Science.gov

Sample records for related trimethylammonium ions

  1. Photocontrol of Voltage-Gated Ion Channel Activity by Azobenzene Trimethylammonium Bromide in Neonatal Rat Cardiomyocytes

    PubMed Central

    Frolova, Sheyda R.; Gaiko, Olga; Tsvelaya, Valeriya A.; Pimenov, Oleg Y.; Agladze, Konstantin I.

    2016-01-01

    The ability of azobenzene trimethylammonium bromide (azoTAB) to sensitize cardiac tissue excitability to light was recently reported. The dark, thermally relaxed trans- isomer of azoTAB suppressed spontaneous activity and excitation propagation speed, whereas the cis- isomer had no detectable effect on the electrical properties of cardiomyocyte monolayers. As the membrane potential of cardiac cells is mainly controlled by activity of voltage-gated ion channels, this study examined whether the sensitization effect of azoTAB was exerted primarily via the modulation of voltage-gated ion channel activity. The effects of trans- and cis- isomers of azoTAB on voltage-dependent sodium (INav), calcium (ICav), and potassium (IKv) currents in isolated neonatal rat cardiomyocytes were investigated using the whole-cell patch-clamp technique. The experiments showed that azoTAB modulated ion currents, causing suppression of sodium (Na+) and calcium (Ca2+) currents and potentiation of net potassium (K+) currents. This finding confirms that azoTAB-effect on cardiac tissue excitability do indeed result from modulation of voltage-gated ion channels responsible for action potential. PMID:27015602

  2. Hydroxide Degradation Pathways for Substituted Trimethylammonium Cations: A DFT Study

    SciTech Connect

    Long, H.; Kim, K.; Pivovar, B. S.

    2012-05-03

    Substituted trimethylammonium cations serve as small molecule analogues for tetherable cations in anion exchange membranes. In turn, these membranes serve as the basis for alkaline membrane fuel cells by allowing facile conduction of hydroxide. As these cations are susceptible to hydroxide attack, they degrade over time and greatly limit the lifetime of the fuel cell. In this research, we performed density functional theory calculations to investigate the degradation pathways of substituted trimethylammonium cations to probe the relative durability of cation tethering strategies in alkyl and aromatic tethers. Our results show that significant changes in calculated energy barriers occur when substitution groups change. Specifically, we have found that, when available, the Hofmann elimination pathway is the most vulnerable pathway for degradation; however, this barrier is also found to depend on the carbon chain length and number of hydrogens susceptible to Hofmann elimination. S{sub N}2 barriers were also investigated for both methyl groups and substitution groups. The reported findings give important insight into potential tethering strategies for trimethylammonium cations in anion exchange membranes.

  3. Engineering the substrate specificity of Bacillus megaterium cytochrome P-450 BM3: hydroxylation of alkyl trimethylammonium compounds.

    PubMed Central

    Oliver, C F; Modi, S; Primrose, W U; Lian, L Y; Roberts, G C

    1997-01-01

    Oligonucleotide-directed mutagenesis has been used to replace arginine-47 with glutamate in cytochrome P-450 BM3 from Bacillus megaterium and in its haem domain. The mutant has been characterized by sequencing, mass spectrometry, steady-state kinetics and by optical and NMR measurements of substrate binding. The mutant retains significant catalytic activity towards C12-C16 fatty acids, catalysing hydroxylation in the same (omega-1, omega-2, omega-3) positions with kcat/Km values a factor of 14-21 lower. C12-C16 alkyl trimethylammonium compounds are relatively poor substrates for the wild-type enzyme, but are efficiently hydroxylated by the arginine-47-->glutamate mutant at the omega-1, omega-2 and omega-3 positions, with kcat values of up to 19 s-1. Optical spectroscopy shows that the binding of the C14 and C16 alkyl trimethylammonium compounds to the mutant is similar to that of the corresponding fatty acids to the wild-type enzyme. Paramagnetic relaxation measurements show that laurate binds to the ferric state of the mutant in a significantly different position, 1.5 A closer to the iron, than seen in the wild-type, although this difference is much smaller ( approximately 0.2 A) in the ferrous state of the complex. The binding of a substrate having the same charge as residue 47 to the ferric state of the enzyme is roughly ten times weaker than that of a substrate having the opposite charge (and thus is able to make an ion-pair interaction with this residue). The results are discussed in the light of the three-dimensional structure of the enzyme. PMID:9359427

  4. Relating to ion detection

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2001-01-01

    The apparatus and method provide a technique for improving detection of alpha and/or beta emitting sources on items or in locations using indirect means. The emission forms generate ions in a medium surrounding the item or location and the medium is then moved to a detecting location where the ions are discharged to give a measure of the emission levels. To increase the level of ions generated and render the system particularly applicable for narrow pipes and other forms of conduits, the medium pressure is increased above atmospheric pressure. STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

  5. Mechanism of denaturation of bovine serum albumin by dodecyl trimethylammonium bromide.

    PubMed

    Moosavi-Movahedi, A A; Bordbar, A K; Taleshi, A A; Naderimanesh, H M; Ghadam, P

    1996-09-01

    Bovine serum albumin (BSA) denaturation has been extensively studied by different anionic and cationic surfactant. Dodecyl trimethylammonium bromide (DTAB) is a cationic surfactant, and it is suggested that it binds to the C-terminal section of BSA. In the present study, the thermodynamical denaturation of BSA by dodecyl trimethylammonium bromide (DTAB) has been studied with various experimental techniques. Equilibrium dialysis, thermal denaturation, gel electrophoresis, titration microcalorimetry at pH 7, I = 0.005, and different temperatures were all performed. The enthalpy obtained from the van't Hoff relation and calorimetry method as well as electrophoresis results were utilized to explain the BSA tranistion state. Major findings included: the binding isotherm shifts at a low free concentrations of DTAB and at a higher temperature suggest endothermicity for enthalpy of interaction; the calorimetry enthalpy (delta Hcal) of interaction was smaller than the van't Hoff enthalpy (delta HvH) for BSA-DTAB interaction; and the aggregation of BSA increased with increasing DTAB concentration. This study suggests that BSA unfolding induced by DTAB follows a multistate transition model and does not follow the two-state mechanism assumed for most single subunit proteins.

  6. Relating to monitoring ion sources

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan

    2002-01-01

    The apparatus and method provide techniques for monitoring the position on alpha contamination in or on items or locations. The technique is particularly applicable to pipes, conduits and other locations to which access is difficult. The technique uses indirect monitoring of alpha emissions by detecting ions generated by the alpha emissions. The medium containing the ions is moved in a controlled manner frog in proximity with the item or location to the detecting unit and the signals achieved over time are used to generate alpha source position information.

  7. Durability and performance of polystyrene- b -poly(vinylbenzyl trimethylammonium) diblock copolymer and equivalent blend anion exchange membranes

    SciTech Connect

    Vandiver, Melissa A.; Caire, Benjamin R.; Poskin, Zach; Li, Yifan; Seifert, Sönke; Knauss, Daniel M.; Herring, Andrew M.; Liberatore, Matthew W.

    2014-11-01

    Anion exchange membranes (AEM) are solid polymer electrolytes that facilitate ion transport in fuel cells. In this study, a polystyrene-b-poly(vinylbenzyl trimethylammonium) diblock copolymer was evaluated as potential AEM and compared with the equivalent homopolymer blend. The diblock had a 92% conversion of reactive sites with an IEC of 1.72 ± 0.05 mmol g-1, while the blend had a 43% conversion for an IEC of 0.80 ± 0.03 mmol g-1. At 50°C and 95% relative humidity, the chloride conductivity of the diblock was higher, 24–33 mS cm-1, compared with the blend, 1–6 mS cm-1. The diblock displayed phase separation on the length scale of 100 nm, while the blend displayed microphase separation (~10 μm). Mechanical characterization of films from 40 to 90 microns thick found that elasticity and elongation decreased with the addition of cations to the films. At humidified conditions, water acted as a plasticizer to increase film elasticity and elongation. While the polystyrene-based diblock displayed sufficient ionic conductivity, the films' mechanical properties require improvement, i.e., greater elasticity and strength, before use in fuel cells. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41596.

  8. Energetic and binding properties of DNA upon interaction with dodecyl trimethylammonium bromide.

    PubMed

    Bathaie, S Z; Moosavi-Movahedi, A A; Saboury, A A

    1999-02-15

    The interaction of dodecyl trimethylammonium bromide (DTAB), a cationic surfactant, with calf thymus DNA has been studied by various methods, including potentiometric technique using DTAB-selective plastic membrane electrode at 27 and 37 degreesC, isothermal titration microcalorimetry and UV spectrophotometry at 27 degreesC using 0.05 M Tris buffer and 0.01 M NaCl at pH 7.4. The free energy is calculated from binding isotherms on the basis of Wyman binding potential theory and the enthalpy of binding according to van't Hoff relation. The enthalpy of unfolding has been determined by subtraction of the enthalpy of binding from the microcalorimetric enthalpy. The results show that, after the interaction of first DTAB molecule to DNA (base molarity) through the electrostatic interaction, the second DTAB molecule also binds to DNA through electrostatic interaction. At this stage, the predom-inant DNA conformational change occurs. Afterwards up to 20 DTAB molecules, below the critical micelle concentration of DTAB, bind through hydrophobic interactions.

  9. Interaction between DNA and trimethyl-ammonium bromides with different alkyl chain lengths.

    PubMed

    Cheng, Chao; Ran, Shi-Yong

    2014-01-01

    The interaction between λ--DNA and cationic surfactants with varying alkyl chain lengths was investigated. By dynamic light scattering method, the trimethyl-ammonium bromides-DNA complex formation was shown to be dependent on the length of the surfactant's alkyl chain. For surfactants with sufficient long alkyl chain (CTAB, TTAB, DTAB), the compacted particles exist with a size of ~60-110 nm at low surfactant concentrations. In contrast, high concentration of surfactants leads to aggregates with increased sizes. Atomic force microscope scanning also supports the above observation. Zeta potential measurements show that the potential of the particles decreases with the increase of surfactant concentration (CTAB, TTAB, DTAB), which contributes much to the coagulation of the particles. For OTAB, the surfactant with the shortest chain in this study, it cannot fully neutralize the charges of DNA molecules; consequently, the complex is looser than other surfactant-DNA structures.

  10. Interaction between DNA and Trimethyl-Ammonium Bromides with Different Alkyl Chain Lengths

    PubMed Central

    Cheng, Chao; Ran, Shi-Yong

    2014-01-01

    The interaction between λ—DNA and cationic surfactants with varying alkyl chain lengths was investigated. By dynamic light scattering method, the trimethyl-ammonium bromides-DNA complex formation was shown to be dependent on the length of the surfactant's alkyl chain. For surfactants with sufficient long alkyl chain (CTAB, TTAB, DTAB), the compacted particles exist with a size of ~60–110 nm at low surfactant concentrations. In contrast, high concentration of surfactants leads to aggregates with increased sizes. Atomic force microscope scanning also supports the above observation. Zeta potential measurements show that the potential of the particles decreases with the increase of surfactant concentration (CTAB, TTAB, DTAB), which contributes much to the coagulation of the particles. For OTAB, the surfactant with the shortest chain in this study, it cannot fully neutralize the charges of DNA molecules; consequently, the complex is looser than other surfactant-DNA structures. PMID:24574926

  11. Radiation synthesis of temperature-responsive hydrogels by copolymerization of [2-(methacryloyloxy)ethyl]trimethylammonium chloride with /N-isopropylacrylamide

    NASA Astrophysics Data System (ADS)

    Mun, Grigoriy A.; Nurkeeva, Zauresh S.; Khutoryanskiy, Vitaliy V.; Sergaziyev, Aibek D.; Rosiak, Janusz M.

    2002-08-01

    Novel cationic hydrogels were synthesized by γ-irradiation copolymerization of [2-(methacryloyloxy)ethyl]trimethylammonium chloride with N-isopropylacrylamide in the presence of cross-linking agent. The synthesis regularities have been studied. The swelling behavior of hydrogels as a function of copolymers composition and temperature was evaluated.

  12. A poly(alkyl methacrylate-divinylbenzene-vinylbenzyl trimethylammonium chloride) monolithic column for solid-phase microextraction.

    PubMed

    Liu, Wan-Ling; Lirio, Stephen; Yang, Yicong; Wu, Lin-Tai; Hsiao, Shu-Ying; Huang, Hsi-Ya

    2015-05-22

    In this study, an organic polymer monolithic columns, which were prepared via in situ polymerization of alkyl methacrylate-ester (AMA), divinylbenzene (DVB) and vinylbenzyl trimethylammonium chloride (VBTA, charged monomer), were developed as adsorbent for solid-phase microextraction (SPME). Different parameters affecting the extraction efficiency for nine (9) non-steroidal anti-inflammatory drugs (NSAIDs) such as the ratio of the stearyl methacrylate (SMA) to DVB monomer, column length, sample pH, extraction flow rate and desorption solvent were investigated to obtain the optimal SPME condition. Also, the permeability for each poly(AMA-DVB-VBTA) monolithic column was investigated by adding porogenic solvent (poly(ethylene glycol), PEG). Using the optimized condition, a series of AMA-based poly(AMA-DVB-VBTA) monolith columns were developed to determine the effect the extraction efficiency of NSAIDs by varying the alkyl chain length of the methacrylate ester (methyl-, butyl-, octyl-, or lauryl-methacrylate; (MMA, BMA, OMA, LMA)). Results showed that decreasing the AMA chain length increases the extraction efficiency of some NSAIDs (i.e. sulindac (sul), naproxen (nap), ketoprofen (ket) and indomethacin (idm)). Among the poly(AMA-DVB-VBTA) monolithic columns, poly(BMA-DVB-VBTA) showed a highly repeatable extraction efficiency for NSAIDs with recoveries ranging from 85.0 to 100.2% with relative standard deviation (RSD) less than 6.8% (n=3). The poly(BMA-DVB-VBTA) can also be reused for at least 50 times without any significant effect in extraction efficiency for NSAIDs. Finally, using the established conditions, the poly(BMA-DVB-VBTA) was used to extract trace-level NSAIDs (100μgL(-1)) in river water with good recoveries ranging from 75.8 to 90.8% (RSD<14.9%).

  13. Denaturation and intermediates study of two sturgeon hemoglobins by n-dodecyl trimethylammonium bromide.

    PubMed

    Ariaeenejad, Shohreh; Habibi-Rezaei, Mehran; Kavousi, Kaveh; Jamili, Shahla; Fatemi, Mohammad Reza; Hong, Jun; Poursasan, Najmeh; Sheibani, Nader; Moosavi-Movahedi, Ali A

    2013-02-01

    Varieties of hemoglobin (Hb) forms exist in fish, which are usually well adapted to the different ecological conditions or various habitats. In the current study, Hbs from two Sturgeon species of the Southern Caspian Sea Basin were purified and studied upon interaction with n-dodecyl trimethylammonium bromide (DTAB; as a cationic surfactant) by various methods including UV-visible absorption, dynamic light scattering (DLS), and ANS fluorescence spectrophotometry. The chemometric analysis of Hbs was investigated upon interaction with DTAB under titration, using UV-visible absorption spectra. The chemometric resolution techniques were used to determine the number of the components and mole fraction of the oxidized Hbs. These results provided the evidence for the existence of three different molecular components including native (N), intermediate (I) and denatured (D) in sturgeon Hbs. According to the distribution of intermediates, which were broadened in a range of DTAB concentration, the aggregation states, DLS experiments, and thermal stability (T(m) obtained by differential scanning calorimetry (DSC)), the Acipenser stellatus Hb was more stable compared to Acipenser persicus Hb. These results demonstrate a significant relationship between the stability of fish Hbs and the habitat depth requirements.

  14. Denaturation and intermediates study of two sturgeon hemoglobins by n-dodecyl trimethylammonium bromide

    PubMed Central

    Ariaeenejad, Shohreh; Habibi-Rezaei, Mehran; Kavousi, Kaveh; Jamili, Shahla; Fatemi, Mohammad Reza; Hong, Jun; Poursasan, Najmeh; Sheibani, Nader; Moosavi-Movahedi, Ali. A.

    2013-01-01

    Varieties of hemoglobin (Hb) forms exist in fish, which are usually well adapted to the different ecological conditions or various habitats. In the current study, Hbs from two Sturgeon species of the Southern Caspian Sea Basin were purified and studied upon interaction with n-dodecyl trimethylammonium bromide (DTAB; as a cationic surfactant) by various methods including UV-visible absorption, dynamic light scattering (DLS), and ANS fluorescence spectrophotometry. The chemometric analysis of Hbs was investigated upon interaction with DTAB under titration, using UV-visible absorption spectra. The chemometric resolution techniques were used to determine the number of the components and mole fraction of the oxidized Hbs. These results provided the evidence for the existence of three different molecular components including native (N), intermediate (I) and denatured (D) in sturgeon Hbs. According to the distribution of intermediates, which were broadened in a range of DTAB concentration, the aggregation states, DLS experiments, and thermal stability (Tm obtained by differential scanning calorimetry (DSC)), the Acipenser stellatus Hb was more stable compared to Acipenser persicus Hb. These results demonstrate a significant relationship between the stability of fish Hbs and the habitat depth requirements. PMID:23142155

  15. Depth-dose relations for heavy ion beams

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1977-01-01

    Radiation transport of heavy ions in matter is of interest to radiological protection in space and high-altitude aircraft. In addition, heavy ion beams are expected to be of advantage in radiotherapy since their characteristic Bragg curve allows a relative reduction of the dose in reaching a tumor site and the near elimination of exposure beyond the tumor region as the beam exits the body. Furthermore, the radioresistance of tumorous cells due to their hypoxic state may be reduced or eliminated by the high specific ionization of heavy ion beams. The depth-dose distribution of heavy ion beams consists of energy deposited by the attenuated primary beam with its characteristic Bragg curve and a relatively unstructured background due to secondary radiations produced in nuclear reactions. As the ion mass increases, the secondary contribution becomes more structured and may add significantly to the Bragg peak of the primary ions. The result for heavy ions (z greater than 20) is a greatly broadened Bragg peak region, especially in comparison to straggling effects, which may prove to be of importance in radiotherapy and biomedical research.

  16. Fundamental questions relating to ion conduction in disordered solids

    NASA Astrophysics Data System (ADS)

    Dyre, Jeppe C.; Maass, Philipp; Roling, Bernhard; Sidebottom, David L.

    2009-04-01

    A number of basic scientific questions relating to ion conduction in homogeneously disordered solids are discussed. The questions deal with how to define the mobile ion density, what can be learnt from electrode effects, what the ion transport mechanism is, the role of dimensionality and what the origins of the mixed-alkali effect, the time-temperature superposition, and the nearly constant loss are. Answers are suggested to some of these questions, but the main purpose of the paper is to draw attention to the fact that this field of research still presents several fundamental challenges.

  17. Design, synthesis, structure, and dehydrogenation reactivity of a water-soluble o-iodoxybenzoic acid derivative bearing a trimethylammonium group.

    PubMed

    Cui, Li-Qian; Dong, Zhi-Lei; Liu, Kai; Zhang, Chi

    2011-12-16

    5-Trimethylammonio-1,3-dioxo-1,3-dihydro-1λ(5)-benzo[d][1,2]iodoxol-1-ol anion (AIBX 1a), an o-iodoxybenzoic acid (IBX) derivative having the trimethylammonium moiety on its phenyl ring, possesses very good solubility in water and distinct oxidative properties from IBX, which is demonstrated in the oxidation of various β-keto esters to the corresponding dehydrogenated products using water as cosolvent. The regeneration of AIBX 1a can be easily realized from the reaction mixture due to its good water solubility. PMID:22082110

  18. Design, synthesis, structure, and dehydrogenation reactivity of a water-soluble o-iodoxybenzoic acid derivative bearing a trimethylammonium group.

    PubMed

    Cui, Li-Qian; Dong, Zhi-Lei; Liu, Kai; Zhang, Chi

    2011-12-16

    5-Trimethylammonio-1,3-dioxo-1,3-dihydro-1λ(5)-benzo[d][1,2]iodoxol-1-ol anion (AIBX 1a), an o-iodoxybenzoic acid (IBX) derivative having the trimethylammonium moiety on its phenyl ring, possesses very good solubility in water and distinct oxidative properties from IBX, which is demonstrated in the oxidation of various β-keto esters to the corresponding dehydrogenated products using water as cosolvent. The regeneration of AIBX 1a can be easily realized from the reaction mixture due to its good water solubility.

  19. Effect of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion Relation

    NASA Technical Reports Server (NTRS)

    Gamayunov, K. V.; Khazanov, G. V.

    2006-01-01

    Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by

  20. Are Ring Current Ions Lost in Electromagnetic Ion Cyclotron Wave Dispersion Relation?

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.

    2006-01-01

    Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by

  1. Impact of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion Relation

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Gamayunov, K. V.

    2007-01-01

    Effect of the ring current ions in the real part of electromagnetic ion Cyclotron wave dispersion relation is studied on global scale. Recent Cluster observations by Engebretson et al. showed that although the temperature anisotropy of is energetic (> 10 keV) ring current protons was high during the entire 22 November 2003 perigee pass, electromagnetic ion cyclotron waves were observed only in conjunction with intensification of the ion fluxes below 1 keV by over an order of magnitude. To study the effect of the ring current ions on the wave dispersive properties and the corresponding global wave redistribution, we use a self-consistent model of interacting ring current and electromagnetic ion cyclotron waves, and simulate the May 1998 storm. The main findings of our simulation can be summarized as follows: First, the plasma density enhancement in the night MLT sector during the main and recovery storm phases is mostly caused by injection of suprathermal plasma sheet H + (approximately < 1 keV), which dominate the thermal plasma density. Second, during the recovery storm phases, the ring current modification of the wave dispersion relation leads to a qualitative change of the wave patterns in the postmidnight-dawn sector for L > 4.75. This "new" wave activity is well organized by outward edges of dense suprathermal ring current spots, and the waves are not observed if the ring current ions are not included in the real part of dispersion relation. Third, the most intense wave-induced ring current precipitation is located in the night MLT sector and caused by modification of the wave dispersion relation. The strongest precipitating fluxes of about 8 X 10(exp 6)/ (cm(exp 2) - s X st) are found near L=5.75, MLT=2 during the early recovery phase on 4 May. Finally, the nightside precipitation is more intense than the dayside fluxes, even if there are less intense waves, because the convection field moves ring current ions into the loss cone on the nightside, but drives

  2. Determination of relative sensitivity factors during secondary ion sputtering of silicate glasses by Au+, Au2+ and Au3+ ions.

    PubMed

    King, Ashley; Henkel, Torsten; Rost, Detlef; Lyon, Ian C

    2010-01-01

    In recent years, Au-cluster ions have been successfully used for organic analysis in secondary ion mass spectrometry. Cluster ions, such as Au(2)(+) and Au(3)(+), can produce secondary ion yield enhancements of up to a factor of 300 for high mass organic molecules with minimal sample damage. In this study, the potential for using Au(+), Au(2)(+) and Au(3)(+) primary ions for the analysis of inorganic samples is investigated by analyzing a range of silicate glass standards. Practical secondary ion yields for both Au(2)(+) and Au(3)(+) ions are enhanced relative to those for Au(+), consistent with their increased sputter rates. No elevation in ionization efficiency was found for the cluster primary ions. Relative sensitivity factors for major and trace elements in the standards showed no improvement in quantification with Au(2)(+) and Au(3)(+) ions over the use of Au(+) ions. Higher achievable primary ion currents for Au(+) ions than for Au(2)(+) and Au(3)(+) allow for more precise analyses of elemental abundances within inorganic samples, making them the preferred choice, in contrast to the choice of Au(2)(+) and Au(3)(+) for the analysis of organic samples. The use of delayed secondary ion extraction can also boost secondary ion signals, although there is a loss of overall sensitivity.

  3. Energetic domains analysis of bovine α-lactalbumin upon interaction with copper and dodecyl trimethylammonium bromide

    NASA Astrophysics Data System (ADS)

    Chamani, J.

    2010-08-01

    Domain analysis of the dialyzed form of α-lactalbumin (m-α-LA) with varying concentrations of Cu +2 and DTAB has been carried out by differential scanning calorimetry (DSC), circular dichroism (CD) and resonance Rayleigh scattering (RLS) to elucidate the effect of the ligands on the thermal and structural properties of m-α-LA. The DSC profile displayed two dissimilar temperature-induced heat-absorption peaks as well as two melting points ( T m = 305 K, T m = 333 K). The m-α-LA is not a new form of α-LA, but rather contains a mixture of the apo- and holo-forms of α-LA (i.e., a-α-LA and h-α-LA) at low and high temperatures, respectively. The presence of Cu +2 as the metal ion and DTAB as the non-metal ion altered the two heat-absorption peaks in such a manner that, with the addition of Cu +2 to m-α-LA, the excess molar heat capacity profile showed three sub-peaks, i.e., one sub-peak for a-α-LA at 303.2 K and two other sub-peaks for h-α-LA at 325 K and 334 K. The presence of these peaks was due to the molecular population of the a-α-LA form changing into h-α-LA. Contrarily, when it came to the interaction between DTAB and m-α-LA, the DSC thermogram showed two sub-peaks, i.e., one sub-peak for a-α-LA and another sub-peak for h-α-LA, resulting from the molecular population of the h-α-LA form changing into a-α-LA. The CD experiments on m-α-LA upon interaction with Cu +2 and DTAB demonstrated an increment and a decrement, respectively, of the α-helix content relative to that of the protein in the absence of the ligands. However, the α-helix induced by Cu +2 as a metal ion inspired one energetics domain in m-α-LA, wherefore it could be deduced that the helicity content caused an increment of the energetics content of α-LA. Hence, Cu +2 and DTAB at various concentrations played important roles as good probes for defining the electrostatic moiety for domains of m-α-LA initiated through a dissimilarity with regard to the α-helicity of these domains

  4. Relation of morphology of electrodeposited zinc to ion concentration profile

    NASA Technical Reports Server (NTRS)

    May, C. E.; Kautz, H. E.; Sabo, B. B.

    1977-01-01

    The morphology of electrodeposited zinc was studied with special attention to the ion concentration profile. The initial concentrations were 9M hydroxide ion and 1.21M zincate. Current densities were 6.4 to 64 mA/sq cm. Experiments were run with a horizontal cathode which was observed in situ using a microscope. The morphology of the zinc deposit was found to be a function of time as well as current density; roughly, the log of the transition time from mossy to large crystalline type deposit is inversely proportional to current density. Probe electrodes indicated that the electrolyte in the cathode chamber was mixed by self inducted convection. However, relatively large concentration gradients of the involved species existed across the boundary layer of the cathode. Analysis of the data suggests that the morphology converts from mossy to large crystalline when the hydroxide activity on the cathode surface exceeds about 12 M. Other experiments show that the pulse discharge technique had no effect on the morphology in the system where the bulk concentration of the electrolyte was kept homogeneous via self induced convection.

  5. Relative ion expansion velocity in laser-produced plasmas

    NASA Technical Reports Server (NTRS)

    Goldsmith, S.; Moreno, J. C.; Griem, H. R.; Cohen, Leonard; Richardson, M. C.

    1988-01-01

    The spectra of highly ionized titanium, Ti XIII through Ti XXI, and C VI Lyman lines were excited in laser-produced plasmas. The plasma was produced by uniformly irradiating spherical glass microballoons coated with thin layers of titanium and parylene. The 24-beam Omega laser system produced short, 0.6 ns, and high-intensity, 4 x 10 to the 14th W/sq cm, laser pulses at a wavelength of 351 nm. The measured wavelength for the 2p-3s Ti XIII resonance lines had an average shift of + 0.023 A relative to the C VI and Ti XX spectral lines. No shift was found between the C VI, Ti XIX, and Ti XX lines. The shift is attributed to a Doppler effect, resulting from a difference of (2.6 + or - 0.2) x 10 to the 7th cm/s in the expansion velocities of Ti XIX and Ti XX ions compared to Ti XIII ions.

  6. Formation of Metal-Related Ions in Matrix-Assisted Laser Desorption Ionization.

    PubMed

    Lee, Chuping; Lu, I-Chung; Hsu, Hsu Chen; Lin, Hou-Yu; Liang, Sheng-Ping; Lee, Yuan-Tseh; Ni, Chi-Kung

    2016-09-01

    In a study of the metal-related ion generation mechanism in matrix-assisted laser desorption ionization (MALDI), crystals of matrix used in MALDI were grown from matrix- and salt-containing solutions. The intensities of metal ion and metal adducts of the matrix ion obtained from unwashed crystals were higher than those from crystals washed with deionized water, indicating that metal ions and metal adducts of the matrix ions are mainly generated from the surface of crystals. The contributions of preformed metal ions and metal adducts of the matrix ions inside the matrix crystals were minor. Metal adducts of the matrix and analyte ion intensities generated from a mixture of dried matrix, salt, and analyte powders were similar to or higher than those generated from the powder of dried droplet crystals, indicating that the contributions of the preformed metal adducts of the matrix and analyte ions were insignificant. Correlation between metal-related ion intensity fluctuation and protonated ion intensity fluctuation was observed, indicating that the generation mechanism of the metal-related ions is similar to that of the protonated ions. Because the thermally induced proton transfer model effectively describes the generation of the protonated ions, we suggest that metal-related ions are mainly generated from the salt dissolution in the matrix melted by the laser. Graphical Abstract ᅟ.

  7. Formation of Metal-Related Ions in Matrix-Assisted Laser Desorption Ionization

    NASA Astrophysics Data System (ADS)

    Lee, Chuping; Lu, I.-Chung; Hsu, Hsu Chen; Lin, Hou-Yu; Liang, Sheng-Ping; Lee, Yuan-Tseh; Ni, Chi-Kung

    2016-09-01

    In a study of the metal-related ion generation mechanism in matrix-assisted laser desorption ionization (MALDI), crystals of matrix used in MALDI were grown from matrix- and salt-containing solutions. The intensities of metal ion and metal adducts of the matrix ion obtained from unwashed crystals were higher than those from crystals washed with deionized water, indicating that metal ions and metal adducts of the matrix ions are mainly generated from the surface of crystals. The contributions of preformed metal ions and metal adducts of the matrix ions inside the matrix crystals were minor. Metal adducts of the matrix and analyte ion intensities generated from a mixture of dried matrix, salt, and analyte powders were similar to or higher than those generated from the powder of dried droplet crystals, indicating that the contributions of the preformed metal adducts of the matrix and analyte ions were insignificant. Correlation between metal-related ion intensity fluctuation and protonated ion intensity fluctuation was observed, indicating that the generation mechanism of the metal-related ions is similar to that of the protonated ions. Because the thermally induced proton transfer model effectively describes the generation of the protonated ions, we suggest that metal-related ions are mainly generated from the salt dissolution in the matrix melted by the laser.

  8. Review on heavy ion radiotherapy facilities and related ion sources (invited)

    SciTech Connect

    Kitagawa, A.; Fujita, T.; Muramatsu, M.; Biri, S.

    2010-02-15

    Heavy ion radiotherapy awakens worldwide interest recently. The clinical results obtained by the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan have clearly demonstrated the advantages of carbon ion radiotherapy. Presently, there are four facilities for heavy ion radiotherapy in operation, and several new facilities are under construction or being planned. The most common requests for ion sources are a long lifetime and good stability and reproducibility. Sufficient intensity has been achieved by electron cyclotron resonance ion sources at the present facilities.

  9. Differential Mobility Spectrometer with Spatial Ion Detector and Methods Related Thereto

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A. (Inventor); Kanik, Isik (Inventor); Duong, Vu A. (Inventor)

    2013-01-01

    Differential mobility spectrometer with spatial ion detector and methods related thereto are disclosed. The use of one or more spatial detector within differential mobility spectrometry can provide for the identification and separation of ions with similar mobility and mass.

  10. Evaluation of poly{-N-isopropylacrylamide-co-[3-(methacryloylamino)propyl]trimethylammonium} as a stationary phase for capillary electrochromatography.

    PubMed

    Zhang, Xin; Colón, Luis A

    2006-03-01

    A cationic polyacrylamide-based stationary phase was synthesized and characterized for CEC. The stationary phase was prepared by radical copolymerization of N-isopropylacrylamide (NIPAAm) and (3-(methacryloylamino)propyl)trimethylammonium chloride (MAPTA), producing a copolymer attached to 5 microm porous silica particles. Fourier transform infrared spectroscopy and thermogravimetric analysis were used to characterize the copolymer. Under capillary electrochromatographic conditions, the poly-NIPAAm-co-MAPTA stationary phase showed to be stable in a wide pH range. The amino groups in the MAPTA provided an anodic EOF for CEC separation. The electroosmotic mobility changed less than 10% when the pH of the mobile phase was changed from 2 to 12. The run-to-run RSD of analyte migration time was less than 1.5% (n = 3), and the RSD of peak area was less than 3% (n = 3). The day-to-day RSD for migration time was less than 2% (n = 3). The polar groups present in the stationary phase contributed to the selectivity of the phase providing for hydrophilic interactions. In the separation of a series of neutral and acidic compounds, the stationary phase shows a mixed-mode separation mechanism with both hydrophobicity and hydrophilicity contributing to the separation.

  11. Complexation of DNA with poly(methacryl oxyethyl trimethylammonium chloride) and Its poly(oxyethylene) grafted analogue.

    PubMed

    Andersson, Toni; Aseyev, Vladimir; Tenhu, Heikki

    2004-01-01

    Intermolecular complexes of genomic polydisperse DNA with synthetic polycations have been studied. Two cationic polymers have been used, a homopolymer poly(methacryl oxyethyl trimethylammonium chloride) (PMOTAC) and its analogue grafted with poly(oxyethylene). The amount of poly(oxyethylene) grafts in the copolymer was 15 mol % and Mw of the graft was 200 g/mol. Salmon DNA (sodium salt) was used. The average molecular weight (Mw) of DNA was 10.4 x 10(6) g/mol. Conductivity, pH, and dynamic light scattering studies were used to characterize the complexes. The size and shape of the polyelectrolyte complex particles have been studied as a function of the cation-to-anion ratio in aqueous solutions of varying ionic strengths. The polyelectrolyte complexes have extremely narrow size distributions taking into account the polydispersity of the polyelectrolytes studied. The poly(oxyethylene) grafts on PMOTAC promote the formation of small colloidally stabile complex particles. Addition of salt shifts the macroscopic phase separation toward lower polycation content; that is, complexes partly phase separate with the mixing ratios far from 1:1. Further addition of salt to the turbid, partly phase separated solution results in the dissociation of complexes and the polycation and DNA dissolve as individual chains.

  12. Evaluation of poly{-N-isopropylacrylamide-co-[3-(methacryloylamino)propyl]trimethylammonium} as a stationary phase for capillary electrochromatography.

    PubMed

    Zhang, Xin; Colón, Luis A

    2006-03-01

    A cationic polyacrylamide-based stationary phase was synthesized and characterized for CEC. The stationary phase was prepared by radical copolymerization of N-isopropylacrylamide (NIPAAm) and (3-(methacryloylamino)propyl)trimethylammonium chloride (MAPTA), producing a copolymer attached to 5 microm porous silica particles. Fourier transform infrared spectroscopy and thermogravimetric analysis were used to characterize the copolymer. Under capillary electrochromatographic conditions, the poly-NIPAAm-co-MAPTA stationary phase showed to be stable in a wide pH range. The amino groups in the MAPTA provided an anodic EOF for CEC separation. The electroosmotic mobility changed less than 10% when the pH of the mobile phase was changed from 2 to 12. The run-to-run RSD of analyte migration time was less than 1.5% (n = 3), and the RSD of peak area was less than 3% (n = 3). The day-to-day RSD for migration time was less than 2% (n = 3). The polar groups present in the stationary phase contributed to the selectivity of the phase providing for hydrophilic interactions. In the separation of a series of neutral and acidic compounds, the stationary phase shows a mixed-mode separation mechanism with both hydrophobicity and hydrophilicity contributing to the separation. PMID:16523452

  13. Bound state - excitation in ion-ion collisions related to X-ray lasers modelling

    SciTech Connect

    Stancalie, V.; Sureau, A.; Klisnick, A.

    1995-12-31

    As in the earlier work of Walling and Weisheit we used the Seaton`s semi-classical, impact parameter formulation of Coulomb excitation for a variety of inelastic ion-ion collisions, involved in laser-produced soft X-ray lasers with Li-like aluminum ions, 1s{sup 2} nl configuration. Energy levels has been calculated by direct SCF method including the spin-orbit interaction. Our definition of the electric 2{sup {lambda}} - pole line strength, S{sup {lambda}}, is consistent with that of Sobelman. The ion-ion collision processes have been considered for a wide range of temperature between 500 eV to 30 eV, with a particular interest in the last part of plasma evolution time, when complications such as non-Maxwellian particle distributions, radiation fields and transient plasma conditions can be neglected, and when the plasma electrons and ions have comparable temperatures.

  14. Interaction of 10-(octyloxy) decyl-2-(trimethylammonium) ethyl phosphate with mimetic membranes and cytotoxic effect on leukemic cells.

    PubMed

    dos Santos, G A; Thomé, C H; Ferreira, G A; Yoneda, J S; Nobre, T M; Daghastanli, K R P; Scheucher, P S; Gimenes-Teixeira, H L; Constantino, M G; de Oliveira, K T; Faça, V M; Falcão, R P; Greene, L J; Rego, E M; Ciancaglini, P

    2010-09-01

    10-(Octyloxy) decyl-2-(trimethylammonium) ethyl phosphate (ODPC) is an alkylphospholipid that can interact with cell membranes because of its amphiphilic character. We describe here the interaction of ODPC with liposomes and its toxicity to leukemic cells with an ED-50 of 5.4, 5.6 and 2.9 microM for 72 h of treatment for inhibition of proliferation of NB4, U937 and K562 cell lines, respectively, and lack of toxicity to normal hematopoietic progenitor cells at concentrations up to 25 microM. The ED-50 for the non-malignant HEK-293 and primary human umbilical vein endothelial cells (HUVEC) was 63.4 and 60.7 microM, respectively. The critical micellar concentration (CMC) of ODPC was 200 microM. Dynamic light scattering indicated that dipalmitoylphosphatidylcholine (DPPC) liposome size was affected only above the CMC of ODPC. Differential calorimetric scanning (DCS) of liposomes indicated a critical transition temperature (T(c)) of 41.5 degrees C and an enthalpy (H) variation of 7.3 kcal mol(-1). The presence of 25 microM ODPC decreased T(c) and H to 39.3 degrees C and 4.7 kcal mol(-1), respectively. ODPC at 250 microM destabilized the liposomes (36.3 degrees C, 0.46 kcal mol(-1)). Kinetics of 5(6)-carboxyfluorescein (CF) leakage from different liposome systems indicated that the rate and extent of CF release depended on liposome composition and ODPC concentration and that above the CMC it was instantaneous. Overall, the data indicate that ODPC acts on in vitro membrane systems and leukemia cell lines at concentrations below its CMC, suggesting that it does not act as a detergent and that this effect is dependent on membrane composition.

  15. Theory of ion-chirality relation in ferroelectric liquid crystals

    NASA Astrophysics Data System (ADS)

    Lahiri, T.; Pal Majumder, T.

    2012-04-01

    The presence of impurity ions in ferroelectric liquid crystals (FLC) could produce a significant impact on the chirality of the medium with a possible modification in the polarization profile of the system. We theoretically observed these possibilities by considering an in-plane and bulk free energy density for the sample. Based on a suitable chirality transfer formalism, we explained the role of impurity ions in altering the chiral nature of a FLC medium. A continuous transition from modulated phases to uniform phases is also predicted within the framework of this theory. Then, we investigated the possible modification in the polarization profile driven by ionic impurities.

  16. Analysis of EMIC waves in relation to magnetospheric heavy ion density

    NASA Astrophysics Data System (ADS)

    Kim, H.; Kim, E. H.; Johnson, J.; Lee, D. H.; Clauer, C. R.; Lessard, M.; Engebretson, M. J.; Xu, Z.

    2014-12-01

    This study presents observations of EMIC wave events and their relation to heavy ion density in the magnetosphere. It is well known that EMIC waves play an important role in particle acceleration and loss via wave-particle interaction. It is critical to know the ion composition in the plasma with which EMIC waves interact in order to understand wave generation and propagation because it controls ion cyclotron resonance frequencies of EMIC waves. The presence of heavy ions (He+ and O+) causes the wave modes to be more complex with two additional resonance (ion-ion hybrid and Buchsbaum resonances) and polarization changes, making it challenging to analyze wave generation and propagation. In this study, we show wave polarization and Poynting flux using data from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) and Van Allen Probes (VAP) satellites and their ground conjunctions and compare them with the heavy ion density estimated by a wave model.

  17. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    SciTech Connect

    Grisham, L.R.; Kwan, J.W.

    2008-08-01

    Some years ago it was suggested that halogen negative ions [1]could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons -- can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  18. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy,and Related Fields

    SciTech Connect

    Grisham, L. R.; Kwan, J. W.

    2008-08-01

    Some years ago it was suggested that halogen negative ions could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons - can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion - ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  19. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    SciTech Connect

    L. Grisham and J.W. Kwan

    2008-08-12

    Some years ago it was suggested that halogen negative ions [1] could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons -- can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  20. Space charge effects on relative peak heights in fourier transform-ion cyclotron resonance spectra.

    PubMed

    Uechi, G T; Dunbar, R C

    1992-10-01

    Ion trajectory calculations have confirmed that space charge interactions can be a source for mass discrimination seen in Fourier transform-ion cyclotron resonance (FT-ICR) spectra. As compared with the previously recognized mechanism of z-axis excitation, ion-ion repulsion is a mechanism which specifically affects relative peak heights of ions close in mass, and is most severe for low excitation radiofrequency (rf) amplitudes. In this mechanism, Coulomb repulsion significantly perturbs the motion of the ion clouds during excitation and alters the final cyclotron orbital radii. Under these conditions peak heights do not accurately reflect the true ion abundances in the FT-ICR spectrometer. Mass discrimination can be minimized by using low numbers of ions, low ion densities, and a short, high amplitude rf excitation waveform. Experimental observation of the relative peak heights of the m/z 91, 92, and 134 ions in n-butylbenzene gives quantitative confirmation of the results of the trajectory calculations. Chirp, SWIFT, and impulse excitation were modeled: impulse excitation was found to be most effective in minimizing the effects of space charge interactions.

  1. Atom probe field ion microscopy and related topics: A bibliography 1989

    SciTech Connect

    Miller, M.K.; Hawkins, A.R.; Russell, K.F.

    1990-12-01

    This bibliography includes references related to the following topics: atom probe field ion microscopy (APFIM), field ion spectroscopy (FIM), field emission microscopy (FEM), liquid metal ion sources (LMIS), scanning tunneling microscopy (STM), and theory. Technique-orientated studies and applications are included. This bibliography covers the period 1989. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications.

  2. Atom probe field-ion microscopy and related topics: A bibliography, 1988

    SciTech Connect

    Miller, M.K.; Hawkins, A.R.

    1989-10-01

    This bibliography includes references related to the following topics: field-ion microscopy (FIM), field emission microscopy (FEM), atom probe field-ion microscopy (APFIM), and liquid metal ion sources (LMIS). Technique-orientated studies and applications are included. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications. To reduce the length of this document, the references have been reduced to the minimum necessary to locate the articles.

  3. Electron attachment and ion mobility in hydrocarbons and related systems

    SciTech Connect

    Bakale, G.

    1988-01-01

    During the last two decades, a firm base for the emerging field of liquid state electronics (LSE) has developed through studies of the transport and reaction properties of excess electrons in a variety of liquid-phase systems. Pulse-conductivity techniques were used in many of these studies to measure the mobilities of electrons and ions in pure liquids as well as the rate constants of electron attachment to a wide variety of electron-accepting solutes. Results obtained through such studies have interdisciplinary implications that are described in the discussion that follows which includes examples of the contributions of LSE to physics, chemistry and biology. 42 refs.

  4. G-SIMS: relative effectiveness of different monatomic primary ion source combinations.

    PubMed

    Seah, Martin P; Gilmore, Ian S; Green, Felicia M

    2009-03-01

    An analysis is made of the characteristics of monatomic primary ion sources to generate G-SIMS (gentle SIMS) spectra. In previous studies, this is resolved into the parameter beta that describes the relative intensities of ions in the series C(n)H(n+2-i) as i changes. For this, data from polystyrene are most extensive. It is found that the experimental beta values, which relate to the emitted secondary ion fragment surface plasma temperatures, are accurately described by an empirical fit involving the ratio of the sputtering yield and the mass of the primary ion. This description covers data for Ar(+), Bi(+), Cs(+), Ga(+), Mn(+) and Xe(+) monatomic primary ions with energies in the range 4 to 25 keV, placing them in a coherent framework, and permits the performance of any other monatomic primary ion to be predicted. This shows that, of all monatomic primary ions, Bi will yield the highest beta values and Mn the lowest. Since the G-SIMS spectra are ratios, a ratio involving spectra using these primary ions gives the maximum signal quality possible and these are therefore recommended for use. The previous choice of these ions for a combined G-SIMS source, based on practical considerations, is thus shown to be optimum.

  5. Relating chromatographic retention and electrophoretic mobility to the ion distribution within electrosprayed droplets.

    PubMed

    Bökman, C Fredrik; Bylund, Dan; Markides, Karin E; Sjöberg, Per J R

    2006-03-01

    Ions that are observed in a mass spectrum obtained with electrospray mass spectrometry can be assumed to originate preferentially from ions that have a high distribution to the surface of the charged droplets. In this study, a relation between chromatographic retention and electrophoretic mobility to the ion distribution (derived from measured signal intensities in mass spectra and electrospray current) within electrosprayed droplets for a series of tetraalkylammonium ions, ranging from tetramethyl to tetrapentyl, is presented. Chromatographic retention in a reversed-phase system was taken as a measure of the analyte's surface activity, which was found to have a large influence on the ion distribution within electrosprayed droplets. In addition, different transport mechanisms such as electrophoretic migration and diffusion can influence the surface partitioning coefficient. The viscosity of the solvent system is affected by the methanol content and will influence both diffusion and ion mobility. However, as diffusion and ion mobility are proportional to each other, we have, in this study, chosen to focus on the ion mobility parameter. It was found that the influence of ion mobility relative to surface activity on the droplet surface partitioning of analyte ions decreases with increasing methanol content. This effect is most probably coupled to the decrease in droplet size caused by the decreased surface tension at increasing methanol content. The same observation was made upon increasing the ionic strength of the solvent system, which is also known to give rise to a decreased initial droplet size. The observed effect of ionic strength on the droplet surface partitioning of analyte ions could also be explained by the fact that at higher ionic strength, a larger number of ions are initially closer to the droplet surface and, thus, the contribution of ionic transport from the bulk liquid to the liquid/air surface interface (jet and droplet surface), attributable to

  6. A Study of Ion Velocities Observed by TIDE and How It Relates to Magnetospheric Circulation

    NASA Technical Reports Server (NTRS)

    Elliott, H. A.; Comfort, R. H.; Craven, P. D.; Chandler, M. O.; Moore, T. E.

    1998-01-01

    The high-latitude ion velocities measured by the Thermal Ion Dynamics Experiment (TIDE) instrument on the Polar spacecraft will be examined in relation to magnetospheric circulation. TIDE derives ion velocities from moments of measured distribution functions. Hydrogen and oxygen ions are E X B drifting in the polar cap and cleft regions with a speed of about 5-20 km/s at apogee (approximately 9 Re) and a speed of 1-2 km/s at perigee (approximately 1.8 Re). At perigee 0+ is typically seen flowing down in the polar cap and outflowing from the cleft. At the transition from downflowing to upflowing there is also seen a reversal in the ion convection. The convection at perigee is consistent with standard ionospheric convection models for given Interplanetary Magnetic Field (IMF) conditions. Convection at high altitude (approximately 8.9 Re) polar regions has not been studied very much since there have not been many satellites in this region. Unlike previous missions to this region TIDE in conjunction the Plasma Source Instrument (PSI) can measure ions with as low an energy as several electron Volts. The outflowing ions observed by TIDE at apogee are believed to be important to the overall circulation of the magnetosphere. The convection of these outflowing ions at apogee will be related to the IMF. This study tries to answer the question of how the IMF response of the convection influences the overall circulation of the magnetosphere.

  7. Atmospheric light air ion concentrations and related meteorologic factors in Rezekne city, Latvia.

    PubMed

    Skromulis, Andris; Noviks, Gotfrids

    2012-04-01

    The well-minded impact of light negative air ions on human organism is still under discussion. The measurements of air ions are not widespread in Latvia yet. The paper presents new results of air pollution evaluation in Rezekne city. Measurements of positive and negative air ion concentrations in Rezekne city were taken during the spring, summer and autumn 2009 and during the winter 2010. Measurements were taken by portative air ions counter "Sapfir-3M" in eight different points of Rezekne city thrice a day. The concentrations of positive and negative air ions with mobility factor k > or = 0.4 cm2 V(-1) s(-1) were measured. Temperature, relative humidity, wind velocity, direction, etc., were also taken into account. The approximate interconnection between ionization and chemical and mechanical air pollution in relation with meteorological conditions was analyzed. The highest level of air ion concentration was observed in mornings, whereas in afternoons this concentration level decreased due to the growth of anthropogenic air pollution in the city, as light air ions, because of their charge, promoted the coagulation and the settlement of pollution particles. This regularity is typical for summer, whereas in spring, autumn and winter it is not characteristic. The unipolarity factor was usually less than 1 in mornings, but usually larger than 1 in afternoons especially in the most polluted city areas where minor concentration of air ions was detected. The ionization level is an original indicator of energetic saturation and aerosol pollution of atmospheric air.

  8. Ab initio calculation of relative ion concentrations of protonated water clusters at equilibrium

    NASA Astrophysics Data System (ADS)

    Lee, E. P. F.; Dyke, J. M.; Wilders, A. E.; Watts, P.

    Relative concentrations of protonated water clusters, H(H2O)+n, are determined for the equilibria H(H2O)+n-1 + H2O ⇌ H(H2O)+n (for n = 1, …, 5), by ab initio molecular-orbital calculations (at the MP2/6-31G* level), using standard thermodynamic and statistical-mechanical methods. The calculated relative cluster-ion concentrations, at water concentrations of between 1 and 90 ppm at 308 K, are compared with the corresponding relative ion intensities measured with an ion-mobility mass spectrometer. The comparison shows that the observed cluster-ion intensity distributions agree well with those found from ab initio calculations for an equilibrium mixture of protonated water clusters.

  9. Relative dissociation fractions of CF4 under 15–30 keV H‑, C‑ and O‑ negative ion impact

    NASA Astrophysics Data System (ADS)

    Wang, Dedong; Fan, Yikui; Zhao, Zilong; Min, Guangxin; Zhang, Xuemei

    2016-08-01

    The relative dissociation fractions to produce the fragments of CF4 molecule are studied under the impact of 15 keV to 30 keV H‑, C‑ and O‑ negative ions. By using a time-of-flight mass spectrometer, the recoil ions and ion pairs originating from the target molecule CF4 are detected and identified in coincidence with scattered ions in q = 0 and q = +1 charge states. The fractions for the production of the fragment ions are obtained relative to the {\\text{CF} }3+ yield, while that of the ion pairs relative to the (C+, F+) coincidence yield.

  10. Ion Energy Distributions and their Relative Abundance in Inductively Coupled Plasmas

    NASA Technical Reports Server (NTRS)

    Kim, J. S.; Rao, M. V. V. S.; Cappelli, M. A.; Sharma, S. P.; Arnold, James O. (Technical Monitor)

    1998-01-01

    Study of kinetics of ions and neutrals produced in high density inductively coupled plasma (ICP) discharges is of great importance for achieving a high degree of plasma assisted deposition and etching. In this paper, we present the ion energy distributions (IEDs) of various ions arriving at the grounded lower electrode. The ions were energy as well as mass analyzed by a combination of electrostatic analyzer-quadrupole mass spectrometer for pure Ar and CF4/Ar mixtures. The measurements have been made at gas pressures ranging from 30 to 100 mTorr. In addition, the IEDs were measured when the wafer-supporting electrode was also rf-powered and the effect of the self-bias was observed in the energy distributions of ions. The shapes of the IEDs are discussed an related to the sheath properties and measured electrical waveforms, as a function of pressure and applied power. Relative ion intensities were obtained by integration of each ion kinetic energy distribution function over its energy range.

  11. Relative Stability of Peptide Sequence Ions Generated by Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bythell, Benjamin J.; Hendrickson, Christopher L.; Marshall, Alan G.

    2012-04-01

    We report the use of unimolecular dissociation by infrared radiation for gaseous multiphoton energy transfer to determine relative activation energy (Ea,laser) for dissociation of peptide sequence ions. The sequence ions of interest are mass-isolated; the entire ion cloud is then irradiated with a continuous wave CO2 laser, and the first order rate constant, kd, is determined for each of a series of laser powers. Provided these conditions are met, a plot of the natural logarithm of kd versus the natural logarithm of laser power yields a straight line, whose slope provides a measure of Ea,laser. This method reproduces the Ea values from blackbody radiative dissociation (BIRD) for the comparatively large, singly and doubly protonated bradykinin ions (nominally y 9 and y 9 2+ ). The comparatively small sequence ion systems produce Ea,laser values that are systematic underestimates of theoretical barriers calculated with density functional theory (DFT). However, the relative Ea,laser values are in qualitative agreement with the mobile proton model and available theory. Additionally, novel protonated cyclic-dipeptide (diketopiperazine) fragmentation reactions are analyzed with DFT. FT-ICR MS provides access to sequence ions generated by electron capture dissociation, infrared multiphoton dissociation, and collisional activation methods (i.e., b n , y m , c n , z m • ions).

  12. Workshop summary. Biomedical and Space-Related Research with Heavy Ions at the BEVALAC

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Curtis, S. B.

    1989-01-01

    The authors provide an overview of papers presented at a workshop on Biomedical and Space-Related Research with Heavy Ions at the BEVALAC at Lawrence Berkeley Laboratory. Goals of the meeting were to determine the critical experiments using heavy ions as probes in radiation physics, radiation chemistry, macromolecular and cellular biology, evolution science, basic neurophysiology, and medical therapies; how beam lines and facilities at Lawrence Berkeley Laboratory can be improved for these experiments; and implications in priorities and funding for national policy. Workshop topics included physics and facilities, cellular and molecular biology, tissue radiobiology, and the future of heavy ion research.

  13. Atom probe field ion microscopy and related topics: A bibliography 1990

    SciTech Connect

    Russell, K.F.; Miller, M.K.

    1991-12-01

    This bibliography includes references related to the following topics: atom probe field ion microscopy (APFIM), field ion microscopy (FIM), field emission (FE), ion sources, and field desorption mass microscopy (FDMM). Technique-orientated studies and applications are included. The bibliography covers the period 1990. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications. To reduce the length of this document, the references have been reduced to the minimum necessary to locate the articles. The references, listed alphabetically by authors, are subdivided into the categories listed in paragraph one above. An Addendum of references missed in previous bibliographies is included.

  14. 2-(trimethylammonium) ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate suppresses osteoclast maturation and bone resorption by targeting macrophage-colony stimulating factor signaling.

    PubMed

    Park, So Jeong; Park, Doo Ri; Bhattarai, Deepak; Lee, Kyeong; Kim, Jaesang; Bae, Yun Soo; Lee, Soo Young

    2014-08-01

    2-(Trimethylammonium) ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate [(R)-TEMOSPho], a derivative of an organic chemical identified from a natural product library, promotes highly efficient megakaryopoiesis. Here, we show that (R)-TEMOSPho blocks osteoclast maturation from progenitor cells of hematopoietic origin, as well as blocking the resorptive function of mature osteoclasts. The inhibitory effect of (R)-TEMOSPho on osteoclasts was due to a disruption of the actin cytoskeleton, resulting from impaired downstream signaling of c-Fms, a receptor for macrophage-colony stimulating factor linked to c-Cbl, phosphoinositol-3-kinase (PI3K), Vav3, and Rac1. In addition, (R)-TEMOSPho blocked inflammation-induced bone destruction by reducing the numbers of osteoclasts produced in mice. Thus, (R)-TEMOSPho may represent a promising new class of antiresorptive drugs for the treatment of bone loss associated with increased osteoclast maturation and activity.

  15. Age and Smoking Related Changes in Metal Ion Levels in Human Lens: Implications for Cataract Formation

    PubMed Central

    Langford-Smith, Alex; Tilakaratna, Viranga; Lythgoe, Paul R.; Clark, Simon J.; Bishop, Paul N.; Day, Anthony J.

    2016-01-01

    Age-related cataract formation is the primary cause of blindness worldwide and although treatable by surgical removal of the lens the majority of sufferers have neither the finances nor access to the medical facilities required. Therefore, a better understanding of the pathogenesis of cataract may identify new therapeutic targets to prevent or slow its progression. Cataract incidence is strongly correlated with age and cigarette smoking, factors that are often associated with accumulation of metal ions in other tissues. Therefore this study evaluated the age-related changes in 14 metal ions in 32 post mortem human lenses without known cataract from donors of 11 to 82 years of age by inductively coupled plasma mass spectrometry; smoking-related changes in 10 smokers verses 14 non-smokers were also analysed. A significant age-related increase in selenium and decrease in copper ions was observed for the first time in the lens tissue, where cadmium ion levels were also increased as has been seen previously. Aluminium and vanadium ions were found to be increased in smokers compared to non-smokers (an analysis that has only been carried out before in lenses with cataract). These changes in metal ions, i.e. that occur as a consequence of normal ageing and of smoking, could contribute to cataract formation via induction of oxidative stress pathways, modulation of extracellular matrix structure/function and cellular toxicity. Thus, this study has identified novel changes in metal ions in human lens that could potentially drive the pathology of cataract formation. PMID:26794210

  16. Age and Smoking Related Changes in Metal Ion Levels in Human Lens: Implications for Cataract Formation.

    PubMed

    Langford-Smith, Alex; Tilakaratna, Viranga; Lythgoe, Paul R; Clark, Simon J; Bishop, Paul N; Day, Anthony J

    2016-01-01

    Age-related cataract formation is the primary cause of blindness worldwide and although treatable by surgical removal of the lens the majority of sufferers have neither the finances nor access to the medical facilities required. Therefore, a better understanding of the pathogenesis of cataract may identify new therapeutic targets to prevent or slow its progression. Cataract incidence is strongly correlated with age and cigarette smoking, factors that are often associated with accumulation of metal ions in other tissues. Therefore this study evaluated the age-related changes in 14 metal ions in 32 post mortem human lenses without known cataract from donors of 11 to 82 years of age by inductively coupled plasma mass spectrometry; smoking-related changes in 10 smokers verses 14 non-smokers were also analysed. A significant age-related increase in selenium and decrease in copper ions was observed for the first time in the lens tissue, where cadmium ion levels were also increased as has been seen previously. Aluminium and vanadium ions were found to be increased in smokers compared to non-smokers (an analysis that has only been carried out before in lenses with cataract). These changes in metal ions, i.e. that occur as a consequence of normal ageing and of smoking, could contribute to cataract formation via induction of oxidative stress pathways, modulation of extracellular matrix structure/function and cellular toxicity. Thus, this study has identified novel changes in metal ions in human lens that could potentially drive the pathology of cataract formation.

  17. Dispersion relation approach to sub-barrier heavy-ion fusion reactions

    SciTech Connect

    Franzin, V.L.M.; Hussein, M.S.

    1988-11-01

    We discuss the conditions under which the dispersion relation technique, extensively employed in the context of elastic scattering, can be used in the analysis of heavy-ion fusion reactions. General unitarity defect arguments are used for this purpose. With the aid of an inverse dispersion relation, which gives the imaginary part of the fusion inclusive polarization potential in terms of the principal part integral involving the real part of the inclusive polarization potential, the sub-barrier fusion of heavy ions is discussed. The system /sup 16/O+/sup A/Sm is taken as an example.

  18. Predicting relative toxicity and interactions of divalent metal ions: Microtox{reg_sign} bioluminescence assay

    SciTech Connect

    Newman, M.C.; McCloskey, J.T.

    1996-03-01

    Both relative toxicity and interactions between paired metal ions were predicted with least-squares linear regression and various ion characteristics. Microtox{reg_sign} 15 min EC50s (expressed as free ion) for Ca(II), Cd(II), Cu(II), Hg(II), Mg(II), Mn(II), Ni(II), Pb(II), and Zn(II) were most effectively modeled with the constant for the first hydrolysis (K{sub H} for M{sup n+} + H{sub 2}O {yields} MOH{sup a{minus}1} + H{sup +}) although other ion characteristics were also significant in regression models. The {vert_bar}log K{sub H}{vert_bar} is correlated with metal ion affinity to intermediate ligands such as many biochemical functional groups with O donor atoms. Further, ordination of metals according to ion characteristics, e.g., {vert_bar}log K{sub H}{vert_bar} facilitated prediction of paired metal interactions. Pairing metals with strong tendencies to complex with intermediate or soft ligands such as those with O or S donor atoms resulted in strong interactions.

  19. Type Region of the Ione Formation (Eocene), Central California: Stratigraphy, Paleogeography, and Relation to Auriferous Gravels

    USGS Publications Warehouse

    Creely, Scott; Force, Eric R.

    2007-01-01

    The middle Eocene Ione Formation extends over 200 miles (320 km) along the western edge of the Sierra Nevada. Our study was concentrated in the type region, 30 miles (48 km) along strike. There a bedrock ridge forms the seaward western side of the Ione depositional tract, defining a subbasin margin. The eastern limit of the type Ione is locally defined by high-angle faults. Ione sediments were spread over Upper Mesozoic metamorphic and plutonic bedrock, fed by gold-bearing streams dissecting the western slope of the ancestral Sierra Nevada. By middle Eocene time, a tropical or subtropical climate prevailed, leading to deep chemical weathering (including laterization) and a distinctively mature mineral assemblage was fed to and generated within Ione deposits. The Ione is noted for its abundant kaolinitic clay, some of it coarsely crystalline; the clay is present as both detrital grains and authigenic cement. Quartz is abundant, mostly as angular grains. Heavy mineral fractions are dominated by altered ilmenite and zircon. Distribution of feldspar is irregular, both stratigraphically and areally. Non-marine facies are most voluminous, and include conglomerates, especially at the base and along the eastern margins of the formation where they pass into Sierran auriferous gravels. Clays, grading into lignites, and gritty sands are also common facies. Both braided and meandering fluvial facies have been recognized. Shallow marine waters flooded the basin probably twice. Tongues of sediment exhibiting a variety of estuarine to marine indicators are underlain and overlain by fluvial deposits. Marine body fossils are found at only a few localities, but burrows identified as Ophiomorpha and cf. Thalassinoides are abundant in many places. Other clues to marginal marine deposition are the occurrence of glauconite in one bed, typical relations of lagoonal to beach (locally heavy-mineral-rich) lithofacies, closed-basin three-dimensional morphology of basinal facies, and high

  20. Relative abundance of water-group ions in Saturn's inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Perry, Mark E.; Cravens, Thomas; Tokar, Robert; Smith, Howard T.; Perryman, Rebecca; Waite, J. Hunter; McNutt, Ralph L.

    2016-10-01

    At nineteen different times over seven years, the Cassini Ion Neutral Mass Spectrometer (INMS) measured the relative fractions of water-group ions in the inner magnetosphere of Saturn near the equatorial plane between 3.8 and 6.5 Saturn radii (RS). INMS samples only a small portion of velocity space in any one measurement, but the measurements span a broad range of velocity space. The data show that H2O+ comprises the bulk of the ions near 4.0 RS, and that its fraction decreases with increasing distance from 4.0 RS, the source of neutral water at Enceladus. At 4.0 RS, the fraction of H2O+ ranges from 60% to 100%, with an average of 80%. At 6.5 RS, the three main water-group constituents, H2O+, OH+, and O+, are nearly equal. H3O+, which dominates the water-group ion fractions in the Enceladus plume, is 10% or less in Saturn's magnetosphere outside the plume. The relative ion fractions show other variations that are not clearly linked to any of the studied parameters including velocity, density, and the orbit-phase-dependent activity of Enceladus.

  1. Ion-pair high-performance liquid chromatographic analysis of aspartame and related products.

    PubMed

    Verzella, G; Bagnasco, G; Mangia, A

    1985-12-01

    A simple and accurate quantitative determination of aspartame (L-alpha-aspartyl-L-phenylalanine methyl ester), a new artificial sweetener, is described. The method, which is based on ion-pair high-performance liquid chromatography, allows the determination of aspartame in finished bulk and dosage forms, and the detection of a few related products at levels down to 0.1%.

  2. Atom probe field ion microscopy and related topics: A bibliography 1993

    SciTech Connect

    Godfrey, R.D.; Miller, M.K.; Russell, K.F.

    1994-10-01

    This bibliography, covering the period 1993, includes references related to the following topics: atom probe field ion microscopy (APFIM), field emission (FE), and field ion microscopy (FIM). Technique-oriented studies and applications are included. The references contained in this document were compiled from a variety of sources including computer searches and personal lists of publications. To reduce the length of this document, the references have been reduced to the minimum necessary to locate the articles. The references are listed alphabetically by authors, an Addendum of references missed in previous bibliographies is included.

  3. Noncovalent Complexation of Monoamine Neurotransmitters and Related Ammonium Ions by Tetramethoxy Tetraglucosylcalix[4]arene

    NASA Astrophysics Data System (ADS)

    Torvinen, Mika; Kalenius, Elina; Sansone, Francesco; Casnati, Alessandro; Jänis, Janne

    2012-02-01

    The noncovalent complexation of monoamine neurotransmitters and related ammonium and quaternary ammonium ions by a conformationally flexible tetramethoxy glucosylcalix[4]arene was studied by electrospray ionization Fourier transform ion cyclotron resonance (ESI-FTICR) mass spectrometry. The glucosylcalixarene exhibited highest binding affinity towards serotonin, norepinephrine, epinephrine, and dopamine. Structural properties of the guests, such as the number, location, and type of hydrogen bonding groups, length of the alkyl spacer between the ammonium head-group and the aromatic ring structure, and the degree of nitrogen substitution affected the complexation. Competition experiments and guest-exchange reactions indicated that the hydroxyl groups of guests participate in intermolecular hydrogen bonding with the glucocalixarene.

  4. Impact of ion cloud densities on the measurement of relative ion abundances in Fourier transform ion cyclotron resonance mass spectrometry: experimental observations of coulombically induced cyclotron radius perturbations and ion cloud dephasing rates.

    PubMed

    Gordon, E F; Muddiman, D C

    2001-02-01

    Fundamental research into the quantitative properties of Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) has yielded interesting observations, especially in terms of factors affecting the accuracy of relative ion abundances. However, most of the previous discussions have focused on theoretical systems, or systems of limited scope. In this paper, we document ion motion attributes of a 30 spectra (six samples, five replicates each) system previously established as linear over two orders of magnitude. Observed behaviors include the perturbation of one charged species (cyclosporin A, CsA) of low ion density to a cyclotron orbit of greater radius than that of an almost identical, but slightly mass-separated species (CsG) with a higher ion density. This radial perturbation is attributed to the coulombic repulsion between the two ion clouds as they interact during the excitation process, as previously proposed by Uechi and Dunbar. Magnitudes of the perturbation were confirmed by making cyclotron radii determinations utilizing the ratio of the third-to-first harmonics for the charged species of interest. It was found that these radial differences can account for as much as a 55% signal bias in favor of CsA for a single sample and a >20% positive bias in the slope of the regressed data set. A second behavior noted that also contributes to the potential inaccuracy of relative ion abundance measurements is the difference in signal decay rates for CsA and CsG. Damping constants and initial time domain signal amplitudes were evaluated using segmented Fourier transforms. Discrepancies in decay rates were not expected from two species that have essentially identical collisional cross-sections. However, it has been observed that the faster decay rates are observed by the species of lower ion cloud density. We have attributed this differential signal decay phenomenon to the rates of loss of phase coherence for the two ion clouds. Previously, others have

  5. Parametric dependence of ion temperature and relative density in the NASA Lewis SUMMA facility

    NASA Technical Reports Server (NTRS)

    Snyder, A.; Lauver, M. R.; Patch, R. W.

    1976-01-01

    Further hot-ion plasma experiments were conducted in the SUMMA superconducting magnetic mirror facility. A steady-state plasma with mutually perpendicular magnetic and electric fields was formed by applying a strong radially inward dc electric field between cylindrical anodes and hollow cathodes located near the magnetic mirror maxima. Extending the use of water cooling to the hollow cathodes, in addition to the anodes, resulted in higher maximum power input to the plasma. Steady-state hydrogen plasmas with ion kinetic temperatures as high as 830 eV were produced. Functional relations were obtained empirically among the plasma current, voltage, magnetic flux density, ion temperature, and relative ion density. The functional relations were deduced by use of a multiple correlation analysis. Data were obtained for midplane magnetic fields from 0.5 to 3.37 tesla and input power up to 45 kW. Also, initial absolute electron density measurements are reported from a 90 deg Thomson scattering laser system.

  6. Review of work related to ion sources and targets for radioactive beams at Argonne

    SciTech Connect

    Nolen, J.A.

    1995-12-01

    A group including many ANL Physics Division staff and ATLAS outside users has discussed the possibilities for research with radioactive ion beams and prepared a working paper entitled {open_quotes}Concept for an Advanced Exotic Beam Facility Based on ATLAS.{close_quotes} Several subgroups have been working on issues related to ion sources and targets which could be used in the production and ionization of radionuclides with high power primary beams. Present activities include: (a) setting up an ion source test stand to measure emittances and energy spreads of ISOL-type ion sources, (b) experiments to evaluate methods of containing liquid uranium for production targets, (c) experimental evaluation of geometries for the generation of secondary neutron beams for production of radionuclides, (d) setting up an ISOL-type ion source at a neutron generator facility to measure fission fragment release times and efficiencies, and (e) computer simulations of an electron-beam charge-state amplifier to increase the charge states of 1{sup +} secondary beams to 2,3 or 4{sup +}. The present status of these projects and future plans are reported below.

  7. Gyro-viscosity and linear dispersion relations in pair-ion magnetized plasmas

    SciTech Connect

    Kono, M.; Vranjes, J.

    2015-11-15

    A fluid theory has been developed by taking account of gyro-viscosity to study wave propagation characteristics in a homogeneous pair-ion magnetized plasma with a cylindrical symmetry. The exact dispersion relations derived by the Hankel-Fourier transformation are shown comparable with those observed in the experiment by Oohara and co-workers. The gyro-viscosity is responsible for the change in propagation characteristics of the ion cyclotron wave from forward to backward by suppressing the effect of the thermal pressure which normally causes the forward nature of dispersion. Although the experiment has been already explained by a kinetic theory by the present authors, the kinetic derivations are so involved because of exact particle orbits in phase space, finite Lamor radius effects, and higher order ion cyclotron resonances. The present fluid theory provides a simple and transparent structure to the dispersion relations since the gyro-viscosity is renormalized into the ion cyclotron frequency which itself indicates the backward nature of dispersion. The usual disadvantage of a fluid theory, which treats only fundamental modes of eigen-waves excited in a system and is not able to describe higher harmonics that a kinetic theory does, is compensated by simple derivations and clear picture based on the renormalization of the gyro-viscosity.

  8. Relation between Longitudinal and Transverse Diffusion Coefficients of Alkali Ions in Noble Gases

    NASA Astrophysics Data System (ADS)

    Hogan, M. J.

    1997-10-01

    The relation between longitudinal and transverse diffusion coefficients of ions drifting in a neutral gas under the influence of an electric field has been investigated for alkali ions in noble gases. The 125 combinations of ions of Li, Na, K, Rb, and Cs in the neutral gases He, Ne, Ar, Kr, and Xe at gas temperatures of 100, 200, 300, 400 and 500 K were included in this study. Plots of the ratio of the longitudinal-to-transverse diffusion coefficients versus E/N exhibited similar variation in the values of the ratios. As the value of E/N increased from zero, the value of the ratio increased rapidly from one for all ion/neutral/temperature combinations. The ratio peaked at values mostly in the range of 1.2 to 2.5 at E/N values in the range of 20 to 120 Td. As E/N increased further, the ratio values decreased, at an ever lower rate, to values ranging from 0.8 to 1.2. These results suggest the existence of a single function relating the longitudinal and transverse diffusion coefficients.

  9. Gyro-viscosity and linear dispersion relations in pair-ion magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Kono, M.; Vranjes, J.

    2015-11-01

    A fluid theory has been developed by taking account of gyro-viscosity to study wave propagation characteristics in a homogeneous pair-ion magnetized plasma with a cylindrical symmetry. The exact dispersion relations derived by the Hankel-Fourier transformation are shown comparable with those observed in the experiment by Oohara and co-workers. The gyro-viscosity is responsible for the change in propagation characteristics of the ion cyclotron wave from forward to backward by suppressing the effect of the thermal pressure which normally causes the forward nature of dispersion. Although the experiment has been already explained by a kinetic theory by the present authors, the kinetic derivations are so involved because of exact particle orbits in phase space, finite Lamor radius effects, and higher order ion cyclotron resonances. The present fluid theory provides a simple and transparent structure to the dispersion relations since the gyro-viscosity is renormalized into the ion cyclotron frequency which itself indicates the backward nature of dispersion. The usual disadvantage of a fluid theory, which treats only fundamental modes of eigen-waves excited in a system and is not able to describe higher harmonics that a kinetic theory does, is compensated by simple derivations and clear picture based on the renormalization of the gyro-viscosity.

  10. Determination of relative ion chamber calibration coefficients from depth-ionization measurements in clinical electron beams.

    PubMed

    Muir, B R; McEwen, M R; Rogers, D W O

    2014-10-01

    A method is presented to obtain ion chamber calibration coefficients relative to secondary standard reference chambers in electron beams using depth-ionization measurements. Results are obtained as a function of depth and average electron energy at depth in 4, 8, 12 and 18 MeV electron beams from the NRC Elekta Precise linac. The PTW Roos, Scanditronix NACP-02, PTW Advanced Markus and NE 2571 ion chambers are investigated. The challenges and limitations of the method are discussed. The proposed method produces useful data at shallow depths. At depths past the reference depth, small shifts in positioning or drifts in the incident beam energy affect the results, thereby providing a built-in test of incident electron energy drifts and/or chamber set-up. Polarity corrections for ion chambers as a function of average electron energy at depth agree with literature data. The proposed method produces results consistent with those obtained using the conventional calibration procedure while gaining much more information about the behavior of the ion chamber with similar data acquisition time. Measurement uncertainties in calibration coefficients obtained with this method are estimated to be less than 0.5%. These results open up the possibility of using depth-ionization measurements to yield chamber ratios which may be suitable for primary standards-level dissemination.

  11. Relation between the ion size and pore size for an electric double-layer capacitor.

    PubMed

    Largeot, Celine; Portet, Cristelle; Chmiola, John; Taberna, Pierre-Louis; Gogotsi, Yury; Simon, Patrice

    2008-03-01

    The research on electrochemical double layer capacitors (EDLC), also known as supercapacitors or ultracapacitors, is quickly expanding because their power delivery performance fills the gap between dielectric capacitors and traditional batteries. However, many fundamental questions, such as the relations between the pore size of carbon electrodes, ion size of the electrolyte, and the capacitance have not yet been fully answered. We show that the pore size leading to the maximum double-layer capacitance of a TiC-derived carbon electrode in a solvent-free ethyl-methylimmidazolium-bis(trifluoro-methane-sulfonyl)imide (EMI-TFSI) ionic liquid is roughly equal to the ion size (approximately 0.7 nm). The capacitance values of TiC-CDC produced at 500 degrees C are more than 160 F/g and 85 F/cm(3) at 60 degrees C, while standard activated carbons with larger pores and a broader pore size distribution present capacitance values lower than 100 F/g and 50 F/cm(3) in ionic liquids. A significant drop in capacitance has been observed in pores that were larger or smaller than the ion size by just an angstrom, suggesting that the pore size must be tuned with sub-angstrom accuracy when selecting a carbon/ion couple. This work suggests a general approach to EDLC design leading to the maximum energy density, which has been now proved for both solvated organic salts and solvent-free liquid electrolytes. PMID:18257568

  12. Relation between the ion size and pore size for an electric double-layer capacitor.

    PubMed

    Largeot, Celine; Portet, Cristelle; Chmiola, John; Taberna, Pierre-Louis; Gogotsi, Yury; Simon, Patrice

    2008-03-01

    The research on electrochemical double layer capacitors (EDLC), also known as supercapacitors or ultracapacitors, is quickly expanding because their power delivery performance fills the gap between dielectric capacitors and traditional batteries. However, many fundamental questions, such as the relations between the pore size of carbon electrodes, ion size of the electrolyte, and the capacitance have not yet been fully answered. We show that the pore size leading to the maximum double-layer capacitance of a TiC-derived carbon electrode in a solvent-free ethyl-methylimmidazolium-bis(trifluoro-methane-sulfonyl)imide (EMI-TFSI) ionic liquid is roughly equal to the ion size (approximately 0.7 nm). The capacitance values of TiC-CDC produced at 500 degrees C are more than 160 F/g and 85 F/cm(3) at 60 degrees C, while standard activated carbons with larger pores and a broader pore size distribution present capacitance values lower than 100 F/g and 50 F/cm(3) in ionic liquids. A significant drop in capacitance has been observed in pores that were larger or smaller than the ion size by just an angstrom, suggesting that the pore size must be tuned with sub-angstrom accuracy when selecting a carbon/ion couple. This work suggests a general approach to EDLC design leading to the maximum energy density, which has been now proved for both solvated organic salts and solvent-free liquid electrolytes.

  13. Ion chromatography for the separation of heparin and structurally related glycoaminoglycans: A review.

    PubMed

    Fasciano, Jennifer M; Danielson, Neil D

    2016-03-01

    The global crisis resulting from adulterated heparin in late 2007 and early 2008 revived the importance of analytical techniques for the purity analysis of heparin products. The utilization of ion chromatography techniques for the separation, detection, and structural determination of heparin and structurally related glycoaminoglycans, including their corresponding oligosaccharides, has become increasingly important. This review summarizes the primary HPLC approaches, particularly strong anion exchange, weak ion exchange, and reversed-phase ion-pair, used for heparin purity analysis as well as structural characterization. Strong anion exchange HPLC has been studied most extensively and currently offers the best separation of crude heparin and heparin-like compounds. Weak anion exchange HPLC has been shown to provide shorter analysis times with lower salt concentrations in the mobile phase but is not as widely developed for the separation of all glycoaminoglycans of interest. Reversed-phase ion-pair HPLC offers fast and effective separations of oligosaccharides derived from glycoaminoglycans that can be coupled to mass spectrometry for structural analysis. However, this method generally does not provide sufficient retention of intact glycoaminoglycans.

  14. Determination of relative ion chamber calibration coefficients from depth-ionization measurements in clinical electron beams

    NASA Astrophysics Data System (ADS)

    Muir, B. R.; McEwen, M. R.; Rogers, D. W. O.

    2014-10-01

    A method is presented to obtain ion chamber calibration coefficients relative to secondary standard reference chambers in electron beams using depth-ionization measurements. Results are obtained as a function of depth and average electron energy at depth in 4, 8, 12 and 18 MeV electron beams from the NRC Elekta Precise linac. The PTW Roos, Scanditronix NACP-02, PTW Advanced Markus and NE 2571 ion chambers are investigated. The challenges and limitations of the method are discussed. The proposed method produces useful data at shallow depths. At depths past the reference depth, small shifts in positioning or drifts in the incident beam energy affect the results, thereby providing a built-in test of incident electron energy drifts and/or chamber set-up. Polarity corrections for ion chambers as a function of average electron energy at depth agree with literature data. The proposed method produces results consistent with those obtained using the conventional calibration procedure while gaining much more information about the behavior of the ion chamber with similar data acquisition time. Measurement uncertainties in calibration coefficients obtained with this method are estimated to be less than 0.5%. These results open up the possibility of using depth-ionization measurements to yield chamber ratios which may be suitable for primary standards-level dissemination.

  15. A perpendicular ion beam instability - Solutions to the linear dispersion relation. [for F region ionosphere

    NASA Technical Reports Server (NTRS)

    Kintner, P. M.; Kelley, M. C.

    1983-01-01

    A 200-eV Xe(+) ion beam directed perpendicular to the terrestrial magnetic field in the F region ionosphere produced very narrow band electrostatic emissions just above multiples of the hydrogen cyclotron frequency. Although the plasma conditions associated with the ion beam were undoubtedly very complex, a simple ion beam in a background ionosphere is considered first. The dispersion relation for flute mode waves and an unmagnetized perpendicular ion beam is solved for a diffuse H(+) plasma and then for a combination of dense O(+) and diffuse H(+). These solutions account for most of the wave properties, including the observation of narrow spectral peaks separated by the hydrogen cyclotron frequency and the observation of no spectral peaks below 2000 Hz. We cannot dismiss field-aligned currents associated with the Xe(+) beam as an alternate source of free energy for the narrow band emissions. However, our intention here is to examine closely the Xe(+) beam as a source for directly exciting the plasma waves.

  16. The Relative Deep Penetrations of Energetic Electrons and Ions into the Slot Region and Inner Belt

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Li, X.; Claudepierre, S. G.; Fennell, J. F.; Blake, J. B.; Larsen, B.; Skoug, R. M.; Funsten, H. O.; Baker, D. N.; Reeves, G. D.; Spence, H. E.

    2015-12-01

    Energetic electrons in the inner magnetosphere are distributed into two regions: the inner radiation belt and the outer radiation belt, with the slot region in between separating the two belts. Though many studies have focused on the outer belt dynamics, the energetic electrons in the slot region and especially inner belt did not receive much attention until recently. A number of new features regarding electrons in the low L region have been reported lately, including the abundance of 10s-100s of keV electrons in the inner belt, the frequent deep injections of 100s of keV electrons, and 90°-minimum pitch angle distributions of 100s of keV electrons in the inner belt and slot region. In this presentation, we focus on the relative deep injections into the slot region and inner belt of energetic electrons and ions using observations from HOPE and MagEIS instruments on the Van Allen Probes. It is shown that while 10s - 100s of keV electrons penetrate commonly deep into the low L region and are persistent in the inner belt, the deep injections of ions with similar energies occur rarely, possibly due to the fast loss of ions in the low L region. The energy spectra and pitch angle distributions of electrons and ions during injections are also very different, indicating the existence of different physical mechanisms acting on them. In addition, some intriguing similarities between lower energy ions and higher energy electrons will also be discussed.

  17. Quantifying the relative importance of transcellular and paracellular ion transports to coral polyp calcification

    NASA Astrophysics Data System (ADS)

    Hohn, Sönke; Merico, Agostino

    Ocean acidification due to rising atmospheric pCO2 slows down coral calcification and impedes reef formation, with deleterious consequences for the diversity of reef ecosystems. Such interactions contrast with the capacity of corals to actively regulate the chemical composition of the calcifying fluid where calcification occurs. This regulation involves the active transport of calcium, bicarbonate, and hydrogen ions through epithelium cells, the transcellular pathway. Ions can also passively diffuse through intercellular spaces via the paracellular pathway, which directly exposes the calcifying fluid to changes in ocean chemistry. Although evidence exists for both pathways, their relative contribution to coral calcification remains unknown. Here we use a mathematical model to test the plausibility of different calcification mechanisms also in relation to ocean acidification. We find that the paracellular pathway generates an efflux of calcium and carbonate from the calcifying fluid, causing a leakage of ions that counteracts the concentration gradients maintained by the transcellular pathway. Increasing ocean acidity exacerbates this carbonate leakage and reduces the ability of corals to accrete calcium carbonate.

  18. Quantification of the Relative Biological Effectiveness for Ion Beam Radiotherapy: Direct Experimental Comparison of Proton and Carbon Ion Beams and a Novel Approach for Treatment Planning

    SciTech Connect

    Elsaesser, Thilo; Weyrather, Wilma K.; Friedrich, Thomas; Durante, Marco; Iancu, Gheorghe; Kraemer, Michael; Kragl, Gabriele; Brons, Stephan; Winter, Marcus; Weber, Klaus-Josef; Scholz, Michael

    2010-11-15

    Purpose: To present the first direct experimental in vitro comparison of the biological effectiveness of range-equivalent protons and carbon ion beams for Chinese hamster ovary cells exposed in a three-dimensional phantom using a pencil beam scanning technique and to compare the experimental data with a novel biophysical model. Methods and Materials: Cell survival was measured in the phantom after irradiation with two opposing fields, thus mimicking the typical patient treatment scenario. The novel biophysical model represents a substantial extension of the local effect model, previously used for treatment planning in carbon ion therapy for more than 400 patients, and potentially can be used to predict effectiveness of all ion species relevant for radiotherapy. A key feature of the new approach is the more sophisticated consideration of spatially correlated damage induced by ion irradiation. Results: The experimental data obtained for Chinese hamster ovary cells clearly demonstrate that higher cell killing is achieved in the target region with carbon ions as compared with protons when the effects in the entrance channel are comparable. The model predictions demonstrate agreement with these experimental data and with data obtained with helium ions under similar conditions. Good agreement is also achieved with relative biological effectiveness values reported in the literature for other cell lines for monoenergetic proton, helium, and carbon ions. Conclusion: Both the experimental data and the new modeling approach are supportive of the advantages of carbon ions as compared with protons for treatment-like field configurations. Because the model predicts the effectiveness for several ion species with similar accuracy, it represents a powerful tool for further optimization and utilization of the potential of ion beams in tumor therapy.

  19. Transport coefficients and the Stokes-Einstein relation in molten alkali halides with polarisable ion model

    NASA Astrophysics Data System (ADS)

    Ishii, Yoshiki; Kasai, Satoshi; Salanne, Mathieu; Ohtori, Norikazu

    2015-09-01

    A polarisable ion model is parameterised for the whole series of molten alkali halides by using first-principles calculations based on density functional theory. Viscosity, electrical conductivity and thermal conductivity are determined using molecular dynamics simulations via the Green-Kubo formulae and confronted to experimental results. The calculated transport coefficients are generally in much better agreement than those obtained with the empirical Fumi-Tosi potentials. The inclusion of polarisation effects significantly decreases the viscosity and thermal conductivity, while it increases the electrical conductivity. The individual dynamics of the ions is analysed using the Stokes-Einstein relation. The anion behaviour is always well represented using the slip boundary condition, while for cations there is an apparent shift from slip to stick condition when the ionic radius decreases. This difference is interpreted by subtle changes in their coordinating environment, which are maximised in the case of Li+ cation.

  20. A linear dispersion relation for the hybrid kinetic-ion/fluid-electron model of plasma physics

    NASA Astrophysics Data System (ADS)

    Told, D.; Cookmeyer, J.; Astfalk, P.; Jenko, F.

    2016-07-01

    A dispersion relation for a commonly used hybrid model of plasma physics is developed, which combines fully kinetic ions and a massless-electron fluid description. Although this model and variations of it have been used to describe plasma phenomena for about 40 years, to date there exists no general dispersion relation to describe the linear wave physics contained in the model. Previous efforts along these lines are extended here to retain arbitrary wave propagation angles, temperature anisotropy effects, as well as additional terms in the generalized Ohm’s law which determines the electric field. A numerical solver for the dispersion relation is developed, and linear wave physics is benchmarked against solutions of a full Vlasov-Maxwell dispersion relation solver. This work opens the door to a more accurate interpretation of existing and future wave and turbulence simulations using this type of hybrid model.

  1. A Simpler Energy Transfer Efficiency Model to Predict Relative Biological Effect for Protons and Heavier Ions

    PubMed Central

    Jones, Bleddyn

    2015-01-01

    The aim of this work is to predict relative biological effectiveness (RBE) for protons and clinically relevant heavier ions, by using a simplified semi-empirical process based on rational expectations and published experimental results using different ion species. The model input parameters are: Z (effective nuclear charge) and radiosensitivity parameters αL and βL of the control low linear energy transfer (LET) radiation. Sequential saturation processes are assumed for: (a) the position of the turnover point (LETU) for the LET–RBE relationship with Z, and (b) the ultimate value of α at this point (αU) being non-linearly related to αL. Using the same procedure for β, on the logical assumption that the changes in β with LET, although smaller than α, are symmetrical with those of α, since there is symmetry of the fall off of LET–RBE curves with increasing dose, which suggests that LETU must be identical for α and β. Then, using iso-effective linear quadratic model equations, the estimated RBE is scaled between αU and αL and between βU and βL from for any input value of Z, αL, βL, and dose. The model described is fitted to the data of Barendsen (alpha particles), Weyrather et al. (carbon ions), and Todd for nine different ions (deuterons to Argon), which include variations in cell surviving fraction and dose. In principle, this new system can be used to complement the more complex methods to predict RBE with LET such as the local effect and MKM models which already have been incorporated into treatment planning systems in various countries. It would be useful to have a secondary check to such systems, especially to alert clinicians of potential risks by relatively easy estimation of relevant RBEs. In clinical practice, LET values smaller than LETU are mostly encountered, but the model extends to higher values beyond LETU for other purposes such as radiation, protection, and astrobiology. Considerable further research is required, perhaps in a

  2. AUTOMATED DETERMINATION OF PRECURSOR ION, PRODUCT ION, AND NEUTRAL LOSS COMPOSITIONS AND DECONVOLUTION OF COMPOSITE MASS SPECTRA USING ION CORRELATION BASED ON EXACT MASSES AND RELATIVE ISOTOPIC ABUNDANCES

    EPA Science Inventory

    After a dispersive event, rapid determination of elemental compositions of ions in mass spectra is essential for tentatively identifying compounds. A Direct Analysis in Real Time (DART)® ion source interfaced to a JEOL AccuTOF® mass spectrometer provided exact masses accurate to ...

  3. Stability and ionic mobility in argyrodite-related lithium-ion solid electrolytes.

    PubMed

    Chen, Hao Min; Maohua, Chen; Adams, Stefan

    2015-07-01

    In the search for fast lithium-ion conducting solids for the development of safe rechargeable all-solid-state batteries with high energy density, thiophosphates and related compounds have been demonstrated to be particularly promising both because of their record ionic conductivities and their typically low charge transfer resistances. In this work we explore a wide range of known and predicted thiophosphates with a particular focus on the cubic argyrodite phase with a robust three-dimensional network of ion migration pathways. Structural and hydrolysis stability are calculated employing density functional method in combination with a generally applicable method of predicting the relevant critical reaction. The activation energy for ion migration in these argyrodites is then calculated using the empirical bond valence pathway method developed in our group, while bandgaps of selected argyrodites are calculated as a basis for assessing the electrochemical window. Findings for the lithium compounds are also compared to those of previously known copper argyrodites and hypothetical sodium argyrodites. Therefrom, guidelines for experimental work are derived to yield phases with the optimum balance between chemical stability and ionic conductivity in the search for practical lithium and sodium solid electrolyte materials. PMID:26051899

  4. Mechanistic insights related to the design and construction of lithium single ion conductors

    NASA Astrophysics Data System (ADS)

    Spahlinger, Gregory

    Lithium single ion conductors are a class of electrolytes, typically designed for lithium ion batteries, with the potential to improve the performance of these batteries. The benefits of single ion conductors arise out of the fact that their immobile anions are not capable of concentrating near the anode of the battery, causing an increase in resistance as the battery is discharged. Unfortunately lithium single ion conductors suffer severe drawbacks in their conductivity which have been attributed to diverse causes. Because of the low success rate of single ion conductors in the literature and previous work in the Baker group, I have chosen to investigate mechanistic questions related to the design and construction of these materials, without engineering new materials. An attractive design strategy for the screening of immobile anion moieties for single ion conductors would be the use of the copper catalyzed alkyne azide (CUAAC) "click" reaction in order to efficiently introduce anions onto a polymer or nanoparticle support in a way that is efficient and tunable. A variable added by this strategy would be the presence of a 1,2,3-triazole moiety which is without any significant precedent in the lithium ion electrolyte literature. In order to assess the impact of the triazole in on the conductivity of an electrolyte a series of model compounds were synthesized containing a variable number of triazoles in an otherwise poly(ethylene glycol) like oligomer chain. The model compounds were subjected to differential scanning calorimetry, electrochemical impedance spectroscopy, and in one case single crystal X-ray diffraction, and solvent shells were modeled for lithium with and without triazoles using ab initio quantum chemistry calculations. It was concluded that the triazole is not significantly stronger than an ether oxygen as a ligand in the electrolytes, however the triazole has a substantial dipole which exerts some deleterious effects on the conductivity, leading to

  5. K3 fragment of amyloidogenic beta(2)-microglobulin forms ion channels: implication for dialysis related amyloidosis.

    PubMed

    Mustata, Mirela; Capone, Ricardo; Jang, Hyunbum; Arce, Fernando Teran; Ramachandran, Srinivasan; Lal, Ratnesh; Nussinov, Ruth

    2009-10-21

    Beta(2)-microglobulin (beta(2)m) amyloid deposits are linked to dialysis-related amyloidosis (DRA) in hemodialysis patients. The mechanism by which beta(2)m causes DRA is not understood. It is also unclear whether only the full-length beta(2)m induces pathophysiology or if proteolytic fragments are sufficient for inducing this effect. Ser20-Lys41 (K3) is a digestion fragment of full-length beta(2)m. Solid state NMR (ssNMR) combined with X-ray diffraction and atomic force microscopy (AFM) revealed the characteristic oligomeric amyloid conformation of the U-turn beta-strand-turn-beta-strand motif stacked in parallel and stabilized by intermolecular interactions also shown by Abeta(9-40)/Abeta(17-42) and the CA150 WW domain. Here we use the K3 U-turn atomic coordinates and molecular dynamic (MD) simulations to model K3 channels in the membrane. Consistent with previous AFM imaging of other amyloids that show channel-like structures in the membrane, in the simulations K3 also forms ion channels with 3-6 loosely attached mobile subunits. We carry out AFM, single channel electrical recording, and fluorescence imaging experiments. AFM images display 3D ion channel topography with shapes, morphologies, and dimensions consistent with the theoretical model. Electrical conductance measurements indicate multiple single channel conductances, suggesting that various K3 oligomer sizes can constitute the channel structure. Fluorescence measurements in kidney cells show channel-mediated cell calcium uptake. These results suggest that the beta(2)m-induced DRA can be mediated by ion channels formed by its K3 fragment. Because the beta-strand-turn-beta-strand motif appears to be a universal amyloid feature, its ability to form ion channels further suggests that the motif may play a generic role in toxicity.

  6. High power impulse magnetron sputtering and related discharges: scalable plasma sources for plasma-based ion implantation and deposition

    SciTech Connect

    Anders, Andre

    2009-09-01

    High power impulse magnetron sputtering (HIPIMS) and related self-sputtering techniques are reviewed from a viewpoint of plasma-based ion implantation and deposition (PBII&D). HIPIMS combines the classical, scalable sputtering technology with pulsed power, which is an elegant way of ionizing the sputtered atoms. Related approaches, such as sustained self-sputtering, are also considered. The resulting intense flux of ions to the substrate consists of a mixture of metal and gas ions when using a process gas, or of metal ions only when using `gasless? or pure self-sputtering. In many respects, processing with HIPIMS plasmas is similar to processing with filtered cathodic arc plasmas, though the former is easier to scale to large areas. Both ion implantation and etching (high bias voltage, without deposition) and thin film deposition (low bias, or bias of low duty cycle) have been demonstrated.

  7. Dispersion relation of electrostatic ion cyclotron waves in multi-component magneto-plasma

    SciTech Connect

    Khaira, Vibhooti Ahirwar, G.

    2015-07-31

    Electrostatic ion cyclotron waves in multi component plasma composed of electrons (denoted by e{sup −}), hydrogen ions (denoted by H{sup +}), helium ions (denoted by He{sup +}) and positively charged oxygen ions (denoted by O{sup +})in magnetized cold plasma. The wave is assumed to propagate perpendicular to the static magnetic field. It is found that the addition of heavy ions in the plasma dispersion modified the lower hybrid mode and also allowed an ion-ion mode. The frequencies of the lower hybrid and ion- ion hybrid modes are derived using cold plasma theory. It is observed that the effect of multi-ionfor different plasma densities on electrostatic ion cyclotron waves is to enhance the wave frequencies. The results are interpreted for the magnetosphere has been applied parameters by auroral acceleration region.

  8. Multi-dimensional TOF-SIMS analysis for effective profiling of disease-related ions from the tissue surface.

    PubMed

    Park, Ji-Won; Jeong, Hyobin; Kang, Byeongsoo; Kim, Su Jin; Park, Sang Yoon; Kang, Sokbom; Kim, Hark Kyun; Choi, Joon Sig; Hwang, Daehee; Lee, Tae Geol

    2015-06-05

    Time-of-flight secondary ion mass spectrometry (TOF-SIMS) emerges as a promising tool to identify the ions (small molecules) indicative of disease states from the surface of patient tissues. In TOF-SIMS analysis, an enhanced ionization of surface molecules is critical to increase the number of detected ions. Several methods have been developed to enhance ionization capability. However, how these methods improve identification of disease-related ions has not been systematically explored. Here, we present a multi-dimensional SIMS (MD-SIMS) that combines conventional TOF-SIMS and metal-assisted SIMS (MetA-SIMS). Using this approach, we analyzed cancer and adjacent normal tissues first by TOF-SIMS and subsequently by MetA-SIMS. In total, TOF- and MetA-SIMS detected 632 and 959 ions, respectively. Among them, 426 were commonly detected by both methods, while 206 and 533 were detected uniquely by TOF- and MetA-SIMS, respectively. Of the 426 commonly detected ions, 250 increased in their intensities by MetA-SIMS, whereas 176 decreased. The integrated analysis of the ions detected by the two methods resulted in an increased number of discriminatory ions leading to an enhanced separation between cancer and normal tissues. Therefore, the results show that MD-SIMS can be a useful approach to provide a comprehensive list of discriminatory ions indicative of disease states.

  9. Linear and nonlinear physics of the magnetoacoustic cyclotron instability of fusion-born ions in relation to ion cyclotron emission

    SciTech Connect

    Carbajal, L. Cook, J. W. S.; Dendy, R. O.; Chapman, S. C.

    2014-01-15

    The magnetoacoustic cyclotron instability (MCI) probably underlies observations of ion cyclotron emission (ICE) from energetic ion populations in tokamak plasmas, including fusion-born alpha-particles in JET and TFTR [Dendy et al., Nucl. Fusion 35, 1733 (1995)]. ICE is a potential diagnostic for lost alpha-particles in ITER; furthermore, the MCI is representative of a class of collective instabilities, which may result in the partial channelling of the free energy of energetic ions into radiation, and away from collisional heating of the plasma. Deep understanding of the MCI is thus of substantial practical interest for fusion, and the hybrid approximation for the plasma, where ions are treated as particles and electrons as a neutralising massless fluid, offers an attractive way forward. The hybrid simulations presented here access MCI physics that arises on timescales longer than can be addressed by fully kinetic particle-in-cell simulations and by analytical linear theory, which the present simulations largely corroborate. Our results go further than previous studies by entering into the nonlinear stage of the MCI, which shows novel features. These include stronger drive at low cyclotron harmonics, the re-energisation of the alpha-particle population, self-modulation of the phase shift between the electrostatic and electromagnetic components, and coupling between low and high frequency modes of the excited electromagnetic field.

  10. Parametric dependence of ion temperature and relative density in the NASA Lewis SUMMA facility. [superconducting magnetic mirror

    NASA Technical Reports Server (NTRS)

    Snyder, A.; Lauver, M. R.; Patch, R. W.

    1976-01-01

    Further hot-ion plasma experiments were conducted in the SUMMA superconducting magnetic mirror facility. A steady-state ExB plasma was formed by applying a strong radially inward dc electric field between cylindrical anodes and hollow cathodes located near the magnetic mirror maxima. Extending the use of water cooling to the hollow cathodes, in addition to the anodes, resulted in higher maximum power input to the plasma. Steady-state hydrogen plasmas with ion kinetic temperatures as high as 830 eV were produced. Functional relations were obtained empirically among the plasma current, voltage, magnetic flux density, ion temperature, and relative ion density. The functional relations were deduced by use of a multiple correlation analysis. Data were obtained for midplane magnetic fields from 0.5 to 3.37 tesla and input power up to 45 kW. Also, initial absolute electron density measurements are reported from a 90 deg Thomson scattering laser system.

  11. Domain-based identification and analysis of glutamate receptor ion channels and their relatives in prokaryotes.

    PubMed

    Ger, Mao-Feng; Rendon, Gloria; Tilson, Jeffrey L; Jakobsson, Eric

    2010-10-06

    Voltage-gated and ligand-gated ion channels are used in eukaryotic organisms for the purpose of electrochemical signaling. There are prokaryotic homologues to major eukaryotic channels of these sorts, including voltage-gated sodium, potassium, and calcium channels, Ach-receptor and glutamate-receptor channels. The prokaryotic homologues have been less well characterized functionally than their eukaryotic counterparts. In this study we identify likely prokaryotic functional counterparts of eukaryotic glutamate receptor channels by comprehensive analysis of the prokaryotic sequences in the context of known functional domains present in the eukaryotic members of this family. In particular, we searched the nonredundant protein database for all proteins containing the following motif: the two sections of the extracellular glutamate binding domain flanking two transmembrane helices. We discovered 100 prokaryotic sequences containing this motif, with a wide variety of functional annotations. Two groups within this family have the same topology as eukaryotic glutamate receptor channels. Group 1 has a potassium-like selectivity filter. Group 2 is most closely related to eukaryotic glutamate receptor channels. We present analysis of the functional domain architecture for the group of 100, a putative phylogenetic tree, comparison of the protein phylogeny with the corresponding species phylogeny, consideration of the distribution of these proteins among classes of prokaryotes, and orthologous relationships between prokaryotic and human glutamate receptor channels. We introduce a construct called the Evolutionary Domain Network, which represents a putative pathway of domain rearrangements underlying the domain composition of present channels. We believe that scientists interested in ion channels in general, and ligand-gated ion channels in particular, will be interested in this work. The work should also be of interest to bioinformatics researchers who are interested in the use

  12. "Ion spectral gaps" and stationary "Nose structures" in the quiet inner magnetosphere: observations from the ION experiment onboard the INTERBALL satellite, modeling and relations between these two phenomena

    NASA Astrophysics Data System (ADS)

    Buzulukova, N.; Ganushkina, N.; Kovrazhkin, R.; Pulkkinen, T.; Sauvaud, J.-A.; Glazunov, A.

    2003-04-01

    We analyze measurements of ion spectral gaps (ISGs) and "nose structures" observed by the ION particle spectrometer onboard the INTERBALL-2 satellite. ISGs are a sharp decreases of H+ flux at a particular narrow energy range, and were first observed by McIlwain (1972) onboard the geostationary satellite ATS-5 during relatively quiet times. Clear examples of ISG in the morning, dayside, evening and nightside sectors of the magnetosphere are selected for detailed analysis and modeling. To obtain a model ISG, the trajectories of ions drifting in the equatorial plane from their nightside source to the observation point were computed for the energy range 0.1-15 keV. It is shown that the ISGs observed by the ION spectrometer throughout the inner magnetosphere are the result of superposition of the two effects: 1. ISGs due to excessive drift time for particular "resonant energy" ions from the source to the observation point; 2. ISGs due to the existence of "forbidden" zones disconnected from the source in a particular energy range. Both factors were described in the literature, but considered separately, while the observed global pattern actually includes both of them but in particular MLT sectors. The term "nose structures" was first introduced by Smith and Hoffman (1974) to describe the penetration of particles H+ in the inner magnetosphere during substorms. From statistical analysis of ION spectrometer observations it is clear seen that the nose structures not only the characteristic of the substorm processes but its are often observed in the quiet magnetosphere. From modeling of observed by ION spectrometer nose structures we conclude that these nose structures are formed together with ISGs from "forbidden" zones, and can be observed in all MLT sectors on L-shells 4.5 - 6. We call this type of nose structures "stationary nose structures" to distinguish its from substorm nose structures, and to underline the formation of stationary nose structures due to motion of H

  13. Cartilage-Specific Knockout of the Mechanosensory Ion Channel TRPV4 Decreases Age-Related Osteoarthritis.

    PubMed

    O'Conor, Christopher J; Ramalingam, Sendhilnathan; Zelenski, Nicole A; Benefield, Halei C; Rigo, Isaura; Little, Dianne; Wu, Chia-Lung; Chen, Di; Liedtke, Wolfgang; McNulty, Amy L; Guilak, Farshid

    2016-01-01

    Osteoarthritis (OA) is a progressive degenerative disease of articular cartilage and surrounding tissues, and is associated with both advanced age and joint injury. Biomechanical factors play a critical role in the onset and progression of OA, yet the mechanisms through which physiologic or pathologic mechanical signals are transduced into a cellular response are not well understood. Defining the role of mechanosensory pathways in cartilage during OA pathogenesis may yield novel strategies or targets for the treatment of OA. The transient receptor potential vanilloid 4 (TRPV4) ion channel transduces mechanical loading of articular cartilage via the generation of intracellular calcium ion transients. Using tissue-specific, inducible Trpv4 gene-targeted mice, we demonstrate that loss of TRPV4-mediated cartilage mechanotransduction in adulthood reduces the severity of aging-associated OA. However, loss of chondrocyte TRPV4 did not prevent OA development following destabilization of the medial meniscus (DMM). These results highlight potentially distinct roles of TRPV4-mediated cartilage mechanotransduction in age-related and post-traumatic OA, and point to a novel disease-modifying strategy to therapeutically target the TRPV4-mediated mechanotransduction pathway for the treatment of aging-associated OA. PMID:27388701

  14. Relation between ligand design and transition energy for the praseodymium ion in crystals.

    PubMed

    Zhou, Xianju; Tanner, Peter A

    2015-01-01

    Ten substituted benzoate complexes of Pr(3+) of the type [Pr(XC6H4COO)3(H2O)n(DMF)m]p·(DMF)q (X = OCH3, NO2, OH, F, Cl, NH2) have been synthesized, and for eight of these crystallographic data are available. The electronic absorption and emission spectra of the complexes have been recorded and interpreted at temperatures down to 10 K for transitions involving the (3)P0 and (1)D2 J-multiplet terms. Generally, the electron-withdrawing groups X in the benzoate moiety lead to higher (3)P0 energy than electron-donating groups. Empirical relations have been found between the energies of the (3)P0 and (1)D2(1) levels and the Hammett sigma constants for substituents and the unit cell volume per Pr(3+) ion. The latter relationship is indicative of a correlation between the electronic state energy and the ligand dipole polarizability. This has been confirmed by reference to literature data for the LaX3:Pr(3+) systems, so that the ligand dipole polarizability is a key factor in determining the nephelauxetic shifts of 4f(N) ions in crystals.

  15. Cartilage-Specific Knockout of the Mechanosensory Ion Channel TRPV4 Decreases Age-Related Osteoarthritis

    PubMed Central

    O’Conor, Christopher J.; Ramalingam, Sendhilnathan; Zelenski, Nicole A.; Benefield, Halei C.; Rigo, Isaura; Little, Dianne; Wu, Chia-Lung; Chen, Di; Liedtke, Wolfgang; McNulty, Amy L.; Guilak, Farshid

    2016-01-01

    Osteoarthritis (OA) is a progressive degenerative disease of articular cartilage and surrounding tissues, and is associated with both advanced age and joint injury. Biomechanical factors play a critical role in the onset and progression of OA, yet the mechanisms through which physiologic or pathologic mechanical signals are transduced into a cellular response are not well understood. Defining the role of mechanosensory pathways in cartilage during OA pathogenesis may yield novel strategies or targets for the treatment of OA. The transient receptor potential vanilloid 4 (TRPV4) ion channel transduces mechanical loading of articular cartilage via the generation of intracellular calcium ion transients. Using tissue-specific, inducible Trpv4 gene-targeted mice, we demonstrate that loss of TRPV4-mediated cartilage mechanotransduction in adulthood reduces the severity of aging-associated OA. However, loss of chondrocyte TRPV4 did not prevent OA development following destabilization of the medial meniscus (DMM). These results highlight potentially distinct roles of TRPV4-mediated cartilage mechanotransduction in age-related and post-traumatic OA, and point to a novel disease-modifying strategy to therapeutically target the TRPV4-mediated mechanotransduction pathway for the treatment of aging-associated OA. PMID:27388701

  16. The pH dependency of relative ion permeabilities in the crayfish giant axon.

    PubMed

    Strickholm, A; Wallin, B G; Shrager, P

    1969-07-01

    The dependence of the membrane potential on potassium, chloride, and sodium ions, was determined at the pH's of 6.0, 7.5, and 9.0 for the resting and depolarized crayfish ventral nerve cord giant axon. In normal saline (external potassium = 5.4 mM), the dependence of the membrane potential on the external potassium ions decreased with lowered pH while that for chloride increased. In contrast, in the potassium depolarized axon (external potassium = 25 mM), the dependence of the membrane potential on external potassium was minimum around pH 7.5 and increased in either more acidic or basic pH. In addition, the dependence of the membrane potential on external chloride in the depolarized axon was maximum at pH 7.5 and decreased in either more acidic or basic pH. The sodium dependency of the membrane potential was small and relatively unaffected by pH or depolarization. The data are interpreted as indicating a reversible surface membrane protein-phospholipid conformation change which occurs in the transition from the resting to the depolarized axon. PMID:5791546

  17. Relation between ligand design and transition energy for the praseodymium ion in crystals.

    PubMed

    Zhou, Xianju; Tanner, Peter A

    2015-01-01

    Ten substituted benzoate complexes of Pr(3+) of the type [Pr(XC6H4COO)3(H2O)n(DMF)m]p·(DMF)q (X = OCH3, NO2, OH, F, Cl, NH2) have been synthesized, and for eight of these crystallographic data are available. The electronic absorption and emission spectra of the complexes have been recorded and interpreted at temperatures down to 10 K for transitions involving the (3)P0 and (1)D2 J-multiplet terms. Generally, the electron-withdrawing groups X in the benzoate moiety lead to higher (3)P0 energy than electron-donating groups. Empirical relations have been found between the energies of the (3)P0 and (1)D2(1) levels and the Hammett sigma constants for substituents and the unit cell volume per Pr(3+) ion. The latter relationship is indicative of a correlation between the electronic state energy and the ligand dipole polarizability. This has been confirmed by reference to literature data for the LaX3:Pr(3+) systems, so that the ligand dipole polarizability is a key factor in determining the nephelauxetic shifts of 4f(N) ions in crystals. PMID:25474732

  18. Ion acoustic waves and related plasma observations in the solar wind

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Marsch, E.; Pilipp, W.; Schwenn, R.; Rosenbauer, H.

    1979-01-01

    The paper presents a study of the relationship between the interplanetary ion acoustic waves detected by Helios and the macroscopic and microscopic characteristics of the solar wind plasma. Two major mechanisms, an electron heat flux instability and a double-ion beam instability, are considered for generating the ion-acoustic-like waves observed in the solar wind. The results provide support to both mechanisms for generating the solar wind ion acoustic waves, although each mechanism has problems under certain conditions.

  19. Humidity affects relative ion abundance in direct analysis in real time mass spectrometry of hexamethylene triperoxide diamine.

    PubMed

    Newsome, G Asher; Ackerman, Luke K; Johnson, Kevin J

    2014-12-16

    Unstable explosive hexamethylene triperoxide diamine (HMTD) is dangerous in quantity and benefits from the minimal sampling handling associated with atmospheric pressure chemical ionization for mass spectral analysis. Seasonal variation observed in HMTD mass spectra suggested a humidity dependence. Therefore, direct analysis in real time (DART) ionization mass spectra were acquired at a range of humidity values. An enclosure was designed to fit around the ion source and mass spectrometer inlet at atmospheric pressure. The enclosure was supplied with controlled amounts of humidified air from a test atmosphere generator to create programmable conditions for ambient analysis. The relative abundance and fragmentation of analyte ions were observed to change reliably with changing humidity values and, to a lesser degree, temperature. Humidity at such plasma-based ion sources should be regulated to avoid ∼90% shifts in relative ion abundance and provide stability and reproducibility of HMTD analysis.

  20. Dopant effects on the photoluminescence of interstitial-related centers in ion implanted silicon

    NASA Astrophysics Data System (ADS)

    Johnson, B. C.; Villis, B. J.; Burgess, J. E.; Stavrias, N.; McCallum, J. C.; Charnvanichborikarn, S.; Wong-Leung, J.; Jagadish, C.; Williams, J. S.

    2012-05-01

    The dopant dependence of photoluminescence (PL) from interstitial-related centers formed by ion implantation and a subsequent anneal in the range 175-525 °C is presented. The evolution of these centers is strongly effected by interstitial-dopant clustering even in the low temperature regime. There is a significant decrease in the W line (1018.2 meV) PL intensity with increasing B concentration. However, an enhancement is also observed in a narrow fabrication window in samples implanted with either P or Ga. The anneal temperature at which the W line intensity is optimized is sensitive to the dopant concentration and type. Furthermore, dopants which are implanted but not activated prior to low temperature thermal processing are found to have a more detrimental effect on the resulting PL. Splitting of the X line (1039.8 meV) arising from implantation damage induced strain is also observed.

  1. Extended Injection Histories of Near-Relativisitic Solar Electrons and Their Relation to SEP Ion Events

    NASA Astrophysics Data System (ADS)

    Haggerty, D. K.; Roelof, E. C.

    2003-12-01

    Energetic solar electrons provide important information on the acceleration and release of all classes of solar energetic particles (SEPs). The relationships of their intensities to ion abundances and isotopic composition (e.g., 3He/4He) have been studied for decades. Their near-light speed and nearly scatter-free propagation out to 1AU preserve many details of their injection into the solar wind. Recently we have been exploiting the high timing and angular resolution of the ACE/EPAM measurements of 38-315 keV electrons [Haggerty and Roelof, ApJ., 579, 841, 2002]. We now are able to reconstruct the injection histories of beam-like electrons extending well into the SEP events. This is accomplished by subtracting out the back-scattered electrons that have returned from magnetic irregularities beyond 1 AU, mirrored inside 1AU, and then returned to 1AU. The difference between the total outgoing intensity and that of this mirrored component (time delayed) gives the intensity of the electrons that are still arriving directly from the Sun. The mathematical relation is js(μ ,t-s/v)=j(μ ,t)-j(-μ ,t-2τ ), where μ is the pitch cosine (measured positive anti-sunwards), s is the trajectory distance traveled at velocity v, and τ is the time for a particle with pitch cosine μ <0 at 1AU to reach its mirroring point inside 1AU. We find that the injection of solar electrons often lasts for considerably more than an hour at significant intensities. This analysis yields new diagnostics of the acceleration/release process, which we have ascribed to CME-associated shock acceleration [Simnett, Roelof, and Haggerty, ApJ, 579, 854, 2002]. The relation of electron injection to ion injection and 3He/4He variations is the subject of an ongoing joint study [Mewaldt et al., 28thICRC, SH1.3, 17, 2003].

  2. Impurity trapped exciton states related to rare earth ions in crystals under high hydrostatic pressure

    SciTech Connect

    Grinberg, M. Mahlik, S.

    2013-01-15

    Emission related to rare earth ions in solids takes place usually due to 4f{sup n} {yields} 4f{sup n} and 4f{sup n-1}5d{sup 1} {yields} 4f{sup n} internal transitions. In the case of band to band excitation the effective energy transfer from the host to optically active impurity is required. Among other processes one of the possibilities is capturing of the electron at excited state and hole at the ground state of impurity. Localization of electron or hole at the dopand site creates a long range Coulomb potential that attracts the second carrier which then occupies the localized Rydberg-like states. Such a system can be considered as impurity trapped exciton. Usually impurity trapped exciton is a short living phenomenon which decays non-radiatively leaving the impurity ion in the excited state. However, in several compounds doped with Eu{sup 2+} the impurity trapped exciton states become stable and contribute to the radiative processes though anomalous luminescence that appears apart of the 4f{sup 7} {yields} 4f{sup 7} and 4f{sup 7}5d{sup 1} {yields} 5f{sup 7} emission. In this contribution pressure effect on energies of the 4f{sup n-1}5d{sup 1}{yields}5f{sup n} transitions in Ln doped oxides and fluorides as well as influence of pressure on the energy of impurity trapped exciton states is discussed. The latest results on high pressure investigations of luminescence related to Pr{sup 3+}, and Eu{sup 2+} in different lattices are reviewed.

  3. Linear dispersion relation of beta-induced Alfvén eigenmodes in presence of anisotropic energetic ions

    SciTech Connect

    Ma, Ruirui; Chavdarovski, Ilija; Ye, Gaoxiang; Wang, Xin

    2014-06-15

    Using the theoretical framework of the generalized fishbone-like dispersion relation, the linear properties of beta-induced Alfvén eigenmodes (BAEs) and energetic particle continuum modes (EPMs) excited by anisotropic slowing-down energetic ions are investigated analytically and numerically. The resonant contribution of energetic ions to the potential energy perturbation as well as fluid-like term describing the background plasma and adiabatic contribution of energetic ions are derived. For high-mode numbers, numerical results show smooth transition between the EP continuous spectrum and BAEs in the gap. EPMs and/or BAEs are destabilized by energetic ions, with real frequencies and growth rates strongly dependent on the energetic particle density and resonant frequency.

  4. The functional relation between ion concentration in water vapor chemistry and the bond parameter in quantum chemistry

    NASA Astrophysics Data System (ADS)

    Gu, Hong-Kan

    1997-03-01

    The functional relation between “water vapor chemistry” ion concentration and the “quantum chemistry” bond parameter is ( I z/Z) VN=1/( a+ b/C) a=0.627, b=0.234, R=0.988, S=0.0721 where I z/Z is specific electron affinity constant (as hydration force), I z is last ionization potential, Z is ion valence, V is ion volume, N is coordination number (as hydration number), C is ion concentration (μg/L) in condensed water of water vapor; R is correlation coefficient, S is standard deviation; a and b are constants. The corresponding correlation curve shows that C has positive correlation to I z/Z and negative correlation to VN.

  5. Atom probe field ion microscopy and related topics: A bibliography 1992

    SciTech Connect

    Russell, K.F.; Godfrey, R.D.; Miller, M.K.

    1993-12-01

    This bibliography contains citations of books, conference proceedings, journals, and patents published in 1992 on the following types of microscopy: atom probe field ion microscopy (108 items); field emission microscopy (101 items); and field ion microscopy (48 items). An addendum of 34 items missed in previous bibliographies is included.

  6. Trial of a negative ion generator device in remediating problems related to indoor air quality

    SciTech Connect

    Daniell, W.; Camp, J.; Horstman, S. )

    1991-06-01

    It has been suggested that supplementation of indoor air with negative ions can improve air quality. This study examined the effects of a negative ion-generator device on air contaminants and symptom reporting in two office buildings. Separate sets of functional and nonfunctional negative ion generators were monitored using a double blind, crossover design involving two 5-week exposure periods. There were no detectable direct or residual effects of negative ion generator use on air ion levels, airborn particulates, carbon dioxide levels, or symptom reporting. Symptom reporting declined at both sites initially and appeared to be consistent with placebo effect. Job dissatisfaction was an apparent contributor to symptom reporting, with a magnitude comparable to presumed effects of air quality. Further testing of such devices is needed before they should be considered for office air quality problems.

  7. Changes in Transcript Related to Osmosis and Intracellular Ion Homeostasis in Paulownia tomentosa under Salt Stress.

    PubMed

    Fan, Guoqiang; Wang, Limin; Deng, Minjie; Zhao, Zhenli; Dong, Yanpeng; Zhang, Xiaoshen; Li, Yongsheng

    2016-01-01

    Paulownia tomentosa is an important economic and greening tree species that is cultivated widely, including salt environment. Our previous studies indicated its autotetraploid induced by colchicine showed better stress tolerance, but the underlying molecular mechanism related to ploidy and salt stress is still unclear. To investigate this issue, physiological measurements and transcriptome profiling of diploid and autotetraploid plants untreated and treated with NaCl were performed. Through the comparisons among four accessions, for one thing, we found different physiological changes between diploid and autotetraploid P. tomentosa; for another, and we detected many differentially expressed unigenes involved in salt stress response. These differentially expressed unigenes were assigned to several metabolic pathways, including "plant hormone signal transduction," "RNA transporter," "protein processing in endoplasmic reticulum," and "plant-pathogen interaction," which constructed the complex regulatory network to maintain osmotic and intracellular ion homeostasis. Quantitative real-time polymerase chain reaction was used to confirm the expression patterns of 20 unigenes. The results establish the foundation for the genetic basis of salt tolerance in P. tomentosa, which in turn accelerates Paulownia breeding and expands available arable land.

  8. Identification of the related substances of tilmicosin by liquid chromatography/ion trap mass spectrometry.

    PubMed

    Stoev, Georgi; Nazarov, Valeri

    2008-06-01

    Structures of seven impurities of the veterinary drug tilmicosin have been elucidated by multiple fragmentation with ion trap tandem mass spectrometry. All related compounds possess the main lactone ring of tilmicosin. The differences in their structures are due to the hydroxyl, mycaminose, 3,5-dimethylpiperidine and mycinose groups connected to C(3), C(5), C(6), C(14) of the lactone ring, respectively. The following compounds of the impurity profile of tilmicosin were identified: B - tilmicosin with a hydroxyl group at C(3); C - tilmicosin without a methyl group at the N-atom connected to C(3) of the mycaminose ring; D - tilmicosin with a hydroxyl group at C(6) of the mycaminose ring; E - tilmicosin with a methoxy group at C(3), F - desmicosin; G - 20-dihydrodesmicosin; and H - tilmicosin without a mycaminose ring. Isomers of the compounds B, C, D, E and H were identified by their mass chromatograms and retention times. The concentrations of the impurities varied in the range of 0.1% to 2.9%. PMID:18491285

  9. Changes in Transcript Related to Osmosis and Intracellular Ion Homeostasis in Paulownia tomentosa under Salt Stress.

    PubMed

    Fan, Guoqiang; Wang, Limin; Deng, Minjie; Zhao, Zhenli; Dong, Yanpeng; Zhang, Xiaoshen; Li, Yongsheng

    2016-01-01

    Paulownia tomentosa is an important economic and greening tree species that is cultivated widely, including salt environment. Our previous studies indicated its autotetraploid induced by colchicine showed better stress tolerance, but the underlying molecular mechanism related to ploidy and salt stress is still unclear. To investigate this issue, physiological measurements and transcriptome profiling of diploid and autotetraploid plants untreated and treated with NaCl were performed. Through the comparisons among four accessions, for one thing, we found different physiological changes between diploid and autotetraploid P. tomentosa; for another, and we detected many differentially expressed unigenes involved in salt stress response. These differentially expressed unigenes were assigned to several metabolic pathways, including "plant hormone signal transduction," "RNA transporter," "protein processing in endoplasmic reticulum," and "plant-pathogen interaction," which constructed the complex regulatory network to maintain osmotic and intracellular ion homeostasis. Quantitative real-time polymerase chain reaction was used to confirm the expression patterns of 20 unigenes. The results establish the foundation for the genetic basis of salt tolerance in P. tomentosa, which in turn accelerates Paulownia breeding and expands available arable land. PMID:27066034

  10. Identification of the related substances of tilmicosin by liquid chromatography/ion trap mass spectrometry.

    PubMed

    Stoev, Georgi; Nazarov, Valeri

    2008-06-01

    Structures of seven impurities of the veterinary drug tilmicosin have been elucidated by multiple fragmentation with ion trap tandem mass spectrometry. All related compounds possess the main lactone ring of tilmicosin. The differences in their structures are due to the hydroxyl, mycaminose, 3,5-dimethylpiperidine and mycinose groups connected to C(3), C(5), C(6), C(14) of the lactone ring, respectively. The following compounds of the impurity profile of tilmicosin were identified: B - tilmicosin with a hydroxyl group at C(3); C - tilmicosin without a methyl group at the N-atom connected to C(3) of the mycaminose ring; D - tilmicosin with a hydroxyl group at C(6) of the mycaminose ring; E - tilmicosin with a methoxy group at C(3), F - desmicosin; G - 20-dihydrodesmicosin; and H - tilmicosin without a mycaminose ring. Isomers of the compounds B, C, D, E and H were identified by their mass chromatograms and retention times. The concentrations of the impurities varied in the range of 0.1% to 2.9%.

  11. Changes in Transcript Related to Osmosis and Intracellular Ion Homeostasis in Paulownia tomentosa under Salt Stress

    PubMed Central

    Fan, Guoqiang; Wang, Limin; Deng, Minjie; Zhao, Zhenli; Dong, Yanpeng; Zhang, Xiaoshen; Li, Yongsheng

    2016-01-01

    Paulownia tomentosa is an important economic and greening tree species that is cultivated widely, including salt environment. Our previous studies indicated its autotetraploid induced by colchicine showed better stress tolerance, but the underlying molecular mechanism related to ploidy and salt stress is still unclear. To investigate this issue, physiological measurements and transcriptome profiling of diploid and autotetraploid plants untreated and treated with NaCl were performed. Through the comparisons among four accessions, for one thing, we found different physiological changes between diploid and autotetraploid P. tomentosa; for another, and we detected many differentially expressed unigenes involved in salt stress response. These differentially expressed unigenes were assigned to several metabolic pathways, including “plant hormone signal transduction,” “RNA transporter,” “protein processing in endoplasmic reticulum,” and “plant-pathogen interaction,” which constructed the complex regulatory network to maintain osmotic and intracellular ion homeostasis. Quantitative real-time polymerase chain reaction was used to confirm the expression patterns of 20 unigenes. The results establish the foundation for the genetic basis of salt tolerance in P. tomentosa, which in turn accelerates Paulownia breeding and expands available arable land. PMID:27066034

  12. Relative Biological Effectiveness of HZE Fe Ions for Induction ofMicro-Nuclei at Low Doses

    SciTech Connect

    Groesser, Torsten; Chun, Eugene; Rydberg, Bjorn

    2007-01-16

    Dose-response curves for induction of micro-nuclei (MN) was measured in Chinese hamster V79 and xrs6 (Ku80-) cells and in human mammary epithelial MCF10A cells in the dose range of 0.05-1 Gy. The Chinese Hamster cells were exposed to 1 GeV/u Fe ions, 600 MeV/u Fe ions, and 300 MeV/u Fe ions (LETs of 151, 176 and 235 keV/{micro}m respectively) as well as with 320 kVp X-rays as reference. Second-order polynomials were fitted to the induction curves and the initial slopes (the alpha values) were used to calculate RBE. For the repair proficient V79 cells the RBE at these low doses increased with LET. The values obtained were 3.1 (LET=151 keV/{micro}m), 4.3 (LET = 176 keV/{micro}m) and 5.7 (LET = 235 keV/{micro}m), while the RBE was close to 1 for the repair deficient xrs6 cells regardless of LET. For the MCF10A cells the RBE was determined for 1 GeV/u Fe ions and found to be 5.4, slightly higher than for V79 cells. To test the effect of shielding, the 1 GeV/u Fe ion beam was intercepted by various thickness of high-density polyethylene plastic absorbers, which resulted in energy loss and fragmentation. It was found that the MN yield for V79 cells placed behind the absorbers decreased in proportion to the decrease in dose both before and after the Fe ion Bragg peak (excluding the area around the Fe-ion Bragg peak itself), indicating that RBE did not change significantly due to shielding. At the Bragg peak the effectiveness for MN formation per unit dose was decreased, indicating an 'overkill' effect by low-energy very high-LET Fe ions.

  13. Multidimensional separations of ubiquitin conformers in the gas phase: relating ion cross sections to H/D exchange measurements.

    PubMed

    Robinson, Errol W; Williams, Evan R

    2005-09-01

    Investigating gas-phase structures of protein ions can lead to an improved understanding of intramolecular forces that play an important role in protein folding. Both hydrogen/deuterium (H/D) exchange and ion mobility spectrometry provide insight into the structures and stabilities of different gas-phase conformers, but how best to relate the results from these two methods has been hotly debated. Here, high-field asymmetric waveform ion mobility spectrometry (FAIMS) is combined with Fourier-transform ion cyclotron resonance mass spectrometry (FT/ICR MS) and is used to directly relate ubiquitin ion cross sections and H/D exchange extents. Multiple conformers can be identified using both methods. For the 9+ charge state of ubiquitin, two conformers (or unresolved populations of conformers) that have cross sections differing by 10% are resolved by FAIMS, but only one conformer is apparent using H/D exchange at short times. For the 12+ charge state, two conformers (or conformer populations) have cross sections differing by <1%, yet H/D exchange of these conformers differ significantly (6 versus 25 exchanges). These and other results show that ubiquitin ion collisional cross sections and H/D exchange distributions are not strongly correlated and that factors other than surface accessibility appear to play a significant role in determining rates and extents of H/D exchange. Conformers that are not resolved by one method could be resolved by the other, indicating that these two methods are highly complementary and that more conformations can be resolved with this combination of methods than by either method alone.

  14. Positive ion chemistry related to hydrocarbon flames doped with CF3 Br

    NASA Astrophysics Data System (ADS)

    Morris, Robert A.; Brown, Eileen R.; Viggiano, A. A.; van Doren, Jane M.; Paulson, John F.; Motevalli, Vahid

    1992-11-01

    Reactions of positive ions known to be present in hydrocarbon flames have been studied for their reactivity toward the fire suppressant CF3Br (Halon 1301) at 300 and 525 K. Rate constants and product branching percentages were measured at the two temperatures. The ions HCO+, CH+3, and CH+5 reacted rapidly with CF3Br producing CF+3 and CF2Br+ in all three cases. For CH+5, proton transfer was also observed at 300K. The ions H2COH+, H3COH+2, and H3O+ were unreactive with CF3Br at 300 and 525 K, and at [approximate]0.5 eV of collision energy supplied by a drift tube at 300 K. The product ions CF+3 and CF2Br+ were studied in separate experiments for reactivity toward selected hydrocarbons, and rate constants and branching percentages were determined. The hydrocarbons CH4, C2H6, C3H8, C2 H4, C3 H6, and C2H2 were selected for study (CF2] Br+ was studied with CH4, C2 H6, C2 H4, and C2H2 only). Neither CF+3 nor CF2Br+ reacted with CH4, but both ions reacted with other hydrocarbons. Hydrogen fluoride was among the inferred neutral reaction products in the reactions of CF+3 with C2H4 and C3H6. We found no evidence for any ionic process which could release Br atoms, any other free radicals, or the CF3Br+ molecular ion, and therefore no evidence was found to indicate that ions play a role in flame inhibition by CF3Br.

  15. Distribution pattern of rare earth ions between water and montmorillonite and its relation to the sorbed species of the ions.

    PubMed

    Takahashi, Yoshio; Tada, Akisa; Shimizu, Hiroshi

    2004-09-01

    REE (rare earth element) distribution coefficients (Kd) between the aqueous phase and montmorillonite surface were obtained to investigate the relation between the REE distribution patterns and the species of REE sorbed on the solid-water interface. It was shown that the features in the REE patterns, such as the slope of the REE patterns, the tetrad effect, and the Y/Ho ratio, were closely related to the REE species at the montmorillonite-water interface. In a binary system (REE-montmorillonite) below pH 5, three features (a larger Kd value for a lighter REE, the absence of the tetrad effect, and the Y/Ho ratio being unchanged from its initial value) suggest that hydrated REE are directly sorbed as an outer-sphere complex at the montmorillonite-water interface. Above pH 5.5, the features in the REE patterns, the larger Kd value for heavier REE, the M-type tetrad effect, and the reduced Y/Ho ratio, showed the formation of an inner-sphere complex of REE with -OH group at the montmorillonite surface. In addition, the REE patterns in the presence of humic acid at pH 5.9 were also studied, where the REE patterns became flat, suggesting that the humate complex is dominant as both dissolved and sorbed species of REE in the ternary system. All of these results were consistent with the spectroscopic data (laser-induced fluorescence spectroscopy) showing the local structure of Eu(III) conducted in the same experimental system. The present results suggest that the features in the REE distribution patterns include information on the REE species at the solid-water interface.

  16. Benzyne-related mechanisms in the gas phase ion/molecule reactions of haloarenes

    NASA Astrophysics Data System (ADS)

    Linnert, Harrald V.; Riveros, José M.

    1994-12-01

    The low pressure ion/molecule reactions of NH-2, OHt- and MeO- with bromobenzene have been studied by Fourier transform ion cyclotron resonance to elucidate gas phase benzyne mechanisms. For OHt- and MeO-, the main reaction consists of benzyne elimination initiated by abstraction of an ortho proton and the subsequent formation of a solvated halide ion. Experiments with monodeuterated bromobenzenes suggest that reactions with OHt- are the result of long-lived complexes with extensive scrambling of hydrogen and deuterium. For NH-2, formation of all the isomeric bromophenide ions occurs without hydrogen-deuterium scrambling, revealing weak building in the collision complexes. The o-bromophenide ions are shown to react with other substrates by bromide transfer rather than by proton transfer, and evidence is presented that the meta and para isomers undergo isomerization to the ortho upon reaction with substrates of similar acidities. The [Delta]H0acid of bromobenzene is estimated to be 384.4 kcal mol- from bracketing experiments. An extension of these reactions to 1- and 2-bromonaphthalene provides an estimate for the heats of formation of 1,2-dehydronaphthalene (122 kcal mol-) and the 2,3-dehydronaphthalene (126 kcal mol-).

  17. Ion phase-space vortices and their relation to small amplitude double layers

    NASA Technical Reports Server (NTRS)

    Pecseli, Hans L.

    1987-01-01

    The properties of ion phase-space vortices are reviewed with particular attention to their role in the formation of small amplitude double layers in current-carrying plasmas. In a one-dimensional analysis, many such double layers simply add up to produce a large voltage drop. A laboratory experiment is carried out in order to investigate the properties of ion phase-space vortices in three dimensions. Their lifetime is significantly reduced as compared with similar results from one-dimensional numerical simulations of the problem.

  18. Ionic composition of seawaters and derived saline solutions determined by ion chromatography and its relation to other water quality parameters.

    PubMed

    Gros, Natasa; Camões, M F; Oliveira, Cristina; Silva, M C R

    2008-11-01

    Ion chromatography (IC) presents new possibilities for assessing information about environmental samples, namely waters of various compositions, ranging from high-purity water to highly saline ones. Constant proportion between major ions present in seawater, has been assumed in the past, from which the first practical equation relating chlorinity and salinity has been developed, being later substituted by a practical salinity scale, derived from conductivity measurements relative to a standard seawater, according to internationally accepted recommended procedures. Seawaters are characterized by salinity values around 35 while derived saline solutions may present considerable changes in ionic composition, conductivity, hence on salinity. Natural and anthropogenic phenomena may introduce new issues requiring clarification for which qualitative and quantitative information from additional sources is useful, e.g. ionic composition from IC. The different ranges of concentration of major and minor species present in seawater and derived saline solutions are a challenge for the optimization of a practical methodology for composition assessment in two single IC runs, one for anions and another one for cations, which has been attained in this work. Composition of saline solutions determined by IC was critically assessed in terms of anion-cation balance and further related to conductivity and salinity measurements aiming to evaluate the quality/completeness of ion chromatographic analyses performed at preselected conditions and to search for other meaningful relations for efficient recognition/distinction between saline solutions of different types. PMID:18829032

  19. Electrospray tandem quadrupole fragmentation of quinolone drugs and related ions. On the reversibility of water loss from protonated molecules.

    PubMed

    Neta, Pedatsur; Godugu, Bhaskar; Liang, Yuxue; Simón-Manso, Yamil; Yang, Xiaoyu; Stein, Stephen E

    2010-11-30

    Selected reaction monitoring (SRM) of quinolone drugs showed different sensitivities in aqueous solution vs. biological extract. The authors suggested formation of two singly protonated molecules with different behavior, one undergoing loss of H(2)O and the other loss of CO(2), so that SRM transitions might depend on the ratios of these forms generated by the electrospray. These surprising results prompted us to re-examine several quinolone drugs and some simpler compounds to further elucidate the mechanisms. We find that the relative contributions of loss of H(2)O vs. loss of CO(2) in tandem mass spectrometric (MS/MS) experiments depend not only on molecular structure and collision energy, but also, in certain cases, on the cone voltage. We further find that many product ions formed by loss of H(2)O can reattach a water molecule in the collision cell, whereas ions formed by loss of CO(2) do not. Since reattachment of H(2)O can occur after water loss in the cone region and prior to selection of the precursor ion, this effect leads to the dependence of MS/MS spectra on the cone voltage used in creating the precursor ion, which explains the formerly observed effect on SRM ratios. Our results support the earlier conclusion that varying amounts of two ions of the same m/z value are responsible for problems in the analysis of these drugs, but the origin is in dehydration/rehydration reactions. Thus, SRM transitions for certain complex compounds may be comparable only when monitored under equivalent ion-forming conditions, including the voltage used in the production of the protonated molecules in the electrospray ionization (ESI) source.

  20. A Mechanism-Based Approach to Predict the Relative Biological Effectiveness of Protons and Carbon Ions in Radiation Therapy

    SciTech Connect

    Frese, Malte C.; Yu, Victor K.; Stewart, Robert D.; Carlson, David J.

    2012-05-01

    Purpose: The physical and potential biological advantages of proton and carbon ions have not been fully exploited in radiation therapy for the treatment of cancer. In this work, an approach to predict proton and carbon ion relative biological effectiveness (RBE) in a representative spread-out Bragg peak (SOBP) is derived using the repair-misrepair-fixation (RMF) model. Methods and Materials: Formulas linking dose-averaged linear-quadratic parameters to DSB induction and processing are derived from the RMF model. The Monte Carlo Damage Simulation (MCDS) software is used to quantify the effects of radiation quality on the induction of DNA double-strand breaks (DSB). Trends in parameters {alpha} and {beta} for clinically relevant proton and carbon ion kinetic energies are determined. Results: Proton and carbon ion RBE are shown to increase as particle energy, dose, and tissue {alpha}/{beta} ratios decrease. Entrance RBE is {approx}1.0 and {approx}1.3 for protons and carbon ions, respectively. For doses in the range of 0.5 to 10 Gy, proton RBE ranges from 1.02 (proximal edge) to 1.4 (distal edge). Over the same dose range, the RBE for carbon ions ranges from 1.5 on the proximal edge to 6.7 on the distal edge. Conclusions: The proposed approach is advantageous because the RBE for clinically relevant particle distributions is guided by well-established physical and biological (track structure) considerations. The use of an independently tested Monte Carlo model to predict the effects of radiation quality on DSB induction also minimizes the number of ad hoc biological parameters that must be determined to predict RBE. Large variations in predicted RBE across an SOBP may produce undesirable biological hot and cold spots. These results highlight the potential for the optimization of physical dose for a uniform biological effect.

  1. Dual mechanisms of ion uptake in relation to vacuolation in corn roots.

    PubMed

    Torii, K; Laties, G G

    1966-05-01

    Absorption isotherms for chloride and rubidium ions have been determined through a wide concentration range for nonvacuolate root tips, and for vacuolate subapical sections of corn root. In the range 0 to 0.5 mm, chloride absorption is hyperbolic with concentration in both tips and proximal sections. At high concentrations, 1 to 50 mm, a second multiple-hyperbolic isotherm for chloride is noted in vacuolate tissue, while the isotherm for nonvacuolate tips rises exponentially. A linear to exponentially rising isotherm is taken to signify diffusive permeation.The same distinction between tip and subapical tissue characterizes Rb absorption. Rb uptake is indifferent to the nature of the counterion at all concentrations in the tip, while the counterion exerts a predictable influence on Rb absorption in proximal tissue. The effect of a poorly absorbable anion on Rb uptake is greater in the high concentration range. Evidence is presented for the metabolic nature of ion transport into nonvacuolate root tips. Verification is offered that ion uptake is mediated by dual mechanisms, and the thesis is developed that the high-affinity (low K(s)) system mediates ion passage through the plasma membrane while the low-affinity (high K(s)) system implements transport through the tonoplast.

  2. Relative Biological Effectiveness of Carbon Ions in a Rat Prostate Carcinoma In Vivo: Comparison of 1, 2, and 6 Fractions

    SciTech Connect

    Karger, Christian P.; Peschke, Peter; Scholz, Michael; Huber, Peter E.; Debus, Jürgen

    2013-07-01

    Purpose: To determine the relative biological effectiveness (RBE) and the effective α/β ratio for local tumor control of a radioresistant rat prostate tumor (Dunning subline R3327-AT1) after 6 fractions of carbon ions and photons. Methods and Materials: A total of 82 animals with tumors in the distal thigh were treated with 6 fractions of either photons or carbon ions, by use of increasing dose levels and a 2-cm spread-out Bragg peak. Endpoints of the study were local control (no tumor recurrence within 300 days) and volumetric changes after irradiation. The resulting values for dose at 50% tumor control probability were used to determine RBE values. Including data for 1 and 2 fractions from a previous study, we estimated α/β ratios. Results: For 6 fractions, the values for dose at 50% tumor control probability were 116.6 ± 3.0 Gy for photons and 43.7 ± 2.3 Gy for carbon ions and the resulting RBE was 2.67 ± 0.15. The α/β ratio was 84.7 ± 13.8 Gy for photons and 66.0 ± 21.0 Gy for carbon ions. Using these data together with the linear-quadratic model, we estimated the maximum RBE to be 2.88 ± 0.27. Conclusions: The study confirmed the increased effectiveness of carbon ions relative to photons over the whole dose range for a highly radioresistant tumor. The maximum RBE below 3 is in line with other published in vivo data. The RBE values may be used to benchmark RBE models. Hypoxia seems to have a major impact on the radiation response, although this still has to be confirmed by dedicated experiments.

  3. Relating the 3D electrode morphology to Li-ion battery performance; a case for LiFePO4

    NASA Astrophysics Data System (ADS)

    Liu, Zhao; Verhallen, Tomas W.; Singh, Deepak P.; Wang, Hongqian; Wagemaker, Marnix; Barnett, Scott

    2016-08-01

    One of the main goals in lithium ion battery electrode design is to increase the power density. This requires insight in the relation between the complex heterogeneous microstructure existing of active material, conductive additive and electrolyte providing the required electronic and Li-ion transport. FIB-SEM is used to determine the three phase 3D morphology, and Li-ion concentration profiles obtained with Neutron Depth Profiling (NDP) are compared for two cases, conventional LiFePO4 electrodes and better performing carbonate templated LiFePO4 electrodes. This provides detailed understanding of the impact of key parameters such as the tortuosity for electron and Li-ion transport though the electrodes. The created hierarchical pore network of the templated electrodes, containing micron sized pores, appears to be effective only at high rate charge where electrolyte depletion is hindering fast discharge. Surprisingly the carbonate templating method results in a better electronic conductive CB network, enhancing the activity of LiFePO4 near the electrolyte-electrode interface as directly observed with NDP, which in a large part is responsible for the improved rate performance both during charge and discharge. The results demonstrate that standard electrodes have a far from optimal charge transport network and that significantly improved electrode performance should be possible by engineering the microstructure.

  4. Characterization of dihydrostreptomycin-related substances by liquid chromatography coupled to ion trap mass spectrometry.

    PubMed

    Pendela, Murali; Hoogmartens, Jos; Van Schepdael, Ann; Adams, Erwin

    2009-06-01

    Dihydrostreptomycin sulphate (DHS) is a water-soluble, broad-spectrum aminoglycoside antibiotic. For quantitative analysis, the European Pharmacopoeia (Ph. Eur.) prescribes an ion-pairing liquid chromatography/ultraviolet (LC/UV) method using a C18 stationary phase. Several unknown compounds were detected in commercial samples. Hence, for characterization of these unknown peaks in a commercial DHS sample, the Ph. Eur. method was coupled to mass spectrometry (MS). However, since the Ph. Eur. method uses a non-volatile mobile phase, each peak eluted was collected and desalted before introduction into the mass spectrometer. The desalting procedure was applied to remove the non volatile salt, buffer and ion-pairing reagent in the collected fraction. In total, 20 impurities were studied and 14 of them were newly characterized. Five impurities which are already reported in the literature were also traced in this LC/UV method. PMID:19449319

  5. Signature of solar wind turbulence in the ground magnetic field and its relation to ion acceleration

    NASA Astrophysics Data System (ADS)

    Kronberg, Elena; Gilder, Stuart; Luo, Hao; Daly, Patrick; Grigorenko, Elena

    2016-04-01

    The effect of solar wind turbulence on the magnetospheric environment is still unclear. We show that the strength of the magnetic field variation measured by ground-based observations (INTERMAGNET) is associated with variations of the interplanetary magnetic field direction and the solar wind speed. The variation is strongest during the declining phase of the solar cycle and is associated with high speed streams and Alfvén waves in the solar wind. Using Cluster observations, we show that during the declining phase, the ions are effectively accelerated to energies above 100 keV in the plasma sheet. This implies that on long time scales, enhanced solar wind magnetic field fluctuations and wind speeds lead to favorable conditions for effective ion acceleration in the plasma sheet. The acceleration is associated with magnetic turbulence (ultra-low-frequency) in the plasma sheet.

  6. Calculation of dose, dose equivalent, and relative biological effectiveness for high charge and energy ion beams

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Chun, S. Y.; Reginatto, M.; Hajnal, F.

    1995-01-01

    The Green's function for the transport of ions of high charge and energy is utilized with a nuclear fragmentation database to evaluate dose, dose equivalent, and RBE for C3H10T1/2 cell survival and neo-plastic transformation as function of depth in soft tissue. Such evaluations are useful to estimates of biological risk for high altitude aircraft, space operations, accelerator operations, and biomedical application.

  7. Calculation of Dose, Dose Equivalent, and Relative Biological Effectiveness for High Charge and Energy Ion Beams

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Reginatto, M.; Hajnal, F.; Chun, S. Y.

    1995-01-01

    The Green's function for the transport of ions of high charge and energy is utilized with a nuclear fragmentation database to evaluate dose, dose equivalent, and RBE for C3H1OT1/2 cell survival and neoplastic transformation as a function of depth in soft tissue. Such evaluations are useful to estimates of biological risk for high altitude aircraft, space operations, accelerator operations, and biomedical applications.

  8. Detection of explosive related nitroaromatic compounds (ERNC) by laser-based ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Laudien, Robert; Riebe, Daniel; Beitz, Toralf; Löhmannsröben, Hans-Gerd

    2008-10-01

    In this study two issues are addressed, namely laser ionisation of selected nitroaromatic compounds (NAC) and the characterisation of their anions by photodetachment (PD) spectroscopy. Laser ionisation of the NAC at λ = 226.75 nm is investigated by ion mobility (IM) spectrometry at atmospheric pressure. The main product after laser ionisation is the reactive NO+ ion formed in a sequence of photofragmentation and multiphoton ionisation processes. NO+ is trapped by specific ion molecule reactions (IMR). Alternatively, NO, added as laser dopant, can directly be ionised. The formed NO+ reacts with the NAC under complex formation. This allows fragmentless NAC detection. The combination of IM spectrometry and PD spectroscopy provides real-time characterisation of the anions in the IM spectrum. This is useful to differentiate between NAC and interfering substances and, thus, to reduce false-positive detections of NAC. The electrons detached by the PD laser at λ = 532 nm are detected in the same spectrum as the anions. The potential of PD-IM spectrometry in terms of cross section determination, analytical improvements, tomographic mapping, spatial hole burning etc., is outlined.

  9. Gas swelling and related phenomena in beryllium implanted with deuterium ions

    NASA Astrophysics Data System (ADS)

    Chernikov, V. N.; Alimov, V. Kh.; Markin, A. N.; Zakharov, A. P.

    1996-02-01

    An extensive TEM study of the microstructure of TIP-30 Be implanted with 3 and 10 keV D ions to fluences, Φ in the range from 3 × 1020 to 8 × 10 21D/m 2 at temperatures, Tirr = 300, 500 and 700 K has been carried out. Depth distributions of separate D atoms and D 2 molecules have been investigated by means of SIMS and RGA methods, correspondingly. D ion irradiation, accompanied by blistering, gives rise to destructions dependent mainly on Tirr. Irradiation at 300 K leads to the formation of tiny D 2 bubbles of 1 run in size (reminiscent of He bubbles in Be). At Tirr ≥ 500 K, along with small facetted bubbles, the development of larger oblate cavities occurs accumulating most of injected deuterium and providing for a much higher gas swelling compared to that at 300 K. D (He) ion implantation leads to the enhanced growth of microcrystalline layers of cph-BeO oxide with a microstructure differing from that on the electropolished Be surface. Based on the analysis of experimental data deuterium reemission, thermal desorption and trapping in defects are discussed.

  10. Mars Express observations of high altitude planetary ion beams and their relation to the "energetic plume" loss channel

    NASA Astrophysics Data System (ADS)

    Liemohn, Michael W.; Johnson, Blake C.; Fränz, Markus; Barabash, Stas

    2014-12-01

    This study presents observational evidence of high-energy (ions >2 keV) beams of planetary ions above Mars' induced magnetospheric boundary (IMB) and relates them with the energetic plume loss channel calculated from numerical models. A systematic search of the Mars Express (MEX) ion data using an orbit filtering criteria is described, using magnetometer data from Mars Global Surveyor (MGS) to determine the solar wind motional electric field (Esw) direction. Two levels of statistical survey are presented, one focused on times when the MEX orbit was directly in line with the Esw and another for all angles between the MEX location and the Esw. For the first study, within the 3 year overlap of MGS and MEX, nine brief intervals were found with clear and unambiguous high-energy O+ observations consistent with the energetic plume loss channel. The second survey used a point-by-point determination of MEX relative to the E-field and contained many thousands of 192 s measurements. This study yielded only a weak indication for an Esw-aligned plume. Furthermore, the y-z components of the weighted average velocities in the bins of this y-z spatial domain survey do not systematically point in the Esw direction. The first survey implies the existence of this plume and shows that its characteristics are seemingly consistent with the expected energy and flight direction from numerical studies; the second study softens the finding and demonstrates that there are many planetary ions beyond the IMB moving in unexpected directions. Several possible explanations for this discrepancy are discussed.

  11. Mechanical properties of nickel ion-implanted with titanium and carbon and their relation to microstructure

    SciTech Connect

    Myers, S.M.; Knapp, J.A.; Follstaedt, D.M.; Dugger, M.T.

    1998-02-01

    Dual ion implantation of titanium and carbon into nickel was shown to produce an amorphous layer with exceptionally high strength and hardness and substantially improved tribological properties. Indentation testing at submicrometer penetrations combined with finite-element modeling permitted quantification of the intrinsic elastic and plastic properties of the amorphous layer, which was found to have a yield strength near 5 GPa. During unlubricated sliding contact with a steel pin, the implantation treatment reduced friction, suppressed adhesion-and-fracture wear, and reduced wear depth. These tribological effects may enhance the performance and lifetime of microelectromechanical systems constructed from nickel.

  12. Transport of radioactive ion beams and related safety issues: The 132Sn+ case study

    NASA Astrophysics Data System (ADS)

    Osswald, F.; Bouquerel, E.; Boutin, D.; Dinkov, A.; Kazarinov, N.; Perrot, L.; Sellam, A.

    2014-12-01

    The transport of intense radioactive ion beam currents requires a careful design in order to limit the beam losses, the contamination and thus the dose rates. Some investigations based on numerical models and calculations have been performed in the framework of the SPIRAL 2 project to evaluate the performance of a low energy beam transport line located between the isotope separation on line (ISOL) production cell and the experiment areas. The paper presents the results of the transverse phase-space analysis, the beam losses assessment, the resulting contamination, and radioactivity levels. They show that reasonable beam transmission, emittance growth, and dose rates can be achieved considering the current standards.

  13. Transport of radioactive ion beams and related safety issues: the 132Sn+ case study.

    PubMed

    Osswald, F; Bouquerel, E; Boutin, D; Dinkov, A; Kazarinov, N; Perrot, L; Sellam, A

    2014-12-01

    The transport of intense radioactive ion beam currents requires a careful design in order to limit the beam losses, the contamination and thus the dose rates. Some investigations based on numerical models and calculations have been performed in the framework of the SPIRAL 2 project to evaluate the performance of a low energy beam transport line located between the isotope separation on line (ISOL) production cell and the experiment areas. The paper presents the results of the transverse phase-space analysis, the beam losses assessment, the resulting contamination, and radioactivity levels. They show that reasonable beam transmission, emittance growth, and dose rates can be achieved considering the current standards.

  14. Relative dissociation fractions of SF6 under impact of 15-keV to 30-keV H- and C- negative ions

    NASA Astrophysics Data System (ADS)

    Zhao, Zilong; Li, Junqin; Zhang, Xuemei

    2013-10-01

    The relative dissociation fractions for the production of fragment ions and ion pairs of SF6 are studied for H- and C- impact in the energy range from 15 to 30 keV. Recoil ions (SF4+, SF3+, SF2+, SF+, S+, F+, SF42+, SF22+) and ion pairs (SF3++F+,SF2++F+,SF++F+,S++F+, F++F+) are detected and identified in coincidence with scattered projectiles in two charge states (q=0 and q=+1) by using a time-of-flight spectrometer. The relative dissociation fractions are energy dependent for both single-electron-loss (SL) channel and double-electron-loss (DL) channel processes for certain negative ions. It is also found that the relative dissociation fractions for DL are larger than those for SL. In addition, the degree of fragmentation will become greater with a larger mass number of the projectiles at the same impact energy for the same electron-loss channel. A comparison of the time-of-flight spectra is made between that under negative-ion impact and that under electron impact, and it is found that the probability of production of SFn+ ions with n odd is higher than that of similar ions with n even, and the probability of production of SFn2+ ions with n even is higher than that of similar ions withn odd under H-, C-, positive-ion, and electron impact. We analyze this interesting phenomenon from the bond-dissociation energies of SFn+ and SFn2+. We also analyze the coincident time-of-flight spectra of two fragment ions resulting from double ionization of SF6 by H- and C- impact and describe the major dissociation pathways of SF62+ for H- and C- impact in the energy range from 15 to 30 keV.

  15. NASA Aerospace Flight Battery Program: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries; Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries; Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop). Volume 1, Part 1

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 1 - Volume I: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries, Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries, and Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop).

  16. Vacancy-related defects in n-type Si implanted with a rarefied microbeam of accelerated heavy ions in the MeV range

    NASA Astrophysics Data System (ADS)

    Capan, I.; Pastuović, Ž.; Siegele, R.; Jaćimović, R.

    2016-04-01

    Deep level transient spectroscopy (DLTS) has been used to study vacancy-related defects formed in bulk n-type Czochralski-grown silicon after implantation of accelerated heavy ions: 6.5 MeV O, 10.5 MeV Si, 10.5 MeV Ge, and 11 MeV Er in the single ion regime with fluences from 109 cm-2 to 1010 cm-2 and a direct comparison made with defects formed in the same material irradiated with 0.7 MeV fast neutron fluences up to 1012 cm-2. A scanning ion microprobe was used as the ion implantation tool of n-Cz:Si samples prepared as Schottky diodes, while the ion beam induced current (IBIC) technique was utilized for direct ion counting. The single acceptor state of the divacancy V2(-/0) is the most prominent defect state observed in DLTS spectra of n-CZ:Si samples implanted by selected ions and the sample irradiated by neutrons. The complete suppression of the DLTS signal related to the double acceptor state of divacancy, V2(=/-) has been observed in all samples irradiated by ions and neutrons. Moreover, the DLTS peak associated with formation of the vacancy-oxygen complex VO in the neutron irradiated sample was also completely suppressed in DLTS spectra of samples implanted with the raster scanned ion microbeam. The reason for such behaviour is twofold, (i) the local depletion of the carrier concentration in the highly disordered regions, and (ii) the effect of the microprobe-assisted single ion implantation. The activation energy for electron emission for states assigned to the V2(-/0) defect formed in samples implanted by single ions follows the Meyer-Neldel rule. An increase of the activation energy is strongly correlated with increasing ion mass.

  17. 2-(trimethylammonium)ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate promotes megakaryocytic differentiation of myeloid leukaemia cells and primary human CD34⁺ haematopoietic stem cells.

    PubMed

    Limb, Jin-Kyung; Song, Doona; Jeon, Mijeong; Han, So-Yeop; Han, Gyoonhee; Jhon, Gil-Ja; Bae, Yun Soo; Kim, Jaesang

    2015-04-01

    In this study we showed that 2-(trimethylammonium)ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate [(R)-TEMOSPho], a derivative of an organic chemical identified from a natural product library, promotes highly efficient differentiation of megakaryocytes. Specifically, (R)-TEMOSPho induces cell cycle arrest, cell size increase and polyploidization from K562 and HEL cells, which are used extensively to model megakaryocytic differentiation. In addition, megakaryocyte-specific cell surface markers showed a dramatic increase in expression in response to (R)-TEMOSPho treatment. Importantly, we demonstrated that such megakaryocytic differentiation can also be induced from primary human CD34(+) haematopoietic stem cells. Activation of the PI3K-AKT pathway and, to a lesser extent, the MEK-ERK pathway appears to be required for this process, as blocking with specific inhibitors interferes with the differentiation of K562 cells. A subset of (R)-TEMOSPho-treated K562 cells undergoes spontaneous apoptosis and produces platelets that are apparently functional, as they bind to fibrinogen, express P-selectin and aggregate in response to SFLLRN and AYPGFK, the activating peptides for the PAR1 and PAR4 receptors, respectively. Taken together, these results indicate that (R)-TEMOSPho will be useful for dissecting the molecular mechanisms of megakaryocytic differentiation, and that this class of compounds represents potential therapeutic reagents for thrombocytopenia.

  18. 2-(trimethylammonium)ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate promotes megakaryocytic differentiation of myeloid leukaemia cells and primary human CD34⁺ haematopoietic stem cells.

    PubMed

    Limb, Jin-Kyung; Song, Doona; Jeon, Mijeong; Han, So-Yeop; Han, Gyoonhee; Jhon, Gil-Ja; Bae, Yun Soo; Kim, Jaesang

    2015-04-01

    In this study we showed that 2-(trimethylammonium)ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate [(R)-TEMOSPho], a derivative of an organic chemical identified from a natural product library, promotes highly efficient differentiation of megakaryocytes. Specifically, (R)-TEMOSPho induces cell cycle arrest, cell size increase and polyploidization from K562 and HEL cells, which are used extensively to model megakaryocytic differentiation. In addition, megakaryocyte-specific cell surface markers showed a dramatic increase in expression in response to (R)-TEMOSPho treatment. Importantly, we demonstrated that such megakaryocytic differentiation can also be induced from primary human CD34(+) haematopoietic stem cells. Activation of the PI3K-AKT pathway and, to a lesser extent, the MEK-ERK pathway appears to be required for this process, as blocking with specific inhibitors interferes with the differentiation of K562 cells. A subset of (R)-TEMOSPho-treated K562 cells undergoes spontaneous apoptosis and produces platelets that are apparently functional, as they bind to fibrinogen, express P-selectin and aggregate in response to SFLLRN and AYPGFK, the activating peptides for the PAR1 and PAR4 receptors, respectively. Taken together, these results indicate that (R)-TEMOSPho will be useful for dissecting the molecular mechanisms of megakaryocytic differentiation, and that this class of compounds represents potential therapeutic reagents for thrombocytopenia. PMID:23166016

  19. Responsive Copolymer Brushes of Poly[(2-(Methacryloyloxy)Ethyl) Trimethylammonium Chloride] (PMETAC) and Poly((1)H,(1)H,(2)H,(2)H-Perfluorodecyl acrylate) (PPFDA) to Modulate Surface Wetting Properties.

    PubMed

    Politakos, Nikolaos; Azinas, Stavros; Moya, Sergio Enrique

    2016-04-01

    Polymer brushes have a large potential for controlling properties such as surface lubrication or wetting through facile functionalization. Polymer chemistry, chain density, and length impact on the wetting properties of brushes. This study explores the use of diblock copolymer brushes with different block length and spatial arrangement of the blocks to tune surface wettability. Block copolymer brushes of the polyelectrolyte [2-(methacryloyloxy)ethyl] trimethylammonium chloride (PMETAC) with a contact angle of 17° and a hydrophobic block of (1)H, (1)H, (2)H, (2)H-perfluorodecyl Acrylate (PPFDA) with a contact angle of 130° are synthesized by RAFT polymerization. By changing the sequence of polymerization either block is synthesized as top or bottom block. By varying the concentration of initiator the length of the blocks is varied. Contact angle values with intermediate values between 17° and 130° are measured. In addition, by changing solvent pH and in presence of a different salt the contact angle of the copolymer brushes can be fine tuned. Brushes are characterized by atomic force microscopy, Raman confocal microscopy, and X-ray photoelectron spectroscopy.

  20. Average electric wave spectra across the plasma sheet and their relation to ion bulk speed

    NASA Technical Reports Server (NTRS)

    Baumjohann, W.; Treumann, R. A.; Labelle, J.; Anderson, R. R.

    1989-01-01

    Using 4 months of tail data obtained by the ELF/MF spectrum analyzer of the wave experiment and the three-dimensional plasma instrument on board the AMPTE/IRM satellite, a statistical survey on the electric wave spectral density in the earth's plasma sheet has been conducted. More than 50,000 10-s-averaged electric wave spectra were analyzed with respect to differences between their values in the inner and outer central plasma sheet and the plasma sheet boundary layer as well as their dependence on radial distance and ion bulk speed. High-speed flows are dominated by broadband electrostatic noise with highest spectral densities in the plasma sheet boundary, where broadband electrostatic noise also exists during periods of low-speed flows. The broadband electrostatic noise has a typical spectral index of about -2. During low-speed flows the spectra in the central plasma sheet show distinct emissions at the electron cyclotron odd half-harmonic and upper hybrid frequency. Wave intensities during episodes of fast perpendicular flows are higher than those associated with fast parallel flows.

  1. Salts and nutrients present in regenerated waters induce changes in water relations, antioxidative metabolism, ion accumulation and restricted ion uptake in Myrtus communis L. plants.

    PubMed

    Acosta-Motos, José R; Alvarez, Sara; Barba-Espín, Gregorio; Hernández, José A; Sánchez-Blanco, María J

    2014-12-01

    The use of reclaimed water (RW) constitutes a valuable strategy for the efficient management of water and nutrients in landscaping. However, RW may contain levels of toxic ions, affecting plant production or quality, a very important aspect for ornamental plants. The present paper evaluates the effect of different quality RWs on physiological and biochemical parameters and the recovery capacity in Myrtus communis L. plants. M. communis plants were submitted to 3 irrigation treatments with RW from different sources (22 weeks): RW1 (1.7 dS m(-1)), RW2 (4.0 dS m(-1)) and RW3 (8.0 dS m(-1)) and one control (C, 0.8 dS m(-1)). During a recovery period of 11 weeks, all plants were irrigated with the control water. The RW treatments did not negatively affect plant growth, while RW2 even led to an increase in biomass. After recovery,only plants irrigated with RW3 showed some negative effects on growth, which was related to a decrease in the net photosynthesis rate, higher Na accumulation and a reduction in K levels. An increase in salinity was accompanied by decreases in leaf water potential, relative water content and gas exchange parameters, and increases in Na and Cl uptake. Plants accumulated Na in roots and restricted its translocation to the aerial part. The highest salinity levels produced oxidative stress, as seen from the rise in electrolyte leakage and lipid peroxidation. The use of regenerated water together with carefully managed drainage practices, which avoid the accumulation of salt by the substrate, will provide economic and environmental benefits.

  2. Salts and nutrients present in regenerated waters induce changes in water relations, antioxidative metabolism, ion accumulation and restricted ion uptake in Myrtus communis L. plants.

    PubMed

    Acosta-Motos, José R; Alvarez, Sara; Barba-Espín, Gregorio; Hernández, José A; Sánchez-Blanco, María J

    2014-12-01

    The use of reclaimed water (RW) constitutes a valuable strategy for the efficient management of water and nutrients in landscaping. However, RW may contain levels of toxic ions, affecting plant production or quality, a very important aspect for ornamental plants. The present paper evaluates the effect of different quality RWs on physiological and biochemical parameters and the recovery capacity in Myrtus communis L. plants. M. communis plants were submitted to 3 irrigation treatments with RW from different sources (22 weeks): RW1 (1.7 dS m(-1)), RW2 (4.0 dS m(-1)) and RW3 (8.0 dS m(-1)) and one control (C, 0.8 dS m(-1)). During a recovery period of 11 weeks, all plants were irrigated with the control water. The RW treatments did not negatively affect plant growth, while RW2 even led to an increase in biomass. After recovery,only plants irrigated with RW3 showed some negative effects on growth, which was related to a decrease in the net photosynthesis rate, higher Na accumulation and a reduction in K levels. An increase in salinity was accompanied by decreases in leaf water potential, relative water content and gas exchange parameters, and increases in Na and Cl uptake. Plants accumulated Na in roots and restricted its translocation to the aerial part. The highest salinity levels produced oxidative stress, as seen from the rise in electrolyte leakage and lipid peroxidation. The use of regenerated water together with carefully managed drainage practices, which avoid the accumulation of salt by the substrate, will provide economic and environmental benefits. PMID:25394799

  3. [Separation of zoledronic acid and its related substances by ion-pair reversed-phase high performance liquid chromatography].

    PubMed

    Zhang, Xiaoqing; Jiang, Ye; Xu, Zhiru

    2004-07-01

    A rapid and simple ion-pair reversed-phase high performance liquid chromatographic method (HPLC) has been established for the routine analysis of zoledronic acid and its related substances. The chromatographic conditions were optimized based on the satisfactory separation of zoledronic acid from imidazol-1-ylacetic acid, their retention times and peak shape. The excellent separation of zoledronic acid from its related substances, including the remaining imidazol-1-ylacetic acid used in the synthesis of zoledronic acid and other impurities of oxidation and decomposition, was achieved within 9 min on a Hypersil C8 column with UV detection at 220 nm. The mobile phase was a mixture of methanol (20%) and 5 mmo/L phosphate buffer (80%) that contains 6 mmol/L tetrabutylammonium bromide. The resolution factor of zoledronic acid from its adjacent peak was more than 2.5. This is a simple and rapid method for the routine assay of zoledronic acid.

  4. Physical characterization of tin composite oxides and related anode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Goward, Gillian Ruth

    2000-10-01

    This thesis addresses the issues concerning the excellent electrochemical performance exhibited by the tin-composite-oxide glass, Sn1.0Al 0.42B0.56P0.40O3.6 as an anode material for rechargeable lithium ion batteries. The debate surrounding this material focuses on the nature of the lithium-tin interaction; whether it is ionic or intermetallic. The TCO anode material has been studied electrochemically, as well as by multinuclear Solid-State-NMR, X-ray Absorption Spectroscopy, and X-ray Scattering including Pair Distribution Function analysis. By examining electrode materials at various stages of discharge, corresponding to various levels of lithium insertion, the interactions between lithium, tin, oxygen, and the other components of the glass have been ascertained. The inserted lithium remains highly ionic throughout the first cycle of the cell, with no evidence for the formation of alloy phases. Extended cycling of the cell results in the formation of alloy-like domains in the parent material, SnO, but not in the case of TCO. This demonstrates that the required structural rearrangements for the formation of Li-Sn phases are kinetically prohibited; and this to a greater extend in TCO than in SnO. Two key factors account for the electrochemical properties of TCO: (1) the participation of the glass framework in sequestering the electrochemically active tin centers and providing a flexible framework for the reversible insertion of lithium; (2) the proximity of oxygen to tin is maintained throughout lithium insertion process, thus oxygen may act as a charge carrier. These factors are developed in the context of several models for the interactions in the electrode, drawing on the data obtained from the physical characterizations implemented here. A comparative study of the anode material NaMoO3 is also described.

  5. Ion Composition of Fog Water and Its Relation to Air Pollutants during Winter Fog Events in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Xie, Yu-Jing; Shi, Chun-E.; Liu, Duan-Yang; Niu, Sheng-Jie; Li, Zi-Hua

    2012-05-01

    Intensive field experiments focused on fog chemistry were carried out in the northern suburb of Nanjing during the winters of 2006 and 2007. Thirty-seven fog water samples were collected in nine fog events. Based on the chemical analysis results of those samples and the simultaneous measurements of air pollution gases and atmospheric aerosols, the chemical characteristics of fog water and their relations with air pollutants during fog evolution were investigated. The results revealed an average total inorganic ionic concentration TIC = 21.18 meq/L, and the top three ion concentrations were those of SO4 2-, NH4 + and Ca2+ (average concentrations 6.99, 5.95, 3.77 meq/L, respectively). However, the average pH value of fog water was 5.85, which is attributable to neutralization by basic ions (NH4 + and Ca2+). The average TIC value of fog water measured in advection-radiation fog was around 2.2 times that in radiation fog, and the most abundant cation was NH4 + in advection-radiation fog and Ca2+ in radiation fog. In dense fog episodes, the concentration variations of primary inorganic pollution gases showed a "V"-shaped pattern, while those of volatile organic compounds (VOCs) displayed a "Λ"-shaped pattern. The dense fog acted as both the source and sink of atmospheric aerosol particles; fog processes enhanced particle formation, leading to the phenomenon that the aerosol concentration after fog dissipation was higher than that before the fog, and at the same time, mass concentration of PM10 reached the lowest value in the late stage of extremely dense fog episodes because of the progressive accumulated effect of wet deposition of large fog droplets. Both air pollution gases and aerosols loading controlled the ion compositions of fog water. The Ca2+ in fog water originated from airborne particles, while SO4 2- and NH4 + were from both heterogeneous production and soluble particulate species.

  6. Influence of Age on the Relative Biological Effectiveness of Carbon Ion Radiation for Induction of Rat Mammary Carcinoma

    SciTech Connect

    Imaoka, Tatsuhiko; Nishimura, Mayumi; Daino, Kazuhiro; Kokubo, Toshiaki; Doi, Kazutaka; Iizuka, Daisuke; Nishimura, Yukiko; Okutani, Tomomi; Takabatake, Masaru; Kakinuma, Shizuko; Shimada, Yoshiya

    2013-03-15

    Purpose: The risk of developing secondary cancer after radiotherapy, especially after treatment of childhood cancers, remains a matter of concern. The high biological effects of carbon-ion radiation have enabled powerful radiotherapy, yet the approach is commonly restricted to the treatment of adults. Susceptibility of the fetus to particle radiation–induced cancer is also unclear. The present study is aimed to investigate the effect of carbon-ion irradiation in childhood on breast carcinogenesis. Methods and Materials: We irradiated female Sprague-Dawley rats of various ages (embryonic days 3, 13, and 17 and 1, 3, 7, and 15 weeks after birth) with {sup 137}Cs γ rays or a 290-MeV/u monoenergetic carbonion beam (linear energy transfer, 13 keV/μm). All animals were screened weekly for mammary carcinoma by palpation until they were 90 weeks old. Results: Irradiation of fetal and mature (15-week-old) rats with either radiation source at a dose of 0.2 or 1 Gy did not substantially increase the hazard ratio compared with the nonirradiated group. Dose responses (0.2-2.0 Gy) to γ rays were similar among the groups of rats irradiated 1, 3, and 7 weeks after birth. The effect of carbon ions increased along with the age at the time of irradiation, indicating relative biological effectiveness values of 0.2 (−0.3, 0.7), 1.3 (1.0, 1.6), and 2.8 (1.8, 3.9) (mean and 95% confidence interval) for animals that were 1, 3, and 7 weeks of age, respectively. Conclusions: Our findings imply that carbonion therapy may be associated with a risk of secondary breast cancer in humans, the extent of which may depend on the age of the patient at the time of irradiation.

  7. Relation between pH and the strong ion difference (SID) in body fluids.

    PubMed

    Schück, Otto; Matousovic, Karel

    2005-06-01

    Acid-base balance evaluation according to the Henderson-Hasselbalch equation enable us to assess the contribution of respiratory (pCO2) and/or non-respiratory (metabolic, HCO3(-)) components to the acid-base balance status. A new approach to acid-base balance evaluation according to Stewart-Fencl, which is based on a detailed physical-chemical analysis of body fluids shows that metabolic acid-base balance disorders are characterized not only by [HCO3(-)]. According to this concept independent variables must be taken into an account. The abnormality of concentration of one or more of the independent variable(s) determines the pH of a solution. The independent variables are: 1. strong ion difference (SID); 2. total concentration of nonvolatile weak acids [A(tot)]; 3. in agreement with the Henderson-Hasselbalch concept also pCO2. Traditional evaluation of acid-base balance disorders is based on the pH of body fluids (though pH may be within normal range if several acid-base balance disturbances are present). In order to maintain this view and simultaneously to respect the Stewart-Fencl principle, we invented a new equation, which uses only the independent variables to define the pH of body fluids. This analysis shows that for a given value of pCO2, the pH of body fluids is determined by a difference between SID and [A(tot)-]. pH = 6.1 + log((SID - [A(tot)-])/(0.03pCO2)) or in itemized form: pH = 6.1 + log((([Na+] + [K+] + [Ca2+] + [Mg2+] - [Cl-] - [UA-]) - (k1[Alb] + k2[P(i)]))/(0.03 x pCO2)). Evaluation of the individual components of this equation enables us to detect, which of the independent variable (or a combination of independent variables) deviates from the normal range and therefore which one or ones is a cause of the acid-base balance disorder. At the end of this paper we give examples of a practical application of this equation.

  8. How Closely Related Are Conformations of Protein Ions Sampled by IM-MS to Native Solution Structures?

    PubMed

    Chen, Shu-Hua; Russell, David H

    2015-09-01

    Here, we critically evaluate the effects of changes in the ion internal energy (E(int)) on ion-neutral collision cross sections (CCS) of ions of two structurally diverse proteins, specifically the [M + 6H](6+) ion of ubiquitin (ubq(6+)), the [M + 5H](5+) ion of the intrinsically disordered protein (IDP) apo-metallothionein-2A (MT), and its partially- and fully-metalated isoform, the [CdiMT](5+) ion. The ion-neutral CCS for ions formed by "native-state" ESI show a strong dependence on E(int). Collisional activation is used to increase E(int) prior to the ions entering and within the traveling wave (TW) ion mobility analyzer. Comparisons of experimental CCSs with those generated by molecular dynamics (MD) simulation for solution-phase ions and solvent-free ions as a function of temperature provide new insights about conformational preferences and retention of solution conformations. The E(int)-dependent CCSs, which reveal increased conformational diversity of the ion population, are discussed in terms of folding/unfolding of solvent-free ions. For example, ubiquitin ions that have low internal energies retain native-like conformations, whereas ions that are heated by collisional activation possess higher internal energies and yield a broader range of CCS owing to increased conformational diversity due to losses of secondary and tertiary structures. In contrast, the CCS profile for the IDP apoMT is consistent with kinetic trapping of an ion population composed of a wide range of conformers, and as the E(int) is increased, these structurally labile conformers unfold to an elongated conformation.

  9. How Closely Related Are Conformations of Protein Ions Sampled by IM-MS to Native Solution Structures?

    PubMed

    Chen, Shu-Hua; Russell, David H

    2015-09-01

    Here, we critically evaluate the effects of changes in the ion internal energy (E(int)) on ion-neutral collision cross sections (CCS) of ions of two structurally diverse proteins, specifically the [M + 6H](6+) ion of ubiquitin (ubq(6+)), the [M + 5H](5+) ion of the intrinsically disordered protein (IDP) apo-metallothionein-2A (MT), and its partially- and fully-metalated isoform, the [CdiMT](5+) ion. The ion-neutral CCS for ions formed by "native-state" ESI show a strong dependence on E(int). Collisional activation is used to increase E(int) prior to the ions entering and within the traveling wave (TW) ion mobility analyzer. Comparisons of experimental CCSs with those generated by molecular dynamics (MD) simulation for solution-phase ions and solvent-free ions as a function of temperature provide new insights about conformational preferences and retention of solution conformations. The E(int)-dependent CCSs, which reveal increased conformational diversity of the ion population, are discussed in terms of folding/unfolding of solvent-free ions. For example, ubiquitin ions that have low internal energies retain native-like conformations, whereas ions that are heated by collisional activation possess higher internal energies and yield a broader range of CCS owing to increased conformational diversity due to losses of secondary and tertiary structures. In contrast, the CCS profile for the IDP apoMT is consistent with kinetic trapping of an ion population composed of a wide range of conformers, and as the E(int) is increased, these structurally labile conformers unfold to an elongated conformation. PMID:26115967

  10. Seasonal Variation of Lead in Fish Pond Waters of High Hunting Activity Area and Relation to Metals and Ions.

    PubMed

    Binkowski, Lukasz J; Rzonca, Bartłomiej

    2014-01-01

    Anthropogenic activities such as industry, agriculture, and daily life are related to metal pollution of the environment. Places known of the highest impact are fishponds where intensive fish farming is believed to input a significant amount of various elements to water. Additionally, many studies suspect wetland hunting activity of water lead pollution. The present paper aims to check if hunting is a significant source of lead (Pb) in water as well as to study the temporal trends of numerous parameters (pH, SEC, Cd, Cu, Zn, Ca, Mg, Na, K, NH4+, HCO3 (-), SO4 (2-), Cl(-), NO3 (-), F(-)) in ponds (n = 48) and inflow (n = 24) waters near Zator in southern Poland, Europe. Most concentrations were measured with ion chromatography and electrothermal atomic absorption spectrometry. Lead concentrations in pond waters were low and found not to be linked with hunting activity, as well as they did not differ from the ones found in the inflow water. Moreover, it could be stated that activities led on ponds did not enrich rivers in the studied ions and elements. PMID:25419011

  11. Determination of secondary ion mass spectrometry relative sensitivity factors for polar and non-polar ZnO

    SciTech Connect

    Laufer, Andreas; Volbers, Niklas; Eisermann, Sebastian; Meyer, Bruno K.; Potzger, Kay; Geburt, Sebastian; Ronning, Carsten

    2011-11-01

    Zinc oxide (ZnO) is regarded as a promising material for optoelectronic devices, due to its electronic properties. Solely, the difficulty in obtaining p-type ZnO impedes further progress. In this connection, the identification and quantification of impurities is a major demand. For quantitative information using secondary ion mass spectrometry (SIMS), so-called relative sensitivity factors (RSF) are mandatory. Such conversion factors did not yet exist for ZnO. In this work, we present the determined RSF values for ZnO using primary (ion implanted) as well as secondary (bulk doped) standards. These RSFs have been applied to commercially available ZnO substrates of different surface termination (a-plane, Zn-face, and O-face) to quantify the contained impurities. Although these ZnO substrates originate from the same single-crystal, we observe discrepancies in the impurity concentrations. These results cannot be attributed to surface termination dependent RSF values for ZnO.

  12. Ion mobility sensor

    DOEpatents

    Koo, Jackson C.; Yu, Conrad M.

    2005-08-23

    An ion mobility sensor which can detect both ion and molecules simultaneously. Thus, one can measure the relative arrival times between various ions and molecules. Different ions have different mobility in air, and the ion sensor enables measurement of ion mobility, from which one can identify the various ions and molecules. The ion mobility sensor which utilizes a pair of glow discharge devices may be designed for coupling with an existing gas chromatograph, where various gas molecules are already separated, but numbers of each kind of molecules are relatively small, and in such cases a conventional ion mobility sensor cannot be utilized.

  13. Determination of the amount of wash amines and ammonium ion in desulfurization products of process gases and results of related studies.

    PubMed

    Kamiński, Marian; Jastrzebski, Daniel; Przyjazny, Andrzej; Kartanowicz, Rafał

    2002-02-22

    This paper describes a method for the determination of the so-called wash amines and their degradation products, including ammonium ions, in process liquids and wastewater generated during the desulfurization of hydrogen sulfide gas in the process of crude oil refining and also reports the results of related studies. Ion-exchange liquid chromatography employing an inexpensive cation-exchange HPLC column and refractometric detection was used. The results obtained were compared with those obtained by potentiometric titration. Analytical characteristics and a description of the developed procedure are provided. Examples of the results of routine determinations of amines, their degradation products and ammonium ions in process liquids and wastewater are given.

  14. Inhibition of Vein Graft Stenosis in Rabbits with a c-jun Targeting DNAzyme in a Cationic Liposomal Formulation Containing 1,2-dioleoyl-3-trimethylammonium propane (DOTAP)/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)

    PubMed Central

    Li, Yue; Bhindi, Ravinay; Deng, Zhou J.; Morton, Stephen W.; Hammond, Paula T.; Khachigian, Levon M.

    2014-01-01

    Background/Objectives Coronary artery bypass grafting (CABG) is among the most commonly performed heart surgical procedures for the treatment of ischemic heart disease. Saphenous vein graft failure due to stenosis impedes the longer-term success of CABG. A key cellular event in the process of vein graft stenosis is smooth muscle cell (SMC) hyperplasia. In this study, we evaluated the effect of a DNAzyme (Dz13) targeting the transcription factor c-Jun in a rabbit model of vein graft stenosis after autologous transplantation in a cationic liposomal formulation containing 1,2-dioleoyl-3-trimethylammonium propane (DOTAP)/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). Dz13 in DOTAP/DOPE has undergone preclinical toxicological testing, and a Phase I clinical trial we recently conducted in skin cancer patients demonstrates that it is safe and well tolerated after local administration. Methods Effects of Dz13 in a formulation containing DOTAP/DOPE on SMC growth and c-Jun expression were assessed. Dz13 transfection was determined by cellular uptake of carboxyfluorescein-labeled Dz13. Autologous jugular vein to carotid artery transplantation was performed in New Zealand White rabbits to investigate the effect of the Dz13 in DOTAP/DOPE formulation on the extent of intimal hyperplasia. Results Dz13/DOTAP/DOPE reduced SMC proliferation and c-Jun protein expression in vitro compared with an impotent form of Dz13 bearing a point mutation in its catalytic domain (Dz13.G>C). The Dz13 (500 µg)/DOTAP/DOPE formed lipoplexes that were colloidally stable for up to 1 hour on ice (0°C) or 30 minutes at 37°C, allowing sufficient uptake by the veins. Dz13 (500µg) inhibited neointima formation 28 days after end-to-side transplantation. Conclusions This formulation applied to veins prior to transplantation may potentially be useful in efforts to reduce graft failure. PMID:23886527

  15. Carbon Ion Irradiation of the Rat Spinal Cord: Dependence of the Relative Biological Effectiveness on Linear Energy Transfer

    SciTech Connect

    Saager, Maria; Glowa, Christin; Peschke, Peter; Brons, Stephan; Scholz, Michael; Huber, Peter E.; Debus, Jürgen; Karger, Christian P.

    2014-09-01

    Purpose: To measure the relative biological effectiveness (RBE) of carbon ions in the rat spinal cord as a function of linear energy transfer (LET). Methods and Materials: As an extension of a previous study, the cervical spinal cord of rats was irradiated with single doses of carbon ions at 6 positions of a 6-cm spread-out Bragg peak (16-99 keV/μm). The TD{sub 50} values (dose at 50% complication probability) were determined according to dose-response curves for the development of paresis grade 2 within an observation time of 300 days. The RBEs were calculated using TD{sub 50} for photons of our previous study. Results: Minimum latency time was found to be dose-dependent, but not significantly LET-dependent. The TD{sub 50} values for the onset of paresis grade 2 within 300 days were 19.5 ± 0.4 Gy (16 keV/μm), 18.4 ± 0.4 Gy (21 keV/μm), 17.7 ± 0.3 Gy (36 keV/μm), 16.1 ± 1.2 Gy (45 keV/μm), 14.6 ± 0.5 Gy (66 keV/μm), and 14.8 ± 0.5 Gy (99 keV/μm). The corresponding RBEs increased from 1.26 ± 0.05 (16 keV/μm) up to 1.68 ± 0.08 at 66 keV/μm. Unexpectedly, the RBE at 99 keV/μm was comparable to that at 66 keV/μm. Conclusions: The data suggest a linear relation between RBE and LET at high doses for late effects in the spinal cord. Together with additional data from ongoing fractionated irradiation experiments, these data will provide an extended database to systematically benchmark RBE models for further improvements of carbon ion treatment planning.

  16. Method of assessing a lipid-related health risk based on ion mobility analysis of lipoproteins

    DOEpatents

    Benner, W. Henry; Krauss, Ronald M.; Blanche, Patricia J.

    2010-12-14

    A medical diagnostic method and instrumentation system for analyzing noncovalently bonded agglomerated biological particles is described. The method and system comprises: a method of preparation for the biological particles; an electrospray generator; an alpha particle radiation source; a differential mobility analyzer; a particle counter; and data acquisition and analysis means. The medical device is useful for the assessment of human diseases, such as cardiac disease risk and hyperlipidemia, by rapid quantitative analysis of lipoprotein fraction densities. Initially, purification procedures are described to reduce an initial blood sample to an analytical input to the instrument. The measured sizes from the analytical sample are correlated with densities, resulting in a spectrum of lipoprotein densities. The lipoprotein density distribution can then be used to characterize cardiac and other lipid-related health risks.

  17. Relative biological effectiveness of light ions in human tumoural cell lines: role of protein p53

    NASA Technical Reports Server (NTRS)

    Baggio, L.; Cavinato, M.; Cherubini, R.; Conzato, M.; Cucinotta, F.; Favaretto, S.; Gerardi, S.; Lora, S.; Stoppa, P.; Williams, J. R.

    2002-01-01

    Protons and alpha particles of high linear energy transfer (LET) have shown an increased relative biological effectiveness (RBE) with respect to X/gamma rays for several cellular and molecular endpoints in different in vitro cell systems. To contribute to understanding the biochemical mechanisms involved in the increased effectiveness of high LET radiation, an extensive study has been designed. The present work reports the preliminary result of this study on two human tumoural cell lines, DLD1 and HCT116, (with different p53 status), which indicate that for these cell lines, p53 does not appear to take a part in the response to radiation induced DNA damage, suggesting an alternative p53-independent pathway and a cell biochemical mechanism dependent on the cell type.

  18. Distributions of Li+, Na+ K+, Rb+, and Cs+ tracer ions in erythrocytes at 38 degrees C in relation to entry rates of these ions into cells at 0 degree C.

    PubMed

    Salminen, S; Ekman, A; Rastas, J

    2000-01-01

    Forces that are able to transport Na+ and K+ into two compartments were investigated. A modified Nernst-Planck equation for coupled flows of electric current, water, and ions was integrated. The result shows that if alkali ions in the ion channel of the cell membrane are separated by their electric-current-induced inward flows against an electro-osmotic outward flow of water, the logarithms of the stationary cell/medium distributions of these ions should be proportional to the inverse of their diffusion mobilities. The relationship was tested in human erythrocytes. From inward and outward movements of tracer alkali ions, calculations were made to obtain their stationary distributions at infinite time. The cell/medium distributions determined in this way at 38 degrees C are Li+ = 0.59, 22Na+ = 0.044, 42K+ = 10.0, 86Rb+ = 11.9, and 137Cs+ = 3.07. The entry rates of ions into the cell at 0 degrees C are understood to represent their diffusion mobilities in the pump channel. The entry rates are Li+ = 1.44, 2Na+ = 1, 42K+ = 2.22, 86Rb+ = 2.39, and 137Cs+ = 1.72 relative to that of 22Na+. There is an expected negative correlation between the logarithms of the stationary cell/ medium distributions at 38 degrees C and the inverse of the entry rates into the cell at 0 degrees C for the five ions. It is suggested that the proposed physical forces cause the separation of alkali ions in the channel of Na,K-ATPase. PMID:11156287

  19. Analysis of inorganic nitrogen and related anions in high salinity water using ion chromatography with tandem UV and conductivity detectors.

    PubMed

    Wilson, Brian; Gandhi, Jay; Zhang, Chunlong Carl

    2011-09-01

    Over 97% of the Earth's water is high salinity water in the form of gulfs, oceans, and salt lakes. There is an increasing concern for the quality of water in bays, gulfs, oceans, and other natural waters. These waters are affected by many different sources of contamination. The sources are, but not limited to, groundwater run-off of nitrogen containing fertilizer, pesticides, cleaning agents, solid wastes, industrial waters, and many more. The final destinations of these contaminants are rivers, lakes, and bayous that eventually will lead to bays, gulfs, and oceans. Many industries depend on the quality of these waters, such as the fishing industry. In addition to wild marine life, there are large aquariums and fish and shrimp farms that are required to know the quality of the water. However, the ability of these industries to monitor their processes is limited. Most analytical methods do not apply to the analysis of high salinity waters. They are dependent on wet chemistry techniques, spectrophotometers, and flow analyzers. These methods do not have the accuracy, precision, and sensitivity when compared to ion chromatography (IC). Since the inception of IC, it has become a standard practice for determining the content of many different water samples. Many IC methods are limited in the range of analytes that can be detected, as well as the numerous sample sources of which the methods are applicable. The main focus of current IC methods does not include high salinity waters. This research demonstrates an ion chromatographic method that has the ability to determine low level concentrations of inorganic nitrogen and related anions (nitrite-N, nitrate-N, phosphorous-P, sulfate, bromide, chloride, sulfide, fluoride, ammonia, calcium, and magnesium) in a single run using a combination of UV and conductivity detectors. This method is applicable to various waters, and uses both freshwater and high salinity water samples.

  20. [Effect of peptide bioregulator and cobalt ions on the activity of NORs and associations of acrocentric chromosomes in lymphocytes of patients with hypertrophic cardiomyopathy and their relatives].

    PubMed

    2014-09-01

    The influence of peptide bioregulator - Livagen (Lys-Glu-Asp-Ala) separately and combined with cobalt ions, on the activity of nucleolar organizer regions (NORs) and frequency of associations of acrocentric chromosomes in lymphocytes from patients with hypertrophic cardiomyopathy (HCM) and their relatives has been studied. It is shown that combined action of Livagen and cobalt ions increases the frequency of large-sized scoring 2 NORs in both, patients and their relatives. Significant was also the influence of the studied compounds on associative activity of acrocsentric chromosomes that was expressed in sharp increase of this indicator in both studied groups. In this case more effective was the action of Livagen and cobalt ions. As activity of NOR, also the frequency of associations of acrocentric chromosomes is dependent of quality of acrocentric chromosome stalk condensation, we conclude, that by influence of Livagen and cobalt ions on the lymphocytes of HCM patients and their relatives, occurs decondensation of heterochromatinized chromatin. This may be release condition during condensation of inactivated genes in the studied groups of individuals. Our data are important because it provides new information about protective effect of Livagen and Livagen+Cobalt ions on the lymphocytes of HCM patients and their relatives and may lead to the development of a therapeutic treatment.

  1. Ion parking during ion/ion reactions in electrodynamic ion traps.

    PubMed

    McLuckey, Scott A; Reid, Gavin E; Wells, J Mitchell

    2002-01-15

    Under appropriate ion density conditions, it is possible to selectively inhibit rates of ion/ion reactions in a quadrupole ion trap via the application of oscillatory voltages to one or more electrodes of the ion trap. The phenomenon is demonstrated using dipolar resonance excitation applied to the end-cap electrodes of a three-dimensional quadrupole ion trap. The application of a resonance excitation voltage tuned to inhibit the ion/ion reaction rate of a specific range of ion mass-to-charge ratios is referred to as "ion parking". The bases for rate inhibition are (i) an increase in the relative velocity of the ion/ion reaction pair, which reduces the cross section for ion/ion capture and, at least in some cases, (ii) reduction in the time of physical overlap of positively charged and negatively charged ion clouds. The efficiency and specificity of the ion parking experiment is highly dependent upon ion densities, trapping conditions, ion charge states, and resonance excitation conditions. The ion parking experiment is illustrated herein along with applications to the concentration of ions originally present over a range of charge states into a selected charge state and in the selection of a particular ion from a set of ions derived from a simple protein mixture.

  2. Rapid separation of desloratadine and related compounds in solid pharmaceutical formulation using gradient ion-pair chromatography.

    PubMed

    Zheng, Jinjian; Rustum, Abu M

    2010-01-01

    We reported the development of an ion-pair chromatographic method to separate desloratadine and all known related compounds in Clarinex Tablets, which use desloratadine as active pharmaceutical ingredient (API). For the first time, baseline separation for desloratadine and all known related compounds was achieved by utilizing a YMC-Pack Pro C(18) column (150 mm x 4.6 mm I.D., 3 microm particle size, 120A pore size) and a gradient elution method. The mobile phase A contains 3 mM sodium dodecylsulfate (SDS), 15 mM sodium citrate buffer at pH 6.2, and 40 mM sodium sulfate, while the mobile phase B is acetonitrile. Chromsword, an artificial intelligence method development tool, was used to optimize several key chromatographic parameters simultaneously including buffer pH/solvent strength, and temperature/gradient profile. The resolution of desloratadine and desloratadine 3,4-dehydropiperidine derivative, one of the critical pairs was improved by adding 40 mM sodium sulfate. Ultraviolet detection at 267 nm was used to achieve the detection for desloratadine and all compounds. This method has been successfully validated according to ICH guidelines in terms of linearity, accuracy, quantitation limit/detection limit, precision, specificity and robustness. It could be used as a stability indicating method for desloratadine drug substances or drug products that use desloratadine as active pharmaceutical ingredient.

  3. Reactivity of niobium-carbon cluster ions with hydrogen molecules in relation to formation mechanism of Met-Car cluster ions.

    PubMed

    Miyajima, Ken; Fukushima, Naoya; Mafuné, Fumitaka

    2008-07-01

    It is known that a niobium-carbon Met-Car cluster ion (Nb 8C 12 (+)) and its intermediates (Nb 4C 4 (+), Nb 6C 7 (+), etc.) are selectively formed by the aggregation of the Nb atoms in the presence of hydrocarbons. To elucidate the formation mechanism, we prepared Nb n C m (+) with every combination of n and m in the gas phase by the laser vaporization technique. The reactivity of Nb n C m (+) with H 2 was examined under the multiple collision condition, finding that Nb n C m (+) between Nb 2C 3 (+) and Nb 8C 12 (+) are not reactive with H 2. On the basis of the H 2 affinity of Nb n C m (+) experimentally obtained, we propose a dehydrogenation-controlled formation mechanism of niobium-carbon Met-Car cluster ions.

  4. Acid-sensing ion channel-1a in the amygdala, a novel therapeutic target in depression-related behavior

    PubMed Central

    Coryell, Matthew W.; Wunsch, Amanda M.; Haenfler, Jill M.; Allen, Jason E.; Schnizler, Mikael; Ziemann, Adam E.; Cook, Melloni N.; Dunning, Jonathan P.; Price, Margaret P.; Rainier, Jon D.; Liu, Zhuqing; Light, Alan R.; Langbehn, Douglas R.; Wemmie, John A.

    2009-01-01

    No animal models replicate the complexity of human depression. However, a number of behavioral tests in rodents are sensitive to antidepressants and may thus tap important underlying biological factors. Such models may also offer the best opportunity to discover novel treatments. Here, we used several of these models to test the hypothesis that the acid-sensing ion channel-1a (ASIC1a) might be targeted to reduce depression. Genetically disrupting ASIC1a in mice produced antidepressant-like effects in the forced swim test, the tail suspension test, and following unpredictable mild stress. Pharmacologically inhibiting ASIC1a also had antidepressant-like effects in the forced swim test. The effects of ASIC1a disruption in the forced swim test were independent of and additive to those of several commonly used antidepressants. Furthermore, ASIC1a disruption interfered with an important biochemical marker of depression, the ability of stress to reduce BDNF in the hippocampus. Restoring ASIC1a to the amygdala of ASIC1a−/− mice with a viral vector reversed the forced swim test effects, suggesting that the amygdala is a key site of ASIC1a action in depression-related behavior. These data are consistent with clinical studies emphasizing the importance of the amygdala in mood regulation, and suggest that ASIC1a antagonists may effectively combat depression. PMID:19403806

  5. Effects of ionization mode on charge-site-remote and related fragmentation reactions of long-chain quaternary ammonium ions.

    PubMed

    Seto, C; Grossert, J S; Waddell, D S; Curtis, J M; Boyd, R K

    2001-05-01

    Comparison of collisionally activated fragment spectra of long-chain quaternary ammonium ions, formed by liquid-assisted secondary ion mass spectrometry (LSIMS) and electrospray ionization (ESI), shows the latter are dominated by radical cations while the former yield mainly even-electron charge-site-remote (CSR) fragments, similar to the report for different precursors by Cheng et al., J. Am. Soc. Mass Spectrom. 1998, 9, 840. Here, mixed-site fragmentation products (formal loss of a radical directly bonded to the nitrogen plus a radical derived from the long chain) are of comparable importance for both ionization techniques. These observations are difficult to understand if the CSR ions are formed by a concerted rearrangement-elimination reaction, since precollision internal energies of the ESI ions are much lower than those of the ions from LSIMS. Alternatively, if one discards the concerted mechanism for high-energy CA, and assumes that the even-electron fragments are predominantly formed via homolytic bond cleavage, the colder radical cations from ESI survive to the detector while the more energized counterparts from LSIMS preferentially lose a hydrogen atom to yield the CSR ions, as proposed by Wysocki and Ross (Int. J. Mass Spectrom. Ion Processes 1991, 104, 179). The present work also attempts to reconcile discrepancies involving critical energies and known structures for neutral fragments. PMID:11349955

  6. Changes in the levels of phytochelatins and related metal-binding peptides in chickpea seedlings exposed to arsenic and different heavy metal ions.

    PubMed

    Gupta, Dharmendra K; Tohoyama, Hiroshi; Joho, Masanori; Inouhe, Masahiro

    2004-06-01

    Phytochelatin-related peptides were analyzed in chickpea plants exposed to six different heavy-metal ions. Cadmium and arsenic stimulated phytochelatin and homophytochelatin synthesis in roots but other metals did not. These metals, however, caused an overall increase in the precursors, glutathione, homoglutathione and cysteine. These changes may be different biochemical indexes for heavy-metal contamination.

  7. Regulatory Action of Calcium Ion on Cyclic AMP-Enhanced Expression of Implantation-Related Factors in Human Endometrial Cells

    PubMed Central

    Kusama, Kazuya; Yoshie, Mikihiro; Tamura, Kazuhiro; Imakawa, Kazuhiko; Isaka, Keiichi; Tachikawa, Eiichi

    2015-01-01

    Decidualization of human endometrial stroma and gland development is mediated through cyclic AMP (cAMP), but the role of intracellular calcium ion (Ca2+) on cAMP mediated-signaling in human endometrial stroma and glandular epithelia has not been well-characterized. The present study was designed to investigate the role of intracellular Ca2+ on cAMP mediated-decidualization and gland maturation events, which can be identified by the up-regulation of prolactin and IGF-binding protein (IGFBP)1 in human endometrial stromal cells (ESCs), and cyclooxygenase 2 (COX2) and prostaglandin E2 (PGE2) and glandular epithelial EM-1 cells. Increases in decidual prolactin and IGFBP-1 transcript levels, induced by cAMP-elevating agents forskolin or dibutyryl cyclic AMP, were inhibited by Ca2+ influx into ESCs with Ca2+ ionophores (alamethicin, ionomycin) in a dose-dependent manner. Conversely, inhibitors of Ca2+ influx through L-type voltage-dependent Ca2+ channel (VDCC), nifedipine and verapamil, enhanced the decidual gene expression. Furthermore, dantrolene, an inhibitor of Ca2+ release from the intracellular Ca2+ store, up-regulated prolactin and IGFBP-1 expression. Ca2+ ionophores decreased intracellular cAMP concentrations, whereas nifedipine, verapamil or dantrolene increased cAMP concentrations in ESCs. In glandular epithelial cells, similar responses in COX2 expression and PGE2 production were found when intracellular cAMP levels were up-regulated by decreases in Ca2+ concentrations. Thus, a marked decrease in cytosolic Ca2+ levels caused the elevation of cAMP concentrations, resulting in enhanced expression of implantation-related factors including decidual markers. These findings suggest that fluctuation in cytosolic Ca2+ concentrations alters intracellular cAMP levels, which then regulate differentiation of endometrial stromal and glandular epithelial cells. PMID:26161798

  8. Regulatory Action of Calcium Ion on Cyclic AMP-Enhanced Expression of Implantation-Related Factors in Human Endometrial Cells.

    PubMed

    Kusama, Kazuya; Yoshie, Mikihiro; Tamura, Kazuhiro; Imakawa, Kazuhiko; Isaka, Keiichi; Tachikawa, Eiichi

    2015-01-01

    Decidualization of human endometrial stroma and gland development is mediated through cyclic AMP (cAMP), but the role of intracellular calcium ion (Ca2+) on cAMP mediated-signaling in human endometrial stroma and glandular epithelia has not been well-characterized. The present study was designed to investigate the role of intracellular Ca2+ on cAMP mediated-decidualization and gland maturation events, which can be identified by the up-regulation of prolactin and IGF-binding protein (IGFBP)1 in human endometrial stromal cells (ESCs), and cyclooxygenase 2 (COX2) and prostaglandin E2 (PGE2) and glandular epithelial EM-1 cells. Increases in decidual prolactin and IGFBP-1 transcript levels, induced by cAMP-elevating agents forskolin or dibutyryl cyclic AMP, were inhibited by Ca2+ influx into ESCs with Ca2+ ionophores (alamethicin, ionomycin) in a dose-dependent manner. Conversely, inhibitors of Ca2+ influx through L-type voltage-dependent Ca2+ channel (VDCC), nifedipine and verapamil, enhanced the decidual gene expression. Furthermore, dantrolene, an inhibitor of Ca2+ release from the intracellular Ca2+ store, up-regulated prolactin and IGFBP-1 expression. Ca2+ ionophores decreased intracellular cAMP concentrations, whereas nifedipine, verapamil or dantrolene increased cAMP concentrations in ESCs. In glandular epithelial cells, similar responses in COX2 expression and PGE2 production were found when intracellular cAMP levels were up-regulated by decreases in Ca2+ concentrations. Thus, a marked decrease in cytosolic Ca2+ levels caused the elevation of cAMP concentrations, resulting in enhanced expression of implantation-related factors including decidual markers. These findings suggest that fluctuation in cytosolic Ca2+ concentrations alters intracellular cAMP levels, which then regulate differentiation of endometrial stromal and glandular epithelial cells. PMID:26161798

  9. The relative biological effectiveness of densely ionizing heavy-ion radiation for inducing ocular cataracts in wild type versus mice heterozygous for the ATM gene.

    PubMed

    Hall, Eric J; Worgul, Basil V; Smilenov, Lubomir; Elliston, Carl D; Brenner, David J

    2006-07-01

    The accelerated appearance of ocular cataracts at younger ages has been recorded in both astronauts and airline pilots, and is usually attributed to high-energy heavy ions in galactic cosmic ray radiation. We have previously shown that high-LET 1-GeV/nucleon (56)Fe ions are significantly more effective than X-rays in producing cataracts in mice. We have also shown that mice haploinsufficient for ATM develop cataracts earlier than wild-type animals, when exposed to either low-LET X-rays or high-LET (56)Fe ions. In this paper we derive quantitative estimates for the relative biological effectiveness (RBE) of high energy (56)Fe ions compared with X-rays, both for wild type and for mice haploinsufficient for ATM. There is a clear trend toward higher RBE's in haploinsufficient animals, both for low- and high-grade cataracts. Haploinsufficiency for ATM results in an enhanced sensitivity to X-rays compared with the wild type, and this enhancement appears even larger after exposure to high-LET heavy ions. PMID:16799786

  10. Rapid MCNP simulation of DNA double strand break (DSB) relative biological effectiveness (RBE) for photons, neutrons, and light ions.

    PubMed

    Stewart, Robert D; Streitmatter, Seth W; Argento, David C; Kirkby, Charles; Goorley, John T; Moffitt, Greg; Jevremovic, Tatjana; Sandison, George A

    2015-11-01

    To account for particle interactions in the extracellular (physical) environment, information from the cell-level Monte Carlo damage simulation (MCDS) for DNA double strand break (DSB) induction has been integrated into the general purpose Monte Carlo N-particle (MCNP) radiation transport code system. The effort to integrate these models is motivated by the need for a computationally efficient model to accurately predict particle relative biological effectiveness (RBE) in cell cultures and in vivo. To illustrate the approach and highlight the impact of the larger scale physical environment (e.g. establishing charged particle equilibrium), we examined the RBE for DSB induction (RBEDSB) of x-rays, (137)Cs γ-rays, neutrons and light ions relative to γ-rays from (60)Co in monolayer cell cultures at various depths in water. Under normoxic conditions, we found that (137)Cs γ-rays are about 1.7% more effective at creating DSB than γ-rays from (60)Co (RBEDSB  =  1.017) whereas 60-250 kV x-rays are 1.1 to 1.25 times more efficient at creating DSB than (60)Co. Under anoxic conditions, kV x-rays may have an RBEDSB up to 1.51 times as large as (60)Co γ-rays. Fission neutrons passing through monolayer cell cultures have an RBEDSB that ranges from 2.6 to 3.0 in normoxic cells, but may be as large as 9.93 for anoxic cells. For proton pencil beams, Monte Carlo simulations suggest an RBEDSB of about 1.2 at the tip of the Bragg peak and up to 1.6 a few mm beyond the Bragg peak. Bragg peak RBEDSB increases with decreasing oxygen concentration, which may create opportunities to apply proton dose painting to help address tumor hypoxia. Modeling of the particle RBE for DSB induction across multiple physical and biological scales has the potential to aid in the interpretation of laboratory experiments and provide useful information to advance the safety and effectiveness of hadron therapy in the treatment of cancer.

  11. Rapid MCNP simulation of DNA double strand break (DSB) relative biological effectiveness (RBE) for photons, neutrons, and light ions.

    PubMed

    Stewart, Robert D; Streitmatter, Seth W; Argento, David C; Kirkby, Charles; Goorley, John T; Moffitt, Greg; Jevremovic, Tatjana; Sandison, George A

    2015-11-01

    To account for particle interactions in the extracellular (physical) environment, information from the cell-level Monte Carlo damage simulation (MCDS) for DNA double strand break (DSB) induction has been integrated into the general purpose Monte Carlo N-particle (MCNP) radiation transport code system. The effort to integrate these models is motivated by the need for a computationally efficient model to accurately predict particle relative biological effectiveness (RBE) in cell cultures and in vivo. To illustrate the approach and highlight the impact of the larger scale physical environment (e.g. establishing charged particle equilibrium), we examined the RBE for DSB induction (RBEDSB) of x-rays, (137)Cs γ-rays, neutrons and light ions relative to γ-rays from (60)Co in monolayer cell cultures at various depths in water. Under normoxic conditions, we found that (137)Cs γ-rays are about 1.7% more effective at creating DSB than γ-rays from (60)Co (RBEDSB  =  1.017) whereas 60-250 kV x-rays are 1.1 to 1.25 times more efficient at creating DSB than (60)Co. Under anoxic conditions, kV x-rays may have an RBEDSB up to 1.51 times as large as (60)Co γ-rays. Fission neutrons passing through monolayer cell cultures have an RBEDSB that ranges from 2.6 to 3.0 in normoxic cells, but may be as large as 9.93 for anoxic cells. For proton pencil beams, Monte Carlo simulations suggest an RBEDSB of about 1.2 at the tip of the Bragg peak and up to 1.6 a few mm beyond the Bragg peak. Bragg peak RBEDSB increases with decreasing oxygen concentration, which may create opportunities to apply proton dose painting to help address tumor hypoxia. Modeling of the particle RBE for DSB induction across multiple physical and biological scales has the potential to aid in the interpretation of laboratory experiments and provide useful information to advance the safety and effectiveness of hadron therapy in the treatment of cancer. PMID:26449929

  12. Rapid MCNP simulation of DNA double strand break (DSB) relative biological effectiveness (RBE) for photons, neutrons, and light ions

    NASA Astrophysics Data System (ADS)

    Stewart, Robert D.; Streitmatter, Seth W.; Argento, David C.; Kirkby, Charles; Goorley, John T.; Moffitt, Greg; Jevremovic, Tatjana; Sandison, George A.

    2015-11-01

    To account for particle interactions in the extracellular (physical) environment, information from the cell-level Monte Carlo damage simulation (MCDS) for DNA double strand break (DSB) induction has been integrated into the general purpose Monte Carlo N-particle (MCNP) radiation transport code system. The effort to integrate these models is motivated by the need for a computationally efficient model to accurately predict particle relative biological effectiveness (RBE) in cell cultures and in vivo. To illustrate the approach and highlight the impact of the larger scale physical environment (e.g. establishing charged particle equilibrium), we examined the RBE for DSB induction (RBEDSB) of x-rays, 137Cs γ-rays, neutrons and light ions relative to γ-rays from 60Co in monolayer cell cultures at various depths in water. Under normoxic conditions, we found that 137Cs γ-rays are about 1.7% more effective at creating DSB than γ-rays from 60Co (RBEDSB  =  1.017) whereas 60-250 kV x-rays are 1.1 to 1.25 times more efficient at creating DSB than 60Co. Under anoxic conditions, kV x-rays may have an RBEDSB up to 1.51 times as large as 60Co γ-rays. Fission neutrons passing through monolayer cell cultures have an RBEDSB that ranges from 2.6 to 3.0 in normoxic cells, but may be as large as 9.93 for anoxic cells. For proton pencil beams, Monte Carlo simulations suggest an RBEDSB of about 1.2 at the tip of the Bragg peak and up to 1.6 a few mm beyond the Bragg peak. Bragg peak RBEDSB increases with decreasing oxygen concentration, which may create opportunities to apply proton dose painting to help address tumor hypoxia. Modeling of the particle RBE for DSB induction across multiple physical and biological scales has the potential to aid in the interpretation of laboratory experiments and provide useful information to advance the safety and effectiveness of hadron therapy in the treatment of cancer.

  13. Detector Characterization Report, Response Related to Linear Movement and Radiation Levels for an Oak Ridge National Laboratory (ORNL)-Developed Ion Chamber and a Commercial Ion Chamber

    SciTech Connect

    Chiaro, P.J.

    2001-01-11

    Recent activities regarding the safeguarding of radioactive material have indicated there is a need to use radiation sensors to monitor intentional or unintentional material movement. Existing radiation detection systems were not typically designed for this type of operation since most of their use accounted for monitoring material while the material is stationary. To ensure that a radiation monitoring system is capable of detecting the movement of radioactive material, a series of tests were needed. These tests would need to be performed in known radiological conditions, under controlled environmental conditions, and at known movement speeds. The Radiation Effects Facility (REF), located at the Radiation Calibration Laboratory, provided the necessary capabilities to perform these tests. This report provides a compilation of the results from a characterization of two different sensors--a simple, air ionization chamber-based sensor developed at ORNL that consists of an ion chamber connected to a separate amplifier, and an Eberline model RO-7-LD. The RO-7-LD is also an air ionization chamber-based sensor, but the electronics are in the same physical package.

  14. Ion focusing

    DOEpatents

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2015-11-10

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  15. Quantification of Carbohydrates and Related Materials Using Sodium Ion Adducts Produced by Matrix-Assisted Laser Desorption Ionization

    NASA Astrophysics Data System (ADS)

    Ahn, Sung Hee; Park, Kyung Man; Moon, Jeong Hee; Lee, Seong Hoon; Kim, Myung Soo

    2016-11-01

    The utility of sodium ion adducts produced by matrix-assisted laser desorption ionization for the quantification of analytes with multiple oxygen atoms was evaluated. Uses of homogeneous solid samples and temperature control allowed the acquisition of reproducible spectra. The method resulted in a direct proportionality between the ion abundance ratio I([A + Na]+)/I([M + Na]+) and the analyte concentration, which could be used as a calibration curve. This was demonstrated for carbohydrates, glycans, and polyether diols with dynamic range exceeding three orders of magnitude.

  16. Quantification of Carbohydrates and Related Materials Using Sodium Ion Adducts Produced by Matrix-Assisted Laser Desorption Ionization

    NASA Astrophysics Data System (ADS)

    Ahn, Sung Hee; Park, Kyung Man; Moon, Jeong Hee; Lee, Seong Hoon; Kim, Myung Soo

    2016-09-01

    The utility of sodium ion adducts produced by matrix-assisted laser desorption ionization for the quantification of analytes with multiple oxygen atoms was evaluated. Uses of homogeneous solid samples and temperature control allowed the acquisition of reproducible spectra. The method resulted in a direct proportionality between the ion abundance ratio I([A + Na]+)/I([M + Na]+) and the analyte concentration, which could be used as a calibration curve. This was demonstrated for carbohydrates, glycans, and polyether diols with dynamic range exceeding three orders of magnitude.

  17. ION COMPOSITION ELUCIDATION (ICE)

    EPA Science Inventory



    Ion Composition Elucidation (ICE) utilizes selected ion recording with a double focusing mass spectrometer to simultaneously determine exact masses and relative isotopic abundances from mass peak profiles. These can be determined more accurately and at higher sensitivity ...

  18. The EGFR mutation status affects the relative biological effectiveness of carbon-ion beams in non-small cell lung carcinoma cells.

    PubMed

    Amornwichet, Napapat; Oike, Takahiro; Shibata, Atsushi; Nirodi, Chaitanya S; Ogiwara, Hideaki; Makino, Haruhiko; Kimura, Yuka; Hirota, Yuka; Isono, Mayu; Yoshida, Yukari; Ohno, Tatsuya; Kohno, Takashi; Nakano, Takashi

    2015-06-11

    Carbon-ion radiotherapy (CIRT) holds promise to treat inoperable locally-advanced non-small cell lung carcinoma (NSCLC), a disease poorly controlled by standard chemoradiotherapy using X-rays. Since CIRT is an extremely limited medical resource, selection of NSCLC patients likely to benefit from it is important; however, biological predictors of response to CIRT are ill-defined. The present study investigated the association between the mutational status of EGFR and KRAS, driver genes frequently mutated in NSCLC, and the relative biological effectiveness (RBE) of carbon-ion beams over X-rays. The assessment of 15 NSCLC lines of different EGFR/KRAS mutational status and that of isogenic NSCLC lines expressing wild-type or mutant EGFR revealed that EGFR-mutant NSCLC cells, but not KRAS-mutant cells, show low RBE. This was attributable to (i) the high X-ray sensitivity of EGFR-mutant cells, since EGFR mutation is associated with a defect in non-homologous end joining, a major pathway for DNA double-strand break (DSB) repair, and (ii) the strong cell-killing effect of carbon-ion beams due to poor repair of carbon-ion beam-induced DSBs regardless of EGFR mutation status. These data highlight the potential of EGFR mutation status as a predictor of response to CIRT, i.e., CIRT may show a high therapeutic index in EGFR mutation-negative NSCLC.

  19. The EGFR mutation status affects the relative biological effectiveness of carbon-ion beams in non-small cell lung carcinoma cells.

    PubMed

    Amornwichet, Napapat; Oike, Takahiro; Shibata, Atsushi; Nirodi, Chaitanya S; Ogiwara, Hideaki; Makino, Haruhiko; Kimura, Yuka; Hirota, Yuka; Isono, Mayu; Yoshida, Yukari; Ohno, Tatsuya; Kohno, Takashi; Nakano, Takashi

    2015-01-01

    Carbon-ion radiotherapy (CIRT) holds promise to treat inoperable locally-advanced non-small cell lung carcinoma (NSCLC), a disease poorly controlled by standard chemoradiotherapy using X-rays. Since CIRT is an extremely limited medical resource, selection of NSCLC patients likely to benefit from it is important; however, biological predictors of response to CIRT are ill-defined. The present study investigated the association between the mutational status of EGFR and KRAS, driver genes frequently mutated in NSCLC, and the relative biological effectiveness (RBE) of carbon-ion beams over X-rays. The assessment of 15 NSCLC lines of different EGFR/KRAS mutational status and that of isogenic NSCLC lines expressing wild-type or mutant EGFR revealed that EGFR-mutant NSCLC cells, but not KRAS-mutant cells, show low RBE. This was attributable to (i) the high X-ray sensitivity of EGFR-mutant cells, since EGFR mutation is associated with a defect in non-homologous end joining, a major pathway for DNA double-strand break (DSB) repair, and (ii) the strong cell-killing effect of carbon-ion beams due to poor repair of carbon-ion beam-induced DSBs regardless of EGFR mutation status. These data highlight the potential of EGFR mutation status as a predictor of response to CIRT, i.e., CIRT may show a high therapeutic index in EGFR mutation-negative NSCLC. PMID:26065573

  20. [Relative biological effectiveness of accelerated heavy ions and fast neutrons estimated from frequency of aberration mytoses in the retinal epithelium].

    PubMed

    Vorozhtsova, S V; Shafirkin, A V; Fedorenko, B S

    2006-01-01

    Analyzed was the literature and authors' experimental data concerning lesion and recovery of epithelium cells of mice retina immediately and long after irradiation at different sources including single and partly fractionated irradiation by gamma- and X-rays, accelerated protons, helium, carbon and boron ions, and fast neutrons of the reactor range in a large spectrum of doses and LET. Reviewed are some new techniques of determining the RBE coefficient for these types of radiation; large values of the RBE coefficients for accelerated ions and neutrons (5-10 times higher than RBE coefficients calculated for the next day following irradiation) are a result of integration into calculation of the available data about the delayed disorders in retinal epithelium cell regeneration. PMID:17193969

  1. Solutions to Defect-Related Problems in Implanted Silicon by Controlled Injection of Vacancies by High-Energy Ion Irradiation

    SciTech Connect

    Duggan, J.L.; Holland, O.W.; Roth, E.

    1998-11-04

    Amorphization and a dual implant technique have been used to manipulate residual defects that persist following implantation and post-implant thermal treatments. Residual defects can often be attributed to ion-induced defect excesses. A defect is considered to be excess when it occurs in a localized region at a concentration greater than its complement. Sources of excess defects include spatially separated Frenkel pairs, excess interstitials resulting from the implanted atoms, and sputtering. Pre-amorphizing prior to dopant implantation has been proposed to eliminate dopant broadening due to ion channeling as well as dopant diffusion during subsequent annealing. However, transient-enhanced diffusion (TED) of implanted boron has been observed in pre-amorphized Si. The defects driving this enhanced boron diffusion are thought to be the extended interstitial-type defects that form below the amorphous-crystalline interface during implantation. A dual implantation process was applied in an attempt to reduce or eliminate this interfacial defect band. High-energy, ion implantation is known to inject a vacancy excess in this region. Vacancies were implanted at a concentration coincident with the excess interstitials below the a-c interface to promote recombination between the two defect species. Preliminary results indicate that a critical fluence, i.e., a sufficient vacancy concentration, will eliminate the interstitial defects. The effect of the reduction or elimination of these interfacial defects upon TED of boron will be discussed. Rutherford backscattering/channeling and cross section transmission electron microscopy analyses were used to characterize the defect structure within the implanted layer. Secondary ion mass spectroscopy was used to profile the dopant distributions.

  2. SU-E-J-83: Ion Imaging to Better Estimate In-Vivo Relative Stopping Powers Using X-Ray CT Prior-Knowledge Information

    SciTech Connect

    Dias, M; Collins-Fekete, C; Riboldi, M; Baroni, G; Doolan, P; Hansen, D; Seco, J

    2014-06-01

    Purpose: To reduce uncertainties in relative stopping power (RSP) estimates for ions (alpha and carbon) by using Ion radiographic-imaging and X-ray CT prior-knowledge. Methods: A 36×36 phantom matrix composed of 9 materials with different thicknesses and randomly placed is generated. Theoretical RSPs are calculated using stopping power (SP) data from three references (Janni, ICRU49 and Bischel). We introduced an artificial systematic error (1.5%, 2.5% or 3.5%) and a random error (<0.5%) to the SP to simulated patient ion-range errors present in clinic environment. Carbon/alpha final energy for each RSPs set (theoretical and from CT images) is obtained with a ray-tracing algorithm. A gradient descent (GD) method is used to minimize the difference in exit particle energy, between theory and X-ray CT RSP maps, by iteratively correcting the RSP map from X-ray CT. Once a new set of RSPs is obtained for a direction a new optimization is done over other direction using the RSPs from the previous optimization. Theoretical RSPs are compared with experimental RSPs obtained with Gammex Phantom. Results: Preliminary results show that optimized RSP values can be obtained with smaller uncertainties (<1%) than clinical RSPs (1.5% to 3.5%). Theoretical values from three different references show uncertainties, up to 3% from experimental values. Further investigation will consider prior-knowledge from RSP obtained with CT images and ion radiographies from Monte Carlo Simulations. Conclusion: GD and ray-tracing methods have been implemented to reduce RSP uncertainties from values obtained for clinical treatment. Experimental RSPs will be obtained using carbon/alpha beams to consider the existence of material dependent systematic errors. Based on the results, it is hoped to show that using ray-tracing optimization with ion radiography and prior knowledge on RPSs, treatment planning accuracy and cost-effectiveness can be improved.

  3. Relative Penetration of Zinc Oxide and Zinc Ions into Human Skin after Application of Different Zinc Oxide Formulations.

    PubMed

    Holmes, Amy M; Song, Zhen; Moghimi, Hamid R; Roberts, Michael S

    2016-02-23

    Zinc oxide (ZnO) is frequently used in commercial sunscreen formulations to deliver their broad range of UV protection properties. Concern has been raised about the extent to which these ZnO particles (both micronized and nanoparticulate) penetrate the skin and their resultant toxicity. This work has explored the human epidermal skin penetration of zinc oxide and its labile zinc ion dissolution product that may potentially be formed after application of ZnO nanoparticles to human epidermis. Three ZnO nanoparticle formulations were used: a suspension in the oil, capric caprylic triglycerides (CCT), the base formulation commonly used in commercially available sunscreen products; an aqueous ZnO suspension at pH 6, similar to the natural skin surface pH; and an aqueous ZnO suspension at pH 9, a pH at which ZnO is stable and there is minimal pH-induced impairment of epidermal integrity. In each case, the ZnO in the formulations did not penetrate into the intact viable epidermis for any of the formulations but was associated with an enhanced increase in zinc ion fluorescence signal in both the stratum corneum and the viable epidermis. The highest labile zinc fluorescence was found for the ZnO suspension at pH 6. It is concluded that, while topically applied ZnO does not penetrate into the viable epidermis, these applications are associated with hydrolysis of ZnO on the skin surface, leading to an increase in zinc ion levels in the stratum corneum, thence in the viable epidermis and subsequently in the systemic circulation and the urine.

  4. Transport of radioactive ion beams and related safety issues: The {sup 132}Sn{sup +} case study

    SciTech Connect

    Osswald, F. Bouquerel, E.; Boutin, D.; Dinkov, A.; Sellam, A.

    2014-12-15

    The transport of intense radioactive ion beam currents requires a careful design in order to limit the beam losses, the contamination and thus the dose rates. Some investigations based on numerical models and calculations have been performed in the framework of the SPIRAL 2 project to evaluate the performance of a low energy beam transport line located between the isotope separation on line (ISOL) production cell and the experiment areas. The paper presents the results of the transverse phase-space analysis, the beam losses assessment, the resulting contamination, and radioactivity levels. They show that reasonable beam transmission, emittance growth, and dose rates can be achieved considering the current standards.

  5. Relative populations of excited levels within the ground configuration of Si-like Cu, Zn, Ge and Se ions

    NASA Technical Reports Server (NTRS)

    Datla, R. U.; Roberts, J. R.; Bhatia, A. K.

    1991-01-01

    Populations of 3p2 1D2, 3P1, 3P2 levels in Si-like Cu, Zn, Ge, and Se ions have been deduced from the measurements of absolute intensities of magnetic dipole transitions within the 3s2 3p2 ground configuration. The measured population ratios are compared with theoretical calculations based on the distorted-wave approximation for the electron collisions and a semiclassical approximation for the proton collisions. The observed deviation from the statistical distribution for the excited-level populations within the ground configuration along the silicon isoelectronic sequence is in agreement with theoretical prediction.

  6. Evaluation of particle size distributions produced during ultra-violet nanosecond laser ablation and their relative contributions to ion densities in the inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Moses, Lance M.; Farnsworth, Paul B.

    2015-11-01

    Relative contributions to ion densities in the inductively coupled plasma (ICP) of particles of various sizes produced by laser ablation (LA) were investigated. Particles generated by 266 nm, ns LA of BaF2, CaF2, and a scandium aluminum alloy, characterized using SEM, consisted of hard and soft agglomerates, spherical particles, and irregularly-shaped particles. Although soft agglomerates and spherical particles were common to aerosols generated by LA in all cases, hard agglomerates appeared to be unique to the scandium aluminum alloy, while irregularly-shaped exfoliated particles were unique to the calcium and barium fluoride windows. The spatial distributions of Ca, Ba, and Sc ions in the ICP were determined from laser-induced fluorescence images taken with filters of pore sizes from 1-8 μm added in-line to the transport tube upstream from the ICP. In all cases, a significant fraction of the ions formed in the ICP originated from micron-sized particles. Differences in the penetration depths of nanometer-sized agglomerates and micron-sized particles were about 2 mm for Ca and 1 mm for Ba. Differences in the penetration depths of nanometer and micron-sized agglomerates observed in the case of aluminum scandium were much less significant. This suggests that micron-sized hard-agglomerates and nanometer-sized soft-agglomerates experience very similar vaporization patterns. Additionally, there was evidence that flow patterns in the transport tube affect the trajectories of particles entering the plasma.

  7. Cell organisation, sulphur metabolism and ion transport-related genes are differentially expressed in Paracoccidioides brasiliensis mycelium and yeast cells

    PubMed Central

    Andrade, Rosângela V; Paes, Hugo C; Nicola, André M; de Carvalho, Maria José A; Fachin, Ana Lúcia; Cardoso, Renato S; Silva, Simoneide S; Fernandes, Larissa; Silva, Silvana P; Donadi, Eduardo A; Sakamoto-Hojo, Elza T; Passos, Geraldo AS; Soares, Célia MA; Brígido, Marcelo M; Felipe, Maria Sueli S

    2006-01-01

    Background Mycelium-to-yeast transition in the human host is essential for pathogenicity by the fungus Paracoccidioides brasiliensis and both cell types are therefore critical to the establishment of paracoccidioidomycosis (PCM), a systemic mycosis endemic to Latin America. The infected population is of about 10 million individuals, 2% of whom will eventually develop the disease. Previously, transcriptome analysis of mycelium and yeast cells resulted in the assembly of 6,022 sequence groups. Gene expression analysis, using both in silico EST subtraction and cDNA microarray, revealed genes that were differential to yeast or mycelium, and we discussed those involved in sugar metabolism. To advance our understanding of molecular mechanisms of dimorphic transition, we performed an extended analysis of gene expression profiles using the methods mentioned above. Results In this work, continuous data mining revealed 66 new differentially expressed sequences that were MIPS(Munich Information Center for Protein Sequences)-categorised according to the cellular process in which they are presumably involved. Two well represented classes were chosen for further analysis: (i) control of cell organisation – cell wall, membrane and cytoskeleton, whose representatives were hex (encoding for a hexagonal peroxisome protein), bgl (encoding for a 1,3-β-glucosidase) in mycelium cells; and ags (an α-1,3-glucan synthase), cda (a chitin deacetylase) and vrp (a verprolin) in yeast cells; (ii) ion metabolism and transport – two genes putatively implicated in ion transport were confirmed to be highly expressed in mycelium cells – isc and ktp, respectively an iron-sulphur cluster-like protein and a cation transporter; and a putative P-type cation pump (pct) in yeast. Also, several enzymes from the cysteine de novo biosynthesis pathway were shown to be up regulated in the yeast form, including ATP sulphurylase, APS kinase and also PAPS reductase. Conclusion Taken together, these data

  8. Relative Concentration of He+ in the Inner Magnetosphere as Observed by the DE 1 Retarding Ion Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Craven, P. D.; Gallagher, D. L.; Comfort, R. H.

    1997-01-01

    With Observations from the retarding ion mass spectrometer on the Dynamics Explorer I from 1981 through 1984, we examine the He(+) to H(+) density ratios as a function of altitude, latitude, season, local time, geomagnetic and solar activity. We find that the ratios are primarily a function of geocentric distance and the solar EUV input. The ratio of the densities, when plotted as a function of geocentric distance, decrease by an order of magnitude from 1 to 4.5 R(sub E). After the He(+) to H(+) density ratios are adjusted for the dependence on radial distance, they decrease nonlinearly by a factor of 5 as the solar EUV proxy varies from about 250 to about 70. When the mean variations with both these parameters are removed, the ratios appear to have no dependence on geomagnetic activity and weak dependence on local time or season, geomagnetic latitude, and L shell.

  9. DNA-based Nanoconstructs for the Detection of Ions and Biomolecules with Related Raman/SERS Signature Studies

    NASA Astrophysics Data System (ADS)

    Brenneman, Kimber L.

    The utilization of DNA aptamers and semiconductor quantum dots (QDs) for the detection of ions and biomolecules was investigated. In recent years, there have been many studies based on the use of DNA and RNA aptamers, which are single stranded oligonucleotides capable of binding to biomolecules, other molecules, and ions. In many of these cases, the conformational changes of these DNA and RNA aptamers are suitable to use fluorescence resonant energy transfer (FRET) or nanometal surface energy transfer (NSET) techniques to detect such analytes. Coupled with this growth in such uses of aptamers, there has been an expanded use of semiconductor quantum dots as brighter, longer-lasting alternatives to fluorescent dyes in labeling and detection techniques of interest in biomedicine and environmental monitoring. Thrombin binding aptamer (TBA) and a zinc aptamer were used to detect mercury, lead, zinc, and cadmium. These probes were tested in a liquid assay as well as on a filter paper coupon. Biomolecules were also studied and detected using surface-enhanced Raman spectroscopy (SERS), including DNA aptamers and C-reactive protein (CRP). Raman spectroscopy is a useful tool for sensor development, label-free detection, and has the potential for remote sensing. Raman spectra provide information on the vibrational modes or phonons, between and within molecules. Therefore, unique spectral fingerprints for single molecules can be obtained. SERS is accomplished through the use of substrates with nanometer scale geometries made of metals with many free electrons, such as silver, gold, or copper. In this research silver SERS substrates were used to study the SERS signature of biomolecules that typically produce very weak Raman signals.

  10. Monte Carlo simulations of the relative biological effectiveness for DNA double strand breaks from 300 MeV u-1 carbon-ion beams

    NASA Astrophysics Data System (ADS)

    Huang, Y. W.; Pan, C. Y.; Hsiao, Y. Y.; Chao, T. C.; Lee, C. C.; Tung, C. J.

    2015-08-01

    Monte Carlo simulations are used to calculate the relative biological effectiveness (RBE) of 300 MeV u-1 carbon-ion beams at different depths in a cylindrical water phantom of 10 cm radius and 30 cm long. RBE values for the induction of DNA double strand breaks (DSB), a biological endpoint closely related to cell inactivation, are estimated for monoenergetic and energy-modulated carbon ion beams. Individual contributions to the RBE from primary ions and secondary nuclear fragments are simulated separately. These simulations are based on a multi-scale modelling approach by first applying the FLUKA (version 2011.2.17) transport code to estimate the absorbed doses and fluence energy spectra, then using the MCDS (version 3.10A) damage code for DSB yields. The approach is efficient since it separates the non-stochastic dosimetry problem from the stochastic DNA damage problem. The MCDS code predicts the major trends of the DSB yields from detailed track structure simulations. It is found that, as depth is increasing, RBE values increase slowly from the entrance depth to the plateau region and change substantially in the Bragg peak region. RBE values reach their maxima at the distal edge of the Bragg peak. Beyond this edge, contributions to RBE are entirely from nuclear fragments. Maximum RBE values at the distal edges of the Bragg peak and the spread-out Bragg peak are, respectively, 3.0 and 2.8. The present approach has the flexibility to weight RBE contributions from different DSB classes, i.e. DSB0, DSB+ and DSB++.

  11. Investigation of the initial fragmentation of oligodeoxynucleotides in a quadrupole ion trap: charge level-related base loss.

    PubMed

    Pan, Su; Verhoeven, Kathryn; Lee, Jeehiun K

    2005-11-01

    The charge state distribution and CID fragmentation of two series of deprotonated oligodeoxynucleotide (ODN) 9-mers (5'-GGTTXTTGG-3' and 5'-CCAAYAACC-3', X/Y = G, C, A, or T) have been studied in detail in an ion trap in an effort to understand the intrinsic properties of DNA in vacuo. The distribution of charge states (-2 to -6) is similar for both the X- and Y-series, with the most abundant being the -4 charge state. The T-rich X-series prefers higher charge states (-6 and -5) than does the Y-series. Calculations show that phosphate groups located nearest a thymine are more acidic than those near an adenine, cytosine, or guanine, thus explaining why the X-series prefers higher charge states. We use the term "charge level" to define the ratio of the charge state to the total number of phosphate groups present in the ODN. We find, consistent with previous studies, that the initial step of fragmentation is loss of nucleobase either as an anion or as a neutral. We observe the former for ODNs with charge levels greater than 50% and the latter for ODNs with charge levels below 50%. The overall anionic base loss follows the trend A(-) > G(-) approximately T(-) > C(-); electrostatic potential calculations indicate that this trend follows delocalization of electron density for each anion, with A(-) being the most stabilized through delocalization. For neutral base loss, thymine (TH) is rarely cleaved, while the preferences for AH, GH, and CH loss vary. Proton affinity (PA) calculations show that a nearby negatively charged phosphate enhances the PA of proximally located nucleobases; this PA enhancement probably plays a role in promoting neutral base loss. The trends differ by charge level. At a charge level of 37.5% (-3 charge state), AH loss is preferred over CH and GH loss, regardless of sequence. However, at a charge level of 25% (-2 charge state), the terminal bases are preferentially lost over the internal bases, regardless of identity. By reconstructing the ODN

  12. Ion specific effects: decoupling ion-ion and ion-water interactions

    PubMed Central

    Song, Jinsuk; Kang, Tae Hui; Kim, Mahn Won; Han, Songi

    2015-01-01

    Ion-specific effects in aqueous solution, known as the Hofmeister effect is prevalent in diverse systems ranging from pure ionic to complex protein solutions. The objective of this paper is to explicitly demonstrate how complex ion-ion and ion-water interactions manifest themselves in the Hofmeister effects, based on a series of recent experimental observation. These effects are not considered in the classical description of ion effects, such as the Deryaguin-Landau-Verwey-Overbeek (DLVO) theory that, likely for that reason, fail to describe the origin of the phenomenological Hofmeister effect. However, given that models considering the basic forces of electrostatic and van der Waals interactions can offer rationalization for the core experimental observations, a universal interaction model stands a chance to be developed. In this perspective, we separately derive the contribution from ion-ion electrostatic interaction and ion-water interaction from second harmonic generation (SHG) data at the air-ion solution interface, which yields an estimate of ion-water interactions in solution. Hofmeister ion effects observed on biological solutes in solution should be similarly influenced by contributions from ion-ion and ion-water interactions, where the same ion-water interaction parameters derived from SHG data at the air-ion solution interface could be applicable. A key experimental data set available from solution systems to probe ion-water interaction is the modulation of water diffusion dynamics near ions in bulk ion solution, as well as near biological liposome surfaces. It is obtained from Overhauser dynamic nuclear polarization (ODNP), a nuclear magnetic resonance (NMR) relaxometry technique. The surface water diffusivity is influenced by the contribution from ion-water interactions, both from localized surface charges and adsorbed ions, although the relative contribution of the former is larger on liposome surfaces. In this perspective, ion-water interaction

  13. Rapid simultaneous analysis of 17 haloacetic acids and related halogenated water contaminants by high-performance ion chromatography-tandem mass spectrometry.

    PubMed

    Xue, Runmiao; Donovan, Ariel; Shi, Honglan; Yang, John; Hua, Bin; Inniss, Enos; Eichholz, Todd

    2016-09-01

    Haloacetic acids (HAAs), which include chloroacetic acids, bromoacetic acids, and emerging iodoacetic acids, are toxic water disinfection byproducts. General screening methodology is lacking for simultaneously monitoring chloro-, bromo-, and iodoacetic acids. In this study, a rapid and sensitive high-performance ion chromatography-tandem mass spectrometry method for simultaneous determination of chloro-, bromo-, and iodo- acetic acids and related halogenated contaminants including bromate, bromide, iodate, and iodide was developed to directly analyze water samples after filtration, eliminating the need for preconcentration, and chemical derivatization. The resulting method was validated in both untreated and treated water matrices including tap water, bottled water, swimming pool water, and both source water and drinking water from a drinking water treatment facility to demonstrate application potential. Satisfactory accuracies and precisions were obtained for all types of tested samples. The detection limits of this newly developed method were lower or comparable with similar techniques without the need for extensive sample treatment requirement and it includes all HAAs and other halogenated compounds. This provides a powerful methodology to water facilities for routine water quality monitoring and related water research, especially for the emerging iodoacetic acids. Graphical abstract High performance ion chromatography-tandem mass spectrometry method for detection of haloacetic acids in water.

  14. Rapid simultaneous analysis of 17 haloacetic acids and related halogenated water contaminants by high-performance ion chromatography-tandem mass spectrometry.

    PubMed

    Xue, Runmiao; Donovan, Ariel; Shi, Honglan; Yang, John; Hua, Bin; Inniss, Enos; Eichholz, Todd

    2016-09-01

    Haloacetic acids (HAAs), which include chloroacetic acids, bromoacetic acids, and emerging iodoacetic acids, are toxic water disinfection byproducts. General screening methodology is lacking for simultaneously monitoring chloro-, bromo-, and iodoacetic acids. In this study, a rapid and sensitive high-performance ion chromatography-tandem mass spectrometry method for simultaneous determination of chloro-, bromo-, and iodo- acetic acids and related halogenated contaminants including bromate, bromide, iodate, and iodide was developed to directly analyze water samples after filtration, eliminating the need for preconcentration, and chemical derivatization. The resulting method was validated in both untreated and treated water matrices including tap water, bottled water, swimming pool water, and both source water and drinking water from a drinking water treatment facility to demonstrate application potential. Satisfactory accuracies and precisions were obtained for all types of tested samples. The detection limits of this newly developed method were lower or comparable with similar techniques without the need for extensive sample treatment requirement and it includes all HAAs and other halogenated compounds. This provides a powerful methodology to water facilities for routine water quality monitoring and related water research, especially for the emerging iodoacetic acids. Graphical abstract High performance ion chromatography-tandem mass spectrometry method for detection of haloacetic acids in water. PMID:27422643

  15. Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana, has specific root ion-channel features supporting K+/Na+ homeostasis under salinity stress.

    PubMed

    Volkov, Vadim; Amtmann, Anna

    2006-11-01

    Thellungiella halophila is a salt-tolerant relative of Arabidopsis thaliana with high genetic and morphological similarity. In a saline environment, T. halophila accumulates less sodium and retains more potassium than A. thaliana. Detailed electrophysiological comparison of ion currents in roots of both species showed that, unlike A. thaliana, T. halophila exhibits high potassium/sodium selectivity of the instantaneous current. This current differs in its pharmacological profile from the current through inward- and outward-rectifying K(+) channels insofar as it is insensitive to Cs(+) and TEA(+), but resembles voltage-independent channels of glycophytes as it is inhibited by external Ca(2+). Addition of Cs(+) and TEA(+) to the growth medium confirmed the key role of the instantaneous current in whole-plant sodium accumulation. A negative shift in the reversal potential of the instantaneous current under high-salt conditions was essential for decreasing sodium influx to twofold lower than the corresponding value in A. thaliana. The lower overall sodium permeability of the T. halophila root plasma membrane resulted in a smaller membrane depolarization during salt exposure, thus allowing the cells to maintain their driving force for potassium uptake. Our data provide quantitative evidence that specific features of ion channels lead to superior sodium/potassium homeostasis in a halophyte compared with a closely related glycophyte. PMID:17052322

  16. The relation between the structure and electrochemical performance of sodiated iron phosphate in sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Zhou, Yirong; Zhang, Junxi; Zhang, Shiming; Ren, Ping

    2016-05-01

    The structure and electrochemical performance of sodiated iron phosphate were investigated by means of X-ray diffraction, high-resolution transmission electron microscopy and electrochemical measurements. The results indicate that after the sodiation process, all FePO4 samples transform into the amorphous sodium iron phosphate and crystallite NaFePO4, namely triphylite NaFePO4 for amorphous FePO4 and maricite NaFePO4 for trigonal FePO4, respectively. The amorphous FePO4 samples show excellent electrochemical performance in terms of cyclic stability and discharge capacity, while trigonal FePO4 displays poor electrochemical performance. The outstanding electrochemical performance of amorphous FePO4 was attributed to the amorphous and triphylite NaFePO4 with high electrochemical activity. Those findings indicate that amorphous FePO4 can be transformed into active NaFePO4, which may have great potential as an electrode material for sodium-ion batteries.

  17. Ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

  18. Ion-ion waves in the auroral region - Wave excitation and ion heating

    NASA Technical Reports Server (NTRS)

    Dusenbery, P. B.; Martin, R. F., Jr.; Winglee, R. M.

    1988-01-01

    The properties of the ion-ion mode which is excited in plasmas when two or more cold ion beams are streaming relative to one another are investigated assuming a warm electron distribution at rest (the model consistent with particle distributions observed in auroral plasma cavities). Numerical solutions are derived for the generalized electrostatic dispersion equation for parallel propagation and for oblique propagation of ion waves. It is shown that the relative ion temperature and concentration have significant effects on the stability of the accelerated plasma and the expected ion heating. Finally, a relationship between ion drift and thermal speed is derived using the marginal stability of ion-ion waves for nonzero ion temperature; the relationship was found to compare favorably with DE-1 ion observations at the high-altitude boundary of the auroral cavity.

  19. Effects of indirect actions and oxygen on relative biological effectiveness: estimate of DSB induction and conversion induced by gamma rays and helium ions.

    PubMed

    Tsai, Ju-Ying; Chen, Fang-Hsin; Hsieh, Tsung-Yu; Hsiao, Ya-Yun

    2015-07-01

    Clustered DNA damage other than double-strand breaks (DSBs) can be detrimental to cells and can lead to mutagenesis or cell death. In addition to DSBs induced by ionizing radiation, misrepair of non-DSB clustered damage contributes extra DSBs converted from DNA misrepair via pathways for base excision repair and nucleotide excision repair. This study aimed to quantify the relative biological effectiveness (RBE) when DSB induction and conversion from non-DSB clustered damage misrepair were used as biological endpoints. The results showed that both linear energy transfer (LET) and indirect action had a strong impact on the yields for DSB induction and conversion. RBE values for DSB induction and maximum DSB conversion of helium ions (LET = 120 keV/μm) to (60)Co gamma rays were 3.0 and 3.2, respectively. These RBE values increased to 5.8 and 5.6 in the absence of interference of indirect action initiated by addition of 2-M dimethylsulfoxide. DSB conversion was ∼1-4% of the total non-DSB damage due to gamma rays, which was lower than the 10% estimate by experimental measurement. Five to twenty percent of total non-DSB damage due to helium ions was converted into DSBs. Hence, it may be possible to increase the yields of DSBs in cancerous cells through DNA repair pathways, ultimately enhancing cell killing.

  20. Valencene from the Rhizomes of Cyperus rotundus Inhibits Skin Photoaging-Related Ion Channels and UV-Induced Melanogenesis in B16F10 Melanoma Cells.

    PubMed

    Nam, Joo Hyun; Nam, Da-Yeong; Lee, Dong-Ung

    2016-04-22

    Ultraviolet (UV) radiation deeply penetrates skin and causes inflammation and pigmentary changes and triggers immune responses. Furthermore, accumulating evidence suggests that calcium ion channels, such as TRPV1 and ORAI1, mediate diverse dermatological processes including melanogenesis, skin wrinkling, and inflammation. The rhizomes of Cyperus rotundus have been used to treat inflammatory diseases including dermatitis. However, their effects on UV-induced photoaging-related ion channels remain unknown. Therefore, this study was undertaken to evaluate the antagonistic effects of C. rotundus extract and their constituents on TRPV1 and ORAI1 channels. Electrophysiological analysis revealed that valencene (1) isolated from the hexane fraction potently inhibited capsaicin-induced TRPV1 and ORAI1 currents at 90 μM (69 ± 15% and 97 ± 2% at -60 and -120 mV, respectively). The inhibitory effect of 1 on cytoplasmic Ca(2+) concentrations in response to ORAI1 activation (85 ± 2% at 50 μM) was also confirmed. Furthermore, 1 concentration-dependently decreased the melanin content after UVB irradiation in murine B16F10 melanoma cells by 82.66 ± 2.14% at 15 μg/mL. These results suggest that C. rotundus rhizomes have potential therapeutic effects on UV-induced photoaging and indicate that the therapeutic and cosmetic applications of 1 are worth further investigation. PMID:26967731

  1. Metal resistance-related genes are differently expressed in response to copper and zinc ion in six Acidithiobacillus ferrooxidans strains.

    PubMed

    Wu, Xueling; Zhang, Zhenzhen; Liu, Lili; Deng, Fanfan; Liu, Xinxing; Qiu, Guanzhou

    2014-12-01

    Metal resistance of acidophilic bacteria is very significant during bioleaching of copper ores since high concentration of metal is harmful to the growth of microorganisms. The resistance levels of six Acidithiobacillus ferrooxidans strains to 0.15 M copper and 0.2 M zinc were investigated, and eight metal resistance-related genes (afe-0022, afe-0326, afe-0329, afe-1143, afe-0602, afe-0603, afe-0604, and afe-1788) were sequenced and analyzed. The transcriptional expression levels of eight possible metal tolerance genes in six A. ferrooxidans strains exposed to 0.15 M Cu(2+) and 0.2 M Zn(2+) were determined by real-time quantitative PCR (RT-qPCR), respectively. The copper resistance levels of six A. ferrooxidans strains declined followed by DY26, DX5, DY15, GD-B, GD-0, and YTW. The zinc tolerance levels of six A. ferrooxidans strains exposed to 0.2 M Zn(2+) from high to low were YTW > GD-B > DY26 > GD-0 > DX5 > DY15. Seven metal tolerance-related genes all presented in the genome of six strains, except afe-0604. The metal resistance-related genes showed different transcriptional expression patterns in six A. ferrooxidans strains. The expression of gene afe-0326 and afe-0022 in six A. ferrooxidans strains in response to 0.15 M Cu(2+) showed the same trend with the resistance levels. The expression levels of genes afe-0602, afe-0603, afe-0604, and afe-1788 in six strains response to 0.2 M Zn(2+) did not show a clear correlation between the zinc tolerance levels of six strains. According to the results of RT-qPCR and bioinformatics analysis, the proteins encoded by afe-0022, afe-0326, afe-0329, and afe-1143 were related to Cu(2+) transport of A. ferrooxidans strains.

  2. Ion beam and defect-related research in the Solid State Division. [LiNbO/sub 3/, Al/sub 2/O/sub 3/

    SciTech Connect

    Roberto, J.B.

    1986-08-05

    This paper contains viewgraphs on the topic of radiation effects of solid state materials. In particular, it elaborates on ion beam deposition of thin film structures, ion implantation damage in crystals of Al/sub 2/O/sub 3/, and ion implanted optical waveguides in LiNbO/sub 3/. (LSP)

  3. Recent US target-physics-related research in heavy-ion inertial fusion: simulations for tamped targets and for disk experiments in accelerator test facilities

    SciTech Connect

    Mark, J.W.K.

    1982-03-22

    Calculations suggest that experiments relating to disk heating, as well as beam deposition, focusing and transport can be performed within the context of current design proposals for accelerator test-facilities. Since the test-facilities have lower ion kinetic energy and beam pulse power as compared to reactor drivers, we achieve high-beam intensities at the focal spot by using short focal distance and properly designed beam optics. In this regard, the low beam emittance of suggested multi-beam designs are very useful. Possibly even higher focal spot brightness could be obtained by plasma lenses which involve external fields on the beam which is stripped to a higher charge state by passing through a plasma cell. Preliminary results suggest that intensities approx. 10/sup 13/ - 10/sup 14/ W/cm/sup 2/ are achievable. Given these intensities, deposition experiments with heating of disks to greater than a million degrees Kelvin (100 eV) are expected.

  4. Cassini observations of ion cyclotron waves and ions anisotropy

    NASA Astrophysics Data System (ADS)

    Crary, F. J.; Dols, V. J.; Cassidy, T. A.; Tokar, R. L.

    2013-12-01

    In Saturn's equatorial, inner magnetosphere, the production of fresh ions in a pick-up distribution generates ion cyclotron waves. These waves are a sensitive indicator of fresh plasma production, but the quantitative relation between wave properties and ionization rates is nontrivial. We present a combined analysis of Cassini MAG and CAPS data, from a variety of equatorial orbits between 2005 and 2012. Using the MAG data, we determine the amplitude and peak frequency of ion cyclotron waves. From the CAPS data we extract the parallel and perpendicular velocity distribution of water group ions. We compare these results with hybrid simulations of the ion cyclotron instability and relate the observed wave amplitudes and ion velocity distributions to the production rate of pickup ions. The resulting relation between wave and plasma properties will allow us to infer ion production rates even at times when no direct ion measurements are available.

  5. Long-term effect of salinity on plant quality, water relations, photosynthetic parameters and ion distribution in Callistemon citrinus.

    PubMed

    Álvarez, S; Sánchez-Blanco, M J

    2014-07-01

    The effect of saline stress on physiological and morphological parameters in Callistemon citrinus plants was studied to evaluate their adaptability to irrigation with saline water. C. citrinus plants, grown under greenhouse conditions, were subjected to two irrigation treatments lasting 56 weeks: control (0.8 dS·m(-1)) and saline (4 dS·m(-1)). The use of saline water in C. citrinus plants decreased aerial growth, increased the root/shoot ratio and improved the root system (increased root diameter and root density), but flowering and leaf colour were not affected. Salinity caused a decrease in stomatal conductance and evapotranspiration, which may prevent toxic levels being reached in the shoot. Net photosynthesis was reduced in plants subjected to salinity, although this response was evident much later than the decrease in stomatal conductance. Stem water potential was a good indicator of salt stress in C. citrinus. The relative salt tolerance of Callistemon was related to storage of higher levels of Na+ and Cl- in the roots compared with the leaves, especially in the case of Na+, which could have helped to maintain the quality of plants. The results show that saline water (around 4 dS·m(-1)) could be used for growing C. citrinus commercially. However, the cumulative effect of irrigating with saline water for 11 months was a decrease in photosynthesis and intrinsic water use efficiency, meaning that the interaction of the salinity level and the time of exposure to the salt stress should be considered important in this species.

  6. Thermochemical considerations and bond enthalpy ratios involving triatomic 16-valence electron neutrals and ions and some isoelectronically related pentaatomics

    NASA Astrophysics Data System (ADS)

    Deakyne, Carol A.; Norton, Lisa K.; Abele, Ashley M.; Ludden, Alicia K.; Liebman, Joel F.

    2007-11-01

    Following thermochemical studies and the accompanying analysis in the calorimetric literature, in earlier computational and conceptual studies we investigated the systematics of the mean bond enthalpy ratio /Dm°(XY) for 16-valence electron neutral and ionic triatomic species. For neutral species wherein X is a group 14 element and Y is from group 16, the ratio was ca. 0.8 rising to ca. 0.9 for the corresponding anions with X from group 13, and falling to ca. 0.7 for the cations with X from group 15. Good agreement between theory and experiment was found where admittedly the majority of the data for the latter is for the neutral species. In the current study at the G2 computational level (and G3 for selected systems), the related asymmetric valence isoelectronic triatomic species YXZ are discussed and this pattern calculationally preserved. The results are in concurrence with the one experimentally available datum for comparison, namely from the literature measured value for the enthalpy of formation of OCS. Other surprises and systematics are discussed as well for what otherwise might have been superficially considered to be simple species, for these and related pentaatomic species of the type HYXYH.

  7. Long-term effect of salinity on plant quality, water relations, photosynthetic parameters and ion distribution in Callistemon citrinus.

    PubMed

    Álvarez, S; Sánchez-Blanco, M J

    2014-07-01

    The effect of saline stress on physiological and morphological parameters in Callistemon citrinus plants was studied to evaluate their adaptability to irrigation with saline water. C. citrinus plants, grown under greenhouse conditions, were subjected to two irrigation treatments lasting 56 weeks: control (0.8 dS·m(-1)) and saline (4 dS·m(-1)). The use of saline water in C. citrinus plants decreased aerial growth, increased the root/shoot ratio and improved the root system (increased root diameter and root density), but flowering and leaf colour were not affected. Salinity caused a decrease in stomatal conductance and evapotranspiration, which may prevent toxic levels being reached in the shoot. Net photosynthesis was reduced in plants subjected to salinity, although this response was evident much later than the decrease in stomatal conductance. Stem water potential was a good indicator of salt stress in C. citrinus. The relative salt tolerance of Callistemon was related to storage of higher levels of Na+ and Cl- in the roots compared with the leaves, especially in the case of Na+, which could have helped to maintain the quality of plants. The results show that saline water (around 4 dS·m(-1)) could be used for growing C. citrinus commercially. However, the cumulative effect of irrigating with saline water for 11 months was a decrease in photosynthesis and intrinsic water use efficiency, meaning that the interaction of the salinity level and the time of exposure to the salt stress should be considered important in this species. PMID:24118672

  8. Determination of the Relative Amount of Fluorine in Uranium Oxyfluoride Particles using Secondary Ion Mass Spectrometry and Optical Spectroscopy

    SciTech Connect

    Kips, R; Kristo, M J; Hutcheon, I D; Amonette, J; Wang, Z; Johnson, T; Gerlach, D; Olsen, K B

    2009-05-29

    Both nuclear forensics and environmental sampling depend upon laboratory analysis of nuclear material that has often been exposed to the environment after it has been produced. It is therefore important to understand how those environmental conditions might have changed the chemical composition of the material over time, particularly for chemically sensitive compounds. In the specific case of uranium enrichment facilities, uranium-bearing particles stem from small releases of uranium hexafluoride, a highly reactive gas that hydrolyzes upon contact with moisture from the air to form uranium oxyfluoride (UO{sub 2}F{sub 2}) particles. The uranium isotopic composition of those particles is used by the International Atomic Energy Agency (IAEA) to verify whether a facility is compliant with its declarations. The present study, however, aims to demonstrate how knowledge of time-dependent changes in chemical composition, particle morphology and molecular structure can contribute to an even more reliable interpretation of the analytical results. We prepared a set of uranium oxyfluoride particles at the Institute for Reference Materials and Measurements (IRMM, European Commission, Belgium) and followed changes in their composition, morphology and structure with time to see if we could use these properties to place boundaries on the particle exposure time in the environment. Because the rate of change is affected by exposure to UV-light, humidity levels and elevated temperatures, the samples were subjected to varying conditions of those three parameters. The NanoSIMS at LLNL was found to be the optimal tool to measure the relative amount of fluorine in individual uranium oxyfluoride particles. At PNNL, cryogenic laser-induced time-resolved U(VI) fluorescence microspectroscopy (CLIFS) was used to monitor changes in the molecular structure.

  9. Aerobic and anaerobic metabolism in smooth muscle cells of taenia coli in relation to active ion transport.

    PubMed

    Casteels, R; Wuytack, F

    1975-09-01

    1. The O2 consumption and lactic acid production of the guinea-pig's taenia coli have been studied in relation to the active Na-K transport, in order to estimate the ratio: active Na extrusion/active K uptake/ATP hydrolysis. 2. By applying different procedures of partial metabolic ingibition, it was found that a reactivation of the active Na-K transport in K-depleted tissues could occur in an anaerobic medium, provided glucose was present and in an aerobic medium free of added metabolizable substrate. The active Na-K transport was rapidly blocked in an anaerobic-substrate free medium. 3. Readmission of K to K-depleted tissues under aerobic conditions stimulates both O2 consumption and lactic acid production. While the O2 consumption creeps up slowly and requires 50 min to reach control values, the aerobic lactic acid production increases to a maximum within 10 min and decreases again during the next 50 min to its steady-state value. 4. A reactivation of the Na-pump in K-depleted cells in a N2-glucose medium causes an immediate increase of the lactic acid production, which decreases to its control value after 60 min. The maximal increase in anaerobic lactic acid production during reactivation of the Na-K pump is a function of [K]O. The system can be cescribed with first order kinetics having a Vmax = 0-72 mumole.g-1 f. wt. min-1 and a Km = 1-1 mM. 5. By varying the glucose concentration of [K]O during reactivation of the Na-K pump, different Na-K pumping rates can be obtained. The ratios net Na extrusion/ATP or net K accumulation/ATP amount to -1-32 +/- 0-19 (36) and 1-02 +/- 0-11 (36), in the experiments with different glucose concentrations. Taking into account the interference by net passive fluxes, one can estimate a ratio:active Na transport/active K transport/ATP, of 1-7/0-8/1. This ratio is not very different from the values observed in other tissues.

  10. Secondary ion collection and transport system for ion microprobe

    DOEpatents

    Ward, James W.; Schlanger, Herbert; McNulty, Jr., Hugh; Parker, Norman W.

    1985-01-01

    A secondary ion collection and transport system, for use with an ion microprobe, which is very compact and occupies only a small working distance, thereby enabling the primary ion beam to have a short focal length and high resolution. Ions sputtered from the target surface by the primary beam's impact are collected between two arcuate members having radii of curvature and applied voltages that cause only ions within a specified energy band to be collected. The collected ions are accelerated and focused in a transport section consisting of a plurality of spaced conductive members which are coaxial with and distributed along the desired ion path. Relatively high voltages are applied to alternate transport sections to produce accelerating electric fields sufficient to transport the ions through the section to an ion mass analyzer, while lower voltages are applied to the other transport sections to focus the ions and bring their velocity to a level compatible with the analyzing apparatus.

  11. Trace Metal Characterization and Ion Exchange Capacity of Devonian to Pennsylvanian Age Bedrock in New York and Pennsylvania in Relation to Drinking Water Quality

    NASA Astrophysics Data System (ADS)

    Spradlin, J.; Fiorentino, A. J., II; Siegel, D. I.

    2014-12-01

    We report the results of an evaluation of the trace and major metal composition of shallow sedimentary rock formations in the Appalachian Basin that control the quality of potable water produced in domestic and other wells. In particular, we quantify the mobile and total metals for which there are health concerns related to unconventional gas exploitation; Fe, Mn, Sr, Ba, As, and Pb. To do this, we sampled the upper 400 feet of Devonian to Pennsylvanian aged bedrock from Marcellus, NY to State College, PA. We used a variation of the U.S. Geological Survey Field Leach Test to assess water reactivity and leaching potential. Al, Zn, and U potentially can be leached from aquifer rocks naturally under acidic conditions, such as where pyrite might oxidize, to above current allowable regulatory values for these metals (2 mg/L, 5 mg/L, and 0.03 mg/L respectively) from some of the clay-rich formations. Groundwater analyses from both New York and Pennsylvania show that natural ion exchange occurs along flow paths from ridges to valleys. We find the laboratory cation exchange capacity (CEC) spans what might be expected for illite and chlorite commonly found in these rocks. Given the low surface area of the mineral surfaces of the fractures through which most of the water moves, the observed ion exchange in these rocks is not well understood. Along with this broad scale study area we investigated a Devonian outcrop 4 miles North of Cortland, NY to evaluate small-scale trace metal heterogeneity within a single stratigraphic section. Together these two studies provide important information to determine the extent to which ground water might be naturally high in trace metal composition, either because of geochemical conditions or entrainment of suspended material not removed prior to sampling.

  12. Relating the current science of ion-defect behavior in ice to a plausible mechanism for directional charge transfer during ice particle collisions.

    PubMed

    Devlin, J Paul

    2011-11-28

    A melding of modern experimental results descriptive of fundamental ion defect properties of ice is presented as a logical basis of a mechanism for the preferential transfer of positive charge from large to small colliding ice particles. The result may relate to the electrification of storm clouds. It is broadly agreed that such localized charge transfer during collision of small upwardly mobile ice particles with falling ice granules (i.e., graupel/hail) can lead to macroscopic charge separation capable of initiating lightning strikes during the expansion stage of a storm cell. Though the larger particles are thought to become negatively charged during the collisions neither a generally favored charge-exchange agent nor a preferred mechanism for the directional particle-to-particle charge transfer exists. Nevertheless, should ionic point defects of ice play a key role, the fundamental properties of ice defects considered here must apply. They include: (1) above 140 K protons move readily within and on the surface of ice while hydroxide ions are orders-of-magnitude less mobile, (2) whether generated by dissociation of HCl buried in ice, during neat ice particle growth, or at platinum-ice interfaces, interior protons move to and apparently collect at the ice-vacuum interface, and (3) proton activity and populations are orders-of-magnitude greater at the surface of ice films and free-standing ice particles than in the interior. From these fundamentals an untested argument is developed that within an ensemble of free floating ice particles the proton density at the surface is greater for larger particles. This implies a plausible proton-based mechanism that is consistent with current concepts of ice particle charging through collisions.

  13. Surface-layer formation by reductive decomposition of LiPF6 at relatively high potentials on negative electrodes in lithium ion batteries and its suppression

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Tomoya; Shimada, Koki; Ichitsubo, Tetsu; Yagi, Shunsuke; Matsubara, Eiichiro

    2014-12-01

    In using a LiPF6/ethylene carbonate-dimethyl carbonate electrolyte for lithium ion batteries (LIBs), a certain reductive reaction is known to occur at a relatively high potential (ca. 2.6 V vs. Li+/Li) on Sn electrode, but its details are still unknown. By means of in-situ X-ray reflectometry, X-ray photoelectron spectroscopy, scanning electron microscopy observations and electrochemical measurements (by using mainly Sn electrode, and additionally Pt, graphite electrodes), we have found out that this reduction eventually forms an inactive passivation-layer consisting mainly of insulative LiF ascribed to the reductive decomposition of LiPF6, which significantly affects the battery cyclability. In contrast, a solid-electrolyte interphase (SEI) is formed by the reductive reaction of the solvent at ca. 1.5 V vs. Li+/Li, which is lower than the reduction potential of LiPF6. However, we have found that the formation of SEI preempts that of the passivation layer when holding the electrode at a potential lower than 1.5 V vs. Li+/Li. Consequently, the cyclability is improved by suppressing the formation of the inactive passivation layer. Such a pretreatment would be quite effective on improvement of the battery cyclability, especially for a relatively noble electrode whose oxidation potential is between 1.5 V and 2.6 V vs. Li+/Li.

  14. Temporal Lobe Reactions After Carbon Ion Radiation Therapy: Comparison of Relative Biological Effectiveness–Weighted Tolerance Doses Predicted by Local Effect Models I and IV

    SciTech Connect

    Gillmann, Clarissa; Jäkel, Oliver; Schlampp, Ingmar; Karger, Christian P.

    2014-04-01

    Purpose: To compare the relative biological effectiveness (RBE)–weighted tolerance doses for temporal lobe reactions after carbon ion radiation therapy using 2 different versions of the local effect model (LEM I vs LEM IV) for the same patient collective under identical conditions. Methods and Materials: In a previous study, 59 patients were investigated, of whom 10 experienced temporal lobe reactions (TLR) after carbon ion radiation therapy for low-grade skull-base chordoma and chondrosarcoma at Helmholtzzentrum für Schwerionenforschung (GSI) in Darmstadt, Germany in 2002 and 2003. TLR were detected as visible contrast enhancements on T1-weighted MRI images within a median follow-up time of 2.5 years. Although the derived RBE-weighted temporal lobe doses were based on the clinically applied LEM I, we have now recalculated the RBE-weighted dose distributions using LEM IV and derived dose-response curves with Dmax,V-1 cm³ (the RBE-weighted maximum dose in the remaining temporal lobe volume, excluding the volume of 1 cm³ with the highest dose) as an independent dosimetric variable. The resulting RBE-weighted tolerance doses were compared with those of the previous study to assess the clinical impact of LEM IV relative to LEM I. Results: The dose-response curve of LEM IV is shifted toward higher values compared to that of LEM I. The RBE-weighted tolerance dose for a 5% complication probability (TD{sub 5}) increases from 68.8 ± 3.3 to 78.3 ± 4.3 Gy (RBE) for LEM IV as compared to LEM I. Conclusions: LEM IV predicts a clinically significant increase of the RBE-weighted tolerance doses for the temporal lobe as compared to the currently applied LEM I. The limited available photon data do not allow a final conclusion as to whether RBE predictions of LEM I or LEM IV better fit better clinical experience in photon therapy. The decision about a future clinical application of LEM IV therefore requires additional analysis of temporal lobe reactions in a

  15. Ion temperature gradient driven turbulence with strong trapped ion resonance

    SciTech Connect

    Kosuga, Y.; Itoh, S.-I.; Diamond, P. H.; Itoh, K.; Lesur, M.

    2014-10-15

    A theory to describe basic characterization of ion temperature gradient driven turbulence with strong trapped ion resonance is presented. The role of trapped ion granulations, clusters of trapped ions correlated by precession resonance, is the focus. Microscopically, the presence of trapped ion granulations leads to a sharp (logarithmic) divergence of two point phase space density correlation at small scales. Macroscopically, trapped ion granulations excite potential fluctuations that do not satisfy dispersion relation and so broaden frequency spectrum. The line width from emission due only to trapped ion granulations is calculated. The result shows that the line width depends on ion free energy and electron dissipation, which implies that non-adiabatic electrons are essential to recover non-trivial dynamics of trapped ion granulations. Relevant testable predictions are summarized.

  16. Temporal Lobe Reactions After Radiotherapy With Carbon Ions: Incidence and Estimation of the Relative Biological Effectiveness by the Local Effect Model

    SciTech Connect

    Schlampp, Ingmar; Karger, Christian P.; Jaekel, Oliver; Scholz, Michael; Didinger, Bernd; Nikoghosyan, Anna; Hoess, Angelika; Kraemer, Michael; Edler, Lutz; Debus, Juergen; Schulz-Ertner, Daniela

    2011-07-01

    Purpose: To identify predictors for the development of temporal lobe reactions (TLR) after carbon ion radiation therapy (RT) for radiation-resistant tumors in the central nervous system and to evaluate the predictions of the local effect model (LEM) used for calculation of the biologically effective dose. Methods and Materials: This retrospective study reports the TLR rates in patients with skull base chordomas and chondrosarcomas irradiated with carbon ions at GSI, Darmstadt, Germany, in the years 2002 and 2003. Calculation of the relative biological effectiveness and dose optimization of treatment plans were performed on the basis of the LEM. Clinical examinations and magnetic resonance imaging (MRI) were performed at 3, 6, and 12 months after RT and annually thereafter. Local contrast medium enhancement in temporal lobes, as detected on MRI, was regarded as radiation-induced TLR. Dose-volume histograms of 118 temporal lobes in 59 patients were analyzed, and 16 therapy-associated and 2 patient-associated factors were statistically evaluated for their predictive value for the occurrence of TLR. Results: Median follow-up was 2.5 years (range, 0.3--6.6 years). Age and maximum dose applied to at least 1 cm{sup 3} of the temporal lobe (D{sub max,V-1cm}3, maximum dose in the remaining temporal lobe volume, excluding the volume 1 cm{sup 3} with the highest dose) were found to be the most important predictors for TLR. Dose response curves of D{sub max,V-1cm}3 were calculated. The biologically equivalent tolerance doses for the 5% and 50% probabilities to develop TLR were 68.8 {+-} 3.3 Gy equivalents (GyE) and 87.3 {+-} 2.8 GyE, respectively. Conclusions: D{sub max,V-1cm}3 is predictive for radiation-induced TLR. The tolerance doses obtained seem to be consistent with published data for highly conformal photon and proton irradiations. We could not detect any clinically relevant deviations between clinical findings and expectations based on predictions of the LEM.

  17. Novel, Precise, Accurate Ion-Pairing Method to Determine the Related Substances of the Fondaparinux Sodium Drug Substance: Low-Molecular-Weight Heparin

    PubMed Central

    Deshpande, Amol A.; Madhavan, P.; Deshpande, Girish R.; Chandel, Ravi Kumar; Yarbagi, Kaviraj M.; Joshi, Alok R.; Moses Babu, J.; Murali Krishna, R.; Rao, I. M.

    2016-01-01

    Fondaparinux sodium is a synthetic low-molecular-weight heparin (LMWH). This medication is an anticoagulant or a blood thinner, prescribed for the treatment of pulmonary embolism and prevention and treatment of deep vein thrombosis. Its determination in the presence of related impurities was studied and validated by a novel ion-pair HPLC method. The separation of the drug and its degradation products was achieved with the polymer-based PLRPs column (250 mm × 4.6 mm; 5 μm) in gradient elution mode. The mixture of 100 mM n-hexylamine and 100 mM acetic acid in water was used as buffer solution. Mobile phase A and mobile phase B were prepared by mixing the buffer and acetonitrile in the ratio of 90:10 (v/v) and 20:80 (v/v), respectively. Mobile phases were delivered in isocratic mode (2% B for 0–5 min) followed by gradient mode (2–85% B in 5–60 min). An Evaporative Light Scattering Detector (ELSD) was connected to the LC system to detect the responses of chromatographic separation. Further, the drug was subjected to stress studies for acidic, basic, oxidative, photolytic, and thermal degradations as per ICH guidelines and the drug was found to be labile in acid, base hydrolysis, and oxidation, while stable in neutral, thermal, and photolytic degradation conditions. The method provided linear responses over the concentration range of the LOQ to 0.30% for each impurity with respect to the analyte concentration of 12.5 mg/mL, and regression analysis showed a correlation coefficient value (r2) of more than 0.99 for all the impurities. The LOD and LOQ were found to be 1.4 µg/mL and 4.1 µg/mL, respectively, for fondaparinux. The developed ion-pair method was validated as per ICH guidelines with respect to accuracy, selectivity, precision, linearity, and robustness. PMID:27110496

  18. Novel, Precise, Accurate Ion-Pairing Method to Determine the Related Substances of the Fondaparinux Sodium Drug Substance: Low-Molecular-Weight Heparin.

    PubMed

    Deshpande, Amol A; Madhavan, P; Deshpande, Girish R; Chandel, Ravi Kumar; Yarbagi, Kaviraj M; Joshi, Alok R; Moses Babu, J; Murali Krishna, R; Rao, I M

    2016-01-01

    Fondaparinux sodium is a synthetic low-molecular-weight heparin (LMWH). This medication is an anticoagulant or a blood thinner, prescribed for the treatment of pulmonary embolism and prevention and treatment of deep vein thrombosis. Its determination in the presence of related impurities was studied and validated by a novel ion-pair HPLC method. The separation of the drug and its degradation products was achieved with the polymer-based PLRPs column (250 mm × 4.6 mm; 5 μm) in gradient elution mode. The mixture of 100 mM n-hexylamine and 100 mM acetic acid in water was used as buffer solution. Mobile phase A and mobile phase B were prepared by mixing the buffer and acetonitrile in the ratio of 90:10 (v/v) and 20:80 (v/v), respectively. Mobile phases were delivered in isocratic mode (2% B for 0-5 min) followed by gradient mode (2-85% B in 5-60 min). An Evaporative Light Scattering Detector (ELSD) was connected to the LC system to detect the responses of chromatographic separation. Further, the drug was subjected to stress studies for acidic, basic, oxidative, photolytic, and thermal degradations as per ICH guidelines and the drug was found to be labile in acid, base hydrolysis, and oxidation, while stable in neutral, thermal, and photolytic degradation conditions. The method provided linear responses over the concentration range of the LOQ to 0.30% for each impurity with respect to the analyte concentration of 12.5 mg/mL, and regression analysis showed a correlation coefficient value (r(2)) of more than 0.99 for all the impurities. The LOD and LOQ were found to be 1.4 µg/mL and 4.1 µg/mL, respectively, for fondaparinux. The developed ion-pair method was validated as per ICH guidelines with respect to accuracy, selectivity, precision, linearity, and robustness. PMID:27110496

  19. Age-Related Changes to Human Stratum Corneum Lipids Detected Using Time-of-Flight Secondary Ion Mass Spectrometry Following in Vivo Sampling.

    PubMed

    Starr, Nichola J; Johnson, Daniel J; Wibawa, Judata; Marlow, Ian; Bell, Mike; Barrett, David A; Scurr, David J

    2016-04-19

    This work demonstrates the ability to detect changes in both quantity and spatial distribution of human stratum corneum (SC) lipids from samples collected in vivo. The SC functions as the predominant barrier to the body, protecting against the penetration of xenobiotic substances. Changes to the SC lipid composition have been associated with barrier impairment and consequent skin disorders, and it is therefore important to monitor and quantify changes to this structure. This work demonstrates the first reported use of time-of-flight secondary ion mass spectrometry (ToF-SIMS) to assess physiological changes to human SC as a function of depth. This technique provides exceptional sensitivity and chemical specificity, allowing analysis of single tape stripped samples taken from volunteers. Using this methodology we were able to successfully identify chemical differences in human SC resulting from both intrinsic and extrinsic (photo) aging. Samples were collected from women of two age groups (under 27 and postmenopausal) and from two body sites with varying UV exposure (inner forearm and dorsal hand), and differences were identified using multivariate data analysis. The key finding was the significant aged-related increase and change in spatial distribution of the sterol cholesterol sulfate, a membrane stabilizing lipid. Significant changes in the prevalence of both lignoceric acid (C24:0) and hexacosanoic acid (C26:0) were also observed. This work describes previously unreported age-related chemical changes to human SC, providing an insight into aging mechanisms which may improve the design of both pharmaceutical and cosmetic topical products. PMID:27010630

  20. Effect of salinity and water stress during the reproductive stage on growth, ion concentrations, Delta 13C, and delta 15N of durum wheat and related amphiploids.

    PubMed

    Yousfi, Salima; Serret, Maria Dolores; Voltas, Jordi; Araus, José Luis

    2010-08-01

    The physiological performance of durum wheat and two related amphiploids was studied during the reproductive stage under different combinations of salinity and irrigation. One triticale, one tritordeum, and four durum wheat genotypes were grown in pots in the absence of stress until heading, when six different treatments were imposed progressively. Treatments resulted from the combination of two irrigation regimes (100% and 35% of container water capacity) with three levels of water salinity (1.8, 12, and 17 dS m(-1)), and were maintained for nearly 3 weeks. Gas exchange and chlorophyll fluorescence and content were measured prior to harvest; afterwards shoot biomass and height were recorded, and Delta(13)C, delta(15)N, and the concentration of nitrogen (N), phosphorus, and several ions (K(+), Na(+), Ca(2+), Mg(2+)) were analysed in shoot material. Compared with control conditions (full irrigation with Hoagland normal) all other treatments inhibited photosynthesis through stomatal closure, accelerated senescence, and decreased biomass. Full irrigation with 12 dS m(-1) outperformed other stress treatments in terms of biomass production and physiological performance. Biomass correlated positively with N and delta(15)N, and negatively with Na(+) across genotypes and fully irrigated treatments, while relationships across deficit irrigation conditions were weaker or absent. Delta(13)C did not correlate with biomass across treatments, but it was the best trait correlating with phenotypic differences in biomass within treatments. Tritordeum produced more biomass than durum wheat in all treatments. Its low Delta(13)C and high K(+)/Na(+) ratio, together with a high potential growth, may underlie this finding. Mechanisms relating delta(15)N and Delta(13)C to biomass are discussed.

  1. Mn-Cr relative sensitivity factor in ferromagnesian olivines defined for SIMS measurements with a Cameca ims-1280 ion microprobe: Implications for dating secondary fayalite

    NASA Astrophysics Data System (ADS)

    Doyle, Patricia M.; Jogo, Kaori; Nagashima, Kazuhide; Huss, Gary R.; Krot, Alexander N.

    2016-02-01

    The short-lived radionuclide 53Mn, which decays to 53Cr with a half-life of ∼3.7 Myr, is useful for sequencing objects that formed within the first 20 Myr of Solar System evolution. 53Mn-53Cr relative chronology enables aqueously formed secondary minerals such as fayalite and various carbonates in ordinary and carbonaceous chondrites to be dated, thereby providing chronological constraints on aqueous alteration processes. In situ measurements of Mn-Cr isotope systematics in fayalite by secondary ion mass spectrometry (SIMS) require consideration of the relative sensitivities of the 55Mn+ and 52Cr+ ions, for which a relative sensitivity factor [RSF = (55Mn+/52Cr+)SIMS/(55Mn/52Cr)true] is defined using appropriate standards. In the past, San Carlos olivine (Fa∼10) was commonly used for this purpose, but a growing body of evidence suggests that it is an unsuitable standard for meteoritic fayalite (Fa>90). Natural fayalite also cannot be used as a standard because it contains only trace amounts of chromium, which makes determining a true 55Mn/52Cr ratio and its degree of heterogeneity very difficult. To investigate the dependence of the Mn-Cr RSF on ferromagnesian olivine compositions, we synthesized a suite of compositionally homogeneous Mn,Cr-bearing liquidus-phase ferromagnesian olivines (Fa31-99). Manganese-chromium isotopic measurements of San Carlos olivine and synthesized ferromagnesian olivines using the University of Hawai'i Cameca ims-1280 SIMS show that the RSF for Fa10 is ∼0.9; it increases rapidly between Fa10 and Fa31 and reaches a plateau value of ∼1.5 ± 0.1 for Fa>34. The RSF is time-dependent: it increases during the measurements of olivines with fayalite content <30 and decreases during the measurements of olivines with fayalite content >50. The RSF measured on ferroan olivine (Fa>90) is influenced by pit shape, whereas the RSF measured on magnesian olivine (Fa10) is less sensitive to changes in pit shape. For these reasons, 53Mn-53Cr

  2. Ion Probe U-Pb dating of the Central Sakarya basement: a peri-Gondwana terrane cut by late Lower Carboniferous subduction/collision related granitic magmatism

    NASA Astrophysics Data System (ADS)

    Ayda Ustaömer, P.; Ustaömer, Timur; Robertson, Alastair. H. F.

    2010-05-01

    Our aim here is to better understand the age and tectonic history of crystalline basement units in the Sakarya Zone of N Turkey, north of the Neotethyan İzmir-Ankara-Erzincan Suture Zone, utilising field, petrographic and ion probe dating, the latter carried out at the University of Edinburgh. One of the largest basement units, Central Sakarya, is dominated by paragneisses and schists that are best exposed between Bilecik and Sarıcakaya, forming a belt ~15 km wide x 100 km long. Smaller outcrops of this basement are exposed further north, for instance in the Geyve area. High-grade metamorphic basement is unconformably overlain by Lower Jurassic-Upper Cretaceous cover sediments of the Sakarya Zone and is in tectonic contact with the Late Palaeozoic-Early Mesozoic Karakaya Complex to the south. Ion-probe U-Pb dating of 89 detrital zircons, separated from one garnet micaschist sample, range from 551 Ma (Ediacaran) to 2738 Ma (Neoarchean). 85% of the ages are > 90 % concordant. Zircon populations cluster at ~550-750 Ma (28 grains), ~950-1050 Ma (27 grains) and ~2000 Ma (5 grains), with smaller groupings at ~800 Ma and ~1850 Ma. The first, prominent population (Neoproterozoic) reflects derivation from a source area related to a Cadomian-Avalonian magmatic arc, likely to be associated with a Cadomian/NE African terrane rather than Baltica (Baltica is known to be magmatically inactive during this period), or Avalonia/Amazonia (in view of the absence of Mesoproterozoic ages in Avalonian-Amazonian terranes). The early Neoproterozoic ages (0.9-1 Ga) deviate significantly from the known age spectra of Cadomian terranes (i.e. Armorican Terrane Assemblage) and instead suggest derivation from an original part of NE Africa. The detrital zircon age spectrum of Cambrian-Ordovician sandstones deposited at the northern periphery of the Arabian-Nubian Shield (i.e. the Elat sandstone) is notably similar to that of the Sakarya basement. The Central Sakarya terrane may have rifted in

  3. Kinetics and mechanism of the interaction of phenol with ethylene oxide in the presence of ion-exchange resin wofatit SBW as catalyst

    SciTech Connect

    Boeva, R.; Markov, K.; Kotov, S.

    1980-04-01

    The reaction of ethylene oxide with phenol, generally catalyzed with homogeneous catalyst in the production of detergents, was studied with an ion-exchange resin catalyst, i.e., the hydroxyl form of a microreticular gel containing trimethylammonium active groups. The reaction produced only phenoxyethanol. At sufficient excess of ethylene oxide (at least 2.5:1 mole ratio), the reaction was zero order in ethylene oxide, zero order in phenol, proportional to the catalyst amount, and had an activation energy of 17.6 kcal/mole. Under reaction conditions, a catalytically active phenolate counterion apparently formed at the resin, which was not removed by washing with benzene or ether, but was removed by dilute hydrochloric acid. These results suggested that the mechanism and kinetics were the same as with homogeneous basic nucleophilic catalysts.

  4. Ion Monitoring

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2003-11-18

    The apparatus and method provide a technique for significantly reducing capacitance effects in detector electrodes arising due to movement of the instrument relative to the item/location being monitored in ion detection based techniques. The capacitance variations are rendered less significant by placing an electrically conducting element between the detector electrodes and the monitored location/item. Improved sensitivity and reduced noise signals arise as a result. The technique also provides apparatus and method suitable for monitoring elongate items which are unsuited to complete enclosure in one go within a chamber. The items are monitored part by part as the pass through the instrument, so increasing the range of items or locations which can be successfully monitored.

  5. Longitudinal diffusion coefficients and test of the generalized Einstein relation for Tl + ions in Kr and Xe, Li + in Kr and Xe, and Cl - in N2 a)

    NASA Astrophysics Data System (ADS)

    Thackston, M. G.; Byers, M. S.; Holleman, F. B.; Chelf, R. D.; Twist, J. R.; McDaniel, E. W.

    1983-04-01

    Longitudinal diffusion coefficients are measured for Tl+ in Kr and Xe, Li+ in Kr and Xe and cl- in N2. These diffusion coefficients are compared with the calculated ones from a previous measurement of ion mobility values.3 (AIP)

  6. Ion plating for the future

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1981-01-01

    The ion plating techniques are classified relative to the instrumental set up, evaporation media, and mode of transport. A distinction is drawn between the low vacuum (plasma) and high vacuum (ion beam) techniques. Ion plating technology is discussed at the fundamental and industrial level. At the fundamental level, the capabilities and limitations of the plasma (evaporant flux) and film characteristics are evaluated. And on the industrial level, the performance and potential uses of ion plated films are discussed.

  7. CoCr wear particles generated from CoCr alloy metal-on-metal hip replacements, and cobalt ions stimulate apoptosis and expression of general toxicology-related genes in monocyte-like U937 cells

    SciTech Connect

    Posada, Olga M.; Gilmour, Denise; Tate, Rothwelle J.; Grant, M. Helen

    2014-11-15

    Cobalt-chromium (CoCr) particles in the nanometre size range and their concomitant release of Co and Cr ions into the patients' circulation are produced by wear at the articulating surfaces of metal-on-metal (MoM) implants. This process is associated with inflammation, bone loss and implant loosening and led to the withdrawal from the market of the DePuy ASR™ MoM hip replacements in 2010. Ions released from CoCr particles derived from a resurfacing implant in vitro and their subsequent cellular up-take were measured by ICP-MS. Moreover, the ability of such metal debris and Co ions to induce both apoptosis was evaluated with both FACS and immunoblotting. qRT-PCR was used to assess the effects on the expression of lymphotoxin alpha (LTA), BCL2-associated athanogene (BAG1), nitric oxide synthase 2 inducible (NOS2), FBJ murine osteosarcoma viral oncogene homolog (FOS), growth arrest and DNA-damage-inducible alpha (GADD45A). ICP-MS showed that the wear debris released significant (p < 0.05) amounts of Co and Cr ions into the culture medium, and significant (p < 0.05) cellular uptake of both ions. There was also an increase (p < 0.05) in apoptosis after a 48 h exposure to wear debris. Analysis of qRT-PCR results found significant up-regulation (p < 0.05) particularly of NOS2 and BAG1 in Co pre-treated cells which were subsequently exposed to Co ions + debris. Metal debris was more effective as an inducer of apoptosis and gene expression when cells had been pre-treated with Co ions. This suggests that if a patient receives sequential bilateral CoCr implants, the second implant may be more likely to produce adverse effects than the first one. - Highlights: • Effects of CoCr nanoparticles and Co ions on U937 cells were investigated. • Ions released from wear debris play an important role in cellular response, • Toxicity of Co ions could be related to NO metabolic processes and apoptosis. • CoCr particles were a more effective inducer of apoptosis after cell

  8. Probing structural patterns of ion association and solvation in mixtures of imidazolium ionic liquids with acetonitrile by means of relative (1)H and (13)C NMR chemical shifts.

    PubMed

    Marekha, Bogdan A; Kalugin, Oleg N; Bria, Marc; Idrissi, Abdenacer

    2015-09-21

    Mixtures of ionic liquids (ILs) with polar aprotic solvents in different combinations and under different conditions (concentration, temperature etc.) are used widely in electrochemistry. However, little is known about the key intermolecular interactions in such mixtures depending on the nature of the constituents and mixture composition. In order to systematically address the intermolecular interactions, the chemical shift variation of (1)H and (13)C nuclei has been followed in mixtures of imidazolium ILs 1-n-butyl-3-methylimidazolium tetrafluoroborate (BmimBF4), 1-n-butyl-3-methylimidazolium hexafluorophosphate (BmimPF6), 1-n-butyl-3-methylimidazolium trifluoromethanesulfonate (BmimTfO) and 1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimTFSI) with molecular solvent acetonitrile (AN) over the entire composition range at 300 K. The concept of relative chemical shift variation is proposed to assess the observed effects on a unified and unbiased scale. We have found that hydrogen bonds between the imidazolium ring hydrogen atoms and electronegative atoms of anions are stronger in BmimBF4 and BmimTfO ILs than those in BmimTFSI and BmimPF6. Hydrogen atom at position 2 of the imidazolium ring is substantially more sensitive to interionic hydrogen bonding than those at positions 4-5 in the case of BmimTfO and BmimTFSI ILs. These hydrogen bonds are disrupted upon dilution in AN due to ion dissociation which is more pronounced at high dilutions. Specific solvation interactions between AN molecules and IL cations are poorly manifested.

  9. The potential of at-home prediction of the formation of urolithiasis by simple multi-frequency electrical conductivity of the urine and the comparison of its performance with urine ion-related indices, color and specific gravity.

    PubMed

    Silverio, Angelito A; Chung, Wen-Yaw; Cheng, Cheanyeh; Wang, Hai-Lung; Kung, Chien-Min; Chen, Jun; Tsai, Vincent F S

    2016-04-01

    It is important to control daily diet, water intake and life style as well as monitor the quality of urine for urolithiasis prevention. For decades, many ion-related indices have been developed for predicting the formation of urinary stones or urolithiasis, such as EQUILs, relative supersaturation (RSS), Tiselius indices (TI), Robertson risk factor algorithms (RRFA) and more recently, the Bonn risk index. However, they mostly demand robust laboratory analysis, are work-intensive, and even require complex computational programs to get the concentration patterns of several urine analytes. A simple and fast platform for measuring multi-frequency electrical conductivity (MFEC) of morning spot urine (random urine) to predict the onset of urolithiasis was implemented in this study. The performance thereof was compared to ion-related indices, urine color and specific gravity. The concentrations of relevant ions, color, specific gravity (SG) and MFEC (MFEC tested at 1, 10, 100, 5001 KHz and 1 MHz) of 80 random urine samples were examined after collection. Then, the urine samples were stored at 4 °C for 24 h to determine whether sedimentation would occur or not. Ion-activity product index of calcium oxalate (AP(CaOx) EQ2) was calculated. The correlation between AP(CaOx) EQ2, urine color, SG and MFEC were analyzed. AP(CaOx) EQ2, urine color and MFEC (at 5 frequencies) all demonstrated good prediction (p = 0.01, 0.01, 0.01, respectively) for stone formation. The positive correlation between AP(CaOx) EQ2 and MFEC is also significant (p = 0.01). MFEC provides a good metric for predicting the onset of urolithiasis, which is comparable to conventional ion-related indices and urine color. This technology can be implemented with much ease for objectively monitoring the quality of urine at points-of-care or at home.

  10. Ion-dust streaming instability with non-Maxwellian ions

    SciTech Connect

    Kählert, Hanno

    2015-07-15

    The influence of non-Maxwellian ions on the ion-dust streaming instability in a complex plasma is investigated. The ion susceptibility employed for the calculations self-consistently accounts for the acceleration of the ions by a homogeneous background electric field and their collisions with neutral gas particles via a Bhatnagar-Gross-Krook collision term [e.g., A. V. Ivlev et al., Phys. Rev. E 71, 016405 (2005)], leading to significant deviations from a shifted Maxwellian distribution. The dispersion relation and the properties of the most unstable mode are studied in detail and compared with the Maxwellian case. The largest deviations occur at low to intermediate ion-neutral damping. In particular, the growth rate of the instability for ion streaming below the Bohm speed is found to be lower than in the case of Maxwellian ions, yet remains on a significant level even for fast ion flows above the Bohm speed.

  11. Selective ion source

    DOEpatents

    Leung, K.N.

    1996-05-14

    A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P{sup +} from PH{sub 3}. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P{sup +}, As{sup +}, and B{sup +} without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices. 6 figs.

  12. Selective ion source

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    A ion source is described wherein selected ions maybe extracted to the exclusion of unwanted ion species of higher ionization potential. Also described is a method of producing selected ions from a compound, such as P.sup.+ from PH.sub.3. The invention comprises a plasma chamber, an electron source, a means for introducing a gas to be ionized by electrons from the electron source, means for limiting electron energy from the electron source to a value between the ionization energy of the selected ion species and the greater ionization energy of an unwanted ion specie, and means for extracting the target ion specie from the plasma chamber. In one embodiment, the electrons are generated in a plasma cathode chamber immediately adjacent to the plasma chamber. A small extractor draws the electrons from the plasma cathode chamber into the relatively positive plasma chamber. The energy of the electrons extracted in this manner is easily controlled. The invention is particularly useful for doping silicon with P.sup.+, AS.sup.+, and B.sup.+ without the problematic presence of hydrogen, helium, water, or carbon oxide ions. Doped silicon is important for manufacture of semiconductors and semiconductor devices.

  13. Ion Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Barnard, John J.; Horioka, Kazuhiko

    The description of beams in RF and induction accelerators share many common features. Likewise, there is considerable commonality between electron induction accelerators (see Chap. 7) and ion induction accelerators. However, in contrast to electron induction accelerators, there are fewer ion induction accelerators that have been operated as application-driven user facilities. Ion induction accelerators are envisioned for applications (see Chap. 10) such as Heavy Ion Fusion (HIF), High Energy Density Physics (HEDP), and spallation neutron sources. Most ion induction accelerators constructed to date have been limited scale facilities built for feasibility studies for HIF and HEDP where a large numbers of ions are required on target in short pulses. Because ions are typically non-relativistic or weakly relativistic in much of the machine, space-charge effects can be of crucial importance. This contrasts the situation with electron machines, which are usually strongly relativistic leading to weaker transverse space-charge effects and simplified longitudinal dynamics. Similarly, the bunch structure of ion induction accelerators relative to RF machines results in significant differences in the longitudinal physics.

  14. Ion colliders

    SciTech Connect

    Fischer, W.

    2011-12-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  15. ION SOURCE

    DOEpatents

    Martina, E.F.

    1958-04-22

    An improved ion source particularly adapted to provide an intense beam of ions with minimum neutral molecule egress from the source is described. The ion source structure includes means for establishing an oscillating electron discharge, including an apertured cathode at one end of the discharge. The egress of ions from the source is in a pencil like beam. This desirable form of withdrawal of the ions from the plasma created by the discharge is achieved by shaping the field at the aperture of the cathode. A tubular insulator is extended into the plasma from the aperture and in cooperation with the electric fields at the cathode end of the discharge focuses the ions from the source,

  16. ION PRODUCING MECHANISM

    DOEpatents

    Lawrence, E.O.

    1958-09-16

    Improvements are presented in calutron devices and, more specifically, dealswith an improved mounting arrangement fer the ion source of the calutron. An important feature of the invention resides in a pluraiity of insulators so mounted as to be accessible from the exterior of the calutron tank and supporting at their inner ends the ion source. These insutators are arranged in mutually parallel relation and also parallel to the flux of the nmgnetic field, whereby the strain of the supporting elements is reduced to a minimum. In addition the support assembly is secured to a removable wall portion of the task to facilitate withdrawal and examination of the ion producing mechanism.

  17. Ion temperature via laser scattering on ion Bernstein waves

    SciTech Connect

    Wurden, G.A.; Ono, M.; Wong, K.L.

    1981-10-01

    Hydrogen ion temperature has been measured in a warm toroidal plasma with externally launched ion Bernstein waves detected by heterodyne CO/sub 2/ laser scattering. Radial scanning of the laser beam allows precise determination of k/sub perpendicular to/ for the finite ion Larmor radius wave (..omega.. approx. less than or equal to 2..cap omega../sub i/). Knowledge of the magnetic field strength and ion concentration then give a radially resolved ion temperature from the dispersion relation. Probe measurements and Doppler broadening of ArII 4806A give excellent agreement.

  18. Desorption of cluster ions from solid Ne by low-energy ion impact.

    PubMed

    Tachibana, T; Fukai, K; Koizumi, T; Hirayama, T

    2010-12-01

    We investigated Ne(+) ions and Ne(n)(+) (n = 2-20) cluster ions desorbed from the surface of solid Ne by 1.0 keV Ar(+) ion impact. Kinetic energy analysis shows a considerably narrower energy distribution for Ne(n)(+) (n ≥ 3) ions than for Ne(n)(+) (n = 1, 2) ions. The dependence of ion yields on Ne film thickness indicates that cluster ions (n ≥ 3) are desorbed only from relatively thick films. We conclude that desorbed ions grow into large cluster ions during the outflow of deep bulk atoms to the vacuum.

  19. Tachykinin-Related Peptides Share a G Protein-Coupled Receptor with Ion Transport Peptide-Like in the Silkworm Bombyx mori

    PubMed Central

    Nagai-Okatani, Chiaki; Nagasawa, Hiromichi

    2016-01-01

    Recently, we identified an orphan Bombyx mori neuropeptide G protein-coupled receptor (BNGR)-A24 as an ion transport peptide-like (ITPL) receptor. BNGR-A24 belongs to the same clade as BNGR-A32 and -A33, which were recently identified as natalisin receptors. Since these three BNGRs share high similarities with known receptors for tachykinin-related peptides (TRPs), we examined whether these BNGRs can function as physiological receptors for five endogenous B. mori TRPs (TK-1–5). In a heterologous expression system, BNGR-A24 acted as a receptor for all five TRPs. In contrast, BNGR-A32 responded only to TK-5, and BNGR-A33 did not respond to any of the TRPs. These findings are consistent with recent studies on the ligand preferences for B. mori natalisins. Furthermore, we evaluated whether the binding of ITPL and TRPs to BNGR-A24 is competitive by using a Ca2+ imaging assay. Concomitant addition of a TRP receptor antagonist, spantide I, reduced the responses of BNGR-A24 not only to TK-4 but also to ITPL. The results of a binding assay using fluorescent-labeled BNGR-A24 and ligands demonstrated that the binding of ITPL to BNGR-A24 was inhibited by TK-4 as well as by spantide I, and vice versa. In addition, the ITPL-induced increase in cGMP levels of BNGR-A24-expressing BmN cells was suppressed by the addition of excess TK-4 or spantide I. The intracellular levels of cAMP and cGMP, as second messenger candidates of the TRP signaling, were not altered by the five TRPs, suggesting that these peptides act via different signaling pathways from cAMP and cGMP signaling at least in BmN cells. Taken together, the present findings suggest that ITPL and TRPs are endogenous orthosteric ligands of BNGR-A24 that may activate discrete signaling pathways. This receptor, which shares orthosteric ligands, may constitute an important model for studying ligand-biased signaling. PMID:27248837

  20. Occurrence and Origin of Methane in Relation to Major Ion Concentrations in Groundwater Wells of the Denver-Julesburg and Piceance Basins of Colorado

    NASA Astrophysics Data System (ADS)

    Rogers, J. D.; Sherwood, O.; Lackey, G.; Burke, T. L.; Osborn, S. G.; Ryan, J. N.

    2014-12-01

    The rapid expansion of unconventional oil and gas development in North America has generated intense public concerns about potential impacts to groundwater quality. To address these concerns, we examined geochemical data from a publicly available Colorado Oil and Gas Conservation Commission (COGCC) database. The data consist of over 17,000 samples from 4,756 unique surface and groundwater locations collected since 1990, representing one of the most extensive databases of groundwater quality in relation to oil and gas development anywhere. Following rigorous data QA/QC, we classified groundwater samples with respect to major ion composition and compared the assigned water "types" along with other geochemical parameters to methane concentrations and carbon isotopes in the Denver-Julesburg (DJ) and Piceance Basins in Colorado. 88% of samples with elevated methane (defined as > 1 mg L-1) were classified as Na-HCO3 type in the DJ basin and 78% were classified as either Na-HCO3 or Na-Cl type in the Piceance basin. Of the elevated methane samples, 96% and 69% in the DJ and Piceance basins respectively had microbial gas signatures, as determined by d13C values < - 60 ‰. Samples with elevated methane concentrations had higher pH, higher concentrations of chloride and sodium and lower concentrations of calcium in both the DJ and Piceance Basin. Elevated methane concentrations were predominately microbial in origin and correlated to indicators of increased water-rock interactions and anaerobic groundwater conditions, indicating that methane observed in these groundwater samples are largely a result of natural processes. Rare occurrences of stray thermogenic gas (d13C > 55 ‰, gas wetness > 5 % C2+ hydrocarbons) were most frequently associated with the Na-HCO3 water type in the DJ basin (67% of occurrences) and were randomly distributed across water types in the Piceance Basin. Investigation of natural and anthropogenic causes for the presence of methane is ongoing, using

  1. Ion acoustic waves in a multi-ion plasma.

    NASA Technical Reports Server (NTRS)

    Fried, B. D.; White, R. B.; Samec, T. K.

    1971-01-01

    An exact treatment of the multispecies ion acoustic dispersion relation is given for an argon/helium plasma. Phase velocity and damping are obtained as a function of ion-electron temperature ratio and relative densities of the two species. There are two important modes in the plasma, with quite different phase velocities, which are referred to as principal heavy ion mode and principal light ion mode. Which of these is dominant depends on the relative densities of the two components, but, in general, the light ion mode becomes important for surprisingly small light ion contamination. Approximate analytic expressions are derived from damping rates and phase velocities and their domains of validity are investigated. Relevance of the results for the investigation of collisionless shocks is discussed.

  2. Non-destructive ion trap mass spectrometer and method

    DOEpatents

    Frankevich, Vladimir E.; Soni, Manish H.; Nappi, Mario; Santini, Robert E.; Amy, Jonathan W.; Cooks, Robert G.

    1997-01-01

    The invention relates to an ion trap mass spectrometer of the type having an ion trapping volume defined by spaced end caps and a ring electrode. The ion trap includes a small sensing electrode which senses characteristic motion of ions trapped in said trapping volume and provides an image current. Ions are excited into characteristic motion by application of an excitation pulse to the trapped ions. The invention also relates to a method of operating such an ion trap.

  3. Selected ion flow tube, SIFT, studies of the reactions of H3O+, NO+ and O2+ with compounds released by Pseudomonas and related bacteria

    NASA Astrophysics Data System (ADS)

    Wang, Tianshu; Smith, David; Spanel, Patrik

    2004-04-01

    A selected ion flow tube, SIFT, study has been carried out of the reactions of H3O+, NO+ and O2+ with some volatile organic compounds that are released by bacteria. The major intention is to prepare the way for an extensive study of the emissions from Pseudomonas bacteria in vitro using selected ion flow tube mass spectrometry, SIFT-MS, with a view to detecting the presence of these bacteria in vivo. This requires an extensive SIFT-MS database of the rate coefficients and product ion distributions for the reactions of the above precursor ions with those molecular species that are released by or implicated in the growth of bacteria. A partial list of these molecular species is given. The available SIFT-MS database already includes the kinetic data for the reactions of several of these compounds and the present study supplements this to include 2-methyl-1-butanol and 2-heptanol, 3-methyl-1-butyl acetate, 4-methyl-1,3-pentadiene, and dimethyl trisulphide and dimethyl tetrasulphide. The kinetic data obtained in the present study are compared with those obtained previously for classes of similar compounds.

  4. Experimental Evaluation of a Negative Ion Source for a Heavy Ion Fusion Negative Ion Driver

    SciTech Connect

    Grisham, L. R.; Hahto, S. K.; Hahto, S. T.; Kwan, J. W.; Leung, K. N.

    2004-06-16

    Negative halogen ions have recently been proposed as a possible alternative to positive ions for heavy ion fusion drivers because electron accumulation would not be a problem in the accelerator, and if desired, the beams could be photo-detached to neutrals. To test the ability to make suitable quality beams, an experiment was conducted at Lawrence Berkeley National Laboratory using chlorine in an RF-driven ion source. Without introducing any cesium (which is required to enhance negative ion production in hydrogen ion sources) a negative chlorine current density of 45 mA/cm{sup 2} was obtained under the same conditions that gave 57 45 mA/cm{sup 2} of positive chlorine, suggesting the presence of nearly as many negative ions as positive ions in the plasma near the extraction plane. The negative ion spectrum was 99.5% atomic chlorine ions, with only 0.5% molecular chlorine, and essentially no impurities. Although this experiment did not incorporate the type of electron suppression technology that i s used in negative hydrogen beam extraction, the ratio of co-extracted electrons to Cl{sup -} was as low as 7 to 1, many times lower than the ratio of their mobilities, suggesting that few electrons are present in the near-extractor plasma. This, along with the near-equivalence of the positive and negative ion currents, suggests that the plasma in this region was mostly an ion-ion plasma. The negative chlorine current density was relatively insensitive to pressure, and scaled linearly with RF power. If this linear scaling continues to hold at higher RF powers, it should permit current densities of 100 45 mA/cm{sup 2}, sufficient for present heavy ion fusion injector concepts. The effective ion temperatures of the positive and negative ions appeared to be similar and relatively low for a plasma source.

  5. Ion Chromatography.

    ERIC Educational Resources Information Center

    Mulik, James D.; Sawicki, Eugene

    1979-01-01

    Accurate for the analysis of ions in solution, this form of analysis enables the analyst to directly assay many compounds that previously were difficult or impossible to analyze. The method is a combination of the methodologies of ion exchange, liquid chromatography, and conductimetric determination with eluant suppression. (Author/RE)

  6. Electrostatic ion-cyclotron waves in a two-ion component plasma

    NASA Technical Reports Server (NTRS)

    Suszcynsky, David M.; Merlino, Robert L.; D'Angelo, Nicola

    1988-01-01

    The excitation of electrostatic ion cyclotron (EIC) waves is studied in a single-ended Q machine in a two-ion component plasma (Ca+ and K+). Over a large range of relative concentrations of Cs+ and K+ ions, two modes are excited with frequencies greater than the respective cyclotron frequencies of the ions. The results are discussed in terms of a fluid theory of electrostatic ion cyclotron waves in a two-ion component plasma.

  7. Advanced ion thruster research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1985-01-01

    A series of experiments conducted on a ring cusp magnetic field ion thruster; in which the anode, cathode and discharge chamber backplate were moved relative to the magnetic cusp; are described. Optimum locations for the anode, cathode and backplate which yield the lowest energy cost per plasma ion and highest extracted ion fraction are identified. The results are discussed in terms of simple physical models. The results of preliminary experiments into the operation of hollow cathodes on nitrogen and xenon over a large pressure range (0.1 to 100 Torr) are presented. They show that the cathode discharge transfers from the cathode insert to the exterior edge of the orifice plate as the interelectrode pressure is increased. Experimental evidence showing that a new ion extractor grid concept can be used to stabilize the plasma sheath at the screen grid is presented. This concept, identified by the term constrained sheath optics, is shown to hold ion beamlet divergence and impingement characteristics to stable values as the beamlet current and the net and total accelerating voltages are changed. The current status of a study of beamlet vectoring induced by displacing the accelerator and/or decelerator grids of a three grid ion extraction system relative to the screen grid is discussed.

  8. Temperature-dependent toxicities of nano zinc oxide to marine diatom, amphipod and fish in relation to its aggregation size and ion dissolution.

    PubMed

    Wong, Stella W Y; Leung, Kenneth M Y

    2014-08-01

    This study, for the first time, concurrently investigated the influence of seawater temperature, exposure concentration and time on the aggregation size and ion dissolution of nano zinc oxides (nZnO) in seawater, and the interacting effect of temperature and waterborne exposure of nZnO to the marine diatom Skeletonema costatum, amphipod Melita longidactyla and fish Oryzias melastigma, respectively. Our results showed that aggregate size was jointly affected by seawater temperature, nZnO concentration and exposure time. Among the three factors, the concentration of nZnO was the most important and followed by exposure time, whereas temperature was less important as reflected by their F values in the three-way analysis of variance (concentration: F3, 300 = 247.305; time: F2, 300 = 20.923 and temperature: F4, 300 = 4.107; All p values <0.001). The aggregate size generally increased with increasing nZnO concentration and exposure time. The release of Zn ions from nZnO was significantly influenced by seawater temperature and exposure time; the ion dissolution rate generally increased with decreasing temperature and increasing exposure time. Growth inhibition of diatoms increased with increasing temperature, while temperature and nZnO had an interactional effect on their photosynthesis. For the amphipod, mortality was positively correlated with temperature. Fish larvae growth rate was only affected by temperature but not nZnO, while the two factors interactively modulated the expression of heat shock and metallothionein proteins. Evidently, temperature can influence aggregate size and ion dissolution and thus toxicity of nZnO to the marine organisms in a species-specific manner. PMID:24219175

  9. Ion Milling of Sapphire

    NASA Technical Reports Server (NTRS)

    Gregory, Don A.; Herren, Kenneth A.

    2004-01-01

    The ion milling of sapphire is a complicated operation due to several characteristics of the material itself. It is a relatively hard transparent nonconductive crystalline material that does not transfer heat nearly as well as metals that have been successfully ion milled in the past. This investigation involved designing an experimental arrangement, using existing ion milling equipment, as the precursor to figuring the surface of sapphire and other insulating optical materials. The experimental arrangement employs a laser probe beam to constantly monitor the stresses being induced in the material, as it is being ion milled. The goal is to determine if the technique proposed would indeed indicate the stress being induced in the material so that these stresses can be managed to prevent failure of the optic.

  10. Crystal Structure of Garnet-Related Li-Ion Conductor Li7–3xGaxLa3Zr2O12: Fast Li-Ion Conduction Caused by a Different Cubic Modification?

    PubMed Central

    2016-01-01

    Li-oxide garnets such as Li7La3Zr2O12 (LLZO) are among the most promising candidates for solid-state electrolytes to be used in next-generation Li-ion batteries. The garnet-structured cubic modification of LLZO, showing space group Ia-3d, has to be stabilized with supervalent cations. LLZO stabilized with Ga3+ shows superior properties compared to LLZO stabilized with similar cations; however, the reason for this behavior is still unknown. In this study, a comprehensive structural characterization of Ga-stabilized LLZO is performed by means of single-crystal X-ray diffraction. Coarse-grained samples with crystal sizes of several hundred micrometers are obtained by solid-state reaction. Single-crystal X-ray diffraction results show that Li7–3xGaxLa3Zr2O12 with x > 0.07 crystallizes in the acentric cubic space group I-43d. This is the first definite record of this cubic modification for LLZO materials and might explain the superior electrochemical performance of Ga-stabilized LLZO compared to its Al-stabilized counterpart. The phase transition seems to be caused by the site preference of Ga3+. 7Li NMR spectroscopy indicates an additional Li-ion diffusion process for LLZO with space group I-43d compared to space group Ia-3d. Despite all efforts undertaken to reveal structure–property relationships for this class of materials, this study highlights the potential for new discoveries. PMID:27019548

  11. ION SWITCH

    DOEpatents

    Cook, B.

    1959-02-10

    An ion switch capable of transferring large magnitudes of power is described. An ion switch constructed in accordance with the invention includes a pair of spaced control electrodes disposed in a highly evacuated region for connection in a conventional circuit to control the passing of power therethrough. A controllable ionic conduction path is provided directiy between the control electrodes by a source unit to close the ion switch. Conventional power supply means are provided to trigger the source unit and control the magnitude, durations and pulse repetition rate of the aforementioned ionic conduction path.

  12. ION SOURCE

    DOEpatents

    Leland, W.T.

    1960-01-01

    The ion source described essentially eliminater the problem of deposits of nonconducting materials forming on parts of the ion source by certain corrosive gases. This problem is met by removing both filament and trap from the ion chamber, spacing them apart and outside the chamber end walls, placing a focusing cylinder about the filament tip to form a thin collimated electron stream, aligning the cylinder, slits in the walls, and trap so that the electron stream does not bombard any part in the source, and heating the trap, which is bombarded by electrons, to a temperature hotter than that in the ion chamber, so that the tendency to build up a deposit caused by electron bombardment is offset by the extra heating supplied only to the trap.

  13. ION SOURCE

    DOEpatents

    Blue, C.W.; Luce, J.S.

    1960-07-19

    An ion source is described and comprises an arc discharge parallel to the direction of and inside of a magnetic field. an accelerating electrode surrounding substantially all of the discharge except for ion exit apertures, and means for establishing an electric field between that electrode and the arc discharge. the electric field being oriented at an acute angle to the magnetic field. Ions are drawn through the exit apertures in the accelrating electrcde in a direction substantially divergent to the direction of the magnetic field and so will travel in a spiral orbit along the magnetic field such that the ions will not strike the source at any point in their orbit within the magnetic field.

  14. Ion thermal effects on slow mode solitary waves in plasmas with two adiabatic ion species

    SciTech Connect

    Nsengiyumva, F. Hellberg, M. A. Mace, R. L.

    2015-09-15

    Using both the Sagdeev and Korteweg-de Vries (KdV) methods, ion thermal effects on slow mode ion acoustic solitons and double layers are investigated in a plasma with two adiabatic positive ion species. It is found that reducing the gap between the two ion thermal speeds by increasing the relative temperature of the cool ions increases the typical soliton/double layer speeds for all values of the ion-ion density ratio and reduces the range in the density ratio that supports double layers. The effect of increasing the relative cool ion temperature on the soliton/double layer amplitudes depends on the relative densities. For lower values of the ion density ratio, an increase in cool ion temperature leads to a significant decrease in soliton/double layer amplitude, so one may find that solitons of all permissible speeds lie within the range of KdV theory.

  15. Gas and metal ion sources

    SciTech Connect

    Oaks, E. |; Yushkov, G.

    1996-08-01

    The positive ion sources are now of interest owing to both their conventional use, e.g., as injectors in charged-particle accelerators and the promising capabilities of intense ion beams in the processes related to the action of ions on various solid surfaces. For industrial use, the sources of intense ion beams and their power supplies should meet the specific requirements as follows: They should be simple, technologically effective, reliable, and relatively low-cost. Since the scanning of an intense ion beam is a complicated problem, broad ion beams hold the greatest promise. For the best use of such beams it is desirable that the ion current density be uniformly distributed over the beam cross section. The ion beam current density should be high enough for the treatment process be accomplished for an acceptable time. Thus, the ion sources used for high-current, high-dose metallurgical implantation should provide for gaining an exposure dose of {approximately} 10{sup 17} cm{sup {minus}2} in some tens of minutes. So the average ion current density at the surface under treatment should be over 10{sup {minus}5} A/cm{sup 2}. The upper limit of the current density depends on the admissible heating of the surface under treatment. The accelerating voltage of an ion source is dictated by its specific use; it seems to lie in the range from {approximately}1 kV (for the ion source used for surface sputtering) to {approximately}100 kV and over (for the ion sources used for high-current, high-dose metallurgical implantation).

  16. Ion cloud model for a linear quadrupole ion trap.

    PubMed

    Douglas, Don J; Konenkov, Nikolai V

    2012-01-01

    If large numbers of ions are stored in a linear quadrupole ion trap, space charge causes the oscillation frequencies of ions to decrease. Ions then appear at higher apparent masses when resonantly ejected for mass analysis. In principle, to calculate mass shifts requires calculating the positions of all ions, interacting with each other, at all times, with a self-consistent space charge field. Here, we propose a simpler model for the ion cloud in the case where mass shifts and frequency shifts are relatively small (ca 0.2% and 0.4%, respectively), the trapping field is much stronger (ca × 10(2)) than the space charge field and space charge only causes small perturbations to the ion motion. The self-consistent field problem need not be considered. As test ions move with times long compared to a cycle of the trapping field, the motion of individual ions can be ignored. Static positions of the ions in the cloud are used. To generate an ion cloud, trajectories of N (ca 10,000) ions are calculated for random times between 10 and 100 cycles of the trapping radio frequency field. The ions are then distributed axially randomly in a trap four times the field radius, r(0) in length. The potential and electric field from the ion cloud are calculated from the ion positions. Near the trap center (distances r< 1r(0)), the potential and electric fields from space charge are not cylindrically symmetric, but are quite symmetric for greater values of r. Trajectories of test ions, oscillation frequencies and mass shifts can then be calculated in the trapping field, including the space charge field. Mass shifts are in good agreement with experiments for reasonable values of the initial positions and speeds of the ions. Agreement with earlier analytical models for the ion cloud, based on a uniform occupation of phase space, or a thermal (Boltzmann) distribution of ions trapped in the effective potential [D. Douglas and N.V. Konenkov, Rapid Commun. Mass Spectrom. 26, 2105 (2012)] is

  17. Ion Outflow At Mars Using MEX Ion And Electron Data

    NASA Astrophysics Data System (ADS)

    Fowler, Christopher M.; Andersson, L.; Lundin, R. N.; Frahm, R. A.

    2013-10-01

    How Mars lost it’s water and atmosphere is still an important question. Many studies have investigated high-energy ion fluxes (>10 eV) surrounding the planet and derived ion outflow rates in order to determine atmospheric loss. These rates suggest that the outflow from high-energy ions is not the dominant escape path for atmospheric loss. Over the years increasing evidence has indicated that the loss of low-energy ions is more important than the high-energy ion loss. In this presentation ion observations (down to the spacecraft potential) from the Mars Express (MEX) mission (2010/11), are used to describe the ion altitude distribution at Mars. The focus of this study is below the altitude of ~2000 km. Within the Mars environment, using the MEX electron observations different plasma regions were identified. Supported by electron identification, different altitude profiles of ion fluxes have been analyzed from the different plasma regions. The altitude profiles of the ion fluxes observed below the photoelectron boundary and in the sheath transition region in this study show large asymmetries between the northern and southern hemispheres. The ion distributions, resulting altitude profiles, the influence of the crustal magnetic field at Mars, and the implications relating to plasma outflow will be discussed in this presentation.

  18. Electromagnetic ion/ion cyclotron instability - Theory and simulations

    NASA Technical Reports Server (NTRS)

    Winske, D.; Omidi, N.

    1992-01-01

    Linear theory and 1D and 2D hybrid simulations are employed to study electromagnetic ion/ion cyclotron (EMIIC) instability driven by the relative streaming of two field-aligned ion beams. The characteristics of the instability are studied as a function of beam density, propagation angle, electron-ion temperature ratios, and ion beta. When the propagation angle is near 90 deg the EMIIC instability has the characteristics of an electrostatic instability, while at smaller angles electromagnetic effects play a significant role as does strong beam coupling. The 2D simulations point to a narrowing of the wave spectrum and accompanying coherent effects during the linear growth stage of development. The EMIIC instability is an important effect where ion beta is low such as in the plasma-sheet boundary layer and upstream of slow shocks in the magnetotail.

  19. Solid lithium-ion electrolyte

    SciTech Connect

    Zhang, J.G.; Benson, D.K.; Tracy, C.E.

    1998-02-10

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li{sub 2}O--CeO{sub 2}--SiO{sub 2} system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications. 12 figs.

  20. Solid lithium-ion electrolyte

    DOEpatents

    Zhang, Ji-Guang; Benson, David K.; Tracy, C. Edwin

    1998-01-01

    The present invention relates to the composition of a solid lithium-ion electrolyte based on the Li.sub.2 O--CeO.sub.2 --SiO.sub.2 system having good transparent characteristics and high ion conductivity suitable for uses in lithium batteries, electrochromic devices and other electrochemical applications.

  1. Lithium ion conducting electrolytes

    DOEpatents

    Angell, Charles Austen; Liu, Changle; Xu, Kang; Skotheim, Terje A.

    1999-01-01

    The present invention relates generally to highly conductive alkali-metal ion non-crystalline electrolyte systems, and more particularly to novel and unique molten (liquid), rubbery, and solid electrolyte systems which are especially well suited for use with high current density electrolytic cells such as primary and secondary batteries.

  2. Expression pattern of potential biomarker genes related to growth, ion regulation and stress in response to ammonia exposure, food deprivation and exercise in common carp (Cyprinus carpio).

    PubMed

    Sinha, Amit Kumar; Diricx, Marjan; Chan, Lai Pong; Liew, Hon Jung; Kumar, Vikas; Blust, Ronny; De Boeck, Gudrun

    2012-10-15

    Waterborne ammonia has become a persistent pollutant of aquatic habitats. During certain periods (e.g. winter), food deprivation may occur simultaneously in natural water. Additionally, under such stressful circumstances, fish may be enforced to swim at a high speed in order to catch prey, avoid predators and so on. Consequently, fish need to cope with all these stressors by altering physiological processes which in turn are controlled by their genes. In this present study, toxicogenomic analyses using real time PCR was used to characterize expression patterns of potential biomarker genes controlling growth, ion regulation and stress responses in common carp subjected to elevated ammonia (1 mg/L; Flemish water quality guideline for surface water) following periods of feeding (2% body weight) and fasting (unfed for 7 days prior to sampling). Both feeding groups of fish were exposed to high environment ammonia (HEA) for 0 h (control), 3h, 12h, 1 day, 4 days, 10 days, 21 days and 28 days, and were sampled after performing swimming at different speeds (routine versus exhaustive). Results show that the activity and expression of Na(+)/K(+)-ATPase, an important branchial ion regulatory enzyme, was increased after 4-10 days of exposure. Effect of HEA was also evident on expression patterns of other ion-regulatory hormone and receptor genes; prolactin and cortisol receptor mRNA level(s) were down-regulated and up-regulated respectively after 4, 10 and 21 days. Starvation and exhaustive swimming, the additional challenges in present study significantly further enhanced the HEA effect on the expression of these two genes. mRNA transcript of growth regulating hormone and receptor genes such as Insulin-like growth factor I, growth hormone receptor, and the thyroid hormone receptor were reduced in response to HEA and the effect of ammonia was exacerbated in starved fish, with levels that were remarkably reduced compared to fed exposed fish. However, the expression of the growth

  3. Ion binding to biological macromolecules

    PubMed Central

    Petukh, Marharyta; Alexov, Emil

    2015-01-01

    Biological macromolecules carry out their functions in water and in the presence of ions. The ions can bind to the macromolecules either specifically or non-specifically, or can simply to be a part of the water phase providing physiological gradient across various membranes. This review outlines the differences between specific and non-specific ion binding in terms of the function and stability of the corresponding macromolecules. Furthermore, the experimental techniques to identify ion positions and computational methods to predict ion binding are reviewed and their advantages compared. It is indicated that specifically bound ions are relatively easier to be revealed while non-specifically associated ions are difficult to predict. In addition, the binding and the residential time of non-specifically bound ions are very much sensitive to the environmental factors in the cells, specifically to the local pH and ion concentration. Since these characteristics differ among the cellular compartments, the non-specific ion binding must be investigated with respect to the sub-cellular localization of the corresponding macromolecule. PMID:25774076

  4. ION SOURCE

    DOEpatents

    Bell, W.A. Jr.; Love, L.O.; Prater, W.K.

    1958-01-28

    An ion source is presented capable of producing ions of elements which vaporize only at exceedingly high temperatures, i.e.,--1500 degrees to 3000 deg C. The ion source utilizes beams of electrons focused into a first chamber housing the material to be ionized to heat the material and thereby cause it to vaporize. An adjacent second chamber receives the vaporized material through an interconnecting passage, and ionization of the vaporized material occurs in this chamber. The ionization action is produced by an arc discharge sustained between a second clectron emitting filament and the walls of the chamber which are at different potentials. The resultant ionized material egresses from a passageway in the second chamber. Using this device, materials which in the past could not be processed in mass spectometers may be satisfactorily ionized for such applications.

  5. NASA Aerospace Flight Battery Program: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries; Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries; Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop). Volume 2, Part 1

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This report contains the Appendices to the findings from the first year of the program's operations.

  6. Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries.

    PubMed

    Sasidharan, Manickam; Nakashima, Kenichi; Gunawardhana, Nanda; Yokoi, Toshiyuki; Ito, Masanori; Inoue, Masamichi; Yusa, Shin-ichi; Yoshio, Masaki; Tatsumi, Takashi

    2011-11-01

    Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance ((29)Si MAS NMR and (13)CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles.

  7. ION PRODUCING MECHANISM

    DOEpatents

    Backus, J.G.

    1958-09-01

    This patent relates to improvements in calutron devices and particularly describes a novel ion source. The unique feature of this source lies in the shaping of the ionizing electron stream to conform to the arc plasma boundary at the exit slit of the ionization chamber, thereby increasing the ion density produced at the plasma boundary. The particular structure consists of an electron source disposed at onc end of an elongated ionization chambcr and a coilimating electrode positioned to trim the electron stream to a crescent shape before entering the ionization chamber.

  8. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Chen, Yu; Leach, Franklin E; Kaiser, Nathan K; Dang, Xibei; Ibrahim, Yehia M; Norheim, Randolph V; Anderson, Gordon A; Smith, Richard D; Marshall, Alan G

    2015-01-01

    Enhancements to the ion source and transfer optics of our 9.4 T Fourier transform ion cyclotron resonance (ICR) mass spectrometer have resulted in improved ion transmission efficiency for more sensitive mass measurement of complex mixtures at the MS and MS/MS levels. The tube lens/skimmer has been replaced by a dual ion funnel and the following octopole by a quadrupole for reduced ion cloud radial expansion before transmission into a mass-selective quadrupole. The number of ions that reach the ICR cell is increased by an order of magnitude for the funnel/quadrupole relative to the tube lens/skimmer/octopole.

  9. Heavy ion tumour therapy

    NASA Astrophysics Data System (ADS)

    Scholz, M.

    2000-03-01

    Ion beams represent a promising radiotherapy modality for the treatment of deep seated tumours. Compared to conventional photon beams, in particular beams of heavier ions like e.g. carbon show several advantages which are related to their different physical and radiobiological properties: The dose increases with penetration depth and shows a sharp distal fall off at the end of the particle range, i.e., the depth dose profile is inverted compared to photon beams. They exhibit an increased biological effectiveness in particular at the end of their range and thus in the target volume. The spatial distribution of stopping particles can be monitored by means of PET-techniques making use of the small amount of radioactive projectile fragments. Ion beams were first used for medical applications in 1954 in Berkeley. Since then, several treatment facilities for tumour therapy have been established worldwide, and approximately 25 000 patients have been treated with protons and 3000 patients with heavier ions successfully. As an example, the specific advantages of the heavy ion therapy facility at GSI Darmstadt established in cooperation with the Radiological Clinics and DKFZ Heidelberg and FZ Rossendorf will be described. In contrast to most existing facilities, it is based on an active beam delivery system, using magnetic deflection of a pencil beam (raster scan) and accelerator energy variation to adjust the penetration depth. Thus, an optimal conformation of the dose to the target volume is achieved. PET-measurements allow for a quasi on-line monitoring of the 3D distribution of stopping particles and in particular of the position of the distal edge of the dose distribution. Furthermore, in the treatment planning procedure the radiobiological properties of ion beams are taken into account in great detail. In December 1997, patient treatments started at GSI, and up to now 42 patients were treated with carbon ions alone or in a mixed carbon/photon beam regime.

  10. Ion Milling of Sapphire

    NASA Technical Reports Server (NTRS)

    Gregory, Don A.

    2002-01-01

    The ion figuring system at the Marshall Space Flight Center has been successfully used for at least three previous investigations into the ion milling of metals. The research was directed toward improving the surface quality of X-ray directing optics. These studies were performed on surfaces that were already hand polished to an excellent surface quality and were intended to remove the residual unwanted figure left by those techniques. The ion milling was typically carried out on test surfaces or mandrels that were several centimeters in width and length. The good thermal conductivity of the metal samples allowed the ion beam to be directed onto the sample for an indefinite period of time. This is not true of sapphire or most electrical insulators and problems have arisen in recent attempts to ion mill thin samples of sapphire. The failure and fracture of the material was likely due to thermal stresses and the relatively low thermal conductivity of sapphire (compared to most metals), These assumed stresses actually provided the key as to how they might be monitored. A thermal gradient in the sapphire sample will induce an effective index of refraction change and because of the shape constraint and the crystal structure and simple thermal expansion, this index change will be nonuniform across the sample. In all but simple cubic crystal structures, this leads to a spatially nonuniform optical retardance induced on any polarized optical beam traversing the sample, and it is this retardance that can be monitored using standard polarimetric procedures.

  11. Characterization of oxygenated derivatives of isoprene related to 2-methyltetrols in Amazonian aerosols using trimethylsilylation and gas chromatography/ion trap mass spectrometry.

    PubMed

    Wang, Wu; Kourtchev, Ivan; Graham, Bim; Cafmeyer, Jan; Maenhaut, Willy; Claeys, Magda

    2005-01-01

    In the present study, we have tentatively identified the structures of three oxygenated derivatives of isoprene in Amazonian rain forest aerosols as the C(5) alkene triols, 2-methyl-1,3,4-trihydroxy-1-butene (cis and trans) and 3-methyl-2,3,4-trihydroxy-1-butene. The formation of these oxygenated derivatives of isoprene can be explained by acid-catalyzed ring opening of epoxydiol derivatives of isoprene, namely, 1,2-epoxy-2-methyl-3,4-dihydroxybutane and 1,2-dihydroxy-2-methyl-3,4-epoxybutane. The structural proposals of the C(5) alkene triols were based on chemical derivatization reactions and detailed interpretation of electron and chemical ionization mass spectral data, including data obtained from first-order mass spectra, deuterium labeling of the trimethylsilyl methyl groups, and MS(2) ion trap experiments. The characterization of 2-methyl-1,3,4-trihydroxy-1-butene (cis and trans) and 3-methyl-2,3,4-trihydroxy-1-butene in forest aerosols is important from an atmospheric chemistry viewpoint in that these compounds hint at the formation of intermediate isomeric epoxydiol derivatives of isoprene and as such provide mechanistic insights into the formation of the previously reported 2-methyltetrols through photooxidation of isoprene.

  12. Electrochemical behavior of phytochelatins and related peptides at the hanging mercury drop electrode in the presence of cobalt(II) ions.

    PubMed

    Dorcák, Vlastimil; Sestáková, Ivana

    2006-01-01

    Direct current voltammetry and differential pulse voltammetry have been used to investigate the electrochemical behaviour of two phytochelatins: heptapeptide (gamma-Glu-Cys)3-Gly and pentapeptide (gamma-Glu-Cys)2-Gly, tripeptide glutathione gamma-Glu-Cys-Gly and its fragments: dipeptides Cys-Gly and gamma-Glu-Cys at the hanging mercury drop electrode in the presence of cobalt(II) ions. Most interesting results were obtained with direct current voltammetry in the potential region of -0.80 V up to -1.80 V. Differential pulse voltammetry of the same solutions of Co(II) with peptides gives more complicated voltammograms with overlapping peaks, probably in connection with the influence of adsorption at slow scan rates necessarily used in this method. However, in using Brdicka catalytic currents for analytical purposes, differential pulse voltammograms seem to be more helpful. Presented investigations have shown that particularly the prewave of cobalt(II) allows distinguishing among phytochelatins, glutathione, and its fragments.

  13. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Electrochemical properties of SnO2 nanorods as anode materials in lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Shi, Song-Lin; Liu, Yong-Gang; Zhang, Jing-Yuan; Wang, Tai-Hong

    2009-10-01

    Well-dispersed SnO2 nanorods with diameter of 4-15 nm and length of 100-200 nm are synthesised through a hydrothermal route and their potential as anode materials in lithium-ion batteries is investigated. The observed initial discharge capacity is as high as 1778 mA·h/g, much higher than the theoretical value of the bulk SnO2 (1494 mA·h/g). During the following 15 cycles, the reversible capacity decreases from 929 to 576 mA·h/g with a fading rate of 3.5% per cycle. The fading mechanism is discussed. Serious capacity fading can be avoided by reducing the cycling voltages from 0.05-3.0 to 0.4-1.2 V. At the end, SnO2 nanorods with much smaller size are synthesized and their performance as anode materials is studied. The size effect on the electrochemical properties is briefly discussed.

  14. Differential Inhibition of Water and Ion Channel Activities of Mammalian Aquaporin-1 by Two Structurally Related Bacopaside Compounds Derived from the Medicinal Plant Bacopa monnieri.

    PubMed

    Pei, Jinxin V; Kourghi, Mohamad; De Ieso, Michael L; Campbell, Ewan M; Dorward, Hilary S; Hardingham, Jennifer E; Yool, Andrea J

    2016-10-01

    Aquaporin-1 (AQP1) is a major intrinsic protein that facilitates flux of water and other small solutes across cell membranes. In addition to its function as a water channel in maintaining fluid homeostasis, AQP1 also acts as a nonselective cation channel gated by cGMP, a property shown previously to facilitate rapid cell migration in a AQP1-expressing colon cancer cell line. Here we report two new modulators of AQP1 channels, bacopaside I and bacopaside II, isolated from the medicinal plant Bacopa monnieri Screening was conducted in the Xenopus oocyte expression system, using quantitative swelling and two-electrode voltage clamp techniques. Results showed bacopaside I blocked both the water (IC50 117 μM) and ion channel activities of AQP1 but did not alter AQP4 activity, whereas bacopaside II selectively blocked the AQP1 water channel (IC50 18 μM) without impairing the ionic conductance. These results fit with predictions from in silico molecular modeling. Both bacopasides were tested in migration assays using HT29 and SW480 colon cancer cell lines, with high and low levels of AQP1 expression, respectively. Bacopaside I (IC50 48 μM) and bacopaside II (IC50 14 μM) impaired migration of HT29 cells but had minimal effect on SW480 cell migration. Our results are the first to identify differential AQP1 modulators isolated from a medicinal plant. Bacopasides could serve as novel lead compounds for pharmaceutic development of selective aquaporin modulators.

  15. Ion Beam Modification of Materials

    SciTech Connect

    Averback, B; de la Rubia, T D; Felter, T E; Hamza, A V; Rehn, L E

    2005-10-10

    This volume contains the proceedings of the 14th International Conference on Ion Beam Modification of Materials, IBMM 2004, and is published by Elsevier-Science Publishers as a special issue of Nuclear Instruments and Methods B. The conference series is the major international forum to present and discuss recent research results and future directions in the field of ion beam modification, synthesis and characterization of materials. The first conference in the series was held in Budapest, Hungary, 1978, and subsequent conferences were held every two years at locations around the Globe, most recently in Japan, Brazil, and the Netherlands. The series brings together physicists, materials scientists, and ion beam specialists from all over the world. The official conference language is English. IBMM 2004 was held on September 5-10, 2004. The focus was on materials science involving both basic ion-solid interaction processes and property changes occurring either during or subsequent to ion bombardment and ion beam processing in relation to materials and device applications. Areas of research included Nanostructures, Multiscale Modeling, Patterning of Surfaces, Focused Ion Beams, Defects in Semiconductors, Insulators and Metals, Cluster Beams, Radiation Effects in Materials, Photonic Devices, Ion Implantation, Ion Beams in Biology and Medicine including New Materials, Imaging, and Treatment.

  16. The transition from water-breathing to air-breathing is associated with a shift in ion uptake from gills to gut: a study of two closely related erythrinid teleosts, Hoplerythrinus unitaeniatus and Hoplias malabaricus.

    PubMed

    Wood, Chris M; Pelster, Bernd; Giacomin, Marina; Sadauskas-Henrique, Helen; Almeida-Val, Vera Maria F; Val, Adalberto Luis

    2016-05-01

    The evolutionary transition from water-breathing to air-breathing involved not only a change in function of the organs of respiratory gas exchange and N-waste excretion, but also in the organs of ion uptake from the environment. A combination of in vivo and in vitro techniques was used to look at the relative importance of the gills versus the gut in Na(+), Cl(-), and K(+) balance in two closely related erythrinid species: a facultative air-breather, the jeju (Hoplerythrinus unitaeniatus) and an obligate water-breather, the traira (Hoplias malabaricus). The jeju has a well-vascularized physostomous swimbladder, while that in the traira is poorly vascularized, but the gills are much larger. Both species are native to the Amazon and are common in the ion-poor, acidic blackwaters of the Rio Negro. Under fasting conditions, the traira was able to maintain positive net Na(+) and Cl(-) balance in this water, and only slightly negative net K(+) balance. However, the jeju was in negative net balance for all three ions and had lower plasma Na(+) and Cl(-) concentrations, despite exhibiting higher branchial Na(+), K(+)ATPase and v-type H(+)ATPase activities. In the intestine, activities of these same enzymes were also higher in the jeju, and in vitro measurements of net area-specific rates of Na(+), Cl(-), and K(+) absorption, as well as the overall intestinal absorption capacities for these three ions, were far greater than in the traira. When acutely exposed to disturbances in water O2 levels (severe hypoxia ~15% or hyperoxia ~420% saturation), gill ionoregulation was greatly perturbed in the traira but less affected in the jeju, which could "escape" the stressor by voluntarily air-breathing. We suggest that a shift of ionoregulatory capacity from the gills to the gut may have occurred in the evolutionary transition to air-breathing in jeju, and in consequence branchial ionoregulation, while less powerful, is also less impacted by variations in water O2 levels. PMID

  17. Differential Inhibition of Water and Ion Channel Activities of Mammalian Aquaporin-1 by Two Structurally Related Bacopaside Compounds Derived from the Medicinal Plant Bacopa monnieri.

    PubMed

    Pei, Jinxin V; Kourghi, Mohamad; De Ieso, Michael L; Campbell, Ewan M; Dorward, Hilary S; Hardingham, Jennifer E; Yool, Andrea J

    2016-10-01

    Aquaporin-1 (AQP1) is a major intrinsic protein that facilitates flux of water and other small solutes across cell membranes. In addition to its function as a water channel in maintaining fluid homeostasis, AQP1 also acts as a nonselective cation channel gated by cGMP, a property shown previously to facilitate rapid cell migration in a AQP1-expressing colon cancer cell line. Here we report two new modulators of AQP1 channels, bacopaside I and bacopaside II, isolated from the medicinal plant Bacopa monnieri Screening was conducted in the Xenopus oocyte expression system, using quantitative swelling and two-electrode voltage clamp techniques. Results showed bacopaside I blocked both the water (IC50 117 μM) and ion channel activities of AQP1 but did not alter AQP4 activity, whereas bacopaside II selectively blocked the AQP1 water channel (IC50 18 μM) without impairing the ionic conductance. These results fit with predictions from in silico molecular modeling. Both bacopasides were tested in migration assays using HT29 and SW480 colon cancer cell lines, with high and low levels of AQP1 expression, respectively. Bacopaside I (IC50 48 μM) and bacopaside II (IC50 14 μM) impaired migration of HT29 cells but had minimal effect on SW480 cell migration. Our results are the first to identify differential AQP1 modulators isolated from a medicinal plant. Bacopasides could serve as novel lead compounds for pharmaceutic development of selective aquaporin modulators. PMID:27474162

  18. Theoretical study of the complexes of horminone with Mg2+ and Ca2+ ions and their relation with the bacteriostatic activity.

    PubMed

    Nicolás, Inés; Castro, Miguel

    2006-04-01

    The coordination of the horminone molecule with hydrated magnesium and calcium divalent ions was studied by means of the density functional theory. All-electron calculations were performed with the B3LYP/6-31G method. The first layer of the water molecules surrounding the metallic cations was included. It was found that the octahedral [horminone(O(a)-O(d))-Mg-(H(2)O)(4)](2+) complex is more stable than [Mg(H(2)O)(6)](2+). That is, horminone is able to displace two water units from the hexahydrated complex. This behavior does not occur for Ca(2+). Consistently, [horminone(O(a)-O(d))-Mg-(H(2)O)(4)](2+) has a greater metal-ligand binding energy than [horminone(O(a)-O(d))-Ca-(H(2)O)(4)](2+). The preference of horminone by Mg(2+) is enlightened by these results. Moreover, its electronic structure, as shown by huge changes in the atomic populations, is strongly perturbed by Mg(2+). Indeed, horminone, bonded to [Mg(H(2)O)(4)](2+), is able to cross the bacterial membrane cell. Once inside, [horminone(O(a)-O(d))-Mg-(H(2)O)(4)](2+) binds to rRNA phosphate groups yielding [horminone(O(a)-O(d))-Mg-(H(2)O)(PO(4)H(2))(PO(4)H(3))(2)](+). These results give insights into how horminone may inhibit the initial steps of protein synthesis. The stability of the studied systems is accounted for in terms of the calculated structural and electronic properties: Mg-O and Ca-O bond lengths, charge transfers, and binding energies.

  19. Interferon-gamma increases cellular calcium ion concentration and inositol 1,4,5-trisphosphate formation in human renal carcinoma cells: relation to ICAM-1 antigen expression.

    PubMed Central

    Hansen, A. B.; Bouchelouche, P. N.; Lillevang, S. T.; Andersen, C. B.

    1994-01-01

    In the present study, we investigated the effect of interferon-gamma (IFN-gamma) on cellular calcium ion concentration [Ca2+]i and inositol 1,4,5-trisphosphate (Ins 1,4,5-P3) formation in the human renal carcinoma cell line CaKi-1. We also examined the possible role of a Ca(2+)-dependent mechanism during IFN-gamma-induced intercellular adhesion molecule 1 (ICAM-1) antigen expression. IFN-gamma caused a rapid concentration-dependent rise in [Ca2+]i, which was partly inhibited by diltiazem, a calcium channel blocker, TMB-8, an inhibitor of intracellular calcium redistribution, and in calcium-free medium. IFN-gamma caused a fourfold increase in Ins 1,4,5-P3 formation. The induction of ICAM-1 antigen expression was synergistically enhanced by 4-bromocalcium ionophore A23187. Finally, the calcium antagonists diltiazem. TMB-8 and EGTA, as well as two potent inhibitors of Ca(2+)-dependent kinases, calmidazolium (R24571) and W7, had no or only a minor inhibitory effect on IFN-gamma induction. Our data suggest that IFN-gamma increases [Ca2+]i in CaKi-1 cells by stimulating influx of Ca2+ and release of Ca2+ from intracellular stores, probably via Ins 1,4,5-P3 formation. IFN-gamma signal transduction in our model may not be limited to an increase in [Ca2+]i and Ins 1,4,5-P3, since IFN-gamma-induced ICAM-1 antigen expression was abrogated to a minor degree by calcium antagonists and not coupled to Ins 1,4,5-P3 formation. PMID:7905278

  20. ION PUMP

    DOEpatents

    Milleron, N.

    1961-01-01

    An ion pump and pumping method are given for low vacuum pressures in which gases introduced into a pumping cavity are ionized and thereafter directed and accelerated into a quantity of liquid gettering metal where they are absorbed. In the preferred embodiment the metal is disposed as a liquid pool upon one electrode of a Phillips ion gauge type pump. Means are provided for continuously and remotely withdrawing and degassing the gettering metal. The liquid gettering metal may be heated if desired, although various combinations of gallium, indium, tin, bismuth, and lead, the preferred metals, have very low melting points. A background pressure of evaporated gettering metal may be provided by means of a resistance heated refractory metal wick protruding from the surface of the pcol of gettering metal.

  1. Secondary ion emission from V and Al surfaces under keV light ion on bombardment

    NASA Astrophysics Data System (ADS)

    Blauner, Patricia G.; Weller, Martha R.; Kaurin, Michael G.; Weller, Robert A.

    1986-03-01

    Positive secondary ion mass spectra have been measured for oxidized polycrystalline V and Al targets bombarded by H +, H 2+, He + and Ar + ions with beam energies ranging from 25 keV to 275 keV. An enhancement in the relative yield of positive ions of electronegative surface constituents, in particular O + is observed under light ion bombardment. Metallic ion intensities were found to decrease with increasing primary beam energy in proportion to the estimated total sputtering yields for these targets and beams. In contrast, the O + secondary ion intensities were independent of primary beam energy. This behavior is similar to that observed previously with heavy ions of comparable velocities. In addition, for the projectiles and targets used in these measurements, no energy thresholds or collective effects were observed in the emission of any positive ion. Published data on secondary ion emission resulting from electron, photon, and heavy ion bombardment are compared with these results.

  2. Ion Interferometry

    NASA Astrophysics Data System (ADS)

    Erickson, Christopher J.; Lyon, Mary; Bennett, Aaron; Troxel, Daylin; Blaser, Kelvin J.; Harper, Stuart; Durfee, Dallin S.

    2010-03-01

    We report on the progress of an ion interferometer based on a laser-cooled ^87Sr^+ beam which will be split and recombined using stimulated Raman transitions. This device will be used to implement an extremely precise electromagnetic field sensor. Design considerations and instrumentation development will be discussed. Possible practical and fundamental applications, including deviations from Coulomb's inverse-square law and the search for a possible photon rest mass, will be discussed.

  3. Simulations of ion channels--watching ions and water move.

    PubMed

    Sansom, M S; Shrivastava, I H; Ranatunga, K M; Smith, G R

    2000-08-01

    Ion channels mediate electrical excitability in neurons and muscle. Three-dimensional structures for model peptide channels and for a potassium (K+) channel have been combined with computer simulations to permit rigorous exploration of structure-function relations of channels. Water molecules and ions within transbilayer pores tend to diffuse more slowly than in bulk solutions. In the narrow selectivity filter of the bacterial K+ channel (i.e. the region of the channel that discriminates between different species of ions) a column of water molecules and K+ ions moves in a concerted fashion. By combining atomistic simulations (in which all atoms of the channel molecule, water and ions are treated explicitly) with continuum methods (in which the description of the channel system is considerably simplified) it is possible to simulate some of the physiological properties of channels.

  4. Controllable Laser Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Kamiyama, D.; Ohtake, Y.; Takano, M.; Barada, D.; Kong, Q.; Wang, P. X.; Gu, Y. J.; Wang, W. M.; Limpouch, J.; Andreev, A.; Bulanov, S. V.; Sheng, Z. M.; Klimo, O.; Psikal, J.; Ma, Y. Y.; Li, X. F.; Yu, Q. S.

    2016-02-01

    In this paper a future laser ion accelerator is discussed to make the laser-based ion accelerator compact and controllable. Especially a collimation device is focused in this paper. The future laser ion accelerator should have an ion source, ion collimators, ion beam bunchers, and ion post acceleration devices [Laser Therapy 22, 103(2013)]: the ion particle energy and the ion energy spectrum are controlled to meet requirements for a future compact laser ion accelerator for ion cancer therapy or for other purposes. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching would be successfully realized by a multistage laser-target interaction.

  5. Highly charged ion secondary ion mass spectroscopy

    DOEpatents

    Hamza, Alex V.; Schenkel, Thomas; Barnes, Alan V.; Schneider, Dieter H.

    2001-01-01

    A secondary ion mass spectrometer using slow, highly charged ions produced in an electron beam ion trap permits ultra-sensitive surface analysis and high spatial resolution simultaneously. The spectrometer comprises an ion source producing a primary ion beam of highly charged ions that are directed at a target surface, a mass analyzer, and a microchannel plate detector of secondary ions that are sputtered from the target surface after interaction with the primary beam. The unusually high secondary ion yield permits the use of coincidence counting, in which the secondary ion stops are detected in coincidence with a particular secondary ion. The association of specific molecular species can be correlated. The unique multiple secondary nature of the highly charged ion interaction enables this new analytical technique.

  6. Fundamental aspects related to batch and fixed-bed sulfate sorption by the macroporous type 1 strong base ion exchange resin Purolite A500.

    PubMed

    Guimarães, Damaris; Leão, Versiane A

    2014-12-01

    Acid mine drainage is a natural process occurring when sulfide minerals such as pyrite are exposed to water and oxygen. The bacterially catalyzed oxidation of pyrite is particularly common in coal mining operations and usually results in a low-pH water polluted with toxic metals and sulfate. Although high sulfate concentrations can be reduced by gypsum precipitation, removing lower concentrations (below 1200 mg/L) remains a challenge. Therefore, this work sought to investigate the application of ion exchange resins for sulfate sorption. The macroporous type 1 strong base IX resin Purolite A500 was selected for bath and fixed-bed sorption experiments using synthetic sulfate solutions. Equilibrium experiments showed that sulfate loading on the resin can be described by the Langmuir isotherm with a maximum uptake of 59 mg mL-resin(-1). The enthalpy of sorption was determined as +2.83 kJ mol(-1), implying an endothermic physisorption process that occurred with decreasing entropy (-15.5 J mol(-1).K(-1)). Fixed-bed experiments were performed at different bed depths, flow rates, and initial sulfate concentrations. The Miura and Hashimoto model predicted a maximum bed loading of 25-30 g L-bed(-1) and indicated that both film diffusion (3.2 × 10(-3) cm s(-1) to 22.6 × 10(-3) cm s(-1)) and surface diffusion (1.46 × 10(-7) cm(2) s(-1) to 5.64 × 10(-7) cm(2) s(-1)) resistances control the sorption process. It was shown that IX resins are an alternative for the removal of sulfate from mine waters; they ensure very low residual concentrations, particularly in effluents where the sulfate concentration is below the gypsum solubility threshold. PMID:25014887

  7. Fundamental studies of ion injection and trapping of electrosprayed ions on a quadrupole ion trap mass spectrometer

    NASA Astrophysics Data System (ADS)

    Quarmby, Scott Thomas

    The quadrupole ion trap is a highly versatile and sensitive analytical mass spectrometer. Because of the advantages offered by the ion trap, there has been intense interest in coupling it to ionization techniques such as electrospray which form ions externally to the ion trap. In this work, experiments and computer simulations were employed to study the injection of electrosprayed ions into the ion trap of a Finnigan MAT LCQ LC/MS n mass spectrometer. The kinetic energy distribution of the ion beam was characterized and found to be relatively wide, a result of the high pressures from the atmospheric pressure source. One of the most important experimental parameters which affects ion injection efficiency is the RF voltage applied to the ring electrode. A theoretical model was fit to experimental data allowing the optimum RF voltage for trapping a given m/z ion to be predicted. Computer simulations of ion motion were performed to study the effect of various instrumental parameters on trapping efficiency. A commercially available ion optics program, SIMION v6.0, was chosen because it allowed the actual ion trap electrode geometry including endcap holes to be simulated. In contrast to previous computer simulations, SIMION provided the ability to start ions outside the ion trap and to simulate more accurately the injection of externally formed ions. The endcap holes were found to allow the RF field to penetrate out of the ion trap and affect ions as they approached the ion trap. From these simulations, a model for the process by which injected ions are trapped was developed. Using these computer simulations, techniques of improving trapping efficiency were investigated. Most previous techniques perturb ions which are already in the ion trap and therefore cannot be used to accumulate ions; the ability to accumulate ions is a necessity with ionization sources such as electrospray which form ions continuously. One such novel technique for improving trapping efficiency

  8. Instrumentation: Ion Chromatography.

    ERIC Educational Resources Information Center

    Fritz, James S.

    1987-01-01

    Discusses the importance of ion chromatography in separating and measuring anions. The principles of ion exchange are presented, along with some applications of ion chromatography in industry. Ion chromatography systems are described, as well as ion pair and ion exclusion chromatography, column packings, detectors, and programming. (TW)

  9. Hydrated Ions: From Individual Ions to Ion Pairs to Ion Clusters.

    PubMed

    Chen, Houyang; Ruckenstein, Eli

    2015-10-01

    The structure of hydrated ions plays a central role in chemical and biological sciences. In the present paper, five ions, namely, Na(+), K(+), Mg(2+), Ca(2+) and Cl(-), are examined using molecular dynamics simulations. In addition to hydrated individual ions and ion pairs identified previously, hydrated ion clusters containing 3, 4, 5, or more ions are identified in the present paper. The dependence of hydration numbers and mole fractions of individual ions, ion pairs, and larger ion clusters on the electrolyte concentration is determined. As the electrolyte concentration increases, the mole fraction of hydrated individual ions decreases, and the mole fraction of hydrated larger ion clusters increases. The results also reveal that the hydrogen bonding numbers of the H2O molecules of the first hydration shells of individual ions, ion pairs, and larger ion clusters are insensitive to the electrolyte concentration, but sensitive to the nature and conformation of ions. PMID:26358093

  10. Hydrated Ions: From Individual Ions to Ion Pairs to Ion Clusters.

    PubMed

    Chen, Houyang; Ruckenstein, Eli

    2015-10-01

    The structure of hydrated ions plays a central role in chemical and biological sciences. In the present paper, five ions, namely, Na(+), K(+), Mg(2+), Ca(2+) and Cl(-), are examined using molecular dynamics simulations. In addition to hydrated individual ions and ion pairs identified previously, hydrated ion clusters containing 3, 4, 5, or more ions are identified in the present paper. The dependence of hydration numbers and mole fractions of individual ions, ion pairs, and larger ion clusters on the electrolyte concentration is determined. As the electrolyte concentration increases, the mole fraction of hydrated individual ions decreases, and the mole fraction of hydrated larger ion clusters increases. The results also reveal that the hydrogen bonding numbers of the H2O molecules of the first hydration shells of individual ions, ion pairs, and larger ion clusters are insensitive to the electrolyte concentration, but sensitive to the nature and conformation of ions.

  11. Ion detector

    DOEpatents

    Tullis, Andrew M.

    1987-01-01

    An improved ion detector device of the ionization detection device chamber ype comprises an ionization chamber having a central electrode therein surrounded by a cylindrical electrode member within the chamber with a collar frictionally fitted around at least one of the electrodes. The collar has electrical contact means carried in an annular groove in an inner bore of the collar to contact the outer surface of the electrode to provide electrical contact between an external terminal and the electrode without the need to solder leads to the electrode.

  12. Improved ion source

    DOEpatents

    Leung, K.N.; Ehlers, K.W.

    1982-05-04

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species,

  13. Identification of atranorin and related potential allergens in oakmoss absolute by high-performance liquid chromatography-tandem mass spectrometry using negative ion atmospheric pressure chemical ionization.

    PubMed

    Hiserodt, R D; Swijter, D F; Mussinan, C J

    2000-08-01

    This paper describes the first high-performance liquid chromatographic-tandem mass spectrometric method for the identification of atranorin and related potential allergens in oakmoss absolute. Oakmoss absolute is ubiquitous in the fragrance industry and is a key component in many fine perfumes. However, oakmoss absolute causes an allergic response in some individuals. Research is focused toward establishing the identity of the compounds causing the allergic response so a quality controlled oakmoss with reduced allergenic potential can be prepared. Consequently a highly selective and specific analytical method is necessary to support this effort. This is not available with the existing HPLC methods using UV detection. PMID:10949477

  14. The secretion of parathyroid hormone-related protein in the saliva of sheep and its effects on the salivary clearance of phosphate, calcium, magnesium, potassium and sodium ions.

    PubMed

    Dua, K; Abbas, S K; Care, A D

    1995-07-01

    Parathyroid hormone-related protein (PTHrP(1-34)) was infused into five sheep, each fitted with a large rumen cannula. After infusion, significant increases were observed in the total and ionized calcium concentrations in plasma but not in saliva. In contrast, significant decreases in the plasma concentrations of phosphate and potassium and corresponding increases in their salivary concentrations and clearance rates were observed. The salivary concentration of endogenous PTH1P(1-34) was significantly greater than that in plasma sampled simultaneously, but during the infusion of PTHrP(1-34) both plasma and salivary concentrations of PTHrP(1-34) increased.

  15. Multi-source ion funnel

    DOEpatents

    Tang, Keqi; Belov, Mikhail B.; Tolmachev, Aleksey V.; Udseth, Harold R.; Smith, Richard D.

    2005-12-27

    A method for introducing ions generated in a region of relatively high pressure into a region of relatively low pressure by providing at least two electrospray ion sources, providing at least two capillary inlets configured to direct ions generated by the electrospray sources into and through each of the capillary inlets, providing at least two sets of primary elements having apertures, each set of elements having a receiving end and an emitting end, the primary sets of elements configured to receive a ions from the capillary inlets at the receiving ends, and providing a secondary set of elements having apertures having a receiving end and an emitting end, the secondary set of elements configured to receive said ions from the emitting end of the primary sets of elements and emit said ions from said emitting end of the secondary set of elements. The method may further include the step of providing at least one jet disturber positioned within at least one of the sets of primary elements, providing a voltage, such as a dc voltage, in the jet disturber, thereby adjusting the transmission of ions through at least one of the sets of primary elements.

  16. Effects of Ion-Ion Collisions and Inhomogeneity in Two-Dimensional Kinetic Ion Simulations of Stimulated Brillouin Backscattering

    SciTech Connect

    Cohen, B I; Divol, L; Langdon, A B; Williams, E A

    2005-10-17

    Two-dimensional simulations with the BZOHAR [B.I. Cohen, B.F. Lasinski, A.B. Langdon, and E.A. Williams, Phys. Plasmas 4, 956 (1997)] hybrid code (kinetic particle ions and Boltzmann fluid electrons) have been used to investigate the saturation of stimulated Brillouin backscatter (SBBS) instability including the effects of ion-ion collisions and inhomogeneity. Ion-ion collisions tend to increase ion-wave dissipation, which decreases the gain exponent for stimulated Brillouin backscattering; and the peak Brillouin backscatter reflectivities tend to decrease with increasing collisionality in the simulations. Two types of Langevin-operator, ion-ion collision models were implemented in the simulations. In both models used the collisions are functions of the local ion temperature and density, but the collisions have no velocity dependence in the first model. In the second model, the collisions are also functions of the energy of the ion that is being scattered so as to represent a Fokker-Planck collision operator. Collisions decorrelate the ions from the acoustic waves in SBS, which disrupts ion trapping in the acoustic wave. Nevertheless, ion trapping leading to a hot ion tail and two-dimensional physics that allows the SBS ion waves to nonlinearly scatter remain robust saturation mechanisms for SBBS in a high-gain limit over a range of ion collisionality. SBS backscatter in the presence of a spatially nonuniform plasma flow is also investigated. Simulations show that depending on the sign of the spatial gradient of the flow relative to the backscatter, ion trapping effects that produce a nonlinear frequency shift can enhance (auto-resonance) or decrease (anti-auto-resonance) reflectivities in agreement with theoretical arguments.

  17. Separation and analysis of phenolic acids from Salvia miltiorrhiza and its related preparations by off-line two-dimensional hydrophilic interaction chromatography×reversed-phase liquid chromatography coupled with ion trap time-of-flight mass spectrometry.

    PubMed

    Sun, Wanyang; Tong, Ling; Miao, Jingzhuo; Huang, Jingyi; Li, Dongxiang; Li, Yunfei; Xiao, Hongting; Sun, Henry; Bi, Kaishun

    2016-01-29

    Salvia miltiorrhiza (SM) is one of the most widely used Traditional Chinese Medicine. Active constituents of SM mainly contain hydrophilic phenolic acids (PAs) and lipophilic tanshinones. However, due to the existing of multiple ester bonds and unsaturated bonds in the structures, PAs have numerous chemical conversion products. Many of them are so low-abundant that hard to be separated using conventional methods. In this study, an off-line two-dimensional liquid chromatography (2D-LC) method was developed to separate PAs in SM and its related preparations. In the first dimension, samples were fractionated by hydrophilic interaction chromatography (HILIC) (Acchrom×Amide, 4.6×250mm, 5μm) mainly based on the hydrogen bonding effects. The fractions were then separated on reversed-phase liquid chromatography (RP-LC) (Acquity HSS T3, 2.1×50mm, 1.7μm) according to hydrophobicity. For the selective identification of PAs, diode array detector (DAD) and electrospray ionization tandem ion trap time-of-flight mass spectrometry (ESI-IT-TOF-MS) were employed. Practical and effective peak capacities of all the samples were greater than 2046 and 1130, respectively, with the orthogonalities ranged from 69.7% to 92.8%, which indicated the high efficiency and versatility of this method. By utilizing the data post-processing techniques, including mass defect filter, neutral loss filter and product ion filter, a total of 265 compounds comprising 196 potentially new PAs were tentatively characterized. Twelve kinds of derivatives, mainly including glycosylated compounds, O-alkylated compounds, condensed compounds and hydrolyzed compounds, constituted the novelty of the newly identified PAs. The HILIC×RP-LC/TOF-MS system expanded our understanding on PAs of S. miltiorrhiza and its related preparations, which could also benefit the separation and characterization of polar constituents in complicated herbal extracts.

  18. ION GUN

    DOEpatents

    Dandl, R.A.

    1961-10-24

    An ion gun is described for the production of an electrically neutral ionized plasma. The ion gun comprises an anode and a cathode mounted in concentric relationship with a narrow annulus between. The facing surfaces of the rear portions of the anode and cathode are recessed to form an annular manifold. Positioned within this manifold is an annular intermediate electrode aligned with the an nulus between the anode and cathode. Gas is fed to the manifold and an arc discharge is established between the anode and cathode. The gas is then withdrawn from the manifold through the annulus between the anode and cathode by a pressure differential. The gas is then ionized by the arc discharge across the annulus. The ionized gas is withdrawn from the annulus by the combined effects of the pressure differential and a collimating magnetic field. In a 3000 gauss magnetic field, an arc voltage of 1800 volts, and an arc current of 0.2 amp, a plasma of about 3 x 10/sup 11/ particles/cc is obtained. (AEC)

  19. Improved Ion Optics for Introduction of Ions into a 9.4 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    PubMed Central

    Chen, Yu; Leach, Franklin E.; Kaiser, Nathan K.; Dang, Xibei; Ibrahim, Yehia M.; Norheim, Randolph V.; Anderson, Gordon A.; Smith, Richard D.; Marshall, Alan G.

    2014-01-01

    Enhancements to the ion source and transfer optics of our 9.4 T FT-ICR mass spectrometer have resulted in improved ion transmission efficiency for more sensitive mass measurement of complex mixtures at the MS and MS/MS levels. The tube lens/skimmer has been replaced by a dual ion funnel and the following octopole by a quadrupole for reduced ion cloud radial expansion before transmission into a mass-selective quadrupole. The number of ions that reach the ICR cell is increased by an order of magnitude for the funnel/quadrupole relative to the tube lens/skimmer/octopole. PMID:25601704

  20. Negative Ions for Emerging Interdisciplinary Applications

    SciTech Connect

    Guharay, Samar K.

    2011-09-26

    In many applications related to ion beam-materials interactions negative ions are particularly desirable due to its merit to yield a very low surface charge-up voltage, {approx} a few volts, for both electrically isolated surfaces and insulators. Some important applications pertaining to ion beam-material interactions include surface analysis by secondary ion mass spectrometry (SIMS), voltage-contrast microscopy for semiconductor device inspection, materials processing, and ion beam lithography. These applications primarily require vacuum environments. On the other hand, a distinct area of activities constitutes formation of ions and ion transport in ambient environmental conditions, i.e., at atmospheric pressures. In this context, ion mobility spectrometry (IMS) is an important analytical device that uses negative ions and operates at ambient conditions. IMS is widely used in both physical and biological sciences including monitoring environmental conditions, security screening and disease detection. This article highlights several critical issues related to the ionization sources and ion transport in IMS. Additionally, the critical issues related to ion sources, transport and focusing are discussed in the context of SIMS with sub-micrometer spatial resolution.

  1. Vitrification of ion exchange resins

    DOEpatents

    Cicero-Herman, Connie A.; Workman, Rhonda Jackson

    2001-01-01

    The present invention relates to vitrification of ion exchange resins that have become loaded with hazardous or radioactive wastes, in a way that produces a homogenous and durable waste form and reduces the disposal volume of the resin. The methods of the present invention involve directly adding borosilicate glass formers and an oxidizer to the ion exchange resin and heating the mixture at sufficient temperature to produce homogeneous glass.

  2. Highly Stripped Ion Sources for MeV Ion Implantation

    SciTech Connect

    Hershcovitch, Ady

    2009-06-30

    Original technical objectives of CRADA number PVI C-03-09 between BNL and Poole Ventura, Inc. (PVI) were to develop an intense, high charge state, ion source for MeV ion implanters. Present day high-energy ion implanters utilize low charge state (usually single charge) ion sources in combination with rf accelerators. Usually, a MV LINAC is used for acceleration of a few rnA. It is desirable to have instead an intense, high charge state ion source on a relatively low energy platform (de acceleration) to generate high-energy ion beams for implantation. This de acceleration of ions will be far more efficient (in energy utilization). The resultant implanter will be smaller in size. It will generate higher quality ion beams (with lower emittance) for fabrication of superior semiconductor products. In addition to energy and cost savings, the implanter will operate at a lower level of health risks associated with ion implantation. An additional aim of the project was to producing a product that can lead to long­ term job creation in Russia and/or in the US. R&D was conducted in two Russian Centers (one in Tomsk and Seversk, the other in Moscow) under the guidance ofPVI personnel and the BNL PI. Multiple approaches were pursued, developed, and tested at various locations with the best candidate for commercialization delivered and tested at on an implanter at the PVI client Axcelis. Technical developments were exciting: record output currents of high charge state phosphorus and antimony were achieved; a Calutron-Bemas ion source with a 70% output of boron ion current (compared to 25% in present state-of-the-art). Record steady state output currents of higher charge state phosphorous and antimony and P ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb {sup 4 +}, Sb{sup 5+}, and Sb{sup 6+} respectively. Ultimate commercialization goals did not succeed (even though a number of the products like high

  3. Biomedical research with heavy ions at the IMP accelerators

    NASA Astrophysics Data System (ADS)

    Li, Qiang

    The main ion-beam acceleration facilities and research activities at the Institute of Modern Physics (IMP), Chinese Academy of Sciences are briefly introduced. Some of the biomedical research with heavy ions such as heavy-ion biological effect, basic research related to heavy-ion cancer therapy and radiation breeding at the IMP accelerators are presented.

  4. Workshop on transport for a common ion driver

    SciTech Connect

    Olson, C.C.; Lee, E.; Langdon, B.

    1994-12-31

    This report contains research in the following areas related to beam transport for a common ion driver: multi-gap acceleration; neutralization with electrons; gas neutralization; self-pinched transport; HIF and LIF transport, and relevance to common ion driver; LIF and HIF reactor concepts and relevance to common ion driver; atomic physics for common ion driver; code capabilities and needed improvement.

  5. Genes related to ion-transport and energy production are upregulated in response to CO2-driven pH decrease in corals: new insights from transcriptome analysis.

    PubMed

    Vidal-Dupiol, Jeremie; Zoccola, Didier; Tambutté, Eric; Grunau, Christoph; Cosseau, Céline; Smith, Kristina M; Freitag, Michael; Dheilly, Nolwenn M; Allemand, Denis; Tambutté, Sylvie

    2013-01-01

    Since the preindustrial era, the average surface ocean pH has declined by 0.1 pH units and is predicted to decline by an additional 0.3 units by the year 2100. Although subtle, this decreasing pH has profound effects on the seawater saturation state of carbonate minerals and is thus predicted to impact on calcifying organisms. Among these are the scleractinian corals, which are the main builders of tropical coral reefs. Several recent studies have evaluated the physiological impact of low pH, particularly in relation to coral growth and calcification. However, very few studies have focused on the impact of low pH at the global molecular level. In this context we investigated global transcriptomic modifications in a scleractinian coral (Pocillopora damicornis) exposed to pH 7.4 compared to pH 8.1 during a 3-week period. The RNAseq approach shows that 16% of our transcriptome was affected by the treatment with 6% of upregulations and 10% of downregulations. A more detailed analysis suggests that the downregulations are less coordinated than the upregulations and allowed the identification of several biological functions of interest. In order to better understand the links between these functions and the pH, transcript abundance of 48 candidate genes was quantified by q-RT-PCR (corals exposed at pH 7.2 and 7.8 for 3 weeks). The combined results of these two approaches suggest that pH≥7.4 induces an upregulation of genes coding for proteins involved in calcium and carbonate transport, conversion of CO2 into HCO3(-) and organic matrix that may sustain calcification. Concomitantly, genes coding for heterotrophic and autotrophic related proteins are upregulated. This can reflect that low pH may increase the coral energy requirements, leading to an increase of energetic metabolism with the mobilization of energy reserves. In addition, the uncoordinated downregulations measured can reflect a general trade-off mechanism that may enable energy reallocation.

  6. Genes Related to Ion-Transport and Energy Production Are Upregulated in Response to CO2-Driven pH Decrease in Corals: New Insights from Transcriptome Analysis

    PubMed Central

    Vidal-Dupiol, Jeremie; Zoccola, Didier; Tambutté, Eric; Grunau, Christoph; Cosseau, Céline; Smith, Kristina M.; Freitag, Michael; Dheilly, Nolwenn M.; Allemand, Denis; Tambutté, Sylvie

    2013-01-01

    Since the preindustrial era, the average surface ocean pH has declined by 0.1 pH units and is predicted to decline by an additional 0.3 units by the year 2100. Although subtle, this decreasing pH has profound effects on the seawater saturation state of carbonate minerals and is thus predicted to impact on calcifying organisms. Among these are the scleractinian corals, which are the main builders of tropical coral reefs. Several recent studies have evaluated the physiological impact of low pH, particularly in relation to coral growth and calcification. However, very few studies have focused on the impact of low pH at the global molecular level. In this context we investigated global transcriptomic modifications in a scleractinian coral (Pocillopora damicornis) exposed to pH 7.4 compared to pH 8.1during a 3-week period. The RNAseq approach shows that 16% of our transcriptome was affected by the treatment with 6% of upregulations and 10% of downregulations. A more detailed analysis suggests that the downregulations are less coordinated than the upregulations and allowed the identification of several biological functions of interest. In order to better understand the links between these functions and the pH, transcript abundance of 48 candidate genes was quantified by q-RT-PCR (corals exposed at pH 7.2 and 7.8 for 3 weeks). The combined results of these two approaches suggest that pH≥7.4 induces an upregulation of genes coding for proteins involved in calcium and carbonate transport, conversion of CO2 into HCO3− and organic matrix that may sustain calcification. Concomitantly, genes coding for heterotrophic and autotrophic related proteins are upregulated. This can reflect that low pH may increase the coral energy requirements, leading to an increase of energetic metabolism with the mobilization of energy reserves. In addition, the uncoordinated downregulations measured can reflect a general trade-off mechanism that may enable energy reallocation. PMID:23544045

  7. Excitation of lower hybrid waves by a gyrating ion beam in a negative ion plasma

    SciTech Connect

    Sharma, Jyotsna; Jain, V. K.; Sharma, Suresh C.; Gahlot, Ajay

    2013-03-15

    A gyrating ion beam propagating through a magnetized plasma cylinder containing K{sup +} positive ions, electrons, and SF{sub 6}{sup -} negative ions drives electrostatic lower hybrid waves to instability via Cyclotron interaction. Numerical calculations of the unstable mode frequencies and growth rates of both the unstable positive ion and negative ion modes have been carried out for the existing negative ion plasma parameters. It is found that the unstable mode frequencies of both the modes increase, with the relative density of negative ions. In addition, the growth rates of both the unstable modes also increases with relative density of negative ions. Moreover, the growth rates of both the unstable modes scale as the one-third power of the beam density. The frequencies of both the unstable modes also increase with the magnetic fields. The real part of the unstable wave frequency increases as almost the square root of the beam energy.

  8. Composite ion exchange materials

    SciTech Connect

    Amarasinghe, S.; Zook, L.; Leddy, J.

    1994-12-31

    Composite ion exchange materials can be formed by sorbing ion exchange polymers on inert, high surface area substrates. In general, the flux of ions and molecules through these composites, as measured electrochemically, increases as the ratio of the surface area of the substrate increases relative to the volume of the ion exchanger. This suggests that fields and gradients established at the interface between the ion exchanger and substrate are important in determining the transport characteristics of the composites. Here, the authors will focus on composites formed with a cation exchange polymer, Nafion, and two different types of microbeads: polystyrene microspheres and polystyrene coated magnetic microbeads. For the polystyrene microbeads, scanning electron micrographs suggest the beads cluster in a self-similar manner, independent of the bead diameter. Flux of Ru(NH3)63+ through the composites was studied as a function of bead fraction, bead radii, and fixed surface area with mixed bead sizes. Flux was well modeled by surface diffusion along a fractal interface. Magnetic composites were formed with columns of magnetic microbeads normal to the electrode surface. Flux of Ru(NH3)63+ through these composites increased exponentially with bead fraction. For electrolyses, the difference in the molar magnetic susceptibility of the products and reactants, Dcm, tends to be non-zero. For seven redox reactions, the ratio of the flux through the magnetic composites to the flux through a Nafion film increases monotonically with {vert_bar}Dcm{vert_bar}, with enhancements as large as thirty-fold. For reversible species, the electrolysis potential through the magnetic composites is 35 mV positive of that for the Nafion films.

  9. Theoretical study of effects of the entrance channel on the relative yield of complete fusion and quasifission in heavy-ion collisions within a dinuclear system approach

    NASA Astrophysics Data System (ADS)

    Soheyli, S.; Khanlari, M. Varasteh

    2016-09-01

    The relative yield of complete fusion and quasifission components for the 12C+204Pb , 19F+197Au , 30Si+186W , and 48Ca+168Er reactions which all lead to the compound nucleus 216Ra are analyzed to calculate the entrance channel effects by comparison of capture, complete fusion, and quasifission cross sections, emission barriers (Bfus*,Bq f ), as well as complete fusion probability estimated by statistical method within the framework of the dinuclear system model. The difference among complete fusion probabilities calculated by the dinuclear system model for different entrance channels can be explained by the hindrance to complete fusion due to the larger inner fusion barrier Bfus* for the transformation of the dinuclear system into a compound nucleus and the increase of the quasifission contribution due to the decreasing of the emission barrier Bq f of quasifission as a function of the angular momentum. Although these reactions with different entrance channels populate the same compound nucleus 216Ra at similar excitation energies, the model predicts the negligible quasifission probability for reactions having higher entrance channel mass asymmetry and the dominant decay channel is complete fission. For reactions induced by massive projectiles such as Si and Ca having lower entrance channel mass asymmetry, the quasifission component is dominant in the evolution of dinuclear system, and the fusion process is extremely hindered.

  10. Differentiation of protonated aromatic regioisomers related to lignin by reactions with trimethylborate in a fourier-transform ion cyclotron resonance mass spectrometer

    SciTech Connect

    Somuramasami, J; Duan, P; Amundson, Lucas M; Archibold, E; Winger, B E; Kenttämaa, Hilkka I

    2011-04-06

    Several lignin model compounds were examined to test whether gas-phase ion–molecule reactions of trimethylborate (TMB) in a FTICR can be used to differentiate the ortho-, meta-, and para-isomers of protonated aromatic compounds, such as those formed during degradation of lignin. All three regioisomers could be differentiated for methoxyphenols and hydroxyphenols. However, only the differentiation of the ortho-isomer from the meta- and para-isomers was possible for hydroxyacetophenones and hydroxybenzoic acids. Consideration of the previously reported proton affinities at all basic sites in the isomeric hydroxyphenols, and the calculated proton affinities at all basic sites in the three methoxyphenol isomers, revealed that the proton affinities of the analytes relative to that of TMB play an important role in determining whether and how they react with TMB. The loss of two methanol molecules (instead of one) from the adducts formed with TMB either during ion–molecule reactions, or during sustained-off resonance irradiated collision-activated dissociation of the ion–molecule reaction products, revealed the presence of two functionalities in almost all the isomers. This finding supports earlier results suggesting that TMB can be used to count the functionalities in unknown oxygen-containing analytes.

  11. ION MAGNETRON

    DOEpatents

    Gow, J.D.; Layman, R.W.

    1962-10-31

    A magnetohydrodynamic device or plasma generator of the ion magnetron class is described wherein a long central electrode is disposed along the axis of an evacuated cylinder. A radial electric field and an axial magnetic field are provided between the cylsnder and the electrode, forming a plasma trapping and heating region. For maximum effectiveness, neutral particles from the cylinder wall must be prevented from entering such region This is effected by forming a cylindrical sheath of electrons near the cylinder wall for ionizing undesired neutral particles, which are then trapped and removed by the magnetic field. An annular filament at one end of the device provides the electrons, which follow the axial magnetic field to a reflecting electrode at the opposite end of the device. (AEC)

  12. ION SOURCE

    DOEpatents

    Brobeck, W.M.

    1959-04-14

    This patent deals with calutrons and more particularly to an arrangement therein whereby charged bottles in a calutron source unit may be replaced without admitting atmospheric air to the calutron vacuum chamber. As described, an ion unit is disposed within a vacuum tank and has a reservoir open toward a wall of the tank. A spike projects from thc source into the reservoir. When a charge bottle is placed in the reservoir, the spike breaks a frangible seal on the bottle. After the contents of the bottle are expended the bottle may be withdrawn and replaced with another charge bottle by a varuum lock arrangement in conjunction with an arm for manipulating the bottle.

  13. Ion source

    DOEpatents

    Brobeck, W. M.

    1959-04-14

    This patent deals with calutrons and more particularly to an arrangement therein whereby charged bottles in a calutron source unit may be replaced without admitting atmospheric air to the calutron vacuum chamber. As described, an ion unit is disposed within a vacuum tank and has a reservoir open toward a wall of the tank. A spike projects from the source into the reservoir. When a charge bottle is placed in the reservoir, the spike breaks a frangible seal on the bottle. After the contents of the bottle are expended the bottle may be withdrawn and replaced with another charge bottle by a vacuum lock arrangement in conjunction with an arm for manipulating the bottle.

  14. Relative effectiveness at 1 gy after acute and fractionated exposures of heavy ions with different linear energy transfer for lung tumorigenesis.

    PubMed

    Wang, Xiang; Farris Iii, Alton B; Wang, Ping; Zhang, Xiangming; Wang, Hongyan; Wang, Ya

    2015-02-01

    Space radiation, which is comprised of high-energy charged (HZE) particles with different high-linear energy transfer (LET), induces more severe biological effects than the Earth's radiation. NASA has mandated that risk estimates of carcinogenesis induced by exposure to HZE particles with different LET be determined before conducting human explorations of Mars. Because lung cancer is the most commonly diagnosed cancer and the leading cause of cancer death in humans, it is critical the risk of that radiation-induced lung tumorigenesis be included when estimating the risks of space radiation to astronauts. To address this, we examined the incidence of lung tumorigenesis in wild-type C57BL/6 mice at 1.5 years after 1 Gy exposure (single or fractionated dose) to different types of radiation with different LET (iron, silicon, oxygen and X ray). We chose wild-type mice for this study because previous studies of radiation-induced lung tumorigenesis using mutant mice models (either downregulated tumor suppressors or upregulated oncogenes) may not accurately reflect the response of healthy individuals (astronauts) to space radiation. Our study clearly showed that HZE particles (iron, silicon and oxygen) induced a higher incidence of lung tumorigenesis than X rays, and that their relative effectiveness at 1 Gy was >6. In addition, we found that silicon exposure appears to induce more aggressive lung tumors. These results provide valuable information for future followup experiments to study the underlying mechanism of lung tumorigenesis, which will improve risk estimation of space radiation-induced lung tumorigenesis and help in the development of mitigators to reduce risk if it exceeds NASA guidelines.

  15. Relative effectiveness at 1 gy after acute and fractionated exposures of heavy ions with different linear energy transfer for lung tumorigenesis.

    PubMed

    Wang, Xiang; Farris Iii, Alton B; Wang, Ping; Zhang, Xiangming; Wang, Hongyan; Wang, Ya

    2015-02-01

    Space radiation, which is comprised of high-energy charged (HZE) particles with different high-linear energy transfer (LET), induces more severe biological effects than the Earth's radiation. NASA has mandated that risk estimates of carcinogenesis induced by exposure to HZE particles with different LET be determined before conducting human explorations of Mars. Because lung cancer is the most commonly diagnosed cancer and the leading cause of cancer death in humans, it is critical the risk of that radiation-induced lung tumorigenesis be included when estimating the risks of space radiation to astronauts. To address this, we examined the incidence of lung tumorigenesis in wild-type C57BL/6 mice at 1.5 years after 1 Gy exposure (single or fractionated dose) to different types of radiation with different LET (iron, silicon, oxygen and X ray). We chose wild-type mice for this study because previous studies of radiation-induced lung tumorigenesis using mutant mice models (either downregulated tumor suppressors or upregulated oncogenes) may not accurately reflect the response of healthy individuals (astronauts) to space radiation. Our study clearly showed that HZE particles (iron, silicon and oxygen) induced a higher incidence of lung tumorigenesis than X rays, and that their relative effectiveness at 1 Gy was >6. In addition, we found that silicon exposure appears to induce more aggressive lung tumors. These results provide valuable information for future followup experiments to study the underlying mechanism of lung tumorigenesis, which will improve risk estimation of space radiation-induced lung tumorigenesis and help in the development of mitigators to reduce risk if it exceeds NASA guidelines. PMID:25635344

  16. Ion dip spectroscopy of cold molecules and ions. Progress report and renewal proposal

    SciTech Connect

    Wessel, J.

    1987-08-13

    A research program is underway with the objective of developing techniques of high resolution multiphoton spectroscopy for selective, ultrasensitive molecular detection. Methods under study include various forms of ion dip spectroscopy and new methods of ion fragmentation spectroscopy. The studies are providing a new understanding of the fundamental spectroscopy and photophysics of large molecular ions. Dimer and cluster ions of polynuclear aromatics and related species are also being investigated, with potential detection applications.

  17. Ion sources for use in ion implantation

    NASA Astrophysics Data System (ADS)

    White, Nicholas R.

    1989-02-01

    This paper reviews high current ion sources suitable for commercial use. Although the production of high currents of a variety of ions is a vital consideration, this paper focuses on other aspects of ion source performance. The modern ion implanter is a major item of expensive capital equipment, with the ion source being its least reliable component. So, the most critical issues today are reliability and lifetime, as well as safety, flexibility, and ease of service. The Freeman ion source has clearly dominated the field, yet a number of alternative sources have found commercial acceptance, including microwave sources. Factors affecting the ultimate usefulness of various sources in different implantation applications are discussed.

  18. Ion association in natural brines

    USGS Publications Warehouse

    Truesdell, A.H.; Jones, B.F.

    1969-01-01

    Natural brines, both surface and subsurface, are highly associated aqueous solutions. Ion complexes in brines may be ion pairs in which the cation remains fully hydrated and the bond between the ions is essentially electrostatic, or coordination complexes in which one or more of the hydration water molecules are replaced by covalent bonds to the anion. Except for Cl-, the major simple ions in natural brines form ion pairs; trace and minor metals in brines form mainly coordination complexes. Limitations of the Debye-Hu??ckel relations for activity coefficients and lack of data on definition and stability of all associated species in concentrated solutions tend to produce underestimates of the degree of ion association, except where the brines contain a very high proportion of Cl-. Data and calculations on closed basin brines of highly varied composition have been coupled with electrode measurements of single-ion activities in an attempt to quantify the degree of ion association. Such data emphasize the role of magnesium complexes. Trace metal contents of closed basin brines are related to complexes formed with major anions. Alkaline sulfo- or chlorocarbonate brines (western Great Basin) carry significant trace metal contents apparently as hydroxides or hydroxy polyions. Neutral high chloride brines (Bonneville Basin) are generally deficient in trace metals. With a knowledge of the thermodynamic properties of a natural water, many possible reactions with other phases (solids, gases, other liquids) may be predicted. A knowledge of these reactions is particularly important in the study of natural brines which may be saturated with many solid phases (silicates, carbonates, sulfates, etc.), which may have a high pH and bring about dissolution of other phases (silica, amphoteric hydroxides, CO2, etc.), and which because of their high density may form relatively stable interfaces with dilute waters. ?? 1969.

  19. Biological impact of small air ions.

    PubMed

    Krueger, A P; Reed, E J

    1976-09-24

    The thrust of the experimental data presented here is that small air ions are biologically active. There is convincing evidence that both negative and positive ions (i) inhibit growth of bacteria and fungi on solid media; (ii) exert a lethal effect on vegetative forms of bacteria suspended in water when opportunity is provided for contact of cells and ions; and (iii) reduce the viable count of bacterial aerosols. Through physical action, ions of either charge upset the stability of aerolosized bacterial suspensions and, in addition, have a direct lethal effect which is more prominent with negative ions than with positive ions. With regard to the serotonin hypothesis of air ions action, the situation is more complex. The essential fact is that mice and rats display a charge-related metabolic response to air ions and this phenomenon also occurs in humans. Because serotonin is such a potent hormone, the ultimate functional changes incident to air ion action are impressive and account for the signs of symptoms of the sharav syndrome. Alterations in the cumulative mortality rate with three experimental respiratory disease in the mouse also are charge-dependent, positive ions routinely exercising a detrimental effect. Further, in the case of mice infected with influenza virus, ion-deprivation increases the cumulative mortality rate. Since ion depletion is a constant concomitant of modern urban life, one reasonably may speculate about comparable inimical effects on humans.

  20. Speciation analysis of orthophosphate and myo-inositol hexakisphosphate in soil- and plant-related samples by high-performance ion chromatography combined with inductively coupled plasma mass spectrometry.

    PubMed

    Rugova, Ariana; Puschenreiter, Markus; Santner, Jakob; Fischer, Lisa; Neubauer, Stefan; Koellensperger, Gunda; Hann, Stephan

    2014-07-01

    A novel method based on high-performance ion chromatography inductively coupled plasma mass spectrometry employing strong anion exchange chromatography with HNO3 gradient elution for simultaneous analysis of orthophosphate and myo-inositol hexakisphosphate (IP6 ) in soil solution and plant extracts is presented. As inductively coupled plasma mass spectrometry analysis of phosphorus at m/z 31 is hampered by N-based interferences, (31)P was measured as (31)P(16)O(+) at m/z 47 employing dynamic reaction cell technique with O2 as reaction gas. Orthophosphate and IP6 were separated within a total chromatographic run-time of 12 min revealing a limit of detection of 0.3 μmol/L. The coefficients of determination obtained in a working range of 1-100 and 1-30 μmol/L were 0.9991 for orthophosphate and 0.9968 for IP6, respectively. The method was successfully applied to extracts from three different soils as well as root and shoot extracts of Brassica napus L. The precision of three independently prepared soil extracts was in the range of 4-10% relative standard deviation for PO4 (3-) and 3-8% relative standard deviation for IP6. Soil adsorption/desorption kinetics for IP6/orthophosphate were performed for investigating the sorption behavior of the two P species in the experimental soils.

  1. Liquid membrane coated ion-exchange column solids

    DOEpatents

    Barkey, Dale P.

    1988-01-01

    This invention relates to a method for improving the performance of liquid membrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selective for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.

  2. Liquid membrane coated ion-exchange column solids

    DOEpatents

    Barkey, Dale P.

    1989-01-01

    This invention relates to a method for improving the performance of liquid embrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selected for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.

  3. Flux Estimates of Ions from the Lunar Exosphere

    NASA Technical Reports Server (NTRS)

    Sarantos, M.; Hartle, R. E.; Killen, R. M.; Saito, Y.; Slavin, J. A.; Glocer, A.

    2012-01-01

    We compare estimates for the ion fluxes of twelve expected constituents of the lunar exosphere with estimates for the ion fluxes ejected from the lunar surface by solar wind ions and electrons. Our estimates demonstrate that measurements of lunar ions will help constrain the abundances of many undetected species in the lunar exosphere, particularly AI and Si, because the expected ion flux levels from the exosphere exceed those from the surface. To correctly infer the relative abundances of exospheric ions and neutrals from Kaguya Ion Mass Analyzer (IMA) measurements, we must take into account the velocity distributions of local ions. The predicted spectrum underestimates the measured levels of 0+ relative to other lunar ion species, a result that may suggest contributions by molecular ions to the measured 0+ rates.

  4. Ion funnel ion trap and process

    DOEpatents

    Belov, Mikhail E [Richland, WA; Ibrahim, Yehia M [Richland, WA; Clowers, Biran H [West Richland, WA; Prior, David C [Hermiston, OR; Smith, Richard D [Richland, WA

    2011-02-15

    An ion funnel trap is described that includes a inlet portion, a trapping portion, and a outlet portion that couples, in normal operation, with an ion funnel. The ion trap operates efficiently at a pressure of .about.1 Torr and provides for: 1) removal of low mass-to-charge (m/z) ion species, 2) ion accumulation efficiency of up to 80%, 3) charge capacity of .about.10,000,000 elementary charges, 4) ion ejection time of 40 to 200 .mu.s, and 5) optimized variable ion accumulation times. Ion accumulation with low concentration peptide mixtures has shown an increase in analyte signal-to-noise ratios (SNR) of a factor of 30, and a greater than 10-fold improvement in SNR for multiply charged analytes.

  5. Ion-pairing ability, chemical stability, and selectivity behavior of halogenated dodecacarborane cation exchangers in neutral carrier-based ion-selective electrodes.

    PubMed

    Peper, Shane; Qin, Yu; Almond, Philip; McKee, Michael; Telting-Diaz, Martin; Albrecht-Schmitt, Thomas; Bakker, Eric

    2003-05-01

    Recently, it has been discovered that carba-closo-dodecaborates can be used as cation exchangers in neutral carrier-based ion-selective chemical sensors. Because of their inherent chemical stability and versatile functionalization chemistries, they offer many advantages that may potentially be exploited for ion analyses that require nontraditional sample conditions, including strongly acidic media. In this work, trimethylammonium salts of undecachlorinated (UCC), undecabrominated (UBC), hexabrominated (HBC), and undecaiodinated (UIC) carborane anions were prepared and evaluated for their potential use in solvent polymeric membrane-based sensors. Computational methods including Natural population analysis and electrostatic mapping were used to predict the ion-exchanging ability of each lipophilic anion. In addition, the sandwich membrane technique was used to evaluate the ion-pairing ability of each carborane anion in situ (i.e., within bis(2-ethylhexyl) sebacate (DOS)- and 2-nitrophenyl octyl ether (o-NPOE)-plasticized ISE membranes). The results of the computational and potentiometric studies found that binding affinity of the anions followed the generalized trend HBC > UCC > UBC > UIC. PVC-DOS bulk optode thin films containing the chromoionophore ETH 5315 and a respective anion were used to determine the chemical stability/lipophilicity of the carboranes and tetrakis[3,5-bis(trifluoromethyl)phenyl] borate (TFPB) in acidic media (0.2 M HOAc) under flowing conditions. The studies found that in terms of stability/lipophilicity UIC > UBC > TFPB approximately UCC > HBC. Electrodes containing a Pb(2+)-selective ionophore, tert-butylcalix[4]arene-tetrakis(N,N-dimethylthioacetamide)(lead IV), were used to evaluate the functionality of each cation exchanger. An evaluation of response characteristics such as slope and selectivity found that UIC and UBC were quite comparable to the behavior of TFPB. Interestingly, both UIC and UBC showed a marked selectivity improvement

  6. High Performance Ion Mobility Spectrometry Using Hourglass Electrodynamic Funnel And Internal Ion Funnel

    DOEpatents

    Smith, Richard D.; Tang, Keqi; Shvartsburg, Alexandre A.

    2005-11-22

    A method and apparatus enabling increased sensitivity in ion mobility spectrometry/mass spectrometry instruments which substantially reduces or eliminates the loss of ions in ion mobility spectrometer drift tubes utilizing a device for transmitting ions from an ion source which allows the transmission of ions without significant delay to an hourglass electrodynamic ion funnel at the entrance to the drift tube and/or an internal ion funnel at the exit of the drift tube. An hourglass electrodynamic funnel is formed of at least an entry element, a center element, and an exit element, wherein the aperture of the center element is smaller than the aperture of the entry element and the aperture of the exit elements. Ions generated in a relatively high pressure region by an ion source at the exterior of the hourglass electrodynamic funnel are transmitted to a relatively low pressure region at the entrance of the hourglass funnel through a conductance limiting orifice. Alternating and direct electrical potentials are applied to the elements of the hourglass electrodynamic funnel thereby drawing ions into and through the hourglass electrodynamic funnel thereby introducing relatively large quantities of ions into the drift tube while maintaining the gas pressure and composition at the interior of the drift tube as distinct from those at the entrance of the electrodynamic funnel and allowing a positive gas pressure to be maintained within the drift tube, if desired. An internal ion funnel is provided within the drift tube and is positioned at the exit of said drift tube. The advantage of the internal ion funnel is that ions that are dispersed away from the exit aperture within the drift tube, such as those that are typically lost in conventional drift tubes to any subsequent analysis or measurement, are instead directed through the exit of the drift tube, vastly increasing the amount of ions exiting the drift tube.

  7. Evidence for fast-ion transport by microturbulence.

    PubMed

    Heidbrink, W W; Park, J M; Murakami, M; Petty, C C; Holcomb, C; Van Zeeland, M A

    2009-10-23

    Cross-field diffusion of energetic ions by microturbulence is measured during neutral-beam injection into the DIII-D tokamak. Fast-ion D(alpha), neutron, and motional Stark effect measurements diagnose the fast-ion distribution function. As expected for transport by plasma turbulence, anomalies relative to the classical prediction are greatest in high temperature plasmas, at low fast-ion energy, and at larger minor radius. Theoretical estimates of fast-ion diffusion are comparable to experimental levels.

  8. Ion Collision, Theory

    SciTech Connect

    Shukla, Anil K.

    2013-09-11

    The outcome of a collision between an ion and neutral species depends on the chemical and physical properties of the two reactants, their relative velocities, and the impact parameter of their trajectories. These include elastic and inelastic scattering of the colliding particles, charge transfer (including dissociative charge transfer), atom abstraction, complex formation and dissociation of the colliding ion. Each of these reactions may be characterized in terms of their energy-dependent rate coefficients, cross sections and reaction kinetics. A theoretical framework that emphasizes simple models and classical mechanics is presented for these processes. Collision processes are addressed in two categories of low-energy and high-energy collisions. Experiments under thermal or quasi-thermal conditions–swarms, drift tubes, chemical ionization and ion cyclotron resonance are strongly influenced by long-range forces and often involve collisions in which atom exchange and extensive energy exchange are common characteristics. High-energy collisions are typically impulsive, involve short-range intermolecular forces and are direct, fast processes.

  9. Effect of mid-altitude ion heating on ion outflow at polar latitudes

    NASA Technical Reports Server (NTRS)

    Li, Peng; Wilson, G. R.; Horwitz, J. L.; Moore, T. E.

    1988-01-01

    The effect of ion heating on polar ion outflow, when either the parallel or perpendicular (or both) ion temperatures at the exobase are elevated above values typical for the ionosphere, was investigated using a modified semikinetic steady-state model of Barakat and Schunk (1983) that allowed for anisotropic ion heating at the exobase and eliminated lower boundary potential jumps. In addition, the relative impact of the ion heating vs electron heating on the oxygen escape fluxes was investigated by examining the flux of O(+) ions for various combinations of electron and ion temperatures. It is demonstrated that the O(+) escape flux can be increased, to levels as high as were obtained by Barakat and Schunk (1983) with the electron temperatures of 10,000 K, by raising, instead, the ion temperatures (but to values considerably less than the 100,000 K observed by Moore et al., 1986).

  10. Characterization and quantification of monoterpenoids in different types of peony root and the related Paeonia species by liquid chromatography coupled with ion trap and time-of-flight mass spectrometry.

    PubMed

    Shi, Yan-Hong; Zhu, Shu; Ge, Yue-Wei; Toume, Kazufumi; Wang, Zhengtao; Batkhuu, Javzan; Komatsu, Katsuko

    2016-09-10

    Monoterpenoids with "cage-like" pinane skeleton are the unique and main bioactive constituents in peony root, the root of Paeonia lactiflora. A liquid chromatography coupled with ion trap and time-of-flight mass spectrometry (LC-IT-TOF-MS) method was developed for characterization and quantification of monoterpenoids in different types of peony root and the roots of related Paeonia species. MS/MS fragmentation patterns of monoterpenoids with paeoniflorin-, albiflorin- and sulfonated paeoniflorin-type of skeletons were elucidated, which provided basic clues enabling subsequent identification of 35 monoterpenoids in LC-MS profiles of Paeonia species. The profiling analysis and further quantification of 15 main monoterpenoids in 56 samples belonged to red peony root (RPR), white peony root (WPR), peony root in Japanese market (PR) and the roots of related Paeonia species revealed that paeoniflorin, benzoylpaeoniflorin, galloylpaeoniflorin, oxypaoniflorin and albiflorin were predominant constituents in all the samples; mudanpioside C was the characteristic component of P. lactiflora, and 4-O-methyl-paeoniflorin was only detected in P. veitchii and P. anomala. Total contents of the 15 monoterpenoids were obviously higher in the roots of P. lactiflora and P. veitchii than in those of P. anomala and P. japonica. Principal component analysis based on the quantitative results showed that the samples derived from P. lactiflora were clearly classified into RPR, WPR/PR, and sulfur-fumigated WPR groups, besides the respective group of P. veitchii and P. anomala. This study clarified the chemical characteristics of the respective type of peony root and the related Paeonia species, as well as the marker constituents for their discrimination.

  11. Characterization and quantification of monoterpenoids in different types of peony root and the related Paeonia species by liquid chromatography coupled with ion trap and time-of-flight mass spectrometry.

    PubMed

    Shi, Yan-Hong; Zhu, Shu; Ge, Yue-Wei; Toume, Kazufumi; Wang, Zhengtao; Batkhuu, Javzan; Komatsu, Katsuko

    2016-09-10

    Monoterpenoids with "cage-like" pinane skeleton are the unique and main bioactive constituents in peony root, the root of Paeonia lactiflora. A liquid chromatography coupled with ion trap and time-of-flight mass spectrometry (LC-IT-TOF-MS) method was developed for characterization and quantification of monoterpenoids in different types of peony root and the roots of related Paeonia species. MS/MS fragmentation patterns of monoterpenoids with paeoniflorin-, albiflorin- and sulfonated paeoniflorin-type of skeletons were elucidated, which provided basic clues enabling subsequent identification of 35 monoterpenoids in LC-MS profiles of Paeonia species. The profiling analysis and further quantification of 15 main monoterpenoids in 56 samples belonged to red peony root (RPR), white peony root (WPR), peony root in Japanese market (PR) and the roots of related Paeonia species revealed that paeoniflorin, benzoylpaeoniflorin, galloylpaeoniflorin, oxypaoniflorin and albiflorin were predominant constituents in all the samples; mudanpioside C was the characteristic component of P. lactiflora, and 4-O-methyl-paeoniflorin was only detected in P. veitchii and P. anomala. Total contents of the 15 monoterpenoids were obviously higher in the roots of P. lactiflora and P. veitchii than in those of P. anomala and P. japonica. Principal component analysis based on the quantitative results showed that the samples derived from P. lactiflora were clearly classified into RPR, WPR/PR, and sulfur-fumigated WPR groups, besides the respective group of P. veitchii and P. anomala. This study clarified the chemical characteristics of the respective type of peony root and the related Paeonia species, as well as the marker constituents for their discrimination. PMID:27521818

  12. The uses of electron beam ion traps in the study of highly charged ions

    SciTech Connect

    Knapp, D.

    1994-11-02

    The Electron Beam Ion Trap (EBIT) is a relatively new tool for the study of highly charged ions. Its development has led to a variety of new experimental opportunities; measurements have been performed with EBITs using techniques impossible with conventional ion sources or storage rings. In this paper, I will highlight the various experimental techniques we have developed and the results we have obtained using the EBIT and higher-energy Super-EBIT built at the Lawrence Livermore National Laboratory. The EBIT employs a high-current-density electron beam to trap, ionize, and excite a population of ions. The ions can be studied in situ or extracted from the trap for external experiments. The trapped ions form an ionization-state equilibrium determined by the relative ionization and recombination rates. Ions of several different elements may simultaneously be present in the trap. The ions are nearly at rest, and, for most systems, all in their ground-state configurations. The electron-ion interaction energy has a narrow distribution and can be varied over a wide range. We have used the EBIT devices for the measurement of electron-ion interactions, ion structure, ion-surface interactions, and the behavior of low-density plasmas.

  13. The affinity and activity of compounds related to nicotine on the rectus abdominis muscle of the frog (Rana pipiens)

    PubMed Central

    Barlow, R. B.; Thompson, G. M.

    1969-01-01

    1. Series of pyridylalkyl- and substituted phenylalkyl-trimethylammonium salts, triethylammonium salts, diethylamines and di-n-propylamines have been made. The substituents in the benzene ring were nitro, chloro, bromo, methoxy, hydroxy and amino groups and the alkyl residues had one, two, or three methylene groups separating the aromatic nucleus from the cationic head. 2. Most of the trimethylammonium compounds caused a contracture of the frog rectus muscle, but some were partial agonists and a few were antagonists. The di-n-propylamines were all antagonists, as were most of the diethylamines and triethylammonium compounds, though some of these were partial agonists and a few triethylammonium compounds were agonists. The affinities of the antagonists and partial agonists for the receptors stimulated by β-pyridylmethyltrimethylammonium (and by nicotine) were measured. The equipotent molar ratios of all the agonists were measured relative to β-pyridylmethyltrimethylammonium. 3. The dissociation constants of the pyridylmethyldiethylamines and substituted benzyldiethylamines were measured. The effects of substituents on the pKa of benzyldiethylamine were similar to their effects on the pKa of aniline, though there were differences with some of the o-substituted compounds, which could be attributed to internal hydrogen-bond formation. 4. There is no obvious correlation between the effects of a substituent on the pKa of benzyldiethylamine and its effects on affinity. Although increasing the size of the cationic group usually increased affinity, it did not always do so. The compounds with the highest affinity, p-hydroxybenzyldiethylamine (log K, 5·90) had about half the affinity of (+)-tubocurarine (log K, 6·11), but the triethylammonium analogue (log K, 4·17) had only about one-fiftieth of the affinity of the tertiary base. The binding of the drug to the receptor appears to involve many factors which include the size of the groups as well as their electron

  14. Directly Driven Ion Outflow

    NASA Technical Reports Server (NTRS)

    Elliott, H. A.; Comfort, R. H.; Craven, P. D.; Moore, T. E.; Russell, C. T.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    We examine ionospheric outflows in the high altitude magnetospheric polar cap during the POLAR satellite's apogee on April 19, 1996 using the Thermal Ion Dynamics Experiment (TIDE) instrument. The elevated levels of O(+) observed in this pass may be due to the geophysical conditions during and prior to the apogee pass. In addition to the high abundance of O(+) relative to H(+), several other aspects of this data are noteworthy. We observe relationships between the density, velocity, and temperature which appear to be associated with perpendicular heating and the mirror force, rather than adiabatic expansion. The H(+) outflow is at a fairly constant flux which is consistent with being source limited by charge exchange at lower altitudes. Local centrifugal acceleration in the polar cap is found to be insufficient to account for the main variations we observe in the outflow velocity. The solar wind speed is high during this pass approximately 700 kilometers per second, and there are Alfve'n waves present in the solar wind such that the solar wind speed and IMF Bx are correlated. In this pass both the H(+) and O(+) outflow velocities correlate with both the solar wind speed and IMF fluctuations. Polar cap magnetometer and Hydra electron data show the same long period wave structure as found in the solar wind and polar cap ion outflow. In addition, the polar cap Poynting flux along the magnetic field direction correlates well with the H(+) temperature (R=0.84). We conclude that the solar wind can drive polar cap ion outflow particularly during polar squalls by setting up a parallel drop that is tens of eV which then causes the ion outflow velocity of O(+) and H(+), the electrons, and magnetic perturbations to vary in a similar fashion.

  15. Ion heating via turbulent ion acoustic waves.

    NASA Technical Reports Server (NTRS)

    Taylor, R. J.; Coroniti, F. V.

    1972-01-01

    The ion acoustic turbulence in the turbulent-heating experiment reported is excited by the ion-ion beam instability. Graphs are presented, showing the spatial evolution of the parallel ion beam energy and the spatial evolution of the ion acoustic turbulent wave spectrum. The observed characteristics of test waves in a turbulent beam-plasma imply that wave saturation is a dynamic balance between the emission of waves by the beam and the destruction or damping of wave coherence by the turbulent diffusion of particle orbits.

  16. Ion coalescence of neutron encoded TMT 10-plex reporter ions.

    PubMed

    Werner, Thilo; Sweetman, Gavain; Savitski, Maria Fälth; Mathieson, Toby; Bantscheff, Marcus; Savitski, Mikhail M

    2014-04-01

    Isobaric mass tag-based quantitative proteomics strategies such as iTRAQ and TMT utilize reporter ions in the low mass range of tandem MS spectra for relative quantification. The recent extension of TMT multiplexing to 10 conditions has been enabled by utilizing neutron encoded tags with reporter ion m/z differences of 6 mDa. The baseline resolution of these closely spaced tags is possible due to the high resolving power of current day mass spectrometers. In this work we evaluated the performance of the TMT10 isobaric mass tags on the Q Exactive Orbitrap mass spectrometers for the first time and demonstrated comparable quantification accuracy and precision to what can be achieved on the Orbitrap Elite mass spectrometers. However, we discovered, upon analysis of complex proteomics samples on the Q Exactive Orbitrap mass spectrometers, that the proximate TMT10 reporter ion pairs become prone to coalescence. The fusion of the different reporter ion signals into a single measurable entity has a detrimental effect on peptide and protein quantification. We established that the main reason for coalescence is the commonly accepted maximum ion target for MS2 spectra of 1e6 on the Q Exactive instruments. The coalescence artifact was completely removed by lowering the maximum ion target for MS2 spectra from 1e6 to 2e5 without any losses in identification depth or quantification quality of proteins.

  17. Microwave ion source for low charge state ion production

    NASA Astrophysics Data System (ADS)

    Reijonen, J.; Eardley, M.; Gough, R.; Leung, K.; Thomae, R.

    2003-10-01

    The Plasma and Ion Source Technology Group at LBNL have developed a microwave ion source. The source consists of a stainless-steel plasma chamber, a permanent-magnet dipole structure and a coaxial microwave feed. Measurements were carried out to characterize the plasma and the ion beam produced in the ion source. These measurements included current density, charge state distribution, gas efficiency and accelerated beam emittance measurements. Using a computer controlled data acquisition system a new method of determining the saturation ion current was developed. Current density of 3-6 mA/cm 2 was measured with the source operating in the over dense mode. The highest measured charge-states were Ar 5+, O 3+ and Xe 7+. Gas efficiency was measured using a calibrated argon leak. Depending on the source pressure and discharge power, more than 20% total gas efficiency was achieved. The emittance of the ion beam was measured by using a pepper-pot device. Certain spread was noticed in the beam emittance in the perpendicular direction to the source dipole field. For the parallel direction to the magnetic field, the normalized rr' emittance of 0.032 π-mm-mrad at 13 kV of acceleration voltage and beam exit aperture of 3-mm-in-diameter was measured. This compares relatively well with the simulated value of 4 rms, normalized emittance value of 0.024 π-mm-mrad.

  18. Ion divergence in magnetically insulated diodes

    SciTech Connect

    Slutz, S.A.; Lemke, R.W.; Pointon, T.D.; Desjarlais, M.P.; Johnson, D.J.; Mehlhorn, T.A.; Filuk, A.; Bailey, J.

    1995-12-01

    Magnetically insulated ion diodes are being developed to drive inertial confinement fusion. Ion beam microdivergence must be reduced to achieve the very high beam intensities required to achieve this goal. Three-dimensional particle-in-cell simulations indicate that instability induced fluctuations can produce significant ion divergence during acceleration. These simulations exhibit a fast growing mode early in time, which has been identified as the diocotron instability. The divergence generated by this mode is modest due to the relatively high frequency (>1GHz). Later, a low-frequency low-phase-velocity instability develops. This instability couples effectively to the ions, since the frequency is approximately the reciprocal of the ion transit time, and can generate unacceptably large ion divergences (>30 mrad). Linear stability theory reveals that this mode requires perturbations parallel to the applied magnetic field and is related to the modified two stream instability. Measurements of ion density fluctuations and energy-momentum correlations have confirmed that instabilities develop in ion diodes and contribute to the ion divergence. In addition, spectroscopic measurements indicate that the ions have a significant transverse temperature very close to the emission surface. Passive lithium fluoride (LiF) anodes have larger transverse beam temperatures than laser irradiated active sources. Calculations of source divergence expected from the roughness of LiF surfaces and the possible removal of this layer is presented.

  19. Compact ion accelerator source

    DOEpatents

    Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali

    2014-04-29

    An ion source includes a conductive substrate, the substrate including a plurality of conductive nanostructures with free-standing tips formed on the substrate. A conductive catalytic coating is formed on the nanostructures and substrate for dissociation of a molecular species into an atomic species, the molecular species being brought in contact with the catalytic coating. A target electrode placed apart from the substrate, the target electrode being biased relative to the substrate with a first bias voltage to ionize the atomic species in proximity to the free-standing tips and attract the ionized atomic species from the substrate in the direction of the target electrode.

  20. Novel Electrolytes for Lithium Ion Batteries

    SciTech Connect

    Lucht, Brett L.

    2014-12-12

    We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

  1. Experimental evaluation of a negative ion source for a heavy ionfusion negative ion driver

    SciTech Connect

    Grisham, L.R.; Hahto, S.K.; Hahto, S.T.; Kwan, J.W.; Leung, K.N.

    2005-01-18

    Negative halogen ions have recently been proposed as a possible alternative to positive ions for heavy ion fusion drivers because electron accumulation would not be a problem in the accelerator, and if desired, the beams could be photodetached to neutrals [1,2,3]. To test the ability to make suitable quality beams, an experiment was conducted at Lawrence Berkeley National Laboratory using chlorine in an RF-driven ion source. Without introducing any cesium (which is required to enhance negative ion production in hydrogen ion sources) a negative chlorine current density of 45 mA/cm{sup 2} was obtained under the same conditions that gave 57 mA/cm{sup 2} of positive chlorine, suggesting the presence of nearly as many negative ions as positive ions in the plasma near the extraction plane. The negative ion spectrum was 99.5% atomic chlorine ions, with only 0.5% molecular chlorine, and essentially no impurities. Although this experiment did not incorporate the type of electron suppression technology that is used in negative hydrogen beam extraction, the ratio of co-extracted electrons to Cl{sup -} was as low as 7 to 1, many times lower than the ratio of their mobilities, suggesting that few electrons are present in the near-extractor plasma. This, along with the near-equivalence of the positive and negative ion currents, suggests that the plasma in this region was mostly an ion-ion plasma. The negative chlorine current density was relatively insensitive to pressure, and scaled linearly with RF power. If this linear scaling continues to hold at higher RF powers, it should permit current densities of 100 mA/cm{sup 2}, sufficient for present heavy ion fusion injector concepts. The effective ion temperatures of the positive and negative ions appeared to be similar and relatively low for a plasma source.

  2. Ion Outflow at Mars Using MEX Ion And Electron Data

    NASA Astrophysics Data System (ADS)

    Fowler, C. M.; Andersson, L.; Frahm, R. A.; Lundin, R. N.

    2013-12-01

    It is widely believed that Mars once hosted a significant amount of water on its surface that is no longer present. Identifying and constraining various escape channels for the Martian atmosphere into space is critical in helping determine the evolution of the planet and its water content. Previous authors have looked for significant ion escape at Mars. Using higher energy (10-50eV) ion data from the ESA MEX spacecraft, significant ion escape was observed in the northern hemisphere but not in the southern. One possible explanation that has been put forward to explain this is that the magnetic crustal fields located primarily in the southern hemisphere at Mars trap ions and recycle them back to the planet as Mars rotates from day to night. Here we propose a different escape channel previously not considered for ions. Estimations suggest that the proposed channel contains at least three times as many ions in the southern hemisphere as in the northern. During strong solar wind compression events this channel could potentially contain as many ions as observed flowing tail ward in nominal solar wind conditions. Data also suggest that differences between northern and southern hemispheres are in part dependent on the ion energies analyzed and provide information regarding the relative importance of physical processes present there. Particle tracing simulations support the data analysis and demonstrate the possibility of this escape channel. The results and implications of these studies are presented along with discussion of the importance of various factors involved in the data analysis and simulations.

  3. Ion current detector for high pressure ion sources for monitoring separations

    DOEpatents

    Smith, Richard D.; Wahl, Jon H.; Hofstadler, Steven A.

    1996-01-01

    The present invention relates generally to any application involving the monitoring of signal arising from ions produced by electrospray or other high pressure (>100 torr) ion sources. The present invention relates specifically to an apparatus and method for the detection of ions emitted from a capillary electrophoresis (CE) system, liquid chromatography, or other small-scale separation methods. And further, the invention provides a very simple diagnostic as to the quality of the separation and the operation of an electrospray source.

  4. Ion current detector for high pressure ion sources for monitoring separations

    DOEpatents

    Smith, R.D.; Wahl, J.H.; Hofstadler, S.A.

    1996-08-13

    The present invention relates generally to any application involving the monitoring of signal arising from ions produced by electrospray or other high pressure (>100 torr) ion sources. The present invention relates specifically to an apparatus and method for the detection of ions emitted from a capillary electrophoresis (CE) system, liquid chromatography, or other small-scale separation methods. And further, the invention provides a very simple diagnostic as to the quality of the separation and the operation of an electrospray source. 7 figs.

  5. Process for modifying the metal ion sorption capacity of a medium

    DOEpatents

    Lundquist, Susan H.

    2002-01-01

    A process for modifying a medium is disclosed that includes treating a medium having a metal ion sorption capacity with a solution that includes: A) an agent capable of forming a complex with metal ions; and B) ions selected from the group consisting of sodium ions, potassium ions, magnesium ions, and combinations thereof, to create a medium having an increased capacity to sorb metal ions relative to the untreated medium.

  6. Ion mixing and phase diagrams

    NASA Astrophysics Data System (ADS)

    Lau, S. S.; Liu, B. X.; Nicolet, M.-A.

    1983-05-01

    Interactions induced by ion irradiation are generally considered to be non-equilibrium processes, whereas phase diagrams are determined by phase equilibria. These two entities are seemingly unrelated. However, if one assumes that quasi-equilibrium conditions prevail after the prompt events, subsequent reactions are driven toward equilibrium by thermodynamical forces. Under this assumption, ion-induced reactions are related to equilibrium and therefore to phase diagrams. This relationship can be seen in the similarity that exists in thin films between reactions induced by ion irradiation and reactions induced by thermal annealing. In the latter case, phase diagrams have been used to predict the phase sequence of stable compound formation, notably so in cases of silicide formation. Ion-induced mixing not only can lead to stable compound formation, but also to metastable alloy formation. In some metal-metal systems, terminal solubilities can be greatly extended by ion mixing. In other cases, where the two constituents of the system have different crystal structures, extension of terminal solubility from both sides of the phase diagram eventually becomes structurally incompatible and a glassy (amorphous) mixture can form. The composition range where this bifurcation is likely to occur is in the two-phase regions of the phase diagram. These concepts are potentially useful guides in selecting metal pairs that from metallic glasses by ion mixing. In this report, phenomenological correlation between stable (and metastable) phase formation and phase diagram is discussed in terms of recent experimental data.

  7. Applications of Ion Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Barnard, John J.; Briggs*, Richard J.

    As discussed in Chap. 9, the physics of ion induction accelerators has many commonalities with the physics of electron induction accelerators. However, there are important differences, arising because of the different missions of ion machines relative to electron machines and also because the velocity of the ions is usually non-relativistic in these applications. The basic architectures and layout reflects these differences. In Chaps. 6, 7, and 8 a number of examples of electron accelerators and their applications were given, including machines that have already been constructed. In this chapter, we give several examples of potential uses for ion induction accelerators. Although, as of this writing, none of these applications have come to fruition, in the case of heavy ion fusion (HIF) , small scale experiments have been carried out and a sizable effort has been made in laying the groundwork for such an accelerator. A second application, using ion beams for study of High Energy Density Physics (HEDP) or Warm Dense Matter (WDM) physics will soon be realized and the requirements for this machine will be discussed in detail. Also, a concept for a spallation neutron source is discussed in lesser detail.

  8. Meteoric Ions in Planetary Ionospheres

    NASA Technical Reports Server (NTRS)

    Pesnell, W. D.; Grebowsky, Joseph M.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Solar system debris, in the form of meteoroids, impacts every planet. The flux, relative composition and speed of the debris at each planet depends on the planet's size and location in the solar system. Ablation in the atmosphere evaporates the meteoric material and leaves behind metal atoms. During the ablation process metallic ions are formed by impact ionization. For small inner solar system planets, including Earth, this source of ionization is typically small compared to either photoionization or charge exchange with ambient molecular ions. For Earth, the atmosphere above the main deposition region absorbs the spectral lines capable of ionizing the major metallic atoms (Fe and Mg) so that charge exchange with ambient ions is the dominant source. Within the carbon dioxide atmosphere of Mars (and possibly Venus), photoionization is important in determining the ion density. For a heavy planet like Jupiter, far from the sun, impact ionization of ablated neutral atoms by impacts with molecules becomes a prominent source of ionization due to the gravitational acceleration to high incident speeds. We will describe the processes and location and extent of metal ion layers for Mars, Earth and Jupiter, concentrating on flagging the uncertainties in the models at the present time. This is an important problem, because low altitude ionosphere layers for the planets, particularly at night, probably consist predominantly of metallic ions. Comparisons with Earth will be used to illustrate the differing processes in the three planetary atmospheres.

  9. Ion Measurements During Pioneer Venus Reentry: Implications for Solar Cycle Variation of Ion Composition and Dynamics

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Hartle, R. E.; Kar, J.; Cloutier, P. A.; Taylor, H. A., Jr.; Brace, L. H.

    1993-01-01

    During the final, low solar activity phase of the Pioneer Venus mission, the Orbiter Ion Mass Spectrometer measurements found all ion species, in the midnight-dusk sector, reduced in concentration relative to that observed at solar maximum. Molecular ion species comprised a greater part of the total ion concentration as O(+) and H(+) had the greatest depletions. The nightside ionospheric states were strikingly similar to the isolated solar maximum "disappearing" ionospheres. Both are very dynamic states characterized by a rapidly drifting plasma and 30-100 eV superthermal O(+) ions.

  10. Ion measurements during Pioneer Venus reentry: Implications for solar cycle variation of ion composition and dynamics

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Hartle, R. E.; Kar, J.; Cloutier, P. A.; Taylor, H. A., Jr.; Brace, L. H.

    1993-01-01

    During the final, low solar activity phase of the Pioneer Venus (PV) mission, the Orbiter Ion Mass Spectrometer (OIMS) measurements found all ion species, in the midnight-dusk sector, reduced in concentration relative to that observed at solar maximum. Molecular ion species comprised a greater part of the total ion concentration as O(+) and H(+) had the greatest depletions. The nightside ionospheric states were strikingly similar to the isolated solar maximum 'disappearing' ionospheres. Both are very dynamic states characterized by a rapidly drifting plasma and 30-100 eV superthermal O(+) ions.

  11. Small radio frequency driven multicusp ion source for positive hydrogen ion beam production

    SciTech Connect

    Perkins, L.T.; Herz, P.R.; Leung, K.N.; Pickard, D.S. )

    1994-04-01

    A compact, 2.5 cm diam rf-driven multicusp ion source has been developed and tested for H[sup +] ion production in pulse mode operation. The source is optimized for atomic hydrogen ion species and extractable current. It is found that hydrogen ion beam current densities in excess of 650 mA/cm[sup 2] can be achieved with H[sup +] species above 80%. The geometry and position of the porcelain-coated copper antenna were found to be of great significance in relation to the efficiency of the ion source.

  12. Sputtering and ion plating

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The proceedings of a conference on sputtering and ion plating are presented. Subjects discussed are: (1) concepts and applications of ion plating, (2) sputtering for deposition of solid film lubricants, (3) commercial ion plating equipment, (4) industrial potential for ion plating and sputtering, and (5) fundamentals of RF and DC sputtering.

  13. Collisions of ions in gases

    NASA Astrophysics Data System (ADS)

    Bailey, T. L.

    1982-03-01

    This report is a summary description of research carried out under the ONR Project 'Collisions of Ions in Gases'. The work consisted of experimental studies of collisions of low-energy ions (4 < or = E sub L < or = 500 eV) with atoms and molecules, using the ion-beam gas-target technique, and of theoretical and computational studies done in support of the experiments. Three types of experiments were carried out: (a) measurements of relative differential cross-sections for elastic and inelastic (i.e., charge transfer) scattering in collisions of the He(++) ions with Ne, Ar, and Kr atoms, over the ion energy range 8 < or = E sub L < or = 60 eV; (b) kinematical studies of charge transfer in collisions of 30 < or = E sub L < or = 373 eV Ne(+), Ar(+), and Kr(+) ions with H2, D2, O2, and N2 molecules, in which the KE-distributions of the product H2(+), etc., were measured; and (c) measurements of the absolute total cross-sections for the charge transfer process He(++) + R = He(+) + R(+), where R = Ne, Ar, Kr, over the energy range 4 < or = E sub L < or = 500 eV. The experimental results, and their interpretations in terms of appropriate quantum scattering theory (where the latter was feasible) are discussed briefly. The effects of the thermal motions of collision participants (i.e., thermal broadening) in ion-atom and similar scattering experiments were investigated in computational studies, and a new crossed ion-supersonic atom/molecule beams apparatus, designed to remove the thermal broadening effect and to give high resolution in energy and angle, is discussed.

  14. Microfabricated ion frequency standard

    DOEpatents

    Schwindt, Peter; Biedermann, Grant; Blain, Matthew G.; Stick, Daniel L.; Serkland, Darwin K.; Olsson, III, Roy H.

    2010-12-28

    A microfabricated ion frequency standard (i.e. an ion clock) is disclosed with a permanently-sealed vacuum package containing a source of ytterbium (Yb) ions and an octupole ion trap. The source of Yb ions is a micro-hotplate which generates Yb atoms which are then ionized by a ultraviolet light-emitting diode or a field-emission electron source. The octupole ion trap, which confines the Yb ions, is formed from suspended electrodes on a number of stacked-up substrates. A microwave source excites a ground-state transition frequency of the Yb ions, with a frequency-doubled vertical-external-cavity laser (VECSEL) then exciting the Yb ions up to an excited state to produce fluorescent light which is used to tune the microwave source to the ground-state transition frequency, with the microwave source providing a precise frequency output for the ion clock.

  15. Influence of ion streaming instabilities on transport near plasma boundaries

    NASA Astrophysics Data System (ADS)

    Baalrud, Scott D.

    2016-04-01

    Plasma boundary layers are susceptible to electrostatic instabilities driven by ion flows in presheaths and, when present, these instabilities can influence transport. In plasmas with a single species of positive ion, ion-acoustic instabilities are expected under conditions of low pressure and large electron-to-ion temperature ratio ({{T}e}/{{T}i}\\gg 1 ). In plasmas with two species of positive ions, ion-ion two-stream instabilities can also be excited. The stability phase-space is characterized using the Penrose criterion and approximate linear dispersion relations. Predictions for how these instabilities affect ion and electron transport in presheaths, including rapid thermalization due to instability-enhanced collisions and an instability-enhanced ion-ion friction force, are briefly reviewed. Recent experimental tests of these predictions are discussed along with research needs required for further validation. The calculated stability boundaries provide a guide to determine the experimental conditions at which these effects can be expected.

  16. OGO 6 ion concentration irregularity studies

    NASA Technical Reports Server (NTRS)

    Mcclure, J. P.

    1973-01-01

    Research is reported concerning the ionospheric F-region irregularities. The results are based on in-situ OGO-6 measurements of the total ion concentration N sub i. A proposed mechanism for the generation of equatorial F-region irregularities and the morphological results, and the occurrence of Fe(+) ions in the equatorial F-region are discussed. Related research papers are included.

  17. Molecular ions, Rydberg spectroscopy and dynamics

    SciTech Connect

    Jungen, Ch.

    2015-01-22

    Ion spectroscopy, Rydberg spectroscopy and molecular dynamics are closely related subjects. Multichannel quantum defect theory is a theoretical approach which draws on this close relationship and thereby becomes a powerful tool for the study of systems consisting of a positively charged molecular ion core interacting with an electron which may be loosely bound or freely scattering.

  18. Heavy Ion Fusion Accelerator Research (HIFAR)

    SciTech Connect

    Not Available

    1991-04-01

    This report discusses the following topics: emittance variations in current-amplifying ion induction lina; transverse emittance studies of an induction accelerator of heavy ions; drift compression experiments on MBE-4 and related emittance; low emittance uniform- density C{sub s}+ sources for heavy ion fusion accelerator studies; survey of alignment of MBE-4; time-of-flight dependence on the MBE-4 quadrupole voltage; high order calculation of the multiple content of three dimensional electrostatic geometries; an induction linac injector for scaled experiments; induction accelerator test module for HIF; longitudinal instability in HIF beams; and analysis of resonant longitudinal instability in a heavy ion induction linac.

  19. Ion-Containing Polymers: Ionomers.

    ERIC Educational Resources Information Center

    Bazuin, C. G.; Eisenberg, A.

    1981-01-01

    Demonstrates how the incorporation of relatively low amounts of ionic material into nonionic polymers affects the structure and properties of these polymers. The extent to which properties are altered depends on dielectric constant of the backbone, position and type of ionic group, counterion type, ion concentration, and degree of neutralization.…

  20. Ion sources for ion implantation technology (invited)

    SciTech Connect

    Sakai, Shigeki Hamamoto, Nariaki; Inouchi, Yutaka; Umisedo, Sei; Miyamoto, Naoki

    2014-02-15

    Ion sources for ion implantation are introduced. The technique is applied not only to large scale integration (LSI) devices but also to flat panel display. For LSI fabrication, ion source scheduled maintenance cycle is most important. For CMOS image sensor devices, metal contamination at implanted wafer is most important. On the other hand, to fabricate miniaturized devices, cluster ion implantation has been proposed to make shallow PN junction. While for power devices such as silicon carbide, aluminum ion is required. For doping processes of LCD fabrication, a large ion source is required. The extraction area is about 150 cm × 10 cm, and the beam uniformity is important as well as the total target beam current.

  1. Trapped ion scaling with pulsed fast gates

    NASA Astrophysics Data System (ADS)

    Bentley, C. D. B.; Carvalho, A. R. R.; Hope, J. J.

    2015-10-01

    Fast entangling gates for trapped ion pairs offer vastly improved gate operation times relative to implemented gates, as well as approaches to trap scaling. Gates on a neighbouring ion pair only involve local ions when performed sufficiently fast, and we find that even a fast gate between a pair of distant ions with few degrees of freedom restores all the motional modes given more stringent gate speed conditions. We compare pulsed fast gate schemes, defined by a timescale faster than the trap period, and find that our proposed scheme has less stringent requirements on laser repetition rate for achieving arbitrary gate time targets and infidelities well below 10-4. By extending gate schemes to ion crystals, we explore the effect of ion number on gate fidelity for coupling two neighbouring ions in large crystals. Inter-ion distance determines the gate time, and a factor of five increase in repetition rate, or correspondingly the laser power, reduces the infidelity by almost two orders of magnitude. We also apply our fast gate scheme to entangle the first and last ions in a crystal. As the number of ions in the crystal increases, significant increases in the laser power are required to provide the short gate times corresponding to fidelity above 0.99.

  2. Ion flux profiles observed at Mars

    NASA Astrophysics Data System (ADS)

    Fowler, C. M.; Andersson, L.; Lundin, R. N.; Frahm, R. A.

    2012-12-01

    How Mars lost it's water and atmosphere is still an important question. Many studies have investigated high-energy ion fluxes (>10 eV) surrounding the planet and derived ion outflow rates in order to determine atmospheric loss. These rates suggest that the outflow from high-energy ions is not the dominant escape path for atmospheric loss. Over the years increasing evidence has indicated that the loss of low-energy ions are more important than the high-energy ion loss. In this presentation ion observations (down to the spacecraft potential) from the Mars Express (MEX) mission (2010/11), are used to describe the ion altitude distribution at Mars. The focus of this study is below the altitude of ~1000 km. Within the Mars environment, using the MEX electron observations different plasma regions was identified. Supported by electron identification, different altitude profiles of ion fluxes have been analyzed from the different plasma regions. One of the results from this study is that the altitude profile of the ion flux observed below the photoelectron boundary is different when comparing the northern and the southern hemispheres. The ion distributions, resulting altitude profile, the influence of the crustal magnetic field at Mars, and the implications relating to plasma outflow will be discussed in this presentation.

  3. Xe/+/ -induced ion-cyclotron harmonic waves

    NASA Astrophysics Data System (ADS)

    Jones, D.

    Xenon ion sources on an ejectable package separated from the main payload during the flights of Porcupine rockets F3 and F4 which were launched from Kiruna, Sweden on March 19 and 31, 1979, respectively. The effects of the xenon ion beam, detected by the LF (f less than 16 kHz) wideband electric field experiment and analyzed by using a sonograph, are discussed. Particular attention is given to the stimulation of the ion-cyclotron harmonic waves which are usually linked to the local proton gyro-frequency, but are sometimes related to half that frequency. It was found that in a plasma dominated by O(+) ions, a small amount (1-10%) of protons could cause an effect such that the O(+) cyclotron harmonic waves are set up by the hydrogen ions, the net result being the observation of harmonic emissions separated by the hydrogen ion gyro frequency.

  4. Negative electrodes for Na-ion batteries.

    PubMed

    Dahbi, Mouad; Yabuuchi, Naoaki; Kubota, Kei; Tokiwa, Kazuyasu; Komaba, Shinichi

    2014-08-01

    Research interest in Na-ion batteries has increased rapidly because of the environmental friendliness of sodium compared to lithium. Throughout this Perspective paper, we report and review recent scientific advances in the field of negative electrode materials used for Na-ion batteries. This paper sheds light on negative electrode materials for Na-ion batteries: carbonaceous materials, oxides/phosphates (as sodium insertion materials), sodium alloy/compounds and so on. These electrode materials have different reaction mechanisms for electrochemical sodiation/desodiation processes. Moreover, not only sodiation-active materials but also binders, current collectors, electrolytes and electrode/electrolyte interphase and its stabilization are essential for long cycle life Na-ion batteries. This paper also addresses the prospect of Na-ion batteries as low-cost and long-life batteries with relatively high-energy density as their potential competitive edge over the commercialized Li-ion batteries.

  5. PULSED ION SOURCE

    DOEpatents

    Anderson, C.E.; Ehlers, K.W.

    1958-06-17

    An ion source is described for producing very short high density pulses of ions without bcam scattering. The ions are created by an oscillating electron discharge within a magnetic field. After the ions are drawn from the ionization chamber by an accelerating electrode the ion beam is under the influence of the magnetic field for separation of the ions according to mass and, at the same time, passes between two neutralizing plntes maintained nt equal negative potentials. As the plates are formed of a material having a high ratio of secondary electrons to impinging ions, the ion bombardment of the plntes emits electrons which neutralize the frirge space-charge of the beam and tend to prevent widening of the beam cross section due to the mutual repulsion of the ions.

  6. ION SOURCE FOR A CALUTRON

    DOEpatents

    Lofgren, E.J.

    1959-04-14

    This patcnt relates to calutron devices and deals particularly with the mechanism used to produce the beam of ions wherein a charge material which is a vapor at room temperature is used. A charge container located outside the tank is connected through several conduits to various points along the arc chamber of the ion source. In addition, the rate of flow of the vapor to the arc chamber is controlled by a throttle valve in each conduit. By this arrangement the arc can be regulated accurately and without appreciable time lag, inasmuch as the rate of vapor flow is immediately responsive to the manipulation of the throttle valves.

  7. Miniature Ion-Mobility Spectrometer

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.

    2006-01-01

    The figure depicts a proposed miniature ion-mobility spectrometer that would be fabricated by micromachining. Unlike prior ion-mobility spectrometers, the proposed instrument would not be based on a time-of-flight principle and, consequently, would not have some of the disadvantageous characteristics of prior time-of-flight ion-mobility spectrometers. For example, one of these characteristics is the need for a bulky carrier-gas-feeding subsystem that includes a shutter gate to provide short pulses of gas in order to generate short pulses of ions. For another example, there is need for a complex device to generate pulses of ions from the pulses of gas and the device is capable of ionizing only a fraction of the incoming gas molecules; these characteristics preclude miniaturization. In contrast, the proposed instrument would not require a carrier-gas-feeding subsystem and would include a simple, highly compact device that would ionize all the molecules passing through it. The ionization device in the proposed instrument would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several megavolts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. Ionization (but not avalanche arcing) would occur because the distance between the ionizing electrodes would be less than the mean free path of gas molecules at the operating pressure of instrument. An accelerating grid would be located inside the instrument, downstream from the ionizing membrane. The electric potential applied to this grid would be negative relative to the potential on the inside electrode of the ionizing membrane and would be of a magnitude sufficient to

  8. Broad beam ion implanter

    DOEpatents

    Leung, K.N.

    1996-10-08

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes. 6 figs.

  9. Broad beam ion implanter

    DOEpatents

    Leung, Ka-Ngo

    1996-01-01

    An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

  10. CoCr wear particles generated from CoCr alloy metal-on-metal hip replacements, and cobalt ions stimulate apoptosis and expression of general toxicology-related genes in monocyte-like U937 cells.

    PubMed

    Posada, Olga M; Gilmour, Denise; Tate, Rothwelle J; Grant, M Helen

    2014-11-15

    Cobalt-chromium (CoCr) particles in the nanometre size range and their concomitant release of Co and Cr ions into the patients' circulation are produced by wear at the articulating surfaces of metal-on-metal (MoM) implants. This process is associated with inflammation, bone loss and implant loosening and led to the withdrawal from the market of the DePuy ASR™ MoM hip replacements in 2010. Ions released from CoCr particles derived from a resurfacing implant in vitro and their subsequent cellular up-take were measured by ICP-MS. Moreover, the ability of such metal debris and Co ions to induce both apoptosis was evaluated with both FACS and immunoblotting. qRT-PCR was used to assess the effects on the expression of lymphotoxin alpha (LTA), BCL2-associated athanogene (BAG1), nitric oxide synthase 2 inducible (NOS2), FBJ murine osteosarcoma viral oncogene homolog (FOS), growth arrest and DNA-damage-inducible alpha (GADD45A). ICP-MS showed that the wear debris released significant (p<0.05) amounts of Co and Cr ions into the culture medium, and significant (p<0.05) cellular uptake of both ions. There was also an increase (p<0.05) in apoptosis after a 48h exposure to wear debris. Analysis of qRT-PCR results found significant up-regulation (p<0.05) particularly of NOS2 and BAG1 in Co pre-treated cells which were subsequently exposed to Co ions+debris. Metal debris was more effective as an inducer of apoptosis and gene expression when cells had been pre-treated with Co ions. This suggests that if a patient receives sequential bilateral CoCr implants, the second implant may be more likely to produce adverse effects than the first one. PMID:25281833

  11. High-Performance Ion Mobility Spectrometry Using Hourglass Electrodynamic Funnel And Internal Ion Funnel

    DOEpatents

    Smith, Richard D.; Tang, Keqi; Shvartsburg, Alexandre A.

    2004-11-16

    A method and apparatus enabling increased sensitivity in ion mobility spectrometry/mass spectrometry instruments which substantially reduces or eliminates the loss of ions in ion mobility spectrometer drift tubes utilizing an hourglass electrodynamic ion funnel at the entrance to the drift tube and/or an internal ion funnel at the exit of the drift tube. An hourglass electrodynamic funnel is formed of at least an entry element, a center element, and an exit element, wherein the aperture of the center element is smaller than the aperture of the entry element and the aperture of the exit elements. Ions generated in a relatively high pressure region by an ion source at the exterior of the hourglass electrodynamic funnel are transmitted to a relatively low pressure region at the entrance of the hourglass funnel through a conductance limiting orifice. Alternating and direct electrical potentials are applied to the elements of the hourglass electrodynamic funnel thereby drawing ions into and through the hourglass electrodynamic funnel thereby introducing relatively large quantities of ions into the drift tube while maintaining the gas pressure and composition at the interior of the drift tube as distinct from those at the entrance of the electrodynamic funnel and allowing a positive gas pressure to be maintained within the drift tube, if desired. An internal ion funnel is provided within the drift tube and is positioned at the exit of said drift tube. The advantage of the internal ion funnel is that ions that are dispersed away from the exit aperture within the drift tube, such as those that are typically lost in conventional drift tubes to any subsequent analysis or measurement, are instead directed through the exit of the drift tube, vastly increasing the amount of ions exiting the drift tube.

  12. Ion source development for various applications in Korea (invited) (abstract)

    SciTech Connect

    Hwang, Y. S.

    2008-02-15

    Ion source development in Korea has been related with various applications from accelerator to nanotechnology. Conventional ion sources such as Duoplasmatron and PIG ion sources were developed for high power proton accelerator and small cyclotron accelerators. To improve lifetime of the high current proton ion source, helicon plasma ion sources were developed with external rf antenna and applied for neutron generation in drive-in-target configuration. Negative hydrogen ion sources were also developed for tandem and cyclotron accelerators by using both rf and filament discharges. Large-area high-current ion sources for the KSTAR NBI system were developed and successfully tested for long-pulse operation of up to 300 s. Several broad beam ion sources for industrial applications such as ion implantation and surface treatment were also developed by using arc, rf, and microwave discharges. Recently, ion source applications become diversified to the area of nano- and biotechnologies. For example, C60 ion source was developed for the use of bioapplications in nanometer scale. For focused ion beam as a nanofabrication tool, liquid metal ion sources were improved and a novel plasma ion source was developed by utilizing localized sheath discharges. Research and development activities of these ion sources will be discussed with short description of appropriate applications.

  13. Energetic ions in dipolarization events

    NASA Astrophysics Data System (ADS)

    Birn, J.; Runov, A.; Hesse, M.

    2015-09-01

    We investigate ion acceleration in dipolarization events in the magnetotail, using the electromagnetic fields of an MHD simulation of magnetotail reconnection and flow bursts as basis for test particle tracing. The simulation results are compared with "Time History of Events and Macroscale Interactions during Substorms" observations. We provide quantitative answers to the relative importance of source regions and source energies. Flux decreases at proton energies up to 10-20 keV are found to be due to sources of lobe or plasma sheet boundary layer particles that enter the near tail via reconnection. Flux increases result from both thermal and suprathermal ion sources. Comparable numbers of accelerated protons enter the acceleration region via cross-tail drift from the dawn flanks of the near-tail plasma sheet and via reconnection of field lines extending into the more distant tail. We also demonstrate the presence of earthward plasma flow and accelerated suprathermal ions ahead of a dipolarization front. The flow acceleration stems from a net Lorentz force, resulting from reduced pressure gradients within a pressure pile-up region ahead of the front. Suprathermal precursor ions result from, typically multiple reflections at the front. Low-energy ions also become accelerated due to inertial drift in the direction of the small precursor electric field.

  14. High sensitivity charge amplifier for ion beam uniformity monitor

    DOEpatents

    Johnson, Gary W.

    2001-01-01

    An ion beam uniformity monitor for very low beam currents using a high-sensitivity charge amplifier with bias compensation. The ion beam monitor is used to assess the uniformity of a raster-scanned ion beam, such as used in an ion implanter, and utilizes four Faraday cups placed in the geometric corners of the target area. Current from each cup is integrated with respect to time, thus measuring accumulated dose, or charge, in Coulombs. By comparing the dose at each corner, a qualitative assessment of ion beam uniformity is made possible. With knowledge of the relative area of the Faraday cups, the ion flux and areal dose can also be obtained.

  15. Interaction between Low Energy Ions and the Complicated Organism

    NASA Astrophysics Data System (ADS)

    Yu, Zeng-liang

    1999-12-01

    Low energy ions exist widely in natural world, but people pay a little attention on the interaction between low energy ions and matter, it is even more out of the question of studying on the relation of low energy ions and the complicated organism. The discovery of bioeffect induced by ion implantation has, however, opened a new branch in the field of ion beam application in life sciences. This paper reports recent advances in research on the role of low energy ions in chemical synthesis of the biomolecules and application in genetic modification.

  16. Ion energetics in the inner coma of Comet Halley

    NASA Technical Reports Server (NTRS)

    Cravens, T. E.

    1987-01-01

    The cometary plasma in the magnetic barrier just outside the diamagnetic cavity which surrounds the nucleus of Comet Halley is virtually stagnant. The outflowing neutral gas exerts an outward ion-neutral drag force on this plasma, which balances the inward magnetic pressure gradient force in the vicinity of the contact surface. The cometary ions are frictionally heated due to the relative motion of the ion and neutral gases. The ion flow velocity must have a few km/s nonradial component in order to explain the ion temperatures measured by the ion mass spectrometer on Giotto.

  17. Ion energetics in the inner coma of Comet Halley

    NASA Astrophysics Data System (ADS)

    Cravens, T. E.

    1987-10-01

    The cometary plasma in the magnetic barrier just outside the diamagnetic cavity which surrounds the nucleus of comet Halley is virtually stagnant. The outflowing neutral gas exerts an outward ion-neutral drag force on this plasma, which balances the inward magnetic pressure gradient force in the vicinity of the contact surface. The cometary ions are frictionally heated due to the relative motion of the ion and neutral gases. The ion flow velocity must have a few km/s non-radial component in order to explain the ion temperatures measured by the ion mass spectrometer on Giotto.

  18. Proton hydrates as soft ion/ion proton transfer reagents for multiply deprotonated biomolecules

    NASA Astrophysics Data System (ADS)

    Bowers, Jeremiah J.; Hodges, Brittany D. M.; Saad, Ola M.; Leary, Julie A.; McLuckey, Scott A.

    2008-10-01

    Ion/ion proton transfer from protonated strong gaseous bases such as pyridine and 1,8-bis(dimethylamino)naphthalene (i.e., the proton sponge), to multiply charged anions derived from a sulfated pentasaccharide drug, Arixtra(TM), gives rise to extensive fragmentation of the oligosaccharide. This drug serves as a model for sulfated glycosaminoglycans, an important class of polymers in glycobiology. The extent of fragmentation appears to correlate with the proton affinity of the molecule used to transfer the proton, which in turn correlates with the reaction exothermicity. Consistent with tandem mass spectrometry results, anions with sodium counter-ions are more stable with respect to fragmentation under ion/ion proton transfer conditions than ions of the same charge state with protons counter-ions. Proton hydrates were found to give rise to much less anion fragmentation and constitute the softest protonation agents thus far identified for manipulating the charge states of multiply charged biopolymer anions. The reaction exothermicities associated with proton hydrates comprised of five or more water molecules are lower than that for protonated proton sponge, which is among the softest reagents thus far examined for ion/ion proton transfer reactions. The partitioning of ion/ion reaction exothermicity among all of the degrees of freedom of the products may also differ for proton hydrates relative to protonated molecules. However, a difference in energy partitioning need not be invoked to rationalize the results reported here.

  19. Production of N.sup.+ ions from a multicusp ion beam apparatus

    DOEpatents

    Leung, Ka-Ngo; Kunkel, Wulf B.; Walther, Steven R.

    1993-01-01

    A method of generating a high purity (at least 98%) N.sup.+ ion beam using a multicusp ion source (10) having a chamber (11) formed by a cylindrical chamber wall (12) surrounded by a plurality of magnets (13), a filament (57) centrally disposed in said chamber, a plasma electrode (36) having an extraction orifice (41) at one end of the chamber, a magnetic filter having two parallel magnets (21, 22) spaced from said plasma electrode (36) and dividing the chamber (11) into arc discharge and extraction regions. The method includes ionizing nitrogen gas in the arc discharge region of the chamber (11), maintaining the chamber wall (12) at a positive voltage relative to the filament (57) and at a magnitude for an optimum percentage of N.sup.+ ions in the extracted ion beams, disposing a hot liner (45) within the chamber and near the chamber wall (12) to limit recombination of N.sup.+ ions into the N.sub.2.sup.+ ions, spacing the magnets (21, 22) of the magnetic filter from each other for optimum percentage of N.sup.3 ions in the extracted ion beams, and maintaining a relatively low pressure downstream of the extraction orifice and of a magnitude (preferably within the range of 3-8.times.10.sup.-4 torr) for an optimum percentage of N.sup.+ ions in the extracted ion beam.

  20. Production of N[sup +] ions from a multicusp ion beam apparatus

    DOEpatents

    Kango Leung; Kunkel, W.B.; Walther, S.R.

    1993-03-30

    A method of generating a high purity (at least 98%) N[sup +] ion beam using a multicusp ion source having a chamber formed by a cylindrical chamber wall surrounded by a plurality of magnets, a filament centrally disposed in said chamber, a plasma electrode having an extraction orifice at one end of the chamber, a magnetic filter having two parallel magnets spaced from said plasma electrode and dividing the chamber into arc discharge and extraction regions. The method includes ionizing nitrogen gas in the arc discharge region of the chamber, maintaining the chamber wall at a positive voltage relative to the filament and at a magnitude for an optimum percentage of N[sup +] ions in the extracted ion beams, disposing a hot liner within the chamber and near the chamber wall to limit recombination of N[sup +] ions into the N[sub 2][sup +] ions, spacing the magnets of the magnetic filter from each other for optimum percentage of N[sup 3] ions in the extracted ion beams, and maintaining a relatively low pressure downstream of the extraction orifice and of a magnitude (preferably within the range of 3-8[times]10[sup [minus]4] torr) for an optimum percentage of N[sup +] ions in the extracted ion beam.

  1. Compressional Alfvén and ion-ion hybrid waves in tokamak plasmas with two ion species

    NASA Astrophysics Data System (ADS)

    Oliver, H. J. C.; Sharapov, S. E.; Akers, R.; Klimek, I.; Cecconello, M.

    2014-12-01

    Compressional Alfvén and ion-ion hybrid waves excited by energetic beam ions are studied in plasmas with two ion species. In our experiment, a hydrogen-deuterium (H-D) plasma is used to produce instabilities similar to those likely to be present in the burning deuterium-tritium plasmas of future tokamaks. Modes are suppressed in the deuterium cyclotron frequency range with increasing hydrogen gas puffing. In plasmas with H/D concentrations of 2.57 or higher, short-lived modes with small and predominantly negative toroidal mode numbers are observed at frequencies ω/ωβD0 ≈ 2.25, where ωβD0 = ωβD(R0) is the on-axis deuterium cyclotron frequency. These are the highest mode frequencies yet detected in the ion cyclotron range in a spherical tokamak. Modeling of the transparency regions and plasma resonances using the cold plasma dispersion relation explains the observed features. Mode conversion at ion-ion hybrid resonances and subsequent kinetic damping is believed to be responsible for mode suppression. The high frequency modes are present due to excitation by wave-particle resonances within the transparency region for high hydrogen concentrations. The absence of other wave-particle resonances explains significant features of our experiment. This technique has possible applications in plasma heating, current drive and real-time diagnosis of relative ion concentration in the plasma core.

  2. Applications of decelerated ions

    SciTech Connect

    Johnson, B.M.

    1985-03-01

    Many facilities whose sole purpose had been to accelerate ion beams are now becoming decelerators as well. The development and current status of accel-decel operations is reviewed here. Applications of decelerated ions in atomic physics experiments are discussed.

  3. Ion Microscopy on Diamond

    NASA Astrophysics Data System (ADS)

    Manfredotti, Claudio

    Because of its physical properties (strong radiation hardness, wide energy gap with a consequent extremely low dark current, very large electron and hole mobility) diamond is a very good candidate for nuclear particle detection, particularly in harsh environments or in conditions of strong radiation damage. Being commonly polycrystalline, diamond samples obtained by chemical vapour deposition (CVD) are not homogeneous, not only from the morphological point of view, but also from the electronic one. As a consequence, as it was indicated quite early starting from 1995, charge collection properties such as charge collection efficiency (cce) are not uniform, but they are depending on the site hit by incoming particle. Moreover, these properties are influenced by previous irradiations which are used in order to improve them and, finally, they are also dependent on the thickness of the sample, since the electronic non uniformity extends also in depth by affecting the profile of the electrical field from top to bottom electrode of the nuclear detector in the standard "sandwich" arrangement. By the use of focussed ion beams, it is possible to investigate these non uniformities by the aid of techniques like IBIC (Ion Beam Induced Charge) and IBIL (Ion Beam Induced Luminescence) with a space resolution of the order of 1 m. This relatively new kind of microscopy, which is called "ion microscopy", is capable not only to give 2D maps of cce, which can be quite precisely compared with morphological images obtained by Scanning Electron Microscopy (generally the grains display a much better cce than intergrain regions), but also to give the electric field profile from one electrode to the other one in a "lateral" arrangement of the ion beam. IBIL, by supplying 2D maps of luminescence intensity at different wavelength, can give information about the presence of specific radiative recombination centers and their distribution in the material. Finally, a new technique called XBIC (X

  4. DETERMINATION OF ION AND NEUTRAL LOSS COMPOSITIONS AND DECONVOLUTION OF PRODUCT ION MASS SPECTRA USING AN ORTHOGONAL ACCELERATION, TIME-OF-FLIGHT MASS SPECTROMETER AND AN ION CORRELATION PROGRAM

    EPA Science Inventory

    Exact masses of monoisotopic ions and the relative isotopic abundances (RIAs) of ions greater in mass by 1 and 2 Da than the monoisotopic ion are independent and complementary physical properties useful for istinguishing among ion compositions possible for a given nominal mass. U...

  5. Negative ion generator

    DOEpatents

    Stinnett, Regan W.

    1984-01-01

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions.

  6. SEPARATION OF PLUTONYL IONS

    DOEpatents

    Connick, R.E.; McVey, Wm.H.

    1958-07-15

    A process is described for separating plutonyl ions from the acetate ions with which they are associated in certaln carrier precipitation methods of concentrating plutonium. The method consists in adding alkaline earth metal ions and subsequently alkalizing the solution, causing formation of an alkaltne earth plutonate precipitate. Barium hydroxide is used in a preferred embodiment since it provides alkaline earth metal ion and alkalizes the solution in one step forming insoluble barium platonate.

  7. Intense ion beam generator

    DOEpatents

    Humphries, Jr., Stanley; Sudan, Ravindra N.

    1977-08-30

    Methods and apparatus for producing intense megavolt ion beams are disclosed. In one embodiment, a reflex triode-type pulsed ion accelerator is described which produces ion pulses of more than 5 kiloamperes current with a peak energy of 3 MeV. In other embodiments, the device is constructed so as to focus the beam of ions for high concentration and ease of extraction, and magnetic insulation is provided to increase the efficiency of operation.

  8. Negative ion generator

    DOEpatents

    Stinnett, R.W.

    1984-05-08

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions. 8 figs.

  9. High latitude minor ion enhancements: A clue for studies of magnetosphere-atmosphere coupling. [using OGO 6 ion mass spectrometer

    NASA Technical Reports Server (NTRS)

    Taylor, H. A., Jr.

    1973-01-01

    Unexpectedly abrupt and pronounced distributions of the thermal molecular ions NO(+), O2(+) and N2(+) were observed at mid and high latitudes by the OGO-6 ion mass spectrometer. These minor ions may reach concentration levels exceeding 1000 ions/cu cm at altitudes as great as 1000 km, suggestive of scale heights well in excess of those inferred from low and mid-latitude measurements, under relatively undisturbed conditions. The high latitude ion enhancements were observed to be narrowly defined in time and space, with molecular ion concentrations changing by as much as an order of magnitude between successive orbits.

  10. Relation of specific conductance in ground water to intersection of flow paths by wells, and associated major ion and nitrate geochemistry, Barton Springs Segment of the Edwards Aquifer, Austin, Texas, 1978-2003

    USGS Publications Warehouse

    Garner, Bradley D.; Mahler, Barbara J.

    2007-01-01

    Understanding of karst flow systems can be complicated by the presence of solution-enlarged conduits, which can transmit large volumes of water through the aquifer rapidly. If the geochemistry at a well can be related to streamflow or spring discharge (springflow), or both, the relations can indicate the presence of recent recharge in water at the well, which in turn might indicate that the well intersects a conduit (and thus a major flow path). Increasing knowledge of the occurrence and distribution of conduits in the aquifer can contribute to better understanding of aquifer framework and function. To that end, 26 wells in the Barton Springs segment of the Edwards aquifer, Austin, Texas, were investigated for potential intersection with conduits; 26 years of arbitrarily timed specific conductance measurements in the wells were compared to streamflow in five creeks that provide recharge to the aquifer and were compared to aquifer flow conditions as indicated by Barton Springs discharge. A nonparametric statistical test (Spearman's rho) was used to divide the 26 wells into four groups on the basis of correlation of specific conductance of well water to streamflow or spring discharge, or both. Potential relations between conduit intersection by wells and ground-water geochemistry were investigated through analysis of historical major ion and nitrate geochemistry for wells in each of the four groups. Specific conductance at nine wells was negatively correlated with both streamflow and spring discharge, or streamflow only. These correlations were interpreted as evidence of an influx of surface-water recharge during periods of high streamflow and the influence at the wells of water from a large, upgradient part of the aquifer; and further interpreted as indicating that four wells intersect major aquifer flow paths and five wells intersect minor aquifer flow paths (short, tributary conduits). Specific conductance at six wells was positively correlated with spring

  11. CALUTRON ION SOURCE

    DOEpatents

    Oppenheimer, F.F.

    1959-06-01

    A shielding arrangement for eliminating oscillating electrons in the ion source region of calutrons is offered. Metal plates are attached to the ion generator so as to intercept the magnetic field between ion generator and accelerating electrode. The oscillating electrons are discharged on the plates. (T.R.H.)

  12. Negative Ion Density Fronts

    SciTech Connect

    Igor Kaganovich

    2000-12-18

    Negative ions tend to stratify in electronegative plasmas with hot electrons (electron temperature Te much larger than ion temperature Ti, Te > Ti ). The boundary separating a plasma containing negative ions, and a plasma, without negative ions, is usually thin, so that the negative ion density falls rapidly to zero-forming a negative ion density front. We review theoretical, experimental and numerical results giving the spatio-temporal evolution of negative ion density fronts during plasma ignition, the steady state, and extinction (afterglow). During plasma ignition, negative ion fronts are the result of the break of smooth plasma density profiles during nonlinear convection. In a steady-state plasma, the fronts are boundary layers with steepening of ion density profiles due to nonlinear convection also. But during plasma extinction, the ion fronts are of a completely different nature. Negative ions diffuse freely in the plasma core (no convection), whereas the negative ion front propagates towards the chamber walls with a nearly constant velocity. The concept of fronts turns out to be very effective in analysis of plasma density profile evolution in strongly non-isothermal plasmas.

  13. Ion-kill dosimetry

    NASA Technical Reports Server (NTRS)

    Katz, R.; Cucinotta, F. A.; Fromm, M.; Chambaudet, A.

    2001-01-01

    Unanticipated late effects in neutron and heavy ion therapy, not attributable to overdose, imply a qualitative difference between low and high LET therapy. We identify that difference as 'ion kill', associated with the spectrum of z/beta in the radiation field, whose measurement we label 'ion-kill dosimetry'.

  14. Tailored-waveform collisional activation of peptide ion electron transfer survivor ions in cation transmission mode ion/ion reaction experiments.

    PubMed

    Han, Hongling; Londry, Frank A; Erickson, David E; McLuckey, Scott A

    2009-04-01

    Broadband resonance excitation via a tailored waveform in a high pressure collision cell (Q2) on a hybrid quadrupole/time-of-flight (QqTOF) tandem mass spectrometer has been implemented for cation transmission mode electron transfer ion/ion reactions of tryptic polypeptides. The frequency components in the broadband waveform were defined to excite the first generation intact electron transfer products for relatively large tryptic peptides. The optimum amplitude of the arbitrary waveform applied has been determined empirically to be 3.0 V(p-p), which is effective for relatively high mass-to-charge (m/z) ratio precursor ions with little elimination of sequence information for low m/z ions. The application of broadband activation during the transmission mode ion/ion reaction obviates frequency and amplitude tuning normally associated with ion trap collision induced dissociation (CID). This approach has been demonstrated with triply and doubly charged tryptic peptides with and without post-translational modifications. Enhanced structural information was achieved by production of a larger number of informative c- and z-type fragments using the tailored waveform on unmodified and modified (phosphorylated and glycosylated) peptides when the first generation intact electron transfer products fell into the defined frequency range. This approach can be applied to a wide range of tryptic peptide ions, making it attractive as a rapid and general approach for ETD LC-MS/MS of tryptic peptides in a QqTOF instrument.

  15. Pick-up ion energization at the termination shock

    SciTech Connect

    Gary, S Peter; Winske, Dan; Wu, Pin; Schwadron, N A

    2009-01-01

    One-dimensional hybrid simulations are used to investigate how pickup ions are energized at the perpendicular termination shock. Contrary to previous models based on pickup ion energy gain by repeated crossings of the shock front (shock surfing) or due to a reforming shock front, the present simulations show that pickup ion energy gain involves a gyro-phasedependent interaction with the inhomogeneous motional electric field at the shock. The process operates at all relative concentrations of pickup ion density.

  16. Microfabricated quadrupole ion trap for mass spectrometer applications.

    PubMed

    Pau, S; Pai, C S; Low, Y L; Moxom, J; Reilly, P T A; Whitten, W B; Ramsey, J M

    2006-03-31

    An array of miniaturized cylindrical quadrupole ion traps, with a radius of 20 microm, is fabricated using silicon micromachining using phosphorus doped polysilicon and silicon dioxide for the purpose of creating a mass spectrometer on a chip. We have operated the array for mass-selective ion ejection and mass analysis using Xe ions at a pressure of 10(-4). The scaling rules for the ion trap in relation to operating pressure, voltage, and frequency are examined. PMID:16605890

  17. Four-Sector Cylindrical Radio-Frequency Ion Trap

    NASA Technical Reports Server (NTRS)

    Melbourne, Ruthann K.; Prestage, John D.; Maleki, Lutfollah

    1992-01-01

    Proposed linear radio-frequency ion trap consists of closed metal cylinder partitioned into four equal cylindrical-sector electrodes and two circular end electrodes. Features include relatively large ion-storage capacity and shielding against external fields. Used in frequency-standard laboratories to confine 199Hg+ ions electrodynamically in isolation from external environment. Similar to device described in "Linear Ion Trap for Atomic Clock" (NPO-17758).

  18. Evidence for Fast-Ion Transport by Microturbulence

    SciTech Connect

    Heidbrink, W. W.; Park, Jin Myung; Murakami, Masanori; Petty, C C.; Holcomb, C T; Van Zeeland, Michael

    2009-01-01

    Cross-field diffusion of energetic ions by microturbulence is measured during neutral-beam injection into the DIII-D tokamak. Fast-ion D-alpha, neutron, and motional Stark effect measurements diagnose the fastion distribution function. As expected for transport by plasma turbulence, anomalies relative to the classical prediction are greatest in high temperature plasmas, at low fast-ion energy, and at larger minor radius. Theoretical estimates of fast-ion diffusion are comparable to experimental levels.

  19. Ion source for high-precision mass spectrometry

    DOEpatents

    Todd, Peter J.; McKown, Henry S.; Smith, David H.

    1984-01-01

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit.

  20. Persistent ion beam induced conductivity in zinc oxide nanowires

    SciTech Connect

    Johannes, Andreas; Niepelt, Raphael; Gnauck, Martin; Ronning, Carsten

    2011-12-19

    We report persistently increased conduction in ZnO nanowires irradiated by ion beam with various ion energies and species. This effect is shown to be related to the already known persistent photo conduction in ZnO and dubbed persistent ion beam induced conduction. Both effects show similar excitation efficiency, decay rates, and chemical sensitivity. Persistent ion beam induced conduction will potentially allow countable (i.e., single dopant) implantation in ZnO nanostructures and other materials showing persistent photo conduction.

  1. Ion source for high-precision mass spectrometry

    DOEpatents

    Todd, P.J.; McKown, H.S.; Smith, D.H.

    1982-04-26

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit. 2 figures, 3 tables.

  2. Atmospheric ions and nucleation: a review of observations

    NASA Astrophysics Data System (ADS)

    Hirsikko, A.; Nieminen, T.; Gagné, S.; Lehtipalo, K.; Manninen, H. E.; Ehn, M.; Hõrrak, U.; Kerminen, V.-M.; Laakso, L.; McMurry, P. H.; Mirme, A.; Mirme, S.; Petäjä, T.; Tammet, H.; Vakkari, V.; Vana, M.; Kulmala, M.

    2011-01-01

    This review is based on ca. 260 publications, 93 of which included data on the temporal and spatial variation of the concentration of small ions (<1.6 nm in diameter) especially in the lower troposphere, chemical composition, or formation and growth rates of sub-3 nm ions. This information was collected on tables and figures. The small ions exist all the time in the atmosphere, and the average concentrations of positive and negative small ions are typically 200-2500 cm-3. However, concentrations up to 5000 cm-3 have been observed. The results are in agreement with observations of ion production rates in the atmosphere. We also summarised observations on the conversion of small ions to intermediate ions, which can act as embryos for new atmospheric aerosol particles. Those observations include the formation rates (J2[ion]) of 2-nm intermediate ions, growth rates (GR[ion]) of sub-3 nm ions, and information on the chemical composition of the ions. Unfortunately, there were only a few studies which presented J2[ion] and GR[ion]. Based on the publications, the formation rates of 2-nm ions were 0-1.1 cm-3 s-1, while the total 2-nm particle formation rates varied between 0.001 and 60 cm-3 s-1. Due to small changes in J2[ion], the relative importance of ions in 2-nm particle formation was determined by the large changes in J2[tot], and, accordingly the contribution of ions increased with decreasing J2[tot]. Furthermore, small ions were observed to activate for growth earlier than neutral nanometer-sized particles and at lower saturation ratio of condensing vapours.

  3. [Development of metal ions analysis by ion chromatography].

    PubMed

    Yu, Hong; Wang, Yuxin

    2007-05-01

    Analysis of metal ions by ion chromatography, including cation-exchange ion chromatography, anion-exchange ion chromatography and chelation ion chromatography, is reviewed. The cation-exchange ion chromatography is a main method for the determination of metal ions. Stationary phases in cation-exchange ion chromatography are strong acid cation exchanger (sulfonic) and weak acid cation exchanger (carboxylic). Alkali metal ions, alkaline earth metal ions, transition metal ions, rare earth metal ions, ammonium ions and amines can be analyzed by cation-exchange ion chromatography with a suitable detector. The anion-exchange ion chromatography is suitable for the separation and analysis of alkaline earth metal ions, transition metal ions and rare earth metal ions. The selectivity for analysis of metal ions with anion-exchange ion chromatography is good. Simultaneous determination of metal ions and inorganic anions can be achieved using anion-exchange ion chromatography. Chelation ion chromatography is suitable for the determination of trace metal ions in complex matrices. A total of 125 references are cited.

  4. ION PRODUCING MECHANISM

    DOEpatents

    Backus, J.G.

    1958-08-19

    A novel ion source is described for use in a calutron which has the prime adwantage of reducing the nunnber of unwanted ions in the ion generating mechamism.An important feature of the invention resides In an arc chamber having a lining of the polyisotopic material to be treated In the calutron and bombardment of the linirg with positive ions of a light gas to induce sputtering and ionization of the lining. With the reduction of unwanted ions in the source beam provided by the described source, the calutron operation may be more accurately controlled.

  5. PULSED ION SOURCE

    DOEpatents

    Ford, F.C.; Ruff, J.W.; Zizzo, S.G.; Cook, B.

    1958-11-11

    An ion source is described adapted for pulsed operation and producing copious quantities of ions with a particular ion egress geometry. The particular source construction comprises a conical member having a conducting surface formed of a metal with a gas occladed therein and narrow non-conducting portions hereon dividing the conducting surface. A high voltage pulse is applied across the conducting surface or producing a discharge across the surface. After the gas ions have been produced by the discharge, the ions are drawn from the source in a diverging conical beam by a specially constructed accelerating electrode.

  6. Preparation of polymer-coated, scintillating ion-exchange resins for monitoring of 99Tc in groundwater.

    PubMed

    Seliman, Ayman F; Samadi, Azadeh; Husson, Scott M; Borai, Emad H; DeVol, Timothy A

    2011-06-15

    The present study was oriented to prepare new scintillating anion-exchange resins for measurement of (99)TcO(4)(-) in natural waters. The organic fluor 2-(1-naphthyl)-5-phenyloxazole was diffused into (chloromethyl)polystyrene resin. Thereafter, a thin layer of poly[[2-(methacryloyloxy)ethyl]trimethylammonium chloride] was grafted from the resin surface by surface-initiated atom transfer radical polymerization as an attempt to overcome potential problems related to the leaching of fluor molecules during usage. The residual chloromethyl groups of the polymer-coated resin were aminated by reaction with two different tertiary amines, triethylamine (TEA) and methyldioctylamine (MDOA). Off- and on-line quantification of (99)Tc was achieved with high detection efficiencies of 60.72 ± 1.93% and 72.83 ± 0.81% for resin with TEA and MDOA functional groups, respectively. The detection limit was determined to be less than the maximum contaminant level (33 Bq L(-1)) established under the Safe Drinking Water Act. The two functionalized resins were demonstrated to be selective for pertechnetate from synthetic groundwater containing up to 1000 ppm Cl(-), SO(4)(2-), and HCO(3)(-) and up to 1200 ppb Cr(2)O(7)(2-) in an acidic medium. PMID:21609030

  7. Ion cyclotron resonance cell

    DOEpatents

    Weller, R.R.

    1995-02-14

    An ion cyclotron resonance cell is disclosed having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions. 5 figs.

  8. Ion cyclotron resonance cell

    DOEpatents

    Weller, Robert R.

    1995-01-01

    An ion cyclotron resonance cell having two adjacent sections separated by a center trapping plate. The first section is defined by the center trapping plate, a first end trapping plate, and excitation and detector electrodes. The second section includes a second end trapping plate spaced apart from the center plate, a mirror, and an analyzer. The analyzer includes a wavelength-selective light detector, such as a detector incorporating an acousto-optical device (AOD) and a photodetector. One or more ion guides, grounded plates with holes for the ion beam, are positioned within the vacuum chamber of the mass spectrometer between the ion source and the cell. After ions are trapped and analyzed by ion cyclotron resonance techniques in the first section, the ions of interest are selected according to their mass and passed into the second section for optical spectroscopic studies. The trapped ions are excited by light from a laser and caused thereby to fluoresce. The fluorescent light emitted by the excited ions is reflected by the mirror and directed onto the detector. The AOD is scanned, and the photodetector output is recorded and analyzed. The ions remain in the second section for an extended period, enabling multiple studies to be carried out on the same ensemble of ions.

  9. Microfabricated ion trap array

    DOEpatents

    Blain, Matthew G.; Fleming, James G.

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  10. Industrial ion source technology

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1976-01-01

    A 30 cm electron bombardment ion source was designed and fabricated for micromachining and sputtering applications. This source has a multipole magnetic field that employs permanent magnets between permeable pole pieces. An average ion current density of 1 ma/sq cm with 500 eV argon ions was selected as a design operating condition. The ion beam at this operating condition was uniform and well collimated, with an average variation of plus or minus 5 percent over the center 20 cm of the beam at distances up to 30 cm from the ion source. A variety of sputtering applications were undertaken with a small 10 cm ion source to better understand the ion source requirements in these applications. The results of these experimental studies are also included.

  11. Highly charged ion X-rays from Electron Cyclotron Resonance Ion Sources

    NASA Astrophysics Data System (ADS)

    Indelicato, P.; Boucard, S.; Covita, D. S.; Gotta, D.; Gruber, A.; Hirtl, A.; Fuhrmann, H.; Le Bigot, E.-O.; Schlesser, S.; dos Santos, J. M. F.; Simons, L. M.; Stingelin, L.; Trassinelli, M.; Veloso, J.; Wasser, A.; Zmeskal, J.

    2007-09-01

    Radiation from the highly charged ions contained in the plasma of Electron-Cyclotron Resonance Ion Sources (ECRISs) constitutes a very bright source of X-rays. Because the ions have a relatively low kinetic energy (≈1 eV) transitions can be very narrow, containing only a small Doppler broadening. We describe preliminary accurate measurements of two and three-electron ions with Z=16-18. We show how these measurement can test sensitively many-body relativistic calculations or can be used as X-ray standards for precise measurements of X-ray transitions in exotic atoms.

  12. Wet deposition and related atmospheric chemistry in the São Paulo metropolis, Brazil: Part 1. Major inorganic ions in rainwater as evaluated by capillary electrophoresis with contactless conductivity detection

    NASA Astrophysics Data System (ADS)

    Rocha, Flávio R.; Fracassi da Silva, José A.; Lago, Claudimir L.; Fornaro, Adalgiza; Gutz, Ivano G. R.

    The metropolitan region of São Paulo (17.8 million inhabitants) presents serious air quality problems. An official network monitors key air pollutants, however, there is no regular program of evaluation of the wet deposition and data about rainwater composition is scarce. Opening a series of articles on this subject, capillary zone electrophoresis with contactless conductivity detection (CZE-CCD) is proposed and applied as a quick and inexpensive alternative to ion chromatography for the determination of the ionic composition of rainwater. Excellent resolution of the peaks and sufficient sensitivity were obtained for major ions. Switching from anion to cation determination is fast (30 min) and as simple as inverting the polarity of the voltage supply and changing the modifier added to the buffer solution. CZE-CCD was applied to the study of wet-only deposition collected in São Paulo during the period from May l997 to March 1998. The volume weighted means of the anions, sulfate, nitrate and chloride, were, respectively, 17, 22 and 29 μmol l -1. Among the cations, ammonium was the dominating one, with 28 μmol l -1, followed by calcium, 23 μmol l -1, sodium, 12 μmol l -1, and potassium, 5.8 μmol l -1. The wet flux of these anions and cations were, respectively, 2.5, 2.2, 1.6, 0.78, 1.4, 0.43 and 0.35 g m -2 yr -1. By attributing all sodium to marine origin, half of the chloride and more than 90% of all other ions are ascribable to continental/anthropogenic sources. Literature data for rainwater from inland regions (˜200 km apart from São Paulo) reveals lower deposition of all ions but H +. Absorption of NH 3 and incorporation of calcium carbonate, mainly in the metropolitan region itself, accounts for decreased acidity. The enrichment in all other ions during the studied period indicates the prevalence of the anthropogenic emissions from the metropolis over continental sources and explains the high correlation between the ions NO 3-, SO 42-, and NH 4+; the

  13. [Determination of iodide, thiocyanate and perchlorate ions in environmental water by two-dimensional ion chromatography].

    PubMed

    Lin, Li; Wang, Haibo; Shi, Yali

    2013-03-01

    A procedure for the determination of iodide, thiocyanate and perchlorate ions in environmental water by two-dimensional ion chromatography has been developed. At first the iodide, thiocyanate and perchlorate ions were separated from interfering ions by a column (IonPac AS16, 250 mm x 4 mm). The iodide ion, thiocyanate and perchlorate ions were then enriched with an enrichment column (MAC-200, 80 mm x 0.75 mm). In the 2nd-dimensional chromatography, iodide thiocyanate and perchlorate ions were separated and quantified by a capillary column (IonPac AS20 Capillary, 250 mm x 0.4 mm). The linear ranges were 0.05 -100 pg/L with correlation coefficients of 0. 999 9, and the detection limits were 0. 02 - 0.05 micro gg/L. The spiked recoveries of iodide, thiocyanate and perchlorate ions were in the range of 85.1% to 100.1%. The relative standard deviations of the recoveries were 1.7% to 4.9%.

  14. Ion exchange in KTiOPO4 crystals irradiated by copper and hydrogen ions.

    PubMed

    Zhang, Ruifeng; Lu, Fei; Lian, Jie; Liu, Hanping; Liu, Xiangzhi; Lu, Qingming; Ma, Hongji

    2008-05-12

    Cs(+)-K+ ion exchanges were produced on KTiOPO4 crystals which is prior irradiated by Cu+ can H+ ions. The energy and dose of implanted Cu+ ions are 1.5 MeV and 0.5 x 10(14) ions/cm2, and that of H+ are 300 keV and 1 x 10(16) ions/cm2, respectively. The temperature of ions exchange is 430 degrees C, and the time range from 15 minutes to 30 minutes. The prism coupling method is used to measure the dark mode spectra of the samples. Compared with results of ion exchange on the sample without irradiations, both the number of guided mode and its corresponding effective refractive index are decreased. The experimental results indicate that the ion exchange rate closely related with the lattice damage and the damage layers formed in the depth of maximum nuclear energy deposition act as a barrier to block the ions diffuse into the sample and the concentration of defects can modify the speed of ion exchange..

  15. Ion sources for initial use at the Holifield Radioactive Ion Beam Facility

    SciTech Connect

    Alton, G.D.

    1993-12-31

    The Holifield Radioactive Ion Beam Facility (HRIBF) now under construction at the Oak Ridge National Laboratory will use the 25-MV tandem accelerator for the acceleration of radioactive ion beams to energies appropriate for research in nuclear physics; negative ion beams are, therefore, required for injection into the tandem accelerator. Because charge exchange is an efficient means for converting initially positive ion beams to negative ion beams, both positive and negative ion sources are viable options for use at the facility; the choice of the type of ion source will depend on the overall efficiency for generating the radioactive species of interest. A high-temperature version of the CERN-ISOLDE positive ion source has been selected and a modified version of the source designed and fabricated for initial use at the HRIBF because of its low emittance, relatively high ionization efficiencies and species versatility, and because it has been engineered for remote installation, removal and servicing as required for safe handling in a high-radiation-level ISOL facility. Prototype plasma-sputter negative ion sources and negative surface-ionization sources are also under design consideration for generating negative radioactive ion beams from high-electron-affinity elements. The design features of these sources and expected efficiencies and beam qualities (emittances) will be described in this report.

  16. Collisional electrostatic ion cyclotron waves as a possible source of energetic heavy ions in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Providakes, Jason; Seyler, Charles E.

    1990-01-01

    A new mechanism is proposed for the source of energetic heavy ions (NO/+/, O2/+/, and O/+/) found in the magnetosphere. Simulations using a multispecies particle simulation code for resistive current-driven electrostatic ion cyclotron waves show transverse and parallel bulk heating of bottomside ionospheric heavy ion populations. The dominant mechanism for the transverse bulk heating is resonant ion heating by wave-particle ion trapping. Using a linear kinetic dispersion relation for a magnetized, collisional, homogenous, and multiion plasma, it is found that collisional electrostatic ion cyclotron waves near the NO(+), O2(+), and O(+) gyrofrequencies are unstable to field-aligned currents of 50 microA/sq m for a typical bottomside ionosphere.

  17. How Lewis acidic is your cation? Putting phosphenium ions on the fluoride ion affinity scale.

    PubMed

    Slattery, John M; Hussein, Sharifa

    2012-02-14

    The fluoride ion affinities (FIAs) of 33 phosphenium ions with a range of substituents were calculated using ab inito and DFT methods. The use of these FIA data as a measure of the Lewis acidities of phosphenium ions is described and the FIAs of the species studied here are compared to FIA data for more commonly encountered Lewis acids. Phosphenium ions are often stronger Lewis acids than neutral species, but in many cases are less Lewis acidic than highly electrophilic cations such as [Me(3)C](+) or [Me(3)Si](+). The impact of mesomeric, inductive and steric substituent effects on FIAs are discussed and related to the underlying electronic structures of different cation types. A comparison between the FIAs of known "free" phosphenium ions with those that are currently unknown and other highly electrophilic cations suggests that some diaryl- and dialkylphosphenium ions may yet be accessible under the right conditions. PMID:22159000

  18. ECR (electron cyclotron resonance) ion sources and applications with heavy-ion linacs

    SciTech Connect

    Pardo, R.C.

    1990-01-01

    The electron cyclotron resonance (ECR) ion source has been developed in the last few years into a reliable source of high charge-state heavy ions. The availability of heavy ions with relatively large charge-to-mass ratios (0.1--0.5) has made it possible to contemplate essentially new classes of heavy-ion linear accelerators. In this talk, I shall review the state-of-the-art in ECR source performance and describe some of the implications this performance level has for heavy-ion linear accelerator design. The present linear accelerator projects using ECR ion sources will be noted and the performance requirements of the ECR source for these projects will be reviewed. 30 refs., 3 figs.

  19. Lithium ion rechargeable systems studies

    SciTech Connect

    Levy, S.C.; Lasasse, R.R.; Cygan, R.T.; Voigt, J.A.

    1995-02-01

    Lithium ion systems, although relatively new, have attracted much interest worldwide. Their high energy density, long cycle life and relative safety, compared with metallic lithium rechargeable systems, make them prime candidates for powering portable electronic equipment. Although lithium ion cells are presently used in a few consumer devices, e.g., portable phones, camcorders, and laptop computers, there is room for considerable improvement in their performance. Specific areas that need to be addressed include: (1) carbon anode--increase reversible capacity, and minimize passivation; (2) cathode--extend cycle life, improve rate capability, and increase capacity. There are several programs ongoing at Sandia National Laboratories which are investigating means of achieving the stated objectives in these specific areas. This paper will review these programs.

  20. Secondary Ions Sputtered by Low Energy Ion Bombardment of Copper and Aluminum Surfaces.

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Yu.

    1995-11-01

    We have bombarded Cu and Al surfaces with rm O_2^+ ions and measured the relative yields of secondary ions in the energy range from 50 to 500 eV. We have determined both the relative yield as a function of incident ion energy and the kinetic energy distributions of the ejected ions for selected incident ion energies. In addition to looking at rm Cu^+ ions from Cu and rm Al ^+ ions from Al, we have investigated ion signals from alkali impurities in the targets. For the Cu surface, ions ejected by rm Ar^+ bombardment were examined both before and after sputter cleaning of the surface. Data on beam energy dependent secondary ion yields from the literature and this investigation have been fit by an exponential formula Acdotexp( -B/(C + E)), where A, B and C are fitting parameters. The results, with standard deviations for fitting parameters, are reported. A distinct plateau structure has been found for beam energy dependent yields of rm Na^+ and rm K^+ ions sputtered from untreated (long existing) Cu surfaces. A series of well controlled experiments indicate that this structure is caused by a surface excess of sodium and potassium at the surfaces of copper samples. The calculation of beam energy dependent energy deposition shows that the energy deposited on the top surface of a polycrystal copper target by oxygen ions rm (O_2^+) does not further increase with the increase of beam energy above 250 eV. This result very well explains the beam energy dependence of the yield of secondary alkali ions contributed from the surface excess. Combined with the experimental data, thermodynamic calculations indicate that the positive surface excess of alkali metals near Cu surfaces is due to their segregation near the copper surface. Thus, the data for secondary ion yield vs. beam energy at low energy may provide a very surface sensitive probe with high spatial resolution (monolayer) for investigating segregation near solid material surfaces. Compared with secondary ion signals

  1. Strong ambipolar-driven ion upflow within the cleft ion fountain during low geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Shen, Yangyang; Knudsen, David J.; Burchill, Johnathan K.; Howarth, Andrew; Yau, Andrew; Redmon, Robert J.; Miles, David M.; Varney, Roger H.; Nicolls, Michael J.

    2016-07-01

    We investigate low-energy (<10 eV) ion upflows (mainly O+) within the cleft ion fountain (CIF) using conjunctions of the Enhanced Polar Outflow Probe (e-POP) satellite, the DMSP F16 satellite, the SuperDARN radar, and the Resolute Bay Incoherent Scatter Radar North (RISR-N). The SEI instrument on board e-POP enables us to derive ion upflow velocities from the 2-D images of ion distribution functions with a frame rate of 100 images per second, and with a velocity resolution of the order of 25 m/s. We identify three cleft ion fountain events with very intense (>1.6 km/s) ion upflow velocities near 1000 km altitude during quiet geomagnetic activity (Kp < 3). Such large ion upflow velocities have been reported previously at or below 1000 km, but only during active periods. Analysis of the core ion distribution images allows us to demonstrate that the ion temperature within the CIF does not rise by more than 0.3 eV relative to background values, which is consistent with RISR-N observations in the F region. The presence of soft electron precipitation seen by DMSP and lack of significant ion heating indicate that the ion upflows we observe near 1000 km altitude are primarily driven by ambipolar electric fields. DC field-aligned currents (FACs) and convection velocity gradients accompany these events. The strongest ion upflows are associated with downward current regions, which is consistent with some (although not all) previously published results. The moderate correlation coefficient (0.51) between upflow velocities and currents implies that FACs serve as indirect energy inputs to the ion upflow process.

  2. Response of Materials to Single Ion Events

    SciTech Connect

    Zhang, Yanwen; Weber, William J.

    2009-05-01

    Response of materials to single radiation events is fundamental to research and many technological applications that involve energetic particles. Ion-solid interactions lead to energy loss of ions, production of electron-hole pairs, and light emission from excitation-induced luminescence. Employing a unique time-of-flight system, material response to single ion irradiation has been utilized to measure electronic energy loss, and to evaluate materials performance for radiation detection. Measurements of electronic energy loss of single ions in a thin ZrO2 foil over a continuous energy range exhibit good agreement with SRIM predictions for He and Be ions. For O and F ions, slight over- and under-estimation of SRIM prediction is evident at energies around 250 (near the stopping maximum) and above 800 keV/nucleon, respectively. For a Si semiconductor detector, its response to single ion irradiation shows that pulse height defect is clear for elements heavier than Si, and nonlinear energy response is significant for all elements at energies below ~ 150 keV/nucleon. For a single crystal CsI:Tl scintillator, the response to H ion events is used to determine relative light yield and absolute energy resolution over a wide energy region, where energy resolution of ~ 5.3% is achieved at 2 MeV.

  3. Sputtering erosion in ion and plasma thrusters

    NASA Technical Reports Server (NTRS)

    Ray, Pradosh K.

    1995-01-01

    An experimental set-up to measure low-energy (below 1 keV) sputtering of materials is described. The materials to be bombarded represent ion thruster components as well as insulators used in the stationary plasma thruster. The sputtering takes place in a 9 inch diameter spherical vacuum chamber. Ions of argon, krypton and xenon are used to bombard the target materials. The sputtered neutral atoms are detected by a secondary neutral mass spectrometer (SNMS). Samples of copper, nickel, aluminum, silver and molybdenum are being sputtered initially to calibrate the spectrometer. The base pressure of the chamber is approximately 2 x 10(exp -9) Torr. the primary ion beam is generated by an ion gun which is capable of delivering ion currents in the range of 20 to 500 nA. The ion beam can be focused to a size approximately 1 mm in diameter. The mass spectrometer is positioned 10 mm from the target and at 90 deg angle to the primary ion beam direction. The ion beam impinges on the target at 45 deg. For sputtering of insulators, charge neutralization is performed by flooding the sample with electrons generated from an electron gun. Preliminary sputtering results, methods of calculating the instrument response function of the spectrometer and the relative sensitivity factors of the sputtered elements will be discussed.

  4. The ion-ion hybrid Alfvén resonator in a fusion environment

    SciTech Connect

    Farmer, W. A.; Morales, G. J.

    2014-06-01

    An investigation is made of a shear Alfvén wave resonator for burning plasma conditions expected in the ITER device. For small perpendicular scale-lengths the shear mode, which propagates predominantly along the magnetic field direction, experiences a parallel reflection where the wave frequency matches the local ion-ion hybrid frequency. In a tokamak device operating with a deuterium–tritium fuel, this effect can form a natural resonator because of the variation in local field strength along a field line. The relevant kinetic dispersion relation is examined to determine the relative importance of Landau and cyclotron damping over the possible resonator parameter space. A WKB model based on the kinetic dispersion relation is used to determine the eigenfrequencies and the quality factors of modes trapped in the resonator. The lowest frequency found has a value slightly larger than the ion-ion hybrid frequency at the outboard side of a given flux surface. The possibility that the resonator modes can be driven unstable by energetic alpha particles is considered. It is found that within a bandwidth of roughly 600 kHz above the ion-ion hybrid frequency on the outboard side of the flux surface, the shear modes can experience significant spatial amplification. An assessment is made of the form of an approximate global eigenmode that possesses the features of a resonator. It is identified that magnetic field shear combined with large ion temperature can cause coupling to an ion-Bernstein wave, which can limit the instability.

  5. The ion-ion hybrid Alfvén resonator in a fusion environment

    SciTech Connect

    Farmer, W. A.; Morales, G. J.

    2014-06-15

    An investigation is made of a shear Alfvén wave resonator for burning plasma conditions expected in the ITER device. For small perpendicular scale-lengths the shear mode, which propagates predominantly along the magnetic field direction, experiences a parallel reflection where the wave frequency matches the local ion-ion hybrid frequency. In a tokamak device operating with a deuterium–tritium fuel, this effect can form a natural resonator because of the variation in local field strength along a field line. The relevant kinetic dispersion relation is examined to determine the relative importance of Landau and cyclotron damping over the possible resonator parameter space. A WKB model based on the kinetic dispersion relation is used to determine the eigenfrequencies and the quality factors of modes trapped in the resonator. The lowest frequency found has a value slightly larger than the ion-ion hybrid frequency at the outboard side of a given flux surface. The possibility that the resonator modes can be driven unstable by energetic alpha particles is considered. It is found that within a bandwidth of roughly 600 kHz above the ion-ion hybrid frequency on the outboard side of the flux surface, the shear modes can experience significant spatial amplification. An assessment is made of the form of an approximate global eigenmode that possesses the features of a resonator. It is identified that magnetic field shear combined with large ion temperature can cause coupling to an ion-Bernstein wave, which can limit the instability.

  6. Charge exchange molecular ion source

    DOEpatents

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  7. Water-Mediated Ion Pairing: Occurrence and Relevance.

    PubMed

    van der Vegt, Nico F A; Haldrup, Kristoffer; Roke, Sylvie; Zheng, Junrong; Lund, Mikael; Bakker, Huib J

    2016-07-13

    We present an overview of the studies of ion pairing in aqueous media of the past decade. In these studies, interactions between ions, and between ions and water, are investigated with relatively novel approaches, including dielectric relaxation spectroscopy, far-infrared (terahertz) absorption spectroscopy, femtosecond mid-infrared spectroscopy, and X-ray spectroscopy and scattering, as well as molecular dynamics simulation methods. With these methods, it is found that ion pairing is not a rare phenomenon only occurring for very particular, strongly interacting cations and anions. Instead, for many salt solutions and their interfaces, the measured and calculated structure and dynamics reveal the presence of a distinct concentration of contact ion pairs (CIPs), solvent shared ion pairs (SIPs), and solvent-separated ion pairs (2SIPs). We discuss the importance of specific ion-pairing interactions between cations like Li(+) and Na(+) and anionic carboxylate and phosphate groups for the structure and functioning of large (bio)molecular systems.

  8. Physical effects of negative air ions in a wet sauna

    NASA Astrophysics Data System (ADS)

    Watanabe, I.; Noro, Hiroshi; Ohtsuka, Yoshinori; Mano, Yukio; Agishi, Yuko

    The physical effects of negative air ions on humans were determined in an experimental sauna room equipped with an ionizer. Thirteen healthy persons took a wet sauna bath (dry bulb temperature 42° C, relative humidity 100%, 10 min exposure) with or without negative air ions. The subjects were not told when they were being exposed to negative air ions. There were no differences in the moods of these persons or changes in their blood pressures between the two saunas. The surface temperatures of the foreheads, hands, and legs in the sauna with negative ions were significantly higher than those in the sauna without ions. The pulse rates and sweat produced in the sauna with ions were singificantly higher than those in the sauna without ions. The results suggest that negative ions may amplify the effects on humans of the sauna.

  9. Hydrocarbon Ions in the Ionospheres of Titan and Jupiter

    NASA Technical Reports Server (NTRS)

    Fox, J. L.

    1995-01-01

    Two examples are given of models of ion chemistry in reducing atmospheres: Titan, which is a satellite of Saturn, and Jupiter, the largest of the gas giants. In both ionospheres, layers of hydrocarbon and/or C, H, and N-containing ions have been predicted to appear, with larger ions dominating at lower altitudes. Altitude profiles are presented for individual C1- and C2-hydrocarbon ions and larger ions that are represented for example, as C(x)H(y)(+) and C(x)H(y)N(x)(+). The accuracy of the predictions is, however, limited by the availability of information about the chemistry of these ions. In addition to rate coefficients and product channels for ion-molecule reactions, dissociative recombination coefficients and branching ratios are needed for many hydrocarbon and and related ions.

  10. ION SOURCE FOR A CALUTRON

    DOEpatents

    Backus, J.G.

    1957-12-24

    This patent relates to ion sources and more particularly describes an ion source for a calutron which has the advantage of efficient production of an ion beam and long operation time without recharging. The source comprises an arc block provided with an arc chamber connected to a plurality of series-connected charge chambers and means for heating the charge within the chambers. A cathode is disposed at one end of the arc chamber and enclosed hy a vapor tight housing to protect the cathode. The arc discharge is set up between the cathode and the block due to a difference in potentials placed on these parts, and a magnetic field is aligned with the arc discharge. Cooling of the arc block is accomplished by passing coolant through a hollow stem secured at one end to the block and rotatably mounted at the other end through the wall of the calutron. The ions are removed through a slit in the arc chamber by accelerating electrodes.

  11. Atomic ion clock with two ion traps, and method to transfer ions

    NASA Technical Reports Server (NTRS)

    Prestage, John D. (Inventor); Chung, Sang K. (Inventor)

    2011-01-01

    An atomic ion clock with a first ion trap and a second ion trap, where the second ion trap is of higher order than the first ion trap. In one embodiment, ions may be shuttled back and forth from one ion trap to the other by application of voltage ramps to the electrodes in the ion traps, where microwave interrogation takes place when the ions are in the second ion trap, and fluorescence is induced and measured when the ions are in the first ion trap. In one embodiment, the RF voltages applied to the second ion trap to contain the ions are at a higher frequency than that applied to the first ion trap. Other embodiments are described and claimed.

  12. Effect of nickelous and other metal ions on the inhibition of rumen bacterial metabolism by 3-(3'-isocyanocyclopent-2-enylidene)propionic acid and related isocyanides. [Phleum pratense

    SciTech Connect

    Brewer, D.; Calder, F.W.; Jones, G.A.; Tanguay, D.; Taylor, A.

    1986-01-01

    3-(3'-isocyanocyclopent-2-enylidene) propionic acid at a concentration of 2 to 5 ..mu..g ml/sup -1/ inhibited cellulose digestion by a mixed culture of rumen microorganisms and in other experiments inhibited the degradation of timothy had (Phleum pratense) in a digestibility test. At isocyanide concentrations of 12 ..mu..g ml/sup -1/ the fermentation activity of rumen fluid, measured by its dehydrogenase activity, was inhibited but not abolished. All of these isocyanide effects were reversed by the incorporation of nickelous ion into the solutions of the systems under study. The activity of 1 mol of isocyanide is reversed by about 1 mol of Ni/sup 2 +/ and, in the case of the cellulose digestion test, by about 1 mol of Co/sup 2 +/. Of some 15 other ions tested only Pd/sup 2 +/ and possibly chromium reversed the effect of the isocyanide.

  13. Carbon Mineralization Using Phosphate and Silicate Ions

    NASA Astrophysics Data System (ADS)

    Gokturk, H.

    2013-12-01

    Carbon dioxide (CO2) reduction from combustion of fossil fuels has become an urgent concern for the society due to marked increase in weather related natural disasters and other negative consequences of global warming. CO2 is a highly stable molecule which does not readily interact with other neutral molecules. However it is more responsive to ions due to charge versus quadrupole interaction [1-2]. Ions can be created by dissolving a salt in water and then aerosolizing the solution. This approach gives CO2 molecules a chance to interact with the hydrated salt ions over the large surface area of the aerosol. Ion containing aerosols exist in nature, an example being sea spray particles generated by breaking waves. Such particles contain singly and doubly charged salt ions including Na+, Cl-, Mg++ and SO4--. Depending on the proximity of CO2 to the ion, interaction energy can be significantly higher than the thermal energy of the aerosol. For example, an interaction energy of 0.6 eV is obtained with the sulfate (SO4--) ion when CO2 is the nearest neighbor [2]. In this research interaction between CO2 and ions which carry higher charges are investigated. The molecules selected for the study are triply charged phosphate (PO4---) ions and quadruply charged silicate (SiO4----) ions. Examples of salts which contain such molecules are potassium phosphate (K3PO4) and sodium orthosilicate (Na4SiO4). The research has been carried out with first principle quantum mechanical calculations using the Density Functional Theory method with B3LYP functional and Pople type basis sets augmented with polarization and diffuse functions. Atomic models consist of the selected ions surrounded by water and CO2 molecules. Similar to the results obtained with singly and doubly charged ions [1-2], phosphate and silicate ions attract CO2 molecules. Energy of interaction between the ion and CO2 is 1.6 eV for the phosphate ion and 3.3 eV for the silicate ion. Hence one can expect that the selected

  14. Ion Outflow Observations

    NASA Technical Reports Server (NTRS)

    Mellot, Mary (Technical Monitor)

    2002-01-01

    The characteristics of out-flowing ions have been investigated under various circumstances. In particular the upwelling of ions from the cleft region has been studied to attempt to look at source characteristics (e.g., temperature, altitude). High altitude (6-8 Re) data tend to show ions species that have the same velocity and are adiabatically cooled. Such ions, while representative of their source, can not provide an accurate picture. Ion observations from the TIDE detector on the Polar spacecraft show an energy (or equivalently a velocity) spectrum of ions as they undo the geomagnetic mass spectrometer effect due to convection-gravity separation of the different species. Consolidation of this type of data into a complete representation of the source spectrum can be attempted by building a set of maximum-phase-space- density-velocity pairs and attributing the total to the source.

  15. Ion photon emission microscope

    DOEpatents

    Doyle, Barney L.

    2003-04-22

    An ion beam analysis system that creates microscopic multidimensional image maps of the effects of high energy ions from an unfocussed source upon a sample by correlating the exact entry point of an ion into a sample by projection imaging of the ion-induced photons emitted at that point with a signal from a detector that measures the interaction of that ion within the sample. The emitted photons are collected in the lens system of a conventional optical microscope, and projected on the image plane of a high resolution single photon position sensitive detector. Position signals from this photon detector are then correlated in time with electrical effects, including the malfunction of digital circuits, detected within the sample that were caused by the individual ion that created these photons initially.

  16. Ion-Solid Interactions

    NASA Astrophysics Data System (ADS)

    Nastasi, Michael; Mayer, James; Hirvonen, James K.

    2004-12-01

    Modern technology depends on materials with precisely controlled properties. Ion beams are an excellent way to achieve controlled modification of surface and near-surface regions. In every integrated circuit production line, for example, there are ion implantation systems. In addition to integrated circuit technology, ion beams can modify the mechanical, tribological, and chemical properties of metal, intermetallic, and ceramic materials without altering their bulk properties. Ion-solid interactions are the foundation that underlies the broad application of ion beams to the modification of materials. This text covers the fundamentals and applications of ion-solid interactions, and is aimed at graduate students and researchers interested in electronic devices, surface engineering, reactor and nuclear engineering, and materials science issues associated with metastable phase synthesis.

  17. HEAVY ION LINEAR ACCELERATOR

    DOEpatents

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  18. The production and destruction of negative ions

    SciTech Connect

    Pegg, D.J.

    1993-01-01

    Single photon absorption-single electron detachment from few-electron atomic negative ions was studied. A crossed beam apparatus is being used to perform energy- and angle-resolved photoelectron spectroscopic measurements following photodetachment. Forward-directed electrons were collected and energy analyzed. The kinetic energies and yields of the photoelectrons were obtained by fitting the spectral peaks to Gaussian functions. Electron affinities, asymmetry parameters and cross sections are determined from these measurements. A ratio method in which the cross section for the ion of interest is measured relative to that of a reference ion was used. The study of the photodetachment of Li[sup [minus

  19. Apparatus for neutralization of accelerated ions

    DOEpatents

    Fink, Joel H.; Frank, Alan M.

    1979-01-01

    Apparatus for neutralization of a beam of accelerated ions, such as hydrogen negative ions (H.sup.-), using relatively efficient strip diode lasers which emit monochromatically at an appropriate wavelength (.lambda. = 8000 A for H.sup.- ions) to strip the excess electrons by photodetachment. A cavity, formed by two or more reflectors spaced apart, causes the laser beams to undergo multiple reflections within the cavity, thus increasing the efficiency and reducing the illumination required to obtain an acceptable percentage (.about. 85%) of neutralization.

  20. ION SOURCE WITH SPACE CHARGE NEUTRALIZATION

    DOEpatents

    Flowers, J.W.; Luce, J.S.; Stirling, W.L.

    1963-01-22

    This patent relates to a space charge neutralized ion source in which a refluxing gas-fed arc discharge is provided between a cathode and a gas-fed anode to provide ions. An electron gun directs a controlled, monoenergetic electron beam through the discharge. A space charge neutralization is effected in the ion source and accelerating gap by oscillating low energy electrons, and a space charge neutralization of the source exit beam is effected by the monoenergetic electron beam beyond the source exit end. The neutralized beam may be accelerated to any desired energy at densities well above the limitation imposed by Langmuir-Child' s law. (AEC)

  1. Ions in the Terrestrial Atmosphere and Other Solar System Atmospheres

    NASA Astrophysics Data System (ADS)

    Harrison, R. Giles; Tammet, Hannes

    Charged molecular clusters, traditionally called small ions, carry electric currents in atmospheres. Charged airborne particles, or aerosol ions, play an important role in generation and evolution of atmospheric aerosols. Growth of ions depends on the trace gas content, which is highly variable in the time and space. Even at sub-ppb concentrations, electrically active organic compounds (e.g. pyridine derivatives) can affect the ion composition and size. The size and mobility are closely related, although the form of the relationship varies depending on the critical diameter, which, at 273 K, is about 1.6 nm. For ions smaller than this the separation of quantum levels exceeds the average thermal energy, allowing use of a molecular aggregate model for the size-mobility relation. For larger ions the size-mobility relation approaches the Stokes-Cunningham-Millikan law. The lifetime of a cluster ion in the terrestrial lower atmosphere is about one minute, determined by the balance between ion production rate, ion-ion recombination, and ion-aerosol attachment.

  2. Ions in the Terrestrial Atmosphere and Other Solar System Atmospheres

    NASA Astrophysics Data System (ADS)

    Harrison, R. Giles; Tammet, Hannes

    2008-06-01

    Charged molecular clusters, traditionally called small ions, carry electric currents in atmospheres. Charged airborne particles, or aerosol ions, play an important role in generation and evolution of atmospheric aerosols. Growth of ions depends on the trace gas content, which is highly variable in the time and space. Even at sub-ppb concentrations, electrically active organic compounds ( e.g. pyridine derivatives) can affect the ion composition and size. The size and mobility are closely related, although the form of the relationship varies depending on the critical diameter, which, at 273 K, is about 1.6 nm. For ions smaller than this the separation of quantum levels exceeds the average thermal energy, allowing use of a molecular aggregate model for the size-mobility relation. For larger ions the size-mobility relation approaches the Stokes-Cunningham-Millikan law. The lifetime of a cluster ion in the terrestrial lower atmosphere is about one minute, determined by the balance between ion production rate, ion-ion recombination, and ion-aerosol attachment.

  3. Collection of ions

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Koster, James E.

    2001-01-01

    The apparatus and method provide an improved technique for detecting ions as the area from which ions are attracted to a detector is increased, consequently increasing the number of ions detected. This is achieved by providing the outer electrodes of the detector connected to the electrical potential, together with alternate intermediate electrodes. The other intermediate electrodes and preferably the housing are grounded. The technique renders such detection techniques more sensitive and gives them a lower threshold at which they can function.

  4. ION ACCELERATION SYSTEM

    DOEpatents

    Luce, J.S.; Martin, J.A.

    1960-02-23

    Well focused, intense ion beams are obtained by providing a multi- apertured source grid in front of an ion source chamber and an accelerating multi- apertured grid closely spaced from and in alignment with the source grid. The longest dimensions of the elongated apertures in the grids are normal to the direction of the magnetic field used with the device. Large ion currents may be withdrawn from the source, since they do not pass through any small focal region between the grids.

  5. Neutron ion temperature measurement

    SciTech Connect

    Strachan, J.D.; Hendel, H.W.; Lovberg, J.; Nieschmidt, E.B.

    1986-11-01

    One important use of fusion product diagnostics is in the determination of the deuterium ion temperature from the magnitude of the 2.5 MeV d(d,n)/sup 3/He neutron emission. The detectors, calibration methods, and limitations of this technique are reviewed here with emphasis on procedures used at PPPL. In most tokamaks, the ion temperature deduced from neutrons is in reasonable agreement with the ion temperature deduced by other techniques.

  6. APPARATUS FOR HEATING IONS

    DOEpatents

    Chambers, E.S.; Garren, A.A.; Kippenhan, D.O.; Lamb, W.A.S.; Riddell, R.J. Jr.

    1960-01-01

    The heating of ions in a magnetically confined plasma is accomplished by the application of an azimuthal radiofrequency electric field to the plasma at ion cyclotron resonance. The principal novelty resides in the provision of an output tank coil of a radiofrequency driver to induce the radiofrequency field in the plasma and of electron current bridge means at the ends of the plasma for suppressing radial polarization whereby the radiofrequency energy is transferred to the ions with high efficiency.

  7. Ion beam generating apparatus

    DOEpatents

    Brown, I.G.; Galvin, J.

    1987-12-22

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. 10 figs.

  8. Electrochemical evidences and consequences of significant differences in ions diffusion rate in polyacrylate-based ion-selective membranes.

    PubMed

    Woźnica, Emilia; Mieczkowski, Józef; Michalska, Agata

    2011-11-21

    The origin and effect of surface accumulation of primary ions within the ion-selective poly(n-butyl acrylate)-based membrane, obtained by thermal polymerization, is discussed. Using a new method, based on the relation between the shape of a potentiometric plot and preconditioning time, the diffusion of copper ions in the membrane was found to be slow (the diffusion coefficient estimated to be close to 10(-11) cm(2) s(-1)), especially when compared to ion-exchanger counter ions--sodium cations diffusion (a diffusion coefficient above 10(-9) cm(2) s(-1)). The higher mobility of sodium ions than those of the copper-ionophore complex results in exposed ion-exchanger role leading to undesirably exposed sensitivity to sodium or potassium ions. PMID:21957488

  9. Ion Beam Transport Simulations for the 1.7 MV Tandem Accelerator at the Michigan Ion Beam Laboratory

    NASA Astrophysics Data System (ADS)

    Naab, F. U.; Toader, O. F.; Was, G. S.

    The Michigan Ion Beam Laboratory houses a 1.7 MV tandem accelerator. For many years this accelerator was configured to run with three ion sources: a TORoidal Volume Ion Source (TORVIS), a Duoplasmatron source and a Sputter source. In this article we describe an application we have created using the SIMION® code to simulate the trajectories of ion beams produced with these sources through the accelerator. The goal of this work is to have an analytical tool to understand the effect of each electromagnetic component on the ion trajectories. This effect is shown in detailed drawings. Each ion trajectory simulation starts at the aperture of the ion source and ends at the position of the target. Using these simulations, new accelerator operators or users quickly understand how the accelerator system works. Furthermore, these simulations allow analysis of modifications in the ion beam optics of the accelerator by adding, removing or replacing components or changing their relative positions.

  10. (Theory of relative biological effectiveness)

    SciTech Connect

    Katz, R.

    1992-06-15

    Research continued on relative biological effectiveness, in the following areas: radial distribution of dose about the path of an energetic heavy ion; the response of E. Coli mutants to ionizing radiations; the application of a fragmentation model to to the calculation of cell survival and mutation with heavy ion beams; biological radiation effects from gamma radiation and heavy ion beams on organisms; cancer induction in the Harderian Gland by HZE particles; and effects of low dose radiations. (CBS)

  11. Ion trap device

    DOEpatents

    Ibrahim, Yehia M.; Smith, Richard D.

    2016-01-26

    An ion trap device is disclosed. The device includes a series of electrodes that define an ion flow path. A radio frequency (RF) field is applied to the series of electrodes such that each electrode is phase shifted approximately 180 degrees from an adjacent electrode. A DC voltage is superimposed with the RF field to create a DC gradient to drive ions in the direction of the gradient. A second RF field or DC voltage is applied to selectively trap and release the ions from the device. Further, the device may be gridless and utilized at high pressure.

  12. Ion thrusting system

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2007-01-01

    An ion thrusting system is disclosed comprising an ionization membrane having at least one area through which a gas is passed, and which ionizes the gas molecules passing therethrough to form ions and electrons, and an accelerator element which accelerates the ions to form thrust. In some variations, a potential is applied to the ionization membrane may be reversed to thrust ions in an opposite direction. The ionization membrane may also include an opening with electrodes that are located closer than a mean free path of the gas being ionized. Methods of manufacture and use are also provided.

  13. Correlation ion mobility spectroscopy

    DOEpatents

    Pfeifer, Kent B.; Rohde, Steven B.

    2008-08-26

    Correlation ion mobility spectrometry (CIMS) uses gating modulation and correlation signal processing to improve IMS instrument performance. Closely spaced ion peaks can be resolved by adding discriminating codes to the gate and matched filtering for the received ion current signal, thereby improving sensitivity and resolution of an ion mobility spectrometer. CIMS can be used to improve the signal-to-noise ratio even for transient chemical samples. CIMS is especially advantageous for small geometry IMS drift tubes that can otherwise have poor resolution due to their small size.

  14. Cardiac ion channels

    PubMed Central

    Priest, Birgit T; McDermott, Jeff S

    2015-01-01

    Ion channels are critical for all aspects of cardiac function, including rhythmicity and contractility. Consequently, ion channels are key targets for therapeutics aimed at cardiac pathophysiologies such as atrial fibrillation or angina. At the same time, off-target interactions of drugs with cardiac ion channels can be the cause of unwanted side effects. This manuscript aims to review the physiology and pharmacology of key cardiac ion channels. The intent is to highlight recent developments for therapeutic development, as well as elucidate potential mechanisms for drug-induced cardiac side effects, rather than present an in-depth review of each channel subtype. PMID:26556552

  15. Ion beam accelerator system

    NASA Technical Reports Server (NTRS)

    Aston, G. (Inventor)

    1981-01-01

    A system is described that combines geometrical and electrostatic focusing to provide high ion extraction efficiency and good focusing of an accelerated ion beam. The apparatus includes a pair of curved extraction grids with multiple pairs of aligned holes positioned to direct a group of beamlets along converging paths. The extraction grids are closely spaced and maintained at a moderate potential to efficiently extract beamlets of ions and allow them to combine into a single beam. An accelerator electrode device downstream from the extraction grids is at a much lower potential than the grids to accelerate the combined beam. The application of the system to ion implantation is mentioned.

  16. Peristaltic ion source

    SciTech Connect

    Brown, I.G.; Anders, A.; Anders, S.; Dickinson, M.R.; MacGill, R.A.

    1995-08-01

    Conventional ion sources generate energetic ion beams by accelerating the plasma-produced ions through a voltage drop at the extractor, and since it is usual that the ion beam is to propagate in a space which is at ground potential, the plasma source is biased at extractor voltage. For high ion beam energy the plasma source and electrical systems need to be raised to high voltage, a task that adds considerable complexity and expense to the total ion source system. The authors have developed a system which though forming energetic ion beams at ground potential as usual, operates with the plasma source and electronics at ground potential also. Plasma produced by a nearby source streams into a grided chamber that is repetitively pulsed from ground to high positive potential, sequentially accepting plasma into its interior region and ejecting it energetically. They call the device a peristaltic ion source. In preliminary tests they`ve produced nitrogen and titanium ion beams at energies from 1 to 40 keV. Here they describe the philosophy behind the approach, the test embodiment that they have made, and some preliminary results.

  17. Ion beam thruster shield

    NASA Technical Reports Server (NTRS)

    Power, J. L. (Inventor)

    1976-01-01

    An ion thruster beam shield is provided that comprises a cylindrical housing that extends downstream from the ion thruster and a plurality of annular vanes which are spaced along the length of the housing, and extend inwardly from the interior wall of the housing. The shield intercepts and stops all charge exchange and beam ions, neutral propellant, and sputter products formed due to the interaction of beam and shield emanating from the ion thruster outside of a fixed conical angle from the thruster axis. Further, the shield prevents the sputter products formed during the operation of the engine from escaping the interior volume of the shield.

  18. Evidence for Fast-Ion Transport by Microturbulence

    SciTech Connect

    Heidbrink, W. W.; Park, J. M.; Murakami, M.; Petty, C. C.; Van Zeeland, M. A.; Holcomb, C.

    2009-10-23

    Cross-field diffusion of energetic ions by microturbulence is measured during neutral-beam injection into the DIII-D tokamak. Fast-ion D{sub {alpha}}, neutron, and motional Stark effect measurements diagnose the fast-ion distribution function. As expected for transport by plasma turbulence, anomalies relative to the classical prediction are greatest in high temperature plasmas, at low fast-ion energy, and at larger minor radius. Theoretical estimates of fast-ion diffusion are comparable to experimental levels.

  19. Halide Ion Enhancement of Nitrate Ion Photolysis

    NASA Astrophysics Data System (ADS)

    Richards, N. K.; Wingen, L. M.; Callahan, K. M.; Tobias, D. J.; Finlayson-Pitts, B. J.

    2009-12-01

    Nitrate ion photochemistry is an important source of NOx in the polar regions. It is uncertain whether coexisting ions such as halides play a role in nitrate photochemistry. The effect of halides on NO3 photolysis was investigated using photolysis experiments in 230 L Teflon chambers that contain deliquesced aerosols of NaBr:NaNO3, KBr:KNO3 and ternary mixtures of NaCl:NaBr:NaNO3. Gas phase NO2 and gaseous halogen products were measured as a function of photolysis time using long path FTIR, NOx chemiluminescence and API-MS (atmospheric pressure ionization mass spectrometry). Experiments were conducted with NO3- held at a constant 0.5 M and with the amount of total halide concentration varying from 0.25 M to 4 M. Studies on NaBr:NaNO3 mixtures suggest that as the bromide ion to nitrate ion ratio increases, there is an enhancement in the rate of production of NO2 in the nitrate-bromide mixtures over that formed in the photolysis of NaNO3. Molecular dynamic (MD) simulations provide molecular level insight into the ions near the air-water interface in the aqueous halide-nitrate mixtures. These studies suggest that the presence of sodium halides at the air-water interface may encourage some nitrate ions to approach the top layers of water, allowing for more efficient escape of photoproducts than is seen in the absence of halides. Experiments on mixtures of KBr:KNO3 are being conducted to determine potential cation effects. In addition, ternary mixtures of NaCl:NaBr:NaNO3 are being examined to determine the effects of mixtures of halides on production of NO2 and gaseous halogen products. The implications of this photochemistry for tropospheric chemistry will be discussed.

  20. Selective coulometric release of ions from ion selective polymeric membranes for calibration-free titrations.

    PubMed

    Bhakthavatsalam, Vishnupriya; Shvarev, Alexey; Bakker, Eric

    2006-08-01

    Coulometry belongs to one of the few known calibration-free techniques and is therefore highly attractive for chemical analysis. Titrations performed by the coulometric generation of reactants is a well-known approach in electrochemistry, but suffers from limited selectivity and is therefore not generally suited for samples of varying or unknown composition. Here, the selective coulometric release of ionic reagents from ion-selective polymeric membrane materials ordinarily used for the fabrication of ion-selective electrodes is described. The selectivity of such membranes can be tuned to a significant extent by the type and concentration of ionophore and lipophilic ion-exchanger and is today well understood. An anodic current of fixed magnitude and duration may be imposed across such a membrane to release a defined quantity of ions with high selectivity and precision. Since the applied current relates to a defined ion flux, a variety of non-redox active ions may be accurately released with this technique. In this work, the released titrant's activity was measured with a second ionophore-based ion-selective electrode and corresponded well with expected dosage levels on the basis of Faraday's law of electrolysis. Initial examples of coulometric titrations explored here include the release of calcium ions for complexometric titrations, including back titrations, and the release of barium ions to determine sulfate.

  1. Hybrid Simulations of Pickup Ions and Ion Cyclotron Waves at Enceladus

    NASA Astrophysics Data System (ADS)

    Cowee, M.; Wei, H.; Tokar, R. L.

    2014-12-01

    Saturn's moon Enceladus releases tens of kilograms per second of water-group neutrals from its southern plumes. These neutrals are ionized and accelerated by the background co-rotation electric field, producing a local population of pickup ions with a ring distribution in velocity space. This velocity space distribution is highly unstable to the growth of electromagnetic ion cyclotron waves whose amplitudes are generally related to the pickup ion production rate, the mass of the pickup ion, the pickup velocity, and the degree of damping by the background plasma. Observations from the Cassini spacecraft show the amplitudes of the waves generally increase with distance within 2 Enceladus radii of the Moon, consistent with an increasing density of pickup ion source, but then decrease right at the Moon, consistent with zero pickup velocity in the stagnating plasma flow. In order to interpret the observed wave amplitudes in terms of ion production rates at Enceladus, we carry out self-consistent hybrid simulations of the growth of ion cyclotron waves from pickup ions to determine the relationship between wave amplitude and background plasma and ion pickup conditions.

  2. HIBRA: A computer code for heavy ion binary reaction analysis employing ion track detectors

    NASA Astrophysics Data System (ADS)

    Jamil, Khalid; Ahmad, Siraj-ul-Islam; Manzoor, Shahid

    2016-01-01

    Collisions of heavy ions many times result in production of only two reaction products. Study of heavy ions using ion track detectors allows experimentalists to observe the track length in the plane of the detector, depth of the tracks in the volume of the detector and angles between the tracks on the detector surface, all known as track parameters. How to convert these into useful physics parameters such as masses, energies, momenta of the reaction products and the Q-values of the reaction? This paper describes the (a) model used to analyze binary reactions in terms of measured etched track parameters of the reaction products recorded in ion track detectors, and (b) the code developed for computing useful physics parameters for fast and accurate analysis of a large number of binary events. A computer code, HIBRA (Heavy Ion Binary Reaction Analysis) has been developed both in C++ and FORTRAN programming languages. It has been tested on the binary reactions from 12.5 MeV/u 84Kr ions incident upon U (natural) target deposited on mica ion track detector. The HIBRA code can be employed with any ion track detector for which range-velocity relation is available including the widely used CR-39 ion track detectors. This paper provides the source code of HIBRA in C++ language along with input and output data to test the program.

  3. Cold Strontium Ion Source for Ion Interferometry

    NASA Astrophysics Data System (ADS)

    Jackson, Jarom; Durfee, Dallin

    2015-05-01

    We are working on a cold source of Sr Ions to be used in an ion interferometer. The beam will be generated from a magneto-optical trap (MOT) of Sr atoms by optically ionizing atoms leaking out a carefully prepared hole in the MOT. A single laser cooling on the resonant transition (461 nm) in Sr should be sufficient for trapping, as we've calculated that losses to the atom beam will outweigh losses to dark states. Another laser (405 nm), together with light from the trapping laser, will drive a two photon transition in the atom beam to an autoionizing state. Supported by NSF Award No. 1205736.

  4. Mercury ion thruster technology

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Matossian, J. N.

    1989-01-01

    The Mercury Ion Thruster Technology program was an investigation for improving the understanding of state-of-the-art mercury ion thrusters. Emphasis was placed on optimizing the performance and simplifying the design of the 30 cm diameter ring-cusp discharge chamber. Thruster performance was improved considerably; the baseline beam-ion production cost of the optimized configuration was reduced to Epsilon (sub i) perspective to 130 eV/ion. At a discharge propellant-utilization efficiency of 95 percent, the beam-ion production cost was reduced to about 155 eV/ion, representing a reduction of about 40 eV/ion over the corresponding value for the 30 cm diameter J-series thruster. Comprehensive Langmuir-probe surveys were obtained and compared with similar measurements for a J-series thruster. A successful volume-averaging scheme was developed to correlate thruster performance with the dominant plasma processes that prevail in the two thruster designs. The average Maxwellian electron temperature in the optimized ring-cusp design is as much as 1 eV higher than it is in the J-series thruster. Advances in ion-extraction electrode fabrication technology were made by improving materials selection criteria, hydroforming and stress-relieving tooling, and fabrications procedures. An ion-extraction performance study was conducted to assess the effect of screen aperture size on ion-optics performance and to verify the effectiveness of a beam-vectoring model for three-grid ion optics. An assessment of the technology readiness of the J-series thruster was completed, and operation of an 8 cm IAPS thruster using a simplified power processor was demonstrated.

  5. Ion aggregation in high salt solutions. V. Graph entropy analyses of ion aggregate structure and water hydrogen bonding network.

    PubMed

    Choi, Jun-Ho; Cho, Minhaeng

    2016-05-28

    Dissolved ions in water tend to form polydisperse ion aggregates such as ion pairs, relatively compact ion clusters, and even spatially extended ion networks with increasing salt concentration. Combining molecular dynamics simulation and graph theoretical analysis methods, we recently studied morphological structures of ion aggregates with distinctively different characteristics. They can be distinguished from each other by calculating various spectral graph theoretical properties such as eigenvalues and eigenvectors of adjacency matrices of ion aggregates and water hydrogen-bonding networks, minimum path lengths, clustering coefficients, and degree distributions. Here, we focus on percolation and graph entropic properties of ion aggregates and water hydrogen-bonding networks in high salt solutions. Ion network-forming K(+) and SCN(-) ions at high concentrations show a percolating behavior in their aqueous solutions, but ion cluster-forming ions in NaCl solutions do not show such a transition from isolated ion aggregates to percolating ion-water mixture morphology. Despite that the ion aggregate structures are strikingly different for either cluster- or network-forming ions in high salt solutions, it is interesting that the water structures remain insensitive to the electrostatic properties, such as charge densities and polydentate properties, of dissolved ions, and morphological structures of water H-bonding networks appear to be highly robust regardless of the nature and concentration of salt. We anticipate that the present graph entropy analysis results would be of use in understanding a variety of anomalous behaviors of interfacial water around biomolecules as well as electric conductivities of high electrolyte solutions.

  6. Ion aggregation in high salt solutions. V. Graph entropy analyses of ion aggregate structure and water hydrogen bonding network

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Cho, Minhaeng

    2016-05-01

    Dissolved ions in water tend to form polydisperse ion aggregates such as ion pairs, relatively compact ion clusters, and even spatially extended ion networks with increasing salt concentration. Combining molecular dynamics simulation and graph theoretical analysis methods, we recently studied morphological structures of ion aggregates with distinctively different characteristics. They can be distinguished from each other by calculating various spectral graph theoretical properties such as eigenvalues and eigenvectors of adjacency matrices of ion aggregates and water hydrogen-bonding networks, minimum path lengths, clustering coefficients, and degree distributions. Here, we focus on percolation and graph entropic properties of ion aggregates and water hydrogen-bonding networks in high salt solutions. Ion network-forming K+ and SCN- ions at high concentrations show a percolating behavior in their aqueous solutions, but ion cluster-forming ions in NaCl solutions do not show such a transition from isolated ion aggregates to percolating ion-water mixture morphology. Despite that the ion aggregate structures are strikingly different for either cluster- or network-forming ions in high salt solutions, it is interesting that the water structures remain insensitive to the electrostatic properties, such as charge densities and polydentate properties, of dissolved ions, and morphological structures of water H-bonding networks appear to be highly robust regardless of the nature and concentration of salt. We anticipate that the present graph entropy analysis results would be of use in understanding a variety of anomalous behaviors of interfacial water around biomolecules as well as electric conductivities of high electrolyte solutions.

  7. Metal Ions in Unusual Valency States.

    ERIC Educational Resources Information Center

    Sellers, Robin M.

    1981-01-01

    Discusses reactivity of metal ions with the primary products of water radiolysis, hyper-reduced metal ions, zero-valent metal ions, unstable divalent ions from the reduction of bivalent ions, hyper-oxidized metal ions, and metal complexes. (CS)

  8. Growth energizes lithium ion interest

    SciTech Connect

    D`Amico, E.

    1996-03-20

    The prospects for big growth in the US for lithium ion batteries (LIBs) has sparked the interest of potential domestic suppliers. {open_quotes}The money that can be made in this market is staggering,{close_quotes} says one industry expert. {open_quotes}Everybody who is remotely related to this industry is interested.{close_quotes} The size of the market, still in its infancy, is difficult to gauge, say consultants, who estimate that leading Japanese producers are each making millions of lithium ion cells/month. {open_quotes}The market is not too measurable right now because the only production is really limited to prototypes being sampled,{close_quotes} says Ward Seitz, a consultant with SRI International (Menlo Park, CA), {open_quotes}but there is phenomenal interest.{close_quotes}

  9. Ion-Selective Electrodes.

    ERIC Educational Resources Information Center

    Arnold, Mark A.; Meyerhoff, Mark E.

    1984-01-01

    Literature on ion-selective electrodes (ISEs) is reviewed in seven sections: books, conferences, reviews; potentiometric membrane electrodes; glass and solid-state membrane electrodes; liquid and polymer membrane ISEs; coated wire electrodes, ion-selective field effect transistors, and microelectrodes; gas sensors and selective bioelectrode…

  10. Microfabricated cylindrical ion trap

    DOEpatents

    Blain, Matthew G.

    2005-03-22

    A microscale cylindrical ion trap, having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale cylindrical ion trap to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The microscale CIT has a reduced ion mean free path, allowing operation at higher pressures with less expensive and less bulky vacuum pumping system, and with lower battery power than conventional- and miniature-sized ion traps. The reduced electrode voltage enables integration of the microscale cylindrical ion trap with on-chip integrated circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of microscale cylindrical ion traps can be realized in truly field portable, handheld microanalysis systems.

  11. Ion-beam technologies

    SciTech Connect

    Fenske, G.R.

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  12. Ion bombardment of Europa

    NASA Astrophysics Data System (ADS)

    Cassidy, Timothy A.; Paranicas, C.; Hendrix, A.; Johnson, R. E.

    2010-10-01

    The spectral difference between Europa's leading and trailing hemispheres has long been explained as a result of magnetospheric bombardment. A closer look at the longitudinal variation of ultraviolet spectral features reveals, however, that several processes, both exogenic and endogenic, are operating on the surface (Hendrix et al., 2010, submitted; Dalton et al., 2010, in preparation). Even magnetospheric bombardment can produce a variety of exogenic patterns; each "population” of particles has a distinct bombardment pattern. Work is ongoing to connect exogenic and spectral patterns. Here we describe one piece of that ongoing work, the calculation of ion bombardment and sputtering rates. We calculated the ion bombardment rate using a program that traces ion motion given the magnetic and electric fields in the vicinity of Europa's orbit, along with information on ion composition and energies from the Voyager and Galileo missions. We conclude that the vast majority of sulfur ions impact Europa's trailing hemisphere, while the sputtering rate is more uniform, in qualitative agreement with previous work. Overall, we find that the sputtering rate at the trailing hemisphere apex (where ion flux peaks) is about 3 times that at the leading hemisphere apex. This likely results in a net erosion of Europa's entire surface, not, as some have suggested, a net deposition of ice onto the leading hemisphere. We also conclude that the energetic ion flux peaks at Europa's poles, though the sputtering rate still peaks at the equatorial trailing hemisphere apex, where the combined sputtering by "cold” and "suprathermal” ions is highest.

  13. Ion mobility sensor system

    DOEpatents

    Xu, Jun; Watson, David B.; Whitten, William B.

    2013-01-22

    An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.

  14. Mechanically Activated Ion Channels

    PubMed Central

    Ranade, Sanjeev S.; Syeda, Ruhma; Patapoutian, Ardem

    2015-01-01

    Mechanotransduction, the conversion of physical forces into biochemical signals, is an essential component of numerous physiological processes including not only conscious senses of touch and hearing, but also unconscious senses such as blood pressure regulation. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels. PMID:26402601

  15. ION PULSE GENERATION

    DOEpatents

    King, R.F.; Moak, C.D.; Parker, V.E.

    1960-10-11

    A device for generating ions in an ion source, forming the ions into a stream, deflecting the stream rapidly away from and back to its normal path along the axis of a cylindrical housing, and continually focusing the stream by suitable means into a sharp, intermittent beam along the axis is described. The beam exists through an axial aperture into a lens which focuses it into an accelerator tube. The ions in each burst are there accelerated to very high energies and are directed against a target placed in the high-energy end of the tube. Radiations from the target can then be analyzed in the interval between incidence of the bursts of ions on the target.

  16. The energetics and dynamics of free radicals, ions, and clusters

    SciTech Connect

    Baer, T.

    1992-03-01

    The structure and energetics of free radicals, ions, and clusters have been investigated by photoelectron photoion coincidence (PEPICO) and analyzed with ab initio molecular orbital and statistical theory RRKM calculations. In these experiments, molecules are prepared in a molecular beam so that their internal as well as translational energies are cooled to near O K. The coincidence condition between energy analyzed electrons and their corresponding ions insures that the ions are energy selected. The primary experimental information includes ionization and fragment ion appearance energies, and the ion time of flight (TOF) distributions. The latter are obtained by using the energy selected electron as a start signal and the ion as the stop signal. These types of experiments allow us to measure the ion dissociation rates in the 10{sup 4} to 10{sup 7} sec {sup {minus}1} range. Such ions are commonly referred to a metastable ions. In addition, the TOF peak widths are related to the release of translational energy in the ion dissociation process. Perhaps the most important advance during the past year has been in the study of cluster photoionization. We have developed an experimental method for differentiating similar mass cluster ions based on the kinetic energy of the ions measured by TOF.

  17. Ion channels, channelopathies, and tooth formation.

    PubMed

    Duan, X

    2014-02-01

    The biological functions of ion channels in tooth development vary according to the nature of their gating, the species of ions passing through those gates, the number of gates, localization of channels, tissue expressing the channel, and interactions between cells and microenvironment. Ion channels feature unique and specific ion flux in ameloblasts, odontoblasts, and other tooth-specific cell lineages. Both enamel and dentin have active chemical systems orchestrating a variety of ion exchanges and demineralization and remineralization processes in a stage-dependent manner. An important role for ion channels is to regulate and maintain the calcium and pH homeostasis that are critical for proper enamel and dentin biomineralization. Specific functions of chloride channels, TRPVs, calcium channels, potassium channels, and solute carrier superfamily members in tooth formation have been gradually clarified in recent years. Mutations in these ion channels or transporters often result in disastrous changes in tooth development. The channelopathies of tooth include altered eruption (CLCN7, KCNJ2, TRPV3), root dysplasia (CLCN7, KCNJ2), amelogenesis imperfecta (KCNJ1, CFTR, AE2, CACNA1C, GJA1), dentin dysplasia (CLCN5), small teeth (CACNA1C, GJA1), tooth agenesis (CLCN7), and other impairments. The mechanisms leading to tooth channelopathies are primarily related to pH regulation, calcium homeostasis, or other alterations of the niche for tooth eruption and development. PMID:24076519

  18. Mechanism of ion-beam-induced deposition

    SciTech Connect

    Dubner, A.D.

    1990-01-01

    Ion-beam induced deposition (IBID) is described as well as the system developed for in-situ measurement of IBID. Gold films were deposited on quartz crystal microbalances (QCM) by decomposing C{sub 7}H{sub 7}F{sub 6}O{sub 2}Au (dimethyl gold hexafluoroacetylacetonate, or DMG (hfac)) with 2- to 10-keV Xe{sup +}, Kr{sup +}, Ar{sup +}, Ne{sup +}, or He{sup +} ion beams. A conceptual model for ion beam induced deposition is presented which relates the net deposition yield to the gas adsorption, the decomposition cross section, and the sputter yield. To test this model, the deposition rate with 5-keV Ar{sup +} ions was measured in-situ as a function of ion current, gas pressure, and substrate temperature using the QCM. The deposition yield (mass deposited per incident ion) increased with increasing gas pressure and decreasing substrate temperature. The QCM was also used to measure the adsorption of DMG (hfac). Results demonstrate that the variation in deposition yield with temperature and pressure was proportional to the number of DMG (hfac) molecules adsorbed per cm{sup 2}, and verify the conceptual model. Based on the observed correlation between deposition yield and adsorption, a decomposition cross section for 5-keV argon ions of 2 {times} 10{sup {minus}13} cm{sup 2} was estimated.

  19. Ion-acoustic solitons in negative ion plasma with two-electron temperature distributions

    SciTech Connect

    Mishra, M. K.; Tiwari, R. S.; Chawla, J. K.

    2012-06-15

    Ion-acoustic solitons in a warm positive and negative ion species with different masses, concentrations, and charge states with two electron temperature distributions are studied. Using reductive perturbation method, Korteweg de-Vries (KdV) and modified-KdV (m-KdV) equations are derived for the system. The soliton solution of the KdV and m-KdV equations is discussed in detail. It is found that if the ions have finite temperatures, then there exist two types of modes, namely slow and fast ion-acoustic modes. It is also investigated that the parameter determining the nature of soliton (i.e., whether the system will support compressive or rarefactive solitons) is different for slow and fast modes. For the slow mode, the parameter is the relative temperature of the two ion species; whereas for the fast mode, it is the relative concentration of the two ion species. At a critical concentration of negative ions, both compressive and rarefactive solitons coexist. The amplitude and width of the solitons are discussed in detail at critical concentration for m-KdV solitons. The effect of the relative temperature of the two-electron and cold-electron concentration on the characteristics of the solitons are also discussed.

  20. Semiconductor Ion Implanters

    NASA Astrophysics Data System (ADS)

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at 7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at 6.2 billion! Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing `only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around 2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  1. Semiconductor Ion Implanters

    SciTech Connect

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at $7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at $6.2 billion. Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing 'only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around $2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  2. Laser ion source for high brightness heavy ion beam

    NASA Astrophysics Data System (ADS)

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. However we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. In 2014, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory. Now most of all the solid based heavy ions are being provided from the laser ion source for regular operation.

  3. Fast Li-Ion-Conducting Garnet-Related Li7–3xFexLa3Zr2O12 with Uncommon I4̅3d Structure

    PubMed Central

    2016-01-01

    Fast Li-ion-conducting Li oxide garnets receive a great deal of attention as they are suitable candidates for solid-state Li electrolytes. It was recently shown that Ga-stabilized Li7La3Zr2O12 crystallizes in the acentric cubic space group I4̅3d. This structure can be derived by a symmetry reduction of the garnet-type Ia3̅d structure, which is the most commonly found space group of Li oxide garnets and garnets in general. In this study, single-crystal X-ray diffraction confirms the presence of space group I4̅3d also for Li7–3xFexLa3Zr2O12. The crystal structure was characterized by X-ray powder diffraction, single-crystal X-ray diffraction, neutron powder diffraction, and Mößbauer spectroscopy. The crystal–chemical behavior of Fe3+ in Li7La3Zr2O12 is very similar to that of Ga3+. The symmetry reduction seems to be initiated by the ordering of Fe3+ onto the tetrahedral Li1 (12a) site of space group I4̅3d. Electrochemical impedance spectroscopy measurements showed a Li-ion bulk conductivity of up to 1.38 × 10–3 S cm–1 at room temperature, which is among the highest values reported for this group of materials. PMID:27570369

  4. Versatile lipid profiling by liquid chromatography-high resolution mass spectrometry using all ion fragmentation and polarity switching. Preliminary application for serum samples phenotyping related to canine mammary cancer.

    PubMed

    Gallart-Ayala, H; Courant, F; Severe, S; Antignac, J-P; Morio, F; Abadie, J; Le Bizec, B

    2013-09-24

    Lipids represent an extended class of substances characterized by such high variety and complexity that makes their unified analyses by liquid chromatography coupled to either high resolution or tandem mass spectrometry (LC-HRMS or LC-MS/MS) a real challenge. In the present study, a new versatile methodology associating ultra high performance liquid chromatography coupled to high resolution tandem mass spectrometry (UHPLC-HRMS/MS) have been developed for a comprehensive analysis of lipids. The use of polarity switching and "all ion fragmentation" (AIF) have been two action levels particularly exploited to finally permit the detection and identification of a multi-class and multi-analyte extended range of lipids in a single run. For identification purposes, both higher energy collision dissociation (HCD) and in-source CID (collision induced dissociation) fragmentation were evaluated in order to obtain information about the precursor and product ions in the same spectra. This approach provides both class-specific and lipid-specific fragments, enhancing lipid identification. Finally, the developed method was applied for differential phenotyping of serum samples collected from pet dogs developing spontaneous malignant mammary tumors and health controls. A biological signature associated with the presence of cancer was then successfully revealed from this lipidome analysis, which required to be further investigated and confirmed at larger scale.

  5. In Situ Measurements of Meteoric Ions

    NASA Technical Reports Server (NTRS)

    Grebowsky, Joseph M.; Aiken, Arthur C.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Extraterrestrial material is the source of metal ions in the Earth's atmosphere, Each year approx. 10(exp 8) kg of material is intercepted by the Earth. The origin of this material is predominantly solar orbiting interplanetary debris from comets or asteroids that crosses the Earth's orbit. It contains a very small amount of interstellar material. On occasion the Earth passes through enhanced amounts of debris associated with the orbit of a decaying comet. This leads to enhanced meteor shower displays for up to several days. The number flux of shower material is typically several times the average sporadic background influx of material. Meteoric material is some of the earliest material formed in the solar system. By studying the relative elemental abundances of atmospheric metal ions, information can be gained on the chemical composition of cometary debris and the chemical makeup of the early solar system. Using in situ sampling with rocket-borne ion mass spectrometers; there have been approximately 50 flights that made measurements of the metal ion abundances at attitudes between 80 and 130 km. It is this altitude range where incoming meteoric particles am ablated, the larger ones giving rise to visible meteor. displays. In several rocket measurements isotopic ratios of different atomic ion mass components and metal molecular ion concentrations have been determined and used to identify unambiguously the measured species and to investigate the processes controlling the metal ion distributions The composition of the Earth's ionosphere was first sampled by an ion mass spectrometer flown an a rocket in 1956. In 1958 a rocket-borne ion spectrometer identified, fbr the first time, a layer of metal ions near 95 km. These data were interpreted as evidence of an extraterrestrial rather than a terrestrial source. Istomin predicted: "It seems probable that with some improvement in the method that analysis of the ion composition in the E-region may be used for determining

  6. Formation of molecular ions by radiative association of cold trapped atoms and ions

    NASA Astrophysics Data System (ADS)

    Dulieu, Olivier; da Silva, Humberto, Jr.; Aymar, Mireille; Raoult, Maurice

    2015-05-01

    Radiative emission during cold collisions between trapped laser-cooled Rb atoms and alkaline-earth ions (Ca+ , Sr+ , Ba+) and Yb+ are studied theoretically, using accurate effective-core-potential based quantum chemistry calculations of potential energy curves and transition dipole moments of the related molecular ions. Radiative association of molecular ions is predicted to occur for all systems with a cross section two to ten times larger than the radiative charge transfer one. Partial and total rate constants are also calculated and compared to available experiments. Narrow shape resonances are expected, which could be detectable at low temperature with an experimental resolution at the limit of the present standards. Vibrational distributions show that the final molecular ions are not created in their ground state level. Supported by the Marie-Curie ITN ``COMIQ: Cold Molecular Ions at the Quantum limit'' of the EU (#607491).

  7. Advanced ion thruster and electrochemical launcher research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1983-01-01

    The theoretical model of orificed hollow cathode operation predicted experimentally observed cathode performance with reasonable accuracy. The deflection and divergence characteristics of ion beamlets emanating from a two grid optics system as a function of the relative offset of screen and accel grids hole axes were described. Ion currents associated with discharge chamber operation were controlled to improve ion thruster performance markedly. Limitations imposed by basic physical laws on reductions in screen grid hole size and grid spacing for ion optics systems were described. The influence of stray magnetic fields in the vicinity of a neutralizer on the performance of that neutralizer was demonstrated. The ion current density extracted from a thruster was enhanced by injecting electrons into the region between its ion accelerating grids. Theoretical analysis of the electrothermal ramjet concept of launching space bound payloads at high acceleration levels is described. The operation of this system is broken down into two phases. In the light gas gun phase the payload is accelerated to the velocity at which the ramjet phase can commence. Preliminary models of operation are examined and shown to yield overall energy efficiences for a typical Earth escape launch of 60 to 70%. When shock losses are incorporated these efficiencies are still observed to remain at the relatively high values of 40 to 50%.

  8. A Graphical Method for Estimating Ion-Rocket Performance

    NASA Technical Reports Server (NTRS)

    Reynolds, Thaine W.; Childs, J. Howard

    1960-01-01

    Equations relating the critical temperature and ion current density for surface ionization of cesium on tungsten are derived for the cases of zero and finite electric fields at the ion-emitting surface. These equations are used to obtain a series of graphs that can be used to solve many problems relating to ion-rocket theoretical performance. The effect of operation at less than space-charge-limited current density and the effect of nonuniform propellant flux onto the ion-emitting surface are also treated.

  9. High time resolution studies of upstream ions

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.; Levedahl, W. K.; Lin, R. P.; Parks, G. K.

    1984-01-01

    The influence of phi, the angle between the interplanetary magnetic field and the earth-sun vector on ions and electrons in the earth's bow shock, was investigated in terms of ISEE 2 data. A small phi was associated with intermediate energy upstream ions and reduced populations of low energy, about 1.6 keV, ion fluxes. The magnitude of phi was closely related to particular, constant energy levels, e.g., a phi of 40 deg and an energy of 30 keV and a phi of 75 deg and an energy of 6 keV. Ion fluxes are high in the angles form 60-80 deg and feature energies of 55-280 keV. The acceleration process up to the high energy levels in the 1-3 min interval from upstream to downstream occurs more rapidly than could be accounted for by a first-order Fermi process.

  10. APPARATUS FOR PRODUCING IONS OF VAPORIZABLE MATERIALS

    DOEpatents

    Starr, C.

    1957-11-19

    This patent relates to electronic discharge devices used as ion sources, and in particular describes an ion source for application in a calutron. The source utilizes two cathodes disposed at opposite ends of a longitudinal opening in an arc block fed with vaporized material. A magnetic field is provided parallel to the length of the arc block opening. The electrons from the cathodes are directed through slits in collimating electrodes into the arc block parallel to the magnetic field and cause an arc discharge to occur between the cathodes, as the arc block and collimating electrodes are at a positive potential with respect to the cathode. The ions are withdrawn by suitable electrodes disposed opposite the arc block opening. When such an ion source is used in a calutron, an arc discharge of increased length may be utilized, thereby increasing the efficiency and economy of operation.

  11. Low-Energy Ions from Laser-Cooled Atoms

    NASA Astrophysics Data System (ADS)

    Shayeganrad, G.; Fioretti, A.; Guerri, I.; Tantussi, F.; Ciampini, D.; Allegrini, M.; Viteau, M.; Fuso, F.

    2016-05-01

    We report the features of an ion source based on two-color photoionization of a laser-cooled cesium beam outsourced from a pyramidal magneto-optical trap. The ion source operates in continuous or pulsed mode. At acceleration voltages below 300 V, it delivers some ten ions per bunch with a relative energy spread Δ Urms/U ≃0.032 , as measured through the retarding field-energy-analyzer approach. Space-charge effects are negligible thanks to the low ion density attained in the interaction volume. The performances of the ion beam in a configuration using focused laser beams are extrapolated on the basis of the experimental results. Calculations demonstrate that our low-energy and low-current ion beam can be attractive for the development of emerging technologies requiring the delivery of a small amount of charge, down to the single-ion level and its eventual focusing in the 10-nm range.

  12. Industrial ion source technology

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1979-01-01

    In reactive ion etching of Si, varying amounts of O2 were added to the CF4 background. The experimental results indicated an etch rate less than that for Ar up to an O2 partial pressure of about .00006 Torr. Above this O2 pressure, the etch rate with CF4 exceeded that with Ar alone. For comparison the random arrival rate of O2 was approximately equal to the ion arrival rate at a partial pressure of about .00002 Torr. There were also ion source and ion pressure gauge maintenance problems as a result of the use of CF4. Large scale (4 sq cm) texturing of Si was accomplished using both Cu and stainless steel seed. The most effective seeding method for this texturing was to surround the sample with large inclined planes. Designing, fabricating, and testing a 200 sq cm rectangular beam ion source was emphasized. The design current density was 6 mA/sq cm with 500 eV argon ions, although power supply limitations permitted operation to only 2 mA/sq cm. The use of multiple rectangular beam ion sources for continuous processing of wider areas than would be possible with a single source was also studied. In all cases investigated, the most uniform coverage was obtained with 0 to 2 cm beam overlay. The maximum departure from uniform processing at optimum beam overlap was found to be +15%.

  13. Ion channels in microbes

    PubMed Central

    Martinac, Boris; Saimi, Yoshiro; Kung, Ching

    2008-01-01

    Summary Studies of ion channels have for long been dominated by the animalcentric, if not anthropocentric view of physiology. The structures and activities of ion channels had, however, evolved long before the appearance of complex multicellular organisms on Earth. The diversity of ion channels existing in cellular membranes of prokaryotes is a good example. Though at first it may appear as a paradox that most of what we know about the structure of eukaryotic ion channels is based on the structure of bacterial channels, this should not be surprising given the evolutionary relatedness of all living organisms and suitability of microbial cells for structural studies of biological macromolecules in a laboratory environment. Genome sequences of the human as well as various microbial, plant and animal organisms unambiguously established the evolutionary links, whereas crystallographic studies of the structures of major types of ion channels published over the last decade clearly demonstrated the advantage of using microbes as experimental organisms. The purpose of this review is not only to provide an account of acquired knowledge on microbial ion channels but also to show that the study of microbes and their ion channels may also hold a key to solving unresolved molecular mysteries in the future. PMID:18923187

  14. Ion photon emission microscopy

    NASA Astrophysics Data System (ADS)

    Rossi, P.; Doyle, B. L.; Banks, J. C.; Battistella, A.; Gennaro, G.; McDaniel, F. D.; Mellon, M.; Vittone, E.; Vizkelethy, G.; Wing, N. D.

    2003-09-01

    A new ion-induced emission microscopy has been invented and demonstrated, which is called ion photon emission microscopy (IPEM). It employs a low current, broad ion beam impinging on a sample, previously coated or simply covered with a few microns of a fast, highly efficient phosphor layer. The light produced at the single ion impact point is collected with an optical microscope and projected at high magnification onto a single photon position sensitive detector (PSD). This allows maps of the ion strike effects to be produced, effectively removing the need for a microbeam. Irradiation in air and even the use of alpha particle sources with no accelerator are possible. Potential applications include ion beam induced charge collection studies of semiconducting and insulating materials, single event upset studies on microchips and even biological cells in radiobiological effectiveness experiments. We describe the IPEM setup, including a 60× OM-40 microscope with a 1.5 mm hole for the beam transmission and a Quantar PSD with 60 μm pixel. Bicron plastic scintillator blades of 10 μm were chosen as a phosphor for their nanosecond time resolution, homogeneity, utility and commercial availability. The results given in this paper are for a prototype IPEM system. They indicate a resolution of ˜12 μm, the presence of a spatial halo and a He-ion efficiency of ˜20%. This marks the first time that nuclear microscopy has been performed with a radioactive source.

  15. Ion thruster performance model

    NASA Technical Reports Server (NTRS)

    Brophy, J. R.

    1984-01-01

    A model of ion thruster performance is developed for high flux density, cusped magnetic field thruster designs. This model is formulated in terms of the average energy required to produce an ion in the discharge chamber plasma and the fraction of these ions that are extracted to form the beam. The direct loss of high energy (primary) electrons from the plasma to the anode is shown to have a major effect on thruster performance. The model provides simple algebraic equations enabling one to calculate the beam ion energy cost, the average discharge chamber plasma ion energy cost, the primary electron density, the primary-to-Maxwellian electron density ratio and the Maxwellian electron temperature. Experiments indicate that the model correctly predicts the variation in plasma ion energy cost for changes in propellant gas (Ar, Kr and Xe), grid transparency to neutral atoms, beam extraction area, discharge voltage, and discharge chamber wall temperature. The model and experiments indicate that thruster performance may be described in terms of only four thruster configuration dependent parameters and two operating parameters. The model also suggests that improved performance should be exhibited by thruster designs which extract a large fraction of the ions produced in the discharge chamber, which have good primary electron and neutral atom containment and which operate at high propellant flow rates.

  16. Polarized negative ions

    SciTech Connect

    Haeberli, W.

    1981-04-01

    This paper presents a survey of methods, commonly in use or under development, to produce beams of polarized negative ions for injection into accelerators. A short summary recalls how the hyperfine interaction is used to obtain nuclear polarization in beams of atoms. Atomic-beam sources for light ions are discussed. If the best presently known techniques are incorporated in all stages of the source, polarized H/sup -/ and D/sup -/ beams in excess of 10 ..mu..A can probably be achieved. Production of polarized ions from fast (keV) beams of polarized atoms is treated separately for atoms in the H(25) excited state (Lamb-Shift source) and atoms in the H(1S) ground state. The negative ion beam from Lamb-Shift sources has reached a plateau just above 1 ..mu..A, but this beam current is adequate for many applications and the somewhat lower beam current is compensated by other desirable characteristics. Sources using fast polarized ground state atoms are in a stage of intense development. The next sections summarize production of polarized heavy ions by the atomic beam method, which is well established, and by optical pumping, which has recently been demonstrated to yield very large nuclear polarization. A short discussion of proposed ion sources for polarized /sup 3/He/sup -/ ions is followed by some concluding remarks.

  17. Image-projection ion-beam lithography

    SciTech Connect

    Miller, P.A. )

    1989-09-01

    Image-projection ion-beam lithography is an attractive alternative for submicron patterning because it may provide high throughput; it uses demagnification to gain advantages in reticle fabrication, inspection, and lifetime; and it enjoys the precise deposition characteristics of ions which cause essentially no collateral damage. This lithographic option involves extracting low-mass ions (e.g., He{sup +} ) from a plasma source, transmitting the ions at low voltage through a stencil reticle, and then accelerating and focusing the ions electrostatically onto a resist-coated wafer. While the advantages of this technology have been demonstrated experimentally by the work of IMS (Austria), many difficulties still impede extension of the technology to the high-volume production of microelectronic devices. We report a computational study of a lithography system designed to address problem areas in field size, telecentricity, and chromatic and geometric aberration. We present a novel ion-column-design approach and conceptual ion-source and column designs which address these issues. We find that image-projection ion-beam technology should in principle meet high-volume-production requirements. The technical success of our present relatively compact-column design requires that a glow-discharge-based ion source (or equivalent cold source) be developed and that moderate further improvement in geometric aberration levels be obtained. Our system requires that image predistortion be employed during reticle fabrication to overcome distortion due to residual image nonlinearity and space-charge forces. This constitutes a software data preparation step, as do correcting for distortions in electron lithography columns and performing proximity-effect corrections. Areas needing further fundamental work are identified.

  18. Enhancing Secondary Ion Yields in Time of Flight-Secondary Ion Mass Spectrometry Using Water Cluster Primary Beams

    PubMed Central

    2013-01-01

    Low secondary ion yields from organic and biological molecules are the principal limitation on the future exploitation of time of flight-secondary ion mass spectrometry (TOF-SIMS) as a surface and materials analysis technique. On the basis of the hypothesis that increasing the density of water related fragments in the ion impact zone would enhance proton mediated reactions, a prototype water cluster ion beam has been developed using supersonic jet expansion methodologies that enable ion yields using a 10 keV (H2O)1000+ beam to be compared with those obtained using a 10 keV Ar1000+ beam. The ion yields from four standard compounds, arginine, haloperidol, DPPC, and angiotensin II, have been measured under static+ and high ion dose conditions. Ion yield enhancements relative to the argon beam on the order of 10 or more have been observed for all the compounds such that the molecular ion yield per a 1 μm pixel can be as high as 20, relative to 0.05 under an argon beam. The water beam has also been shown to partially lift the matrix effect in a 1:10 mixture of haloperidol and dipalmitoylphosphatidylcholine (DPPC) that suppresses the haloperidol signal. These results provide encouragement that further developments of the water cluster beam to higher energies and larger cluster sizes will provide the ion yield enhancements necessary for the future development of TOF-SIMS. PMID:23718847

  19. Laser-cooled atomic ions as probes of molecular ions

    SciTech Connect

    Brown, Kenneth R.; Viteri, C. Ricardo; Clark, Craig R.; Goeders, James E.; Khanyile, Ncamiso B.; Vittorini, Grahame D.

    2015-01-22

    Trapped laser-cooled atomic ions are a new tool for understanding cold molecular ions. The atomic ions not only sympathetically cool the molecular ions to millikelvin temperatures, but the bright atomic ion fluorescence can also serve as a detector of both molecular reactions and molecular spectra. We are working towards the detection of single molecular ion spectra by sympathetic heating spectroscopy. Sympathetic heating spectroscopy uses the coupled motion of two trapped ions to measure the spectra of one ion by observing changes in the fluorescence of the other ion. Sympathetic heating spectroscopy is a generalization of quantum logic spectroscopy, but does not require ions in the motional ground state or coherent control of the ion internal states. We have recently demonstrated this technique using two isotopes of Ca{sup +} [Phys. Rev. A, 81, 043428 (2010)]. Limits of the method and potential applications for molecular spectroscopy are discussed.

  20. Ion dynamics during seizures

    PubMed Central

    Raimondo, Joseph V.; Burman, Richard J.; Katz, Arieh A.; Akerman, Colin J.

    2015-01-01

    Changes in membrane voltage brought about by ion fluxes through voltage and transmitter-gated channels represent the basis of neural activity. As such, electrochemical gradients across the membrane determine the direction and driving force for the flow of ions and are therefore crucial in setting the properties of synaptic transmission and signal propagation. Ion concentration gradients are established by a variety of mechanisms, including specialized transporter proteins. However, transmembrane gradients can be affected by ionic fluxes through channels during periods of elevated neural activity, which in turn are predicted to influence the properties of on-going synaptic transmission. Such activity-induced changes to ion concentration gradients are a feature of both physiological and pathological neural processes. An epileptic seizure is an example of severely perturbed neural activity, which is accompanied by pronounced changes in intracellular and extracellular ion concentrations. Appreciating the factors that contribute to these ion dynamics is critical if we are to understand how a seizure event evolves and is sustained and terminated by neural tissue. Indeed, this issue is of significant clinical importance as status epilepticus—a type of seizure that does not stop of its own accord—is a life-threatening medical emergency. In this review we explore how the transmembrane concentration gradient of the six major ions (K+, Na+, Cl−, Ca2+, H+and HCO3−) is altered during an epileptic seizure. We will first examine each ion individually, before describing how multiple interacting mechanisms between ions might contribute to concentration changes and whether these act to prolong or terminate epileptic activity. In doing so, we will consider how the availability of experimental techniques has both advanced and restricted our ability to study these phenomena. PMID:26539081