus AP2-domain protein (ORCA3) and downregulated the expression of Cys2/His2-type zinc finger protein family transcriptional repressors (ZCTs). The gene for the vacuolar class III peroxidase (PRX1), responsible for coupling vindoline and catharanthine, was upregulated in endophyte-inoculated plants. These endophytes may enhance vindoline production by modulating the expression of key structural and regulatory genes of vindoline biosynthesis without affecting the primary metabolism of the host plant. PMID:27220774

  11. The Vinylguaiacol/Indole or VGI ("Veggie") Ratio: A Novel Molecular Parameter to Evaluate the Relative Contributions of Terrestrial and Aquatic Organic Matter to Sediments

    NASA Astrophysics Data System (ADS)

    Kruge, M. A.; Olsen, K. K.; Slusarczyk, J.; Gomez, E.

    2010-12-01

    The organic matter (OM) fraction of estuarine sediments is often distinctive and thus diagnostically useful in determinations of sedimentary provenance. Among the most fundamental distinctions to be made is that between terrestrial and aquatic OM. To supplement the parameters commonly used for this purpose (e.g., C/N and stable isotope ratios), we proposed the Vinylguaiacol/Indole or VGI ("Veggie") ratio, defined as [vinylguaiacol / (indole + vinylguaiacol)] using data produced by analytical pyrolysis-gas chromatography/mass spectrometry of dried, homogenized sediment samples. The ratio employs the peak areas of these two compounds on the mass chromatograms of their molecular ions (m/z 150 and 117). Major pyrolysis products of terrestrial plant lignin include a variety of methoxyphenols, notably 4-vinylguaiacol. In contrast, aquatic algae and bacteria characteristically produce distinctive organonitrogen compounds upon pyrolysis, particularly indole, derived from the amino acid tryptophan. The end member VGI ratio value of 1.00 is obtained for reference land plant matter, including the marsh plants Phragmites and Spartina, as well as maple and pine wood. The end member value of 0.00 is obtained for cultured microbes, including Escherichia coli and the cyanobacterium Anacystis. Vinylguaiacol and indole are commonly detected in Recent sediment pyrolyzates. We hypothesized that their relative quantities therein should be proportional to the relative contributions of land plant and microbial OM, respectively. Samples taken from Spartina peat marshes at the mouths of major rivers (Housatonic and Connecticut) entering Long Island Sound, wetlands behind the barrier island at Cape May (NJ), and a Phragmites-dominated tidal marsh along the Hackensack River (NJ) have high (> 0.8) VGI ratio values. Sediments collected within the Newark Bay (NJ) estuary from the lower Passaic and Hackensack Rivers and the Arthur Kill show mixed terrestrial and aquatic OM signatures (VGI from 0

  12. Biosynthesis of Fungal Indole Alkaloids

    PubMed Central

    Xu, Wei; Gavia, Diego J.; Tang, Yi

    2014-01-01

    This review provides a summary of recent research advances in elucidating the biosynthesis of fungal indole alkaloids. Different strategies used to incorporate and derivatize the indole/indoline moieties in various families of fungal indole alkaloids will be discussed, including tryptophan-containing nonribosomal peptides and polyketide-nonribosomal peptide hybrids; and alkaloids derived from other indole building blocks. This review also includes discussion regarding the downstream modifications that generate chemical and structural diversity among indole alkaloids. PMID:25180619

  13. Ajoene, a garlic compound, inhibits protein prenylation and arterial smooth muscle cell proliferation.

    PubMed

    Ferri, Nicola; Yokoyama, Kohei; Sadilek, Martin; Paoletti, Rodolfo; Apitz-Castro, Rafael; Gelb, Michael H; Corsini, Alberto

    2003-03-01

    (1) Ajoene is a garlic compound with anti-platelet properties and, in addition, was shown to inhibit cholesterol biosynthesis by affecting 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase and late enzymatic steps of the mevalonate (MVA) pathway. (2) MVA constitutes the precursor not only of cholesterol, but also of a number of non-sterol isoprenoids, such as farnesyl and geranylgeranyl groups. Covalent attachment of these MVA-derived isoprenoid groups (prenylation) is a required function of several proteins that regulate cell proliferation. We investigated the effect of ajoene on rat aortic smooth muscle cell proliferation as related to protein prenylation. (3) Cell counting, DNA synthesis, and cell cycle analysis showed that ajoene (1-50 micro M) interfered with the progression of the G1 phase of the cell cycle, and inhibited rat SMC proliferation. (4) Similar to the HMG-CoA reductase inhibitor simvastatin, ajoene inhibited cholesterol biosynthesis. However, in contrast to simvastatin, the antiproliferative effect of ajoene was not prevented by the addition of MVA, farnesol (FOH), and geranylgeraniol (GGOH). Labelling of smooth muscle cell cellular proteins with [3H]-FOH and [3H]-GGOH was significantly inhibited by ajoene. (5) In vitro assays for protein farnesyltransferase (PFTase) and protein geranylgeranyltransferase type I (PGGTase-I) confirmed that ajoene inhibits protein prenylation. High performance liquid chromatography (HPLC) and mass spectrometry analyses also demonstrated that ajoene causes a covalent modification of the cysteine SH group of a peptide substrate for protein PGGTase-I. (6) Altogether, our results provide evidence that ajoene interferes with the protein prenylation reaction, an effect that may contribute to its inhibition of SMC proliferation.

  14. Ajoene, a garlic compound, inhibits protein prenylation and arterial smooth muscle cell proliferation

    PubMed Central

    Ferri, Nicola; Yokoyama, Kohei; Sadilek, Martin; Paoletti, Rodolfo; Apitz-Castro, Rafael; Gelb, Michael H; Corsini, Alberto

    2003-01-01

    Ajoene is a garlic compound with anti-platelet properties and, in addition, was shown to inhibit cholesterol biosynthesis by affecting 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase and late enzymatic steps of the mevalonate (MVA) pathway. MVA constitutes the precursor not only of cholesterol, but also of a number of non-sterol isoprenoids, such as farnesyl and geranylgeranyl groups. Covalent attachment of these MVA-derived isoprenoid groups (prenylation) is a required function of several proteins that regulate cell proliferation. We investigated the effect of ajoene on rat aortic smooth muscle cell proliferation as related to protein prenylation. Cell counting, DNA synthesis, and cell cycle analysis showed that ajoene (1–50 μM) interfered with the progression of the G1 phase of the cell cycle, and inhibited rat SMC proliferation. Similar to the HMG-CoA reductase inhibitor simvastatin, ajoene inhibited cholesterol biosynthesis. However, in contrast to simvastatin, the antiproliferative effect of ajoene was not prevented by the addition of MVA, farnesol (FOH), and geranylgeraniol (GGOH). Labelling of smooth muscle cell cellular proteins with [3H]-FOH and [3H]-GGOH was significantly inhibited by ajoene. In vitro assays for protein farnesyltransferase (PFTase) and protein geranylgeranyltransferase type I (PGGTase-I) confirmed that ajoene inhibits protein prenylation. High performance liquid chromatography (HPLC) and mass spectrometry analyses also demonstrated that ajoene causes a covalent modification of the cysteine SH group of a peptide substrate for protein PGGTase-I. Altogether, our results provide evidence that ajoene interferes with the protein prenylation reaction, an effect that may contribute to its inhibition of SMC proliferation. PMID:12642382

  15. RPGR, a prenylated retinal ciliopathy protein, is targeted to cilia in a prenylation- and PDE6D-dependent manner

    PubMed Central

    Dutta, Nirmal

    2016-01-01

    ABSTRACT RPGR (retinitis pigmentosa GTPase regulator) is a ciliary protein associated with several forms of inherited retinal degenerative diseases. PDE6D is a ubiquitously expressed prenyl-binding protein and involved in ciliary targeting of prenylated proteins. The current working model for the RPGR function depicts that RPGR acts as a scaffold protein to recruit cargo-loaded PDE6D to primary cilia. Here, we present evidence demonstrating an alternative relationship between RPGR and PDE6D, in which RPGR is a cargo of PDE6D for ciliary targeting. We found that the constitutive isoform of RPGR, which is prenylated, requires prenylation for its ciliary localization. We also found that there are at least two independent ciliary targeting signals in RPGR: one within the N-terminal region that contains the RCC1-like domain and the other near the prenylation site at the C-terminus. Ablation of PDE6D blocked ciliary targeting of RPGR. Our study indicates that prenylated RPGR is one of the cargos of PDE6D for ciliary trafficking and provides insight into the mechanisms by which RPGR is targeted to cilia. PMID:27493202

  16. RPGR, a prenylated retinal ciliopathy protein, is targeted to cilia in a prenylation- and PDE6D-dependent manner.

    PubMed

    Dutta, Nirmal; Seo, Seongjin

    2016-09-15

    RPGR (retinitis pigmentosa GTPase regulator) is a ciliary protein associated with several forms of inherited retinal degenerative diseases. PDE6D is a ubiquitously expressed prenyl-binding protein and involved in ciliary targeting of prenylated proteins. The current working model for the RPGR function depicts that RPGR acts as a scaffold protein to recruit cargo-loaded PDE6D to primary cilia. Here, we present evidence demonstrating an alternative relationship between RPGR and PDE6D, in which RPGR is a cargo of PDE6D for ciliary targeting. We found that the constitutive isoform of RPGR, which is prenylated, requires prenylation for its ciliary localization. We also found that there are at least two independent ciliary targeting signals in RPGR: one within the N-terminal region that contains the RCC1-like domain and the other near the prenylation site at the C-terminus. Ablation of PDE6D blocked ciliary targeting of RPGR. Our study indicates that prenylated RPGR is one of the cargos of PDE6D for ciliary trafficking and provides insight into the mechanisms by which RPGR is targeted to cilia.

  17. RPGR, a prenylated retinal ciliopathy protein, is targeted to cilia in a prenylation- and PDE6D-dependent manner.

    PubMed

    Dutta, Nirmal; Seo, Seongjin

    2016-01-01

    RPGR (retinitis pigmentosa GTPase regulator) is a ciliary protein associated with several forms of inherited retinal degenerative diseases. PDE6D is a ubiquitously expressed prenyl-binding protein and involved in ciliary targeting of prenylated proteins. The current working model for the RPGR function depicts that RPGR acts as a scaffold protein to recruit cargo-loaded PDE6D to primary cilia. Here, we present evidence demonstrating an alternative relationship between RPGR and PDE6D, in which RPGR is a cargo of PDE6D for ciliary targeting. We found that the constitutive isoform of RPGR, which is prenylated, requires prenylation for its ciliary localization. We also found that there are at least two independent ciliary targeting signals in RPGR: one within the N-terminal region that contains the RCC1-like domain and the other near the prenylation site at the C-terminus. Ablation of PDE6D blocked ciliary targeting of RPGR. Our study indicates that prenylated RPGR is one of the cargos of PDE6D for ciliary trafficking and provides insight into the mechanisms by which RPGR is targeted to cilia. PMID:27493202

  18. Pharmacokinetics of Prenylated Hop Phenols in Women Following Oral Administration of a Standardized Extract of Hops

    PubMed Central

    van Breemen, Richard B.; Yuan, Yang; Banuvar, Suzanne; Shulman, Lee P.; Qiu, Xi; Alvarenga, René F. Ramos; Chen, Shao-Nong; Dietz, Birgit M.; Bolton, Judy L.; Pauli, Guido F.; Krause, Elizabeth; Viana, Marlos; Nikolic, Dejan

    2014-01-01

    SCOPE Women seeking alternatives to hormone replacement therapy for menopausal symptoms often try botanical dietary supplements containing extracts of hops (Humulus lupulus L.). Hops contain 8-prenylnaringenin (8-PN), a potent phytoestrogen, the related flavanones 6-prenylnaringenin (6-PN) and isoxanthohumol (IX), and the prenylated chalcone xanthohumol (XN). METHODS AND RESULTS After chemically and biologically standardizing an extract of spent hops to these marker compounds, an escalating dose study was carried out in menopausal women to evaluate safety and pharmacokinetics. 8-PN, 6-PN, IX, and XN, sex hormones, and prothrombin time (PT/INR) were determined in blood samples and/or 24-h urine samples. There was no effect on sex hormones or blood clotting. The maximum serum concentrations of the prenylated phenols were dose-dependent and were reached from 2 to 7 h, indicating slow absorption. The marker compounds formed glucuronides that were found in serum and urine. Secondary peaks at 5 h in the serum concentration-time curves indicated enterohepatic recirculation. The serum concentration-time curves indicated demethylation of IX to form 8-PN and cyclization of XN to IX. Slow absorption and enterohepatic recirculation contributed to half-lives exceeding 20 h. CONCLUSION This human study indicated long half-lives of the estrogenic and proestrogenic prenylated phenols in hops but no acute toxicity. PMID:25045111

  19. Seven 3-methylidene-1H-indol-2(3H)-ones related to the multiple-receptor tyrosine kinase inhibitor sunitinib.

    PubMed

    Spencer, John; Chowdhry, Babur Z; Hamid, Samiyah; Mendham, Andrew P; Male, Louise; Coles, Simon J; Hursthouse, Michael B

    2010-02-01

    The solid-state structures of a series of seven substituted 3-methylidene-1H-indol-2(3H)-one derivatives have been determined by single-crystal X-ray diffraction and are compared in detail. Six of the structures {(3Z)-3-(1H-pyrrol-2-ylmethylidene)-1H-indol-2(3H)-one, C(13)H(10)N(2)O, (2a); (3Z)-3-(2-thienylmethylidene)-1H-indol-2(3H)-one, C(13)H(9)NOS, (2b); (3E)-3-(2-furylmethylidene)-1H-indol-2(3H)-one monohydrate, C(13)H(9)NO(2).H(2)O, (3a); 3-(1-methylethylidene)-1H-indol-2(3H)-one, C(11)H(11)NO, (4a); 3-cyclohexylidene-1H-indol-2(3H)-one, C(14)H(15)NO, (4c); and spiro[1,3-dioxane-2,3'-indolin]-2'-one, C(11)H(11)NO(3), (5)} display, as expected, intermolecular hydrogen bonding (N-H...O=C) between the 1H-indol-2(3H)-one units. However, methyl 3-(1-methylethylidene)-2-oxo-2,3-dihydro-1H-indole-1-carboxylate, C(13)H(13)NO(3), (4b), a carbamate analogue of (4a) lacking an N-H bond, displays no intermolecular hydrogen bonding. The structure of (4a) contains three molecules in the asymmetric unit, while (4b) and (4c) both contain two independent molecules. PMID:20124685

  20. 3-Hydroxymethyl coenzyme A reductase inhibition attenuates spontaneous smooth muscle tone via RhoA/ROCK pathway regulated by RhoA prenylation.

    PubMed

    Rattan, Satish

    2010-06-01

    RhoA prenylation may play an important step in the translocation of RhoA in the basal internal anal sphincter (IAS) smooth muscle tone. Statins inhibit downstream posttranslational RhoA prenylation by 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibition (HMGCRI). The role of statins in relation to RhoA prenylation in the pathophysiology of the spontaneously tonic smooth muscle has not been investigated. In the present studies, we determined the effect of classical HMGCRI simvastatin on the basal IAS tone and RhoA prenylation and in the levels of RhoA/Rho kinase (ROCK) in the cytosolic vs. membrane fractions of the smooth muscle. Simvastatin produced concentration-dependent decrease in the IAS tone (via direct actions at the smooth muscle cells). The decrease in the IAS tone by simvastatin was associated with the decrease in the prenylation of RhoA, as well as RhoA/ROCK in the membrane fractions of the IAS, in the basal state. The inhibitory effects of the HMGCRI were completely reversible by geranylgeranyltransferase substrate geranylgeranyl pyrophosphate. Relaxation of the IAS smooth muscle via HMGCRI simvastatin is mediated via the downstream decrease in the levels of RhoA prenylation and ROCK activity. Studies support the concept that RhoA prenylation leading to RhoA/ROCK translocation followed by activation is important for the basal tone in the IAS. Data suggest that the role of HMG-CoA reductase may go beyond cholesterol biosynthesis, such as the regulation of the smooth muscle tone. The studies have important implications in the pathophysiological mechanisms and in the novel therapeutic approaches for anorectal motility disorders.

  1. Expression, purification and crystallization of an indole prenyltransferase from Aspergillus fumigatus

    PubMed Central

    Chen, Jing; Morita, Hiroyuki; Kato, Ryohei; Noguchi, Hiroshi; Sugio, Shigetoshi; Abe, Ikuro

    2012-01-01

    CdpNPT from Aspergillus fumigatus is a dimethylallyltryptophan synthase/indole prenyltransferase that catalyzes reverse prenylation at position N1 of tryptophan-containing cyclic dipeptides. Residues 38–440 of CdpNPT were expressed in Escherichia coli and crystallized using the sitting-drop vapour-diffusion and microseeding techniques. The crystals belonged to space group P212121, with unit-cell parameters a = 84.4, b = 157.1, c = 161.8 Å, α = β = γ = 90.0°. PMID:22442243

  2. Antiherbivore prenylated benzoic acid derivatives from Piper kelleyi.

    PubMed

    Jeffrey, Christopher S; Leonard, Michael D; Glassmire, Andrea E; Dodson, Craig D; Richards, Lora A; Kato, Massuo J; Dyer, Lee A

    2014-01-24

    The known prenylated benzoic acid derivative 3-geranyl-4-hydroxy-5-(3″,3″-dimethylallyl)benzoic acid (1) and two new chromane natural products were isolated from the methanolic extract of the leaves of Piper kelleyi Tepe (Piperaceae), a midcanopy tropical shrub that grows in lower montane rain forests in Ecuador and Peru. Structure determination using 1D and 2D NMR analysis led to the structure of the chromene 2 and to the reassignment of the structure of cumanensic acid as 4, an isomeric chromene previously isolated from Piper gaudichaudianum. The structure and relative configuration of new chromane 3 was determined using 1D and 2D NMR spectroscopic analysis and was found to be racemic by ECD spectropolarimetry. The biological activity of 1-3 was evaluated against a lab colony of the generalist caterpillar Spodoptera exigua (Noctuidae), and low concentrations of 2 and 3 were found to significantly reduce fitness. Further consideration of the biosynthetic relationship of the three compounds led to the proposal that 1 is converted to 2 via an oxidative process, whereas 3 is produced through hetero-[4+2] dimerization of a quinone methide derived from the chromene 2.

  3. Antiherbivore prenylated benzoic acid derivatives from Piper kelleyi.

    PubMed

    Jeffrey, Christopher S; Leonard, Michael D; Glassmire, Andrea E; Dodson, Craig D; Richards, Lora A; Kato, Massuo J; Dyer, Lee A

    2014-01-24

    The known prenylated benzoic acid derivative 3-geranyl-4-hydroxy-5-(3″,3″-dimethylallyl)benzoic acid (1) and two new chromane natural products were isolated from the methanolic extract of the leaves of Piper kelleyi Tepe (Piperaceae), a midcanopy tropical shrub that grows in lower montane rain forests in Ecuador and Peru. Structure determination using 1D and 2D NMR analysis led to the structure of the chromene 2 and to the reassignment of the structure of cumanensic acid as 4, an isomeric chromene previously isolated from Piper gaudichaudianum. The structure and relative configuration of new chromane 3 was determined using 1D and 2D NMR spectroscopic analysis and was found to be racemic by ECD spectropolarimetry. The biological activity of 1-3 was evaluated against a lab colony of the generalist caterpillar Spodoptera exigua (Noctuidae), and low concentrations of 2 and 3 were found to significantly reduce fitness. Further consideration of the biosynthetic relationship of the three compounds led to the proposal that 1 is converted to 2 via an oxidative process, whereas 3 is produced through hetero-[4+2] dimerization of a quinone methide derived from the chromene 2. PMID:24422717

  4. Indole-3-ethanol Oxidase

    PubMed Central

    Percival, Frank W.; Purves, William K.; Vickery, Larry E.

    1973-01-01

    We report the further characterization of indole-3-ethanol oxidase from cucumber seedlings. The effects of various inhibitors suggest that the enzyme may be a flavoprotein with a metal ion and sulfhydryl groups required for full activity. Indole-3-acetaldehyde, a product of the reaction, inhibits the enzyme. This inhibition is overcome by O2 but not by indole-3-ethanol, indicating that the kinetic mechanism of the enzyme is a ping-pong Bi-Bi. The enzyme undergoes cooperative interactions with indoleethanol, yielding Hill coefficients as high as 2.96. Gibberellins are without effect on the enzyme, but it is inhibited by several acidic indoles possessing growth-promoting activity and by two synthetic auxins, 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid. Increasing concentrations of indoleacetic acid (IAA) brought about a slight reduction in the indoleethanol concentration producing halfmaximal velocity. Increasing levels of indoleethanol decreased the concentration of IAA required for half-maximal inhibition. At low concentrations of indoleethanol, low levels of IAA activated rather than inhibited. The effect of IAA was not overcome at higher levels of indoleethanol. These results may be interpreted as showing that IAA is a noncompetitive inhibitor which binds to that conformation of the enzyme which also binds indoleethanol. The significance of these interactions for the regulation of IAA biosynthesis is discussed. PMID:16658401

  5. Prenylated Dihydrochalcones from Artocarpus altilis as Antiausterity Agents.

    PubMed

    Nguyen, Mai Thanh Thi; Nguyen, Nhan Trung; Awale, Suresh

    2015-01-01

    Human pancreatic cancer cell lines have remarkable tolerance to nutrition starvation, which enables them to survive under a tumor microenvironment. A novel antiausterity strategy in anticancer drug discovery led to the discovery of agents that preferentially inhibit the survival of cancer cells under low nutrient conditions. Artocarpus altilis (Family: Moraceae) is commonly referred to as breadfruit, traditionally for the treatment of many diseases. Many prenylated flavonoid and prenylated chalocones together with their cancer cell cytotoxicity were reported from this plant. This chapter briefly summarizes the constituents, biosynthesis, cytotoxicity, and antiausterity activity on PANC-1 human pancreatic cancer cell line of A. altilis.

  6. Prenylated Dihydrochalcones from Artocarpus altilis as Antiausterity Agents.

    PubMed

    Nguyen, Mai Thanh Thi; Nguyen, Nhan Trung; Awale, Suresh

    2015-01-01

    Human pancreatic cancer cell lines have remarkable tolerance to nutrition starvation, which enables them to survive under a tumor microenvironment. A novel antiausterity strategy in anticancer drug discovery led to the discovery of agents that preferentially inhibit the survival of cancer cells under low nutrient conditions. Artocarpus altilis (Family: Moraceae) is commonly referred to as breadfruit, traditionally for the treatment of many diseases. Many prenylated flavonoid and prenylated chalocones together with their cancer cell cytotoxicity were reported from this plant. This chapter briefly summarizes the constituents, biosynthesis, cytotoxicity, and antiausterity activity on PANC-1 human pancreatic cancer cell line of A. altilis. PMID:26298457

  7. Turning moss into algae: prenylation targets in Physcomitrella patens.

    PubMed

    Antimisiaris, Marika F; Running, Mark P

    2014-01-01

    Prenylation is a series of lipid posttranslational modifications that are involved in several key aspects of plant development. We recently knocked out every prenylation subunit in Physcomitrella patens. Like in Arabidopsis, knockout of protein farnesyltransferase and protein geranylgeranyltransferase in P. patens does not result in lethality; however, effects on development are extensive. In particular, the knockout of protein geranylgeranyltransferase results in small unicellular plants that resemble algae. Here we perform an analysis of predicted geranylgeranyltransferase target proteins in P. patens, and draw attention to those most likely to play a role in the knockout phenotype.

  8. Prenylated Acylphloroglucinols with Leishmanicidal Activity from the Fern Elaphoglossum lindbergii.

    PubMed

    Socolsky, Cecilia; Salamanca, Efrain; Giménez, Alberto; Borkosky, Susana A; Bardón, Alicia

    2016-01-22

    Purification of a diethyl ether extract of the Argentinian fern Elaphoglossum lindbergii afforded five new prenylated acylphloroglucinols, lindbergins E-I (1-5), of which two showed significant in vitro leishmanicidal activity against promastigotes of Leishmania braziliensis and L. amazonensis. The structures of compounds 1-5 were elucidated based on analysis of their spectroscopic data and comparison with values previously reported for other phloroglucinol derivatives isolated from plant species of the genera Hypericum, Dryopteris, and Elaphoglossum. Fragmentation and rearrangement patterns of prenylated acylphloroglucinols were analyzed, and some mechanisms were proposed to rationalize the peaks observed in the mass spectra of these natural products produced by EI and FAB. Compounds isolated from E. lindbergii show the opposite absolute configuration when compared to those reported from E. crassipes. Empirical evidence indicates that acylphloroglucinols carrying a prenylated acylfilicinic acid residue possess a high-amplitude configuration-dependent Cotton effect centered at 350-360 nm in their CD curves, from which the absolute configuration of the sole chiral center of the prenylated acylfilicinic acid moiety can be deduced.

  9. Bioactive prenylated flavonoids from the stem bark of Artocarpus kemando.

    PubMed

    Seo, Eun-Kyoung; Lee, Dongho; Shin, Young Geun; Chai, Hee-Byung; Navarro, Hernán A; Kardono, Leonardus B S; Rahman, Ismail; Cordell, Geoffrey A; Farnsworth, Norman R; Pezzuto, John M; Kinghorn, A Douglas; Wani, Mansukh C; Wall, Monroe E

    2003-02-01

    Four known prenylated flavonoids, artonins E (1) and O (2), artobiloxanthone (3), and cycloartobiloxanthone (4), were isolated from the stem bark of Artocarpus kemando by bioassay-guided fractionation using the DNA strand-scission and the KB cytotoxicity assays as monitors. Compounds 1 and 3 exhibited strong DNA strand-scission activity, and all four compounds were found to be cytotoxic.

  10. Two new prenylated phloroglucinol derivatives from Hypericum scabrum.

    PubMed

    Yang, Jian-Bo; Liu, Rang-Dong; Ren, Jin; Wei, Qian; Wang, Ai-Guo; Su, Ya-Lun

    2016-05-01

    Two new prenylated phloroglucinol derivatives (1-2), and a known compound furohyperforim isomer 2 (3), were isolated from the aerial parts of Hypericum scabrum. Their structures were elucidated by various spectroscopic methods, including MS, IR, UV, and NMR. PMID:26982201

  11. Prenylated Acylphloroglucinols with Leishmanicidal Activity from the Fern Elaphoglossum lindbergii.

    PubMed

    Socolsky, Cecilia; Salamanca, Efrain; Giménez, Alberto; Borkosky, Susana A; Bardón, Alicia

    2016-01-22

    Purification of a diethyl ether extract of the Argentinian fern Elaphoglossum lindbergii afforded five new prenylated acylphloroglucinols, lindbergins E-I (1-5), of which two showed significant in vitro leishmanicidal activity against promastigotes of Leishmania braziliensis and L. amazonensis. The structures of compounds 1-5 were elucidated based on analysis of their spectroscopic data and comparison with values previously reported for other phloroglucinol derivatives isolated from plant species of the genera Hypericum, Dryopteris, and Elaphoglossum. Fragmentation and rearrangement patterns of prenylated acylphloroglucinols were analyzed, and some mechanisms were proposed to rationalize the peaks observed in the mass spectra of these natural products produced by EI and FAB. Compounds isolated from E. lindbergii show the opposite absolute configuration when compared to those reported from E. crassipes. Empirical evidence indicates that acylphloroglucinols carrying a prenylated acylfilicinic acid residue possess a high-amplitude configuration-dependent Cotton effect centered at 350-360 nm in their CD curves, from which the absolute configuration of the sole chiral center of the prenylated acylfilicinic acid moiety can be deduced. PMID:26689830

  12. Protein farnesyltransferase and protein prenylation in Plasmodium falciparum.

    PubMed

    Chakrabarti, Debopam; Da Silva, Thiago; Barger, Jennifer; Paquette, Steve; Patel, Hetal; Patterson, Shelley; Allen, Charles M

    2002-11-01

    Comparison of the malaria parasite and mammalian protein prenyltransferases and their cellular substrates is important for establishing this enzyme as a target for developing antimalarial agents. Nineteen heptapeptides differing only in their carboxyl-terminal amino acid were tested as alternative substrates of partially purified Plasmodium falciparum protein farnesyltransferase. Only NRSCAIM and NRSCAIQ serve as substrates, with NRSCAIM being the best. Peptidomimetics, FTI-276 and GGTI-287, inhibit the transferase with IC(50) values of 1 and 32 nm, respectively. Incubation of P. falciparum-infected erythrocytes with [(3)H]farnesol labels 50- and 22-28-kDa proteins, whereas [(3)H]geranylgeraniol labels only 22-28-kDa proteins. The 50-kDa protein is shown to be farnesylated, whereas the 22-28-kDa proteins are geranylgeranylated, irrespective of the labeling prenol. Protein labeling is inhibited more than 50% by either 5 microm FTI-277 or GGTI-298. The same concentration of inhibitors also inhibits parasite growth from the ring stage by 50%, decreases expression of prenylated proteins as measured with prenyl-specific antibody, and inhibits parasite differentiation beyond the trophozoite stage. Furthermore, differentiation specific prenylation of P. falciparum proteins is demonstrated. Protein labeling is detected predominantly during the trophozoite to schizont and schizont to ring transitions. These results demonstrate unique properties of protein prenylation in P. falciparum: a limited specificity of the farnesyltransferase for peptide substrates compared with mammalian enzymes, the ability to use farnesol to label both farnesyl and geranylgeranyl moieties on proteins, differentiation specific protein prenylation, and the ability of peptidomimetic prenyltransferase inhibitors to block parasite differentiation.

  13. Evaluation of prenylated peptides for use in cellular imaging and biochemical analysis.

    PubMed Central

    Ochocki, Joshua D.; Igbavboa, Urule; Wood, W. Gibson; Wattenberg, Elizabeth V.; Distefano, Mark D.

    2015-01-01

    Protein prenylation involves the addition of a farnesyl (C15) or geranylgeranyl (C20) isoprenoid moiety onto the C-terminus of approximately 2% of all mammalian proteins. This hydrophobic modification serves to direct membrane association of the protein. Due to the finding that the oncogenic protein Ras is naturally prenylated, several researchers have developed inhibitors of the prenyltransferase enzymes as cancer therapeutics. Despite numerous studies on the enzymology of prenylation in vitro, many questions remain about the process of prenylation in living cells. Using a combination of flow cytometry and confocal microscopy, we have shown that synthetic fluorescently-labeled prenylated peptides enter a variety of different cell types. Additionally, using capillary electrophoresis we have shown that these peptides can be detected in minute quantities from lysates of cells treated with these peptides. This method will allow for further study of the enzymology of protein prenylation in living cells. PMID:24146406

  14. Prenylated xanthone glucosides from Ural's lichen Umbilicaria proboscidea.

    PubMed

    Rezanka, Tomás; Jáchymová, Jitka; Dembitsky, Valery M

    2003-02-01

    Two new compounds isolated from an extract of a Central Asian lichen [Umbilicaria proboscidea (L.) Schrader=Syn.: Gyrophora proboscidea (L.) Ach.] are glucosides with mono- and di-prenylated xanthones as the aglycones and a saccharide moiety from two glucoses linked at C-7. The structures were elucidated on the basis of extensive spectroscopic analysis (1D and 2D NMR, MS, IR and UV) and by hydrolysis.

  15. Mistrafficking of prenylated proteins causes retinitis pigmentosa 2

    PubMed Central

    Zhang, Houbin; Hanke-Gogokhia, Christin; Jiang, Li; Li, Xiaobo; Wang, Pu; Gerstner, Cecilia D.; Frederick, Jeanne M.; Yang, Zhenglin; Baehr, Wolfgang

    2015-01-01

    The retinitis pigmentosa 2 polypeptide (RP2) functions as a GTPase-activating protein (GAP) for ARL3 (Arf-like protein 3), a small GTPase. ARL3 is an effector of phosphodiesterase 6 Δ (PDE6D), a prenyl-binding protein and chaperone of prenylated protein in photoreceptors. Mutations in the human RP2 gene cause X-linked retinitis pigmentosa (XLRP) and cone-rod dystrophy (XL-CORD). To study mechanisms causing XLRP, we generated an RP2 knockout mouse. The Rp2h−/− mice exhibited a slowly progressing rod-cone dystrophy simulating the human disease. Rp2h−/− scotopic a-wave and photopic b-wave amplitudes declined at 1 mo of age and continued to decline over the next 6 mo. Prenylated PDE6 subunits and G-protein coupled receptor kinase 1 (GRK1) were unable to traffic effectively to the Rp2h−/− outer segments. Mechanistically, absence of RP2 GAP activity increases ARL3-GTP levels, forcing PDE6D to assume a predominantly “closed” conformation that impedes binding of lipids. Lack of interaction disrupts trafficking of PDE6 and GRK1 to their destination, the photoreceptor outer segments. We propose that hyperactivity of ARL3-GTP in RP2 knockout mice and human patients with RP2 null alleles leads to XLRP resembling recessive rod-cone dystrophy.—Zhang, H., Hanke-Gogokhia, C., Jiang, L., Li, X., Wang, P., Gerstner, C. D., Frederick, J. M., Yang, Z., Baehr, W. Mistrafficking of prenylated proteins causes retinitis pigmentosa 2. PMID:25422369

  16. Unusual prenylated phenols with antioxidant activities from Ganoderma cochlear.

    PubMed

    Peng, XingRong; Liu, JieQing; Wang, CuiFang; Han, ZhongHui; Shu, Yi; Li, XuYang; Zhou, Lin; Qiu, MingHua

    2015-03-15

    Seven new prenylated phenols, five novel phenols (1-5) with polycyclic skeleton and two new phenols (6 and 7) with a carbon chain, along with one known compound (8) were isolated from the fruiting bodies of Ganoderma cochlear. The structures of new compounds were elucidated by the spectroscopic technologies, X-ray crystallography analysis and chiral HPLC chromatography. All compounds showed antioxidant effect in radical scavenging assays and a plausible biosynthetic pathway for 1-8 was proposed.

  17. Discovery of prenylated flavonoids with dual activity against influenza virus and Streptococcus pneumoniae.

    PubMed

    Grienke, Ulrike; Richter, Martina; Walther, Elisabeth; Hoffmann, Anja; Kirchmair, Johannes; Makarov, Vadim; Nietzsche, Sandor; Schmidtke, Michaela; Rollinger, Judith M

    2016-01-01

    Influenza virus neuraminidase (NA) is the primary target for influenza therapeutics. Severe complications are often related to secondary pneumonia caused by Streptococcus pneumoniae (pneumococci), which also express NAs. Recently, a NA-mediated lethal synergism between influenza A viruses and pneumococci was described. Therefore, dual inhibitors of both viral and bacterial NAs are expected to be advantageous for the treatment of influenza. We investigated the traditional Chinese herbal drug sāng bái pí (mulberry root bark) as source for anti-infectives. Two prenylated flavonoid derivatives, sanggenon G (4) and sanggenol A (5) inhibited influenza A viral and pneumococcal NAs and, in contrast to the approved NA inhibitor oseltamivir, also planktonic growth and biofilm formation of pneumococci. Evaluation of 27 congeners of 5 revealed a correlation between the degree of prenylation and bioactivity. Abyssinone-V 4'-methyl ether (27) inhibited pneumococcal NA with IC50 = 2.18 μM, pneumococcal growth with MIC = 5.63 μM, and biofilm formation with MBIC = 4.21 μM, without harming lung epithelial cells. Compounds 5 and 27 also disrupt the synergism between influenza A virus and pneumococcal NA in vitro, hence functioning as dual-acting anti-infectives. The results warrant further studies on whether the observed disruption of this synergism is transferable to in vivo systems. PMID:27257160

  18. Discovery of prenylated flavonoids with dual activity against influenza virus and Streptococcus pneumoniae.

    PubMed

    Grienke, Ulrike; Richter, Martina; Walther, Elisabeth; Hoffmann, Anja; Kirchmair, Johannes; Makarov, Vadim; Nietzsche, Sandor; Schmidtke, Michaela; Rollinger, Judith M

    2016-06-03

    Influenza virus neuraminidase (NA) is the primary target for influenza therapeutics. Severe complications are often related to secondary pneumonia caused by Streptococcus pneumoniae (pneumococci), which also express NAs. Recently, a NA-mediated lethal synergism between influenza A viruses and pneumococci was described. Therefore, dual inhibitors of both viral and bacterial NAs are expected to be advantageous for the treatment of influenza. We investigated the traditional Chinese herbal drug sāng bái pí (mulberry root bark) as source for anti-infectives. Two prenylated flavonoid derivatives, sanggenon G (4) and sanggenol A (5) inhibited influenza A viral and pneumococcal NAs and, in contrast to the approved NA inhibitor oseltamivir, also planktonic growth and biofilm formation of pneumococci. Evaluation of 27 congeners of 5 revealed a correlation between the degree of prenylation and bioactivity. Abyssinone-V 4'-methyl ether (27) inhibited pneumococcal NA with IC50 = 2.18 μM, pneumococcal growth with MIC = 5.63 μM, and biofilm formation with MBIC = 4.21 μM, without harming lung epithelial cells. Compounds 5 and 27 also disrupt the synergism between influenza A virus and pneumococcal NA in vitro, hence functioning as dual-acting anti-infectives. The results warrant further studies on whether the observed disruption of this synergism is transferable to in vivo systems.

  19. Discovery of prenylated flavonoids with dual activity against influenza virus and Streptococcus pneumoniae

    PubMed Central

    Grienke, Ulrike; Richter, Martina; Walther, Elisabeth; Hoffmann, Anja; Kirchmair, Johannes; Makarov, Vadim; Nietzsche, Sandor; Schmidtke, Michaela; Rollinger, Judith M.

    2016-01-01

    Influenza virus neuraminidase (NA) is the primary target for influenza therapeutics. Severe complications are often related to secondary pneumonia caused by Streptococcus pneumoniae (pneumococci), which also express NAs. Recently, a NA-mediated lethal synergism between influenza A viruses and pneumococci was described. Therefore, dual inhibitors of both viral and bacterial NAs are expected to be advantageous for the treatment of influenza. We investigated the traditional Chinese herbal drug sāng bái pí (mulberry root bark) as source for anti-infectives. Two prenylated flavonoid derivatives, sanggenon G (4) and sanggenol A (5) inhibited influenza A viral and pneumococcal NAs and, in contrast to the approved NA inhibitor oseltamivir, also planktonic growth and biofilm formation of pneumococci. Evaluation of 27 congeners of 5 revealed a correlation between the degree of prenylation and bioactivity. Abyssinone-V 4′-methyl ether (27) inhibited pneumococcal NA with IC50 = 2.18 μM, pneumococcal growth with MIC = 5.63 μM, and biofilm formation with MBIC = 4.21 μM, without harming lung epithelial cells. Compounds 5 and 27 also disrupt the synergism between influenza A virus and pneumococcal NA in vitro, hence functioning as dual-acting anti-infectives. The results warrant further studies on whether the observed disruption of this synergism is transferable to in vivo systems. PMID:27257160

  20. Caged Protein Prenyltransferase Substrates: Tools for Understanding Protein Prenylation

    SciTech Connect

    DeGraw, Amanda J.; Hast, Michael A.; Xu, Juhua; Mullen, Daniel; Beese, Lorena S.; Barany, George; Distefano, Mark D.

    2010-11-15

    Originally designed to block the prenylation of oncogenic Ras, inhibitors of protein farnesyltransferase currently in preclinical and clinical trials are showing efficacy in cancers with normal Ras. Blocking protein prenylation has also shown promise in the treatment of malaria, Chagas disease and progeria syndrome. A better understanding of the mechanism, targets and in vivo consequences of protein prenylation are needed to elucidate the mode of action of current PFTase (Protein Farnesyltransferase) inhibitors and to create more potent and selective compounds. Caged enzyme substrates are useful tools for understanding enzyme mechanism and biological function. Reported here is the synthesis and characterization of caged substrates of PFTase. The caged isoprenoid diphosphates are poor substrates prior to photolysis. The caged CAAX peptide is a true catalytically caged substrate of PFTase in that it is to not a substrate, yet is able to bind to the enzyme as established by inhibition studies and X-ray crystallography. Irradiation of the caged molecules with 350 nm light readily releases their cognate substrate and their photolysis products are benign. These properties highlight the utility of those analogs towards a variety of in vitro and in vivo applications.

  1. Glucose enhances indolic glucosinolate biosynthesis without reducing primary sulfur assimilation

    PubMed Central

    Miao, Huiying; Cai, Congxi; Wei, Jia; Huang, Jirong; Chang, Jiaqi; Qian, Hongmei; Zhang, Xin; Zhao, Yanting; Sun, Bo; Wang, Bingliang; Wang, Qiaomei

    2016-01-01

    The effect of glucose as a signaling molecule on induction of aliphatic glucosinolate biosynthesis was reported in our former study. Here, we further investigated the regulatory mechanism of indolic glucosinolate biosynthesis by glucose in Arabidopsis. Glucose exerted a positive influence on indolic glucosinolate biosynthesis, which was demonstrated by induced accumulation of indolic glucosinolates and enhanced expression of related genes upon glucose treatment. Genetic analysis revealed that MYB34 and MYB51 were crucial in maintaining the basal indolic glucosinolate accumulation, with MYB34 being pivotal in response to glucose signaling. The increased accumulation of indolic glucosinolates and mRNA levels of MYB34, MYB51, and MYB122 caused by glucose were inhibited in the gin2-1 mutant, suggesting an important role of HXK1 in glucose-mediated induction of indolic glucosinolate biosynthesis. In contrast to what was known on the function of ABI5 in glucose-mediated aliphatic glucosinolate biosynthesis, ABI5 was not required for glucose-induced indolic glucosinolate accumulation. In addition, our results also indicated that glucose-induced glucosinolate accumulation was due to enhanced sulfur assimilation instead of directed sulfur partitioning into glucosinolate biosynthesis. Thus, our data provide new insights into molecular mechanisms underlying glucose-regulated glucosinolate biosynthesis. PMID:27549907

  2. Glucose enhances indolic glucosinolate biosynthesis without reducing primary sulfur assimilation.

    PubMed

    Miao, Huiying; Cai, Congxi; Wei, Jia; Huang, Jirong; Chang, Jiaqi; Qian, Hongmei; Zhang, Xin; Zhao, Yanting; Sun, Bo; Wang, Bingliang; Wang, Qiaomei

    2016-01-01

    The effect of glucose as a signaling molecule on induction of aliphatic glucosinolate biosynthesis was reported in our former study. Here, we further investigated the regulatory mechanism of indolic glucosinolate biosynthesis by glucose in Arabidopsis. Glucose exerted a positive influence on indolic glucosinolate biosynthesis, which was demonstrated by induced accumulation of indolic glucosinolates and enhanced expression of related genes upon glucose treatment. Genetic analysis revealed that MYB34 and MYB51 were crucial in maintaining the basal indolic glucosinolate accumulation, with MYB34 being pivotal in response to glucose signaling. The increased accumulation of indolic glucosinolates and mRNA levels of MYB34, MYB51, and MYB122 caused by glucose were inhibited in the gin2-1 mutant, suggesting an important role of HXK1 in glucose-mediated induction of indolic glucosinolate biosynthesis. In contrast to what was known on the function of ABI5 in glucose-mediated aliphatic glucosinolate biosynthesis, ABI5 was not required for glucose-induced indolic glucosinolate accumulation. In addition, our results also indicated that glucose-induced glucosinolate accumulation was due to enhanced sulfur assimilation instead of directed sulfur partitioning into glucosinolate biosynthesis. Thus, our data provide new insights into molecular mechanisms underlying glucose-regulated glucosinolate biosynthesis. PMID:27549907

  3. Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence.

    PubMed

    Lee, Jintae; Attila, Can; Cirillo, Suat L G; Cirillo, Jeffrey D; Wood, Thomas K

    2009-01-01

    Indole is an extracellular biofilm signal for Escherichia coli, and many bacterial oxygenases readily convert indole to various oxidized compounds including 7-hydroxyindole (7HI). Here we investigate the impact of indole and 7HI on Pseudomonas aeruginosa PAO1 virulence and quorum sensing (QS)-regulated phenotypes; this strain does not synthesize these compounds but degrades them rapidly. Indole and 7HI both altered extensively gene expression in a manner opposite that of acylhomoserine lactones; the most repressed genes encode the mexGHI-opmD multidrug efflux pump and genes involved in the synthesis of QS-regulated virulence factors including pyocyanin (phz operon), 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) signal (pqs operon), pyochelin (pch operon) and pyoverdine (pvd operon). Corroborating these microarray results, indole and 7HI decreased production of pyocyanin, rhamnolipid, PQS and pyoverdine and enhanced antibiotic resistance. In addition, indole affected the utilization of carbon, nitrogen and phosphorus, and 7HI abolished swarming motility. Furthermore, 7HI reduced pulmonary colonization of P. aeruginosa in guinea pigs and increased clearance in lungs. Hence, indole-related compounds have potential as a novel antivirulence approach for the recalcitrant pathogen P. aeruginosa. PMID:21261883

  4. A Soluble, magnesium-independent prenyltransferase catalyzes reverse and regular C-prenylations and O-prenylations of aromatic substrates

    PubMed Central

    Haagen, Yvonne; Unsöld, Inge; Westrich, Lucia; Gust, Bertolt; Richard, Stéphane B.; Noel, Joseph P.; Heide, Lutz

    2010-01-01

    Fnq26 from Streptomyces cinnamonensis DSM 1042 is a new member of the recently identified CloQ/Orf2 class of prenyltransferases. The enzyme was overexpressed in E. coli and purified to apparent homogeneity, resulting in a soluble, monomeric protein of 33.2 kDa. The catalytic activity of Fnq26 is independent of the presence of Mg2+ or other divalent metal ions. With flaviolin (2,5,7-trihydroxy-1,4-naphthoquinone) as substrate, Fnq26 catalyzes the formation of a carbon–carbon-bond between C-3 (rather than C-1) of geranyl diphosphate and C-3 of flaviolin, i.e. an unusual ‘‘reverse’’ prenylation. With 1,3-dihydroxynaphthalene and 4-hydroxybenzoate as substrates Fnq26 catalyzes O-prenylations. PMID:17543953

  5. Emended descriptions of indole negative and indole positive isolates of Brachyspira (Serpulina) hyodysenteriae.

    PubMed

    Fellström, C; Karlsson, M; Pettersson, B; Zimmerman, U; Gunnarsson, A; Aspan, A

    1999-12-01

    Two type/reference strains of Brachyspira (B.) hyodysenteriae, 14 Belgian and German indole negative, and 14 Belgian, German and Swedish indole positive field isolates of strongly beta-haemolytic intestinal spirochaetes were compared by pulsed-field gel electrophoresis (PFGE) patterns, biochemical reaction patterns, 16S rDNA sequences and MIC determinations of six antibacterial substances. Three tests for indole production, including a spot indole test, were compared with congruent results. All field isolates were classified as B. hyodysenteriae due to a high genetic and phenotypic similarity with the type strains. The Belgian and German indole negative isolates had identical and unique PFGE patterns for the tested restriction enzymes MluI and SalI, as well as identical 16S rDNA sequences, and they could not be differentiated by any of the methods used. Seven unique PFGE patterns were achieved from the 14 indole positive field isolates. The patterns were identical and unique for epidemiologically related isolates. Type/reference strains and isolates without known relation to other tested isolates showed unique banding patterns. The MICs of tylosin, tiamulin, erythromycin, clindamycin, carbadox and virginiamycin were determined in broth for all isolates. In contrast to Belgian and German isolates, the majority of the Swedish field isolates were susceptible to tylosin, erythromycin and clindamycin. Probable pathways of infection for some of the Swedish isolates were determined. The PFGE patterns of epidemic clones of B. hyodysenteriae remained stable for a period of up to 8 years. In vivo development of resistance to macrolide and lincosamide antibiotics due to use of tylosin was clearly indicated for two epidemic clones. PMID:10596806

  6. Mechanistic insights into Mg2+-independent prenylation by CloQ from classical molecular mechanics and hybrid quantum mechanics/molecular mechanics molecular dynamics simulations.

    PubMed

    Bayse, Craig A; Merz, Kenneth M

    2014-08-01

    Understanding the mechanism of prenyltransferases is important to the design of engineered proteins capable of synthesizing derivatives of naturally occurring therapeutic agents. CloQ is a Mg(2+)-independent aromatic prenyltransferase (APTase) that transfers a dimethylallyl group to 4-hydroxyphenylpyruvate in the biosynthetic pathway for clorobiocin. APTases consist of a common ABBA fold that defines a β-barrel containing the reaction cavity. Positively charged basic residues line the inside of the β-barrel of CloQ to activate the pyrophosphate leaving group to replace the function of the Mg(2+) cofactor in other APTases. Classical molecular dynamics simulations of CloQ, its E281G and F68S mutants, and the related NovQ were used to explore the binding of the 4-hydroxyphenylpyruvate (4HPP) and dimethylallyl diphosphate substrates in the reactive cavity and the role of various conserved residues. Hybrid quantum mechanics/molecular mechanics potential of mean force (PMF) calculations show that the effect of the replacement of the Mg(2+) cofactor with basic residues yields a similar activation barrier for prenylation to Mg(2+)-dependent APTases like NphB. The topology of the binding pocket for 4HPP is important for selective prenylation at the ortho position of the ring. Methylation at this position alters the conformation of the substrate for O-prenylation at the phenol group. Further, a two-dimensional PMF scan shows that a "reverse" prenylation product may be a possible target for protein engineering.

  7. Identification of prenylated pterocarpans and other isoflavonoids in Rhizopus spp. elicited soya bean seedlings by electrospray ionisation mass spectrometry.

    PubMed

    Simons, Rudy; Vincken, Jean-Paul; Bohin, Maxime C; Kuijpers, Tomas F M; Verbruggen, Marian A; Gruppen, Harry

    2011-01-15

    Phytoalexins from soya are mainly characterised as prenylated pterocarpans, the glyceollins. Extracts of non-soaked and soaked soya beans, as well as that of soya seedlings, grown in the presence of Rhizopus microsporus var. oryzae, were screened for the presence of prenylated flavonoids with a liquid chromatography/mass spectrometry (LC/MS)-based screening method. The glyceollins I-III and glyceollidins I-II, belonging to the isoflavonoid subclass of the pterocarpans, were tentatively assigned. The formation of these prenylated pterocarpans was accompanied by that of other prenylated isoflavonoids of the subclasses of the isoflavones and the coumestans. It was estimated that approx. 40% of the total isoflavonoid content in Rhizopus-challenged soya bean seedlings were prenylated pterocarpans, whereas 7% comprised prenylated isoflavones and prenylated coumestans. The site of prenylation (A-ring or B-ring) of the prenylated isoflavones was tentatively annotated using positive-ion mode MS by comparing the (1,3) A(+) retro-Diels-Alder (RDA) fragments of prenylated and non-prenylated isoflavones. Furthermore, the fragmentation pathways of the five pterocarpans in negative-ion (NI) mode were proposed, which involved the cleavage of the C-ring and/or D-ring. The absence of the ring-closed prenyl (pyran or furan) gave exclusively -H(2) O(x,y) RDA fragments, whereas its presence gave predominantly the common RDA fragments.

  8. Type-I Prenyl Protease Function Is Required in the Male Germline of Drosophila melanogaster

    PubMed Central

    Adolphsen, Katie; Amell, Amanda; Havko, Nathan; Kevorkian, Sara; Mears, Kyle; Neher, Hayley; Schwarz, Dietmar; Schulze, Sandra R.

    2012-01-01

    Many proteins require the addition of a hydrophobic prenyl anchor (prenylation) for proper trafficking and localization in the cell. Prenyl proteases play critical roles in modifying proteins for membrane anchorage. The type I prenyl protease has a defined function in yeast (Ste24p/Afc1p) where it modifies a mating pheromone, and in humans (Zmpste24) where it has been implicated in a disease of premature aging. Despite these apparently very different biological processes, the type I prenyl protease gene is highly conserved, encoded by a single gene in a wide range of animal and plant groups. A notable exception is Drosophila melanogaster, where the gene encoding the type I prenyl protease has undergone an unprecedented series of duplications in the genome, resulting in five distinct paralogs, three of which are organized in a tandem array, and demonstrate high conservation, particularly in the vicinity of the active site of the enzyme. We have undertaken targeted deletion to remove the three tandem paralogs from the genome. The result is a male fertility defect, manifesting late in spermatogenesis. Our results also show that the ancestral type I prenyl protease gene in Drosophila is under strong purifying selection, while the more recent replicates are evolving rapidly. Our rescue data support a role for the rapidly evolving tandem paralogs in the male germline. We propose that potential targets for the male-specific type I prenyl proteases include proteins involved in the very dramatic cytoskeletal remodeling events required for spermatid maturation. PMID:22690372

  9. Electrophilic Substitution Reactions of Indoles

    NASA Astrophysics Data System (ADS)

    Sundberg, Richard J.

    The topic of this chapter is electrophilic substitution of indole and its derivatives. The indole ring is highly reactive at its 3-position toward protonation, halogenation, alkylation and acylation. Electrophilic substitution can be combined with inter- or intramolecular addition at C-2. Intramolecular alkylation by iminium ions (Pictet-Spengler reaction) is particularly useful. Enantioselectivity can be achieved in many conjugate addition reactions. These reactions have been applied to synthesis of both natural products and drugs.

  10. Concurrent profiling of indole-3-acetic acid, abscisic acid, and cytokinins and structurally related purines by high-performance-liquid-chromatography tandem electrospray mass spectrometry

    PubMed Central

    2012-01-01

    Background Cytokinins (CKs) are a group of plant growth regulators that are involved in several plant developmental processes. Despite the breadth of knowledge surrounding CKs and their diverse functions, much remains to be discovered about the full potential of CKs, including their relationship with the purine salvage pathway, and other phytohormones. The most widely used approach to query unknown facets of CK biology utilized functional genomics coupled with CK metabolite assays and screening of CK associated phenotypes. There are numerous different types of assays for determining CK quantity, however, none of these methods screen for the compendium of metabolites that are necessary for elucidating all roles, including purine salvage pathway enzymes in CK metabolism, and CK cross-talk with other phytohormones. Furthermore, all published analytical methods have drawbacks ranging from the required use of radiolabelled compounds, or hazardous derivatization reagents, poor sensitivity, lack of resolution between CK isomers and lengthy run times. Results In this paper, a method is described for the concurrent extraction, purification and analysis of several CKs (freebases, ribosides, glucosides, nucleotides), purines (adenosine monophosphate, inosine, adenosine, and adenine), indole-3-acetic acid, and abscisic acid from hundred-milligram (mg) quantities of Arabidopsis thaliana leaf tissue. This method utilizes conventional Bieleski solvents extraction, solid phase purification, and is unique because of its diverse range of detectable analytes, and implementation of a conventional HPLC system with a fused core column that enables good sensitivity without the requirement of a UHPLC system. Using this method we were able to resolve CKs about twice as fast as our previous method. Similarly, analysis of adenosine, indole-3-acetic acid, and abscisic acid, was comparatively rapid. A further enhancement of the method was the utilization of a QTRAP 5500 mass analyzer, which

  11. Inhibition of Rab prenylation by statins induces cellular glycosphingolipid remodeling.

    PubMed

    Binnington, Beth; Nguyen, Long; Kamani, Mustafa; Hossain, Delowar; Marks, David L; Budani, Monique; Lingwood, Clifford A

    2016-02-01

    Statins, which specifically inhibit HMG Co-A reductase, the rate-limiting step of cholesterol biosynthesis, are widely prescribed to reduce serum cholesterol and cardiac risk, but many other effects are seen. We now show an effect of these drugs to induce profound changes in the step-wise synthesis of glycosphingolipids (GSLs) in the Golgi. Glucosylceramide (GlcCer) was increased several-fold in all cell lines tested, demonstrating a widespread effect. Additionally, de novo or elevated lactotriaosylceramide (Lc3Cer; GlcNAcβ1-3Galβ1-4GlcCer) synthesis was observed in 70%. Western blot showed that GlcCer synthase (GCS) was elevated by statins, and GCS and Lc3Cer synthase (Lc3S) activities were increased; however, transcript was elevated for Lc3S only. Supplementation with the isoprenoid precursor, geranylgeranyl pyrophosphate (GGPP), a downstream product of HMG Co-A reductase, reversed statin-induced glycosyltransferase and GSL elevation. The Rab geranylgeranyl transferase inhibitor 3-PEHPC, but not specific inhibitors of farnesyl transferase, or geranylgeranyl transferase I, was sufficient to replicate statin-induced GlcCer and Lc3Cer synthesis, supporting a Rab prenylation-dependent mechanism. While total cholesterol was unaffected, the trans-Golgi network (TGN) cholesterol pool was dissipated and medial Golgi GCS partially relocated by statins. GSL-dependent vesicular retrograde transport of Verotoxin and cholera toxin to the Golgi/endoplasmic reticulum were blocked after statin or 3-PEHPC treatment, suggesting aberrant, prenylation-dependent vesicular traffic as a basis of glycosyltransferase increase and GSL remodeling. These in vitro studies indicate a previously unreported link between Rab prenylation and regulation of GCS activity and GlcCer metabolism. PMID:26405105

  12. Cytotoxic prenylated xanthones from the pericarps of Garcinia mangostana.

    PubMed

    Xu, Zeng; Huang, Lei; Chen, Xiao-Hong; Zhu, Xiao-Feng; Qian, Xiao-Jun; Feng, Gong-Kan; Lan, Wen-Jian; Li, Hou-Jin

    2014-02-06

    Bioassay-guided fractionation of an ethanol extract of the pericarps of Garcinia mangostana led to the isolation of two new prenylated xanthones, named 1,3,7-trihydroxy-2-(3-methyl-2-butenyl)-8-(3-hydroxy-3-methylbutyl)-xanthone (1) and 1,3,8-trihydroxy-2-(3-methyl-2-butenyl)-4-(3-hydroxy-3-methylbutanoyl)-xanthone (2), together with the five known compounds garcinones C (3) and D (4), gartanin (5), xanthone I (6), and γ-mangostin (7). Their structures were elucidated primarily based on MS and NMR data. Compounds 1-7 showed significant cytotoxic activities against various human cancer cell lines.

  13. A new prenylated dihydrochalcone from the leaves of Artocarpus lowii.

    PubMed

    Jamil, Shajarahtunnur; Sirat, Hasnah Mohd; Jantan, Ibrahim; Aimi, Norio; Kitajima, Mariko

    2008-07-01

    A new prenylated dihydrochalcone, 2',4'-dihydroxy-4-methoxy-3'-prenyldihydrochalcone (1), along with two known compounds, 2',4',4-trihydroxy-3'-prenylchalcone (2) and 2',4-dihydroxy-3',4'-(2,2-dimethylchromene)chalcone (3) were isolated from the leaves of Artocarpus lowii. The structures of 1-3 were elucidated by spectroscopic methods and by comparison with data reported in the literature. Compounds 1-3 showed strong free radical scavenging activity towards 2,2-diphenyl-1-picrylhydrazyl (DPPH) measured by electron spin resonance (ESR) spectrometry.

  14. Indole and 7‐hydroxyindole diminish Pseudomonas aeruginosa virulence

    PubMed Central

    Lee, Jintae; Attila, Can; Cirillo, Suat L. G.; Cirillo, Jeffrey D.; Wood, Thomas K.

    2009-01-01

    Summary Indole is an extracellular biofilm signal for Escherichia coli, and many bacterial oxygenases readily convert indole to various oxidized compounds including 7‐hydroxyindole (7HI). Here we investigate the impact of indole and 7HI on Pseudomonas aeruginosa PAO1 virulence and quorum sensing (QS)‐regulated phenotypes; this strain does not synthesize these compounds but degrades them rapidly. Indole and 7HI both altered extensively gene expression in a manner opposite that of acylhomoserine lactones; the most repressed genes encode the mexGHI‐opmD multidrug efflux pump and genes involved in the synthesis of QS‐regulated virulence factors including pyocyanin (phz operon), 2‐heptyl‐3‐hydroxy‐4(1H)‐quinolone (PQS) signal (pqs operon), pyochelin (pch operon) and pyoverdine (pvd operon). Corroborating these microarray results, indole and 7HI decreased production of pyocyanin, rhamnolipid, PQS and pyoverdine and enhanced antibiotic resistance. In addition, indole affected the utilization of carbon, nitrogen and phosphorus, and 7HI abolished swarming motility. Furthermore, 7HI reduced pulmonary colonization of P. aeruginosa in guinea pigs and increased clearance in lungs. Hence, indole‐related compounds have potential as a novel antivirulence approach for the recalcitrant pathogen P. aeruginosa. PMID:21261883

  15. Tryptophan aminopeptidase activity of several indole prenyltransferases from Aspergillus fumigatus.

    PubMed

    Kremer, Anika; Li, Shu-Ming

    2008-07-21

    Recently, five indole prenyltransferases from Aspergillus fumigatus have been proven biochemically to be responsible for prenylations of diverse substrates. In this study, we show peptidase activities of 7-DMATS, FgaPT1, CdpNPT, and FtmPT1, with preference for linear peptides containing a tryptophanyl moiety at the N terminus. Testing of 31 peptides revealed that these enzymes shared similar substrate specificity and accepted H-L-Trp-L-Ala-OH and H-L-Trp-Gly-OH as best substrates for aminopeptidase activity. By using H-L-Trp-Gly-OH as substrate, Km values at 350, 380, 300, and 420 microM and enzymatic rate constants kcat/Km at 0.51, 0.24, 0.53, and 0.14 mM(-1)s(-1) were determined for 7-DMATS, FgaPT1, CdpNPT, and FtmPT1, respectively. In contrast to prenyltransferase activities, the aminopeptidase activities were strongly or completely inhibited by EDTA. Mn2+ increased the aminopeptidase activities of FtmPT1 and CdpNPT up to 4- and 6-fold, respectively. To the best of our knowledge, this is the first report on the catalytic promiscuity of prenyltransferases.

  16. Flemingin-Type Prenylated Chalcones from the Sarawak Rainforest Plant Desmodium congestum.

    PubMed

    Rees, Karlee A; Bermudez, Cindy; Edwards, David J; Elliott, Alysha G; Ripen, Jovita E; Seta, Cynthia; Huang, Johnny X; Cooper, Matthew A; Fraser, James A; Yeo, Tiong Chia; Butler, Mark S

    2015-08-28

    In an ongoing program to identify new anti-infective leads, an extract derived from whole plant material of Desmodium congestum collected in the Sarawak rainforest was found to have anti-MRSA activity. Bioassay-guided isolation led to the isolation of two new prenylated chalcones, 5'-O-methyl-3-hydroxyflemingin A (1) and 5'-O-methylflemingin C (2), which were closely related to the flemingins previously isolated from various Flemingia species. Chalcones 1 and 2, which were determined to be 4:6 enantiomeric mixtures by chiral HPLC, exhibited moderate activity against a panel of Gram-positive bacteria and were also cytotoxic to the HEK293 human embryonic kidney cell line.

  17. Protein Prenylation Constitutes an Endogenous Brake on Axonal Growth.

    PubMed

    Li, Hai; Kuwajima, Takaaki; Oakley, Derek; Nikulina, Elena; Hou, Jianwei; Yang, Wan Seok; Lowry, Emily Rhodes; Lamas, Nuno Jorge; Amoroso, Mackenzie Weygandt; Croft, Gist F; Hosur, Raghavendra; Wichterle, Hynek; Sebti, Said; Filbin, Marie T; Stockwell, Brent; Henderson, Christopher E

    2016-07-12

    Suboptimal axonal regeneration contributes to the consequences of nervous system trauma and neurodegenerative disease, but the intrinsic mechanisms that regulate axon growth remain unclear. We screened 50,400 small molecules for their ability to promote axon outgrowth on inhibitory substrata. The most potent hits were the statins, which stimulated growth of all mouse- and human-patient-derived neurons tested, both in vitro and in vivo, as did combined inhibition of the protein prenylation enzymes farnesyltransferase (PFT) and geranylgeranyl transferase I (PGGT-1). Compensatory sprouting of motor axons may delay clinical onset of amyotrophic lateral sclerosis (ALS). Accordingly, elevated levels of PGGT1B, which would be predicted to reduce sprouting, were found in motor neurons of early- versus late-onset ALS patients postmortem. The mevalonate-prenylation pathway therefore constitutes an endogenous brake on axonal growth, and its inhibition provides a potential therapeutic approach to accelerate neuronal regeneration in humans. PMID:27373155

  18. Regiospecific synthesis of prenylated flavonoids by a prenyltransferase cloned from Fusarium oxysporum

    PubMed Central

    Yang, Xiaoman; Yang, Jiali; Jiang, Yueming; Yang, Hongshun; Yun, Ze; Rong, Weiliang; Yang, Bao

    2016-01-01

    Due to their impressive pharmaceutical activities and safety, prenylated flavonoids have a high potent to be applied as medicines and nutraceuticals. Biocatalysis is an effective technique to synthesize prenylated flavonoids. The major concern of this technique is that the microbe-derived prenyltransferases usually have poor regiospecificity and generate multiple prenylated products. In this work, a highly regiospecific prenyltransferase (FoPT1) was found from Fusarium oxysporum. It could recognize apigenin, naringenin, genistein, dihydrogenistein, kampferol, luteolin and hesperetin as substrates, and only 6-C-prenylated flavonoids were detected as the products. The catalytic efficiency of FoPT1 on flavonoids was in a decreasing order with hesperetin >naringenin >apigenin >genistein >luteolin >dihydrogenistein >kaempferol. Chalcones, flavanols and stilbenes were not active when acting as the substrates. 5,7-Dihydroxy and 4-carbonyl groups of flavonid were required for the catalysis. 2,3-Alkenyl was beneficial to the catalysis whereas 3-hydroxy impaired the prenylation reaction. Docking studies simulated the prenyl transfer reaction of FoPT1. E186 was involved in the formation of prenyl carbonium ion. E98, F89, F182, Y197 and E246 positioned apigenin for catalysis. PMID:27098599

  19. TLN-4601, a novel anticancer agent, inhibits Ras signaling post Ras prenylation and before MEK activation.

    PubMed

    Boufaied, Nadia; Wioland, My-Anh; Falardeau, Pierre; Gourdeau, Henriette

    2010-06-01

    TLN-4601 is a structurally novel farnesylated dibenzodiazepinone discovered through DECIPHER, Thallion's proprietary drug discovery platform. The compound was shown to have a broad cytotoxic activity (low micromol/l) when tested in the NCI 60 tumor cell line panel and has shown in-vivo antitumor activity in several xenograft models. Related to its farnesylated moiety, the effect of TLN-4601 on Ras mitogen-activated protein kinase signaling was assessed. Downstream Ras signaling events, Raf-1, MEK, and ERK1/2 phosphorylation in MCF7 cells were evaluated by western blot analysis. TLN-4601 prevented epidermal growth factor-induced phosphorylation of Raf-1, MEK, and ERK1/2. This effect was time-dependent and dose-dependent with complete inhibition of protein phosphorylation within 4-6 h at 10 micromol/l. The inhibition of Ras signaling was not mediated by the inhibition of protein prenylation, documented by the lack of effect TLN-4601 on the prenylation of HDJ2 (specific substrate of farnesyltransferase), RAP1A (specific substrate of geranylgeranyl transferase-1), or Ras. As TLN-4601 did not inhibit EGFR, Raf-1, MEK or ERK1/2 kinase activities, the inhibitory effect of TLN-4601 on Ras signaling is not mediated by direct kinase inhibition. Using an Elk-1 trans-activation reporter assay, we found that TLN-4601 inhibits the MEK/ERK pathway at the level of Raf-1. Interestingly, TLN-4601 induces Raf-1 proteasomal-dependent degradation. These data indicate that TLN-4601 may inhibit the Ras-mitogen-activated protein kinase-signaling pathway by depleting the Raf-1 protein.

  20. Chemiluminescence of indole and its derivatives

    NASA Astrophysics Data System (ADS)

    Vasil'ev, Rostislav F.; Trofimov, A. V.; Tsaplev, Yuri B.

    2010-02-01

    The results of studies on chemiluminescence of indole and its derivatives are critically analyzed. It is shown that chemical transformations of indoles lead, depending on the structure and experimental conditions, to various electronically excited products and emission of light. Many reactions considered are used as a basis for highly sensitive methods for detection of indoles in biology, medicine, ecology and forensics.

  1. Indole-3-carbinol prevents diet-induced obesity through modulation of multiple genes related to adipogenesis, thermogenesis or inflammation in the visceral adipose tissue of mice.

    PubMed

    Choi, Youngshim; Kim, Yunjung; Park, Soyoung; Lee, Ki Won; Park, Taesun

    2012-12-01

    Indole-3-carbinol (I3C) is a compound found in high concentrations in Brassica family vegetables, including broccoli, cauliflower and cabbage, and is regarded as a promising chemopreventive agent against various cancers. This study assesses the protective effect of I3C against diet-induced obesity in mice. Mice were randomly grouped to receive either a normal diet, high-fat (40% energy as fat) diet (HFD) or I3C-supplemented diet (1 g/kg diet) for 10 weeks. I3C supplementation significantly ameliorated HFD-induced increases in body weight gain, visceral fat pad weights and plasma lipid levels. The visceral adipose tissue mRNA levels of uncoupling proteins 1 and 3, crucial factors of thermogenesis, and their regulators such as sirtuin 1, peroxisome proliferator-activated receptor (PPAR) α and PPARγ coactivator 1α, which were down-regulated by HFD, were normalized by supplementation with I3C. In contrast, I3C supplementation significantly decreased expression levels of a key adipogenic transcription factor, PPARγ2, and its target genes, such as leptin and adipocyte protein 2, in the visceral adipose tissue of mice maintained on the HFD. Furthermore, HFD-induced up-regulation in mRNA levels of inflammatory cytokines (tumor necrosis factor α, interferon β and interleukin 6) was significantly ameliorated by I3C. These findings suggest that I3C has a potential benefit in preventing obesity and metabolic disorders, and the action for I3C in vivo may involve multiple mechanisms including decreased adipogenesis and inflammation, along with activated thermogenesis.

  2. Prenylated and benzylated flavonoids from the fruits of Cudrania tricuspidata.

    PubMed

    Han, Xiang Hua; Hong, Seong Su; Jin, Qinghao; Li, Dayu; Kim, Hyun-Kyu; Lee, Jeongrai; Kwon, Suk Hyung; Lee, Dongho; Lee, Chong-Kil; Lee, Myung Koo; Hwang, Bang Yeon

    2009-01-01

    Three new prenylated isoflavones, 5,7-dihydroxy-6-(2''-hydroxy-3''-methylbut-3''-enyl)-4'-methoxylisoflavone (1), 5,4'-dihydroxy-6-(3''-methylbut-2''-enyl)-2'''-(4'''-hydroxy-4'''-methylethyl)-3'''-methoxydihydrofurano-[4''',5''';7,8]isoflavone (2), and 5,4'-dihydroxy-8-(3''-methylbut-2''-enyl)-2'''-(4'''-hydroxy-4'''-methylethyl)furano-[4''',5''';6,7]isoflavone (3), a benzylated dihydroflavonol, 5,7,4'-trihydroxy-8-p-hydroxybenzyldihydroflavonol (4), and eight known flavonoids (5-12) were isolated from the fruits of Cudrania tricuspidata. The structures of these compounds were determined on the basis of MS and (1)H and (13)C NMR spectroscopic data, including 2D NMR experiments. Compounds 2, 3, 6, 7, 8, 10, 11, and 12 inhibited LPS-induced nitric oxide production, with IC(50) values of 11.8-41.8 microM. PMID:19113968

  3. Indole alkaloids from Antirhea lucida.

    PubMed

    Weniger, B; Rafik, W; Bastida, J; Quirion, J C; Anton, R

    1995-12-01

    A new indole alkaloid, N,N-methyl-3'-indolylmethyl-5-methoxytryptamine, as well as the known gramine, N,N-dimethyltryptamine and 6-methoxy-2-methyl-1,2,3,4-tetrahydro-beta-carboline were isolated from the roots of Antirhea lucida (Sw.) Hook (Rubiaceae). Their structures were established by spectroscopic methods.

  4. Prenylated flavones from Artocarpus lanceifolius and their cytotoxic properties against P-388 cells.

    PubMed

    Musthapa, Iqbal; Latip, Jalifah; Takayama, Hiromitsu; Juliawaty, Lia D; Hakim, Euis H; Syah, Yana M

    2009-07-01

    New prenylated flavones, artoindonesianins Z-4 and Z-5, together with four known prenylated flavones, artonin E, 12-hydroxyartonin E, artobiloxanthone, and cycloartobiloxanthone, have been isolated from the methanol extract of the tree bark of Artocarpus lanceifolius. The structures of these compounds were determined on the basis of spectroscopic data, including UV, IR, 1D and 2D NMR, and mass spectra. The cytotoxic effect of the isolated compounds against murine leukemia P-388 cells is described.

  5. Environmental factors affecting indole metabolism under anaerobic conditions.

    PubMed Central

    Madsen, E L; Francis, A J; Bollag, J M

    1988-01-01

    The influence of physiological and environmental factors on the accumulation of oxindole during anaerobic indole metabolism was investigated by high-performance liquid chromatography. Under methanogenic conditions, indole was temporarily converted to oxindole in stoichiometric amounts in media inoculated with three freshwater sediments and an organic soil. In media inoculated with methanogenic sewage sludge, the modest amounts of oxindole detected at 35 degrees C reached higher concentrations and persisted longer when the incubation temperature was decreased from 35 to 15 degrees C. Also, decreasing the concentration of sewage sludge used as an inoculum from 50 to 1% caused an increase in the accumulation of oxindole from 10 to 75% of the indole added. Under denitrifying conditions, regardless of the concentration or source of the inoculum, oxindole appeared in trace amounts but did not accumulate during indole metabolism. In addition, denitrifying consortia which previously metabolized indole degraded oxindole with no lag period. Our data suggest that oxindole accumulation under methanogenic, but not under denitrifying conditions is caused by differences between relative rates of oxindole production and destruction. PMID:3345080

  6. Modification of Prenylated Stilbenoids in Peanut (Arachis hypogaea) Seedlings by the Same Fungi That Elicited Them: The Fungus Strikes Back.

    PubMed

    Aisyah, Siti; Gruppen, Harry; Slager, Mathijs; Helmink, Bianca; Vincken, Jean-Paul

    2015-10-28

    Aspergillus oryzae and Rhizopus oryzae were compared for inducing the production of prenylated stilbenoids in peanut seedlings. The fungus was applied at two different time points: directly after soaking (day 1) or after 2 days of germination (day 3). Aspergillus- and Rhizopus-elicited peanut seedlings accumulated an array of prenylated stilbenoids, with overlap in compounds induced, but also with compounds specific to the fungal treatment. The differences were confirmed to be due to modification of prenylated stilbenoids by the fungus itself. Each fungus appeared to deploy different strategies for modification. The content of prenylated stilbenoids modified by fungi accounted for around 8% to 49% (w/w) of total stilbenoids. The contents of modified prenylated stilbenoids were higher when the fungus was applied on day 1 instead of day 3. Altogether, type of fungus and time point of inoculation appeared to be crucial parameters for optimizing accumulation of prenylated stilbenoids in peanut seedlings.

  7. Modification of Prenylated Stilbenoids in Peanut (Arachis hypogaea) Seedlings by the Same Fungi That Elicited Them: The Fungus Strikes Back.

    PubMed

    Aisyah, Siti; Gruppen, Harry; Slager, Mathijs; Helmink, Bianca; Vincken, Jean-Paul

    2015-10-28

    Aspergillus oryzae and Rhizopus oryzae were compared for inducing the production of prenylated stilbenoids in peanut seedlings. The fungus was applied at two different time points: directly after soaking (day 1) or after 2 days of germination (day 3). Aspergillus- and Rhizopus-elicited peanut seedlings accumulated an array of prenylated stilbenoids, with overlap in compounds induced, but also with compounds specific to the fungal treatment. The differences were confirmed to be due to modification of prenylated stilbenoids by the fungus itself. Each fungus appeared to deploy different strategies for modification. The content of prenylated stilbenoids modified by fungi accounted for around 8% to 49% (w/w) of total stilbenoids. The contents of modified prenylated stilbenoids were higher when the fungus was applied on day 1 instead of day 3. Altogether, type of fungus and time point of inoculation appeared to be crucial parameters for optimizing accumulation of prenylated stilbenoids in peanut seedlings. PMID:26458982

  8. INDUCED SUSCEPTIBILITY OF THE BLOOD TO INDOL

    PubMed Central

    Rhoads, C. P.; Miller, D. K.

    1938-01-01

    1. Indol, orally administered, causes anemia when certain deficient diets are fed. 2. The same amount of indol causes no considerable hematologic disturbance when normal diets are fed. 3. The anemia can be cured by supplementing the diet with liver extract, or by substituting a normal diet for the deficient diet. 4. Neither the diet alone nor the administration of indol alone produces marked anemia under the experimental conditions observed. PMID:19870720

  9. Cancer chemopreventive activity of the prenylated coumarin, umbelliprenin, in vivo.

    PubMed

    Iranshahi, Mehrdad; Sahebkar, Amirhossein; Takasaki, Midori; Konoshima, Takao; Tokuda, Harukuni

    2009-09-01

    Umbelliprenin is a prenylated compound, which belongs to the class of sesquiterpene coumarins. In continuation of our earlier in-vitro finding, we determined to assess the cancer chemopreventive activity of umbelliprenin in vivo by using a two-stage carcinogenesis assay of mouse skin tumors induced by peroxynitrite as an initiator and TPA (12-O-tetradecanoylphorbol-13-acetate) as a promoter. In this assay, treatment with umbelliprenin along with peroxynitrite/TPA delayed the formation of papillomas up to week 9, and approximately 33.3 and 86.6% of the mice bore papillomas after 11 and 20 weeks of promotion, respectively. Umbelliprenin reduced the number of tumors per mouse by 45% after 20 weeks of promotion compared with the control group. Interestingly, this is equal to the corresponding value (45%) for curcumin, used as a reference standard compound in our study. In addition, the pattern of tumor promotion was slower in mice treated with umbelliprenin compared with the curcumin. Therefore, umbelliprenin might be valuable as a cancer chemopreventive agent.

  10. Cell-specific abnormal prenylation of Rab proteins in platelets and melanocytes of the gunmetal mouse.

    PubMed

    Zhang, Qing; Zhen, Lijie; Li, Wei; Novak, Edward K; Collinson, Lucy M; Jang, Elliott K; Haslam, Richard J; Elliott, Rosemary W; Swank, Richard T

    2002-05-01

    The mutant gunmetal mouse exhibits reduced rates of platelet synthesis, abnormalities of platelet alpha and dense granules and hypopigmentation. Several of these features resemble those of human alpha/delta platelet storage pool disease, grey platelet syndrome and Hermansky-Pudlak syndrome. Gunmetal mice have reduced levels of Rab geranylgeranyltransferase (RabGGTase), which adds lipophilic prenyl groups to the carboxyl terminus of Rab proteins. The degree of prenylation and the subcellular distribution of several Rab proteins were evaluated in mutant platelets, melanocytes and other tissues. Significant deficits in prenylation and membrane binding of most Rabs were observed in platelets and melanocytes. In contrast, minimal alterations in Rab prenylation were apparent in several other gunmetal tissues despite the fact that RabGGTase activity was equally diminished in these tissues. The mutant tissue-specific effects are probably due to increased concentrations of Rab proteins in platelets and melanocytes. These experiments show that Rab proteins are differentially sensitive to levels of RabGGTase activity and that normal platelet synthesis, platelet organelle function and normal pigmentation are highly sensitive to the degree of prenylation and membrane association of Rab proteins. Further, the tissue-specific effects of the gunmetal mutation suggest that RabGGTase is a potential target for therapy of thrombocytosis.

  11. Synthesis of prenylated benzaldehydes and their use in the synthesis of analogues of licochalcone A.

    PubMed

    Kromann, Hasse; Larsen, Mogens; Boesen, Thomas; Schønning, Kristian; Nielsen, Simon Feldbaek

    2004-11-01

    In this paper, a general applicable synthesis of prenylated aromatic compounds exemplified by prenylated benzaldehydes starting from readily available acetophenones is described. The synthesized benzaldehydes are used to prepare a number of novel analogues of Licochalcone A, a known antibacterial compound, and for the exploration of the pharmacophoric elements that are essential for the antibacterial activity. It is shown that the hydroxyl group in the A ring is essential for the activity and that the hydroxyl group in the B ring has no influence on the antibacterial effect of Licochalcone A. Furthermore, it is shown that the prenyl group at the position 5 of the B ring also has a dominating influence on the activity. This aliphatic group can be replaced by other lipophilic long chained substituents in order to maintain the activity.

  12. Chemoenzymatic syntheses of prenylated aromatic small molecules using Streptomyces prenyltransferases with relaxed substrate specificities

    PubMed Central

    Kumano, Takuto; Richard, Stéphane B.; Noel, Joseph P.; Nishiyama, Makoto; Kuzuyama, Tomohisa

    2010-01-01

    NphB is a soluble prenyltransferase from Streptomyces sp. strain CL190 that attaches a geranyl group to a 1,3,6,8-tetrahydroxynaphthalene-derived polyketide during the biosynthesis of anti-oxidant naphterpin. Here we report multiple chemoenzymatic syntheses of various prenylated compounds from aromatic substrates including flavonoids using two prenyltransferases NphB and SCO7190, a NphB homolog from Streptomyces coelicolor A3(2), as biocatalysts. NphB catalyzes carbon–carbon-based and carbon–oxygen-based geranylation of a diverse collection of hydroxyl-containing aromatic acceptors. Thus, this simple method using the prenyltransferases can be used to explore novel prenylated aromatic compounds with biological activities. Kinetic studies with NphB reveal that the prenylation reaction follows a sequential ordered mechanism. PMID:18682327

  13. Synthetic isoprenoid analogues for the study of prenylated proteins: Fluorescent imaging and proteomic applications.

    PubMed

    Wang, Yen-Chih; Distefano, Mark D

    2016-02-01

    Protein prenylation is a posttranslational modification catalyzed by prenyltransferases involving the attachment of farnesyl or geranylgeranyl groups to residues near the C-termini of proteins. This irreversible covalent modification is important for membrane localization and proper signal transduction. Here, the use of isoprenoid analogues for studying prenylated proteins is reviewed. First, experiments with analogues containing small fluorophores that are alternative substrates for prenyltransferases are described. Those analogues have been useful for quantifying binding affinity and for the production of fluorescently labeled proteins. Next, the use of analogues that incorporate biotin, bioorthogonal groups or antigenic moieties is described. Such probes have been particularly useful for identifying proteins that are naturally prenylated within mammalian cells. Overall, the use of isoprenoid analogues has contributed significantly to the understanding of protein prenlation.

  14. Chemoenzymatic syntheses of prenylated aromatic small molecules using Streptomyces prenyltransferases with relaxed substrate specificities.

    PubMed

    Kumano, Takuto; Richard, Stéphane B; Noel, Joseph P; Nishiyama, Makoto; Kuzuyama, Tomohisa

    2008-09-01

    NphB is a soluble prenyltransferase from Streptomyces sp. strain CL190 that attaches a geranyl group to a 1,3,6,8-tetrahydroxynaphthalene-derived polyketide during the biosynthesis of anti-oxidant naphterpin. Here we report multiple chemoenzymatic syntheses of various prenylated compounds from aromatic substrates including flavonoids using two prenyltransferases NphB and SCO7190, a NphB homolog from Streptomyces coelicolor A3(2), as biocatalysts. NphB catalyzes carbon-carbon-based and carbon-oxygen-based geranylation of a diverse collection of hydroxyl-containing aromatic acceptors. Thus, this simple method using the prenyltransferases can be used to explore novel prenylated aromatic compounds with biological activities. Kinetic studies with NphB reveal that the prenylation reaction follows a sequential ordered mechanism.

  15. Prenylation is required for polar cell elongation, cell adhesion, and differentiation in Physcomitrella patens.

    PubMed

    Thole, Julie M; Perroud, Pierre-Francois; Quatrano, Ralph S; Running, Mark P

    2014-05-01

    Protein prenylation is required for a variety of growth and developmental processes in flowering plants. Here we report the consequences of loss of function of all known prenylation subunits in the moss Physcomitrella patens. As in Arabidopsis, protein farnesyltransferase and protein geranylgeranyltransferase type I are not required for viability. However, protein geranylgeranyltransferase type I activity is required for cell adhesion, polar cell elongation, and cell differentiation. Loss of protein geranylgeranyltransferase activity results in colonies of round, single-celled organisms that resemble unicellular algae. The loss of protein farnesylation is not as severe but also results in polar cell elongation and differentiation defects. The complete loss of Rab geranylgeranyltransferase activity appears to be lethal in P. patens. Labeling with antibodies to cell wall components support the lack of polarity establishment and the undifferentiated state of geranylgeranyltransferase type I mutant plants. Our results show that prenylated proteins play key roles in P. patens development and differentiation processes.

  16. Prenylated flavonoids and resveratrol derivatives isolated from Artocarpus communis with the ability to overcome TRAIL resistance.

    PubMed

    Toume, Kazufumi; Habu, Tadashi; Arai, Midori A; Koyano, Takashi; Kowithayakorn, Thaworn; Ishibashi, Masami

    2015-01-23

    In a screening program on natural products that can abrogate tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) resistance, four new prenylated flavonoid and resveratrol derivatives (1-4) were isolated from Artocarpus communis, together with eight known prenylflavonoids (5-12). The structures of 1-4 were elucidated spectroscopically. Pannokin D [corrected] (1) (2 μM) and artonin E (5) (3 μM) potently exhibited the ability to overcome TRAIL resistance. Artonin E (5) induced caspase-dependent apoptosis in combination with TRAIL, increased caspase 3/7 activity, and enhanced the protein levels of p53 and DR5. Moreover, this substance decreased cell viability in combination with TRAIL and enhanced the protein levels of DR5, and these effects were mediated by increases in the production of ROS (reactive oxygen species). Thus, artonin E (5) was found to induce extrinsic apoptotic cell death by the ROS- and p53-mediated up-regulation of DR5 expression in AGS cells.

  17. Prenylated flavonoids and resveratrol derivatives isolated from Artocarpus communis with the ability to overcome TRAIL resistance.

    PubMed

    Toume, Kazufumi; Habu, Tadashi; Arai, Midori A; Koyano, Takashi; Kowithayakorn, Thaworn; Ishibashi, Masami

    2015-01-23

    In a screening program on natural products that can abrogate tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) resistance, four new prenylated flavonoid and resveratrol derivatives (1-4) were isolated from Artocarpus communis, together with eight known prenylflavonoids (5-12). The structures of 1-4 were elucidated spectroscopically. Pannokin D [corrected] (1) (2 μM) and artonin E (5) (3 μM) potently exhibited the ability to overcome TRAIL resistance. Artonin E (5) induced caspase-dependent apoptosis in combination with TRAIL, increased caspase 3/7 activity, and enhanced the protein levels of p53 and DR5. Moreover, this substance decreased cell viability in combination with TRAIL and enhanced the protein levels of DR5, and these effects were mediated by increases in the production of ROS (reactive oxygen species). Thus, artonin E (5) was found to induce extrinsic apoptotic cell death by the ROS- and p53-mediated up-regulation of DR5 expression in AGS cells. PMID:25537111

  18. Tuning the Lewis acid phenol ortho-prenylation as a molecular diversity tool.

    PubMed

    Jäger, Sebastián N; Porta, Exequiel O J; Labadie, Guillermo R

    2016-05-01

    A diversity-oriented approach for the synthesis of various structurally different prenylated alcohols from readily accessible and common precursors was developed. With varying approaches, this article describes some successful examples of a Friedel-Crafts alkylation using methoxyphenols and different prenyl alcohols (geraniol and (E,E)-farnesol). We demonstrated that just by varying the stoichiometry of the Lewis acid used, the course of the reaction can be shifted to produce the alkylated or the cyclized product. Eighteen unique products were obtained with good isolated yields by direct alkylation with or without a consecutive π-cationic cyclization. PMID:26525879

  19. Strongly Acidic Auxin Indole-3-Methanesulfonic Acid

    PubMed Central

    Cohen, Jerry D.; Baldi, Bruce G.; Bialek, Krystyna

    1985-01-01

    A radiochemical synthesis is described for [14C]indole-3-methanesulfonic acid (IMS), a strongly acidic auxin analog. Techniques were developed for fractionation and purification of IMS using normal and reverse phase chromatography. In addition, the utility of both Fourier transform infrared spectrometry and fast atom bombardment mass spectrometry for analysis of IMS has been demonstrated. IMS was shown to be an active auxin, stimulating soybean hypocotyl elongation, bean first internode curvature, and ethylene production. IMS uptake by thin sections of soybean hypocotyl was essentially independent of solution pH and, when applied at a 100 micromolar concentration, IMS exhibited a basipetal polarity in its transport in both corn coleoptile and soybean hypocotyl sections. [14C]IMS should, therefore, be a useful compound to study fundamental processes related to the movement of auxins in plant tissues and organelles. PMID:16664007

  20. The use of chemometrics to study multifunctional indole alkaloids from Psychotria nemorosa (Palicourea comb. nov.). Part II: Indication of peaks related to the inhibition of butyrylcholinesterase and monoamine oxidase-A.

    PubMed

    Klein-Júnior, Luiz C; Viaene, Johan; Tuenter, Emmy; Salton, Juliana; Gasper, André L; Apers, Sandra; Andries, Jan P M; Pieters, Luc; Henriques, Amélia T; Vander Heyden, Yvan

    2016-09-01

    Psychotria nemorosa is chemically characterized by indole alkaloids and displays significant inhibitory activity on butyrylcholinesterase (BChE) and monoamine oxidase-A (MAO-A), both enzymes related to neurodegenerative disorders. In the present study, 43 samples of P. nemorosa leaves were extracted and fractionated in accordance to previously optimized methods (see Part I). These fractions were analyzed by means of UPLC-DAD and assayed for their BChE and MAO-A inhibitory potencies. The chromatographic fingerprint data was first aligned using correlation optimized warping and Principal Component Analysis to explore the data structure was performed. Multivariate calibration techniques, namely Partial Least Squares (PLS1), PLS2 and Orthogonal Projections to Latent Structure (O-PLS1), were evaluated for modelling the activities as a function of the fingerprints. Since the best results were obtained with O-PLS1 model (RMSECV=9.3 and 3.3 for BChE and MAO-A, respectively), the regression coefficients of the model were analyzed and plotted relative to the original fingerprints. Four peaks were indicated as multifunctional compounds, with the capacity to impair both BChE and MAO-A activities. In order to confirm these results, a semi-prep HPLC technique was used and a fraction containing the four peaks was purified and evaluated in vitro. It was observed that the fraction exhibited an IC50 of 2.12μgmL(-1) for BChE and 1.07μgmL(-1) for MAO-A. These results reinforce the prediction obtained by O-PLS1 modelling. PMID:27511709

  1. Chemical defenses of crucifers: elicitation and metabolism of phytoalexins and indole-3-acetonitrile in brown mustard and turnip.

    PubMed

    Pedras, M Soledade C; Nycholat, Corwin M; Montaut, Sabine; Xu, Yiming; Khan, Abdul Q

    2002-03-01

    The metabolism of the cruciferous phytoalexins brassinin and cyclobrassinin, and the related compounds indole-3-carboxaldehyde, glucobrassicin, and indole-3-acetaldoxime was investigated in various plant tissues of Brassica juncea and B. rapa. Metabolic studies with brassinin showed that stems of B. juncea metabolized radiolabeled brassinin to indole-3-acetic acid, via indole-3-carboxaldehyde, a detoxification pathway similar to that followed by the "blackleg" fungus (Phoma lingam/Leptosphaeria maculans). In addition, it was established that tetradeuterated brassinin was incorporated into the phytoalexin brassilexin in B. juncea and B. rapa. On the other hand, the tetradeuterated indole glucosinolate glucobrassicin was not incorporated into brassinin, although the chemical structures of brassinins and indole glucosinolates suggest an interconnected biogenesis. Importantly, tetradeuterated indole-3-acetaldoxime was an efficient precursor of phytoalexins brassinin, brassilexin, and spirobrassinin. Elicitation experiments in tissues of Brassica juncea and B. rapa showed that indole-3-acetonitrile was an inducible metabolite produced in leaves and stems of B. juncea but not in B. rapa. Indole-3-acetonitrile displayed antifungal activity similar to that of brassilexin, was metabolized by the blackleg fungus at slower rates than brassinin, cyclobrassinin, or brassilexin, and appeared to be involved in defense responses of B. juncea.

  2. The glucosinolate breakdown product indole-3-carbinol acts as an auxin antagonist in roots of Arabidopsis thaliana.

    PubMed

    Katz, Ella; Nisani, Sophia; Yadav, Brijesh S; Woldemariam, Melkamu G; Shai, Ben; Obolski, Uri; Ehrlich, Marcelo; Shani, Eilon; Jander, Georg; Chamovitz, Daniel A

    2015-05-01

    The glucosinolate breakdown product indole-3-carbinol functions in cruciferous vegetables as a protective agent against foraging insects. While the toxic and deterrent effects of glucosinolate breakdown on herbivores and pathogens have been studied extensively, the secondary responses that are induced in the plant by indole-3-carbinol remain relatively uninvestigated. Here we examined the hypothesis that indole-3-carbinol plays a role in influencing plant growth and development by manipulating auxin signaling. We show that indole-3-carbinol rapidly and reversibly inhibits root elongation in a dose-dependent manner, and that this inhibition is accompanied by a loss of auxin activity in the root meristem. A direct interaction between indole-3-carbinol and the auxin perception machinery was suggested, as application of indole-3-carbinol rescues auxin-induced root phenotypes. In vitro and yeast-based protein interaction studies showed that indole-3-carbinol perturbs the auxin-dependent interaction of Transport Inhibitor Response (TIR1) with auxin/3-indoleacetic acid (Aux/IAAs) proteins, further supporting the possibility that indole-3-carbinol acts as an auxin antagonist. The results indicate that chemicals whose production is induced by herbivory, such as indole-3-carbinol, function not only to repel herbivores, but also as signaling molecules that directly compete with auxin to fine tune plant growth and development.

  3. Evidences of Hfq associates with tryptophanase and affects extracellular indole levels.

    PubMed

    Zhang, Yinghua; Hong, Guofan

    2009-08-01

    In this study, we observed a novel property of Escherichia coli Hfq protein: it possibly influenced extracellular indole levels. The extracellular indole concentrations were increased in Hfq mutant cells and decreased in Hfq overexpression cells in a cell density-dependent manner. The decreased extracellular indole levels in Hfq overexpression cells caused the postponement of entering into stationary phase. Indole was produced by tryptophanase, the gene product of tnaA, which catalyzed tryptophan into indole, ammonia and pyruvate. Further studies showed that at cell density of 0.8 but not at 0.4, tryptophanase activities of total cell extracts were affected by Hfq mutation or overexpression. Protein pull-down assay and co-immunoprecipitation experiments revealed that Hfq associated with tryptophanase under relatively higher extracellular indole levels, suggesting this was a feedback control of indole production. The association of Hfq and tryptophanase might be indirect because purified Hfq could not affect the values of Km and Vmax of purified tryptophanase.

  4. Simultaneous extraction and HPLC determination of 3-indole butyric acid and 3-indole acetic acid in pea plant by using ionic liquid-modified silica as sorbent.

    PubMed

    Sheikhian, Leila; Bina, Sedigheh

    2016-01-15

    In this study, ionic liquid-modified silica was used as sorbent for simultaneous extraction and preconcentration of 3-indole butyric acid and 3-indole acetic acid in pea plants. The effect of some parameters such as pH and ionic strength of sample solution, amount of sorbent, flow rate of aqueous sample solution and eluent solution, concentration of eluent solution, and temperature were studied for each hormone solution. Percent extraction of 3-indole butyric acid and 3-indole acetic acid was strongly affected by pH of aqueous sample solution. Ionic strength of aqueous phase and temperature showed no serious effects on extraction efficiency of studied plant hormones. Obtained breakthrough volume was 200mL for each of studied hormones. Preconcentration factor for spectroscopic and chromatographic determination of studied hormones was 100 and 4.0×10(3) respectively. Each solid sorbent phase was reusable for almost 10 times of extraction/stripping procedure. Relative standard deviations of extraction/stripping processes of 3-indole butyric acid and 3-indole acetic acid were 2.79% and 3.66% respectively. The calculated limit of detections for IBA and IAA were 9.1×10(-2)mgL(-1) and 1.6×10(-1)mgL(-1) respectively. PMID:26701202

  5. Simultaneous extraction and HPLC determination of 3-indole butyric acid and 3-indole acetic acid in pea plant by using ionic liquid-modified silica as sorbent.

    PubMed

    Sheikhian, Leila; Bina, Sedigheh

    2016-01-15

    In this study, ionic liquid-modified silica was used as sorbent for simultaneous extraction and preconcentration of 3-indole butyric acid and 3-indole acetic acid in pea plants. The effect of some parameters such as pH and ionic strength of sample solution, amount of sorbent, flow rate of aqueous sample solution and eluent solution, concentration of eluent solution, and temperature were studied for each hormone solution. Percent extraction of 3-indole butyric acid and 3-indole acetic acid was strongly affected by pH of aqueous sample solution. Ionic strength of aqueous phase and temperature showed no serious effects on extraction efficiency of studied plant hormones. Obtained breakthrough volume was 200mL for each of studied hormones. Preconcentration factor for spectroscopic and chromatographic determination of studied hormones was 100 and 4.0×10(3) respectively. Each solid sorbent phase was reusable for almost 10 times of extraction/stripping procedure. Relative standard deviations of extraction/stripping processes of 3-indole butyric acid and 3-indole acetic acid were 2.79% and 3.66% respectively. The calculated limit of detections for IBA and IAA were 9.1×10(-2)mgL(-1) and 1.6×10(-1)mgL(-1) respectively.

  6. Chromophore-modified bis-benzo[g]indole carboxamides: synthesis and antiproliferative activity of bis-benzo[g]indazole-3-carboxamides and related dimers.

    PubMed

    Pinna, Gérard A; Pirisi, Maria A; Mussinu, Jean-Mario; Murineddu, Gabriele; Loriga, Giovanni; Pau, Amedeo; Grella, Giuseppe E

    2003-09-01

    Tricyclic pyrazole dimers that comprise two kinds of CONH-(CH(2))(n)-N(CH(3))-(CH(2))(n)-NHCO bridges to which are linked potential DNA-intercalating groups such as 1H-benzo[g]indazole, 2H-benzo[g]indazole and 1,4-dihydroindeno[1,2-c]pyrazole were designed, synthesized and some of them evaluated in vitro by NCI (Bethesda, USA) against nine types of cancer cells. Compounds 2a, 2f-i and 2o-r demonstrated significant antiproliferative activity, all with GI(50) values in the low micromolar range. Preliminary analysis of the structure-activity relationship for dimers 2 indicated that: (i) in the ground terms (2a and 2k) antitumor activities were strongly related to the type of chromophore, (ii) in contrast, either 1H-benzo[g]indazole- or 1,4-dihydroindeno[1,2-c]pyrazole-dimers when bore a N(1)-aryl group (2g, 2h, 2i, 2o, 2p, 2q and 2r) generally showed a good level of antitumor potency and (iii) for the most representative compounds (pairs of compounds: 2g,2h; 2o,2p and 2q,2r) the length of the bridges did not significantly contribute to the variations in cytotoxicity. Two members of this series, 2f and 2q, were selected and tested in the hollow fiber cell assay to evaluate in a preliminary fashion their in vivo antitumor activity. Finally, viscosity measurement of 2f with poly(dA-dT)(2), confirmed that these promising compounds behaved as typical DNA-intercalating agents.

  7. Metabolic engineering for the production of prenylated polyphenols in transgenic legume plants using bacterial and plant prenyltransferases.

    PubMed

    Sugiyama, Akifumi; Linley, Philip J; Sasaki, Kanako; Kumano, Takuto; Yamamoto, Hideaki; Shitan, Nobukazu; Ohara, Kazuaki; Takanashi, Kojiro; Harada, Emiko; Hasegawa, Hisakazu; Terakawa, Teruhiko; Kuzuyama, Tomohisa; Yazaki, Kazufumi

    2011-11-01

    Prenylated polyphenols are secondary metabolites beneficial for human health because of their various biological activities. Metabolic engineering was performed using Streptomyces and Sophora flavescens prenyltransferase genes to produce prenylated polyphenols in transgenic legume plants. Three Streptomyces genes, NphB, SCO7190, and NovQ, whose gene products have broad substrate specificity, were overexpressed in a model legume, Lotus japonicus, in the cytosol, plastids or mitochondria with modification to induce the protein localization. Two plant genes, N8DT and G6DT, from Sophora flavescens whose gene products show narrow substrate specificity were also overexpressed in Lotus japonicus. Prenylated polyphenols were undetectable in these plants; however, supplementation of a flavonoid substrate resulted in the production of prenylated polyphenols such as 7-O-geranylgenistein, 6-dimethylallylnaringenin, 6-dimethylallylgenistein, 8-dimethylallynaringenin, and 6-dimethylallylgenistein in transgenic plants. Although transformants with the native NovQ did not produce prenylated polyphenols, modification of its codon usage led to the production of 6-dimethylallylnaringenin and 6-dimethylallylgenistein in transformants following naringenin supplementation. Prenylated polyphenols were not produced in mitochondrial-targeted transformants even under substrate feeding. SCO7190 was also expressed in soybean, and dimethylallylapigenin and dimethylallyldaidzein were produced by supplementing naringenin. This study demonstrated the potential for the production of novel prenylated polyphenols in transgenic plants. In particular, the enzymatic properties of prenyltransferases seemed to be altered in transgenic plants in a host species-dependent manner.

  8. Structural basis for the promiscuous biosynthetic prenylation of aromatic natural products

    PubMed Central

    Kuzuyama, Tomohisa; Noel, Joseph P.; Richard, Stéphane B.

    2010-01-01

    The anti-oxidant naphterpin is a natural product containing a polyketide-based aromatic core with an attached 10-carbon geranyl group derived from isoprenoid (terpene) metabolism1–3. Hybrid natural products such as naphterpin that contain 5-carbon (dimethylallyl), 10-carbon (geranyl) or 15-carbon (farnesyl) isoprenoid chains possess biological activities distinct from their non-prenylated aromatic precursors4. These hybrid natural products represent new anti-microbial, anti-oxidant, anti-inflammatory, anti-viral and anti-cancer compounds. A small number of aromatic prenyltransferases (PTases) responsible for prenyl group attachment have only recently been isolated and characterized5,6. Here we report the gene identification, biochemical characterization and high-resolution X-ray crystal structures of an architecturally novel aromatic PTase, Orf2 from Streptomyces sp. strain CL190, with substrates and substrate analogues bound. In vivo, Orf2 attaches a geranyl group to a 1,3,6,8-tetra-hydroxynaphthalene-derived polyketide during naphterpin biosynthesis. In vitro, Orf2 catalyses carbon–carbon-based and carbon–oxygen-based prenylation of a diverse collection of hydroxyl-containing aromatic acceptors of synthetic, microbial and plant origin. These crystal structures, coupled with in vitro assays, provide a basis for understanding and potentially manipulating the regio-specific prenylation of aromatic small molecules using this structurally unique family of aromatic PTases. PMID:15959519

  9. Alteration of protein prenylation promotes spermatogonial differentiation and exhausts spermatogonial stem cells in newborn mice.

    PubMed

    Diao, Fan; Jiang, Chen; Wang, Xiu-Xing; Zhu, Rui-Lou; Wang, Qiang; Yao, Bing; Li, Chao-Jun

    2016-01-01

    Spermatogenesis in adulthood depends on the successful neonatal establishment of the spermatogonial stem cell (SSC) pool and gradual differentiation during puberty. The stage-dependent changes in protein prenylation in the seminiferous epithelium might be important during the first round of spermatogenesis before sexual maturation, but the mechanisms are unclear. We have previous found that altered prenylation in Sertoli cells induced spermatogonial apoptosis in the neonatal testis, resulting in adult infertility. Now we further explored the role of protein prenylation in germ cells, using a conditional deletion of geranylgeranyl diphosphate synthase (Ggpps) in embryonic stage and postmeiotic stage respectively. We observed infertility of Ggpps(-/-) Ddx4-Cre mice that displayed a Sertoli-cell-only syndrome phenotype, which resulted from abnormal spermatogonial differentiation and SSC depletion during the prepubertal stage. Analysis of morphological characteristics and cell-specific markers revealed that spermatogonial differentiation was enhanced from as early as the 7(th) postnatal day in the first round of spermatogenesis. Studies of the molecular mechanisms indicated that Ggpps deletion enhanced Rheb farnesylation, which subsequently activated mTORC1 and facilitated spermatogonial differentiation. In conclusion, the prenylation balance in germ cells is crucial for spermatogonial differentiation fate decision during the prepubertal stage, and the disruption of this process results in primary infertility. PMID:27374985

  10. Structural basis for the promiscuous biosynthetic prenylation of aromatic natural products.

    PubMed

    Kuzuyama, Tomohisa; Noel, Joseph P; Richard, Stéphane B

    2005-06-16

    The anti-oxidant naphterpin is a natural product containing a polyketide-based aromatic core with an attached 10-carbon geranyl group derived from isoprenoid (terpene) metabolism. Hybrid natural products such as naphterpin that contain 5-carbon (dimethylallyl), 10-carbon (geranyl) or 15-carbon (farnesyl) isoprenoid chains possess biological activities distinct from their non-prenylated aromatic precursors. These hybrid natural products represent new anti-microbial, anti-oxidant, anti-inflammatory, anti-viral and anti-cancer compounds. A small number of aromatic prenyltransferases (PTases) responsible for prenyl group attachment have only recently been isolated and characterized. Here we report the gene identification, biochemical characterization and high-resolution X-ray crystal structures of an architecturally novel aromatic PTase, Orf2 from Streptomyces sp. strain CL190, with substrates and substrate analogues bound. In vivo, Orf2 attaches a geranyl group to a 1,3,6,8-tetrahydroxynaphthalene-derived polyketide during naphterpin biosynthesis. In vitro, Orf2 catalyses carbon-carbon-based and carbon-oxygen-based prenylation of a diverse collection of hydroxyl-containing aromatic acceptors of synthetic, microbial and plant origin. These crystal structures, coupled with in vitro assays, provide a basis for understanding and potentially manipulating the regio-specific prenylation of aromatic small molecules using this structurally unique family of aromatic PTases.

  11. Isolation and synthesis of antibacterial prenylated acylphloroglu-cinols from Psorothamnus fremontii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antibacterial assay-guided fractionation of the methanol extract of the native American plant Psorothamnus fremontii followed by structure elucidation afforded three prenylated acylphloroglucinol derivatives, psorothatins A-C (1-3). They feature a unique a,ß-epoxyketone functionality and an a,ß-hydr...

  12. A new prenylated flavanoid with antibacterial activity from propolis collected in Egypt.

    PubMed

    El-Bassuony, Ashraf; AbouZid, Sameh

    2010-01-01

    A novel prenylated flavanoid, isonymphaeol-D (1), together with two known compounds, isonymphaeol-B (2) and nymphaeol-B (3), were isolated from Egyptian propolis. The structures of the isolated compounds were determined by various spectroscopic methods. 1 exhibited antibacterial activity against Gram-positive (Bacillus cereus, Staphylococcus aureus) and Gram-negative strains (Serratia sp., Pseudomonos sp., Escherichia coli).

  13. Alteration of protein prenylation promotes spermatogonial differentiation and exhausts spermatogonial stem cells in newborn mice

    PubMed Central

    Diao, Fan; Jiang, Chen; Wang, Xiu-Xing; Zhu, Rui-Lou; Wang, Qiang; Yao, Bing; Li, Chao-Jun

    2016-01-01

    Spermatogenesis in adulthood depends on the successful neonatal establishment of the spermatogonial stem cell (SSC) pool and gradual differentiation during puberty. The stage-dependent changes in protein prenylation in the seminiferous epithelium might be important during the first round of spermatogenesis before sexual maturation, but the mechanisms are unclear. We have previous found that altered prenylation in Sertoli cells induced spermatogonial apoptosis in the neonatal testis, resulting in adult infertility. Now we further explored the role of protein prenylation in germ cells, using a conditional deletion of geranylgeranyl diphosphate synthase (Ggpps) in embryonic stage and postmeiotic stage respectively. We observed infertility of Ggpps−/− Ddx4-Cre mice that displayed a Sertoli-cell-only syndrome phenotype, which resulted from abnormal spermatogonial differentiation and SSC depletion during the prepubertal stage. Analysis of morphological characteristics and cell-specific markers revealed that spermatogonial differentiation was enhanced from as early as the 7th postnatal day in the first round of spermatogenesis. Studies of the molecular mechanisms indicated that Ggpps deletion enhanced Rheb farnesylation, which subsequently activated mTORC1 and facilitated spermatogonial differentiation. In conclusion, the prenylation balance in germ cells is crucial for spermatogonial differentiation fate decision during the prepubertal stage, and the disruption of this process results in primary infertility. PMID:27374985

  14. Pongaflavanol: a prenylated flavonoid from Pongamia pinnata with a modified ring A.

    PubMed

    Yin, Hao; Zhang, Si; Wu, Jun; Nan, Haihan; Long, Lijuan; Yang, Jin; Li, Qingxin

    2006-01-01

    A new prenylated flavon-4-ol with a modified ring A, which we have named pongaflavanol (1), was isolated from the stem bark of Pongamia pinnata along with the known compound tunicatachalcone (2). The structure of compound 1 was elucidated on the basis of spectroscopic data.

  15. Intracellular oxygen determined by respiration regulates localization of Ras and prenylated proteins

    PubMed Central

    Kim, A; Davis, R; Higuchi, M

    2015-01-01

    Reduction of mitochondrial DNA (mtDNA) content induces the reduction of oxidative phosphorylation and dependence on fermentative glycolysis, that is, the Warburg effect. In aggressive prostate cancer (PCa), the reduction of mtDNA reduces oxygen consumption, increases intracellular oxygen concentration, and induces constitutive activation of Ras. Many essential proteins for cell death, growth, differentiation, and development, such as Ras, require prenylation for subcellular localization and activation. Prenylation of a protein is defined as the attachment of isoprenoids to a cysteine residue at or near the C-terminus. 3-Hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR) produces isoprenoids, and is posttranslationally regulated by oxygen. We investigated a critical role of intracellular oxygen in membrane localization of prenylated proteins. Localization of prenylated proteins (H-Ras, prelamin A/C, and Rab5a) was observed in poorly differentiated PCa (PC-3) and well-differentiated PCa (LNCaP) cells. PC-3 cells exhibited high intracellular oxygen concentration, and H-Ras, prelamin A/C, and Rab5a were localized to various membranes (Golgi and plasma membrane, nuclear membrane, and early endosomes, respectively). Remarkably, exogenous hypoxia (0.2% O2) in PC-3 cells induced intracellular hypoxia and changed the localization of the prenylated proteins. H-Ras and Rab5a were translocated to cytosol, and prelamin A/C was in the nucleus forming an abnormal nuclear envelope. The localization was reversed by mevalonate indicating the involvement of mevalonate pathway. In contrast, in LNCaP cells, exhibiting low intracellular oxygen concentration, H-Ras and Rab5a were localized in the cytosol, and prelamin A/C was inside the nucleus forming an inadequate nuclear envelope. Exogenous hyperoxia (40% O2) increased the intracellular oxygen concentration and induced Ras translocation from cytosol to the membrane. Prelamin A/C was translocated to the nuclear membrane and formed a

  16. Intracellular oxygen determined by respiration regulates localization of Ras and prenylated proteins.

    PubMed

    Kim, A; Davis, R; Higuchi, M

    2015-07-16

    Reduction of mitochondrial DNA (mtDNA) content induces the reduction of oxidative phosphorylation and dependence on fermentative glycolysis, that is, the Warburg effect. In aggressive prostate cancer (PCa), the reduction of mtDNA reduces oxygen consumption, increases intracellular oxygen concentration, and induces constitutive activation of Ras. Many essential proteins for cell death, growth, differentiation, and development, such as Ras, require prenylation for subcellular localization and activation. Prenylation of a protein is defined as the attachment of isoprenoids to a cysteine residue at or near the C-terminus. 3-Hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR) produces isoprenoids, and is posttranslationally regulated by oxygen. We investigated a critical role of intracellular oxygen in membrane localization of prenylated proteins. Localization of prenylated proteins (H-Ras, prelamin A/C, and Rab5a) was observed in poorly differentiated PCa (PC-3) and well-differentiated PCa (LNCaP) cells. PC-3 cells exhibited high intracellular oxygen concentration, and H-Ras, prelamin A/C, and Rab5a were localized to various membranes (Golgi and plasma membrane, nuclear membrane, and early endosomes, respectively). Remarkably, exogenous hypoxia (0.2% O2) in PC-3 cells induced intracellular hypoxia and changed the localization of the prenylated proteins. H-Ras and Rab5a were translocated to cytosol, and prelamin A/C was in the nucleus forming an abnormal nuclear envelope. The localization was reversed by mevalonate indicating the involvement of mevalonate pathway. In contrast, in LNCaP cells, exhibiting low intracellular oxygen concentration, H-Ras and Rab5a were localized in the cytosol, and prelamin A/C was inside the nucleus forming an inadequate nuclear envelope. Exogenous hyperoxia (40% O2) increased the intracellular oxygen concentration and induced Ras translocation from cytosol to the membrane. Prelamin A/C was translocated to the nuclear membrane and formed a

  17. Design and synthesis of spiro[indole-thiazolidine]spiro[indole-pyrans] as antimicrobial agents.

    PubMed

    Sakhuja, Rajeev; Panda, Siva S; Khanna, Leena; Khurana, Shilpi; Jain, Subhash C

    2011-09-15

    A series of novel spiro[indole-thiazolidine]spiro[indole-pyran] derivatives were synthesized from N-(bromoalkyl)indol-2,3-diones via monospiro-bisindole intermediates; the two indole nuclei being connected via N-(CH(2))(n)-N linker. Synthesized compounds were evaluated for their antimicrobial activities in vitro against three Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis, and Staphylococcus epidermis), four Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, and Klebsiella pneumonia) as well as four fungi (Aspergillus niger, Aspergillus fumigatus, Aspergillus flavus, and Candida albicans) using Cup plate method. Bis spiro-indoles exhibited stronger antibacterial and antifungal efficiency than their corresponding mono spiro-indoles. Compound 10e, the most active derivative was shown to inhibit the growth of all bacterial strains and two fungal strains (A. niger and C. albicans). PMID:21782421

  18. A multi-component domino reaction for the direct access to polyfunctionalized indoles via intermolecular allylic esterification and indolation.

    PubMed

    Jiang, Bo; Yi, Mian-Shuai; Shi, Feng; Tu, Shu-Jiang; Pindi, Suresh; McDowell, Patrick; Li, Guigen

    2012-01-21

    A novel multi-component reaction for the synthesis of polyfunctionalized indoles and bis-indoles has been established. The reaction pathways were controlled by varying enamines with different substitution patterns to give polyfunctionalized indoles and bis-indoles selectively. The reaction proceeds at a fast speed within 15-30 min with water as the major byproduct, which makes work-up convenient.

  19. Detoxification of Indole by an Indole-Induced Flavoprotein Oxygenase from Acinetobacter baumannii

    PubMed Central

    Lin, Guang-Huey; Chen, Hao-Ping; Shu, Hung-Yu

    2015-01-01

    Indole, a derivative of the amino acid tryptophan, is a toxic signaling molecule, which can inhibit bacterial growth. To overcome indole-induced toxicity, many bacteria have developed enzymatic defense systems to convert indole to non-toxic, water-insoluble indigo. We previously demonstrated that, like other aromatic compound-degrading bacteria, Acinetobacter baumannii can also convert indole to indigo. However, no work has been published investigating this mechanism. Here, we have shown that the growth of wild-type A. baumannii is severely inhibited in the presence of 3.5 mM indole. However, at lower concentrations, growth is stable, implying that the bacteria may be utilizing a survival mechanism to oxidize indole. To this end, we have identified a flavoprotein oxygenase encoded by the iifC gene of A. baumannii. Further, our results suggest that expressing this recombinant oxygenase protein in Escherichia coli can drive indole oxidation to indigo in vitro. Genome analysis shows that the iif operon is exclusively present in the genomes of A. baumannii and Pseudomonas syringae pv. actinidiae. Quantitative PCR and Western blot analysis also indicate that the iif operon is activated by indole through the AraC-like transcriptional regulator IifR. Taken together, these data suggest that this species of bacteria utilizes a novel indole-detoxification mechanism that is modulated by IifC, a protein that appears to be, at least to some extent, regulated by IifR. PMID:26390211

  20. Detoxification of Indole by an Indole-Induced Flavoprotein Oxygenase from Acinetobacter baumannii.

    PubMed

    Lin, Guang-Huey; Chen, Hao-Ping; Shu, Hung-Yu

    2015-01-01

    Indole, a derivative of the amino acid tryptophan, is a toxic signaling molecule, which can inhibit bacterial growth. To overcome indole-induced toxicity, many bacteria have developed enzymatic defense systems to convert indole to non-toxic, water-insoluble indigo. We previously demonstrated that, like other aromatic compound-degrading bacteria, Acinetobacter baumannii can also convert indole to indigo. However, no work has been published investigating this mechanism. Here, we have shown that the growth of wild-type A. baumannii is severely inhibited in the presence of 3.5 mM indole. However, at lower concentrations, growth is stable, implying that the bacteria may be utilizing a survival mechanism to oxidize indole. To this end, we have identified a flavoprotein oxygenase encoded by the iifC gene of A. baumannii. Further, our results suggest that expressing this recombinant oxygenase protein in Escherichia coli can drive indole oxidation to indigo in vitro. Genome analysis shows that the iif operon is exclusively present in the genomes of A. baumannii and Pseudomonas syringae pv. actinidiae. Quantitative PCR and Western blot analysis also indicate that the iif operon is activated by indole through the AraC-like transcriptional regulator IifR. Taken together, these data suggest that this species of bacteria utilizes a novel indole-detoxification mechanism that is modulated by IifC, a protein that appears to be, at least to some extent, regulated by IifR. PMID:26390211

  1. Potential allelopathic indole diketopiperazines produced by the plant endophytic Aspergillus fumigatus using the one strain-many compounds method.

    PubMed

    Zhang, Qiang; Wang, Shi-Qiong; Tang, Hao-Yu; Li, Xiao-Jun; Zhang, Lu; Xiao, Jian; Gao, Yu-Qi; Zhang, An-Ling; Gao, Jin-Ming

    2013-11-27

    On the basis of the OSMAC (one strain-many compounds) strategy, 14 indole diketopiperazine (DKP) alkaloids, including spirotryprostatins (1-3), tryprostatins (4-6), and cyclotryprostatins (7-14), were isolated from the endophyte Aspergillus fumigatus associated with Melia azedarach L. Their structures were identified by nuclear magnetic resonance and electrospray ionization mass spectrometry data. All the indole DKPs were evaluated for plant growth regulation using the lettuce (Lactuca sativa) seedling growth bioassay, which showed the plant growth influence of the seedling. Among these compounds tested, a tryprostatin-type compound, brevianamide F (6), was identified as a new type of natural potential plant growth inhibitor with a response index (RI) higher than that of the positive control glyphosate, a broad-spectrum systemic herbicide. 6 can also inhibit turnip (Raphanus sativus) shoot and root elongation with RIs of -0.76 and -0.70, respectively, at 120 ppm, and it strongly inhibits amaranth (Amaranthus mangostanus) seedling growth with a high RI of -0.9 at 40 ppm. The structure-allelopathic activity relationship analysis of these isolated alkaloids indicates that tryprostatin-type alkaloids without the C5 prenyl and methoxy group give the most potent inhibition of seedling growth. Brevianamide F (6) could be used to develop a natural eco-friendly herbicide.

  2. Interactions of Indole Derivatives with β-Cyclodextrin: A Quantitative Structure-Property Relationship Study

    PubMed Central

    Šoškić, Milan; Porobić, Ivana

    2016-01-01

    Retention factors for 31 indole derivatives, most of them with auxin activity, were determined by high-performance liquid chromatography, using bonded β-cyclodextrin as a stationary phase. A three-parameter QSPR (quantitative structure-property relationship) model, based on physico-chemical and structural descriptors was derived, which accounted for about 98% variations in the retention factors. The model suggests that the indole nucleus occupies the relatively apolar cavity of β-cyclodextrin while the carboxyl group of the indole -3-carboxylic acids makes hydrogen bonds with the hydroxyl groups of β-cyclodextrin. The length and flexibility of the side chain containing carboxyl group strongly affect the binding of these compounds to β-cyclodextrin. Non-acidic derivatives, unlike the indole-3-carboxylic acids, are poorly retained on the column. A reasonably well correlation was found between the retention factors of the indole-3-acetic acids and their relative binding affinities for human serum albumin, a carrier protein in the blood plasma. A less satisfactory correlation was obtained when the retention factors of the indole derivatives were compared with their affinities for auxin-binding protein 1, a plant auxin receptor. PMID:27124734

  3. Artelastocarpin and carpelastofuran, two new flavones, and cytotoxicities of prenyl flavonoids from Artocarpus elasticus against three cancer cell lines.

    PubMed

    Cidade, H M; Nacimento, M S; Pinto, M M; Kijjoa, A; Silva, A M; Herz, W

    2001-12-01

    Further study of one of the fractions from the wood of Artocarpus elasticus furnished two new prenylated flavonoids artelastocarpin and carpelastofuran as well as ethyl 2,4-dihydroxybenzoate. The two flavonoids and the prenylated flavonoids artelastin, artelastochromene, artelasticin, artocarpesin, and cyclocommunin isolated earlier from this species were tested for cytotoxicity in vitro against three human cell lines. All seven flavonoids were active, the cytotoxic effect varying from strong to moderate and with artelastin showing the most potent activity.

  4. Molecular basis of indole production catalyzed by tryptophanase in the genus Prevotella.

    PubMed

    Sasaki-Imamura, Takako; Yoshida, Yasuo; Suwabe, Kyosuke; Yoshimura, Fuminobu; Kato, Hirohisa

    2011-09-01

    Indole is most commonly known as a diagnostic marker and a malodorous chemorepellent. More recently, it has been recognized that indole also functions as an extracellular signaling molecule that controls bacterial physiology and virulence. The gene (tnaA) for tryptophanase, which produces indole, ammonia, and pyruvate via β-elimination of L-tryptophan, was cloned from Prevotella intermedia ATCC 25611 and recombinant TnaA was purified and enzymatically characterized. Analysis by reverse transcriptase-mediated PCR showed that the gene was not cotranscribed with flanking genes in P. intermedia. The results of gel-filtration chromatography suggested that P. intermedia TnaA forms homodimers, unlike other reported TnaA proteins. Recombinant TnaA exhibited a K(m) of 0.23 ± 0.01 mM and k(cat) of 0.45 ± 0.01 s(-1). Of 22 Prevotella species tested, detectable levels of indole were present in the culture supernatants of six, including P. intermedia. Southern hybridization showed that tnaA-positive signals were present in the genomic DNA from the six indole-producing strains, but not the other 16 strains tested. The indole-producing strains, with the exception of Prevotella micans, formed a phylogenetic cluster based on trees constructed using 16S rRNA gene sequences, which suggested that tnaA in P. micans might have been transferred from other Prevotella species relatively recently.

  5. Toxin YafQ increases persister cell formation by reducing indole signalling.

    PubMed

    Hu, Ying; Kwan, Brian W; Osbourne, Devon O; Benedik, Michael J; Wood, Thomas K

    2015-04-01

    Persister cells survive antibiotic and other environmental stresses by slowing metabolism. Since toxins of toxin/antitoxin (TA) systems have been postulated to be responsible for persister cell formation, we investigated the influence of toxin YafQ of the YafQ/DinJ Escherichia coli TA system on persister cell formation. Under stress, YafQ alters metabolism by cleaving transcripts with in-frame 5'-AAA-G/A-3' sites. Production of YafQ increased persister cell formation with multiple antibiotics, and by investigating changes in protein expression, we found that YafQ reduced tryptophanase levels (TnaA mRNA has 16 putative YafQ cleavage sites). Consistently, TnaA mRNA levels were also reduced by YafQ. Tryptophanase is activated in the stationary phase by the stationary-phase sigma factor RpoS, which was also reduced dramatically upon production of YafQ. Tryptophanase converts tryptophan into indole, and as expected, indole levels were reduced by the production of YafQ. Corroborating the effect of YafQ on persistence, addition of indole reduced persistence. Furthermore, persistence increased upon deleting tnaA, and persistence decreased upon adding tryptophan to the medium to increase indole levels. Also, YafQ production had a much smaller effect on persistence in a strain unable to produce indole. Therefore, YafQ increases persistence by reducing indole, and TA systems are related to cell signalling.

  6. Biosynthesis of indole-3-acetic acid via the indole-3-acetamide pathway in Streptomyces spp.

    PubMed

    Manulis, S; Shafrir, H; Epstein, E; Lichter, A; Barash, I

    1994-05-01

    Various Streptomyces spp. including S. violaceus, S. scabies, S. griseus, S. exfoliatus, S. coelicolor and S. lividans secrete indole-3-acetic acid (IAA) when fed with L-tryptophan (Trp). Production of IAA was detected in Streptomyces strains causing potato scab as well as in non-pathogenic strains. The pathways for IAA synthesis from Trp were investigated in S. violaceus and S. exfoliatus. Indole-3-acetamide (IAM), indole-3-lactic acid (ILA), indole-3-ethanol (IEt) and IAA were identified by HPLC and GC-MS. Streptomyces cells were capable of catabolizing IAM, ILA, IEt and indole-3-acetaldehyde (IAAId) into IAA. Incorporation of radioactivity into IAM, IAA and ILA but not IEt was detected when cells were fed with L-[3-14C]tryptophan. Results indicate the presence of the IAM pathway (Trp-->IAM-->IAA) and the possible presence of additional pathways for IAA biosynthesis in Streptomyces. PMID:8025670

  7. Catalytic functionalization of indoles in a new dimension.

    PubMed

    Bandini, Marco; Eichholzer, Astrid

    2009-01-01

    140 years ago Adolf von Baeyer proposed the structure of a heteroaromatic compound which revolutionized organic and medical chemistry: indole. After more than a century, indole itself and the complexity of naturally occurring indole derivatives continue to inspire and influence developments in synthetic chemistry. In particular, the ubiquitous presence of indole rings in pharmaceuticals, agrochemicals, and functional materials are testament to the ever increasing interest in the design of mild and efficient synthetic routes to functionalized indole derivatives. This Review emphasizes the achievements in the selective catalytic functionalization of indoles (C-C bond-forming processes) over the last four years.

  8. Xanthohumol, a prenylated chalcone from Humulus lupulus L., inhibits cholesteryl ester transfer protein.

    PubMed

    Hirata, Hiroshi; Takazumi, Koji; Segawa, Shuichi; Okada, Yukio; Kobayashi, Naoyuki; Shigyo, Tatsuro; Chiba, Hitoshi

    2012-10-01

    High density lipoprotein (HDL)-cholesterol levels are correlated with a low risk of atherosclerosis. The inhibition of cholesteryl ester transfer protein (CETP), which catalyses cholesterol transfer between lipoproteins, leads to an increase in HDL-cholesterol and is expected to be the next anti-atherogenic target. This study revealed that xanthohumol, a prenylated chalcone, showed the highest inhibition against CETP from screening of natural products in various plants. We investigated the inhibitory activity of some chalcones and flavanones. Naringenin chalcone showed weak CETP inhibition compared with xanthohumol. In addition, isoxanthohumol and naringenin drastically decreased the inhibitory activity. These results suggest that the prenyl group and chalcone structure of xanthohumol were responsible for the CETP inhibitory activity. PMID:25005963

  9. Benzylated and prenylated flavonoids from the root barks of Cudrania tricuspidata with pancreatic lipase inhibitory activity.

    PubMed

    Jo, Yang Hee; Kim, Seon Beom; Liu, Qing; Lee, Jin Woo; Hwang, Bang Yeon; Lee, Mi Kyeong

    2015-09-01

    A new benzylated and prenylated flavonone, cudracuspiflavanone A (17) were isolated from the roots of Cudrania tricuspidata (Moraceae), together with two chromones (1-2) and fourteen flavonoids (3-16). The structures of isolated compounds were determined on the basis of spectroscopic analysis. The absolute configuration was also defined by CD analysis. Among the isolated compounds, compounds 14 and 15 inhibited pancreatic lipase activity with an IC50 value of 9.0 and 6.5 μM, respectively.

  10. Cytotoxic and leishmanicidal properties of garcinielliptone FC, a prenylated benzophenone from Platonia insignis.

    PubMed

    Costa Júnior, Joaquim S; de Almeida, Antonia Amanda Cardoso; de Barros Falcão Ferraz, Alexandre; Rossatto, Raíssa Rebés; Silva, Teresinha G; Silva, Paulo B N; Militão, Gardenia C G; das Graças Lopes Citó, Antonia Maria; Santana, Lorena Citó Lopes Resende; de Amorim Carvalho, Fernando Aécio; Freitas, Rivelilson M

    2013-03-01

    Garcinielliptone FC (GFC), a natural prenylated benzophenone, was extracted from Platonia insignis Mart. (Clusiaceae), a native plant commonly known as bacuri and used in traditional Brazilian medicine for the treatment of skin diseases. The aim of this study was to evaluate the cytotoxic and leishmanicidal effects of GFC using in vitro models. The experimental data demonstrated that the polyisoprenylated benzophenone GFC possesses cytotoxic and leishmanicidal activities. PMID:22708546

  11. Unusual cyclic terpenoids with terminal pendant prenyl moieties: from occurrence to synthesis.

    PubMed

    Kulcitki, Veaceslav; Harghel, Petru; Ungur, Nicon

    2014-12-01

    The paper reviews the known examples of cyclic terpenoids produced from open chain polyenic precursors by an "unusual" biosynthetic pathway, involving selective electrophilic attack on an internal double bond followed by cyclization. The resulting compounds possess cyclic backbones with pendant terminal prenyl groups. Synthetic approaches applied for the synthesis of such specifically functionalized compounds are also discussed, as well as biological activity of reported representatives. PMID:25118808

  12. Genome Mining of a Prenylated and Immunosuppressive Polyketide from Pathogenic Fungi

    PubMed Central

    Chooi, Yit-Heng; Fang, Jinxu; Liu, Hong; Filler, Scott G.; Wang, Pin; Tang, Yi

    2013-01-01

    Activation of the polycyclic polyketide prenyltransferases (pcPTase)-containing silent clusters in Aspergillus fumigatus and Neosartorya fischeri led to isolation of a new metabolite neosartoricin (3). The structure of 3 was solved by X-ray crystallography and NMR to be a prenylated anthracenone. 3 Exhibits T-cell antiproliferative activity with an IC50 of 3 μM, suggestive of a physiological role as an immunosuppressive agent. PMID:23368997

  13. Four new prenylated flavonoids and xanthones from the root bark of Artocarpus nobilis.

    PubMed

    Jayasinghe, U L B; Samarakoon, T B; Kumarihamy, B M M; Hara, N; Fujimoto, Y

    2008-01-01

    Chemical investigation of the n-butanol extract from the methanol extract of the root bark of Artocarpus nobilis furnished four new prenylated flavonoids together with artonin E 2'-methylether (4), isoartonin E 2'-methylether (5), dihydroisoartonin E 2'-methylether (6), artonin V 2'-methylether (7), artobiloxanthone (1), artonin E (2) and cycloartobiloxanthone (3). All these compounds showed strong radical scavenging properties towards DPPH radical.

  14. Artoindonesianin L, a new prenylated flavone with cytotoxic activity from Artocarpus rotunda.

    PubMed

    Suhartati, T; Achmad, S A; Aimi, N; Hakim, E H; Kitajima, M; Takayama, H; Takeya, K

    2001-12-01

    A new prenylated flavone, named artoindonesianin L (1), was isolated from Artocarpus rotunda (Hout) Panzer (Moraceae). Its structure was elucidated as on the basis of spectroscopic evidence. Along with this new compound, four known phenolic compounds were also isolated from this plant and identified as artonins M (2) and E (3), cycloartobiloxanthone (4) and artonin O (5). All these compounds showed significant cytotoxicity against murine P388 leukemia cells.

  15. Antileishmanial activity of prenylated coumarins isolated from Ferulago angulata and Prangos asperula

    PubMed Central

    Sajjadi, Seyed Ebrahim; Eskandarian, Abbas-Ali; Shokoohinia, Yalda; Yousefi, Hosein-Ali; Mansourian, Marjan; Asgarian-Nasab, Hasan; Mohseni, Negar

    2016-01-01

    Leishmaniasis has a wide spectrum of signs and symptoms due to infection to numbers of Leishmania species and makes enormous mortality and morbidity. There are clues of antileishmanial effects of prenylated coumarins. Apiaceae family is one of the most important sources of coumarins. Air-dried aerial parts of Ferulago angulata and fruits of Prangos asperula were extracted with n-hexane, using a soxhlet apparatus. The solvents were evaporated under reduced pressure. Column chromatography and crystallization process resulted to isolation of three prenylated coumarins. 1H-nuclear magnetic resonance, electron ionization Mass and Infrared spectra were used for elucidation of isolated compounds. Leishmanicidal activity of isolated coumarins was assessed on Leishmania major strain (MRHO/IR/75/ER) for the first time. Suberosin epoxide and suberosin were isolated from aerial parts of F. angulata and osthol was extracted from grounded fruits of P. asperula. Osthol showed a significant antileishmanial effect on promastigotes in early hours of exposure with IC50 of 14.40 µg/mL but suberosin epoxide showed only a weak antileishmanial activity. IC50 of osthol and suberosin epoxide after 48 h were 10.79 and 54.0 µg/mL, respectively. Suberosin showed no remarkable effect in these concentrations. This is the first report on the pharmacological activity of suberosin epoxide. Substantial difference between efficacies of two isomers, osthol and suberosin remarks the importance of prenyl substituent location on C-8. PMID:27651813

  16. Antileishmanial activity of prenylated coumarins isolated from Ferulago angulata and Prangos asperula.

    PubMed

    Sajjadi, Seyed Ebrahim; Eskandarian, Abbas-Ali; Shokoohinia, Yalda; Yousefi, Hosein-Ali; Mansourian, Marjan; Asgarian-Nasab, Hasan; Mohseni, Negar

    2016-07-01

    Leishmaniasis has a wide spectrum of signs and symptoms due to infection to numbers of Leishmania species and makes enormous mortality and morbidity. There are clues of antileishmanial effects of prenylated coumarins. Apiaceae family is one of the most important sources of coumarins. Air-dried aerial parts of Ferulago angulata and fruits of Prangos asperula were extracted with n-hexane, using a soxhlet apparatus. The solvents were evaporated under reduced pressure. Column chromatography and crystallization process resulted to isolation of three prenylated coumarins. (1)H-nuclear magnetic resonance, electron ionization Mass and Infrared spectra were used for elucidation of isolated compounds. Leishmanicidal activity of isolated coumarins was assessed on Leishmania major strain (MRHO/IR/75/ER) for the first time. Suberosin epoxide and suberosin were isolated from aerial parts of F. angulata and osthol was extracted from grounded fruits of P. asperula. Osthol showed a significant antileishmanial effect on promastigotes in early hours of exposure with IC50 of 14.40 µg/mL but suberosin epoxide showed only a weak antileishmanial activity. IC50 of osthol and suberosin epoxide after 48 h were 10.79 and 54.0 µg/mL, respectively. Suberosin showed no remarkable effect in these concentrations. This is the first report on the pharmacological activity of suberosin epoxide. Substantial difference between efficacies of two isomers, osthol and suberosin remarks the importance of prenyl substituent location on C-8. PMID:27651813

  17. Prenylated chalcones and flavonoids for the prevention and treatment of cancer.

    PubMed

    Venturelli, Sascha; Burkard, Markus; Biendl, Martin; Lauer, Ulrich M; Frank, Jan; Busch, Christian

    2016-01-01

    Prenylated chalcones and flavonoids gained increasing attention not only in nutrition but also in cancer prevention because of their biological and molecular activities in humans, which have been extensively investigated in vitro or in preclinical studies. These naturally occurring compounds exhibit antioxidant effects, modulate metabolism of carcinogens by inhibition of distinct phase 1 metabolic enzymes and activation of phase 2 detoxifying enzymes, and display antiinflammatory properties. In particular, their potential to prevent proliferation of tumor cells is noteworthy. Some representatives of this subclass of secondary plant compounds exert pronounced anti-tumor-initiating capacities and directly inhibit growth of cancer cells, whereas their toxic effects on healthy tissues are remarkably low. These promising pharmacologic characteristics are countered by low ingestion, low bioavailability, and little knowledge of their metabolism. This review focuses on the great potential of these plant- and nutrient-derived compounds for cancer prevention and therapy. Provided here is a comprehensive summary of the current knowledge and inherent modes of action, focusing on the prenylated chalcones xanthohumol, desmethylxanthohumol, and xanthogalenol, as well as the prenylated flavonoids isoxanthohumol, 6-prenylnaringenin, 8-prenylnaringenin, 6-geranylnaringenin, 8-geranylnaringenin, and pomiferin. PMID:27238957

  18. Inhibition of lymphocyte proliferation by prenylated flavones: artelastin as a potent inhibitor.

    PubMed

    Cerqueira, F; Cordeiro-da-Silva, A; Araújo, N; Cidade, H; Kijjoa, A; Nascimento, M S J

    2003-09-19

    Eight natural prenylated flavones, previously isolated from Artocarpus elasticus, were evaluated for their effect on the mitogenic response of human lymphocytes to PHA. They all exhibited a dose-dependent suppression effect. An interesting relationship was observed between their antiproliferative activity and their chemical structure. Indeed, the most potent flavones possessed a 3,3-dymethylallyl group (prenyl) at C-8, such as artelastin, which exhibited the highest antiproliferative activity. Studies of the mechanism underlying its effect revealed that artelastin had an irreversible inhibitory effect on the PHA-induced lymphocyte proliferation and could affect the course of the ongoing mitogenic response either at the initial induction phase or at the late phase of proliferation. This prenylated flavone was also shown to be a potent inhibitor of both T- and B-lymphocyte mitogen induced proliferation although B-mitogenic response was the more sensitive one. Artelastin did not affect either the basal levels of the early marker of activation CD69 on non-stimulated splenocytes or its expression on ConA- or LPS-stimulated splenocytes. However, it decreased the production of IFN-gamma, IL-2, IL-4 and IL-10 in ConA-stimulated splenocytes. Furthermore, artelastin had no effect on apoptosis of splenocytes.

  19. Antileishmanial activity of prenylated coumarins isolated from Ferulago angulata and Prangos asperula

    PubMed Central

    Sajjadi, Seyed Ebrahim; Eskandarian, Abbas-Ali; Shokoohinia, Yalda; Yousefi, Hosein-Ali; Mansourian, Marjan; Asgarian-Nasab, Hasan; Mohseni, Negar

    2016-01-01

    Leishmaniasis has a wide spectrum of signs and symptoms due to infection to numbers of Leishmania species and makes enormous mortality and morbidity. There are clues of antileishmanial effects of prenylated coumarins. Apiaceae family is one of the most important sources of coumarins. Air-dried aerial parts of Ferulago angulata and fruits of Prangos asperula were extracted with n-hexane, using a soxhlet apparatus. The solvents were evaporated under reduced pressure. Column chromatography and crystallization process resulted to isolation of three prenylated coumarins. 1H-nuclear magnetic resonance, electron ionization Mass and Infrared spectra were used for elucidation of isolated compounds. Leishmanicidal activity of isolated coumarins was assessed on Leishmania major strain (MRHO/IR/75/ER) for the first time. Suberosin epoxide and suberosin were isolated from aerial parts of F. angulata and osthol was extracted from grounded fruits of P. asperula. Osthol showed a significant antileishmanial effect on promastigotes in early hours of exposure with IC50 of 14.40 µg/mL but suberosin epoxide showed only a weak antileishmanial activity. IC50 of osthol and suberosin epoxide after 48 h were 10.79 and 54.0 µg/mL, respectively. Suberosin showed no remarkable effect in these concentrations. This is the first report on the pharmacological activity of suberosin epoxide. Substantial difference between efficacies of two isomers, osthol and suberosin remarks the importance of prenyl substituent location on C-8.

  20. Normal coordinate analysis of the indole ring

    NASA Astrophysics Data System (ADS)

    Takeuchi, Hideo; Harada, Issei

    Normal coordinate calculations have been performed for indole and 11 deuterated indoles. The set of valence force constants obtained is able to reproduce i.r. and Raman frequencies with an average error of about 6 cm -1. Extension of the force field to skatole has also been made and the calculated frequency shifts on isotopic substitutions are compared with the experimental ones of tryptophan. The general agreement between the calculation and experiment suggests that the vibrational modes obtained here are of practical use in the interpretation of Raman spectra of proteins containing tryptophan residues.

  1. Quality of Life is Similar between Long-term Survivors of Indolent and Aggressive Non-Hodgkin Lymphoma.

    PubMed

    Beaven, Anne W; Samsa, Greg; Zimmerman, Sheryl; Smith, Sophia K

    2016-07-01

    Differences in quality of life (QOL) of long-term survivors of aggressive or indolent subtypes of non-Hodgkin lymphoma (NHL) have not been frequently evaluated. We assessed these differences by analyzing results of a large QOL survey of long-term NHL survivors. We hypothesized that the incurable nature of indolent NHL would relate to worse QOL in long-term survivors while the potentially cured long-term survivors of aggressive lymphoma would have better QOL. We found that QOL was similar between the two groups. Results suggest that patients with indolent NHL are coping well with their disease, yet experience some overall feelings of life threat. PMID:27379565

  2. Indoles: Industrial, Agricultural and Over-the-Counter Uses

    NASA Astrophysics Data System (ADS)

    Barden, Timothy C.

    Indole-containing compounds are best known for their medicinal properties in the pharmaceutical industry. Although to a lesser degree, the indole motif none-the-less appears in many significant products across the entire chemical industry. This chapter describes the role that indole plays in a more commodity setting and provides examples illustrating these uses.

  3. The prenylation status of a novel plant calmodulin directs plasma membrane or nuclear localization of the protein.

    PubMed

    Rodríguez-Concepción, M; Yalovsky, S; Zik, M; Fromm, H; Gruissem, W

    1999-04-01

    Post-translational attachment of isoprenyl groups to conserved cysteine residues at the C-terminus of a number of regulatory proteins is important for their function and subcellular localization. We have identified a novel calmodulin, CaM53, with an extended C-terminal basic domain and a CTIL CaaX-box motif which are required for efficient prenylation of the protein in vitro and in vivo. Ectopic expression of wild-type CaM53 or a non-prenylated mutant protein in plants causes distinct morphological changes. Prenylated CaM53 associates with the plasma membrane, but the non-prenylated mutant protein localizes to the nucleus, indicating a dual role for the C-terminal domain. The subcellular localization of CaM53 can be altered by a block in isoprenoid biosynthesis or sugar depletion, suggesting that CaM53 activates different targets in response to metabolic changes. Thus, prenylation of CaM53 appears to be a novel mechanism by which plant cells can coordinate Ca2+ signaling with changes in metabolic activities.

  4. The benzyne Fischer-indole reaction.

    PubMed

    McAusland, Donald; Seo, Sangwon; Pintori, Didier G; Finlayson, Jonathan; Greaney, Michael F

    2011-07-15

    A new approach to the Fischer-indole synthesis is reported that uses the reactive intermediate benzyne. The addition of N-tosyl hydrazones to arynes, generated through fluoride activation of 2-(trimethylsilyl)phenyl triflate precursors, leads to efficient N-arylation. Addition of a Lewis acid to the same reaction pot then affords N-tosylindole products via Fischer cyclization.

  5. Protection of prenylated flavonoids from Mori Cortex Radicis (Moraceae) against nitric oxide-induced cell death in neuroblastoma SH-SY5Y cells.

    PubMed

    Lee, Hak Ju; Lyu, Da Hyun; Koo, Uk; Nam, Kung-Woo; Hong, Seong Su; Kim, Kem Ok; Kim, Kyeong Ho; Lee, Dongho; Mar, Woongchon

    2012-01-01

    Seven prenylated flavanoids, licoflavone C (1), cyclomulberrin (2), neocyclomorusin (3), sanggenon I (4), morusin (5), kuwanon U (6) and kuwanon E (7), and three 2-arylbenzofurans, moracin P (8), moracin O (9), and mulberrofuran Q (10) were isolated from the MeOH extract of Mori Cortex Radicis. Among these, compounds 2-7 enhanced cell viability in a dose-dependent manner against sodium nitroprusside-induced cell death in neuroblastoma SH-SY5Y cells, which was measured by MTT reduction assay (EC(50) values of 4.4, 5.6, 8.0, 6.4, 8.7, and 11.9 μg/mL, respectively). Among 10 compounds, C-3 prenylated flavones (2, 3, and 5) and prenylated flavanones (4, 6, and 7) showed cell protection. However, compound 1 which lacks the prenyl group at C-3 and three 2-arylbenzofurans (8-10) did not show protective effect. The order of cell protection was as follow: C-3 prenylated flavones (2, 3, and 5) > prenylated flavanones (4, 6, and 7) > 2-arylbenzofurans (8-10) and flavone (1). From this result, we show that some prenylated flavones and flavanones might protect neuronal cells against nitrosative stress-mediated cell death. Even though further evaluations are necessary in vitro and in vivo study, we carefully suggest that some prenylated flavonoids from Mori Cortex Radicis might protect neuronal cells from neurodegenerative diseases.

  6. Collective Synthesis of 3-Acylindoles, Indole-3-carboxylic Esters, Indole-3-sulfinic Acids, and 3-(Methylsulfonyl)indoles from Free (N-H) Indoles via Common N-Indolyl Triethylborate.

    PubMed

    Zhang, Zhi-Wei; Xue, Hong; Li, Hailing; Kang, Huaiping; Feng, Juan; Lin, Aijun; Liu, Shouxin

    2016-08-01

    A general and direct C3 functionalization of free (N-H) indoles with readily available electrophiles such as acid chlorides, chloroformates, thionyl chloride, and methylsulfonyl chloride via a common N-indolyl triethylborate intermediate is reported. The reaction proceeds smoothly under mild conditions in up to 93% yield. Indoles with substituents at the C2, C4, C5, C6, and C7 positions are well tolerated. The easy accessibility of a variety of important 3-acylindoles, indole-3-carboxylic esters, indole-3-sulfinic acids, and 3-(methylsulfonyl)indoles demonstrates the high degree of compatibility and practicability of this method. PMID:27457258

  7. Indole-Diterpene Biosynthetic Capability of Epichloë Endophytes as Predicted by ltm Gene Analysis▿

    PubMed Central

    Young, Carolyn A.; Tapper, Brian A.; May, Kimberley; Moon, Christina D.; Schardl, Christopher L.; Scott, Barry

    2009-01-01

    Bioprotective alkaloids produced by Epichloë and closely related asexual Neotyphodium fungal endophytes protect their grass hosts from insect and mammalian herbivory. One class of these compounds, known for antimammalian toxicity, is the indole-diterpenes. The LTM locus of Neotyphodium lolii (Lp19) and Epichloë festuce (Fl1), required for the biosynthesis of the indole-diterpene lolitrem, consists of 10 ltm genes. We have used PCR and Southern analysis to screen a broad taxonomic range of 44 endophyte isolates to determine why indole-diterpenes are present in so few endophyte-grass associations in comparison to that of the other bioprotective alkaloids, which are more widespread among the endophtyes. All 10 ltm genes were present in only three epichloë endophytes. A predominance of the asexual Neotyphodium spp. examined contained 8 of the 10 ltm genes, with only one N. lolii containing the entire LTM locus and the ability to produce lolitrems. Liquid chromatography-tandem mass spectrometry profiles of indole-diterpenes from a subset of endophyte-infected perennial ryegrass showed that endophytes that contained functional genes present in ltm clusters 1 and 2 were capable of producing simple indole-diterpenes such as paspaline, 13-desoxypaxilline, and terpendoles, compounds predicted to be precursors of lolitrem B. Analysis of toxin biosynthesis genes by PCR now enables a diagnostic method to screen endophytes for both beneficial and detrimental alkaloids and can be used as a resource for screening isolates required for forage improvement. PMID:19181837

  8. GGPPS, a new EGR-1 target gene, reactivates ERK 1/2 signaling through increasing Ras prenylation.

    PubMed

    Shen, Ning; Shao, Yue; Lai, Shan-Shan; Qiao, Long; Yang, Run-Lin; Xue, Bin; Pan, Fei-Yan; Chen, Hua-Qun; Li, Chao-Jun

    2011-12-01

    Cigarette smoke activates the extracellular signal-regulated kinase (ERK) 1/2 mitogen activated-protein kinase pathway, which, in turn, is responsible for early growth response gene-1 (EGR-1) activation. Here we provide evidence that EGR-1 activation can also reactivate ERK 1/2 mitogen activated-protein kinase through a positive feedback loop through its target gene (geranylgeranyl diphosphate synthase) GGPPS. For the first time, the GGPPS gene is identified as a target of EGR-1, as EGR-1 can directly bind to the predicted consensus-binding site in the GGPPS promoter and regulate its transcription. Long-term observations show that there are two ERK 1/2 phosphorylation peaks after cigarette smoke extract stimulation in human lung epithelial Beas-2B cells. The first peak (at 10 minutes) is responsible for EGR-1 accumulation, and the second (at 4 hours) is diminished after the disruption of EGR-1 transcriptional activity. EGR-1 overexpression enhances Ras prenylation and membrane association in a GGPPS-dependent manner, and it augments ERK 1/2 activation. Likewise, a great reduction of the second peak of ERK 1/2 phosphorylation is observed during long-term cigarette smoke extract stimulation in cells where GGPPS is disrupted. Thus, we have uncovered an intricate positive feedback loop in which ERK 1/2-activated EGR-1 promotes ERK 1/2 reactivation through promoting GGPPS transcription, which might affect cigarette smoke-related lung pathological processes.

  9. Molecular cloning and catalytic activity of a membrane-bound prenyl diphosphate phosphatase from Croton stellatopilosus Ohba.

    PubMed

    Nualkaew, Natsajee; Guennewich, Nils; Springob, Karin; Klamrak, Anuwatchakit; De-Eknamkul, Wanchai; Kutchan, Toni M

    2013-07-01

    Geranylgeraniol (GGOH), a bioactive acyclic diterpene with apoptotic induction activity, is the immediate precursor of the commercial anti-peptic, plaunotol (18-hydroxy geranylgeraniol), which is found in Croton stellatopilosus (Ohba). From this plant, a cDNA encoding a prenyl diphosphate phosphatase (CsPDP), which catalyses the dephosphorylation of geranylgeranyl diphosphate (GGPP) to GGOH, was isolated using a PCR approach. The full-length cDNA contained 888bp and encoded a 33.6 kDa protein (295 amino acids) that was phylogenetically grouped into the phosphatidic acid phosphatase (PAP) enzyme family. The deduced amino acid sequence showed 6 hydrophobic transmembrane regions with 57-85% homology to the sequences of other plant PAPs. The recombinant CsPDP and its 4 truncated constructs exhibited decreasing dephosphorylation activities relative to the lengths of the N-terminal deletions. While the full-length CsPDP successfully performed the two sequential monodephosphorylation steps on GGPP to form GGOH, the larger N-terminal deletion in the truncated enzymes appeared to specifically decrease the catalytic efficiency of the second monodephosphorylation step. The information presented here on the CsPDP cDNA and factors affecting the dephosphorylation activity of its recombinant protein may eventually lead to the discovery of the specific GGPP phosphatase gene and enzyme that are involved in the formation of GGOH in the biosynthetic pathway of plaunotol in C. stellatopilosus.

  10. Manipulation of prenyl chain length determination mechanism of cis-prenyltransferases.

    PubMed

    Kharel, Yugesh; Takahashi, Seiji; Yamashita, Satoshi; Koyama, Tanetoshi

    2006-02-01

    The carbon backbones of Z,E-mixed isoprenoids are synthesized by sequential cis-condensation of isopentenyl diphosphate (IPP) and an allylic diphosphate through actions of a series of enzymes called cis-prenyltransferases. Recent molecular analyses of Micrococcus luteus B-P 26 undecaprenyl diphosphate (UPP, C55) synthase [Fujihashi M, Zhang Y-W, Higuchi Y, Li X-Y, Koyama T & Miki K (2001) Proc Natl Acad Sci USA98, 4337-4342.] showed that not only the primary structure but also the crystal structure of cis-prenyltransferases were totally different from those of trans-prenyltransferases. Although many studies on structure-function relationships of cis-prenyltransferases have been reported, regulation mechanisms for the ultimate prenyl chain length have not yet been elucidated. We report here that the ultimate chain length of prenyl products can be controlled through structural manipulation of UPP synthase of M. luteus B-P 26, based on comparisons between structures of various cis-prenyltransferases. Replacements of Ala72, Phe73, and Trp78, which are located in the proximity of the substrate binding site, with Leu--as in Z,E-farnesyl diphosphate (C15) synthase--resulted in shorter ultimate products with C(20-35). Additional mutation of F223H resulted in even shorter products. On the other hand, insertion of charged residues originating from long-chain cis-prenyltransferases into helix-3, which participates in constitution of the large hydrophobic cleft, resulted in lengthening of the ultimate product chain length, leading to C(60-75). These results helped us understand reaction mechanisms of cis-prenyltransferase including regulation of the ultimate prenyl chain-length.

  11. The natural prenylated flavone artelastin is an inhibitor of ROS and NO production.

    PubMed

    Cerqueira, F; Cidade, H; van Ufford, L; Beukelman, C; Kijjoa, A; Nascimento, M S J

    2008-04-01

    Artelastin, a prenylated flavone previously isolated from Artocarpus elasticus, was evaluated for its effect on the production of reactive oxygen species (ROS) by human polymorphonuclear neutrophils (PMNs) and nitric oxide (NO) by J774 murine macrophage cell line. Artelastin showed to be an inhibitor of ROS production due to a strong O2- scavenging activity. No effect was observed on the activity of myeloperoxidase (MPO). Artelastin showed also to be an inhibitor of NO production without NO scavenging activity. This flavone seems to interfere with the expression of the inducible nitric oxide synthase (iNOS) immediately after LPS-IFNgamma-macrophage stimulation.

  12. Substituted indoles as HIV-1 non-nucleoside reverse transcriptase inhibitors: a patent evaluation (WO2015044928).

    PubMed

    Li, Xiao; Gao, Ping; Zhan, Peng; Liu, Xinyong

    2016-05-01

    The invention described in this patent (WO2015044928) is related to compounds based on the substituted indole scaffold, their synthetic process and application to inhibit HIV-1 replication as non-nucleoside reverse transcriptase inhibitors (NNRTIs). Some of the newly claimed compounds presented improved potency against wild-type (WT) HIV-1 strain in comparison to previously disclosed indole-based NNRTIs and were also shown to be effective against common resistant HIV-1 strains. In light of their novel structural characteristics, simple synthetic route and improved anti-HIV activity, these compounds deserve further study as promising NNRTIs.

  13. Antifungal activities of some indole derivatives.

    PubMed

    Xu, Hui; Wang, Qin; Yang, Wen-Bin

    2010-01-01

    Nine indole derivatives were evaluated in vitro against Fusarium graminearum, Alternaria alternata, Helminthosporium sorokinianum, Pyricularia oryzae, Fusarium oxysporum f. sp. vasinfectum, Fusarium oxysporum f. sp. cucumarinum, and Alternaria brassicae. Most of the compounds were found to possess antifungal activities. Especially compounds 2, 5, 8, and 9 exhibited broad-spectrum antifungal activities against the above-mentioned seven phytopathogenic fungi, and showed more potent activities than hymexazole, a commercial agricultural fungicide. PMID:20737910

  14. Induced production of 1-methoxy-indol-3-ylmethyl glucosinolate by jasmonic acid and methyl jasmonate in sprouts and leaves of pak choi (Brassica rapa ssp. chinensis).

    PubMed

    Wiesner, Melanie; Hanschen, Franziska S; Schreiner, Monika; Glatt, Hansruedi; Zrenner, Rita

    2013-01-01

    Pak choi plants (Brassica rapa ssp. chinensis) were treated with different signaling molecules methyl jasmonate, jasmonic acid, linolenic acid, and methyl salicylate and were analyzed for specific changes in their glucosinolate profile. Glucosinolate levels were quantified using HPLC-DAD-UV, with focus on induction of indole glucosinolates and special emphasis on 1-methoxy-indol-3-ylmethyl glucosinolate. Furthermore, the effects of the different signaling molecules on indole glucosinolate accumulation were analyzed on the level of gene expression using semi-quantitative realtime RT-PCR of selected genes. The treatments with signaling molecules were performed on sprouts and mature leaves to determine ontogenetic differences in glucosinolate accumulation and related gene expression. The highest increase of indole glucosinolate levels, with considerable enhancement of the 1-methoxy-indol-3-ylmethyl glucosinolate content, was achieved with treatments of sprouts and mature leaves with methyl jasmonate and jasmonic acid. This increase was accompanied by increased expression of genes putatively involved in the indole glucosinolate biosynthetic pathway. The high levels of indole glucosinolates enabled the plant to preferentially produce the respective breakdown products after tissue damage. Thus, pak choi plants treated with methyl jasmonate or jasmonic acid, are a valuable tool to analyze the specific protection functions of 1-methoxy-indole-3-carbinole in the plants defense strategy in the future.

  15. Induced Production of 1-Methoxy-indol-3-ylmethyl Glucosinolate by Jasmonic Acid and Methyl Jasmonate in Sprouts and Leaves of Pak Choi (Brassica rapa ssp. chinensis)

    PubMed Central

    Wiesner, Melanie; Hanschen, Franziska S.; Schreiner, Monika; Glatt, Hansruedi; Zrenner, Rita

    2013-01-01

    Pak choi plants (Brassica rapa ssp. chinensis) were treated with different signaling molecules methyl jasmonate, jasmonic acid, linolenic acid, and methyl salicylate and were analyzed for specific changes in their glucosinolate profile. Glucosinolate levels were quantified using HPLC-DAD-UV, with focus on induction of indole glucosinolates and special emphasis on 1-methoxy-indol-3-ylmethyl glucosinolate. Furthermore, the effects of the different signaling molecules on indole glucosinolate accumulation were analyzed on the level of gene expression using semi-quantitative realtime RT-PCR of selected genes. The treatments with signaling molecules were performed on sprouts and mature leaves to determine ontogenetic differences in glucosinolate accumulation and related gene expression. The highest increase of indole glucosinolate levels, with considerable enhancement of the 1-methoxy-indol-3-ylmethyl glucosinolate content, was achieved with treatments of sprouts and mature leaves with methyl jasmonate and jasmonic acid. This increase was accompanied by increased expression of genes putatively involved in the indole glucosinolate biosynthetic pathway. The high levels of indole glucosinolates enabled the plant to preferentially produce the respective breakdown products after tissue damage. Thus, pak choi plants treated with methyl jasmonate or jasmonic acid, are a valuable tool to analyze the specific protection functions of 1-methoxy-indole-3-carbinole in the plants defense strategy in the future. PMID:23873294

  16. Catalytic C6 functionalization of 2,3-disubstituted indoles by scandium triflate.

    PubMed

    Liu, Hua; Zheng, Chao; You, Shu-Li

    2014-02-01

    We report herein an unprecedented direct catalytic C6 functionalization reaction of 2,3-disubstituted indoles with various N-Ts aziridines catalyzed by Sc(OTf)3 under mild conditions. Mechanistic studies revealed that a kinetically favored but reversible formal [3 + 2] annulation occurs initially. The direct C6 functionalization, although having a relatively higher energetic barrier, delivers the thermodynamically favorable products.

  17. Palladium-catalyzed synthesis of indoles via ammonia cross-coupling-alkyne cyclization.

    PubMed

    Alsabeh, Pamela G; Lundgren, Rylan J; Longobardi, Lauren E; Stradiotto, Mark

    2011-06-28

    The synthesis of indoles via the metal-catalyzed cross-coupling of ammonia is reported for the first time; the developed protocol also allows for the unprecedented use of methylamine or hydrazine as coupling partners. These Pd/Josiphos-catalyzed reactions proceed under relatively mild conditions for a range of 2-alkynylbromoarenes.

  18. Prenylated 2-arylbenzofuran derivatives with potent antioxidant properties from Chlorophora regia (Moraceae).

    PubMed

    Kyekyeku, James Oppong; Kusari, Souvik; Adosraku, Reimmel Kwame; Zühlke, Sebastian; Spiteller, Michael

    2016-01-01

    Extracts of Chlorophora regia are frequently used in Ghana in traditional medicine. There is, however, no reported data on the chemical composition of the plant. Comprehensive phytochemical investigation of the stem bark of C. regia resulted in the isolation of three new prenylated 2-arylbenzofuran derivatives, regiafuran A-C (1-3), and one new prenylated flavonol (4), together with fifteen known compounds (5-19). Their structures were elucidated by combined spectroscopic analysis of their NMR and HRESI-MS(n) data. Compounds 1, 2, 5, 9 and 15 exhibited remarkable free radical scavenging properties with IC50 values of 1.9 μg/ml, 2.4 μg/ml, 2.2 μg/ml, 2.1 μg/ml and 1.8 μg/ml, respectively, compared to the standard trolox (IC50 1.1 μg/ml). The isolated compounds did not, however, show any anti-inflammatory potential when tested using a PGE2 (prostaglandin E2) competitive enzyme immunoassay.

  19. Rho-A prenylation and signaling link epithelial homeostasis to intestinal inflammation

    PubMed Central

    López-Posadas, Rocío; Becker, Christoph; Günther, Claudia; Tenzer, Stefan; Amann, Kerstin; Billmeier, Ulrike; Atreya, Raja; Fiorino, Gionata; Vetrano, Stefania; Danese, Silvio; Ekici, Arif B.; Wirtz, Stefan; Thonn, Veronika; Watson, Alastair J.M.; Brakebusch, Cord; Bergö, Martin; Neurath, Markus F.; Atreya, Imke

    2016-01-01

    Although defects in intestinal barrier function are a key pathogenic factor in patients with inflammatory bowel diseases (IBDs), the molecular pathways driving disease-specific alterations of intestinal epithelial cells (IECs) are largely unknown. Here, we addressed this issue by characterizing the transcriptome of IECs from IBD patients using a genome-wide approach. We observed disease-specific alterations in IECs with markedly impaired Rho-A signaling in active IBD patients. Localization of epithelial Rho-A was shifted to the cytosol in IBDs, and inflammation was associated with suppressed Rho-A activation due to reduced expression of the Rho-A prenylation enzyme geranylgeranyltransferase-I (GGTase-I). Functionally, we found that mice with conditional loss of Rhoa or the gene encoding GGTase-I, Pggt1b, in IECs exhibit spontaneous chronic intestinal inflammation with accumulation of granulocytes and CD4+ T cells. This phenotype was associated with cytoskeleton rearrangement and aberrant cell shedding, ultimately leading to loss of epithelial integrity and subsequent inflammation. These findings uncover deficient prenylation of Rho-A as a key player in the pathogenesis of IBDs. As therapeutic triggering of Rho-A signaling suppressed intestinal inflammation in mice with GGTase-I–deficient IECs, our findings suggest new avenues for treatment of epithelial injury and mucosal inflammation in IBD patients. PMID:26752649

  20. Unprecedented Utilization of Pelargonidin and Indole for the Biosynthesis of Plant Indole Alkaloids

    PubMed Central

    Warskulat, Anne‐Christin; Tatsis, Evangelos C.; Dudek, Bettina; Kai, Marco; Lorenz, Sybille

    2016-01-01

    Abstract Nudicaulins are a group of indole alkaloid glycosides responsible for the color of yellow petals of Papaver nudicaule (Iceland poppy). The unique aglycone scaffold of these alkaloids attracted our interest as one of the most unusual flavonoid‐indole hybrid structures that occur in nature. Stable isotope labeling experiments with sliced petals identified free indole, but not tryptamine or l‐tryptophan, as one of the two key biosynthetic precursors of the nudicaulin aglycone. Pelargonidin was identified as the second key precursor, contributing the polyphenolic unit to the nudicaulin molecule. This finding was inferred from the temporary accumulation of pelargonidin glycosides in the petals during flower bud development and a drop at the point in time when nudicaulin levels start to increase. The precursor‐directed incorporation of cyanidin into a new 3′‐hydroxynudicaulin strongly supports the hypothesis that anthocyanins are involved in the biosynthesis of nudicaulins. PMID:26670055

  1. Unprecedented Utilization of Pelargonidin and Indole for the Biosynthesis of Plant Indole Alkaloids.

    PubMed

    Warskulat, Anne-Christin; Tatsis, Evangelos C; Dudek, Bettina; Kai, Marco; Lorenz, Sybille; Schneider, Bernd

    2016-02-15

    Nudicaulins are a group of indole alkaloid glycosides responsible for the color of yellow petals of Papaver nudicaule (Iceland poppy). The unique aglycone scaffold of these alkaloids attracted our interest as one of the most unusual flavonoid-indole hybrid structures that occur in nature. Stable isotope labeling experiments with sliced petals identified free indole, but not tryptamine or l-tryptophan, as one of the two key biosynthetic precursors of the nudicaulin aglycone. Pelargonidin was identified as the second key precursor, contributing the polyphenolic unit to the nudicaulin molecule. This finding was inferred from the temporary accumulation of pelargonidin glycosides in the petals during flower bud development and a drop at the point in time when nudicaulin levels start to increase. The precursor-directed incorporation of cyanidin into a new 3'-hydroxynudicaulin strongly supports the hypothesis that anthocyanins are involved in the biosynthesis of nudicaulins. PMID:26670055

  2. Combining Zn Ion Catalysis with Homogeneous Gold Catalysis: An Efficient Annulation Approach to N-Protected Indoles.

    PubMed

    Wang, Yanzhao; Liu, Lianzhu; Zhang, Liming

    2013-02-01

    The Fischer indole synthesis is perhaps the most powerful method for indole preparation, but it often suffers from low regioselectivities with unsymmetric aliphatic ketone substrates and strong acidic conditions and is not suitable for α,β-unsaturated ketones. In this article, we disclose an efficient synthesis of N-protected indoles from N-arylhydroxamic acids/N-aryl-N-hydroxycarbamates and a variety of alkynes via a cooperative gold and zinc catalysis. The zinc catalysis is similar to the related zinc ion catalysis in metalloenzymes such as human carbonic anhydrase II and substantially enhances the O-nucleophilicity of N-acylated hydroxamines by forming the corresponding Zn chelates. The Zn chelates can attack gold-activated alkynes to form O-alkenyl-N-arylhydroxamates, which can undergo facile 3,3-sigmatropic rearrangements and subsequent cyclodehydrations to yield N-protected indole products. This new chemistry offers several important improvements over the Fischer indole synthesis: a) the reaction conditions are mildly acidic and can tolerate sensitive groups such as Boc; b) broader substrate scopes including substrates with pendant carbonyl groups (reactive in the Fischer chemistry) and alkyl chlorides (e.g., 3f); c) better regioselectivities for the formation of 2-substituted indoles under much milder conditions; d) 2-alkenylindoles can be prepared readily in good to excellent yields, but the Fischer chemistry could not; e) with internal alkynes both steric and electronic controls are available for achieving good regioselectivities, while the Fischer chemistry is in general problematic.

  3. Selective inhibition of Rab prenylation by a phosphonocarboxylate analogue of risedronate induces apoptosis, but not S-phase arrest, in human myeloma cells.

    PubMed

    Roelofs, Anke J; Hulley, Philippa A; Meijer, Annemieke; Ebetino, Frank H; Russell, R Graham G; Shipman, Claire M

    2006-09-15

    Bisphosphonates (BPs) are widely used in the treatment of osteolytic bone disease associated with multiple myeloma, and have been demonstrated to exert antitumor effects both in vitro and in vivo. However, the precise molecular mechanisms involved in the direct antitumor effects of BPs in vitro are not known. Nitrogen-containing BPs, such as risedronate (RIS), act by inhibiting protein prenylation. A phosphonocarboxylate analogue of RIS, 3-PEHPC, has previously been shown in osteoclasts and macrophages to specifically inhibit prenylation of Rab GTPases. The aim of this study was to identify the molecular targets of RIS and 3-PEHPC in human myeloma cells and to determine the cellular effects of selective inhibition of Rab prenylation by 3-PEHPC as compared to nonspecific inhibition of protein prenylation by RIS in human myeloma cells. RIS dose-dependently inhibited prenylation of both Rap1A and Rab6, whereas 3-PEHPC only inhibited Rab6 prenylation. Both RIS and 3-PEHPC dose-dependently increased apoptosis in human myeloma cells. RIS induced an accumulation of cells in the S-phase of the cell cycle, associated with inhibition of DNA replication. In contrast, 3-PEHPC did not cause cell-cycle arrest. Furthermore, geranylgeraniol could prevent inhibition of prenylation, induction of apoptosis, and cell-cycle arrest in response to RIS, but not inhibition of Rab prenylation and apoptosis induced by 3-PEHPC, consistent with specific inhibition of Rab geranylgeranyl transferase by 3-PEHPC. In conclusion, our studies demonstrate that selective inhibition of Rab prenylation induces apoptosis, but not S-phase arrest, thus identifying distinct molecular pathways that mediate the antimyeloma effect of nitrogen-containing BPs.

  4. Binary stress induces an increase in indole alkaloid biosynthesis in Catharanthus roseus

    PubMed Central

    Zhu, Wei; Yang, Bingxian; Komatsu, Setsuko; Lu, Xiaoping; Li, Ximin; Tian, Jingkui

    2015-01-01

    Catharanthus roseus is an important medicinal plant, which produces a variety of indole alkaloids of significant pharmaceutical relevance. In the present study, we aimed to investigate the potential stress-induced increase of indole alkaloid biosynthesis in C. roseus using proteomic technique. The contents of the detectable alkaloids ajmalicine, vindoline, catharanthine, and strictosidine in C. roseus were significantly increased under binary stress. Proteomic analysis revealed that the abundance of proteins related to tricarboxylic acid cycle and cell wall was largely increased; while, that of proteins related to tetrapyrrole synthesis and photosynthesis was decreased. Of note, 10-hydroxygeraniol oxidoreductase, which is involved in the biosynthesis of indole alkaloid was two-fold more abundant in treated group compared to the control. In addition, mRNA expression levels of genes involved in the indole alkaloid biosynthetic pathway indicated an up-regulation in their transcription in C. roseus under UV-B irradiation. These results suggest that binary stress might negatively affect the process of photosynthesis in C. roseus. In addition, the induction of alkaloid biosynthesis appears to be responsive to binary stress. PMID:26284098

  5. Aerobic palladium(II)-catalyzed dehydrogenation of cyclohexene-1-carbonyl indole amides: an indole-directed aromatization.

    PubMed

    Kandukuri, Sandeep R; Oestreich, Martin

    2012-10-01

    A palladium(II)-catalyzed oxidative dehydrogenation of cyclohexene-1-carbonyl indole amides yielding the corresponding benzoylindoles is reported. The new aromatization is also applied to functionalized indoles such as tryptamine and tryptophan. The tethered indole is likely acting as a directing group for allylic C-H bond activation, and there is evidence for a mechanism proceeding through 1,3-diene formation followed by aromatization. PMID:22950832

  6. Antitussive indole alkaloids from Kopsia hainanensis.

    PubMed

    Tan, Min-Jia; Yin, Chun; Tang, Chun-Ping; Ke, Chang-Qiang; Lin, Ge; Ye, Yang

    2011-06-01

    Three new indole alkaloids, named kopsihainins A-C (1-3), and two known compounds, kopsinine (4) and methyl demethoxycarbonylchanofruticosinate (5), were isolated from the stems of Kopsia hainanensis. Their structures were determined using extensive spectroscopic methods. The two main constituents 4 and 5 exhibited significant antitussive activity in a citric acid induced guinea pig cough model. The antitussive effect of 4 was demonstrated to interact with the δ-opioid receptor. This is the first report of antitussive effects of aspidofractinine type and chanofruticosinate type alkaloids.

  7. Arzanol, a prenylated heterodimeric phloroglucinyl pyrone, inhibits eicosanoid biosynthesis and exhibits anti-inflammatory efficacy in vivo.

    PubMed

    Bauer, Julia; Koeberle, Andreas; Dehm, Friederike; Pollastro, Federica; Appendino, Giovanni; Northoff, Hinnak; Rossi, Antonietta; Sautebin, Lidia; Werz, Oliver

    2011-01-15

    Based on its capacity to inhibit in vitro HIV-1 replication in T cells and the release of pro-inflammatory cytokines in monocytes, the prenylated heterodimeric phloroglucinyl α-pyrone arzanol was identified as the major anti-inflammatory and anti-viral constituent from Helichrysum italicum. We have now investigated the activity of arzanol on the biosynthesis of pro-inflammatory eicosanoids, evaluating its anti-inflammatory efficacy in vitro and in vivo. Arzanol inhibited 5-lipoxygenase (EC 7.13.11.34) activity and related leukotriene formation in neutrophils, as well as the activity of cyclooxygenase (COX)-1 (EC 1.14.99.1) and the formation of COX-2-derived prostaglandin (PG)E(2)in vitro (IC(50)=2.3-9μM). Detailed studies revealed that arzanol primarily inhibits microsomal PGE(2) synthase (mPGES)-1 (EC 5.3.99.3, IC(50)=0.4μM) rather than COX-2. In fact, arzanol could block COX-2/mPGES-1-mediated PGE(2) biosynthesis in lipopolysaccharide-stimulated human monocytes and human whole blood, but not the concomitant COX-2-derived biosynthesis of thromboxane B(2) or of 6-keto PGF(1α), and the expression of COX-2 or mPGES-1 protein was not affected. Arzanol potently suppressed the inflammatory response of the carrageenan-induced pleurisy in rats (3.6mg/kg, i.p.), with significantly reduced levels of PGE(2) in the pleural exudates. Taken together, our data show that arzanol potently inhibits the biosynthesis of pro-inflammatory lipid mediators like PGE(2)in vitro and in vivo, providing a mechanistic rationale for the anti-inflammatory activity of H. italicum, and a rationale for further pre-clinical evaluation of this novel anti-inflammatory lead.

  8. Abiotic elicitation of indole phytoalexins and resistance to Leptosphaeria maculans within Brassiceae.

    PubMed

    Rouxel, T; Kollmann, A; Boulidard, L; Mithen, R

    1991-05-01

    Forty three accessions of Brassica species and one each of Sinapis and Raphanus were assessed for (i) resistance to Leptosphaeria maculans according to a coty-ledon-inoculation test and (ii) indole phytoalexin accumulation following abiotic elicitation with CuCl2. Five indole phytoalexins were determined in the lines following elicitation. Brassilexin, cyclobrassinin and cyclobrassinin sulphoxide were found within at least some lines of all species, whereas brassinin was only detected in B. oleracea and B. napus and methoxybrassinin within these two species and B. rapa and B. carinata. None of the five indole phytoalexins could be found in Raphanus sativus or Sinapis alba. The accumulation of large amounts of specific phytoalexins could be correlated with the presence of the different Brassica genomes. Lines possessing the B genome (B. nigra, B. juncea and B. carinata) which accumulated high amounts of brassilexin, displayed a hypersensitive resistance to infection whereas the majority of lines of B. oleracea, B. napus and B. rapa which did not accumulate large amounts of brassilexin, were susceptible. However, a B. nigra and a B. rapa line which only accumulated low amounts of brassilexin were highly resistant to the pathogen. Neither the accumulation of the other phytoalexins nor the total accumulation of indole phytoalexins could be related to resistance to L. maculans.

  9. Some new indole-coumarin hybrids; Synthesis, anticancer and Bcl-2 docking studies.

    PubMed

    Kamath, Pooja R; Sunil, Dhanya; Ajees, A Abdul; Pai, K S R; Das, Shubhankar

    2015-12-01

    Hybrid molecules have attracted attention for their improved biological activity, selectivity and lesser side effects profile, distinct from their individual components. In the quest for novel anticancer drug entities, three series of indole-coumarin hybrids - 3-(1-benzyl-1H-indol-2-yl)-2H-chromen-2-ones, 2-(2-oxo-2H-chromen-3-yl)-1H-indole-3-carbaldehydes and 2-(2-oxo-2H-chromen-3-yl)-1H-indole-3-carboxylic acids were synthesized. All the synthesized compounds were characterized by spectral techniques like IR, (1)H NMR, (13)C NMR, mass spectrometry and elemental analysis. In silico docking studies of synthesized molecules with apoptosis related gene Bcl-2 that is recognized to play an important role in tumerogenesis were carried out. Dose-dependent cytotoxic effect of the compounds in human breast adenocarcinoma (MCF-7) and normal cell lines were assessed using MTT assay and compared with that of the standard marketed drug, Vincristine. Compound 4c had a highly lipophilic bromine substituent capable of forming halogen bond and was identified as a potent molecule both in docking as well as cytotoxicity studies. Flow cytometric cell cycle analysis of 4c exhibited apoptotic mode of cell death due to cell cycle arrest in G2/M phase. Structure activity relationship of these hybrid molecules was also studied to determine the effect of steric and electronic properties of the substituents on cell viability.

  10. Identification of New Metabolites of Bacterial Transformation of Indole by Gas Chromatography-Mass Spectrometry and High Performance Liquid Chromatography

    PubMed Central

    Arora, Pankaj Kumar

    2014-01-01

    Arthrobacter sp. SPG transformed indole completely in the presence of an additional carbon source. High performance liquid chromatography and gas chromatography-mass spectrometry detected indole-3-acetic acid, indole-3-glyoxylic acid, and indole-3-aldehyde as biotransformation products. This is the first report of the formation of indole-3-acetic acid, indole-3-glyoxylic acid, and indole-3-aldehyde from indole by any bacterium. PMID:25548566

  11. Production of geranylgeraniol on overexpression of a prenyl diphosphate synthase fusion gene in Saccharomyces cerevisiae.

    PubMed

    Ohto, Chikara; Muramatsu, Masayoshi; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu

    2010-07-01

    An acyclic diterpene alcohol, (E,E,E)-geranylgeraniol (GGOH), is one of the important compounds used as perfume and pharmacological agents. A deficiency of squalene (SQ) synthase activity allows yeasts to accumulate an acyclic sesquiterpene alcohol, (E,E)-farnesol, in their cells. Since sterols are essential for the growth of yeasts, a deficiency of SQ synthase activity makes the addition of supplemental sterols to the culture media necessary. To develop a GGOH production method not requiring any supplemental sterols, we overexpressed HMG1 encoding hydroxymethylglutaryl-CoA reductase and the genes of two prenyl diphosphate synthases, ERG20 and BTS1, in Saccharomyces cerevisiae. A prototrophic diploid coexpressing HMG1 and the ERG20-BTS1 fusion accumulated GGOH with neither disruption of the SQ synthase gene nor the addition of any supplemental sterols. The GGOH content on the diploid cultivation in a 5-l jar fermenter reached 138.8 mg/l under optimal conditions.

  12. Antimicrobial prenylated benzoylphloroglucinol derivatives and xanthones from the leaves of Garcinia goudotiana.

    PubMed

    Mahamodo, Sania; Rivière, Céline; Neut, Christel; Abedini, Amin; Ranarivelo, Heritiana; Duhal, Nathalie; Roumy, Vincent; Hennebelle, Thierry; Sahpaz, Sevser; Lemoine, Amélie; Razafimahefa, Dorothée; Razanamahefa, Bakonirina; Bailleul, François; Andriamihaja, Bakolinirina

    2014-06-01

    Bioassay-guided fractionation using antimicrobial assay of the crude acetonic extract of Garcinia goudotiana leaves and of its five partitions led to the isolation of two new prenylated benzoylphloroglucinol derivatives, goudotianone 1 (1) and goudotianone 2 (2), in addition to two known compounds including one xanthone, 1,3,7-trihydroxy-2-isoprenylxanthone (3), and one triterpenoid, friedelin (4). Their structures were elucidated on the basis of different spectroscopic methods, including extensive 1D- and 2D-NMR spectroscopy and mass spectrometry. The crude acetonic extract, the methylene chloride and ethyl acetate partitions, and some tested compounds isolated from this species (1-3) demonstrated selective significant antimicrobial activities against Gram-positive bacteria, in particular Staphylococcus lugdunensis, Enterococcus faecalis and Mycobacterium smegmatis. The potential cytotoxic activities of these extracts and compounds were evaluated against human colon carcinoma HT29 and human fetal lung fibroblast MRC5 cells.

  13. Antimicrobial prenylated benzoylphloroglucinol derivatives and xanthones from the leaves of Garcinia goudotiana.

    PubMed

    Mahamodo, Sania; Rivière, Céline; Neut, Christel; Abedini, Amin; Ranarivelo, Heritiana; Duhal, Nathalie; Roumy, Vincent; Hennebelle, Thierry; Sahpaz, Sevser; Lemoine, Amélie; Razafimahefa, Dorothée; Razanamahefa, Bakonirina; Bailleul, François; Andriamihaja, Bakolinirina

    2014-06-01

    Bioassay-guided fractionation using antimicrobial assay of the crude acetonic extract of Garcinia goudotiana leaves and of its five partitions led to the isolation of two new prenylated benzoylphloroglucinol derivatives, goudotianone 1 (1) and goudotianone 2 (2), in addition to two known compounds including one xanthone, 1,3,7-trihydroxy-2-isoprenylxanthone (3), and one triterpenoid, friedelin (4). Their structures were elucidated on the basis of different spectroscopic methods, including extensive 1D- and 2D-NMR spectroscopy and mass spectrometry. The crude acetonic extract, the methylene chloride and ethyl acetate partitions, and some tested compounds isolated from this species (1-3) demonstrated selective significant antimicrobial activities against Gram-positive bacteria, in particular Staphylococcus lugdunensis, Enterococcus faecalis and Mycobacterium smegmatis. The potential cytotoxic activities of these extracts and compounds were evaluated against human colon carcinoma HT29 and human fetal lung fibroblast MRC5 cells. PMID:24690454

  14. Cu-mediated direct regioselective C-2 chlorination of indoles.

    PubMed

    Zhao, Jing; Cheng, Xiuzhi; Le, Jun; Yang, Wei; Xue, Fengtian; Zhang, Xuan; Jiang, Chao

    2015-09-14

    Cu-mediated C-2 chlorination of indoles was accomplished with copper(ii) chloride through the use of a directing pyrimidyl protection group. A highly regioselective manner can be achieved on a range of indole substrates with excellent functional group tolerance. PMID:26247622

  15. Galanthindole: a new indole alkaloid from Galanthus plicatus ssp. byzantinus.

    PubMed

    Unver, Nehir; Kaya, G Irem; Werner, Christa; Verpoorte, Robert; Gözler, Belkis

    2003-09-01

    A new indole alkaloid, galanthindole, was isolated from Galanthus plicatus ssp. byzantinus (Amaryllidaceae), a plant native to northwestern Turkey. Incorporating a non-fused indole ring, galanthindole may represent the prototype of a new subgroup of the Amaryllidaceae alkaloids. Two other bases, (+)-11-hydroxyvittatine and hordenine, are also reported from the same plant.

  16. Electrophilicity: the "dark-side" of indole chemistry.

    PubMed

    Bandini, Marco

    2013-08-28

    Indole is by far one of the most popular heterocyclic scaffolds in nature. The intriguing and challenging molecular architectures of polycyclic, naturally occurring indolyl compounds constitute a continuous stimulus for development in organic synthesis. The field had a formidable boom across the new millennium when catalysis started revolutionizing the chemistry of indole, providing always more convincing and sustainable solutions to the selective "decoration" of this pharmacophore. A common guideline of these approaches relies on the intrinsic overexpression of electron density of the indole core. Despite less diffusion, the "dark-side" of indole reactivity, electrophilicity, has been also elegantly documented with direct applications towards the realization of specific interatomic connections that would be difficult to obtain by means of conventional indole reactivity. The present Perspective article summarizes the major findings that brought the research area from the pioneering findings of the 60s to the state of the art.

  17. New pathway for the biodegradation of indole in Aspergillus niger

    SciTech Connect

    Kamath, A.; Vaidyanathan, C.S. )

    1990-01-01

    Indole and its derivatives form a class of toxic recalcitrant environmental pollutants. The growth of Aspergillus niger was inhibited by very low concentrations (0.005 to 0.02%) of indole, even when 125- to 500-fold excess glucose was present in the medium. When 0.02% indole was added, the fungus showed a lag phase for about 30 h and the uptake of glucose was inhibited. Indole was metabolized by a new pathway via indoxyl (3-hydroxyindole), N-formylanthranilic acid, anthranilic acid, 2,3-dihydroxybenzoic acid, and catechol, which was further degraded by an ortho cleavage. The enzymes N-formylanthranilate deformylase, anthranilate hydroxylase, 2,3-dihydroxybenzoate decarboxylase, and catechol dioxygenase were induced by indole as early as after 5 h of growth, and their activities were demonstrated in a cell-free system.

  18. Cannabinoids in Disguise: Δ9-Tetrahydrocannabinol-Like Effects of Tetramethylcyclopropyl Ketone Indoles

    PubMed Central

    Wiley, Jenny L.; Marusich, Julie A.; Lefever, Timothy W.; Grabenauer, Megan; Moore, Katherine N.; Thomas, Brian F.

    2013-01-01

    Synthetic indole-derived cannabinoids have become commonly used recreational drugs and continue to be abused despite their adverse consequences. As compounds that were identified early in the epidemic (e.g., naphthoylindoles) have become legally banned, new compounds have appeared on the drug market. Two tetramethylcyclopropyl ketone indoles, UR-144 [(1-pentyl-1H-indol-3-yl)-(2,2,3,3-tetramethylcyclopropyl)methanone] and XLR-11 [(1-(5-fluoropentyl)-1H-indol-3-yl)-(2,2,3,3-tetramethylcyclopropyl)methanone], recently have been identified in confiscated products. These compounds are structurally related to a series of CB2-selective compounds explored by Abbott Labs. The purpose of the present study was to evaluate the extent to which UR-144 and XLR-11 shared cannabinoid effects with Δ9-tetrahydrocannabinol (Δ9-THC). Indices of in vitro and in vivo activity at cannabinoid receptors were assessed. Similar to other psychoactive cannabinoid agonists, XLR-11 and UR-144 showed low nanomolar (< 30) affinity for CB1 and CB2 receptors, activated these receptors as full agonists, and produced dose-dependent effects that were blocked by rimonabant in mice, including antinociception, hypothermia, catalepsy and suppression of locomotor activity. The potency of both compounds was several-fold greater than Δ9-THC. XLR-11 and UR-144 also substituted for Δ9-THC in a Δ9-THC discrimination procedure in mice, effects that were attenuated by rimonabant. Analysis of urine from mice treated with the compounds revealed that both were extensively metabolized, with predominant urinary excretion as glucuronide conjugates. Together, these results demonstrate that UR-144 and XLR-11 share a pharmacological profile of in vitro and in vivo effects with Δ9-THC and other abused indole-derived cannabinoids and would be predicted to produce Δ9-THC-like subjective effects in humans. PMID:23916483

  19. Surface-enhanced Raman spectroscopy study of indolic molecules adsorbed on gold colloids

    NASA Astrophysics Data System (ADS)

    Tu, Qiang; Eisen, Jonathan; Chang, Chang

    2010-03-01

    Serotonin is both a ubiquitous neurotransmitter in the central nervous system and an important immunomodulator involved in various immune responses. The ability to unambiguously detect serotonin is therefore imperative in biomedical research. However, detection of serotonin and related indoles using immunohistochemistry has been largely limited by their small molecular size and the resultant uncertainty in antibody specificity. Here we show that surface-enhanced Raman spectroscopy (SERS) can be used to detect and distinguish serotonin from its various closely related precursors and metabolites. Compared with traditional antibody-based methods, SERS is highly specific and capable of real-time detection. We also quantify the relative concentration of serotonin against a background of other indoles using SERS. We expect this optical detection method to directly benefit a variety of immune and nervous systems studies involving serotonin.

  20. Synthesis and comparison of antioxidant properties of indole-based melatonin analogue indole amino Acid derivatives.

    PubMed

    Suzen, Sibel; Cihaner, Seyhan Sezen; Coban, Tulay

    2012-01-01

    Increased levels of reactive oxygen species attributed to oxidative stress have been found to be responsible for the development of some vital diseases such as cardiovascular, neurodegenerative and autoimmune diseases. Recently, it was observed that melatonin is a highly important antioxidant, and melatonin analogues are under investigation to find out improved antioxidant activity. In this study, 14 melatonin -based analogue indole amino acid and N-protected amino acid derivatives were synthesized and elucidated spectrometrically. To investigate the antioxidant activity of the synthesized compounds and to compare with melatonin, butylhydroxytoluene and vitamin E, lipid peroxidation inhibition and 2,2-diphenyl-1-picrylhydrazyl radical-scavenging activities were tested. The results indicated that the synthesized new indole amino acid derivatives have similar activities to melatonin in 2,2-diphenyl-1-picrylhydrazyl radical-scavenging activity assay but more potent activities in lipid peroxidation inhibition assay.

  1. Anti-respiratory syncytial virus prenylated dihydroquinolone derivatives from the gorgonian-derived fungus Aspergillus sp. XS-20090B15.

    PubMed

    Chen, Min; Shao, Chang-Lun; Meng, Hong; She, Zhi-Gang; Wang, Chang-Yun

    2014-12-26

    Two new prenylated dihydroquinolone derivatives, 22-O-(N-Me-l-valyl)aflaquinolone B (1) and 22-O-(N-Me-l-valyl)-21-epi-aflaquinolone B (2), and two known analogues, aflaquinolones A (3) and D (or a diastereomer of D, 4), were isolated from the mycelia of a gorgonian-derived Aspergillus sp. fungus. The structures of the new compounds were elucidated by spectroscopic methods, ECD spectra, Marfey's method, and chemical conversion. Compounds 1 and 2 display an unusual esterification of N-Me-l-Val to the side-chain prenyl group. Compound 2 exhibited outstanding anti-RSV activity with an IC50 value of 42 nM, approximately 500-fold stronger than that of the positive control ribavirin (IC50 = 20 μM), and showed a comparatively higher therapeutic ratio (TC50/IC50 = 520).

  2. A heteromeric membrane-bound prenyltransferase complex from hop catalyzes three sequential aromatic prenylations in the bitter acid pathway.

    PubMed

    Li, Haoxun; Ban, Zhaonan; Qin, Hao; Ma, Liya; King, Andrew J; Wang, Guodong

    2015-03-01

    Bitter acids (α and β types) account for more than 30% of the fresh weight of hop (Humulus lupulus) glandular trichomes and are well known for their contribution to the bitter taste of beer. These multiprenylated chemicals also show diverse biological activities, some of which have potential benefits to human health. The bitter acid biosynthetic pathway has been investigated extensively, and the genes for the early steps of bitter acid synthesis have been cloned and functionally characterized. However, little is known about the enzyme(s) that catalyze three sequential prenylation steps in the β-bitter acid pathway. Here, we employed a yeast (Saccharomyces cerevisiae) system for the functional identification of aromatic prenyltransferase (PT) genes. Two PT genes (HlPT1L and HlPT2) obtained from a hop trichome-specific complementary DNA library were functionally characterized using this yeast system. Coexpression of codon-optimized PT1L and PT2 in yeast, together with upstream genes, led to the production of bitter acids, but no bitter acids were detected when either of the PT genes was expressed by itself. Stepwise mutation of the aspartate-rich motifs in PT1L and PT2 further revealed the prenylation sequence of these two enzymes in β-bitter acid biosynthesis: PT1L catalyzed only the first prenylation step, and PT2 catalyzed the two subsequent prenylation steps. A metabolon formed through interactions between PT1L and PT2 was demonstrated using a yeast two-hybrid system, reciprocal coimmunoprecipitation, and in vitro biochemical assays. These results provide direct evidence of the involvement of a functional metabolon of membrane-bound prenyltransferases in bitter acid biosynthesis in hop. PMID:25564559

  3. Antitumor Activity of Bis-Indole Derivatives

    PubMed Central

    Andreani, Aldo; Burnelli, Silvia; Granaiola, Massimiliano; Leoni, Alberto; Locatelli, Alessandra; Morigi, Rita; Rambaldi, Mirella; Varoli, Lucilla; Landi, Laura; Prata, Cecilia; Berridge, Michael V.; Grasso, Carole; Fiebig, Heinz-Herbert; Kelter, Gerhard; Burger, Angelika M.; Kunkel, Mark W.

    2009-01-01

    This paper reports the synthesis of compounds formed by two indole systems separated by a heterocycle (pyridine or piperazine). As a primary screening, the new compounds were submitted to the National Cancer Institute for evaluation of antitumor activity in the human cell line screen. The pyridine derivatives were far more active than the piperazine derivatives. For the study of the mechanism of action, the most active compounds were subjected to COMPARE analysis and to further biological tests including proteasome inhibition and inhibition of plasma membrane electron transport. The compound bearing the 5-methoxy-2-indolinone moiety was subjected to the first in vivo experiment (hollow fiber assay) and was active. It was therefore selected for the second in vivo experiment (human tumor xenograft in mice). In conclusion we demonstrated that this approach was successful since some of the compounds described are much more active than the numerous, so far prepared and tested 3-indolylmethylene-2-indolinones. PMID:18598018

  4. Isolation and purification of prenylated phenolics from Amorpha fruticosa by high-speed counter-current chromatography.

    PubMed

    Chen, Chu; Wu, Yan; Chen, Yang; Du, Leilei

    2015-08-01

    Prenylated phenolics such as amorfrutins are recently identified potent anti-inflammatory and antidiabetic natural products. In this work, high-speed counter-current chromatography was investigated for the isolation and purification of prenylated phenolics from the fruits of Amorpha fruticosa by using a two-phase solvent system composed of n-hexane/ethanol/water (5:4:1, v/v). As a result, 14.2 mg of 5,7-dihydroxy-8-geranylflavanone, 10.7 mg of amorfrutin A and 17.4 mg of amorfrutin B were obtained from 200 mg of n-hexane-soluble crude extract in one step within 250 min. The purities of 5,7-dihydroxy-8-geranylflavanone, amorfrutins A and B were 95.2, 96.7 and 97.1%, respectively, as determined by ultra high performance liquid chromatography. The structural identification was performed by mass spectrometry and (1) H and (13) C NMR spectroscopy. The results indicated that the established method is an efficient and convenient way to purified prenylated phenolics from A. fruticosa extract.

  5. A cis-prenyltransferase from Methanosarcina acetivorans catalyzes both head-to-tail and nonhead-to-tail prenyl condensation.

    PubMed

    Ogawa, Takuya; Emi, Koh-Ichi; Koga, Kazushi; Yoshimura, Tohru; Hemmi, Hisashi

    2016-06-01

    Cis-prenyltransferase usually consecutively catalyzes the head-to-tail condensation reactions of isopentenyl diphosphate to allylic prenyl diphosphate in the production of (E,Z-mixed) polyprenyl diphosphate, which is the precursor of glycosyl carrier lipids. Some recently discovered homologs of the enzyme, however, catalyze the nonhead-to-tail condensation reactions between allylic prenyl diphosphates. In this study, we characterize a cis-prenyltransferase homolog from a methanogenic archaeon, Methanosarcina acetivorans, to obtain information on the biosynthesis of the glycosyl carrier lipids within it. This enzyme catalyzes both head-to-tail and nonhead-to-tail condensation reactions. The kinetic analysis shows that the main reaction of the enzyme is consecutive head-to-tail prenyl condensation reactions yielding polyprenyl diphosphates, while the chain lengths of the major products seem shorter than expected for the precursor of glycosyl carrier lipids. On the other hand, a subsidiary reaction of the enzyme, i.e., nonhead-to-tail condensation between dimethylallyl diphosphate and farnesyl diphosphate, gives a novel diterpenoid compound, geranyllavandulyl diphosphate.

  6. Metal-Catalyzed Cross-Coupling Reactions for Indoles

    NASA Astrophysics Data System (ADS)

    Li, Jie Jack; Gribble, Gordon W.

    Metal-catalyzed cross-coupling reactions for indoles are reviewed. Palladium-catalyzed cross-coupling reactions are the most widely explored and applied of all metal-catalyzed cross-coupling reactions. Applications of Kumada coupling, Negishi coupling, Suzuki coupling, Stille coupling, Sonogashira reaction, the Heck reaction, carbonylation, and C-N bond formation reactions in indoles are summarized. In addition, other transition metal-catalyzed cross-coupling reactions using copper, rhodium, iron, and nickel in indole synthesis are also discussed.

  7. Synthesis and anti-inflammatory activity of indole glucosinolates.

    PubMed

    Vo, Quan V; Trenerry, Craige; Rochfort, Simone; Wadeson, Jenny; Leyton, Carolina; Hughes, Andrew B

    2014-01-15

    The nitronate and nitrovinyl methods to synthesize indole glucosinolates (GLs) have been investigated. The results were applied to generally the most prevalent natural indole glucosinolates to synthesize 4-methoxyglucobrassicin (MGB) and neo-glucobrassicin (NGB) in moderate overall yield for the first time. The anti-inflammatory activity of the synthetic indole GLs was determined by inhibition of TNF-α secretion in LPS-stimulated THP-1 cells. The data showed that glucobrassicin (GB) exhibited higher activity than other synthetic indolyl GLs. PMID:24360830

  8. A highly sensitive prenylation assay reveals in vivo effects of bisphosphonate drug on the Rab prenylome of macrophages outside the skeleton

    PubMed Central

    Ali, Naveid; Jurczyluk, Julie; Shay, Gemma; Tnimov, Zakir; Alexandrov, Kirill; Munoz, Marcia A; Skinner, Oliver P; Pavlos, Nathan J; Rogers, Michael J

    2015-01-01

    Bisphosphonate drugs such as zoledronic acid (ZOL), used for the treatment of common bone disorders, target the skeleton and inhibit bone resorption by preventing the prenylation of small GTPases in bone-destroying osteoclasts. Increasing evidence indicates that bisphosphonates also have pleiotropic effects outside the skeleton, most likely via cells of the monocyte/macrophage lineage exposed to nanomolar circulating drug concentrations. However, no effects of such low concentrations of ZOL have been reported using existing approaches. We have optimized a highly sensitive in vitro prenylation assay utilizing recombinant geranylgeranyltransferases to enable the detection of subtle effects of ZOL on the prenylation of Rab- and Rho-family GTPases. Using this assay, we found for the first time that concentrations of ZOL as low as 10nM caused inhibition of Rab prenylation in J774 macrophages following prolonged cell culture. By combining the assay with quantitative mass spectrometry we identified an accumulation of 18 different unprenylated Rab proteins in J774 cells after nanomolar ZOL treatment, with a >7-fold increase in the unprenylated form of Rab proteins associated with the endophagosome pathway (Rab1, Rab5, Rab6, Rab7, Rab11, Rab14 and Rab21). Finally, we also detected a clear effect of subcutaneous ZOL administration in vivo on the prenylation of Rab1A, Rab5B, Rab7A and Rab14 in mouse peritoneal macrophages, confirming that systemic treatment with bisphosphonate drug can inhibit prenylation in myeloid cells in vivo outside the skeleton. These observations begin a new era in defining the precise pharmacological actions of bisphosphonate drugs on the prenylation of small GTPases in vivo. PMID:26399387

  9. A highly sensitive prenylation assay reveals in vivo effects of bisphosphonate drug on the Rab prenylome of macrophages outside the skeleton.

    PubMed

    Ali, Naveid; Jurczyluk, Julie; Shay, Gemma; Tnimov, Zakir; Alexandrov, Kirill; Munoz, Marcia A; Skinner, Oliver P; Pavlos, Nathan J; Rogers, Michael J

    2015-10-01

    Bisphosphonate drugs such as zoledronic acid (ZOL), used for the treatment of common bone disorders, target the skeleton and inhibit bone resorption by preventing the prenylation of small GTPases in bone-destroying osteoclasts. Increasing evidence indicates that bisphosphonates also have pleiotropic effects outside the skeleton, most likely via cells of the monocyte/macrophage lineage exposed to nanomolar circulating drug concentrations. However, no effects of such low concentrations of ZOL have been reported using existing approaches. We have optimized a highly sensitive in vitro prenylation assay utilizing recombinant geranylgeranyltransferases to enable the detection of subtle effects of ZOL on the prenylation of Rab- and Rho-family GTPases. Using this assay, we found for the first time that concentrations of ZOL as low as 10nM caused inhibition of Rab prenylation in J774 macrophages following prolonged cell culture. By combining the assay with quantitative mass spectrometry we identified an accumulation of 18 different unprenylated Rab proteins in J774 cells after nanomolar ZOL treatment, with a >7-fold increase in the unprenylated form of Rab proteins associated with the endophagosome pathway (Rab1, Rab5, Rab6, Rab7, Rab11, Rab14 and Rab21). Finally, we also detected a clear effect of subcutaneous ZOL administration in vivo on the prenylation of Rab1A, Rab5B, Rab7A and Rab14 in mouse peritoneal macrophages, confirming that systemic treatment with bisphosphonate drug can inhibit prenylation in myeloid cells in vivo outside the skeleton. These observations begin a new era in defining the precise pharmacological actions of bisphosphonate drugs on the prenylation of small GTPases in vivo.

  10. Total Syntheses of the Monoterpene Indole Alkaloids (±)-Alstilobanine A and E, and (±)-Angustilodine

    PubMed Central

    Feng, Yiqing; Majireck, Max M.

    2014-01-01

    A synthetic strategy has been developed culminating in stereoselective total syntheses of the small class of unusual monoterpenoid indole alkaloids exemplified by alstilobanine A (3) and E (2) and angustilodine (1). A pivotal step includes a novel intermolecular Michael-type addition of an indole ester dianion to a piperidine-derived nitrosoalkene to form the C15, C16 bond of the alkaloids. In addition, an application of the Romo protocol for effecting a stereoselective intramolecular nucleophile-assisted aldol-lactonization was employed, leading to a β-lactone incorporating the requisite cis-fused 2-azadecalin moiety and also setting the C15, C19, C20 relative stereochemistry of the metabolites. It was then possible to stereoselectively effect an aldolization of a dianion derived from this indole ester β-lactone intermediate with formaldehyde to introduce the requisite C16 hydroxymethyl group. Further manipulations of the system ultimately led to the three alkaloids in racemic form. PMID:24319990

  11. Determination of Endogenous Indole-3-Acetic Acid in Plagiochila arctica (Hepaticae) 1

    PubMed Central

    Law, David M.; Basile, Dominick V.; Basile, Margaret R.

    1985-01-01

    Endogenous indole-3-acetic acid (IAA) was found in axenically cultured gametophytes of the leafy liverwort, Plagiochila arctica Bryhn and Kaal., by high-performance liquid chromatography with electrochemical detection. Identification of the methylated auxin was confirmed by gas chromatography-mass spectrometry. Addition of 57 micromolar IAA to cultures increased relative production of ethylene. This is the first definitive (gas chromatography-mass spectrometry) demonstration of the natural occurrence of IAA in a bryophyte. PMID:16664164

  12. A general catalytic reaction sequence to access alkaloid-inspired indole polycycles.

    PubMed

    Danda, Adithi; Kumar, Kamal; Waldmann, Herbert

    2015-05-01

    A catalytic two-step reaction sequence was developed to access a range of complex heterocyclic frameworks based on biorelevant indole/oxindole scaffolds. The reaction sequence includes catalytic Pictet-Spengler cyclization followed by Au(I) catalyzed intramolecular hydroamination of acetylenes. A related cascade polycyclization of a designed β-carboline embodying a 1,5-enyne group yields the analogues of the alkaloid harmicine. PMID:25846800

  13. Translocation of radiolabeled indole-3-acetic acid and indole-3-acetyl-myo-inositol from kernel to shoot of Zea mays L

    NASA Technical Reports Server (NTRS)

    Chisnell, J. R.; Bandurski, R. S.

    1988-01-01

    Either 5-[3H]indole-3-acetic acid (IAA) or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm of kernels of dark-grown Zea mays seedlings. The distribution of total radioactivity, radiolabeled indole-3-acetic acid, and radiolabeled ester conjugated indole-3-acetic acid, in the shoots was then determined. Differences were found in the distribution and chemical form of the radiolabeled indole-3-acetic acid in the shoot depending upon whether 5-[3H]indole-3-acetic acid or 5-[3H]indole-3-acetyl-myo-inositol was applied to the endosperm. We demonstrated that indole-3-acetyl-myo-inositol applied to the endosperm provides both free and ester conjugated indole-3-acetic acid to the mesocotyl and coleoptile. Free indole-3-acetic acid applied to the endosperm supplies some of the indole-3-acetic acid in the mesocotyl but essentially no indole-3-acetic acid to the coleoptile or primary leaves. It is concluded that free IAA from the endosperm is not a source of IAA for the coleoptile. Neither radioactive indole-3-acetyl-myo-inositol nor IAA accumulates in the tip of the coleoptile or the mesocotyl node and thus these studies do not explain how the coleoptile tip controls the amount of IAA in the shoot.

  14. Design and synthesis of hybrid cyclophanes containing thiophene and indole units via Grignard reaction, Fischer indolization and ring-closing metathesis as key steps

    PubMed Central

    2015-01-01

    Summary We demonstrate a new synthetic strategy to cyclophanes containing thiophene and indole moieties via Grignard addition, Fischer indolization and ring-closing metathesis as key steps. PMID:26425209

  15. NADPH oxidase activity is essential for Keap1/Nrf2-mediated induction of GCLC in response to 2-indol-3-yl-methylenequinuclidin-3-ols.

    PubMed

    Sekhar, Konjeti R; Crooks, Peter A; Sonar, Vijayakumar N; Friedman, David B; Chan, Jeff Y; Meredith, Michael J; Starnes, Joseph H; Kelton, Kathy R; Summar, Samantha R; Sasi, Soumya; Freeman, Michael L

    2003-09-01

    Glutamate cysteine ligase, the rate-limiting enzyme for the synthesis of glutathione, represents an important component of chemoprevention paradigms. GCLC and GCLM, the genes encoding glutamate cysteine ligase subunits, are induced by indoles, such as indomethacin. Novel functionalized indole analogues and other structurally related compounds were synthesized and used for a comparative structure analysis of GCLC induction. Use of mouse embryo fibroblasts null for Nrf2 (nuclear factor-erythroid 2p45-related transcription factor) and HepG2 cells overexpressing Keap1 demonstrated that indole analogue-mediated GCLC expression was regulated by Nrf2-Keap1 interactions. Indole analogues capable of inducing GCLC were found to increase NADPH oxidase activity. Indole analogues unable to induce GCLC did not increase oxidase activity. HepG2 cells transfected with FLAG/Keap1 were exposed to indomethacin, and the redox state of Keap1 cysteine residues was assessed. The data indicated that Keap1 exhibited several oxidation states that were sensitive to indomethacin treatment. These indomethacin-mediated changes in thiol oxidation states were suppressed by diphenyleneiodonium, a NADPH oxidase inhibitor. Diphenyleneiodonium also suppressed indole analogue-mediated increases in GCLC mRNA. In summary, the use of the indole analogues identified NADPH oxidase activity as a novel upstream activity regulating Nrf2/Keap1 signaling of GCLC, provided data supporting the hypothesis that Keap1 is a downstream effector for oxidase activity, and afforded in vivo data to support the hypothesis that Keap1 thiols can act as molecular sensors of reactive oxygen species. Finally, the comparative structure analysis suggests that 2-indol-3-yl-methylenequinuclidin-3-ols may represent a prototype for the development of novel chemopreventative agents able to activate Keap1/Nrf2 signaling.

  16. A New Antimicrobial Prenylated Benzo-lactone from the Rhizome of Cissus cornifolia

    PubMed Central

    Musa, Aliyu M.; Tajuddeen, Nasir; Idris, Abdullahi Y.; Rafindadi, Abdurahman Y.; Abdullahi, Musa I.; Aliyu, Abubakar B.; Abdullahi, Mikhail S.; Ibrahim, Mohammed A.

    2015-01-01

    Background: Medicinal plants remain one of the largest reservoirs of new bioactive compounds. In this study, a new prenylated benzo-lactone (4, 6-dihydroxy-5-methoxy-3-(1, 2, 3, 4, 5-pentahydroxypentyl)-2-benzofuran-1(3H)-one) was isolated from the acetone extracts of the rhizome of Cissus cornifolia. The antimicrobial activity of the compound was evaluated against some microorganisms including Staphylococcus aureus, Salmonella typhi, and Candida albicans. Materials and Methods: The acetone extracts of the rhizome of C. cornifolia was separated and purified by various chromatographic techniques. The structure of the isolated compound was characterized by analysis of spectral data including one and two-dimensional nuclear magnetic resonance. Results: The isolated compound was characterized as (4, 6-dihydroxy-5-methoxy-3-(1, 2, 3, 4, 5-pentahydroxypentyl)-2-benzofuran-1(3H)-one), it showed activity against 6 out of 10 tested clinical isolates of some microorganisms including S. aureus, S. typhi, and C. albicans. The inhibition zones ranged between 17 mm and 25 mm. The inhibition zones observed compare favorably with the positive control used. Conclusion: The compound could serve as a lead for the development of more potent antimicrobial agent. To the best of our knowledge, this is the first report of the isolation and characterization as well as antimicrobial screening of the compound. PMID:26692751

  17. Mcl-1 is up regulated by prenylated coumarin, umbelliprenin in jurkat cells.

    PubMed

    Gholami, Omid; Jeddi-Tehrani, Mahmood; Iranshahi, Mehrdad; Zarnani, Amir Hassan; Ziai, Seyed Ali

    2014-01-01

    Chronic lymphocytic leukaemia (CLL) is the most common B-cell malignancy in the western world and exists as subtypes with very different clinical courses. Myeloid cell leukemia 1 (Mcl-1) is one member of Bcl-2 family proteins that has been shown to be expressed in various tissues and malignant cells, including CLL, where its expression is significantly associated with a failure to achieve complete remission following cytotoxic therapy. Induction of apoptosis by prenylated coumarin, umbelliprenin, in Jurkat cells was previously shown. We examined whether umbelliprenin can down-regulate Mcl-1 gene and protein in Jurkat cells. In this regard cells were incubated by umbelliprenin, and then down- regulation of Mcl-1 gene was studied by Real Time PCR method. Moreover, down-regulation of Mcl-1 protein was studied by western blot analysis. We showed that, expression of Mcl-1 mRNA was increased from 1 hour to 3 hours incubation, but this increase has a scale down pattern. Moreover umbelliprenin could inhibit Mcl-1 protein. In conclusion umbelliprenin treatment modulates Mcl-1 expression at both the transcriptional and posttranslational levels.

  18. Mcl-1 Is Up Regulated by Prenylated Coumarin, Umbelliprenin in Jurkat Cells

    PubMed Central

    Gholami, Omid; Jeddi-Tehrani, Mahmood; Iranshahi, Mehrdad; Zarnani, Amir Hassan; Ziai, Seyed Ali

    2014-01-01

    Chronic lymphocytic leukaemia (CLL) is the most common B-cell malignancy in the western world and exists as subtypes with very different clinical courses. Myeloid cell leukemia 1 (Mcl-1) is one member of Bcl-2 family proteins that has been shown to be expressed in various tissues and malignant cells, including CLL, where its expression is significantly associated with a failure to achieve complete remission following cytotoxic therapy. Induction of apoptosis by prenylated coumarin, umbelliprenin, in Jurkat cells was previously shown. We examined whether umbelliprenin can down-regulate Mcl-1 gene and protein in Jurkat cells. In this regard cells were incubated by umbelliprenin, and then down- regulation of Mcl-1 gene was studied by Real Time PCR method. Moreover, down-regulation of Mcl-1 protein was studied by western blot analysis. We showed that, expression of Mcl-1 mRNA was increased from 1 hour to 3 hours incubation٫ but this increase has a scale down pattern. Moreover umbelliprenin could inhibit Mcl-1 protein. In conclusion umbelliprenin treatment modulates Mcl-1 expression at both the transcriptional and posttranslational levels. PMID:25587328

  19. Antiplasmodial, antitrypanosomal, and cytotoxic activities of prenylated flavonoids isolated from the stem bark of Artocarpus styracifolius.

    PubMed

    Bourjot, Mélanie; Apel, Cécile; Martin, Marie-Thérèse; Grellier, Philippe; Nguyen, Van Hung; Guéritte, Françoise; Litaudon, Marc

    2010-10-01

    In continuation of our efforts to find new antimalarial drugs, a systematic IN VITRO evaluation using a chloroquine resistant strain of PLASMODIUM FALCIPARUM (FcB1) was undertaken on extracts prepared from various parts of Vietnamese plants. The ethyl acetate extract obtained from the stem bark of ARTOCARPUS STYRACIFOLIUS (Moraceae) exhibited strong antiplasmodial activity (87 % at 10 µg/mL) whereas weak cytotoxicity was observed in a human fibroblast cell line (MRC-5). Phytochemical investigation of this extract led to isolation of two new prenylated flavonoids, styracifolins A and B ( 1 and 2), as well as the known artoheterophyllin A ( 3) and B ( 4), artonins A ( 5), B ( 6), and F ( 7), and heterophyllin ( 8). Structures of 1 and 2 were elucidated by spectroscopic methods and through comparison with data reported in the literature. Compounds 1- 8 exhibited antiplasmodial activities with IC (50) values ranging from 1.1 µM to 13.7 µM, and compounds 1, 2, 6, and 8 showed significant antitrypanosomal activities.

  20. Prenylated flavonoids from Artocarpus altilis: antioxidant activities and inhibitory effects on melanin production.

    PubMed

    Lan, Wen-Chun; Tzeng, Cheng-Wei; Lin, Chun-Ching; Yen, Feng-Lin; Ko, Horng-Huey

    2013-05-01

    Flavonoids, 10-oxoartogomezianone (1), 8-geranyl-3-(hydroxyprenyl)isoetin (2), hydroxyartoflavone A (3), isocycloartobiloxanthone (4), and furanocyclocommunin (5), together with 12 known compounds, were isolated from heartwood and cortex of Artocarpus altilis, and their structures were identified by comparing their spectra with those of similar compounds. To identify natural antioxidants and whitening agents, the ability of these prenylated flavonoids was assessed to scavenge the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH), the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS(+·)) radical cation, and the superoxide anion (O2(-·)), and their abilities to inhibit tyrosinase and melanin production. It was found that compounds 3, 4, and artoflavone A (15) had moderate DPPH(·)-scavenging activity, whereas compound 4 exhibited significant ABTS(+·)-scavenging activity, and that norartocarpetin (7) and artogomezianone (8) exhibited moderate ABTS(+·)-scavenging activity, with compounds 2, 7, and artocarpin (6) displaying good superoxide anion-scavenging activity. In addition, compounds 7, 8, cudraflavone A (14), and artonin M (17), inhibited melanin production by strongly suppressing tyrosinase activity. Compound 6 reduced the melanin content without inhibiting tyrosinase activity. These results suggest that flavonoids isolated from A. altilis may be candidate antioxidants and/or skin-whitening agents. However, further investigations are required to determine their mechanisms of action.

  1. Osteogenic activities of genistein derivatives were influenced by the presence of prenyl group at ring A.

    PubMed

    Zhang, Yan; Li, Xiao-Li; Yao, Xin-Sheng; Wong, Man-Sau

    2008-12-01

    Our recent report indicated that the crude extract from stem bark of Erythrina variegata L. (Leguminosae) (EV) exerted beneficial effects against osteoporosis induced by estrogen deficiency in vivo. Follow-up phytochemical study has isolated genistein-derivatives mainly in the form of prenylgenistein from this extract, including 6-prenylgenistein, 8-prenylgenistein, and 6, 8-diprenylgenistein. The present study was performed to investigate the structure-function relationship of these compounds on osteoblastic proliferation, differentiation and mineralization in UMR 106 cells. Our results showed that genistein did not stimulate cell growth while 8-prenylgenistein promoted cell growth significantly by 10 approximately 23%. In contrast, the treatment by 6-prenylgenistein for 48 h reduced UMR 106 cell proliferation when compared to cells treated with genistein. The proliferation of 6,8-diprenylgenistein-treated cells was greater than those treated by 6-prenylgenistein at all testing concentrations. For ALP activity, significant increase was found in cells treated by either 8-prenylgenistein or 6,8-diprenylgenistein for 48 h at the concentration of 10(-10) M. In mineralization study, the content of Ca and P in extracellular matrix were significantly increased in 8-prenylgenistein treated cells. The results showed that genistein derivatives isolated from EV demonstrated stimulatory effects on osteogenesis in UMR 106 cells. Based on the study of structure-activity relationship, it appears that prenylation at C-8, but not at C-6, could increase the bone-protective effect of genistein. PMID:19099220

  2. Disruption of Golgi morphology and trafficking in cells expressing mutant prenylated rab acceptor-1.

    PubMed

    Gougeon, Pierre-Yves; Prosser, Derek C; Da-Silva, Lance F; Ngsee, Johnny K

    2002-09-27

    Prenylated Rab acceptor (PRA1) is a protein that binds Rab GTPases and the v-SNARE VAMP2. The protein is localized to the Golgi complex and post-Golgi vesicles. To determine its functional role, we generated a number of point mutations and divided them into three classes based on cellular localization. Class A mutants were retained in the endoplasmic reticulum (ER) and exerted an inhibitory effect on transport of vesicular stomatitis virus envelope glycoprotein (VSVG) from the ER to Golgi as well as to the plasma membrane. Class B mutants exhibited a highly condensed Golgi complex and inhibited exit of anterograde cargo from this organelle. Class C mutants exhibited an intermediate phenotype with Golgi and ER localization along with extensive tubular structures emanating from the Golgi complex. There was a direct correlation between the cellular phenotype and binding to Rab and VAMP2. Class A and C mutants showed a significant decrease in Rab and VAMP2 binding, whereas an increase in binding was observed in the class B mutants. Thus, PRA1 is required for vesicle formation from the Golgi complex and might be involved in recruitment of Rab effectors and SNARE proteins during cargo sequestration.

  3. Polyprenyl lipid synthesis in mammalian cells expressing human cis-prenyl transferase.

    PubMed

    Jones, Jullian; Viswanathan, Karthik; Krag, Sharon S; Betenbaugh, Michael J

    2005-06-01

    The level of cis-prenyl transferase activity has been implicated in controlling the level of biosynthesis of dolichol and dolichol intermediates. In this study, we isolated a cDNA encoding a human CPT (GenBank Accession No. ), which had substantial homology to other CPT isolated from human brain, bacteria, Arabidopsis, and Saccharomyces cerevisiae. Expression of this cDNA in two different insect cell lines confirmed the functionality of the protein in an in vitro assay. Western blot analysis revealed an expressed protein of approximately 38 kDa in HEK293 cells. Overexpression of the protein in HEK293 cells resulted in an increase in the level of total prenol in vivo. Furthermore, product characterization by thin layer chromatography (TLC) confirmed that the major product was a long-chain prenol with a chain length of 95 carbons. These results suggest a regulatory relationship between CPT activity and dolichol biosynthesis, and may implicate CPT in the levels of dolichol-oligosaccharide intermediate biosynthesis.

  4. In Vitro Prenylation of the Small GTPase Rac13 of Cotton.

    PubMed Central

    Trainin, T.; Shmuel, M.; Delmer, D. P.

    1996-01-01

    Previous work (D.P. Delmer, J. Pear, A. Andrawis, D. Stalker [1995] Mol Gen Genet 248: 43-51) has identified a gene in cotton (Gossypium hirsutum), Rac13, that encodes a small, signal-transducing GTPase and shows high expression in the fiber at the time of transition from primary to secondary wall synthesis. Since Rac13 may be important in signal transduction pathway(s), regulating the onset of fiber secondary wall synthesis, we continue to characterize Rac13 by determining its ability to undergo posttranslational modification. In animals Rac proteins contain the C-terminal consensus sequence CaaL (where "a" can be any aliphatic residue), which is a site for geranylgeranylation (B.T. Kinsella, R.A. Erdman, W.A. Maltese [1994] J Biol Chem 266: 9786-9794). We have identified activities in developing cotton fibers that resemble in specificity the geranylgeranyl- and farnesyltransferases of animals and yeast. In addition, using prenyltransferases from rabbit reticulocytes, we show that Rac13, having a C-terminal sequence of CAFL, can serve as an in vitro substrate for geranylgeranylation but not farnesylation. However, the presence of the uncommon penultimate F residue appears to slow the rate of prenylation considerably compared with other acceptors. PMID:12226460

  5. Indole and 7-benzyloxyindole attenuate the virulence of Staphylococcus aureus.

    PubMed

    Lee, Jin-Hyung; Cho, Hyun Seob; Kim, Younghoon; Kim, Jung-Ae; Banskota, Suhrid; Cho, Moo Hwan; Lee, Jintae

    2013-05-01

    Human pathogens can readily develop drug resistance due to the long-term use of antibiotics that mostly inhibit bacterial growth. Unlike antibiotics, antivirulence compounds diminish bacterial virulence without affecting cell viability and thus, may not lead to drug resistance. Staphylococcus aureus is a major agent of nosocomial infections and produces diverse virulence factors, such as the yellow carotenoid staphyloxanthin, which promotes resistance to reactive oxygen species (ROS) and the host immune system. To identify novel antivirulence compounds, bacterial signal indole present in animal gut and diverse indole derivatives were investigated with respect to reducing staphyloxanthin production and the hemolytic activity of S. aureus. Treatment with indole or its derivative 7-benzyloxyindole (7BOI) caused S. aureus to become colorless and inhibited its hemolytic ability without affecting bacterial growth. As a result, S. aureus was more easily killed by hydrogen peroxide (H₂O₂) and by human whole blood in the presence of indole or 7BOI. In addition, 7BOI attenuated S. aureus virulence in an in vivo model of nematode Caenorhabditis elegans, which is readily infected and killed by S. aureus. Transcriptional analyses showed that both indole and 7BOI repressed the expressions of several virulence genes such as α-hemolysin gene hla, enterotoxin seb, and the protease genes splA and sspA and modulated the expressions of the important regulatory genes agrA and sarA. These findings show that indole derivatives are potential candidates for use in antivirulence strategies against persistent S. aureus infection. PMID:23318836

  6. Photoreaction of indole-containing mycotoxins to fluorescent products.

    PubMed

    Maragos, C M

    2009-06-01

    Photochemical reaction of the non-fluorescent mycotoxin cyclopiazonic acid (CPA) to fluorescent products was recently reported. Because CPA contains an indole moiety, believed to contribute to the fluorescence, it was of interest to determine whether the effect might be more generally applicable to indole-containing mycotoxins. Three indole-containing tremorgens (penitrem A, paxilline, verruculogen) that have not previously been reported to be fluorescent were rendered fluorescent by exposure to ultraviolet light in a photoreactor. Naturally fluorescent ergot alkaloids, which also contain an indole-moiety, exhibited a diminished response after exposure. This suggests that the phenomenon may be most useful for detection of indole-containing tremorgens that are non-fluorescent, rather than for the enhancement of materials that are already fluorescent, such as the ergot alkaloids. The extent to which fluorescence enhancement was seen was strongly influenced by the reaction environment, in particular the solvent used and whether cyclodextrins were present. In an HPLC format, placement of the photoreactor post-column allowed for the fluorescence detection of penitrem A, paxilline, and verruculogen. The ability to photoreact indole-containing tremorgens and detect them by fluorescence may open up new avenues for detection of these mycotoxins alone or in combination. PMID:23604981

  7. N-alkenyl indoles as useful intermediates for alkaloid synthesis.

    PubMed

    Li, Hao; Boonnak, Nawong; Padwa, Albert

    2011-11-18

    A mild cross-coupling reaction to access several N-alkenyl-substituted indoles has been developed. The coupling procedure involves treating a NH-indole with various alkenyl bromides using a combination of 10 mol % of copper(I) iodide and 20 mol % of ethylenediamine as the catalyst in dioxane at 110 °C in the presence of K(3)PO(4) as the base. When treated with acid, these unique enamines produce a dimeric product derived from a preferred protonation reaction at the enamine π-bond. A cationic cyclization reaction of the readily available 2-(2-(1H-indol-1-yl)allyl)cyclopentanol was utilized to construct tetracyclic indole derivatives with a quaternary stereocenter attached to the C(2)-position of the indole ring. An alternative strategy for selective functionalization at the C(2)-position of a N-alkenyl-substituted indole derivative that was also studied involves a radical cyclization of a xanthate derivative. The work described provides an attractive route to the tetracyclic core of some vinca alkaloids, including the tetrahydroisoquinocarbazole RS-2135. PMID:22007631

  8. Metabolic regulation of the plant hormone indole-3-acetic acid

    SciTech Connect

    Jerry D. Cohen

    2009-11-01

    The phytohormone indole-3-acetic acid (IAA, auxin) is important for many aspects of plant growth, development and responses to the environment yet the routes to is biosynthesis and mechanisms for regulation of IAA levels remain important research questions. A critical issue concerning the biosynthesis if IAA in plants is that redundant pathways for IAA biosynthesis exist in plants. We showed that these redundant pathways and their relative contribution to net IAA production are under both developmental and environmental control. We worked on three fundamental problems related to how plants get their IAA: 1) An in vitro biochemical approach was used to define the tryptophan dependent pathway to IAA using maize endosperm, where relatively large amounts of IAA are produced over a short developmental period. Both a stable isotope dilution and a protein MS approach were used to identify intermediates and enzymes in the reactions. 2) We developed an in vitro system for analysis of tryptophan-independent IAA biosynthesis in maize seedlings and we used a metabolite profiling approach to isolate intermediates in this reaction. 3) Arabidopsis contains a small family of genes that encode potential indolepyruvate decarboxylase enzymes. We cloned these genes and studied plants that are mutant in these genes and that over-express each member in the family in terms of the level and route of IAA biosynthesis. Together, these allowed further development of a comprehensive picture of the pathways and regulatory components that are involved in IAA homeostasis in higher plants.

  9. Friedel-Crafts Fluoroacetylation of Indoles with Fluorinated Acetic Acids for the Synthesis of Fluoromethyl Indol-3-yl Ketones under Catalyst- and Additive-Free Conditions.

    PubMed

    Yao, Shun-Jiang; Ren, Zhi-Hui; Wang, Yao-Yu; Guan, Zheng-Hui

    2016-05-20

    A simple and efficient protocol for the fluoroacetylation of indoles is reported. The reaction uses fluorinated acetic acids as the fluoroacetylation reagents to synthesize diverse fluoromethyl indol-3-yl ketones in good yields under catalyst- and additive-free conditions. In addition, the only byproduct is water in this transformation. The synthetic utility of this reaction was also demonstrated by the concise synthesis of α-(trifluoromethyl)(indol-3-yl)methanol and indole-3-carboxylic acid. PMID:27101475

  10. Synthesis of Fused Polycyclic Indoles by Brønsted Acid-Catalyzed Intramolecular Alkylation of Indoles with Alcohols.

    PubMed

    Suárez, Anisley; Gohain, Mukut; Fernández-Rodríguez, Manuel A; Sanz, Roberto

    2015-10-16

    An efficient methodology for the synthesis of a series of new fused polyclyclic indoles has been developed by Brønsted acid-catalyzed intramolecular Friedel-Crafts reactions of properly designed indolyl alcohols. PMID:26418556

  11. Bioactive indole alkaloids isolated from Alstonia angustifolia

    PubMed Central

    Pan, Li; Terrazas, César; Muñoz Acuña, Ulyana; Ninh, Tran Ngoc; Chai, Heebyung; Carcache de Blanco, Esperanza J.; Soejarto, Djaja D.; Satoskar, Abhay R.

    2014-01-01

    Bioassay-guided fractionation was conducted on a CHCl3-soluble extract of the stem bark of Alstonia angustifolia (Apocynaceae) collected in Vietnam using the HT-29 human colon cancer cell line, and led to the isolation of a new sarpagine-type indole alkaloid (1), together with nine known alkaloids, including four macroline-derived alkaloids (2–5), a sarpagine-type alkaloid (6), and four macroline-pleiocarpamine bisindole alkaloids (7–10). The structure of the new compound (1) was determined on the basis of spectroscopic data interpretation. Compounds 1–10 were evaluated in vitro for their NF-κB (p65) inhibitory activity against the Hela cells in an ELISA assay. The new sarpagine alkaloid, N(4)-methyltalpinine (1), was found to show significant NF-κB inhibitory activity (ED50 = 1.2 µM). Furthermore, all the isolates (1–10) were evaluated in vitro for their antileishmanial activity, and compounds (1–4, 6 and 8–10) exhibited leishmaniacidal activity against promastigotes of Leishmania mexicana. PMID:25584095

  12. Partial purification and characterization of indol-3-ylacetylglucose:myo-inositol indol-3-ylacetyltransferase (indoleacetic acid-inositol synthase)

    NASA Technical Reports Server (NTRS)

    Kesy, J. M.; Bandurski, R. S.

    1990-01-01

    A procedure is described for the purification of the enzyme indol-3-ylacetylglucose:myo-inositol indol-3-ylacetyltransferase (IAA-myo-inositol synthase). This enzyme catalyzes the transfer of indol-3-ylacetate from 1-0-indol-3-ylacetyl-beta-d-glucose to myo-inositol to form indol-3-ylacetyl-myo-inositol and glucose. A hexokinase or glucose oxidase based assay system is described. The enzyme has been purified approximately 16,000-fold, has an isoelectric point of pH 6.1 and yields three catalytically inactive bands upon acrylamide gel electrophoresis of the native protein. The enzyme shows maximum transferase activity with myo-inositol but shows some transferase activity with scyllo-inositol and myo-inosose-2. No transfer of IAA occurs with myo-inositol-d-galactopyranose, cyclohexanol, mannitol, or glycerol as acyl acceptor. The affinity of the enzyme for 1-0-indol-3-ylacetyl-beta-d-glucose is, Km = 30 micromolar, and for myo-inositol is, Km = 4 millimolar. The enzyme does not catalyze the exchange incorporation of glucose into IAA-glucose indicating the reaction mechanism involves binding of IAA glucose to the enzyme with subsequent hydrolytic cleavage of the acyl moiety by the hydroxyl of myo-inositol to form IAA myo-inositol ester.

  13. Origin of product selectivity in a prenyl transfer reaction from the same intermediate: exploration of multiple FtmPT1-catalyzed prenyl transfer pathways.

    PubMed

    Pan, Li-Li; Yang, Yue; Merz, Kenneth M

    2014-09-30

    FtmPT1 is a fungal indole prenyltransferase that catalyzes the reaction of tryptophan derivatives with dimethylallyl pyrophosphate to form various biologically active compounds. Herein, we describe detailed studies of FtmPT1 catalysis involving dimethylallyl pyrophosphate and Brevianamide F following the native pathway (yielding Tryprostatin B) and an alternate pathway observed in the Gly115Thr mutant of FtmPT1 yielding a novel cyclized product. Importantly, these two products arise from the same intermediate state, meaning that a step other than the cleavage of the dimethylallyl pyrophosphate (DMAPP; C-O) bond is differentiating between the two product reaction channels. From detailed potential of mean force (PMF) and two-dimensional PMF analyses, we conclude that the rate-limiting step is the cleavage of the C-O bond in DMAPP, while the deprotonation/cyclization step determines the final product distribution. Hence, in the case of FtmPT1, the optimization of the necessary catalytic machinery guides the generation of the final product after formation of the intermediate carbocation.

  14. The Synthesis and Pharmacological Evaluation of Adamantane-Derived Indoles: Cannabimimetic Drugs of Abuse

    PubMed Central

    2013-01-01

    Two novel adamantane derivatives, adamantan-1-yl(1-pentyl-1H-indol-3-yl)methanone (AB-001) and N-(adamtan-1-yl)-1-pentyl-1H-indole-3-carboxamide (SDB-001), were recently identified as cannabimimetic indoles of abuse. Conflicting anecdotal reports of the psychoactivity of AB-001 in humans, and a complete dearth of information about the bioactivity of SDB-001, prompted the preparation of AB-001, SDB-001, and several analogues intended to explore preliminary structure–activity relationships within this class. This study sought to elucidate which structural features of AB-001, SDB-001, and their analogues govern the cannabimimetic potency of these chemotypes in vitro and in vivo. All compounds showed similar full agonist profiles at CB1 (EC50 = 16–43 nM) and CB2 (EC50 = 29–216 nM) receptors in vitro using a FLIPR membrane potential assay, with the exception of SDB-002, which demonstrated partial agonist activity at CB2 receptors. The activity of AB-001, AB-002, and SDB-001 in rats was compared to that of Δ9-tetrahydrocannabinol (Δ9-THC) and cannabimimetic indole JWH-018 using biotelemetry. SDB-001 dose-dependently induced hypothermia and reduced heart rate (maximal dose 10 mg/kg) with potency comparable to that of Δ9-tetrahydrocannabinol (Δ9-THC, maximal dose 10 mg/kg), and lower than that of JWH-018 (maximal dose 3 mg/kg). Additionally, the changes in body temperature and heart rate affected by SDB-001 are of longer duration than those of Δ9-THC or JWH-018, suggesting a different pharmacokinetic profile. In contrast, AB-001, and its homologue, AB-002, did not produce significant hypothermic and bradycardic effects, even at relatively higher doses (up to 30 mg/kg), indicating greatly reduced potency compared to Δ9-THC, JWH-018, and SDB-001. PMID:23551277

  15. Ruthenium(II)-Catalyzed C-H Activation of Imidamides and Divergent Couplings with Diazo Compounds: Substrate-Controlled Synthesis of Indoles and 3H-Indoles.

    PubMed

    Li, Yunyun; Qi, Zisong; Wang, He; Yang, Xifa; Li, Xingwei

    2016-09-19

    Indoles are an important structural motif that is commonly found in biologically active molecules. In this work, conditions for divergent couplings between imidamides and acceptor-acceptor diazo compounds were developed that afforded NH indoles and 3H-indoles under ruthenium catalysis. The coupling of α-diazoketoesters afforded NH indoles by cleavage of the C(N2 )-C(acyl) bond whereas α-diazomalonates gave 3H-indoles by C-N bond cleavage. This reaction constitutes the first intermolecular coupling of diazo substrates with arenes by ruthenium-catalyzed C-H activation. PMID:27558084

  16. Low-Dose Radiotherapy in Indolent Lymphoma

    SciTech Connect

    Rossier, Christine; Schick, Ulrike; Miralbell, Raymond; Mirimanoff, Rene O.; Weber, Damien C.; Ozsahin, Mahmut

    2011-11-01

    Purpose: To assess the response rate, duration of response, and overall survival after low-dose involved-field radiotherapy in patients with recurrent low-grade lymphoma or chronic lymphocytic leukemia (CLL). Methods and Materials: Forty-three (24 women, 19 men) consecutive patients with indolent lymphoma or CLL were treated with a total dose of 4 Gy (2 x 2 Gy) using 6- 18-MV photons. The median age was 73 years (range, 39-88). Radiotherapy was given either after (n = 32; 75%) or before (n = 11; 25%) chemotherapy. The median time from diagnosis was 48 months (range, 1-249). The median follow-up period was 20 months (range, 1-56). Results: The overall response rate was 90%. Twelve patients (28%) had a complete response, 15 (35%) had a partial response, 11 (26%) had stable disease, and 5 (11%) had progressive disease. The median overall survival for patients with a positive response (complete response/partial response/stable disease) was 41 months; for patients with progressive disease it was 6 months (p = 0.001). The median time to in-field progression was 21 months (range, 0-24), and the median time to out-field progression was 8 months (range, 0-40). The 3-year in-field control was 92% in patients with complete response (median was not reached). The median time to in-field progression was 9 months (range, 0.5-24) in patients with partial response and 6 months (range, 0.6-6) in those with stable disease (p < 0.05). Younger age, positive response to radiotherapy, and no previous chemotherapy were the best factors influencing the outcome. Conclusions: Low-dose involved-field radiotherapy is an effective treatment in the management of patients with recurrent low-grade lymphoma or CLL.

  17. Vγ2Vδ2 T Cell Receptor Recognition of Prenyl Pyrophosphates is Dependent on all Complementarity Determining Regions1

    PubMed Central

    Wang, Hong; Fang, Zhimei; Morita, Craig T.

    2010-01-01

    γδ T cells differ from αβ T cells in the antigens they recognize and their functions in immunity. While most αβ T cell receptors (TCR) recognize peptides presented by MHC class I or II, human γδ T cells expressing Vγ2Vδ2 TCRs recognize nonpeptide prenyl pyrophosphates. To define the molecular basis for this recognition, the effect of mutations in the TCR complementarity-determining regions (CDR) was assessed. Mutations in all CDR loops altered recognition and cover a large footprint. Unlike murine γδ TCR recognition of the MHC class Ib T22 protein, there was no CDR3δ motif required for recognition because only 1 residue is required. Instead, the length and sequence of CDR3γ was key. Although a potential prenyl pyrophosphate-binding site was defined by Lys109 in Jγ1.2 and Arg51 in CDR2δ, the area outlined by critical mutations is much larger. These results show that prenyl pyrophosphate recognition is primarily by germline-encoded regions of the γδ TCR, allowing a high proportion of Vγ2Vδ2 TCRs to respond. This underscores its parallels to innate immune receptors. Our results also provide strong evidence for the existence of an antigen-presenting molecule for prenyl pyrophosphates. This is an author-produced version of a manuscript accepted for publication in The Journal of Immunology (The JI). The American Association of Immunologists, Inc. (AAI), publisher of The JI, holds the copyright to this manuscript. This version of the manuscript has not yet been copyedited or subjected to editorial proofreading by The JI; hence, it may differ from the final version published in The JI (online and in print). AAI (The JI) is not liable for errors or omissions in this author-produced version of the manuscript or in any version derived from it by the U.S. National Institutes of Health or any other third party. The final, citable version of record can be found at www.jimmunol.org. PMID:20483784

  18. Solophenols B-D and solomonin: new prenylated polyphenols isolated from propolis collected from the Solomon Islands and their antibacterial activity.

    PubMed

    Inui, Saori; Hosoya, Takahiro; Shimamura, Yuko; Masuda, Shuichi; Ogawa, Takeshi; Kobayashi, Hirokazu; Shirafuji, Kenichi; Moli, Reuben Toli; Kozone, Ikuko; Shin-ya, Kazuo; Kumazawa, Shigenori

    2012-11-28

    Three new prenylated flavonoids, namely, solophenols B (1), C (2), and D (3), as well as a new prenylated stilbene, solomonin (4), were isolated from propolis collected from the Solomon Islands. In addition, 17 known compounds were identified. The structures of the new compounds were determined by a combination of methods, including mass spectrometry and NMR. These new compounds and several known compounds were tested for antibacterial activity against Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa. Most of them exhibited potent antibacterial activity. These findings may indicate that propolis from the Solomon Islands has potential applications as an ingredient in food additives or pharmaceuticals. PMID:23067056

  19. Solophenols B-D and solomonin: new prenylated polyphenols isolated from propolis collected from the Solomon Islands and their antibacterial activity.

    PubMed

    Inui, Saori; Hosoya, Takahiro; Shimamura, Yuko; Masuda, Shuichi; Ogawa, Takeshi; Kobayashi, Hirokazu; Shirafuji, Kenichi; Moli, Reuben Toli; Kozone, Ikuko; Shin-ya, Kazuo; Kumazawa, Shigenori

    2012-11-28

    Three new prenylated flavonoids, namely, solophenols B (1), C (2), and D (3), as well as a new prenylated stilbene, solomonin (4), were isolated from propolis collected from the Solomon Islands. In addition, 17 known compounds were identified. The structures of the new compounds were determined by a combination of methods, including mass spectrometry and NMR. These new compounds and several known compounds were tested for antibacterial activity against Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa. Most of them exhibited potent antibacterial activity. These findings may indicate that propolis from the Solomon Islands has potential applications as an ingredient in food additives or pharmaceuticals.

  20. Synthesis of Substituted Benzenes via Bi(OTf)3-Mediated Intramolecular Carbonyl Allylation of α-Prenyl or α-Geranyl β-Arylketosulfones.

    PubMed

    Chang, Meng-Yang; Cheng, Yu-Chieh; Lu, Yi-Ju

    2015-06-19

    Intramolecular carbonyl allylation of α-prenyl or α-geranyl β-arylketosulfones 5 in the presence of molecule sieves (MS) affords substituted benzenes 6-7 in moderate to good yields. The facile transformation proceeds by a synthetic sequence starting with the α-prenylation or α-geranylation of 1 and the Bi(OTf)3-mediated annulation of 5 followed by a sequential desulfonative aromatization or then an intramolecular Friedel-Crafts alkylation. A plausible mechanism has been studied and proposed. PMID:26068123

  1. GC-MS studies on the six naphthoyl-substituted 1-n-pentyl-indoles: JWH-018 and five regioisomeric equivalents.

    PubMed

    Thaxton, Amber; Belal, Tarek S; Smith, Forrest; DeRuiter, Jack; Abdel-Hay, Karim M; Clark, C Randall

    2015-07-01

    The GC-MS properties of the synthetic cannabinoid drug of abuse 3-(1-naphthoyl)-1-pentylindole (JWH-018) and all 5 of its' regioisomeric 1-naphthoyl substituted 1-n-pentylindoles are compared in this report. These compounds have the 1-naphthoyl-group attached at each of the possible substituent positions of the indole ring. The six compounds have the same elemental composition C24H23NO and the same substituents attached to the indole ring. The electron ionization mass spectra showed equivalent regioisomeric major fragment ions resulting from cleavage of the groups attached to the central indole nucleus. The characteristic (M-17)(+) fragment ion at m/z 324 resulting from the loss of an OH group was significant in the EI-MS of 3-, 4-, 5- and 6-(1-naphthoyl)-1-pentylindole. Fragment ions occurred at m/z 127 and 155 for the naphthyl and naphthoyl cations common to all six regioisomeric substances. Indole containing fragments produced the cations at m/z 284, 270, 214 and 186. The unique fragment at m/z 141 observed in the 1,2- and 1,7-isomers resulted from a rearrangement involving the two indole substituents to yield the C10H7CH2(+) cation. The major points of EI-MS differentiation of the synthetic cannabinoid JWH-018 from the other five isomers are the high relative abundance of both the m/z 144 ion and the m/z 324 ion in the JWH-018 spectrum. GC separations on a capillary column containing a trifluoropropyl methyl polysiloxane (Rtx-200) stationary phase provided excellent resolution of these six compounds. The elution order appears related to the relative distance between the two indole substituents with the lowest retention associated with minimum distance between the groups attached to the indole nucleus.

  2. Development and Characterization of Monoclonal Antibodies Specific for 3-(1-naphthoyl) Indole Derivatives.

    PubMed

    Nakayama, Hiroshi; Kenjyou, Noriko; Ito, Yuji

    2016-02-01

    3-(1-naphthoyl) indole is one of the raw materials that synthesizes a synthetic cannabinoid such as 1-pentyl-3-(1-naphthoyl) indole (JWH-018) and 1-butyl-3-(1-naphthoyl) indole (JWH-073). It is important to detect the 3-(1-naphthoyl) indole derivatives rapidly, sensitively, and comprehensively. We developed two monoclonal antibodies (MAb) against 3-(1-naphthoyl) indole derivatives, named NT1 (IgG1) and NT2 (IgG1), which were possibly effective for detecting 3-(1-naphthoyl) indole derivatives. The cross-reactive ability of these MAbs was evaluated using a competitive enzyme-linked immunosorbent assay (ELISA). In the results, we found both of these antibodies recognize 3-(1-naphthoyl) indole and its derivatives. However neither of these antibodies recognize naphtoic acid, 4-methyl-naphtoic acid, and indole. Sixty to 100 nanomole per liter of 3-(1-naphthoyl) indole derivatives, such as 1-methyl-3-(1-naphthoyl) indole, 1-ethyl-3-(1-naphthoyl) indole, and 1-octyl-3-(1-naphthoyl) indole, can be detected using both of the obtained MAbs. Thus, the MAbs produced in this study could be a useful tool for the detection of 3-(1-naphthoyl) indole derivatives. PMID:26871514

  3. Development and Characterization of Monoclonal Antibodies Specific for 3-(1-naphthoyl) Indole Derivatives.

    PubMed

    Nakayama, Hiroshi; Kenjyou, Noriko; Ito, Yuji

    2016-02-01

    3-(1-naphthoyl) indole is one of the raw materials that synthesizes a synthetic cannabinoid such as 1-pentyl-3-(1-naphthoyl) indole (JWH-018) and 1-butyl-3-(1-naphthoyl) indole (JWH-073). It is important to detect the 3-(1-naphthoyl) indole derivatives rapidly, sensitively, and comprehensively. We developed two monoclonal antibodies (MAb) against 3-(1-naphthoyl) indole derivatives, named NT1 (IgG1) and NT2 (IgG1), which were possibly effective for detecting 3-(1-naphthoyl) indole derivatives. The cross-reactive ability of these MAbs was evaluated using a competitive enzyme-linked immunosorbent assay (ELISA). In the results, we found both of these antibodies recognize 3-(1-naphthoyl) indole and its derivatives. However neither of these antibodies recognize naphtoic acid, 4-methyl-naphtoic acid, and indole. Sixty to 100 nanomole per liter of 3-(1-naphthoyl) indole derivatives, such as 1-methyl-3-(1-naphthoyl) indole, 1-ethyl-3-(1-naphthoyl) indole, and 1-octyl-3-(1-naphthoyl) indole, can be detected using both of the obtained MAbs. Thus, the MAbs produced in this study could be a useful tool for the detection of 3-(1-naphthoyl) indole derivatives.

  4. [Occurrence of indole alkaloids among secondary metabolites of soil Aspergillus].

    PubMed

    Vinokurova, N G; Khmel'nitskaia, I I; Baskunov, B P; Arinbasarov, M U

    2003-01-01

    The occurrence of indole alkaloids among secondary fungal metabolites was studied in species of the genus Aspergillus, isolated from soils that were sampled in various regions of Russia (a total of 102 isolates of the species A. niger, A. phoenicis, A. fumigatus, A. flavus, A. versicolor, A. ustus, A. clavatus, and A. ochraceus). Clavine alkaloids were represented by fumigaclavine, which was formed by A. fumigatus. alpha-Cyclopiazonic acid was formed by isolates of A. fumigatus, A. flavus, A. versicolor, A. phoenicis, and A. clavatus. The occurrence of indole-containing diketopiperazine alkaloids was documented for isolates of A. flavus, A. fumigatus, A. clavatus, and A. ochraceus. No indole-containing metabolites were found among the metabolites of A. ustus or A. niger. PMID:12722658

  5. Synthetic small molecule GLP-1 secretagogues prepared by means of a three-component indole annulation strategy.

    PubMed

    Chepurny, Oleg G; Leech, Colin A; Tomanik, Martin; DiPoto, Maria C; Li, Hui; Han, Xinping; Meng, Qinghe; Cooney, Robert N; Wu, Jimmy; Holz, George G

    2016-01-01

    Rational assembly of small molecule libraries for purposes of drug discovery requires an efficient approach in which the synthesis of bioactive compounds is enabled so that numerous structurally related compounds of a similar basic formulation can be derived. Here, we describe (4 + 3) and (3 + 2) indole annulation strategies that quickly generate complex indole heterocycle libraries that contain novel cyclohepta- and cyclopenta[b]indoles, respectively. Screening of one such library comprised of these indoles identifies JWU-A021 to be an especially potent stimulator of glucagon-like peptide-1 (GLP-1) secretion in vitro. Surprisingly, JWU-A021 is also a potent stimulator of Ca(2+) influx through TRPA1 cation channels (EC50 ca. 200 nM), thereby explaining its ability to stimulate GLP-1 release. Of additional importance, the available evidence indicates that JWU-A021 is one of the most potent non-electrophilic TRPA-1 channel agonists yet to be reported in the literature. PMID:27352904

  6. Synthetic small molecule GLP-1 secretagogues prepared by means of a three-component indole annulation strategy

    NASA Astrophysics Data System (ADS)

    Chepurny, Oleg G.; Leech, Colin A.; Tomanik, Martin; Dipoto, Maria C.; Li, Hui; Han, Xinping; Meng, Qinghe; Cooney, Robert N.; Wu, Jimmy; Holz, George G.

    2016-06-01

    Rational assembly of small molecule libraries for purposes of drug discovery requires an efficient approach in which the synthesis of bioactive compounds is enabled so that numerous structurally related compounds of a similar basic formulation can be derived. Here, we describe (4 + 3) and (3 + 2) indole annulation strategies that quickly generate complex indole heterocycle libraries that contain novel cyclohepta- and cyclopenta[b]indoles, respectively. Screening of one such library comprised of these indoles identifies JWU-A021 to be an especially potent stimulator of glucagon-like peptide-1 (GLP-1) secretion in vitro. Surprisingly, JWU-A021 is also a potent stimulator of Ca2+ influx through TRPA1 cation channels (EC50 ca. 200 nM), thereby explaining its ability to stimulate GLP-1 release. Of additional importance, the available evidence indicates that JWU-A021 is one of the most potent non-electrophilic TRPA-1 channel agonists yet to be reported in the literature.

  7. Synthetic small molecule GLP-1 secretagogues prepared by means of a three-component indole annulation strategy

    PubMed Central

    Chepurny, Oleg G.; Leech, Colin A.; Tomanik, Martin; DiPoto, Maria C.; Li, Hui; Han, Xinping; Meng, Qinghe; Cooney, Robert N.; Wu, Jimmy; Holz, George G.

    2016-01-01

    Rational assembly of small molecule libraries for purposes of drug discovery requires an efficient approach in which the synthesis of bioactive compounds is enabled so that numerous structurally related compounds of a similar basic formulation can be derived. Here, we describe (4 + 3) and (3 + 2) indole annulation strategies that quickly generate complex indole heterocycle libraries that contain novel cyclohepta- and cyclopenta[b]indoles, respectively. Screening of one such library comprised of these indoles identifies JWU-A021 to be an especially potent stimulator of glucagon-like peptide-1 (GLP-1) secretion in vitro. Surprisingly, JWU-A021 is also a potent stimulator of Ca2+ influx through TRPA1 cation channels (EC50 ca. 200 nM), thereby explaining its ability to stimulate GLP-1 release. Of additional importance, the available evidence indicates that JWU-A021 is one of the most potent non-electrophilic TRPA-1 channel agonists yet to be reported in the literature. PMID:27352904

  8. Is papillary thyroid microcarcinoma an indolent tumor?

    PubMed Central

    Gao, Xuemei; Zhang, Xiao; Zhang, Yajing; Hua, Wenjuan; Maimaiti, Yusufu; Gao, Zairong

    2016-01-01

    Abstract The increasing detection of papillary thyroid microcarcinoma (PTMC) has created management dilemmas. To clarify the clinical significance of postsurgery stimulated thyroglobulin (ps-Tg) in PTMC who undergo thyroidectomy and radioactive iodine (RAI), we retrospectively reviewed the 358 PTMC patients who were treated with RAI and followed up in our hospital. Those with an excessive anti-Tg antibody, ultrasound-detected residual were excluded, thereby resulting in the inclusion of 280 cases. Their clinical and histopathological information and clinical outcomes were collected and summarized. Tumor stages were classified according to the tumor, node, metastasis (TNM) staging system and the consensus of the European Thyroid Association (ETA) risk stratification system, respectively. Kaplan–Meier curves were constructed to compare the disease-free survival (DFS) rates of different risk-staging systems. By the end of follow-up, none of the patients died of the disease or relapsed. The 8-year DFS rate was 76.9%. Kaplan–Meier curves showed different DFS rates in TNM stages I versus IV, III versus IV, very low risk versus high risk, low risk versus high risk, respectively (P < 0.05), while they were not significantly different in stage I versus stage III, very low risk versus low risk (P > 0.05). Finally, 40 (14.3%) cases got a persistent disease. Five variables (male sex, nonconcurrent benign pathology, initial tumor size >5 mm, lymph node metastasis, and ps-Tg ≥ 10 μg/L) were associated with disease persistence by univariate regression analysis. Ps-Tg ≥ 10 μg/L was the only independent prognostic variable that predicted disease persistence by multivariate regression analysis (odds ratio: 36.057, P = 0.000). Therefore, PTMC with a small size of ≤1 cm does not always act as an indolent tumor. In conclusion, ps-Tg ≥ 10 μg/L is associated with increased odds of disease persistence. ETA risk stratification is more

  9. Synthesis and anti-cancer activity evaluation of novel prenylated and geranylated chalcone natural products and their analogs.

    PubMed

    Wang, Hao-Meng; Zhang, Li; Liu, Jiang; Yang, Zhao-Liang; Zhao, Hong-Ye; Yang, Yao; Shen, Di; Lu, Kui; Fan, Zhen-Chuan; Yao, Qing-Wei; Zhang, Yong-Min; Teng, Yu-Ou; Peng, Yu

    2015-03-01

    Four natural chalcones bearing prenyl or geranyl groups, i.e., bavachalcone (1a), xanthoangelol (1b), isobavachalcone (1c), and isoxanthoangelol (1d) were synthesized by using a regio-selective iodination and the Suzuki coupling reaction as key steps. The first total synthesis of isoxanthoangelol (1d) was achieved in 36% overall yield. A series of diprenylated and digeranylated chalcone analogs were also synthesized by alkylation, regio-selective iodination, aldol condensation, Suzuki coupling and [1,3]-sigmatropic rearrangement. The structures of the 11 new derivatives were confirmed by (1)H NMR, (13)C NMR and HRMS. The anticancer activity of these new chalcone derivatives against human tumor cell line K562 were evaluated by MTT assay in vitro. SAR studies suggested that the 5'-prenylation/geranylation of the chalcones significantly enhance their cytotoxic activity. Among them, Bavachalcone (1a) displayed the most potent cytotoxic activity against K562 with IC50 value of 2.7 μM. The morphology changes and annexin-V/PI staining studies suggested that those chalcone derivatives inhibited the proliferation of K562 cells by inducing apoptosis. PMID:25590864

  10. Prenylated Chalcone 2 Acts as an Antimitotic Agent and Enhances the Chemosensitivity of Tumor Cells to Paclitaxel.

    PubMed

    Fonseca, Joana; Marques, Sandra; Silva, Patrícia M A; Brandão, Pedro; Cidade, Honorina; Pinto, Madalena M; Bousbaa, Hassan

    2016-07-29

    We previously reported that prenylated chalcone 2 (PC2), the O-prenyl derivative (2) of 2'-hydroxy-3,4,4',5,6'-pentamethoxychalcone (1), induced cytotoxicity of tumor cells via disruption of p53-MDM2 interaction. However, the cellular changes through which PC2 exerts its cytotoxic activity and its antitumor potential, remain to be addressed. In the present work, we aimed to (i) characterize the effect of PC2 on mitotic progression and the underlying mechanism; and to (ii) explore this information to evaluate its ability to sensitize tumor cells to paclitaxel in a combination regimen. PC2 was able to arrest breast adenocarcinoma MCF-7 and non-small cell lung cancer NCI-H460 cells in mitosis. All mitosis-arrested cells showed collapsed mitotic spindles with randomly distributed chromosomes, and activated spindle assembly checkpoint. Live-cell imaging revealed that the compound induced a prolonged delay (up to 14 h) in mitosis, culminating in massive cell death by blebbing. Importantly, PC2 in combination with paclitaxel enhanced the effect on cell growth inhibition as determined by cell viability and proliferation assays. Our findings demonstrate that the cytotoxicity induced by PC2 is mediated through antimitotic activity as a result of mitotic spindle damage. The enhancement effects of PC2 on chemosensitivity of cancer cells to paclitaxel encourage further validation of the clinical potential of this combination.

  11. Prenylated Rab acceptor 1 (PRA1) inhibits TCF/{beta}-catenin signaling by binding to {beta}-catenin

    SciTech Connect

    Kim, Jong-Tae; Cho, Mi-Young; Choi, Seung-Chul; Kim, Jung Woo; Chae, Suhn-Kee; Yoon, Do-Young; Kim, Jae Wha . E-mail: wjkim@kribb.re.kr; Lim, Jong-Seok . E-mail: jslim@sookmyung.ac.kr

    2006-10-13

    The prenylated Rab acceptor 1 (PRA1) is a ubiquitously expressed 21 kDa protein containing two transmembrane domains that possibly induce its localization to the Golgi complex. It binds to prenylated Rab GTPases and VAMP2. In this study, we report that PRA1-overexpressing cells exhibited a significantly retarded growth rate as compared to that of the mock-transfected cells, and the transcriptional activity of TCF, as evaluated by TOPflash luciferase reporter assay, was profoundly reduced in the PRA1-overexpressed cells. These intracellular functions of PRA1 were verified by introducing deletion mutant or site-directed mutants, or small interfering RNA of PRA1. In addition, the translocation of {beta}-catenin from the cytosol to the nucleus was blocked to a significant degree in the PRA1-cells, and the interaction of PRA1 and {beta}-catenin was identified by confocal microscopy and immunoprecipitation analysis. Finally, we observed that the inhibition of TCF/{beta}-catenin signaling by PRA1 is associated with ERK1/2 dephosphorylation. Therefore, our data suggest that the in vivo modulation of PRA1 may be involved in TCF/{beta}-catenin signaling, as well as cellular proliferation and tumorigenesis.

  12. Bioactivity of natural O-prenylated phenylpropenes from Illicium anisatum leaves and their derivatives against spider mites and fungal pathogens.

    PubMed

    Koeduka, T; Sugimoto, K; Watanabe, B; Someya, N; Kawanishi, D; Gotoh, T; Ozawa, R; Takabayashi, J; Matsui, K; Hiratake, J

    2014-03-01

    A variety of volatile phenylpropenes, C6-C3 compounds are widely distributed in the plant kingdom, whereas prenylated phenylpropenes are limited to a few plant species. In this study, we analysed the volatile profiles from Illicium anisatum leaves and identified two O-prenylated phenylpropenes, 4-allyl-2-methoxy-1-[(3-methylbut-2-en-1-yl)oxy]benzene [O-dimethylallyleugenol (9)] and 5-allyl-1,3-dimethoxy-2-(3-methylbut-2-en-1-yl)oxy]benzene [O-dimethylallyl-6-methoxyeugenol (11)] as major constituents. The structure-activity relationship of a series of eugenol derivatives showed that specific phenylpropenes, including eugenol (1), isoeugenol (2) and 6-methoxyeugenol (6), with a phenolic hydroxy group had antifungal activity for a fungal pathogen, whereas guaiacol, a simple phenolic compound, and allylbenzene had no such activity. The eugenol derivatives that exhibited antifungal activity, in turn, had no significant toxicant property for mite oviposition. Interestingly, O-dimethylallyleugenol (9) in which the phenolic oxygen was masked with a dimethylallyl group exhibited a specific, potent oviposition deterrent activity for mites. The sharp contrast in structural requirements of phenylpropenes suggested distinct mechanisms underlying the two biological activities and the importance of a phenolic hydroxy group and its dimethylallylation for the structure-based design of new functional properties of phenylpropenes.

  13. New Prenylated Aeruginosin, Microphycin, Anabaenopeptin and Micropeptin Analogues from a Microcystis Bloom Material Collected in Kibbutz Kfar Blum, Israel

    PubMed Central

    Elkobi-Peer, Shira; Carmeli, Shmuel

    2015-01-01

    Thirteen new and eighteen known natural products were isolated from a bloom material of an assembly of various Microcystis spp. collected in November, 2008, from a commercial fishpond near Kibbutz Kfar Blum, the Jordan Valley, Israel. The new natural products included the prenylated aeruginosin KB676 (1), microphycin KB921 (2), anabaenopeptins KB906 (3) and KB899 (4) and micropeptins KB928 (5), KB956 (6), KB970A (7), KB970B (8), KB984 (9), KB970C (10), KB1048 (11), KB992 (12) and KB1046 (13). Their structures were elucidated primarily by interpretation of their 1D and 2D nuclear magnetic resonance spectra and high-resolution mass spectrometry. Marfey’s and chiral-phase high performance liquid chromatography methods were used to determine the absolute configurations of their chiral centers. Aeruginosin KB676 (1) contains the rare (2S,3aS,6S,7aS)-Choi and is the first prenylated aeruginosin derivative described in the literature. Compounds 1 and 5–11 inhibited trypsin with sub-μM IC50s, while Compounds 11–13 inhibited chymotrypsin with sub-μM IC50s. The structures and biological activities of the new natural products and our procedures of dereplication are described. PMID:25884445

  14. Prenylated Chalcone 2 Acts as an Antimitotic Agent and Enhances the Chemosensitivity of Tumor Cells to Paclitaxel.

    PubMed

    Fonseca, Joana; Marques, Sandra; Silva, Patrícia M A; Brandão, Pedro; Cidade, Honorina; Pinto, Madalena M; Bousbaa, Hassan

    2016-01-01

    We previously reported that prenylated chalcone 2 (PC2), the O-prenyl derivative (2) of 2'-hydroxy-3,4,4',5,6'-pentamethoxychalcone (1), induced cytotoxicity of tumor cells via disruption of p53-MDM2 interaction. However, the cellular changes through which PC2 exerts its cytotoxic activity and its antitumor potential, remain to be addressed. In the present work, we aimed to (i) characterize the effect of PC2 on mitotic progression and the underlying mechanism; and to (ii) explore this information to evaluate its ability to sensitize tumor cells to paclitaxel in a combination regimen. PC2 was able to arrest breast adenocarcinoma MCF-7 and non-small cell lung cancer NCI-H460 cells in mitosis. All mitosis-arrested cells showed collapsed mitotic spindles with randomly distributed chromosomes, and activated spindle assembly checkpoint. Live-cell imaging revealed that the compound induced a prolonged delay (up to 14 h) in mitosis, culminating in massive cell death by blebbing. Importantly, PC2 in combination with paclitaxel enhanced the effect on cell growth inhibition as determined by cell viability and proliferation assays. Our findings demonstrate that the cytotoxicity induced by PC2 is mediated through antimitotic activity as a result of mitotic spindle damage. The enhancement effects of PC2 on chemosensitivity of cancer cells to paclitaxel encourage further validation of the clinical potential of this combination. PMID:27483224

  15. Indole Alkaloids from the Leaves of Nauclea officinalis.

    PubMed

    Fan, Long; Liao, Cheng-Hui; Kang, Qiang-Rong; Zheng, Kai; Jiang, Ying-Chun; He, Zhen-Dan

    2016-07-23

    Three new indole alkaloids, named naucleamide G (1), and nauclealomide B and C (5 and 6), were isolated from the n-BuOH-soluble fraction of an EtOH extract of the leaves of Nauclea officinalis, together with three known alkaloids, paratunamide C (2), paratunamide D (3) and paratunamide A (4). The structures with absolute configurations of the new compounds were identified on the basis of 1D and 2D NMR, HRESIMS, acid hydrolysis and quantum chemical circular dichroism (CD) calculation. According to the structures of isolated indole alkaloids, their plausible biosynthetic pathway was deduced.

  16. Brønsted Acid-Catalyzed Cascade Reactions Involving 1,2-Indole Migration.

    PubMed

    Álvarez, Estela; Nieto Faza, Olalla; Silva López, Carlos; Fernández-Rodríguez, Manuel A; Sanz, Roberto

    2015-09-01

    A cascade reaction of indoles with propargylic diols involving an unprecedented metal-free 1,2-indole migration onto an alkyne was carried out. DFT calculations support a mechanism consisting of a concerted nucleophilic attack of the indole nucleus with loss of water, followed by the 1,2-migration and subsequent Nazarov cyclization. This Brønsted acid-catalyzed protocol affords indole-functionalized benzofulvene derivatives in high yields. PMID:26211757

  17. Paramagnetic NMR Relaxation and Molecular Mechanics Studies of Chloroperoxidase-Indole Complex: Insights into the Mechanism of Chloroperoxidase-Catalyzed Regioselective Oxidation of Indole

    PubMed Central

    Zhang, Rui; He, Qinghao; Chatfield, David; Wang, Xiaotang

    2013-01-01

    To unravel the mechanism of CPO-catalyzed regioselective oxidation of indole, the structure of the CPO-indole complex was studied using NMR relaxation measurements and computational techniques. The dissociation constant (KD) of the CPO-indole complex was calculated to be approximately 21 mM. The distances (r) between protons of indole and the heme iron calculated from NMR relaxation measurements and molecular docking revealed that the pyrrole ring of indole is oriented toward the heme with its 2-H pointing directly at the heme iron. Both KD and r values are independent of pH in the range of 3.0–6.5. The stability and structure of the CPO-indole complex are also independent of the concentration of chloride/iodide ion. Molecular docking suggests the formation of a hydrogen bond between the N–H of indole and the carboxyl O of Glu 183 in the binding of indole to CPO. Simulated annealing of the CPO-indole complex using r values from NMR experiments as distance restraints reveals that the van der Waals interactions were much stronger than the Coulomb interactions in indole binding to CPO, indicating that the association of indole with CPO is primarily governed by hydrophobic rather than electrostatic interactions. This work provides the first experimental and theoretical evidence for the long-sought mechanism that leads to the “unexpected” regioselectivity of CPO-catalyzed oxidation of indole. The structure of the CPO-indole complex will serve as a lighthouse in guiding the design of CPO mutants with tailor-made activities for biotechnological applications. PMID:23634952

  18. Effect of Exogenous Indole-3-Acetic Acid and Indole-3-Butyric Acid on Internal Levels of the Respective Auxins and Their Conjugation with Aspartic Acid during Adventitious Root Formation in Pea Cuttings.

    PubMed

    Nordström, A C; Jacobs, F A; Eliasson, L

    1991-07-01

    The influence of exogenous indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) on the internal levels of these auxins was studied during the first 4 days of adventitious root formation in cuttings of Pisum sativum L. The quantitations were done by high performance liquid chromatography with spectrofluorometric detection. IBA, identified by combined gas chromatography-mass spectrometry (GC-MS), was found to naturally occur in this plant material. The root inducing ability of exogenous IBA was superior to that of IAA. The IAA level in the tissue increased considerably on the first day after application of IAA, but rapidly decreased again, returning to a level twice the control by day 3. The predominant metabolic route was conjugation with aspartic acid, as reflected by the increase in the level of indole-3-acetylaspartic acid. The IBA treatment resulted in increases in the levels of IBA, IAA, and indole-3-acetylaspartic acid. The IAA content rapidly returned to control levels, whereas the IBA level remained high throughout the experimental period. High amounts of indole-3-butyrylaspartic acid were found in the tissue after feeding with IBA. The identity of the conjugate was confirmed by (1)H-nuclear magnetic resonance and GC-MS. IBA was much more stable in solution than IAA. No IAA was detected after 48 hours, whereas 70% IBA was still recovered after this time. The relatively higher root inducing ability of IBA is ascribed to the fact that its level remained elevated longer than that of IAA, even though IBA was metabolized in the tissue. Adventitious root formation is discussed on the basis of these findings. PMID:16668265

  19. Regulation of Indole Signalling during the Transition of E. coli from Exponential to Stationary Phase.

    PubMed

    Gaimster, Hannah; Summers, David

    2015-01-01

    During the transition from exponential to stationary phase E. coli produces a substantial quantity of the small, aromatic signalling molecule indole. In LB medium the supernatant indole concentration reaches a maximum of 0.5-1 mM. At this concentration indole has been implicated in many processes inducing acid resistance and the modulation of virulence. It has recently been shown that cell-associated indole transiently reaches a very high concentration (approx. 60 mM) during stationary phase entry, presumably because indole is being produced more rapidly than it can leave the cell. It is proposed that this indole pulse inhibits growth and cell division, causing the culture to enter stationary phase before nutrients are completely exhausted, with benefits for survival in long-term stationary phase. This study asks how E. coli cells rapidly upregulate indole production during stationary phase entry and why the indole pulse has a duration of only 10-15 min. We find that at the start of the pulse tryptophanase synthesis is triggered by glucose depletion and that this is correlates with the up-regulation of indole synthesis. The magnitude and duration of the resulting indole pulse are dependent upon the availability of exogenous tryptophan. Indole production stops when all the available tryptophan is depleted and the cell-associated indole equilibrates with the supernatant.

  20. Regulation of Indole Signalling during the Transition of E. coli from Exponential to Stationary Phase

    PubMed Central

    Gaimster, Hannah; Summers, David

    2015-01-01

    During the transition from exponential to stationary phase E. coli produces a substantial quantity of the small, aromatic signalling molecule indole. In LB medium the supernatant indole concentration reaches a maximum of 0.5–1 mM. At this concentration indole has been implicated in many processes inducing acid resistance and the modulation of virulence. It has recently been shown that cell-associated indole transiently reaches a very high concentration (approx. 60 mM) during stationary phase entry, presumably because indole is being produced more rapidly than it can leave the cell. It is proposed that this indole pulse inhibits growth and cell division, causing the culture to enter stationary phase before nutrients are completely exhausted, with benefits for survival in long-term stationary phase. This study asks how E. coli cells rapidly upregulate indole production during stationary phase entry and why the indole pulse has a duration of only 10–15 min. We find that at the start of the pulse tryptophanase synthesis is triggered by glucose depletion and that this is correlates with the up-regulation of indole synthesis. The magnitude and duration of the resulting indole pulse are dependent upon the availability of exogenous tryptophan. Indole production stops when all the available tryptophan is depleted and the cell-associated indole equilibrates with the supernatant. PMID:26332864

  1. Direct regioselective oxidative cross-coupling of indoles with methyl ketones: a novel route to C3-dicarbonylation of indoles.

    PubMed

    Gao, Qinghe; Zhang, Jingjing; Wu, Xia; Liu, Shan; Wu, Anxin

    2015-01-01

    The first C3-dicarbonylation of indoles was realized through direct oxidative cross-coupling of indoles with methyl ketones in the presence of molecular iodine and pyrrolidine. This reaction constructed a highly efficient indolyl diketones scaffold, which might be regarded as a useful biological and pharmacological tool in the exploration of therapeutic A2BAR modulators. The use of inexpensive molecular iodine and pyrrolidine and a broad substrate scope make this protocol very practical. Preliminary mechanistic studies indicate that two paths are involved in this process.

  2. KO(t)Bu-Mediated Coupling of Indoles and [60]Fullerene: Transition-Metal-Free and General Synthesis of 1,2-(3-Indole)(hydro)[60]fullerenes.

    PubMed

    Li, Fei; Haj Elhussin, Imad Elddin; Li, Shengli; Zhou, Hongping; Wu, Jieying; Tian, Yupeng

    2015-11-01

    Direct coupling of indoles with C60 has been achieved for the first time. Transition-metal-free KO(t)Bu-mediated reaction of indoles to [60]fullerene has been developed as a practical and efficient method for the synthesis of various 1,2-(3-indole)(hydro)[60]fullerenes that are otherwise difficult to direct synthesize in an efficient and selective manner. This methodology tolerates sensitive functionalities such as chloro, ester, and nitro on indole and builds molecular complexity rapidly, with most reactions reaching completion in <1 h. A plausible reaction mechanism is proposed to explain the high regioselectivity at the 3-position of the indoles and the formation of 1,2-(3-indole)(hydro)[60]fullerenes.

  3. Tenualexin, other phytoalexins and indole glucosinolates from wild cruciferous species.

    PubMed

    Pedras, M Soledade C; Yaya, Estifanos E

    2014-06-01

    In general, the chemodiversity of phytoalexins, elicited metabolites involved in plant defense mechanisms against microbial pathogens, correlates with the biodiversity of their sources. In this work, the phytoalexins produced by four wild cruciferous species (Brassica tournefortii, Crambe abyssinica (crambe), Diplotaxis tenuifolia (sand rocket), and Diplotaxis tenuisiliqua (wall rocket)) were identified and quantified by HPLC with photodioarray and electrospray mass detectors. In addition, the production of indole glucosinolates, biosynthetic precursors of cruciferous phytoalexins, was evaluated. Tenualexin, (=2-(1,4-dimethoxy-1H-indol-3-yl)acetonitrile), the first cruciferous phytoalexin containing two MeO substituents in the indole ring, was isolated from D. tenuisiliqua, synthesized, and evaluated for antifungal activity. The phytoalexins cyclobrassinin and spirobrassinin were detected in B. tournefortii and C. abyssinica, whereas rutalexin and 4-methoxybrassinin were only found in B. tournefortii. D. tenuifolia, and D. tenuisiliqua produced 2-(1H-indol-3-yl)acetonitriles as phytoalexins. Because tenualexin appears to be one of the broad-range antifungals occurring in crucifers, it is suggested that D. tenuisiliqua may have disease resistance traits important to be incorporated in commercial breeding programs.

  4. Photolysis of Indole-Containing Mycotoxins to Fluorescent Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Photochemical reaction of the non-fluorescent mycotoxin cyclopiazonic acid (CPA) to fluorescent products was recently reported. Because CPA contains an indole moiety, believed to contribute to the fluorescence, it was of interest to determine whether the effect might be more generally applicable to ...

  5. Gas-phase electronic spectrum of the indole radical cation

    NASA Astrophysics Data System (ADS)

    Chalyavi, N.; Catani, K. J.; Sanelli, J. A.; Dryza, V.; Bieske, E. J.

    2015-08-01

    The visible and near-UV electronic spectrum of the indole radical cation is measured in the gas phase by photodissociation of indole+-Ar and indole+-He complexes in a tandem mass spectrometer. A series of resolved vibronic transitions extending from 610 to 460 nm are assigned to the D2 ← D0 band system, while weak transitions between 390 and 360 nm are assigned to the D3 ← D0 system, and a stronger, broad, unresolved absorption between 350 and 300 nm is attributed to the D4 ← D0 system. Time-dependent density functional theory calculations are used to assign vibronic structure of the D2 ← D0 band system, and show that the main active vibrational modes correspond to in-plane ring deformations. The strongest D2 ← D0 vibronic transitions of indole+-He do not correspond with any catalogued diffuse interstellar bands, even considering band displacements of up to 50 cm-1possibly caused by the attached He atom.

  6. Diastereoselective Synthesis of Biologically Active Cyclopenta[b]indoles.

    PubMed

    Santos, Marilia S; Fernandes, Daniara C; Rodrigues, Manoel T; Regiani, Thais; Andricopulo, Adriano D; Ruiz, Ana Lúcia T G; Vendramini-Costa, Débora B; de Carvalho, João E; Eberlin, Marcos N; Coelho, Fernando

    2016-08-01

    The cyclopenta[b]indole motif is present in several natural and synthetic biologically active compounds, being directly responsible for the biological effects some of them present. We described herein a three step sequence for the synthesis of cyclopenta[b]indoles with a great structural diversity. The method is based on an oxidative Michael addition of suitable indoles on the double bond of Morita-Baylis-Hillman adducts mediated by a hypervalent iodine reagent (IBX) to form β-ketoesters, which were chemoselectively reduced with NaBH4 in THF to give the corresponding β-hydroxy-esters. The diastereoisomeric mixture was then treated with a catalytic amount of triflic acid (20 mol %) to give cyclopenta[b]indoles with overall yields ranging from 8 to 73% (for 2 steps). The acid-catalyzed cyclization step gave the required heterocycles, via an intramolecular Friedel-Crafts reaction, with high diastereoselectivity, where only the trans product was observed. A mechanistic study monitored by ESI-(+)-MS was also conducted to collect evidence about the mechanism of this reaction. The new molecules herein synthesized were also evaluated against a panel of human cancer cells demonstrating a promising antitumoral profile. PMID:27403650

  7. Copper-catalyzed intermolecular asymmetric propargylic dearomatization of indoles.

    PubMed

    Shao, Wen; Li, He; Liu, Chuan; Liu, Chen-Jiang; You, Shu-Li

    2015-06-22

    The first copper-catalyzed intermolecular dearomatization of indoles by an asymmetric propargylic substitution reaction was developed. This method provides a highly efficient synthesis of versatile furoindoline and pyrroloindoline derivatives containing a quaternary carbon stereogenic center and a terminal alkyne moiety with up to 86 % yield and 98 % ee. PMID:25968474

  8. Diastereoselective Synthesis of Biologically Active Cyclopenta[b]indoles.

    PubMed

    Santos, Marilia S; Fernandes, Daniara C; Rodrigues, Manoel T; Regiani, Thais; Andricopulo, Adriano D; Ruiz, Ana Lúcia T G; Vendramini-Costa, Débora B; de Carvalho, João E; Eberlin, Marcos N; Coelho, Fernando

    2016-08-01

    The cyclopenta[b]indole motif is present in several natural and synthetic biologically active compounds, being directly responsible for the biological effects some of them present. We described herein a three step sequence for the synthesis of cyclopenta[b]indoles with a great structural diversity. The method is based on an oxidative Michael addition of suitable indoles on the double bond of Morita-Baylis-Hillman adducts mediated by a hypervalent iodine reagent (IBX) to form β-ketoesters, which were chemoselectively reduced with NaBH4 in THF to give the corresponding β-hydroxy-esters. The diastereoisomeric mixture was then treated with a catalytic amount of triflic acid (20 mol %) to give cyclopenta[b]indoles with overall yields ranging from 8 to 73% (for 2 steps). The acid-catalyzed cyclization step gave the required heterocycles, via an intramolecular Friedel-Crafts reaction, with high diastereoselectivity, where only the trans product was observed. A mechanistic study monitored by ESI-(+)-MS was also conducted to collect evidence about the mechanism of this reaction. The new molecules herein synthesized were also evaluated against a panel of human cancer cells demonstrating a promising antitumoral profile.

  9. Aniline is an inducer, and not a precursor, for indole derivatives in Rubrivivax benzoatilyticus JA2.

    PubMed

    Mujahid, Mohammed; Sasikala, Ch; Ramana, Ch V

    2014-01-01

    Rubrivivax benzoatilyticus JA2 and other anoxygenic photosynthetic bacteria produce indole derivatives when exposed to aniline, a xenobiotic compound. Though this phenomenon has been reported previously, the role of aniline in the production of indoles is still a biochemical riddle. The present study aims at understanding the specific role of aniline (as precursor or stimulator) in the production of indoles and elucidating the biochemical pathway of indoles in aniline-exposed cells by using stable isotope approaches. Metabolic profiling revealed tryptophan accumulation only in aniline exposed cells along with indole 3-acetic acid (IAA) and indole 3-aldehyde (IAld), the two major catabolites of tryptophan. Deuterium labelled aniline feeding studies revealed that aniline is not a precursor of indoles in strain JA2. Further, production of indoles only in aniline-exposed cells suggests that aniline is an indoles stimulator. In addition, production of indoles depended on the presence of a carbon source, and production enhanced when carbon sources were added to the culture. Isotope labelled fumarate feeding identified, fumarate as the precursor of indole, indicating de novo synthesis of indoles. Glyphosate (shikimate pathway inhibitor) inhibited the indoles production, accumulation of tryptophan, IAA and IAld indicating that indoles synthesis in strain JA2 occurs via the de novo shikimate pathway. The up-regulation of anthranilate synthase gene and induction of anthranilate synthase activity correlated well with tryptophan production in strain JA2. Induction of tryptophan aminotransferase and tryptophan 2-monooxygenase activities corroborated well with IAA levels, suggesting that tryptophan catabolism occurs simultaneously in aniline exposed cells. Our study demonstrates that aniline (stress) stimulates tryptophan/indoles synthesis via the shikimate pathway by possibly modulating the metabolic pathway.

  10. Conformational flexibility in small biomolecules: tryptamine and 3-indole-propionic acid

    NASA Astrophysics Data System (ADS)

    Carney, Joel R.; Zwier, Timothy S.

    2001-06-01

    A combined experimental and theoretical study is used to probe the conformational preferences of two flexible tryptophan analogs, tryptamine (TRA) and 3-indole-propionic acid (IPA). Resonant ion-dip infrared spectroscopy provides infrared spectra of single conformations of these molecules free from interference from one another. Density functional theory Becke3LYP calculations are used to predict relative energies for the conformers, while relaxed potential energy scans determine the barrier heights separating the minima. The different forms of the potential energy surfaces along the flexible coordinates for the two molecules provide a coherent explanation for the observed conformational preferences.

  11. Indole molecules as inhibitors of tubulin polymerization: potential new anticancer agents, an update (2013-2015).

    PubMed

    Patil, Renukadevi; Patil, Siddappa A; Beaman, Kenneth D; Patil, Shivaputra A

    2016-07-01

    Discovery of new indole-based tubulin polymerization inhibitors will continue to dominate the synthetic efforts of many medicinal chemists working in the field. The indole ring system is an essential part of several tubulin inhibitors identified in the recent years. The present review article will update the synthesis, anticancer and tubulin inhibition activities of several important new indole classes such as 2-phenylindoles (28, 29 & 30), oxindoles (35 & 38), indole-3-acrylamides (44), indolines (46), aroylindoles (49), carbozoles (75, 76 & 82), azacarbolines (87) and annulated indoles (100-105). PMID:27476704

  12. Mixed estrogenic and anti-estrogenic activities of yuehchukene--a bis-indole alkaloid.

    PubMed

    Ng, P C; Ho, D D; Ng, K H; Kong, Y C; Cheng, K F; Stone, G

    1994-10-13

    Anti-estrogenic effects of yuehchukene were observed in rat uterotrophic, mice vaginal smear and MCF-7 cell growth assays. Whereas yuehchukene per se was estrogenic in these bioassay models, the co-administration of yuehchukene and an optimal dose of 3,17 beta-estradiol (estradiol) could attenuate the maximum estrogenic response due to estradiol alone. The anti-estrogenic effect of yuehchukene in rat uterine hypertrophy was corroborated by a parallel attenuation of ornithine decarboxylase activity in these tissues. Yuehchukene binds to rat, mice and MCF-7 cell estrogen receptors with a relative binding affinity of 1/150 to 1/300. This binding affinity was positively related to estrogenicity as determined by uterotrophic assay and MCF-7 cell growth. However, this estrogenic effect did not correlate with the degree of competitive receptor binding by a weaker agonist. Indole-3-carbinol and methylbutadienylindole could induce ethoxyresorufin O-deethylase and estradiol-2-hydroxylase in rat liver and MCF-7 cells. It is postulated that the 'free' indole moiety of yuehchukene could possess similar induction activity. Thus yuehchukene may have a dual pharmacological function. While the intact molecule is a weak estrogen, the 'free' indole moiety in yuehchukene may induce an enhancement of estradiol-2-hydroxylase, thus terminating the biological activity of the endogenous estrogen pool. There is obvious benefit in attenuating the estrogen level in post-menopausal breast cancer patients without going directly to the use of tamoxifen or aromatase inhibitor. Yuehchukene may serve this purpose. In this context, the pharmacological evaluation of a hydroxylated yuehchukene analogue and the anti-estrogenic effect of methylbutadienylindole acid-condensation products are now being studied in earnest.

  13. Tremorgenic indole alkaloids potently inhibit smooth muscle high-conductance calcium-activated potassium channels.

    PubMed

    Knaus, H G; McManus, O B; Lee, S H; Schmalhofer, W A; Garcia-Calvo, M; Helms, L M; Sanchez, M; Giangiacomo, K; Reuben, J P; Smith, A B

    1994-05-17

    Tremorgenic indole alkaloids produce neurological disorders (e.g., staggers syndromes) in ruminants. The mode of action of these fungal mycotoxins is not understood but may be related to their known effects on neurotransmitter release. To determine whether these effects could be due to inhibition of K+ channels, the interaction of various indole diterpenes with high-conductance Ca(2+)-activated K+ (maxi-K) channels was examined. Paspalitrem A, paspalitrem C, aflatrem, penitrem A, and paspalinine inhibit binding of [125I]charybdotoxin (ChTX) to maxi-K channels in bovine aortic smooth muscle sarcolemmal membranes. In contrast, three structurally related compounds, paxilline, verruculogen, and paspalicine, enhanced toxin binding. As predicted from the binding studies, covalent incorporation of [125I]ChTX into the 31-kDa subunit of the maxi-K channel was blocked by compounds that inhibit [125I]ChTX binding and enhanced by compounds that stimulate [125I]ChTX binding. Modulation of [125I]ChTX binding was due to allosteric mechanisms. Despite their different effects on binding of [125I]ChTX to maxi-K channels, all compounds potently inhibited maxi-K channels in electrophysiological experiments. Other types of voltage-dependent or Ca(2+)-activated K+ channels examined were not affected. Chemical modifications of paxilline indicate a defined structure-activity relationship for channel inhibition. Paspalicine, a deshydroxy analog of paspalinine lacking tremorgenic activity, also potently blocked maxi-K channels. Taken together, these data suggest that indole diterpenes are the most potent nonpeptidyl inhibitors of maxi-K channels identified to date. Some of their pharmacological properties could be explained by inhibition of maxi-K channels, although tremorgenicity may be unrelated to channel block. PMID:7514038

  14. Explaining level inversion of the La and Lb States of indole and indole derivatives in polar solvents.

    PubMed

    Brisker-Klaiman, Daria; Dreuw, Andreas

    2015-06-01

    Quantum chemical methods are used to study the solvent effects on the spectra of indole and a series of methyl-substituted indoles. We focus on the low-lying L(a) and L(b) states and study their interplay. We find that the solvent mainly affects emission from the L(a) state, by stabilizing its energy in its excited-state geometry. The stabilization of the L(a) state increases with increasing solvent polarity, which accounts for the large fluorescence shift observed in indoles and leads to an inversion in the nature of the lowest emitting state, from L(b) in vacuum to L(a) in water. To the best of our knowledge, this is the first theoretical evidence for level inversion done for a series of indoles. The underlying mechanism of level inversion is analyzed in detail. The usual interpretation of level inversion in terms of their static dipole moment is criticized and an improved predictive measurement is suggested.

  15. Systematic investigation and microbial community profile of indole degradation processes in two aerobic activated sludge systems

    PubMed Central

    Ma, Qiao; Qu, Yuanyuan; Zhang, Xuwang; Liu, Ziyan; Li, Huijie; Zhang, Zhaojing; Wang, Jingwei; Shen, Wenli; Zhou, Jiti

    2015-01-01

    Indole is widely spread in various environmental matrices. Indole degradation by bacteria has been reported previously, whereas its degradation processes driven by aerobic microbial community were as-yet unexplored. Herein, eight sequencing batch bioreactors fed with municipal and coking activated sludges were constructed for aerobic treatment of indole. The whole operation processes contained three stages, i.e. stage I, glucose and indole as carbon sources; stage II, indole as carbon source; and stage III, indole as carbon and nitrogen source. Indole could be completely removed in both systems. Illumina sequencing revealed that alpha diversity was reduced after indole treatment and microbial communities were significantly distinct among the three stages. At genus level, Azorcus and Thauera were dominant species in stage I in both systems, while Alcaligenes, Comamonas and Pseudomonas were the core genera in stage II and III in municipal sludge system, Alcaligenes and Burkholderia in coking sludge system. In addition, four strains belonged to genera Comamonas, Burkholderia and Xenophilus were isolated using indole as sole carbon source. Burkholderia sp. IDO3 could remove 100 mg/L indole completely within 14 h, the highest degradation rate to date. These findings provide novel information and enrich our understanding of indole aerobic degradation processes. PMID:26657581

  16. Isolation of Indole Utilizing Bacteria Arthrobacter sp. and Alcaligenes sp. From Livestock Waste.

    PubMed

    Kim, Minsu; Lee, Jin-Hyung; Kim, Eonmi; Choi, Hyukjae; Kim, Younghoon; Lee, Jintae

    2016-06-01

    Indole is an interspecies and interkingdom signaling molecule widespread in different environmental compartment. Although multifaceted roles of indole in different biological systems have been established, little information is available on the microbial utilization of indole in the context of combating odor emissions from different types of waste. The present study was aimed at identifying novel bacteria capable of utilizing indole as the sole carbon and energy source. From the selective enrichment of swine waste and cattle feces, we identified Gram-positive and Gram-negative bacteria belonging to the genera Arthrobacter and Alcaligenes. Bacteria belonging to the genus Alcaligenes showed higher rates of indole utilization than Arthrobacter. Indole at 1.0 mM for growth was completely utilized by Alcaligenes sp. in 16 h. Both strains produced two intermediates, anthranilic acid and isatin, during aerobic indole metabolism. These isolates were also able to grow on several indole derivatives. Interestingly, an adaptive response in terms of a decrease in cell size was observed in both strains in the presence of indole. The present study will help to explain the degradation of indole by different bacteria and also the pathways through which it is catabolized. Furthermore, these novel bacterial isolates could be potentially useful for the in situ attenuation of odorant indole and its derivatives emitted from different types of livestock waste. PMID:27570307

  17. Formation of Volatile Tea Constituent Indole During the Oolong Tea Manufacturing Process.

    PubMed

    Zeng, Lanting; Zhou, Ying; Gui, Jiadong; Fu, Xiumin; Mei, Xin; Zhen, Yunpeng; Ye, Tingxiang; Du, Bing; Dong, Fang; Watanabe, Naoharu; Yang, Ziyin

    2016-06-22

    Indole is a characteristic volatile constituent in oolong tea. Our previous study indicated that indole was mostly accumulated at the turn over stage of oolong tea manufacturing process. However, formation of indole in tea leaves remains unknown. In this study, one tryptophan synthase α-subunit (TSA) and three tryptophan synthase β-subunits (TSBs) from tea leaves were isolated, cloned, sequenced, and functionally characterized. Combination of CsTSA and CsTSB2 recombinant protein produced in Escherichia coli exhibited the ability of transformation from indole-3-glycerol phosphate to indole. CsTSB2 was highly expressed during the turn over process of oolong tea. Continuous mechanical damage, simulating the turn over process, significantly enhanced the expression level of CsTSB2 and amount of indole. These suggested that accumulation of indole in oolong tea was due to the activation of CsTSB2 by continuous wounding stress from the turn over process. Black teas contain much less indole, although wounding stress is also involved in the manufacturing process. Stable isotope labeling indicated that tea leaf cell disruption from the rolling process of black tea did not lead to the conversion of indole, but terminated the synthesis of indole. Our study provided evidence concerning formation of indole in tea leaves for the first time. PMID:27263428

  18. 3-Methylindole (skatole) and indole production by mixed populations of pig fecal bacteria.

    PubMed Central

    Jensen, M T; Cox, R P; Jensen, B B

    1995-01-01

    Pig fecal slurries converted added L-tryptophan either to indole without detectable intermediates or to 3-methylindole (skatole) via indole-3-acetate. The initial rate of production of 3-methylindole was greatest at pH 6.5 and less at pH 5.0 and 8.0; the initial rates of indole production were similar at pH 6.5 and 8.0. More than 80% of the tryptophan added was converted to 3-methylindole at pH 5.0; at pH 8.0 85% was converted to indole. Both pathways had similar Km values for tryptophan and similar maximum rates. Indole-3-carbinol and indole-3-acetonitrile completely inhibited the production of 3-methylindole from indole-3-acetate but had no effect on the reactions involving L-tryptophan. PMID:7487051

  19. A Rapid and Specific Method for the Detection of Indole in Complex Biological Samples

    PubMed Central

    Chappell, Cynthia; Gonzales, Christopher; Okhuysen, Pablo

    2015-01-01

    Indole, a bacterial product of tryptophan degradation, has a variety of important applications in the pharmaceutical industry and is a biomarker in biological and clinical specimens. Yet, specific assays to quantitate indole are complex and require expensive equipment and a high level of training. Thus, indole in biological samples is often estimated using the simple and rapid Kovács assay, which nonspecifically detects a variety of commonly occurring indole analogs. We demonstrate here a sensitive, specific, and rapid method for measuring indole in complex biological samples using a specific reaction between unsubstituted indole and hydroxylamine. We compared the hydroxylamine-based indole assay (HIA) to the Kovács assay and confirmed that the two assays are capable of detecting microgram amounts of indole. However, the HIA is specific to indole and does not detect other naturally occurring indole analogs. We further demonstrated the utility of the HIA in measuring indole levels in clinically relevant biological materials, such as fecal samples and bacterial cultures. Mean and median fecal indole concentrations from 53 healthy adults were 2.59 mM and 2.73 mM, respectively, but varied widely (0.30 mM to 6.64 mM) among individuals. We also determined that enterotoxigenic Escherichia coli strain H10407 produces 3.3 ± 0.22 mM indole during a 24-h period in the presence of 5 mM tryptophan. The sensitive and specific HIA should be of value in a variety of settings, such as the evaluation of various clinical samples and the study of indole-producing bacterial species in the gut microbiota. PMID:26386049

  20. Indole Alkaloids from Fischerella Inhibit Vertebrate Development in the Zebrafish (Danio rerio) Embryo Model

    PubMed Central

    Walton, Katherine; Gantar, Miroslav; Gibbs, Patrick D. L.; Schmale, Michael C.; Berry, John P.

    2014-01-01

    Cyanobacteria are recognized producers of toxic or otherwise bioactive metabolite associated, in particular, with so-called “harmful algal blooms” (HABs) and eutrophication of freshwater systems. In the present study, two apparently teratogenic indole alkaloids from a freshwater strain of the widespread cyanobacterial genus, Fischerella (Stigonemataceae), were isolated by bioassay-guided fractionation, specifically using the zebrafish (Danio rerio) embryo, as a model of vertebrate development. The two alkaloids include the previously known 12-epi-hapalindole H isonitrile (1), and a new nitrile-containing variant, 12-epi-ambiguine B nitrile (2). Although both compounds were toxic to developing embryos, the former compound was shown to be relatively more potent, and to correlate best with the observed embryo toxicity. Related indole alkaloids from Fischerella, and other genera in the Stigonemataceae, have been widely reported as antimicrobial compounds, specifically in association with apparent allelopathy. However, this is the first report of their vertebrate toxicity, and the observed teratogenicity of these alkaloids supports a possible contribution to the toxicity of this widespread cyanobacterial family, particularly in relation to freshwater HABs and eutrophication. PMID:25533520

  1. Impaired mechanical response of an EDMD mutation leads to motility phenotypes that are repaired by loss of prenylation.

    PubMed

    Zuela, Noam; Zwerger, Monika; Levin, Tal; Medalia, Ohad; Gruenbaum, Yosef

    2016-05-01

    There are roughly 14 distinct heritable autosomal dominant diseases associated with mutations in lamins A/C, including Emery-Dreifuss muscular dystrophy (EDMD). The mechanical model proposes that the lamin mutations change the mechanical properties of muscle nuclei, leading to cell death and tissue deterioration. Here, we developed an experimental protocol that analyzes the effect of disease-linked lamin mutations on the response of nuclei to mechanical strain in living Caenorhabditis elegans We found that the EDMD mutation L535P disrupts the nuclear mechanical response specifically in muscle nuclei. Inhibiting lamin prenylation rescued the mechanical response of the EDMD nuclei, reversed the muscle phenotypes and led to normal motility. The LINC complex and emerin were also required to regulate the mechanical response of C. elegans nuclei. This study provides evidence to support the mechanical model and offers a potential future therapeutic approach towards curing EDMD.

  2. In Vitro and In Vivo Antiplasmodial Activities of Risedronate and Its Interference with Protein Prenylation in Plasmodium falciparum▿†

    PubMed Central

    Jordão, Fabiana Morandi; Saito, Alexandre Yukio; Miguel, Danilo Ciccone; de Jesus Peres, Valnice; Kimura, Emília Akemi; Katzin, Alejandro Miguel

    2011-01-01

    The increasing resistance of malarial parasites to almost all available drugs calls for the identification of new compounds and the detection of novel targets. Here, we establish the antimalarial activities of risedronate, one of the most potent bisphosphonates clinically used to treat bone resorption diseases, against blood stages of Plasmodium falciparum (50% inhibitory concentration [IC50] of 20.3 ± 1.0 μM). We also suggest a mechanism of action for risedronate against the intraerythrocytic stage of P. falciparum and show that protein prenylation seems to be modulated directly by this drug. Risedronate inhibits the transfer of the farnesyl pyrophosphate group to parasite proteins, an effect not observed for the transfer of geranylgeranyl pyrophosphate. Our in vivo experiments further demonstrate that risedronate leads to an 88.9% inhibition of the rodent parasite Plasmodium berghei in mice on the seventh day of treatment; however, risedronate treatment did not result in a general increase of survival rates. PMID:21357292

  3. Impaired mechanical response of an EDMD mutation leads to motility phenotypes that are repaired by loss of prenylation.

    PubMed

    Zuela, Noam; Zwerger, Monika; Levin, Tal; Medalia, Ohad; Gruenbaum, Yosef

    2016-05-01

    There are roughly 14 distinct heritable autosomal dominant diseases associated with mutations in lamins A/C, including Emery-Dreifuss muscular dystrophy (EDMD). The mechanical model proposes that the lamin mutations change the mechanical properties of muscle nuclei, leading to cell death and tissue deterioration. Here, we developed an experimental protocol that analyzes the effect of disease-linked lamin mutations on the response of nuclei to mechanical strain in living Caenorhabditis elegans We found that the EDMD mutation L535P disrupts the nuclear mechanical response specifically in muscle nuclei. Inhibiting lamin prenylation rescued the mechanical response of the EDMD nuclei, reversed the muscle phenotypes and led to normal motility. The LINC complex and emerin were also required to regulate the mechanical response of C. elegans nuclei. This study provides evidence to support the mechanical model and offers a potential future therapeutic approach towards curing EDMD. PMID:27034135

  4. Study on the biosynthesis of dolichol in yeast: recognition of the prenyl chain length in polyprenol reduction.

    PubMed

    Tateyama, S; Sagami, H

    2001-02-01

    We synthesized three water-soluble biotin-tagged compounds with different prenyl chain lengths, biotinylated farnesal (BF), biotinylated C(55)-polyprenal (BP55), and biotinylated C(80)-polyprenal (BP80), and examined their effects on in vitro dolichol synthesis from farnesyl diphosphate. BF and BP55 did not affect the dolichol synthesis, whereas BP80 inhibited the reduction pathway from polyprenol to dolichol, accompanied by a decrease in the entire polyprenol and dolichol synthesis. Comparison of BP80 with eighteen detergents, including Triton X-100, CHAPS, octylglucoside, deoxycholate, and Tween 80, revealed the specific effect of BP80 on the reduction pathway. On SDS-polyacrylamide gel electrophoresis, BP80 was detected in an associated form with a 50 kDa protein. These results suggest that the reduction of polyprenol to dolichol in the dolichol biosynthetic pathway proceeds with the recognition of the polyprenol chain length by a 50 kDa protein.

  5. Avertoxins A-D, Prenyl Asteltoxin Derivatives from Aspergillus versicolor Y10, an Endophytic Fungus of Huperzia serrata.

    PubMed

    Wang, Mingzi; Sun, Mingwei; Hao, Huilin; Lu, Chunhua

    2015-12-24

    Aspergillus versicolor Y10 is an endophytic fungus isolated from Huperzia serrata, which showed inhibitory activity against acetylcholinesterase. An investigation of the chemical constituents of Y10 led to the isolation of four new prenylated asteltoxin derivatives, named avertoxins A-D (2-5), together with the known mycotoxin asteltoxin (1). In the present study, we report structure elucidation for 2-5 and the revised NMR assignments for asteltoxin and demonstrated that avertoxin B (3) is an active inhibitor against human acetylcholinesterase with the IC50 value of 14.9 μM (huperzine A as the positive control had an IC50 of 0.6 μM). In addition, the cytotoxicity of asteltoxin (1) and avertoxins A-D (2-5) against MDA-MB-231, HCT116, and HeLa cell lines was evaluated. PMID:26618211

  6. Prenylated flavonoids from the heartwood of Artocarpus communis with inhibitory activity on lipopolysaccharide-induced nitric oxide production.

    PubMed

    Han, Ah-Reum; Kang, You-Jin; Windono, Tri; Lee, Sang Kook; Seo, Eun-Kyoung

    2006-04-01

    A new prenylated chalcone, 3' ',3' '-dimethylpyrano[3',4']2,4,2'-trihydroxychalcone (1), was isolated from the heartwood of Artocarpus communis. Two flavonoid derivatives, (-)-cycloartocarpin (9) and (-)-cudraflavone A (10), were isolated as new isomers. In addition, eight known flavonoids, isobacachalcone (2), morachalcone A (3), gemichalcones B (4) and C (5), artocarpin (6), cudraflavone C (7), licoflavone C (8), and (2S)-euchrenone a(7) (11), were isolated and identified from this plant for the first time. Compounds 1-4, 6, and 11 exhibited potent inhibitory activity on nitric oxide production in RAW264.7 LPS-activated mouse macrophage cells with IC(50) values of 18.8, 6.4, 16.4, 9.3, 18.7, and 12.3 microM, respectively. The structure of compound 1 was elucidated by spectroscopic data analysis, including 1D and 2D NMR experiments.

  7. Crystal structure of rac-3-[2,3-bis­(phenyl­sulfan­yl)-3H-indol-3-yl]propanoic acid

    PubMed Central

    Noland, Wayland E.; Brown, Christopher D.; Bisel, Amanda M.; Schneerer, Andrew K.; Tritch, Kenneth J.

    2015-01-01

    The title compound, C23H19NO2S2, was obtained as an unexpected regioisomer from an attempted synthesis of an inter­mediate for a substituent-effect study on ergot alkaloids. This is the first report of a 1H-indole mono­thio­ating at the 2- and 3-positions to give a 3H-indole. In the crystal, the acid H atom is twisted roughly 180° from the typical carb­oxy conformation and forms centrosymmetric O—H⋯N hydrogen-bonded dimers with the indole N atom of an inversion-related mol­ecule. Together with a weak C—H⋯O hydrogen bond involving the carbonyl O atom, chains are formed along [100]. PMID:26594523

  8. Crystal structure of rac-3-[2,3-bis-(phenyl-sulfan-yl)-3H-indol-3-yl]propanoic acid.

    PubMed

    Noland, Wayland E; Brown, Christopher D; Bisel, Amanda M; Schneerer, Andrew K; Tritch, Kenneth J

    2015-11-01

    The title compound, C23H19NO2S2, was obtained as an unexpected regioisomer from an attempted synthesis of an inter-mediate for a substituent-effect study on ergot alkaloids. This is the first report of a 1H-indole mono-thio-ating at the 2- and 3-positions to give a 3H-indole. In the crystal, the acid H atom is twisted roughly 180° from the typical carb-oxy conformation and forms centrosymmetric O-H⋯N hydrogen-bonded dimers with the indole N atom of an inversion-related mol-ecule. Together with a weak C-H⋯O hydrogen bond involving the carbonyl O atom, chains are formed along [100]. PMID:26594523

  9. Expedient preparation of nazlinine and a small library of indole alkaloids using flow electrochemistry as an enabling technology.

    PubMed

    Kabeshov, Mikhail A; Musio, Biagia; Murray, Philip R D; Browne, Duncan L; Ley, Steven V

    2014-09-01

    An expedient synthesis of the indole alkaloid nazlinine is reported. Judicious choice of flow electrochemistry as an enabling technology has permitted the rapid generation of a small library of unnatural relatives of this biologically active molecule. Furthermore, by conducting the key electrochemical Shono oxidation in a flow cell, the loading of electrolyte can be significantly reduced to 20 mol % while maintaining a stable, broadly applicable process.

  10. Progress in palladium-based catalytic systems for the sustainable synthesis of annulated heterocycles: a focus on indole backbones.

    PubMed

    Platon, Mélanie; Amardeil, Régine; Djakovitch, Laurent; Hierso, Jean-Cyrille

    2012-05-21

    A survey highlighting the most recent palladium catalytic systems produced and their performances for progress in direct synthesis of indole backbones by heterocarbocyclization of reactive substrates is provided. The discussion is developed in relation with the principles of sustainable chemistry concerning atom and mass economy. In this respect, the general convergent character of the syntheses is of particular interest (one-pot, domino, cascade or tandem reactions), and the substrates accessibility and reactivity, together with the final waste production, are also important. This critical review clearly indicates that the development of ligand chemistry, mainly phosphines and carbenes, in the last few decades gave a significant impetus to powerful functionalization of indoles at virtually all positions of this ubiquitous backbone (118 references). PMID:22447100

  11. Progress in palladium-based catalytic systems for the sustainable synthesis of annulated heterocycles: a focus on indole backbones.

    PubMed

    Platon, Mélanie; Amardeil, Régine; Djakovitch, Laurent; Hierso, Jean-Cyrille

    2012-05-21

    A survey highlighting the most recent palladium catalytic systems produced and their performances for progress in direct synthesis of indole backbones by heterocarbocyclization of reactive substrates is provided. The discussion is developed in relation with the principles of sustainable chemistry concerning atom and mass economy. In this respect, the general convergent character of the syntheses is of particular interest (one-pot, domino, cascade or tandem reactions), and the substrates accessibility and reactivity, together with the final waste production, are also important. This critical review clearly indicates that the development of ligand chemistry, mainly phosphines and carbenes, in the last few decades gave a significant impetus to powerful functionalization of indoles at virtually all positions of this ubiquitous backbone (118 references).

  12. Azospirillum brasilense Produces the Auxin-Like Phenylacetic Acid by Using the Key Enzyme for Indole-3-Acetic Acid Biosynthesis

    PubMed Central

    Somers, E.; Ptacek, D.; Gysegom, P.; Srinivasan, M.; Vanderleyden, J.

    2005-01-01

    An antimicrobial compound was isolated from Azospirillum brasilense culture extracts by high-performance liquid chromatography and further identified by gas chromatography-mass spectrometry as the auxin-like molecule, phenylacetic acid (PAA). PAA synthesis was found to be mediated by the indole-3-pyruvate decarboxylase, previously identified as a key enzyme in indole-3-acetic acid (IAA) production in A. brasilense. In minimal growth medium, PAA biosynthesis by A. brasilense was only observed in the presence of phenylalanine (or precursors thereof). This observation suggests deamination of phenylalanine, decarboxylation of phenylpyruvate, and subsequent oxidation of phenylacetaldehyde as the most likely pathway for PAA synthesis. Expression analysis revealed that transcription of the ipdC gene is upregulated by PAA, as was previously described for IAA and synthetic auxins, indicating a positive feedback regulation. The synthesis of PAA by A. brasilense is discussed in relation to previously reported biocontrol properties of A. brasilense. PMID:15812004

  13. Transport and metabolism of indole-3-acetyl-myo-inositol-galactoside in seedlings of Zea mays

    NASA Technical Reports Server (NTRS)

    Komoszynski, M.; Bandurski, R. S.

    1986-01-01

    Indole-3-acetyl-myo-inositol galactoside labeled with 3H in the indole and 14C in the galactose moieties was applied to kernels of 5 day old germinating seedlings of Zea mays. Indole-3-acetyl-myo-inositol galactoside was not transported into either the shoot or root tissue as the intact molecule but was instead hydrolyzed to yield [3H]indole-3-acetyl-myo-inositol and [3H]indole-3-acetic acid which were then transported to the shoot with little radioactivity going to the root. With certain assumption concerning the equilibration of applied [3H]indole-3-acetyl-myo-inositol-[U-14C]galactose with the endogenous pool, it may be concluded that indole-3-acetyl-myo-inositol galactoside in the endosperm supplies about 2 picomoles per plant per hour of indole-3-acetyl-myo-inositol and 1 picomole per plant per hour of indole-3-acetic acid to the shoot and thus is comparable to indole-3-acetyl-myo-inositol as a source of indole-acetic acid for the shoot. Quantitative estimates of the amount of galactose in the kernels suggest that [3H]indole-3-acetyl-myo-inositol-[14C]galactose is hydrolyzed after the compound leaves the endosperm but before it reaches the shoot. In addition, [3H]indole-3-acetyl-myo-inositol-[14C]galactose supplies appreciable amounts of 14C to the shoot and both 14C and 3H to an uncharacterized insoluble fraction of the endosperm.

  14. Synthesis of an indole analog of folic acid

    SciTech Connect

    Shengeliya, M.S.; Avramenko, V.G.; Kuleshova, L.N.; Ershova, Yu.A.; Chernov, V.A.; Surorov, N.N.

    1987-06-01

    The authors study the replacement of the p-aminobenzoic acid (PABA) moiety. The authors synthesized an indole analog of folic acid, namely dimethyl N-(5-(2'-amino-4'-oxo-6'-pteridinyl)methylaminoindol-2-yl)glutamate. The physicochemical properties and the chemical shifts in the PMR spectra of the compounds obtained are shown. The examination of the compound for antitumor activity was carried out using rats and mice.

  15. Indolent T-cell lymphoproliferative disease of the gastrointestinal tract

    PubMed Central

    Perry, Anamarija M.; Warnke, Roger A.; Hu, Qinglong; Gaulard, Philippe; Copie-Bergman, Christiane; Alkan, Serhan; Wang, Huan-You; Cheng, Jason X.; Bacon, Chris M.; Delabie, Jan; Ranheim, Erik; Kucuk, Can; Hu, XiaoZhou; Weisenburger, Dennis D.

    2013-01-01

    Primary gastrointestinal (GI) T-cell lymphoma is an infrequent and aggressive disease. However, rare indolent clonal T-cell proliferations in the GI tract have been described. We report 10 cases of GI involvement by an indolent T-cell lymphoproliferative disease, including 6 men and 4 women with a median age of 48 years (range, 15-77 years). Presenting symptoms included abdominal pain, diarrhea, vomiting, food intolerance, and dyspepsia. The lesions involved oral cavity, esophagus, stomach, small intestine, and colon. The infiltrates were dense, but nondestructive, and composed of small, mature-appearing lymphoid cells. Eight cases were CD4−/CD8+, 1 was CD4+/CD8−, and another was CD4−/CD8−. T-cell receptor-γ chain gene rearrangement identified a clonal population in all 10 cases. There was no evidence of STAT3 SH2 domain mutation or activation. Six patients received chemotherapy because of an initial diagnosis of peripheral T-cell lymphoma, with little or no response, whereas the other 4 were followed without therapy. After a median follow-up of 38 months (range, 9-175 months), 9 patients were alive with persistent disease and 1 was free of disease. We propose the name “indolent T-LPD of the GI tract” for these lesions that can easily be mistaken for intestinal peripheral T-cell lymphoma, and lead to aggressive therapy. PMID:24009234

  16. Indolent Small Intestinal CD4+ T-cell Lymphoma Is a Distinct Entity with Unique Biologic and Clinical Features

    PubMed Central

    Margolskee, Elizabeth; Jobanputra, Vaidehi; Lewis, Suzanne K.; Alobeid, Bachir; Green, Peter H. R.; Bhagat, Govind

    2013-01-01

    Enteropathy-associated T-cell lymphomas (EATL) are rare and generally aggressive types of peripheral T-cell lymphomas. Rare cases of primary, small intestinal CD4+ T-cell lymphomas with indolent behavior have been described, but are not well characterized. We describe morphologic, phenotypic, genomic and clinical features of 3 cases of indolent primary small intestinal CD4+ T-cell lymphomas. All patients presented with diarrhea and weight loss and were diagnosed with celiac disease refractory to a gluten free diet at referring institutions. Small intestinal biopsies showed crypt hyperplasia, villous atrophy and a dense lamina propria infiltrate of small-sized CD4+ T-cells often with CD7 downregulation or loss. Gastric and colonic involvement was also detected (n = 2 each). Persistent, clonal TCRβ gene rearrangement products were detected at multiple sites. SNP array analysis showed relative genomic stability, early in disease course, and non-recurrent genetic abnormalities, but complex changes were seen at disease transformation (n = 1). Two patients are alive with persistent disease (4.6 and 2.5 years post-diagnosis), despite immunomodulatory therapy; one died due to bowel perforation related to large cell transformation 11 years post-diagnosis. Unique pathobiologic features warrant designation of indolent small intestinal CD4+ T-cell lymphoma as a distinct entity, greater awareness of which would avoid misdiagnosis as EATL or an inflammatory disorder, especially celiac disease. PMID:23861889

  17. Synthesis and D(2)-like binding affinity of new derivatives of N-(1-ethyl-2-pyrrolidinylmethyl)-4,5-dihydro-1H-benzo[g]indole-3-carboxamide and related 4H-[1]benzothiopyrano[4,3-b]pyrrole and 5,6-dihydro-4H-benzo[6,7]cyclohepta[b]pyrrole-3-carboxamide analogues.

    PubMed

    Pinna, Gérard A; Pirisi, Maria A; Chelucci, Giorgio; Mussinu, Jean M; Murineddu, Gabriele; Loriga, Giovanni; D'Aquila, Paolo S; Serra, Gino

    2002-08-01

    Various new derivatives and structural analogues of N-(1-ethyl-2-pyrrolidinylmethyl)-4,5-dihydro-1H-benzo[g]indole-3-carboxamide (2a), a representative term of a series of 2-aminomethylpyrrolidinyl derived 4,5-dihydrobenzo[g]indolcarboxamides with good D(2)-like affinity, were synthesized and evaluated for their ability to bind to dopamine D(2)-like receptors in vitro. The structural contribution to D(2)-like receptor binding of the 4,5-dihydrobenzo[g]indole portion of the molecule was examined. From these studies, compound 2k, 2-chloro-N-(1-ethyl-2-pyrrolidinylmethyl)-5,6-dihydro-4H-benzo[6,7]cyclohepta[b]pyrrole-3-carboxamide, was found to possess a potent affinity for D(2)-like receptors. Behavioural tests in rats have shown that this compound reduces the hyperactivity induced by amphetamine, a property shared by all antipsychotic drugs, at a dose which failed to induce catalepsy, an effect which is predictive of extrapyramidal side effects in humans. The other compounds demonstrated moderate (2c, 2h, and 2j) or no affinity for D(2)-like receptors.

  18. Highly efficient synthesis of mixed 3,3'-bisindoles via Rh(II)-catalyzed three-component reaction of 3-diazooxindoles with indoles and ethyl glyoxylate.

    PubMed

    Xing, Dong; Jing, Changcheng; Li, Xinfeng; Qiu, Huang; Hu, Wenhao

    2013-07-19

    A series of mixed 3,3'-bisindoles were efficiently synthesized via a Rh2(OAc)4-catalyzed three-component reaction of 3-diazooxindoles with indoles and ethyl glyoxylate in high yields with excellent diastereoselectivities. The product easily underwent further synthetic transformations and could be potentially applied to the total synthesis of (±)-gliocladin C and related natural alkaloids. PMID:23808602

  19. A Heteromeric Membrane-Bound Prenyltransferase Complex from Hop Catalyzes Three Sequential Aromatic Prenylations in the Bitter Acid Pathway1[OPEN

    PubMed Central

    Li, Haoxun; Ban, Zhaonan; Qin, Hao; Ma, Liya; King, Andrew J.

    2015-01-01

    Bitter acids (α and β types) account for more than 30% of the fresh weight of hop (Humulus lupulus) glandular trichomes and are well known for their contribution to the bitter taste of beer. These multiprenylated chemicals also show diverse biological activities, some of which have potential benefits to human health. The bitter acid biosynthetic pathway has been investigated extensively, and the genes for the early steps of bitter acid synthesis have been cloned and functionally characterized. However, little is known about the enzyme(s) that catalyze three sequential prenylation steps in the β-bitter acid pathway. Here, we employed a yeast (Saccharomyces cerevisiae) system for the functional identification of aromatic prenyltransferase (PT) genes. Two PT genes (HlPT1L and HlPT2) obtained from a hop trichome-specific complementary DNA library were functionally characterized using this yeast system. Coexpression of codon-optimized PT1L and PT2 in yeast, together with upstream genes, led to the production of bitter acids, but no bitter acids were detected when either of the PT genes was expressed by itself. Stepwise mutation of the aspartate-rich motifs in PT1L and PT2 further revealed the prenylation sequence of these two enzymes in β-bitter acid biosynthesis: PT1L catalyzed only the first prenylation step, and PT2 catalyzed the two subsequent prenylation steps. A metabolon formed through interactions between PT1L and PT2 was demonstrated using a yeast two-hybrid system, reciprocal coimmunoprecipitation, and in vitro biochemical assays. These results provide direct evidence of the involvement of a functional metabolon of membrane-bound prenyltransferases in bitter acid biosynthesis in hop. PMID:25564559

  20. Chain length determination of prenyltransferases: both heteromeric subunits of medium-chain (E)-prenyl diphosphate synthase are involved in the product chain length determination.

    PubMed

    Zhang, Y W; Li, X Y; Koyama, T

    2000-10-17

    Among prenyltransferases, medium-chain (E)-prenyl diphosphate synthases are unusual because of their heterodimeric structures. The larger subunit has highly conserved regions typical of (E)-prenyltransferases. The smaller one has recently been shown to be involved in the binding of allylic substrate as well as determining the chain length of the reaction product [Zhang, Y.-W., et al. (1999) Biochemistry 38, 14638-14643]. To better understand the product chain length determination mechanism of these enzymes, several amino acid residues in the larger subunits of Micrococcus luteus B-P 26 hexaprenyl diphosphate synthase and Bacillus subtilis heptaprenyl diphosphate synthase were selected for substitutions by site-directed mutagenesis and examined by combination with the corresponding wild-type or mutated smaller subunits. Replacement of the Ala at the fifth position upstream to the first Asp-rich motif with bulky amino acids in both larger subunits resulted in shortening the chain lengths of the major products, and a double combination of mutant subunits of the heptaprenyl diphosphate synthase, I-D97A/II-A79F, yielded exclusively geranylgeranyl diphosphate. However, the combination of a mutant subunit and the wild-type, I-Y103S/II-WT or I-WT/II-I76G, produced a C(40) prenyl diphosphate, and the double combination of the mutants, I-Y103S/II-I76G, gave a reaction product with longer prenyl chain up to C(50). These results suggest that medium-chain (E)-prenyl diphosphate synthases take a novel mode for the product chain length determination, in which both subunits cooperatively participate in maintaining and determining the product specificity of each enzyme.

  1. Controlling bacterial behavior with indole-containing natural products and derivatives

    PubMed Central

    Melander, Roberta J.; Minvielle, Marine J.; Melander, Christian

    2014-01-01

    Indole has recently been implicated as an important small molecule signal utilized by many bacteria to coordinate various forms of behavior. Indole plays a role in numerous bacterial processes, including: biofilm formation and maintenance, virulence factor production, antibiotic resistance and persister cell formation. Intercepting indole-signaling pathways with appropriately designed small molecules provides a n opportunity to control unwanted bacterial behaviors, and is an attractive anti-virulence therapeutic strategy. In this review, we give an overview of the process controlled by indole signaling, and summarize current efforts to design indole-containing small molecules to intercept these pathways, and detail the synthetic efforts towards accessing indole derived bioactive small molecules. PMID:25267859

  2. The new psychoactive substances 5-(2-aminopropyl)indole (5-IT) and 6-(2-aminopropyl)indole (6-IT) interact with monoamine transporters in brain tissue.

    PubMed

    Marusich, Julie A; Antonazzo, Kateland R; Blough, Bruce E; Brandt, Simon D; Kavanagh, Pierce V; Partilla, John S; Baumann, Michael H

    2016-02-01

    In recent years, use of psychoactive synthetic stimulants has grown rapidly. 5-(2-Aminopropyl)indole (5-IT) is a synthetic drug associated with a number of fatalities, that appears to be one of the newest 3,4-methylenedioxymethamphetamine (MDMA) replacements. Here, the monoamine-releasing properties of 5-IT, its structural isomer 6-(2-aminopropyl)indole (6-IT), and MDMA were compared using in vitro release assays at transporters for dopamine (DAT), norepinephrine (NET), and serotonin (SERT) in rat brain synaptosomes. In vivo pharmacology was assessed by locomotor activity and a functional observational battery (FOB) in mice. 5-IT and 6-IT were potent substrates at DAT, NET, and SERT. In contrast with the non-selective releasing properties of MDMA, 5-IT displayed greater potency for release at DAT over SERT, while 6-IT displayed greater potency for release at SERT over DAT. 5-IT produced locomotor stimulation and typical stimulant effects in the FOB similar to those produced by MDMA. Conversely, 6-IT increased behaviors associated with 5-HT toxicity. 5-IT likely has high abuse potential, which may be somewhat diminished by its slow onset of in vivo effects, whereas 6-IT may have low abuse liability, but enhanced risk for adverse effects. Results indicate that subtle differences in the chemical structure of transporter ligands can have profound effects on biological activity. The potent monoamine-releasing actions of 5-IT, coupled with its known inhibition of MAO A, could underlie its dangerous effects when administered alone, and in combination with other monoaminergic drugs or medications. Consequently, 5-IT and related compounds may pose substantial risk for abuse and serious adverse effects in human users. PMID:26362361

  3. Palladium-catalyzed direct C2 arylation of N-substituted indoles with 1-aryltriazenes.

    PubMed

    Liu, Can; Miao, Tao; Zhang, Lei; Li, Pinhua; Zhang, Yicheng; Wang, Lei

    2014-09-01

    A novel and efficient palladium-catalyzed C2 arylation of N-substituted indoles with 1-aryltriazenes for the synthesis of 2-arylindoles was developed. In the presence of BF3⋅OEt2 and palladium(II) acetate (Pd(OAc)2), N-substituted indoles reacted with 1-aryltriazenes in N,N-dimethylacetamide (DMAC) to afford the corresponding aryl-indole-type products in good to excellent yields.

  4. Enzymic synthesis of indole-3-acetyl-1-O-beta-d-glucose. II. Metabolic characteristics of the enzyme

    NASA Technical Reports Server (NTRS)

    Leznicki, A. J.; Bandurski, R. S.

    1988-01-01

    The synthesis of indole-3-acetyl-1-O-beta-D-glucose from indole-3-acetic acid (IAA) and uridine diphosphoglucose (UDPG) has been shown to be a reversible reaction with the equilibrium away from ester formation and toward formation of IAA. The enzyme occurs primarily in the liquid endosperm of the corn kernel but some activity occurs in the embryo. It is relatively specific showing no glucose ester formation with oxindole-3-acetic acid or 7-hydroxy-oxindole-3-acetic acid, and low activity with phenylpropene acids, such as rho-coumaric acid. The enzyme is also specific for the nucleotide sugar showing no activity with UDPGalactose or UDPXylose. The enzyme is inhibited by inorganic pyrophosphate, by phosphate esters and by phospholipids, particularly phosphatidyl ethanolamine. The enzyme is inhibited by zeatin, by 2,4-dichlorophenoxy-acetic acid, by IAA-myo-inositol and IAA-glucan, but not by zeatin riboside, and only weakly by gibberellic acid, abscisic acid and kinetin. The reaction is slightly stimulated by both calcium and calmodulin and, in some cases, by thiol compounds. The role of this enzyme in the homeostatic control of indole-3-acetic acid levels in Zea mays is discussed.

  5. Indole Alkaloids from the Sea Anemone Heteractis aurora and Homarine from Octopus cyanea.

    PubMed

    Shaker, Kamel H; Göhl, Matthias; Müller, Tobias; Seifert, Karlheinz

    2015-11-01

    The two new indole alkaloids 2-amino-1,5-dihydro-5-(1H-indol-3-ylmethyl)-4H-imidazol-4-one (1), 2-amino-5-[(6-bromo-1H-indol-3-yl)methyl]-3,5-dihydro-3-methyl-4H-imidazol-4-one (2), and auramine (3) have been isolated from the sea anemone Heteractis aurora. Both indole alkaloids were synthesized for the confirmation of the structures. Homarine (4), along with uracil (5), hypoxanthine (6), and inosine (7) have been obtained from Octopus cyanea. PMID:26567952

  6. Anthranilate deteriorates the structure of Pseudomonas aeruginosa biofilms and antagonizes the biofilm-enhancing indole effect.

    PubMed

    Kim, Soo-Kyoung; Park, Ha-Young; Lee, Joon-Hee

    2015-04-01

    Anthranilate and indole are alternative degradation products of tryptophan, depending on the bacterial species. While indole enhances the biofilm formation of Pseudomonas aeruginosa, we found that anthranilate, the tryptophan degradation product of P. aeruginosa, had an opposite effect on P. aeruginosa biofilm formation, in which anthranilate deteriorated the mushroom structure of biofilm. The anthranilate effect on biofilm formation was differentially exerted depending on the developmental stage and the presence of shear force. Anthranilate slightly accelerated the initial attachment of P. aeruginosa at the early stage of biofilm development and appeared to build more biofilm without shear force. But anthranilate weakened the biofilm structure in the late stage, deteriorating the mushroom structure of biofilms with shear force to make a flat biofilm. To investigate the interplay of anthranilate with indole in biofilm formation, biofilms were cotreated with anthranilate and indole, and the results showed that anthranilate antagonized the biofilm-enhancing effect of indole. Anthranilate was able to deteriorate the preformed biofilm. The effect of anthranilate and indole on biofilm formation was quorum sensing independent. AntR, a regulator of anthranilate-degrading metabolism was synergistically activated by cotreatment with anthranilate and indole, suggesting that indole might enhance biofilm formation by facilitating the degradation of anthranilate. Anthranilate slightly but significantly affected the cyclic diguaniylate (c-di-GMP) level and transcription of major extracellular polysaccharide (Psl, Pel, and alginate) operons. These results suggest that anthranilate may be a promising antibiofilm agent and antagonize the effect of indole on P. aeruginosa biofilm formation.

  7. Anthranilate Deteriorates the Structure of Pseudomonas aeruginosa Biofilms and Antagonizes the Biofilm-Enhancing Indole Effect

    PubMed Central

    Kim, Soo-Kyoung; Park, Ha-Young

    2015-01-01

    Anthranilate and indole are alternative degradation products of tryptophan, depending on the bacterial species. While indole enhances the biofilm formation of Pseudomonas aeruginosa, we found that anthranilate, the tryptophan degradation product of P. aeruginosa, had an opposite effect on P. aeruginosa biofilm formation, in which anthranilate deteriorated the mushroom structure of biofilm. The anthranilate effect on biofilm formation was differentially exerted depending on the developmental stage and the presence of shear force. Anthranilate slightly accelerated the initial attachment of P. aeruginosa at the early stage of biofilm development and appeared to build more biofilm without shear force. But anthranilate weakened the biofilm structure in the late stage, deteriorating the mushroom structure of biofilms with shear force to make a flat biofilm. To investigate the interplay of anthranilate with indole in biofilm formation, biofilms were cotreated with anthranilate and indole, and the results showed that anthranilate antagonized the biofilm-enhancing effect of indole. Anthranilate was able to deteriorate the preformed biofilm. The effect of anthranilate and indole on biofilm formation was quorum sensing independent. AntR, a regulator of anthranilate-degrading metabolism was synergistically activated by cotreatment with anthranilate and indole, suggesting that indole might enhance biofilm formation by facilitating the degradation of anthranilate. Anthranilate slightly but significantly affected the cyclic diguaniylate (c-di-GMP) level and transcription of major extracellular polysaccharide (Psl, Pel, and alginate) operons. These results suggest that anthranilate may be a promising antibiofilm agent and antagonize the effect of indole on P. aeruginosa biofilm formation. PMID:25616795

  8. Indole Alkaloids from the Sea Anemone Heteractis aurora and Homarine from Octopus cyanea.

    PubMed

    Shaker, Kamel H; Göhl, Matthias; Müller, Tobias; Seifert, Karlheinz

    2015-11-01

    The two new indole alkaloids 2-amino-1,5-dihydro-5-(1H-indol-3-ylmethyl)-4H-imidazol-4-one (1), 2-amino-5-[(6-bromo-1H-indol-3-yl)methyl]-3,5-dihydro-3-methyl-4H-imidazol-4-one (2), and auramine (3) have been isolated from the sea anemone Heteractis aurora. Both indole alkaloids were synthesized for the confirmation of the structures. Homarine (4), along with uracil (5), hypoxanthine (6), and inosine (7) have been obtained from Octopus cyanea.

  9. Modelling flavoenzymatic charge transfer events: development of catalytic indole deuteration strategies.

    PubMed

    Murray, Alexander T; Challinor, Jonathan D; Gulácsy, Christina E; Lujan, Cristina; Hatcher, Lauren E; Pudney, Christopher R; Raithby, Paul R; John, Matthew P; Carbery, David R

    2016-04-12

    The formation and chemistry of flavin-indole charge transfer (CT) complexes has been studied using a model cationic flavin. The ability to form a CT complex is sensitive to indole structure as gauged by spectroscopic, kinetics and crystallographic studies. Single crystals of sufficient quality of a flavin-indole CT complex, suitable for X-ray diffraction, have been grown, allowing solid-state structural analysis. When CT complex formation is conducted in d4-methanol, an efficient and synthetically useful C-3 indole deuteration is observed. PMID:27005963

  10. Prenylation of a Rab1B mutant with altered GTPase activity is impaired in cell-free systems but not in intact mammalian cells.

    PubMed

    Wilson, A L; Sheridan, K M; Erdman, R A; Maltese, W A

    1996-09-15

    Previous studies have reached differing conclusions as to whether or not guanine-nucleotide-dependent conformational changes affect the ability of Rab proteins to undergo post-translational modification by Rab:geranylgeranyltransferase (Rab-GGTase). We now show that the ability of a Rab1B mutant [Q67L (Gln-67-->Leu)] with reduced intrinsic GTPase activity to undergo geranylgeranylation in cell-free assays depends on the guanine nucleotide composition of the system. When GTP is the predominant nucleotide in the assay, Rab1BQ67L is a poor substrate. However, when GDP is present and GTP is omitted, prenylation of the Q67L mutant is comparable with that of the wild-type (WT) protein. These studies, coupled with the poor prenylation of Rab1BWT in the presence of the non-hydrolysable GTP analogue guanosine 5'-[gamma-thio]triphosphate, support the notion that Rab-GGTase prefers substrates in the GDP conformation. When the abilities of Rab1BQ67L and Rab1BWT to undergo prenylation were compared by metabolic labelling of transiently expressed proteins in cultured human 293 cells, we did not observe a decline in prenylation of the mutant protein as predicted on the basis of the cell-free assays. Moreover, the Q67L mutant was comparable with the wild-type Rab1B in its ability to associate with co-expressed Rab GDP dissociation inhibitors in 293 cells. These findings raise the possibility that unidentified proteins present in intact cells may compensate for the reduced intrinsic GTPase activity of the Q67L mutant, allowing a significant proportion of the nascent Rab1BQ67L to assume a GDP conformation. The differential prenylation of Rab1BQ67L in cell-free systems versus intact cells underscores the importance of evaluating the post-translational modification of specific Rab mutants in vivo, where poorly characterized regulatory proteins may have a significant effect on GTPase activity or nucleotide exchange rates.

  11. Asymmetric Total Synthesis of the Indole Diterpene Alkaloid Paspaline.

    PubMed

    Sharpe, Robert J; Johnson, Jeffrey S

    2015-10-01

    An enantioselective synthesis of the indole diterpenoid natural product paspaline is disclosed. Critical to this approach was the implementation of stereoselective desymmetrization reactions to assemble key stereocenters of the molecule. The design and execution of these tactics are described in detail, and a thorough analysis of observed outcomes is presented, ultimately providing the title compound in high stereopurity. This synthesis provides a novel template for preparing key stereocenters in this family of molecules, and the reactions developed en route to paspaline present a series of new synthetic disconnections in preparing steroidal natural products.

  12. Indole RSK inhibitors. Part 1: discovery and initial SAR.

    PubMed

    Boyer, Stephen J; Burke, Jennifer; Guo, Xin; Kirrane, Thomas M; Snow, Roger J; Zhang, Yunlong; Sarko, Chris; Soleymanzadeh, Lida; Swinamer, Alan; Westbrook, John; Dicapua, Frank; Padyana, Anil; Cogan, Derek; Gao, Amy; Xiong, Zhaoming; Madwed, Jeffrey B; Kashem, Mohammed; Kugler, Stanley; O'Neill, Margaret M

    2012-01-01

    A series of inhibitors for the 90 kDa ribosomal S6 kinase (RSK) based on an 1-oxo-2,3,4,5-tetrahydro-1H-[1,4]diazepino[1,2-a]indole-8-carboxamide scaffold were identified through high throughput screening. An RSK crystal structure and exploratory SAR were used to define the series pharmacophore. Compounds with good cell potency, such as compounds 43, 44, and 55 were identified, and form the basis for subsequent kinase selectivity optimization.

  13. Indole-based allosteric inhibitors of HIV-1 integrase.

    PubMed

    Patel, Pratiq A; Kvaratskhelia, Nina; Mansour, Yara; Antwi, Janet; Feng, Lei; Koneru, Pratibha; Kobe, Mathew J; Jena, Nivedita; Shi, Guqin; Mohamed, Mosaad S; Li, Chenglong; Kessl, Jacques J; Fuchs, James R

    2016-10-01

    Employing a scaffold hopping approach, a series of allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) have been synthesized based on an indole scaffold. These compounds incorporate the key elements utilized in quinoline-based ALLINIs for binding to the IN dimer interface at the principal LEDGF/p75 binding pocket. The most potent of these compounds displayed good activity in the LEDGF/p75 dependent integration assay (IC50=4.5μM) and, as predicted based on the geometry of the five- versus six-membered ring, retained activity against the A128T IN mutant that confers resistance to many quinoline-based ALLINIs. PMID:27568085

  14. Asymmetric Total Synthesis of the Indole Diterpene Alkaloid Paspaline

    PubMed Central

    Sharpe, Robert J.; Johnson, Jeffrey S.

    2015-01-01

    An enantioselective synthesis of the indole diterpenoid natural product paspaline is disclosed. Critical to this approach was the implementation of stereoselective desymmetrization reactions to assemble key stereocenters of the molecule. The design and execution of these tactics are described in detail, and a thorough analysis of observed outcomes is presented, ultimately providing the title compound in high stereopurity. This synthesis provides a novel template for preparing key stereocenters in this family of molecules, and the reactions developed en route to paspaline present a series of new synthetic disconnections in preparing steroidal natural products. PMID:26398568

  15. Extraction and analysis of indole derivatives from fungal biomass.

    PubMed

    Gartz, J

    1994-01-01

    The occurrence and extraction of indole derivatives in six species from four genera of higher fungi were investigated. By using pure methanol for extraction of the mushrooms analysis revealed the highest concentrations of psilocybin and baeocystin. The psilocin content of the species was higher by using aqueous solutions of alcohols than with methanol alone but was an artificial phenomenon caused by enzymatic destruction of psilocybin. The extraction with dilute acetic acid yielded better results than with the water containing alcohols. The simple one-step procedure with methanol for the quantitative extraction is still the safest method to obtain the genuine alkaloids from fungal biomass.

  16. Antifouling indole alkaloids from two marine derived fungi.

    PubMed

    He, Fei; Han, Zhuang; Peng, Jiang; Qian, Pei-Yuan; Qi, Shu-Hua

    2013-03-01

    In order to find non-toxic antifouling natural products from marine microorganisms, the chemical constituents of two marine derived fungi Penicillium sp. and Aspergillus sydowii have been investigated under bio-guided fractionation. A new indolyl diketopiperazine compound, penilloid A (1), together with 15 known ones were isolated from these two strains. The structure of 1 was elucidated on the basis of NMR and mass spectra. Some alkaloids showed significant antifouling and antibacterial activities. The results indicate that indole alkaloids could be a potential antifouling agent resource.

  17. The molecular organization of prenylated flavonoid xanthohumol in DPPC multibilayers: X-ray diffraction and FTIR spectroscopic studies.

    PubMed

    Arczewska, Marta; Kamiński, Daniel M; Górecka, Ewa; Pociecha, Damian; Rój, Edward; Sławińska-Brych, Adrianna; Gagoś, Mariusz

    2013-02-01

    Xanthohumol (XN) is the major prenylated flavonoid found in hop resin. It has attracted considerable attention in recent years due to its wide spectrum of biological activities and the beneficial effect on human health. Since lipid membrane is first target for biologically active compounds, we decided to investigate the influence of XN on the dipalmitoylphosphatidylcholine (DPPC) multibilayers. Interactions of XN with DPPC were investigated as a function of temperature and its concentration by using X-ray diffraction and the ATR-FTIR spectroscopy techniques. The aim of understanding the mechanisms of molecular interactions between XN and DPPC was to indicate the localization of the XN with respect to the membrane and the type of interaction with phospholipids. The results revealed that XN changes the physical properties of the DPPC multibilayers in the form of dry film. A new complex formation between XN and DPPC is reported. The detailed analysis of refraction effect indicates the changes in electron density ratio between hydrophobic and hydrophilic zones of lipid at phase transition. This is in compliance with reported changes in FTIR spectra where at pretransition XN moves from interface region between polar heads to the neighborhood of phosphate groups.

  18. Use of cyclodextrins in biotransformation reactions with cell cultures of Morus nigra: biosynthesis of prenylated chalcone isocordoin.

    PubMed

    Bolasco, Adriana; Fioravanti, Rossella; Rossi, Francesca; Rossi, Paola; Vitali, Alberto

    2010-06-16

    In vivo biotransformation experiments were performed by using a cell suspension culture of Morus nigra expressing a high PT (prenyltransferase) activity, fed with the target substrate 2',4'-dihydroxychalcone. In order to improve the reaction yields by enhancing the chalcone solubility, three different cyclodextrins have been used to host the substrate. The respective complexes have been studied by means of both spectroscopic and calorimetric techniques (Fourier-transform infrared, 1H-NMR and differential scanning calorimetry) and the solution behaviours have been characterized by solubility phase studies. The hydroxypropyl-beta-cyclodextrin complex was found to be the most suitable for biotransformation, and the reaction of prenylation resulted in a 6-fold higher yield of the final product when compared with the use of the free substrate. The reaction provided as the sole product the 3'-dimethylallyl derivative isocordoin, a biologically active plant compound. The results obtained allow the development of systems based on the use of biofermentors or the use of immobilized cells in order to enhance the biotransformation yields.

  19. Growth inhibitory and apoptosis-inducing effects of xanthohumol, a prenylated chalone present in hops, in human prostate cancer cells.

    PubMed

    Deeb, D; Gao, X; Jiang, H; Arbab, A S; Dulchavsky, S A; Gautam, S C

    2010-09-01

    Promotion of apoptosis in cancer cells could potentially lead to the regression and improved prognosis of hormone-refractory prostate cancer. Xanthohumol (XN), a prenylated chalcone-derived from hops, has shown strong antitumorigenic activity towards diverse types of cancer cells. In the present study, the growth-inhibitory and apoptosis-inducing activity of XN was tested in hormone-sensitive and hormone-refractory human prostate cancer cells lines. Cell growth/viability assay (MTS) demonstrated that prostate cancer cells are highly sensitive to XN at a concentration range of 20-40 μM. The primary mode of tumor cell destruction was apoptosis as demonstrated by the binding of annexin V-FITC, cleavage of PARP-1, activation of procaspases -3, -8, and -9, mitochondrial depolarization and release of cytochrome c from mitochondria. Induction of apoptosis by XN was associated with the inhibition of prosurvival Akt, NF-κB and mTOR signaling proteins and NF-κB-regulated anti-apoptotic Bcl-2 and survivin. These studies provide a rationale for clinical evaluation of XN for the treatment of hormone-refractory metastatic prostate cancer. PMID:20944105

  20. Growth Inhibitory and Apoptosis-inducing Effects of Xanthohumol, a Prenylated Chalcone Present in Hops, in Human Prostate Cancer Cells

    PubMed Central

    DEEB, D.; GAO, X.; JIANG, H.; ARBAB, A.S.; DULCHAVSKY, S.A.; GAUTAM, S.C.

    2013-01-01

    Promotion of apoptosis in cancer cells could potentially lead to the regression and improved prognosis of hormone-refractory prostate cancer. Xanthohumol (XN), a prenylated chalcone-derived from hops, has shown strong antitumorigenic activity towards diverse types of cancer cells. In the present study, the growth-inhibitory and apoptosis-inducing activity of XN was tested in hormone-sensitive and hormone-refractory human prostate cancer cells lines. Cell growth/viability assay (MTS) demonstrated that prostate cancer cells are highly sensitive to XN at a concentration range of 20-40 μM. The primary mode of tumor cell destruction was apoptosis as demonstrated by the binding of annexin V-FITC, cleavage of PARP-1, activation of procaspases -3, -8, and -9, mitochondrial depolarization and release of cytochrome c from mitochondria. Induction of apoptosis by XN was associated with the inhibition of prosurvival Akt, NF-κB and mTOR signaling proteins and NF-κB-regulated anti-apoptotic Bcl-2 and survivin. These studies provide a rationale for clinical evaluation of XN for the treatment of hormone-refractory metastatic prostate cancer. PMID:20944105

  1. Specific Prenylation of Tomato Rab Proteins by Geranylgeranyl Type-II Transferase Requires a Conserved Cysteine-Cysteine Motif.

    PubMed

    Yalovsky, S.; Loraine, A. E.; Gruissem, W.

    1996-04-01

    Posttranslational isoprenylation of some small GTP-binding proteins is required for their biological activity. Rab geranylgeranyl transferase (Rab GGTase) uses geranylgeranyl pyrophosphate to modify Rab proteins, its only known substrates. Geranylgeranylation of Rabs is believed to promote their association with target membranes and interaction with other proteins. Plants, like other eukaryotes, contain Rab-like proteins that are associated with intracellular membranes. However, to our knowledge, the geranylgeranylation of Rab proteins has not yet been characterized from any plant source. This report presents an activity assay that allows the characterization of prenylation of Rab-like proteins in vitro, by protein extracts prepared from plants. Tomato Rab1 proteins and mammalian Rab1a were modified by geranylgeranyl pyrophosphate but not by farnesyl pyrophosphate. This modification required a conserved cysteine-cysteine motif. A mutant form lacking the cysteine-cysteine motif could not be modified, but inhibited the geranylgeranylation of its wild-type homolog. The tomato Rab proteins were modified in vitro by protein extract prepared from yeast, but failed to become modified when the protein extract was prepared from a yeast strain containing a mutant allele for the [alpha] subunit of yeast Rab GGTase (bet4 ts). These results demonstrate that plant cells, like other eukaryotes, contain Rab GGTase-like activity.

  2. Prenyl Ammonium Salts – New Carriers for Gene Delivery: A B16-F10 Mouse Melanoma Model

    PubMed Central

    Grecka, Emilia; Statkiewicz, Malgorzata; Gorska, Agnieszka; Biernacka, Marzena; Grygorowicz, Monika Anna; Masnyk, Marek; Chmielewski, Marek; Gawarecka, Katarzyna; Chojnacki, Tadeusz; Swiezewska, Ewa; Malecki, Maciej

    2016-01-01

    Purpose Prenyl ammonium iodides (Amino-Prenols, APs), semi-synthetic polyprenol derivatives were studied as prospective novel gene transfer agents. Methods AP-7, -8, -11 and -15 (aminoprenols composed of 7, 8, 11 or 15 isoprene units, respectively) were examined for their capacity to form complexes with pDNA, for cytotoxicity and ability to transfect genes to cells. Results All the carriers were able to complex DNA. The highest, comparable to commercial reagents, transfection efficiency was observed for AP-15. Simultaneously, AP-15 exhibited the lowest negative impact on cell viability and proliferation—considerably lower than that of commercial agents. AP-15/DOPE complexes were also efficient to introduce pDNA to cells, without much effect on cell viability. Transfection with AP-15/DOPE complexes influenced the expression of a very few among 44 tested genes involved in cellular lipid metabolism. Furthermore, complexes containing AP-15 and therapeutic plasmid, encoding the TIMP metallopeptidase inhibitor 2 (TIMP2), introduced the TIMP2 gene with high efficiency to B16-F10 melanoma cells but not to B16-F10 melanoma tumors in C57BL/6 mice, as confirmed by TIMP2 protein level determination. Conclusion Obtained results indicate that APs have a potential as non-viral vectors for cell transfection. PMID:27088717

  3. Construction of Pyrrolo[1,2-a]indoles via Cobalt(III)-Catalyzed Enaminylation of 1-(Pyrimidin-2-yl)-1H-indoles with Ketenimines and Subsequent Base-Promoted Cyclization.

    PubMed

    Zhou, Xiaorong; Fan, Zili; Zhang, Zhiyin; Lu, Ping; Wang, Yanguang

    2016-09-16

    A cobalt(III)-catalyzed cross-coupling reaction of 1-(pyrimidin-2-yl)-1H-indoles with ketenimines is reported. The reaction provided 2-enaminylated indole derivatives in moderate to excellent yields with a broad substrate scope. The prepared 2-enaminylated indoles could be conveniently converted into pyrrolo[1,2-a]indoles, which are an important class of compounds in medicinal chemistry. PMID:27599189

  4. Effect of the pasteurization process on the contents of ascorbigen, indole-3-carbinol, indole-3-acetonitrile, and 3,3'-diindolylmethane in fermented cabbage.

    PubMed

    Ciska, Ewa; Honke, Joanna

    2012-04-11

    The aim of the study was to investigate the effect of the pasteurization process on the content of ascorbigen, indole-3-carbinol, indole-3-acetonitrile, and 3,3'-diindolylmethane in fermented cabbage. Pasteurization was run at a temperature of 80 °C for 5-30 min. Significant changes were only observed in contents of ascorbigen and 3,3'-diindolylmethane. The total content of the compounds analyzed in cabbage pasteurized for 10-30 min was found to be decreased by ca. 20%, and the losses were due to thermal degradation of the predominating ascorbigen. Pasteurization was found not to exert any considerable effect on contents of indole-3-acetonitrile and indole-3-carbinol in cabbage nor did it affect contents of the compounds analyzed in juice.

  5. Formation of Cyclohepta[b]indole Scaffolds via Heck Cyclization: A Strategy for Structural Analogues of Ervatamine Group of Indole Alkaloid.

    PubMed

    Goswami, Progyashree; Borah, Arun Jyoti; Phukan, Prodeep

    2015-01-01

    Ervatamine, silicine, methuenine, etc., are naturally occurring alkaloids that exhibit antimicrobial, anticancer, and anti-HIV activities. Indole fused with a seven-membered carbocyclic ring is a commonly observed structural feature among this series of bioactive compounds. This work describes a strategic approach for the synthesis of cyclohepta[b]indole structural scaffolds. The synthetic strategy consists of a solvent-free Baylis-Hillman reaction of 2-bromobenzaldehydes, followed by iodine-catalyzed C-alkylation of indole with the Baylis-Hillman adducts. Finally, intramolecular Heck coupling reaction using Pd(OAc)2 as catalyst in the presence of benzyltrimethylammonium bromide under microwave condition produced the desired cyclohepta[b]indole derivatives.

  6. (E)-2-Methyl-3-(2-methyl-2-nitrovinyl)-1H-indole and (E)-3-(2-methyl-2-nitrovinyl)-2-phenyl-1H-indole.

    PubMed

    Sonar, Vijayakumar N; Parkin, Sean; Crooks, Peter A

    2005-08-01

    In the title compounds, C12H12N2O2, (I), and C17H14N2O2, (II), respectively, the indole rings are planar and the vinyl groups lie out of the indole planes, making dihedral angles of 33.48 (5) and 41.31 (8) degrees , respectively. In (II), the dihedral angle between the phenyl and indole ring planes is 32.06 (6) degrees . In both molecules, the double bond connecting the methylnitrovinyl group and the indole nucleus adopts an E configuration. Notwithstanding the differences in space group [C2/c for (I) and P2(1)2(1)2(1) for (II)], the mode of packing of compounds (I) and (II) is determined by similar intermolecular N-H...O hydrogen-bonding interactions, forming chains that run parallel to [101] in (I) and [001] in (II).

  7. Gold-catalyzed synthesis of tetrahydrocarbazole derivatives through an intermolecular cycloaddition of vinyl indoles and N-allenamides.

    PubMed

    Pirovano, Valentina; Decataldo, Laura; Rossi, Elisabetta; Vicente, Rubén

    2013-05-01

    A gold-catalyzed formal [4+2] cycloaddition of vinyl indoles and N-allenamides leading to tetrahydrocarbazoles is described. Moreover, new multicomponent reactions of vinyl indoles with two allene molecules are reported.

  8. N-Amination of pyrrole and indole heterocycles with monochloramine (NH2Cl).

    PubMed

    Hynes, John; Doubleday, Wendel W; Dyckman, Alaric J; Godfrey, Jollie D; Grosso, John A; Kiau, Susanne; Leftheris, Katerina

    2004-02-20

    A survey of several electrophilic ammonia reagents for the N-amination of indole- and pyrrole-containing heterocycles revealed that monochloramine (NH(2)Cl) is an excellent reagent for this transformation. Pyrroles and indoles containing a variety of substitution were aminated on nitrogen with isolated yields ranging from 45% to 97%. PMID:14961694

  9. A facile means for the identification of indolic compounds from plant tissues.

    PubMed

    Yu, Peng; Hegeman, Adrian D; Cohen, Jerry D

    2014-09-01

    The bulk of indole-3-acetic acid (IAA) in plants is found in the form of conjugated molecules, yet past research on identifying these compounds has largely relied on methods that were both laborious and inefficient. Using recent advances in analytical instrumentation, we have developed a simple yet powerful liquid chromatography-mass spectrometry (LC-MS)-based method for the facile characterization of the small IAA conjugate profile of plants. The method uses the well-known quinolinium ion (m/z 130.0651) generated in MS processes as a signature with high mass accuracy that can be used to screen plant extracts for indolic compounds, including IAA conjugates. We reinvestigated Glycine max (soybean) for its indoles and found indole-3-acetyl-trytophan (IA-Trp) in addition to the already known indole-3-acetyl-aspartic acid (IA-Asp) and indole-3-acetyl-glutamic acid (IA-Glu) conjugates. Surprisingly, several organic acid conjugates of tryptophan were also discovered, many of which have not been reported in planta before. These compounds may have important physiological roles in tryptophan metabolism, which in turn can affect human nutrition. We also demonstrated the general applicability of this method by identifying indolic compounds in different plant tissues of diverse phylogenetic origins. It involves minimal sample preparation but can work in conjunction with sample enrichment techniques. This method enables quick screening of IAA conjugates in both previously characterized as well as uncharacterized species, and facilitates the identification of indolic compounds in general. PMID:25040570

  10. Synthesis and preliminary evaluation of 3-thiocyanato-1H-indoles as potential anticancer agents.

    PubMed

    Fortes, Margiani P; da Silva, Paulo B N; da Silva, Teresinha G; Kaufman, Teodoro S; Militão, Gardenia C G; Silveira, Claudio C

    2016-08-01

    A novel series of twenty 3-thiocyanato-1H-indoles, carrying diversification at positions N-1, C-2 and C-5 of the heterocyclic core, were synthesized; their antiproliferative activity against four human cancer cell lines (HL60, HEP-2, NCI-H292 and MCF-7) was evaluated, employing doxorubicin as positive control. Indole, N-methylindole and 2-(4-chlorophenyl)-N-methylindole demonstrated to be essentially inactive, whereas several of their congener 3-thiocyanato-1H-indoles displayed good to excellent levels of potency (IC50 ≤ 6 μM), while being non-hemolytic. N-Phenyl-3-thiocyanato-1H-indole and 1-methyl-2-(4-chlorophenyl)-3-thiocyanato-1H-indole showed good to high potency against all the cell lines. On the other side, the N-(4-chlorophenyl)-, 2-(4-chlorophenyl)- and 2-phenyl- 3-thiocyanato-1H-indole derivatives were slightly less active against the test cell lines. Overall, these results suggest that the indole-3-thiocyanate motif can be suitably decorated to afford highly cytotoxic compounds and that the substituted indole can be employed as a useful scaffold toward more potent compounds.

  11. Allosteric Indole Amide Inhibitors of p97: Identification of a Novel Probe of the Ubiquitin Pathway.

    PubMed

    Alverez, Celeste; Bulfer, Stacie L; Chakrasali, Ramappa; Chimenti, Michael S; Deshaies, Raymond J; Green, Neal; Kelly, Mark; LaPorte, Matthew G; Lewis, Taber S; Liang, Mary; Moore, William J; Neitz, R Jeffrey; Peshkov, Vsevolod A; Walters, Michael A; Zhang, Feng; Arkin, Michelle R; Wipf, Peter; Huryn, Donna M

    2016-02-11

    A high-throughput screen to discover inhibitors of p97 ATPase activity identified an indole amide that bound to an allosteric site of the protein. Medicinal chemistry optimization led to improvements in potency and solubility. Indole amide 3 represents a novel uncompetitive inhibitor with excellent physical and pharmaceutical properties that can be used as a starting point for drug discovery efforts. PMID:26985295

  12. Comparison of three reagents for detecting indole production by anaerobic bacteria in microtest systems.

    PubMed Central

    Lombard, G L; Dowell, V R

    1983-01-01

    Three reagents for detecting indole, Kovac, Ehrlich, and p-dimethylaminocinnamaldehyde (DMCA), were evaluated with commercial microtest systems for characterizing and identifying anaerobic bacteria. The DMCA reagent, the most sensitive of the three reagents, gave a positive reaction with 445 of 449 strains of various indole-producing anaerobic bacteria. There was 99.6% agreement between the results obtained with the DMCA in the microtest systems and results using the conventional tube test to detect indole by using xylene extraction and Ehrlich reagent. Ehrlich reagent detected indole in 163 of 176 (92.6%) indole-positive strains when the inoculum was overlaid with mineral oil before incubation. Kovac reagent was the least sensitive of the reagents tested. When the inoculum was overlaid with mineral oil, Kovac reagent detected only 80 of 108 (74.0%) of indole-positive strains. In addition to being the most sensitive reagent for detection indole, DMCA also allowed detection of indole derivatives (skatole, 3-indolepropionic acid, and 3-indolebutyric acid) produced by some clostridia. PMID:6630445

  13. Metal free sulfenylation and bis-sulfenylation of indoles: persulfate mediated synthesis.

    PubMed

    Prasad, Ch Durga; Kumar, Shailesh; Sattar, Moh; Adhikary, Amit; Kumar, Sangit

    2013-12-14

    A method which avoids metal and halogen for the synthesis of 3-arylthioindoles from indoles and diaryl disulfides using ammonium persulfate in methanol has been presented. Moreover, double C-H sulfenylation of indoles at 2 and 3-positions has also been achieved using iodine and ammonium persulfate. PMID:24166084

  14. Enantioselective Friedel-Crafts Alkylation Reactions of 3-Substituted Indoles with Electron-Deficient Alkenes.

    PubMed

    Weng, Jian-Quan; Fan, Ren-Jie; Deng, Qiao-Man; Liu, Ren-Rong; Gao, Jian-Rong; Jia, Yi-Xia

    2016-04-01

    Highly enantioselective Friedel-Crafts C2-alkylation reactions of 3-substituted indoles with α,β-unsaturated esters and nitroalkenes were developed using chiral Lewis acids as catalysts, which afforded chiral indole derivatives bearing C2-benzylic stereogenic centers in good to excellent yields (up to 99%) and enantioselectivities (up to 96% ee). PMID:26959867

  15. Two new cytotoxic indole alkaloids from a deep-sea sediment derived metagenomic clone.

    PubMed

    Yan, Xia; Tang, Xi-Xiang; Chen, Lin; Yi, Zhi-Wei; Fang, Mei-Juan; Wu, Zhen; Qiu, Ying-Kun

    2014-04-01

    Two new indole alkaloids, metagenetriindole A (1) and metagenebiindole A (2), were identified from deep-sea sediment metagenomic clone derived Escherichia coli fermentation broth. The structures of new compounds were elucidated by spectroscopic methods. The two new indole alkaloids demonstrated moderately cytotoxic activity against CNE2, Bel7402 and HT1080 cancer cell lines in vitro.

  16. A coumarin-indole based colorimetric and 'turn on' fluorescent probe for cyanide

    NASA Astrophysics Data System (ADS)

    Xu, Yu; Dai, Xi; Zhao, Bao-Xiang

    2015-03-01

    A novel coumarin-indole based chemodosimeter with a simple structure was designed and prepared via a condensation reaction in high yield. The probe exhibited very high selectivity towards cyanide on both fluorescence and UV-vis spectra, which allowed it to quantitatively detect and imaging cyanide ions in organic-aqueous solution by either fluorescence enhancement or colorimetric changes. Confirmed by 1H NMR and HRMS spectra, the detection mechanism was proved to be related with the Michael addition reaction induced by cyanide ions, which blocked the intramolecular charge transfer (ICT) of the probe. Moreover, the probe was able to be utilized efficiently in a wide pH range (7.5-10) with negligible interference from other anions and a low detection limit of 0.51 μM. Application in 5 kinds of natural water source and accurate detection of cyanide in tap water solvent system also indicated the high practical significance of the probe.

  17. A coumarin-indole based colorimetric and "turn on" fluorescent probe for cyanide.

    PubMed

    Xu, Yu; Dai, Xi; Zhao, Bao-Xiang

    2015-03-01

    A novel coumarin-indole based chemodosimeter with a simple structure was designed and prepared via a condensation reaction in high yield. The probe exhibited very high selectivity towards cyanide on both fluorescence and UV-vis spectra, which allowed it to quantitatively detect and imaging cyanide ions in organic-aqueous solution by either fluorescence enhancement or colorimetric changes. Confirmed by (1)H NMR and HRMS spectra, the detection mechanism was proved to be related with the Michael addition reaction induced by cyanide ions, which blocked the intramolecular charge transfer (ICT) of the probe. Moreover, the probe was able to be utilized efficiently in a wide pH range (7.5-10) with negligible interference from other anions and a low detection limit of 0.51μM. Application in 5 kinds of natural water source and accurate detection of cyanide in tap water solvent system also indicated the high practical significance of the probe.

  18. Synthesis of 8-phenyl-10H-pyrido(1,2-. cap alpha. )indole salts from 2,3,3-trimethyl-3H-indole chlorides with cinnamaldehyde

    SciTech Connect

    Shachkus, A.A.; Degutis, Yu.A.

    1987-10-01

    Reaction of 2,3,3-trimethyl-3H-indole chloride with cinnamic and 4-dimethylaminocinnamic aldehydes led to salts of 8-phenyl and 8-(4-dimethylaminophenyl)-10,10-dimethyl-10H-pyrido(1,2-..cap alpha..)indole. PMR spectra were recorded on a Tesla BS-487C (80 MHz) instrument (internal standard HMDS) and IR spectra on a UR-20 spectrometer (KBr pellets).

  19. A new indole glycoside from the seeds of Raphanus sativus.

    PubMed

    Jin, Hong-Guang; Ko, Hae Ju; Chowdhury, Md Anisuzzaman; Lee, Dong-Sung; Woo, Eun-Rhan

    2016-06-01

    A new indole glycoside, β-D-glucopyranosyl 2-(methylthio)-1H-indole-3-carboxylate, named raphanuside A (1), as well as eight known compounds, β-D-fructofuranosyl-(2 → 1)-(6-O-sinapoyl)-α-D-glucopyranoside (2), (3-O-sinapoyl)-β-D-fructofuranosyl-(2 → 1)-α-D-glucopyranoside (3), (3-O-sinapoyl)-β-D-fructofuranosyl-(2 → 1)-(6-O-sinapoyl)-α-D-glucopyranoside (4), (3,4-O-disinapoyl)-β-D-fructofuranosyl-(2 → 1)-(6-O-sinapoyl)-α-D-glucopyranoside (5), isorhamnetin 3,4'-di-O-β-D-glucoside (6), isorhamnetin 3-O-β-D-glucoside-7-O-α-L-rhamnoside (7), isorhamnetin 3-O-β-D-glucoside (8) and 3'-O-methyl-(-)-epicatechin 7-O-β-D-glucoside (9) were isolated from the seeds of Raphanus sativus. Furthermore, compounds 1-3 and 6-9, were isolated from this plant for the first time. The structures of compounds 1-9 were identified using 1D and 2D NMR, including (1)H-(1)H COSY, HSQC, HMBC and NOESY spectroscopic analyses. The inhibitory activity of these isolated compounds against interleukin-6 (IL-6) production in TNF-α stimulated MG-63 cells was also examined. PMID:27193305

  20. An indolent case of severe acute respiratory syndrome.

    PubMed

    Lam, Man-Fai; Ooi, Gaik C; Lam, Bing; Ho, James C; Seto, Wing H; Ho, Pak L; Wong, Poon C; Liang, Raymond; Lam, Wah K; Tsang, Kenneth W

    2004-01-01

    Severe acute respiratory syndrome (SARS) is a highly contagious and typically rapidly progressive form of atypical pneumonia, which spread from Asia to many parts of the world in early 2003. Clinical diagnosis of SARS requires the presence of unremitting fever and progressive pneumonia despite antibiotic therapy, particularly in the presence of lymphopenia and raised transaminase levels. We report the case of a woman who had undergone a successful allogeneic bone marrow transplant for acute myeloid leukemia. She presented initially with fever and a normal chest radiograph. Her indolent clinical course of SARS was punctuated by resolution of fever, but there was progressive radiologic deterioration and increasing serum antibody titer against SARS coronavirus. Treatment with oral prednisolone and ribavirin normalized her lymphopenia, altered transaminases, chest radiograph and high-resolution computed tomography appearances rapidly. Our experience should alert other clinicians in recognizing this atypical indolent presentation of SARS, to protect health care workers and the community at large and to ensure that these patients are properly treated.

  1. Asymmetric synthesis of N-allylic indoles via regio- and enantioselective allylation of aryl hydrazines

    PubMed Central

    Xu, Kun; Gilles, Thomas; Breit, Bernhard

    2015-01-01

    The asymmetric synthesis of N-allylic indoles is important for natural product synthesis and pharmaceutical research. The regio- and enantioselective N-allylation of indoles is a true challenge due to the favourable C3-allylation. We develop here a new strategy to the asymmetric synthesis of N-allylic indoles via rhodium-catalysed N-selective coupling of aryl hydrazines with allenes followed by Fischer indolization. The exclusive N-selectivities and good to excellent enantioselectivities are achieved applying a rhodium(I)/DTBM-Segphos or rhodium(I)/DTBM-Binap catalyst. This method permits the practical synthesis of valuable chiral N-allylated indoles, and avoids the N- or C-selectivity issue. PMID:26137886

  2. Ruthenium-catalyzed alkylation of indoles with tertiary amines by oxidation of a sp3 C-H bond and Lewis acid catalysis.

    PubMed

    Wang, Ming-Zhong; Zhou, Cong-Ying; Wong, Man-Kin; Che, Chi-Ming

    2010-05-17

    Ruthenium porphyrins (particularly [Ru(2,6-Cl(2)tpp)CO]; tpp=tetraphenylporphinato) and RuCl(3) can act as oxidation and/or Lewis acid catalysts for direct C-3 alkylation of indoles, giving the desired products in high yields (up to 82% based on 60-95% substrate conversions). These ruthenium compounds catalyze oxidative coupling reactions of a wide variety of anilines and indoles bearing electron-withdrawing or electron-donating substituents with high regioselectivity when using tBuOOH as an oxidant, resulting in the alkylation of N-arylindoles to 3-{[(N-aryl-N-alkyl)amino]methyl}indoles (yield: up to 82%, conversion: up to 95%) and the alkylation of N-alkyl or N-H indoles to 3-[p-(dialkylamino)benzyl]indoles (yield: up to 73%, conversion: up to 92%). A tentative reaction mechanism involving two pathways is proposed: an iminium ion intermediate may be generated by oxidation of an sp(3) C-H bond of the alkylated aniline by an oxoruthenium species; this iminium ion could then either be trapped by an N-arylindole (pathway A) or converted to formaldehyde, allowing a subsequent three-component coupling reaction of the in situ generated formaldehyde with an N-alkylindole and an aniline in the presence of a Lewis acid catalyst (pathway B). The results of deuterium-labeling experiments are consistent with the alkylation of N-alkylindoles via pathway B. The relative reaction rates of [Ru(2,6-Cl(2)tpp)CO]-catalyzed oxidative coupling reactions of 4-X-substituted N,N-dimethylanilines with N-phenylindole (using tBuOOH as oxidant), determined through competition experiments, correlate linearly with the substituent constants sigma (R(2)=0.989), giving a rho value of -1.09. This rho value and the magnitudes of the intra- and intermolecular deuterium isotope effects (k(H)/k(D)) suggest that electron transfer most likely occurs during the initial stage of the oxidation of 4-X-substituted N,N-dimethylanilines. Ruthenium-catalyzed three-component reaction of N-alkyl/N-H indoles

  3. Transport of the two natural auxins, indole-3-butyric acid and indole-3-acetic acid, in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Rashotte, Aaron M.; Poupart, Julie; Waddell, Candace S.; Muday, Gloria K.; Brown, C. S. (Principal Investigator)

    2003-01-01

    Polar transport of the natural auxin indole-3-acetic acid (IAA) is important in a number of plant developmental processes. However, few studies have investigated the polar transport of other endogenous auxins, such as indole-3-butyric acid (IBA), in Arabidopsis. This study details the similarities and differences between IBA and IAA transport in several tissues of Arabidopsis. In the inflorescence axis, no significant IBA movement was detected, whereas IAA is transported in a basipetal direction from the meristem tip. In young seedlings, both IBA and IAA were transported only in a basipetal direction in the hypocotyl. In roots, both auxins moved in two distinct polarities and in specific tissues. The kinetics of IBA and IAA transport appear similar, with transport rates of 8 to 10 mm per hour. In addition, IBA transport, like IAA transport, is saturable at high concentrations of auxin, suggesting that IBA transport is protein mediated. Interestingly, IAA efflux inhibitors and mutations in genes encoding putative IAA transport proteins reduce IAA transport but do not alter IBA movement, suggesting that different auxin transport protein complexes are likely to mediate IBA and IAA transport. Finally, the physiological effects of IBA and IAA on hypocotyl elongation under several light conditions were examined and analyzed in the context of the differences in IBA and IAA transport. Together, these results present a detailed picture of IBA transport and provide the basis for a better understanding of the transport of these two endogenous auxins.

  4. Investigation of electronically excited indole relaxation dynamics via photoionization and fragmentation pump-probe spectroscopy.

    PubMed

    Godfrey, T J; Yu, Hui; Ullrich, Susanne

    2014-07-28

    The studies herein investigate the involvement of the low-lying (1)La and (1)Lb states with (1)ππ(*) character and the (1)πσ(*) state in the deactivation process of indole following photoexcitation at 201 nm. Three gas-phase, pump-probe spectroscopic techniques are employed: (1) Time-resolved photoelectron spectroscopy (TR-PES), (2) hydrogen atom (H-atom) time-resolved kinetic energy release (TR-KER), and (3) time-resolved ion yield (TR-IY). Each technique provides complementary information specific to the photophysical processes in the indole molecule. In conjunction, a thorough examination of the electronically excited states in the relaxation process, with particular focus on the involvement of the (1)πσ(*) state, is afforded. Through an extensive analysis of the TR-PES data presented here, it is deduced that the initial excitation of the (1)Bb state decays to the (1)La state on a timescale beyond the resolution of the current experimental setup. Relaxation proceeds on the (1)La state with an ultrafast decay constant (<100 femtoseconds (fs)) to the lower-lying (1)Lb state, which is found to possess a relatively long lifetime of 23 ± 5 picoseconds (ps) before regressing to the ground state. These studies also manifest an additional component with a relaxation time of 405 ± 76 fs, which is correlated with activity along the (1)πσ(*) state. TR-KER and TR-IY experiments, both specifically probing (1)πσ(*) dynamics, exhibit similar decay constants, further validating these observations.

  5. Investigation of electronically excited indole relaxation dynamics via photoionization and fragmentation pump-probe spectroscopy

    SciTech Connect

    Godfrey, T. J.; Yu, Hui; Ullrich, Susanne

    2014-07-28

    The studies herein investigate the involvement of the low-lying {sup 1}L{sub a} and {sup 1}L{sub b} states with {sup 1}ππ{sup *} character and the {sup 1}πσ{sup *} state in the deactivation process of indole following photoexcitation at 201 nm. Three gas-phase, pump-probe spectroscopic techniques are employed: (1) Time-resolved photoelectron spectroscopy (TR-PES), (2) hydrogen atom (H-atom) time-resolved kinetic energy release (TR-KER), and (3) time-resolved ion yield (TR-IY). Each technique provides complementary information specific to the photophysical processes in the indole molecule. In conjunction, a thorough examination of the electronically excited states in the relaxation process, with particular focus on the involvement of the {sup 1}πσ{sup *} state, is afforded. Through an extensive analysis of the TR-PES data presented here, it is deduced that the initial excitation of the {sup 1}B{sub b} state decays to the {sup 1}L{sub a} state on a timescale beyond the resolution of the current experimental setup. Relaxation proceeds on the {sup 1}L{sub a} state with an ultrafast decay constant (<100 femtoseconds (fs)) to the lower-lying {sup 1}L{sub b} state, which is found to possess a relatively long lifetime of 23 ± 5 picoseconds (ps) before regressing to the ground state. These studies also manifest an additional component with a relaxation time of 405 ± 76 fs, which is correlated with activity along the {sup 1}πσ{sup *} state. TR-KER and TR-IY experiments, both specifically probing {sup 1}πσ{sup *} dynamics, exhibit similar decay constants, further validating these observations.

  6. A surprising substituent effect provides a superior boronic acid catalyst for mild and metal-free direct Friedel-Crafts alkylations and prenylations of neutral arenes.

    PubMed

    Ricardo, Carolynne L; Mo, Xiaobin; McCubbin, J Adam; Hall, Dennis G

    2015-03-01

    The development of more general and efficient catalytic processes for Friedel-Crafts alkylations is an important objective of interest toward the production of pharmaceuticals and commodity chemicals. Herein, 2,3,4,5-tetrafluorophenylboronic acid was identified as a potent air- and moisture-tolerant metal-free catalyst that significantly improves the scope of direct Friedel-Crafts alkylations of a variety of slightly activated and neutral arenes, including polyarenes, with allylic and benzylic alcohols. This method also provides a simple alternative for the direct installation of prenyl units commonly found in naturally occurring arenes. Alkylations with benzylic alcohols occur under exceptionally mild conditions. PMID:25678266

  7. A new dimeric dihydrochalcone and a new prenylated flavone from the bud covers of Artocarpus altilis: potent inhibitors of cathepsin K.

    PubMed

    Patil, Ashok D; Freyer, Alan J; Killmer, Lew; Offen, Priscilla; Taylor, Paul B; Votta, Bartholomew J; Johnson, Randall K

    2002-04-01

    A MeOH/CH(2)Cl(2) extract of the bud covers of Artocarpus altilis collected in Micronesia showed activity in a cathepsin K inhibition assay. In addition to the three known flavonoids isolated from the bud covers of this species, two new compounds have been identified whose structures were determined on the basis of spectral data. These compounds include a dimeric dihydrochalcone, cycloaltilisin 6 (2), and a new prenylated flavone, cycloaltilisin 7 (3). Novel compounds 2 and 3 have IC(50) values of 98 and 840 nM, respectively, in cathepsin inhibition.

  8. A Molecular Dynamics Investigation of Mycobacterium tuberculosis Prenyl Synthases: Conformational Flexibility and Implications for Computer-aided Drug Discovery.

    PubMed

    Kim, Meekyum Olivia; Feng, Xinxin; Feixas, Ferran; Zhu, Wei; Lindert, Steffen; Bogue, Shannon; Sinko, William; de Oliveira, César; Rao, Guodong; Oldfield, Eric; McCammon, James Andrew

    2015-06-01

    With the rise in antibiotic resistance, there is interest in discovering new drugs active against new targets. Here, we investigate the dynamic structures of three isoprenoid synthases from Mycobacterium tuberculosis using molecular dynamics (MD) methods with a view to discovering new drug leads. Two of the enzymes, cis-farnesyl diphosphate synthase (cis-FPPS) and cis-decaprenyl diphosphate synthase (cis-DPPS), are involved in bacterial cell wall biosynthesis, while the third, tuberculosinyl adenosine synthase (Rv3378c), is involved in virulence factor formation. The MD results for these three enzymes were then compared with previous results on undecaprenyl diphosphate synthase (UPPS) by means of active site volume fluctuation and principal component analyses. In addition, an analysis of the binding of prenyl diphosphates to cis-FPPS, cis-DPPS, and UPPS utilizing the new MD results is reported. We also screened libraries of inhibitors against cis-DPPS, finding ~1 μm inhibitors, and used the receiver operating characteristic-area under the curve (ROC-AUC) method to test the predictive power of X-ray and MD-derived cis-DPPS receptors. We found that one compound with potent M. tuberculosis cell growth inhibition activity was an IC(50) ~0.5- to 20-μm inhibitor (depending on substrate) of cis-DPPS, a ~660-nm inhibitor of Rv3378c as well as a 4.8-μm inhibitor of cis-FPPS, opening up the possibility of multitarget inhibition involving both cell wall biosynthesis and virulence factor formation. PMID:25352216

  9. Paralemmin, a Prenyl-Palmitoyl–anchored Phosphoprotein Abundant in Neurons and Implicated in Plasma Membrane Dynamics and Cell Process Formation

    PubMed Central

    Kutzleb, Christian; Sanders, Gabriele; Yamamoto, Raina; Wang, Xiaolu; Lichte, Beate; Petrasch-Parwez, Elisabeth; Kilimann, Manfred W.

    1998-01-01

    We report the identification and initial characterization of paralemmin, a putative new morphoregulatory protein associated with the plasma membrane. Paralemmin is highly expressed in the brain but also less abundantly in many other tissues and cell types. cDNAs from chicken, human, and mouse predict acidic proteins of 42 kD that display a pattern of sequence cassettes with high inter-species conservation separated by poorly conserved linker sequences. Prenylation and palmitoylation of a COOH-terminal cluster of three cysteine residues confers hydrophobicity and membrane association to paralemmin. Paralemmin is also phosphorylated, and its mRNA is differentially spliced in a tissue-specific and developmentally regulated manner. Differential splicing, lipidation, and phosphorylation contribute to electrophoretic heterogeneity that results in an array of multiple bands on Western blots, most notably in brain. Paralemmin is associated with the cytoplasmic face of the plasma membranes of postsynaptic specializations, axonal and dendritic processes and perikarya, and also appears to be associated with an intracellular vesicle pool. It does not line the neuronal plasmalemma continuously but in clusters and patches. Its molecular and morphological properties are reminiscent of GAP-43, CAP-23, and MARCKS, proteins implicated in plasma membrane dynamics. Overexpression in several cell lines shows that paralemmin concentrates at sites of plasma membrane activity such as filopodia and microspikes, and induces cell expansion and process formation. The lipidation motif is essential for this morphogenic activity. We propose a function for paralemmin in the control of cell shape, e.g., through an involvement in membrane flow or in membrane–cytoskeleton interaction. PMID:9813098

  10. Brönsted Acid-Catalyzed One-Pot Synthesis of Indoles from o-Aminobenzyl Alcohols and Furans

    PubMed Central

    Kuznetsov, Alexey; Makarov, Anton; Rubtsov, Alexandr E.; Butin, Alexander V.; Gevorgyan, Vladimir

    2013-01-01

    Brönsted acid-catalyzed one-pot synthesis of indoles from o-aminobenzyl alcohols and furans has been developed. This method operates via the in situ formation of aminobenzylfuran, followed by its recyclization into the indole core. The method proved to be efficient for substrates possessing different functional groups, including -OMe, -CO2Cy, and -Br. The resulting indoles can easily be transformed into diverse scaffolds, including 2,3- and 1,2-fused indoles, and indole possessing an α,β-unsaturated ketone moiety at the C-2 position. PMID:24255969

  11. Aplysinopsins--marine indole alkaloids: chemistry, bioactivity and ecological significance.

    PubMed

    Bialonska, Dobroslawa; Zjawiony, Jordan K

    2009-01-01

    Aplysinopsins are tryptophan-derived marine natural products isolated from numerous genera of sponges and scleractinian corals, as well as from one sea anemone and one nudibranch. Aplysinopsins are widely distributed in the Pacific, Indonesia, Caribbean, and Mediterranean regions. Up to date, around 30 analogues occurring in Nature have been reported. Natural aplysinopsins differ in the bromination pattern of the indole ring, variation in the structure of the C ring, including the number and position of N-methylation, the presence and configuration of the C-8-C-1' double bond, and the oxidation state of the 2-aminoimidazoline fragment. Aplysinopsins can also occur in the form of dimers. This review summarizes 30 years' research on aplysinopsins. The origin, isolation sources, chemistry, bioactivity, and ecological functions of aplysinopsins are comprehensively reviewed. PMID:19597579

  12. Biogenetically inspired synthesis and skeletal diversification of indole alkaloids

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Haruki; Oikawa, Hideaki; Oguri, Hiroki

    2014-01-01

    To access architecturally complex natural products, chemists usually devise a customized synthetic strategy for constructing a single target skeleton. In contrast, biosynthetic assembly lines often employ divergent intramolecular cyclizations of a polyunsaturated common intermediate to produce diverse arrays of scaffolds. With the aim of integrating such biogenetic strategies, we show the development of an artificial divergent assembly line generating unprecedented numbers of scaffold variations of terpenoid indole alkaloids. This approach not only allows practical access to multipotent intermediates, but also enables systematic diversification of skeletal, stereochemical and functional group properties without structural simplification of naturally occurring alkaloids. Three distinct modes of [4+2] cyclizations and two types of redox-mediated annulations provided divergent access to five skeletally distinct scaffolds involving iboga-, aspidosperma-, andranginine- and ngouniensine-type skeletons and a non-natural variant within six to nine steps from tryptamine. The efficiency of our approach was demonstrated by successful total syntheses of (±)-vincadifformine, (±)-andranginine and (-)-catharanthine.

  13. Saddle-Shaped Cyclic Indole Tetramers: 3D Electroactive Molecules.

    PubMed

    Ruiz, Constanza; Monge, Ángeles; Gutiérrez-Puebla, Enrique; Alkorta, Ibon; Elguero, José; Navarrete, Juan T López; Ruiz Delgado, M Carmen; Gómez-Lor, Berta

    2016-07-18

    We present a joint theoretical and experimental study of a series of cyclic indole tetramers aimed at understanding the fundamental electronic properties of this 3D platform and evaluating its potential in the construction of new semiconductors. To this end, we combined absorption and Raman spectroscopy, cyclic voltammetry, and spectroelectrochemistry with DFT calculations. Our results suggest that this platform can be easily and reversibly oxidized. Additionally, it has a HOMO that matches very well with the workfunction of gold, therefore charge injection from a gold electrode is expected to occur without significant barriers. Interestingly, the cyclic tetraindoles allow for good electron delocalization in spite of their saddle-shaped structures. The steric constraints introduced by N-substitution significantly inhibits ring inversion of the central cyclooctatetraene unit, whereas it only barely affects the optical and electrochemical properties (a slightly higher oxidation potential and a blueshifted absorption upon alkylation are observed). PMID:27320301

  14. Aplysinopsins - Marine Indole Alkaloids: Chemistry, Bioactivity and Ecological Significance

    PubMed Central

    Bialonska, Dobroslawa; Zjawiony, Jordan K.

    2009-01-01

    Aplysinopsins are tryptophan-derived marine natural products isolated from numerous genera of sponges and scleractinian corals, as well as from one sea anemone and one nudibranch. Aplysinopsins are widely distributed in the Pacific, Indonesia, Caribbean, and Mediterranean regions. Up to date, around 30 analogues occurring in Nature have been reported. Natural aplysinopsins differ in the bromination pattern of the indole ring, variation in the structure of the C ring, including the number and position of N-methylation, the presence and configuration of the C-8-C-1′ double bond, and the oxidation state of the 2-aminoimidazoline fragment. Aplysinopsins can also occur in the form of dimers. This review summarizes 30 years’ research on aplysinopsins. The origin, isolation sources, chemistry, bioactivity, and ecological functions of aplysinopsins are comprehensively reviewed. PMID:19597579

  15. Saddle-Shaped Cyclic Indole Tetramers: 3D Electroactive Molecules.

    PubMed

    Ruiz, Constanza; Monge, Ángeles; Gutiérrez-Puebla, Enrique; Alkorta, Ibon; Elguero, José; Navarrete, Juan T López; Ruiz Delgado, M Carmen; Gómez-Lor, Berta

    2016-07-18

    We present a joint theoretical and experimental study of a series of cyclic indole tetramers aimed at understanding the fundamental electronic properties of this 3D platform and evaluating its potential in the construction of new semiconductors. To this end, we combined absorption and Raman spectroscopy, cyclic voltammetry, and spectroelectrochemistry with DFT calculations. Our results suggest that this platform can be easily and reversibly oxidized. Additionally, it has a HOMO that matches very well with the workfunction of gold, therefore charge injection from a gold electrode is expected to occur without significant barriers. Interestingly, the cyclic tetraindoles allow for good electron delocalization in spite of their saddle-shaped structures. The steric constraints introduced by N-substitution significantly inhibits ring inversion of the central cyclooctatetraene unit, whereas it only barely affects the optical and electrochemical properties (a slightly higher oxidation potential and a blueshifted absorption upon alkylation are observed).

  16. Biogenetically inspired synthesis and skeletal diversification of indole alkaloids.

    PubMed

    Mizoguchi, Haruki; Oikawa, Hideaki; Oguri, Hiroki

    2014-01-01

    To access architecturally complex natural products, chemists usually devise a customized synthetic strategy for constructing a single target skeleton. In contrast, biosynthetic assembly lines often employ divergent intramolecular cyclizations of a polyunsaturated common intermediate to produce diverse arrays of scaffolds. With the aim of integrating such biogenetic strategies, we show the development of an artificial divergent assembly line generating unprecedented numbers of scaffold variations of terpenoid indole alkaloids. This approach not only allows practical access to multipotent intermediates, but also enables systematic diversification of skeletal, stereochemical and functional group properties without structural simplification of naturally occurring alkaloids. Three distinct modes of [4+2] cyclizations and two types of redox-mediated annulations provided divergent access to five skeletally distinct scaffolds involving iboga-, aspidosperma-, andranginine- and ngouniensine-type skeletons and a non-natural variant within six to nine steps from tryptamine. The efficiency of our approach was demonstrated by successful total syntheses of (±)-vincadifformine, (±)-andranginine and (-)-catharanthine.

  17. Response of patients with indolent systemic mastocytosis to tamoxifen citrate.

    PubMed

    Butterfield, Joseph H; Chen, Dong

    2016-01-01

    We examined whether tamoxifen citrate at 20mg/day for 1 year had a beneficial effect on laboratory findings, bone marrow mastocytosis, common clinical symptoms, or quality-of-life assessment for 5 women and 2 men with indolent systemic mastocytosis. Tamoxifen was well tolerated. We found significant reductions in the platelet count, serum alkaline phosphatase, and 24-h urinary excretion of N-methylhistamine and significant increases in serum lactate dehydrogenase and (excluding 2 patients taking aspirin) in 24-h urinary excretion of 11β-prostaglandin F2α. Overall, no change occurred in percent involvement of bone marrow by mastocytosis. Symptom scores were mild and did not change during the treatment. The 36-Item Short Form Health Survey scores for quality of life physical and mental components showed no marked changes. Tamoxifen, an older, nonhematotoxic medication, has limited activity in systemic mastocytosis at the dosage used in this study.

  18. Studies on organic indole-3-aldehyde single crystals

    NASA Astrophysics Data System (ADS)

    Haja Hameed, A. S.; Ravi, G.; Dhanasekaran, R.; Ramasamy, P.

    Indole-3-aldehyde (IA) is a new organic nonlinear material for which its solubility in methanol and acetone was found out using the apparatus fabricated by the authors. In order to get the good-quality crystals, methods of evaporation of solvent at room temperature and slow cooling of saturated solution at boiling temperature were adopted. Simulated lattice parameter values were found out using experimentally known " d" values. The etching and mechanical strength studies on different planes of the crystal were carried out. Decomposition temperature, weight loss and different functional bond frequencies associated with the crystal were also found out from differential thermal analysis (DTA), thermo-gravimetric analysis (TGA) and Fourier transform infra-red (FTIR) spectroscopic analysis, respectively.

  19. Nonradiative decay mechanisms of complexed indole derivatives studied by time-resolved fluorescence

    NASA Astrophysics Data System (ADS)

    Schauerte, Joseph A.; Gafni, Ari

    1990-05-01

    Ground and excited state characteristics of substituted indole derivatives reveal a sensitivity of indoles' electronic properties to the nature and location of substitutions on the indole ring. These substitutions affect both the nature of the excited electronic state and the susceptibility of this state to non-radiative decay processes. A number of mechanisms that deactivate the excited state have been identified including intersystem crossing, electron photoejection into polar solvents, and >N-H dissociation in polar solvents (see Glasser & Lami,1986) . While the >N-H group has been implicated in non-radiative decay processes in polar solvents, covalent substitutions elsewhere on the indole molecule may modulate the importance of this site in non-radiative decay mechanisms or alternatively these substitutions may introduce new deactivation mechanisms. Additionally, complexes formed between indole derivatives and β-cyclodextrin cavities show different sensitivity to excited state deactivation mechanisms dependent upon the location and nature of the covalent substitution. We have investigated the excited states of some indole derivatives substituted at position 5, para to the >N-H group on the benzyl ring, to determine the effect of such covalent substitutions on the fluorescence emission characteristics of the indole ring as well as on its susceptibility to alternate excited state decay mechanisms.

  20. Asymmetric distribution of glucose and indole-3-acetyl-myo-inositol in geostimulated Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Momonoki, Y. S.; Bandurski, R. S. (Principal Investigator)

    1988-01-01

    Indole-3-acetyl-myo-inositol occurs in both the kernel and vegetative shoot of germinating Zea mays seedlings. The effect of a gravitational stimulus on the transport of [3H]-5-indole-3-acetyl-myo-inositol and [U-14C]-D-glucose from the kernel to the seedling shoot was studied. Both labeled glucose and labeled indole-3-acetyl-myo-inositol become asymmetrically distributed in the mesocotyl cortex of the shoot with more radioactivity occurring in the bottom half of a horizontally placed seedling. Asymmetric distribution of [3H]indole-3-acetic acid, derived from the applied [3H]indole-3-acetyl-myo-inositol, occurred more rapidly than distribution of total 3H-radioactivity. These findings demonstrate that the gravitational stimulus can induce an asymmetric distribution of substances being transported from kernel to shoot. They also indicate that, in addition to the transport asymmetry, gravity affects the steady state amount of indole-3-acetic acid derived from indole-3-acetyl-myo-inositol.

  1. Inhibition of monoamine oxidase by indole-5,6-dicarbonitrile derivatives.

    PubMed

    Chirkova, Zhanna V; Kabanova, Mariya V; Filimonov, Sergey I; Abramov, Igor G; Petzer, Anél; Petzer, Jacobus P; Firgang, Sergey I; Suponitsky, Kyrill Yu

    2015-03-15

    Recent studies have found that phthalonitrile derivatives are remarkably potent inhibitors of human monoamine oxidase (MAO) A and B. In an attempt to further determine the structure-activity relationships (SARs) for MAO inhibition by this class of compounds and to discover novel potent MAO inhibitors, the present study investigated the MAO inhibition properties of a series consisting of indole-5,6-dicarbonitrile derivatives. The results document that 3-chloro-1H-indole-5,6-dicarbonitrile derivatives exhibited potent inhibition of the MAOs. For example, 3-chloro-2-(4-methylphenyl)-1H-indole-5,6-dicarbonitrile inhibited MAO-A and MAO-B with IC50 values of 0.014μM and 0.017μM, respectively. It was further shown that this compound acts as a reversible and competitive inhibitor of both MAO isoforms. An analysis of the SARs for MAO inhibition by 3-chloro-1H-indole-5,6-dicarbonitriles showed that methylation of the indole nitrogen eliminates MAO-B inhibition activity, and replacement of the 2-phenyl ring with the thienyl results in a 9-fold reduction of MAO-B inhibition activity. A series of 3-bromo-1-hydroxy-1H-indole-5,6-dicarbonitriles are, in turn, comparatively weaker MAO inhibitors. It may be concluded that indole-5,6-dicarbonitrile derivatives are suitable leads for the design MAO inhibitors for the treatment of disorders such as Parkinson's disease and depression.

  2. Highly active modulators of indole signaling alter pathogenic behaviors in Gram-negative and Gram-positive bacteria.

    PubMed

    Minvielle, Marine J; Eguren, Kristen; Melander, Christian

    2013-12-16

    Indole is a universal signal that regulates various bacterial behaviors, such as biofilm formation and antibiotic resistance. To generate mechanistic probes of indole signaling and control indole-mediated pathogenic phenotypes in both Gram-positive and Gram-negative bacteria, we have investigated the use of desformylflustrabromine (dFBr) derivatives to generate highly active indole mimetics. We have developed non-microbicidal dFBr derivatives that are 27-2000 times more active than indole in modulating biofilm formation, motility, acid resistance, and antibiotic resistance. The activity of these analogues parallels indole, because they are dependent on temperature, the enzyme tryptophanase TnaA, and the transcriptional regulator SdiA. This investigation demonstrates that molecules based on the dFBr scaffold can alter pathogenic behaviors by mimicking indole-signaling pathways.

  3. Discovery and optimization of indole and 7-azaindoles as Rho kinase (ROCK) inhibitors (part-II).

    PubMed

    Sessions, E Hampton; Chowdhury, Sarwat; Yin, Yan; Pocas, Jennifer R; Grant, Wayne; Schröter, Thomas; Lin, Li; Ruiz, Claudia; Cameron, Michael D; LoGrasso, Philip; Bannister, Thomas D; Feng, Yangbo

    2011-12-01

    Therapeutic interventions with Rho kinase (ROCK) inhibitors may effectively treat several disorders such as hypertension, stroke, cancer, and glaucoma. Herein we disclose the optimization and biological evaluation of potent novel ROCK inhibitors based on substituted indole and 7-azaindole core scaffolds. Substitutions on the indole C3 position and on the indole NH and/or amide NH positions all yielded potent and selective ROCK inhibitors (25, 42, and 50). Improvement of aqueous solubility and tailoring of in vitro and in vivo DMPK properties could be achieved through these substitutions.

  4. Possible involvement of ATP-dependent K-channel related mechanisms in the antihypertensive and cough suppressant effects of the novel ACE inhibitor (2S, 3aS, 7aS)-1-(N2-nicotinoyl-L-lysyl-gamma-D-glutamyl)octahydro-1H- indole-2-carboxylic acid.

    PubMed

    Nagata, S; Takeyama, K; Hosoki, K; Karasawa, T

    1997-06-01

    The antihypertensive and cough suppressant mechanisms of DU-1777 ((2S,3aS,7aS)-1-(N2-nicotinoyl-L-lsyl-gamma-D-glutamyl )octahydro-1H-indole-2 -carboxylic acid, CAS 116662-73-8), a new long-acting angiotensin-1-converting enzyme (ACE) inhibitor, were investigated in vivo and in vitro. The antihypertensive effects of DU-1777 at 10 mg/kg p.o. and cromakalim at 0.3 mg/kg p.o. were partially (about 60%) or fully antagonized by glibenclamide at 10 mg/kg i.v. in 2-kidney, 1-clip renal hypertensive rats (2K-1C RHR). The antihypertensive effects of a Ca blocker (nifedipine) and other ACE inhibitors (captopril, alacepril, enalapril, lisinopril, imidapril and quanapril) were not antagonized by glibenclamide. In deoxycorticosterone acetate-salt hypertensive rats (DOCA-HR), the antihypertensive effects of DU-1777 at 3-30 mg/kg p.o. were fully antagonized by glibenclamide. However, in vitro, DU-1777 (10(-6)-10(-3) mol/l) did not affect aortic ring contractions induced by high K (30 mmol/l). In guinea pig, citric acid induced cough was increased by ACE inhibitors, captopril, alacepril, enalapril and lisinopril (10 and 30 mg/kg p.o.). DU-1777 had a tendency to decrease citric acid induced cough and the effect was antagonized by glibenclamide. These results suggest that while DU-1777 itself does not open ATP-dependent K channel, it indirectly produces these effects through unknown mechanisms in vivo. Moreover, these effects contributed to the antihypertensive effect in DOCA-HR and cough suppressant effect in guinea pigs. PMID:9239450

  5. Two-dimensional 1H-NMR studies of horseradish peroxidase C and its interaction with indole-3-propionic acid.

    PubMed

    Veitch, N C; Williams, R J

    1990-04-30

    The binding of aromatic donor molecules to plant peroxidases has been investigated by examining the complex formed between horseradish peroxidase isoenzyme C and indole-3-propionic acid using two-dimensional 1H-NMR spectroscopy. Despite the relatively high molecular mass and paramagnetism of the protein, this technique can be successfully applied to provide new information on the structure of the complex. A number of relatively well-resolved resonances in certain regions of the one-dimensional spectrum are assigned to amino acid type on the basis of the two-dimensional experiments. Two phenylalanine side chains are found to interact at positions close to the haem group as shown by nuclear Overhauser effect spectroscopy (NOESY). Furthermore, the NOESY spectrum of the complex reveals distinct interactions between these phenylalanine residues and the indole ring of the donor molecule. The binding site is found to comprise of these phenylalanine side chains and also the methyl group of a leucine or valine residue. On the basis of the model structure of horseradish peroxidase isoenzyme C proposed by Welinder and Nørskov-Lauritsen and information from previous studies of the related turnip peroxidases, possible locations for this binding site are discussed. The NMR methods adopted here may be generally applicable to the study of peroxidase--aromatic-donor interactions. PMID:2338080

  6. Isolation of two new prenylated flavonoids from Sinopodophyllum emodi fruit by silica gel column and high-speed counter-current chromatography.

    PubMed

    Sun, Yanjun; Sun, Yinshi; Chen, Hui; Hao, Zhiyou; Wang, Junmin; Guan, Yanbin; Zhang, Yanli; Feng, Weisheng; Zheng, Xiaoke

    2014-10-15

    Two new prenylated flavonoids, sinoflavonoids A-B, were isolated from the dried fruits of Sinopodophyllum emodi by silica gel column chromatography (SGCC) and high-speed counter-current chromatography (HSCCC). The 95% ethanol extract was partitioned with petroleum ether, dichloromethane, ethyl acetate, and n-butanol in water, respectively. The ethyl acetate fraction was pre-separated by SGCC with a petroleum ether-acetone gradient. The eluates containing target compounds were further separated by HSCCC with n-hexane-ethyl acetate-methanol-water (4:6:4:4, v/v). Finally, 17.3mg of sinoflavonoid A and 25.9mg of sinoflavonoid B were obtained from 100mg of the pretreated concentrate. The purities of sinoflavonoid A and sinoflavonoid B were 98.47% and 99.38%, respectively, as determined by HPLC. Their structures were elucidated on the basis of spectroscopic evidences (HR-ESI-MS, (1)H-NMR, (13)C-NMR, HSQC, HMBC). The separation procedures proved to be efficient, especially for trace prenylated flavonoids.

  7. Preparative Isolation of Two Prenylated Biflavonoids from the Roots and Rhizomes of Sinopodophyllum emodi by Sephadex LH-20 Column and High-Speed Counter-Current Chromatography.

    PubMed

    Sun, Yan-Jun; Pei, Li-Xin; Wang, Kai-Bo; Sun, Yin-Shi; Wang, Jun-Min; Zhang, Yan-Li; Gao, Mei-Ling; Ji, Bao-Yu

    2015-12-23

    Two prenylated biflavonoids, podoverines B-C, were isolated from the dried roots and rhizomes of Sinopodophyllum emodi using a Sephadex LH-20 column (SLHC) and high-speed counter-current chromatography (HSCCC). The 95% ethanol extract was partitioned with ethyl acetate in water. Target compounds from the ethyl acetate fraction were further enriched and purified by the combined application of SLHC and HSCCC. n-Hexane-ethyl acetate-methanol-water (3.5:5:3.5:5, v/v) was chosen as the two phase solvent system. The flow rate of mobile phase was optimized at 2.0 mL·min(-1). Finally, under optimized conditions, 13.8 mg of podoverine B and 16.2 mg of podoverine C were obtained from 200 mg of the enriched sample. The purities of podoverines B and C were 98.62% and 99.05%, respectively, as determined by HPLC. For the first time, podoverins B and C were found in the genus Sinopodophyllum. Their structures were determined by spectroscopic methods (HR-ESI-MS, ¹H-NMR, (13)C-NMR, HSQC, HMBC). Their absolute configurations were elucidated by comparison of their experimental and calculated ECD spectra. The cytotoxic activities were evaluated against MCF-7 and HepG2 cell lines. The separation procedures proved to be practical and economical, especially for trace prenylated biflavonoids from traditional Chinese medicine.

  8. UPLC-PDA-QTOFMS-guided isolation of prenylated xanthones and benzoylphloroglucinols from the leaves of Garcinia oblongifolia and their migration-inhibitory activity

    PubMed Central

    Zhang, Hong; Dan, Zheng; Ding, Zhi-Jie; Lao, Yuan-Zhi; Tan, Hong-Sheng; Xu, Hong-Xi

    2016-01-01

    A UPLC-PDA-QTOFMS-guided isolation strategy was employed to screen and track potentially new compounds from Garcinia oblongifolia. As a result, two new prenylated xanthones, oblongixanthones D and E (1–2), six new prenylated benzoylphloroglucinol derivatives, oblongifolins V–Z (3–7) and oblongifolin AA (8), as well as a known compound oblongifolin L (9), were isolated from the EtOAc-soluble fraction of an acetone extract of the leaves of Garcinia oblongifolia guided by UPLC-PDA-QTOFMS analysis. The structures of the new compounds were elucidated by 1D- and 2D-NMR spectroscopic analysis and mass spectrometry. Experimental and calculated ECD spectra were used to determine the absolute configurations. The results of wound healing and transwell migration assay showed that oblongixanthones D (1), E (2), and oblongifolin L (9) have the ability to inhibit cancer cell migration in lower cytotoxic concentrations. Western blotting results showed that these compounds exhibited an anti-metastasis effect mainly through downregulating RAF protein levels. In addition, 2 and 9 could inhibit phospho-MEK and phospho-ERK at downstream. Moreover, 1, 2, and 9 could inhibit snail protein level, suggesting that they could regulate the EMT pathway. PMID:27767059

  9. Ethylene-enhanced catabolism of ( sup 14 C)indole-3-acetic acid to indole-3-carboxylic acid in citrus leaf tissues. [Citrus sinensis

    SciTech Connect

    Sagee, O.; Riov, J.; Goren, J. )

    1990-01-01

    Exogenous ({sup 14}C)indole-3-acetic acid (IAA) is conjugated in citrus (Citrus sinensis) leaf tissues to one major substance which has been identified as indole-3-acetylaspartic acid (IAAsp). Ethylene pretreatment enhanced the catabolism of ({sup 14}C)IAA to indole-3-carboxylic acid (ICA), which accumulated as glucose esters (ICGlu). Increased formation of ICGlu by ethylene was accompanied by a concomitant decrease in IAAsp formation. IAAsp and ICGlu were identified by combined gas chromatography-mass spectrometry. Formation of ICGlu was dependent on the concentration of ethylene and the duration of the ethylene pretreatment. It is suggested that the catabolism of IAA to ICA may be one of the mechanisms by which ethylene endogenous IAA levels.

  10. Study on the synthesis of the cyclopenta[f]indole core of raputindole A

    PubMed Central

    Marsch, Nils; Kock, Mario

    2016-01-01

    Summary The raputindoles from the rutaceous tree Raputia simulans share a cyclopenta[f]indole partial structure the synthesis of which is subject of this investigation. An efficient route to a series of 1,5-di(indol-6-yl)pentenones was developed via Mo/Au-catalyzed Meyer–Schuster rearrangement of tertiary propargylic alcohol precursors. However, none of the enones underwent the desired Nazarov cyclization to a cyclopenta[f]indole. More suitable were 6-hydroxyallylated indolines which gave good yields of cyclopenta[f]indolines after treatment with SnCl4, as soon as sterically demanding β-cyclocitral adducts were reacted. Most successful were Pt(II) and Au(I)-catalyzed cyclizations of N-TIPS-protected indolin-6-yl-substituted propargylacetates which provided the hydrogenated tricyclic cyclopenta[f]indole core system in high yield. PMID:26977193

  11. The laser desorption/laser ionization mass spectra of some indole derivatives and alkaloids

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Milnes, John; Gormally, John

    1992-06-01

    The laser desorption and laser ionization mass spectra of some indole derivatives and alkaloids are described with particular reference to their modes of fragmentation. Mass spectra of yohimbine, reserpine, quinine and quinidine are presented. Full experimental details are given.

  12. Synthesis of indoles and tryptophan derivatives via photoinduced nitrene C-H insertion.

    PubMed

    Junk, Lukas; Kazmaier, Uli

    2016-03-14

    Functionalized indoles and tryptophans can be obtained from stannylated alkenes and o-iodoanilines via Stille coupling. Subsequent azidation and photochemical nitrene generation results in the formation of the heterocyclic ring systems via C-H insertion. PMID:26869211

  13. Rh(III)-Catalyzed C-H Amidation of Indoles with Isocyanates.

    PubMed

    Jeong, Taejoo; Han, Sangil; Mishra, Neeraj Kumar; Sharma, Satyasheel; Lee, Seok-Yong; Oh, Joa Sub; Kwak, Jong Hwan; Jung, Young Hoon; Kim, In Su

    2015-07-17

    The rhodium(III)-catalyzed direct amidation of indoles and pyrroles with aryl and alkyl isocyanates is described. These transformations provide a facile and efficient construction of C2-amidated N-heterocyclic scaffolds.

  14. Lewis Acid-Catalyzed Indole Synthesis via Intramolecular Nucleophilic Attack of Phenyldiazoacetates to Iminium Ions

    PubMed Central

    Zhou, Lei; Doyle, Michael P.

    2009-01-01

    Lewis acids catalyze the cyclization of methyl phenyldiazoacetates with an ortho-imino group, prepared from o-aminophenylacetic acid, to give 2,3-substituted indoles in quantitative yields. PMID:19904905

  15. Study on the synthesis of the cyclopenta[f]indole core of raputindole A.

    PubMed

    Marsch, Nils; Kock, Mario; Lindel, Thomas

    2016-01-01

    The raputindoles from the rutaceous tree Raputia simulans share a cyclopenta[f]indole partial structure the synthesis of which is subject of this investigation. An efficient route to a series of 1,5-di(indol-6-yl)pentenones was developed via Mo/Au-catalyzed Meyer-Schuster rearrangement of tertiary propargylic alcohol precursors. However, none of the enones underwent the desired Nazarov cyclization to a cyclopenta[f]indole. More suitable were 6-hydroxyallylated indolines which gave good yields of cyclopenta[f]indolines after treatment with SnCl4, as soon as sterically demanding β-cyclocitral adducts were reacted. Most successful were Pt(II) and Au(I)-catalyzed cyclizations of N-TIPS-protected indolin-6-yl-substituted propargylacetates which provided the hydrogenated tricyclic cyclopenta[f]indole core system in high yield. PMID:26977193

  16. Novel indole-3-sulfonamides as potent HIV non-nucleoside reverse transcriptase inhibitors (NNRTIs)

    SciTech Connect

    Zhao, Zhijian; Wolkenberg, Scott E.; Lu, Meiqing; Munshi, Vandna; Moyer, Gregory; Feng, Meizhen; Carella, Anthony V.; Ecto, Linda T.; Gabryelski, Lori J.; Lai, Ming-Tain; Prasad, Sridar G.; Yan, Youwei; McGaughey, Georgia B.; Miller, Michael D.; Lindsley, Craig W.; Hartman, George D.; Vacca, Joseph P.; Williams, Theresa M.

    2008-09-29

    This Letter describes the design, synthesis, and biological evaluation of novel 3-indole sulfonamides as potent non-nucleoside reverse transcriptase inhibitors (NNRTIs) with balanced profiles against common HIV RT mutants K103N and Y181C.

  17. Benzimidazole analogs of (L)-tryptophan are substrates and inhibitors of tryptophan indole lyase from Escherichia coli.

    PubMed

    Harris, Austin P; Phillips, Robert S

    2013-04-01

    Tryptophan indole lyase (TIL), an enzyme found in Escherichia coli and related enterobacteria, produces indole from l-tryptophan (l-Trp). Indole is a signaling molecule in bacteria, affecting biofilm formation, pathogenicity and antibiotic resistance. β-(Benzimidazol-1-yl)-l-alanine (BZI-Ala), 2-amino-4-(benzimidazol-1-yl)butyric acid (homo-BZI-Ala) and 2-amino-5-(benzimidazol-1-yl)pentanoic acid (bishomo-BZI-Ala) were synthesized and tested as substrates and inhibitors of TIL. BZI-Ala is a good substrate of TIL, with Km = 300 μm, kcat = 5.6 s(-1) and kcat /Km = 1.9 × 10(4) , similar to l-Trp. BZI-Ala is also a good substrate for H463F mutant TIL, which has very low activity with l-Trp. In contrast, homo-BZI-Ala was found to be a potent competitive inhibitor of TIL, with a Ki of 13.4 μm. However, the higher homolog, bishomo-BZI-Ala, was inactive as an inhibitor of TIL at a concentration of 600 μm, and is thus a much weaker inhibitor. The reaction of TIL with BZI-Ala was too fast to be observed in the stopped-flow spectrophotometer, and shows an aldimine intermediate in the steady state. However, H463F TIL shows equilibrating mixtures of aldimine and quinonoid complexes in the steady state. The spectra of the reaction of TIL with homo-BZI-Ala show a rapidly formed intermediate absorbing at 340 nm, probably a gem-diamine, that decays slowly to form a quinonoid complex absorbing at 494 nm. The potent binding of homo-BZI-Ala may be due to it being a 'bi-product' analog of the indole-α-aminoacrylate complex. These results demonstrate that an amino acid substrate may be converted to a potent inhibitor of TIL simply by homologation, which may be useful in the design of other potent TIL inhibitors.

  18. The membrane interface dictates different anchor roles for "inner pair" and "outer pair" tryptophan indole rings in gramicidin A channels.

    PubMed

    Gu, Hong; Lum, Kevin; Kim, Jung H; Greathouse, Denise V; Andersen, Olaf S; Koeppe, Roger E

    2011-06-01

    We investigated the effects of substituting two of the four tryptophans (the "inner pair" Trp(9) and Trp(11) or the "outer pair" Trp(13) and Trp(15)) in gramicidin A (gA) channels. The conformational preferences of the doubly substituted gA analogues were assessed using circular dichroism spectroscopy and size-exclusion chromatography, which show that the inner tryptophans 9 and 11 are critical for the gA's conformational preference in lipid bilayer membranes. [Phe(13,15)]gA largely retains the single-stranded helical channel structure, whereas [Phe(9,11)]gA exists primarily as double-stranded conformers. Within this context, the (2)H NMR spectra from labeled tryptophans were used to examine the changes in average indole ring orientations, induced by the Phe substitutions and by the shift in conformational preference. Using a method for deuterium labeling of already synthesized gAs, we introduced deuterium selectively onto positions C2 and C5 of the remaining tryptophan indole rings in the substituted gA analogues for solid-state (2)H NMR spectroscopy. The (least possible) changes in orientation and overall motion of each indole ring were estimated from the experimental spectra. Regardless of the mixture of backbone folds, the indole ring orientations observed in the analogues are similar to those found previously for gA channels. Both Phe-substituted analogues form single-stranded channels, as judged from the formation of heterodimeric channels with the native gA. [Phe(13,15)]gA channels have Na(+) currents that are ~50% and lifetimes that are ~80% of those of native gA channels. The double-stranded conformer(s) of [Phe(9,11)]gA do not form detectable channels. The minor single-stranded population of [Phe(9,11)]gA forms channels with Na(+) currents that are ~25% and single-channel lifetimes that are ~300% of those of native gA channels. Our results suggest that Trp(9) and Trp(11), when "reaching" for the interface, tend to drive both monomer folding (to "open" a

  19. An Efficient, Microwave-Assisted, One-Pot Synthesis of Indoles Under Sonogashira Conditions

    PubMed Central

    Chen, Yu; Markina, Nataliya A.; Larock, Richard C.

    2009-01-01

    A microwave-assisted, one-pot, three-component coupling reaction for the synthesis of indoles has been developed. The reaction is carried out in two steps under standard Sonogashira coupling conditions from an N-substituted/N,N-disubstituted 2-iodoaniline and a terminal alkyne, followed by the addition of acetonitrile and an aryl iodide. A variety of polysubstituted indoles have been prepared in moderate to excellent yields using the present method. PMID:20160894

  20. Asymmetric synthesis of cyclic indole aminals via 1,3-stereoinduction.

    PubMed

    Li, Hongmei; Chen, Cheng-yi; Nguyen, Hoa; Cohen, Ryan; Maligres, Peter E; Yasuda, Nobuyoshi; Mangion, Ian; Zavialov, Ilia; Reibarkh, Mikhail; Chung, John Y L

    2014-09-19

    A general and efficient asymmetric synthesis of cyclic indoline aminals was developed with a high level of 1,3-stereoinduction through a dynamic crystallization-driven condensation. Dehydrogenation of the indoline aminals with potassium permanganate produced the corresponding cyclic indole aminals in high yields and excellent enantioselectivities. This general methodology was successfully applied to the synthesis of a wide variety of chiral cyclic indoline aminals and indole aminals with aromatic and aliphatic functional groups. PMID:25162915

  1. Copper-Catalyzed Oxidative C-H Amination of Tetrahydrofuran with Indole/Carbazole Derivatives.

    PubMed

    Yang, Qingjing; Choy, Pui Ying; Fu, Wai Chung; Fan, Baomin; Kwong, Fuk Yee

    2015-11-01

    A simple α-C-H amination of cyclic ether with indole/carbazole derivatives has been accomplished by employing copper(II) chloride/bipy as the catalyst system. In the presence of the di-tert-butyl peroxide oxidant, cyclic ethers such as tetrahydrofuran, 1,4-dioxane, and tetrahydropyran successfully undergo C-H/N-H cross dehydrogenative coupling (CDC) with various carbazole or indole derivatives in good-to-excellent yields. PMID:26485515

  2. Responses of Pisum sativum L. to exogenous indole acetic acid application under manganese toxicity.

    PubMed

    Gangwar, Savita; Singh, Vijay Pratap; Maurya, Jagat Narayan

    2011-06-01

    Responses of pea (Pisum sativum L.) seedlings to manganese (50, 100 and 250 μM) and indole acetic acid (10 and 100 μM) treatments were investigated. Single and combined exposure of pea to manganese and 100 μM indole acetic acid decreased root and shoot fresh mass, chlorophyll, carotenoids, protein and nitrogen while ammonium content increased compared to the control. Combined treatment of pea with 250 μM manganese and 100 μM indole acetic acid decreased root and shoot fresh mass by 54% and 51%, chlorophyll and carotenoids by 31% and 26%, root and shoot protein by 47% and 44%, and root and shoot nitrogen by 44% and 40%, respectively. Activities of glutamine synthetase and glutamate synthase were decreased by the exposure of manganese and 100 μM indole acetic acid while glutamate dehydrogenase activity increased. Combined application of 250 μM manganese and 100 μM indole acetic acid decreased root and shoot glutamine synthetase activity by 44% and 39%, and glutamate synthase activity by 39% and 37% while root and shoot glutamate dehydrogenase activity increased by 47% and 42%, respectively compared to the control. In contrast, application of 10 μM indole acetic acid together with manganese decreased the negative impacts of manganese, and promoted seedling growth compared to the manganese treatments alone. This study has shown that 10 μM indole acetic acid protected pea seedlings appreciably from manganese toxicity by regulating ammonium content and the activities of enzymes of ammonium assimilation, while 100 μM of indole acetic acid exhibited opposite response under manganese toxicity. PMID:21516457

  3. L-Tryptophan catabolism by Rubrivivax benzoatilyticus JA2 occurs through indole 3-pyruvic acid pathway.

    PubMed

    Kumavath, Ranjith N; Ramana, Ch V; Sasikala, Ch

    2010-09-01

    Rubrivivax benzoatilyticus JA2 utilizes L: -tryptophan as the sole source of nitrogen for growth, and it has a doubling time of approximately 11 h (compared to 8 h with ammonium chloride). With cell free extracts in the presence of 2-oxoglutarate, indole-3-pyruvic acid, indole-3-acetaldehyde, indole-3-acetic acid, isatin, benzaldehyde, gallic acid and pyrogallol were identified using high performance liquid chromatography (HPLC) and liquid chromatography-mass spectroscopy (LC-MS) analysis. The conversion of L: -tryptophan into indole 3-pyruvic acid and glutamate by an enzyme aminotransferase was confirmed and the catabolism of indole-3-pyruvic acid via side chain oxidation followed by ring oxidation, gallic acid and pyrogallol were confirmed as metabolites. In addition, the proposed pathway sequential conversion of indole-3-pyruvic acid to the end product of pyrogallol was identified, including an enzymatic step that would convert isatin to benzaldehyde by an enzyme yet to be identified. At this stage of the study, the enzyme tryptophan aminotransferase in R. benzoatilyticus JA2 was demonstrated.

  4. Bacterial Metabolite Indole Modulates Incretin Secretion from Intestinal Enteroendocrine L Cells

    PubMed Central

    Chimerel, Catalin; Emery, Edward; Summers, David K.; Keyser, Ulrich; Gribble, Fiona M.; Reimann, Frank

    2014-01-01

    Summary It has long been speculated that metabolites, produced by gut microbiota, influence host metabolism in health and diseases. Here, we reveal that indole, a metabolite produced from the dissimilation of tryptophan, is able to modulate the secretion of glucagon-like peptide-1 (GLP-1) from immortalized and primary mouse colonic L cells. Indole increased GLP-1 release during short exposures, but it reduced secretion over longer periods. These effects were attributed to the ability of indole to affect two key molecular mechanisms in L cells. On the one hand, indole inhibited voltage-gated K+ channels, increased the temporal width of action potentials fired by L cells, and led to enhanced Ca2+ entry, thereby acutely stimulating GLP-1 secretion. On the other hand, indole slowed ATP production by blocking NADH dehydrogenase, thus leading to a prolonged reduction of GLP-1 secretion. Our results identify indole as a signaling molecule by which gut microbiota communicate with L cells and influence host metabolism. PMID:25456122

  5. Monoterpene indole alkaloids from the twigs of Kopsia arborea.

    PubMed

    Cheenpracha, Sarot; Raksat, Achara; Ritthiwigrom, Thunwadee; Laphookhieo, Surat

    2014-10-01

    The phytochemistry of Kopsia arborea Blume has received considerable attention, which has resulted in the isolation of a number of new unusual indole alkaloids with intriguing structures. In this study, a new eburnane-type alkaloid, phutdonginin (1), together with eight known alkaloids: 19-OH-(-)- eburnamonine (2), melodinine E (3), kopsinine (4), kopsilongine (5), kopsamine (6), (-)-methylenedioxy-1 1,12-kopsinaline (7), decarbomethoxykopsiline (8), and vincadifformine (9), were isolated from the twigs of K. arborea. Their structures were characterized extensively by 1D and 2D NMR spectroscopy and HR-ESI-MS. All compounds were submitted to TLC screening for acetylcholinesterase inhibitory activities. Only kopsamine and decarbomethoxykopsiline showed AChE inhibition with MIR values of 12.5 and 6.25 μg, respectively, compared with galanthamine (positive control, 0.004 μg). In addition, compounds 1 and 2 inhibited moderate antibacterial activity against E. coli TISTR 780 with the MIC value of 32 .g/mL. PMID:25522533

  6. Antileishmanial activity of new thiophene-indole hybrids: Design, synthesis, biological and cytotoxic evaluation, and chemometric studies.

    PubMed

    Félix, Mayara B; de Souza, Edson R; de Lima, Maria do C A; Frade, Daiana Karla G; Serafim, Vanessa de L; Rodrigues, Klinger Antonio da F; Néris, Patrícia Lima do N; Ribeiro, Frederico F; Scotti, Luciana; Scotti, Marcus T; de Aquino, Thiago M; Mendonça Junior, Francisco Jaime B; de Oliveira, Márcia R

    2016-09-15

    In the present work, thirty-two hybrid compounds containing cycloalka[b]thiophene and indole moieties (TN5, TN5 1-7, TN6, TN6 1-7, TN7, TN7 1-7, TN8, TN8 1-7) were designed, synthesized and evaluated for their cytotoxic and antileishmanial activity against Leishmania amazonensis promastigotes. More than half of the compounds (18 compounds) exhibited significant antileishmanial activity (IC50 lower than 10.0μg/L), showing better performance than the reference drugs (tri- and penta-valent antimonials). The most active compounds were TN8-7, TN6-1 and TN7 with respective IC50 values of 2.1, 2.3 and 3.2μg/mL. Demonstrating that all of the compounds were less toxic than the reference drugs, even at the highest evaluated concentration (400μg/mL), no compound tested presented human erythrocyte cytotoxicity. Compound TN8-7's effectiveness against a trivalent antimony-resistant culture was demonstrated. It was observed that TN8-7's antileishmanial activity is associated with DNA fragmentation of L. amazonensis promastigotes. Chemometric studies (CPCA, PCA, and PLS) highlight intrinsic solubility/lipophilicity, and compound size and shape as closely related to activity. Our results suggest that hybrid cycloalka[b]thiophene-indole derivatives may be considered as lead compounds for further development of new drugs for the treatment of leishmaniasis. PMID:27515718

  7. Simultaneous determination of 2-naphthoxyacetic acid and indole-3-acetic acid by first derivation synchronous fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Xiangxiang; Wan, Yiqun

    2013-07-01

    A simple, rapid, sensitive and selective method for simultaneously determining 2-naphthoxyacetic acid (BNOA) and Indole-3-Acetic Acid (IAA) in mixtures has been developed using derivation synchronous fluorescence spectroscopy based on their synchronous fluorescence. The synchronous fluorescence spectra were obtained with Δλ = 100 nm in a pH 8.5 NaH2PO4-NaOH buffer solution, and the detected wavelengths of quantitative analysis were set at 239 nm for BNOA and 293 nm for IAA respectively. The over lapped fluorescence spectra were well separated by the synchronous derivative method. Under optimized conditions, the limits of detection (LOD) were 0.003 μg/mL for BNOA and 0.012 μg/mL for IAA. This method is simple and expeditious, and it has been successfully applied to the determination of 2-naphthoxyacetic acid and indole-3-acetic acid in fruit juice samples with satisfactory results. The samples were only filtrated through a 0.45 μm membrane filter, which was free from the tedious separation procedures. The obtaining recoveries were in the range of 83.88-87.43% for BNOA and 80.76-86.68% for IAA, and the relative standard deviations were all less than 5.0%. Statistical comparison of the results with high performance liquid chromatography Mass Spectrometry (HPLC-MS) method revealed good agreement and proved that there were no significant difference in the accuracy and precision between these two methods.

  8. Characterization of an Antibacterial Compound, 2-Hydroxyl Indole-3-Propanamide, Produced by Lactic Acid Bacteria Isolated from Fermented Batter.

    PubMed

    Jeevaratnam, Kadirvelu; Vidhyasagar, Venkatasubramanian; Agaliya, Perumal Jayaprabha; Saraniya, Appukuttan; Umaiyaparvathy, Muthukandan

    2015-09-01

    Lactic acid bacteria are known to produce numerous antimicrobial compounds that are active against various pathogens. Here, we have purified and characterized a novel low-molecular-weight (LMW) antimicrobial compound produced by Lactobacillus and Pediococcus isolated from fermented idly and uttapam batter. The LMW compound was extracted from cell-free supernatant using ice-cold acetone, purified by gel permeation and hydrophobic interaction chromatography. It exhibited antimicrobial activity against Gram-positive and Gram-negative pathogenic bacteria sparing the probiotic strains like Lactobacillus rhamnosus. The molecular weight of the LMW compound was identified as 204 Da using LC-MS-ESI. In addition, the structure of the compound was predicted using spectroscopic methods like FTIR and NMR and identified as 2-hydroxyl indole-3-propanamide. The LMW compound was differentiated from its related compound, tryptophan, by Salkowski reaction and thin-layer chromatography. This novel LMW compound, 2-hydroxyl indole-3-propanamide, may have an effective application as an antibiotic which can spare prevailing probiotic organisms but target only the pathogenic strains.

  9. Antileishmanial activity of new thiophene-indole hybrids: Design, synthesis, biological and cytotoxic evaluation, and chemometric studies.

    PubMed

    Félix, Mayara B; de Souza, Edson R; de Lima, Maria do C A; Frade, Daiana Karla G; Serafim, Vanessa de L; Rodrigues, Klinger Antonio da F; Néris, Patrícia Lima do N; Ribeiro, Frederico F; Scotti, Luciana; Scotti, Marcus T; de Aquino, Thiago M; Mendonça Junior, Francisco Jaime B; de Oliveira, Márcia R

    2016-09-15

    In the present work, thirty-two hybrid compounds containing cycloalka[b]thiophene and indole moieties (TN5, TN5 1-7, TN6, TN6 1-7, TN7, TN7 1-7, TN8, TN8 1-7) were designed, synthesized and evaluated for their cytotoxic and antileishmanial activity against Leishmania amazonensis promastigotes. More than half of the compounds (18 compounds) exhibited significant antileishmanial activity (IC50 lower than 10.0μg/L), showing better performance than the reference drugs (tri- and penta-valent antimonials). The most active compounds were TN8-7, TN6-1 and TN7 with respective IC50 values of 2.1, 2.3 and 3.2μg/mL. Demonstrating that all of the compounds were less toxic than the reference drugs, even at the highest evaluated concentration (400μg/mL), no compound tested presented human erythrocyte cytotoxicity. Compound TN8-7's effectiveness against a trivalent antimony-resistant culture was demonstrated. It was observed that TN8-7's antileishmanial activity is associated with DNA fragmentation of L. amazonensis promastigotes. Chemometric studies (CPCA, PCA, and PLS) highlight intrinsic solubility/lipophilicity, and compound size and shape as closely related to activity. Our results suggest that hybrid cycloalka[b]thiophene-indole derivatives may be considered as lead compounds for further development of new drugs for the treatment of leishmaniasis.

  10. Multiple Facets of Arabidopsis Seedling Development Require 
Indole-3-Butyric Acid–Derived Auxin[W

    PubMed Central

    Strader, Lucia C.; Wheeler, Dorthea L.; Christensen, Sarah E.; Berens, John C.; Cohen, Jerry D.; Rampey, Rebekah A.; Bartel, Bonnie

    2011-01-01

    Levels of auxin, which regulates both cell division and cell elongation in plant development, are controlled by synthesis, inactivation, transport, and the use of storage forms. However, the specific contributions of various inputs to the active auxin pool are not well understood. One auxin precursor is indole-3-butyric acid (IBA), which undergoes peroxisomal β-oxidation to release free indole-3-acetic acid (IAA). We identified ENOYL-COA HYDRATASE2 (ECH2) as an enzyme required for IBA response. Combining the ech2 mutant with previously identified iba response mutants resulted in enhanced IBA resistance, diverse auxin-related developmental defects, decreased auxin-responsive reporter activity in both untreated and auxin-treated seedlings, and decreased free IAA levels. The decreased auxin levels and responsiveness, along with the associated developmental defects, uncover previously unappreciated roles for IBA-derived IAA during seedling development, establish IBA as an important auxin precursor, and suggest that IBA-to-IAA conversion contributes to the positive feedback that maintains root auxin levels. PMID:21406624

  11. Structure-activity relationships of substituted 1H-indole-2-carboxamides as CB1 receptor allosteric modulators.

    PubMed

    Nguyen, Thuy; German, Nadezhda; Decker, Ann M; Li, Jun-Xu; Wiley, Jenny L; Thomas, Brian F; Kenakin, Terry P; Zhang, Yanan

    2015-05-01

    A series of substituted 1H-indole-2-carboxamides structurally related to compounds Org27569 (1), Org29647 (2) and Org27759 (3) were synthesized and evaluated for CB1 allosteric modulating activity in calcium mobilization assays. Structure-activity relationship studies showed that the modulation potency of this series at the CB1 receptor was enhanced by the presence of a diethylamino group at the 4-position of the phenyl ring, a chloro or fluoro group at the C5 position and short alkyl groups at the C3 position on the indole ring. The most potent compound (45) had an IC₅₀ value of 79 nM which is ∼2.5 and 10 fold more potent than the parent compounds 3 and 1, respectively. These compounds appeared to be negative allosteric modulators at the CB1 receptor and dose-dependently reduced the Emax of agonist CP55,940. These analogs may provide the basis for further optimization and use of CB1 allosteric modulators.

  12. Auxin Produced by the Indole-3-Pyruvic Acid Pathway Regulates Development and Gemmae Dormancy in the Liverwort Marchantia polymorpha.

    PubMed

    Eklund, D Magnus; Ishizaki, Kimitsune; Flores-Sandoval, Eduardo; Kikuchi, Saya; Takebayashi, Yumiko; Tsukamoto, Shigeyuki; Hirakawa, Yuki; Nonomura, Maiko; Kato, Hirotaka; Kouno, Masaru; Bhalerao, Rishikesh P; Lagercrantz, Ulf; Kasahara, Hiroyuki; Kohchi, Takayuki; Bowman, John L

    2015-06-01

    The plant hormone auxin (indole-3-acetic acid [IAA]) has previously been suggested to regulate diverse forms of dormancy in both seed plants and liverworts. Here, we use loss- and gain-of-function alleles for auxin synthesis- and signaling-related genes, as well as pharmacological approaches, to study how auxin regulates development and dormancy in the gametophyte generation of the liverwort Marchantia polymorpha. We found that M. polymorpha possess the smallest known toolkit for the indole-3-pyruvic acid (IPyA) pathway in any land plant and that this auxin synthesis pathway mainly is active in meristematic regions of the thallus. Previously a Trp-independent auxin synthesis pathway has been suggested to produce a majority of IAA in bryophytes. Our results indicate that the Trp-dependent IPyA pathway produces IAA that is essential for proper development of the gametophyte thallus of M. polymorpha. Furthermore, we show that dormancy of gemmae is positively regulated by auxin synthesized by the IPyA pathway in the apex of the thallus. Our results indicate that auxin synthesis, transport, and signaling, in addition to its role in growth and development, have a critical role in regulation of gemmae dormancy in M. polymorpha. PMID:26036256

  13. Auxin Produced by the Indole-3-Pyruvic Acid Pathway Regulates Development and Gemmae Dormancy in the Liverwort Marchantia polymorpha.

    PubMed

    Eklund, D Magnus; Ishizaki, Kimitsune; Flores-Sandoval, Eduardo; Kikuchi, Saya; Takebayashi, Yumiko; Tsukamoto, Shigeyuki; Hirakawa, Yuki; Nonomura, Maiko; Kato, Hirotaka; Kouno, Masaru; Bhalerao, Rishikesh P; Lagercrantz, Ulf; Kasahara, Hiroyuki; Kohchi, Takayuki; Bowman, John L

    2015-06-01

    The plant hormone auxin (indole-3-acetic acid [IAA]) has previously been suggested to regulate diverse forms of dormancy in both seed plants and liverworts. Here, we use loss- and gain-of-function alleles for auxin synthesis- and signaling-related genes, as well as pharmacological approaches, to study how auxin regulates development and dormancy in the gametophyte generation of the liverwort Marchantia polymorpha. We found that M. polymorpha possess the smallest known toolkit for the indole-3-pyruvic acid (IPyA) pathway in any land plant and that this auxin synthesis pathway mainly is active in meristematic regions of the thallus. Previously a Trp-independent auxin synthesis pathway has been suggested to produce a majority of IAA in bryophytes. Our results indicate that the Trp-dependent IPyA pathway produces IAA that is essential for proper development of the gametophyte thallus of M. polymorpha. Furthermore, we show that dormancy of gemmae is positively regulated by auxin synthesized by the IPyA pathway in the apex of the thallus. Our results indicate that auxin synthesis, transport, and signaling, in addition to its role in growth and development, have a critical role in regulation of gemmae dormancy in M. polymorpha.

  14. Synthesis and evaluation of indole-based chalcones as inducers of methuosis, a novel type of nonapoptotic cell death.

    PubMed

    Robinson, Michael W; Overmeyer, Jean H; Young, Ashley M; Erhardt, Paul W; Maltese, William A

    2012-03-01

    Methuosis is a novel caspase-independent form of cell death in which massive accumulation of vacuoles derived from macropinosomes ultimately causes cells to detach from the substratum and rupture. We recently described a chalcone-like compound, 3-(2-methyl-1H-indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one (i.e., MIPP), which can induce methuosis in glioblastoma and other types of cancer cells. Herein, we describe the synthesis and structure-activity relationships of a directed library of related compounds, providing insights into the contributions of the two aryl ring systems and highlighting a potent derivative, 3-(5-methoxy, 2-methyl-1H-indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one (i.e., MOMIPP) that can induce methuosis at low micromolar concentrations. We have also generated biologically active azide derivatives that may be useful for future studies aimed at identifying the protein targets of MOMIPP by photoaffinity labeling techniques. The potential significance of these studies is underscored by the finding that MOMIPP effectively reduces the growth and viability of Temozolomide-resistant glioblastoma and doxorubicin-resistant breast cancer cells. Thus, it may serve as a prototype for drugs that could be used to trigger death by methuosis in cancers that are resistant to conventional forms of cell death (e.g., apoptosis).

  15. Second-order nonlinear optical responses of carboranyl-substituted indole/indoline derivatives: impact of different substituents.

    PubMed

    Wang, Hong-Qiang; Wang, Wen-Yong; Fang, Xin-Yan; Wang, Li; Zhu, Chang-Li; Chen, Zhen-Zhen; Chen, He; Qiu, Yong-Qing

    2016-06-01

    Carborane has been the subject of great interest over the last decades due to its high structural, chemical, biological stability and diverse applications. In the present work, carboranyl-substituted indole/indoline compounds and their functionalized derivatives have been systematically investigated by density functional theory (DFT) method with the view of assessing their electronic structures and first hyperpolarizabilities. Significantly, the first hyperpolarizabilities can be obviously enhanced by the introduction of a strong electron-withdrawing group for closed-ring forms, while the strong electron-donating group is beneficial for large first hyperpolarizabilities for open-ring forms. It indicates that the NLO properties of these compounds can be enhanced by controlling their relative substituent groups. Furthermore, the time-dependent DFT calculation illustrates that the enhancement of the first hyperpolarizabilities are found due to the obvious charge transfer (CT) transition, and closed-ring forms have a significant difference on the CT patterns versus open-ring ones. Investigation of the structure-property relationship and substituent effects at the molecular level can benefit for further exploration of carboranyl-substituted indole/indoline derivatives with versatile and fascinating NLO properties. PMID:27262529

  16. One-pot approach to 1,2-disubstituted indoles via Cu(II)-catalyzed coupling/cyclization under aerobic conditions and its application for the synthesis of polycyclic indoles.

    PubMed

    Gao, Jilong; Shao, Yingying; Zhu, Jiaoyan; Zhu, Jiaqi; Mao, Hui; Wang, Xiaoxia; Lv, Xin

    2014-10-01

    A straightforward assembly of 1,2-disubstituted indoles has been developed through a Cu(II)-catalyzed domino coupling/cyclization process. Under aerobic conditions, a wide range of 1,2-disubstituted indole derivatives were efficiently and facilely synthesized from 2-alkynylanilines and boronic acids. 2-(2-Bromoaryl)-1-aryl-1H-indoles, which were selectively generated in one pot under the Cu catalysis, afforded the indolo[1,2-f]phenanthridines via Pd-catalyzed intramolecular direct C(sp(2))-H arylation. The one-pot tandem approaches to the polycyclic indole derivatives were also successfully achieved. PMID:25211172

  17. Stereoselective synthesis of thiazino[4,3-a]indoles using the thia-Pictet-Spengler reaction of indoles bearing N-tethered thiols and vinylogous thiocarbonates.

    PubMed

    Gharpure, Santosh J; Nanda, Santosh K

    2016-06-28

    An inter- as well as intra-molecular thia-Pictet-Spengler cyclization of N-tethered thiols and vinylogous thiocarbonates is described for the stereoselective synthesis of N-fused thiazinoindole derivatives. The strategy is extended to one-pot, sequential Friedel-Crafts alkylation - Pictet-Spengler cyclization and the synthesis of thiazino-oxepino-indole. PMID:27011230

  18. Metal-free (Boc)2O-mediated C4-selective direct indolation of pyridines using TEMPO.

    PubMed

    Qin, Wen-Bing; Zhu, Jia-Yi; Kong, Yu-Bo; Bao, Yun-Hong; Chen, Zheng-Wang; Liu, Liang-Xian

    2014-06-28

    Direct metal-free C-4-selective indolation of pyridines is achieved for the first time using TEMPO and (Boc)2O. A variety of substituents on both indoles and pyridines are tolerated to give 3-(pyridin-4-yl)-1H-indole derivatives in moderate to excellent yields. This finding provides a novel approach for developing metal-free C-H functionalization of pyridines.

  19. Inhibitory effects of indole α-lipoic acid derivatives on nitric oxide production in LPS/IFNγ activated RAW 264.7 macrophages.

    PubMed

    Karabay, Arzu Zeynep; Koc, Aslı; Gurkan-Alp, A Selen; Buyukbingol, Zeliha; Buyukbingol, Erdem

    2015-04-01

    Alpha-lipoic acid (α-lipoic acid) is a potent antioxidant compound that has been shown to possess anti-inflammatory effects. RAW 264.7 macrophages produce various inflammatory mediators such as nitric oxide, IL-1β, IL-6 and TNF-alpha upon activation with LPS (Lipopolysaccharide) and IFNγ (interferon gamma). In this study, the effect of 12 synthetic indole α-lipoic acid derivatives on nitric oxide production and iNOS (inducible nitric oxide synthase) protein expression in LPS/IFNγ activated RAW 264.7 macrophages was determined. Cell proliferation, nitric oxide levels and iNOS protein expression were examined with thiazolyl blue tetrazolium blue test, griess assay and western blot, respectively. Our results showed that all of the indole α-lipoic acid derivatives showed significant inhibitory effects on nitric oxide production and iNOS protein levels (p < 0.05). The most active compounds were identified as compound I-4b, I-4e and II-3b. In conclusion, these indole α-lipoic acid derivatives may have the potential for treatment of inflammatory conditions related with high nitric oxide production.

  20. Some effects of indole on the interaction of amino acids with tryptophanase.

    PubMed

    Kazarinoff, M N; Snell, E E

    1980-07-10

    Although indole is a potent inhibitor (KI = 0.01 mM) of pyruvate formation from substrates of tryptophanase (EC 4.1.99.1, from Escherichia coli), we could not detect binding of indole to free tryptophanase (KD greater than 1.0 mM). However, indole, skatole, and toluene increased the affinity of tryptophanase for certain inhibitory amino acids. Binding of amino acids with small side chains (e.g. Ala, Gly) was increased, but there was little or no effect on the binding of amino acids with bulky side chains (e.g. norvaline, ethionine). These effects were quantitated by using changes in the absorption spectra of the enzyme . amino acid complexes. Indole decreases the absorbance obtainable at 500 nm for amino acids with small hydrophobic side chains (L-Ala, Gly), increases this absorbance for amino acids with small polar side chains (beta-cyano-L-alanine), and does not change the spectra of tryptophanase complexes with amino acids with bulky side chains, i.e. amino acids whose binding affinities are unaffected by indole. These spectral differences are interpreted in terms of an effect of bound indole (or side chain binding) on the partitioning of the bound amino acid between catalytic forms of the enzyme. The data indicate that substrate-induced conformational changes occur at the enzyme active site that generate a high affinity indole-binding site during catalytic turnover of tryptophanase and are important in the catalytic functioning of the enzyme. These changes also explain reproducible differences in KI values observed previously for amino acids in different assay systems used for steady state kinetic inhibition studies. The optimal conditions for the growth of E. coli for tryptophanase production are outlined, together with a procedure for purification of holotryptophanase.

  1. Isolation and characterization of esters of indole-3-acetic acid from the liquid endosperm of the horse chestnut (Aesculus species)

    NASA Technical Reports Server (NTRS)

    Domagalski, W.; Schulze, A.; Bandurski, R. S.

    1987-01-01

    Esters of indole-3-acetic acid were extracted and purified from the liquid endosperm of immature fruits of various species of the horse chestnut (Aesculus parviflora, A. baumanni, A. pavia rubra, and A. pavia humulis). The liquid endosperm contained, at least 12 chromatographically distinct esters. One of these compounds was purified and characterized as an ester of indole-3-acetic acid and myo-inositol. A second compound was found to be an ester of indole-3-acetic acid and the disaccharide rutinose (glucosyl-rhamnose). A third compound was partially characterized as an ester of indole-3-acetic acid and a desoxyaminohexose.

  2. Farnesylated and methylated KRAS4b: high yield production of protein suitable for biophysical studies of prenylated protein-lipid interactions.

    PubMed

    Gillette, William K; Esposito, Dominic; Abreu Blanco, Maria; Alexander, Patrick; Bindu, Lakshman; Bittner, Cammi; Chertov, Oleg; Frank, Peter H; Grose, Carissa; Jones, Jane E; Meng, Zhaojing; Perkins, Shelley; Van, Que; Ghirlando, Rodolfo; Fivash, Matthew; Nissley, Dwight V; McCormick, Frank; Holderfield, Matthew; Stephen, Andrew G

    2015-11-02

    Prenylated proteins play key roles in several human diseases including cancer, atherosclerosis and Alzheimer's disease. KRAS4b, which is frequently mutated in pancreatic, colon and lung cancers, is processed by farnesylation, proteolytic cleavage and carboxymethylation at the C-terminus. Plasma membrane localization of KRAS4b requires this processing as does KRAS4b-dependent RAF kinase activation. Previous attempts to produce modified KRAS have relied on protein engineering approaches or in vitro farnesylation of bacterially expressed KRAS protein. The proteins produced by these methods do not accurately replicate the mature KRAS protein found in mammalian cells and the protein yield is typically low. We describe a protocol that yields 5-10 mg/L highly purified, farnesylated, and methylated KRAS4b from insect cells. Farnesylated and methylated KRAS4b is fully active in hydrolyzing GTP, binds RAF-RBD on lipid Nanodiscs and interacts with the known farnesyl-binding protein PDEδ.

  3. GLOBIN-5-Dependent O2 Responses Are Regulated by PDL-1/PrBP That Targets Prenylated Soluble Guanylate Cyclases to Dendritic Endings

    PubMed Central

    Soltesz, Zoltan; Oda, Shigekazu; Zelmanovich, Veronica; Abergel, Zohar

    2014-01-01

    Aerobic animals constantly monitor and adapt to changes in O2 levels. The molecular mechanisms involved in sensing O2 are, however, incompletely understood. Previous studies showed that a hexacoordinated globin called GLB-5 tunes the dynamic range of O2-sensing neurons in natural C. elegans isolates, but is defective in the N2 lab reference strain (McGrath et al., 2009; Persson et al., 2009). GLB-5 enables a sharp behavioral switch when O2 changes between 21 and 17%. Here, we show that GLB-5 also confers rapid behavioral and cellular recovery from exposure to hypoxia. Hypoxia reconfigures O2-evoked Ca2+ responses in the URX O2 sensors, and GLB-5 enables rapid recovery of these responses upon re-oxygenation. Forward genetic screens indicate that GLB-5's effects on O2 sensing require PDL-1, the C. elegans ortholog of mammalian PrBP/PDE6δ protein. In mammals, PDE6δ regulates the traffic and activity of prenylated proteins (Zhang et al., 2004; Norton et al., 2005). PDL-1 promotes localization of GCY-33 and GCY-35, atypical soluble guanylate cyclases that act as O2 sensors, to the dendritic endings of URX and BAG neurons, where they colocalize with GLB-5. Both GCY-33 and GCY-35 are predicted to be prenylated. Dendritic localization is not essential for GCY-35 to function as an O2 sensor, but disrupting pdl-1 alters the URX neuron's O2 response properties. Functional GLB-5 can restore dendritic localization of GCY-33 in pdl-1 mutants, suggesting GCY-33 and GLB-5 are in a complex. Our data suggest GLB-5 and the soluble guanylate cyclases operate in close proximity to sculpt O2 responses. PMID:25505325

  4. A comparative study on the metabolism of Epimedium koreanum Nakai-prenylated flavonoids in rats by an intestinal enzyme (lactase phlorizin hydrolase) and intestinal flora.

    PubMed

    Zhou, Jing; Chen, Yan; Wang, Ying; Gao, Xia; Qu, Ding; Liu, Congyan

    2013-12-24

    The aim of this study was to compare the significance of the intestinal hydrolysis of prenylated flavonoids in Herba Epimedii by an intestinal enzyme and flora. Flavonoids were incubated at 37 °C with rat intestinal enzyme and intestinal flora. HPLC-UV was used to calculate the metabolic rates of the parent drug in the incubation and LC/MS/MS was used to determine the chemical structures of metabolites generated by different flavonoid glycosides. Rates of flavonoid metabolism by rat intestinal enzyme were quicker than those of intestinal flora. The sequence of intestinal flora metabolic rates was icariin>epimedin B>epimedin A>epimedin C>baohuoside I, whereas the order of intestinal enzyme metabolic rates was icariin>epimedin A>epimedin C>epimedin B>baohuoside I. Meanwhile, the LC/MS/MS graphs showed that icariin produced three products, epimedin A/B/C had four and baohuoside I yielded one product in incubations of both intestinal enzyme and flora, which were more than the results of HPLC-UV due to the fact LC/MS/MS has lower detectability and higher sensitivity. Moreover, the outcomes indicated that the rate of metabolization of flavonoids by intestinal enzyme were faster than those of intestinal flora, which was consistent with the HPLC-UV results. In conclusion, the metabolic pathways of the same components by intestinal flora and enzyme were the same. What's more, an intestinal enzyme such as lactase phlorizin hydrolase exhibited a more significant metabolic role in prenylated flavonoids of Herba Epimedi compared with intestinal flora.

  5. Indole Alkaloids of the Stigonematales (Cyanophyta): Chemical Diversity, Biosynthesis and Biological Activity

    PubMed Central

    Walton, Katherine; Berry, John P.

    2016-01-01

    The cyanobacteria are well recognized as producers of a wide array of bioactive metabolites including toxins, and potential drug candidates. However, a limited number of taxa are generally considered with respect to both of these aspects. That said, the order Stigonematales, although largely overlooked in this regard, has become increasingly recognized as a source of bioactive metabolites relevant to both human and environmental health. In particular, the hapalindoles and related indole alkaloids (i.e., ambiguines, fischerindoles, welwitindolinones) from the order, represent a diverse, and phylogenetically characteristic, class of secondary metabolites with biological activity suggestive of potential as both environmental toxins, and promising drug discovery leads. The present review gives an overview of the chemical diversity of biologically active metabolites from the Stigonematales—and particularly the so-called hapalindole-type alkaloids—including their biosynthetic origins, and their pharmacologically and toxicologically relevant bioactivities. Taken together, the current evidence suggests that these alkaloids, and the associated cyanobacterial taxa from the order, warrant future consideration as both potentially harmful (i.e., “toxic”) algae, and as promising leads for drug discovery. PMID:27058546

  6. Coordinate regulation of the tryptophan biosynthetic pathway and indolic phytoalexin accumulation in Arabidopsis.

    PubMed Central

    Zhao, J; Last, R L

    1996-01-01

    Little is known about the mechanisms that couple regulation of secondary metabolic pathways to the synthesis of primary metabolic precursors. Camalexin, an indolic secondary metabolite, appears to be the major phytoalexin in Arabidopsis. It was previously shown that camalexin accumulation is caused by infection with plant pathogens, by abiotic elicitors, and in spontaneous lesions in the accelerated cell death mutant acd2. We demonstrate that the accumulation of this phytoalexin is accompanied by the induction of the mRNAs and proteins for all of the tryptophan biosynthetic enzymes tested. A strong correlation was observed between the magnitude of camalexin accumulation and the induction of tryptophan biosynthetic proteins, indicating coordinate regulation of these processes. Production of disease symptoms is not sufficient for the response because systemic infection with cauliflower mosaic virus or cucumber mosaic virus did not induce the tryptophan pathway enzymes or camalexin accumulation. Salicylic acid appears to be required, but unlike other documented pathogenesis-related proteins, it is not sufficient for the coordinate induction. Results with trp mutants suggest that the tryptophan pathway is not rate limiting for camalexin accumulation. Taken together, these results are consistent with the hypothesis that the regulation of the tryptophan pathway in plants responds to needs for biosynthesis of secondary metabolites. PMID:8989880

  7. Indole Alkaloids of the Stigonematales (Cyanophyta): Chemical Diversity, Biosynthesis and Biological Activity.

    PubMed

    Walton, Katherine; Berry, John P

    2016-04-01

    The cyanobacteria are well recognized as producers of a wide array of bioactive metabolites including toxins, and potential drug candidates. However, a limited number of taxa are generally considered with respect to both of these aspects. That said, the order Stigonematales, although largely overlooked in this regard, has become increasingly recognized as a source of bioactive metabolites relevant to both human and environmental health. In particular, the hapalindoles and related indole alkaloids (i.e., ambiguines, fischerindoles, welwitindolinones) from the order, represent a diverse, and phylogenetically characteristic, class of secondary metabolites with biological activity suggestive of potential as both environmental toxins, and promising drug discovery leads. The present review gives an overview of the chemical diversity of biologically active metabolites from the Stigonematales-and particularly the so-called hapalindole-type alkaloids-including their biosynthetic origins, and their pharmacologically and toxicologically relevant bioactivities. Taken together, the current evidence suggests that these alkaloids, and the associated cyanobacterial taxa from the order, warrant future consideration as both potentially harmful (i.e., "toxic") algae, and as promising leads for drug discovery. PMID:27058546

  8. Coordinate regulation of the tryptophan biosynthetic pathway and indolic phytoalexin accumulation in Arabidopsis.

    PubMed

    Zhao, J; Last, R L

    1996-12-01

    Little is known about the mechanisms that couple regulation of secondary metabolic pathways to the synthesis of primary metabolic precursors. Camalexin, an indolic secondary metabolite, appears to be the major phytoalexin in Arabidopsis. It was previously shown that camalexin accumulation is caused by infection with plant pathogens, by abiotic elicitors, and in spontaneous lesions in the accelerated cell death mutant acd2. We demonstrate that the accumulation of this phytoalexin is accompanied by the induction of the mRNAs and proteins for all of the tryptophan biosynthetic enzymes tested. A strong correlation was observed between the magnitude of camalexin accumulation and the induction of tryptophan biosynthetic proteins, indicating coordinate regulation of these processes. Production of disease symptoms is not sufficient for the response because systemic infection with cauliflower mosaic virus or cucumber mosaic virus did not induce the tryptophan pathway enzymes or camalexin accumulation. Salicylic acid appears to be required, but unlike other documented pathogenesis-related proteins, it is not sufficient for the coordinate induction. Results with trp mutants suggest that the tryptophan pathway is not rate limiting for camalexin accumulation. Taken together, these results are consistent with the hypothesis that the regulation of the tryptophan pathway in plants responds to needs for biosynthesis of secondary metabolites.

  9. Efficient isotopic tryptophan labeling of membrane proteins by an indole controlled process conduct.

    PubMed

    Berger, Christian; Berndt, Sandra; Pichert, Annelie; Theisgen, Stephan; Huster, Daniel

    2013-06-01

    A protocol for the efficient isotopic labeling of large G protein-coupled receptors with tryptophan in Escherichia coli as expression host was developed that sufficiently suppressed the naturally occurring L-tryptophan indole lyase, which cleaves tryptophan into indole, pyruvate, and ammonia resulting in scrambling of the isotopic label in the protein. Indole produced by the tryptophanase is naturally used as messenger for cell-cell communication. Detailed analysis of different process conducts led to the optimal expression strategy, which mimicked cell-cell communication by the addition of indole during expression. Discrete concentrations of indole and (15) N2 -L-tryptophan at dedicated time points in the fermentation drastically increased the isotopic labeling efficiency. Isotope scrambling was only observed in glutamine, asparagine, and arginine side chains but not in the backbone. This strategy allows producing specifically tryptophan labeled membrane proteins at high concentrations avoiding the disadvantages of the often low yields of auxotrophic E. coli strains. In the fermentation process carried out according to this protocol, we produced ∼15 mg of tryptophan labeled neuropeptide Y receptor type 2 per liter medium.

  10. Enhanced Photoreduction of Nitro-aromatic Compounds by Hydrated Electrons Derived from Indole on Natural Montmorillonite.

    PubMed

    Tian, Haoting; Guo, Yong; Pan, Bo; Gu, Cheng; Li, Hui; Boyd, Stephen A

    2015-07-01

    A new photoreduction pathway for nitro-aromatic compounds (NACs) and the underlying degradation mechanism are described. 1,3-Dinitrobenzene was reduced to 3-nitroaniline by the widely distributed aromatic molecule indole; the reaction is facilitated by montmorillonite clay mineral under both simulated and natural sunlight irradiation. The novel chemical reaction is strongly affected by the type of exchangeable cation present on montmorillonite. The photoreduction reaction is initiated by the adsorption of 1,3-dinitrobenzene and indole in clay interlayers. Under light irradiation, the excited indole molecule generates a hydrated electron and the indole radical cation. The structural negative charge of montmorillonite plausibly stabilizes the radical cation hence preventing charge recombination. This promotes the release of reactive hydrated electrons for further reductive reactions. Similar results were observed for the photoreduction of nitrobenzene. In situ irradiation time-resolved electron paramagnetic resonance and Fourier transform infrared spectroscopies provided direct evidence for the generation of hydrated electrons and the indole radical cations, which supported the proposed degradation mechanism. In the photoreduction process, the role of clay mineral is to both enhance the generation of hydrated electrons and to provide a constrained reaction environment in the galley regions, which increases the probability of contact between NACs and hydrated electrons. PMID:26029791

  11. Enhanced Photoreduction of Nitro-aromatic Compounds by Hydrated Electrons Derived from Indole on Natural Montmorillonite.

    PubMed

    Tian, Haoting; Guo, Yong; Pan, Bo; Gu, Cheng; Li, Hui; Boyd, Stephen A

    2015-07-01

    A new photoreduction pathway for nitro-aromatic compounds (NACs) and the underlying degradation mechanism are described. 1,3-Dinitrobenzene was reduced to 3-nitroaniline by the widely distributed aromatic molecule indole; the reaction is facilitated by montmorillonite clay mineral under both simulated and natural sunlight irradiation. The novel chemical reaction is strongly affected by the type of exchangeable cation present on montmorillonite. The photoreduction reaction is initiated by the adsorption of 1,3-dinitrobenzene and indole in clay interlayers. Under light irradiation, the excited indole molecule generates a hydrated electron and the indole radical cation. The structural negative charge of montmorillonite plausibly stabilizes the radical cation hence preventing charge recombination. This promotes the release of reactive hydrated electrons for further reductive reactions. Similar results were observed for the photoreduction of nitrobenzene. In situ irradiation time-resolved electron paramagnetic resonance and Fourier transform infrared spectroscopies provided direct evidence for the generation of hydrated electrons and the indole radical cations, which supported the proposed degradation mechanism. In the photoreduction process, the role of clay mineral is to both enhance the generation of hydrated electrons and to provide a constrained reaction environment in the galley regions, which increases the probability of contact between NACs and hydrated electrons.

  12. White light generation by carbonyl based indole derivatives due to proton transfer: an efficient fluorescence sensor.

    PubMed

    Singla, Nidhi; Bhadram, Venkata Srinu; Narayana, Chandrabhas; Chowdhury, Papia

    2013-04-01

    The motivation of the present work is to understand the optical, chemical, and electrical aspects of the proton transfer mechanism of indole (I) and some carbonyl based indole derivatives: indole-3-carboxaldehyde (I3C) and indole-7-carboxaldehyde (I7C) for both powder form and their liquid solution. Structural information for indole derivatives (isolated molecule and in solution) is obtained with density functional theory (DFT) and time dependent DFT (TD-DFT) methods. Calculated transition energies are used to generate UV-vis, FTIR, Raman, and NMR spectra which are later verified with the experimental spectra. The occurrence of different conformers [cis (N(c)), trans (N(t)), and zwitterion (Z*)] have been interpreted by Mulliken charge, natural bond orbital (NBO) analysis, and polarization versus electric field (P-E loop) studies. (1)H and (13)C NMR and molecular vibrational frequencies of the fundamental modes established the stability of Nc due to the presence of intramolecular hydrogen bonding (IHB) in the ground state (S0). Computed/experimental UV-vis absorption/emission studies reveal the creation of new species: zwitterion (Z*) and anion (A*) in the excited state (S1) due to excited state intramolecular and intermolecular proton transfer (ESI(ra)PT and ESI(er)PT). Increased electrical conductivity (σ(ac)) with temperature and increased ferroelectric polarization at higher field verifies proton conduction in I7C.

  13. Relationship between structures of substituted indolic compounds and their degradation by marine anaerobic microorganisms.

    PubMed

    Gu, Ji-Dong; Fan, Yanzhen; Shi, Hanchang

    2002-01-01

    Degradation of selected indolic compounds including indole, 1-methylindole, 2-methylindole, and 3-methylindole was assessed under methanogenic and sulfate-reducing conditions using the serum-bottle anaerobic technique and marine sediment from Victoria Harbour, Hong Kong as an inoculum. Our results showed that indole degradation was achieved in 28 days by a methanogenic consortium and 35 days by a sulfate-reducing consortium. During degradation under both conditions, two intermediates were isolated, purified and identified as oxindole and isatin (indole-2,3-dione) suggesting that both methanogenic and sulfate-reducing bacteria use an identical degradation pathway. Degradation processes followed two steps of oxidation accomplished by hydroxylation and then dehydrogenation at 2- and then 3-position sequentially prior to the cleavage of the pyrrole ring between 2- and 3-positions. However, none of 1-methylindole or 2-methylindole was degraded under any conditions. 3-Methylindole (3-methyl-1H-indole, skatole) was transformed under methanogenic conditions and mineralized only under sulfate-reducing conditions. It is clear that methyl substitution on 1- or 2-position inhibits the initial attack by hydroxylation enzymes making them more persistent in the environment and posing longer toxic impact.

  14. Weak inter-actions in the crystal structures of two indole derivatives.

    PubMed

    Kerr, Jamie R; Trembleau, Laurent; Storey, John M D; Wardell, James L; Harrison, William T A

    2016-07-01

    We describe the syntheses and crystal structures of two indole derivatives, namely a second monoclinic polymorph of ethyl 5-chloro-1H-indole-2-carboxyl-ate C11H10ClNO2, (I), and ethyl 5-chloro-3-iodo-1H-indole-2-carboxyl-ate, C11H9ClINO2, (II). In their crystal structures, both compounds form inversion dimers linked by pairs of N-H⋯O hydrogen bonds, which generate R 2 (2)(10) loops. The dimers are linked into double chains in (I) and sheets in (II) by a variety of weak inter-actions, including π-π stacking, C-I⋯π, C-Cl-π inter-actions and I⋯Cl halogen bonds. PMID:27555941

  15. Adaptation of the human aryl hydrocarbon receptor to sense microbiota-derived indoles

    PubMed Central

    Hubbard, Troy D.; Murray, Iain A.; Bisson, William H.; Lahoti, Tejas S.; Gowda, Krishne; Amin, Shantu G.; Patterson, Andrew D.; Perdew, Gary H.

    2015-01-01

    Ligand activation of the aryl hydrocarbon (AHR) has profound effects upon the immunological status of the gastrointestinal tract, establishing and maintaining signaling networks, which facilitate host-microbe homeostasis at the mucosal interface. However, the identity of the ligand(s) responsible for such AHR-mediated activation within the gut remains to be firmly established. Here, we combine in vitro ligand binding, quantitative gene expression, protein-DNA interaction and ligand structure activity analyses together with in silico modeling of the AHR ligand binding domain to identify indole, a microbial tryptophan metabolite, as a human-AHR selective agonist. Human AHR, acting as a host indole receptor may exhibit a unique bimolecular (2:1) binding stoichiometry not observed with typical AHR ligands. Such bimolecular indole-mediated activation of the human AHR within the gastrointestinal tract may provide a foundation for inter-kingdom signaling between the enteric microflora and the immune system to promote commensalism within the gut. PMID:26235394

  16. The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling.

    PubMed

    Bailly, Aurélien; Groenhagen, Ulrike; Schulz, Stefan; Geisler, Markus; Eberl, Leo; Weisskopf, Laure

    2014-12-01

    Recently, emission of volatile organic compounds (VOCs) has emerged as a mode of communication between bacteria and plants. Although some bacterial VOCs that promote plant growth have been identified, their underlying mechanism of action is unknown. Here we demonstrate that indole, which was identified using a screen for Arabidopsis growth promotion by VOCs from soil-borne bacteria, is a potent plant-growth modulator. Its prominent role in increasing the plant secondary root network is mediated by interfering with the auxin-signalling machinery. Using auxin reporter lines and classic auxin physiological and transport assays we show that the indole signal invades the plant body, reaches zones of auxin activity and acts in a polar auxin transport-dependent bimodal mechanism to trigger differential cellular auxin responses. Our results suggest that indole, beyond its importance as a bacterial signal molecule, can serve as a remote messenger to manipulate plant growth and development. PMID:25227998

  17. Experimental and computational study on the molecular energetics of indoline and indole.

    PubMed

    da Silva, Manuel A V Ribeiro; Cabral, Joana I T A; Gomes, José R B

    2008-11-27

    Static bomb calorimetry, Calvet microcalorimetry and the Knudsen effusion technique were used to determine the standard molar enthalpy of formation in the gas phase, at T = 298.15 K, of the indole and indoline heterocyclic compounds. The values obtained were 164.3 +/- 1.3 kJ x mol(-1) and 120.0 +/- 2.9 kJ x mol(-1), respectively. Several different computational approaches and different working reactions were used to estimate the gas-phase enthalpies of formation for indole and indoline. The computational approaches support the experimental results reported. The calculations were further extended to the determination of other properties such as bond dissociation enthalpies, gas-phase acidities, proton and electron affinities and ionization energies. The agreement between theoretical and experimental data for indole is very good supporting the data calculated for indoline. PMID:18980369

  18. Peculiarity of methoxy group-substituted phenylhydrazones in Fischer indole synthesis.

    PubMed

    Murakami, Yasuoki

    2012-01-01

    We found that the Fischer indole synthesis of ethyl pyruvate 2-methoxyphenylhydrazone (5) with HCl/EtOH gave an abnormal product, ethyl 6-chloroindole-2-carboxylate (7), as the main product, with a smaller amount of ethyl 7-methoxyindole-2-carboxylate (6) as the normal product. This abnormal reaction was the result of a cyclization on the side with the substituent (methoxy group) of a benzene ring on phenylhydrazone, which was not previously observed. In this initial investigation, we focused on 1) the application of the above-mentioned abnormal Fischer indole synthesis, 2) the details of this reaction of phenylhydrazone with other kinds of substituents, 3) the mechanism of the first step of the Fischer indole synthesis, 4) the abnormal reaction in methoxydiphenylhydrazones, and 5) a synthetic device to avoid an abnormal reaction. The results of these studies are summarized herein.

  19. A compound containing substituted indole ligand from a hyperaccumulator Sedum alfredii Hance under Zn exposure.

    PubMed

    Xing, Yan; Peng, Hongyun; Gao, Lingling; Luo, Ancheng; Yang, Xiaoe

    2013-01-01

    Sedum alfredii Hance is a fast-growing and high-biomass zinc (Zn) hyperaccumulator native to China. A compound containing substituted indole ligand was isolated from this Zn hyperaccumulator plants by sonication/ethanol extraction, macroporous resin column as well as preparative HPLC (P-HPLC). Hydroponic experiment showed that the concentrations of both Zn and the compound containing substituted indole ligand were remarkably increased in stems and leaves of both hyperaccumulator and non-hyperaccumulator as Zn rising from 0.5 to 50 micromol L(-1), with much more in the stems of hyperaccumulator than non-hyperaccumulator. At 50 micromol L(-1) Zn, hyperaccumulator grew normally but its non-hyperaccumulator suffered from strongly Zn-induced toxicity. This suggested that there was a positive correlation between the compound containing substituted indole ligand and Zn concentration in shoots of hyperaccumulator S. alfredii.

  20. The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling.

    PubMed

    Bailly, Aurélien; Groenhagen, Ulrike; Schulz, Stefan; Geisler, Markus; Eberl, Leo; Weisskopf, Laure

    2014-12-01

    Recently, emission of volatile organic compounds (VOCs) has emerged as a mode of communication between bacteria and plants. Although some bacterial VOCs that promote plant growth have been identified, their underlying mechanism of action is unknown. Here we demonstrate that indole, which was identified using a screen for Arabidopsis growth promotion by VOCs from soil-borne bacteria, is a potent plant-growth modulator. Its prominent role in increasing the plant secondary root network is mediated by interfering with the auxin-signalling machinery. Using auxin reporter lines and classic auxin physiological and transport assays we show that the indole signal invades the plant body, reaches zones of auxin activity and acts in a polar auxin transport-dependent bimodal mechanism to trigger differential cellular auxin responses. Our results suggest that indole, beyond its importance as a bacterial signal molecule, can serve as a remote messenger to manipulate plant growth and development.

  1. Experimental and computational study on the molecular energetics of indoline and indole.

    PubMed

    da Silva, Manuel A V Ribeiro; Cabral, Joana I T A; Gomes, José R B

    2008-11-27

    Static bomb calorimetry, Calvet microcalorimetry and the Knudsen effusion technique were used to determine the standard molar enthalpy of formation in the gas phase, at T = 298.15 K, of the indole and indoline heterocyclic compounds. The values obtained were 164.3 +/- 1.3 kJ x mol(-1) and 120.0 +/- 2.9 kJ x mol(-1), respectively. Several different computational approaches and different working reactions were used to estimate the gas-phase enthalpies of formation for indole and indoline. The computational approaches support the experimental results reported. The calculations were further extended to the determination of other properties such as bond dissociation enthalpies, gas-phase acidities, proton and electron affinities and ionization energies. The agreement between theoretical and experimental data for indole is very good supporting the data calculated for indoline.

  2. Properties of the indole ring in metal complexes. A comparison with the phenol ring.

    PubMed

    Shimazaki, Yuichi; Yajima, Tatsuo; Yamauchi, Osamu

    2015-07-01

    Tryptophan (Trp), an essential amino acid, has an indole ring with a high electron density and is frequently seen at the proximal position of the metal site in metalloproteins. For example, the indole ring of Trp has been reported to interact weakly with Cu(I) in a Cu chaperone CusF. Another aromatic amino acid, tyrosine (Tyr), has a phenol ring, which is an important metal binding site in various metalloproteins. Although the structures of the aromatic rings are different, they both have a weakly acidic moiety and perform some similar roles in biological systems, such as radical formation and electron transfer. In this review, we focus on these and other properties of the indole and phenol rings in metal-containing systems.

  3. Weak inter­actions in the crystal structures of two indole derivatives

    PubMed Central

    Kerr, Jamie R.; Trembleau, Laurent; Storey, John M. D.; Wardell, James L.; Harrison, William T. A.

    2016-01-01

    We describe the syntheses and crystal structures of two indole derivatives, namely a second monoclinic polymorph of ethyl 5-chloro-1H-indole-2-carboxyl­ate C11H10ClNO2, (I), and ethyl 5-chloro-3-iodo-1H-indole-2-carboxyl­ate, C11H9ClINO2, (II). In their crystal structures, both compounds form inversion dimers linked by pairs of N—H⋯O hydrogen bonds, which generate R 2 2(10) loops. The dimers are linked into double chains in (I) and sheets in (II) by a variety of weak inter­actions, including π–π stacking, C—I⋯π, C—Cl—π inter­actions and I⋯Cl halogen bonds. PMID:27555941

  4. Indolent non-Hodgkin lymphoma primarily involving the hard palate: outcome following radiotherapy.

    PubMed

    Milgrom, Sarah A; Yahalom, Joachim

    2013-06-01

    The aim of this study was to report the clinical and pathological characteristics, treatment strategies and outcome in patients with indolent non-Hodgkin lymphoma (NHL) primarily involving the hard palate. Nine consecutive patients with indolent NHL of the hard palate were identified. The palate was a site of initial disease for six patients (four stage IAE and two stage IIIAE) and of relapse for three. There were four cases of grade 1-2 follicular lymphoma (FL), two of mantle cell lymphoma (MCL) and three of marginal zone lymphoma (MZL). All nine patients received involved site radiation therapy (RT) alone. There was no grade ≥ 3 toxicity. At a median follow-up of 55 months, 5-year freedom from local progression was 100%, disease-free survival was 38% and overall survival was 80%. In conclusion, involved site RT is well tolerated and provides excellent local control in the management of indolent lymphoma of the hard palate. PMID:23083063

  5. Synthesis, structural investigations, and anti-cancer activity of new methyl indole-3-carboxylate derivatives

    NASA Astrophysics Data System (ADS)

    Niemyjska, Maria; Maciejewska, Dorota; Wolska, Irena; Truszkowski, Paweł

    2012-10-01

    Two new methyl indole-3-carboxylate derivatives: methyl 1-(3'-indolylmethane)-indole-3-carboxylate (1), and methyl 1-(1'-benzenosulfonyl-3'-indolylmethane)-indole-3-carboxylate (2) were synthesized. They are interesting as the analogs of 3,3'-diindolylmethane, which is intensively tested as a potent antitumor agent. Their solid-state structure was characterized using 13C CP/MAS NMR or X-ray diffraction measurements. Molecular modeling was used as a help in the structure elucidation. The solid-state NMR spectroscopy showed only one stable conformer of 1, but the X-ray diffraction results indicate that compound 2 crystallizes in the triclinic space group P-1 with two molecules, A and B, in the asymmetric unit. Both compounds inhibited the growth of melanoma, renal and breast cancers cell lines.

  6. Structure-based predictions of 13C-NMR chemical shifts for a series of 2-functionalized 5-(methylsulfonyl)-1-phenyl-1H-indoles derivatives using GA-based MLR method

    NASA Astrophysics Data System (ADS)

    Ghavami, Raouf; Sadeghi, Faridoon; Rasouli, Zolikha; Djannati, Farhad

    2012-12-01

    Experimental values for the 13C NMR chemical shifts (ppm, TMS = 0) at 300 K ranging from 96.28 ppm (C4' of indole derivative 17) to 159.93 ppm (C4' of indole derivative 23) relative to deuteride chloroform (CDCl3, 77.0 ppm) or dimethylsulfoxide (DMSO, 39.50 ppm) as internal reference in CDCl3 or DMSO-d6 solutions have been collected from literature for thirty 2-functionalized 5-(methylsulfonyl)-1-phenyl-1H-indole derivatives containing different substituted groups. An effective quantitative structure-property relationship (QSPR) models were built using hybrid method combining genetic algorithm (GA) based on stepwise selection multiple linear regression (SWS-MLR) as feature-selection tools and correlation models between each carbon atom of indole derivative and calculated descriptors. Each compound was depicted by molecular structural descriptors that encode constitutional, topological, geometrical, electrostatic, and quantum chemical features. The accuracy of all developed models were confirmed using different types of internal and external procedures and various statistical tests. Furthermore, the domain of applicability for each model which indicates the area of reliable predictions was defined.

  7. Naturally-Occurring Marine Brominated Indoles are Aryl Hydrocarbon Receptor Ligands/Agonists

    PubMed Central

    DeGroot, Danica E.; Franks, Diana G.; Higa, Tatsuo; Tanaka, Junichi; Hahn, Mark E.; Denison, Michael S.

    2015-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates the toxic and biological effects of structurally diverse chemicals, including the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). As part of a larger effort to identify the full spectrum of chemicals that can bind to and activate the AhR, we have examined the ability of several naturally-occurring marine-derived brominated indoles and brominated (methylthio)indoles (collectively referred to as “brominated indoles”) to bind to the AhR and stimulate AhR-dependent gene expression. Incubation of mouse, rat and guinea pig recombinant cell lines containing a stably transfected AhR-responsive luciferase reporter gene with eight brominated indoles revealed that all compounds stimulated luciferase reporter gene activity, although some species-specific differences were observed. All compounds induced significantly more luciferase activity when incubated with cells for 4 h as compared to 24 h, demonstrating that these compounds are transient activators of the AhR signaling pathway. Three of the brominated indoles induced CYP1A1 mRNA in human HepG2 cells in vitro and Cyp1a mRNA in zebrafish embryos in vivo. The identification of the brominated indoles as direct ligands and activators/agonists of the AhR was confirmed by their ability to compete with [3H]TCDD for binding to the AhR and to stimulate AhR transformation and DNA binding in vitro. Taken together, these marine-derived brominated indoles are members of a new class of naturally-occurring AhR agonists. PMID:26001051

  8. RpoS and Indole Signaling Control the Virulence of Vibrio anguillarum towards Gnotobiotic Sea Bass (Dicentrarchus labrax) Larvae

    PubMed Central

    Li, Xuan; Yang, Qian; Dierckens, Kristof; Milton, Debra L.; Defoirdt, Tom

    2014-01-01

    Quorum sensing, bacterial cell-to-cell communication with small signal molecules, controls the virulence of many pathogens. In contrast to other vibrios, neither the VanI/VanR acylhomoserine lactone quorum sensing system, nor the three-channel quorum sensing system affects virulence of the economically important aquatic pathogen Vibrio anguillarum. Indole is another molecule that recently gained attention as a putative signal molecule. The data presented in this study indicate that indole signaling and the alternative sigma factor RpoS have a significant impact on the virulence of V. anguillarum. Deletion of rpoS resulted in increased expression of the indole biosynthesis gene tnaA and in increased production of indole. Both rpoS deletion and the addition of exogenous indole (50–100 µM) resulted in decreased biofilm formation, exopolysaccharide production (a phenotype that is required for pathogenicity) and expression of the exopolysaccharide synthesis gene wbfD. Further, indole inhibitors increased the virulence of the rpoS deletion mutant, suggesting that indole acts downstream of RpoS. Finally, in addition to the phenotypes found to be affected by indole, the rpoS deletion mutant also showed increased motility and decreased sensitivity to oxidative stress. PMID:25360804

  9. Genome Sequence of an Efficient Indole-Degrading Bacterium, Cupriavidus sp. Strain IDO, with Potential Polyhydroxyalkanoate Production Applications

    PubMed Central

    Ma, Qiao; Zhang, Zhaojing; Li, Pengpeng

    2015-01-01

    Cupriavidus sp. strain IDO has been shown to efficiently transform indole, and the genus of Cupriavidus has been described as a promising cell factory for polyhydroxyalkanoate synthesis from low-cost wastes. Here, we report the draft genome sequence of strain IDO, which may provide useful genetic information on indole metabolism and polyhydroxyalkanoate production. PMID:25767238

  10. Metal-free transannulation reaction of indoles with nitrostyrenes: a simple practical synthesis of 3-substituted 2-quinolones†

    PubMed Central

    Aksenov, Alexander V.; Smirnov, Alexander N.; Aksenov, Nicolai A.; Aksenova, Inna V.; Frolova, Liliya V.; Kornienko, Alexander; Magedov, Igor V.; Rubin, Michael

    2016-01-01

    3-Substituted 2-quinolones are obtained via a novel, metal-free transannulation reaction of 2-substituted indoles with 2-nitroalkenes in polyphosphoric acid. The reaction can be used in conjunction with the Fisher indole synthesis offering a practical three-component heteroannulation methodology to produce 2-quinolones from arylhydrazines, 2-nitroalkenes and acetophenone. PMID:23999797

  11. Benzannulation via the Reaction of Ynamides and Vinylketenes. Application to the Synthesis of Highly Substituted Indoles

    PubMed Central

    Lam, Tin Yiu; Wang, Yu-Pu

    2013-01-01

    A two-stage “tandem strategy” for the synthesis of indoles with a high level of substitution on the six-membered ring is described. Benzannulation based on the reaction of cyclobutenones with ynamides proceeds via a cascade of four pericyclic reactions to produce multiply substituted aniline derivatives in which the position ortho to the nitrogen can bear a wide range of functionalized substituents. In the second stage of the tandem strategy, highly substituted indoles are generated via acid-, base-, and palladium-catalyzed cyclization and annulation processes. PMID:23952525

  12. THE INCREASED SUSCEPTIBILITY TO HEMOLYSIS BY INDOL IN DOGS FED DEFICIENT DIETS

    PubMed Central

    Rhoads, C. P.; Barker, W. Halsey; Miller, D. K.

    1938-01-01

    1. Indol is more hemolytic in the presence of a deficiency complex than when a normal diet is fed. 2. The hemolytic effect can be abolished by supplementing the deficient diet with liver extract curative of pernicious anemia in man. 3. The hemolysis affects all hemoglobin-containing cells, including reticulocytes. 4. The repair of the anemia resulting from the administration of indol in the presence of a deficiency represents the cessation of a hemolytic process. 5. An abnormally low rate of production of erythrocytes may well be a factor in the production of the anemia. PMID:19870721

  13. Active site diversification of P450cam with indole generates catalysts for benzylic oxidation reactions

    PubMed Central

    Herter, Susanne; Kranz, David C; Turner, Nicholas J

    2015-01-01

    Summary Cytochrome P450 monooxygenases are useful biocatalysts for C–H activation, and there is a need to expand the range of these enzymes beyond what is naturally available. A panel of 93 variants of active self-sufficient P450cam[Tyr96Phe]-RhFRed fusion enzymes with a broad diversity in active site amino acids was developed by screening a large mutant library of 16,500 clones using a simple, highly sensitive colony-based colorimetric screen against indole. These mutants showed distinct fingerprints of activity not only when screened in oxidations of substituted indoles but also for unrelated oxidations such as benzylic hydroxylations. PMID:26664590

  14. Highly Regio- and Enantioselective Formal [3 + 2]-Annulation of Indoles with Electrophilic Enol Carbene Intermediates.

    PubMed

    Jing, Changcheng; Cheng, Qing-Qing; Deng, Yongming; Arman, Hadi; Doyle, Michael P

    2016-09-16

    Chiral cyclopentane-fused indolines are synthesized with high regio- and enantiocontrol by formal [3 + 2]-annulation reactions of indoles and electrophilic enol carbenes. High enantioselectivity and exclusive regiocontrol occurred with enoldiazoacetamides using a less sterically encumbered prolinate-ligated dirhodium(II) catalyst in reactions with N-substituted indoles without substituents at the 2- or 3-positions via a selective vinylogous addition process. In this transformation, donor-acceptor cyclopropenes generated from enoldiazoacetamides serve as the carbene precursors to form metal carbene intermediates. PMID:27589203

  15. Design, synthesis, and biological activity of oxime ether strobilurin derivatives containing indole moiety as novel fungicide.

    PubMed

    Xie, Ya-Qiang; Huang, Zi-Long; Yan, Hui-Dong; Li, Jun; Ye, Li-Yi; Che, Li-Ming; Tu, Song

    2015-06-01

    Twenty-one novel oxime ether strobilurins containing indole moiety, which employed an indole group to stabilize the E-styryl group in Enoxastrobin, were designed and synthesized. The biological assay indicated that most compounds exhibited potent fungicidal activities. The structure-activity relationship study demonstrated that the synthesized methyl 3-methoxypropenoate oxime ethers 7b-e exhibited remarkably high activities among all the synthesized oxime ether compounds 7. Moreover, the fungicidal activities of methyl α-(methoxyimino)benzeneacetate oxime ethers compounds 7f-i and N-methoxy-carbamic acid methyl esters compounds 7j-m showed significant differences compared to the corresponding products of ammonolysis. PMID:25346294

  16. Synthesis of 1H-indole-2,3-dione-3-thiosemicarbazone ribonucleosides as antibacterial agents.

    PubMed

    Kassab, Shaymaa E; Hegazy, Gehan H; Eid, Nahed M; Amin, Kamelia M; El-Gendy, Adel A

    2010-01-01

    A new isatin ribonucleoside (3) was synthesized in a good yield by trimethylsilyl trifluoromethanesulfonate (TMSOTf) catalyzed coupling reaction between the silylated nitrogenated base of 1H-Indole-2,3-dione (1) and 1,2,3,5-tetra-O-acetyl-beta-D-ribfuranose (2). Thiosemicarbazides 4a-e were utilized by the prepared ribonucleoside (3) to give new series of 1H-indole-2,3-dione-3-thiosemicarbazone ribonucleosides 5a-e. All compounds tested as antibacterial agents showed slight inhibitory activity against the selected bacterial strains.

  17. Synthesis of functionalized indole- and benzo-fused heterocyclic derivatives through anionic benzyne cyclization.

    PubMed

    Barluenga, José; Fañanás, Francisco J; Sanz, Roberto; Fernández, Yolanda

    2002-05-01

    The development of a new method for the regioselective synthesis of functionalized indoles and six-membered benzo-fused N-, O-, and S-heterocycles is reported. The key step involves the generation of a benzyne-tethered vinyl or aryllithium compound that undergoes a subsequent intramolecular anionic cyclization. Reaction of the organolithium intermediates with selected electrophiles allows the preparation of a wide variety of indole, tetrahydrocarbazole, dihydrofenantridine, dibenzopyran, and dibenzothiopyran derivatives. Finally, the application of this strategy to the appropriate starting materials allows the preparation of some tryptamine and serotonin analogues.

  18. Antioxidant, cytotoxic activities, and structure-activity relationship of gallic acid-based indole derivatives.

    PubMed

    Khaledi, Hamid; Alhadi, Abeer A; Yehye, Wagee A; Ali, Hapipah Mohd; Abdulla, Mahmood A; Hassandarvish, Pouya

    2011-11-01

    A new series of gallic hydrazones containing an indole moiety was synthesized through the reaction of gallic hydrazide and different indole carboxaldehydes. Their antioxidant activities were determined on DPPH radical scavenging and inhibition of lipid peroxidation. The in-vitro cytotoxic activities of the compounds were evaluated against HCT-116 (human colon cancer cell line) and MCF-7 (estrogen-dependent human breast cancer cell line) by the MTT method. An attempt to correlate the biological results with their structural characteristics has been done. A limited positive structure activity relationship was found between cytotoxic and antioxidant activities.

  19. Intermolecular dearomative C2-arylation of N-Ac indoles activated by FeCl3.

    PubMed

    Nandi, Raj Kumar; Ratsch, Friederike; Beaud, Rodolphe; Guillot, Régis; Kouklovsky, Cyrille; Vincent, Guillaume

    2016-04-18

    We report the FeCl3-mediated direct addition of electron-rich arenes to the C2-position of electrophilic N-Ac indoles under mild conditions (room temperature, air). No functional group is required on the arene nucleophile: one of its C-H bonds is added to the C2[double bond, length as m-dash]C3 double bond of the indole nucleus in a Friedel-Crafts-type reaction. This dearomatisation process delivered a broad range of C2-arylated indolines. PMID:27005518

  20. Structural Diversity and Biological Activities of Indole Diketopiperazine Alkaloids from Fungi.

    PubMed

    Ma, Yang-Min; Liang, Xi-Ai; Kong, Yang; Jia, Bin

    2016-09-01

    Indole diketopiperazine alkaloids are secondary metabolites of microorganisms that are widely distributed in filamentous fungi, especially in the genera Aspergillus and Penicillium of the phylum Ascomycota or sac fungi. These alkaloids represent a group of natural products characterized by diversity in both chemical structures and biological activities. This review aims to summarize 166 indole diketopiperazine alkaloids from fungi published from 1944 to mid-2015. The emphasis is on diverse chemical structures within these alkaloids and their relevant biological activities. The aim is to assess which of these compounds merit further study for purposes of drug development. PMID:27538469

  1. Active site diversification of P450cam with indole generates catalysts for benzylic oxidation reactions.

    PubMed

    Kelly, Paul P; Eichler, Anja; Herter, Susanne; Kranz, David C; Turner, Nicholas J; Flitsch, Sabine L

    2015-01-01

    Cytochrome P450 monooxygenases are useful biocatalysts for C-H activation, and there is a need to expand the range of these enzymes beyond what is naturally available. A panel of 93 variants of active self-sufficient P450cam[Tyr96Phe]-RhFRed fusion enzymes with a broad diversity in active site amino acids was developed by screening a large mutant library of 16,500 clones using a simple, highly sensitive colony-based colorimetric screen against indole. These mutants showed distinct fingerprints of activity not only when screened in oxidations of substituted indoles but also for unrelated oxidations such as benzylic hydroxylations.

  2. Indole Alkaloids from Marine Sources as Potential Leads against Infectious Diseases

    PubMed Central

    França, Paulo H. B.; Barbosa, Daniel P.; da Silva, Daniel L.; Ribeiro, Êurica A. N.; Santana, Antônio E. G.; Santos, Bárbara V. O.; Barbosa-Filho, José M.; Quintans, Jullyana S. S.; Barreto, Rosana S. S.; Quintans-Júnior, Lucindo J.; de Araújo-Júnior, João X.

    2014-01-01

    Indole alkaloids comprise a large and complex class of natural products found in a variety of marine sources. Infectious diseases remain a major threat to public health, and in the absence of long-term protective vaccines, the control of these infectious diseases is based on a small number of chemotherapeutic agents. Furthermore, the emerging resistance against these drugs makes it urgently necessary to discover and develop new, safe and, effective anti-infective agents. In this regard, the aim of this review is to highlight indole alkaloids from marine sources which have been shown to demonstrate activity against infectious diseases. PMID:24995289

  3. [A new indole derivative from endophyte Myrothecium roridum IFB-E091 in Artemisia annua].

    PubMed

    Shen, Li; Li, Ling-yu; Zhang, Xiao-jun; Li, Ming; Song, Yong-chun

    2015-10-01

    Three compounds were isolated from solid culture of endophyte Myrothecium roridum IFB-E091 in Artemisia annua. Their structures were determined as (S)-(-)-N-[2-(3-hydroxy-2-oxo-2,3-dihydro-1H-indol-3-yl)-ethyl]-acetamide (1), N-(4-hydroxyphenethyl)acetamide (2) and asperfumoid (3), in which compound 1 was a new indole derivative. In cytotoxicity assay, the compound 1 had no obvious inhibition activity in human hepatoma cell line SMMC-7721 and human cervical carcinoma cell line HeLa. PMID:26837178

  4. Indole alkaloids from Vinca major and V. minor growing in Turkey.

    PubMed

    Bahadori, Fatemeh; Topçu, Gülaçti; Boğa, Mehmet; Türkekul, Ayla; Kolak, Ufuk; Kartal, Murat

    2012-06-01

    A new indole alkaloid, 11-hydroxypolyneuridine, was isolated from Vinca major subsp. major L. and the known indole alkaloids vallesiachotamine and isovallesiachotamine from Vinca minor L. This is the first report on the alkaloids of both Vinca species growing in Turkey; vallesiachotamine and isovallesiachotamine were isolated from a Vinca species for the first time. V. minor may be considered as a new source for these two alkaloids due to their occurrence in high amount in the aerial parts of the plant. The alkaloid extracts of the two Vinca species were found to have high lipid peroxidation inhibitory and DPPH radical scavenging activities. Anticholinesterase activity of the extracts was also very strong.

  5. Indole – the scent of a healthy ‘inner soil’

    PubMed Central

    Berstad, Arnold; Raa, Jan; Valeur, Jørgen

    2015-01-01

    Tryptophan is an essential amino acid with an indole nucleus. Humans cannot produce this amino acid themselves, but must obtain it through their diet. Much attention is currently paid to the wide physiological and clinical implications of the tryptophan-derived substances, serotonin and kynurenines, generated by human enzymes following the intestinal absorption of tryptophan. However, even before being absorbed, several microbial metabolites of tryptophan are formed, mainly from ‘malabsorbed’ (incompletely digested) proteins within the colon. The normal smell of human faeces is largely due to indole, one of the major metabolites. Recent studies indicate that this foul-smelling substance is also of utmost importance for our health. PMID:26282698

  6. Active site diversification of P450cam with indole generates catalysts for benzylic oxidation reactions.

    PubMed

    Kelly, Paul P; Eichler, Anja; Herter, Susanne; Kranz, David C; Turner, Nicholas J; Flitsch, Sabine L

    2015-01-01

    Cytochrome P450 monooxygenases are useful biocatalysts for C-H activation, and there is a need to expand the range of these enzymes beyond what is naturally available. A panel of 93 variants of active self-sufficient P450cam[Tyr96Phe]-RhFRed fusion enzymes with a broad diversity in active site amino acids was developed by screening a large mutant library of 16,500 clones using a simple, highly sensitive colony-based colorimetric screen against indole. These mutants showed distinct fingerprints of activity not only when screened in oxidations of substituted indoles but also for unrelated oxidations such as benzylic hydroxylations. PMID:26664590

  7. Analysis of Indole Alkaloids from Rhazya stricta Hairy Roots by Ultra-Performance Liquid Chromatography-Mass Spectrometry.

    PubMed

    Akhgari, Amir; Laakso, Into; Seppänen-Laakso, Tuulikki; Yrjönen, Teijo; Vuorela, Heikki; Oksman-Caldentey, Kirsi-Marja; Rischer, Heiko

    2015-12-17

    Rhazya stricta Decne. (Apocynaceae) contains a large number of terpenoid indole alkaloids (TIAs). This study focused on the composition of alkaloids obtained from transformed hairy root cultures of R. stricta employing ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). In the UPLC-MS analyses, a total of 20 TIAs were identified from crude extracts. Eburenine and vincanine were the main alkaloids followed by polar glucoalkaloids, strictosidine lactam and strictosidine. Secodine-type alkaloids, tetrahydrosecodinol, tetrahydro- and dihydrosecodine were detected too. The occurrence of tetrahydrosecodinol was confirmed for the first time for R. stricta. Furthermore, two isomers of yohimbine, serpentine and vallesiachotamine were identified. The study shows that a characteristic pattern of biosynthetically related TIAs can be monitored in Rhazya hairy root crude extract by this chromatographic method.

  8. Oxidation of indole-3-acetic acid by peroxidase: involvement of reduced peroxidase and compound III with superoxide as a product.

    PubMed

    Smith, A M; Morrison, W L; Milham, P J

    1982-08-31

    Kinetic and spectral data establish that peroxidase may oxidize indole-3-acetic acid by either of two pathways depending on the enzyme/substrate ratio. When relatively low enzyme/substrate ratios are employed, the oxidation proceeds through a reduced peroxidase in equilibrium compound III shuttle. Conversely, peroxidase operates through the conventionally accepted pathway involving native enzyme and compounds I and II only when high enzyme/substrate ratios are used. Compound III, a specific oxidase, constitutes the dominant steady-state form of peroxidase when the reduced peroxidase in equilibrium compound III shuttle is operational. Activation of this shuttle also produces a flux of superoxide anion radical at the expense of molecular oxygen. Thus, important biological consequences may follow activation of this shuttle under physiological conditions.

  9. Myo-inositol esters of indole-3-acetic acid are endogenous components of Zea mays L. shoot tissue

    NASA Technical Reports Server (NTRS)

    Chisnell, J. R.

    1984-01-01

    Indole-3-acetyl-myo-inositol esters have been demonstrated to be endogenous components of etiolated Zea mays shoots tissue. This was accomplished by comparison of the putative compounds with authentic, synthetic esters. The properties compared were liquid and gas-liquid chromatographic retention times and the 70-ev mass spectral fragmentation pattern of the pentaacetyl derivative. The amount of indole-3-acetyl-myo-inositol esters in the shoots was determined to be 74 nanomoles per kilogram fresh weight as measured by isotope dilution, accounting for 19% of the ester indole-3-acetic acid of the shoot. This work is the first characterization of an ester conjugate of indole-3-acetate acid from vegetative shoot tissue using multiple chromatographic properties and mass spectral identification. The kernel and the seedling shoot both contain indole-3-acetyl-myo-inositol esters, and these esters comprise approximately the same percentage of the total ester content of the kernel and of the shoot.

  10. Characterization of acute biliary hyperplasia in Fisher 344 Rats administered the Indole-3-Carbinol Analog, NSC-743380

    SciTech Connect

    Eldridge, Sandy R.; Covey, Joseph; Morris, Joel; Fang, Bingliang; Horn, Thomas L.; Elsass, Karen E.; Hamre, John R.; McCormick, David L.; Davis, Myrtle A.

    2014-12-15

    NSC-743380 (1-[(3-chlorophenyl)-methyl]-1H-indole-3-carbinol) is in early stages of development as an anticancer agent. Two metabolites reflect sequential conversion of the carbinol functionality to a carboxaldehyde and the major metabolite, 1-[(3-chlorophenyl)-methyl]-1H-indole-3-carboxylic acid. In an exploratory toxicity study in rats, NSC-743380 induced elevations in liver-associated serum enzymes and biliary hyperplasia. Biliary hyperplasia was observed 2 days after dosing orally for 2 consecutive days at 100 mg/kg/day. Notably, hepatotoxicity and biliary hyperplasia were observed after oral administration of the parent compound, but not when major metabolites were administered. The toxicities of a structurally similar but pharmacologically inactive molecule and a structurally diverse molecule with a similar efficacy profile in killing cancer cells in vitro were compared to NSC-743380 to explore scaffold versus target-mediated toxicity. Following two oral doses of 100 mg/kg/day given once daily on two consecutive days, the structurally unrelated active compound produced hepatic toxicity similar to NSC-743380. The structurally similar inactive compound did not, but, lower exposures were achieved. The weight of evidence implies that the hepatotoxicity associated with NSC-743380 is related to the anticancer activity of the parent molecule. Furthermore, because biliary hyperplasia represents an unmanageable and non-monitorable adverse effect in clinical settings, this model may provide an opportunity for investigators to use a short-duration study design to explore biomarkers of biliary hyperplasia. - Highlights: • NSC-743380 induced biliary hyperplasia in rats. • Toxicity of NSC-743380 appears to be related to its anticancer activity. • The model provides an opportunity to explore biomarkers of biliary hyperplasia.

  11. Antimicrobial and cytotoxic activity of 18 prenylated flavonoids isolated from medicinal plants: Morus alba L., Morus mongolica Schneider, Broussnetia papyrifera (L.) Vent, Sophora flavescens Ait and Echinosophora koreensis Nakai.

    PubMed

    Sohn, H Y; Son, K H; Kwon, C S; Kwon, G S; Kang, S S

    2004-11-01

    Antimicrobial activity of the 18 prenylated flavonoids, which were purified from five different medicinal plants, was evaluated by determination of MIC using the broth microdilution methods against four bacterial and two fungal microorganisms (Candida albicans, Saccaromyces cerevisiae, Escherichia coli, Salmonella typhimurium, Staphylococcus epidermis and S. aureus). Papyriflavonol A, kuraridin, sophoraflavanone D and sophoraisoflavanone A exhibited a good antifungal activity with strong antibacterial activity. Kuwanon C, mulberrofuran G, albanol B, kenusanone A and sophoraflavanone G showed strong antibacterial activity with 5-30 microg/ml of MICs. Morusin, sanggenon B and D, kazinol B, kurarinone, kenusanone C and isosophoranone were effective to only gram positive bacteria, and broussochalcone A was effective to C. albicans. IC50 values of papyriflavonol A, kuraridin, sophoraflavanone D, sophoraisoflavanone A and broussochalcone A in HepG2 cells were 20.9, 37.8, 39.1, 22.1, and 22.0 microg/ml, respectively. These results support the use of prenylated flavonoids in Asian traditional medicine to treat microbial infection and indicate a high potential for prenylated flavonoids as antimicrobial agents as well as anti-inflammatory agents. PMID:15636183

  12. Production of Indole-3-Acetic Acid via the Indole-3-Acetamide Pathway in the Plant-Beneficial Bacterium Pseudomonas chlororaphis O6 Is Inhibited by ZnO Nanoparticles but Enhanced by CuO Nanoparticles

    PubMed Central

    Zeng, Jia; McLean, Joan E.; Britt, David W.; Zhan, Jixun; Anderson, Anne J.

    2012-01-01

    The beneficial bacterium Pseudomonas chlororaphis O6 produces indole-3-acetic acid (IAA), a plant growth regulator. However, the pathway involved in IAA production in this bacterium has not been reported. In this paper we describe the involvement of the indole-3-acetamide (IAM) pathway in IAA production in P. chlororaphis O6 and the effects of CuO and ZnO nanoparticles (NPs). Sublethal levels of CuO and ZnO NPs differentially affected the levels of IAA secreted in medium containing tryptophan as the precursor. After 15 h of growth, CuO NP-exposed cells had metabolized more tryptophan than the control and ZnO NP-challenged cells. The CuO NP-treated cells produced higher IAA levels than control cultures lacking NPs. In contrast, ZnO NPs inhibited IAA production. Mixing of CuO and ZnO NPs resulted in an intermediate level of IAA production relative to the levels in the separate CuO and ZnO NP treatments. The effect of CuO NPs on IAA levels could be duplicated by ions at the concentrations released from the NPs. However, ion release did not account for the inhibition caused by the ZnO NPs. The mechanism underlying changes in IAA levels cannot be accounted for by effects on transcript accumulation from genes encoding a tryptophan permease or the IAM hydrolase in 15-h cultures. These findings raise the issue of whether sublethal doses of NPs would modify the beneficial effects of association between plants and bacteria. PMID:22210218

  13. Oral prenylation inhibition with lonafarnib in chronic hepatitis D infection: a proof-of-concept randomised, double-blind, placebo-controlled phase 2A trial

    PubMed Central

    Koh, Christopher; Canini, Laetitia; Dahari, Harel; Zhao, Xiongce; Uprichard, Susan L; Haynes-Williams, Vanessa; Winters, Mark A; Subramanya, Gitanjali; Cooper, Stewart L; Pinto, Peter; Wolff, Erin F; Bishop, Rachel; Han, Ma Ai Thanda; Cotler, Scott J; Kleiner, David E; Keskin, Onur; Idilman, Ramazan; Yurdaydin, Cihan; Glenn, Jeffrey S; Heller, Theo

    2015-01-01

    Summary Background Therapies for chronic hepatitis delta virus (HDV) infection are unsatisfactory. Prenylation is essential for HDV and inhibition abrogates HDV production in experimental models. In a proof-of-concept study, we aimed to assess the effect on HDV RNA levels, safety, and tolerability of the prenylation inhibitor lonafarnib in patients with chronic delta hepatitis. Methods In this phase 2A double-blind, randomised, placebo-controlled study, patients aged 18 years or older with chronic HDV infection were randomly assigned (3:1 in group 1 and 2:1 in group 2) to receive lonafarnib 100 mg (group 1) or lonafarnib 200 mg (group 2) twice daily for 28 days with 6 months’ follow-up. Participants were randomised by random-number tables blocked in groups of four without stratification. Both groups enrolled six treatment participants and two placebo participants. Group 1 placebo patients received open-label lonafarnib as group 2 participants. The primary therapeutic endpoint was a decrease in HDV RNA viral titre in serum and the primary safety endpoint was the ability to tolerate the drug at the prescribed dose for the full 4-week duration, defined as drug discontinuation due to intolerance or grade 3/4 adverse events. This trial is registered with ClinicalTrials.gov, number NCT01495585. Findings Between Jan 19, 2012, and April 28, 2014, 14 patients were enrolled, of whom eight were assigned to group 1 and six were assigned to group 2. At day 28, compared with placebo, mean log HDV RNA declines from baseline were −0.73 log IU/mL in group 1 (95% CI 0.17–1.31; p=0.03) and −1.54 log IU/mL in group 2 (1.21–1.93; p<0.0001). Lonafarnib serum concentrations correlated with HDV RNA change (r2=0.78, p<0.0001). Model fits show that hepatitis B surface antigen (HBsAg) remained stable after a short pharmacological delay (0.75 days [SE 0.24]), lonafarnib effectiveness in blocking HDV production was greater in group 2 than in group 1 (0.952 [SE 0.06] vs 0.739 [0

  14. Indole-3-acetic acid in Fusarium graminearum: Identification of biosynthetic pathways and characterization of physiological effects.

    PubMed

    Luo, Kun; Rocheleau, Hélène; Qi, Peng-Fei; Zheng, You-Liang; Zhao, Hui-Yan; Ouellet, Thérèse

    2016-09-01

    Fusarium graminearum is a devastating pathogenic fungus causing fusarium head blight (FHB) of wheat. This fungus can produce indole-3-acetic acid (IAA) and a very large amount of IAA accumulates in wheat head tissues during the first few days of infection by F. graminearum. Using liquid culture conditions, we have determined that F. graminearum can use tryptamine (TAM) and indole-3-acetonitrile (IAN) as biosynthetic intermediates to produce IAA. It is the first time that F. graminearum is shown to use the l-tryptophan-dependent TAM and IAN pathways rather than the indole-3-acetamide or indole-3-pyruvic acid pathways to produce IAA. Our experiments also showed that exogenous IAA was metabolized by F. graminearum. Exogenous IAA, TAM, and IAN inhibited mycelial growth; IAA and IAN also affected the hyphae branching pattern and delayed macroconidium germination. IAA and TAM had a small positive effect on the production of the mycotoxin 15-ADON while IAN inhibited its production. Our results showed that IAA and biosynthetic intermediates had a significant effect on F. graminearum physiology and suggested a new area of exploration for fungicidal compounds. PMID:27567719

  15. A visible-light-promoted aerobic metal-free C-3 thiocyanation of indoles.

    PubMed

    Fan, Weigang; Yang, Qi; Xu, Fengshan; Li, Pixu

    2014-11-01

    A simple and efficient visible-light-promoted method for the C-3 thiocyanation of indoles has been developed. The transformation uses Rose Bengal as the photocatalyst and air as the terminal oxidant. The reaction is mild, high-yielding, and environmentally benign.

  16. Comparative Indole-3-Acetic Acid Levels in the Slender Pea and Other Pea Phenotypes 1

    PubMed Central

    Law, David M.; Davies, Peter J.

    1990-01-01

    Free indole-3-acetic acid levels were measured by gas chromatography-mass spectrometry in three ultra-tall `slender' Pisum sativum L. lines differing in gibberellin content. Measurements were made for apices and stem elongation zones of light-grown plants and values were compared with wild-type, dwarf, and nana phenotypes in which internode length is genetically regulated, purportedly via the gibberellin level. Indole-3-acetic acid levels of growing stems paralleled growth rates in all lines, and were high in all three slender genotypes. Growth was inhibited by p-chlorophenoxyisobutyric acid, demonstrating the requirement of auxin activity for stem elongation, and also by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. It is concluded that the slender phenotype may arise from constant activation of a gibberellin receptor or transduction chain event leading directly or indirectly to elevated levels of indole-3-acetic acid, and that increased indole-3-acetic acid levels are a significant factor in the promotion of stem elongation. PMID:16667653

  17. Spiro Fused Diterpene-Indole Alkaloids from a Creek-Bottom-Derived Aspergillus terreus

    PubMed Central

    Cai, Shengxin; Du, Lin; Gerea, Alexandra L.; King, Jarrod B.; You, Jianlan

    2013-01-01

    Four metabolites, teraspiridoles A–D (2–5), formed from the merger of diterpene and modified indole scaffold were obtained from an Aspergillus terreus isolate. The structures and absolute configurations of these natural products were established using NMR, mass spectrometry, Marfey’s method, VCD, and ECD data. Teraspiridole B (3) exhibited weak inhibition of planaria regeneration/survival. PMID:23924243

  18. Synthesis of 2-vinylic indoles and derivatives via a Pd-catalyzed tandem coupling reaction.

    PubMed

    Fayol, Aude; Fang, Yuan-Qing; Lautens, Mark

    2006-09-14

    A novel one-step synthesis of valuable 2-vinylic indoles and their tricycle derivatives is described. This reaction, which utilizes a gem-dibromovinyl unit as a readily available starting material, occurs via an efficient Pd-catalyzed tandem Buchwald-Hartwig/Heck reaction. PMID:16956187

  19. Gold(I)-Catalyzed Dearomative Rautenstrauch Rearrangement: Enantioselective Access to Cyclopenta[b]indoles

    PubMed Central

    Zi, Weiwei; Wu, Hongmiao; Toste, F. Dean

    2016-01-01

    A highly enantioselective dearomative Rautenstrauch rearrangement catalyzed by cationic (S)-DTBM-Segphosgold(I) is reported. This reaction provides a straightforward method to prepare enantioenriched cyclopenta[b]indoles. These studies show vast difference in enantioselectivity in the reactions of propargyl acetates and propargyl acetals in the chiral ligand-controlled Rautenstrauch reaction. PMID:25710515

  20. [Spatial structure and mechanism of tyrosine phenol-lyase and tryptophan indole-lyase].

    PubMed

    Demidkina, T V; Anston, A A; Faleev, N G; Phillips, R S; Zakomyrdina, L N

    2009-01-01

    The bacterial tyrosine phenol-lyase (EC 4.1.99.2) and tryptoptophan indole-lyase (EC 4.1.99.1) belong to pyridoxal-5'-phosphate dependent beta-eliminating lyases, catalysing the reversible decomposition of L-tyrosine and L-tryptophan to pyruvate, ammonia, and phenol or indole correspondingly. Data on the three dimentional structures of the holoenzymes of tyrosine phenol-lyase and tryptophan indole-lyase and several enzyme-inhibitor complexes, modeling distinct reaction stages of the beta-elimination of L-tyrosine are described in the paper and structural bases of monovalent cations influence of activity of the enzymes are discussed. The spectral and catalytic properties of the mutant enzymes were studied. The data thus obtained have allowed us to elucidate the catalytic functions of a number of amino acid residues and conclude that the acid-base properties of the catalytic groups of the enzymes under the optimal for the catalysis conditions in hydrophobic active sites of tyrosine phenol-lyase and tryptoptophan indol-lyase are different from those in water solutions. Study of the mechanisms of labilization of Calpha-proton of the bound amino acids and activation of the leaving groups of the substrates during the catalytic process has demonstrated that in certain cases concerted reaction pathways are realized instead of stepwise ones. PMID:19425498

  1. Enantioselective Friedel-Crafts alkylation for synthesis of 2-substituted indole derivatives.

    PubMed

    Zhang, Yulong; Liu, Xiaohua; Zhao, Xiaohu; Zhang, Jianlin; Zhou, Lin; Lin, Lili; Feng, Xiaoming

    2013-12-14

    An efficient catalytic asymmetric intermolecular C2 Friedel-Crafts alkylation reaction between N-methyl skatole and β,γ-unsaturated α-ketoesters has been realized by a chiral N,N'-dioxide-Ni(II) complex. The corresponding indole derivatives were obtained in good yield (up to 96%) with excellent enantioselectivities (up to 99% ee) under mild reaction conditions. PMID:24158312

  2. Efficient direct 2,2,2-trifluoroethylation of indoles via C-H functionalization.

    PubMed

    Tolnai, Gergely L; Székely, Anna; Makó, Zita; Gáti, Tamás; Daru, János; Bihari, Tamás; Stirling, András; Novák, Zoltán

    2015-03-14

    A novel highly C3 selective metal free trifluoroethylation of indoles using 2,2,2-trifuoroethyl(mesityl)-iodonium triflate was developed. The methodology enables the introduction of a trifluoroethyl group in a fast and efficient reaction under mild conditions with high functional group tolerance. Beyond the synthetic developments, quantum chemical calculations provide a deeper understanding of the transformation. PMID:25682991

  3. A sulfenylation reaction: direct synthesis of 3-arylsulfinylindoles from arylsulfinic acids and indoles in water.

    PubMed

    Miao, Tao; Li, Pinhua; Zhang, Yicheng; Wang, Lei

    2015-02-20

    A novel and efficient electrophilic sulfenylation of indoles with arylsulfinic acids is realized. The reaction utilizes readily available starting materials in water under catalyst- and additive-free conditions, providing an alternative and attractive approach to 3-arylsulfinylindoles with high yields. Preliminary mechanistic investigation suggested that the reaction is through an electrophilic substitution process.

  4. Synthesis and SAR of potent LXR agonists containing an indole pharmacophore

    SciTech Connect

    Washburn, David G.; Hoang, Tram H.; Campobasso, Nino; Smallwood, Angela; Parks, Derek J.; Webb, Christine L.; Frank, Kelly A.; Nord, Melanie; Duraiswami, Chaya; Evans, Christopher; Jaye, Michael; Thompson, Scott K.

    2009-03-27

    A novel series of 1H-indol-1-yl tertiary amine LXR agonists has been designed. Compounds from this series were potent agonists with good rat pharmacokinetic parameters. In addition, the crystal structure of an LXR agonist bound to LXR{alpha} will be disclosed.

  5. Clinical study of anesthetization by dezocine combined with propofol for indolent colonoscopy

    PubMed Central

    Xu, Bin-Bin; Zhao, Xiao-Liang; Xu, Gui-Ping

    2016-01-01

    AIM: To assess the use of dezocine combined with propofol for the anesthetization of patients undergoing indolent colonoscopy. METHODS: A cross-sectional survey of patients undergoing indolent colonoscopy in the Xinjiang People’s Hospital was conducted from April 1 to April 30, 2015. The survey collected patient general information and anesthesia data, including overall medical experience and pain management. Thirty minutes after colonoscopy surgery, samples of venous blood were collected and the biochemical indicators of gastrointestinal function were analyzed. RESULTS: There were 98 female and 62 male respondents. Indolent colonoscopy was found to be more suitable for mid to older-aged patients. The necessary conditions for the diagnosis of digestive diseases were required in 65 of the 73 inpatients. Adverse reactions to the intraoperative process included two cases of body movement and two cases of respiratory depression. Gastrin and vasoactive intestinal peptide levels were slightly increased. However, somatostatin and endothelin levels were slightly decreased. CONCLUSION: This study revealed that dezocine combined with propofol can be successfully used for the anesthetization of indolent colonoscopy patients without pain and should be widely used. PMID:27350739

  6. Pd-catalyzed cascade allylic alkylation and dearomatization reactions of indoles with vinyloxirane.

    PubMed

    Gao, Run-Duo; Xu, Qing-Long; Dai, Li-Xin; You, Shu-Li

    2016-09-14

    We have developed Pd-catalyzed intermolecular Friedel-Crafts-type allylic alkylation and allylic dearomatization reactions of substituted indoles bearing a nucleophilic group with vinyloxirane, providing an efficient method to synthesize structurally diverse tetrahydrocarboline and spiroindolenine derivatives under mild conditions. PMID:27511802

  7. Bendamustine: Safety and Efficacy in the Management of Indolent Non-Hodgkins Lymphoma

    PubMed Central

    Tageja, Nishant

    2011-01-01

    Bendamustine (Treanda, Ribomustin) was recently approved by the US Food and Drug Administration (FDA) for treatment of patients with rituximab refractory indolent lymphoma and is expected to turn into a frontline therapy option for indolent lymphoma. This compound with amphoteric properties was designed in the former Germany Democratic Republic in 1960s and re-discovered in 1990s with multiple successive well-designed studies. Bendamustine possesses a unique mechanism of action with potential antimetabolite properties, and only partial cross-resistance with other alkylators. Used in combination with rituximab in vitro, bendamustine shows synergistic effects against various leukemia and lymphoma cell lines. In clinical studies, bendamustine plus rituximab is highly effective in patients with relapsed-refractory indolent lymphoma, inducing remissions in 90% or more and a median progression-free survival of 23–24 months. The optimal dosing and schedule of bendamustine administration is largely undecided and varies among studies. Results of ongoing trials and dose-finding studies will help to further help ascertain the optimal place of bendamustine in the management of indolent NHL. PMID:21695099

  8. Construction of carbocyclic ring of indoles using ruthenium-catalyzed ring-closing olefin metathesis.

    PubMed

    Yoshida, Kazuhiro; Hayashi, Kazushi; Yanagisawa, Akira

    2011-09-16

    The selective synthesis of substituted indoles was achieved by the ring-closing olefin metathesis (RCM)/elimination sequence or the RCM/tautomerization sequence of functionalized pyrrole precursors. The RCM/elimination sequence was also applied to double ring closure to yield a substituted carbazole.

  9. Copper-catalyzed enantioselective C-H functionalization of indoles with an axially chiral bipyridine ligand.

    PubMed

    Gao, Xiang; Wu, Bo; Yan, Zhong; Zhou, Yong-Gui

    2016-09-21

    Using copper complexes with an axially chiral bipyridine ligand C4-ACBP as the catalyst, an enantioselective functionalization of indoles with diazo compounds was developed with up to 95% ee. This protocol paves the way for further applications of these ligands. PMID:27529404

  10. Chemical oxidation of a malodorous compound, indole, using iron entrapped in calcium alginate beads.

    PubMed

    Ben Hammouda, Samia; Adhoum, Nafaâ; Monser, Lotfi

    2016-01-15

    Iron-alginate beads (Fe-ABs) were successfully prepared by the ion-gelation method, and applied as heterogeneous Fenton catalysts for the removal of a malodorous compound 'indole'. Similarly, copper-enriched alginate beads (Cu-ABs) were synthesized and tested as like-Fenton catalyst, however, their application proved not to be effective for this purpose. Fe-ABs catalysts were characterized by FTIR, SEM, EDS and AAS spectroscopy. Results pointed out that the parameters affecting Fenton catalysis must be carefully chosen to avoid excessive iron release. Under optimal conditions, complete indole removal and considerably high reduction of TOC, without significant leaching was achieved. Indole decay followed a pseudo-first-order kinetics. The absolute rate constant for indole hydroxylation was 3.59×10(9) M(-1) s(-1), as determined by the competition kinetics method. Four reaction intermediates (Isatin, Dioxindole, Oxindole and Anthralinic acid) were identified by ULC/MS/MS analysis. Short-chain aliphatic carboxylic acids like formic, acetic, oxalic, maleic, oxamic and pyruvic acids were identified by ion exclusion chromatography and as end-products. Based on the identified by-products, a plausible mineralization pathway was proposed. Moreover, the catalyst was recovered quantitatively by simple filtration and reused for several times without significant loss of activity. PMID:26384996

  11. Galantamine derivatives with indole moiety: Docking, design, synthesis and acetylcholinesterase inhibitory activity.

    PubMed

    Atanasova, Mariyana; Stavrakov, Georgi; Philipova, Irena; Zheleva, Dimitrina; Yordanov, Nikola; Doytchinova, Irini

    2015-09-01

    The inhibitors of acetylcholinesterase are the main therapy against Alzheimer's disease. Among them, galantamine is the best tolerated and the most prescribed drug. In the present study, 41 galantamine derivatives with known acetylcholinesterase inhibitory activities expressed as IC50 were selected from the literature and docked into a recombinant human acetylcholinesterase by GOLD. A linear relationship between GoldScores and pIC50 values was found and used to design and predict novel galantamine derivatives with indole moiety in the side chain. The four best predicted compounds were synthesized and tested for inhibitory activity. All of them were between 11 and 95 times more active than galantamine. The novel galantamine derivatives with indole moiety have dual site binding to the enzyme--the galantamine moiety binds to the catalytic anionic site and the indole moiety binds to peripheral anionic site. Additionally, the indole moiety of one of the novel inhibitors binds in a region, close to the peripheral anionic site of the enzyme, where the Ω-loop of amyloid beta peptide adheres to acetylcholinesterase. This compound emerges as a promising lead compound for multi-target anti-Alzheimer therapy not only because of the strong inhibitory activity, but also because it is able to block the amyloid beta deposition on acetylcholinesterase. PMID:26260334

  12. Distribution of indole in tissues of dairy cattle, swine, and laying pullets

    SciTech Connect

    Eisele, G.R.

    1986-08-01

    Indole is a colorless crystalline solid which has been isolated from coal tar fractionation. High concentrations of indole (which is a major ruminal fermentation product of L-tryptophan) in blood of cattle causes hemolysis, hemoglobinuria, and renal necrosis. An end product of anaerobic metabolism of the colonic flora, indole has also been examined as a marker in patients with unresected large bowel cancer or polyps. With the increased release of numerous chemical substances into the biosphere, careful assessment of the health effects of chronic exposure to pollutants must be made. Much of the body burden of animals will come from ingested feed and water, with the primary route of human exposure being the consumption of the contaminated meat, milk, and eggs. The purpose of this study was to obtain baseline data on the uptake and distribution of /sup 14/C-indole in dairy cattle, swine, and laying pullets and the retention of this chemical in consumable products such as milk, meat, and eggs.

  13. Anti-Toxoplasma Activity of 2-(Naphthalene-2-γlthiol)-1H Indole

    PubMed Central

    ASGARI, Qasem; KESHAVARZ, Hossein; REZAEIAN, Mostafa; SADEGHPOUR, Hossein; MIRI, Ramin; MOTAZEDIAN, Mohammad Hossein

    2015-01-01

    Background: This study was undertaken to evaluate the viability, infectivity and immunity of Toxoplasma gondii tachyzoites exposed to 2-(naphthalene-2-ylthio)-1H-indole. Methods: Tachyzoites of RH strain were incubated in various concentrations of 2-(naphthalene-2-ylthio)-1H-indole (25–800 μM) for 1.5 hours. Then, they were stained by PI and analyzed by Fluorescence-activated cell sorting (FACS). To evaluate the infectivity, the tachyzoites exposed to the different concentrations of the compound were inoculated to 10 BALB/c mice groups. For Control, parasites exposed to DMSO (0.2% v/v) were also intraperitoneally inoculated into two groups of mice. The immunity of the exposed tachyzoites was evaluated by inoculation of the naïve parasite to the survived mice. Results: The LD50 of 2-(naphthalene-2-ylthio)-1H-indole was 57 μmol. The longevity of mice was dose dependent. Five mice out of group 400μmol and 3 out of group 800μmol showed immunization to the parasite. Conclusion: Our findings demonstrated the toxoplasmocidal activity of the compound. The presence of a well-organized transporter mechanism for indole compounds within the parasite in conjunction with several effective mechanisms of these compounds on Toxoplasma viability would open a window for production of new drugs and vaccines. PMID:26246814

  14. New monoclonal antibodies specific for 1-(5-fluoropentyl)-3-(2-iodobenzoyl)indole.

    PubMed

    Nakayama, Hiroshi; Kenjyou, Noriko

    2015-02-01

    1-(5-fluoropentyl)-3-(2-iodobenzoyl)indole (AM694) is one of the synthetic cannabinoids and an illegal drug in Japan. It is important to generate a monoclonal antibody (MAb) against AM694 for use in the rapid and sensitive detection of the drug. Two monoclonal antibodies, named HN0124 (IgG1) and NK0504 (IgG1), were obtained, which were possibly effective for detecting AM694 and its derivatives. The cross-reactive ability of these MAbs was evaluated using a competitive enzyme-linked immunosorbent assay. In the results, both of these antibodies recognize 1-(5-fluoropentyl)-3-(2-iodobenzoyl)indole, 1-(5-fluoropentyl)-3-(3-iodobenzoyl)indole, 1-(5-fluoropentyl)-3-(4-iodobenzoyl)indole. Forty nmol/L AM694 can be detected using HN0124 MAb. Thus, MAbs produced in this study could be considered a useful tool for the detection of AM694. PMID:25723285

  15. Direct C-H alkylation and indole formation of anilines with diazo compounds under rhodium catalysis.

    PubMed

    Mishra, Neeraj Kumar; Choi, Miji; Jo, Hyeim; Oh, Yongguk; Sharma, Satyasheel; Han, Sang Hoon; Jeong, Taejoo; Han, Sangil; Lee, Seok-Yong; Kim, In Su

    2015-12-18

    The rhodium(III)-catalyzed direct functionalization of aniline C-H bonds with α-diazo compounds is described. These transformations provide a facile construction of ortho-alkylated anilines with diazo malonates or highly substituted indoles with diazo acetoacetates.

  16. CBL-2201. Report on a new designer drug: Napht-1-yl 1-(5-fluoropentyl)-1H-indole-3-carboxylate.

    PubMed

    Kondrasenko, A A; Goncharov, E V; Dugaev, K P; Rubaylo, A I

    2015-12-01

    The (1)H, (13)C and (15)N nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR) and gas chromatography coupled to mass spectrometry (GC-MS) identification of a synthetic cannabinoid compound has been conducted. It was shown that this compound cannot be reliably distinguished from the closely related quinolin-8-yl indole-3-carboxylic acid derivative by an automatic search in MS library. Structural difference of the studied compound and known illicit compounds has been determined using 1D and 2D NMR spectroscopy. Analytical data for the identification of this compound were provided. PMID:26386336

  17. Mitochondrial oncobioenergetic index: A potential biomarker to predict progression from indolent to aggressive prostate cancer

    PubMed Central

    Vayalil, Praveen K.; Landar, Aimee

    2015-01-01

    Mitochondrial function is influenced by alterations in oncogenes and tumor suppressor genes and changes in the microenvironment occurring during tumorigenesis. Therefore, we hypothesized that mitochondrial function will be stably and dynamically altered at each stage of the prostate tumor development. We tested this hypothesis in RWPE-1 cells and its tumorigenic clones with progressive malignant characteristics (RWPE-1 < WPE-NA22 < WPE-NB14 < WPE-NB11 < WPE-NB26) using high-throughput respirometry. Our studies demonstrate that mitochondrial content do not change with increasing malignancy. In premalignant cells (WPE-NA22 and WPE-NB14), OXPHOS is elevated in presence of glucose or glutamine alone or in combination compared to RWPE-1 cells and decreases with increasing malignancy. Glutamine maintained higher OXPHOS than glucose and suggests that it may be an important substrate for the growth and proliferation of prostate epithelial cells. Glycolysis significantly increases with malignancy and follow a classical Warburg phenomenon. Fatty acid oxidation (FAO) is significantly lower in tumorigenic clones and invasive WPE-NB26 does not utilize FAO at all. In this paper, we introduce for the first time the mitochondrial oncobioenergetic index (MOBI), a mathematical representation of oncobioenergetic profile of a cancer cell, which increases significantly upon transformation into localized premalignant form and rapidly falls below the normal as they become aggressive in prostate tumorigenesis. We have validated this in five prostate cancer cell lines and MOBI appears to be not related to androgen dependence or mitochondrial content, but rather dependent on the stage of the cancer. Altogether, we propose that MOBI could be a potential biomarker to distinguish aggressive cancer from that of indolent disease. PMID:26515588

  18. Toxic indole alkaloids avrainvillamide and stephacidin B produced by a biocide tolerant indoor mold Aspergillus westerdijkiae.

    PubMed

    Mikkola, Raimo; Andersson, Maria A; Hautaniemi, Maria; Salkinoja-Salonen, Mirja S

    2015-06-01

    Toxic Aspergillus westerdijkiae were present in house dust and indoor air fall-out from a residence and a kindergarten where the occupants suffered from building related ill health. The A. westerdijkiae isolates produced indole alkaloids avrainvillamide (445 Da) and its dimer stephacidin B (890 Da). It grew and sporulated in presence of high concentrations of boron or polyguanidine (PHMB, PHMG) based antimicrobial biocides used to remediate mold infested buildings. The boar sperm cells were used as sensor cells to purify toxins from HPLC fractions of the fungal biomass. Submicromolar concentrations (EC50 0.3-0.4 μM) blocked boar spermatozoan motility and killed porcine kidney tubular epithelial cells (PK-15). Plate grown hyphal mass of the A. westerdijkiae isolates contained 300-750 ng of avrainvillamide and 30-300 ng of stephacidin B per mg (wet weight). The toxins induced rapid (30 min) loss of boar sperm motility, followed (24 h) by loss of mitochondrial membrane potential (ΔΨm). Apoptotic cell death was observed in PK-15 cell monolayers, prior to cessation of glucose uptake or loss of ΔΨm. Avrainvillamide and stephacidin B were 100-fold more potent towards the porcine cells than the mycotoxins stephacidin A, ochratoxin A, sterigmatocystin and citrinin. The high toxicity of stephacidin B indicates a role of nitrone group in the mechanism of toxicity. Avrainvillamide and stephacidin B represent a new class of toxins with possible a threat to human health in buildings. Furthermore, the use of biocides highly enhanced the growth of toxigenic A. westerdijkiae.

  19. Development of transcriptomic resources for interrogating the biosynthesis of monoterpene indole alkaloids in medicinal plant species.

    PubMed

    Góngora-Castillo, Elsa; Childs, Kevin L; Fedewa, Greg; Hamilton, John P; Liscombe, David K; Magallanes-Lundback, Maria; Mandadi, Kranthi K; Nims, Ezekiel; Runguphan, Weerawat; Vaillancourt, Brieanne; Varbanova-Herde, Marina; Dellapenna, Dean; McKnight, Thomas D; O'Connor, Sarah; Buell, C Robin

    2012-01-01

    The natural diversity of plant metabolism has long been a source for human medicines. One group of plant-derived compounds, the monoterpene indole alkaloids (MIAs), includes well-documented therapeutic agents used in the treatment of cancer (vinblastine, vincristine, camptothecin), hypertension (reserpine, ajmalicine), malaria (quinine), and as analgesics (7-hydroxymitragynine). Our understanding of the biochemical pathways that synthesize these commercially relevant compounds is incomplete due in part to a lack of molecular, genetic, and genomic resources for the identification of the genes involved in these specialized metabolic pathways. To address these limitations, we generated large-scale transcriptome sequence and expression profiles for three species of Asterids that produce medicinally important MIAs: Camptotheca acuminata, Catharanthus roseus, and Rauvolfia serpentina. Using next generation sequencing technology, we sampled the transcriptomes of these species across a diverse set of developmental tissues, and in the case of C. roseus, in cultured cells and roots following elicitor treatment. Through an iterative assembly process, we generated robust transcriptome assemblies for all three species with a substantial number of the assembled transcripts being full or near-full length. The majority of transcripts had a related sequence in either UniRef100, the Arabidopsis thaliana predicted proteome, or the Pfam protein domain database; however, we also identified transcripts that lacked similarity with entries in either database and thereby lack a known function. Representation of known genes within the MIA biosynthetic pathway was robust. As a diverse set of tissues and treatments were surveyed, expression abundances of transcripts in the three species could be estimated to reveal transcripts associated with development and response to elicitor treatment. Together, these transcriptomes and expression abundance matrices provide a rich resource for

  20. Asymmetric Distribution of Glucose and Indole-3-Acetyl-myo-Inositol in Geostimulated Zea mays Seedlings 1

    PubMed Central

    Momonoki, Yoshie S.

    1988-01-01

    Indole-3-acetyl-myo-inositol occurs in both the kernel and vegetative shoot of germinating Zea mays seedlings. The effect of a gravitational stimulus on the transport of [3H]-5-indole-3-acetyl-myo-inositol and [U-14C]-d-glucose from the kernel to the seedling shoot was studied. Both labeled glucose and labeled indole-3-acetyl-myo-inositol become asymmetrically distributed in the mesocotyl cortex of the shoot with more radioactivity occurring in the bottom half of a horizontally placed seedling. Asymmetric distribution of [3H]indole-3-acetic acid, derived from the applied [3H]indole-3-acetyl-myo-inositol, occurred more rapidly than distribution of total 3H-radioactivity. These findings demonstrate that the gravitational stimulus can induce an asymmetric distribution of substances being transported from kernel to shoot. They also indicate that, in addition to the transport asymmetry, gravity affects the steady state amount of indole-3-acetic acid derived from indole-3-acetyl-myo-inositol. PMID:11537873