Effective constitutive relations for large repetitive frame-like structures
NASA Technical Reports Server (NTRS)
Nayfeh, A. H.; Hefzy, M. S.
1981-01-01
Effective mechanical properties for large repetitive framelike structures are derived using combinations of strength of material and orthogonal transformation techniques. Symmetry considerations are used in order to identify independent property constants. The actual values of these constants are constructed according to a building block format which is carried out in the three consecutive steps: (1) all basic planar lattices are identified; (2) effective continuum properties are derived for each of these planar basic grids using matrix structural analysis methods; and (3) orthogonal transformations are used to determine the contribution of each basic set to the overall effective continuum properties of the structure.
41 CFR 102-73.10 - What is the basic real estate acquisition policy?
Code of Federal Regulations, 2013 CFR
2013-07-01
... ESTATE ACQUISITION General Provisions § 102-73.10 What is the basic real estate acquisition policy? When... real estate and related services in an efficient and cost effective manner. ... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What is the basic real...
41 CFR 102-73.10 - What is the basic real estate acquisition policy?
Code of Federal Regulations, 2012 CFR
2012-01-01
... ESTATE ACQUISITION General Provisions § 102-73.10 What is the basic real estate acquisition policy? When... real estate and related services in an efficient and cost effective manner. ... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false What is the basic real...
41 CFR 102-73.10 - What is the basic real estate acquisition policy?
Code of Federal Regulations, 2014 CFR
2014-01-01
... ESTATE ACQUISITION General Provisions § 102-73.10 What is the basic real estate acquisition policy? When... real estate and related services in an efficient and cost effective manner. ... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What is the basic real...
41 CFR 102-73.10 - What is the basic real estate acquisition policy?
Code of Federal Regulations, 2010 CFR
2010-07-01
... ESTATE ACQUISITION General Provisions § 102-73.10 What is the basic real estate acquisition policy? When... real estate and related services in an efficient and cost effective manner. ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What is the basic real...
41 CFR 102-73.10 - What is the basic real estate acquisition policy?
Code of Federal Regulations, 2011 CFR
2011-01-01
... ESTATE ACQUISITION General Provisions § 102-73.10 What is the basic real estate acquisition policy? When... real estate and related services in an efficient and cost effective manner. ... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What is the basic real...
Order-of-magnitude physics of neutron stars. Estimating their properties from first principles
NASA Astrophysics Data System (ADS)
Reisenegger, Andreas; Zepeda, Felipe S.
2016-03-01
We use basic physics and simple mathematics accessible to advanced undergraduate students to estimate the main properties of neutron stars. We set the stage and introduce relevant concepts by discussing the properties of "everyday" matter on Earth, degenerate Fermi gases, white dwarfs, and scaling relations of stellar properties with polytropic equations of state. Then, we discuss various physical ingredients relevant for neutron stars and how they can be combined in order to obtain a couple of different simple estimates of their maximum mass, beyond which they would collapse, turning into black holes. Finally, we use the basic structural parameters of neutron stars to briefly discuss their rotational and electromagnetic properties.
Tradeoffs between hydraulic and mechanical stress responses of mature Norway spruce trunk wood.
Rosner, Sabine; Klein, Andrea; Müller, Ulrich; Karlsson, Bo
2008-08-01
We tested the effects of growth characteristics and basic density on hydraulic and mechanical properties of mature Norway spruce (Picea abies (L.) Karst.) wood from six 24-year-old clones, grown on two sites in southern Sweden differing in water availability. Hydraulic parameters assessed were specific hydraulic conductivity at full saturation (ks100) and vulnerability to cavitation (Psi50), mechanical parameters included bending strength (sigma b), modulus of elasticity (MOE), compression strength (sigma a) and Young's modulus (E). Basic density, diameter at breast height, tree height, and hydraulic and mechanical parameters varied considerably among clones. Clonal means of hydraulic and mechanical properties were strongly related to basic density and to growth parameters across sites, especially to diameter at breast height. Compared with stem wood of slower growing clones, stem wood of rapidly growing clones had significantly lower basic density, lower sigma b, MOE, sigma a and E, was more vulnerable to cavitation, but had higher ks100. Basic density was negatively correlated to Psi50 and ks100. We therefore found a tradeoff between Psi50 and ks100. Clones with high basic density had significantly lower hydraulic vulnerability, but also lower hydraulic conductivity at full saturation and thus less rapid growth than clones with low basic density. This tradeoff involved a negative relationship between Psi50 and sigma b as well as MOE, and between ks100 and sigma b, MOE and sigma a. Basic density and Psi50 showed no site-specific differences, but tree height, diameter at breast height, ks100 and mechanical strength and stiffness were significantly lower at the drier site. Basic density had no influence on the site-dependent differences in hydraulic and mechanical properties, but was strongly negatively related to diameter at breast height. Selecting for growth may thus lead not only to a reduction in mechanical strength and stiffness but also to a reduction in hydraulic safety.
The Cryogenic Properties of Several Aluminum-Beryllium Alloys and a Beryllium Oxide Material
NASA Technical Reports Server (NTRS)
Gamwell, Wayne R.; McGill, Preston B.
2003-01-01
Performance related mechanical properties for two aluminum-beryllium (Al-Be) alloys and one beryllium-oxide (BeO) material were developed at cryogenic temperatures. Basic mechanical properties (Le., ultimate tensile strength, yield strength, percent elongation, and elastic modulus were obtained for the aluminum-beryllium alloy, AlBeMetl62 at cryogenic [-195.5"C (-320 F) and -252.8"C (-423"F)I temperatures. Basic mechanical properties for the Be0 material were obtained at cyrogenic [- 252.8"C (-423"F)] temperatures. Fracture properties were obtained for the investment cast alloy Beralcast 363 at cryogenic [-252.8"C (-423"F)] temperatures. The AlBeMetl62 material was extruded, the Be0 material was hot isostatic pressing (HIP) consolidated, and the Beralcast 363 material was investment cast.
Fundamentals of biomechanics in tissue engineering of bone.
Athanasiou, K A; Zhu, C; Lanctot, D R; Agrawal, C M; Wang, X
2000-08-01
The objective of this review is to provide basic information pertaining to biomechanical aspects of bone as they relate to tissue engineering. The review is written for the general tissue engineering reader, who may not have a biomechanical engineering background. To this end, biomechanical characteristics and properties of normal and repair cortical and cancellous bone are presented. Also, this chapter intends to describe basic structure-function relationships of these two types of bone. Special emphasis is placed on salient classical and modern testing methods, with both material and structural properties described.
The Elusive Memristor: Properties of Basic Electrical Circuits
ERIC Educational Resources Information Center
Joglekar, Yogesh N.; Wolf, Stephen J.
2009-01-01
We present an introduction to and a tutorial on the properties of the recently discovered ideal circuit element, a memristor. By definition, a memristor M relates the charge "q" and the magnetic flux [phi] in a circuit and complements a resistor R, a capacitor C and an inductor L as an ingredient of ideal electrical circuits. The properties of…
Impact of soil properties on selected pharmaceuticals adsorption in soils
NASA Astrophysics Data System (ADS)
Kodesova, Radka; Kocarek, Martin; Klement, Ales; Fer, Miroslav; Golovko, Oksana; Grabic, Roman; Jaksik, Ondrej
2014-05-01
The presence of human and veterinary pharmaceuticals in the environment has been recognized as a potential threat. Pharmaceuticals may contaminate soils and consequently surface and groundwater. Study was therefore focused on the evaluation of selected pharmaceuticals adsorption in soils, as one of the parameters, which are necessary to know when assessing contaminant transport in soils. The goals of this study were: (1) to select representative soils of the Czech Republic and to measure soil physical and chemical properties; (2) to measure adsorption isotherms of selected pharmaceuticals; (3) to evaluate impact of soil properties on pharmaceutical adsorptions and to propose pedotransfer rules for estimating adsorption coefficients from the measured soil properties. Batch sorption tests were performed for 6 selected pharmaceuticals (beta blockers Atenolol and Metoprolol, anticonvulsant Carbamazepin, and antibiotics Clarithromycin, Trimetoprim and Sulfamethoxazol) and 13 representative soils (soil samples from surface horizons of 11 different soil types and 2 substrates). The Freundlich equations were used to describe adsorption isotherms. The simple correlations between measured physical and chemical soil properties (soil particle density, soil texture, oxidable organic carbon content, CaCO3 content, pH_H2O, pH_KCl, exchangeable acidity, cation exchange capacity, hydrolytic acidity, basic cation saturation, sorption complex saturation, salinity), and the Freundlich adsorption coefficients were assessed using Pearson correlation coefficient. Then multiple-linear regressions were applied to predict the Freundlich adsorption coefficients from measured soil properties. The largest adsorption was measured for Clarithromycin (average value of 227.1) and decreased as follows: Trimetoprim (22.5), Metoprolol (9.0), Atenolol (6.6), Carbamazepin (2.7), Sulfamethoxazol (1.9). Absorption coefficients for Atenolol and Metoprolol closely correlated (R=0.85), and both were also related to absorption coefficients of Carbamazepin (R=0.67 and 0.68). Positive correlation was found between Trimetoprim absorption coefficients and Atenolol, Metoprolol or Carbamazepin absorption coefficients. The negative relationship was found between absorption coefficients of Sulfomethoxazol and Clarithromycin (R=-0.80). Sulfamethoxazol absorption coefficient was negatively related to pH_H2O, pH_KCL or sorption complex saturation and positively to the hydrolytic acidity or exchangeable acidity. Trimetoprim absorption coefficient was positively related to the oxidable organic carbon content, cation exchange capacity, basic cation saturation or silt content and negatively to particle density or sand content. Clarithromycin absorption coefficient was positively related to pH_H2O, pH_KCL, CaCO3 content, basic cation saturation or sorption complex saturation and negatively to hydrolytic acidity or exchangeable acidity. Atenolol and Metoprolol absorption coefficients were positively related to the oxidable organic carbon content, cation exchange capacity, basic cation saturation, salinity, clay content or silt content, and negatively to the particle density or sand content. Finally Carbamazepin absorption coefficient was positively related to the oxidable organic carbon content, cation exchange capacity or basic cation saturation, and negatively to the particle density or sand content. Evaluated pedotransfer rules for different pharmaceuticals included different sets of soil properties. Absorption coefficients could be predicted from: the hydrolytic acidity (Sulfamethoxazol), the oxidable organic carbon content (Trimetoprim and Carbamazepin), the oxidable organic carbon content, hydrolytic acidity and cation exchange capacity (Clarithromycin), the basic cation saturation (Atenolol and Metoprolol). Acknowledgement: Authors acknowledge the financial support of the Czech Science Foundation (Project No. 13-12477S).
Maximum relative speeds of living organisms: Why do bacteria perform as fast as ostriches?
NASA Astrophysics Data System (ADS)
Meyer-Vernet, Nicole; Rospars, Jean-Pierre
2016-12-01
Self-locomotion is central to animal behaviour and survival. It is generally analysed by focusing on preferred speeds and gaits under particular biological and physical constraints. In the present paper we focus instead on the maximum speed and we study its order-of-magnitude scaling with body size, from bacteria to the largest terrestrial and aquatic organisms. Using data for about 460 species of various taxonomic groups, we find a maximum relative speed of the order of magnitude of ten body lengths per second over a 1020-fold mass range of running and swimming animals. This result implies a locomotor time scale of the order of one tenth of second, virtually independent on body size, anatomy and locomotion style, whose ubiquity requires an explanation building on basic properties of motile organisms. From first-principle estimates, we relate this generic time scale to other basic biological properties, using in particular the recent generalisation of the muscle specific tension to molecular motors. Finally, we go a step further by relating this time scale to still more basic quantities, as environmental conditions at Earth in addition to fundamental physical and chemical constants.
NASA Astrophysics Data System (ADS)
Shang, De-Yi; Zhong, Liang-Cai
2017-01-01
Our novel models for fluid's variable physical properties are improved and reported systematically in this work for enhancement of theoretical and practical value on study of convection heat and mass transfer. It consists of three models, namely (1) temperature parameter model, (2) polynomial model, and (3) weighted-sum model, respectively for treatment of temperature-dependent physical properties of gases, temperature-dependent physical properties of liquids, and concentration- and temperature-dependent physical properties of vapour-gas mixture. Two related components are proposed, and involved in each model for fluid's variable physical properties. They are basic physic property equations and theoretical similarity equations on physical property factors. The former, as the foundation of the latter, is based on the typical experimental data and physical analysis. The latter is built up by similarity analysis and mathematical derivation based on the former basic physical properties equations. These models are available for smooth simulation and treatment of fluid's variable physical properties for assurance of theoretical and practical value of study on convection of heat and mass transfer. Especially, so far, there has been lack of available study on heat and mass transfer of film condensation convection of vapour-gas mixture, and the wrong heat transfer results existed in widespread studies on the related research topics, due to ignorance of proper consideration of the concentration- and temperature-dependent physical properties of vapour-gas mixture. For resolving such difficult issues, the present novel physical property models have their special advantages.
Basic Beaches for the Classroom.
ERIC Educational Resources Information Center
McLaren, J. Philip
1986-01-01
Lists and explains the major characteristics of water. Compares water's molecular structure and its temperature-related properties with four other lightweight molecules. Discusses why water is considered the universal solvent. (ML)
ERIC Educational Resources Information Center
Zuber, Julia; Pixner, Silvia; Moeller, Korbinian; Nuerk, Hans-Christoph
2009-01-01
Transcoding Arabic numbers from and into verbal number words is one of the most basic number processing tasks commonly used to index the verbal representation of numbers. The inversion property, which is an important feature of some number word systems (e.g., German "einundzwanzig" [one and twenty]), might represent a major difficulty in…
NASA Astrophysics Data System (ADS)
Tušek, Jaka; Engelbrecht, Kurt; Mañosa, Lluis; Vives, Eduard; Pryds, Nini
2016-12-01
This paper presents direct and indirect methods for studying the elastocaloric effect (eCE) in shape memory materials and its comparison. The eCE can be characterized by the adiabatic temperature change or the isothermal entropy change (both as a function of applied stress/strain). To get these quantities, the evaluation of the eCE can be done using either direct methods, where one measures (adiabatic) temperature changes or indirect methods where one can measure the stress-strain-temperature characteristics of the materials and from these deduce the adiabatic temperature and isothermal entropy changes. The former can be done using the basic thermodynamic relations, i.e. Maxwell relation and Clausius-Clapeyron equation. This paper further presents basic thermodynamic properties of shape memory materials, such as the adiabatic temperature change, isothermal entropy change and total entropy-temperature diagrams (all as a function of temperature and applied stress/strain) of two groups of materials (Ni-Ti and Cu-Zn-Al alloys) obtained using indirect methods through phenomenological modelling and Maxwell relation. In the last part of the paper, the basic definition of the efficiency of the elastocaloric thermodynamic cycle (coefficient of performance) is defined and discussed.
Essentially semismall Quasi-Dedekind module relative to a module
NASA Astrophysics Data System (ADS)
Hussain, Mukdad Q.
2018-05-01
Let R be associative ring with identity and M be a unitary R-module. In this paper study the direct summand of essentially semismall quasi-Dedekind module and prove that the direct sum of essentially semismall quasi-Dedekind modules need not be essentially semismall quasi-Dedekind and give the definition of essentially semismall quasi-Dedekind relative to a module with some examples, also give some of their basic properties and some examples that illustrate these properties.
Code of Federal Regulations, 2010 CFR
2010-07-01
... safety and environmental management policies for real property? 102-80.10 Section 102-80.10 Public... MANAGEMENT REGULATION REAL PROPERTY 80-SAFETY AND ENVIRONMENTAL MANAGEMENT General Provisions § 102-80.10 What are the basic safety and environmental management policies for real property? The basic safety and...
NASA Technical Reports Server (NTRS)
Conti, Peter S.; Underhill, Anne B.; Jordan, Stuart (Editor); Thomas, Richard (Editor)
1988-01-01
Basic information is given about O and Wolf-Rayet stars indicating how these stars are defined and what their chief observable properties are. Part 2 of the volume discussed four related themes pertaining to the hottest and most luminous stars. Presented are: an observational overview of the spectroscopic classification and extrinsic properties of O and Wolf-Rayet stars; the intrinsic parameters of luminosity, effective temperature, mass, and composition of the stars, and a discussion of their viability; stellar wind properties; and the related issues concerning the efforts of stellar radiation and wind on the immediate interstellar environment are presented.
NASA Astrophysics Data System (ADS)
Berghofer, Philipp
2018-05-01
Ontic structural realism refers to the novel, exciting, and widely discussed basic idea that the structure of physical reality is genuinely relational. In its radical form, the doctrine claims that there are, in fact, no objects but only structure, i.e., relations. More moderate approaches state that objects have only relational but no intrinsic properties. In its most moderate and most tenable form, ontic structural realism assumes that at the most fundamental level of physical reality there are only relational properties. This means that the most fundamental objects only possess relational but no non-reducible intrinsic properties. The present paper will argue that our currently best physics refutes even this most moderate form of ontic structural realism. More precisely, I will claim that 1) according to quantum field theory, the most fundamental objects of matter are quantum fields and not particles, and show that 2) according to the Standard Model, quantum fields have intrinsic non-relational properties.
Supergravity and the Unification of the Laws of Physics
ERIC Educational Resources Information Center
Freedman, Daniel Z.; van Nieuwenhuizen, Peter
1978-01-01
In this new theory the gravitational force arises from a symmetry relating particles with vastly different properties. The ultimate result may be a unified theory of all the basic forces in nature. (Author/BB)
A review of the different techniques for solid surface acid-base characterization.
Sun, Chenhang; Berg, John C
2003-09-18
In this work, various techniques for solid surface acid-base (AB) characterization are reviewed. Different techniques employ different scales to rank acid-base properties. Based on the results from literature and the authors' own investigations for mineral oxides, these scales are compared. The comparison shows that Isoelectric Point (IEP), the most commonly used AB scale, is not a description of the absolute basicity or acidity of a surface, but a description of their relative strength. That is, a high IEP surface shows more basic functionality comparing with its acidic functionality, whereas a low IEP surface shows less basic functionality comparing with its acidic functionality. The choice of technique and scale for AB characterization depends on the specific application. For the cases in which the overall AB property is of interest, IEP (by electrokinetic titration) and H(0,max) (by indicator dye adsorption) are appropriate. For the cases in which the absolute AB property is of interest such as in the study of adhesion, it is more pertinent to use chemical shift (by XPS) and the heat of adsorption of probe gases (by calorimetry or IGC).
NASA Astrophysics Data System (ADS)
Hadi, Inaam M. A.; Al-aeashi, Shukur N.
2018-05-01
If R is a ring with identity and M is a unitary right R-module. Here we introduce the class of weakly coretractable module. Some basic properties are investigated and some relationships between these modules and other related one are introduced.
ERIC Educational Resources Information Center
De Los Reyes, Andres; Alfano, Candice A.; Beidel, Deborah C.
2010-01-01
Discrepancies between informants' reports of children's behavior are robustly observed in clinical child research and have important implications for interpreting the outcomes of controlled treatment trials. However, little is known about the basic psychometric properties of these discrepancies. This study examined the relation between…
Internally electrodynamic particle model: Its experimental basis and its predictions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng-Johansson, J. X., E-mail: jxzj@iofpr.or
2010-03-15
The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts: (a) electric charges present with all material particles, (b) an accelerated charge generates electromagnetic waves according to Maxwell's equations and Planck energy equation, and (c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schroedinger equation, mass, Einstein mass-energy relation, Newton's law of gravity,more » single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A conditioned solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.« less
Internally electrodynamic particle model: Its experimental basis and its predictions
NASA Astrophysics Data System (ADS)
Zheng-Johansson, J. X.
2010-03-01
The internally electrodynamic (IED) particle model was derived based on overall experimental observations, with the IED process itself being built directly on three experimental facts: (a) electric charges present with all material particles, (b) an accelerated charge generates electromagnetic waves according to Maxwell’s equations and Planck energy equation, and (c) source motion produces Doppler effect. A set of well-known basic particle equations and properties become predictable based on first principles solutions for the IED process; several key solutions achieved are outlined, including the de Broglie phase wave, de Broglie relations, Schrödinger equation, mass, Einstein mass-energy relation, Newton’s law of gravity, single particle self interference, and electromagnetic radiation and absorption; these equations and properties have long been broadly experimentally validated or demonstrated. A conditioned solution also predicts the Doebner-Goldin equation which emerges to represent a form of long-sought quantum wave equation including gravity. A critical review of the key experiments is given which suggests that the IED process underlies the basic particle equations and properties not just sufficiently but also necessarily.
Code of Federal Regulations, 2012 CFR
2012-07-01
... mortgages on units in the existing condominium property. All taxes, assessments, mechanic's liens, and other... after the date of recording the declaration. On a case basic, longer periods of expansion rights will be...
Code of Federal Regulations, 2010 CFR
2010-07-01
... mortgages on units in the existing condominium property. All taxes, assessments, mechanic's liens, and other... after the date of recording the declaration. On a case basic, longer periods of expansion rights will be...
Code of Federal Regulations, 2011 CFR
2011-07-01
... mortgages on units in the existing condominium property. All taxes, assessments, mechanic's liens, and other... after the date of recording the declaration. On a case basic, longer periods of expansion rights will be...
Code of Federal Regulations, 2013 CFR
2013-07-01
... mortgages on units in the existing condominium property. All taxes, assessments, mechanic's liens, and other... after the date of recording the declaration. On a case basic, longer periods of expansion rights will be...
Code of Federal Regulations, 2014 CFR
2014-07-01
... mortgages on units in the existing condominium property. All taxes, assessments, mechanic's liens, and other... after the date of recording the declaration. On a case basic, longer periods of expansion rights will be...
Mapping on complex neutrosophic soft expert sets
NASA Astrophysics Data System (ADS)
Al-Quran, Ashraf; Hassan, Nasruddin
2018-04-01
We introduce the mapping on complex neutrosophic soft expert sets. Further, we investigated the basic operations and other related properties of complex neutrosophic soft expert image and complex neutrosophic soft expert inverse image of complex neutrosophic soft expert sets.
22 CFR 72.29 - Real property overseas belonging to deceased United States citizen or national.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Real property overseas belonging to deceased... the State Department Basic Authorities Act (22 U.S.C. 2697) and section 9(a)(3) of the Foreign Service Buildings Act of 1926 (22 U.S.C. 300(a)(3)). (d) If the Department of State does not wish to retain such...
41 CFR 102-77.10 - What basic Art-in-Architecture policy governs Federal agencies?
Code of Federal Regulations, 2012 CFR
2012-01-01
... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false What basic Art-in-Architecture policy governs Federal agencies? 102-77.10 Section 102-77.10 Public Contracts and Property... PROPERTY 77-ART-IN-ARCHITECTURE General Provisions § 102-77.10 What basic Art-in-Architecture policy...
41 CFR 102-77.10 - What basic Art-in-Architecture policy governs Federal agencies?
Code of Federal Regulations, 2014 CFR
2014-01-01
... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What basic Art-in-Architecture policy governs Federal agencies? 102-77.10 Section 102-77.10 Public Contracts and Property... PROPERTY 77-ART-IN-ARCHITECTURE General Provisions § 102-77.10 What basic Art-in-Architecture policy...
41 CFR 102-77.10 - What basic Art-in-Architecture policy governs Federal agencies?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What basic Art-in-Architecture policy governs Federal agencies? 102-77.10 Section 102-77.10 Public Contracts and Property... PROPERTY 77-ART-IN-ARCHITECTURE General Provisions § 102-77.10 What basic Art-in-Architecture policy...
Debecker, Damien P; Gaigneaux, Eric M; Busca, Guido
2009-01-01
Basic catalysis! The basic properties of hydrotalcites (see picture) make them attractive for numerous catalytic applications. Probing the basicity of the catalysts is crucial to understand the base-catalysed processes and to optimise the catalyst preparation. Various parameters can be employed to tune the basic properties of hydrotalcite-based catalysts towards the basicity demanded by each target chemical reaction.Hydrotalcites offer unique basic properties that make them very attractive for catalytic applications. It is of primary interest to make use of accurate tools for probing the basicity of hydrotalcite-based catalysts for the purpose of 1) fundamental understanding of base-catalysed processes with hydrotalcites and 2) optimisation of the catalytic performance achieved in reactions of industrial interest. Techniques based on probe molecules, titration techniques and test reactions along with physicochemical characterisation are overviewed in the first part of this review. The aim is to provide the tools for understanding how series of parameters involved in the preparation of hydrotalcite-based catalytic materials can be employed to control and adapt the basic properties of the catalyst towards the basicity demanded by each target chemical reaction. An overview of recent and significant achievements in that perspective is presented in the second part of the paper.
Katayama, R; Sakai, S; Sakaguchi, T; Maeda, T; Takada, K; Hayabuchi, N; Morishita, J
2008-07-20
PURPOSE/AIM OF THE EXHIBIT: The purpose of this exhibit is: 1. To explain "resampling", an image data processing, performed by the digital radiographic system based on flat panel detector (FPD). 2. To show the influence of "resampling" on the basic imaging properties. 3. To present accurate measurement methods of the basic imaging properties of the FPD system. 1. The relationship between the matrix sizes of the output image and the image data acquired on FPD that automatically changes depending on a selected image size (FOV). 2. The explanation of the image data processing of "resampling". 3. The evaluation results of the basic imaging properties of the FPD system using two types of DICOM image to which "resampling" was performed: characteristic curves, presampled MTFs, noise power spectra, detective quantum efficiencies. CONCLUSION/SUMMARY: The major points of the exhibit are as follows: 1. The influence of "resampling" should not be disregarded in the evaluation of the basic imaging properties of the flat panel detector system. 2. It is necessary for the basic imaging properties to be measured by using DICOM image to which no "resampling" is performed.
Semantically Induced Distortions of Visual Awareness in a Patient with Balint's Syndrome
ERIC Educational Resources Information Center
Soto, David; Humphreys, Glyn W.
2009-01-01
We present data indicating that visual awareness for a basic perceptual feature (colour) can be influenced by the relation between the feature and the semantic properties of the stimulus. We examined semantic interference from the meaning of a colour word ("RED") on simple colour (ink related) detection responses in a patient with simultagnosia…
Input output scaling relations in Italian manufacturing firms
NASA Astrophysics Data System (ADS)
Bottazzi, Giulio; Grazzi, Marco; Secchi, Angelo
2005-09-01
Recent analyses on different database have proposed some regularities with respect to size and growth rates distribution of firms. In this work we explore some basic properties of the dynamics of productivity in Italian manufacturing firms. We investigate relations between different inputs and output examining the impact of productivity in shaping the pattern of corporates evolution.
Solid State Division progress report for period ending September 30, 1984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, P.H.; Watson, D.M.
1985-03-01
During the reporting period, relatively minor changes have occurred in the research areas of interest to the Division. Nearly all the research of the Division can be classified broadly as mission-oriented basic research. Topics covered include: theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; and preparation and characterization of research materials. (GHT)
Code of Federal Regulations, 2014 CFR
2014-01-01
... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What are the basic safety and environmental management policies for real property? 102-80.10 Section 102-80.10 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL...
Rubin, Jacob
1983-01-01
Examples involving six broad reaction classes show that the nature of transport-affecting chemistry may have a profound effect on the mathematical character of solute transport problem formulation. Substantive mathematical diversity among such formulations is brought about principally by reaction properties that determine whether (1) the reaction can be regarded as being controlled by local chemical equilibria or whether it must be considered as being controlled by kinetics, (2) the reaction is homogeneous or heterogeneous, (3) the reaction is a surface reaction (adsorption, ion exchange) or one of the reactions of classical chemistry (e.g., precipitation, dissolution, oxidation, reduction, complex formation). These properties, as well as the choice of means to describe them, stipulate, for instance, (1) the type of chemical entities for which a formulation's basic, mass-balance equations should be written; (2) the nature of mathematical transformations needed to change the problem's basic equations into operational ones. These and other influences determine such mathematical features of problem formulations as the nature of the operational transport-equation system (e.g., whether it involves algebraic, partial-differential, or integro-partial-differential simultaneous equations), the type of nonlinearities of such a system, and the character of the boundaries (e.g., whether they are stationary or moving). Exploration of the reasons for the dependence of transport mathematics on transport chemistry suggests that many results of this dependence stem from the basic properties of the reactions' chemical-relation (i.e., equilibrium or rate) equations.
41 CFR 102-74.10 - What is the basic facility management policy?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What is the basic facility management policy? 102-74.10 Section 102-74.10 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY...
Photoelectroconversion by Semiconductors: A Physical Chemistry Experiment.
ERIC Educational Resources Information Center
Fan, Qinbai; And Others
1995-01-01
Presents an experiment designed to give students some experience with photochemistry, electrochemistry, and basic theories about semiconductors. Uses a liquid-junction solar cell and illustrates some fundamental physical and chemical principles related to light and electricity interconversion as well as the properties of semiconductors. (JRH)
Correlation between substratum roughness and wettability, cell adhesion, and cell migration.
Lampin, M; Warocquier-Clérout; Legris, C; Degrange, M; Sigot-Luizard, M F
1997-07-01
Cell adhesion and spreading of chick embryo vascular and corneal explants grown on rough and smooth poly (methyl methacrylate) (PMMA) were analyzed to test the cell response specificity to substratum surface properties. Different degrees of roughness were obtained by sand-blasting PMMA with alumina grains. Hydrophilic and hydrophobic components of the surface free energy (SFE) were calculated according to Good-van Oss's model. Contact angles were determined using a computerized angle meter. The apolar component of the SFE gamma s(LW), increased with a slight roughness whereas the basic component, gamma s-, decreased. The acido-basic properties disappeared as roughness increased. Incubation of PMMA in culture medium, performed to test the influence if the biological environment, allowed surface adsorption of medium proteins which annihilated roughness effect and restored hydrophilic properties. An organotypic culture assay was carried out in an attempt to relate the biocompatibility to substratum surface state. Cell migration was calculated from the area of cell layer. Cellular adhesion was determined by measuring the kinetic of release of enzymatically dissociated cells. A slight roughness raised the migration are to an upper extent no matter which cell type. Enhancement of the cell adhesion potential was related to the degree of roughness and the hydrophobicity.
Tar sand extraction by steam stimulation and steam drive: measurement of physical properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linberg, W.R.
The measurement of the following thermophysical properties of Utah tar sands is in progress: thermal conductivity, specific heat relative permeability, and viscosity (of the recovered bitumen). During the report period (October 1, 1978 to November 1, 1979), experimental procedures have been developed and a basic data set has been measured. Additionally, standard core analysis has been performed for four drill sites in the Asphalt Ridge, Utah area.
Effect of electron beam on the properties of electron-acoustic rogue waves
NASA Astrophysics Data System (ADS)
El-Shewy, E. K.; Elwakil, S. A.; El-Hanbaly, A. M.; Kassem, A. I.
2015-04-01
The properties of nonlinear electron-acoustic rogue waves have been investigated in an unmagnetized collisionless four-component plasma system consisting of a cold electron fluid, Maxwellian hot electrons, an electron beam and stationary ions. It is found that the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The dependence of rogue wave profiles and the associated electric field on the carrier wave number, normalized density of hot electron and electron beam, relative cold electron temperature and relative beam temperature are discussed. The results of the present investigation may be applicable in auroral zone plasma.
VizieR Online Data Catalog: Local Swift-BAT AGN observed with Herschel (Lutz+, 2018)
NASA Astrophysics Data System (ADS)
Lutz, D.; Shimizu, T.; Davies, R. I.; Herrera Camus, R.; Sturm, E.; Tacconi, L. J.; Veilleux, S.
2017-09-01
Table A.1 lists the basic properties of the BAT AGN and reference samples, and the derived far-infrared sizes. For guidance, part of the table and related notes are also included in an appendix to the paper. (1 data file).
Hygroscopic properties of magnetic recording tape
NASA Technical Reports Server (NTRS)
Cuddihy, E. F.
1976-01-01
Relative humidity has been recognized as an important environmental factor in many head-tape interface phenomena such as headwear, friction, staining, and tape shed. Accordingly, the relative humidity is usually specified in many applications of tape use, especially when tape recorders are enclosed in hermetically sealed cases. Normally, the relative humidity is believed regulated by humidification of the fill gas to the specification relative humidity. This study demonstrates that the internal relative humidity in a sealed case is completely controlled by the time-dpendence of the hygroscopic properties of the pack of magnetic recording tape. Differences are found in the hygroscopic properties of the same brand of tape, which apparently result from aging, and which may have an effect on the long-term humidity-regulating behavior in a sealed case, and on the occurrence of head-tape interface phenomena from the long-term use of the tape. Results are presented on the basic hygroscopic properties of magnetic tape, its humidity-regulating behavior in a sealed case, and a theoretical commentary on the relative humidity dependence of head-wear by tape, is included.
NASA Astrophysics Data System (ADS)
Bloomfield, Louis
2013-03-01
We encounter plastics every day, but despite their widespread use, amazing range of properties, and basic scientific underpinnings, most physicists--like most people--know relatively little about plastics. In contrast to hard crystalline and amorphous solids (e.g., metals, salts, ceramics, and glasses), we take plastics for granted, select them carelessly, and examine them more closely only on a need-to-know basis. By ignoring plastics until we need them, however, we risk not knowing what we don't know and using the wrong ones. To repurpose a familiar advertisement, ``there's a plastic for that.'' This talk will review some of the basic physics and science of plastics. It will examine the roles of temperature, order, intermolecular forces, entanglements, and linkages in plastics, and how those issues affect the properties of a given plastic. We'll stop along the way to recognize a few of the more familiar plastics, natural and synthetic, and explain some of their mechanical, chemical, and optical properties. The talk will conclude by explaining the remarkable properties of a plastic that has been largely misunderstood since its discovery 70 years ago: Silly Putty.
Interactome Networks and Human Disease
Vidal, Marc; Cusick, Michael E.; Barabási, Albert-László
2011-01-01
Complex biological systems and cellular networks may underlie most genotype to phenotype relationships. Here we review basic concepts in network biology, discussing different types of interactome networks and the insights that can come from analyzing them. We elaborate on why interactome networks are important to consider in biology, how they can be mapped and integrated with each other, what global properties are starting to emerge from interactome network models, and how these properties may relate to human disease. PMID:21414488
Soft connectedness of soft topological space
NASA Astrophysics Data System (ADS)
Mishra, Sanjay
2017-07-01
Recently, Shabir and Naz in [4] introduced the notion of Soft Topological Spaces (STS). They defined and studied about soft topology on the collection τ of soft sets over X. After the initiation of soft topological space many researcher developed its basic theory as like soft continuity, soft compactness and soft countability. Our main objective in this paper is to study the soft connectedness properties of soft topological space and also establish relations of soft connectedness with other properties of STS.
Amplitude, Frequency, and Timbre with the French Horn
ERIC Educational Resources Information Center
Konz, Nicholas; Ruiz, Michael J.
2018-01-01
The French horn is used to introduce the three basic properties of periodic waves: amplitude, frequency, and waveform. These features relate to the perceptual characteristics of loudness, pitch, and timbre encountered in everyday language. Visualizations are provided in the form of oscilloscope screenshots, spectrograms, and Fourier spectra to…
Creating a Successful Affiliated Foundation. Foundation Relations. Board Basics.
ERIC Educational Resources Information Center
Hedgepeth, Royster C.
1999-01-01
This booklet for trustees of institutions of higher education offers guidelines for the creation of effective affiliated foundations. An introductory section notes the increased use of such foundations by public colleges and universities for institutional fund-raising and management of property and endowments. The booklet finds that successful…
Recent advances in experimental basic research on graphene and graphene-based nanostructures
NASA Astrophysics Data System (ADS)
Hieu Nguyen, Van
2016-06-01
The present work is a review of the results achieved in the experimental basic research on following rapidly developing modern topics of nanoscience and nanotechnology related to graphene and graphene-based nanosystems: reduction of graphene oxide and investigation of physical properties of reduced graphene oxide; fabrication and investigation of graphene quantum dots; study of light emission from excited graphene; fabrication and investigation of graphene nanopores; preparation and investigation of graphene oxide-liquid crystals as well as aqueous graphene oxide dispersions. Besides presenting the scientific content of the above-mentioned five topics in detail, we briefly mention promising and interesting works, demonstrating that the area of basic research on graphene and graphene-based nanostructures is still being enlarged.
41 CFR 102-77.10 - What basic Art-in-Architecture policy governs Federal agencies?
Code of Federal Regulations, 2011 CFR
2011-01-01
... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What basic Art-in... PROPERTY 77-ART-IN-ARCHITECTURE General Provisions § 102-77.10 What basic Art-in-Architecture policy governs Federal agencies? Federal agencies must incorporate fine arts as an integral part of the total...
41 CFR 102-77.10 - What basic Art-in-Architecture policy governs Federal agencies?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What basic Art-in... PROPERTY 77-ART-IN-ARCHITECTURE General Provisions § 102-77.10 What basic Art-in-Architecture policy governs Federal agencies? Federal agencies must incorporate fine arts as an integral part of the total...
41 CFR 102-76.10 - What basic design and construction policy governs Federal agencies?
Code of Federal Regulations, 2011 CFR
2011-01-01
... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What basic design and construction policy governs Federal agencies? 102-76.10 Section 102-76.10 Public Contracts and Property Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL...
Romanov, R A
2013-01-01
Taste Bud cells are heterogeneous in their morphology and functionality. These cells are responsible for sensing a wide variety of substances and for associating detected compounds with a different taste: bitter, sweet, salty, sour and umami. Today we know that each of the five basic tastes corresponds to distinct cell populations organized into three basic morpho-functional cell types. In addition, some receptor cells of the taste bud demonstrate glia-related functions. In this article we expand on some properties of these three morphological receptor cell types. Main focus is devoted to the Type II cells and unusual mechanism for afferent neurotransmission in these cells. Taste cells of the Type II consist of three populations detecting bitter, sweet and umami tastes, and, thus, evoke a serious scientific interest.
p-Chlorophenol adsorption on activated carbons with basic surface properties
NASA Astrophysics Data System (ADS)
Lorenc-Grabowska, Ewa; Gryglewicz, Grażyna; Machnikowski, Jacek
2010-05-01
The adsorption of p-chlorophenol (PCP) from aqueous solution on activated carbons (ACs) with basic surface properties has been studied. The ACs were prepared by two methods. The first method was based on the modification of a commercial CWZ AC by high temperature treatment in an atmosphere of ammonia, nitrogen and hydrogen. The second approach comprised the carbonization followed by activation of N-enriched polymers and coal tar pitch using CO 2 and steam as activation agent. The resultant ACs were characterized in terms of porous structure, elemental composition and surface chemistry (pH PZC, acid/base titration, XPS). The adsorption of PCP was carried out from an aqueous solution in static conditions. Equilibrium adsorption isotherm was of L2 type for polymer-based ACs, whereas L3-type isotherm was observed for CWZ ACs series. The Langmuir monolayer adsorption capacity was related to the porous structure and the amount of basic sites. A good correlation was found between the adsorption capacity and the volume of micropores with a width < 1.4 nm for polymer-based ACs. Higher nitrogen content, including that in basic form, did not correspond to the enhanced adsorption of PCP from aqueous solution. The competitive effect of water molecule adsorption on the PCP uptake is discussed.
Some fundamental properties and reactions of ice surfaces at low temperatures.
Park, Seong-Chan; Moon, Eui-Seong; Kang, Heon
2010-10-14
Ice surfaces offer a unique chemical environment in which reactions occur quite differently from those in liquid water or gas phases. In this article, we examine the basic properties of ice surfaces below the surface premelting temperature and discuss some of the recent investigations carried out on reactions at the ice surfaces. The static and dynamic properties of an ice surface as a reaction medium, such as its structure, molecule diffusion and proton transfer dynamics, and the surface preference of hydronium and hydroxide ions, are discussed in relation to the reactivity of the surface.
ERIC Educational Resources Information Center
Montana State Univ., Bozeman. Dept. of Agricultural and Industrial Education.
This curriculum guide is designed for use in teaching a course in basic soils that is intended for college freshmen. Addressed in the individual lessons of the unit are the following topics: the way in which soil is formed, the physical properties of soil, the chemical properties of soil, the biotic properties of soil, plant-soil-water…
41 CFR 102-78.10 - What basic historic preservation policy governs Federal agencies?
Code of Federal Regulations, 2014 CFR
2014-01-01
... governs Federal agencies? To protect, enhance and preserve historic and cultural property under their... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What basic historic preservation policy governs Federal agencies? 102-78.10 Section 102-78.10 Public Contracts and Property...
NASA Astrophysics Data System (ADS)
Abidin, M. H. Z.; Ahmad, F.; Wijeyesekera, D. C.; Saad, R.
2014-04-01
Electrical resistivity technique has become a famous alternative tool in subsurface characterization. In the past, several interpretations of electrical resistivity results were unable to be delivered in a strong justification due to lack of appreciation of soil mechanics. Traditionally, interpreters will come out with different conclusion which commonly from qualitative point of view thus creating some uncertainty regarding the result reliability. Most engineers desire to apply any techniques in their project which are able to provide some clear justification with strong, reliable and meaningful results. In order to reduce the problem, this study presents the influence of basic physical properties of soil due to the electrical resistivity value under loose and dense condition. Two different conditions of soil embankment model were tested under electrical resistivity test and basic geotechnical test. It was found that the electrical resistivity value (ERV, ρ) was highly influenced by the variations of soil basic physical properties (BPP) with particular reference to moisture content (w), densities (ρbulk/dry), void ratio (e), porosity (η) and particle grain fraction (d) of soil. Strong relationship between ERV and BPP can be clearly presents such as ρ ∞ 1/w, ρ ∞ 1/ρbulk/dry, ρ ∞ e and ρ ∞ η. This study therefore contributes a means of ERV data interpretation using BPP in order to reduce ambiguity of ERV result and interpretation discussed among related persons such as geophysicist, engineers and geologist who applied these electrical resistivity techniques in subsurface profile assessment.
Unit: Making Life Easier, Inspection Pack, National Trial Print.
ERIC Educational Resources Information Center
Australian Science Education Project, Toorak, Victoria.
As a part of the unit materials in the series produced by the Australian Science Education Project, this teacher edition is primarily composed of three sections: a core relating to a bicycle, tests, and options. The core is concerned with basic properties of a machine such as force multiplication, speed multiplication, energy dissipation, and…
A Substituting Meaning for the Equals Sign in Arithmetic Notating Tasks
ERIC Educational Resources Information Center
Jones, Ian; Pratt, Dave
2012-01-01
Three studies explore arithmetic tasks that support both substitutive and basic relational meanings for the equals sign. The duality of meanings enabled children to engage meaningfully and purposefully with the structural properties of arithmetic statements in novel ways. Some, but not all, children were successful at the adapted task and were…
Water Intake by Soil, Experiments for High School Students.
ERIC Educational Resources Information Center
1969
Presented are a variety of surface run-off experiments for high school students. The experiments are analogies to basic concepts about water intake, as related to water delivery, soil properties and management, floods, and conservation measures. The materials needed to perform the experiments are easily obtainable. The experiments are followed by…
Electric moisture meters for wood
William L. James
1963-01-01
Common methods of measuring the moisture content of wood are described briefly, and a short historical account of the development of electric moisture meters is given. Electrical properties of wood are discussed briefly, and the basic operation of the resistance type and the radio- frequency types of moisture meter is outlined. Data relating the electrical resistance...
ERIC Educational Resources Information Center
Yantz. Jennifer
2013-01-01
The attainment and retention of later algebra skills in high school has been identified as a factor significantly impacting students' postsecondary success as STEM majors. Researchers maintain that learners develop meaning for algebraic procedures by forming connections to the basic number system properties. In the present study, the connections…
Genome of Drosophila suzukii, the Spotted Wing Drosophila
Chiu, Joanna C.; Jiang, Xuanting; Zhao, Li; Hamm, Christopher A.; Cridland, Julie M.; Saelao, Perot; Hamby, Kelly A.; Lee, Ernest K.; Kwok, Rosanna S.; Zhang, Guojie; Zalom, Frank G.; Walton, Vaughn M.; Begun, David J.
2013-01-01
Drosophila suzukii Matsumura (spotted wing drosophila) has recently become a serious pest of a wide variety of fruit crops in the United States as well as in Europe, leading to substantial yearly crop losses. To enable basic and applied research of this important pest, we sequenced the D. suzukii genome to obtain a high-quality reference sequence. Here, we discuss the basic properties of the genome and transcriptome and describe patterns of genome evolution in D. suzukii and its close relatives. Our analyses and genome annotations are presented in a web portal, SpottedWingFlyBase, to facilitate public access. PMID:24142924
Acidic and basic drugs in medicinal chemistry: a perspective.
Charifson, Paul S; Walters, W Patrick
2014-12-11
The acid/base properties of a molecule are among the most fundamental for drug action. However, they are often overlooked in a prospective design manner unless it has been established that a certain ionization state (e.g., quaternary base or presence of a carboxylic acid) appears to be required for activity. In medicinal chemistry optimization programs it is relatively common to attenuate basicity to circumvent undesired effects such as lack of biological selectivity or safety risks such as hERG or phospholipidosis. However, teams may not prospectively explore a range of carefully chosen compound pKa values as part of an overall chemistry strategy or design hypothesis. This review summarizes the potential advantages and disadvantages of both acidic and basic drugs and provides some new analyses based on recently available public data.
Relativistic effects on acidities and basicities of Brønsted acids and bases containing gold.
Koppel, Ilmar A; Burk, Peeter; Kasemets, Kalev; Koppel, Ivar
2013-11-07
It is usually believed that relativistic effects as described by the Dirac-Schrödinger equation (relative to the classical or time-independent Schrödinger equation) are of little importance in chemistry. A closer look, however, reveals that some important and widely known properties (e.g., gold is yellow, mercury is liquid at room temperature) stem from relativistic effects. So far the influence of relativistic effects on the acid-base properties has been mostly ignored. Here we show that at least for compounds of gold such omission is completely erroneous and would lead to too high basicity and too low acidity values with errors in the range of 25-55 kcal mol(-1) (or 20 to 44 powers of ten in pK(a) units) in the gas-phase. These findings have important implications for the design of new superstrong acids and bases, and for the understanding of gold-catalysed reactions.
Meta genome-wide network from functional linkages of genes in human gut microbial ecosystems.
Ji, Yan; Shi, Yixiang; Wang, Chuan; Dai, Jianliang; Li, Yixue
2013-03-01
The human gut microbial ecosystem (HGME) exerts an important influence on the human health. In recent researches, meta-genomics provided deep insights into the HGME in terms of gene contents, metabolic processes and genome constitutions of meta-genome. Here we present a novel methodology to investigate the HGME on the basis of a set of functionally coupled genes regardless of their genome origins when considering the co-evolution properties of genes. By analyzing these coupled genes, we showed some basic properties of HGME significantly associated with each other, and further constructed a protein interaction map of human gut meta-genome to discover some functional modules that may relate with essential metabolic processes. Compared with other studies, our method provides a new idea to extract basic function elements from meta-genome systems and investigate complex microbial environment by associating its biological traits with co-evolutionary fingerprints encoded in it.
The argument for property rights in body parts: scarcity of resources.
Douglas, Simon
2014-01-01
This article attempts to answer two basic questions. First, can body parts be the subject of property rights? This requires us to start with a definition of property rights, and this is set out in the first section. In the second section, it will be argued that rights in relation to body parts can come within this definition of property rights. However, as explained in the third section, the fact that body parts can be the subject of property rights does not mean that they should. To answer the question of whether body parts should be the subject of property rights we need to consider policy arguments. This article will develop an argument in favour of the recognition of property rights in body parts which focuses on the notion of scarcity of resources.
Mechanical Properties of Respiratory Muscles
Sieck, Gary C.; Ferreira, Leonardo F.; Reid, Michael B.; Mantilla, Carlos B.
2014-01-01
Striated respiratory muscles are necessary for lung ventilation and to maintain the patency of the upper airway. The basic structural and functional properties of respiratory muscles are similar to those of other striated muscles (both skeletal and cardiac). The sarcomere is the fundamental organizational unit of striated muscles and sarcomeric proteins underlie the passive and active mechanical properties of muscle fibers. In this respect, the functional categorization of different fiber types provides a conceptual framework to understand the physiological properties of respiratory muscles. Within the sarcomere, the interaction between the thick and thin filaments at the level of cross-bridges provides the elementary unit of force generation and contraction. Key to an understanding of the unique functional differences across muscle fiber types are differences in cross-bridge recruitment and cycling that relate to the expression of different myosin heavy chain isoforms in the thick filament. The active mechanical properties of muscle fibers are characterized by the relationship between myoplasmic Ca2+ and cross-bridge recruitment, force generation and sarcomere length (also cross-bridge recruitment), external load and shortening velocity (cross-bridge cycling rate), and cross-bridge cycling rate and ATP consumption. Passive mechanical properties are also important reflecting viscoelastic elements within sarcomeres as well as the extracellular matrix. Conditions that affect respiratory muscle performance may have a range of underlying pathophysiological causes, but their manifestations will depend on their impact on these basic elemental structures. PMID:24265238
Site-specific acid-base properties of pholcodine and related compounds.
Kovács, Z; Hosztafi, S; Noszál, B
2006-11-01
The acid-base properties of pholcodine, a cough-depressant agent, and related compounds including metabolites were studied by 1H NMR-pH titrations, and are characterised in terms of macroscopic and microscopic protonation constants. New N-methylated derivatives were also synthesized in order to quantitate site- and nucleus-specific protonation shifts and to unravel microscopic acid-base equilibria. The piperidine nitrogen was found to be 38 and 400 times more basic than its morpholine counterpart in pholcodine and norpholcodine, respectively. The protonation data show that the molecule of pholcodine bears an average of positive charge of 1.07 at physiological pH, preventing it from entering the central nervous system, a plausible reason for its lack of analgesic or addictive properties. The protonation constants of pholcodine and its derivatives are interpreted by comparing with related molecules of pharmaceutical interest. The pH-dependent relative concentrations of the variously protonated forms of pholcodine and morphine are depicted in distribution diagrams.
Kepner, Gordon R
2010-04-13
The numerous natural phenomena that exhibit saturation behavior, e.g., ligand binding and enzyme kinetics, have been approached, to date, via empirical and particular analyses. This paper presents a mechanism-free, and assumption-free, second-order differential equation, designed only to describe a typical relationship between the variables governing these phenomena. It develops a mathematical model for this relation, based solely on the analysis of the typical experimental data plot and its saturation characteristics. Its utility complements the traditional empirical approaches. For the general saturation curve, described in terms of its independent (x) and dependent (y) variables, a second-order differential equation is obtained that applies to any saturation phenomena. It shows that the driving factor for the basic saturation behavior is the probability of the interactive site being free, which is described quantitatively. Solving the equation relates the variables in terms of the two empirical constants common to all these phenomena, the initial slope of the data plot and the limiting value at saturation. A first-order differential equation for the slope emerged that led to the concept of the effective binding rate at the active site and its dependence on the calculable probability the interactive site is free. These results are illustrated using specific cases, including ligand binding and enzyme kinetics. This leads to a revised understanding of how to interpret the empirical constants, in terms of the variables pertinent to the phenomenon under study. The second-order differential equation revealed the basic underlying relations that describe these saturation phenomena, and the basic mathematical properties of the standard experimental data plot. It was shown how to integrate this differential equation, and define the common basic properties of these phenomena. The results regarding the importance of the slope and the new perspectives on the empirical constants governing the behavior of these phenomena led to an alternative perspective on saturation behavior kinetics. Their essential commonality was revealed by this analysis, based on the second-order differential equation.
Kimura, Masaoki; Matsui, Yoshihiko; Kondo, Kenta; Ishikawa, Tairyo B; Matsushita, Taku; Shirasaki, Nobutaka
2013-04-15
Aluminum coagulants are widely used in water treatment plants to remove turbidity and dissolved substances. However, because high aluminum concentrations in treated water are associated with increased turbidity and because aluminum exerts undeniable human health effects, its concentration should be controlled in water treatment plants, especially in plants that use aluminum coagulants. In this study, the effect of polyaluminum chloride (PACl) coagulant characteristics on dissolved residual aluminum concentrations after coagulation and filtration was investigated. The dissolved residual aluminum concentrations at a given coagulation pH differed among the PACls tested. Very-high-basicity PACl yielded low dissolved residual aluminum concentrations and higher natural organic matter (NOM) removal. The low residual aluminum concentrations were related to the low content of monomeric aluminum (Ala) in the PACl. Polymeric (Alb)/colloidal (Alc) ratio in PACl did not greatly influence residual aluminum concentration. The presence of sulfate in PACl contributed to lower residual aluminum concentration only when coagulation was performed at around pH 6.5 or lower. At a wide pH range (6.5-8.5), residual aluminum concentrations <0.02 mg/L were attained by tailoring PACl properties (Ala percentage ≤0.5%, basicity ≥85%). The dissolved residual aluminum concentrations did not increase with increasing the dosage of high-basicity PACl, but did increase with increasing the dosage of normal-basicity PACl. We inferred that increasing the basicity of PACl afforded lower dissolved residual aluminum concentrations partly because the high-basicity PACls could have a small percentage of Ala, which tends to form soluble aluminum-NOM complexes with molecular weights of 100 kDa-0.45 μm. Copyright © 2013 Elsevier Ltd. All rights reserved.
Physical and chemical basics of modification of poly(vinyl chloride) by means of polyisocyanate
NASA Astrophysics Data System (ADS)
Islamov, Anvar; Fakhrutdinova, Venera; Abdrakhmanova, Lyailya
2016-01-01
This research presents data relating to polyvinyl chloride (PVC) modification by means of reactive oligomer and measures technological, physical and mechanical properties of the modified composites. Polyisocyanate (PIC) has been chosen as the modifying reactive oligomer. It has been shown that insertion of the oligomer has a double effect on PVC. Primarily, PIC produces a plasticizing effect on PVC and in particular leads to an increase in thermal stability and melt flow index at the stage of processing. In addition, the molded PVC composites possess higher strength properties and lower deformability when exposed to temperature because of chemical transformations of PIC in polymer matrix and, as the result, the formation of cross-linked systems takes place. In this case, semi-interpenetrating structures are formed based on cross-linked products of PIC chemical transformations homogeneously distributed in the PVC matrix. It has been determined by means of IR-spectroscopy that the basic products of PIC curing are compounds with urea and biuret groups which leads to modifying effect on PVC especially: increase in strength, thermal and mechanical properties, and chemical resistance.
Chaotic behaviour of Zeeman machines at introductory course of mechanics
NASA Astrophysics Data System (ADS)
Nagy, Péter; Tasnádi, Péter
2016-05-01
Investigation of chaotic motions and cooperative systems offers a magnificent opportunity to involve modern physics into the basic course of mechanics taught to engineering students. In the present paper it will be demonstrated that Zeeman Machine can be a versatile and motivating tool for students to get introductory knowledge about chaotic motion via interactive simulations. It works in a relatively simple way and its properties can be understood very easily. Since the machine can be built easily and the simulation of its movement is also simple the experimental investigation and the theoretical description can be connected intuitively. Although Zeeman Machine is known mainly for its quasi-static and catastrophic behaviour, its dynamic properties are also of interest with its typical chaotic features. By means of a periodically driven Zeeman Machine a wide range of chaotic properties of the simple systems can be demonstrated such as bifurcation diagrams, chaotic attractors, transient chaos and so on. The main goal of this paper is the presentation of an interactive learning material for teaching the basic features of the chaotic systems through the investigation of the Zeeman Machine.
Thermodynamics and statistical mechanics. [thermodynamic properties of gases
NASA Technical Reports Server (NTRS)
1976-01-01
The basic thermodynamic properties of gases are reviewed and the relations between them are derived from the first and second laws. The elements of statistical mechanics are then formulated and the partition function is derived. The classical form of the partition function is used to obtain the Maxwell-Boltzmann distribution of kinetic energies in the gas phase and the equipartition of energy theorem is given in its most general form. The thermodynamic properties are all derived as functions of the partition function. Quantum statistics are reviewed briefly and the differences between the Boltzmann distribution function for classical particles and the Fermi-Dirac and Bose-Einstein distributions for quantum particles are discussed.
ERIC Educational Resources Information Center
Patro, Katarzyna; Fischer, Ursula; Nuerk, Hans-Christoph; Cress, Ulrike
2016-01-01
Spatial processing of numbers has emerged as one of the basic properties of humans' mathematical thinking. However, how and when number-space relations develop is a highly contested issue. One dominant view has been that a link between numbers and left/right spatial directions is constructed based on directional experience associated with reading…
Transparent Conducting Oxides: Status and Opportunities in Basic Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coutts, T. J.; Perkins, J. D.; Ginley, D.S.
1999-08-01
In this paper, we begin by discussing the historical background of transparent conducting oxides and then make some general remarks about their typical properties. This is followed by a short discussion of the desired properties for future applications (particularly photovoltaic devices). These are ambitious objectives but they provide targets for future basic research and development. Although it may be possible to obtain these properties in the laboratory, it is vital to ensure that account is taken of industrial perceptions to the development of the next generation of materials. Hence, we spend some time discussing industrial criteria. Next, we discuss keymore » physical properties that determine the macroscopic physical properties that, in turn, affect the performance of devices. Finally, we select several key topics that ought to be included in future basic research programs.« less
Characterization of basic physical properties of Sb 2Se 3 and its relevance for photovoltaics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chao; Bobela, David C.; Yang, Ye
Antimony selenide (Sb 2Se 3) is a promising absorber material for thin film photovoltaics because of its attractive material, optical and electrical properties. In recent years, the power conversion efficiency (PCE) of Sb 2Se 3 thin film solar cells has gradually enhanced to 5.6%. In this article, we systematically studied the basic physical properties of Sb 2Se 3 such as dielectric constant, anisotropic mobility, carrier lifetime, diffusion length, defect depth, defect density and optical band tail states. Here, we believe such a comprehensive characterization of the basic physical properties of Sb 2Se 3 lays a solid foundation for further optimizationmore » of solar device performance.« less
Characterization of basic physical properties of Sb 2Se 3 and its relevance for photovoltaics
Chen, Chao; Bobela, David C.; Yang, Ye; ...
2017-03-17
Antimony selenide (Sb 2Se 3) is a promising absorber material for thin film photovoltaics because of its attractive material, optical and electrical properties. In recent years, the power conversion efficiency (PCE) of Sb 2Se 3 thin film solar cells has gradually enhanced to 5.6%. In this article, we systematically studied the basic physical properties of Sb 2Se 3 such as dielectric constant, anisotropic mobility, carrier lifetime, diffusion length, defect depth, defect density and optical band tail states. Here, we believe such a comprehensive characterization of the basic physical properties of Sb 2Se 3 lays a solid foundation for further optimizationmore » of solar device performance.« less
Tuning the acid/base properties of nanocarbons by functionalization via amination.
Arrigo, Rosa; Hävecker, Michael; Wrabetz, Sabine; Blume, Raoul; Lerch, Martin; McGregor, James; Parrott, Edward P J; Zeitler, J Axel; Gladden, Lynn F; Knop-Gericke, Axel; Schlögl, Robert; Su, Dang Sheng
2010-07-21
The surface chemical properties and the electronic properties of vapor grown carbon nanofibers (VGCNFs) have been modified by treatment of the oxidized CNFs with NH(3). The effect of treatment temperature on the types of nitrogen functionalities introduced was evaluated by synchrotron based X-ray photoelectron spectroscopy (XPS), while the impact of the preparation methods on the surface acid-base properties was investigated by potentiometric titration, microcalorimetry, and zeta potential measurements. The impact of the N-functionalization on the electronic properties was measured by THz-Time Domain spectroscopy. The samples functionalized via amination are characterized by the coexistence of acidic and basic O and N sites. The population of O and N species is temperature dependent. In particular, at 873 K nitrogen is stabilized in substitutional positions within the graphitic structure, as heterocyclic-like moieties. The surface presents heterogeneously distributed and energetically different basic sites. A small amount of strong basic sites gives rise to a differential heat of CO(2) adsorption of 150 kJ mol(-1). However, when functionalization is carried out at 473 K, nitrogen moieties with basic character are introduced and the maximum heat of adsorption is significantly lower, at approximately 90 kJ mol(-1). In the latter sample, energetically different basic sites coexist with acidic oxygen groups introduced during the oxidative step. Under these conditions, a bifunctional acidic and basic surface is obtained with high hydrophilic character. N-functionalization carried out at higher temperature changes the electronic properties of the CNFs as evaluated by THz-TDS. The functionalization procedure presented in this work allows high versatility and flexibility in tailoring the surface chemistry of nanocarbon material to specific needs. This work shows the potential of the N-containing nanocarbon materials obtained via amination in catalysis as well as electronic device materials.
NASA Astrophysics Data System (ADS)
Contreras, S.; Baugh, C. M.; Norberg, P.; Padilla, N.
2015-09-01
We demonstrate how the properties of a galaxy depend on the mass of its host dark matter subhalo, using two independent models of galaxy formation. For the cases of stellar mass and black hole mass, the median property value displays a monotonic dependence on subhalo mass. The slope of the relation changes for subhalo masses for which heating by active galactic nuclei becomes important. The median property values are predicted to be remarkably similar for central and satellite galaxies. The two models predict considerable scatter around the median property value, though the size of the scatter is model dependent. There is only modest evolution with redshift in the median galaxy property at a fixed subhalo mass. Properties such as cold gas mass and star formation rate, however, are predicted to have a complex dependence on subhalo mass. In these cases, subhalo mass is not a good indicator of the value of the galaxy property. We illustrate how the predictions in the galaxy property-subhalo mass plane differ from the assumptions made in some empirical models of galaxy clustering by reconstructing the model output using a basic subhalo abundance matching scheme. In its simplest form, abundance matching generally does not reproduce the clustering predicted by the models, typically resulting in an overprediction of the clustering signal. Using the predictions of the galaxy formation model for the correlations between pairs of galaxy properties, the basic abundance matching scheme can be extended to reproduce the model predictions more faithfully for a wider range of galaxy properties. Our results have implications for the analysis of galaxy clustering, particularly for low abundance samples.
Inverting seismic data for rock physical properties; Mathematical background and application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farfour, Mohammed; Yoon, Wang Jung; Kim, Jinmo
2016-06-08
The basic concept behind seismic inversion is that mathematical assumptions can be established to relate seismic to geological formation properties that caused their seismic responses. In this presentation we address some widely used seismic inversion method in hydrocarbon reservoirs identification and characterization. A successful use of the inversion in real example from gas sand reservoir in Boonsville field, Noth Central Texas is presented. Seismic data was not unambiguous indicator of reservoir facies distribution. The use of the inversion led to remove the ambiguity and reveal clear information about the target.
Design and basic properties of ternary gypsum-based mortars
NASA Astrophysics Data System (ADS)
Doleželová, M.; Vimmrová, A.
2017-10-01
Ternary mortars, prepared from gypsum, hydrated lime and three types of pozzolan were designed and tested. As a pozzolan admixture crushed ceramic, silica fume and granulated blast slag were used. The amount of pozzolans in the mixtures was determined according to molar weight of amorphous SiO2 in the material. The samples were stored under the water. The basic physical properties and mechanical properties were measured. The properties were compared with the properties of material without pozzolan. The best results in the water environment were achieved by the samples with silica fume.
NASA Astrophysics Data System (ADS)
Gurova, E. G.
2016-08-01
During the researches the mathematical description of the traction characteristics of the stiffness compensators of the vibration isolation devices, relatively of the each axis, has been done. Representation of the compensators properties considers the variable load, thereby provide the wide enough spectrum of the action of the suggested vibration isolators. The derived expressions are valid for all three axes of space at the different stiffnesses, i.e. basic basic and two compensating. The research was supported by the scholarships of Russian Federation President for young scientists №184 from 10th of March 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poulin, Patrick, E-mail: patrick-poulin@videotron.ca; Ekins, Sean; Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, MD 21201
A general toxicity of basic drugs is related to phospholipidosis in tissues. Therefore, it is essential to predict the tissue distribution of basic drugs to facilitate an initial estimate of that toxicity. The objective of the present study was to further assess the original prediction method that consisted of using the binding to red blood cells measured in vitro for the unbound drug (RBCu) as a surrogate for tissue distribution, by correlating it to unbound tissue:plasma partition coefficients (Kpu) of several tissues, and finally to predict volume of distribution at steady-state (V{sub ss}) in humans under in vivo conditions. Thismore » correlation method demonstrated inaccurate predictions of V{sub ss} for particular basic drugs that did not follow the original correlation principle. Therefore, the novelty of this study is to provide clarity on the actual hypotheses to identify i) the impact of pharmacological mode of action on the generic correlation of RBCu-Kpu, ii) additional mechanisms of tissue distribution for the outlier drugs, iii) molecular features and properties that differentiate compounds as outliers in the original correlation analysis in order to facilitate its applicability domain alongside the properties already used so far, and finally iv) to present a novel and refined correlation method that is superior to what has been previously published for the prediction of human V{sub ss} of basic drugs. Applying a refined correlation method after identifying outliers would facilitate the prediction of more accurate distribution parameters as key inputs used in physiologically based pharmacokinetic (PBPK) and phospholipidosis models.« less
NASA Astrophysics Data System (ADS)
Aligholi, Saeed; Lashkaripour, Gholam Reza; Ghafoori, Mohammad
2017-01-01
This paper sheds further light on the fundamental relationships between simple methods, rock strength, and brittleness of igneous rocks. In particular, the relationship between mechanical (point load strength index I s(50) and brittleness value S 20), basic physical (dry density and porosity), and dynamic properties (P-wave velocity and Schmidt rebound values) for a wide range of Iranian igneous rocks is investigated. First, 30 statistical models (including simple and multiple linear regression analyses) were built to identify the relationships between mechanical properties and simple methods. The results imply that rocks with different Schmidt hardness (SH) rebound values have different physicomechanical properties or relations. Second, using these results, it was proved that dry density, P-wave velocity, and SH rebound value provide a fine complement to mechanical properties classification of rock materials. Further, a detailed investigation was conducted on the relationships between mechanical and simple tests, which are established with limited ranges of P-wave velocity and dry density. The results show that strength values decrease with the SH rebound value. In addition, there is a systematic trend between dry density, P-wave velocity, rebound hardness, and brittleness value of the studied rocks, and rocks with medium hardness have a higher brittleness value. Finally, a strength classification chart and a brittleness classification table are presented, providing reliable and low-cost methods for the classification of igneous rocks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-06-01
The report represents responses by agencies of DHHS, and by DOE and EPA, to requests by the Director of NTP for information on agency programs in basic toxicology research, toxicology testing, and toxicology methods development. Information on dollar and manpower support for agency activities in basic toxicology research, toxicology testing, and toxicology methods development, by DHHS, DOE and EPA, is summarized on pages 4 to 10. All agencies were requested to provide summary information on their programs related to toxicology methods development, whether essential or peripheral to their missions. The information provided in response to the request is summarized inmore » tables on pages 48 to 81. Information was provided on chemical compounds currently being studied for their toxicological properties in intramural laboratories, or on contracts, or through grants.« less
41 CFR 102-76.10 - What basic design and construction policy governs Federal agencies?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What basic design and... Management Federal Property Management Regulations System (Continued) FEDERAL MANAGEMENT REGULATION REAL... must be timely, efficient, and cost effective. (b) Use a distinguished architectural style and form in...
NASA Astrophysics Data System (ADS)
Salazar Valencia, P. J.; Bolívar Marinez, L. E.; Pérez Merchancano, S. T.
2015-12-01
Lignosulphonates (LS), also known as lignin sulfonates or sulfite lignin, are lignins in sulfonated forms, obtained from the "sulfite liquors," a residue of the wood pulp extraction process. Their main utility lies in its wide range of properties, they can be used as additives, dispersants, binders, fluxing, binder agents, etc. in fields ranging from food to fertilizer manufacture and even as agents in the preparation of ion exchange membranes. Since they can be manufactured relatively easy and quickly, and that its molecular size can be manipulated to obtain fragments of very low molecular weight, they are used as transport agents in the food industry, cosmetics, pharmaceutical and drug development, and as molecular elements for the treatment of health problems. In this paper, we study the electronic structural and optical characteristics of LS incorporating ammonium, sulfur, calcium, and sodium ions in acidic and basic aqueous media in order to gain a better understanding of their behavior and the very interesting properties exhibit. The studies were performed using the molecular modeling program HyperChem 5 using the semiempirical method PM3 of the NDO Family (neglect of differential overlap), to calculate the structural properties. We calculated the electronic and optical properties using the semiempirical method ZINDO / CI.
Controlling the scattering properties of thin, particle-doped coatings
NASA Astrophysics Data System (ADS)
Rogers, William; Corbett, Madeleine; Manoharan, Vinothan
2013-03-01
Coatings and thin films of small particles suspended in a matrix possess optical properties that are important in several industries from cosmetics and paints to polymer composites. Many of the most interesting applications require coatings that produce several bulk effects simultaneously, but it is often difficult to rationally formulate materials with these desired optical properties. Here, we focus on the specific challenge of designing a thin colloidal film that maximizes both diffuse and total hemispherical transmission. We demonstrate that these bulk optical properties follow a simple scaling with two microscopic length scales: the scattering and transport mean free paths. Using these length scales and Mie scattering calculations, we generate basic design rules that relate scattering at the single particle level to the film's bulk optical properties. These ideas will be useful in the rational design of future optically active coatings.
Dielectric Spectroscopy in Biomaterials: Agrophysics
El Khaled, Dalia; Castellano, Nuria N.; Gázquez, Jose A.; Perea-Moreno, Alberto-Jesus; Manzano-Agugliaro, Francisco
2016-01-01
Being dependent on temperature and frequency, dielectric properties are related to various types of food. Predicting multiple physical characteristics of agri-food products has been the main objective of non-destructive assessment possibilities executed in many studies on horticultural products and food materials. This review manipulates the basic fundamentals of dielectric properties with their concepts and principles. The different factors affecting the behavior of dielectric properties have been dissected, and applications executed on different products seeking the characterization of a diversity of chemical and physical properties are all pointed out and referenced with their conclusions. Throughout the review, a detailed description of the various adopted measurement techniques and the mostly popular equipment are presented. This compiled review serves in coming out with an updated reference for the dielectric properties of spectroscopy that are applied in the agrophysics field. PMID:28773438
Physical Properties of NiFeCrCo-based High-Entropy Alloys
NASA Astrophysics Data System (ADS)
Zaddach, Alexander Joseph
Conventional alloy design has been based on improving the properties of a single base, or solvent, element through relatively small additions of other elements. More recently, research has been conducted on alloys that contain multiple principal elements, particularly multi-component equiatomic alloys. When such alloys form solid solution phases, they are termed "high-entropy alloys" (HEAs) due to their high configurational entropy. These alloys often have favorable properties compared to conventional dilute solution alloys, but their compositional complexity and relative novelty means that they remain difficult to design and their basic properties are often unknown. The motivation for this work is a detailed experimental exploration of some of the basic physical properties of NiFeCrCo-based alloys. NiFeCrCoMn was one of the first equiatomic HEAs developed. As the compositional space within this single system is extremely large, this work focuses primarily on equiatomic alloys and a limited subset of non-equiatomic alloys chosen for their specific properties. Several alloys are prepared using both conventional methods (arc melting) and nonequilibrium methods (mechanical alloying). Properties studied include stacking fault energy, bulk mechanical properties, single crystal elastic constants, and magnetic properties. The equiatomic NiFeCrCo and NiFeCrCoMn alloys were found to have a moderate to low stacking fault energy, 18 -- 30 mJ m-2. As they are single-phase, fcc alloys, they have high tensile ductility. Additionally, they also exhibit high work-hardening rates, resulting in high toughness. NiFeCrCo outperforms the 5-component equiatomic alloy in ductility and toughness. A 5-component alloy with higher Co content to reduce the stacking fault energy also performs well. The single crystal elastic constants were measured using nanoindentation modulus measurements of grains of known orientation. The measured elastic constants were consistent with those calculated using first-principles modeling. Adding Zn in addition to Mn resulted in an alloy that preferred to form multiple phases. After the optimal heat treatment, it forms nano-sized grains of FeCo, which results in permanent magnetic behavior at room temperature.
On the fundamental properties of dynamically hot galaxies
NASA Astrophysics Data System (ADS)
Kritsuk, Alexei G.
1997-01-01
A two-component isothermal equilibrium model is applied to reproduce basic structural properties of dynamically hot stellar systems immersed in their massive dark haloes. The origin of the fundamental plane relation for giant ellipticals is naturally explained as a consequence of dynamical equilibrium in the context of the model. The existence of two galactic families displaying different behaviour in the luminosity-surface-brightness diagram is shown to be a result of a smooth transition from dwarfs, dominated by dark matter near the centre, to giants dominated by the luminous stellar component. The comparison of empirical scaling relations with model predictions suggests that probably a unique dissipative process was operating during the violent stage of development of stellar systems in the dark haloes, and the depth of the potential well controlled the observed luminosity of the resulting galaxies. The interpretation also provides some restrictions on the properties of dark haloes implied by the fundamental scaling laws.
NASA Astrophysics Data System (ADS)
Silverberg, Jesse; Bonassar, Lawrence; Cohen, Itai
2013-03-01
Contemporary developments in therapeutic tissue engineering have been enabled by basic research efforts in the field of biomechanics. Further integration of technology in medicine requires a deeper understanding of the mechanical properties of soft biological materials and the structural origins of their response under extreme stresses and strains. Drawing on the science generated by the ``Extreme Mechanics'' community, we present experimental results on the mechanical properties of articular cartilage, a hierarchically structured soft biomaterial found in the joints of mammalian long bones. Measurements of the spatially localized structure and mechanical properties will be compared with theoretical descriptions based on networks of deformed rods, poro-visco-elasticity, and standard continuum models. Discrepancies between experiment and theory will be highlighted, and suggestions for how models can be improved will be given.
NASA Astrophysics Data System (ADS)
Gardel, M. L.; Nakamura, F.; Hartwig, J. H.; Crocker, J. C.; Stossel, T. P.; Weitz, D. A.
2006-02-01
We show that actin filaments, shortened to physiological lengths by gelsolin and cross-linked with recombinant human filamins (FLNs), exhibit dynamic elastic properties similar to those reported for live cells. To achieve elasticity values of comparable magnitude to those of cells, the in vitro network must be subjected to external prestress, which directly controls network elasticity. A molecular requirement for the strain-related behavior at physiological conditionsis a flexible hinge found in FLNa and some FLNb molecules. Basic physical properties of the in vitro filamin-F-actin network replicate the essential mechanical properties of living cells. This physical behavior could accommodate passive deformation and internal organelle trafficking at low strains yet resist externally or internally generated high shear forces. cytoskeleton | cell mechanics | nonlinear rheology
Computation of Thermally Perfect Properties of Oblique Shock Waves
NASA Technical Reports Server (NTRS)
Tatum, Kenneth E.
1996-01-01
A set of compressible flow relations describing flow properties across oblique shock waves, derived for a thermally perfect, calorically imperfect gas, is applied within the existing thermally perfect gas (TPG) computer code. The relations are based upon a value of cp expressed as a polynomial function of temperature. The updated code produces tables of compressible flow properties of oblique shock waves, as well as the original properties of normal shock waves and basic isentropic flow, in a format similar to the tables for normal shock waves found in NACA Rep. 1135. The code results are validated in both the calorically perfect and the calorically imperfect, thermally perfect temperature regimes through comparisons with the theoretical methods of NACA Rep. 1135, and with a state-of-the-art computational fluid dynamics code. The advantages of the TPG code for oblique shock wave calculations, as well as for the properties of isentropic flow and normal shock waves, are its ease of use, and its applicability to any type of gas (monatomic, diatomic, triatomic, polyatomic, or any specified mixture thereof).
Energy transfer processes between Tm(3+) and Ho(3+) in LiYF4. Ph.D. Thesis Final Report
NASA Technical Reports Server (NTRS)
Oezen, Goenuel
1991-01-01
The spectroscopic properties of the crystal LiYF4 doped with Thulium (Tm) and Holmium (Ho) ions are studied. The basic processes are discussed that regulate the transfer of energy between these two ions in this crystal. In this system Tm is considered the donor ion and the Ho the acceptor ion. Spectral data were obtained on three samples available: LiYF4:Tm(3+) (0.5 percent), LiYF4:Ho(3+) (1 percent), and LiYF4:Tm(3+) (5 percent), Ho(3+) (0.2 percent). Spectral data, which include absorption, luminescence, excitation, and the response to pulsed excitation in a wide range of temperatures, allowed to look at the energy transfer processes by considering the kinetic evolution of the emission of the two ions (donor and acceptor) involved in the process and the basic spectroscopic properties related to them. This inclusive approach has led to the validation of the physical model.
NASA Astrophysics Data System (ADS)
Borzdov, G. N.
2017-10-01
The family of solutions to the Dirac equation for an electron moving in an electromagnetic lattice with the chiral structure created by counterpropagating circularly polarized plane electromagnetic waves is obtained. At any nonzero quasimomentum, the dispersion equation has two solutions which specify bispinor wave functions describing electron states with different energies and mean values of momentum and spin operators. The inversion of the quasimomentum results in two other linearly independent solutions. These four basic wave functions are uniquely defined by eight complex scalar functions (structural functions), which serve as convenient building blocks of the relations describing the electron properties. These properties are illustrated in graphical form over a wide range of quasimomenta. The superpositions of two basic wave functions describing different spin states and corresponding to (i) the same quasimomentum (unidirectional electron states with the spin precession) and (ii) the two equal-in-magnitude but oppositely directed quasimomenta (bidirectional electron states) are also treated.
Montero-Campillo, M Merced; Alkorta, Ibon; Elguero, Jose
2018-06-26
A series of A···water, B···water complexes (A = acid, B =base) are studied at the G4 level of theory to show that water acidity or basicity can be modulated by non-covalent interactions. Protic and non-protic acids interacting with water form hydrogen bonds or other kind of non-covalent interactions, respectively, that may dramatically change the acidity of water up to almost 360 kJ·mol-1 in terms of enthalpy. Similarly, hydrogen bonds responsible for the interaction between typical small nitrogen-containing Lewis bases and water can enhance the proton affinity of water by almost 300 kJ·mol-1. Our results reveal that these large enhancements are linearly related with the binding energy of the charged complexes, and are determined by the Lewis acid-base properties of the molecule involved in the interaction, allowing a quite precise modulation of the corresponding acid-base properties of water. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Canonical gravity, diffeomorphisms and objective histories
NASA Astrophysics Data System (ADS)
Samuel, Joseph
2000-11-01
This paper discusses the implementation of diffeomorphism invariance in purely Hamiltonian formulations of general relativity. We observe that, if a constrained Hamiltonian formulation derives from a manifestly covariant Lagrangian, the diffeomorphism invariance of the Lagrangian results in the following properties of the constrained Hamiltonian theory: the diffeomorphisms are generated by constraints on the phase space so that: (a) the algebra of the generators reflects the algebra of the diffeomorphism group; (b) the Poisson brackets of the basic fields with the generators reflects the spacetime transformation properties of these basic fields. This suggests that in a purely Hamiltonian approach the requirement of diffeomorphism invariance should be interpreted to include (b) and not just (a) as one might naively suppose. Giving up (b) amounts to giving up objective histories, even at the classical level. This observation has implications for loop quantum gravity which are spelled out in a companion paper. We also describe an analogy between canonical gravity and relativistic particle dynamics to illustrate our main point.
Stochastic geometry in disordered systems, applications to quantum Hall transitions
NASA Astrophysics Data System (ADS)
Gruzberg, Ilya
2012-02-01
A spectacular success in the study of random fractal clusters and their boundaries in statistical mechanics systems at or near criticality using Schramm-Loewner Evolutions (SLE) naturally calls for extensions in various directions. Can this success be repeated for disordered and/or non-equilibrium systems? Naively, when one thinks about disordered systems and their average correlation functions one of the very basic assumptions of SLE, the so called domain Markov property, is lost. Also, in some lattice models of Anderson transitions (the network models) there are no natural clusters to consider. Nevertheless, in this talk I will argue that one can apply the so called conformal restriction, a notion of stochastic conformal geometry closely related to SLE, to study the integer quantum Hall transition and its variants. I will focus on the Chalker-Coddington network model and will demonstrate that its average transport properties can be mapped to a classical problem where the basic objects are geometric shapes (loosely speaking, the current paths) that obey an important restriction property. At the transition point this allows to use the theory of conformal restriction to derive exact expressions for point contact conductances in the presence of various non-trivial boundary conditions.
Liu, Hui; Liu, Wei; Lin, Ying; Liu, Teng; Ma, Zhaowu; Li, Mo; Zhang, Hong-Mei; Kenneth Wang, Qing; Guo, An-Yuan
2015-05-27
Scoring the correlation between two genes by their shared properties is a common and basic work in biological study. A prospective way to score this correlation is to quantify the overlap between the two sets of homogeneous properties of the two genes. However the proper model has not been decided, here we focused on studying the quantification of overlap and proposed a more effective model after theoretically compared 7 existing models. We defined three characteristic parameters (d, R, r) of an overlap, which highlight essential differences among the 7 models and grouped them into two classes. Then the pros and cons of the two groups of model were fully examined by their solution space in the (d, R, r) coordinate system. Finally we proposed a new model called OScal (Overlap Score calculator), which was modified on Poisson distribution (one of 7 models) to avoid its disadvantages. Tested in assessing gene relation using different data, OScal performs better than existing models. In addition, OScal is a basic mathematic model, with very low computation cost and few restrictive conditions, so it can be used in a wide-range of research areas to measure the overlap or similarity of two entities.
Stem Cell Niche, the Microenvironment and Immunological Crosstalk
Sujata, Law; Chaudhuri, S
2008-01-01
The concept of stem cells, their physiological existence, the intricate anatomical localization, the known and the unknown functions, and their exclusive utility for the purpose of regenerative medicine, are all now encompassed within an emergent question, ‘how compatible these cells are immunologically?' Indeed, the medical aspects of stem cells are dependent on a large number of queries based on the basic properties of the cells. It has greatly been emphasized to probe into the basic research on stem cells before any successful therapeutic attempts are made. One of the intricate aspects of the adult stem cells is its immunological behavior in relation to the microenvironmental associates, the stromal cells in the presence of a suitable target. PMID:18445340
Stem cell niche, the microenvironment and immunological crosstalk.
Sujata, Law; Chaudhuri, S
2008-04-01
The concept of stem cells, their physiological existence, the intricate anatomical localization, the known and the unknown functions, and their exclusive utility for the purpose of regenerative medicine, are all now encompassed within an emergent question, 'how compatible these cells are immunologically?' Indeed, the medical aspects of stem cells are dependent on a large number of queries based on the basic properties of the cells. It has greatly been emphasized to probe into the basic research on stem cells before any successful therapeutic attempts are made. One of the intricate aspects of the adult stem cells is its immunological behavior in relation to the microenvironmental associates, the stromal cells in the presence of a suitable target.
NASA Astrophysics Data System (ADS)
Eliaš, Peter; Frič, Roman
2017-12-01
Categorical approach to probability leads to better understanding of basic notions and constructions in generalized (fuzzy, operational, quantum) probability, where observables—dual notions to generalized random variables (statistical maps)—play a major role. First, to avoid inconsistencies, we introduce three categories L, S, and P, the objects and morphisms of which correspond to basic notions of fuzzy probability theory and operational probability theory, and describe their relationships. To illustrate the advantages of categorical approach, we show that two categorical constructions involving observables (related to the representation of generalized random variables via products, or smearing of sharp observables, respectively) can be described as factorizing a morphism into composition of two morphisms having desired properties. We close with a remark concerning products.
Hoye, Robert L. Z.; Schulz, Philip; Schelhas, Laura T.; ...
2017-02-28
Recently, there has been an explosive growth in research based on hybrid lead-halide perovskites for photovoltaics owing to rapid improvements in efficiency. The advent of these materials for solar applications has led to widespread interest in understanding the key enabling properties of these materials. This has resulted in renewed interest in related compounds and a search for materials that may replicate the defect-tolerant properties and long lifetimes of the hybrid lead-halide perovskites. Given the rapid pace of development of the field, the rises in efficiencies of these systems have outpaced the more basic understanding of these materials. Measuring or calculatingmore » the basic properties, such as crystal/electronic structure and composition, can be challenging because some of these materials have anisotropic structures, and/or are composed of both heavy metal cations and volatile, mobile, light elements. Some consequences are beam damage during characterization, composition change under vacuum, or compound effects, such as the alteration of the electronic structure through the influence of the substrate. These effects make it challenging to understand the basic properties integral to optoelectronic operation. Compounding these difficulties is the rapid pace with which the field progresses. This has created an ongoing need to continually evaluate best practices with respect to characterization and calculations, as well as to identify inconsistencies in reported values to determine if those inconsistencies are rooted in characterization methodology or materials synthesis. This article describes the difficulties in characterizing hybrid lead-halide perovskites and new materials and how these challenges may be overcome. The topic was discussed at a seminar at the 2015 Materials Research Society Fall Meeting & Exhibit. This article highlights the lessons learned from the seminar and the insights of some of the attendees, with reference to both recent literature and controlled experiments to illustrate the challenges discussed. The focus in this article is on crystallography, composition measurements, photoemission spectroscopy, and calculations on perovskites and new, related absorbers. We suggest how the reporting of the important artifacts could be streamlined between groups to ensure reproducibility as the field progresses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoye, Robert L. Z.; Schulz, Philip; Schelhas, Laura T.
Recently, there has been an explosive growth in research based on hybrid lead-halide perovskites for photovoltaics owing to rapid improvements in efficiency. The advent of these materials for solar applications has led to widespread interest in understanding the key enabling properties of these materials. This has resulted in renewed interest in related compounds and a search for materials that may replicate the defect-tolerant properties and long lifetimes of the hybrid lead-halide perovskites. Given the rapid pace of development of the field, the rises in efficiencies of these systems have outpaced the more basic understanding of these materials. Measuring or calculatingmore » the basic properties, such as crystal/electronic structure and composition, can be challenging because some of these materials have anisotropic structures, and/or are composed of both heavy metal cations and volatile, mobile, light elements. Some consequences are beam damage during characterization, composition change under vacuum, or compound effects, such as the alteration of the electronic structure through the influence of the substrate. These effects make it challenging to understand the basic properties integral to optoelectronic operation. Compounding these difficulties is the rapid pace with which the field progresses. This has created an ongoing need to continually evaluate best practices with respect to characterization and calculations, as well as to identify inconsistencies in reported values to determine if those inconsistencies are rooted in characterization methodology or materials synthesis. This article describes the difficulties in characterizing hybrid lead-halide perovskites and new materials and how these challenges may be overcome. The topic was discussed at a seminar at the 2015 Materials Research Society Fall Meeting & Exhibit. This article highlights the lessons learned from the seminar and the insights of some of the attendees, with reference to both recent literature and controlled experiments to illustrate the challenges discussed. The focus in this article is on crystallography, composition measurements, photoemission spectroscopy, and calculations on perovskites and new, related absorbers. We suggest how the reporting of the important artifacts could be streamlined between groups to ensure reproducibility as the field progresses.« less
Lasers, Cold Atoms and Atomic Clocks: Realizing the Second Today
NASA Astrophysics Data System (ADS)
Calonico, Davide
2013-09-01
The time is the physical quantity that mankind could measure with the best accuracy, thanks to the properties of the atomic physics, as the present definition of time is based on atomic energy transitions. This short review gives some basic information on the heart of the measurement of time in the contemporary world, i.e. the atomic clocks, and some trends related.
NASA Technical Reports Server (NTRS)
Johnson, Hollis Ralph; Querci, Francois R.; Jordan, Stuart (Editor); Thomas, Richard (Editor); Goldberg, Leo; Pecker, Jean-Claude
1987-01-01
The papers in this volume cover the following topics: (1) basic properties and photometric variability of M and related stars; (2) spectroscopy and nonthermal processes; (3) circumstellar radio molecular lines; (4) circumstellar shells, the formation of grains, and radiation transfer; (5) mass loss; (6) circumstellar chemistry; (7) thermal atmospheric models; (8) quasi-thermal models; (9) observations on the atmospheres of M dwarfs; and (1) theoretical work on M dwarfs.
Simple route for nano-hydroxyapatite properties expansion.
Rojas, L; Olmedo, H; García-Piñeres, A J; Silveira, C; Tasic, L; Fraga, F; Montero, M L
2015-10-20
Simple surface modification of nano-hydroxyapatite, through acid-basic reactions, allows expanding the properties of this material. Introduction of organic groups such as hydrophobic alkyl chains, carboxylic acid, and amide or amine basic groups on the hydroxyapatite surface systematically change the polarity, surface area, and reactivity of hydroxyapatite without modifying its phase. Physical and chemical properties of the new derivative particles were analyzed. The biocompatibility of modified Nano-Hap on Raw 264.7 cells was also assessed.
The NASA Materials Science Research Program - It's New Strategic Goals and Plans
NASA Technical Reports Server (NTRS)
Schlagheck, Ronald A.
2003-01-01
In 2001, the NASA created a separate science enterprise, the Office of Biological and Physical Research (OBPR), to perform strategical and fundamental research bringing together physics, chemistry, biology, and engineering to solve problems needed for future agency mission goals. The Materials Science Program is one of basic research disciplines within this new Enterprise's Division of Physical Sciences Research. The Materials Science Program participates to utilize effective use of International Space Station (ISS) experimental facilities, target new scientific and technology questions, and transfer results for Earth benefits. The program has recently pursued new investigative research in areas necessary to expand NASA knowledge base for exploration of the universe, some of which will need access to the microgravity of space. The program has a wide variety of traditional ground and flight based research related types of basic science related to materials crystallization, fundamental processing, and properties characterization in order to obtain basic understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. A summary of the types and sources for this research is presented and those experiments planned for the space. Areas to help expand the science basis for NASA future missions are described. An overview of the program is given including the scope of the current and future NASA Research Announcements with emphasis on new materials science initiatives. A description of the planned flight experiments to be conducted on the International Space Station program along with the planned facility class Materials Science Research Rack (MSRR) and Microgravity Glovebox (MSG) type investigations.
NASA Astrophysics Data System (ADS)
Shahzad, Syed Jawad Hussain; Nor, Safwan Mohd; Mensi, Walid; Kumar, Ronald Ravinesh
2017-04-01
This study examines the power law properties of 11 US credit and stock markets at the industry level. We use multifractal detrended fluctuation analysis (MF-DFA) and multifractal detrended cross-correlation analysis (MF-DXA) to first investigate the relative efficiency of credit and stock markets and then evaluate the mutual interdependence between CDS-equity market pairs. The scaling exponents of the MF-DFA approach suggest that CDS markets are relatively more inefficient than their equity counterparts. However, Banks and Financial credit markets are relatively more efficient. Basic Materials (both CDS and equity indices) is the most inefficient sector of the US economy. The cross-correlation exponents obtained through MF-DXA also suggest that the relationship of the CDS and equity sectors within and across markets is multifractal for all pairs. Within the CDS market, Basic Materials is the most dependent sector, whereas equity market sectors can be divided into two distinct groups based on interdependence. The pair-wise dependence between Basic Materials sector CDSs and the equity index is also the highest. The degree of cross-correlation shows that the sectoral pairs of CDS and equity markets belong to a persistent cross-correlated series within selected time intervals.
Agreement for NASA/OAST - USAF/AFSC space interdependency on spacecraft environment interaction
NASA Technical Reports Server (NTRS)
Pike, C. P.; Stevens, N. J.
1980-01-01
A joint AF/NASA comprehensive program on spacecraft environment interactions consists of combined contractual and in house efforts aimed at understanding spacecraft environment ineraction phenomena and relating ground test results to space conditions. Activities include: (1) a concerted effort to identify project related environmental interactions; (2) a materials investigation to measure the basic properties of materials and develop or modify materials as needed; and (3) a ground simulation investigation to evaluate basic plasma interaction phenomena and provide inputs to the analytical modeling investigation. Systems performance is evaluated by both ground tests and analysis. There is an environmental impact investigation to determine the effect of future large spacecraft on the charged particle environment. Space flight investigations are planned to verify the results. The products of this program are test standards and design guidelines which summarize the technology, specify test criteria, and provide techniques to minimize or eliminate system interactions with the charged particle environment.
Foundations of radiation hydrodynamics
NASA Astrophysics Data System (ADS)
Mihalas, D.; Mihalas, B. W.
This book is the result of an attempt, over the past few years, to gather the basic tools required to do research on radiating flows in astrophysics. The microphysics of gases is discussed, taking into account the equation of state of a perfect gas, the first and second law of thermodynamics, the thermal properties of a perfect gas, the distribution function and Boltzmann's equation, the collision integral, the Maxwellian velocity distribution, Boltzmann's H-theorem, the time of relaxation, and aspects of classical statistical mechanics. Other subjects explored are related to the dynamics of ideal fluids, the dynamics of viscous and heat-conducting fluids, relativistic fluid flow, waves, shocks, winds, radiation and radiative transfer, the equations of radiation hydrodynamics, and radiating flows. Attention is given to small-amplitude disturbances, nonlinear flows, the interaction of radiation and matter, the solution of the transfer equation, acoustic waves, acoustic-gravity waves, basic concepts of special relativity, and equations of motion and energy.
Alternative Fuels Characterization | Transportation Research | NREL
. Research at NREL focuses on the basic properties of these fuels and what levels of oxygen can be tolerated conventional cars and on understanding the performance of flex-fuel vehicles that can operate on ethanol levels basic properties of these fuels, as well as determining what levels of oxygen can be tolerated in drop
41 CFR 102-83.10 - What basic location of space policy governs an Executive agency?
Code of Federal Regulations, 2014 CFR
2014-01-01
... space policy governs an Executive agency? 102-83.10 Section 102-83.10 Public Contracts and Property... PROPERTY 83-LOCATION OF SPACE General Provisions § 102-83.10 What basic location of space policy governs an... delineated area within which it wishes to locate specific activities, consistent with its mission and program...
41 CFR 102-83.10 - What basic location of space policy governs an Executive agency?
Code of Federal Regulations, 2012 CFR
2012-01-01
... space policy governs an Executive agency? 102-83.10 Section 102-83.10 Public Contracts and Property... PROPERTY 83-LOCATION OF SPACE General Provisions § 102-83.10 What basic location of space policy governs an... delineated area within which it wishes to locate specific activities, consistent with its mission and program...
41 CFR 102-83.10 - What basic location of space policy governs an Executive agency?
Code of Federal Regulations, 2013 CFR
2013-07-01
... space policy governs an Executive agency? 102-83.10 Section 102-83.10 Public Contracts and Property... PROPERTY 83-LOCATION OF SPACE General Provisions § 102-83.10 What basic location of space policy governs an... delineated area within which it wishes to locate specific activities, consistent with its mission and program...
41 CFR 102-83.10 - What basic location of space policy governs an Executive agency?
Code of Federal Regulations, 2011 CFR
2011-01-01
... space policy governs an Executive agency? 102-83.10 Section 102-83.10 Public Contracts and Property... PROPERTY 83-LOCATION OF SPACE General Provisions § 102-83.10 What basic location of space policy governs an... delineated area within which it wishes to locate specific activities, consistent with its mission and program...
41 CFR 102-83.10 - What basic location of space policy governs an Executive agency?
Code of Federal Regulations, 2010 CFR
2010-07-01
... space policy governs an Executive agency? 102-83.10 Section 102-83.10 Public Contracts and Property... PROPERTY 83-LOCATION OF SPACE General Provisions § 102-83.10 What basic location of space policy governs an... delineated area within which it wishes to locate specific activities, consistent with its mission and program...
John F. Hunt
1998-01-01
The following results are preliminary, but show some basic information that will be used in an attempt to model pulp molded structures so that by measuring several basic fundamental properties of a fiber furnish and specifying process conditions, a molded structure could be designed for a particular performance need.
ERIC Educational Resources Information Center
Opfer, John E.; Siegler, Robert S.
2004-01-01
Many preschoolers know that plants and animals share basic biological properties, but this knowledge does not usually lead them to conclude that plants, like animals, are living things. To resolve this seeming paradox, we hypothesized that preschoolers largely base their judgments of life status on a biological property, capacity for teleological…
Computer program for determining mass properties of a rigid structure
NASA Technical Reports Server (NTRS)
Hull, R. A.; Gilbert, J. L.; Klich, P. J.
1978-01-01
A computer program was developed for the rapid computation of the mass properties of complex structural systems. The program uses rigid body analyses and permits differences in structural material throughout the total system. It is based on the premise that complex systems can be adequately described by a combination of basic elemental shapes. Simple geometric data describing size and location of each element and the respective material density or weight of each element were the only required input data. From this minimum input, the program yields system weight, center of gravity, moments of inertia and products of inertia with respect to mutually perpendicular axes through the system center of gravity. The program also yields mass properties of the individual shapes relative to component axes.
Bioinspired peptide nanotubes: deposition technology, basic physics and nanotechnology applications.
Rosenman, G; Beker, P; Koren, I; Yevnin, M; Bank-Srour, B; Mishina, E; Semin, S
2011-02-01
Synthetic peptide monomers can self-assemble into PNM such as nanotubes, nanospheres, hydrogels, etc. which represent a novel class of nanomaterials. Molecular recognition processes lead to the formation of supramolecular PNM ensembles containing crystalline building blocks. Such low-dimensional highly ordered regions create a new physical situation and provide unique physical properties based on electron-hole QC phenomena. In the case of asymmetrical crystalline structure, basic physical phenomena such as linear electro-optic, piezoelectric, and nonlinear optical effects, described by tensors of the odd rank, should be explored. Some of the PNM crystalline structures permit the existence of spontaneous electrical polarization and observation of ferroelectricity. The PNM crystalline arrangement creates highly porous nanotubes when various residues are packed into structural network with specific wettability and electrochemical properties. We report in this review on a wide research of PNM intrinsic physical properties, their electronic and optical properties related to QC effect, unique SHG, piezoelectricity and ferroelectric spontaneous polarization observed in PNT due to their asymmetric structure. We also describe PNM wettability phenomenon based on their nanoporous structure and its influence on electrochemical properties in PNM. The new bottom-up large scale technology of PNT physical vapor deposition and patterning combined with found physical effects at nanoscale, developed by us, opens the avenue for emerging nanotechnology applications of PNM in novel fields of nanophotonics, nanopiezotronics and energy storage devices. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.
Liu, Jianli; Lughofer, Edwin; Zeng, Xianyi
2015-01-01
Modeling human aesthetic perception of visual textures is important and valuable in numerous industrial domains, such as product design, architectural design, and decoration. Based on results from a semantic differential rating experiment, we modeled the relationship between low-level basic texture features and aesthetic properties involved in human aesthetic texture perception. First, we compute basic texture features from textural images using four classical methods. These features are neutral, objective, and independent of the socio-cultural context of the visual textures. Then, we conduct a semantic differential rating experiment to collect from evaluators their aesthetic perceptions of selected textural stimuli. In semantic differential rating experiment, eights pairs of aesthetic properties are chosen, which are strongly related to the socio-cultural context of the selected textures and to human emotions. They are easily understood and connected to everyday life. We propose a hierarchical feed-forward layer model of aesthetic texture perception and assign 8 pairs of aesthetic properties to different layers. Finally, we describe the generation of multiple linear and non-linear regression models for aesthetic prediction by taking dimensionality-reduced texture features and aesthetic properties of visual textures as dependent and independent variables, respectively. Our experimental results indicate that the relationships between each layer and its neighbors in the hierarchical feed-forward layer model of aesthetic texture perception can be fitted well by linear functions, and the models thus generated can successfully bridge the gap between computational texture features and aesthetic texture properties.
Gastrophysics of the Oral Cavity.
Mouritsen, Ole G
2016-01-01
Gastrophysics is the science that pertains to the physical and physico-chemical description of the empirical world of gastronomy, with focus on sensory perception in the oral cavity and how it is related to the materials properties of food and cooking processes. Flavor (taste and smell), mouthfeel, chemesthesis, and astringency are all related to the chemical properties and the texture of the food and how the food is transformed in the oral cavity. The present topical review will primarily focus attention on the somatosensory perception of food (mouthfeel or texture) and how it interacts with basic tastes (sour, bitter, sweet, salty, and umami) and chemesthetic action. Issues regarding diet, nutrition, and health will be put into an evolutionary perspective, and some mention will be made of umami and its importance for (oral) health.
NASA Astrophysics Data System (ADS)
Pukhovskaya, S. G.; Ivanova, Yu. B.; Nam, Dao The; Vashurin, A. S.
2014-10-01
Spectrophotometric titration is used to study the basic properties of a series of porphyrins with a continuously increasing degree of macrocycle deformation resulting from the introduction of strong electron-withdrawing substituents: 2,3,7,8,12,13,17,18-octaethylporphyrin ( I), 5-nitro-2,3,7,8,12,13,17,18-octaethylporphyrin ( II), 5,15-dinitro-2,3,7,8,12,13,17,18-octaethylporphyrin ( III), 5,10,15-trinitro-2,3,7,8,12,13,17,18-octaethylporphyrin ( IV), and 5,10,15,20-tetranitro-2,3,7,8,12,13,17,18-octaethylporphyrin ( V). It is found that the values of log K b (total basicity constants) obtained for the investigated compounds consistently diminish with an increase in the number of meso-substituents: 11.85 ( I) > 10.45 ( II) > 10.31 ( III) > 10.23 ( IV) > 9.56 ( V). It is shown that two opposing factors, the steric and electronic effects of the substituents, change the basic properties of the above series of compounds.
Biominerals- hierarchical nanocomposites: the example of bone
Beniash, Elia
2010-01-01
Many organisms incorporate inorganic solids in their tissues to enhance their functional, primarily mechanical, properties. These mineralized tissues, also called biominerals, are unique organo-mineral nanocomposites, organized at several hierarchical levels, from nano- to macroscale. Unlike man made composite materials, which often are simple physical blends of their components, the organic and inorganic phases in biominerals interface at the molecular level. Although these tissues are made of relatively weak components at ambient conditions, their hierarchical structural organization and intimate interactions between different elements lead to superior mechanical properties. Understanding basic principles of formation, structure and functional properties of these tissues might lead to novel bioinspired strategies for material design and better treatments for diseases of the mineralized tissues. This review focuses on general principles of structural organization, formation and functional properties of biominerals on the example the bone tissues. PMID:20827739
Understanding volatility correlation behavior with a magnitude cross-correlation function
NASA Astrophysics Data System (ADS)
Jun, Woo Cheol; Oh, Gabjin; Kim, Seunghwan
2006-06-01
We propose an approach for analyzing the basic relation between correlation properties of the original signal and its magnitude fluctuations by decomposing the original signal into its positive and negative fluctuation components. We use this relation to understand the following phenomenon found in many naturally occurring time series: the magnitude of the signal exhibits long-range correlation, whereas the original signal is short-range correlated. The applications of our approach to heart rate variability signals and high-frequency foreign exchange rates reveal that the difference between the correlation properties of the original signal and its magnitude fluctuations is induced by the time organization structure of the correlation function between the magnitude fluctuations of positive and negative components. We show that this correlation function can be described well by a stretched-exponential function and is related to the nonlinearity and the multifractal structure of the signals.
Understanding volatility correlation behavior with a magnitude cross-correlation function.
Jun, Woo Cheol; Oh, Gabjin; Kim, Seunghwan
2006-06-01
We propose an approach for analyzing the basic relation between correlation properties of the original signal and its magnitude fluctuations by decomposing the original signal into its positive and negative fluctuation components. We use this relation to understand the following phenomenon found in many naturally occurring time series: the magnitude of the signal exhibits long-range correlation, whereas the original signal is short-range correlated. The applications of our approach to heart rate variability signals and high-frequency foreign exchange rates reveal that the difference between the correlation properties of the original signal and its magnitude fluctuations is induced by the time organization structure of the correlation function between the magnitude fluctuations of positive and negative components. We show that this correlation function can be described well by a stretched-exponential function and is related to the nonlinearity and the multifractal structure of the signals.
Blankenship, Kevin L; Wegener, Duane T; Murray, Renee A
2015-12-01
Accessibility is one of the most basic structural properties of an attitude and an important factor to consider in attitude strength. Despite its importance, relatively little work has examined the role of attitude accessibility in an inter-attitudinal context, particularly as it relates to the strength of related attitudes in the network. The present research examines accessibility as a property of one attitude (toward an abstract goal or end-state, that is, a value) that might influence the strength of a different but related attitude (toward a social policy conceptually related to the value). In Study 1, a highly accessible evaluative component of a value increased resistance to change of attitudes and behavioral intentions toward a social policy related to that value. Similarly, a manipulation of value accessibility (Studies 2 and 3) led to increased resistance of attitudes and behavioral intentions toward a social policy related to that value. Implications for the role of accessibility in inter-attitudinal strength are discussed. © 2015 by the Society for Personality and Social Psychology, Inc.
ERIC Educational Resources Information Center
Yantz, Jennifer
2013-01-01
The attainment and retention of later algebra skills in high school has been identified as a factor significantly impacting the postsecondary success of students majoring in STEM fields. Researchers maintain that learners develop meaning for algebraic procedures by forming connections to the basic number system properties. The present study…
Technetium-99m: basic nuclear physics and chemical properties.
Castronovo, F P
1975-05-01
The nuclear physics and chemical properties of technetium-99m are reviewed. The review of basic nuclear physics includes: classification of nuclides, nuclear stability, production of radionuclides, artificial production of molybdenum-99, production of technetium 99m and -99Mo-99mTc generators. The discussion of the chemistry of technetium includes a profile of several -99mCc-labeled radiopharmaceuticals.
Human Visual Performance and Flat Panel Display Image Quality
1980-07-01
the research required to relate human operator performance to the geome- tric properties of these designs has characteristically lag- - 68 - tte ...see: A summary of basic principles. In Committee on Undersea Warfare, National Research Council, A Summary Report on Human Factors in Undersea ...Office of the Deputy Under Secretary of Defense OUSDRE (E&LS) The Pentagon, Room 3D129 Washington, D. C. 20301 Director, Undersea Technology Code 220
Analysis of the Relationships between Waste Cooking Oil Qualities and Rejuvenated Asphalt Properties
Zhang, Dong; Chen, Meizhu; Wu, Shaopeng; Liu, Jingxiang; Amirkhanian, Serji
2017-01-01
Waste cooking oil (WCO), in many cases, can rejuvenate aged asphalt and restore its properties. However, the influence of WCO qualities on rejuvenation behaviors of aged asphalt has not been investigated in detail. The objective of this paper was to evaluate the effects of WCO viscosity and acid value on the basic, rheological, and chemical properties of a typical rejuvenated asphalt. Penetration, ring and ball (R and B) softening point, and ductility were tested to evaluate the influence of WCO qualities on basic properties of rejuvenated asphalts. Then, the rheological properties of rejuvenated asphalt were characterized based on rotational viscometer (RV), dynamic shear rheometer (DSR), and bending beam rheometer (BBR) test results. Further, SARA (saturates, aromatics, resins, and asphaltenes) fraction analysis and Fourier transform infrared spectroscopy (FTIR) tests were performed to investigate the effects of WCO qualities on asphalt chemical composition. Finally, grey correlation coefficients were calculated and the relationships between WCO qualities and rejuvenated asphalt properties were quantitatively evaluated. The experimental results indicated that WCO qualities influence the rejuvenation behaviors of aged asphalt significantly, and the WCO with higher qualities (low acid value and viscosity, as defined in this research) tends to achieve better rejuvenation effects. Based on the results of grey correlation analyses, the acid value is, relatively, a better indicator than viscosity in predicting the rejuvenation efficiency of WCO. The rejuvenation thresholds of WCO are varied with the categories of properties of rejuvenated asphalts, and WCO with an acid value of 0.4–0.7 mg KOH/g, or a viscosity of 140–540 mm2/s, can meet all of the performance requirements for asphalt rejuvenation used in this research. PMID:28772862
Zhang, Dong; Chen, Meizhu; Wu, Shaopeng; Liu, Jingxiang; Amirkhanian, Serji
2017-05-06
Waste cooking oil (WCO), in many cases, can rejuvenate aged asphalt and restore its properties. However, the influence of WCO qualities on rejuvenation behaviors of aged asphalt has not been investigated in detail. The objective of this paper was to evaluate the effects of WCO viscosity and acid value on the basic, rheological, and chemical properties of a typical rejuvenated asphalt. Penetration, ring and ball (R and B) softening point, and ductility were tested to evaluate the influence of WCO qualities on basic properties of rejuvenated asphalts. Then, the rheological properties of rejuvenated asphalt were characterized based on rotational viscometer (RV), dynamic shear rheometer (DSR), and bending beam rheometer (BBR) test results. Further, SARA (saturates, aromatics, resins, and asphaltenes) fraction analysis and Fourier transform infrared spectroscopy (FTIR) tests were performed to investigate the effects of WCO qualities on asphalt chemical composition. Finally, grey correlation coefficients were calculated and the relationships between WCO qualities and rejuvenated asphalt properties were quantitatively evaluated. The experimental results indicated that WCO qualities influence the rejuvenation behaviors of aged asphalt significantly, and the WCO with higher qualities (low acid value and viscosity, as defined in this research) tends to achieve better rejuvenation effects. Based on the results of grey correlation analyses, the acid value is, relatively, a better indicator than viscosity in predicting the rejuvenation efficiency of WCO. The rejuvenation thresholds of WCO are varied with the categories of properties of rejuvenated asphalts, and WCO with an acid value of 0.4-0.7 mg KOH/g, or a viscosity of 140-540 mm²/s, can meet all of the performance requirements for asphalt rejuvenation used in this research.
Emerging Drugs for the Treatment of Anxiety
Murrough, James W.; Yaqubi, Sahab; Sayed, Sehrish; Charney, Dennis S.
2016-01-01
Introduction Anxiety disorders are among the most prevalent and disabling psychiatric disorders in the United States and worldwide. Basic research has provided critical insights into the mechanism regulating fear behavior in animals and a host of animal models have been developed in order to screen compounds for anxiolytic properties. Despite this progress, no mechanistically novel agents for the treatment of anxiety have come to market in more than two decades. Areas covered The current review will provide a critical summary of current pharmacological approaches to the treatment of anxiety and will examine the pharmacotherapeutic pipeline for treatments in development. Anxiety and related disorders considered herein include panic disorder, social anxiety disorder, generalized anxiety disorder and posttraumatic stress disorder. The glutamate, neuropeptide and endocannabinoid systems show particular promise as future targets for novel drug development. Expert opinion In the face of an ever-growing understanding of fear related behavior, the field awaits the translation of this research into mechanistically novel treatments. Obstacles will be overcome through close collaboration between basic and clinical researchers with the goal of aligning valid endophenotypes of human anxiety disorders with improved animal models. Novel approaches are needed to move basic discoveries into new, more effective treatments for our patients. PMID:26012843
High-frequency applications of high-temperature superconductor thin films
NASA Astrophysics Data System (ADS)
Klein, N.
2002-10-01
High-temperature superconducting thin films offer unique properties which can be utilized for a variety of high-frequency device applications in many areas related to the strongly progressing market of information technology. One important property is an exceptionally low level of microwave absorption at temperatures attainable with low power cryocoolers. This unique property has initiated the development of various novel type of microwave devices and commercialized subsystems with special emphasis on application in advanced microwave communication systems. The second important achievement related to efforts in oxide thin and multilayer technology was the reproducible fabrication of low-noise Josephson junctions in high-temperature superconducting thin films. As a consequence of this achievement, several novel nonlinear high-frequency devices, most of them exploiting the unique features of the ac Josephson effect, have been developed and found to exhibit challenging properties to be utilized in basic metrology and Terahertz technology. On the longer timescale, the achievements in integrated high-temperature superconductor circuit technology may offer a strong potential for the development of digital devices with possible clock frequencies in the range of 100 GHz.
Nickel hydroxides and related materials: a review of their structures, synthesis and properties
Hall, David S.; Lockwood, David J.; Bock, Christina; MacDougall, Barry R.
2015-01-01
This review article summarizes the last few decades of research on nickel hydroxide, an important material in physics and chemistry, that has many applications in engineering including, significantly, batteries. First, the structures of the two known polymorphs, denoted as α-Ni(OH)2 and β-Ni(OH)2, are described. The various types of disorder, which are frequently present in nickel hydroxide materials, are discussed including hydration, stacking fault disorder, mechanical stresses and the incorporation of ionic impurities. Several related materials are discussed, including intercalated α-derivatives and basic nickel salts. Next, a number of methods to prepare, or synthesize, nickel hydroxides are summarized, including chemical precipitation, electrochemical precipitation, sol–gel synthesis, chemical ageing, hydrothermal and solvothermal synthesis, electrochemical oxidation, microwave-assisted synthesis, and sonochemical methods. Finally, the known physical properties of the nickel hydroxides are reviewed, including their magnetic, vibrational, optical, electrical and mechanical properties. The last section in this paper is intended to serve as a summary of both the potentially useful properties of these materials and the methods for the identification and characterization of ‘unknown’ nickel hydroxide-based samples. PMID:25663812
A maximally stable extremal region based scene text localization method
NASA Astrophysics Data System (ADS)
Xiao, Chengqiu; Ji, Lixin; Gao, Chao; Li, Shaomei
2015-07-01
Text localization in natural scene images is an important prerequisite for many content-based image analysis tasks. This paper proposes a novel text localization algorithm. Firstly, a fast pruning algorithm is designed to extract Maximally Stable Extremal Regions (MSER) as basic character candidates. Secondly, these candidates are filtered by using the properties of fitting ellipse and the distribution properties of characters to exclude most non-characters. Finally, a new extremal regions projection merging algorithm is designed to group character candidates into words. Experimental results show that the proposed method has an advantage in speed and achieve relatively high precision and recall rates than the latest published algorithms.
Interlayer interactions in graphites.
Chen, Xiaobin; Tian, Fuyang; Persson, Clas; Duan, Wenhui; Chen, Nan-xian
2013-11-06
Based on ab initio calculations of both the ABC- and AB-stacked graphites, interlayer potentials (i.e., graphene-graphene interaction) are obtained as a function of the interlayer spacing using a modified Möbius inversion method, and are used to calculate basic physical properties of graphite. Excellent consistency is observed between the calculated and experimental phonon dispersions of AB-stacked graphite, showing the validity of the interlayer potentials. More importantly, layer-related properties for nonideal structures (e.g., the exfoliation energy, cleave energy, stacking fault energy, surface energy, etc.) can be easily predicted from the interlayer potentials, which promise to be extremely efficient and helpful in studying van der Waals structures.
A Concise Introduction to Quantum Mechanics
NASA Astrophysics Data System (ADS)
Swanson, Mark S.
2018-02-01
Assuming a background in basic classical physics, multivariable calculus, and differential equations, A Concise Introduction to Quantum Mechanics provides a self-contained presentation of the mathematics and physics of quantum mechanics. The relevant aspects of classical mechanics and electrodynamics are reviewed, and the basic concepts of wave-particle duality are developed as a logical outgrowth of experiments involving blackbody radiation, the photoelectric effect, and electron diffraction. The Copenhagen interpretation of the wave function and its relation to the particle probability density is presented in conjunction with Fourier analysis and its generalization to function spaces. These concepts are combined to analyze the system consisting of a particle confined to a box, developing the probabilistic interpretation of observations and their associated expectation values. The Schrödinger equation is then derived by using these results and demanding both Galilean invariance of the probability density and Newtonian energy-momentum relations. The general properties of the Schrödinger equation and its solutions are analyzed, and the theory of observables is developed along with the associated Heisenberg uncertainty principle. Basic applications of wave mechanics are made to free wave packet spreading, barrier penetration, the simple harmonic oscillator, the Hydrogen atom, and an electric charge in a uniform magnetic field. In addition, Dirac notation, elements of Hilbert space theory, operator techniques, and matrix algebra are presented and used to analyze coherent states, the linear potential, two state oscillations, and electron diffraction. Applications are made to photon and electron spin and the addition of angular momentum, and direct product multiparticle states are used to formulate both the Pauli exclusion principle and quantum decoherence. The book concludes with an introduction to the rotation group and the general properties of angular momentum.
Phonon-defect scattering and thermal transport in semiconductors: developing guiding principles
NASA Astrophysics Data System (ADS)
Polanco, Carlos; Lindsay, Lucas
First principles calculations of thermal conductivity have shown remarkable agreement with measurements for high-quality crystals. Nevertheless, most materials contain defects that provide significant extrinsic resistance and lower the conductivity from that of a perfect sample. This effect is usually accounted for with simplified analytical models that neglect the atomistic details of the defect and the exact dynamical properties of the system, which limits prediction capabilities. Recently, a method based on Greens functions was developed to calculate the phonon-defect scattering rates from first principles. This method has shown the important role of point defects in determining thermal transport in diamond and boron arsenide, two competitors for the highest bulk thermal conductivity. Here, we study the role of point defects on other relatively high thermal conductivity semiconductors, e.g., BN, BeSe, SiC, GaN and Si. We compare their first principles defect-phonon scattering rates and effects on transport properties with those from simplified models and explore common principles that determine these. Efforts will focus on basic vibrational properties that vary from system to system, such as density of states, interatomic force constants and defect deformation. Research supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division.
Graham, Daniel J; Field, David J
2008-01-01
Two recent studies suggest that natural scenes and paintings show similar statistical properties. But does the content or region of origin of an artwork affect its statistical properties? We addressed this question by having judges place paintings from a large, diverse collection of paintings into one of three subject-matter categories using a forced-choice paradigm. Basic statistics for images whose caterogization was agreed by all judges showed no significant differences between those judged to be 'landscape' and 'portrait/still-life', but these two classes differed from paintings judged to be 'abstract'. All categories showed basic spatial statistical regularities similar to those typical of natural scenes. A test of the full painting collection (140 images) with respect to the works' place of origin (provenance) showed significant differences between Eastern works and Western ones, differences which we find are likely related to the materials and the choice of background color. Although artists deviate slightly from reproducing natural statistics in abstract art (compared to representational art), the great majority of human art likely shares basic statistical limitations. We argue that statistical regularities in art are rooted in the need to make art visible to the eye, not in the inherent aesthetic value of natural-scene statistics, and we suggest that variability in spatial statistics may be generally imposed by manufacture.
Ullrich, Susann; Aryani, Arash; Kraxenberger, Maria; Jacobs, Arthur M.; Conrad, Markus
2017-01-01
The literary genre of poetry is inherently related to the expression and elicitation of emotion via both content and form. To explore the nature of this affective impact at an extremely basic textual level, we collected ratings on eight different general affective meaning scales—valence, arousal, friendliness, sadness, spitefulness, poeticity, onomatopoeia, and liking—for 57 German poems (“die verteidigung der wölfe”) which the contemporary author H. M. Enzensberger had labeled as either “friendly,” “sad,” or “spiteful.” Following Jakobson's (1960) view on the vivid interplay of hierarchical text levels, we used multiple regression analyses to explore the specific influences of affective features from three different text levels (sublexical, lexical, and inter-lexical) on the perceived general affective meaning of the poems using three types of predictors: (1) Lexical predictor variables capturing the mean valence and arousal potential of words; (2) Inter-lexical predictors quantifying peaks, ranges, and dynamic changes within the lexical affective content; (3) Sublexical measures of basic affective tone according to sound-meaning correspondences at the sublexical level (see Aryani et al., 2016). We find the lexical predictors to account for a major amount of up to 50% of the variance in affective ratings. Moreover, inter-lexical and sublexical predictors account for a large portion of additional variance in the perceived general affective meaning. Together, the affective properties of all used textual features account for 43–70% of the variance in the affective ratings and still for 23–48% of the variance in the more abstract aesthetic ratings. In sum, our approach represents a novel method that successfully relates a prominent part of variance in perceived general affective meaning in this corpus of German poems to quantitative estimates of affective properties of textual components at the sublexical, lexical, and inter-lexical level. PMID:28123376
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoilova, N. I.
Generalized quantum statistics, such as paraboson and parafermion statistics, are characterized by triple relations which are related to Lie (super)algebras of type B. The correspondence of the Fock spaces of parabosons, parafermions as well as the Fock space of a system of parafermions and parabosons to irreducible representations of (super)algebras of type B will be pointed out. Example of generalized quantum statistics connected to the basic classical Lie superalgebra B(1|1) ≡ osp(3|2) with interesting physical properties, such as noncommutative coordinates, will be given. Therefore the article focuses on the question, addressed already in 1950 by Wigner: do the equation ofmore » motion determine the quantum mechanical commutation relation?.« less
Synthesis, structure and magnetic properties ofβ-MnO2nanorods
Kim, HaeJin; Lee, JinBae; Kim, Young-Min; Jung, Myung-Hwa; Jagličić, Z; Umek, P
2007-01-01
We present synthesis, structure and magnetic properties of structurally well-ordered single-crystalline β-MnO2nanorods of 50–100 nm diameter and several µm length. Thorough structural characterization shows that the basic β-MnO2material is covered by a thin surface layer (∼2.5 nm) of α-Mn2O3phase with a reduced Mn valence that adds its own magnetic signal to the total magnetization of the β-MnO2nanorods. The relatively complicated temperature-dependent magnetism of the nanorods can be explained in terms of a superposition of bulk magnetic properties of spatially segregated β-MnO2and α-Mn2O3constituent phases and the soft ferromagnetism of the thin interface layer between these two phases.
Tél, Tamás
2015-09-01
We intend to show that transient chaos is a very appealing, but still not widely appreciated, subfield of nonlinear dynamics. Besides flashing its basic properties and giving a brief overview of the many applications, a few recent transient-chaos-related subjects are introduced in some detail. These include the dynamics of decision making, dispersion, and sedimentation of volcanic ash, doubly transient chaos of undriven autonomous mechanical systems, and a dynamical systems approach to energy absorption or explosion.
ERIC Educational Resources Information Center
Anishchanka, Alena
2010-01-01
The article presents a usage-based analysis of color attribution, i.e. the construal of the relation between color property and an entity to which it is attributed in painting descriptions. The study is based on the corpus of 100 catalog entries written for American art museums. It focuses on the two most frequent morpho-syntactic patterns in the…
Kim, Jeong Yun; Hwang, Tae Gyu; Woo, Sung Wun; Lee, Jae Moon; Namgoong, Jin Woong; Yuk, Sim Bum; Chung, Sei-Won; Kim, Jae Pil
2017-04-06
A simple and easy solubility enhancement of basic dyes was performed with bulky and symmetric weakly coordinating anions (WCAs). The WCAs decreased the ionic character of the dyes by broadening the partial charge distribution and causing a screening effect on the ionic bonding. This new modification with WCAs has advantages in that it has no influence on the optical properties of the dyes. The solubilities of unmodified and modified dyes were tested in several organic solvents. X-ray powder diffraction patterns of the dyes were measured. Color films were prepared with the dyes and their color loci were analyzed to evaluate the optical properties. By the modification with WCAs, commercial basic dyes showed sufficient solubilities for be applied to various applications while preserving their superior optical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawniczak-Jablonska, K.; Liliental-Weber, Z.; Gullikson, E.M.
1997-04-01
Group III nitrides (AlN, GaN, and InN) consist of the semiconductors which appear recently as a basic materials for optoelectronic devices active in the visible/ultraviolet spectrum as well as high-temperature and high-power microelectronic devices. However, understanding of the basic physical properties leading to application is still not satisfactory. One of the reasons consists in unsufficient knowledge of the band structure of the considered semiconductors. Several theoretical studies of III-nitrides band structure have been published but relatively few experimental studies have been carried out, particularly with respect to their conduction band structure. This motivated the authors to examine the conduction bandmore » structure projected onto p-states of the nitrogen atoms for AlN, GaN and InN. An additional advantage of their studies is the availability of the studied nitrides in two structures, hexagonal (wurtzite) and cubic (zincblende). This offers an opportunity to gain information about the role of the anisotropy of electronic band states in determining various physical properties.« less
Liu, Chuangjun; Best, Quinn A.; Suarez, Brian; Pertile, Jack; McCarroll, Matthew E.; Scott, Colleen N.
2015-01-01
A series of fluorescent pH probes based on the spiro-cyclic rhodamine core, aminomethylrhodamines (AMR), was synthesized and the effect of cycloalkane ring size on the acid/base properties of the AMR system was explored. The study involved a series of rhodamine 6G (cAMR6G) and rhodamine B (cAMR) pH probes with cycloalkane ring sizes from C-3 to C-6 on the spiro-cyclic amino group. It is known that the pKa value of cycloalkylamines can be tuned by the different ring sizes in accordance with the Baeyer ring strain theory. Smaller ring amines have lower pKa value, i.e. they're less basic, such that the relative order in cycloalkylamine basicity is: cyclohexyl>cyclopentyl>cyclobutyl>cyclopropyl. Herein, it was found that the pKa values of the cAMR and cAMR6G systems can also be predicted by Baeyer ring strain theory. The pKa values for the cAMR6G series were shown to be higher than the cAMR series by a value of approximately 1. PMID:25686771
A Computational Approach to Investigate Properties of Estimators
ERIC Educational Resources Information Center
Caudle, Kyle A.; Ruth, David M.
2013-01-01
Teaching undergraduates the basic properties of an estimator can be difficult. Most definitions are easy enough to comprehend, but difficulties often lie in gaining a "good feel" for these properties and why one property might be more desired as compared to another property. Simulations which involve visualization of these properties can…
Production of hydrocarbon fuels from pyrolysis of soybean oils using a basic catalyst.
Xu, Junming; Jiang, Jianchun; Sun, Yunjuan; Chen, Jie
2010-12-01
Triglycerides obtained from animals and plants have attracted great attention from researchers for developing an environmental friendly and high-quality fuel, free of nitrogen and sulfur. In the present work, the production of biofuel by catalytic cracking of soybean oil over a basic catalyst in a continuous pyrolysis reactor at atmospheric pressure has been studied. Experiments were designed to study the effect of different types of catalysts on the yield and acid value of the diesel and gasoline fractions from the pyrolytic oil. It was found that basic catalyst gave a product with relatively low acid number. These pyrolytic oils were also further reacted with alcohol in order to decrease their acid value. After esterification, the physico-chemical properties of these biofuels were characterized, and compared with Chinese specifications for conventional diesel fuels. The results showed that esterification of pyrolytic oil from triglycerides represents an alternative technique for producing biofuels from soybean oils with characteristics similar to those of petroleum fuels. Published by Elsevier Ltd.
Electrical properties of epoxies used in hybrid microelectronics
NASA Technical Reports Server (NTRS)
Stout, C. W.
1976-01-01
The electrical properties and basic characteristics of the structure of conductive epoxies were studied. The results of the experimental work performed to measure the electrical properties of epoxies are presented.
ERIC Educational Resources Information Center
Swinson, John V.
2000-01-01
Intellectual property is a term that covers a number of different rights. Considers issues such as what are the basic forms of intellectual property; who owns the intellectual property created by a teacher; who owns intellectual property created by students; and use of downloaded materials from the internet. (Author/LM)
NASA Technical Reports Server (NTRS)
Lin, Bing; Hu, Yongxiang; Sun, Wenbo; Min, Qilong
2008-01-01
This study uses 3-dimensional finite difference time domain method to accurately calculate single-scattering properties of randomly orientated leaves and evaluate the influences of vegetation water content (VWC) on these properties at 19 and 37 GHz frequencies. The studied leaves are assumed to be thin elliptic disks with two different sizes and have various VWC values. Although the leaf moisture produces considerable absorption during scattering processes, the effective efficiencies of extinction and scattering of leaves still near-linearly increase with VWC. Calculated asymmetry factors and phase functions indicate that there are significant amounts of scattering at large scattering angles in microwave wavelengths, which provides good opportunities for off-nadir microwave remote sensing of forests. This study lays a basic foundation in future quantifications of the relations between satellite measurements and physical properties of vegetation canopies.
Fundamentals of tribology at the atomic level
NASA Technical Reports Server (NTRS)
Ferrante, John; Pepper, Stephen V.
1989-01-01
Tribology, the science and engineering of solid surfaces in moving contact, is a field that encompasses many disciplines: solid state physics, chemistry, materials science, and mechanical engineering. In spite of the practical importance and maturity of the field, the fundamental understanding of basic phenomena has only recently been attacked. An attempt to define some of these problems and indicate some profitable directions for future research is presented. There are three broad classifications: (1) fluid properties (compression, rheology, additives and particulates); (2) material properties of the solids (deformation, defect formation and energy loss mechanisms); and (3) interfacial properties (adhesion, friction chemical reactions, and boundary films). Research in the categories has traditionally been approached by considering macroscopic material properties. Recent activity has shown that some issues can be approached at the atomic level: the atoms in the materials can be manipulated both experimentally and theoretically, and can produce results related to macroscopic phenomena.
41 CFR 301-73.106 - What are the basic services that should be covered by a TMS?
Code of Federal Regulations, 2010 CFR
2010-07-01
..., confirmation of reservations, etc.). (b) Provide basic management information, such as— (1) Number of... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false What are the basic... Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES AGENCY RESPONSIBILITIES 73...
An Independent Evaluation of the Technical Features of the Basic Reading Inventory
ERIC Educational Resources Information Center
Bieber, Gregg; Hulac, David M.; Schweinle, William
2015-01-01
The present study investigated some psychometric properties of the Basic Reading Inventory (BRI), a widely used informal reading inventory. The BRI and Dynamic Indicators of Basic Early Literacy Skills (DIBELS) probes were administered to 149 third, fourth, and fifth graders. Test--retest and alternate forms reliability analyses indicated adequate…
Chen, Xin-Lin; Zhong, Liang-Huan; Wen, Yi; Liu, Tian-Wen; Li, Xiao-Ying; Hou, Zheng-Kun; Hu, Yue; Mo, Chuan-Wei; Liu, Feng-Bin
2017-09-15
This review aims to critically appraise and compare the measurement properties of inflammatory bowel disease (IBD)-specific health-related quality of life instruments. Medline, EMBASE and ISI Web of Knowledge were searched from their inception to May 2016. IBD-specific instruments for patients with Crohn's disease, ulcerative colitis or IBD were enrolled. The basic characteristics and domains of the instruments were collected. The methodological quality of measurement properties and measurement properties of the instruments were assessed. Fifteen IBD-specific instruments were included, which included twelve instruments for adult IBD patients and three for paediatric IBD patients. All of the instruments were developed in North American and European countries. The following common domains were identified: IBD-related symptoms, physical, emotional and social domain. The methodological quality was satisfactory for content validity; fair in internal consistency, reliability, structural validity, hypotheses testing and criterion validity; and poor in measurement error, cross-cultural validity and responsiveness. For adult IBD patients, the IBDQ-32 and its short version (SIBDQ) had good measurement properties and were the most widely used worldwide. For paediatric IBD patients, the IMPACT-III had good measurement properties and had more translated versions. Most methodological quality should be promoted, especially measurement error, cross-cultural validity and responsiveness. The IBDQ-32 was the most widely used instrument with good reliability and validity, followed by the SIBDQ and IMPACT-III. Further validation studies are necessary to support the use of other instruments.
NASA Astrophysics Data System (ADS)
Meng, Xiaocheng; Che, Renfei; Gao, Shi; He, Juntao
2018-04-01
With the advent of large data age, power system research has entered a new stage. At present, the main application of large data in the power system is the early warning analysis of the power equipment, that is, by collecting the relevant historical fault data information, the system security is improved by predicting the early warning and failure rate of different kinds of equipment under certain relational factors. In this paper, a method of line failure rate warning is proposed. Firstly, fuzzy dynamic clustering is carried out based on the collected historical information. Considering the imbalance between the attributes, the coefficient of variation is given to the corresponding weights. And then use the weighted fuzzy clustering to deal with the data more effectively. Then, by analyzing the basic idea and basic properties of the relational analysis model theory, the gray relational model is improved by combining the slope and the Deng model. And the incremental composition and composition of the two sequences are also considered to the gray relational model to obtain the gray relational degree between the various samples. The failure rate is predicted according to the principle of weighting. Finally, the concrete process is expounded by an example, and the validity and superiority of the proposed method are verified.
Gyroscope precession in special and general relativity from basic principles
NASA Astrophysics Data System (ADS)
Jonsson, Rickard M.
2007-05-01
In special relativity a gyroscope that is suspended in a torque-free manner will precess as it is moved along a curved path relative to an inertial frame S. We explain this effect, which is known as Thomas precession, by considering a real grid that moves along with the gyroscope, and that by definition is not rotating as observed from its own momentary inertial rest frame. From the basic properties of the Lorentz transformation we deduce how the form and rotation of the grid (and hence the gyroscope) will evolve relative to S. As an intermediate step we consider how the grid would appear if it were not length contracted along the direction of motion. We show that the uncontracted grid obeys a simple law of rotation. This law simplifies the analysis of spin precession compared to more traditional approaches based on Fermi transport. We also consider gyroscope precession relative to an accelerated reference frame and show that there are extra precession effects that can be explained in a way analogous to the Thomas precession. Although fully relativistically correct, the entire analysis is carried out using three-vectors. By using the equivalence principle the formalism can also be applied to static spacetimes in general relativity. As an example, we calculate the precession of a gyroscope orbiting a static black hole.
Waxman, S R; Lynch, E B; Casey, K L; Baer, L
1997-11-01
Basic level categories are a rich source of inductive inference for children and adults. These 3 experiments examine how preschool-age children partition their inductively rich basic level categories to form subordinate level categories and whether these have inductive potential. Children were taught a novel property about an individual member of a familiar basic level category (e.g., a collie). Then, children's extensions of that property to other objects from the same subordinate (e.g., other collies), basic (e.g., other dogs), and superordinate (e.g., other animals) level categories were examined. The results suggest (a) that contrastive information promotes the emergence of subordinate categories as a basis of inductive inference and (b) that newly established subordinate categories can retain their inductive potential in subsequent reasoning over a week's time.
Spacecraft environmental interactions: A joint Air Force and NASA research and technology program
NASA Technical Reports Server (NTRS)
Pike, C. P.; Purvis, C. K.; Hudson, W. R.
1985-01-01
A joint Air Force/NASA comprehensive research and technology program on spacecraft environmental interactions to develop technology to control interactions between large spacecraft systems and the charged-particle environment of space is described. This technology will support NASA/Department of Defense operations of the shuttle/IUS, shuttle/Centaur, and the force application and surveillance and detection missions, planning for transatmospheric vehicles and the NASA space station, and the AFSC military space system technology model. The program consists of combined contractual and in-house efforts aimed at understanding spacecraft environmental interaction phenomena and relating results of ground-based tests to space conditions. A concerted effort is being made to identify project-related environmental interactions of concern. The basic properties of materials are being investigated to develop or modify the materials as needed. A group simulation investigation is evaluating basic plasma interaction phenomena to provide inputs to the analytical modeling investigation. Systems performance is being evaluated by both groundbased tests and analysis.
[Research on basic questions of intellectual property rights of acupuncture and moxibustion].
Dong, Guo-Feng; Wu, Xiao-Dong; Han, Yan-Jing; Meng, Hong; Wang, Xin
2011-12-01
Along with the modernization and internationalization of acupuncture-moxibustion (acu-moxibustion), the issue of intellectual property rights has been becoming prominent and remarkable increasingly. In the present paper, the authors explain the basic issues of acu-moxibustion learning from the concept, scope, subject, object, contents and acquisition way of intellectual property rights. To make clear these questions will help us inherit and carry forward the existing civilization achievements of acu-moxibustion, and unceasingly bring forth new ideas and further improvement in clinical application, so as to serve the people's health in a better way.
Advanced fabrication techniques for hydrogen-cooled engine structures
NASA Technical Reports Server (NTRS)
Buchmann, O. A.; Arefian, V. V.; Warren, H. A.; Vuigner, A. A.; Pohlman, M. J.
1985-01-01
Described is a program for development of coolant passage geometries, material systems, and joining processes that will produce long-life hydrogen-cooled structures for scramjet applications. Tests were performed to establish basic material properties, and samples constructed and evaluated to substantiate fabrication processes and inspection techniques. Results of the study show that the basic goal of increasing the life of hydrogen-cooled structures two orders of magnitude relative to that of the Hypersonic Research Engine can be reached with available means. Estimated life is 19000 cycles for the channels and 16000 cycles for pin-fin coolant passage configurations using Nickel 201. Additional research is required to establish the fatigue characteristics of dissimilar-metal coolant passages (Nickel 201/Inconel 718) and to investigate the embrittling effects of the hydrogen coolant.
Fouré, Alexandre
2016-01-01
The mechanical properties of tendon play a fundamental role to passively transmit forces from muscle to bone, withstand sudden stretches, and act as a mechanical buffer allowing the muscle to work more efficiently. The use of non-invasive imaging methods for the assessment of human tendon's mechanical, structural, and biochemical properties in vivo is relatively young in sports medicine, clinical practice, and basic science. Non-invasive assessment of the tendon properties may enhance the diagnosis of tendon injury and the characterization of recovery treatments. While ultrasonographic imaging is the most popular tool to assess the tendon's structural and indirectly, mechanical properties, ultrasonographic elastography, and ultra-high field magnetic resonance imaging (UHF MRI) have recently emerged as potentially powerful techniques to explore tendon tissues. This paper highlights some methodological cautions associated with conventional ultrasonography and perspectives for in vivo human Achilles tendon assessment using ultrasonographic elastography and UHF MRI. PMID:27512376
Music Tune Restoration Based on a Mother Wavelet Construction
NASA Astrophysics Data System (ADS)
Fadeev, A. S.; Konovalov, V. I.; Butakova, T. I.; Sobetsky, A. V.
2017-01-01
It is offered to use the mother wavelet function obtained from the local part of an analyzed music signal. Requirements for the constructed function are proposed and the implementation technique and its properties are described. The suggested approach allows construction of mother wavelet families with specified identifying properties. Consequently, this makes possible to identify the basic signal variations of complex music signals including local time-frequency characteristics of the basic one.
Adsorption of a reactive dye on chemically modified activated carbons--influence of pH.
Orfão, J J M; Silva, A I M; Pereira, J C V; Barata, S A; Fonseca, I M; Faria, P C C; Pereira, M F R
2006-04-15
The surface chemistry of a commercial activated carbon with a slightly basic nature was modified by appropriate treatments in order to obtain two additional samples, respectively with acidic and basic properties, without changing its textural parameters significantly. Different techniques (N2 adsorption at 77 K, temperature programmed desorption, and determination of acidity, basicity, and pH at the point of zero charge) were used to characterize the adsorbents. Kinetic and equilibrium adsorption data of a selected textile reactive dye (Rifafix Red 3BN, C.I. reactive red 241) on the mentioned materials were obtained at the pH values of 2, 7, and 12. The kinetic curves are fitted using the second-order model. The respective rate constants seem to diminish progressively with the initial concentration for the more diluted solutions tested, reaching a constant value at higher concentrations, which depends on the experimental system under consideration (adsorbent and pH). In general, the Langmuir model provides the best fit for the equilibrium data. The different uptakes obtained are discussed in relation to the surface chemical properties of the adsorbents. It is shown that the adsorption of the reactive (anionic) dye on the basic sample (prepared by thermal treatment under H2 flow at 700 degrees C) is favored. This conclusion is explained on the basis of the dispersive and electrostatic interactions involved. Moreover, it is also shown that the optimal adsorption condition for all the activated carbons tested corresponds to solution pH values not higher than the pH(pzc) of the adsorbents, which may be interpreted by taking into account the electrostatic forces present.
NASA Astrophysics Data System (ADS)
Cocherie, A.; Rossi, Ph.; Le Bel, L.
1984-10-01
Petrographic and structural observations on the calc-alkalic plutonism of western Corsica revealed the existence of several successively emplaced units associated with large basic bodies. The present mineralogical and geochemical study deals with the genesis, evolution and relationships of these different units. Basic plutonism is represented by three genetically linked types of rock: norites and troctolites with cumulate textures characterized by low REE contents and either no Eu anomaly or a positive Eu anomaly; gabbros with enriched LREE relatively to HREE patterns, probably close to an initial basaltic liquid; and diorites ranging up to charnockites which represent liquids evolved to varying degrees, mainly by fractional crystallization. Trace element data and studies on the evolution of pyroxene pairs demonstrate the consanguinity of these calc-alkaline basic rocks which are derived from a high alumina basaltic melt. The various granitoids (granodiorites, monzogranites and leucocratic monzogranites, i.e., adamellites) have distinct evolution trends as shown by the composition of their mafic minerals and by trace element distributions. They cannot be considered as being derivatives of the basic suite and they cannot be related by a common fractionation sequence. Rather, they represent distinctive batches of crustal anatexis. In addition, hybridization phenomena with the basic melt are noticed in granodiorites. The particular problem of the low La/Yb, Eu/Eu∗ and the high U, Th, Cs leucocratic monzogranites is discussed in detail. In addition to more conventional trace element diagrams, the simultaneous statistical treatment of all the geochemical data by correspondence factor analysis is shown to be a very use tool in distinguishing between the different units and to classify the elements according to their geochemical properties.
ERIC Educational Resources Information Center
Umar, Yunusa
2014-01-01
A simple and effective hands-on classroom activity designed to illustrate basic polymer concepts is presented. In this activity, students build primary structures of homopolymers and different arrangements of monomers in copolymer using paper clips as monomers. The activity supports formation of a basic understanding of polymer structures,…
41 CFR 102-85.25 - What is the basic principle governing OAs?
Code of Federal Regulations, 2010 CFR
2010-07-01
... principle governing OAs? 102-85.25 Section 102-85.25 Public Contracts and Property Management Federal... POLICY FOR OCCUPANCY IN GSA SPACE Pricing Policy-General § 102-85.25 What is the basic principle governing OAs? The basic principle governing OAs is to adopt the private sector practice of capturing in a...
Contract Award on Initial Proposals
1988-09-30
3 2. Competition in Contracting Act ... ......... 6 3. Federal Property and Administrative Services Act 10 B. Basic Rules for Award Without...Discussions Before CICA . 11 C. Basic Rules for Award Without Discussions After Passage of CICA .......... ........................ ... 12 D. Award...controlled by statute. This chapter will explore those statutes and their antecedents. The basic rules for awarding contracts without discussions
Characteristics of flight simulator visual systems
NASA Technical Reports Server (NTRS)
Statler, I. C. (Editor)
1981-01-01
The physical parameters of the flight simulator visual system that characterize the system and determine its fidelity are identified and defined. The characteristics of visual simulation systems are discussed in terms of the basic categories of spatial, energy, and temporal properties corresponding to the three fundamental quantities of length, mass, and time. Each of these parameters are further addressed in relation to its effect, its appropriate units or descriptors, methods of measurement, and its use or importance to image quality.
Topological superconductors: a review.
Sato, Masatoshi; Ando, Yoichi
2017-07-01
This review elaborates pedagogically on the fundamental concept, basic theory, expected properties, and materials realizations of topological superconductors. The relation between topological superconductivity and Majorana fermions are explained, and the difference between dispersive Majorana fermions and a localized Majorana zero mode is emphasized. A variety of routes to topological superconductivity are explained with an emphasis on the roles of spin-orbit coupling. Present experimental situations and possible signatures of topological superconductivity are summarized with an emphasis on intrinsic topological superconductors.
Topological superconductors: a review
NASA Astrophysics Data System (ADS)
Sato, Masatoshi; Ando, Yoichi
2017-07-01
This review elaborates pedagogically on the fundamental concept, basic theory, expected properties, and materials realizations of topological superconductors. The relation between topological superconductivity and Majorana fermions are explained, and the difference between dispersive Majorana fermions and a localized Majorana zero mode is emphasized. A variety of routes to topological superconductivity are explained with an emphasis on the roles of spin-orbit coupling. Present experimental situations and possible signatures of topological superconductivity are summarized with an emphasis on intrinsic topological superconductors.
Means and Method for Measurement of Drilling Fluid Properties
NASA Astrophysics Data System (ADS)
Lysyannikov, A.; Kondrashov, P.; Pavlova, P.
2016-06-01
The paper addresses the problem on creation of a new design of the device for determining rheological parameters of drilling fluids and the basic requirements which it must meet. The key quantitative parameters that define the developed device are provided. The algorithm of determining the coefficient of the yield point from the rheological Shvedov- Bingam model at a relative speed of rotation of glasses from the investigated drilling fluid of 300 and 600 rpm is presented.
Physicochemical Profiling of α-Lipoic Acid and Related Compounds.
Mirzahosseini, Arash; Szilvay, András; Noszál, Béla
2016-07-01
Lipoic acid, the biomolecule of vital importance following glycolysis, shows diversity in its thiol/disulfide equilibria and also in its eight different protonation forms of the reduced molecule. In this paper, lipoic acid, lipoamide, and their dihydro derivatives were studied to quantify their solubility, acid-base, and lipophilicity properties at a submolecular level. The acid-base properties are characterized in terms of six macroscopic, 12 microscopic protonation constants, and three interactivity parameters. The species-specific basicities, the pH-dependent distribution of the microspecies, and lipophilicity parameters are interpreted by various intramolecular effects, and contribute to understanding the antioxidant, chelate-forming, and enzyme cofactor behavior of the molecules observed. © 2016 Wiley-VHCA AG, Zürich.
Mass Uncertainty and Application For Space Systems
NASA Technical Reports Server (NTRS)
Beech, Geoffrey
2013-01-01
Expected development maturity under contract (spec) should correlate with Project/Program Approved MGA Depletion Schedule in Mass Properties Control Plan. If specification NTE, MGA is inclusive of Actual MGA (A5 & A6). If specification is not an NTE Actual MGA (e.g. nominal), then MGA values are reduced by A5 values and A5 is representative of remaining uncertainty. Basic Mass = Engineering Estimate based on design and construction principles with NO embedded margin MGA Mass = Basic Mass * assessed % from approved MGA schedule. Predicted Mass = Basic + MGA. Aggregate MGA % = (Aggregate Predicted - Aggregate Basic) /Aggregate Basic.
The challenge of understanding the brain: where we stand in 2015
Lisman, John
2015-01-01
Starting with the work of Cajal more than 100 years ago, neuroscience has sought to understand how the cells of the brain give rise to cognitive functions. How far has neuroscience progressed in this endeavor? This Perspective assesses progress in elucidating five basic brain processes: visual recognition, long-term memory, short-term memory, action selection, and motor control. Each of these processes entails several levels of analysis: the behavioral properties, the underlying computational algorithm, and the cellular/network mechanisms that implement that algorithm. At this juncture, while many questions remain unanswered, achievements in several areas of research have made it possible to relate specific properties of brain networks to cognitive functions. What has been learned reveals, at least in rough outline, how cognitive processes can be an emergent property of neurons and their connections. PMID:25996132
Lanthanides in molecular magnetism: old tools in a new field.
Sorace, Lorenzo; Benelli, Cristiano; Gatteschi, Dante
2011-06-01
In this tutorial review we discuss some basic aspects concerning the magnetic properties of rare-earth ions, which are currently the subject of a renovated interest in the field of molecular magnetism, after the discovery that slow relaxation of the magnetization at liquid nitrogen temperature can occur in mononuclear complexes of these ions. Focusing on Dy(III) derivatives a tutorial discussion is given of the relation of the crystal field parameters, which determine the anisotropy of these systems and consequently their interesting magnetic properties, with the geometry of the coordination sphere around the lanthanide centre and with the pattern of f orbitals. The problem of systems of low point symmetry is also addressed by showing how detailed single crystal investigation, coupled to more sophisticated calculation procedures, is an absolute necessity to obtain meaningful structure-property relationships in these systems.
Microtexture diagnostics of asphalt pavement surfaces
NASA Astrophysics Data System (ADS)
Florková, Zuzana; Pepucha, L.'ubomír
2017-09-01
The microtexture of asphalt pavement surface is an essential parameter from the traffic safety point of view and it closely relates to a geometrical, petrological and physical properties of aggregate particle used in asphalt pavement. Microtexture has a significant influence for assurance basic friction values between tire and pavement in relation to a skid resistance properties. Therefore, the microtexture detecting methods are necessary. The British pendulum tester measurements have been carried out on selected sections of roads with different asphalt surfaces. Individual grains of aggregates were taken from the surface of each section from the sliding path and also from the core sample after the extraction. The laboratory profilometry measurements have been practiced on these aggregate samples and subsequently the surface microtexture was investigated based on commonly used texture characteristics and the filtration approach was applied in calculation process. The results have shown the degradation of microtexture values occurs due to polishing of aggregate under loading from traffic in relation to the type of used aggregate. Some correlation between BPN values and texture characteristics was found.
Inertial processing of vestibulo-ocular signals
NASA Technical Reports Server (NTRS)
Hess, B. J.; Angelaki, D. E.
1999-01-01
New evidence for a central resolution of gravito-inertial signals has been recently obtained by analyzing the properties of the vestibulo-ocular reflex (VOR) in response to combined lateral translations and roll tilts of the head. It is found that the VOR generates robust compensatory horizontal eye movements independent of whether or not the interaural translatory acceleration component is canceled out by a gravitational acceleration component due to simultaneous roll-tilt. This response property of the VOR depends on functional semicircular canals, suggesting that the brain uses both otolith and semicircular canal signals to estimate head motion relative to inertial space. Vestibular information about dynamic head attitude relative to gravity is the basis for computing head (and body) angular velocity relative to inertial space. Available evidence suggests that the inertial vestibular system controls both head attitude and velocity with respect to a gravity-centered reference frame. The basic computational principles underlying the inertial processing of otolith and semicircular canal afferent signals are outlined.
Correlation of basic TL, OSL and IRSL properties of ten K-feldspar samples of various origins
NASA Astrophysics Data System (ADS)
Sfampa, I. K.; Polymeris, G. S.; Pagonis, V.; Theodosoglou, E.; Tsirliganis, N. C.; Kitis, G.
2015-09-01
Feldspars stand among the most widely used minerals in dosimetric methods of dating using thermoluminescence (TL), optically stimulated luminescence (OSL) and infrared stimulated luminescence (IRSL). Having very good dosimetric properties, they can in principle contribute to the dating of every site of archaeological and geological interest. The present work studies basic properties of ten naturally occurring K-feldspar samples belonging to three feldspar species, namely sanidine, orthoclase and microcline. The basic properties studied are (a) the influence of blue light and infrared stimulation on the thermoluminescence glow-curves, (b) the growth of OSL, IRSL, residual TL and TL-loss as a function of OSL and IRSL bleaching time and (c) the correlation between the OSL and IRSL signals and the energy levels responsible for the TL glow-curve. All experimental data were fitted using analytical expressions derived from a recently developed tunneling recombination model. The results show that the analytical expressions provide excellent fits to all experimental results, thus verifying the tunneling recombination mechanism in these materials and providing valuable information about the concentrations of luminescence centers.
Basic functional trade-offs in cognition: An integrative framework.
Del Giudice, Marco; Crespi, Bernard J
2018-06-14
Trade-offs between advantageous but conflicting properties (e.g., speed vs. accuracy) are ubiquitous in cognition, but the relevant literature is conceptually fragmented, scattered across disciplines, and has not been organized in a coherent framework. This paper takes an initial step toward a general theory of cognitive trade-offs by examining four key properties of goal-directed systems: performance, efficiency, robustness, and flexibility. These properties define a number of basic functional trade-offs that can be used to map the abstract "design space" of natural and artificial cognitive systems. Basic functional trade-offs provide a shared vocabulary to describe a variety of specific trade-offs including speed vs. accuracy, generalist vs. specialist, exploration vs. exploitation, and many others. By linking specific features of cognitive functioning to general properties such as robustness and efficiency, it becomes possible to harness some powerful insights from systems engineering and systems biology to suggest useful generalizations, point to under-explored but potentially important trade-offs, and prompt novel hypotheses and connections between disparate areas of research. Copyright © 2018 Elsevier B.V. All rights reserved.
The AAPM/RSNA physics tutorial for residents. Basic physics of MR imaging: an introduction.
Hendrick, R E
1994-07-01
This article provides an introduction to the basic physical principles of magnetic resonance (MR) imaging. Essential basic concepts such as nuclear magnetism, tissue magnetization, precession, excitation, and tissue relaxation properties are presented. Hydrogen spin density and tissue relaxation times T1, T2, and T2* are explained. The basic elements of a planar MR pulse sequence are described: section selection during tissue excitation, phase encoding, and frequency encoding during signal measurement.
Refractories for high alkali environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rau, A.W.; Cloer, F.
1996-12-31
Information on refractories for high alkali environments is outlined. Information is presented on: product gallery; alkali attack; chemical reactions; basic layout of alkali cup test; criteria for rating alkali cup test samples; and basic layout of physical properties test.
Genetic markers cannot determine Jewish descent
Falk, Raphael
2015-01-01
Humans differentiate, classify, and discriminate: social interaction is a basic property of human Darwinian evolution. Presumably inherent differential physical as well as behavioral properties have always been criteria for identifying friend or foe. Yet, biological determinism is a relatively modern term, and scientific racism is, oddly enough, largely a consequence or a product of the Age of Enlightenment and the establishment of the notion of human equality. In recent decades ever-increasing efforts and ingenuity were invested in identifying Biblical Israelite genotypic common denominators by analysing an assortment of phenotypes, like facial patterns, blood types, diseases, DNA-sequences, and more. It becomes overwhelmingly clear that although Jews maintained detectable vertical genetic continuity along generations of socio-religious-cultural relationship, also intensive horizontal genetic relations were maintained both between Jewish communities and with the gentile surrounding. Thus, in spite of considerable consanguinity, there is no Jewish genotype to identify. PMID:25653666
Piaggio, Maria V; Peirotti, Marta B; Deiber, Julio A
2010-08-01
Peptide electrophoretic mobility data are interpreted through a physicochemical CZE model, providing estimates of the equivalent hydrodynamic radius, hydration, effective and total charge numbers, actual ionizing pK, pH-near molecule and electrical permittivity of peptide domain, among other basic properties. In this study, they are used to estimate some peptide global structural properties proposed, providing thus a distinction among different peptides. Therefore, the solvent drag on the peptide is obtained through a characteristic friction power coefficient of the number of amino acid residues, defined from the global chain conformation in solution. As modeling of the effective electrophoretic mobility of peptides is carried out in terms of particle hydrodynamic size and shape coupled to hydration and effective charge, a packing dimension related to chain conformation within the peptide domain may be defined. In addition, the effective and total charge number fractions of peptides provide some clues on the interpretation of chain conformations within the framework of scaling laws. Furthermore, the model estimates transport properties, such as sedimentation, friction and diffusion coefficients. As the relative numbers of ionizing, polar and non-polar amino acid residues vary in peptides, their global structural properties defined here change appreciably. Needs for further research are also discussed.
NASA Astrophysics Data System (ADS)
Mehrishal, Seyedahmad; Sharifzadeh, Mostafa; Shahriar, Korosh; Song, Jae-Jon
2017-04-01
In relation to the shearing of rock joints, the precise and continuous evaluation of asperity interlocking, dilation, and basic friction properties has been the most important task in the modeling of shear strength. In this paper, in order to investigate these controlling factors, two types of limestone joint samples were prepared and CNL direct shear tests were performed on these joints under various shear conditions. One set of samples were travertine and another were onyx marble with slickensided surfaces, surfaces ground to #80, and rough surfaces were tested. Direct shear experiments conducted on slickensided and ground surfaces of limestone indicated that by increasing the applied normal stress, under different shearing rates, the basic friction coefficient decreased. Moreover, in the shear tests under constant normal stress and shearing rate, the basic friction coefficient remained constant for the different contact sizes. The second series of direct shear experiments in this research was conducted on tension joint samples to evaluate the effect of surface roughness on the shear behavior of the rough joints. This paper deals with the dilation and roughness interlocking using a method that characterizes the surface roughness of the joint based on a fundamental combined surface roughness concept. The application of stress-dependent basic friction and quantitative roughness parameters in the continuous modeling of the shear behavior of rock joints is an important aspect of this research.
ERIC Educational Resources Information Center
Grover, Anita; Lam, Tai Ning; Hunt, C. Anthony
2008-01-01
We present a simulation tool to aid the study of basic pharmacology principles. By taking advantage of the properties of agent-based modeling, the tool facilitates taking a mechanistic approach to learning basic concepts, in contrast to the traditional empirical methods. Pharmacodynamics is a particular aspect of pharmacology that can benefit from…
Secondary Students' Understanding of Basic Ideas of Special Relativity
NASA Astrophysics Data System (ADS)
Dimitriadi, Kyriaki; Halkia, Krystallia
2012-11-01
A major topic that has marked 'modern physics' is the theory of special relativity (TSR). The present work focuses on the possibility of teaching the basic ideas of the TSR to students at the upper secondary level in such a way that they are able to understand and learn the ideas. Its aim is to investigate students' learning processes towards the two axioms of the theory (the principle of relativity and the invariance of the speed of light) and their consequences (the relativity of simultaneity, time dilation and length contraction). Based on an analysis of physics college textbooks, on a review of the relevant bibliography and on a pilot study, a teaching and learning sequence consisting of five sessions was developed. To collect the data, experimental interviews (the so-called teaching experiment) were used. The teaching experiment may be viewed as a Piagetian clinical interview that is deliberately employed as a teaching and learning situation. The sample consisted of 40 10th grade students (aged 15-16). The data were collected by taping and transcribing the 'interviews', as well as from two open-ended questionnaires filled out by each student, one before and the other after the sessions. Methods of qualitative content analysis were applied. The results show that upper secondary education students are able to cope with the basic ideas of the TSR, but there are some difficulties caused by the following student conceptions: (a) there is an absolute frame of reference, (b) objects have fixed properties and (c) the way events happen is independent of what the observers perceive.
Retention properties of novel beta-CD bonded stationary phases in reversed-phase HPLC mode.
Zhao, Yanyan; Guo, Zhimou; Zhang, Yongping; Xue, Xingya; Xu, Qing; Li, Xiuling; Liang, Xinmiao; Zhang, Yukui
2009-05-15
With the given special structures, the CD bonded stationary phases are expected to have complementary retention properties with conventional C18 stationary phase, which will be helpful to enhance the polar selectivity in RP mode separation. In this work, two beta-cyclodextrin (beta-CD) bonded stationary phases for reversed-phase HPLC, including 1, 12-dodecyldiol linked beta-CD stationary phase (CD1) and olio (ethylene glycol) (OEG) linked beta-CD stationary phase (CD2), have been synthesized via click chemistry. The resulting materials were characterized with FT-IR and elemental analysis, which proved the successful immobilization of ligands. The similarities and differences in retention characteristics between the CD and C18 stationary phases have been elucidated by using comparative linear solvation energy relationships (LSERs). The force related to solute McGowan volume has no significant difference, while the hydrogen bonding and dipolar interactions between solutes and CD stationary phases are stronger than between solutes and C18, which is attributed to the special structures (CD and triazole groups) of CD stationary phases. Chemical origins are interpreted by comparison between CD1 and CD2. Similar dispersive interactions of CD1 and CD2 are attributed to their similar length of spacer arms. CD2 which contains OEG spacer arm has relative weaker HBD acidity but stronger HBA basicity. CD stationary phases display no serious different methylene selectivity and higher polar selectivity than in the case of C18. Higher acid selectivity and lower basic selectivity are observed on CD2 than on CD1. Distinctive retention properties and good complementary separation selectivity to C18 make the novel CD bonded stationary phases available for more application in RPLC.
R 5T 4 compounds - unique multifunctional intermetallics for basic research and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudryk, Yaroslav
The unique properties of the rare-earth elements and their alloys have brought them from relative obscurity to high profile use in common high-tech applications. The broad technological impact of these remarkable materials may have never been known by the general public if not for the supply concerns that placed the rare-earth materials on the front page of newspapers and magazines. Neodymium and dysprosium, two essential components of Nd 2Fe 14B-based high-performance permanent magnets, have drawn much attention and have been deemed critical materials for many energy-related applications. Ironically, the notoriety of rare-earth elements and their alloys is the result ofmore » a global movement to reduce their use in industrial applications and, thus, ease concerns about their supply and ultimately to reduce their position in high-tech supply chains. Research into the applications of lanthanide alloys has been de-emphasized recently due to the perception that industry is moving away from the use of rare-earth elements in new products. While lanthanide supply challenges justify efforts to diversify the supply chain, a strategy to completely replace the materials overlooks the reasons rare earths became important in the first place -- their unique properties are too beneficial to ignore. Rare-earth alloys and compounds possess truly exciting potential for basic science exploration and application development such as solid-state caloric cooling. In this brief review, we touch upon several promising systems containing lanthanide elements that show important and interesting magnetism-related phenomena.« less
Le, Khoa V; Takezoe, Hideo; Araoka, Fumito
2017-07-01
Chiral mesophases in achiral bent-shaped molecules have attracted particular attention since their discovery in the middle 1990s, not only because of their homochirality and polarity, but also due to their unique physical/physicochemical properties. Here, the most intriguing results in the studies of such symmetry-broken states, mainly helical-nanofilament (HNF) and dark-conglomerate (DC) phases, are reviewed. Firstly, basic information on the typical appearance and optical activity in these phases is introduced. In the following section, the formation of mesoscopic chiral superstructures in the HNF and DC phases is discussed in terms of hierarchical chirality. Nanoscale phase segregation in mixture systems and gelation ability in the HNF phase are also described. In addition, some other related chiral phases of bent-shaped molecules are shown. Recent attempts to control such mesoscopic chiral structure and the alignment/confinement of HNFs are also discussed, along with several examples of their fascinating advanced physical properties, i.e. huge enhancement of circular dichroism, electro- and photo-tunable optical activities, chirality-induced nonlinear optics (second-harmonic-generation circular difference and electrogyration effect), enhanced hydrophobicity through the dual-scale surface morphological modulation, and photoconductivity in the HNF/fullerene binary system. Future prospects from basic science and application viewpoints are also indicated in the concluding section. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Musical Sound, Instruments, and Equipment
NASA Astrophysics Data System (ADS)
Photinos, Panos
2017-12-01
'Musical Sound, Instruments, and Equipment' offers a basic understanding of sound, musical instruments and music equipment, geared towards a general audience and non-science majors. The book begins with an introduction of the fundamental properties of sound waves, and the perception of the characteristics of sound. The relation between intensity and loudness, and the relation between frequency and pitch are discussed. The basics of propagation of sound waves, and the interaction of sound waves with objects and structures of various sizes are introduced. Standing waves, harmonics and resonance are explained in simple terms, using graphics that provide a visual understanding. The development is focused on musical instruments and acoustics. The construction of musical scales and the frequency relations are reviewed and applied in the description of musical instruments. The frequency spectrum of selected instruments is explored using freely available sound analysis software. Sound amplification and sound recording, including analog and digital approaches, are discussed in two separate chapters. The book concludes with a chapter on acoustics, the physical factors that affect the quality of the music experience, and practical ways to improve the acoustics at home or small recording studios. A brief technical section is provided at the end of each chapter, where the interested reader can find the relevant physics and sample calculations. These quantitative sections can be skipped without affecting the comprehension of the basic material. Questions are provided to test the reader's understanding of the material. Answers are given in the appendix.
ERIC Educational Resources Information Center
Boiteau, Denise; Stansfield, David
This document describes mathematical programs on the basic concepts of algebra produced by Louisiana Public Broadcasting. Programs included are: (1) "Inverse Operations"; (2) "The Order of Operations"; (3) "Basic Properties" (addition and multiplication of numbers and variables); (4) "The Positive and Negative…
The Government Giveth and the Government Taketh Away: Federal Tax Law and Fund Raising.
ERIC Educational Resources Information Center
Holzman, Donald J.
1982-01-01
Tax laws' incentives and disincentives for charitable giving are outlined. Basics of charitable giving, partial property interests, gifts of future interest in tangible property, undivided interest gifts, ordinary income property, capital gain property, bargain sales, remainder interest gifts, estate tax, and valuation overstatement are discussed…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klipstein, David H.; Robinson, Sharon
The Reaction Engineering Roadmap is a part of an industry- wide effort to create a blueprint of the research and technology milestones that are necessary to achieve longterm industry goals. This report documents the results of a workshop focused on the research needs, technology barriers, and priorities of the chemical industry as they relate to reaction engineering viewed first by industrial use (basic chemicals; specialty chemicals; pharmaceuticals; and polymers) and then by technology segment (reactor system selection, design, and scale-up; chemical mechanism development and property estimation; dealing with catalysis; and new, nonstandard reactor types).
An Easily Constructed and Versatile Molecular Model
NASA Astrophysics Data System (ADS)
Hernandez, Sandra A.; Rodriguez, Nora M.; Quinzani, Oscar
1996-08-01
Three-dimensional molecular models are powerful tools used in basic courses of general and organic chemistry when the students must visualize the spatial distributions of atoms in molecules and relate them to the physical and chemical properties of such molecules. This article discusses inexpensive, easily carried, and semipermanent molecular models that the students may build by themselves. These models are based upon two different types of arrays of thin flexible wires, like telephone hook-up wires, which may be bent easily but keep their shapes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuang, Chunqiang, E-mail: chunqiang.zhuang@bjut.edu.cn; Li, Zhipeng; Lin, Songsheng
2015-10-15
The basic issue related to radial crack in ceramic thin films has received considerable attention due to the fact that the radial crack plays an important role in evaluating the toughness properties of ceramic materials. In this work, an atomic-scale new experimental evidence is clearly presented to reveal the counter-intuitive initiation, the nucleation and the propagation mechanism of the radial crack in Al-Cr-N ceramic thin films.
Increasing Costs, Competition May Hinder U.S. Position of Leadership in High Energy Physics.
1980-09-16
achieving that objective; and the level of funding needed should be examined in light of the program’s needs and importance relative to other basic sciences...by an accelerator, in effect, provide a " light " for the physicist 1/One electron volt is the amount of energy gained by a parti- cle of unit charge...the light emit- ted by a charged particle passing through that detector. Each of these detectors has properties which make it especially suitable for
The Solution Construction of Heterotic Super-Liouville Model
NASA Astrophysics Data System (ADS)
Yang, Zhan-Ying; Zhen, Yi
2001-12-01
We investigate the heterotic super-Liouville model on the base of the basic Lie super-algebra Osp(1|2).Using the super extension of Leznov-Saveliev analysis and Drinfeld-Sokolov linear system, we construct the explicit solution of the heterotic super-Liouville system in component form. We also show that the solutions are local and periodic by calculating the exchange relation of the solution. Finally starting from the action of heterotic super-Liouville model, we obtain the conserved current and conserved charge which possessed the BRST properties.
Determination of Material Properties by Limited Scan X-Ray Tomography
1981-09-01
83 4.2 Modeling Projection 88 4.3 Basic Signal-to- Noise considerations 97 4.3.1 Concept of optimal beams hardness 97 4.3.2 Selection of best...projection 100 4.3.3 The relation of Noise terms to multiscan 100 4.3.4 Uncertainty in multiscan when beams overlap...104 4.3.5 Coll imators 106 5...assumes large measurement noise - the other perfect measurements. In this latter case the stochastic nature of the problem is maintained by assuming
ERIC Educational Resources Information Center
Reason, Paul L.; Tankard, George G., Jr.
This handbook serves as a basic guide to property accounting for local and state school systems in the U.S. Information and guidelines are presented regarding--(1) classification of property accounts, (2) definitions of property accounts, (3) measures of school property, (4) supplies and equipment, (5) individual property records, and (6) summary…
NASA Astrophysics Data System (ADS)
Zou, Yong; Donner, Reik V.; Kurths, Jürgen
2015-02-01
Long-range correlated processes are ubiquitous, ranging from climate variables to financial time series. One paradigmatic example for such processes is fractional Brownian motion (fBm). In this work, we highlight the potentials and conceptual as well as practical limitations when applying the recently proposed recurrence network (RN) approach to fBm and related stochastic processes. In particular, we demonstrate that the results of a previous application of RN analysis to fBm [Liu et al. Phys. Rev. E 89, 032814 (2014), 10.1103/PhysRevE.89.032814] are mainly due to an inappropriate treatment disregarding the intrinsic nonstationarity of such processes. Complementarily, we analyze some RN properties of the closely related stationary fractional Gaussian noise (fGn) processes and find that the resulting network properties are well-defined and behave as one would expect from basic conceptual considerations. Our results demonstrate that RN analysis can indeed provide meaningful results for stationary stochastic processes, given a proper selection of its intrinsic methodological parameters, whereas it is prone to fail to uniquely retrieve RN properties for nonstationary stochastic processes like fBm.
Visual dot interaction with short-term memory.
Etindele Sosso, Faustin Armel
2017-06-01
Many neurodegenerative diseases have a memory component. Brain structures related to memory are affected by environmental stimuli, and it is difficult to dissociate effects of all behavior of neurons. Here, visual cortex of mice was stimulated with gratings and dot, and an observation of neuronal activity before and after was made. Bandwidth, firing rate and orientation selectivity index were evaluated. A primary communication between primary visual cortex and short-term memory appeared to show an interesting path to train cognitive circuitry and investigate the basics mechanisms of the neuronal learning. The findings also suggested the interplay between primary visual cortex and short-term plasticity. The properties inside a visual target shape the perception and affect the basic encoding. Using visual cortex, it may be possible to train the memory and improve the recovery of people with cognitive disabilities or memory deficit.
Intelligent polymeric micelles: development and application as drug delivery for docetaxel.
Li, Yimu; Zhang, Hui; Zhai, Guang-Xi
2017-04-01
Recent years, docetaxel (DTX)-loaded intelligent polymeric micelles have been regarded as a promising vehicle for DTX for the reason that compared with conventional DTX-loaded micelles, DTX-loaded intelligent micelles not only preserve the basic functions of micelles such as DTX solubilization, enhanced accumulation in tumor tissue, and improved bioavailability and biocompatibility of DTX, but also possess other new properties, for instance, tumor-specific DTX delivery and series of responses to endogenous or exogenous stimulations. In this paper, basic theories and action mechanism of intelligent polymeric micelles are discussed in detail, especially the related theories of DTX-loaded stimuli-responsive micelles. The relevant examples of stimuli-responsive DTX-loaded micelles are also provided in this paper to sufficiently illustrate the advantages of relevant technology for the clinical application of anticancer drug, especially for the medical application of DTX.
Microwave Moisture Sensing of Seedcotton: Part 1: Seedcotton Microwave Material Properties.
Pelletier, Mathew G; Wanjura, John D; Holt, Greg A
2016-11-02
Moisture content at harvest is a key parameter that impacts quality and how well the cotton crop can be stored without degrading before processing. It is also a key parameter of interest for harvest time field trials as it can directly influence the quality of the harvested crop as well as skew the results of in-field yield and quality assessments. Microwave sensing of moisture has several unique advantages over lower frequency sensing approaches. The first is that microwaves are insensitive to variations in conductivity, due to presence of salts or minerals. The second advantage is that microwaves can peer deep inside large bulk packaging to assess the internal moisture content without performing a destructive tear down of the package. To help facilitate the development of a microwave moisture sensor for seedcotton; research was performed to determine the basic microwave properties of seedcotton. The research was performed on 110 kg micro-modules, which are of direct interest to research teams for use in ongoing field-based research projects. It should also prove useful for the enhancement of existing and future yield monitor designs. Experimental data was gathered on the basic relations between microwave material properties and seedcotton over the range from 1.0 GHz to 2.5 GHz and is reported on herein. This research is part one of a two-part series that reports on the fundamental microwave properties of seedcotton as moisture and density vary naturally during the course of typical harvesting operations; part two will utilize this data to formulate a prediction algorithm to form the basis for a prototype microwave moisture sensor.
Microwave Moisture Sensing of Seedcotton: Part 1: Seedcotton Microwave Material Properties
Pelletier, Mathew G.; Wanjura, John D.; Holt, Greg A.
2016-01-01
Moisture content at harvest is a key parameter that impacts quality and how well the cotton crop can be stored without degrading before processing. It is also a key parameter of interest for harvest time field trials as it can directly influence the quality of the harvested crop as well as skew the results of in-field yield and quality assessments. Microwave sensing of moisture has several unique advantages over lower frequency sensing approaches. The first is that microwaves are insensitive to variations in conductivity, due to presence of salts or minerals. The second advantage is that microwaves can peer deep inside large bulk packaging to assess the internal moisture content without performing a destructive tear down of the package. To help facilitate the development of a microwave moisture sensor for seedcotton; research was performed to determine the basic microwave properties of seedcotton. The research was performed on 110 kg micro-modules, which are of direct interest to research teams for use in ongoing field-based research projects. It should also prove useful for the enhancement of existing and future yield monitor designs. Experimental data was gathered on the basic relations between microwave material properties and seedcotton over the range from 1.0 GHz to 2.5 GHz and is reported on herein. This research is part one of a two-part series that reports on the fundamental microwave properties of seedcotton as moisture and density vary naturally during the course of typical harvesting operations; part two will utilize this data to formulate a prediction algorithm to form the basis for a prototype microwave moisture sensor. PMID:27827857
NASA Astrophysics Data System (ADS)
Liu, Weiwen
The continual downsizing of the basic functional units used in the electronics industry has motivated the study of the quantum computation and related topics. To overcome the limitations of classical physics and engineering, some unique quantum mechanical features, especially entanglement and superpositions have begun to be considered as important properties for future bits. Including these quantum mechanical features is attractive because the ability to utilize quantum mechanics can dramatically enhance computational power. Among the various ways of constructing the basic building blocks for quantum computation, we are particularly interested in using spins inside epitaxially grown InAs/GaAs quantum dot molecules as quantum bits (qubits). The ability to design and engineer nanostructures with tailored quantum properties is critical to engineering quantum computers and other novel electro-optical devices and is one of the key challenges for scaling up new ideas for device application. In this thesis, we will focus on how the structure and composition of quantum dot molecules can be used to control spin properties and charge interactions. Tunable spin and charge properties can enable new, more scalable, methods of initializing and manipulating quantum information. In this thesis, we demonstrate one method to enable electric-field tunability of Zeeman splitting for a single electron spin inside a quantum dot molecules by using heterostructure engineering techniques to modify the barrier that separates quantum dots. We describe how these structural changes to the quantum dot molecules also change charge interactions and propose ways to use this effect to enable accurate measurement of coulomb interactions and possibly charge occupancy inside these complicated quantum dot molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCloy, John S.; Riley, Brian J.; Johnson, Bradley R.
Four compositions of high density (~8 g/cm3) heavy metal oxide glasses composed of PbO, Bi2O3, and Ga2O3 were produced and refractivity parameters (refractive index and density) were computed and measured. Optical basicity was computed using three different models – average electronegativity, ionic-covalent parameter, and energy gap – and the basicity results were used to compute oxygen polarizability and subsequently refractive index. Refractive indices were measured in the visible and infrared at 0.633 μm, 1.55 μm, 3.39 μm, 5.35 μm, 9.29 μm, and 10.59 μm using a unique prism coupler setup, and data were fitted to the Sellmeier expression to obtainmore » an equation of the dispersion of refractive index with wavelength. Using this dispersion relation, single oscillator energy, dispersion energy, and lattice energy were determined. Oscillator parameters were also calculated for the various glasses from their oxide values as an additional means of predicting index. Calculated dispersion parameters from oxides underestimate the index by 3 to 4%. Predicted glass index from optical basicity, based on component oxide energy gaps, underpredicts the index at 0.633 μm by only 2%, while other basicity scales are less accurate. The predicted energy gap of the glasses based on this optical basicity overpredicts the Tauc optical gap as determined by transmission measurements by 6 to 10%. These results show that for this system, density, refractive index in the visible, and energy gap can be reasonably predicted using only composition, optical basicity values for the constituent oxides, and partial molar volume coefficients. Calculations such as these are useful for a priori prediction of optical properties of glasses.« less
Patino, Robert
2009-03-01
Clinical and basic scientists at academic medical and biomedical research institutions often form ideas that could have both monetary and human health benefits if developed and applied to improvement of human wellbeing. However, such ideas lose much of their potential value in both regards if they are disclosed in traditional knowledge-sharing forums such as abstracts, posters, and oral presentations at research meetings. Learning the basics about intellectual property protection and obtaining professional guidance in the management of intellectual property from a knowledgeable technology management professional or intellectual property attorney can avoid such losses yet pose a minimal burden of confidentiality on the investigator. Knowing how to successfully navigate the early stages of intellectual property protection can greatly increase the likelihood that discoveries and knowledge will become available for the public good without diminishing the important mandate of disseminating knowledge through traditional knowledge-sharing forums.
Action potential properties are gravity dependent
NASA Astrophysics Data System (ADS)
Meissner, Klaus; Hanke, Wolfgang
2005-06-01
The functional properties of neuronal tissue critically depend on cellular composition and intercellular comunication. A basic principle of such communication found in various types of neurons is the generation of action potentials (APs). These APs depend on the presence of voltage gated ion channels and propagate along cellular processes (e.g. axons) towards target neurons or other cells. It has already been shown that the properties of ion channels depend on gravity. To discover whether the properties of APs also depend on gravity, we examined the propagation of APs in earthworms (invertebrates) and isolated nerve fibres (i.e. bundles of axons) from earthworms under conditions of micro- and macro-gravity. In a second set of experiments we could verify our results on rat axons (vertebrates). Our experiments carried out during two parabolic flight campaigns revealed that microgravity slows AP propagation velocity and macrogravity accelerates the transmission of action potentials. The relevance for live-science related questions is considerable, taking into account that altered gravity conditions might affect AP velocity in man during space flight missions.
Alternans Arrhythmias: From Cell to Heart
Weiss, James N.; Nivala, Michael; Garfinkel, Alan; Qu, Zhilin
2010-01-01
The goal of systems biology is to relate events at the molecular level to more integrated scales from organelle to cell, tissue and living organism. Here we review how normal and abnormal excitation-contraction (EC) coupling properties emerge from the protein scale, where behaviors are dominated by randomness, to the cell and tissue scales, where heart has to beat with reliable regularity for a life-time. Beginning with the fundamental unit of EC coupling, the couplon where L-type Ca channels in the sarcolemmal membrane adjoin ryanodine receptors in the sarcoplasmic reticulum membrane, we show how a network of couplons with three basic properties (random activation, refractoriness, and recruitment) produces the classical physiological properties of excitation-contraction (EC) coupling and, under pathophysiological conditions, leads to Ca alternans and Ca waves. Moving to the tissue scale, we discuss how cellular Ca alternans and Ca waves promote both reentrant and focal arrhythmias in the heart. Throughout, we emphasize the qualitatively novel properties which emerge at each new scale of integration. PMID:21212392
Changes in conformational dynamics of basic side chains upon protein–DNA association
Esadze, Alexandre; Chen, Chuanying; Zandarashvili, Levani; Roy, Sourav; Pettitt, B. Montgometry; Iwahara, Junji
2016-01-01
Basic side chains play major roles in recognition of nucleic acids by proteins. However, dynamic properties of these positively charged side chains are not well understood. In this work, we studied changes in conformational dynamics of basic side chains upon protein–DNA association for the zinc-finger protein Egr-1. By nuclear magnetic resonance (NMR) spectroscopy, we characterized the dynamics of all side-chain cationic groups in the free protein and in the complex with target DNA. Our NMR order parameters indicate that the arginine guanidino groups interacting with DNA bases are strongly immobilized, forming rigid interfaces. Despite the strong short-range electrostatic interactions, the majority of the basic side chains interacting with the DNA phosphates exhibited high mobility, forming dynamic interfaces. In particular, the lysine side-chain amino groups exhibited only small changes in the order parameters upon DNA-binding. We found a similar trend in the molecular dynamics (MD) simulations for the free Egr-1 and the Egr-1–DNA complex. Using the MD trajectories, we also analyzed side-chain conformational entropy. The interfacial arginine side chains exhibited substantial entropic loss upon binding to DNA, whereas the interfacial lysine side chains showed relatively small changes in conformational entropy. These data illustrate different dynamic characteristics of the interfacial arginine and lysine side chains. PMID:27288446
Gustatory sensation of (L)- and (D)-amino acids in humans.
Kawai, Misako; Sekine-Hayakawa, Yuki; Okiyama, Atsushi; Ninomiya, Yuzo
2012-12-01
Amino acids are known to elicit complex taste, but most human psychophysical studies on the taste of amino acids have focused on a single basic taste, such as umami (savory) taste, sweetness, or bitterness. In this study, we addressed the potential relationship between the structure and the taste properties of amino acids by measuring the human gustatory intensity and quality in response to aqueous solutions of proteogenic amino acids in comparison to D-enantiomers. Trained subjects tasted aqueous solution of each amino acid and evaluated the intensities of total taste and each basic taste using a category-ratio scale. Each basic taste of amino acids showed the dependency on its hydrophobicity, size, charge, functional groups on the side chain, and chirality of the alpha carbon. In addition, the overall taste of amino acid was found to be the combination of basic tastes according to the partial structure. For example, hydrophilic non-charged middle-sized amino acids elicited sweetness, and L-enantiomeric hydrophilic middle-sized structure was necessary for umami taste. For example, L-serine had mainly sweet and minor umami taste, and D-serine was sweet. We further applied Stevens' psychophysical function to relate the total-taste intensity and the concentration, and found that the slope values depended on the major quality of taste (e.g., bitter large, sour small).
Nanoparticles in alumina: Microscopy and Theory
NASA Astrophysics Data System (ADS)
Idrobo, Juan C.; Halabica, Andrej; Rashkeev, Sergey; Glazoff, Michael V.; Boatner, Lynn A.; Haglund, Richard F.; Pennycook, Stephen. J.; Pantelides, Sokrates T.
2007-03-01
Transition-metal nanoparticles formed by ion implantation in alumina can be used to modify the optical properties of naturally oxidized and anodized aluminum. Here, we report atomic-resolution Z-contrast images using a scanning transmission electron microscope (STEM) of CoFe and other metal nanoparticles in alumina. We also report electron energy loss spectra (EELS) and relate them to visual appearance and optical properties. Finally, we report first-principles density- functional calculations of nucleation mechanisms for these nanoparticles. This research was sponsored by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, U.S. Department of Energy, under contract DE-AC05- 00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, by NSF grant No. DMR-0513048, and by Alcoa Inc.
NASA Astrophysics Data System (ADS)
Wang, Aiwu; Wang, Chundong; Fu, Li; Wong-Ng, Winnie; Lan, Yucheng
2017-10-01
The graphitic carbon nitride (g-C3N4) which is a two-dimensional conjugated polymer has drawn broad interdisciplinary attention as a low-cost, metal-free, and visible-light-responsive photocatalyst in the area of environmental remediation. The g-C3N4-based materials have excellent electronic band structures, electron-rich properties, basic surface functionalities, high physicochemical stabilities and are "earth-abundant." This review summarizes the latest progress related to the design and construction of g-C3N4-based materials and their applications including catalysis, sensing, imaging, and white-light-emitting diodes. An outlook on possible further developments in g-C3N4-based research for emerging properties and applications is also included.
Mechanical Properties of Transcription
NASA Astrophysics Data System (ADS)
Sevier, Stuart A.; Levine, Herbert
2017-06-01
The mechanical properties of transcription have recently been shown to play a central role in gene expression. However, a full physical characterization of this central biological process is lacking. In this Letter, we introduce a simple description of the basic physical elements of transcription where RNA elongation, RNA polymerase rotation, and DNA supercoiling are coupled. The resulting framework describes the relative amount of RNA polymerase rotation and DNA supercoiling that occurs during RNA elongation. Asymptotic behavior is derived and can be used to experimentally extract unknown mechanical parameters of transcription. Mechanical limits to transcription are incorporated through the addition of a DNA supercoiling-dependent RNA polymerase velocity. This addition can lead to transcriptional stalling and resulting implications for gene expression, chromatin structure and genome organization are discussed.
Odahara, Takayuki; Odahara, Koji
2016-04-01
Mixtures of neutral salts and polyethylene glycol are used for various purposes in biological studies. Although the effects of each component of the mixtures are theoretically well investigated, comprehension of their integrated effects remains insufficient. In this work, their roles and effects as a precipitant were clarified by studying dependence of precipitation curves on salt concentration for integral membrane protein/detergent particles of different physicochemical properties. The dependence of precipitation curves was reasonably related to intermolecular interactions among relevant molecules such as protein, detergent and polyethylene glycol by considering their physicochemical properties. The obtained relationships are useful as basic information to learn the early stage of biological macromolecular associations. Copyright © 2015 Elsevier Inc. All rights reserved.
Peptide nanostructures in biomedical technology.
Feyzizarnagh, Hamid; Yoon, Do-Young; Goltz, Mark; Kim, Dong-Shik
2016-09-01
Nanostructures of peptides have been investigated for biomedical applications due to their unique mechanical and electrical properties in addition to their excellent biocompatibility. Peptides may form fibrils, spheres and tubes in nanoscale depending on the formation conditions. These peptide nanostructures can be used in electrical, medical, dental, and environmental applications. Applications of these nanostructures include, but are not limited to, electronic devices, biosensing, medical imaging and diagnosis, drug delivery, tissue engineering and stem cell research. This review offers a discussion of basic synthesis methods, properties and application of these nanomaterials. The review concludes with recommendations and future directions for peptide nanostructures. WIREs Nanomed Nanobiotechnol 2016, 8:730-743. doi: 10.1002/wnan.1393 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.
Structural Ceramic Nanocomposites: A Review of Properties and Powders’ Synthesis Methods
Palmero, Paola
2015-01-01
Ceramic nanocomposites are attracting growing interest, thanks to new processing methods enabling these materials to go from the research laboratory scale to the commercial level. Today, many different types of nanocomposite structures are proposed in the literature; however, to fully exploit their exceptional properties, a deep understanding of the materials’ behavior across length scales is necessary. In fact, knowing how the nanoscale structure influences the bulk properties enables the design of increasingly performing composite materials. A further key point is the ability of tailoring the desired nanostructured features in the sintered composites, a challenging issue requiring a careful control of all stages of manufacturing, from powder synthesis to sintering. This review is divided into four parts. In the first, classification and general issues of nanostructured ceramics are reported. The second provides basic structure–property relations, highlighting the grain-size dependence of the materials properties. The third describes the role of nanocrystalline second-phases on the mechanical properties of ordinary grain sized ceramics. Finally, the fourth part revises the mainly used synthesis routes to produce nanocomposite ceramic powders, underlining when possible the critical role of the synthesis method on the control of microstructure and properties of the sintered ceramics. PMID:28347029
Vázquez, Olalla; Blanco-Canosa, Juan B; Vázquez, M Eugenio; Martínez-Costas, Jose; Castedo, Luis; Mascareñas, José L
2008-11-24
Efficient targeting of DNA by designed molecules requires not only careful fine-tuning of their DNA-recognition properties, but also appropriate cell internalization of the compounds so that they can reach the cell nucleus in a short period of time. Previous observations in our group on the relatively high affinity displayed by conjugates between distamycin derivatives and bZIP basic regions for A-rich DNA sites, led us to investigate whether the covalent attachment of a positively charged cell-penetrating peptide to a distamycin-like tripyrrole might yield high affinity DNA binders with improved cell internalization properties. Our work has led to the discovery of synthetic tripyrrole-octa-arginine conjugates that are capable of targeting specific DNA sites that contain A-rich tracts with low nanomolar affinity; they simultaneously exhibit excellent membrane and nuclear translocation properties in living HeLa cells.
Luminescent properties of Al2O3:Ce single crystalline films under synchrotron radiation excitation
NASA Astrophysics Data System (ADS)
Zorenko, Yu.; Zorenko, T.; Gorbenko, V.; Savchyn, V.; Voznyak, T.; Fabisiak, K.; Zhusupkalieva, G.; Fedorov, A.
2016-09-01
The paper is dedicated to study the luminescent and scintillation properties of the Al2O3:Ce single crystalline films (SCF) grown by LPE method onto saphire substrates from PbO based flux. The structural quality of SCF samples was investigated by XRD method. For characterization of luminescent properties of Al2O3:Ce SCFs the cathodoluminescence spectra, scintillation light yield (LY) and decay kinetics under excitation by α-particles of Pu239 source were used. We have found that the scintillation LY of Al2O3:Ce SCF samples is relatively large and can reach up to 50% of the value realized in the reference YAG:Ce SCF. Using the synchrotron radiation excitation in the 3.7-25 eV range at 10 K we have also determined the basic parameters of the Ce3+ luminescence in Al2O3 host.
Fluorine and Fluorinated Motifs in the Design and Application of Bioisosteres for Drug Design.
Meanwell, Nicholas A
2018-02-05
The electronic properties and relatively small size of fluorine endow it with considerable versatility as a bioisostere and it has found application as a substitute for lone pairs of electrons, the hydrogen atom, and the methyl group while also acting as a functional mimetic of the carbonyl, carbinol, and nitrile moieties. In this context, fluorine substitution can influence the potency, conformation, metabolism, membrane permeability, and P-gp recognition of a molecule and temper inhibition of the hERG channel by basic amines. However, as a consequence of the unique properties of fluorine, it features prominently in the design of higher order structural metaphors that are more esoteric in their conception and which reflect a more sophisticated molecular construction that broadens biological mimesis. In this Perspective, applications of fluorine in the construction of bioisosteric elements designed to enhance the in vitro and in vivo properties of a molecule are summarized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prima, Eka Cahya; Computational Material Design and Quantum Engineering Laboratory, Engineering Physics, Institut Teknologi Bandung; International Program on Science Education, Universitas Pendidikan Indonesia
2015-09-30
The aglycones of anthocyanidin dyes were previously reported to form carbinol pseudobase, cis-chalcone, and trans-chalcone due to the basic levels. The further investigations of ground and excited state properties of the dyes were characterized using density functional theory with PCM(UFF)/B3LYP/6-31+G(d,p) level in the basic solutions. However, to the best of our knowledge, the theoretical investigation of their potential photosensitizers has never been reported before. In this paper, the theoretical photovoltaic properties sensitized by dyes have been successfully investigated including the electron injections, the ground and excited state oxidation potentials, the estimated open circuit voltages, and the light harvesting efficiencies. Themore » results prove that the electronic properties represented by dyes’ LUMO-HOMO levels will affect to the photovoltaic performances. Cis-chalcone dye is the best anthocyanidin aglycone dye with the electron injection spontaneity of −1.208 eV, the theoretical open circuit voltage of 1.781 V, and light harvesting efficiency of 56.55% due to the best HOMO-LUMO levels. Moreover, the ethanol solvent slightly contributes to the better cell performance than the water solvent dye because of the better oxidation potential stabilization in the ground state as well as in the excited state. These results are in good agreement with the known experimental report that the aglycones of anthocyanidin dyes in basic solvent are the high potential photosensitizers for dye-sensitized solar cell.« less
NASA Astrophysics Data System (ADS)
Odenbach, Professor Stefan
2006-09-01
This issue of Journal of Physics: Condensed Matter is dedicated to results in the field of ferrofluid research. Ferrofluids—suspensions of magnetic nanoparticles—exhibit as a specific feature the magnetic control of their physical parameters and of flows appearing in such fluids. This magnetic control can be achieved by means of moderate magnetic fields with a strength of the order of 10 mT. This sort of magnetic control also enables the design of a wide variety of technical applications such as the use of the magnetic forces for basic research in fluid dynamics. The overall field of ferrofluid research is already about 40 years old. Starting with the first patent on the synthesis of magnetic nanoparticle suspensions by S Papell in 1964, a vivid field of research activities has been established. Looking at the long time in which ferrofluids have been the focus of scientific interest, one can ask the question, what kind of recent developments justify a special issue of a scientific journal? New developments in a field, which depends strongly on a certain material class and which opens research possibilities in different scientific fields will nowadays usually require an interdisciplinary approach. This kind of approach starting from the synthesis of magnetic suspensions, including research concerning their basic properties and flow behaviour and focusing on new applications has been the core of a special research programme funded by the Deutsche Forschungsgemeinschaft (DFG) over the past 6 years. Within this programme—entitled `Colloidal Magnetic Fluids: Basics, Synthesis and Applications of New Ferrofluids'—more than 30 different research groups have been coordinated to achieve new results in various fields related to ferrofluid research. The basic approach of the program has been the assumption that new applications well beyond the typical ferrofluid techniques, for example loud speaker cooling or sealing of rotary shafts, will require tailored magnetic suspensions with properties clearly focused towards the need of the application. While such tailoring of fluids to certain well defined properties sounds like a straightforward approach one has to face the fact that it requires a clear definition of the required properties. This definition itself has to be based on a fundamental physical knowledge of the processes determining certain magnetically controlled phenomena in ferrofluids. To make this point concrete one can look into the detailed aims of the mentioned research program. The application areas identified for the future development of research and application of suspensions of magnetic nanoparticles have been on the one hand the biomedical application—especially with respect to cancer treatment—and on the other hand the use of magnetically controlled rheological properties of ferrofluids for new active technical devices. Both directions require, as mentioned, as a basis for success the synthesis of new ferrofluids with dedicated properties. While the medical applications have to rely on biocompatibility as well as on stability of the suspensions in a biomedical environment, the use of ferrofluids in technical devices employing their magnetically controlled rheological properties will depend on an enhancement of the changes of the fluid's viscous properties in the presence of moderate magnetic fields. For both requirements ferrofluids with a make up clearly different from the usual magnetite based fluids have to be synthesized. The question of how the detailed microscopic make up of the fluids would have to look has to be answered on the basis of basic research results defining the physics background of the respective phenomena. Taking these aspects together it becomes obvious that the aforementioned research program had goals aiming far beyond the state of the art of classical ferrofluid research. These goals as well as the basic strategy to achieve them is in a way reflected by the structure of this issue of Journal of Physics: Condensed Matter. The issue contains results emerging from the research programme as well as invited papers from researchers not participating in the programme but working in closely related areas. The issue is subdivided into five main sections dealing with synthesis, basic physical description, rheology, and both the medical and technical applications of ferrofluids. As can be expected from work done within an interdisciplinary context many of the papers would fit into more than one of these sections and catagorization is thus sometimes difficult. We have therefore tried to place them into the section reflecting the main field of research to which the respective results belong. The first section is on synthesis and characterization of magnetic suspensions. The first paper in this section is dedicated partly to magnetite ferrofluids but with special aspects concerning the particle size tailoring them for applications especially in the field of magnetic hyperthermia. After this, three different types of `new' ferrofluids are presented. Fluids based on pure metal particles exhibiting much stronger magnetic properties than the common magnetite fluids, fluids with a temperature sensitive surfactant shell allowing a change of the particle’s hydrodynamic diameter by variation of the fluid’s temperature and fluids containing spheres of nonmagnetic material with embedded magnetic particles which are already used in new medical applications. The second section is dedicated to the basic physics of ferrofluids and highlights three different topics. First the question of magnetization dynamics is discussed and different aspects of this fundamental problem, which determines the basic description of ferrofluids, are highlighted. The second topic is the well known surface instability appearing in ferrofluids in a homogeneous magnetic field perpendicular to the fluid surface. This part shows clearly how many undiscovered phenomena can be found, even in an area which is as old as the whole research field, if an appropriate measuring technique is used and fresh ideas help to find unexpected effects. The last part of this section deals with the question of dynamics and structure of ferrofluids and shows the experimental possibilities of scattering techniques in this field. Within the third section the question of field dependent changes of the rheological behaviour of ferrofluids is discussed. The first three papers provide theoretical approaches for the understanding of the connection between the rheological properties and shear and field induced changes in the fluid’s microstructure. The fourth paper provides the related experimental results showing the combination of microstructural and rheological measurements under well defined conditions. The last paper of this section does not directly belong to ferrofluid research but to a closely related field—so called magneto-rheological (MR) suspensions, which differ from ferrofluids mainly by the size of the suspended particles and the strength of the rheological effects. As modern theoretical approaches, like the one discussed by Liu et al in the second section have shown, the relation between the effects in ferrofluids and those in MR fluids is so close that it could probably be described in a common theory. Sections four and five contain the application orientated results. In the fourth section the medical applications are the focus of interest. The section starts with a paper which could have also been placed in the synthesis section—the growth of magnetotactic bacteria and the extraction of the magnetic particles produced by these bacteria. The paper also contains information about the characterization of the particles especially with respect to their application. The characterization aspect is then continued in two papers outlining new diagnostic techniques with close relation to future biomedical application of magnetic fluids. Next in vitro applications, especially questions of cell separation using magnetic forces, are highlighted before the final papers address the therapeutic aspects of magnetic drug targeting and magnetic hyperthermia. Finally the fifth section describes three different new approaches for the technical use of ferrofluids. Again, the specialized design of the fluids themselves is an important step towards the new application goals. Altogether the papers within this issue outline the unique potential of magnetically controlled suspensions, the interdisciplinary nature of the related research and the prospects of strongly networked and interdisciplinary activities in the field. I hope that it will give an insight into the fascination of ferrofluid research and a feeling for the advances made in the past years.
Calculations of critical misfit and thickness: An overview
NASA Technical Reports Server (NTRS)
Vandermerwe, Jan H.; Jesser, W. A.
1988-01-01
This overview stresses the equilibrium/nonequilibrium nature of the physical properties, as well as the basic properties of the models, used to calculate critical misfit and critical thickness in epitaxy.
An Analysis of the Optimal Control Modification Method Applied to Flutter Suppression
NASA Technical Reports Server (NTRS)
Drew, Michael; Nguyen, Nhan T.; Hashemi, Kelley E.; Ting, Eric; Chaparro, Daniel
2017-01-01
Unlike basic Model Reference Adaptive Control (MRAC)l, Optimal Control Modification (OCM) has been shown to be a promising MRAC modification with robustness and analytical properties not present in other adaptive control methods. This paper presents an analysis of the OCM method, and how the asymptotic property of OCM is useful for analyzing and tuning the controller. We begin with a Lyapunov stability proof of an OCM controller having two adaptive gain terms, then the less conservative and easily analyzed OCM asymptotic property is presented. Two numerical examples are used to show how this property can accurately predict steady state stability and quantitative robustness in the presence of time delay, and relative to linear plant perturbations, and nominal Loop Transfer Recovery (LTR) tuning. The asymptotic property of the OCM controller is then used as an aid in tuning the controller applied to a large scale aeroservoelastic longitudinal aircraft model for flutter suppression. Control with OCM adaptive augmentation is shown to improve performance over that of the nominal non-adaptive controller when significant disparities exist between the controller/observer model and the true plant model.
Adaptive control: Myths and realities
NASA Technical Reports Server (NTRS)
Athans, M.; Valavani, L.
1984-01-01
It was found that all currently existing globally stable adaptive algorithms have three basic properties in common: positive realness of the error equation, square-integrability of the parameter adjustment law and, need for sufficient excitation for asymptotic parameter convergence. Of the three, the first property is of primary importance since it satisfies a sufficient condition for stabillity of the overall system, which is a baseline design objective. The second property has been instrumental in the proof of asymptotic error convergence to zero, while the third addresses the issue of parameter convergence. Positive-real error dynamics can be generated only if the relative degree (excess of poles over zeroes) of the process to be controlled is known exactly; this, in turn, implies perfect modeling. This and other assumptions, such as absence of nonminimum phase plant zeros on which the mathematical arguments are based, do not necessarily reflect properties of real systems. As a result, it is natural to inquire what happens to the designs under less than ideal assumptions. The issues arising from violation of the exact modeling assumption which is extremely restrictive in practice and impacts the most important system property, stability, are discussed.
Tribological systems as applied to aircraft engines
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1985-01-01
Tribological systems as applied to aircraft are reviewed. The importance of understanding the fundamental concepts involved in such systems is discussed. Basic properties of materials which can be related to adhesion, friction and wear are presented and correlated with tribology. Surface processes including deposition and treatment are addressed in relation to their present and future application to aircraft components such as bearings, gears and seals. Lubrication of components with both liquids and solids is discussed. Advances in both new liquid molecular structures and additives for those structures are reviewed and related to the needs of advanced engines. Solids and polymer composites are suggested for increasing use and ceramic coatings containing fluoride compounds are offered for the extreme temperatures encountered in such components as advanced bearings and seals.
Thermodynamic and Kinetic Properties of the Electrochemical Cell.
ERIC Educational Resources Information Center
Smith, Donald E.
1983-01-01
Describes basic characteristics of the electrochemical cell. Also describes basic principles of electrochemical procedures and use of these concepts to explain use of the term "primarily" in discussions of methods primarily responsive to equilibrium cell potential, bulk ohmic resistance, and the Faradaic impedance. (JN)
Sensitivity analysis of non-cohesive sediment transport formulae
NASA Astrophysics Data System (ADS)
Pinto, Lígia; Fortunato, André B.; Freire, Paula
2006-10-01
Sand transport models are often based on semi-empirical equilibrium transport formulae that relate sediment fluxes to physical properties such as velocity, depth and characteristic sediment grain sizes. In engineering applications, errors in these physical properties affect the accuracy of the sediment fluxes. The present analysis quantifies error propagation from the input physical properties to the sediment fluxes, determines which ones control the final errors, and provides insight into the relative strengths, weaknesses and limitations of four total load formulae (Ackers and White, Engelund and Hansen, van Rijn, and Karim and Kennedy) and one bed load formulation (van Rijn). The various sources of uncertainty are first investigated individually, in order to pinpoint the key physical properties that control the errors. Since the strong non-linearity of most sand transport formulae precludes analytical approaches, a Monte Carlo method is validated and used in the analysis. Results show that the accuracy in total sediment transport evaluations is mainly determined by errors in the current velocity and in the sediment median grain size. For the bed load transport using the van Rijn formula, errors in the current velocity alone control the final accuracy. In a final set of tests, all physical properties are allowed to vary simultaneously in order to analyze the combined effect of errors. The combined effect of errors in all the physical properties is then compared to an estimate of the errors due to the intrinsic limitations of the formulae. Results show that errors in the physical properties can be dominant for typical uncertainties associated with these properties, particularly for small depths. A comparison between the various formulae reveals that the van Rijn formula is more sensitive to basic physical properties. Hence, it should only be used when physical properties are known with precision.
Properties of the ion-ion hybrid resonator in fusion plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morales, George J.
2015-10-06
The project developed theoretical and numerical descriptions of the properties of ion-ion hybrid Alfvén resonators that are expected to arise in the operation of a fusion reactor. The methodology and theoretical concepts were successfully compared to observations made in basic experiments in the LAPD device at UCLA. An assessment was made of the excitation of resonator modes by energetic alpha particles for burning plasma conditions expected in the ITER device. The broader impacts included the generation of basic insight useful to magnetic fusion and space science researchers, defining new avenues for exploration in basic laboratory experiments, establishing broader contacts betweenmore » experimentalists and theoreticians, completion of a Ph.D. dissertation, and promotion of interest in science through community outreach events and classroom instruction.« less
Aoi, Shinya; Funato, Tetsuro
2016-03-01
Humans and animals walk adaptively in diverse situations by skillfully manipulating their complicated and redundant musculoskeletal systems. From an analysis of measured electromyographic (EMG) data, it appears that despite complicated spatiotemporal properties, muscle activation patterns can be explained by a low dimensional spatiotemporal structure. More specifically, they can be accounted for by the combination of a small number of basic activation patterns. The basic patterns and distribution weights indicate temporal and spatial structures, respectively, and the weights show the muscle sets that are activated synchronously. In addition, various locomotor behaviors have similar low dimensional structures and major differences appear in the basic patterns. These analysis results suggest that neural systems use muscle group combinations to solve motor control redundancy problems (muscle synergy hypothesis) and manipulate those basic patterns to create various locomotor functions. However, it remains unclear how the neural system controls such muscle groups and basic patterns through neuromechanical interactions in order to achieve adaptive locomotor behavior. This paper reviews simulation studies that explored adaptive motor control in locomotion via sensory-motor coordination using neuromusculoskeletal models based on the muscle synergy hypothesis. Herein, the neural mechanism in motor control related to the muscle synergy for adaptive locomotion and a potential muscle synergy analysis method including neuromusculoskeletal modeling for motor impairments and rehabilitation are discussed. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Stošić, Dušan; Auroux, Aline
Basic principles of calorimetry coupled with other techniques are introduced. These methods are used in heterogeneous catalysis for characterization of acidic, basic and red-ox properties of solid catalysts. Estimation of these features is achieved by monitoring the interaction of various probe molecules with the surface of such materials. Overview of gas phase, as well as liquid phase techniques is given. Special attention is devoted to coupled calorimetry-volumetry method. Furthermore, the influence of different experimental parameters on the results of these techniques is discussed, since it is known that they can significantly influence the evaluation of catalytic properties of investigated materials.
Emergence, evolution and scaling of online social networks.
Wang, Le-Zhi; Huang, Zi-Gang; Rong, Zhi-Hai; Wang, Xiao-Fan; Lai, Ying-Cheng
2014-01-01
Online social networks have become increasingly ubiquitous and understanding their structural, dynamical, and scaling properties not only is of fundamental interest but also has a broad range of applications. Such networks can be extremely dynamic, generated almost instantaneously by, for example, breaking-news items. We investigate a common class of online social networks, the user-user retweeting networks, by analyzing the empirical data collected from Sina Weibo (a massive twitter-like microblogging social network in China) with respect to the topic of the 2011 Japan earthquake. We uncover a number of algebraic scaling relations governing the growth and structure of the network and develop a probabilistic model that captures the basic dynamical features of the system. The model is capable of reproducing all the empirical results. Our analysis not only reveals the basic mechanisms underlying the dynamics of the retweeting networks, but also provides general insights into the control of information spreading on such networks.
Chemical Foundations of Hydrogen Sulfide Biology
Li, Qian; Lancaster, Jack R.
2013-01-01
Following nitric oxide (nitrogen monoxide) and carbon monoxide, hydrogen sulfide (or its newer systematic name sulfane, H2S) became the third small molecule that can be both toxic and beneficial depending on the concentration. In spite of its impressive therapeutic potential, the underlying mechanisms for its beneficial effects remain unclear. Any novel mechanism has to obey fundamental chemical principles. H2S chemistry was studied long before its biological relevance was discovered, however, with a few exceptions, these past works have received relatively little attention in the path of exploring the mechanistic conundrum of H2S biological functions. This review calls attention to the basic physical and chemical properties of H2S, focuses on the chemistry between H2S and its three potential biological targets: oxidants, metals and thiol derivatives, discusses the applications of these basics into H2S biology and methodology, and introduces the standard terminology to this youthful field. PMID:23850631
NASA Technical Reports Server (NTRS)
Kroo, I. M.
1981-01-01
One-fifth-scale models of three basic ultralight glider designs were constructed to simulate the elastic properties of full scale gliders and were tested at Reynolds numbers close to full scale values. Twenty-four minor modifications were made to the basic configurations in order to evaluate the effects of twist, reflex, dihedral, and various stability enhancement devices. Longitudinal and lateral data were obtained at several speeds through an angle of attack range of -30 deg to +45 deg with sideslip angles of up to 20 deg. The importance of vertical center of gravity displacement is discussed. Lateral data indicate that effective dihedral is lost at low angles of attack for nearly all of the configurations tested. Drag data suggest that lift-dependent viscous drag is a large part of the glider's total drag as is expected for thin, cambered sections at these relatively low Reynolds numbers.
Southeastern Community College Annual Progress Report, December 1995.
ERIC Educational Resources Information Center
Gardner, R. Gene
Presenting information on the status of Southeastern Community College (SCC), in Iowa, this annual progress report highlights basic institutional data, financial information, and improvements and planned changes of the college as of 1995. Part 1 presents basic data on SCC, including facility locations, assessed property valuation, district…
Rosenbaum, J.G.; Reynolds, R.L.
2004-01-01
Studies of magnetic properties enable reconstruction of environmental conditions that affected magnetic minerals incorporated in sediments from Upper Klamath Lake. Analyses of stream sediment samples from throughout the catchment of Upper Klamath Lake show that alteration of Fe-oxide minerals during subaerial chemical weathering of basic volcanic rocks has significantly changed magnetic properties of surficial deposits. Titanomagnetite, which is abundant both as phenocrysts and as microcrystals in fresh volcanic rocks, is progressively destroyed during weathering. Because fine-grained magnetite is readily altered due to large surface-to-volume ratios, weathering causes an increase in average magnetic grain size as well as reduction in the quantity of titanomagnetite both absolutely and relative to hematite. Hydrodynamic mineralogical sorting also produces differences in magnetic properties among rock and mineral grains of differing sizes. Importantly, removal of coarse silicate and Fe-oxide grains by sorting concentrated extremely fine-grained magnetite in the resulting sediment. The effects of weathering and sorting of minerals cannot be completely separated. These processes combine to produce the magnetic properties of a non-glacial lithic component of Upper Klamath Lake sediments, which is characterized by relatively low magnetite content and coarse magnetic grain size. Hydrodynamic sorting alone causes significant differences between the magnetic properties of glacial flour in lake sediments and of fresh volcanic rocks in the catchment. In comparison to source volcanic rocks, glacial flour in the lake sediment is highly enriched in extremely fine-grained magnetite.
Processing-Microstructure-Property Relationships for Cold Spray Powder Deposition of Al-Cu Alloys
2015-06-01
MICROSTRUCTURE - PROPERTY RELATIONSHIPS FOR COLD SPRAY POWDER DEPOSITION OF Al - Cu ALLOYS by Jeremy D. Leazer June 2015 Thesis Advisor: Sarath K...basic microstructure -mechanical property relationships for cold spray deposited Al - Cu alloy coatings The microstructure of the deposited materials will...the dynamic mechanical
Whole bone mechanics and bone quality.
Cole, Jacqueline H; van der Meulen, Marjolein C H
2011-08-01
The skeleton plays a critical structural role in bearing functional loads, and failure to do so results in fracture. As we evaluate new therapeutics and consider treatments to prevent skeletal fractures, understanding the basic mechanics underlying whole bone testing and the key principles and characteristics contributing to the structural strength of a bone is critical. We therefore asked: (1) How are whole bone mechanical tests performed and what are the key outcomes measured? (2) How do the intrinsic characteristics of bone tissue contribute to the mechanical properties of a whole bone? (3) What are the effects of extrinsic characteristics on whole bone mechanical behavior? (4) Do environmental factors affect whole bone mechanical properties? We conducted a PubMed search using specific search terms and limiting our included articles to those related to in vitro testing of whole bones. Basic solid mechanics concepts are summarized in the context of whole bone testing and the determinants of whole bone behavior. Whole bone mechanical tests measure structural stiffness and strength from load-deformation data. Whole bone stiffness and strength are a function of total bone mass and the tissue geometric distribution and material properties. Age, sex, genetics, diet, and activity contribute to bone structural performance and affect the incidence of skeletal fractures. Understanding and preventing skeletal fractures is clinically important. Laboratory tests of whole bone strength are currently the only measures for in vivo fracture prediction. In the future, combined imaging and engineering models may be able to predict whole bone strength noninvasively.
NASA Astrophysics Data System (ADS)
Soriano-Correa, Catalina; Raya, Angélica; Barrientos-Salcedo, Carolina; Esquivel, Rodolfo O.
2014-06-01
Activity of steroid hormones is dependent upon a number of factors, as solubility, transport and metabolism. The functional differences caused by structural modifications could exert an influence on the chemical reactivity and biological effect. The goal of this work is to study the influence of the physicochemical and aromatic properties on the chemical reactivity and its relation with the carcinogenic risk that can associate with the anticoagulant effect of 17β-aminoestrogens using quantum-chemical descriptors at the DFT-B3LYP, BH&HLYP and M06-2X levels. The relative acidity of (H1) of the hydroxyl group increases with electron-withdrawing groups. Electron-donor groups favor the basicity. The steric hindrance of the substituents decreases the aromatic character and consequently diminution the carcinogenic effect. Density descriptors: hardness, electrophilic index, atomic charges, molecular orbitals, electrostatic potential and their geometric parameters permit analyses of the chemical reactivity and physicochemical features and to identify some reactive sites of 17β-aminoestrogens.
Comparison of holographic setups used in heat and mass transfer measurement
NASA Astrophysics Data System (ADS)
Doleček, R.; Psota, P.; Lédl, V.; Vít, T.; Kopecký, V.
2014-03-01
The authors of the paper deal with measurement of heat and mass transfer for several years and they have frequently used few techniqes for measurement of refractive index distribution based on holographic interferometry. Some of the well known techniques have been modified some and some new ones developped. Every technique could be applied with success in different type of meassurement and obviously every one has set of properties making them unique. We decided to digest few different basic techniques and describe its properties in this paper with the aim to help the reader select the proper one for their measurement. The list of techniques and its properties is not comprehensive but schould serve as a basic orientation in the field.
[Discussion on several basic issues of acupuncture-moxibustion science].
Wang, Guangjun
2016-10-12
Nine basic issues on acupuncture-moxibustion science are discussed in this paper. The author believes those include the universal property of acupoints,the placebo effect of acupuncture and moxibustion,the continuous transmission of acupuncture information,the factors of the effects such as growth as well as acquired shape and properties,the classification evidence of acupoint function,the compatibility of acupoints,the change of functional state of acupoint and deqi . The universal property of acupoints means whether there is identical position of acupoint among different ethnic groups. The continuous transmission of acupuncture information is seen as whether the delivery which mainly shows as diffusion maintains active in special region and situation. The classification evidence of acupoint function refers to if there exists universal biological basis.
Clar theory and resonance energy
NASA Astrophysics Data System (ADS)
Gutman, Ivan; Gojak, Sabina; Furtula, Boris
2005-09-01
A mathematical model, referred here as the Zhang-Zhang polynomial ζ( x), that embraces all the main concepts encountered in the Clar aromatic sextet theory of benzenoid hydrocarbons, was recently put forward by Zhang and Zhang. We now show that ζ( x) is related to resonance energy, and that ln ζ( x) and RE are best correlated when x ≈ 1. This indicates that ζ(1) could be viewed as a (novel) structure-descriptor, playing a role analogous to the Kekulé structure count in Kekulé-structure-based theories. Some basic properties of ζ(1) are established.
Biophysical EPR Studies Applied to Membrane Proteins
Sahu, Indra D; Lorigan, Gary A
2015-01-01
Membrane proteins are very important in controlling bioenergetics, functional activity, and initializing signal pathways in a wide variety of complicated biological systems. They also represent approximately 50% of the potential drug targets. EPR spectroscopy is a very popular and powerful biophysical tool that is used to study the structural and dynamic properties of membrane proteins. In this article, a basic overview of the most commonly used EPR techniques and examples of recent applications to answer pertinent structural and dynamic related questions on membrane protein systems will be presented. PMID:26855825
Water-resources investigations in Wisconsin, 1993
Maertz, D.E.
1993-01-01
OBJECTIVE: The objectives of this study are to provide continuous discharge records for selected rivers at specific sites to supply the needs for: regulation, analytical studies, definition of statistical properties, trends analysis, determination of the occurrence, and distribution of water in streams for planning. The project is also designed to determine lake levels and to provide discharge for floods, low-flow conditions, and for water-quality investigations. Requests for streamflow data and information relating to streamflow in Wisconsin are answered. Basic data are published annually in "Water Resources Data Wisconsin."
Amplitude, frequency, and timbre with the French horn
NASA Astrophysics Data System (ADS)
Konz, Nicholas; Ruiz, Michael J.
2018-07-01
The French horn is used to introduce the three basic properties of periodic waves: amplitude, frequency, and waveform. These features relate to the perceptual characteristics of loudness, pitch, and timbre encountered in everyday language. Visualizations are provided in the form of oscilloscope screenshots, spectrograms, and Fourier spectra to illustrate the physics. Introductory students will find the musical relevance interesting as they experience a real-world application of physics. Demonstrations playing the French horn are provided in an accompanying video (Ruiz 2018 Video: Amplitude, frequency, and timbre with the French horn http://mjtruiz.com/ped/horn/).
NASA Technical Reports Server (NTRS)
Fu, L. S. W.
1982-01-01
Developments in fracture mechanics and elastic wave theory enhance the understanding of many physical phenomena in a mathematical context. Available literature in the material, and fracture characterization by NDT, and the related mathematical methods in mechanics that provide fundamental underlying principles for its interpretation and evaluation are reviewed. Information on the energy release mechanism of defects and the interaction of microstructures within the material is basic in the formulation of the mechanics problems that supply guidance for nondestructive evaluation (NDE).
Review of Antibiotic and Non-Antibiotic Properties of Beta-lactam Molecules.
Ochoa-Aguilar, Abraham; Ventura-Martinez, Rosa; Sotomayor-Sobrino, Marco Antonio; Gómez, Claudia; Morales-Espinoza, María del Rosario
2016-01-01
Beta-lactam molecules are a family of drugs commonly used for their antibiotic properties; however, recent research has shown that several members of this group present a large number of other effects such as neuroprotective, antioxidant, analgesic or immunomodulatory capabilities. These properties have been used in both preclinical and clinical studies in different diseases such as hypoxic neuronal damage or acute and chronic pain. The present work briefly reviews the antibiotic effect of these molecules, and will then focus specially on the non-antibiotic effects of three beta-lactam subfamilies: penicillins, cephalosporins and beta lactamase inhibitors, each of which have different molecular structure and pharmacokinetics and therefore have several potential clinical applications. A thorough search of bibliographic databases for peer-reviewed research was performed including only classic experiments or high quality reviews for the antibiotic mechanisms of beta-lactam molecules and only experimental research papers where included when the non-antibiotic properties of these molecules were searched. Only published articles from indexed journals were included. Quality of retrieved papers was assessed using standard tools. The characteristics of screened papers were described and findings of included studies were contextualized to either a mechanistic or a clinical framework. Seventy-eight papers were included in the review; the majority (56) were relative to the non-antibiotic properties of beta-lactam molecules. The non-antibiotic effects reviewed were divided accordingly to the amount of information available for each one. Twelve papers outlined the epileptogenic effects induced by beta-lactam molecules administration; these included both clinical and basic research as well as probable mechanistic explanations. Eighteen papers described a potential neuroprotective effect, mostly in basic in vitro and in vivo experiments. Analgesic properties where identified in twelve papers and basic research was described alongside with both experimental and serendipic clinical findings. Seven papers described a down-regulation effect exerted by beta-lactam molecules administration in different addiction animal models. Finally other effects such as penile erection, dopamine release facilitation and anti-neoplasic effects where described from seven papers. The findings of this review show that beta-lactam molecules may induce several effects, which may be clinically relevant in a lot of different diseases. This paper is, to our knowledge, the first comprehensive review of the non-antibiotic effects shown by beta-lactam molecules and may help increase the interest in this field, which may result in a direct translation of this effects to a clinical context.
Some Basic Techniques in Bioimpedance Research
NASA Astrophysics Data System (ADS)
Martinsen, Ørjan G.
2004-09-01
Any physiological or anatomical changes in a biological material will also change its electrical properties. Hence, bioimpedance measurements can be used for diagnosing or classification of tissue. Applications are numerous within medicine, biology, cosmetics, food industry, sports, etc, and different basic approaches for the development of bioimpedance techniques are discussed in this paper.
49 CFR 24.102 - Basic acquisition policies.
Code of Federal Regulations, 2011 CFR
2011-10-01
... owner in writing. (h) Coercive action. The Agency shall not advance the time of condemnation, or defer... the owner in writing of the Agency's interest in acquiring the real property and the basic protections... appraised, except as provided in § 24.102 (c)(2), and the owner, or the owner's designated representative...
7 CFR 1780.94 - Minimum bond specifications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... by the Government. The Agency address for registration purposes will be that of the Finance Office... from the sale of basic chattel or real estate security, refund of unused loan funds, cash proceeds of property insurance and similar actions which reduce the value of basic security. At the option of the...
Investigating Complexity Using Excel and Visual Basic.
ERIC Educational Resources Information Center
Zetie, K. P.
2001-01-01
Shows how some of the simple ideas in complexity can be investigated using a spreadsheet and a macro written in Visual Basic. Shows how the sandpile model of Bak, Chao, and Wiesenfeld can be simulated and animated. The model produces results that cannot easily be predicted from its properties. (Author/MM)
13 CFR 120.880 - Basic eligibility requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
.... 120.880 Section 120.880 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION BUSINESS LOANS Development Company Loan Program (504) Loan-Making Policies Specific to 504 Loans § 120.880 Basic eligibility... for a 504 loan, a small business must: (a) Use the Project Property (except that an Eligible Passive...
13 CFR 120.880 - Basic eligibility requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
.... 120.880 Section 120.880 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION BUSINESS LOANS Development Company Loan Program (504) Loan-Making Policies Specific to 504 Loans § 120.880 Basic eligibility... for a 504 loan, a small business must: (a) Use the Project Property (except that an Eligible Passive...
13 CFR 120.880 - Basic eligibility requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
.... 120.880 Section 120.880 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION BUSINESS LOANS Development Company Loan Program (504) Loan-Making Policies Specific to 504 Loans § 120.880 Basic eligibility... for a 504 loan, a small business must: (a) Use the Project Property (except that an Eligible Passive...
13 CFR 120.880 - Basic eligibility requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
.... 120.880 Section 120.880 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION BUSINESS LOANS Development Company Loan Program (504) Loan-Making Policies Specific to 504 Loans § 120.880 Basic eligibility... for a 504 loan, a small business must: (a) Use the Project Property (except that an Eligible Passive...
13 CFR 120.880 - Basic eligibility requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
.... 120.880 Section 120.880 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION BUSINESS LOANS Development Company Loan Program (504) Loan-Making Policies Specific to 504 Loans § 120.880 Basic eligibility... for a 504 loan, a small business must: (a) Use the Project Property (except that an Eligible Passive...
Adachi, Naoki; Numakawa, Tadahiro; Richards, Misty; Nakajima, Shingo; Kunugi, Hiroshi
2014-01-01
Brain-derived neurotrophic factor (BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to develop and maintain normal neuronal circuits in the brain. Given that loss of BDNF function has been reported in the brains of patients with neurodegenerative or psychiatric diseases, understanding basic properties of BDNF and associated intracellular processes is imperative. In this review, we revisit the gene structure, transcription, translation, transport and secretion mechanisms of BDNF. We also introduce implications of BDNF in several brain-related diseases including Alzheimer’s disease, Huntington’s disease, depression and schizophrenia. PMID:25426265
United States National Library of Medicine Drug Information Portal.
Hochstein, Colette; Goshorn, Jeanne; Chang, Florence
2009-01-01
The Drug Information Portal is a free Web resource from the National Library of Medicine (NLM) that provides a user-friendly gateway to current information for more than 15,000 drugs. The site guides users to related resources of NLM, the National Institutes of Health (NIH), and other government agencies. Current drug-related information regarding consumer health, clinical trials, AIDS, MeSH pharmacological actions, MEDLINE/PubMed biomedical literature, and physical properties and structure is easily retrieved by searching on a drug name. A varied selection of focused topics in medicine and drugs is also available from displayed subject headings. This column provides background information about the Drug Information Portal, as well as search basics.
Generalised Central Limit Theorems for Growth Rate Distribution of Complex Systems
NASA Astrophysics Data System (ADS)
Takayasu, Misako; Watanabe, Hayafumi; Takayasu, Hideki
2014-04-01
We introduce a solvable model of randomly growing systems consisting of many independent subunits. Scaling relations and growth rate distributions in the limit of infinite subunits are analysed theoretically. Various types of scaling properties and distributions reported for growth rates of complex systems in a variety of fields can be derived from this basic physical model. Statistical data of growth rates for about 1 million business firms are analysed as a real-world example of randomly growing systems. Not only are the scaling relations consistent with the theoretical solution, but the entire functional form of the growth rate distribution is fitted with a theoretical distribution that has a power-law tail.
Physical properties of forest soils
Charles H. Perry; Michael C. Amacher
2007-01-01
Why Are Physical Properties of the Soil Important? The soil quality indicator, when combined with other data collected by the FIA program, can indicate the current rates of soil erosion, the extent and intensity of soil compaction, and some basic physical properties of the forest floor and the top 20 cm of soil. In this report, two particular physical properties of the...
Looking at cell mechanics with atomic force microscopy: experiment and theory.
Benitez, Rafael; Toca-Herrera, José L
2014-11-01
This review reports on the use of the atomic force microscopy in the investigation of the mechanical properties of cells. It is shown that the technique is able to deliver information about the cell surface properties (e.g., topography), the Young modulus, the viscosity, and the cell the relaxation times. Another aspect that this short review points out is the utilization of the atomic force microscope to investigate basic questions related to materials physics, biology, and medicine. The review is written in a chronological way to offer an overview of phenomenological facts and quantitative results to the reader. The final section discusses in detail the advantages and disadvantages of the Hertz and JKR models. A new implementation of the JKR model derived by Dufresne is presented. © 2014 Wiley Periodicals, Inc.
Polarization Coupling in Ferroelectric Multilayers as a Function of Interface Charge Concentration
NASA Astrophysics Data System (ADS)
Okatan, Mahmut; Mantese, Joseph; Alpay, Pamir
2009-03-01
Intriguing properties of multilayered and graded ferroelectrics follow from the electrostatic and electromechanical interactions. The strength of the interlayer coupling depends on the concentration of interfacial defects with short-range local electrostatic fields. Defects may locally relax polarization differences and thus reduce the commensurate bound charge concentration at the interlayer interfaces. In this talk, we develop a theoretical analysis based on non-linear thermodynamics coupled with basic electrostatic relations to understand the role of charge compensation at the interlayer interfaces. The results show multilayered ferroelectrics with systematic variations in the composition may display a colossal dielectric response depending upon the interlayer electrostatic interactions. It is expected that other properties such as the pyroelectric and piezoelectric response will yield concomitant increases through the dielectric permittivity.
Blood stem cells and non-hematological clinical practice: pragmatics before therapeutics.
Parker, Graham C
2007-02-01
There is considerable interest in biological sources for replacement, repair, as well as vascularization of tissue. The remarkable properties of blood stem cells encourage interest in their therapeutic potential. But what are these properties, and how do they influence their clinical potential and the advisability of stem cell use as a therapeutic resource? Rational assessment of the significance of in vitro and animal in vivo data should precede the rush from the bench to the bedside. Basic stem cell research is rife with examples where the truth of the subsequently demonstrated mechanism is stranger than the initial interpretation proved fiction. This review will assess tissue contribution by different blood related stem cells, differing possible mechanisms underlying observed repair phenomena, and consider the potency and pitfalls of stem cell therapeutics.
Tomato bushy stunt virus (TBSV) infecting Lycopersicon esculentum.
Hafez, El Sayed E; Saber, Ghada A; Fattouh, Faiza A
2010-01-01
Tomato bushy stunt virus (TBSV) was detected in tomato crop (Lycopersicon esculentum) in Egypt with characteristic mosaic leaf deformation, stunting, and bushy growth symptoms. TBSV infection was confirmed serologically by ELISA and calculated incidence was 25.5%. Basic physicochemical properties of a purified TBSV Egh isolate were identical to known properties of tombusviruses of isometric 30-nm diameter particles, 41-kDa coat protein and the genome of approximately 4800 nt. This is the first TBSV isolate reported in Egypt. Cloning and partial sequencing of the isolate showed that it is more closely related to TBSV-P and TBSV-Ch than TBSV-Nf and TBSV-S strains of the virus. However, it is distinct from the above strains and could be a new strain of the virus which further confirms the genetic diversity of tombusviruses.
NASA Astrophysics Data System (ADS)
KoÅáková, Dana; Kočí, Václav; Žumár, Jaromír; Keppert, Martin; Holčapek, Ondřej; Vejmelková, Eva; Černý, Robert
2016-12-01
The heat and moisture transport and storage parameters of three different natural stones used on the Czech territory since medieval times are determined experimentally, together with the basic physical properties and mechanical parameters. The measured data are applied as input parameters in the computational modeling of hygrothermal performance of building envelopes made of the analyzed stones. Test reference year climatic data of three different locations within the Czech Republic are used as boundary conditions on the exterior side. Using the simulated hygric and thermal performance of particular stone walls, their applicability is assessed in a relation to the geographical and climatic conditions. The obtained results indicate that all three investigated stones are highly resistant to weather conditions, freeze/thaw cycles in particular.
Atomic force microscopy-based characterization and design of biointerfaces
NASA Astrophysics Data System (ADS)
Alsteens, David; Gaub, Hermann E.; Newton, Richard; Pfreundschuh, Moritz; Gerber, Christoph; Müller, Daniel J.
2017-03-01
Atomic force microscopy (AFM)-based methods have matured into a powerful nanoscopic platform, enabling the characterization of a wide range of biological and synthetic biointerfaces ranging from tissues, cells, membranes, proteins, nucleic acids and functional materials. Although the unprecedented signal-to-noise ratio of AFM enables the imaging of biological interfaces from the cellular to the molecular scale, AFM-based force spectroscopy allows their mechanical, chemical, conductive or electrostatic, and biological properties to be probed. The combination of AFM-based imaging and spectroscopy structurally maps these properties and allows their 3D manipulation with molecular precision. In this Review, we survey basic and advanced AFM-related approaches and evaluate their unique advantages and limitations in imaging, sensing, parameterizing and designing biointerfaces. It is anticipated that in the next decade these AFM-related techniques will have a profound influence on the way researchers view, characterize and construct biointerfaces, thereby helping to solve and address fundamental challenges that cannot be addressed with other techniques.
Scarcelli, Giuliano; Kim, Pilhan; Yun, Seok Hyun
2011-01-01
Abtract The biophysical and biomechanical properties of the crystalline lens (e.g., viscoelasticity) have long been implicated in accommodation and vision problems, such as presbyopia and cataracts. However, it has been difficult to measure such parameters noninvasively. Here, we used in vivo Brillouin optical microscopy to characterize material acoustic properties at GHz frequency and measure the longitudinal elastic moduli of lenses. We obtained three-dimensional elasticity maps of the lenses in live mice, which showed biomechanical heterogeneity in the cortex and nucleus of the lens with high spatial resolution. An in vivo longitudinal study of mice over a period of 2 months revealed a marked age-related stiffening of the lens nucleus. We found remarkably good correlation (log-log linear) between the Brillouin elastic modulus and the Young's modulus measured by conventional mechanical techniques at low frequencies (∼1 Hz). Our results suggest that Brillouin microscopy is potentially useful for basic and animal research and clinical ophthalmology. PMID:21943436
Scarcelli, Giuliano; Kim, Pilhan; Yun, Seok Hyun
2011-09-21
The biophysical and biomechanical properties of the crystalline lens (e.g., viscoelasticity) have long been implicated in accommodation and vision problems, such as presbyopia and cataracts. However, it has been difficult to measure such parameters noninvasively. Here, we used in vivo Brillouin optical microscopy to characterize material acoustic properties at GHz frequency and measure the longitudinal elastic moduli of lenses. We obtained three-dimensional elasticity maps of the lenses in live mice, which showed biomechanical heterogeneity in the cortex and nucleus of the lens with high spatial resolution. An in vivo longitudinal study of mice over a period of 2 months revealed a marked age-related stiffening of the lens nucleus. We found remarkably good correlation (log-log linear) between the Brillouin elastic modulus and the Young's modulus measured by conventional mechanical techniques at low frequencies (~1 Hz). Our results suggest that Brillouin microscopy is potentially useful for basic and animal research and clinical ophthalmology. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Barrett, Harrison H; Myers, Kyle J; Caucci, Luca
2014-08-17
A fundamental way of describing a photon-limited imaging system is in terms of a Poisson random process in spatial, angular and wavelength variables. The mean of this random process is the spectral radiance. The principle of conservation of radiance then allows a full characterization of the noise in the image (conditional on viewing a specified object). To elucidate these connections, we first review the definitions and basic properties of radiance as defined in terms of geometrical optics, radiology, physical optics and quantum optics. The propagation and conservation laws for radiance in each of these domains are reviewed. Then we distinguish four categories of imaging detectors that all respond in some way to the incident radiance, including the new category of photon-processing detectors. The relation between the radiance and the statistical properties of the detector output is discussed and related to task-based measures of image quality and the information content of a single detected photon.
Barrett, Harrison H.; Myers, Kyle J.; Caucci, Luca
2016-01-01
A fundamental way of describing a photon-limited imaging system is in terms of a Poisson random process in spatial, angular and wavelength variables. The mean of this random process is the spectral radiance. The principle of conservation of radiance then allows a full characterization of the noise in the image (conditional on viewing a specified object). To elucidate these connections, we first review the definitions and basic properties of radiance as defined in terms of geometrical optics, radiology, physical optics and quantum optics. The propagation and conservation laws for radiance in each of these domains are reviewed. Then we distinguish four categories of imaging detectors that all respond in some way to the incident radiance, including the new category of photon-processing detectors. The relation between the radiance and the statistical properties of the detector output is discussed and related to task-based measures of image quality and the information content of a single detected photon. PMID:27478293
NASA Technical Reports Server (NTRS)
Canuto, V.
1975-01-01
The papers deal with the role of magnetism in astrophysics and the properties of matter in the presence of unusually large magnetic fields. Topics include a quantum-mechanical treatment of high-energy charged particles radiating in a homogeneous magnetic field, the solution and properties of the Dirac equation for magnetic fields of any strength up to 10 to the 13th power gauss, experimental difficulties encountered and overcome in generating megagauss fields, the effect of strong radiation damping for an ultrarelativistic charge in an external electromagnetic field, magnetic susceptibilities of nuclei and elementary particles, and Compton scattering in strong external electromagnetic fields. Other papers examine static uniform electric and magnetic polarizabilities of the vacuum in arbitrarily strong magnetic fields, quantum-mechanical processes in neutron stars, basic ideas of mean-field magnetohydrodynamics, helical MHD turbulence, relations between cosmic and laboratory plasma physics, and insights into the nature of magnetism provided by relativity and cosmology. Individual items are announced in this issue.
Advances in the Studies of Ginkgo Biloba Leaves Extract on Aging-Related Diseases
Zuo, Wei; Yan, Feng; Zhang, Bo; Li, Jiantao; Mei, Dan
2017-01-01
The prevalence of degenerative disorders in public health has promoted in-depth investigations of the underlying pathogenesis and the development of new treatment drugs. Ginkgo biloba leaves extract (EGb) is obtained from Ginkgo biloba leaves and has been used for thousands of years. In recent decades, both basic and clinical studies have established the effects of EGb. It is widely used in various degenerative diseases such as cerebrovascular disease, Alzheimer’s disease, macroangiopathy and more. Here, we reviewed several pharmacological mechanisms of EGb, including its antioxidant properties, prevention of mitochondrial dysfunctions, and effect on apoptosis. We also described some clinical applications of EGb, such as its effect on neuro and cardiovascular protection, and anticancer properties. The above biological functions of EGb are mainly focused on aging-related disorders, but its effect on other diseases remains unclear. Thus, through this review, we aim to encourage further studies on EGb and discover more potential applications PMID:29344418
Dong, Anjie; Hou, Guoling; Sun, Duoxian
2003-10-15
Amphoteric polyurethane (APU) samples used in this paper were composed of hydrophobic soft segments and pendent -COOH and -CH(2)N(CH(3))(2) groups on the hard segments, which present the properties of both amphoteric polyelectrolytes and amphiphilic block copolymers. APU macromolecules can self-assemble into micelles in acidic and basic aqueous media by hydrophobic/hydrophilic interaction. The self-assembly behavior of APU in acidic and basic media was studied by transmission electron microscopy and light scattering methods. The spherical and hollow micelles of APU were observed respectively in acidic and basic aqueous media. The results indicate that the size and size distribution of APU self-assembly micelles largely depend on the ratio of -COOH to -CH(2)N(CH(3))(2) groups, density of ionizable groups, concentration of APU, and types of acid and base in the media.
Khan, Zia Ullah; Bubnova, Olga; Jafari, Mohammad Javad; Brooke, Robert; Liu, Xianjie; Gabrielsson, Roger; Ederth, Thomas; Evans, Drew R; Andreasen, Jens W; Fahlman, Mats; Crispin, Xavier
2015-10-28
PEDOT-Tos is one of the conducting polymers that displays the most promising thermoelectric properties. Until now, it has been utterly difficult to control all the synthesis parameters and the morphology governing the thermoelectric properties. To improve our understanding of this material, we study the variation in the thermoelectric properties by a simple acido-basic treatment. The emphasis of this study is to elucidate the chemical changes induced by acid (HCl) or base (NaOH) treatment in PEDOT-Tos thin films using various spectroscopic and structural techniques. We could identify changes in the nanoscale morphology due to anion exchange between tosylate and Cl - or OH - . But, we identified that changing the pH leads to a tuning of the oxidation level of the polymer, which can explain the changes in thermoelectric properties. Hence, a simple acid-base treatment allows finding the optimum for the power factor in PEDOT-Tos thin films.
Properties of lightweight cement-based composites containing waste polypropylene
NASA Astrophysics Data System (ADS)
Záleská, Martina; Pavlíková, Milena; Pavlík, Zbyšek
2016-07-01
Improvement of buildings thermal stability represents an increasingly important trend of the construction industry. This work aims to study the possible use of two types of waste polypropylene (PP) for the development of lightweight cement-based composites with enhanced thermal insulation function. Crushed PP waste originating from the PP tubes production is used for the partial replacement of silica sand by 10, 20, 30, 40 and 50 mass%, whereas a reference mixture without plastic waste is studied as well. First, basic physical and thermal properties of granular PP random copolymer (PPR) and glass fiber reinforced PP (PPGF) aggregate are studied. For the developed composite mixtures, basic physical, mechanical, heat transport and storage properties are accessed. The obtained results show that the composites with incorporated PP aggregate exhibit an improved thermal insulation properties and acceptable mechanical resistivity. This new composite materials with enhanced thermal insulation function are found to be promising materials for buildings subsoil or floor structures.
NASA Technical Reports Server (NTRS)
Chiang, T.; Tessarzik, J. M.; Badgley, R. H.
1972-01-01
The primary aim of this investigation was verification of basic methods which are to be used in cataloging elastomer dynamic properties (stiffness and damping) in terms of viscoelastic model constants. These constants may then be used to predict dynamic properties for general elastomer shapes and operating conditions, thereby permitting optimum application of elastomers as energy absorption and/or energy storage devices in the control of vibrations in a broad variety of applications. The efforts reported involved: (1) literature search; (2) the design, fabrication and use of a test rig for obtaining elastomer dynamic test data over a wide range of frequencies, amplitudes, and preloads; and (3) the reduction of the test data, by means of a selected three-element elastomer model and specialized curve fitting techniques, to material properties. Material constants thus obtained have been used to calculate stiffness and damping for comparison with measured test data. These comparisons are excellent for a number of test conditions and only fair to poor for others. The results confirm the validity of the basic approach of the overall program and the mechanics of the cataloging procedure, and at the same time suggest areas in which refinements should be made.
Quantification of Soil Pore Structure Based on Minkowski-Functions
NASA Astrophysics Data System (ADS)
Vogel, H.; Weller, U.; Schlüter, S.
2009-05-01
The porous structure in soils and other geologic media is typically a complex 3-dimensional object. Most of the physical material properties including mechanical and hydraulic characteristics are immediately linked to this structure which can be directly observed using non-invasive techniques as e.g. X-ray tomography. It is an old dream and still a formidable challenge to related structural features of porous media to their physical properties. In this contribution we present a scale-invariant concept to quantify pore structure based on a limited set of meaningful morphological functions. They are based on d+1 Minkowski functionals as defined for d-dimensional bodies. These basic quantities are determined as a function of pore size obtained by filter procedures using mathematical morphology. The resulting Minkowski functions provide valuable information on pore size, pore surface area and pore topology having the potential to be linked to physical properties. The theoretical background and the related algorithms are presented and the approach is demonstrated for the structure of an arable topsoil obtained by X-ray micro tomography. We also discuss the fundamental problem of limited resolution which is critical for any attempt to quantify structural features at any scale.
Changes in conformational dynamics of basic side chains upon protein-DNA association.
Esadze, Alexandre; Chen, Chuanying; Zandarashvili, Levani; Roy, Sourav; Pettitt, B Montgometry; Iwahara, Junji
2016-08-19
Basic side chains play major roles in recognition of nucleic acids by proteins. However, dynamic properties of these positively charged side chains are not well understood. In this work, we studied changes in conformational dynamics of basic side chains upon protein-DNA association for the zinc-finger protein Egr-1. By nuclear magnetic resonance (NMR) spectroscopy, we characterized the dynamics of all side-chain cationic groups in the free protein and in the complex with target DNA. Our NMR order parameters indicate that the arginine guanidino groups interacting with DNA bases are strongly immobilized, forming rigid interfaces. Despite the strong short-range electrostatic interactions, the majority of the basic side chains interacting with the DNA phosphates exhibited high mobility, forming dynamic interfaces. In particular, the lysine side-chain amino groups exhibited only small changes in the order parameters upon DNA-binding. We found a similar trend in the molecular dynamics (MD) simulations for the free Egr-1 and the Egr-1-DNA complex. Using the MD trajectories, we also analyzed side-chain conformational entropy. The interfacial arginine side chains exhibited substantial entropic loss upon binding to DNA, whereas the interfacial lysine side chains showed relatively small changes in conformational entropy. These data illustrate different dynamic characteristics of the interfacial arginine and lysine side chains. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
ERIC Educational Resources Information Center
McMurtry, John
1997-01-01
Criticizes some of the basic principles expounded in John Locke's "Second Treatise on Government." Argues that Locke's ideas on private property, capital investment, and social good are inherently contradictory. Asserts that the market theory of property inevitably leads to endemic economic exploitation and oppression. (MJP)
Grasping the Concept of Personal Property
ERIC Educational Resources Information Center
Constable, Merryn D.; Kritikos, Ada; Bayliss, Andrew P.
2011-01-01
The concept of property is integral to personal and societal development, yet understanding of the cognitive basis of ownership is limited. Objects are the most basic form of property, so our physical interactions with owned objects may elucidate nuanced aspects of ownership. We gave participants a coffee mug to decorate, use and keep. The…
Pyta, Krystian; Klich, Katarzyna; Domagalska, Joanna; Przybylski, Piotr
2014-09-12
Thirty four novel derivatives of 3-formylrifamycin SV were synthesized via reductive alkylation and copper(I)-catalysed azide-alkyne cycloaddition. According to the obtained results, 'click chemistry' can be successfully applied for modification of structurally complex antibiotics such as rifamycins, with the formation of desired 1,2,3-triazole products. However, when azide-alkyne cycloaddition on 3-formylrifamycin SV derivatives demanded higher amount of catalyst, lower temperature and longer reaction time because of the high volatility of substrates, an unexpected intramolecular condensation with the formation of 3,4-dihydrobenzo[g]quinazoline heterocyclic system took place. Structures of new derivatives in solution were determined using one- and two-dimensional NMR methods and FT-IR spectroscopy. Computational DFT and PM6 methods were employed to correlate their conformation and acid-base properties to biological activity and establish SAR of the novel compounds. Microbiological, physico-chemical (logP, solubility) and structural studies of newly synthesised rifamycins indicated that for the presence of relatively high antibacterial (MIC ~0.01 nmol/mL) and antitubercular (MIC ~0.006 nmol/mL) activities, a rigid and basic substituent at C(3) arm, containing a protonated nitrogen atom "open" toward intermolecular interactions, is required. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Facet‐Controlled Synthetic Strategy of Cu2O‐Based Crystals for Catalysis and Sensing
Shang, Yang
2015-01-01
Shape‐dependent catalysis and sensing behaviours are primarily focused on nanocrystals enclosed by low‐index facets, especially the three basic facets ({100}, {111}, and {110}). Several novel strategies have recently exploded by tailoring the original nanocrystals to greatly improve the catalysis and sensing performances. In this Review, we firstly introduce the synthesis of a variety of Cu2O nanocrystals, including the three basic Cu2O nanocrystals (cubes, octahedra and rhombic dodecahedra, enclosed by the {100}, {111}, and {110} facets, respectively), and Cu2O nanocrystals enclosed by high‐index planes. We then discuss in detail the three main facet‐controlled synthetic strategies (deposition, etching and templating) to fabricate Cu2O‐based nanocrystals with heterogeneous, etched, or hollow structures, including a number of important concepts involved in those facet‐controlled routes, such as the selective adsorption of capping agents for protecting special facets, and the impacts of surface energy and active sites on reaction activity trends. Finally, we highlight the facet‐dependent properties of the Cu2O and Cu2O‐based nanocrystals for applications in photocatalysis, gas catalysis, organocatalysis and sensing, as well as the relationship between their structures and properties. We also summarize and comment upon future facet‐related directions. PMID:27980909
Facet-Controlled Synthetic Strategy of Cu2O-Based Crystals for Catalysis and Sensing.
Shang, Yang; Guo, Lin
2015-10-01
Shape-dependent catalysis and sensing behaviours are primarily focused on nanocrystals enclosed by low-index facets, especially the three basic facets ({100}, {111}, and {110}). Several novel strategies have recently exploded by tailoring the original nanocrystals to greatly improve the catalysis and sensing performances. In this Review, we firstly introduce the synthesis of a variety of Cu 2 O nanocrystals, including the three basic Cu 2 O nanocrystals (cubes, octahedra and rhombic dodecahedra, enclosed by the {100}, {111}, and {110} facets, respectively), and Cu 2 O nanocrystals enclosed by high-index planes. We then discuss in detail the three main facet-controlled synthetic strategies (deposition, etching and templating) to fabricate Cu 2 O-based nanocrystals with heterogeneous, etched, or hollow structures, including a number of important concepts involved in those facet-controlled routes, such as the selective adsorption of capping agents for protecting special facets, and the impacts of surface energy and active sites on reaction activity trends. Finally, we highlight the facet-dependent properties of the Cu 2 O and Cu 2 O-based nanocrystals for applications in photocatalysis, gas catalysis, organocatalysis and sensing, as well as the relationship between their structures and properties. We also summarize and comment upon future facet-related directions.
Description of saturation curves and boiling process of dry air
NASA Astrophysics Data System (ADS)
Vestfálová, Magda; Petříková, Markéta; Šimko, Martin
2018-06-01
Air is a mixture of gases forming the gas wrap of Earth. It is formed by dry air, moisture and other pollutants. Dry air is a substance whose thermodynamic properties in gaseous state, as well as the thermodynamic properties of its main constituents in gaseous state, are generally known and described in detail in the literature. The liquid air is a bluish liquid and is industrially used to produce oxygen, nitrogen, argon and helium by distillation. The transition between the gaseous and liquid state (the condensation process, resp. boiling process), is usually displayed in the basic thermodynamic diagrams using the saturation curves. The saturation curves of all pure substances are of a similar shape. However, since the dry air is a mixture, the shapes of its saturation curves are modified relative to the shapes corresponding to the pure substances. This paper deals with the description of the dry air saturation curves as a mixture, i.e. with a description of the process of phase change of dry air (boiling process). The dry air saturation curves are constructed in the basic thermodynamic charts based on the values obtained from the literature. On the basis of diagrams, data appearing in various publications are interpreted and put into context with boiling process of dry air.
NASA Astrophysics Data System (ADS)
Fu, Jun; Liu, Zhihong; Liu, Jie
2018-01-01
Asphalt Emulsion—Cement Concrete (AECC) is currently considered as a typical semi-flexibility material. One of the disadvantages of this material is brittle fracture and lacking ductility. This study aims at accelerating the basic mechanical properties of AECC using fibers and different aggregates size. The mix of AECC was introduced and the different content of fibers and aggregates size were studied. The results showed that the smaller aggregates size could improve the young’s modulus and compressive strength as well as fiber. The modulus-compressive strength ratio of fiber reinforced AECC is always below 500.
Stress corrosion cracking of titanium alloys
NASA Technical Reports Server (NTRS)
Statler, G. R.; Spretnak, J. W.; Beck, F. H.; Fontana, M. G.
1974-01-01
The effect of hydrogen on the properties of metals, including titanium and its alloys, was investigated. The basic theories of stress corrosion of titanium alloys are reviewed along with the literature concerned with the effect of absorbed hydrogen on the mechanical properties of metals. Finally, the basic modes of metal fracture and their importance to this study is considered. The experimental work was designed to determine the effects of hydrogen concentration on the critical strain at which plastic instability along pure shear directions occurs. The materials used were titanium alloys Ti-8Al-lMo-lV and Ti-5Al-2.5Sn.
NASA Astrophysics Data System (ADS)
Benahmed, A.; Bouhemadou, A.; Alqarni, B.; Guechi, N.; Al-Douri, Y.; Khenata, R.; Bin-Omran, S.
2018-05-01
First-principles calculations were performed to investigate the structural, elastic, electronic, optical and thermoelectric properties of the Zintl-phase Ae3AlAs3 (Ae = Sr, Ba) using two complementary approaches based on density functional theory. The pseudopotential plane-wave method was used to explore the structural and elastic properties whereas the full-potential linearised augmented plane wave approach was used to study the structural, electronic, optical and thermoelectric properties. The calculated structural parameters are in good consistency with the corresponding measured ones. The single-crystal and polycrystalline elastic constants and related properties were examined in details. The electronic properties, including energy band dispersions, density of states and charge-carrier effective masses, were computed using Tran-Blaha modified Becke-Johnson functional for the exchange-correlation potential. It is found that both studied compounds are direct band gap semiconductors. Frequency-dependence of the linear optical functions were predicted for a wide photon energy range up to 15 eV. Charge carrier concentration and temperature dependences of the basic parameters of the thermoelectric properties were explored using the semi-classical Boltzmann transport model. Our calculations unveil that the studied compounds are characterised by a high thermopower for both carriers, especially the p-type conduction is more favourable.
Modelling students' knowledge organisation: Genealogical conceptual networks
NASA Astrophysics Data System (ADS)
Koponen, Ismo T.; Nousiainen, Maija
2018-04-01
Learning scientific knowledge is largely based on understanding what are its key concepts and how they are related. The relational structure of concepts also affects how concepts are introduced in teaching scientific knowledge. We model here how students organise their knowledge when they represent their understanding of how physics concepts are related. The model is based on assumptions that students use simple basic linking-motifs in introducing new concepts and mostly relate them to concepts that were introduced a few steps earlier, i.e. following a genealogical ordering. The resulting genealogical networks have relatively high local clustering coefficients of nodes but otherwise resemble networks obtained with an identical degree distribution of nodes but with random linking between them (i.e. the configuration-model). However, a few key nodes having a special structural role emerge and these nodes have a higher than average communicability betweenness centralities. These features agree with the empirically found properties of students' concept networks.
[Four numbers and a bit more basic knowledge of mathematics].
Günther, Judith; Briel, Matthias; Suter, Katja
2015-02-01
In addition to relative risk, relative risk reduction and absolute risk reduction there circulates another effect size for binary endpoints in the scientific medical literature: the odds ratio. Relative risk and odds ratio are alternative ways of reflecting study results. Both, relative risk (RR) and odds ratio (OR), can easily be calculated from the "2 x 2-table". Advantage of OR: odds ratios can be calculated in every type of controlled study design, including retrospective studies. Furthermore, odds ratios--the biostatisticians are swarming--offer beautiful mathematical properties and therefore are often used in meta-analysis as an effect size for calculating a pooled estimate of the results of different studies with the same clinical question. Disadvantage of OR: In clinical studies the presentation of the results as "odds ratios" may result in an overestimation of the intervention effect. This article shows the difference between "chance" and "risk" and how odds ratio and relative risk are associated.
Computing Mass Properties From AutoCAD
NASA Technical Reports Server (NTRS)
Jones, A.
1990-01-01
Mass properties of structures computed from data in drawings. AutoCAD to Mass Properties (ACTOMP) computer program developed to facilitate quick calculations of mass properties of structures containing many simple elements in such complex configurations as trusses or sheet-metal containers. Mathematically modeled in AutoCAD or compatible computer-aided design (CAD) system in minutes by use of three-dimensional elements. Written in Microsoft Quick-Basic (Version 2.0).
Uniqueness of Zinc as a Bioelement: Principles and Applications in Bioinorganic Chemistry--III.
ERIC Educational Resources Information Center
Ochiai, Ei-Ichiro
1988-01-01
Attempts to delineate certain basic principles and applications of bioinorganic chemistry to oxidation-reduction reactions. Examines why zinc(II) is so uniquely suited to enzymated reactions of the acid-base type. Suggests the answer may be in the natural abundance and the basic physicochemical properties of zinc(II). (MVL)
NASA Technical Reports Server (NTRS)
Bowles, K. J.
1985-01-01
A study was conducted to relate the impact resistance of graphite fiber reinforced composites with matrix properties through gaining an understanding of the basic mechanics involved in the deformation and fracture process, and the effect of the polymer matrix structure on these mechanisms. It was found that the resin matrix structure influences the composite impact resistance in at least two ways. The integration of flexibilizers into the polymer chain structure tends to reduce the T sub g and the mechanical properties of the polymer. The reduction in the mechanical properties of the matrix does not enhance the composite impact resistance because it allows matrix controlled failure to initiate impact damage. It was found that when the instrumented dropweight impact tester is used as a means for assessing resin toughness, the resin toughness is enhanced by the ability of the clamped specimen to deflect enough to produce sufficient membrane action to support a significant amount of the load. The results of this study indicate that crossplied composite impact resistance is very much dependent on the matrix mechanical properties.
Development of graphene oxide materials with controllably modified optical properties
NASA Astrophysics Data System (ADS)
Naumov, Anton; Galande, Charudatta; Mohite, Aditya; Ajayan, Pulickel; Weisman, R. Bruce
2015-03-01
One of the major current goals in graphene research is modifying its optical and electronic properties through controllable generation of band gaps. To achieve this, we have studied the changes in optical properties of reduced graphene oxide (RGO) in water suspension upon the exposure to ozone. Ozonation for the periods of 5 to 35 minutes has caused a dramatic bleaching of its absorption and the concurrent appearance of strong visible fluorescence in previously nonemissive samples. These observed spectral changes suggest a functionalization-induced band gap opening. The sample fluorescence induced by ozonation was found to be highly pH-dependent: sharp and structured emission features resembling the spectra of molecular fluorophores were present at basic pH values, but this emission reversibly broadened and red-shifted in acidic conditions. These findings are consistent with excited state protonation of the emitting species in acidic media. Oxygen-containing addends resulting from the ozonation were detected by XPS and FTIR spectroscopy and related to optical transitions in localized graphene oxide fluorophores by computational modeling. Further research will be directed toward producing graphene-based optoelectronic devices with tailored and controllable optical properties.
NASA Astrophysics Data System (ADS)
Ding, Chang-Chun; Wu, Shao-Yi; Wu, Li-Na; Zhang, Li-Juan; Peng, Li; Wu, Ming-He; Teng, Bao-Hua
2018-02-01
The electron paramagnetic resonance (EPR) parameters and local structures for impurities VO2+ and Cu2+ in RO-Li2O-Na2O-K2O-B2O3 (RLNKB; R = Zn, Mg, Sr and Ba) glasses are theoretically investigated by using the perturbation formulas of the EPR parameters for tetragonally compressed octahedral 3d1 and tetragonally elongated octahedral 3d9 clusters, respectively. The VO2+ and Cu2+ dopants are found to undergo the tetragonal compression (characterized by the negative relative distortion ratios ρ ≈ -3%, -0.98%, -1% and -0.8% for R = Zn, Mg, Sr and Ba) and elongation (characterized by the positive relative distortion ratios ρ ≈ 29%, 17%, 16% and 28%), respectively, due to the Jahn-Teller effect. Both dopants show similar overall decreasing trends of cubic field parameter Dq and covalency factor N with decreasing electronegativity of alkali earth cation R. The conventional optical basicities Λth and local optical basicities Λloc are calculated for both systems, and the local Λloc are higher for Cu2+ than for VO2+ in the same RLNKB glass, despite the opposite relationship for the conventional Λth. This point is supported by the weaker covalency or stronger ionicity for Cu2+ than VO2+ in the same RLNKB system, characterized by the larger N in the former. The above comparative analysis on the spectral and local structural properties would be helpful to understand structures and spectroscopic properties for the similar oxide glasses with transition-metal dopants of complementary electronic configurations.
The 2013 Clusters, Nanocrystals & Nanostructures Gordon Research Conference/Gordon Research Seminar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krauss, Todd D.
The fundamental properties of small particles and their potential for groundbreaking applications are among the most exciting areas of study in modern physics, chemistry, and materials science. The Clusters, Nanocrystals & Nanostructures Gordon ResearchConference and Gordon Research Seminar synthesize contributions from these inter-related fields that reflect the pivotal role of nano-particles at the interface between these disciplines. Size-dependent optical, electronic, magnetic and catalytic properties offer prospects for applications in many fields, and possible solutions for many of the grand challenges facing energy generation, consumption, delivery, and storage in the 21st century. The goal of the 2013 Clusters, Nanocrystals & Nanostructuresmore » Gordon Research Conference and Gordon Research Seminar is to continue the historical interdisciplinary tradition of this series and discuss the most recent advances, basic scientific questions, and emerging applications of clusters, nanocrystals, and nanostructures. The Clusters, Nanocrystals & Nanostructures GRC/GRS traditionally brings together the leading scientific groups that have made significant recent advances in one or more fundamental nanoscience or nanotechnology areas. Broad interests of the DOE BES and Solar Photochemistry Program addressed by this meeting include the areas of solar energy to fuels conversion, new photovoltaic systems, fundamental characterization of nanomaterials, magnetism, catalysis, and quantum physics. The vast majority of speakers and attendees will address either directly the topic of nanotechnology for photoinduced charge transfer, charge transport, and catalysis, or will have made significant contributions to related areas that will impact these fields indirectly. These topics have direct relevance to the mission of the DOE BES since it is this cutting-edge basic science that underpins our energy future.« less
Multi-parametric centrality method for graph network models
NASA Astrophysics Data System (ADS)
Ivanov, Sergei Evgenievich; Gorlushkina, Natalia Nikolaevna; Ivanova, Lubov Nikolaevna
2018-04-01
The graph model networks are investigated to determine centrality, weights and the significance of vertices. For centrality analysis appliesa typical method that includesany one of the properties of graph vertices. In graph theory, methods of analyzing centrality are used: in terms by degree, closeness, betweenness, radiality, eccentricity, page-rank, status, Katz and eigenvector. We have proposed a new method of multi-parametric centrality, which includes a number of basic properties of the network member. The mathematical model of multi-parametric centrality method is developed. Comparison of results for the presented method with the centrality methods is carried out. For evaluate the results for the multi-parametric centrality methodthe graph model with hundreds of vertices is analyzed. The comparative analysis showed the accuracy of presented method, includes simultaneously a number of basic properties of vertices.
Prediction of plasma properties in mercury ion thrusters
NASA Technical Reports Server (NTRS)
Longhurst, G. R.
1978-01-01
A simplified theoretical model was developed which obtains to first order the plasma properties in the discharge chamber of a mercury ion thruster from basic thruster design and controllable operating parameters. The basic operation and design of ion thrusters is discussed, and the important processes which influence the plasma properties are described in terms of the design and control parameters. The conservation for mass, charge and energy were applied to the ion production region, which was defined as the region of the discharge chamber having as its outer boundary the surface of revolution of the innermost field line to intersect the anode. Mass conservation and the equations describing the various processes involved with mass addition and removal from the ion production region are satisfied by a Maxwellian electron density spatial distribution in that region.
NASA Technical Reports Server (NTRS)
Kulkarni, S. V.; Mclaughlin, P. V., Jr.
1978-01-01
An engineering approach is proposed for predicting unnotched/notched laminate fatigue behavior from basic lamina fatigue data. The fatigue analysis procedure was used to determine the laminate property (strength/stiffness) degradation as a function of fatigue cycles in uniaxial tension and in plane shear. These properties were then introduced into the failure model for a notched laminate to obtain damage growth, residual strength, and failure mode. The approach is thus essentially a combination of the cumulative damage accumulation (akin to the Miner-Palmgren hypothesis and its derivatives) and the damage growth rate (similar to the fracture mechanics approach) philosophies. An analysis/experiment correlation appears to confirm the basic postulates of material wearout and the predictability of laminate fatigue properties from lamina fatigue data.
The Mars Environmental Compatibility Assessment (MECA)
NASA Technical Reports Server (NTRS)
Meloy, Thomas P.; Marshall, John; Hecht, Michael
1999-01-01
The Mars Environmental Compatibility Assessment (MECA) will evaluate the Martian environment for soil and dust-related hazards to human exploration as part of the Mars Surveyor Program 2001 Lander. Sponsored by the Human Exploration and Development of Space (HEDS) enterprise, MECA's goal is to evaluate potential geochemical and environmental hazards that may confront future martian explorers, and to guide HEDS scientists in the development of high fidelity Mars soil simulants. In addition to objectives related to human exploration, the MECA data set will be rich in information relevant to basic geology, paleoclimate, and exobiology issues. The integrated MECA payload contains a wet-chemistry laboratory, a microscopy station, an electrometer to characterize the electrostatics of the soil and its environment, and arrays of material patches to study the abrasive and adhesive properties of soil grains. MECA is allocated a mass of 10 kg and a peak power usage of 15 W within an enclosure of 35 x 25 x 15 cm (figures I and 2). The Wet Chemistry Laboratory (WCL) consists of four identical cells that will accept samples from surface and subsurface regions accessible to the Lander's robotic arm, mix them with water, and perform extensive analysis of the solution. Using an array of ion-specific electrodes (ISEs), cyclic voltammetry, and electrochemical techniques, the chemistry cells will wet soil samples for measurement of basic soil properties of pH, redox potential, and conductivity. Total dissolved material, as well as targeted ions will be detected to the ppm level, including important exobiological ions such as Na, K+, Ca++, Mg++, NH4+, Cl, S04-, HC03, as well as more toxic ions such as Cu++, Pb++, Cd++, Hg++, and C104-. MECA's microscopy station combines optical and atomic-force microscopy (AFM) to image dust and soil particles from millimeters to nanometers in size. Illumination by red, green, and blue LEDs is augmented by an ultraviolet LED intended to excite fluorescence in the sample. Substrates were chosen to allow experimental study of size distribution, adhesion, abrasion, hardness, color, shape, aggregation, magnetic and other properties. To aid in the detection of potentially dangerous quartz dust, an abrasion tool measures sample hardness relative to quartz and a hard glass (Zerodur).
[Microspeciation of amphoteric molecules of unusual acid-base properties].
Kóczián, Kristóf
2007-01-01
The phisico-chemical properties of bio- and drug molecules greatly influence their interactions in the body and strongly effect the mechanism of drug action. Among these properties, macroscopic and site-specific protonation constants are of crucial importance. Latter one is the tool to calculate the relative concentration of the various microspecies in the compartments of the body at different pH values, and also, it is the versatile parameter to improve the pharmacokinetic properties of a new molecule in a particular family of drugs. In the present thesis work, the microspeciation of three molecules of great pharmaceutical importance and unusual acid-base properties, were carried out. The microconstants of tenoxicam, the non-steroidal anti-inflammatory drug, were described, introducing a novel deductive method using Hammett constants. For this purpose, a total of 8 tenoxicam and piroxicam derivatives were synthesised. To the best of our knowledge, the log k(N)O microconstant of tenoxicam obtained thus is the lowest enolate basicity value, which, however, can be well explained by the effects of the intramolecular environment. The developed evaluation procedure is suitable for microconstant determination of compounds in other molecule families. Besides, prodrug-type compounds and analogues similar to the structures of selective COX-2 isoenzyme inhibitors were synthesised. The other two molecules studied, the 6-aminopenicillanic acid and 7-cephalosporanic acid, the core molecules of the two most important beta-lactam antibiotic-types were derivatised and investigated by 1D and 2D NMR techniques. The NMR-pH titration on the parent compounds and their ester derivatives, combined with in situ pH-measurements allowed the microspeciation of these easily decomposing molecules. One of the protonation constant of 7-ACA (log kN(O) = 4.12), to the best of our knowledge, is the least non-aromatic basic amino-site among the natural compounds.
The bile acid-sensitive ion channel (BASIC) is activated by alterations of its membrane environment.
Schmidt, Axel; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Kusch, Jana; Lucas, Susana Dias; Gründer, Stefan; Wiemuth, Dominik
2014-01-01
The bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC family of ion channels. Channels of this family are characterized by a common structure, their physiological functions and modes of activation, however, are diverse. Rat BASIC is expressed in brain, liver and intestinal tract and activated by bile acids. The physiological function of BASIC and its mechanism of bile acid activation remain a puzzle. Here we addressed the question whether amphiphilic bile acids activate BASIC by directly binding to the channel or indirectly by altering the properties of the surrounding membrane. We show that membrane-active substances other than bile acids also affect the activity of BASIC and that activation by bile acids and other membrane-active substances is non-additive, suggesting that BASIC is sensitive for changes in its membrane environment. Furthermore based on results from chimeras between BASIC and ASIC1a, we show that the extracellular and the transmembrane domains are important for membrane sensitivity.
Invariance of visual operations at the level of receptive fields
Lindeberg, Tony
2013-01-01
The brain is able to maintain a stable perception although the visual stimuli vary substantially on the retina due to geometric transformations and lighting variations in the environment. This paper presents a theory for achieving basic invariance properties already at the level of receptive fields. Specifically, the presented framework comprises (i) local scaling transformations caused by objects of different size and at different distances to the observer, (ii) locally linearized image deformations caused by variations in the viewing direction in relation to the object, (iii) locally linearized relative motions between the object and the observer and (iv) local multiplicative intensity transformations caused by illumination variations. The receptive field model can be derived by necessity from symmetry properties of the environment and leads to predictions about receptive field profiles in good agreement with receptive field profiles measured by cell recordings in mammalian vision. Indeed, the receptive field profiles in the retina, LGN and V1 are close to ideal to what is motivated by the idealized requirements. By complementing receptive field measurements with selection mechanisms over the parameters in the receptive field families, it is shown how true invariance of receptive field responses can be obtained under scaling transformations, affine transformations and Galilean transformations. Thereby, the framework provides a mathematically well-founded and biologically plausible model for how basic invariance properties can be achieved already at the level of receptive fields and support invariant recognition of objects and events under variations in viewpoint, retinal size, object motion and illumination. The theory can explain the different shapes of receptive field profiles found in biological vision, which are tuned to different sizes and orientations in the image domain as well as to different image velocities in space-time, from a requirement that the visual system should be invariant to the natural types of image transformations that occur in its environment. PMID:23894283
Laws of nature and the universe: Philosophical implications of modern cosmology
NASA Astrophysics Data System (ADS)
Balashov, Yuri V.
1998-11-01
Are the laws of nature real? Do they belong to the world or merely reflect the way we speak about it? If they are real, what sort of entity are they? This study contributes to the ongoing discussion of these questions by emphasizing the importance of a cosmological perspective on them. I argue that the evidence coming from modern evolutionary cosmology presents difficulties for certain currently fashionable philosophical accounts of laws, in particular, for the Dretske-Tooley-Armstrong theory. I defend, in light of this evidence, the idea of laws as grounded in irreducible nomic properties of basic objects and examine its cosmological implications and consequences for the philosophy of modality. If the laws of nature are real, they must represent an integral aspect of the universe as a whole. From a cosmological point of view, these two totalities, the laws of nature and the universe, may be related. I begin by showing that a concern about the consequences of such possible relationship was an important factor in the historical rivalry between the steady-state and big bang cosmologies (1948-1965). The cosmological perspective on laws has still more striking implications in the context of the contemporary interplay between big-bang cosmology and high energy physics in the effort to understand the processes at work during the first moments of cosmic evolution. In a sense, the evolution of the physical state of the universe as a whole may have 'carried' with it the evolution of certain nomic properties of matter. I contend that this poses problems for some nomic ontologies, such as the relations-between-universals theory, and favors the view of laws as grounded in causal powers of particulars. I show how the universe of causally powerful basic substances provides a natural framework for an interesting sense of modality characteristic of laws and how this illuminates the notoriously difficult problems of essential properties and natural kinds.
Key properties of expert movement systems in sport : an ecological dynamics perspective.
Seifert, Ludovic; Button, Chris; Davids, Keith
2013-03-01
This paper identifies key properties of expertise in sport predicated on the performer-environment relationship. Weaknesses of traditional approaches to expert performance, which uniquely focus on the performer and the environment separately, are highlighted by an ecological dynamics perspective. Key properties of expert movement systems include 'multi- and meta-stability', 'adaptive variability', 'redundancy', 'degeneracy' and the 'attunement to affordances'. Empirical research on these expert system properties indicates that skill acquisition does not emerge from the internal representation of declarative and procedural knowledge, or the imitation of expert behaviours to linearly reduce a perceived 'gap' separating movements of beginners and a putative expert model. Rather, expert performance corresponds with the ongoing co-adaptation of an individual's behaviours to dynamically changing, interacting constraints, individually perceived and encountered. The functional role of adaptive movement variability is essential to expert performance in many different sports (involving individuals and teams; ball games and outdoor activities; land and aquatic environments). These key properties signify that, in sport performance, although basic movement patterns need to be acquired by developing athletes, there exists no ideal movement template towards which all learners should aspire, since relatively unique functional movement solutions emerge from the interaction of key constraints.
The elastic properties of cancerous skin: Poisson's ratio and Young's modulus.
Tilleman, Tamara Raveh; Tilleman, Michael M; Neumann, Martino H A
2004-12-01
The physical properties of cancerous skin tissue have rarely been measured in either fresh or frozen skin specimens. Of interest are the elastic properties associated with the skin's ability to deform, i.e., to stretch and compress. Two constants--Young's modulus and Poisson's ratio--represent the basic elastic behavior pattern of any elastic material, including skin. The former relates the applied stress on a specimen to its deformation via Hooke's law, while the latter is the ratio between the axial and lateral strains. To investigate the elastic properties of cancerous skin tissue. For this purpose 23 consecutive cancerous tissue specimens prepared during Mohs micrographic surgery were analyzed. From these specimens we calculated the change in radial length (defined as the radial strain) and the change in tissue thickness (defined as axial strain). Based on the above two strains we determined a Poisson ratio of 0.43 +/- 0.12 and an average Young modulus of 52 KPa. Defining the elastic properties of cancerous skin may become the first step in turning elasticity into a clinical tool. Correlating these constants with the histopathologic features of a cancerous tissue can contribute an additional non-invasive, in vivo and in vitro diagnostic tool.
Hand-waving and interpretive dance: an introductory course on tensor networks
NASA Astrophysics Data System (ADS)
Bridgeman, Jacob C.; Chubb, Christopher T.
2017-06-01
The curse of dimensionality associated with the Hilbert space of spin systems provides a significant obstruction to the study of condensed matter systems. Tensor networks have proven an important tool in attempting to overcome this difficulty in both the numerical and analytic regimes. These notes form the basis for a seven lecture course, introducing the basics of a range of common tensor networks and algorithms. In particular, we cover: introductory tensor network notation, applications to quantum information, basic properties of matrix product states, a classification of quantum phases using tensor networks, algorithms for finding matrix product states, basic properties of projected entangled pair states, and multiscale entanglement renormalisation ansatz states. The lectures are intended to be generally accessible, although the relevance of many of the examples may be lost on students without a background in many-body physics/quantum information. For each lecture, several problems are given, with worked solutions in an ancillary file.
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1981-01-01
Lubricants, usually Newtonian fluids, are assumed to experience laminar flow. The basic equations used to describe the flow are the Navier-Stokes equation of motion. The study of hydrodynamic lubrication is, from a mathematical standpoint, the application of a reduced form of these Navier-Stokes equations in association with the continuity equation. The Reynolds equation can also be derived from first principles, provided of course that the same basic assumptions are adopted in each case. Both methods are used in deriving the Reynolds equation, and the assumptions inherent in reducing the Navier-Stokes equations are specified. Because the Reynolds equation contains viscosity and density terms and these properties depend on temperature and pressure, it is often necessary to couple the Reynolds with energy equation. The lubricant properties and the energy equation are presented. Film thickness, a parameter of the Reynolds equation, is a function of the elastic behavior of the bearing surface. The governing elasticity equation is therefore presented.
12 CFR 900.1 - Basic terms relating to the Finance Board, the Bank System and related entities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 12 Banks and Banking 8 2013-01-01 2013-01-01 false Basic terms relating to the Finance Board, the Bank System and related entities. 900.1 Section 900.1 Banks and Banking FEDERAL HOUSING FINANCE BOARD GENERAL DEFINITIONS GENERAL DEFINITIONS APPLYING TO ALL FINANCE BOARD REGULATIONS § 900.1 Basic terms...
12 CFR 900.1 - Basic terms relating to the Finance Board, the Bank System and related entities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 12 Banks and Banking 8 2014-01-01 2014-01-01 false Basic terms relating to the Finance Board, the Bank System and related entities. 900.1 Section 900.1 Banks and Banking FEDERAL HOUSING FINANCE BOARD GENERAL DEFINITIONS GENERAL DEFINITIONS APPLYING TO ALL FINANCE BOARD REGULATIONS § 900.1 Basic terms...
12 CFR 900.1 - Basic terms relating to the Finance Board, the Bank System and related entities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 12 Banks and Banking 8 2012-01-01 2012-01-01 false Basic terms relating to the Finance Board, the Bank System and related entities. 900.1 Section 900.1 Banks and Banking FEDERAL HOUSING FINANCE BOARD GENERAL DEFINITIONS GENERAL DEFINITIONS APPLYING TO ALL FINANCE BOARD REGULATIONS § 900.1 Basic terms...
12 CFR 900.1 - Basic terms relating to the Finance Board, the Bank System and related entities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 12 Banks and Banking 7 2011-01-01 2011-01-01 false Basic terms relating to the Finance Board, the Bank System and related entities. 900.1 Section 900.1 Banks and Banking FEDERAL HOUSING FINANCE BOARD GENERAL DEFINITIONS GENERAL DEFINITIONS APPLYING TO ALL FINANCE BOARD REGULATIONS § 900.1 Basic terms...
UNSODA UNSATURATED SOIL HYDRAULIC DATABASE USER'S MANUAL VERSION 1.0
This report contains general documentation and serves as a user manual of the UNSODA program. UNSODA is a database of unsaturated soil hydraulic properties (water retention, hydraulic conductivity, and soil water diffusivity), basic soil properties (particle-size distribution, b...
12 CFR 900.1 - Basic terms relating to the Finance Board, the Bank System and related entities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Basic terms relating to the Finance Board, the Bank System and related entities. 900.1 Section 900.1 Banks and Banking FEDERAL HOUSING FINANCE BOARD GENERAL DEFINITIONS GENERAL DEFINITIONS APPLYING TO ALL FINANCE BOARD REGULATIONS § 900.1 Basic terms relating to the Finance Board, the Bank Syste...
Environmental Cracking and Irradiation Resistant Stainless Steels by Additive Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebak, Raul B.; Lou, Xiaoyuan
Metal additive manufacturing (AM), or metal 3D printing is an emergent advanced manufacturing method that can create near net shape geometries directly from computer models. This technology can provide the capability to rapidly fabricate complex parts that may be required to enhance the integrity of reactor internals components. Such opportunities may be observed during a plant refueling outage and AM parts can be rapidly custom designed, manufactured and deployed within the outage interval. Additive manufacturing of stainless steel (SS) components can add business benefits on fast delivery on repair hardware, installation tooling, new design prototypes tests, etc. For the nuclearmore » industry, the supply chain is always an issue for reactor service. AM can provide through-life supply chain (40-60 years) for high-value low-volume components. In the meantime, the capability of generating complex geometries and functional gradient materials will improve the performance, reduce the overall component cost, plant asset management cost and increase the plant reliability by the improvement in materials performance in nuclear environments. While extensive work has been conducted regarding additively manufacturing of austenitic SS parts, most efforts focused only on basic attributes such as porosity, residual stress, basic tensile properties, along with components yield and process monitoring. Little work has been done to define and evaluate the material requirements for nuclear applications. Technical gaps exist, which limit this technology adoption in the nuclear industry, which includes high manufacturing cost, unknown risks, limited nuclear related data, lack of specification and qualification methods, and no prior business experience. The main objective of this program was to generate research data to address all these technical gaps and establish a commercial practice to use AM technology in the nuclear power industry. The detailed objectives are listed as follows: (1) Evaluate nuclear related properties of AM 316L SS, including microstructure, tensile properties, impact toughness, stress corrosion cracking (SCC), corrosion fatigue (CF), irradiation effects, and irradiation assisted stress corrosion cracking (IASCC). (2) Understand the correlations among laser processing, heat treatment, microstructure and SCC/irradiation properties; (3) Optimize and improve the manufacturing process to achieve enhanced nuclear application properties; (4) Fabricate, evaluate, qualify and test a prototype reactor component to demonstrate the commercial viability and cost benefit; (5) Create regulatory approval path and commercialization plans for the production of a commercial reactor component.« less
Chapter 2:Basic properties of undervalued hardwoods
John I. Zerbe
2005-01-01
Among the most abundant of our undervalued hardwoods are the soft maples. However, other species that are also underutilized include some species of birch and some lower grades of the hard maples. This chapter covers physical, mechanical, and other important properties of different soft maples, hard maples, and yellow birch and compares them with the properties of...
Experimental Study on Basic Mechanical Properties of BFRP Bars
NASA Astrophysics Data System (ADS)
Fan, Xiaochun; Xu, Ting; Zhou, Zhengrong; Zhou, Xun
2017-10-01
Basalt Fiber Reinforced Polymer (BFRP) bars have the advantages of corrosion resistance, high strength, light weight, good dielectric properties, and they are new type of green reinforced alternative material. In order to determine the mechanical properties of BFRP bars, the tensile strength of basalt fiber bars was necessary to be studied. The diameters of the basalt fiber bars were compared by means of uniaxial tensile test in this article. Then the stress-strain curve can be drawn out. The results show that the stress - strain curve of BFRP bars present straight line relation, and there is no sign before failure; there is no yield platform on the stress-strain curve of BFRP bars, which are typical brittle material;the tensile strength of BFRP bars is about 3 times higher than that of ordinary steel bars. and the elastic modulus is about 1/5 of that of ordinary steel; the ultimate tensile strength of BFRP bars varies little with the increase of diameter, but there exist some differences in modulus values.
Operational properties of fluctuation X-ray scattering data
Malmerberg, Erik; Kerfeld, Cheryl A.; Zwart, Petrus H.
2015-03-20
X-ray scattering images collected on timescales shorter than rotation diffusion times using a (partially) coherent beam result in a significant increase in information content in the scattered data. These measurements, named fluctuation X-ray scattering (FXS), are typically performed on an X-ray free-electron laser (XFEL) and can provide fundamental insights into the structure of biological molecules, engineered nanoparticles or energy-related mesoscopic materials beyond what can be obtained with standard X-ray scattering techniques. In order to understand, use and validate experimental FXS data, the availability of basic data characteristics and operational properties is essential, but has been absent up to this point.more » In this communication, an intuitive view of the nature of FXS data and their properties is provided, the effect of FXS data on the derived structural models is highlighted, and generalizations of the Guinier and Porod laws that can ultimately be used to plan experiments and assess the quality of experimental data are presented.« less
Koromyslova, Anna D; Chugunov, Anton O; Efremov, Roman G
2014-04-28
Molecular surfaces are the key players in biomolecular recognition and interactions. Nowadays, it is trivial to visualize a molecular surface and surface-distributed properties in three-dimensional space. However, such a representation trends to be biased and ambiguous in case of thorough analysis. We present a new method to create 2D spherical projection maps of entire protein surfaces and manipulate with them--protein surface topography (PST). It permits visualization and thoughtful analysis of surface properties. PST helps to easily portray conformational transitions, analyze proteins' properties and their dynamic behavior, improve docking performance, and reveal common patterns and dissimilarities in molecular surfaces of related bioactive peptides. This paper describes basic usage of PST with an example of small G-proteins conformational transitions, mapping of caspase-1 intersubunit interface, and intrinsic "complementarity" in the conotoxin-acetylcholine binding protein complex. We suggest that PST is a beneficial approach for structure-function studies of bioactive peptides and small proteins.
Zinc nitride thin films: basic properties and applications
NASA Astrophysics Data System (ADS)
Redondo-Cubero, A.; Gómez-Castaño, M.; García Núñez, C.; Domínguez, M.; Vázquez, L.; Pau, J. L.
2017-02-01
Zinc nitride films can be deposited by radio frequency magnetron sputtering using a Zn target at substrate temperatures lower than 250°C. This low deposition temperature makes the material compatible with flexible substrates. The asgrown layers present a black color, polycrystalline structures, large conductivities, and large visible light absorption. Different studies have reported about the severe oxidation of the layers in ambient conditions. Different compositional, structural and optical characterization techniques have shown that the films turn into ZnO polycrystalline layers, showing visible transparency and semi-insulating properties after total transformation. The oxidation rate is fairly constant as a function of time and depends on environmental parameters such as relative humidity or temperature. Taking advantage of those properties, potential applications of zinc nitride films in environmental sensing have been studied in the recent years. This work reviews the state-of-the-art of the zinc nitride technology and the development of several devices such as humidity indicators, thin film (photo)transistors and sweat monitoring sensors.
An approach to get thermodynamic properties from speed of sound
NASA Astrophysics Data System (ADS)
Núñez, M. A.; Medina, L. A.
2017-01-01
An approach for estimating thermodynamic properties of gases from the speed of sound u, is proposed. The square u2, the compression factor Z and the molar heat capacity at constant volume C V are connected by two coupled nonlinear partial differential equations. Previous approaches to solving this system differ in the conditions used on the range of temperature values [Tmin,Tmax]. In this work we propose the use of Dirichlet boundary conditions at Tmin, Tmax. The virial series of the compression factor Z = 1+Bρ+Cρ2+… and other properties leads the problem to the solution of a recursive set of linear ordinary differential equations for the B, C. Analytic solutions of the B equation for Argon are used to study the stability of our approach and previous ones under perturbation errors of the input data. The results show that the approach yields B with a relative error bounded basically by that of the boundary values and the error of other approaches can be some orders of magnitude lager.
NASA Astrophysics Data System (ADS)
Chisholm, John
2013-10-01
Galactic outflows have become vital for understanding galaxy evolution. Outflows have been used to explain the mass-metallicity relation, the star formation history of the universe, and the shape of the baryonic mass function. However, few studies have focused on the basic question of how outflow velocities depend upon the physical properties of their host galaxies. Here we propose an archival project utilizing 52 COS spectra of local star-forming galaxies spanning four decades of star formation rate, and stellar mass. We will preform a self-consistent analysis of trends between galactic properties {star formation rate, stellar mass, specific star formation rate and star formation rate surface density} and outflow velocities measured from interstellar metal absorption lines {e.g., CII 1335}. We will extend this analysis to different gas phases - cold, warm, and hot - to gain a more comprehensive understanding of the physics of multi-phase outflows. The trends we observe will provide insights into the feedback process and will be crucial new benchmarks for simulations.
Intelligent community management system based on the devicenet fieldbus
NASA Astrophysics Data System (ADS)
Wang, Yulan; Wang, Jianxiong; Liu, Jiwen
2013-03-01
With the rapid development of the national economy and the improvement of people's living standards, people are making higher demands on the living environment. And the estate management content, management efficiency and service quality have been higher required. This paper in-depth analyzes about the intelligent community of the structure and composition. According to the users' requirements and related specifications, it achieves the district management systems, which includes Basic Information Management: the management level of housing, household information management, administrator-level management, password management, etc. Service Management: standard property costs, property charges collecting, the history of arrears and other property expenses. Security Management: household gas, water, electricity and security and other security management, security management district and other public places. Systems Management: backup database, restore database, log management. This article also carries out on the Intelligent Community System analysis, proposes an architecture which is based on B / S technology system. And it has achieved a global network device management with friendly, easy to use, unified human - machine interface.
Ayurvedic genomics, constitutional psychology, and endocrinology: the missing connection.
Rizzo-Sierra, Carlos V
2011-05-01
A recent methodological approach for human classification, diagnosis, and therapeutics through the combination of current Western constitutional psychology somatotypes and traditional Indian medicine (prakriti) body types and mind (manas) is herein presented. The striking similarities between psychologic somatotypes and Indian medicine body types permits proposal of a finite genopsycho-somatotyping of humans. Genopsycho-somatotyping of humans consists of a set of common physiologic, physical, and psychologic attributes related to a common basic birth constitution that remains somewhat permanent during human lifetime, since it is proposed that this birth constitution is programmed in the person's DNA (genes). This mainly provides a tool for classifying the human population based on broad and finite phenotype clusters across different ethnicity, languages, geographical location, or self-reported ancestry. In spite of any social or environmental traumatic event, I propose for males that every basic constitution has an associated identification organ, a measured property or marker, a soma, and some psyche general tendencies suggesting specific behavior or recurrent conduct. Three (3) basic extreme genopsycho-somatotypes or birth constitutions are enunciated: mesomorphic or andrus (Pitta), endomorphic or thymus (Khapa), and ectomorphic or thyrus (Vata). The method further predicts that male andrus constitution across races shares similarities in androgen (An) nuclear receptor behavior, whereas thymus constitutions are mainly regulated by T-cells (Tc) nuclear receptor behavior. Moreover, it suggests that thyrus constitutions share similarities in thyroxine (Th) nuclear receptor behavior. These proposed nuclear receptors are expected to regulate the expression of specific genes, thereby controlling the embryonic development, adult homeostasis, and metabolism of the human organism in a very profound way. The method finally predicts small differences in measured property (An, Tc, and Th nuclear receptors behavior) within a birth constitution across different races to be expected by modulation effects in melanocyte-stimulating hormone receptor behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, V.R.; Mulla, S.A.R.; Uphade, B.S.
1998-06-01
The influence of catalyst carrier or support (with different chemical compositions and surface properties), catalyst deposition method (viz., impregnation and coating), precursor for strontium oxide (SrO; Sr-nitrate, acetate, hydroxide, and carbonate), and loading of SrO and lanthanum oxide (La{sub 2}O{sub 3}; 0--25 wt%) on the surface properties and performance of catalyst in oxidative coupling of methane (OCM; at 850 C, gas hourly space velocity = 1.02 {times} 10{sup 5} cm{sup 3}/g{center_dot}h and CH{sub 4}/O{sub 2} = 4 or 16) was thoroughly investigated. The basicity, acidity, and O{sub 2} chemisorption of the catalysts were studied by the temperature programmed desorption (TPD)more » of CO{sub 2}, NH{sub 3}, and O{sub 2}, respectively, from 50 to 950 C. The total and strong basic sites, acidity, and OCM activity of the supported catalyst were strongly influenced by the support used and also by the La{sub 2}O{sub 3} loading on the support. The catalyst with a sintered low surface area porous silica-Alumina support and high (20 wt%) La{sub 2}O{sub 3} and SrO loadings showed the best performance in the OCM process. The OCM activity was influenced by SrO loading, but to a smaller extent, and also by the method of SrO deposition. The OCM activity of the supported catalysts could be related to their strong basic sites (measured in terms of the CO{sub 2} desorbed between 500 and 950 C).« less
Rubenstein, Michael; Sai, Ying; Chuong, Cheng-Ming; Shen, Wei-Min
2009-01-01
This paper presents a novel perspective of Robotic Stem Cells (RSCs), defined as the basic non-biological elements with stem cell like properties that can self-reorganize to repair damage to their swarming organization. Self here means that the elements can autonomously decide and execute their actions without requiring any preset triggers, commands, or help from external sources. We develop this concept for two purposes. One is to develop a new theory for self-organization and self-assembly of multi-robots systems that can detect and recover from unforeseen errors or attacks. This self-healing and self-regeneration is used to minimize the compromise of overall function for the robot team. The other is to decipher the basic algorithms of regenerative behaviors in multi-cellular animal models, so that we can understand the fundamental principles used in the regeneration of biological systems. RSCs are envisioned to be basic building elements for future systems that are capable of self-organization, self-assembly, self-healing and self-regeneration. We first discuss the essential features of biological stem cells for such a purpose, and then propose the functional requirements of robotic stem cells with properties equivalent to gene controller, program selector and executor. We show that RSCs are a novel robotic model for scalable self-organization and self-healing in computer simulations and physical implementation. As our understanding of stem cells advances, we expect that future robots will be more versatile, resilient and complex, and such new robotic systems may also demand and inspire new knowledge from stem cell biology and related fields, such as artificial intelligence and tissue engineering.
RUBENSTEIN, MICHAEL; SAI, YING; CHUONG, CHENG-MING; SHEN, WEI-MIN
2010-01-01
This paper presents a novel perspective of Robotic Stem Cells (RSCs), defined as the basic non-biological elements with stem cell like properties that can self-reorganize to repair damage to their swarming organization. “Self” here means that the elements can autonomously decide and execute their actions without requiring any preset triggers, commands, or help from external sources. We develop this concept for two purposes. One is to develop a new theory for self-organization and self-assembly of multi-robots systems that can detect and recover from unforeseen errors or attacks. This self-healing and self-regeneration is used to minimize the compromise of overall function for the robot team. The other is to decipher the basic algorithms of regenerative behaviors in multi-cellular animal models, so that we can understand the fundamental principles used in the regeneration of biological systems. RSCs are envisioned to be basic building elements for future systems that are capable of self-organization, self-assembly, self-healing and self-regeneration. We first discuss the essential features of biological stem cells for such a purpose, and then propose the functional requirements of robotic stem cells with properties equivalent to gene controller, program selector and executor. We show that RSCs are a novel robotic model for scalable self-organization and self-healing in computer simulations and physical implementation. As our understanding of stem cells advances, we expect that future robots will be more versatile, resilient and complex, and such new robotic systems may also demand and inspire new knowledge from stem cell biology and related fields, such as artificial intelligence and tissue engineering. PMID:19557691
2012-01-01
Background F1 hybrid clones of Eucalyptus grandis and E. urophylla are widely grown for pulp and paper production in tropical and subtropical regions. Volume growth and wood quality are priority objectives in Eucalyptus tree improvement. The molecular basis of quantitative variation and trait expression in eucalypt hybrids, however, remains largely unknown. The recent availability of a draft genome sequence (http://www.phytozome.net) and genome-wide genotyping platforms, combined with high levels of genetic variation and high linkage disequilibrium in hybrid crosses, greatly facilitate the detection of quantitative trait loci (QTLs) as well as underlying candidate genes for growth and wood property traits. In this study, we used Diversity Arrays Technology markers to assess the genetic architecture of volume growth (diameter at breast height, DBH) and wood basic density in four-year-old progeny of an interspecific backcross pedigree of E. grandis and E. urophylla. In addition, we used Illumina RNA-Seq expression profiling in the E. urophylla backcross family to identify cis- and trans-acting polymorphisms (eQTLs) affecting transcript abundance of genes underlying QTLs for wood basic density. Results A total of five QTLs for DBH and 12 for wood basic density were identified in the two backcross families. Individual QTLs for DBH and wood basic density explained 3.1 to 12.2% of phenotypic variation. Candidate genes underlying QTLs for wood basic density on linkage groups 8 and 9 were found to share trans-acting eQTLs located on linkage groups 4 and 10, which in turn coincided with QTLs for wood basic density suggesting that these QTLs represent segregating components of an underlying transcriptional network. Conclusion This is the first demonstration of the use of next-generation expression profiling to quantify transcript abundance in a segregating tree population and identify candidate genes potentially affecting wood property variation. The QTLs identified in this study provide a resource for identifying candidate genes and developing molecular markers for marker-assisted breeding of volume growth and wood basic density. Our results suggest that integrated analysis of transcript and trait variation in eucalypt hybrids can be used to dissect the molecular basis of quantitative variation in wood property traits. PMID:22817272
Relations between Policy for Medical Teaching and Basic Need Satisfaction in Teaching
ERIC Educational Resources Information Center
Engbers, Rik; Fluit, Cornelia R. M. G.; Bolhuis, Sanneke; Sluiter, Roderick; Stuyt, Paul M. J.; Laan, Roland F. J. M.
2015-01-01
Policy initiatives that aim to elevate the position of medical teaching to that of medical research could influence the satisfaction of three basic psychological needs related to motivation for medical teaching. To explore relations between the satisfaction of three basic psychological needs towards medical teaching and two policy initiatives for…
“The Good, the Bad and the Ugly” of Chitosans
Bellich, Barbara; D’Agostino, Ilenia; Semeraro, Sabrina; Gamini, Amelia; Cesàro, Attilio
2016-01-01
The objective of this paper is to emphasize the fact that while consistent interest has been paid to the industrial use of chitosan, minor attention has been devoted to spread the knowledge of a good characterization of its physico-chemical properties. Therefore, the paper attempts to critically comment on the conflicting experimental results, highlighting the facts, the myths and the controversies. The goal is to indicate how to take advantage of chitosan versatility, to learn how to manage its variability and show how to properly tackle some unexpected undesirable features. In the sections of the paper various issues that relate chitosan properties to some basic features and to advanced solutions and applications are presented. The introduction outlines some historical pioneering works, where the chemistry of chitosan was originally explored. Thereafter, particular reference is made to analytical purity, characterization and chain modifications. The macromolecular characterization is mostly related to molecular weight and to degree of acetylation, but also refers to the conformational and rheological properties and solution stability. Then, the antimicrobial activity of chitosan in relation with its solubility is reviewed. A section is dedicated to the formulation of chitosan biomaterials, from gel to nanobeads, exploring their innovative application as active carrier nanoparticles. Finally, the toxicity issue of chitosan as a polymer and as a constructed nanomaterial is briefly commented in the conclusions. PMID:27196916
Anderson, Craig L; Monroy, Maria; Keltner, Dacher
2018-04-01
Emotional expressions communicate information about the individual's internal state and evoke responses in others that enable coordinated action. The current work investigated the informative and evocative properties of fear vocalizations in a sample of youth from underserved communities and military veterans while white-water rafting. Video-taped footage of participants rafting through white-water rapids was coded for vocal and facial expressions of fear, amusement, pride, and awe, yielding more than 1,300 coded expressions, which were then related to measures of subjective emotion and cortisol response. Consistent with informative properties of emotional expressions, fear vocalizations were positively and significantly related to facial expressions of fear, subjective reports of fear, and individuals' cortisol levels measured after the rafting trip. It is important to note that this coherent pattern was unique to fear vocalizations; vocalizations of amusement, pride, and awe were not significantly related to fear expressions in the face, subjective reports of fear, or cortisol levels. Demonstrating the evocative properties of emotional expression, fear vocalizations of individuals appeared to evoke fear vocalizations in other people in their raft, and cortisol levels of individuals within rafts similarly converged at the end of the trip. We discuss how the study of spontaneous emotion expressions in naturalistic settings can help address basic yet controversial questions about emotions. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Patient-reported outcomes in idiopathic pulmonary fibrosis research.
Swigris, Jeffrey J; Fairclough, Diane
2012-08-01
Patient-reported outcomes (PROs) include questionnaires or surveys that ask patients for their perceptions about things like symptoms they are experiencing or quality of life. For incurable, morbid, life-shortening conditions like idiopathic pulmonary fibrosis (IPF), PROs are particularly germane: They elucidate for clinicians and researchers what it is like for patients to live with such a disease, and they may detect important treatment effects not captured by other metrics (eg, pulmonary physiology). However, a relative paucity of research on PROs in IPF has left significant knowledge gaps in this area and contributed to the timidity investigators have about using PROs as prominent outcomes in IPF drug trials. Additional research on existing instruments is needed to establish or bolster their basic psychometric properties in IPF. When PROs are used as end points in therapeutic trials, analyzing PRO response data can be challenging, but these challenges can be overcome with a transparent, thoughtful, and sophisticated statistical approach. In this article, we discuss some of the basics of PRO assessment, existing knowledge gaps in IPF-related PRO research, and the potential usefulness of using PROs in IPF trials and conclude by offering specific recommendations for an approach to analyzing repeated-measures PRO data from IPF trials.
Soybean glycinin subunits: Characterization of physicochemical and adhesion properties.
Mo, Xiaoqun; Zhong, Zhikai; Wang, Donghai; Sun, Xiuzhi
2006-10-04
Soybean proteins have shown great potential for applications as renewable and environmentally friendly adhesives. The objective of this work was to study physicochemical and adhesion properties of soy glycinin subunits. Soybean glycinin was extracted from soybean flour and then fractionated into acidic and basic subunits with an estimated purity of 90 and 85%, respectively. Amino acid composition of glycinin subunits was determined. The high hydrophobic amino acid content is a major contributor to the solubility behavior and water resistance of the basic subunits. Acidic subunits and glycinin had similar solubility profiles, showing more than 80% solubility at pH 2.0-4.0 or 6.5-12.0, whereas basic subunits had considerably lower solubility with the minimum at pH 4.5-8.0. Thermal analysis using a differential scanning calorimeter suggested that basic subunits form new oligomeric structures with higher thermal stability than glycinin but no highly ordered structures present in isolated acidic subunits. The wet strength of basic subunits was 160% more than that of acidic subunits prepared at their respective isoelectric points (pI) and cured at 130 degrees C. Both pH and the curing temperature significantly affected adhesive performance. High-adhesion water resistance was usually observed for adhesives from protein prepared at their pI values and cured at elevated temperatures. Basic subunits are responsible for the water resistance of glycinin and are a good starting material for the development of water-resistant adhesives.
NASA Astrophysics Data System (ADS)
Nakata, S.; Yoshikawa, K.; Kawakami, H.
1992-10-01
We propose a new sensing method of varios chemical species based on information on the mode of entrainment in an electrochemically forced oscillator. It is demonstrated that the presence of one of the four basic taste compounds (salty, sweet, bitter, and sour) changes the mode of entrainment in a unique way. Thus a characteristics change of the entrainment allows us to obtain information on the properties of the electrochemical system. The response of the mode of entrainment to the taste compounds is related to the nonlinear properties of the studied electrochemical system, i.e., its voltage dependent capacitance and conductance. The experimental results are compared with computer simulations of a model system in which the capacitance is a nonlinear function of the voltage.
Scale-Up of GRCop: From Laboratory to Rocket Engines
NASA Technical Reports Server (NTRS)
Ellis, David L.
2016-01-01
GRCop is a high temperature, high thermal conductivity copper-based series of alloys designed primarily for use in regeneratively cooled rocket engine liners. It began with laboratory-level production of a few grams of ribbon produced by chill block melt spinning and has grown to commercial-scale production of large-scale rocket engine liners. Along the way, a variety of methods of consolidating and working the alloy were examined, a database of properties was developed and a variety of commercial and government applications were considered. This talk will briefly address the basic material properties used for selection of compositions to scale up, the methods used to go from simple ribbon to rocket engines, the need to develop a suitable database, and the issues related to getting the alloy into a rocket engine or other application.
Toward functional classification of neuronal types.
Sharpee, Tatyana O
2014-09-17
How many types of neurons are there in the brain? This basic neuroscience question remains unsettled despite many decades of research. Classification schemes have been proposed based on anatomical, electrophysiological, or molecular properties. However, different schemes do not always agree with each other. This raises the question of whether one can classify neurons based on their function directly. For example, among sensory neurons, can a classification scheme be devised that is based on their role in encoding sensory stimuli? Here, theoretical arguments are outlined for how this can be achieved using information theory by looking at optimal numbers of cell types and paying attention to two key properties: correlations between inputs and noise in neural responses. This theoretical framework could help to map the hierarchical tree relating different neuronal classes within and across species. Copyright © 2014 Elsevier Inc. All rights reserved.
Excitons in Single-Walled Carbon Nanotubes and Their Dynamics
NASA Astrophysics Data System (ADS)
Amori, Amanda R.; Hou, Zhentao; Krauss, Todd D.
2018-04-01
Understanding exciton dynamics in single-walled carbon nanotubes (SWCNTs) is essential to unlocking the many potential applications of these materials. This review summarizes recent progress in understanding exciton photophysics and, in particular, exciton dynamics in SWCNTs. We outline the basic physical and electronic properties of SWCNTs, as well as bright and dark transitions within the framework of a strongly bound one-dimensional excitonic model. We discuss the many facets of ultrafast carrier dynamics in SWCNTs, including both single-exciton states (bright and dark) and multiple-exciton states. Photophysical properties that directly relate to excitons and their dynamics, including exciton diffusion lengths, chemical and structural defects, environmental effects, and photoluminescence photon statistics as observed through photon antibunching measurements, are also discussed. Finally, we identify a few key areas for advancing further research in the field of SWCNT excitons and photonics.
Surface Lewis acid-base properties of polymers measured by inverse gas chromatography.
Shi, Baoli; Zhang, Qianru; Jia, Lina; Liu, Yang; Li, Bin
2007-05-18
Surface Lewis acid-base properties are significant for polymers materials. The acid constant, K(a) and base constant, K(b) of many polymers were characterized by some researchers with inverse gas chromatography (IGC) in recent years. In this paper, the surface acid-base constants, K(a) and K(b) of 20 kinds of polymers measured by IGC in recent years are summarized and discussed, including seven polymers characterized in this work. After plotting K(b) versus K(a), it is found that the polymers can be encircled by a triangle. They scatter in two regions of the triangle. Four polymers exist in region I. K(b)/K(a) of the polymers in region I are 1.4-2.1. The other polymers exist in region II. Most of the polymers are relative basic materials.
Grass Grows, the Cow Eats: A Simple Grazing Systems Model with Emergent Properties
ERIC Educational Resources Information Center
Ungar, Eugene David; Seligman, Noam G.; Noy-Meir, Imanuel
2004-01-01
We describe a simple, yet intellectually challenging model of grazing systems that introduces basic concepts in ecology and systems analysis. The practical is suitable for high-school and university curricula with a quantitative orientation, and requires only basic skills in mathematics and spreadsheet use. The model is based on Noy-Meir's (1975)…
Code of Federal Regulations, 2011 CFR
2011-01-01
... and utilization of space policy governs an Executive agency? 102-79.10 Section 102-79.10 Public... MANAGEMENT REGULATION REAL PROPERTY 79-ASSIGNMENT AND UTILIZATION OF SPACE General Provisions § 102-79.10 What basic assignment and utilization of space policy governs an Executive agency? Executive agencies...
Code of Federal Regulations, 2012 CFR
2012-01-01
... and utilization of space policy governs an Executive agency? 102-79.10 Section 102-79.10 Public... MANAGEMENT REGULATION REAL PROPERTY 79-ASSIGNMENT AND UTILIZATION OF SPACE General Provisions § 102-79.10 What basic assignment and utilization of space policy governs an Executive agency? Executive agencies...
Code of Federal Regulations, 2014 CFR
2014-01-01
... and utilization of space policy governs an Executive agency? 102-79.10 Section 102-79.10 Public... MANAGEMENT REGULATION REAL PROPERTY 79-ASSIGNMENT AND UTILIZATION OF SPACE General Provisions § 102-79.10 What basic assignment and utilization of space policy governs an Executive agency? Executive agencies...
Code of Federal Regulations, 2013 CFR
2013-07-01
... and utilization of space policy governs an Executive agency? 102-79.10 Section 102-79.10 Public... MANAGEMENT REGULATION REAL PROPERTY 79-ASSIGNMENT AND UTILIZATION OF SPACE General Provisions § 102-79.10 What basic assignment and utilization of space policy governs an Executive agency? Executive agencies...
ERIC Educational Resources Information Center
Cadart-Ricard, Odette
The problem of meaning in cross-cultural situations, resulting from differing patterns of thought, requires comprehension of the basic rules or patterns of these thought systems. This comprehension can be sought through Vygotsky's unit of analysis, a unit being a product of analysis which, unlike elements, retains all the basic properties of the…
Policies that Clarify Student Rights & Responsibilities. School Board Policy Development Kit.
ERIC Educational Resources Information Center
National School Boards Association, Waterford, CT. Educational Policies Service.
This kit discusses written policies basic to student rights and responsibilities, including those based on the constitution and those not. Specific policies should be based on three broad, basic premises: (1) recognition that freedom implies the right to make mistakes as long as these mistakes do not endanger life and property or are not seriously…
ERIC Educational Resources Information Center
Seeman, Jeffrey I.
2005-01-01
The chemical and physical properties of nicotine and its carboxylic acid salts found in tobacco provided as an interesting example to understand basic principles of complex science. The result showed that the experimental data used were inconsistent to the conclusion made, and the transfer of nicotine smoke from tobacco to smoke cannot be…
48 CFR 35.014 - Government property and title.
Code of Federal Regulations, 2011 CFR
2011-10-01
... basic or applied scientific research, apply to contracts with nonprofit institutions of higher education and nonprofit organizations whose primary purpose is the conduct of scientific research: (1) If the... SPECIAL CATEGORIES OF CONTRACTING RESEARCH AND DEVELOPMENT CONTRACTING 35.014 Government property and...
Groffen, Daniëlle AI; Bosma, Hans; van den Akker, Marjan; Kempen, Gertrudis IJM; van Eijk, Jacques TM
2008-01-01
Background More so than the traditional socioeconomic indicators, such as education and income, wealth reflects the accumulation of resources and makes socioeconomic ranking manifest and explicitly visible to the outside world. While the lack of basic goods, such as a refrigerator, may affect health directly, via biological pathways, the lack of luxury goods, such as an LCD television, may affect health indirectly through psychosocial mechanisms. We set out to examine, firstly, the relevance of both basic and luxury goods in explaining health-related dysfunction in older persons, and, secondly, the extent to which these associations are independent of traditional socioeconomic indicators. Methods Cross-sectional and longitudinal data from 2067 men and women aged 55 years and older who participated in the Study on Medical Information and Lifestyles Eindhoven (SMILE) were gathered. Logistic regression analyses were used to study the relation between a lack of basic and luxury goods and health-related function, assessed with two sub-domains of the SF-36. Results The lack of basic goods was closely related to incident physical (OR = 2.32) and mental (OR = 2.12) dysfunction, even when the traditional measures of socioeconomic status, i.e. education or income, were taken into account. Cross-sectional analyses, in which basic and luxury goods were compared, showed that the lack of basic goods was strongly associated with mental dysfunction. Lack of luxury goods was, however, not related to dysfunction. Conclusion Even in a relatively wealthy country like the Netherlands, the lack of certain basic goods is not uncommon. More importantly, lack of basic goods, as an indicator of wealth, was strongly related to health-related dysfunction also when traditional measures of socioeconomic status were taken into account. In contrast, no effects of luxury goods on physical or mental dysfunction were found. Future longitudinal research is necessary to clarify the precise mechanisms underlying these effects. PMID:18637182
Groffen, Daniëlle A I; Bosma, Hans; van den Akker, Marjan; Kempen, Gertrudis I J M; van Eijk, Jacques T M
2008-07-17
More so than the traditional socioeconomic indicators, such as education and income, wealth reflects the accumulation of resources and makes socioeconomic ranking manifest and explicitly visible to the outside world. While the lack of basic goods, such as a refrigerator, may affect health directly, via biological pathways, the lack of luxury goods, such as an LCD television, may affect health indirectly through psychosocial mechanisms. We set out to examine, firstly, the relevance of both basic and luxury goods in explaining health-related dysfunction in older persons, and, secondly, the extent to which these associations are independent of traditional socioeconomic indicators. Cross-sectional and longitudinal data from 2067 men and women aged 55 years and older who participated in the Study on Medical Information and Lifestyles Eindhoven (SMILE) were gathered. Logistic regression analyses were used to study the relation between a lack of basic and luxury goods and health-related function, assessed with two sub-domains of the SF-36. The lack of basic goods was closely related to incident physical (OR = 2.32) and mental (OR = 2.12) dysfunction, even when the traditional measures of socioeconomic status, i.e. education or income, were taken into account. Cross-sectional analyses, in which basic and luxury goods were compared, showed that the lack of basic goods was strongly associated with mental dysfunction. Lack of luxury goods was, however, not related to dysfunction. Even in a relatively wealthy country like the Netherlands, the lack of certain basic goods is not uncommon. More importantly, lack of basic goods, as an indicator of wealth, was strongly related to health-related dysfunction also when traditional measures of socioeconomic status were taken into account. In contrast, no effects of luxury goods on physical or mental dysfunction were found. Future longitudinal research is necessary to clarify the precise mechanisms underlying these effects.
Kikhtyanin, Oleg; Čapek, Libor; Tišler, Zdeněk; Velvarská, Romana; Panasewicz, Adriana; Diblíková, Petra; Kubička, David
2018-01-01
MgGa layered double hydroxides (Mg/Ga = 2–4) were synthesized and used for the preparation of MgGa mixed oxides and reconstructed hydrotalcites. The properties of the prepared materials were examined by physico-chemical methods (XRD, TGA, NH3-TPD, CO2-TPD, SEM, and DRIFT) and tested in aldol condensation of furfural and acetone. The as-prepared phase-pure MgGa samples possessed hydrotalcite structure, and their calcination resulted in mixed oxides with MgO structure with a small admixture phase characterized by a reflection at 2θ ≈ 36.0°. The interaction of MgGa mixed oxides with pure water resulted in reconstruction of the HTC structure already after 15 s of the rehydration with maximum crystallinity achieved after 60 s. TGA-MS experiments proved a substantial decrease in carbonates in all rehydrated samples compared with their as-prepared counterparts. This allowed suggesting presence of interlayer hydroxyls in the samples. Acido-basic properties of MgGa mixed oxides determined by TPD technique did not correlate with Mg/Ga ratio which was explained by the specific distribution of Ga atoms on the external surface of the samples. CO2-TPD method was also used to evaluate the basic properties of the reconstructed MgGa samples. In these experiments, an intensive peak at T = 450°C on CO2-TPD curve was attributed to the decomposition of carbonates newly formed by CO2 interaction with interlayer carbonates rather than to CO2 desorption from basic sites. Accordingly, CO2-TPD method quantitatively characterized the interlayer hydroxyls only indirectly. Furfural conversion on reconstructed MgGa materials was much larger compared with MgGa mixed oxides confirming that Brønsted basic sites in MgGa catalysts, like MgAl catalysts, were active in the reaction. Mg/Ga ratio in mixed oxides influenced product selectivity which was explained by the difference in textural properties of the samples. In contrast, Mg/Ga ratio in reconstructed catalysts had practically no effect on the composition of reaction products suggesting that the basic sites in these catalysts acted similarly in aldol condensation of acetone with furfural. It was concluded that the properties of MgGa samples resembled in a great extent those of MgAl hydrotalcite-based materials and demonstrated their potential as catalysts for base-catalyzed reactions. PMID:29881721
Kikhtyanin, Oleg; Čapek, Libor; Tišler, Zdeněk; Velvarská, Romana; Panasewicz, Adriana; Diblíková, Petra; Kubička, David
2018-01-01
MgGa layered double hydroxides (Mg/Ga = 2-4) were synthesized and used for the preparation of MgGa mixed oxides and reconstructed hydrotalcites. The properties of the prepared materials were examined by physico-chemical methods (XRD, TGA, NH 3 -TPD, CO 2 -TPD, SEM, and DRIFT) and tested in aldol condensation of furfural and acetone. The as-prepared phase-pure MgGa samples possessed hydrotalcite structure, and their calcination resulted in mixed oxides with MgO structure with a small admixture phase characterized by a reflection at 2θ ≈ 36.0°. The interaction of MgGa mixed oxides with pure water resulted in reconstruction of the HTC structure already after 15 s of the rehydration with maximum crystallinity achieved after 60 s. TGA-MS experiments proved a substantial decrease in carbonates in all rehydrated samples compared with their as-prepared counterparts. This allowed suggesting presence of interlayer hydroxyls in the samples. Acido-basic properties of MgGa mixed oxides determined by TPD technique did not correlate with Mg/Ga ratio which was explained by the specific distribution of Ga atoms on the external surface of the samples. CO 2 -TPD method was also used to evaluate the basic properties of the reconstructed MgGa samples. In these experiments, an intensive peak at T = 450°C on CO 2 -TPD curve was attributed to the decomposition of carbonates newly formed by CO 2 interaction with interlayer carbonates rather than to CO 2 desorption from basic sites. Accordingly, CO 2 -TPD method quantitatively characterized the interlayer hydroxyls only indirectly. Furfural conversion on reconstructed MgGa materials was much larger compared with MgGa mixed oxides confirming that Brønsted basic sites in MgGa catalysts, like MgAl catalysts, were active in the reaction. Mg/Ga ratio in mixed oxides influenced product selectivity which was explained by the difference in textural properties of the samples. In contrast, Mg/Ga ratio in reconstructed catalysts had practically no effect on the composition of reaction products suggesting that the basic sites in these catalysts acted similarly in aldol condensation of acetone with furfural. It was concluded that the properties of MgGa samples resembled in a great extent those of MgAl hydrotalcite-based materials and demonstrated their potential as catalysts for base-catalyzed reactions.
NASA Astrophysics Data System (ADS)
Kikhtyanin, Oleg; Čapek, Libor; Tišler, Zdeněk; Velvarská, Romana; Panasewicz, Adriana; Diblíková, Petra; Kubička, David
2018-05-01
MgGa layered double hydroxides (Mg/Ga=2-4) were synthesized and used for the preparation of MgGa mixed oxides and reconstructed hydrotalcites. The properties of the prepared materials were examined by physico-chemical methods (XRD, TGA, NH3-TPD, CO2-TPD, SEM and DRIFT) and tested in aldol condensation of furfural and acetone. The as-prepared phase-pure MgGa samples possessed hydrotalcite structure, and their calcination resulted in mixed oxides with MgO structure with a small admixture phase characterized by a reflection at 2θ ≈ 36.0°. The interaction of MgGa mixed oxides with pure water resulted in reconstruction of the HTC structure already after 15 s of the rehydration with maximum crystallinity achieved after 60 s. TGA-MS experiments proved a substantial decrease in carbonates in all rehydrated samples compared with their as-prepared counterparts. This allowed suggesting presence of interlayer hydroxyls in the samples. Acido-basic properties of MgGa mixed oxides determined by TPD technique did not correlate with Mg/Ga ratio which was explained by the specific distribution of Ga atoms on the external surface of the samples. CO2-TPD method was also used to evaluate the basic properties of the reconstructed MgGa samples. In these experiments, an intensive peak at T=450 °C on CO2-TPD curve was attributed to the decomposition of carbonates newly formed by CO2 interaction with interlayer carbonates rather than to CO2 desorption from basic sites. Accordingly, CO2-TPD method quantitatively characterized the interlayer hydroxyls only indirectly. Furfural conversion on reconstructed MgGa materials was much larger compared with MgGa mixed oxides confirming that Brønsted basic sites in MgGa catalysts, like MgAl catalysts, were active in the reaction. Mg/Ga ratio in mixed oxides influenced product selectivity which was explained by the difference in textural properties of the samples. In contrast, Mg/Ga ratio in reconstructed catalysts had practically no effect on the composition of reaction products suggesting that the basic sites in these catalysts acted similarly in aldol condensation of acetone with furfural. It was concluded that the properties of MgGa samples resembled in a great extent those of MgAl hydrotalcite-based materials and demonstrated their potential as catalysts for base-catalyzed reactions.
Terlecki, Meredith A; Buckner, Julia D; Larimer, Mary E; Copeland, Amy L
2012-12-01
Despite the efficacy of Brief Alcohol Screening and Intervention for College Students (BASICS), students with higher social anxiety appear vulnerable to poorer outcomes. A possible explanation for these outcomes is that corrective normative feedback (an active component of BASICS) may be less effective for socially anxious students if their beliefs about others' drinking are less malleable because of intense fear of negative evaluation for deviating from perceived drinking norms. This study evaluated whether socially anxious students demonstrated less change in perceived norms during BASICS. We also examined whether change in norm endorsement moderated the relation between social anxiety and BASICS outcomes. Undergraduates (n = 52) who underwent BASICS completed measures of drinking, social anxiety, and perceived norms at baseline and 4 weeks post-BASICS. Higher social anxiety was related to less change in norm endorsement after receiving BASICS. Change in perceived norms during treatment moderated the relation between social anxiety and follow-up drinking. Among students with smaller change in norm endorsement after BASICS, higher social anxiety was related to heavier follow-up drinking. Among students with greater changes to norm endorsement during BASICS, the effect of social anxiety was nonsignificant. Results suggest that corrective perceived norms interventions may be less effective among socially anxious students, contributing to continued heavy drinking. Development of social anxiety-specific BASICS components warrants attention. 2013 APA, all rights reserved
Terlecki, Meredith A.; Buckner, Julia D.; Larimer, Mary E.; Copeland, Amy L.
2012-01-01
Despite the efficacy of Brief Alcohol Screening and Intervention for College Students (BASICS), students with higher social anxiety appear vulnerable to poorer outcomes. A possible explanation for these outcomes is that corrective normative feedback (an active component of BASICS) may be less effective for socially anxious students if their beliefs about others’ drinking are less malleable due to intense fear of negative evaluation for deviating from perceived drinking norms. This study evaluated whether socially anxious students demonstrated less change in perceived norms during BASICS. We also examined whether change in norm endorsement moderated the relation between social anxiety and BASICS outcomes. Undergraduates (N = 52) who underwent BASICS completed measures of drinking, social anxiety, and perceived norms at baseline and 4-weeks post-BASICS. Higher social anxiety was related to less change in norm endorsement after receiving BASICS. Change in perceived norms during treatment moderated the relation between social anxiety and follow-up drinking. Among students with smaller change in norm endorsement after BASICS, higher social anxiety was related to heavier follow-up drinking. Among students with greater changes to norm endorsement during BASICS, the effect of social anxiety was non-significant. Results suggest that corrective perceived norms interventions may be less effective among socially anxious students, contributing to continued heavy drinking. Development of social anxiety-specific BASICS components warrants attention. PMID:22612254
NASA Astrophysics Data System (ADS)
Chen, Shimon; Bekhor, Shlomo; Yuval; Broday, David M.
2016-10-01
Most air quality models use traffic-related variables as an input. Previous studies estimated nearby vehicular activity through sporadic traffic counts or via traffic assignment models. Both methods have previously produced poor or no data for nights, weekends and holidays. Emerging technologies allow the estimation of traffic through passive monitoring of location-aware devices. Examples of such devices are GPS transceivers installed in vehicles. In this work, we studied traffic volumes that were derived from such data. Additionally, we used these data for estimating ambient nitrogen dioxide concentrations, using a non-linear optimisation model that includes basic dispersion properties. The GPS-derived data show great potential for use as a proxy for pollutant emissions from motor-vehicles.
NASA Technical Reports Server (NTRS)
Mcgrath, J. E.
1982-01-01
The radiation degradation of poly(arylene ether sulfones) and related materials is studied. These basic studies are important both as a means to developing stronger, more stable matrix resins for composite materials, as well as to improve the data base in regard to chemical structure-physical property relationships. Thirty homo and copolymers were synthesized, at least partially characterized and, in several cases suitable film casting techniques were developed. Four samples were chosen for initial radiation degradation. Poly(dimethyl siloxane) soft bocks/segments can preferentially migrate to the surface of copolymer films. Since siloxanes are utilized as thermal control coatings, this form of 'molecular' coating is of interest. The chemistry for preparing such copolymers with any of the polymers described was demonstrated.
MASPROP- MASS PROPERTIES OF A RIGID STRUCTURE
NASA Technical Reports Server (NTRS)
Hull, R. A.
1994-01-01
The computer program MASPROP was developed to rapidly calculate the mass properties of complex rigid structural systems. This program's basic premise is that complex systems can be adequately described by a combination of basic elementary structural shapes. Thirteen widely used basic structural shapes are available in this program. They are as follows: Discrete Mass, Cylinder, Truncated Cone, Torus, Beam (arbitrary cross section), Circular Rod (arbitrary cross section), Spherical Segment, Sphere, Hemisphere, Parallelepiped, Swept Trapezoidal Panel, Symmetric Trapezoidal Panels, and a Curved Rectangular Panel. MASPROP provides a designer with a simple technique that requires minimal input to calculate the mass properties of a complex rigid structure and should be useful in any situation where one needs to calculate the center of gravity and moments of inertia of a complex structure. Rigid body analysis is used to calculate mass properties. Mass properties are calculated about component axes that have been rotated to be parallel to the system coordinate axes. Then the system center of gravity is calculated and the mass properties are transferred to axes through the system center of gravity by using the parallel axis theorem. System weight, moments of inertia about the system origin, and the products of inertia about the system center of mass are calculated and printed. From the information about the system center of mass the principal axes of the system and the moments of inertia about them are calculated and printed. The only input required is simple geometric data describing the size and location of each element and the respective material density or weight of each element. This program is written in FORTRAN for execution on a CDC 6000 series computer with a central memory requirement of approximately 62K (octal) of 60 bit words. The development of this program was completed in 1978.
Simultaneous extraction and quantitation of several bioactive amines in cheese and chocolate.
Baker, G B; Wong, J T; Coutts, R T; Pasutto, F M
1987-04-17
A method is described for simultaneous extraction and quantitation of the amines 2-phenylethylamine, tele-methylhistamine, histamine, tryptamine, m- and p-tyramine, 3-methoxytyramine, 5-hydroxytryptamine, cadaverine, putrescine, spermidine and spermine. This method is based on extractive derivatization of the amines with a perfluoroacylating agent, pentafluorobenzoyl chloride, under basic aqueous conditions. Analysis was done on a gas chromatograph equipped with an electron-capture detector and a capillary column system. The procedure is relatively rapid and provides derivatives with good chromatographic properties. Its application to analysis of the above amines in cheese and chocolate products is described.
Variable focus photographic lens without mechanical movements
NASA Astrophysics Data System (ADS)
Chen, Jiabi; Peng, Runling; Zhuang, Songlin
2007-09-01
A novel design of a zoom lens system without motorized movements is proposed. The lens system consists of a fixed lens and two double-liquid variable-focus lenses. The liquid lenses, made out of two immiscible liquids, are based on the principle of electrowetting: an effect controlling the wetting properties of a liquid on a solid by modifying the applied voltage at the solid-liquid interface. The structure and principle of the lens system are introduced in this paper. And detailed calculations and simulation examples are presented to predict how two liquid lenses are related to meet the basic requirements of zoom lenses.
Maertz, D.E.
1992-01-01
OBJECTIVE: The objectives of this study are to provide continuous discharge records for selected rivers at specific sites to supply the needs for: regulation, analytical studies, definition of statistical properties, trends analysis, determination of the occurrence, and distribution of water in streams for planning. The project is also designed to determine lake levels and to provide discharge for floods, low-flow conditions, and for water-quality investigations. Requests for streamflow data and information relating to streamflow in Wisconsin are answered. Basic data are published annually in "Water Resources Data Wisconsin."
Water-resources investigations in Wisconsin
Maertz, D.E.
1996-01-01
OBJECTIVE: The objectives of this study are to provide continuous discharge records for selected rivers at specific sites to supply the needs for regulation, analytical studies, definition of statistical properties, trends analysis, determination of the occurrence, and distribution of water in streams for planning. The project is also LOCATION: Statewide PROJECT CHIEF: Barry K. Holmstrom PERIOD OF PROJECT: July 1913-Continuing designed to determine lake levels and to provide discharge for floods, low-flow conditions, and for waterquality investigations. Requests for streamflow data and information relating to streamflow in Wisconsin are answered. Basic data are published annually in the report "Water Resources Data-Wisconsin."
A fundamental review of the friction and wear behavior of ceramics
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1972-01-01
The basic concepts associated with the friction and wear of materials are discussed as they relate to ceramics. Properties of ceramics such as crystal structure, crystallographic orientation, mechanical deformation, and surface chemistry are reviewed as they influence friction and wear. Both adhesive and abrasive wear of ceramics are discussed. The friction and wear of ceramics are examined in contact with themselves and when in contact with metals. The influences of environmental constituents such as water and hydrocarbons on friction and wear are reviewed. Materials discussed, by way of example, include aluminum oxide, rutile, calcium fluoride, and lithium fluoride.
The Vector-Ballot Approach for Online Voting Procedures
NASA Astrophysics Data System (ADS)
Kiayias, Aggelos; Yung, Moti
Looking at current cryptographic-based e-voting protocols, one can distinguish three basic design paradigms (or approaches): (a) Mix-Networks based, (b) Homomorphic Encryption based, and (c) Blind Signatures based. Each of the three possesses different advantages and disadvantages w.r.t. the basic properties of (i) efficient tallying, (ii) universal verifiability, and (iii) allowing write-in ballot capability (in addition to predetermined candidates). In fact, none of the approaches results in a scheme that simultaneously achieves all three. This is unfortunate, since the three basic properties are crucial for efficiency, integrity and versatility (flexibility), respectively. Further, one can argue that a serious business offering of voting technology should offer a flexible technology that achieves various election goals with a single user interface. This motivates our goal, which is to suggest a new "vector-ballot" based approach for secret-ballot e-voting that is based on three new notions: Provably Consistent Vector Ballot Encodings, Shrink-and-Mix Networks and Punch-Hole-Vector-Ballots. At the heart of our approach is the combination of mix networks and homomorphic encryption under a single user interface; given this, it is rather surprising that it achieves much more than any of the previous approaches for e-voting achieved in terms of the basic properties. Our approach is presented in two generic designs called "homomorphic vector-ballots with write-in votes" and "multi-candidate punch-hole vector-ballots"; both of our designs can be instantiated over any homomorphic encryption function.
Galactic Cosmic Ray Event-Based Risk Model (GERM) Code
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Plante, Ianik; Ponomarev, Artem L.; Kim, Myung-Hee Y.
2013-01-01
This software describes the transport and energy deposition of the passage of galactic cosmic rays in astronaut tissues during space travel, or heavy ion beams in patients in cancer therapy. Space radiation risk is a probability distribution, and time-dependent biological events must be accounted for physical description of space radiation transport in tissues and cells. A stochastic model can calculate the probability density directly without unverified assumptions about shape of probability density function. The prior art of transport codes calculates the average flux and dose of particles behind spacecraft and tissue shielding. Because of the signaling times for activation and relaxation in the cell and tissue, transport code must describe temporal and microspatial density of functions to correlate DNA and oxidative damage with non-targeted effects of signals, bystander, etc. These are absolutely ignored or impossible in the prior art. The GERM code provides scientists data interpretation of experiments; modeling of beam line, shielding of target samples, and sample holders; and estimation of basic physical and biological outputs of their experiments. For mono-energetic ion beams, basic physical and biological properties are calculated for a selected ion type, such as kinetic energy, mass, charge number, absorbed dose, or fluence. Evaluated quantities are linear energy transfer (LET), range (R), absorption and fragmentation cross-sections, and the probability of nuclear interactions after 1 or 5 cm of water equivalent material. In addition, a set of biophysical properties is evaluated, such as the Poisson distribution for a specified cellular area, cell survival curves, and DNA damage yields per cell. Also, the GERM code calculates the radiation transport of the beam line for either a fixed number of user-specified depths or at multiple positions along the Bragg curve of the particle in a selected material. The GERM code makes the numerical estimates of basic physical and biophysical quantities of high-energy protons and heavy ions that have been studied at the NASA Space Radiation Laboratory (NSRL) for the purpose of simulating space radiation biological effects. In the first option, properties of monoenergetic beams are treated. In the second option, the transport of beams in different materials is treated. Similar biophysical properties as in the first option are evaluated for the primary ion and its secondary particles. Additional properties related to the nuclear fragmentation of the beam are evaluated. The GERM code is a computationally efficient Monte-Carlo heavy-ion-beam model. It includes accurate models of LET, range, residual energy, and straggling, and the quantum multiple scattering fragmentation (QMSGRG) nuclear database.
Microstructure and Mechanical Properties of Recycled Aggregate Concrete in Seawater Environment
Yue, Pengjun; Tan, Zhuoying; Guo, Zhiying
2013-01-01
This study aims to conduct research about the microstructure and basic properties of recycled aggregate concrete under seawater corrosion. Concrete specimens were fabricated and tested with different replacement percentages of 0%, 30%, and 60% after immersing in seawater for 4, 8, 12, and 16 months, respectively. The basic properties of recycled aggregate concrete (RAC) including the compressive strength, the elastic modulus, and chloride penetration depth were explicitly investigated. And the microstructure of recycled concrete aggregate (RCA) was revealed to find the seawater corrosion by using scanning electron microscope (SEM). The results showed that higher amount of the RCA means more porosity and less strength, which could lower both the compressive strength and resistance to chloride penetration. This research could be a guide in theoretical and numerical analysis for the design of RAC structures. PMID:24453830
ERIC Educational Resources Information Center
2000
Most children know how to describe an object--by color, size, and shape. Here they'll learn that all objects are made of matter and that all matter can be described with basic scientific properties--mass, weight, volume and density. Each of these properties is described using fun, real-life examples. With clear illustrations and hands-on…
1988-10-05
enterprises’ shareholders, we should go through the legal procedures of clearing property , checking capital, and determining shares to ensure the...following aspects: 1. Reform of asset relationships: The objectives of the reform are to basically change the present situation where the property rights...of the publicly-owned assets are ill- defined and there is no one to take responsibility, to create independent and competitive owners of property
Eleven Colors That Are Almost Never Confused
NASA Astrophysics Data System (ADS)
Boynton, Robert M.
1989-08-01
1.1. Three functions of color vision. Setting aside the complex psychological effects of color, related to esthetics, fashion, and mood, three relatively basic functions of color vision, which can be examined scientifically, are discernable. (1) With the eye in a given state of adaptation, color vision allows the perception of signals that otherwise would be below threshold, and therefore lost to perception. Evidence for this comes from a variety of two-color threshold experiments. (2) Visible contours can be maintained by color differences alone, regardless of the relative radiances of the two parts of the field whose junction defines the border. For achromatic vision, contour disappears at the isoluminant point. (3) Color specifies what seems to be an absolute property of a surface, one that enhances its recognizability and allows a clearer separation and classification of non-contiguous elements in the visual field.
Properties and relative measure for quantifying quantum synchronization
NASA Astrophysics Data System (ADS)
Li, Wenlin; Zhang, Wenzhao; Li, Chong; Song, Heshan
2017-07-01
Although quantum synchronization phenomena and corresponding measures have been widely discussed recently, it is still an open question how to characterize directly the influence of nonlocal correlation, which is the key distinction for identifying classical and quantum synchronizations. In this paper, we present basic postulates for quantifying quantum synchronization based on the related theory in Mari's work [Phys. Rev. Lett. 111, 103605 (2013), 10.1103/PhysRevLett.111.103605], and we give a general formula of a quantum synchronization measure with clear physical interpretations. By introducing Pearson's parameter, we show that the obvious characteristics of our measure are the relativity and monotonicity. As an example, the measure is applied to describe synchronization among quantum optomechanical systems under a Markovian bath. We also show the potential by quantifying generalized synchronization and discrete variable synchronization with this measure.
Kabekkodu, Soorya N; Faber, John; Fawcett, Tim
2002-06-01
The International Centre for Diffraction Data (ICDD) is responding to the changing needs in powder diffraction and materials analysis by developing the Powder Diffraction File (PDF) in a very flexible relational database (RDB) format. The PDF now contains 136,895 powder diffraction patterns. In this paper, an attempt is made to give an overview of the PDF-4, search/match methods and the advantages of having the PDF-4 in RDB format. Some case studies have been carried out to search for crystallization trends, properties, frequencies of space groups and prototype structures. These studies give a good understanding of the basic structural aspects of classes of compounds present in the database. The present paper also reports data-mining techniques and demonstrates the power of a relational database over the traditional (flat-file) database structures.
Type II Cepheids and Related Variables
NASA Astrophysics Data System (ADS)
Schmidt, Edward G.
2008-08-01
While type II Cepheids have considerable potential to contribute to our knowledge of a number of areas of astrophysics, their usefulness is compromised by the relatively small number of such stars known. I have undertaken a project to identify more of them in two large area sky surveys, and to determine some of the basic properties of the stars which are confirmed as type II Cepheids. In the course of this project a significant number of small amplitude stars which appear to be closely related to the type II Cepheids have been identified. The nature of these objects is also being investigated. The photometry portion of the project is complete and spectra were obtained for about half of the stars with the GCAM spectrograph on the 2.1-m telescope. This proposal requests time to obtain spectra for about 2/3 of the remaining stars.
On the similarity of theories of anelastic and scattering attenuation
Wennerberg, Leif; Frankel, Arthur D.
1989-01-01
We point out basic parallels between theories of anelastic and scattering attenuation. We consider approximations to scattering effects presented by O'Doherty and Anstey (1971), Sato (1982), and Wu (1982). We use the linear theory of anelasticity. We note that the frequency dependence of Q can be related to a distribution of scales of physical properties of the medium. The frequency dependence of anelastic Q is related to the distribution of relaxation times in exactly the same manner as the frequency dependence of scattering Q is related to the distribution of scatterer sizes. Thus, the well-known difficulty of separating scattering from intrinsic attenuation is seen from this point of view as a consequence of the fact that certain observables can be interpreted by identical equations resulting from either of two credible physical theories describing fundamentally different processes. -from Authors
D'Silva, Evan R; Woolfolk, Marilyn W; Duff, Renee E; Inglehart, Marita R
2018-04-01
Admitting students from non-traditional or disadvantaged backgrounds can increase the diversity of dental school classes. The aims of this study were to analyze how interested non-traditional incoming dental students were at the beginning of an academic pre-orientation program in learning about basic science, dentistry-related topics, and academic skills; how confident they were in doing well in basic science and dentistry-related courses; and how they evaluated the program at the end. The relationships between personal (interest/confidence) and structural factors (program year, number of participants) and program evaluations were also explored. All 360 students in this program at the University of Michigan from 1998 to 2016 were invited to participate in surveys at the beginning and end of the educational intervention. A total of 353 students responded at the beginning (response rate 98%), and 338 responded at the end (response rate 94%). At the beginning, students were more interested in learning about basic science and dentistry-related topics than about academic skills, and they were more confident in their dentistry- related than basic science-related abilities. At the end, students valued basic science and dentistry-related education more positively than academic skills training. Confidence in doing well and interest in basic science and dentistry-related topics were correlated. The more recent the program was, the less confident the students were in their basic science abilities and the more worthwhile they considered the program to be. The more participants the program had, the more confident the students were, and the better they evaluated their basic science and dentistry-related education. Overall, this academic pre-orientation program was positively evaluated by the participants.
Felton, Luke; Jowett, Sophia
2013-01-01
The present study aimed to explore the mediating role of social factors on the associations between attachment styles and basic psychological needs satisfaction within two relational contexts. Athletes (N = 215) completed a multi-section questionnaire pertaining to attachment styles, basic needs satisfied within the coaching and the parental relational context, and such social factors as social support, interpersonal conflict, autonomy and controlling behaviours. Bootstrap mediation analysis revealed that the association between avoidant attachment style and basic needs satisfaction with the coach was mediated by social support and autonomy-related behaviours from the coach. The association between avoidant attachment style and basic needs satisfaction with the parent on the other hand was mediated by all social factors investigated. Finally, the association between anxious attachment style and basic needs satisfaction from the parent was mediated by conflict and controlling behaviours. Overall, the findings of the current study suggest that social factors play an important role in explaining the associations between attachment styles and basic needs satisfaction within two central relational contexts athletes operate in, and thus should be targeted in future interventions.
Winter, Werner; Karl, Matthias
2014-10-01
Acetabular cup endoprostheses are frequently placed in pelvic bone, employing the mechanical principle of press fit. While a sufficiently stable bone-implant connection is desirable, deformation of the cup and fracture of the pelvis should be avoided. The goal of this work is to demonstrate the importance of the elastic properties of bone on the amount of press fit achievable in a specific situation. On the basis of previous work describing the relation between relative bone mineral density and relative elastic modulus for cortical and trabecular bone, mechanical equations were used for analyzing the press-fit loading situation of an acetabular cup. Additionally, a two-dimensional finite element model was used for visualizing the stress and strain situation in the host bone occurring as a consequence of implant insertion, as well as the effect of moment loads acting on the acetabular cup. Given the fact that oversizing the implant for a specific recipient site is the only clinical means of optimizing press fit, knowledge of the elastic properties of the host bone before implant selection would be beneficial. Such information could, for instance, be derived from intraoperative compressive testing of the host bone.
Adalbjörnsson, Björn V; Toogood, Helen S; Fryszkowska, Anna; Pudney, Christopher R; Jowitt, Thomas A; Leys, David; Scrutton, Nigel S
2010-01-25
We report the crystal structure of a thermophilic "ene" reductase (TOYE) isolated from Thermoanaerobacter pseudethanolicus E39. The crystal structure reveals a tetrameric enzyme and an active site that is relatively large compared to most other structurally determined and related Old Yellow Enzymes. The enzyme adopts higher order oligomeric states (octamers and dodecamers) in solution, as revealed by sedimentation velocity and multiangle laser light scattering. Bead modelling indicates that the solution structure is consistent with the basic tetrameric structure observed in crystallographic studies and electron microscopy. TOYE is stable at high temperatures (T(m)>70 degrees C) and shows increased resistance to denaturation in water-miscible organic solvents compared to the mesophilic Old Yellow Enzyme family member, pentaerythritol tetranitrate reductase. TOYE has typical ene-reductase properties of the Old Yellow Enzyme family. There is currently major interest in using Old Yellow Enzyme family members in the preparative biocatalysis of a number of activated alkenes. The increased stability of TOYE in organic solvents is advantageous for biotransformations in which water-miscible organic solvents and biphasic reaction conditions are required to both deliver novel substrates and minimize product racemisation.
2015-09-30
Propagation and Geo -Acoustic Bottom Properties Harry A DeFerrari RSMAS – University of Miami 4600 Rickenbacker Causeway Miami FL. 33149...limited information about the ocean acoustic environment and the geo -acoustic properties of the bottom. The objective here is to measure the pulse...models and estimate the geo -acoustic properties of the bottom by inversion. APPROACH M-sequences have long been the workhorse of basic research
Basic Communication Course Annual. Volume 2.
ERIC Educational Resources Information Center
Hugenberg, Lawrence W., Ed.
This annual collection contains essays relating to instruction in the basic communication course, grading in the basic communication course, evaluating the basic communication course, and the "state" of the basic communication course. Papers in the collection include: "The Future of the Basic Course" (Judy C. Pearson and Paul…
Flight effects on the aerodynamic and acoustic characteristics of inverted profile coannular nozzles
NASA Technical Reports Server (NTRS)
Kozlowski, H.; Packman, A. B.
1978-01-01
The effect of forward flight on the jet noise of coannular exhaust nozzles, suitable for Variable Stream Control Engines (VSCE), was investigated in a series of wind tunnel tests. The primary stream properties were maintained constant at 300 mps and 394 K. A total of 230 acoustic data points was obtained. Force measurement tests using an unheated air supply covered the same range of tunnel speeds and nozzle pressure ratios on each of the nozzle configurations. A total of 80 points was taken. The coannular nozzle OASPL and PNL noise reductions observed statically relative to synthesized values were basically retained under simulated flight conditions. The effect of fan to primary stream area ratio on flight effects was minor. At take-off speed, the peak jet noise for a VSCE was estimated to be over 6 PNdB lower than the static noise level. High static thrust coefficients were obtained for the basic coannular nozzles, with a decay of 0.75 percent at take-off speeds.
NASA Astrophysics Data System (ADS)
Carminati, Federico; Perret-Gallix, Denis; Riemann, Tord
2014-06-01
Round table discussions are in the tradition of ACAT. This year's plenary round table discussion was devoted to questions related to the use of scientific software in High Energy Physics and beyond. The 90 minutes of discussion were lively, and quite a lot of diverse opinions were spelled out. Although the discussion was, in part, controversial, the participants agreed unanimously on several basic issues in software sharing: • The importance of having various licensing models in academic research; • The basic value of proper recognition and attribution of intellectual property, including scientific software; • The user respect for the conditions of use, including licence statements, as formulated by the author. The need of a similar discussion on the issues of data sharing was emphasized and it was recommended to cover this subject at the conference round table discussion of next ACAT. In this contribution, we summarise selected topics that were covered in the introductory talks and in the following discussion.
A random distribution reacting mixing layer model
NASA Technical Reports Server (NTRS)
Jones, Richard A.; Marek, C. John; Myrabo, Leik N.; Nagamatsu, Henry T.
1994-01-01
A methodology for simulation of molecular mixing, and the resulting velocity and temperature fields has been developed. The ideas are applied to the flow conditions present in the NASA Lewis Research Center Planar Reacting Shear Layer (PRSL) facility, and results compared to experimental data. A gaussian transverse turbulent velocity distribution is used in conjunction with a linearly increasing time scale to describe the mixing of different regions of the flow. Equilibrium reaction calculations are then performed on the mix to arrive at a new species composition and temperature. Velocities are determined through summation of momentum contributions. The analysis indicates a combustion efficiency of the order of 80 percent for the reacting mixing layer, and a turbulent Schmidt number of 2/3. The success of the model is attributed to the simulation of large-scale transport of fluid. The favorable comparison shows that a relatively quick and simple PC calculation is capable of simulating the basic flow structure in the reacting and nonreacting shear layer present in the facility given basic assumptions about turbulence properties.
Literature Review: Weldability of Iridium DOP-26 Alloy for General Purpose Heat Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgardt, Paul; Pierce, Stanley W.
The basic purpose of this paper is to provide a literature review relative to fabrication of the General Purpose Heat Source (GPHS) that is used to provide electrical power for deep space missions of NASA. The particular fabrication operation to be addressed here is arc welding of the GPHS encapsulation. A considerable effort was made to optimize the fabrication of the fuel pellets and of other elements of the encapsulation; that work will not be directly addressed in this paper. This report consists of three basic sections: 1) a brief description of the GPHS will be provided as background informationmore » for the reader; 2) mechanical properties and the optimization thereof as relevant to welding will be discussed; 3) a review of the arc welding process development and optimization will be presented. Since the welding equipment must be upgraded for future production, some discussion of the historical establishment of relevant welding variables and possible changes thereto will also be discussed.« less
NASA Astrophysics Data System (ADS)
Allen, Rob
2016-09-01
Structures within molecules and nuclei have relationships to astronomical patterns. The COBE cosmic scale plots, and large scale surveys of galaxy clusters have patterns also repeating and well known at atomic scales. The Induction, Strong Force, and Nuclear Binding Energy Periods within the Big Bang are revealed to have played roles in the formation of these large scale distributions. Equations related to the enormous patterns also model chemical bonds and likely nucleus and nucleon substructures. ratios of the forces that include gravity are accurately calculated from the distributions and shapes. In addition, particle masses and a great many physical constants can be derived with precision and accuracy from astrophysical shapes. A few very basic numbers can do modelling from nucleon internals to molecules to super novae, and up to the Visible Universe. Equations are also provided along with possible structural configurations for some Cold Dark Matter and Dark Energy.
Atomic force microscopy for two-dimensional materials: A tutorial review
NASA Astrophysics Data System (ADS)
Zhang, Hang; Huang, Junxiang; Wang, Yongwei; Liu, Rui; Huai, Xiulan; Jiang, Jingjing; Anfuso, Chantelle
2018-01-01
Low dimensional materials exhibit distinct properties compared to their bulk counterparts. A plethora of examples have been demonstrated in two-dimensional (2-D) materials, including graphene and transition metal dichalcogenides (TMDCs). These novel and intriguing properties at the nano-, molecular- and even monatomic scales have triggered tremendous interest and research, from fundamental studies to practical applications and even device fabrication. The unique behaviors of 2-D materials result from the special structure-property relationships that exist between surface topographical variations and mechanical responses, electronic structures, optical characteristics, and electrochemical properties. These relationships are generally convoluted and sensitive to ambient and external perturbations. Characterizing these systems thus requires techniques capable of providing multidimensional information under controlled environments, such as atomic force microscopy (AFM). Today, AFM plays a key role in exploring the basic principles underlying the functionality of 2-D materials. In this tutorial review, we provide a brief introduction to some of the unique properties of 2-D materials, followed by a summary of the basic principles of AFM and the various AFM modes most appropriate for studying these systems. Following that, we will focus on five important properties of 2-D materials and their characterization in more detail, including recent literature examples. These properties include nanomechanics, nanoelectromechanics, nanoelectrics, nanospectroscopy, and nanoelectrochemistry.
ERIC Educational Resources Information Center
McCully, James S., Jr., Comp.
This publication, one of five sections, was developed for use in first and second year basic agriculture courses in secondary schools in Mississippi. The five lessons focus on the measurement and description of property and the classification of land. The purposes of the lessons are to (1) introduce the units and methods used to measure distance…
ERIC Educational Resources Information Center
Silman, Fatos
2014-01-01
This study examines the relationship between work-related basic need satisfaction and work engagement. Data were obtained from a total of 203 academics who are employed in various universities of Turkey. In this research Work-Related Basic Need Satisfaction Scale and The Turkish Form of Utrecht Work Engagement Scale were utilized. The data were…
Staircase and fractional part functions
NASA Astrophysics Data System (ADS)
Amram, Meirav; Dagan, Miriam; Ioshpe, Michael; Satianov, Pavel
2016-10-01
The staircase and fractional part functions are basic examples of real functions. They can be applied in several parts of mathematics, such as analysis, number theory, formulas for primes, and so on; in computer programming, the floor and ceiling functions are provided by a significant number of programming languages - they have some basic uses in various programming tasks. In this paper, we view the staircase and fractional part functions as a classical example of non-continuous real functions. We introduce some of their basic properties, present some interesting constructions concerning them, and explore some intriguing interpretations of such functions. Throughout the paper, we use these functions in order to explain basic concepts in a first calculus course, such as domain of definition, discontinuity, and oddness of functions. We also explain in detail how, after researching the properties of such functions, one can draw their graph; this is a crucial part in the process of understanding their nature. In the paper, we present some subjects that the first-year student in the exact sciences may not encounter. We try to clarify those subjects and show that such ideas are important in the understanding of non-continuous functions, as a part of studying analysis in general.
Relativity-Induced Bonding Pattern Change in Coinage Metal Dimers M2 (M = Cu, Ag, Au, Rg).
Li, Wan-Lu; Lu, Jun-Bo; Wang, Zhen-Ling; Hu, Han-Shi; Li, Jun
2018-05-07
The periodic table provides a fundamental protocol for qualitatively classifying and predicting chemical properties based on periodicity. While the periodic law of chemical elements had already been rationalized within the framework of the nonrelativistic description of chemistry with quantum mechanics, this law was later known to be affected significantly by relativity. We here report a systematic theoretical study on the chemical bonding pattern change in the coinage metal dimers (Cu 2 , Ag 2 , Au 2 , Rg 2 ) due to the relativistic effect on the superheavy elements. Unlike the lighter congeners basically demonstrating ns- ns bonding character and a 0 g + ground state, Rg 2 shows unique 6d-6d bonding induced by strong relativity. Because of relativistic spin-orbit (SO) coupling effect in Rg 2 , two nearly degenerate SO states, 0 g + and 2 u , exist as candidate of the ground state. This relativity-induced change of bonding mechanism gives rise to various unique alteration of chemical properties compared with the lighter dimers, including higher intrinsic bond energy, force constant, and nuclear shielding. Our work thus provides a rather simple but clear-cut example, where the chemical bonding picture is significantly changed by relativistic effect, demonstrating the modified periodic law in heavy-element chemistry.
Temporal scaling of the growth dependent optical properties of microalgae
NASA Astrophysics Data System (ADS)
Zhao, J. M.; Ma, C. Y.; Liu, L. H.
2018-07-01
The optical properties of microalgae are basic parameters for analyzing light field distribution in photobioreactors (PBRs). With the growth of microalgae cell, their optical properties will vary with growth time due to accumulation of pigment and lipid, cell division and metabolism. In this work, we report a temporal scaling behavior of the growth dependent optical properties of microalgae cell suspensions with both experimental and theoretical evidence presented. A new concept, the temporal scaling function (TSF), defined as the ratio of absorption or scattering cross-sections at growth phase to that at stationary phase, is introduced to characterize the temporal scaling behavior. The temporal evolution and temporal scaling characteristics of the absorption and scattering cross-sections of three example microalgae species, Chlorella vulgaris, Chlorella pyrenoidosa, and Chlorella protothecoides, were experimentally studied at spectral range 380-850 nm. It is shown that the TSFs of the absorption and scattering cross-sections for different microalgae species are approximately constant at different wavelength, which confirms theoretical predictions very well. With the aid of the temporal scaling relation, the optical properties at any growth time can be calculated based on those measured at stationary phase, hence opens a new way to determine the time-dependent optical properties of microalgae. The findings of this work will help the understanding of time dependent optical properties of microalgae and facilitate their applications in light field analysis in PBRs design.
Adaptations in a hierarchical food web of southeastern Lake Michigan
Krause, Ann E.; Frank, Ken A.; Jones, Michael L.; Nalepa, Thomas F.; Barbiero, Richard P.; Madenjian, Charles P.; Agy, Megan; Evans, Marlene S.; Taylor, William W.; Mason, Doran M.; Léonard, Nancy J.
2009-01-01
Two issues in ecological network theory are: (1) how to construct an ecological network model and (2) how do entire networks (as opposed to individual species) adapt to changing conditions? We present a novel method for constructing an ecological network model for the food web of southeastern Lake Michigan (USA) and we identify changes in key system properties that are large relative to their uncertainty as this ecological network adapts from one time point to a second time point in response to multiple perturbations. To construct our food web for southeastern Lake Michigan, we followed the list of seven recommendations outlined in Cohen et al. [Cohen, J.E., et al., 1993. Improving food webs. Ecology 74, 252–258] for improving food webs. We explored two inter-related extensions of hierarchical system theory with our food web; the first one was that subsystems react to perturbations independently in the short-term and the second one was that a system's properties change at a slower rate than its subsystems’ properties. We used Shannon's equations to provide quantitative versions of the basic food web properties: number of prey, number of predators, number of feeding links, and connectance (or density). We then compared these properties between the two time-periods by developing distributions of each property for each time period that took uncertainty about the property into account. We compared these distributions, and concluded that non-overlapping distributions indicated changes in these properties that were large relative to their uncertainty. Two subsystems were identified within our food web system structure (p < 0.001). One subsystem had more non-overlapping distributions in food web properties between Time 1 and Time 2 than the other subsystem. The overall system had all overlapping distributions in food web properties between Time 1 and Time 2. These results supported both extensions of hierarchical systems theory. Interestingly, the subsystem with more non-overlapping distributions in food web properties was the subsystem that contained primarily benthic taxa, contrary to expectations that the identified major perturbations (lower phosphorous inputs and invasive species) would more greatly affect the subsystem containing primarily pelagic taxa. Future food-web research should employ rigorous statistical analysis and incorporate uncertainty in food web properties for a better understanding of how ecological networks adapt.
USDA-ARS?s Scientific Manuscript database
Simulations of soil water flow are often carried out with parameters estimated using pedotransfer functions (PTFs), which are empirical relationships between the soil hydraulic properties and more easily obtainable basic soil properties available, for example, from soil surveys. The use of pedotrans...
Code of Federal Regulations, 2013 CFR
2013-07-01
... has statutory authority to vest title in the recipient without further obligation to the Federal Government. An example of exempt property authority is contained in the Federal Grant and Cooperative Agreement Act (31 U.S.C. 6306), for property acquired under an award to conduct basic or applied research by...
Code of Federal Regulations, 2010 CFR
2010-07-01
... has statutory authority to vest title in the recipient without further obligation to the Federal Government. An example of exempt property authority is contained in the Federal Grant and Cooperative Agreement Act (31 U.S.C. 6306), for property acquired under an award to conduct basic or applied research by...
Code of Federal Regulations, 2012 CFR
2012-07-01
... has statutory authority to vest title in the recipient without further obligation to the Federal Government. An example of exempt property authority is contained in the Federal Grant and Cooperative Agreement Act (31 U.S.C. 6306), for property acquired under an award to conduct basic or applied research by...
Seven Things a Principal Should Know about School Finance.
ERIC Educational Resources Information Center
Sharp, William L.
1994-01-01
Secondary school principals should understand school finance basics, including property tax components (tax base, assessment practice, and tax rate); allowable tax reductions and exemptions; common arguments against the property tax; cost and valuation per pupil formulas; educational equity arguments; state foundation programs; and various types…
Relation between quality and production cost for pure biodiesel bases on the mixes of raw materials
NASA Astrophysics Data System (ADS)
Tsanaktsidis, C. G.; Spinthiropoulos, K. G.; Guliyev, Fariz; Dimitriou, D.; Euthaltsidou, K.; Tzilantonis, G. T.
2016-08-01
Nowadays biodiesel has become more attractive because it is made from renewable resources. The main ingredients of industrial biodiesel are rap oil, sun oil, fat acid, olive oil cooked. In this study we verify that, the proportion of these components sets the qualitative composition and energy efficiency of the final product. Essential we link the raw materials (rap oil, sun oil, fat acid, olive oil cooked) used in the manufacture of industrial biodiesel the proportion of mixes, with the variation of physicochemical properties of biodiesel produced. According to the quantitative analysis we notice that the physiochemical properties which alter the value for example humidity, acidity, while a large number of physicochemical properties do not change their value depending on the ratio of raw materials in each mixture. The analysis of these changes seems that the presence of fat acids is negative for the quality of the mixture. From the analysis of the cost of the final mixtures that lower cost is achieved in the mixture was 10 and the highest cost was in the mixture 3. Based on a study of the cost of the mixtures can determine a basic relation between the quality and the cost of the final product.
On the concept of individual in ecology and evolution.
Metz, J A J
2013-03-01
Part of the art of theory building is to construct effective basic concepts, with a large reach and yet powerful as tools for getting at conclusions. The most basic concept of population biology is that of individual. An appropriately reengineered form of this concept has become the basis for the theories of structured populations and adaptive dynamics. By appropriately delimiting individuals, followed by defining their states as well as their environment, it become possible to construct the general population equations that were introduced and studied by Odo Diekmann and his collaborators. In this essay I argue for taking the properties that led to these successes as the defining characteristics of the concept of individual, delegating the properties classically invoked by philosophers to the secondary role of possible empirical indicators for the presence of those characteristics. The essay starts with putting in place as rule for effective concept engineering that one should go for relations that can be used as basis for deductive structure building rather than for perceived ontological essence. By analysing how we want to use it in the mathematical arguments I then build up a concept of individual, first for use in population dynamical considerations and then for use in evolutionary ones. These two concepts do not coincide, and neither do they on all occasions agree with common intuition-based usage.
Fluidic Spacetime and Representation of Fields in the Tri-Space Model of the Universe
NASA Astrophysics Data System (ADS)
Meholic, Gregory V.
2009-03-01
The Tri-Space Model of the universe (see Meholic, 1998 and 2004) is based upon the premise that the governing mathematics of special relativity describe a symmetrical continuum that supports not just one, but three, independent spacetimes each with a unique set of physical laws founded on the velocity v to light speed c ratio. These realms are subluminal space (where v/c<1), luminal spacetime (where v/c = 1), and superluminal space (where v/c>1) together comprising the `tri-space' universe. Although real, measurable mass can exist in both the sub- and superluminal spaces, the adjacent luminal spacetime shared by the two spaces is the realm in which all electromagnetic and gravitational fields exist. Determining the true nature of spacetime, and hence the true nature of the fundamental forces, has been the driving objective for ideas such as string theory and quantum mechanics. The Tri-Space approach, however, merges the basic premises of these ideas with the philosophy that the three spatial realms, especially luminal spacetime, can be represented as a quasi-fluidic continuum whose behavior can be approximated through modified classical fluid-dynamic analogies with flow field structure and fluid properties. If the fluid-like properties of spacetime can be sufficiently defined, then a graphical representation of the fundamental structure and characterization of the basic forces in nature can be developed.
Zhang, Guang; Liu, Changhong; Fan, Shoushan
2012-04-24
We directly measured the temperature dependence of thermal boundary resistances (TBRs) between multiwalled carbon nanotubes (MWCNTs) and different materials at elevated temperatures. Using the steady-state heat flow and the noncontacted measurement method, we could conveniently obtain the TBR-temperature relations. Our results indicate that the TBR-temperature relations vary distinctively with different contact materials when heating temperatures change from about 300 to 450 K; that is, the CNT-metal TBRs increase with increasing temperatures, whereas the CNT-insulator TBRs decrease. As a comparison, the TBRs between superaligned MWCNTs were measured and we found that the CNT-CNT TBRs remain basically unchanged as temperatures increase. We also found that the magnitude of TBRs between MWCNTs and different materials could differ from each other significantly. These results suggest that the choice of the right electrode may have an obvious influence on the thermal properties and other properties of the CNT-based devices. From another perspective, in view of some existing theoretical models about TBRs, our results support the validity of the molecular dynamics (MD) simulations in the calculation of CNT-solid TBRs at elevated temperatures.
Optics in engineering education: stimulating the interest of first-year students
NASA Astrophysics Data System (ADS)
Blanco-García, Jesús; Vazquez-Dorrío, Benito
2014-07-01
The work here presented deals with stimulating the interest for optics in first-year students of an Engineering School, which are not specifically following Optical Engineering studies. Optic-based technologies are nowadays wide spread, and growing, in almost all the engineering fields (from non destructive testing or alignments to power laser applications, fiber optic communications, memory devices, etc.). In general, the first year curriculum doesn't allow a detailed review of the main light properties, least its technical applications. We present in this paper our experience in showing some basic optic concepts and related technologies to the students of our school. Based on the fact that they have a very basic training in this branch of physics, we have designed a series of experimental demonstrations with the dual purpose of making them understand the basic principles of these technologies, and to know the potential of applications to engineering they offer. We assembled these experiments in the laboratory and invited students to pass to get to know them, giving them an explanation in which we focused on the possible range of application of each technique. The response was very good, not only by the number of students who attended the invitation but also by the interest demonstrated by their questions and opinions.
Nonlinear development and secondary instability of Gortler vortices in hypersonic flows
NASA Technical Reports Server (NTRS)
Fu, Yibin B.; Hall, Philip
1991-01-01
In a hypersonic boundary layer over a wall of variable curvature, the region most susceptible to Goertler vortices is the temperature adjustment layer over which the basic state temperature decreases monotonically to its free stream value. Except for a special wall curvature distribution, the evolution of Goertler vortices trapped in the temperature adjustment layer will in general be strongly affected by the boundary layer growth through the O(M sup 3/2) curvature of the basic state, where M is the free stream Mach number. Only when the local wavenumber becomes as large as of order M sup 3/8, do nonparallel effects become negligible in the determination of stability properties. In the latter case, Goertler vortices will be trapped in a thin layer of O(epsilon sup 1/2) thickness which is embedded in the temperature adjustment layer; here epsilon is the inverse of the local wavenumber. A weakly nonlinear theory is presented in which the initial nonlinear development of Goertler vortices in the neighborhood of the neutral position is studied and two coupled evolution equations are derived. From these, it can be determined whether the vortices are decaying or growing depending on the sign of a constant which is related to wall curvature and the basic state temperature.
Application of Platelet-Rich Plasma to Disorders of the Knee Joint
Mandelbaum, Bert R.; McIlwraith, C. Wayne
2013-01-01
Importance. The promising therapeutic potential and regenerative properties of platelet-rich plasma (PRP) have rapidly led to its widespread clinical use in musculoskeletal injury and disease. Although the basic scientific rationale surrounding PRP products is compelling, the clinical application has outpaced the research. Objective. The purpose of this article is to examine the current concepts around the basic science of PRP application, different preparation systems, and clinical application of PRP in disorders in the knee. Evidence Acquisition. A systematic search of PubMed for studies that evaluated the basic science, preparation and clinical application of platelet concentrates was performed. The search used terms, including platelet-rich plasma or PRP preparation, activation, use in the knee, cartilage, ligament, and meniscus. Studies found in the initial search and related studies were reviewed. Results. A comprehensive review of the literature supports the potential use of PRP both nonoperatively and intraoperatively, but highlights the absence of large clinical studies and the lack of standardization between method, product, and clinical efficacy. Conclusions and Relevance. In addition to the call for more randomized, controlled clinical studies to assess the clinical effect of PRP, at this point, it is necessary to investigate PRP product composition and eventually have the ability to tailor the therapeutic product for specific indications. PMID:26069674
Properties of a certain stochastic dynamical system, channel polarization, and polar codes
NASA Astrophysics Data System (ADS)
Tanaka, Toshiyuki
2010-06-01
A new family of codes, called polar codes, has recently been proposed by Arikan. Polar codes are of theoretical importance because they are provably capacity achieving with low-complexity encoding and decoding. We first discuss basic properties of a certain stochastic dynamical system, on the basis of which properties of channel polarization and polar codes are reviewed, with emphasis on our recent results.
The pore properties of human nociceptor channel TRPA1 evaluated in single channel recordings
Bobkov, Y.V.; Corey, E.A.; Ache, B.W.
2011-01-01
TRPA channels detect stimuli of different sensory modalities, including a broad spectrum of chemosensory stimuli, noxious stimuli associated with tissue damage and inflammation, mechanical stimuli, and thermal stimuli. Despite a growing understanding of potential modulators, agonists, and antagonists for these channels, the exact mechanisms of channel regulation and activation remain mostly unknown or controversial and widely debated. Relatively little is also known about the basic biophysical parameters of both native and heterologously expressed TRPA channels. Here we use conventional single channel inside-out and outside-out patch recording from the human TRPA1 channel transiently expressed in human embryonic kidney 293T cells to characterize the selectivity of the channel for inorganic mono-/divalent and organic monovalent cations in the presence of Allylisothiocyanate (AITC). We show the relative permeability of the hTRPA1 channel to inorganic cations to be: Ca2+(5.1)>Ba2+(3.5)>Mg2+(2.8)>NH4+(1.5)>Li+(1.2)>Na+(1.0)≥K+(0.98)≥Rb+(0.98)>Cs+(0.95); and to organic cations: Na+(1.0)≥Dimethylamine(0.99)>Trimethylamine(0.7)>Tetramethylammonium(0.4)>N-methyl-d-glucamine(0.1). Activation of the hTRPA1 channels by AITC appears to recruit the channels to a conformational state with an increased permeability to large organic cations. The pore of the channels in this state can be characterized as dilated by approximately 1–2.5A. These findings provide important insight into the basic fundamental properties and function of TRPA1 channels in general and human TRPA1 channel in particular. PMID:21195050
NASA Astrophysics Data System (ADS)
Pekor, Christopher Michael
Porous ceramics can be divided into three separate classes based on their pore size: microporous ceramics with pores less than 2 nm, mesoporous ceramics with pores in the range of 2--50 nm and macroporous ceramics with pores that are greater than 50 nm. In particular, macroporous ceramics are used in a variety of applications such as refractories, molten metal filtration, diesel particulate filters, heterogeneous catalyst supports and biomedical scaffolds. Freeze casting is a novel method used to create macroporous ceramics. In this method growing ice crystals act as a template for the pores and are solidified, often directionally, through a ceramic dispersion and removed from the green body through a freeze drying procedure. This method has attracted some attention over the past few years due to its relative simplicity, flexibility and environmental friendliness. On top of this freeze casting is capable of producing materials with high pore volume fractions, which is an advantage over processing by packing and necking of particles, where the pore volume fraction is typically less than 50%. Many of the basic processing variables that affect the freeze cast microstructure, such as the temperature gradient, interfacial velocity and solid loading of the dispersion have been well established in the literature. On the other hand, areas such as the effect of additives on the microstructure and mechanical properties have not been covered in great detail. In this study the concept of constitutional supercooling from basic solidification theory is used to explain the effects of two water-soluble polymers, polyethylene glycol and polyvinyl alcohol, on the microstructure of freeze cast alumina ceramics. In addition, changes in the observed microstructure will be related to experimentally determined values of permeability and compressive strength.
Chitnis, Dipti; Kalyani, N Thejo; Dhoble, Sanjay
2018-05-31
We report on the comprehension of novel europium activated hybrid organic Eu(dmh) 3 phen (Eu: europium, dmh: 2,6-dimethyl-3,5-heptanedione, phen: 1,10 phenanthroline) organo-metallic complexes, synthesized at different pH values by the solution technique. Photo physical properties of these complexes in various basic and acidic solvents were probed by UV-vis optical absorption and photoluminescence (PL) spectra. Minute differences in optical absorption peaks with variable optical densities were encountered with the variation in solvent from basic (chloroform, toluene, tetrahydrofuran) to acidic (acetic acid) media, revealing bathochromic shift in the absorption peaks. The PL spectra of the complex in various acidic and basic organic solvents revealed the position of the emission peak at 613 nm irrespective of the changes in solvents whereas the excitation spectrum almost matched with that of the UV-vis absorption data. The optical density was found to be maximum for the complex with pH 7.0 whereas it gradually decreased when pH was lowered to 6.0 or raised to 8.0 at an interval of 0.5, demonstrating its pH sensitive nature. Several spectroscopic parameters related to probability of transition such as absorbance A(λ), Napierian absorption coefficient α(λ), molecular absorption cross-section σ(λ), radiative lifetime (τ 0 ) and oscillator strength (f) were calculated from UV-vis spectra. The relative intensity ratio (R-ratio), calculated from the emission spectra was found to be almost the same in all the organic solvents. The optical energy gap, calculated for the designed complexes were found to be well in accordance with the ideal acceptance value of energy gap of the emissive materials used for fabrication of red organic light-emitting diode (OLED). The relation between Stoke's shift and solvent polarity function was established by Lippert-Mataga plot. This remarkable independence of the electronic absorption spectra of Eu complexes on the nature of the solvent with unique emission wavelength furnishes its potential to serve as a red light emitter for solution processed OLEDs, display panels and solid-state lighting. Copyright © 2018 John Wiley & Sons, Ltd.
Lin, Feng; Tong, Xin; Wang, Yanan; Bao, Jiming; Wang, Zhiming M
2015-12-01
Graphene oxide (GO) liquid crystals (LCs) are macroscopically ordered GO flakes dispersed in water or polar organic solvents. Since the first report in 2011, GO LCs have attracted considerable attention for their basic properties and potential device applications. In this review, we summarize recent developments and present a comprehensive understanding of GO LCs via many aspects ranging from the exfoliation of GO flakes from graphite, to phases and phase transitions under various conditions, the orientational responses of GO under external magnetic and electric fields, and finally Kerr effect and display applications. The emphasis is placed on the unique and basic properties of GO and their ordered assembly. We will also discuss challenges and issues that need to be overcome in order to gain a more fundamental understanding and exploit full device potentials of GO LCs.
Learning atoms for materials discovery.
Zhou, Quan; Tang, Peizhe; Liu, Shenxiu; Pan, Jinbo; Yan, Qimin; Zhang, Shou-Cheng
2018-06-26
Exciting advances have been made in artificial intelligence (AI) during recent decades. Among them, applications of machine learning (ML) and deep learning techniques brought human-competitive performances in various tasks of fields, including image recognition, speech recognition, and natural language understanding. Even in Go, the ancient game of profound complexity, the AI player has already beat human world champions convincingly with and without learning from the human. In this work, we show that our unsupervised machines (Atom2Vec) can learn the basic properties of atoms by themselves from the extensive database of known compounds and materials. These learned properties are represented in terms of high-dimensional vectors, and clustering of atoms in vector space classifies them into meaningful groups consistent with human knowledge. We use the atom vectors as basic input units for neural networks and other ML models designed and trained to predict materials properties, which demonstrate significant accuracy. Copyright © 2018 the Author(s). Published by PNAS.
How to Achieve Fast Entrainment? The Timescale to Synchronization
Granada, Adrián E.; Herzel, Hanspeter
2009-01-01
Entrainment, where oscillators synchronize to an external signal, is ubiquitous in nature. The transient time leading to entrainment plays a major role in many biological processes. Our goal is to unveil the specific dynamics that leads to fast entrainment. By studying a generic model, we characterize the transient time to entrainment and show how it is governed by two basic properties of an oscillator: the radial relaxation time and the phase velocity distribution around the limit cycle. Those two basic properties are inherent in every oscillator. This concept can be applied to many biological systems to predict the average transient time to entrainment or to infer properties of the underlying oscillator from the observed transients. We found that both a sinusoidal oscillator with fast radial relaxation and a spike-like oscillator with slow radial relaxation give rise to fast entrainment. As an example, we discuss the jet-lag experiments in the mammalian circadian pacemaker. PMID:19774087
Influence of Additives on Masonry and Protective Paints’ Quality
NASA Astrophysics Data System (ADS)
Kostiunina, I. L.; Vyboishchik, A. V.
2017-11-01
The environment is one of main factors influencing the living conditions of urban population in Russia nowadays. One of the main drawbacks restraining the aesthetic improvement process of modern Russian cities is unsatisfactory protection of buildings from atmospheric phenomena. Moreover, industrial waste in modern industrial cities of Russia prevents a long-lasting decoration of urban buildings. The article presents an overview of the composition and physical properties of masonry paints applied in the Chelyabinsk region. The traditional technology of coatings obtaining is studied, the drawbacks of this technology are examined, the new materials and applications are offered. The influence of additives on the basic properties of masonry paints, viz. weather resistance, viscosity, hardness, cost, is considered. The application of new technologies utilizing industrial waste can solve the abovestated problem, which also, along with improving basic physical and chemical properties, will result in the cost reduction and the increase of the masonry paints hardness.
Influence of ingredients and chemical components on the quality of Chinese steamed bread.
Zhu, Fan
2014-11-15
Chinese steamed bread (CSB) is a staple food in China since ancient time. The basic ingredients include wheat flour, yeast/sourdough, and water. Current consumer trends urge the production of CSB on a large scale as well as the formulation of healthier CSB with specific nutritional benefits. This requires a better definition of the relationship between the properties of ingredients/chemical components and CSB quality. This review summarises the recent advances in understanding the roles of basic and optional ingredients and their chemical components in the appearance, textural, sensory, and shelf-life properties of CSB, and provides suggestions for further research to match the current trends. Copyright © 2014 Elsevier Ltd. All rights reserved.
Thermodynamic Properties of Low-Density {}^{132}Xe Gas in the Temperature Range 165-275 K
NASA Astrophysics Data System (ADS)
Akour, Abdulrahman
2018-01-01
The method of static fluctuation approximation was used to calculate selected thermodynamic properties (internal energy, entropy, energy capacity, and pressure) for xenon in a particularly low-temperature range (165-270 K) under different conditions. This integrated microscopic study started from an initial basic assumption as the main input. The basic assumption in this method was to replace the local field operator with its mean value, then numerically solve a closed set of nonlinear equations using an iterative method, considering the Hartree-Fock B2-type dispersion potential as the most appropriate potential for xenon. The results are in very good agreement with those of an ideal gas.
NASA Astrophysics Data System (ADS)
Foster, James J.; Temple, Shelby E.; How, Martin J.; Daly, Ilse M.; Sharkey, Camilla R.; Wilby, David; Roberts, Nicholas W.
2018-06-01
In "Polarisation vision: overcoming challenges of working with a property of light we barely see" (Foster et al. 2018) we provide a basic description of how Stokes parameters can be estimated and used to calculate the angle of polarisation (AoP).
ERIC Educational Resources Information Center
Hennessey, Maeghan N.; Terry, Robert; Martin, James E.; McConnell, Amber E.; Willis, Donna M.
2017-01-01
The researchers examined the theoretical factor structure fit and psychometric properties of the Transition Assessment and Goal Generator (TAGG). In the first study, 349 transition-aged students with disabilities, their special educators, and family members completed TAGG assessments, and using exploratory factor analysis (EFA)/confirmatory factor…
Starch and protein chemistry and functional properties
USDA-ARS?s Scientific Manuscript database
Starch and protein are the major constituents of all cereal grains and are an important source of nutrition for humans and animals. Worldwide, sorghum and the millets are basic food staples for millions of people and are important sources of animal feed, and in some cases fuel. The chemical properti...
36 CFR § 1210.2 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... statutory authority to vest title in the recipient without further obligation to the Federal Government. An example of exempt property authority is contained in the Federal Grant and Cooperative Agreement Act (31 U.S.C. 6306), for property acquired under an award to conduct basic or applied research by a non...
Code of Federal Regulations, 2010 CFR
2010-07-01
... statutory authority to vest title in the recipient without further obligation to the Federal Government. An example of exempt property authority is contained in the Federal Grant and Cooperative Agreement Act (31 U.S.C. 6306), for property acquired under an award to conduct basic or applied research by a non...
Code of Federal Regulations, 2013 CFR
2013-04-01
... SSA has statutory authority to vest title in the recipient without further obligation to the Federal Government. An example of exempt property authority is contained in the Federal Grant and Cooperative Agreement Act (31 U.S.C. 6306), for property acquired under an award to conduct basic or applied research by...
Code of Federal Regulations, 2011 CFR
2011-07-01
... statutory authority to vest title in the recipient without further obligation to the Federal Government. An example of exempt property authority is contained in the Federal Grant and Cooperative Agreement Act (31 U.S.C. 6306), for property acquired under an award to conduct basic or applied research by a non...
Code of Federal Regulations, 2012 CFR
2012-07-01
... statutory authority to vest title in the recipient without further obligation to the Federal Government. An example of exempt property authority is contained in the Federal Grant and Cooperative Agreement Act (31 U.S.C. 6306), for property acquired under an award to conduct basic or applied research by a non...
Code of Federal Regulations, 2014 CFR
2014-04-01
... agency has statutory authority to vest title in the recipient without further obligation to the Federal Government. An example of exempt property authority is contained in the Federal Grant and Cooperative Agreement Act (31 U.S.C. 6306), for property acquired under an award to conduct basic or applied research by...
Code of Federal Regulations, 2012 CFR
2012-04-01
... SSA has statutory authority to vest title in the recipient without further obligation to the Federal Government. An example of exempt property authority is contained in the Federal Grant and Cooperative Agreement Act (31 U.S.C. 6306), for property acquired under an award to conduct basic or applied research by...
Code of Federal Regulations, 2012 CFR
2012-04-01
... agency has statutory authority to vest title in the recipient without further obligation to the Federal Government. An example of exempt property authority is contained in the Federal Grant and Cooperative Agreement Act (31 U.S.C. 6306), for property acquired under an award to conduct basic or applied research by...
Code of Federal Regulations, 2010 CFR
2010-04-01
... agency has statutory authority to vest title in the recipient without further obligation to the Federal Government. An example of exempt property authority is contained in the Federal Grant and Cooperative Agreement Act (31 U.S.C. 6306), for property acquired under an award to conduct basic or applied research by...
Code of Federal Regulations, 2011 CFR
2011-04-01
... SSA has statutory authority to vest title in the recipient without further obligation to the Federal Government. An example of exempt property authority is contained in the Federal Grant and Cooperative Agreement Act (31 U.S.C. 6306), for property acquired under an award to conduct basic or applied research by...
Code of Federal Regulations, 2013 CFR
2013-04-01
... agency has statutory authority to vest title in the recipient without further obligation to the Federal Government. An example of exempt property authority is contained in the Federal Grant and Cooperative Agreement Act (31 U.S.C. 6306), for property acquired under an award to conduct basic or applied research by...
Code of Federal Regulations, 2014 CFR
2014-04-01
... SSA has statutory authority to vest title in the recipient without further obligation to the Federal Government. An example of exempt property authority is contained in the Federal Grant and Cooperative Agreement Act (31 U.S.C. 6306), for property acquired under an award to conduct basic or applied research by...
Code of Federal Regulations, 2011 CFR
2011-04-01
... agency has statutory authority to vest title in the recipient without further obligation to the Federal Government. An example of exempt property authority is contained in the Federal Grant and Cooperative Agreement Act (31 U.S.C. 6306), for property acquired under an award to conduct basic or applied research by...
Code of Federal Regulations, 2010 CFR
2010-04-01
... SSA has statutory authority to vest title in the recipient without further obligation to the Federal Government. An example of exempt property authority is contained in the Federal Grant and Cooperative Agreement Act (31 U.S.C. 6306), for property acquired under an award to conduct basic or applied research by...
49 CFR 24.102 - Basic acquisition policies.
Code of Federal Regulations, 2010 CFR
2010-10-01
... waiver valuation must have sufficient understanding of the local real estate market to be qualified to... the real property. The amount shall not be less than the approved appraisal of the fair market value... property, indicates the need for new appraisal information, or if a significant delay has occurred since...
Superconductivity of magnesium diboride
Bud’ko, Sergey L.; Canfield, Paul C.
2015-07-15
Over the past 14 years MgB 2 has gone from a startling discovery to a promising, applied superconductor. In our article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. Specifically, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.
Factor Structure and Basic Psychometric Properties of the "Transition Assessment and Goal Generator"
ERIC Educational Resources Information Center
Hennessey, Maeghan N.; Terry, Robert; Martin, James E.; McConnell, Amber E.; Willis, Donna M.
2018-01-01
We examined the theoretical factor structure fit and psychometric properties of the "Transition Assessment and Goal Generator" (TAGG). In the first study, 349 transition-aged students with disabilities, their special educators, and family members completed TAGG assessments, and using exploratory factor analysis (EFA)/confirmatory factor…
REGIONAL SOIL WATER RETENTION IN THE CONTIGUOUS US: SOURCES OF VARIABILITY AND VOLCANIC SOIL EFFECTS
Water retention of mineral soil is often well predicted using algorithms (pedotransfer functions) with basic soil properties but the spatial variability of these properties has not been well characterized. A further source of uncertainty is that water retention by volcanic soils...
basic research on the optical and electronic properties of semiconductor alloys for photovoltaic and , Berkeley in 2008, where she studied the optical and electronic properties of highly mismatched semiconductor alloys. She came to NREL as a postdoctoral researcher in the Silicon Materials and Devices group
NASA Astrophysics Data System (ADS)
Patra, Tarak; Yang, Junhong; Cheng, Yiz; Simmons, David
Polymeric ionic liquids (PILs) are very promising materials to enable more environmentally stable high density energy storage devices. Realization of PILs providing high environmental and mechanical stability while maximizing ion conductivity would be accelerated by an improved molecular level understanding of their structure and dynamics. Extensive evidence suggests that both mechanical properties and ion conductivity in anhydrous PILs are intimately related to the PIL's glass formation behavior. This represents a major challenge to the rational design of these materials, given that the basic nature of glass formation and its connection to molecular properties remains a substantial open question in polymer and condensed matter physics. Here we describe coarse-grained and atomistic molecular dynamics simulations probing the relationship between PIL architecture and interactions, glass formation behavior, and ion transport characteristics. These studies provide guidance towards the design of PILs with improved stability and ion conductivity for future energy applications.
NASA Astrophysics Data System (ADS)
Sokolova, Tatiana S.; Dorogokupets, Peter I.; Dymshits, Anna M.; Danilov, Boris S.; Litasov, Konstantin D.
2016-09-01
We present Microsoft Excel spreadsheets for calculation of thermodynamic functions and P-V-T properties of MgO, diamond and 9 metals, Al, Cu, Ag, Au, Pt, Nb, Ta, Mo, and W, depending on temperature and volume or temperature and pressure. The spreadsheets include the most common pressure markers used in in situ experiments with diamond anvil cell and multianvil techniques. The calculations are based on the equation of state formalism via the Helmholtz free energy. The program was developed using Visual Basic for Applications in Microsoft Excel and is a time-efficient tool to evaluate volume, pressure and other thermodynamic functions using T-P and T-V data only as input parameters. This application is aimed to solve practical issues of high pressure experiments in geosciences and mineral physics.
Thangaraj, Harry; Reljic, Rajko
2009-06-01
Current TB drug development is beset with many problems. There is a perceived lack of commercial return on investment, as the vast majority of TB patients come from impoverished areas of the world. Clinical trials for new TB drugs are complex, protracted and very expensive. Therefore, the development of new anti-tuberculosis drugs requires simultaneous forward planning of the design of the trials that will be required for licensing purposes. In this article we briefly review the current state of new TB drug development and discuss issues related to intellectual property (IP), with a special emphasis on how IP can facilitate rather than hinder the development of better TB drugs. We also list and discuss the major patent applications that underpin TB drugs that have entered prominent clinical trials and additional applications that were filed over the last five years for drugs resulting from basic upstream research.
Adsorption of aromatic compounds from the biodegradation of azo dyes on activated carbon
NASA Astrophysics Data System (ADS)
Faria, P. C. C.; Órfão, J. J. M.; Figueiredo, J. L.; Pereira, M. F. R.
2008-03-01
The adsorption of three selected aromatic compounds (aniline, sulfanilic acid and benzenesulfonic acid) on activated carbons with different surface chemical properties was investigated at different solution pH. A fairly basic commercial activated carbon was modified by means of chemical treatment with HNO 3, yielding an acid activated carbon. The textural properties of this sample were not significantly changed after the oxidation treatment. Equilibrium isotherms of the selected compounds on the mentioned samples were obtained and the results were discussed in relation to their surface chemistry. The influence of electrostatic and dispersive interactions involved in the uptake of the compounds studied was evaluated. The Freundlich model was used to fit the experimental data. Higher uptakes are attained when the compounds are present in their molecular form. In general, adsorption was disfavoured by the introduction of oxygen-containing groups on the surface of the activated carbon.
Measurement and analysis of critical crack tip processes during fatigue crack growth
NASA Technical Reports Server (NTRS)
Davidson, D. L.; Hudak, S. J.; Dexter, R. J.
1985-01-01
The mechanics of fatigue crack growth under constant-amplitudes and variable-amplitude loading were examined. Critical loading histories involving relatively simple overload and overload/underload cycles were studied to provide a basic understanding of the underlying physical processes controlling crack growth. The material used for this study was 7091-T7E69, a powder metallurgy aluminum alloy. Local crack-tip parameters were measured at various times before, during, and after the overloads, these include crack-tip opening loads and displacements, and crack-tip strain fields. The latter were useed, in combination with the materials cyclic and monotonic stress-strain properties, to compute crack-tip residual stresses. The experimental results are also compared with analytical predictions obtained using the FAST-2 computer code. The sensitivity of the analytical model to constant-amplitude fatigue crack growth rate properties and to through-thickness constrain are studied.
The Faces in Infant-Perspective Scenes Change over the First Year of Life
Jayaraman, Swapnaa; Fausey, Caitlin M.; Smith, Linda B.
2015-01-01
Mature face perception has its origins in the face experiences of infants. However, little is known about the basic statistics of faces in early visual environments. We used head cameras to capture and analyze over 72,000 infant-perspective scenes from 22 infants aged 1-11 months as they engaged in daily activities. The frequency of faces in these scenes declined markedly with age: for the youngest infants, faces were present 15 minutes in every waking hour but only 5 minutes for the oldest infants. In general, the available faces were well characterized by three properties: (1) they belonged to relatively few individuals; (2) they were close and visually large; and (3) they presented views showing both eyes. These three properties most strongly characterized the face corpora of our youngest infants and constitute environmental constraints on the early development of the visual system. PMID:26016988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hushur, Anwar; Manghnani, Murli H.; Werheit, Helmut
Single-crystal B4.3C boron carbide is investigated concerning the pressure-dependence of optical properties and of Raman-active phonons up to ~70 GPa. The high concentration of structural defects determining the electronic properties of boron carbide at ambient conditions initially decrease and finally vanish with pressure increasing. We obtain this immediately from transparency photos, allowing to estimate the pressure-dependent variation of the absorption edge rapidly increasing around 55 GPa. Glass-like transparency at pressures exceeding 60 GPa indicate that the width of the band exceeds ~3.1 eV thus making boron carbide a wide-gap semiconductor. Furthermore, the spectra of Raman–active phonons indicate a pressure-dependent phasemore » transition in single-crystal natB4.3C boron carbide near 35 GPa., particularly related to structural changes in connection with the C-B-C chains, while the basic icosahedral structure remains largely unaffected.« less
Watersheds in disordered media
NASA Astrophysics Data System (ADS)
Andrade, Joséi, Jr.; Araújo, Nuno; Herrmann, Hans; Schrenk, Julian
2015-02-01
What is the best way to divide a rugged landscape? Since ancient times, watersheds separating adjacent water systems that flow, for example, toward different seas, have been used to delimit boundaries. Interestingly, serious and even tense border disputes between countries have relied on the subtle geometrical properties of these tortuous lines. For instance, slight and even anthropogenic modifications of landscapes can produce large changes in a watershed, and the effects can be highly nonlocal. Although the watershed concept arises naturally in geomorphology, where it plays a fundamental role in water management, landslide, and flood prevention, it also has important applications in seemingly unrelated fields such as image processing and medicine. Despite the far-reaching consequences of the scaling properties on watershed-related hydrological and political issues, it was only recently that a more profound and revealing connection has been disclosed between the concept of watershed and statistical physics of disordered systems. This review initially surveys the origin and definition of a watershed line in a geomorphological framework to subsequently introduce its basic geometrical and physical properties. Results on statistical properties of watersheds obtained from artificial model landscapes generated with long-range correlations are presented and shown to be in good qualitative and quantitative agreement with real landscapes.
Nano-Star-Shaped Polymers for Drug Delivery Applications.
Yang, Da-Peng; Oo, Ma Nwe Nwe Linn; Deen, Gulam Roshan; Li, Zibiao; Loh, Xian Jun
2017-11-01
With the advancement of polymer engineering, complex star-shaped polymer architectures can be synthesized with ease, bringing about a host of unique properties and applications. The polymer arms can be functionalized with different chemical groups to fine-tune the response behavior or be endowed with targeting ligands or stimuli responsive moieties to control its physicochemical behavior and self-organization in solution. Rheological properties of these solutions can be modulated, which also facilitates the control of the diffusion of the drug from these star-based nanocarriers. However, these star-shaped polymers designed for drug delivery are still in a very early stage of development. Due to the sheer diversity of macromolecules that can take on the star architectures and the various combinations of functional groups that can be cross-linked together, there remain many structure-property relationships which have yet to be fully established. This review aims to provide an introductory perspective on the basic synthetic methods of star-shaped polymers, the properties which can be controlled by the unique architecture, and also recent advances in drug delivery applications related to these star candidates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Machine learning properties of materials and molecules with entropy-regularized kernels
NASA Astrophysics Data System (ADS)
Ceriotti, Michele; Bartók, Albert; CsáNyi, GáBor; de, Sandip
Application of machine-learning methods to physics, chemistry and materials science is gaining traction as a strategy to obtain accurate predictions of the properties of matter at a fraction of the typical cost of quantum mechanical electronic structure calculations. In this endeavor, one can leverage general-purpose frameworks for supervised-learning. It is however very important that the input data - for instance the positions of atoms in a molecule or solid - is processed into a form that reflects all the underlying physical symmetries of the problem, and that possesses the regularity properties that are required by machine-learning algorithms. Here we introduce a general strategy to build a representation of this kind. We will start from existing approaches to compare local environments (basically, groups of atoms), and combine them using techniques borrowed from optimal transport theory, discussing the relation between this idea and additive energy decompositions. We will present a few examples demonstrating the potential of this approach as a tool to predict molecular and materials' properties with an accuracy on par with state-of-the-art electronic structure methods. MARVEL NCCR (Swiss National Science Foundation) and ERC StG HBMAP (European Research Council, G.A. 677013).
Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates.
Wang, Yipei; Ma, Yaoguang; Guo, Xin; Tong, Limin
2012-08-13
Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates are investigated using a finite-element method. Au and Ag are selected as plasmonic materials for nanowire waveguides with diameters down to 5-nm-level. Typical dielectric materials with relatively low to high refractive indices, including magnesium fluoride (MgF2), silica (SiO2), indium tin oxide (ITO) and titanium dioxide (TiO2), are used as supporting substrates. Basic waveguiding properties, including propagation constants, power distributions, effective mode areas, propagation distances and losses are obtained at the typical plasmonic resonance wavelength of 660 nm. Compared to that of a freestanding nanowire, the mode area of a substrate-supported nanowire could be much smaller while maintaining an acceptable propagation length. For example, the mode area and propagation length of a 100-nm-diameter Ag nanowire with a MgF2 substrate are about 0.004 μm2 and 3.4 μm, respectively. The dependences of waveguiding properties on geometric and material parameters of the nanowire-substrate system are also provided. Our results may provide valuable references for waveguiding dielectric-supported metal nanowires for practical applications.
Structure and Properties of Energetic Materials
1992-12-02
basic research is needed. First, a quantitative study of friction effects on propellants with varying particle sizes can be conducted. Second, using...Army position, policy, or decision, unless so designated by other documentation. Mat. Res. Soc. Symp. Proc. Vol. 296. t 1993 Materials Research Society...further observations and analysis. INTRODUCTION Recently, a study group sponsored by the Army Research Office developed and published an overall basic
Vibration-based health monitoring and model refinement of civil engineering structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrar, C.R.; Doebling, S.W.
1997-10-01
Damage or fault detection, as determined by changes in the dynamic properties of structures, is a subject that has received considerable attention in the technical literature beginning approximately 30 years ago. The basic idea is that changes in the structure`s properties, primarily stiffness, will alter the dynamic properties of the structure such as resonant frequencies and mode shapes, and properties derived from these quantities such as modal-based flexibility. Recently, this technology has been investigated for applications to health monitoring of large civil engineering structures. This presentation will discuss such a study undertaken by engineers from New Mexico Sate University, Sandiamore » National Laboratory and Los Alamos National Laboratory. Experimental modal analyses were performed in an undamaged interstate highway bridge and immediately after four successively more severe damage cases were inflicted in the main girder of the structure. Results of these tests provide insight into the abilities of modal-based damage ID methods to identify damage and the current limitations of this technology. Closely related topics that will be discussed are the use of modal properties to validate computer models of the structure, the use of these computer models in the damage detection process, and the general lack of experimental investigation of large civil engineering structures.« less
Jin, Shupei; Qiao, Yinghua; Xing, Jun
2018-06-01
In this study, a ternary mixed-mode silica sorbent (TMSS) with octamethylene, carboxyl, and amino groups was prepared via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction and a subsequent reduction of azide to primary amine. While used in solid-phase extraction (SPE), the retention behavior of TMSS towards a total of nine kinds of basic, neutral, and acidic drugs was investigated in detail. The results revealed that hydrophobic, ion-exchange interaction, and electrostatic repulsion between TMSS and the analytes were closely related to the retention behavior of TMSS. Besides, the log K ow value of the analyte was also a factor influencing the retention behavior of analytes on TMSS. The nine analytes could be retained by TMSS simultaneously and then, were eluted into two fractions according to the acid-base property of the analytes for further determinations. The acidic and neutral analytes were in one fraction, and the basic ones in the other fraction. When used to treat the human serum spiked with the nine drugs, TMSS offered higher recoveries than BakerBond CBA and comparable recoveries to Oasis WCX. It should be noted TMSS had better purifying capability for human serum than Oasis WCX. Under the optimized SPE conditions, a method of SPE hyphenated to high-performance liquid chromatography-ultraviolet detection (HPLC-UV) for determination of the basic, neutral, and acidic drugs spiked in human serum was established. For the nine drugs, the linear ranges were all between 5.0 and 1000 μg L -1 with correlation coefficients (R 2 ) above 0.9990, and the limits of detection (LODs) were in the range of 0.8-2.3 μg L -1 . The intra-day and inter-day relative standard deviations (RSDs) were less than 5.3 and 8.8%, respectively. Graphical abstract Treating drugs in human serum by SPE with ternary mixed-mode silica sorbent.
Roles of Chlorogenic Acid on Regulating Glucose and Lipids Metabolism: A Review
Meng, Shengxi; Cao, Jianmei; Feng, Qin; Peng, Jinghua; Hu, Yiyang
2013-01-01
Intracellular glucose and lipid metabolic homeostasis is vital for maintaining basic life activities of a cell or an organism. Glucose and lipid metabolic disorders are closely related with the occurrence and progression of diabetes, obesity, hepatic steatosis, cardiovascular disease, and cancer. Chlorogenic acid (CGA), one of the most abundant polyphenol compounds in the human diet, is a group of phenolic secondary metabolites produced by certain plant species and is an important component of coffee. Accumulating evidence has demonstrated that CGA exerts many biological properties, including antibacterial, antioxidant, and anticarcinogenic activities. Recently, the roles and applications of CGA, particularly in relation to glucose and lipid metabolism, have been highlighted. This review addresses current studies investigating the roles of CGA in glucose and lipid metabolism. PMID:24062792
Ikemoto, Satoshi; Bonci, Antonello
2013-01-01
In recent years, neuroscientists have produced profound conceptual and mechanistic advances on the neurocircuitry of reward and substance use disorders. Here, we will provide a brief review of intracranial drug self-administration and optogenetic self-stimulation studies that identified brain regions and neurotransmitter systems involved in drug- and reward-related behaviors. Also discussed is a theoretical framework that helps to understand the functional properties of the circuitry involved in these behaviors. The circuitry appears to be homeostatically regulated and mediate anticipatory processes that regulate behavioral interaction with the environment in response to salient stimuli. That is, abused drugs or, at least, some may act on basic motivation and mood processes, regulating behavior-environment interaction. Optogenetics and related technologies have begun to uncover detailed circuit mechanisms linking key brain regions in which abused drugs act for rewarding effects. PMID:23664810
Effect of oxidation on transport properties of zirconium-1% niobium alloy
NASA Astrophysics Data System (ADS)
Peletsky, V. E.; Musayeva, Z. A.
1995-11-01
The thermal conductivity and electrical resistivity of zirconium-1 wt% niobium samples were measured before and after the process of their oxidation in air. A special procedure was used to dissolve the gas and to smooth out its concentration in the alloy. The basic experiments were performed under high vacuum under steady-state temperature conditions. The temperature range was 300 1600 K. for the pure alloy and 300 1100 K for the samples containing oxygen. It was found that the thermal conductivity—oxygen concentration relation reverses its sign from negative at low and middle temperatures to positive at temperatures above 900 K. The relation between the electrical resistivity and the oxygen content does not show this feature. The Lorenz function was found to have an anomalous temperature dependence.
Neuronal integration of dynamic sources: Bayesian learning and Bayesian inference.
Siegelmann, Hava T; Holzman, Lars E
2010-09-01
One of the brain's most basic functions is integrating sensory data from diverse sources. This ability causes us to question whether the neural system is computationally capable of intelligently integrating data, not only when sources have known, fixed relative dependencies but also when it must determine such relative weightings based on dynamic conditions, and then use these learned weightings to accurately infer information about the world. We suggest that the brain is, in fact, fully capable of computing this parallel task in a single network and describe a neural inspired circuit with this property. Our implementation suggests the possibility that evidence learning requires a more complex organization of the network than was previously assumed, where neurons have different specialties, whose emergence brings the desired adaptivity seen in human online inference.
Removal of basic dye (methylene blue) from wastewaters utilizing beer brewery waste.
Tsai, Wen-Tien; Hsu, Hsin-Chieh; Su, Ting-Yi; Lin, Keng-Yu; Lin, Chien-Ming
2008-06-15
In the work, the beer brewery waste has been shown to be a low-cost adsorbent for the removal of basic dye from the aqueous solution as compared to its precursor (i.e., diatomite) based on its physical and chemical characterizations including surface area, pore volume, scanning electron microscopy (SEM), and non-mineral elemental analyses. The pore properties of this waste were significantly larger than those of its raw material, reflecting that the trapped organic matrices contained in the waste probably provided additional adsorption sites and/or adsorption area. The results of preliminary adsorption kinetics showed that the diatomite waste could be directly used as a potential adsorbent for removal of methylene blue on the basis of its adsorption-biosorption mechanisms. The adsorption parameters thus obtained from the pseudo-second-order model were in accordance with their pore properties. From the results of adsorption isotherm at 298 K and the applicability examinations in treating industrial wastewater containing basic dye, it was further found that the adsorption capacities of diatomite waste were superior to those of diatomite, which were also in good agreement with their corresponding physical properties. From the results mentioned above, it is feasible to utilize the food-processing waste for removing dye from the industrial dying wastewater.
Moreno-Murcia, Juan A; Martínez-Galindo, Celestina; Moreno-Pérez, Víctor; Marcos, Pablo J.; Borges, Fernanda
2012-01-01
This study aimed to cross-validate the psychometric properties of the Basic Psychological Needs in Exercise Scale (BPNES) by Vlachopoulos and Michailidou, 2006 in a Spanish context. Two studies were conducted. Confirmatory factor analysis results confirmed the hypothesized three-factor solution In addition, we documented evidence of reliability, analysed as internal consistency and temporal stability. Future studies should analyse the scale's validity and reliability with different populations and check their experimental effect. Key pointsThe Basic Psychological Needs in Exercise Scale (BPNES) is valid and reliable for measuring basic psychological needs in healthy physical exercise in the Spanish context.The factor structure of three correlated factors has shown minimal invariance across gender. PMID:24149130
Fang, Ying; Ma, Ren-tian; An, Shao-shan; Zhao, Jun-feng; Xiao, Li
2016-03-15
Choosing the soils under different vegetation recovery of Heidaigou dump as the research objects, we mainly analyzed their basic physical and chemical properties and enzyme activities with the method of Analysis of Variance as well as their relations using Pearson correlation analysis and path analysis hoping to uncover the driving factors of the differences between soil enzyme activities under different vegetation restoration, and provide scientific suggestions for the plant selection as well as make a better evaluation to the reclamation effect. The results showed that: (1) Although the artificial vegetation restoration improved the basic physical and chemical properties of the soils while increasing their enzyme activities to a certain extent, the soil conditions still did not reach the level of the natural grassland; (2) Contents of soil organic carbon (SOC) and soil total nitrogen (TN) of the seabuckthorns were the nearest to those of the grassland, which reached 54. 22% and 70. 00% of those of the grassland. In addition, the soil bulk density of the seabuckthorns stand was 17. 09% lower than the maximum value of the amorpha fruitcosa land. The SOC and TN contents as well as the bulk density showed that seabuckthorns had advantages as the species for land reclamation of this dump; Compared with the seabuckthorn, the pure poplar forest had lower contents of SOC and TN respectively by 35.64% and 32.14% and displayed a 16.79% higher value of soil bulk density; (3) The activities of alkaline phosphotase under different types of vegetation rehabilitation had little variation. But soil urease activities was more sensitive to reflect the effects of vegetation restoration on soil properties; (4) Elevation of the SOC and TN turned out to be the main cause for soil fertility restoration and increased biological activities of the dump.
Near Earth Asteroid Characterization for Threat Assessment
NASA Technical Reports Server (NTRS)
Dotson, Jessie; Mathias, Donovan; Wheeler, Lorien; Wooden, Diane; Bryson, Kathryn; Ostrowski, Daniel
2017-01-01
Physical characteristics of NEAs are an essential input to modeling behavior during atmospheric entry and to assess the risk of impact but determining these properties requires a non-trivial investment of time and resources. The characteristics relevant to these models include size, density, strength and ablation coefficient. Some of these characteristics cannot be directly measured, but rather must be inferred from related measurements of asteroids and/or meteorites. Furthermore, for the majority of NEAs, only the basic measurements exist so often properties must be inferred from statistics of the population of more completely characterized objects. The Asteroid Threat Assessment Project at NASA Ames Research Center has developed a probabilistic asteroid impact risk (PAIR) model in order to assess the risk of asteroid impact. Our PAIR model and its use to develop probability distributions of impact risk are discussed in other contributions to PDC 2017 (e.g., Mathias et al.). Here we utilize PAIR to investigate which NEA characteristics are important for assessing the impact threat by investigating how changes in these characteristics alter the damage predicted by PAIR. We will also provide an assessment of the current state of knowledge of the NEA characteristics of importance for asteroid threat assessment. The relative importance of different properties as identified using PAIR will be combined with our assessment of the current state of knowledge to identify potential high impact investigations. In addition, we will discuss an ongoing effort to collate the existing measurements of NEA properties of interest to the planetary defense community into a readily accessible database.
Fiber-type differences in muscle mitochondrial profiles.
Leary, S C; Lyons, C N; Rosenberger, A G; Ballantyne, J S; Stillman, J; Moyes, C D
2003-10-01
Although striated muscles differ in mitochondrial content, the extent of fiber-type specific mitochondrial specializations is not well known. To address this issue, we compared mitochondrial structural and functional properties in red muscle (RM), white muscle (WM), and cardiac muscle of rainbow trout. Overall preservation of the basic relationships between oxidative phosphorylation complexes among fiber types was confirmed by kinetic analyses, immunoblotting of native holoproteins, and spectroscopic measurements of cytochrome content. Fiber-type differences in mitochondrial properties were apparent when parameters were expressed per milligram mitochondrial protein. However, the differences diminished when expressed relative to cytochrome oxidase (COX), possibly a more meaningful denominator than mitochondrial protein. Expressed relative to COX, there were no differences in oxidative phosphorylation enzyme activities, pyruvate-based respiratory rates, H2O2 production, or state 4 proton leak respiration. These data suggest most mitochondrial qualitative properties are conserved across fiber types. However, there remained modest differences ( approximately 50%) in stoichiometries of selected enzymes of the Krebs cycle, beta-oxidation, and antioxidant enzymes. There were clear differences in membrane fluidity (RM > cardiac, WM) and proton conductance (H+/min/mV/U COX: WM > RM > cardiac). The pronounced differences in mitochondrial content between fiber types could be attributed to a combination of differences in myonuclear domain and modest effects on the expression of nuclear- and mitochondrially encoded respiratory genes. Collectively, these studies suggest constitutive pathways that transcend fiber types are primarily responsible for determining most quantitative and qualitative properties of mitochondria.
Ahn, Sungsook; Jung, Sung Yong; Lee, Jin Pyung; Lee, Sang Joon
2011-02-10
We have recently reported on poly(vinyl alcohol) microparticles containing X-ray contrast agent, iopamidol, designed as a flow tracer working in synchrotron X-ray imaging ( Biosens. Bioelectron. 2010 , 25 , 1571 ). Although iopamidol is physically encapsulated in the microparticles, it displays a great contrast enhancement and stable feasibility in in vitro human blood pool. Nonetheless, a direct relation between the absolute amount of incorporated iopamidol and the enhancement in imaging efficiency was not observed. In this study, physical properties of the designed microparticle are systematically investigated experimentally with theoretical interpretation to correlate an enhancement in X-ray imaging efficiency. The compositional ratio of X-ray contrast agent in polymeric microparticle is controlled as 1/1 and 10/1 [contrast agent/polymer microparticle (w/w)] with changed degree of cross-linkings. Flory-Huggins interaction parameter (χ), retractive force (τ) and degree of swelling of the designed polymeric microparticles are investigated. In addition, the hydrodynamic size (D(H)) and ζ-potential are evaluated in terms of environment responsiveness. The physical properties of the designed flow tracer microparticles under a given condition are observed to be strongly related with the X-ray absorption efficiency, which are also supported by the Beer-Lambert-Bouguer law. The designed microparticles are almost nontoxic with a reasonable concentration and time period, enough to be utilized as a flow tracer in various biomedical applications. This study would contribute to the basic understanding on the physical property connected with the imaging efficiency of contrast agents.
Prevention of Colorectal Cancer by Targeting Obesity-Related Disorders and Inflammation.
Shirakami, Yohei; Ohnishi, Masaya; Sakai, Hiroyasu; Tanaka, Takuji; Shimizu, Masahito
2017-04-26
Colorectal cancer is a major healthcare concern worldwide. Many experimental and clinical studies have been conducted to date to discover agents that help in the prevention of this disease. Chronic inflammation in colonic mucosa and obesity, and its related metabolic abnormalities, are considered to increase the risk of colorectal cancer. Therefore, treatments targeting these factors might be a promising strategy to prevent the development of colorectal cancer. Among a number of functional foods, various phytochemicals, including tea catechins, which have anti-inflammatory and anti-obesity properties, and medicinal agents that ameliorate metabolic disorders, might also be beneficial in the prevention of colorectal cancer. In this review article, we summarize the strategies for preventing colorectal cancer by targeting obesity-related disorders and inflammation through nutraceutical and pharmaceutical approaches, and discuss the mechanisms of several phytochemicals and medicinal drugs used in basic and clinical research, especially focusing on the effects of green tea catechins.
Non-unique key B-Tree implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ries, D.R.
1980-12-23
The B-Trees are an indexed method to allow fast retrieval and order preserving updates to a FRAMIS relation based on a designated set of keys in the relation. A B-Tree access method is being implemented to provide indexed and sequential (in index order) access to FRAMIS relations. The implementation modifies the basic B-Tree structure to correctly allow multiple key values and still maintain the balanced page fill property of B-Trees. The data structures of the B-Tree are presented first, including the FRAMIS solution to the duplicate key value problem. Then the access level routines and utilities are presented. These routinesmore » include the original B-Tree creation; searching the B-Tree; and inserting, deleting, and replacing tuples on the B-Tree. In conclusion, the uses of the B-Tree access structures at the semantic level to enhance the FRAMIS performance are discussed. 10 figures.« less
Low dosages: new chemotherapeutic weapons on the battlefield of immune-related disease
Liu, Jing; Zhao, Jie; Hu, Liang; Cao, Yuchun; Huang, Bo
2011-01-01
Chemotherapeutic drugs eliminate tumor cells at relatively high doses and are considered weapons against tumors in clinics and hospitals. However, despite their ability to induce cellular apoptosis, chemotherapeutic drugs should probably be regarded more as a class of cell regulators than cell killers, if the dosage used and the fact that their targets are involved in basic molecular events are considered. Unfortunately, the regulatory properties of chemotherapeutic drugs are usually hidden or masked by the massive cell death induced by high doses. Recent evidence has begun to suggest that low dosages of chemotherapeutic drugs might profoundly regulate various intracellular aspects of normal cells, especially immune cells. Here, we discuss the immune regulatory roles of three kinds of chemotherapeutic drugs under low-dose conditions and propose low dosages as potential new chemotherapeutic weapons on the battlefield of immune-related disease. PMID:21423201
Prevention of Colorectal Cancer by Targeting Obesity-Related Disorders and Inflammation
Shirakami, Yohei; Ohnishi, Masaya; Sakai, Hiroyasu; Tanaka, Takuji; Shimizu, Masahito
2017-01-01
Colorectal cancer is a major healthcare concern worldwide. Many experimental and clinical studies have been conducted to date to discover agents that help in the prevention of this disease. Chronic inflammation in colonic mucosa and obesity, and its related metabolic abnormalities, are considered to increase the risk of colorectal cancer. Therefore, treatments targeting these factors might be a promising strategy to prevent the development of colorectal cancer. Among a number of functional foods, various phytochemicals, including tea catechins, which have anti-inflammatory and anti-obesity properties, and medicinal agents that ameliorate metabolic disorders, might also be beneficial in the prevention of colorectal cancer. In this review article, we summarize the strategies for preventing colorectal cancer by targeting obesity-related disorders and inflammation through nutraceutical and pharmaceutical approaches, and discuss the mechanisms of several phytochemicals and medicinal drugs used in basic and clinical research, especially focusing on the effects of green tea catechins. PMID:28445390
Coping with the Bounds: Speculations on Nonlinearity in Military Affairs
2003-08-01
organizing criticality, cellular automata, solitons, and so on–because they all globally share this property . Nonlinearity reflects the science of the...Why does it matter? One rea- son for emphasizing nonlinearity is that it constitutes the well-established mathematical property underlying and making...have some hints as to what those principles might be.3 Complex adaptive systems, or cas, contain seven basic attributes. These consist of four properties
Antosiewicz, Jan M; Shugar, David
Spectroscopic properties of tyrosine residues may be employed in structural studies of proteins. Here we discuss several different types of UV-Vis spectroscopy, like normal, difference and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, and corresponding optical properties of the tyrosine chromophore, phenol, which are used to study protein structure.
Antosiewicz, Jan M; Shugar, David
2016-06-01
Spectroscopic properties of tyrosine residues may be employed in structural studies of proteins. Here we discuss several different types of UV-Vis spectroscopy, like normal, difference and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, and corresponding optical properties of the tyrosine chromophore, phenol, which are used to study protein structure.
Do We Need a New Definition of Soil?
NASA Astrophysics Data System (ADS)
Arnold, Richard W.; Brevik, Eric C.
2014-05-01
Effective communication is really desirable to better relate with politicians, an interested lay public, and others not involved in soil science. Soil survey programs are intended to help people understand how soils function in their landscapes to make ecosystems operate better without damaging the environment and to indicate different kinds of suitability for various purposes. The properties of soils as recognized, described, and mapped at detailed scales form the basis for developing diagnostics for a systematic taxonomy that enables scientists to interact with other. In the USA mapping done at scales of 1:15,840± made it possible to define and use so-called "soil series", initially as soil map units, but later as central concepts of a set of soils which could be segregated using phases to indicate important features, primarily for farming. Detailed soil surveys published using a standard format helps maintain uniformity across the country. Soil series are recognized as the basic units of soils within the evolving hierarchical soil taxonomy and diagnostic properties are defined, measured and used to update and modify the scientific classification. Concepts like soil quality and soil function are considered to be "attributes" and not basic properties of soils. They are the collective interpretation of the combination of properties thought to be relevant for communicating important aspects of using, managing, restoring, and protecting the lands of any locality, region, or country. A famous example in the US was the land capability system with classes and subclasses of suitability for agricultural land uses. An updated soil survey in California contains over 500 pages providing details about classes of 30 different functional soil classifications for 155 map units. Over the years soil extension agents were the interpreters of the science to the lay folks and could help them form mental pictures of soils and soil landscapes locally They were the early leaders of what we think of as "field guides to natural resources" such as trees, flowers, birds, and so forth. There were not such books to identify soils but the basics have always been there waiting for proper attention, preparation, and use. At smaller scales the map units are always combinations of the basic units, and now it is possible to use some higher category classes to indicate the central concepts of larger areas. Every year soil scientists around the world observe and describe features and properties of soils in landscapes that are getting more attention than previously. Soil genesis studies help us to better understand the complexity of landscape and soil evolution. Often they indicate that current soils are commonly being formed from parts of previous soils. We do not need a new definition of soil. We do need to work on developing and testing complete interpretive classifications of soils to better meet the needs of societies today. This means "soil quality", "soil functions", and other attributes of soils require more attention, now and in the near future to permit politicians and lay publics to better understand the significance of soils to the future of civilization. "After all is said and done, more is said than done" Aesop, Greek storyteller
Steam tables for pure water as an ActiveX component in Visual Basic 6.0
NASA Astrophysics Data System (ADS)
Verma, Mahendra P.
2003-11-01
The IAPWS-95 formulation for the thermodynamic properties of pure water was implemented as an ActiveX component ( SteamTables) in Visual Basic 6.0. For input parameters as temperature ( T=190-2000 K) and pressure ( P=3.23×10 -8-10,000 MPa) the program SteamTables calculates the following properties: volume ( V), density ( D), compressibility factor ( Z0), internal energy ( U), enthalpy ( H), Gibbs free energy ( G), Helmholtz free energy ( A), entropy ( S), heat capacity at constant pressure ( Cp), heat capacity at constant volume ( Cv), coefficient of thermal expansion ( CTE), isothermal compressibility ( Ziso), velocity of sound ( VelS), partial derivative of P with T at constant V (d Pd T), partial derivative of T with V at constant P (d Td V), partial derivative of V with P at constant T (d Vd P), Joule-Thomson coefficient ( JTC), isothermal throttling coefficient ( IJTC), viscosity ( Vis), thermal conductivity ( ThrmCond), surface tension ( SurfTen), Prandtl number ( PrdNum) and dielectric constant ( DielCons) for the liquid and vapor phases of pure water. It also calculates T as a function of P (or P as a function of T) along the sublimation, saturation and critical isochor curves, depending on the values of P (or T). The SteamTables can be incorporated in a program in any computer language, which supports object link embedding (OLE) in the Windows environment. An application of SteamTables is illustrated in a program in Visual Basic 6.0 to tabulate the values of the thermodynamic properties of water and vapor. Similarly, four functions, Temperature(Press), Pressure(Temp), State(Temp, Press) and WtrStmTbls(Temp, Press, Nphs, Nprop), where Temp, Press, Nphs and Nprop are temperature, pressure, phase number and property number, respectively, are written in Visual Basic for Applications (VBA) to use the SteamTables in a workbook in MS-Excel.
Job-Related Basic Skills: Cases and Conclusions.
ERIC Educational Resources Information Center
Sticht, Thomas G.; Mikulecky, Larry
This monograph describes the job-related basic skills requirements of the work force and explores ways of developing and improving the reading, writing, and computational abilities of workers. The paper first examines trends that are influencing the demand for basic skills, such as the decline in youth population and the increase in service and…
Changes in Naval Aviation Basic Instrument Flight Training: An Analysis.
1985-12-01
position to the desired attitude in relation to the horizon [Refs. 4,5: pp.2,16-3]. C. BASIC INSTRUMENT FLIGHT TRAINING The objective of basic...were related to the treatment lecture: 1. Basic Air Work (BAW) 2. Partial Panel 3. Unusual Attitudes (full panel) 4. Initial Climb to Altitude (ICA) 5...of student aviators was compared. The modifi- cations consisted of a lecture concentrating on the fundamentals of attitude instrument flight. One group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, R.
Waterflooding is the most commonly used secondary oil recovery technique. One of the requirements for understanding waterflood performance is a good knowledge of the basic properties of the reservoir rocks. This study is aimed at correlating rock-pore characteristics to oil recovery from various reservoir rock types and incorporating these properties into empirical models for Predicting oil recovery. For that reason, this report deals with the analyses and interpretation of experimental data collected from core floods and correlated against measurements of absolute permeability, porosity. wettability index, mercury porosimetry properties and irreducible water saturation. The results of the radial-core the radial-core andmore » linear-core flow investigations and the other associated experimental analyses are presented and incorporated into empirical models to improve the predictions of oil recovery resulting from waterflooding, for sandstone and limestone reservoirs. For the radial-core case, the standardized regression model selected, based on a subset of the variables, predicted oil recovery by waterflooding with a standard deviation of 7%. For the linear-core case, separate models are developed using common, uncommon and combination of both types of rock properties. It was observed that residual oil saturation and oil recovery are better predicted with the inclusion of both common and uncommon rock/fluid properties into the predictive models.« less
Feldman, Robin
2011-06-01
Whatever else I might own in this world, it would seem intuitively obvious that I own the cells of my body. Where else could the notion of ownership begin, other than with the components of the tangible corpus that all would recognize as "me"? The law, however, does not view the issue so neatly and clearly, particularly when cells are no longer in my body. As so often happens in law, we have reached this point, not by design, but by the piecemeal development of disparate notions that, when gathered together, form a strange and disconcerting picture. This Article examines both property and intellectual property doctrines in relation to human cells that are no longer within the body. In particular, the Article discusses the Bilski decision, in the context of life science process patents, and the Molecular Pathology case, in the context of gene patents. For patent law, the Article concludes that the problem lies not with the fact that genes constitute patentable subject matter, but rather with the extent of the rights that are granted. For both property and intellectual property law, the Article concludes that a more careful application of basic legal principles would better reflect the interests of society as a whole and the interests of individual human subjects, as well as the interests of those who innovate.
Conceptual Spaces of the Immune System.
Fierz, Walter
2016-01-01
The immune system can be looked at as a cognitive system. This is often done in analogy to the neuro-psychological system. Here, it is demonstrated that the cognitive functions of the immune system can be properly described within a new theory of cognitive science. Gärdenfors' geometrical framework of conceptual spaces is applied to immune cognition. Basic notions, like quality dimensions, natural properties and concepts, similarities, prototypes, saliences, etc., are related to cognitive phenomena of the immune system. Constraints derived from treating the immune system within a cognitive theory, like Gärdenfors' conceptual spaces, might well prove to be instrumental for the design of vaccines, immunological diagnostic tests, and immunotherapy.
A modification of procedures for petrographic analysis of tertiary Indonesian coals
NASA Astrophysics Data System (ADS)
Moore, T. A.; Ferm, J. C.
A study undertaken to characterize the Eocene coals from southeast Kalimantan has shown that standard preparation procedures fail to capture some basic petrographic properties of the coal. Modification of these procedures permits recognition of distinct plant parts and tissues embedded in finer grained matrix components. Plant parts and tissues can be classified on the basis of morphology and degree of degradation. The highest concentration and best preservation of plant parts and tissues occurs in banded coal and is lowest in the non-banded coal. Use of these procedures, which relates megascopic appearance to petrographic character, should allow more precise utilization of the coal.
Prescribing methadone for pain management in end-of-life care.
Manfredonia, John F
2005-03-01
Methadone hydrochloride is an effective, inexpensive, and relatively safe opioid to use in the treatment of patients with chronic pain. It is especially effective in management of pain during the final stages of life, as it is the only long-acting analgesic available in liquid form. However, because methadone has a long half-life, individual wide variations, and potential for accumulation and overdosage, physicians must judiciously and conscientiously prescribe it. Also, they should closely monitor patients during the titration phase and educate them with regard to basic pharmacologic properties and potential side effects. A plan to start at low doses and proceed slowly is applicable to methadone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez, B.L.; Hueda, A.H.; Jodra, L.G.
1958-01-01
The lateest trends in the preparation of modern synthetic ion exchangers obtained by the treatment of polymerization and polycondensation products are reviewed. The physical and chemical characteristics, especially the stability, of exchangers are discussed. The utilization of ion exchangers in basic operations is described and illustrated with the results obtained in its application to the hydrometallurgy of uranium. The life of such materials are also considered. The most important synthetic commercial exchangers and their uses and properties are tabulated. (tr-auth)
Application of artificial neural networks to composite ply micromechanics
NASA Technical Reports Server (NTRS)
Brown, D. A.; Murthy, P. L. N.; Berke, L.
1991-01-01
Artificial neural networks can provide improved computational efficiency relative to existing methods when an algorithmic description of functional relationships is either totally unavailable or is complex in nature. For complex calculations, significant reductions in elapsed computation time are possible. The primary goal is to demonstrate the applicability of artificial neural networks to composite material characterization. As a test case, a neural network was trained to accurately predict composite hygral, thermal, and mechanical properties when provided with basic information concerning the environment, constituent materials, and component ratios used in the creation of the composite. A brief introduction on neural networks is provided along with a description of the project itself.
Proximity coupling in superconductor-graphene heterostructures.
Lee, Gil-Ho; Lee, Hu-Jong
2018-05-01
This review discusses the electronic properties and the prospective research directions of superconductor-graphene heterostructures. The basic electronic properties of graphene are introduced to highlight the unique possibility of combining two seemingly unrelated physics, superconductivity and relativity. We then focus on graphene-based Josephson junctions, one of the most versatile superconducting quantum devices. The various theoretical methods that have been developed to describe graphene Josephson junctions are examined, together with their advantages and limitations, followed by a discussion on the advances in device fabrication and the relevant length scales. The phase-sensitive properties and phase-particle dynamics of graphene Josephson junctions are examined to provide an understanding of the underlying mechanisms of Josephson coupling via graphene. Thereafter, microscopic transport of correlated quasiparticles produced by Andreev reflections at superconducting interfaces and their phase-coherent behaviors are discussed. Quantum phase transitions studied with graphene as an electrostatically tunable 2D platform are reviewed. The interplay between proximity-induced superconductivity and the quantum-Hall phase is discussed as a possible route to study topological superconductivity and non-Abelian physics. Finally, a brief summary on the prospective future research directions is given.
Proximity coupling in superconductor-graphene heterostructures
NASA Astrophysics Data System (ADS)
Lee, Gil-Ho; Lee, Hu-Jong
2018-05-01
This review discusses the electronic properties and the prospective research directions of superconductor-graphene heterostructures. The basic electronic properties of graphene are introduced to highlight the unique possibility of combining two seemingly unrelated physics, superconductivity and relativity. We then focus on graphene-based Josephson junctions, one of the most versatile superconducting quantum devices. The various theoretical methods that have been developed to describe graphene Josephson junctions are examined, together with their advantages and limitations, followed by a discussion on the advances in device fabrication and the relevant length scales. The phase-sensitive properties and phase-particle dynamics of graphene Josephson junctions are examined to provide an understanding of the underlying mechanisms of Josephson coupling via graphene. Thereafter, microscopic transport of correlated quasiparticles produced by Andreev reflections at superconducting interfaces and their phase-coherent behaviors are discussed. Quantum phase transitions studied with graphene as an electrostatically tunable 2D platform are reviewed. The interplay between proximity-induced superconductivity and the quantum-Hall phase is discussed as a possible route to study topological superconductivity and non-Abelian physics. Finally, a brief summary on the prospective future research directions is given.
Structural modification of polysaccharides: A biochemical-genetic approach
NASA Technical Reports Server (NTRS)
Kern, Roger G.; Petersen, Gene R.
1991-01-01
Polysaccharides have a wide range of industrial and biomedical applications. An industry trend is underway towards the increased use of bacteria to produce polysaccharides. Long term goals of this work are the adaptation and enhancement of saccharide properties for electronic and optic applications. In this report we illustrate the application of enzyme-bearing bacteriophage on strains of the enteric bacterium Klebsiella pneumoniae, which produces a polysaccharide with the relatively rare rheological property of drag-reduction. This has resulted in the production of new polysaccharides with enhanced rheological properties. Our laboratory is developing techniques for processing and structurally modifying bacterial polysaccharides and oligosaccharides which comprise their basic polymeric repeat units. Our research has focused on bacteriophage which produce specific polysaccharide degrading enzymes. This has lead to the development of enzymes generated by bacteriophage as tools for polysaccharide modification and purification. These enzymes were used to efficiently convert the native material to uniform-sized high molecular weight polymers, or alternatively into high-purity oligosaccharides. Enzyme-bearing bacteriophage also serve as genetic selection tools for bacteria that produce new families of polysaccharides with modified structures.
Inkjet 3D printed check microvalve
NASA Astrophysics Data System (ADS)
Walczak, Rafał; Adamski, Krzysztof; Lizanets, Danylo
2017-04-01
3D printing enables fast and relatively easy fabrication of various microfluidic structures including microvalves. A check microvalve is the simplest valve enabling control of the fluid flow in microchannels. Proper operation of the check valve is ensured by a movable element that tightens the valve seat during backward flow and enables free flow for forward pressure. Thus, knowledge of the mechanical properties of the movable element is crucial for optimal design and operation of the valve. In this paper, we present for the first time the results of investigations on basic mechanical properties of the building material used in multijet 3D printing. Specified mechanical properties were used in the design and fabrication of two types of check microvalve—with deflecting or hinge-fixed microflap—with 200 µm and 300 µm thickness. Results of numerical simulation and experimental data of the microflap deflection were obtained and compared. The valves were successfully 3D printed and characterised. Opening/closing characteristics of the microvalve for forward and backward pressures were determined. Thus, proper operation of the check microvalve so developed was confirmed.
Pyroelectricity of silicon-doped hafnium oxide thin films
NASA Astrophysics Data System (ADS)
Jachalke, Sven; Schenk, Tony; Park, Min Hyuk; Schroeder, Uwe; Mikolajick, Thomas; Stöcker, Hartmut; Mehner, Erik; Meyer, Dirk C.
2018-04-01
Ferroelectricity in hafnium oxide thin films is known to be induced by various doping elements and in solid-solution with zirconia. While a wealth of studies is focused on their basic ferroelectric properties and memory applications, thorough studies of the related pyroelectric properties and their application potential are only rarely found. This work investigates the impact of Si doping on the phase composition and ferro- as well as pyroelectric properties of thin film capacitors. Dynamic hysteresis measurements and the field-free Sharp-Garn method were used to correlate the reported orthorhombic phase fractions with the remanent polarization and pyroelectric coefficient. Maximum values of 8.21 µC cm-2 and -46.2 µC K-1 m-2 for remanent polarization and pyroelectric coefficient were found for a Si content of 2.0 at%, respectively. Moreover, temperature-dependent measurements reveal nearly constant values for the pyroelectric coefficient and remanent polarization over the temperature range of 0 ° C to 170 ° C , which make the material a promising candidate for IR sensor and energy conversion applications beyond the commonly discussed use in memory applications.
Weak links in high critical temperature superconductors
NASA Astrophysics Data System (ADS)
Tafuri, Francesco; Kirtley, John R.
2005-11-01
The traditional distinction between tunnel and highly transmissive barriers does not currently hold for high critical temperature superconducting Josephson junctions, both because of complicated materials issues and the intrinsic properties of high temperature superconductors (HTS). An intermediate regime, typical of both artificial superconductor-barrier-superconductor structures and of grain boundaries, spans several orders of magnitude in the critical current density and specific resistivity. The physics taking place at HTS surfaces and interfaces is rich, primarily because of phenomena associated with d-wave order parameter (OP) symmetry. These phenomena include Andreev bound states, the presence of the second harmonic in the critical current versus phase relation, a doubly degenerate state, time reversal symmetry breaking and the possible presence of an imaginary component of the OP. All these effects are regulated by a series of transport mechanisms, whose rules of interplay and relative activation are unknown. Some transport mechanisms probably have common roots, which are not completely clear and possibly related to the intrinsic nature of high-TC superconductivity. The d-wave OP symmetry gives unique properties to HTS weak links, which do not have any analogy with systems based on other superconductors. Even if the HTS structures are not optimal, compared with low critical temperature superconductor Josephson junctions, the state of the art allows the realization of weak links with unexpectedly high quality quantum properties, which open interesting perspectives for the future. The observation of macroscopic quantum tunnelling and the qubit proposals represent significant achievements in this direction. In this review we attempt to encompass all the above aspects, attached to a solid experimental basis of junction concepts and basic properties, along with a flexible phenomenological background, which collects ideas on the Josephson effect in the presence of d-wave pairing for different types of barriers.
Stick-slip as a monitor of rates, states and frictional properties along thrusts in sand wedges
NASA Astrophysics Data System (ADS)
Rosenau, Matthias; Santimano, Tasca; Ritter, Malte; Oncken, Onno
2014-05-01
We developed a sandbox setup which allows monitoring the push of the moving backwall indenting a layer of sand. Depending on the ratio between indenter compliancy versus strain weakening of the granular material, wedge deformation shows unstable slip marked by force drops of various sizes and at multiple temporal scales. Basically we observe long-period slip instabilities related to strain localization during the formation of new thrusts, intermediate-period slip instabilities related to reactivation of existing thrusts and short-period slip instabilities related to the stick-slip mechanism of slip accumulation along "seismic" faults. Observed stick-slip is characterized by highly correlated size and frequency ("regular stick-slip") and is sensitive to integrated normal load, slip rate and frictional properties along the active thrust(s). By independently constraining the frictional properties using a ring-shear tester, we infer the integrated normal loads on the active faults from the stick-slip events and benchmark the results against a model calculating the normal loads from the wedge geometry. This way we are able to monitor rates, states and frictional properties along thrusts in sand wedges at unprecedented detail. As an example of application, a kinematic analysis of the stick slip events in the sandbox demonstrates how slip rates along thrusts vary systematically within accretion cycles although the kinematic boundary condition is stationary. Accordingly transient fault slip rates may accelerate up to twice the long-term convergence rate during formation of new thrusts and decelerate in the post-thrust formation stage in a non-linear way. Applied to nature this suggests that fault slip rate variations at the thousand-year time scale might be attributable to the elasticity of plates and material weakening rather than changes in plate velocities.
NASA Astrophysics Data System (ADS)
Moon, Chung Hee; Tousi, Marzieh; Cheeney, Joseph; Ngo-Duc, Tam-Triet; Zuo, Zheng; Liu, Jianlin; Haberer, Elaine D.
2015-11-01
An 8-mer ZnO-binding peptide, VPGAAEHT, was identified using a M13 pVIII phage display library and employed as an additive during aqueous-based ZnO synthesis at 65 °C. Unlike most other well-studied ZnO-binding sequences which are strongly basic (pI > pH 7), the 8-mer peptide was overall acidic (pI < pH 7) in character, including only a single basic residue. The selected peptide strongly influenced ZnO nanostructure formation. Morphology and optical emission properties were found to be dependent on the concentration of peptide additive. Using lower peptide concentrations (<0.1 mM), single crystal hexagonal rods and platelets were produced, and using higher peptide concentrations (≥0.1 mM), polycrystalline layered platelets, yarn-like structures, and microspheres were assembled. Photoluminescence analysis revealed a characteristic ZnO band-edge peak, as well as sub-bandgap emission peaks. Defect-related green emission, typically associated with surface-related oxygen and zinc vacancies, was significantly reduced by the peptide additive, while blue emission, attributable to oxygen and zinc interstitials, emerged with increased peptide concentrations. Peptide-directed synthesis of ZnO materials may be useful for gas sensing and photocatalytic applications in which properly engineered morphology and defect levels have demonstrated enhanced performance.
Reinforcing Geometric Properties with Shapedoku Puzzles
ERIC Educational Resources Information Center
Wanko, Jeffrey J.; Nickell, Jennifer V.
2013-01-01
Shapedoku is a new type of puzzle that combines logic and spatial reasoning with understanding of basic geometric concepts such as slope, parallelism, perpendicularity, and properties of shapes. Shapedoku can be solved by individuals and, as demonstrated here, can form the basis of a review for geometry students as they create their own. In this…
ERIC Educational Resources Information Center
Del Valle, Milenko; Matos, Lennia; Díaz, Alejandro; Pérez, María Victoria; Vergara, Jorge
2018-01-01
This research work aims to analyze the psychometric properties of the Basic Psychological Needs Satisfaction and Frustration Scale (BPNSFS)--autonomy, competence and relatedness--identified by the self-determination theory (Deci & Ryan, 2000b), in a sample of 297 university students from different faculties and programs belonging to a Chilean…