Cement-aggregate compatibility and structure property relationships including modelling
Jennings, H.M.; Xi, Y.
1993-07-15
The role of aggregate, and its interface with cement paste, is discussed with a view toward establishing models that relate structure to properties. Both short (nm) and long (mm) range structure must be considered. The short range structure of the interface depends not only on the physical distribution of the various phases, but also on moisture content and reactivity of aggregate. Changes that occur on drying, i.e. shrinkage, may alter the structure which, in turn, feeds back to alter further drying and shrinkage. The interaction is dynamic, even without further hydration of cement paste, and the dynamic characteristic must be considered in order to fully understand and model its contribution to properties. Microstructure and properties are two subjects which have been pursued somewhat separately. This review discusses both disciplines with a view toward finding common research goals in the future. Finally, comment is made on possible chemical reactions which may occur between aggregate and cement paste.
Sari, Tewfik; Harmand, Jérôme
2016-05-01
Many microbial ecosystems can be seen as microbial 'food chains' where the different reaction steps can be seen as such: the waste products of the organisms at a given reaction step are consumed by organisms at the next reaction step. In the present paper we study a model of a two-step biological reaction with feedback inhibition, which was recently presented as a reduced and simplified version of the anaerobic digestion model ADM1 of the International Water Association (IWA). It is known that in the absence of maintenance (or decay) the microbial 'food chain' is stable. In a previous study, using a purely numerical approach and ADM1 consensus parameter values, it was shown that the model remains stable when decay terms are added. However, the authors could not prove in full generality that it remains true for other parameter values. In this paper we prove that introducing decay in the model preserves stability whatever its parameters values are and for a wide range of kinetics. Copyright © 2016 Elsevier Inc. All rights reserved.
Van Geel, P J; Roy, S D
2002-09-01
A residual non-aqueous phase liquid (NAPL) present in the vadose zone can act as a contaminant source for many years as the compounds of concern partition to infiltrating groundwater and air contained in the soil voids. Current pressure-saturation-relative permeability relationships do not include a residual NAPL saturation term in their formulation. This paper presents the results of series of two- and three-phase pressure cell experiments conducted to evaluate the residual NAPL saturation and its impact on the pressure-saturation relationship. A model was proposed to incorporate a residual NAPL saturation term into an existing hysteretic three-phase parametric model developed by Parker and Lenhard [Water Resour. Res. 23(12) (1987) 2187], Lenhard and Parker [Water Resour. Res. 23(12) (1987) 2197] and Lenhard [J. Contam. Hydrol. 9 (1992) 243]. The experimental results indicated that the magnitude of the residual NAPL saturation was a function of the maximum total liquid saturation reached and the water saturation. The proposed model to incorporate a residual NAPL saturation term is similar in form to the entrapment model proposed by Parker and Lenhard, which was based on an expression presented by Land [Soc. Pet. Eng. J. (June 1968) 149].
General education teachers' relationships with included students with autism.
Robertson, Kristen; Chamberlain, Brandt; Kasari, Connie
2003-04-01
In this study, we examine the relationship between general education teachers and second- and third-grade included students with autism. We also examine the effect of childrens' behavior problems on these relationships, as well as inclusion within the social environment of the classroom. Included students with autism form multidimensional relationships with their general education teachers. These relationships are associated with student's display of behavior problems and level of inclusion in the class. Specifically, when teachers perceived their relationships with included students with autism to be more positive, children's levels of behavioral problems were lower and they were more socially included in the class.
DEVELOPMENT OF WATER CIRCULATION MODEL INCLUDING IRRIGATION
NASA Astrophysics Data System (ADS)
Kotsuki, Shunji; Tanaka, Kenji; Kojiri, Toshiharu; Hamaguchi, Toshio
It is well known that since agricultural water withdrawal has much affect on water circulation system, accurate analysis of river discharge or water balance are difficult with less regard for it. In this study, water circulation model composed of land surface model and distributed runoff model is proposed at 10km 10km resolution. In this model, irrigation water, which is estimated with land surface model, is introduced to river discharge analysis. The model is applied to the Chao Phraya River in Thailand, and reproduced seasonal water balance. Additionally, the discharge on dry season simulated with the model is improved as a result of including irrigation. Since the model, which is basically developed from global data sets, simulated seasonal change of river discharge, it can be suggested that our model has university to other river basins.
Mating programs including genomic relationships and dominance effects.
Sun, C; VanRaden, P M; O'Connell, J R; Weigel, K A; Gianola, D
2013-01-01
Computerized mating programs using genomic information are needed by breed associations, artificial-insemination organizations, and on-farm software providers, but such software is already challenged by the size of the relationship matrix. As of October 2012, over 230,000 Holsteins obtained genomic predictions in North America. Efficient methods of storing, computing, and transferring genomic relationships from a central database to customers via a web query were developed for approximately 165,000 genotyped cows and the subset of 1,518 bulls whose semen was available for purchase at that time. This study, utilizing 3 breeds, investigated differences in sire selection, methods of assigning mates, the use of genomic or pedigree relationships, and the effect of including dominance effects in a mating program. For both Jerseys and Holsteins, selection and mating programs were tested using the top 50 marketed bulls for genomic and traditional lifetime net merit as well as 50 randomly selected bulls. The 500 youngest genotyped cows in the largest herd in each breed were assigned mates of the same breed with limits of 10 cows per bull and 1 bull per cow (only 79 cows and 8 bulls for Brown Swiss). A dominance variance of 4.1 and 3.7% was estimated for Holsteins and Jerseys using 45,187 markers and management group deviation for milk yield. Sire selection was identified as the most important component of improving expected progeny value, followed by managing inbreeding and then inclusion of dominance. The respective percentage gains for milk yield in this study were 64, 27, and 9, for Holsteins and 73, 20, and 7 for Jerseys. The linear programming method of assigning a mate outperformed sequential selection by reducing genomic or pedigree inbreeding by 0.86 to 1.06 and 0.93 to 1.41, respectively. Use of genomic over pedigree relationship information provided a larger decrease in expected progeny inbreeding and thus greater expected progeny value. Based on lifetime net
Simple model of membrane proteins including solvent.
Pagan, D L; Shiryayev, A; Connor, T P; Gunton, J D
2006-05-14
We report a numerical simulation for the phase diagram of a simple two-dimensional model, similar to the one proposed by Noro and Frenkel [J. Chem. Phys. 114, 2477 (2001)] for membrane proteins, but one that includes the role of the solvent. We first use Gibbs ensemble Monte Carlo simulations to determine the phase behavior of particles interacting via a square-well potential in two dimensions for various values of the interaction range. A phenomenological model for the solute-solvent interactions is then studied to understand how the fluid-fluid coexistence curve is modified by solute-solvent interactions. It is shown that such a model can yield systems with liquid-liquid phase separation curves that have both upper and lower critical points, as well as closed loop phase diagrams, as is the case with the corresponding three-dimensional model.
An Integrated Biochemistry Laboratory, Including Molecular Modeling
NASA Astrophysics Data System (ADS)
Hall, Adele J. Wolfson Mona L.; Branham, Thomas R.
1996-11-01
) experience with methods of protein purification; (iii) incorporation of appropriate controls into experiments; (iv) use of basic statistics in data analysis; (v) writing papers and grant proposals in accepted scientific style; (vi) peer review; (vii) oral presentation of results and proposals; and (viii) introduction to molecular modeling. Figure 1 illustrates the modular nature of the lab curriculum. Elements from each of the exercises can be separated and treated as stand-alone exercises, or combined into short or long projects. We have been able to offer the opportunity to use sophisticated molecular modeling in the final module through funding from an NSF-ILI grant. However, many of the benefits of the research proposal can be achieved with other computer programs, or even by literature survey alone. Figure 1.Design of project-based biochemistry laboratory. Modules (projects, or portions of projects) are indicated as boxes. Each of these can be treated independently, or used as part of a larger project. Solid lines indicate some suggested paths from one module to the next. The skills and knowledge required for protein purification and design are developed in three units: (i) an introduction to critical assays needed to monitor degree of purification, including an evaluation of assay parameters; (ii) partial purification by ion-exchange techniques; and (iii) preparation of a grant proposal on protein design by mutagenesis. Brief descriptions of each of these units follow, with experimental details of each project at the end of this paper. Assays for Lysozyme Activity and Protein Concentration (4 weeks) The assays mastered during the first unit are a necessary tool for determining the purity of the enzyme during the second unit on purification by ion exchange. These assays allow an introduction to the concept of specific activity (units of enzyme activity per milligram of total protein) as a measure of purity. In this first sequence, students learn a turbidimetric assay
Dynamic stall simulation including turbulence modeling
Allet, A.; Halle, S.; Paraschivoiu, I.
1995-09-01
The objective of this study is to investigate the two-dimensional unsteady flow around an airfoil undergoing a Darrieus motion in dynamic stall conditions. For this purpose, a numerical solver based on the solution of the Reynolds-averaged Navier-Stokes equations expressed in a streamfunction-vorticity formulation in a non-inertial frame of reference was developed. The governing equations are solved by the streamline upwind Petrov-Galerkin finite element method (FEM). Temporal discretization is achieved by second-order-accurate finite differences. The resulting global matrix system is linearized by the Newton method and solved by the generalized minimum residual method (GMRES) with an incomplete triangular factorization preconditioning (ILU). Turbulence effects are introduced in the solver by an eddy viscosity model. The investigation centers on an evaluation of the possibilities of several turbulence models, including the algebraic Cebeci-Smith model (CSM) and the nonequilibrium Johnson-King model (JKM). In an effort to predict dynamic stall features on rotating airfoils, first the authors present some testing results concerning the performance of both turbulence models for the flat plate case. Then, computed flow structure together with aerodynamic coefficients for a NACA 0015 airfoil in Darrieus motion under stall conditions are presented.
Models of bovine babesiosis including juvenile cattle.
Saad-Roy, C M; Shuai, Zhisheng; van den Driessche, P
2015-03-01
Bovine Babesiosis in cattle is caused by the transmission of protozoa of Babesia spp. by ticks as vectors. Juvenile cattle (<9 months of age) have resistance to Bovine Babesiosis, rarely show symptoms, and acquire immunity upon recovery. Susceptibility to the disease varies between breeds of cattle. Models of the dynamics of Bovine Babesiosis transmitted by the cattle tick that include these factors are formulated as systems of ordinary differential equations. Basic reproduction numbers are calculated, and it is proved that if these numbers are below the threshold value of one, then Bovine Babesiosis dies out. However, above the threshold number of one, the disease may approach an endemic state. In this case, control measures are suggested by determining target reproduction numbers. The percentage of a particular population (for example, the adult bovine population) needed to be controlled to eradicate the disease is evaluated numerically using Columbia data from the literature.
Including eddies in global ocean models
NASA Astrophysics Data System (ADS)
Semtner, Albert J.; Chervin, Robert M.
The ocean is a turbulent fluid that is driven by winds and by surface exchanges of heat and moisture. It is as important as the atmosphere in governing climate through heat distribution, but so little is known about the ocean that it remains a “final frontier” on the face of the Earth. Many ocean currents are truly global in extent, such as the Antarctic Circumpolar Current and the “conveyor belt” that connects the North Atlantic and North Pacific oceans by flows around the southern tips of Africa and South America. It has long been a dream of some oceanographers to supplement the very limited observational knowledge by reconstructing the currents of the world ocean from the first principles of physics on a computer. However, until very recently, the prospect of doing this was thwarted by the fact that fluctuating currents known as “mesoscale eddies” could not be explicitly included in the calculation.
1983-10-30
nucleation due tovi Brownian diffusion (NNUB .), thermophoresis (NNUC .) andVi Vi diffusiophoresis (NNUD .). Finally, production of specific Vi...Young (1974) referred to as model A. Young considers contact by Brownian diffusion, thermophoresis and diffusiophoresis. Brownian- diftusion contact...nucleation results from the random collision of aerosol particles with cloud droplets. Thermophoresis contact nucleation occurs due to the attraction
Modeling Emergent Macrophyte Distributions: Including Sub-dominant Species
Mixed stands of emergent vegetation are often present following drawdowns but models of wetland plant distributions fail to include subdominant species when predicting distributions. Three variations of a spatial plant distribution cellular automaton model were developed to explo...
Modeling Emergent Macrophyte Distributions: Including Sub-dominant Species
Mixed stands of emergent vegetation are often present following drawdowns but models of wetland plant distributions fail to include subdominant species when predicting distributions. Three variations of a spatial plant distribution cellular automaton model were developed to explo...
Dynamic hysteresis modeling including skin effect using diffusion equation model
NASA Astrophysics Data System (ADS)
Hamada, Souad; Louai, Fatima Zohra; Nait-Said, Nasreddine; Benabou, Abdelkader
2016-07-01
An improved dynamic hysteresis model is proposed for the prediction of hysteresis loop of electrical steel up to mean frequencies, taking into account the skin effect. In previous works, the analytical solution of the diffusion equation for low frequency (DELF) was coupled with the inverse static Jiles-Atherton (JA) model in order to represent the hysteresis behavior for a lamination. In the present paper, this approach is improved to ensure the reproducibility of measured hysteresis loops at mean frequency. The results of simulation are compared with the experimental ones. The selected results for frequencies 50 Hz, 100 Hz, 200 Hz and 400 Hz are presented and discussed.
MODEL OF THE TOKAMAK EDGE DENSITY PEDESTAL INCLUDING DIFFUSIVE NEUTRALS
BURRELL.KH
2003-01-01
OAK-B135 Several previous analytic models of the tokamak edge density pedestal have been based on diffusive transport of plasma plus free-streaming of neutrals. This latter neutral model includes only the effect of ionization and neglects charge exchange. The present work models the edge density pedestal using diffusive transport for both the plasma and the neutrals. In contrast to the free-streaming model, a diffusion model for the neutrals includes the effect of both charge exchange and ionization and is valid when charge exchange is the dominant interaction. Surprisingly, the functional forms for the electron and neutral density profiles from the present calculation are identical to the results of the previous analytic models. There are some differences in the detailed definition of various parameters in the solution. For experimentally relevant cases where ionization and charge exchange rate are comparable, both models predict approximately the same width for the edge density pedestal.
Spaghetti Bridges: Modeling Linear Relationships
ERIC Educational Resources Information Center
Kroon, Cindy D.
2016-01-01
Mathematics and science are natural partners. One of many examples of this partnership occurs when scientific observations are made, thus providing data that can be used for mathematical modeling. Developing mathematical relationships elucidates such scientific principles. This activity describes a data-collection activity in which students employ…
Spaghetti Bridges: Modeling Linear Relationships
ERIC Educational Resources Information Center
Kroon, Cindy D.
2016-01-01
Mathematics and science are natural partners. One of many examples of this partnership occurs when scientific observations are made, thus providing data that can be used for mathematical modeling. Developing mathematical relationships elucidates such scientific principles. This activity describes a data-collection activity in which students employ…
A model for heterogeneous materials including phase transformations
NASA Astrophysics Data System (ADS)
Addessio, F. L.; Clements, B. E.; Williams, T. O.
2005-04-01
A model is developed for particulate composites, which includes phase transformations in one or all of the constituents. The model is an extension of the method of cells formalism. Representative simulations for a single-phase, brittle particulate (SiC) embedded in a ductile material (Ti), which undergoes a solid-solid phase transformation, are provided. Also, simulations for a tungsten heavy alloy (WHA) are included. In the WHA analyses a particulate composite, composed of tungsten particles embedded in a tungsten-iron-nickel alloy matrix, is modeled. A solid-liquid phase transformation of the matrix material is included in the WHA numerical calculations. The example problems also demonstrate two approaches for generating free energies for the material constituents. Simulations for volumetric compression, uniaxial strain, biaxial strain, and pure shear are used to demonstrate the versatility of the model.
Modeling heart rate variability including the effect of sleep stages
NASA Astrophysics Data System (ADS)
Soliński, Mateusz; Gierałtowski, Jan; Żebrowski, Jan
2016-02-01
We propose a model for heart rate variability (HRV) of a healthy individual during sleep with the assumption that the heart rate variability is predominantly a random process. Autonomic nervous system activity has different properties during different sleep stages, and this affects many physiological systems including the cardiovascular system. Different properties of HRV can be observed during each particular sleep stage. We believe that taking into account the sleep architecture is crucial for modeling the human nighttime HRV. The stochastic model of HRV introduced by Kantelhardt et al. was used as the initial starting point. We studied the statistical properties of sleep in healthy adults, analyzing 30 polysomnographic recordings, which provided realistic information about sleep architecture. Next, we generated synthetic hypnograms and included them in the modeling of nighttime RR interval series. The results of standard HRV linear analysis and of nonlinear analysis (Shannon entropy, Poincaré plots, and multiscale multifractal analysis) show that—in comparison with real data—the HRV signals obtained from our model have very similar properties, in particular including the multifractal characteristics at different time scales. The model described in this paper is discussed in the context of normal sleep. However, its construction is such that it should allow to model heart rate variability in sleep disorders. This possibility is briefly discussed.
Modeling heart rate variability including the effect of sleep stages.
Soliński, Mateusz; Gierałtowski, Jan; Żebrowski, Jan
2016-02-01
We propose a model for heart rate variability (HRV) of a healthy individual during sleep with the assumption that the heart rate variability is predominantly a random process. Autonomic nervous system activity has different properties during different sleep stages, and this affects many physiological systems including the cardiovascular system. Different properties of HRV can be observed during each particular sleep stage. We believe that taking into account the sleep architecture is crucial for modeling the human nighttime HRV. The stochastic model of HRV introduced by Kantelhardt et al. was used as the initial starting point. We studied the statistical properties of sleep in healthy adults, analyzing 30 polysomnographic recordings, which provided realistic information about sleep architecture. Next, we generated synthetic hypnograms and included them in the modeling of nighttime RR interval series. The results of standard HRV linear analysis and of nonlinear analysis (Shannon entropy, Poincaré plots, and multiscale multifractal analysis) show that-in comparison with real data-the HRV signals obtained from our model have very similar properties, in particular including the multifractal characteristics at different time scales. The model described in this paper is discussed in the context of normal sleep. However, its construction is such that it should allow to model heart rate variability in sleep disorders. This possibility is briefly discussed.
Model dielectric function for 2D semiconductors including substrate screening
Trolle, Mads L.; Pedersen, Thomas G.; Véniard, Valerie
2017-01-01
Dielectric screening of excitons in 2D semiconductors is known to be a highly non-local effect, which in reciprocal space translates to a strong dependence on momentum transfer q. We present an analytical model dielectric function, including the full non-linear q-dependency, which may be used as an alternative to more numerically taxing ab initio screening functions. By verifying the good agreement between excitonic optical properties calculated using our model dielectric function, and those derived from ab initio methods, we demonstrate the versatility of this approach. Our test systems include: Monolayer hBN, monolayer MoS2, and the surface exciton of a 2 × 1 reconstructed Si(111) surface. Additionally, using our model, we easily take substrate screening effects into account. Hence, we include also a systematic study of the effects of substrate media on the excitonic optical properties of MoS2 and hBN. PMID:28117326
A coke oven model including thermal decomposition kinetics of tar
Munekane, Fuminori; Yamaguchi, Yukio; Tanioka, Seiichi
1997-12-31
A new one-dimensional coke oven model has been developed for simulating the amount and the characteristics of by-products such as tar and gas as well as coke. This model consists of both heat transfer and chemical kinetics including thermal decomposition of coal and tar. The chemical kinetics constants are obtained by estimation based on the results of experiments conducted to investigate the thermal decomposition of both coal and tar. The calculation results using the new model are in good agreement with experimental ones.
A hydrodynamic model for granular material flows including segregation effects
NASA Astrophysics Data System (ADS)
Gilberg, Dominik; Klar, Axel; Steiner, Konrad
2017-06-01
The simulation of granular flows including segregation effects in large industrial processes using particle methods is accurate, but very time-consuming. To overcome the long computation times a macroscopic model is a natural choice. Therefore, we couple a mixture theory based segregation model to a hydrodynamic model of Navier-Stokes-type, describing the flow behavior of the granular material. The granular flow model is a hybrid model derived from kinetic theory and a soil mechanical approach to cover the regime of fast dilute flow, as well as slow dense flow, where the density of the granular material is close to the maximum packing density. Originally, the segregation model has been formulated by Thornton and Gray for idealized avalanches. It is modified and adapted to be in the preferred form for the coupling. In the final coupled model the segregation process depends on the local state of the granular system. On the other hand, the granular system changes as differently mixed regions of the granular material differ i.e. in the packing density. For the modeling process the focus lies on dry granular material flows of two particle types differing only in size but can be easily extended to arbitrary granular mixtures of different particle size and density. To solve the coupled system a finite volume approach is used. To test the model the rotational mixing of small and large particles in a tumbler is simulated.
A sonic boom propagation model including mean flow atmospheric effects
NASA Astrophysics Data System (ADS)
Salamone, Joe; Sparrow, Victor W.
2012-09-01
This paper presents a time domain formulation of nonlinear lossy propagation in onedimension that also includes the effects of non-collinear mean flow in the acoustic medium. The model equation utilized is an augmented Burgers equation that includes the effects of nonlinearity, geometric spreading, atmospheric stratification, and also absorption and dispersion due to thermoviscous and molecular relaxation effects. All elements of the propagation are implemented in the time domain and the effects of non-collinear mean flow are accounted for in each term of the model equation. Previous authors have presented methods limited to showing the effects of wind on ray tracing and/or using an effective speed of sound in their model equation. The present work includes the effects of mean flow for all terms included in the augmented Burgers equation with all of the calculations performed in the time-domain. The capability to include the effects of mean flow in the acoustic medium allows one to make predictions more representative of real-world atmospheric conditions. Examples are presented for nonlinear propagation of N-waves and shaped sonic booms. [Work supported by Gulfstream Aerospace Corporation.
Computation of eigenfrequencies for equilibrium models including turbulent pressure
NASA Astrophysics Data System (ADS)
Sonoi, T.; Belkacem, K.; Dupret, M.-A.; Samadi, R.; Ludwig, H.-G.; Caffau, E.; Mosser, B.
2017-03-01
Context. The space-borne missions CoRoT and Kepler have provided a wealth of highly accurate data. However, our inability to properly model the upper-most region of solar-like stars prevents us from making the best of these observations. This problem is called "surface effect" and a key ingredient to solve it is turbulent pressure for the computation of both the equilibrium models and the oscillations. While 3D hydrodynamic simulations help to include properly the turbulent pressure in the equilibrium models, the way this surface effect is included in the computation of stellar oscillations is still subject to uncertainties. Aims: We aim at determining how to properly include the effect of turbulent pressure and its Lagrangian perturbation in the adiabatic computation of the oscillations. We also discuss the validity of the gas-gamma model and reduced gamma model approximations, which have been used to compute adiabatic oscillations of equilibrium models including turbulent pressure. Methods: We use a patched model of the Sun with an inner part constructed by a 1D stellar evolution code (CESTAM) and an outer part by the 3D hydrodynamical code (CO5BOLD). Then, the adiabatic oscillations are computed using the ADIPLS code for the gas-gamma and reduced gamma model approximations and with the MAD code imposing the adiabatic condition on an existing time-dependent convection formalism. Finally, all those results are compared to the observed solar frequencies. Results: We show that the computation of the oscillations using the time-dependent convection formalism in the adiabatic limit improves significantly the agreement with the observed frequencies compared to the gas-gamma and reduced gamma model approximations. Of the components of the perturbation of the turbulent pressure, the perturbation of the density and advection term is found to contribute most to the frequency shift. Conclusions: The turbulent pressure is certainly the dominant factor responsible for the
Confidence in climate models including those with suspended particles
NASA Astrophysics Data System (ADS)
Reck, Ruth A.
1982-05-01
Confidence in the predictions of atmospheric models is limited, (1) by the uncertainty in our knowledge of the existing atmospheric system as it is defined by input data, and (2) by the ability of the model to describe all pertinent atmospheric processes. This paper describes a thermal sensitivity study of the global parameters in one version of the Manabe-Wetherald radiative-convective model which inclkudes Mie scattering particles. The relative importance of the usual global model parameters is identified in addition to other atmospheric constituents not commonly included in climate models. In particular this work emphasizes the role of Mie scattering suspended aerosol particles, a component which is seldom included in climate models. Here we discuss the major sources of particles, how the optical properties of individual particles determine the radiative effects of a particle layer, and also illustrate the separate role of absorption and backscatter in determining the sign of the surface temperature change. In addition, the coupling of the particle effects to surface albedo is indicated. Finally, the sign of the surface temperature change from anthropogenic particles is estimated using (1) global maps of particle abundance developed by Kellogg, (2) previous calculations for the Northern Hemisphere published by the author and (3) the surface albedo maps of Hummel and Reck.
Including auroral oval boundaries in the IRI model
NASA Technical Reports Server (NTRS)
Bilitza, A.
1995-01-01
At the last International Reference Ionosphere (IRI) Workshop it was decided that future editions of the model should include a representationof the aurroral oval boundaries. In this paper we review the different existing parameterizations of the auroral oval discussing their data base, boundary criteria, matematical formation, and overall usefulness for IRI. As a first candidate for incorporation into IRI we recomment the parameterization of the Feldstein ovals by Holzworth and Meng. Ways of implementing this model into IRI are discussed. We will also address adjustability with user-provided boundaries or boundary-related parameters, to better support strom-related studies.
Modeling multispecies biofilms including new bacterial species invasion.
D'Acunto, B; Frunzo, L; Klapper, I; Mattei, M R
2015-01-01
A mathematical model for multispecies biofilm evolution based on continuum approach and mass conservation principles is presented. The model can describe biofilm growth dynamics including spatial distribution of microbial species, substrate concentrations, attachment, and detachment, and, in particular, is able to predict the biological process of colonization of new species and transport from bulk liquid to biofilm (or vice-versa). From a mathematical point of view, a significant feature is the boundary condition related to biofilm species concentrations on the biofilm free boundary. These data, either for new or for already existing species, are not required by this model, but rather can be predicted as results. Numerical solutions for representative examples are obtained by the method of characteristics. Results indicate that colonizing bacteria diffuse into biofilm and grow only where favorable environmental conditions exist for their development. Copyright © 2014. Published by Elsevier Inc.
A model of Barchan dunes including lateral shear stress.
Schwämmle, V; Herrmann, H J
2005-01-01
Barchan dunes are found where sand availability is low and wind direction quite constant. The two dimensional shear stress of the wind field and the sand movement by saltation and avalanches over a barchan dune are simulated. The model with one dimensional shear stress is extended including surface diffusion and lateral shear stress. The resulting final shape is compared to the results of the model with a one dimensional shear stress and confirmed by comparison to measurements. We found agreement and improvements with respect to the model with one dimensional shear stress. Additionally, a characteristic edge at the center of the windward side is discovered which is also observed for big barchans. Diffusion effects reduce this effect for small dunes.
A model of electrical conduction in cardiac tissue including fibroblasts.
Sachse, Frank B; Moreno, A P; Seemann, G; Abildskov, J A
2009-05-01
Fibroblasts are abundant in cardiac tissue. Experimental studies suggested that fibroblasts are electrically coupled to myocytes and this coupling can impact cardiac electrophysiology. In this work, we present a novel approach for mathematical modeling of electrical conduction in cardiac tissue composed of myocytes, fibroblasts, and the extracellular space. The model is an extension of established cardiac bidomain models, which include a description of intra-myocyte and extracellular conductivities, currents and potentials in addition to transmembrane voltages of myocytes. Our extension added a description of fibroblasts, which are electrically coupled with each other and with myocytes. We applied the extended model in exemplary computational simulations of plane waves and conduction in a thin tissue slice assuming an isotropic conductivity of the intra-fibroblast domain. In simulations of plane waves, increased myocyte-fibroblast coupling and fibroblast-myocyte ratio reduced peak voltage and maximal upstroke velocity of myocytes as well as amplitudes and maximal downstroke velocity of extracellular potentials. Simulations with the thin tissue slice showed that inter-fibroblast coupling affected rather transversal than longitudinal conduction velocity. Our results suggest that fibroblast coupling becomes relevant for small intra-myocyte and/or large intra-fibroblast conductivity. In summary, the study demonstrated the feasibility of the extended bidomain model and supports the hypothesis that fibroblasts contribute to cardiac electrophysiology in various manners.
Zan, Ruiguang; Chai, Jing; Ma, Wei; Jin, Wei; Duan, Rongyao; Luo, Jing; Murphy, Robert W.; Xiao, Heng; Chen, Ziming
2016-01-01
The phylogenetic relationships of Asian schilbid catfishes of the genera Clupisoma, Ailia, Horabagrus, Laides and Pseudeutropius are poorly understood, especially those of Clupisoma. Herein, we reconstruct the phylogeny of 38 species of catfishes belonging to 28 genera and 14 families using the concatenated mitochondrial genes COI, cytb, and 16S rRNA, as well as the nuclear genes RAG1 and RAG2. The resulting phylogenetic trees consistently place Clupisoma as the sister taxon of Laides, and the five representative Asian schilbid genera form two monophyletic groups with the relationships (Ailia (Laides, Clupisoma)) and (Horabagrus, Pseudeutropius). The so-called “Big Asia” lineage relates distantly to African schilbids. Independent analyses of the mitochondrial and nuclear DNA data yield differing trees for the two Asian schilbid groups. Analyses of the mitochondrial gene data support a sister-group relationship for (Ailia (Laides, Clupisoma)) and the Sisoroidea and a sister-taxon association of (Horabagrus, Pseudeutropius) and the Bagridae. In contrast, analyses of the combined nuclear data indicate (Ailia (Laides, Clupisoma)) to be the sister group to (Horabagrus, Pseudeutropius). Our results indicate that the Horabagridae, recognized by some authors as consisting of Horabagrus, Pseudeutropius and Clupisoma does not include the latter genus. We formally erect a new family, Ailiidae fam. nov. for a monophyletic Asian group comprised of the genera Ailia, Laides and Clupisoma. PMID:26751688
Thermospheric Density Model Including High-Latitude Energy Sources
NASA Astrophysics Data System (ADS)
Moe, O. K.; Moe, M. M.
2006-12-01
As was predicted long ago by Sydney Chapman, there is a major contribution to thermospheric energy from the magnetosphere at all times. The contribution of this magnetospheric energy source produces a neutral density bulge at high latitudes even during geomagnetically quiet times. We present an analytical, semi- empirical model of the global neutral density at such quiet times. The total density is expressed as the sum of two terms: The first term describes the combined effects of the solar ultra-violet heating and various other contributions like the semi-annual variation; the second term gives the contribution to the density associated with particle precipitation and joule heating coming from magnetospheric sources during times of low geomagnetic activity. The region of density enhancement at high latitudes is associated with the locations of the dayside cusps. Therefore the model produces a density distribution which depends on universal time as well as on altitude, latitude, local time, and the usual solar UV energy source. The numerical values of the parameters in the empirical model were originally determined 30 years ago from density data collected by the Bell-MESA accelerometer on the LOGACS satellite and the pressure gauge on the SPADES satellite. As an example of the model output, we show a Mercator projection of the global density distribution at 400 km altitude at 12 hours GMT in late May at a time of moderate solar activity and low geomagnetic activity. The parameters in the model can now be substantially improved by using recent advances like the latest description of the semi-annual variation and by incorporating the precise density measurements made by the accelerometers on board the CHAMP and GRACE satellites. In the original model, density values at times of high geomagnetic activity were included in the second density term. The parameters in that term can also be improved as accurate storm-time densities become available.
Monte Carlo modeling of cometary atmospheres including polarization
NASA Astrophysics Data System (ADS)
Moreno, F.; Muñoz, O.; Molina, A.
We present a Monte Carlo model for the transfer of radiation by dust in spherical-shell cometary atmospheres. Our model, which includes the effects of polarization, constitutes an improved version of that by Salo cite{bib31}. The code has been designed to compute both the input radiation on the nucleus surface and the output radiation. This has specific applications regarding the interpretation of near-nucleus photometry, polarimetry, and imaging such as planned for the near future space probes. After showing the appropriate validations of the code with other modeling results, we address here the effect of including the full 4 times 4 scattering matrix into the calculations of the radiative flux impinging on cometary nuclei. As input of the code we use realistic single scattering phase matrices derived by fitting the observed behavior of the linear polarization versus phase angle in cometary atmospheres. The observed single scattering linear polarization phase curves of comets are found to be fairly well represented by a mixture of Mg-rich olivine particles and small carbonaceous particles. The input matrix of the code is thus given by the phase matrix for olivine as obtained in the laboratory cite{bib27} plus a variable scattering fraction phase matrix for absorbing carbonaceous particles. Particularly, these fractions are found to be 3.5% for comet Halley and 6% for comet Hale-Bopp, for which the greatest percentage of all the observed comets was found. The total input fluxes computed by ignoring the polarization effects are found to show differences as large as 10% with respect to the fluxes obtained when the full scattering matrix is included in the calculations.
Nishimura, Akiko; Fujita, Yuichi; Katsuta, Mayumi; Ishihara, Aya; Ohashi, Kazutomo
2015-05-31
A negative effect of paternal depression on child development has been revealed in several previous studies. The aims of this study were to examine the prevalence and relevant factors associated with paternal postnatal depression at four months postpartum, including age, part-time work or unemployment, experience of visiting a medical institution due to a mental health problem, economic anxiety, unexpected pregnancy, pregnancy with infertility treatment, first child, partner's depression, and lower marital relationship satisfaction. We distributed 2032 self-report questionnaires to couples (one mother and one father) with a 4-month old infant between January and April 2013. Data from 807 couples (39.7 %) were analyzed. Depressive symptoms were measured with the Edinburgh Postnatal Depression Scale (EPDS). In order to clarify the factors related with paternal depression, a logistic regression analysis was conducted. One hundred and ten fathers (13.6 %) and 83 mothers (10.3 %) were depressed. According to the logistic regression analysis, paternal depression was positively associated with partner's depression (adjusted odds ratio (AOR) 1.91, 95 % confidence interval (CI) 1.05-3.47), and negatively with marital relationship satisfaction (AOR 0.83, 95 % CI 0.77-0.89). History of infertility treatment (AOR 2.37, 95 % CI 1.32-4.24), experience of visiting a medical institution due to a mental health problem (AOR 4.56, 95 % CI 2.06-10.08), and economic anxiety (AOR 2.15, 95 % CI 1.34-3.45) were also correlated with paternal depression. This study showed that the prevalence of paternal depression at four months after childbirth was 13.6 % in Japan. The presence of partner's depression and low marital relationship satisfaction were significantly correlated with paternal postpartum depression, suggesting that health professionals need to pay attention to the mental status of both fathers and mothers, and to their relationship.
Cont-Bouchaud Percolation Model Including Tobin Tax
NASA Astrophysics Data System (ADS)
Ehrenstein, Gudrun
The Tobin tax is an often discussed method to tame speculation and get a source of income. The discussion is especially heated when the financial markets are in crisis. In this article we refer to the foreign exchange markets. The Tobin tax should be a small international tax affecting all currency transactions and thus consequently reducing destabilizing speculations. In this way this tax should take over a control function. By including the Tobin tax in the microscopic model of Cont and Bouchaud one finds that this tax could be the right method to control foreign exchange operations and to get a good source of income.
Kinetic models of gene expression including non-coding RNAs
NASA Astrophysics Data System (ADS)
Zhdanov, Vladimir P.
2011-03-01
In cells, genes are transcribed into mRNAs, and the latter are translated into proteins. Due to the feedbacks between these processes, the kinetics of gene expression may be complex even in the simplest genetic networks. The corresponding models have already been reviewed in the literature. A new avenue in this field is related to the recognition that the conventional scenario of gene expression is fully applicable only to prokaryotes whose genomes consist of tightly packed protein-coding sequences. In eukaryotic cells, in contrast, such sequences are relatively rare, and the rest of the genome includes numerous transcript units representing non-coding RNAs (ncRNAs). During the past decade, it has become clear that such RNAs play a crucial role in gene expression and accordingly influence a multitude of cellular processes both in the normal state and during diseases. The numerous biological functions of ncRNAs are based primarily on their abilities to silence genes via pairing with a target mRNA and subsequently preventing its translation or facilitating degradation of the mRNA-ncRNA complex. Many other abilities of ncRNAs have been discovered as well. Our review is focused on the available kinetic models describing the mRNA, ncRNA and protein interplay. In particular, we systematically present the simplest models without kinetic feedbacks, models containing feedbacks and predicting bistability and oscillations in simple genetic networks, and models describing the effect of ncRNAs on complex genetic networks. Mathematically, the presentation is based primarily on temporal mean-field kinetic equations. The stochastic and spatio-temporal effects are also briefly discussed.
Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots
Hajdin, Christine E.; Bellaousov, Stanislav; Huggins, Wayne; Leonard, Christopher W.; Mathews, David H.; Weeks, Kevin M.
2013-01-01
A pseudoknot forms in an RNA when nucleotides in a loop pair with a region outside the helices that close the loop. Pseudoknots occur relatively rarely in RNA but are highly overrepresented in functionally critical motifs in large catalytic RNAs, in riboswitches, and in regulatory elements of viruses. Pseudoknots are usually excluded from RNA structure prediction algorithms. When included, these pairings are difficult to model accurately, especially in large RNAs, because allowing this structure dramatically increases the number of possible incorrect folds and because it is difficult to search the fold space for an optimal structure. We have developed a concise secondary structure modeling approach that combines SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) experimental chemical probing information and a simple, but robust, energy model for the entropic cost of single pseudoknot formation. Structures are predicted with iterative refinement, using a dynamic programming algorithm. This melded experimental and thermodynamic energy function predicted the secondary structures and the pseudoknots for a set of 21 challenging RNAs of known structure ranging in size from 34 to 530 nt. On average, 93% of known base pairs were predicted, and all pseudoknots in well-folded RNAs were identified. PMID:23503844
Progress Towards an LES Wall Model Including Unresolved Roughness
NASA Astrophysics Data System (ADS)
Craft, Kyle; Redman, Andrew; Aikens, Kurt
2015-11-01
Wall models used in large eddy simulations (LES) are often based on theories for hydraulically smooth walls. While this is reasonable for many applications, there are also many where the impact of surface roughness is important. A previously developed wall model has been used primarily for jet engine aeroacoustics. However, jet simulations have not accurately captured thick initial shear layers found in some experimental data. This may partly be due to nozzle wall roughness used in the experiments to promote turbulent boundary layers. As a result, the wall model is extended to include the effects of unresolved wall roughness through appropriate alterations to the log-law. The methodology is tested for incompressible flat plate boundary layers with different surface roughness. Correct trends are noted for the impact of surface roughness on the velocity profile. However, velocity deficit profiles and the Reynolds stresses do not collapse as well as expected. Possible reasons for the discrepancies as well as future work will be presented. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Computational resources on TACC Stampede were provided under XSEDE allocation ENG150001.
Extending Primitive Spatial Data Models to Include Semantics
NASA Astrophysics Data System (ADS)
Reitsma, F.; Batcheller, J.
2009-04-01
Our traditional geospatial data model involves associating some measurable quality, such as temperature, or observable feature, such as a tree, with a point or region in space and time. When capturing data we implicitly subscribe to some kind of conceptualisation. If we can make this explicit in an ontology and associate it with the captured data, we can leverage formal semantics to reason with the concepts represented in our spatial data sets. To do so, we extend our fundamental representation of geospatial data in a data model by including a URI in our basic data model that links it to our ontology defining our conceptualisation, We thus extend Goodchild et al's geo-atom [1] with the addition of a URI: (x, Z, z(x), URI) . This provides us with pixel or feature level knowledge and the ability to create layers of data from a set of pixels or features that might be drawn from a database based on their semantics. Using open source tools, we present a prototype that involves simple reasoning as a proof of concept. References [1] M.F. Goodchild, M. Yuan, and T.J. Cova. Towards a general theory of geographic representation in gis. International Journal of Geographical Information Science, 21(3):239-260, 2007.
Development of an Aeroelastic Analysis Including a Viscous Flow Model
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Bakhle, Milind A.
2001-01-01
Under this grant, Version 4 of the three-dimensional Navier-Stokes aeroelastic code (TURBO-AE) has been developed and verified. The TURBO-AE Version 4 aeroelastic code allows flutter calculations for a fan, compressor, or turbine blade row. This code models a vibrating three-dimensional bladed disk configuration and the associated unsteady flow (including shocks, and viscous effects) to calculate the aeroelastic instability using a work-per-cycle approach. Phase-lagged (time-shift) periodic boundary conditions are used to model the phase lag between adjacent vibrating blades. The direct-store approach is used for this purpose to reduce the computational domain to a single interblade passage. A disk storage option, implemented using direct access files, is available to reduce the large memory requirements of the direct-store approach. Other researchers have implemented 3D inlet/exit boundary conditions based on eigen-analysis. Appendix A: Aeroelastic calculations based on three-dimensional euler analysis. Appendix B: Unsteady aerodynamic modeling of blade vibration using the turbo-V3.1 code.
Polarimetric Models of Circumstellar Discs Including Aggregate Dust Grains
NASA Astrophysics Data System (ADS)
Mohan, Mahesh
output files and to apply a size distribution to the data. The second circumstellar disc investigated is the debris disc of the M dwarf star AU Mic. The disc was modelled, using the radiative transfer code Hyperion, based on F606W (HST) and JHK0-band (Keck II) scattered light observations and F606Wband polarized light observations. Initially, the disc is modelled as a two component structure using two grain types: compact silicate grains and porous dirty ice water. Both models are able to reproduce the observed SED and the F606W and H-band surface brightness profiles, but are unable to fit the observed F606W degree of polarization. Therefore, a more complex/realistic grain model was examined (ballistic aggregate particles). In addition, recent millimetre observations suggest the existence of a planetesimal belt < 3 AU from the central star. This belt is included in the BAM2 model and was successful in fitting the observed SED, F606W and H-band surface brightness and F606W polarization. These results demonstrate the limitations of spherical grain models and indicate the importance of modelling more realistic dust grains.
A model for including thermal conduction in molecular dynamics simulations
NASA Technical Reports Server (NTRS)
Wu, Yue; Friauf, Robert J.
1989-01-01
A technique is introduced for including thermal conduction in molecular dynamics simulations for solids. A model is developed to allow energy flow between the computational cell and the bulk of the solid when periodic boundary conditions cannot be used. Thermal conduction is achieved by scaling the velocities of atoms in a transitional boundary layer. The scaling factor is obtained from the thermal diffusivity, and the results show good agreement with the solution for a continuous medium at long times. The effects of different temperature and size of the system, and of variations in strength parameter, atomic mass, and thermal diffusivity were investigated. In all cases, no significant change in simulation results has been found.
Numerical Modeling of Electroacoustic Logging Including Joule Heating
NASA Astrophysics Data System (ADS)
Plyushchenkov, Boris D.; Nikitin, Anatoly A.; Turchaninov, Victor I.
It is well known that electromagnetic field excites acoustic wave in a porous elastic medium saturated with fluid electrolyte due to electrokinetic conversion effect. Pride's equations describing this process are written in isothermal approximation. Update of these equations, which allows to take influence of Joule heating on acoustic waves propagation into account, is proposed here. This update includes terms describing the initiation of additional acoustic waves excited by thermoelastic stresses and the heat conduction equation with right side defined by Joule heating. Results of numerical modeling of several problems of propagation of acoustic waves excited by an electric field source with and without consideration of Joule heating effect in their statements are presented. From these results, it follows that influence of Joule heating should be taken into account at the numerical simulation of electroacoustic logging and at the interpretation of its log data.
A model for including thermal conduction in molecular dynamics simulations
NASA Technical Reports Server (NTRS)
Wu, Yue; Friauf, Robert J.
1989-01-01
A technique is introduced for including thermal conduction in molecular dynamics simulations for solids. A model is developed to allow energy flow between the computational cell and the bulk of the solid when periodic boundary conditions cannot be used. Thermal conduction is achieved by scaling the velocities of atoms in a transitional boundary layer. The scaling factor is obtained from the thermal diffusivity, and the results show good agreement with the solution for a continuous medium at long times. The effects of different temperature and size of the system, and of variations in strength parameter, atomic mass, and thermal diffusivity were investigated. In all cases, no significant change in simulation results has been found.
A new solar cycle model including meridional circulation
NASA Technical Reports Server (NTRS)
Wang, Y.-M.; Sheeley, N. R., Jr.; Nash, A. G.
1991-01-01
A kinematic model is presented for the solar cycle which includes not only the transport of magnetic flux by supergranular diffusion and a poleward bulk flow at the sun's surface, but also the effects of turbulent diffusion and an equatorward 'return flow' beneath the surface. As in the earlier models of Babcock and Leighton, the rotational shearing of a subsurface poloidal field generates toroidal flux that erupts at the surface in the form of bipolar magnetic regions. However, such eruptions do not result in any net loss of toroidal flux from the sun (as assumed by Babcock and Leighton); instead, the large-scale toroidal field is destroyed both by 'unwinding' as the local poloidal field reverses its polarity, and by diffusion as the toroidal flux is transported equatorward by the subsurface flow and merged with its opposite hemisphere counterpart. The inclusion of meridional circulation allows stable oscillations of the magnetic field, accompanied by the equatorward progression of flux eruptions, to be achieved even in the absence of a radial gradient in the angular velocity. An illustrative case in which a subsurface flow speed of order 1 m/s and subsurface diffusion rate of order 10 sq km/s yield 22-yr oscillations in qualitative agreement with observations.
Radiometric sensor performance model including atmospheric and IR clutter effects
NASA Astrophysics Data System (ADS)
Richter, Rudolf; Davis, Joel S.; Duggin, Michael J.
1997-06-01
The computer code SENSAT developed for radiometric investigations in remote sensing was extended to include two statistical clutter models of infrared background and the prediction of the target detection probability. The first one is based on the standard deviation of scene clutter estimated from scene data, the second one is based on the power spectral density of different classes of IR background as a function of temporal or spatial frequency. The overall code consists of modules describing the optoelectronic sensor (optics, detector, signal processor), a radiative transfer code (MODTRAN) to include the atmospheric effects, and the scene module consisting of target and background. The scene is evaluated for a certain pixel at a time. However, a sequence of pixels can be simulated by varying the range, view angle, atmospheric condition, or the clutter level. The target consists of one or two subpixel surface elements, the remaining part of the pixels represents background. Multiple paths, e.g. sun-ground-target-sensor, can also be selected. An expert system, based upon the IDL language, provides user-friendly input menus, performs consistency checks, and submits the required MODTRAN and SENSAT runs. A sample case of the detection probability of a sub-pixel target in a marine cluttered background is discussed.
A constitutive model for the forces of a magnetic bearing including eddy currents
NASA Technical Reports Server (NTRS)
Taylor, D. L.; Hebbale, K. V.
1993-01-01
A multiple magnet bearing can be developed from N individual electromagnets. The constitutive relationships for a single magnet in such a bearing is presented. Analytical expressions are developed for a magnet with poles arranged circumferencially. Maxwell's field equations are used so the model easily includes the effects of induced eddy currents due to the rotation of the journal. Eddy currents must be included in any dynamic model because they are the only speed dependent parameter and may lead to a critical speed for the bearing. The model is applicable to bearings using attraction or repulsion.
Goldilocks models of higher-dimensional inflation (including modulus stabilization)
NASA Astrophysics Data System (ADS)
Burgess, C. P.; Enns, Jared J. H.; Hayman, Peter; Patil, Subodh P.
2016-08-01
We explore the mechanics of inflation within simplified extra-dimensional models involving an inflaton interacting with the Einstein-Maxwell system in two extra dimensions. The models are Goldilocks-like inasmuch as they are just complicated enough to include a mechanism to stabilize the extra-dimensional size (or modulus), yet simple enough to solve explicitly the full extra-dimensional field equations using only simple tools. The solutions are not restricted to the effective 4D regime with H ll mKK (the latter referring to the characteristic mass splitting of the Kaluza-Klein excitations) because the full extra-dimensional Einstein equations are solved. This allows an exploration of inflationary physics in a controlled calculational regime away from the usual four-dimensional lamp-post. The inclusion of modulus stabilization is important because experience with string models teaches that this is usually what makes models fail: stabilization energies easily dominate the shallow potentials required by slow roll and so open up directions to evolve that are steeper than those of the putative inflationary direction. We explore (numerically and analytically) three representative kinds of inflationary scenarios within this simple setup. In one the radion is trapped in an inflaton-dependent local minimum whose non-zero energy drives inflation. Inflation ends as this energy relaxes to zero when the inflaton finds its own minimum. The other two involve power-law scaling solutions during inflation. One of these is a dynamical attractor whose features are relatively insensitive to initial conditions but whose slow-roll parameters cannot be arbitrarily small; the other is not an attractor but can roll much more slowly, until eventually transitioning to the attractor. The scaling solutions can satisfy H > mKK, but when they do standard 4D fluctuation calculations need not apply. When in a 4D regime the solutions predict η simeq 0 and so r simeq 0.11 when ns simeq 0.96 and so
Including Nearshore Processes in Phase-Averaged Hydrodynamics Models
2006-08-01
physical modeling of hydrodynamics to the use of numerical models. A suitable set of equations conserving mass, momen- tum, and energy do not suffer...the high cost and scale effects of physical models. Numerical models, however, rely on a set of discritized and sim- plified equations , and nonphysical...used in the interest of brevity. The solution of Equation 24 along with Equation 26 constitutes a solution for the depth-dependent cross-shore
Including spatial data in nutrient balance modelling on dairy farms
NASA Astrophysics Data System (ADS)
van Leeuwen, Maricke; van Middelaar, Corina; Stoof, Cathelijne; Oenema, Jouke; Stoorvogel, Jetse; de Boer, Imke
2017-04-01
The Annual Nutrient Cycle Assessment (ANCA) calculates the nitrogen (N) and phosphorus (P) balance at a dairy farm, while taking into account the subsequent nutrient cycles of the herd, manure, soil and crop components. Since January 2016, Dutch dairy farmers are required to use ANCA in order to increase understanding of nutrient flows and to minimize nutrient losses to the environment. A nutrient balance calculates the difference between nutrient inputs and outputs. Nutrients enter the farm via purchased feed, fertilizers, deposition and fixation by legumes (nitrogen), and leave the farm via milk, livestock, manure, and roughages. A positive balance indicates to which extent N and/or P are lost to the environment via gaseous emissions (N), leaching, run-off and accumulation in soil. A negative balance indicates that N and/or P are depleted from soil. ANCA was designed to calculate average nutrient flows on farm level (for the herd, manure, soil and crop components). ANCA was not designed to perform calculations of nutrient flows at the field level, as it uses averaged nutrient inputs and outputs across all fields, and it does not include field specific soil characteristics. Land management decisions, however, such as the level of N and P application, are typically taken at the field level given the specific crop and soil characteristics. Therefore the information that ANCA provides is likely not sufficient to support farmers' decisions on land management to minimize nutrient losses to the environment. This is particularly a problem when land management and soils vary between fields. For an accurate estimate of nutrient flows in a given farming system that can be used to optimize land management, the spatial scale of nutrient inputs and outputs (and thus the effect of land management and soil variation) could be essential. Our aim was to determine the effect of the spatial scale of nutrient inputs and outputs on modelled nutrient flows and nutrient use efficiencies
Waheedi, Mohammad; Awad, Abdelmoneim; Hatoum, Hind T; Enlund, Hannes
2017-02-01
Background The Middle East region has one the highest prevalence rates of diabetes in the world. Little is known about the determinants of adherence and the role of knowledge in diabetes self-management within these populations. Objective To investigate the relationship between patients knowledge of diabetes therapeutic targets with adherence to self-care measures in a sample of patients with type 2 diabetes in Kuwait. Setting Primary care chronic care clinics within the Ministry of Health of Kuwait. Methods A cross sectional survey was carried out with 238 patients from six clinics. A multistage stratified clustered sampling method was used to first randomly select the clinics and the patients. Self-reported adherence to three behaviours: medication taking, diet and physical activity. Results Respondents were able to correctly report a mean (SD) of 1.6 (1.3) out of 5 of the pre-specified treatment targets. Optimal adherence to physical activity, diet and medications was reported in 25, 33 and 47 % of the study cohort, respectively. A structural equation model analysis showed better knowledge of therapeutic goals and own current levels translated into better adherence to medications, diet and physical activity. Conclusion Knowledge of therapeutic goals and own recent levels is associated with adherence to medications, diet, or physical activity in this Kuwaiti cohort of patients with diabetes. Low adherence to self-care management and poor overall knowledge of diabetes is a big challenge to successful diabetes care in Kuwait.
[Relationship between assertiveness including consideration for others and adjustment in children].
Eguchi, Megumi; Hamaguchi, Yoshikazu
2012-06-01
The relationship between assertiveness and internal and external adjustment was investigated. Elementary school children in grades four to six (n=207) and their classroom teachers (n=8) participated in the study. Internal and external adjustments were measured by using self-ratings, and self- and other- ratings respectively. The children responded to a questionnaires inquiring about assertiveness that included two components of assessment: "self expression" and "consideration for others". Then, the children were divided into 4 groups according to their scores on these two components of assertiveness. The results indicated that children scoring high on both components of assertiveness had higher self-rating scores than those scoring low on both components. Moreover, children that scored high on "consideration for others" tended to have high external adjustment. Also, boys that scored low on "self expression" had lower external adjustment as indicated by the negative ratings of teachers. Furthermore, girls that scored high on "consideration for others" had high external adjustment as indicated by positive ratings of teachers and same-sexed classmates.
A Fault Evolution Model Including the Rupture Dynamic Simulation
NASA Astrophysics Data System (ADS)
Wu, Y.; Chen, X.
2011-12-01
We perform a preliminary numerical simulation of seismicity and stress evolution along a strike-slip fault in a 3D elastic half space. Following work of Ben-Zion (1996), the fault geometry is devised as a vertical plane which is about 70 km long and 17 km wide, comparable to the size of San Andreas Fault around Parkfield. The loading mechanism is described by "backslip" method. The fault failure is governed by a static/kinetic friction law, and induced stress transfer is calculated with Okada's static solution. In order to track the rupture propagation in detail, we allow induced stress to propagate through the medium at the shear wave velocity by introducing a distance-dependent time delay to responses to stress changes. Current simulation indicates small to moderate earthquakes following the Gutenberg-Richter law and quasi-periodical characteristic large earthquakes, which are consistent with previous work by others. Next we will consider introducing a more realistic friction law, namely, the laboratory-derived rate- and state- dependent law, which can simulate more realistic and complicated sliding behavior such as the stable and unstable slip, the aseismic sliding and the slip nucleation process. In addition, the long duration of aftershocks is expected to be reproduced due to this time-dependent friction law, which is not available in current seismicity simulation. The other difference from previous work is that we are trying to include the dynamic ruptures in this study. Most previous study on seismicity simulation is based on the static solution when dealing with failure induced stress changes. However, studies of numerical simulation of rupture dynamics have revealed lots of important details which are missing in the quasi-static/quasi- dynamic simulation. For example, dynamic simulations indicate that the slip on the ground surface becomes larger if the dynamic rupture process reaches the free surface. The concentration of stress on the propagating crack
Constitutive modelling of evolving flow anisotropy including distortional hardening
Pietryga, Michael P.; Vladimirov, Ivaylo N.; Reese, Stefanie
2011-05-04
The paper presents a new constitutive model for anisotropic metal plasticity that takes into account the expansion or contraction (isotropic hardening), translation (kinematic hardening) and change of shape (distortional hardening) of the yield surface. The experimentally observed region of high curvature ('nose') on the yield surface in the loading direction and flattened shape in the reverse loading direction are modelled here by means of the concept of directional distortional hardening. The modelling of directional distortional hardening is accomplished by means of an evolving fourth-order tensor. The applicability of the model is illustrated by fitting experimental subsequent yield surfaces at finite plastic deformation. Comparisons with test data for aluminium low and high work hardening alloys display a good agreement between the simulation results and the experimental data.
An Intracellular Calcium Oscillations Model Including Mitochondrial Calcium Cycling
NASA Astrophysics Data System (ADS)
Shi, Xiao-Min; Liu, Zeng-Rong
2005-12-01
Calcium is a ubiquitous second messenger. Mitochondria contributes significantly to intracellular Ca2+ dynamics. The experiment of Kaftan et al. [J. Biol. Chem. 275(2000) 25465] demonstrated that inhibiting mitochondrial Ca2+ uptake can reduce the frequency of cytosolic Ca2+ concentration oscillations of gonadotropes. By considering the mitochondrial Ca2+ cycling we develop a three-variable model of intracellular Ca2+ oscillations based on the models of Atri et al. [Biophys. J. 65 (1993) 1727] and Falcke et al. [Biophys. J. 77 (1999) 37]. The model reproduces the fact that mitochondrial Ca2+ cycling increases the frequency of cytosolic Ca2+ oscillations, which accords with Kaftan's results. Moreover the model predicts that when the mitochondria overload with Ca2+, the cytosolic Ca2+ oscillations vanish, which may trigger apoptosis.
The prediction of the cavitation phenomena including population balance modeling
NASA Astrophysics Data System (ADS)
Bannari, Rachid; Hliwa, Ghizlane Zineb; Bannari, Abdelfettah; Belghiti, Mly Taib
2017-07-01
Cavitation is the principal reason behind the behavior's modification of the hydraulic turbines. However, the experimental observations can not be appropriate to all cases due to the limitations in the measurement techniques. The mathematical models which have been implemented, use the mixture multiphase frame. As well as, most of the published work is limited by considering a constant bubble size distribution. However, this assumption is not realist. The aim of this article is the implementation and the use of a non-homogeneous multiphase model which solve two phases transport equation. The evolution of bubble size is considered by the population balance equation. This study is based on the eulerian-eulerian model, associated to the cavitation model. All the inter-phase forces such as drag, lift and virtual mass are used.
Modeling Insurgent Dynamics Including Heterogeneity. A Statistical Physics Approach
NASA Astrophysics Data System (ADS)
Johnson, Neil F.; Manrique, Pedro; Hui, Pak Ming
2013-05-01
Despite the myriad complexities inherent in human conflict, a common pattern has been identified across a wide range of modern insurgencies and terrorist campaigns involving the severity of individual events—namely an approximate power-law x - α with exponent α≈2.5. We recently proposed a simple toy model to explain this finding, built around the reported loose and transient nature of operational cells of insurgents or terrorists. Although it reproduces the 2.5 power-law, this toy model assumes every actor is identical. Here we generalize this toy model to incorporate individual heterogeneity while retaining the model's analytic solvability. In the case of kinship or team rules guiding the cell dynamics, we find that this 2.5 analytic result persists—however an interesting new phase transition emerges whereby this cell distribution undergoes a transition to a phase in which the individuals become isolated and hence all the cells have spontaneously disintegrated. Apart from extending our understanding of the empirical 2.5 result for insurgencies and terrorism, this work illustrates how other statistical physics models of human grouping might usefully be generalized in order to explore the effect of diverse human social, cultural or behavioral traits.
NASA Trapezoidal Wing Computations Including Transition and Advanced Turbulence Modeling
NASA Technical Reports Server (NTRS)
Rumsey, C. L.; Lee-Rausch, E. M.
2012-01-01
Flow about the NASA Trapezoidal Wing is computed with several turbulence models by using grids from the first High Lift Prediction Workshop in an effort to advance understanding of computational fluid dynamics modeling for this type of flowfield. Transition is accounted for in many of the computations. In particular, a recently-developed 4-equation transition model is utilized and works well overall. Accounting for transition tends to increase lift and decrease moment, which improves the agreement with experiment. Upper surface flap separation is reduced, and agreement with experimental surface pressures and velocity profiles is improved. The predicted shape of wakes from upstream elements is strongly influenced by grid resolution in regions above the main and flap elements. Turbulence model enhancements to account for rotation and curvature have the general effect of increasing lift and improving the resolution of the wing tip vortex as it convects downstream. However, none of the models improve the prediction of surface pressures near the wing tip, where more grid resolution is needed.
Aircrew Availability: Modeling Predictors of Duties Not Including Flying Status
2017-07-25
for model building and statistical inference. Significant associations were observed between age, AFSC, clinic, and primary diagnosis category and...expected DNIF duration. While controlling for specific diagnoses, increasing age was positively associated with expected DNIF duration. Six AFSCs were... associated with an increased expected DNIF duration; however, these AFSCs were not significant drivers of DNIF duration based on the Pareto analysis
Recent atomistic modelling studies of energy materials: batteries included.
Islam, M Saiful
2010-07-28
Advances in functional materials for energy conversion and storage technologies are crucial in addressing the global challenge of green sustainable energy. This article aims to demonstrate the valuable role that modern modelling techniques now play in providing deeper fundamental insight into novel materials for rechargeable lithium batteries and solid oxide fuel cells. Recent work is illustrated by studies on important topical materials encompassing transition-metal phosphates and silicates for lithium battery electrodes, and apatite-type silicates for fuel cell electrolytes.
Modeling shelter-in-place including sorption on indoor surfaces
Chan, Wanyu R.; Price, Phillip N.; Gadgil, Ashok J.; Nazaroff, William W.; Loosmore, Gwen A.; Sugiyama, Gayle A.
2003-11-01
Intentional or accidental large-scale airborne toxic releases (e.g. terrorist attacks or industrial accidents) can cause severe harm to nearby communities. As part of an emergency response plan, shelter-in-place (SIP) can be an effective response option, especially when evacuation is infeasible. Reasonably tight building envelopes provide some protection against exposure to peak concentrations when toxic release passes over an area. They also provide some protection in terms of cumulative exposure, if SIP is terminated promptly after the outdoor plume has passed. The purpose of this work is to quantify the level of protection offered by existing houses, and the importance of sorption/desorption to and from surfaces on the effectiveness of SIP. We examined a hypothetical chlorine gas release scenario simulated by the National Atmospheric Release Advisory Center (NARAC). We used a standard infiltration model to calculate the distribution of time dependent infiltration rates within each census tract. Large variation in the air tightness of dwellings makes some houses more protective than others. Considering only the median air tightness, model results showed that if sheltered indoors, the total population intake of non-sorbing toxic gas is only 50% of the outdoor level 4 hours from the start of the release. Based on a sorption/desorption model by Karlsson and Huber (1996), we calculated that the sorption process would further lower the total intake of the population by an additional 50%. The potential benefit of SIP can be considerably higher if the comparison is made in terms of health effects because of the non-linear acute effect dose-response curve of many chemical warfare agents and toxic industrial substances.
Comparison of Joint Modeling Approaches Including Eulerian Sliding Interfaces
Lomov, I; Antoun, T; Vorobiev, O
2009-12-16
Accurate representation of discontinuities such as joints and faults is a key ingredient for high fidelity modeling of shock propagation in geologic media. The following study was done to improve treatment of discontinuities (joints) in the Eulerian hydrocode GEODYN (Lomov and Liu 2005). Lagrangian methods with conforming meshes and explicit inclusion of joints in the geologic model are well suited for such an analysis. Unfortunately, current meshing tools are unable to automatically generate adequate hexahedral meshes for large numbers of irregular polyhedra. Another concern is that joint stiffness in such explicit computations requires significantly reduced time steps, with negative implications for both the efficiency and quality of the numerical solution. An alternative approach is to use non-conforming meshes and embed joint information into regular computational elements. However, once slip displacement on the joints become comparable to the zone size, Lagrangian (even non-conforming) meshes could suffer from tangling and decreased time step problems. The use of non-conforming meshes in an Eulerian solver may alleviate these difficulties and provide a viable numerical approach for modeling the effects of faults on the dynamic response of geologic materials. We studied shock propagation in jointed/faulted media using a Lagrangian and two Eulerian approaches. To investigate the accuracy of this joint treatment the GEODYN calculations have been compared with results from the Lagrangian code GEODYN-L which uses an explicit treatment of joints via common plane contact. We explore two approaches to joint treatment in the code, one for joints with finite thickness and the other for tight joints. In all cases the sliding interfaces are tracked explicitly without homogenization or blending the joint and block response into an average response. In general, rock joints will introduce an increase in normal compliance in addition to a reduction in shear strength. In the
A Model for Axial Magnetic Bearings Including Eddy Currents
NASA Technical Reports Server (NTRS)
Kucera, Ladislav; Ahrens, Markus
1996-01-01
This paper presents an analytical method of modelling eddy currents inside axial bearings. The problem is solved by dividing an axial bearing into elementary geometric forms, solving the Maxwell equations for these simplified geometries, defining boundary conditions and combining the geometries. The final result is an analytical solution for the flux, from which the impedance and the force of an axial bearing can be derived. Several impedance measurements have shown that the analytical solution can fit the measured data with a precision of approximately 5%.
Mechanical Modeling of Foods Including Fracture and Simulation of Food Compression
NASA Astrophysics Data System (ADS)
Morimoto, Masamichi; Mizunuma, Hiroshi; Sonomura, Mitsuhiro; Kohyama, Kaoru; Ogoshi, Hiro
2008-07-01
The purposes of this research are to simulate the swallowing of foods, and to investigate the relationship between the rheological properties of foods and the swallowing. Here we proposed the mechanical modeling of foods, and simulated the compression test using the finite element method. A linear plasticity model was applied as the rheological model of the foods, and two types of computational elements were used to simulate the fracture behavior. The compression tests with a wedged plunger were simulated for tofu, banana, and biscuit, and were compared with the experimental results. Other than the homogeneous food model, the simulations were conducted for the multi-layer models. Reasonable agreements on the behaviors of compression and fracture were obtained between the simulations and the experiments including the reaction forces on the plunger.
Generalized Modeling of Enrichment Cascades That Include Minor Isotopes
Weber, Charles F
2012-01-01
The monitoring of enrichment operations may require innovative analysis to allow for imperfect or missing data. The presence of minor isotopes may help or hurt - they can complicate a calculation or provide additional data to corroborate a calculation. However, they must be considered in a rigorous analysis, especially in cases involving reuse. This study considers matched-abundanceratio cascades that involve at least three isotopes and allows generalized input that does not require all feed assays or the enrichment factor to be specified. Calculations are based on the equations developed for the MSTAR code but are generalized to allow input of various combinations of assays, flows, and other cascade properties. Traditional cascade models have required specification of the enrichment factor, all feed assays, and the product and waste assays of the primary enriched component. The calculation would then produce the numbers of stages in the enriching and stripping sections and the remaining assays in waste and product streams. In cases where the enrichment factor or feed assays were not known, analysis was difficult or impossible. However, if other quantities are known (e.g., additional assays in waste or product streams), a reliable calculation is still possible with the new code, but such nonstandard input may introduce additional numerical difficulties into the calculation. Thus, the minimum input requirements for a stable solution are discussed, and a sample problem with a non-unique solution is described. Both heuristic and mathematically required guidelines are given to assist the application of cascade modeling to situations involving such non-standard input. As a result, this work provides both a calculational tool and specific guidance for evaluation of enrichment cascades in which traditional input data are either flawed or unknown. It is useful for cases involving minor isotopes, especially if the minor isotope assays are desired (or required) to be
Human sperm chromatin stabilization: a proposed model including zinc bridges.
Björndahl, Lars; Kvist, Ulrik
2010-01-01
The primary focus of this review is to challenge the current concepts on sperm chromatin stability. The observations (i) that zinc depletion at ejaculation allows a rapid and total sperm chromatin decondensation without the addition of exogenous disulfide cleaving agents and (ii) that the human sperm chromatin contains one zinc for every protamine for every turn of the DNA helix suggest an alternative model for sperm chromatin structure may be plausible. An alternative model is therefore proposed, that the human spermatozoon could at ejaculation have a rapidly reversible zinc dependent chromatin stability: Zn(2+) stabilizes the structure and prevents the formation of excess disulfide bridges by a single mechanism, the formation of zinc bridges with protamine thiols of cysteine and potentially imidazole groups of histidine. Extraction of zinc enables two biologically totally different outcomes: immediate decondensation if chromatin fibers are concomitantly induced to repel (e.g. by phosphorylation in the ooplasm); otherwise freed thiols become committed into disulfide bridges creating a superstabilized chromatin. Spermatozoa in the zinc rich prostatic fluid (normally the first expelled ejaculate fraction) represent the physiological situation. Extraction of chromatin zinc can be accomplished by the seminal vesicular fluid. Collection of the ejaculate in one single container causes abnormal contact between spermatozoa and seminal vesicular fluid affecting the sperm chromatin stability. There are men in infertile couples with low content of sperm chromatin zinc due to loss of zinc during ejaculation and liquefaction. Tests for sperm DNA integrity may give false negative results due to decreased access for the assay to the DNA in superstabilized chromatin.
Global model including multistep ionizations in helium plasmas
NASA Astrophysics Data System (ADS)
Oh, Seung-Ju; Lee, Hyo-Chang; Chung, Chin-Wook
2016-12-01
Particle and power balance equations including stepwise ionizations are derived and solved in helium plasmas. In the balance equations, two metastable states (21S1 in singlet and 23S1 triplet) are considered and the followings are obtained. The plasma density linearly increases and the electron temperature is relatively in a constant value against the absorbed power. It is also found that the contribution to multi-step ionization with respect to the single-step ionization is in the range of 8%-23%, as the gas pressure increases from 10 mTorr to 100 mTorr. Compared to the results in the argon plasma, there is little variation in the collisional energy loss per electron-ion pair created (ɛc) with absorbed power and gas pressure due to the small collision cross section and higher inelastic collision threshold energy.
Elastic lattice modelling of seismic waves including a free surface
NASA Astrophysics Data System (ADS)
O`Brien, Gareth S.
2014-06-01
Elastic lattice methods (ELMs) have been shown to accurately model seismic wave propagation in a heterogeneous medium. These methods represent an elastic solid as a series of interconnected springs arranged on a lattice and recover a continuum wave equation in the long wavelength limit. However, in the case of a regular lattice, the recovery of the continuum equation depends on the symmetry of the lattice. By removing particles above a free surface this symmetry is broken. Therefore, this free surface implementation leads to errors when compared with a traction free boundary condition. The error between a traction free boundary condition and the ELMs grows as the Poisson's ratio deviates from 0.25. By modifying the interaction constants with a scalar, the error can be reduced while keeping the flexibility of the nearest neighbour interaction rule. We present results of simulations where modified spring constants reduce the misfit with a traction free boundary solution and hence increase the accuracy of the elastic lattice method solution on the free surface.
Inelastic deformation and phenomenological modeling of aluminum including transient effect
Cho, C.W.
1980-01-01
A review was made of several phenomenological theories which have recently been proposed to describe the inelastic deformation of crystalline solids. Hart's deformation theory has many advantages, but there are disagreements with experimental deformation at stress levels below yield. A new inelastic deformation theory was proposed, introducing the concept of microplasticity. The new model consists of five deformation elements: a friction element representing a deformation element controlled by dislocation glide, a nonrecoverable plastic element representing the dislocation leakage rate over the strong dislocation barriers, a microplastic element representing the dislocation leakage rate over the weak barriers, a short range anelastic spring element representing the recoverable anelastic strain stored by piled-up dislocations against the weak barriers, and a long range anelastic spring element representing the recoverable strain stored by piled-up dislocations against the strong barriers. Load relaxation and tensile testing in the plastic range were used to determine the material parameters for the plastic friction elements. The short range and long range anelastic moduli and the material parameters for the kinetics of microplasticity were determined by the measurement of anelastic loops and by performing load relaxation tests in the microplastic region. Experimental results were compared with a computer simulation of the transient deformation behavior of commercial purity aluminum. An attempt was made to correlate the material parameters and the microstructure from TEM. Stability of material parameters during inelastic deformation was discussed and effect of metallurgical variables was examined experimentally. 71 figures, 5 tables.
Modelers and policymakers : improving the relationships.
Karas, Thomas H.
2004-06-01
On April 22 and 23, 2004, a diverse group of 14 policymakers, modelers, analysts, and scholars met with some 22 members of the Sandia National Laboratories staff to explores ways in which the relationships between modelers and policymakers in the energy and environment fields (with an emphasis on energy) could be made more productive for both. This report is not a transcription of that workshop, but draws very heavily on its proceedings. It first describes the concept of modeling, the varying ways in which models are used to support policymaking, and the institutional context for those uses. It then proposes that the goal of modelers and policymakers should be a relationship of mutual trust, built on a foundation of communication, supported by the twin pillars of policy relevance and technical credibility. The report suggests 20 guidelines to help modelers improve the relationship, followed by 10 guidelines to help policymakers toward the same goal.
Alanko, Katarina; Santtila, Pekka; Salo, Benny; Jern, Patrik; Johansson, Ada; Sandnabba, N Kenneth
2011-06-01
An association between childhood gender atypical behaviour (GAB) and a negative parent-child relationship has been demonstrated in several studies, yet the causal relationship of this association is not fully understood. In the present study, different models of causation between childhood GAB and parent-child relationships were tested. Direction of causation modelling was applied to twin data from a population-based sample (n= 2,565) of Finnish 33- to 43-year-old twins. Participants completed retrospective self-report questionnaires. Five different models of causation were then fitted to the data: GAB → parent-child relationship, parent-child relationship → GAB, reciprocal causation, a bivariate genetic model, and a model assuming no correlation. It was found that a model in which GAB and quality of mother-child, and father-child relationship reciprocally affect each other best fitted the data. The findings are discussed in light of how we should understand, including causality, the association between GAB and parent-child relationship.
Probabilistic constitutive relationships for cyclic material strength models
NASA Technical Reports Server (NTRS)
Boyce, L.; Chamis, C. C.
1988-01-01
A methodology is developed that provides a probabilistic treatment for the lifetime of structural components of aerospace propulsion systems subjected to fatigue. Material strength degradation models, based on primitive variables, include both a fatigue strength reduction model and a fatigue crack growth model. Probabilistic analysis is based on simulation, and both maximum entropy and maximum penalized likelihood methods are used for the generation of probability density functions. The resulting constitutive relationships are included in several computer programs.
Relationship of sea level muon charge ratio to primary composition including nuclear target effects
NASA Technical Reports Server (NTRS)
Goned, A.; Shalaby, M.; Salem, A. M.; Roushdy, M.
1985-01-01
The discrepancy between the muon charge ratio observed at low energies and that calculated using pp data is removed by including nuclear target effects. Calculations at high energies show that the primary iron spectrum is expected to change slope from 2 to 2.2 to 2.4 to 2.5 for energies approx. 4 x 10 to the 3 GeV/nucleon if scaling features continue to the highest energies.
Felső, R; Lohner, S; Hollódy, K; Erhardt, É; Molnár, D
2017-09-01
The prevalence of obesity is continually increasing worldwide. Determining risk factors for obesity may facilitate effective preventive programs. The present review focuses on sleep duration as a potential risk factor for childhood obesity. The aim is to summarize the evidence on the association of sleep duration and obesity and to discuss the underlying potential physiological and/or pathophysiological mechanisms. The Ovid MEDLINE, Scopus and Cochrane Central Register of Controlled Trials (CENTRAL) databases were searched for papers using text words with appropriate truncation and relevant indexing terms. All studies objectively measuring sleep duration and investigating the association between sleep duration and obesity or factors (lifestyle and hormonal) possibly associated with obesity were included, without making restrictions based on study design or language. Data from eligible studies were extracted in tabular form and summarized narratively. After removing duplicates, 3540 articles were obtained. Finally, 33 studies (including 3 randomized controlled trials and 30 observational studies) were included in the review. Sleep duration seems to influence weight gain in children, however, the underlying explanatory mechanisms are still uncertain. In our review only the link between short sleep duration and the development of insulin resistance, sedentarism and unhealthy dietary patterns could be verified, while the role of other mediators, such as physical activity, screen time, change in ghrelin and leptin levels, remained uncertain. There are numerous evidence gaps. To answer the remaining questions, there is a need for studies meeting high methodological standards and including a large number of children. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All
Pound, Pandora; Denford, Sarah; Shucksmith, Janet; Tanton, Clare; Johnson, Anne M; Owen, Jenny; Hutten, Rebecca; Mohan, Leanne; Bonell, Chris; Abraham, Charles; Campbell, Rona
2017-07-02
Sex and relationship education (SRE) is regarded as vital to improving young people's sexual health, but a third of schools in England lacks good SRE and government guidance is outdated. We aimed to identify what makes SRE programmes effective, acceptable, sustainable and capable of faithful implementation. This is a synthesis of findings from five research packages that we conducted (practitioner interviews, case study investigation, National Survey of Sexual Attitudes and Lifestyles, review of reviews and qualitative synthesis). We also gained feedback on our research from stakeholder consultations. Primary research and stakeholder consultations were conducted in the UK. Secondary research draws on studies worldwide. Our findings indicate that school-based SRE and school-linked sexual health services can be effective at improving sexual health. We found professional consensus that good programmes start in primary school. Professionals and young people agreed that good programmes are age-appropriate, interactive and take place in a safe environment. Some young women reported preferring single-sex classes, but young men appeared to want mixed classes. Young people and professionals agreed that SRE should take a 'life skills' approach and not focus on abstinence. Young people advocated a 'sex-positive' approach but reported this was lacking. Young people and professionals agreed that SRE should discuss risks, but young people indicated that approaches to risk need revising. Professionals felt teachers should be involved in SRE delivery, but many young people reported disliking having their teachers deliver SRE and we found that key messages could become lost when interpreted by teachers. The divergence between young people and professionals was echoed by stakeholders. We developed criteria for best practice based on the evidence. We identified key features of effective and acceptable SRE. Our best practice criteria can be used to evaluate existing programmes
A generic model of dyadic social relationships.
Favre, Maroussia; Sornette, Didier
2015-01-01
We introduce a model of dyadic social interactions and establish its correspondence with relational models theory (RMT), a theory of human social relationships. RMT posits four elementary models of relationships governing human interactions, singly or in combination: Communal Sharing, Authority Ranking, Equality Matching, and Market Pricing. To these are added the limiting cases of asocial and null interactions, whereby people do not coordinate with reference to any shared principle. Our model is rooted in the observation that each individual in a dyadic interaction can do either the same thing as the other individual, a different thing or nothing at all. To represent these three possibilities, we consider two individuals that can each act in one out of three ways toward the other: perform a social action X or Y, or alternatively do nothing. We demonstrate that the relationships generated by this model aggregate into six exhaustive and disjoint categories. We propose that four of these categories match the four relational models, while the remaining two correspond to the asocial and null interactions defined in RMT. We generalize our results to the presence of N social actions. We infer that the four relational models form an exhaustive set of all possible dyadic relationships based on social coordination. Hence, we contribute to RMT by offering an answer to the question of why there could exist just four relational models. In addition, we discuss how to use our representation to analyze data sets of dyadic social interactions, and how social actions may be valued and matched by the agents.
A Generic Model of Dyadic Social Relationships
Favre, Maroussia; Sornette, Didier
2015-01-01
We introduce a model of dyadic social interactions and establish its correspondence with relational models theory (RMT), a theory of human social relationships. RMT posits four elementary models of relationships governing human interactions, singly or in combination: Communal Sharing, Authority Ranking, Equality Matching, and Market Pricing. To these are added the limiting cases of asocial and null interactions, whereby people do not coordinate with reference to any shared principle. Our model is rooted in the observation that each individual in a dyadic interaction can do either the same thing as the other individual, a different thing or nothing at all. To represent these three possibilities, we consider two individuals that can each act in one out of three ways toward the other: perform a social action X or Y, or alternatively do nothing. We demonstrate that the relationships generated by this model aggregate into six exhaustive and disjoint categories. We propose that four of these categories match the four relational models, while the remaining two correspond to the asocial and null interactions defined in RMT. We generalize our results to the presence of N social actions. We infer that the four relational models form an exhaustive set of all possible dyadic relationships based on social coordination. Hence, we contribute to RMT by offering an answer to the question of why there could exist just four relational models. In addition, we discuss how to use our representation to analyze data sets of dyadic social interactions, and how social actions may be valued and matched by the agents. PMID:25826403
Quantitative Nanostructure-Activity Relationship (QNAR) Modeling
Fourches, Denis; Pu, Dongqiuye; Tassa, Carlos; Weissleder, Ralph; Shaw, Stanley Y.; Mumper, Russell J.; Tropsha, Alexander
2010-01-01
Evaluation of biological effects, both desired and undesired, caused by Manufactured NanoParticles (MNPs) is of critical importance for nanotechnology. Experimental studies, especially toxicological, are time-consuming, costly, and often impractical, calling for the development of efficient computational approaches capable of predicting biological effects of MNPs. To this end, we have investigated the potential of cheminformatics methods such as Quantitative Structure – Activity Relationship (QSAR) modeling to establish statistically significant relationships between measured biological activity profiles of MNPs and their physical, chemical, and geometrical properties, either measured experimentally or computed from the structure of MNPs. To reflect the context of the study, we termed our approach Quantitative Nanostructure-Activity Relationship (QNAR) modeling. We have employed two representative sets of MNPs studied recently using in vitro cell-based assays: (i) 51 various MNPs with diverse metal cores (PNAS, 2008, 105, pp 7387–7392) and (ii) 109 MNPs with similar core but diverse surface modifiers (Nat. Biotechnol., 2005, 23, pp 1418–1423). We have generated QNAR models using machine learning approaches such as Support Vector Machine (SVM)-based classification and k Nearest Neighbors (kNN)-based regression; their external prediction power was shown to be as high as 73% for classification modeling and R2 of 0.72 for regression modeling. Our results suggest that QNAR models can be employed for: (i) predicting biological activity profiles of novel nanomaterials, and (ii) prioritizing the design and manufacturing of nanomaterials towards better and safer products. PMID:20857979
A Mercury orientation model including non-zero obliquity and librations
NASA Astrophysics Data System (ADS)
Margot, Jean-Luc
2009-12-01
Planetary orientation models describe the orientation of the spin axis and prime meridian of planets in inertial space as a function of time. The models are required for the planning and execution of Earth-based or space-based observational work, e.g. to compute viewing geometries and to tie observations to planetary coordinate systems. The current orientation model for Mercury is inadequate because it uses an obsolete spin orientation, neglects oscillations in the spin rate called longitude librations, and relies on a prime meridian that no longer reflects its intended dynamical significance. These effects result in positional errors on the surface of ~1.5 km in latitude and up to several km in longitude, about two orders of magnitude larger than the finest image resolution currently attainable. Here we present an updated orientation model which incorporates modern values of the spin orientation, includes a formulation for longitude librations, and restores the dynamical significance to the prime meridian. We also use modern values of the orbit normal, spin axis orientation, and precession rates to quantify an important relationship between the obliquity and moment of inertia differences.
NASA Astrophysics Data System (ADS)
Kelkar, S.; Karra, S.; Pawar, R. J.; Zyvoloski, G.
2012-12-01
There has been an increasing interest in the recent years in developing computational tools for analyzing coupled thermal, hydrological and mechanical (THM) processes that occur in geological porous media. This is mainly due to their importance in applications including carbon sequestration, enhanced geothermal systems, oil and gas production from unconventional sources, degradation of Arctic permafrost, and nuclear waste isolation. Large changes in pressures, temperatures and saturation can result due to injection/withdrawal of fluids or emplaced heat sources. These can potentially lead to large changes in the fluid flow and mechanical behavior of the formation, including shear and tensile failure on pre-existing or induced fractures and the associated permeability changes. Due to this, plastic deformation and large changes in material properties such as permeability and porosity can be expected to play an important role in these processes. We describe a general purpose computational code FEHM that has been developed for the purpose of modeling coupled THM processes during multi-phase fluid flow and transport in fractured porous media. The code uses a continuum mechanics approach, based on control volume - finite element method. It is designed to address spatial scales on the order of tens of centimeters to tens of kilometers. While large deformations are important in many situations, we have adapted the small strain formulation as useful insight can be obtained in many problems of practical interest with this approach while remaining computationally manageable. Nonlinearities in the equations and the material properties are handled using a full Jacobian Newton-Raphson technique. Stress-strain relationships are assumed to follow linear elastic/plastic behavior. The code incorporates several plasticity models such as von Mises, Drucker-Prager, and also a large suite of models for coupling flow and mechanical deformation via permeability and stresses
NASA Astrophysics Data System (ADS)
Benjamin, Stan; Sun, Shan; Grell, Georg; Green, Benjamin; Bleck, Rainer; Li, Haiqin
2017-04-01
Extreme events for subseasonal duration have been linked to multi-week processes related to onset, duration, and cessation of blocking events or, more generally, quasi-stationary waves. Results will be shown from different sets of 32-day prediction experiments (3200 runs each) over a 16-year period for earth system processes key for subseasonal prediction for different resolution, numerics, and physics using the FIM-HYCOM coupled model. The coupled atmosphere (FIM) and ocean (HYCOM) modeling system is a relatively new coupled atmosphere-ocean model developed for subseasonal to seasonal prediction (Green et al. 2017 Mon.Wea.Rev. accepted, Bleck et al 2015 Mon. Wea. Rev.). Both component models operate on a common icosahedral horizontal grid and use an adaptive hybrid vertical coordinate (sigma-isentropic in FIM and sigma-isopycnic in HYCOM). FIM-HYCOM has been used to conduct 16 years of subseasonal retrospective forecasts following the NOAA Subseasonal (SubX) NMME protocol (32-day forward integrations), run with 4 ensemble members per week. Results from this multi-year FIM-HYCOM hindcast include successful forecasts out to 14-20 days for stratospheric warming events (from archived 10 hPa fields), improved MJO predictability (Green et al. 2017) using the Grell-Freitas (2014, ACP) scale-aware cumulus scheme instead of the Simplified Arakawa-Schubert scheme, and little sensitivity to resolution for blocking frequency. Forecast skill of metrics from FIM-HYCOM including 500 hPa heights and MJO index is at least comparable to that of the operational Climate Forecast System (CFSv2) used by the National Centers for Environmental Prediction. Subseasonal skill is improved with a limited multi-model (FIM-HYCOM and CFSv2), consistent with previous seasonal multi-model ensemble results. Ongoing work will also be reported on for adding inline aerosol/chemistry treatment to the coupled FIM-HYCOM model and for advanced approaches to subgrid-scale clouds to address regional biases
NASA Technical Reports Server (NTRS)
Hambric, Stephen A.; Hanford, Amanda D.; Shepherd, Micah R.; Campbell, Robert L.; Smith, Edward C.
2010-01-01
A computational approach for simulating the effects of rolling element and journal bearings on the vibration and sound transmission through gearboxes has been demonstrated. The approach, using ARL/Penn State s CHAMP methodology, uses Component Mode Synthesis of housing and shafting modes computed using Finite Element (FE) models to allow for rapid adjustment of bearing impedances in gearbox models. The approach has been demonstrated on NASA GRC s test gearbox with three different bearing configurations: in the first condition, traditional rolling element (ball and roller) bearings were installed, and in the second and third conditions, the traditional bearings were replaced with journal and wave bearings (wave bearings are journal bearings with a multi-lobed wave pattern on the bearing surface). A methodology for computing the stiffnesses and damping in journal and wave bearings has been presented, and demonstrated for the journal and wave bearings used in the NASA GRC test gearbox. The FE model of the gearbox, along with the rolling element bearing coupling impedances, was analyzed to compute dynamic transfer functions between forces applied to the meshing gears and accelerations on the gearbox housing, including several locations near the bearings. A Boundary Element (BE) acoustic model was used to compute the sound radiated by the gearbox. Measurements of the Gear Mesh Frequency (GMF) tones were made by NASA GRC at several operational speeds for the rolling element and journal bearing gearbox configurations. Both the measurements and the CHAMP numerical model indicate that the journal bearings reduce vibration and noise for the second harmonic of the gear meshing tones, but show no clear benefit to using journal bearings to reduce the amplitudes of the fundamental gear meshing tones. Also, the numerical model shows that the gearbox vibrations and radiated sound are similar for journal and wave bearing configurations.
Internal Representational Models of Attachment Relationships.
ERIC Educational Resources Information Center
Crittenden, Patricia M.
This paper outlines several properties of internal representational models (IRMs) and offers terminology that may help to differentiate the models. Properties of IRMs include focus, memory systems, content, cognitive function, "metastructure," quality of attachment, behavioral strategies, and attitude toward attachment. An IRM focuses on…
Supervisor's Interactive Model of Organizational Relationships
ERIC Educational Resources Information Center
O'Reilly, Frances L.; Matt, John; McCaw, William P.
2014-01-01
The Supervisor's Interactive Model of Organizational Relationships (SIMOR) integrates two models addressed in the leadership literature and then highlights the importance of relationships. The Supervisor's Interactive Model of Organizational Relationships combines the modified Hersey and Blanchard model of situational leadership, the…
Supervisor's Interactive Model of Organizational Relationships
ERIC Educational Resources Information Center
O'Reilly, Frances L.; Matt, John; McCaw, William P.
2014-01-01
The Supervisor's Interactive Model of Organizational Relationships (SIMOR) integrates two models addressed in the leadership literature and then highlights the importance of relationships. The Supervisor's Interactive Model of Organizational Relationships combines the modified Hersey and Blanchard model of situational leadership, the…
A Probabilistic Model of Phonological Relationships from Contrast to Allophony
ERIC Educational Resources Information Center
Hall, Kathleen Currie
2009-01-01
This dissertation proposes a model of phonological relationships, the Probabilistic Phonological Relationship Model (PPRM), that quantifies how predictably distributed two sounds in a relationship are. It builds on a core premise of traditional phonological analysis, that the ability to define phonological relationships such as contrast and…
A Probabilistic Model of Phonological Relationships from Contrast to Allophony
ERIC Educational Resources Information Center
Hall, Kathleen Currie
2009-01-01
This dissertation proposes a model of phonological relationships, the Probabilistic Phonological Relationship Model (PPRM), that quantifies how predictably distributed two sounds in a relationship are. It builds on a core premise of traditional phonological analysis, that the ability to define phonological relationships such as contrast and…
A simple model clarifies the complicated relationships of complex networks
Zheng, Bojin; Wu, Hongrun; Kuang, Li; Qin, Jun; Du, Wenhua; Wang, Jianmin; Li, Deyi
2014-01-01
Real-world networks such as the Internet and WWW have many common traits. Until now, hundreds of models were proposed to characterize these traits for understanding the networks. Because different models used very different mechanisms, it is widely believed that these traits origin from different causes. However, we find that a simple model based on optimisation can produce many traits, including scale-free, small-world, ultra small-world, Delta-distribution, compact, fractal, regular and random networks. Moreover, by revising the proposed model, the community-structure networks are generated. By this model and the revised versions, the complicated relationships of complex networks are illustrated. The model brings a new universal perspective to the understanding of complex networks and provide a universal method to model complex networks from the viewpoint of optimisation. PMID:25160506
NASA Astrophysics Data System (ADS)
Gabrielle, B.; Gagnaire, N.; Massad, R.; Prieur, V.; Python, Y.
2012-04-01
. Compared to the standard methodology currently used in LCA, based on fixed emissions for N2O, the use of model-derived estimates leads to a 10 to 40% reduction in the overall life-cycle GHG emissions of biofuels. This emphasizes the importance of regional factors in the relationship between agricultural inputs and emissions (altogether with biomass yields) in the outcome of LCAs. When excluding indirect land-use change effects (iLUC), 1st generation pathways enabled GHG savings ranging from 50 to 73% compared to fossile-derived equivalents, while this figure reached 88% for 2nd generation bioethanol from miscanthus. Including iLUC reduced the savings to less than 5% for bio-diesel from rapeseed, 10 to 45% for 1st generation bioethanol and to 60% for miscanthus. These figures apply to the year 2007 and should be extended to a larger number of years, but the magnitude of N2O emissions was similar between 2007, 2008 and 2009 over the Ile de France region.
The Lag Model, a Turbulence Model for Wall Bounded Flows Including Separation
NASA Technical Reports Server (NTRS)
Olsen, Michael E.; Coakley, Thomas J.; Kwak, Dochan (Technical Monitor)
2001-01-01
A new class of turbulence model is described for wall bounded, high Reynolds number flows. A specific turbulence model is demonstrated, with results for favorable and adverse pressure gradient flowfields. Separation predictions are as good or better than either Spalart Almaras or SST models, do not require specification of wall distance, and have similar or reduced computational effort compared with these models.
Modeling time-lagged reciprocal psychological empowerment-performance relationships.
Maynard, M Travis; Luciano, Margaret M; D'Innocenzo, Lauren; Mathieu, John E; Dean, Matthew D
2014-11-01
Employee psychological empowerment is widely accepted as a means for organizations to compete in increasingly dynamic environments. Previous empirical research and meta-analyses have demonstrated that employee psychological empowerment is positively related to several attitudinal and behavioral outcomes including job performance. While this research positions psychological empowerment as an antecedent influencing such outcomes, a close examination of the literature reveals that this relationship is primarily based on cross-sectional research. Notably, evidence supporting the presumed benefits of empowerment has failed to account for potential reciprocal relationships and endogeneity effects. Accordingly, using a multiwave, time-lagged design, we model reciprocal relationships between psychological empowerment and job performance using a sample of 441 nurses from 5 hospitals. Incorporating temporal effects in a staggered research design and using structural equation modeling techniques, our findings provide support for the conventional positive correlation between empowerment and subsequent performance. Moreover, accounting for the temporal stability of variables over time, we found support for empowerment levels as positive influences on subsequent changes in performance. Finally, we also found support for the reciprocal relationship, as performance levels were shown to relate positively to changes in empowerment over time. Theoretical and practical implications of the reciprocal psychological empowerment-performance relationships are discussed. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Couple Infertility: From the Perspective of the Close-Relationship Model.
ERIC Educational Resources Information Center
Higgins, Barbara S.
1990-01-01
Presents Close-Relationship Model as comprehensive framework in which to examine interrelated nature of causes and effects of infertility on marital relationship. Includes these factors: physical and psychological characteristics of both partners; joint, couple characteristics; physical and social environment; and relationship itself. Discusses…
Couple Infertility: From the Perspective of the Close-Relationship Model.
ERIC Educational Resources Information Center
Higgins, Barbara S.
1990-01-01
Presents Close-Relationship Model as comprehensive framework in which to examine interrelated nature of causes and effects of infertility on marital relationship. Includes these factors: physical and psychological characteristics of both partners; joint, couple characteristics; physical and social environment; and relationship itself. Discusses…
Kiba, Takayoshi
2004-08-01
Substantial new information has accumulated on the mechanisms of secretion, the development, and regulation of the gene expression, and the role of growth factors in the differentiation, growth, and regeneration of the pancreas. Many genes that are required for pancreas formation are active after birth and participate in endocrine and exocrine cell functions. Although the factors that normally regulate the proliferation of the pancreas largely remain elusive, several factors to influence the growth have been identified. It was also reported that the pancreas was sensitive to a number of apoptotic stimuli. The autonomic nervous system influences many of the functions of the body, including the pancreas. In fact, the parasympathetic nervous system and the sympathetic nervous system have opposing effects on insulin secretion from islet beta cells; feeding-induced parasympathetic neural activity to the pancreas stimulates insulin secretion, whereas stress-induced sympathetic neural activity to the pancreas inhibits insulin secretion. Moreover, it has been reported that the autonomic nervous system is one of the important factors that regulate pancreatic regeneration and stimulate the carcinogenesis. The present review focuses on the relationships between the autonomic nervous system and the pancreas, and furthermore, presents evidence of the autonomic nervous system-related pancreatic regeneration and carcinogenesis.
Similitude requirements and scaling relationships as applied to model testing
NASA Technical Reports Server (NTRS)
Wolowicz, C. H.; Brown, J. S., Jr.; Gilbert, W. P.
1979-01-01
The similitude requirements for the most general test conditions are presented. These similitude requirements are considered in relation to the scaling relationships, test technique, test conditions (including supersonic flow), and test objectives. Particular emphasis is placed on satisfying the various similitude requirements for incompressible and compressible flow conditions. For free flying models tests, the test velocities for incompressible flow are scaled from Froude number similitude requirements and those for compressible flow are scaled from Mach number similitude requirements. The limitations of various test techniques are indicated, with emphasis on the free flying model.
A finite element model of the face including an orthotropic skin model under in vivo tension.
Flynn, Cormac; Stavness, Ian; Lloyd, John; Fels, Sidney
2015-01-01
Computer models of the human face have the potential to be used as powerful tools in surgery simulation and animation development applications. While existing models accurately represent various anatomical features of the face, the representation of the skin and soft tissues is very simplified. A computer model of the face is proposed in which the skin is represented by an orthotropic hyperelastic constitutive model. The in vivo tension inherent in skin is also represented in the model. The model was tested by simulating several facial expressions by activating appropriate orofacial and jaw muscles. Previous experiments calculated the change in orientation of the long axis of elliptical wounds on patients' faces for wide opening of the mouth and an open-mouth smile (both 30(o)). These results were compared with the average change of maximum principal stress direction in the skin calculated in the face model for wide opening of the mouth (18(o)) and an open-mouth smile (25(o)). The displacements of landmarks on the face for four facial expressions were compared with experimental measurements in the literature. The corner of the mouth in the model experienced the largest displacement for each facial expression (∼11-14 mm). The simulated landmark displacements were within a standard deviation of the measured displacements. Increasing the skin stiffness and skin tension generally resulted in a reduction in landmark displacements upon facial expression.
Farrance, Ian; Frenkel, Robert
2014-02-01
The Guide to the Expression of Uncertainty in Measurement (usually referred to as the GUM) provides the basic framework for evaluating uncertainty in measurement. The GUM however does not always provide clearly identifiable procedures suitable for medical laboratory applications, particularly when internal quality control (IQC) is used to derive most of the uncertainty estimates. The GUM modelling approach requires advanced mathematical skills for many of its procedures, but Monte Carlo simulation (MCS) can be used as an alternative for many medical laboratory applications. In particular, calculations for determining how uncertainties in the input quantities to a functional relationship propagate through to the output can be accomplished using a readily available spreadsheet such as Microsoft Excel. The MCS procedure uses algorithmically generated pseudo-random numbers which are then forced to follow a prescribed probability distribution. When IQC data provide the uncertainty estimates the normal (Gaussian) distribution is generally considered appropriate, but MCS is by no means restricted to this particular case. With input variations simulated by random numbers, the functional relationship then provides the corresponding variations in the output in a manner which also provides its probability distribution. The MCS procedure thus provides output uncertainty estimates without the need for the differential equations associated with GUM modelling. The aim of this article is to demonstrate the ease with which Microsoft Excel (or a similar spreadsheet) can be used to provide an uncertainty estimate for measurands derived through a functional relationship. In addition, we also consider the relatively common situation where an empirically derived formula includes one or more 'constants', each of which has an empirically derived numerical value. Such empirically derived 'constants' must also have associated uncertainties which propagate through the functional relationship
Farrance, Ian; Frenkel, Robert
2014-01-01
The Guide to the Expression of Uncertainty in Measurement (usually referred to as the GUM) provides the basic framework for evaluating uncertainty in measurement. The GUM however does not always provide clearly identifiable procedures suitable for medical laboratory applications, particularly when internal quality control (IQC) is used to derive most of the uncertainty estimates. The GUM modelling approach requires advanced mathematical skills for many of its procedures, but Monte Carlo simulation (MCS) can be used as an alternative for many medical laboratory applications. In particular, calculations for determining how uncertainties in the input quantities to a functional relationship propagate through to the output can be accomplished using a readily available spreadsheet such as Microsoft Excel. The MCS procedure uses algorithmically generated pseudo-random numbers which are then forced to follow a prescribed probability distribution. When IQC data provide the uncertainty estimates the normal (Gaussian) distribution is generally considered appropriate, but MCS is by no means restricted to this particular case. With input variations simulated by random numbers, the functional relationship then provides the corresponding variations in the output in a manner which also provides its probability distribution. The MCS procedure thus provides output uncertainty estimates without the need for the differential equations associated with GUM modelling. The aim of this article is to demonstrate the ease with which Microsoft Excel (or a similar spreadsheet) can be used to provide an uncertainty estimate for measurands derived through a functional relationship. In addition, we also consider the relatively common situation where an empirically derived formula includes one or more ‘constants’, each of which has an empirically derived numerical value. Such empirically derived ‘constants’ must also have associated uncertainties which propagate through the functional
GAMMA-400 Space Gamma-telescope Mathematical Model with Engineering Elements Included
NASA Astrophysics Data System (ADS)
Chasovikov, E. N.; Arkhangelskaja, I. V.; Perfil`ev, A. A.; Arkhangelskiy, A. I.; Galper, A. M.; Topchiev, N. P.; Gusakov, Yu. V.; Kheymits, M. D.; Yurkin, Yu. T.
Mathematical model creation is a necessary stage in scientific apparatus development. The mathematical model of gamma-ray telescope GAMMA-400 is used to emulate transport of various elementary particles through the apparatus. The new iteration of the model is based on precise technical drawings and includes all the elements of the real gamma-telescope. It is created in Geant4 environment. This model allows calculation of energy deposition not only in detectors, but in any part of the apparatus, including construction elements. Moreover, it supports creation of virtual sensitive volumes, allowing determination of the number and properties of particles passing through an arbitrary part of the construction. Software for automated creation of Geant4 model based on technical drawings in STEP 3D Model format was developed. This software is capable of making models of other apparatus based particularly on scintillation and strip detectors.
Comparing estimates of genetic variance across different relationship models.
Legarra, Andres
2016-02-01
Use of relationships between individuals to estimate genetic variances and heritabilities via mixed models is standard practice in human, plant and livestock genetics. Different models or information for relationships may give different estimates of genetic variances. However, comparing these estimates across different relationship models is not straightforward as the implied base populations differ between relationship models. In this work, I present a method to compare estimates of variance components across different relationship models. I suggest referring genetic variances obtained using different relationship models to the same reference population, usually a set of individuals in the population. Expected genetic variance of this population is the estimated variance component from the mixed model times a statistic, Dk, which is the average self-relationship minus the average (self- and across-) relationship. For most typical models of relationships, Dk is close to 1. However, this is not true for very deep pedigrees, for identity-by-state relationships, or for non-parametric kernels, which tend to overestimate the genetic variance and the heritability. Using mice data, I show that heritabilities from identity-by-state and kernel-based relationships are overestimated. Weighting these estimates by Dk scales them to a base comparable to genomic or pedigree relationships, avoiding wrong comparisons, for instance, "missing heritabilities".
Hot DA white dwarf model atmosphere calculations: including improved Ni PI cross-sections
NASA Astrophysics Data System (ADS)
Preval, S. P.; Barstow, M. A.; Badnell, N. R.; Hubeny, I.; Holberg, J. B.
2017-02-01
To calculate realistic models of objects with Ni in their atmospheres, accurate atomic data for the relevant ionization stages need to be included in model atmosphere calculations. In the context of white dwarf stars, we investigate the effect of changing the Ni IV-VI bound-bound and bound-free atomic data on model atmosphere calculations. Models including photoionization cross-section (PICS) calculated with AUTOSTRUCTURE show significant flux attenuation of up to ˜80 per cent shortward of 180 Å in the extreme ultraviolet (EUV) region compared to a model using hydrogenic PICS. Comparatively, models including a larger set of Ni transitions left the EUV, UV, and optical continua unaffected. We use models calculated with permutations of these atomic data to test for potential changes to measured metal abundances of the hot DA white dwarf G191-B2B. Models including AUTOSTRUCTURE PICS were found to change the abundances of N and O by as much as ˜22 per cent compared to models using hydrogenic PICS, but heavier species were relatively unaffected. Models including AUTOSTRUCTURE PICS caused the abundances of N/O IV and V to diverge. This is because the increased opacity in the AUTOSTRUCTURE PICS model causes these charge states to form higher in the atmosphere, more so for N/O V. Models using an extended line list caused significant changes to the Ni IV-V abundances. While both PICS and an extended line list cause changes in both synthetic spectra and measured abundances, the biggest changes are caused by using AUTOSTRUCTURE PICS for Ni.
A Verilog-A large signal model for InP DHBT including thermal effects
NASA Astrophysics Data System (ADS)
Yuxia, Shi; Zhi, Jin; Zhijian, Pan; Yongbo, Su; Yuxiong, Cao; Yan, Wang
2013-06-01
A large signal model for InP/InGaAs double heterojunction bipolar transistors including thermal effects has been reported, which demonstrated good agreements of simulations with measurements. On the basis of the previous model in which the double heterojunction effect, current blocking effect and high current effect in current expression are considered, the effect of bandgap narrowing with temperature has been considered in transport current while a formula for model parameters as a function of temperature has been developed. This model is implemented by Verilog-A and embedded in ADS. The proposed model is verified with DC and large signal measurements.
Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model
NASA Astrophysics Data System (ADS)
Fader, M.; von Bloh, W.; Shi, S.; Bondeau, A.; Cramer, W.
2015-11-01
In the Mediterranean region, climate and land use change are expected to impact on natural and agricultural ecosystems by warming, reduced rainfall, direct degradation of ecosystems and biodiversity loss. Human population growth and socioeconomic changes, notably on the eastern and southern shores, will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive agro-ecosystem and hydrological model. This study presents the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (Lund-Potsdam-Jena managed Land - LPJmL): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. With the development presented in this study, LPJmL is now able to simulate in good detail and mechanistically the functioning of Mediterranean agriculture with a comprehensive representation of ecophysiological processes for all vegetation types (natural and agricultural) and in a consistent framework that produces estimates of carbon, agricultural and hydrological variables for the entire Mediterranean basin. This development paves the way for further model extensions aiming at the representation of alternative agro-ecosystems (e.g. agroforestry), and opens the door for a large number of applications in the Mediterranean region, for example assessments of the consequences of land use transitions, the influence of management practices and climate change impacts.
Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model
NASA Astrophysics Data System (ADS)
Fader, M.; von Bloh, W.; Shi, S.; Bondeau, A.; Cramer, W.
2015-06-01
Climate and land use change in the Mediterranean region is expected to affect natural and agricultural ecosystems by decreases in precipitation, increases in temperature as well as biodiversity loss and anthropogenic degradation of natural resources. Demographic growth in the Eastern and Southern shores will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive agro-ecosystem and hydrological model. This study presents the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (LPJmL): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. With the development presented in this study, LPJmL is now able to simulate in good detail and mechanistically the functioning of Mediterranean agriculture with a comprehensive representation of ecophysiological processes for all vegetation types (natural and agricultural) and in a consistent framework that produces estimates of carbon, agricultural and hydrological variables for the entire Mediterranean basin. This development pave the way for further model extensions aiming at the representation of alternative agro-ecosystems (e.g. agroforestry), and opens the door for a large number of applications in the Mediterranean region, for example assessments on the consequences of land use transitions, the influence of management practices and climate change impacts.
Extension of the ADC Charge-Collection Model to Include Multiple Junctions
NASA Technical Reports Server (NTRS)
Edmonds, Larry D.
2011-01-01
The ADC model is a charge-collection model derived for simple p-n junction silicon diodes having a single reverse-biased p-n junction at one end and an ideal substrate contact at the other end. The present paper extends the model to include multiple junctions, and the goal is to estimate how collected charge is shared by the different junctions.
Supplier Relationship Management: Models, Considerations and Implications for DOD
2003-01-01
AY 2002-2003 SUPPLIER RELATIONSHIP MANAGEMENT : MODELS, CONSIDERATIONS AND IMPLICATIONS FOR DOD STRATEGIC SUPPLY INDUSTRY STUDY COURSE COLONEL TOM...REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Supplier Relationship Management : Models, Considerations and Implications for DOD...nature of the market or industry drive differences in supplier relationships ? This paper begins by defining supplier relationship management (SRM) and why
Including operational data in QMRA model: development and impact of model inputs.
Jaidi, Kenza; Barbeau, Benoit; Carrière, Annie; Desjardins, Raymond; Prévost, Michèle
2009-03-01
A Monte Carlo model, based on the Quantitative Microbial Risk Analysis approach (QMRA), has been developed to assess the relative risks of infection associated with the presence of Cryptosporidium and Giardia in drinking water. The impact of various approaches for modelling the initial parameters of the model on the final risk assessments is evaluated. The Monte Carlo simulations that we performed showed that the occurrence of parasites in raw water was best described by a mixed distribution: log-Normal for concentrations > detection limit (DL), and a uniform distribution for concentrations < DL. The selection of process performance distributions for modelling the performance of treatment (filtration and ozonation) influences the estimated risks significantly. The mean annual risks for conventional treatment are: 1.97E-03 (removal credit adjusted by log parasite = log spores), 1.58E-05 (log parasite = 1.7 x log spores) or 9.33E-03 (regulatory credits based on the turbidity measurement in filtered water). Using full scale validated SCADA data, the simplified calculation of CT performed at the plant was shown to largely underestimate the risk relative to a more detailed CT calculation, which takes into consideration the downtime and system failure events identified at the plant (1.46E-03 vs. 3.93E-02 for the mean risk).
NASA Astrophysics Data System (ADS)
Zhang, Huiyan; Wang, Yun; Shao, Shanshan; Xiao, Rui
2016-11-01
Lignin is the most difficult to be converted and most easy coking component in biomass catalytic pyrolysis to high-value liquid fuels and chemicals. Catalytic conversion of guaiacol as a lignin model compound was conducted in a fixed-bed reactor over ZSM-5 to investigate its conversion and coking behaviors. The effects of temperature, weight hourly space velocity (WHSV) and partial pressure on product distribution were studied. The results show the maximum aromatic carbon yield of 28.55% was obtained at temperature of 650 °C, WHSV of 8 h-1 and partial pressure of 2.38 kPa, while the coke carbon yield was 19.55%. The reaction pathway was speculated to be removing methoxy group to form phenols with further aromatization to form aromatics. The amount of coke increased with increasing reaction time. The surface area and acidity of catalysts declined as coke formed on the acid sites and blocked the pore channels, which led to the decrease of aromatic yields. Finally, a kinetic model of guaiacol catalytic conversion considering coke deposition was built based on the above reaction pathway to properly predict product distribution. The experimental and model predicting data agreed well. The correlation coefficient of all equations were all higher than 0.90.
Zhang, Huiyan; Wang, Yun; Shao, Shanshan; Xiao, Rui
2016-01-01
Lignin is the most difficult to be converted and most easy coking component in biomass catalytic pyrolysis to high-value liquid fuels and chemicals. Catalytic conversion of guaiacol as a lignin model compound was conducted in a fixed-bed reactor over ZSM-5 to investigate its conversion and coking behaviors. The effects of temperature, weight hourly space velocity (WHSV) and partial pressure on product distribution were studied. The results show the maximum aromatic carbon yield of 28.55% was obtained at temperature of 650 °C, WHSV of 8 h−1 and partial pressure of 2.38 kPa, while the coke carbon yield was 19.55%. The reaction pathway was speculated to be removing methoxy group to form phenols with further aromatization to form aromatics. The amount of coke increased with increasing reaction time. The surface area and acidity of catalysts declined as coke formed on the acid sites and blocked the pore channels, which led to the decrease of aromatic yields. Finally, a kinetic model of guaiacol catalytic conversion considering coke deposition was built based on the above reaction pathway to properly predict product distribution. The experimental and model predicting data agreed well. The correlation coefficient of all equations were all higher than 0.90. PMID:27869228
Including Tropical Croplands in a Terrestrial Biosphere Model: Application to West Africa
NASA Astrophysics Data System (ADS)
Berg, A.; Sultan, B.; de Noblet, N.
2008-12-01
Studying the large-scale relationships between climate and agriculture raises two different issues: the impact of climate on crops, and the potential feedbacks to climate from croplands. A relevant framework to consistently address this twofold issue is to extend existing Dynamic Global Vegetation Models, which can be coupled to climate models, in order to explicitly account for croplands. Here we present the first results of such a strategy applied to tropical croplands over West Africa. We introduce directly into the terrestrial biosphere model ORCHIDEE (IPSL) adequate processes and parametrizations taken from the crop model SARRAH (CIRAD), which is calibrated for millet over this region. The resulting model, ORCH-mil, realistically simulates the growth and yield of millet when tested on an experimental station in Senegal. The model is then applied over West Africa using a 36-year climate reanalysis dataset. First the model is tested in terms of yield simulation, against national millet yields from the FAO database. The ability of the model to reproduce the spatial and temporal variability of millet yields is assessed. Then, the effects on land surface fluxes of explicitly accounting for croplands are examined, by comparison between ORCH-mil and ORCHIDEE. These first simulations show consistent results, but underline the need for some further development and validation of the model if it is to simulate yields accurately. In terms of land surface fluxes, significant differences between ORCH-mil and ORCHIDEE appear, mainly via changes in evaporation and albedo. The potential impact on the west African monsoon system of such differences needs to be investigated by coupling ORCH-mil to a climate model: first results from such an experiment will be presented.
Including latent and sensible heat fluxes from sea spray in global weather and climate models
NASA Astrophysics Data System (ADS)
Copsey, Dan
2016-04-01
Most standard weather and climate models calculate interfacial latent (evaporation) and sensible heat fluxes over the ocean based on parameterisations of atmospheric turbulence, using the wave state only in the calculation of surface roughness length. They ignore latent and sensible heat fluxes generated by sea spray, which is an acceptable assumption at low wind speeds. However at high wind speeds (> 15 m/s) a significant amount of sea spray is generated from the sea surface which, while airborne, cools to an equilibrium temperature, absorbs heat and releases moisture before re-impacting the sea surface. This could impact, for example, the total heat loss from the Southern Ocean (which is anomalously warm in Met Office coupled models) or the accuracy of tropical cyclone forecasts. A modified version of the Fairall sea spray parameterisation scheme has been tested in the Met Office Unified Model including the JULES surface exchange model in both climate and NWP mode. The fast part of the scheme models the temperature change of the droplets to an equilibrium temperature and the slow part of the scheme models the evaporation and heat absorption while the droplets remain airborne. Including this scheme in the model cools and moistens the near surface layers of the atmosphere during high wind events, including tropical cyclones. Sea spray goes on to increase the convection intensity and precipitation near the high wind events in the model.
a Better Description of Liquid Jet Breakup Using a Spatial Model Including Viscous Effects.
NASA Astrophysics Data System (ADS)
Hammerschlag, William Brian
Theoretical models describing the operation and disintegration of a liquid jet are often based on an approximate solution of an inviscid jet in the temporal frame of reference. These models provide only a fair first order prediction of growth rate and breakoff length, and are based solely on a surface tension induced instability. A spatial model yielding jet growth rate and including both jet and surrounding atmosphere viscosity and density is now developed. This model is seen to reproduce all the features and limitations of the Weber viscous jet theory. When tested against experiments of water, water and glycerol mixes and binary eutectic tin/lead solder, only fair agreement is observed.
Prospects for genetically modified non-human primate models, including the common marmoset.
Sasaki, Erika
2015-04-01
Genetically modified mice have contributed much to studies in the life sciences. In some research fields, however, mouse models are insufficient for analyzing the molecular mechanisms of pathology or as disease models. Often, genetically modified non-human primate (NHP) models are desired, as they are more similar to human physiology, morphology, and anatomy. Recent progress in studies of the reproductive biology in NHPs has enabled the introduction of exogenous genes into NHP genomes or the alteration of endogenous NHP genes. This review summarizes recent progress in the production of genetically modified NHPs, including the common marmoset, and future perspectives for realizing genetically modified NHP models for use in life sciences research.
Control of deformable mirrors including a nonlinear modal model for air gap damping
NASA Astrophysics Data System (ADS)
Böhm, Michael; Sawodny, Oliver
2016-09-01
In this paper, we present nonlinear pressure dynamics as an extension to a linear distributed parameters model of a deformable mirror. The original, undamped model is recalled and measurement results are shown supporting the need for a damping model which includes the pressure dynamics of the air gap behind the mirror membrane. We will derive the damping coefficients to match our measurement results. Based on the mew model, we will derive a modal feedforward and feedback control law for 88 actuators based on only 3 position sensors and show simulation results to support the algorithm's effectiveness.
Organizational Models of Medical School Relationships to the Clinical Enterprise.
ERIC Educational Resources Information Center
Culbertson, Richard A.; And Others
1996-01-01
Analyzed existing relationships between medical schools and clinical enterprises to develop models of these relationships. Four conceptual models were identified: (1) "single ownership, owned integrated system"; (2) "general partner"; (3) "limited partner"; and (4) "wholly owned, subsidiary." The advantages and disadvantages of each model are…
Team Risk Management: A New Model for Customer-Supplier Relationships
1994-07-01
Management : A New Model for Customer - Supplier Relationships Ronald P. Higuera "Audrey J. Dorofee Julie A. Walker Ray C. Williams July 1994 ""•// 94...N/A N/A N/A 11. TITLE (Include Secuity Claaaificatioa) Team Risk Management : A New Model for Customer -Supplier Relationships 12. PERSONAL AUTHOR(S...by block number) FIELD GROUP SUB. GR. Customer - Supplier Relationships Risk Team Risk Management 19. ABSTRACT (cominus on = if necesaryd id’y by block
Nijp, Jelmer J; Metselaar, Klaas; Limpens, Juul; Teutschbein, Claudia; Peichl, Matthias; Nilsson, Mats B; Berendse, Frank; van der Zee, Sjoerd E A T M
2017-02-15
The water content of the topsoil is one of the key factors controlling biogeochemical processes, greenhouse gas emissions and biosphere - atmosphere interactions in many ecosystems, particularly in northern peatlands. In these wetland ecosystems, the water content of the photosynthetic active peatmoss layer is crucial for ecosystem functioning and carbon sequestration, and is sensitive to future shifts in rainfall and drought characteristics. Current peatland models differ in the degree in which hydrological feedbacks are included, but how this affects peatmoss drought projections is unknown. The aim of this paper was to systematically test whether the level of hydrological detail in models could bias projections of water content and drought stress for peatmoss in northern peatlands using downscaled projections for rainfall and potential evapotranspiration in the current (1991-2020) and future climate (2061-2090). We considered four model variants that either include or exclude moss (rain)water storage and peat volume change, as these are two central processes in the hydrological self-regulation of peatmoss carpets. Model performance was validated using field data of a peatland in northern Sweden. Including moss water storage as well as peat volume change resulted in a significant improvement of model performance, despite the extra parameters added. The best performance was achieved if both processes were included. Including moss water storage and peat volume change consistently reduced projected peatmoss drought frequency with >50%, relative to the model excluding both processes. Projected peatmoss drought frequency in the growing season was 17% smaller under future climate than current climate, but was unaffected by including the hydrological self-regulating processes. Our results suggest that ignoring these two fine-scale processes important in hydrological self-regulation of northern peatlands will have large consequences for projected climate change impact on
Bordas, R.; Gillow, K.; Lou, Q.; Efimov, I. R.; Gavaghan, D.; Kohl, P.; Grau, V.; Rodriguez, B.
2011-01-01
The function of the ventricular specialized conduction system in the heart is to ensure the coordinated electrical activation of the ventricles. It is therefore critical to the overall function of the heart, and has also been implicated as an important player in various diseases, including lethal ventricular arrhythmias such as ventricular fibrillation and drug-induced torsades de pointes. However, current ventricular models of electrophysiology usually ignore, or include highly simplified representations of the specialized conduction system. Here, we describe the development of a image-based, species-consistent, anatomically-detailed model of rabbit ventricular electrophysiology that incorporates a detailed description of the free-running part of the specialized conduction system. Techniques used for the construction of the geometrical model of the specialized conduction system from a magnetic resonance dataset and integration of the system model into a ventricular anatomical model, developed from the same dataset, are described. Computer simulations of rabbit ventricular electrophysiology are conducted using the novel anatomical model and rabbit-specific membrane kinetics to investigate the importance of the components and properties of the conduction system in determining ventricular function under physiological conditions. Simulation results are compared to panoramic optical mapping experiments for model validation and results interpretation. Full access is provided to the anatomical models developed in this study. PMID:21672547
Modeling species-abundance relationships in multi-species collections
Peng, S.; Yin, Z.; Ren, H.; Guo, Q.
2003-01-01
Species-abundance relationship is one of the most fundamental aspects of community ecology. Since Motomura first developed the geometric series model to describe the feature of community structure, ecologists have developed many other models to fit the species-abundance data in communities. These models can be classified into empirical and theoretical ones, including (1) statistical models, i.e., negative binomial distribution (and its extension), log-series distribution (and its extension), geometric distribution, lognormal distribution, Poisson-lognormal distribution, (2) niche models, i.e., geometric series, broken stick, overlapping niche, particulate niche, random assortment, dominance pre-emption, dominance decay, random fraction, weighted random fraction, composite niche, Zipf or Zipf-Mandelbrot model, and (3) dynamic models describing community dynamics and restrictive function of environment on community. These models have different characteristics and fit species-abundance data in various communities or collections. Among them, log-series distribution, lognormal distribution, geometric series, and broken stick model have been most widely used.
Wang, Xiao; Ji, Alin; Zhu, Yi; Liang, Zhen; Wu, Jian; Li, Shiqi; Meng, Shuai; Zheng, Xiangyi; Xie, Liping
2015-09-22
A meta-analysis was conducted to quantitatively evaluate the correlation between night shift work and the risk of colorectal cancer. We searched for publications up to March 2015 using PubMed, Web of Science, Cochrane Library, EMBASE and the Chinese National Knowledge Infrastructure databases, and the references of the retrieved articles and relevant reviews were also checked. OR and 95% CI were used to assess the degree of the correlation between night shift work and risk of colorectal cancer via fixed- or random-effect models. A dose-response meta-analysis was performed as well. The pooled OR estimates of the included studies illustrated that night shift work was correlated with an increased risk of colorectal cancer (OR = 1.318, 95% CI 1.121-1.551). No evidence of publication bias was detected. In the dose-response analysis, the rate of colorectal cancer increased by 11% for every 5 years increased in night shift work (OR = 1.11, 95% CI 1.03-1.20). In conclusion, this meta-analysis indicated that night shift work was associated with an increased risk of colorectal cancer. Further researches should be conducted to confirm our findings and clarify the potential biological mechanisms.
NASA Technical Reports Server (NTRS)
Entekhabi, D.; Eagleson, P. S.
1989-01-01
Parameterizations are developed for the representation of subgrid hydrologic processes in atmospheric general circulation models. Reasonable a priori probability density functions of the spatial variability of soil moisture and of precipitation are introduced. These are used in conjunction with the deterministic equations describing basic soil moisture physics to derive expressions for the hydrologic processes that include subgrid scale variation in parameters. The major model sensitivities to soil type and to climatic forcing are explored.
Robust Programming Problems Based on the Mean-Variance Model Including Uncertainty Factors
NASA Astrophysics Data System (ADS)
Hasuike, Takashi; Ishii, Hiroaki
2009-01-01
This paper considers robust programming problems based on the mean-variance model including uncertainty sets and fuzzy factors. Since these problems are not well-defined problems due to fuzzy factors, it is hard to solve them directly. Therefore, introducing chance constraints, fuzzy goals and possibility measures, the proposed models are transformed into the deterministic equivalent problems. Furthermore, in order to solve these equivalent problems efficiently, the solution method is constructed introducing the mean-absolute deviation and doing the equivalent transformations.
A Relationship-Building Model for the Web Retail Marketplace.
ERIC Educational Resources Information Center
Wang, Fang; Head, Milena; Archer, Norm
2000-01-01
Discusses the effects of the Web on marketing practices. Introduces the concept and theory of relationship marketing. The relationship network concept, which typically is only applied to the business-to-business market, is discussed within the business-to-consumer market, and a new relationship-building model for the Web marketplace is proposed.…
NASA Astrophysics Data System (ADS)
Hincapié, Doracelly; Ospina, Juan
2014-06-01
Recently, a mathematical model of pandemic influenza was proposed including typical control strategies such as antivirals, vaccination and school closure; and considering explicitly the effects of immunity acquired from the early outbreaks on the ulterior outbreaks of the disease. In such model the algebraic expression for the basic reproduction number (without control strategies) and the effective reproduction number (with control strategies) were derived and numerically estimated. A drawback of this model of pandemic influenza is that it ignores the effects of the differential susceptibility due to immunosuppression and the effects of the complexity of the actual contact networks between individuals. We have developed a generalized model which includes such effects of heterogeneity. Specifically we consider the influence of the air network connectivity in the spread of pandemic influenza and the influence of the immunosuppresion when the population is divided in two immune classes. We use an algebraic expression, namely the Tutte polynomial, to characterize the complexity of the contact network. Until now, The influence of the air network connectivity in the spread of pandemic influenza has been studied numerically, but not algebraic expressions have been used to summarize the level of network complexity. The generalized model proposed here includes the typical control strategies previously mentioned (antivirals, vaccination and school closure) combined with restrictions on travel. For the generalized model the corresponding reproduction numbers will be algebraically computed and the effect of the contact network will be established in terms of the Tutte polynomial of the network.
Ray, Amrita; Weeks, Daniel E
2008-05-01
Linkage analysis programs invariably assume that the stated familial relationships are correct. Thus, it is common practice to resolve relationship errors by either discarding individuals with erroneous relationships or using an inferred alternative pedigree structure. These approaches are less than ideal because discarding data is wasteful and using inferred data can be statistically unsound. We have developed two linkage statistics that model relationship uncertainty by weighting over the possible true relationships. Simulations of data containing relationship errors were used to assess our statistics and compare them to the maximum-likelihood statistic (MLS) and the Sall non-parametric LOD score using true and discarded (where problematic individuals with erroneous relationships are discarded from the pedigree) structures. We simulated both small pedigree (SP) and large pedigree (LP) data sets typed genome-wide. Both data sets have several underlying true relationships; SP has one apparent relationship--full sibling--and LP has several different apparent relationship types. The results show that for both SP and LP, our relationship uncertainty linkage statistics (RULS) have power nearly as high as the MLS and Sall using the true structure. Also, the RULS have greater power to detect linkage than the MLS and Sall using the discarded structure. For example, for the SP data set and a dominant disease model, both the RULS had power of about 93%, while Sall and MLS have 90% and 83% power on the discarded structure. Thus, our RULS provide a statistically sound and powerful approach to the commonly encountered problem of relationship errors.
Modelling total duration of traffic incidents including incident detection and recovery time.
Tavassoli Hojati, Ahmad; Ferreira, Luis; Washington, Simon; Charles, Phil; Shobeirinejad, Ameneh
2014-10-01
Traffic incidents are key contributors to non-recurrent congestion, potentially generating significant delay. Factors that influence the duration of incidents are important to understand so that effective mitigation strategies can be implemented. To identify and quantify the effects of influential factors, a methodology for studying total incident duration based on historical data from an 'integrated database' is proposed. Incident duration models are developed using a selected freeway segment in the Southeast Queensland, Australia network. The models include incident detection and recovery time as components of incident duration. A hazard-based duration modelling approach is applied to model incident duration as a function of a variety of factors that influence traffic incident duration. Parametric accelerated failure time survival models are developed to capture heterogeneity as a function of explanatory variables, with both fixed and random parameters specifications. The analysis reveals that factors affecting incident duration include incident characteristics (severity, type, injury, medical requirements, etc.), infrastructure characteristics (roadway shoulder availability), time of day, and traffic characteristics. The results indicate that event type durations are uniquely different, thus requiring different responses to effectively clear them. Furthermore, the results highlight the presence of unobserved incident duration heterogeneity as captured by the random parameter models, suggesting that additional factors need to be considered in future modelling efforts.
Magnetofluid Simulations of the Global Solar Wind Including Pickup Ions and Turbulence Modeling
NASA Technical Reports Server (NTRS)
Goldstein, Melvyn L.; Usmanov, Arcadi V.; Matthaeus, William H.
2011-01-01
I will describe a three-dimensional magnetohydrodynamic model of the solar wind that takes into account turbulent heating of the wind by velocity and magnetic fluctuations as well as a variety of effects produced by interstellar pickup protons. In this report, the interstellar pickup protons are treated as one fluid and the protons and electrons are treated together as a second fluid. The model equations include a Reynolds decomposition of the plasma velocity and magnetic field into mean and fluctuating quantities, as well as energy transfer from interstellar pickup protons to solar wind protons that results in the deceleration of the solar wind. The model is used to simulate the global steady-state structure of the solar wind in the region from 0.3 to 100 AU. Where possible, the model is compared with Voyager data. Initial results from generalization to a three-fluid model is described elsewhere in this session.
Modeling of a hollow-cone liquid spray including droplet collisions
NASA Astrophysics Data System (ADS)
Asheim, J. P.; Kirwan, J. E.; Peters, J. E.
1987-01-01
A spray model is used to determine the characteristics of a hollow-cone water spray injected from a pressure jet swirl atomizer into uniform air flow traveling through a vertical wind tunnel. The model simulates droplets stochastically and accounts for 'drop-drop' effects by permitting droplet collisions which result in coalescence or breakup. This investigation's objectives are to study the model's droplet tracking capabilities with special emphasis placed on the effects of droplet collisions. It is concluded that the collision model's results for droplet velocities agree well with experimental measurements but that droplet trajectory angles are overpredicted. Droplet sizes which are underpredicted by the model when collisions are neglected are still underpredicted when collisions are included although some improvement is noted.
A statistical model including age to predict passenger postures in the rear seats of automobiles.
Park, Jangwoon; Ebert, Sheila M; Reed, Matthew P; Hallman, Jason J
2016-06-01
Few statistical models of rear seat passenger posture have been published, and none has taken into account the effects of occupant age. This study developed new statistical models for predicting passenger postures in the rear seats of automobiles. Postures of 89 adults with a wide range of age and body size were measured in a laboratory mock-up in seven seat configurations. Posture-prediction models for female and male passengers were separately developed by stepwise regression using age, body dimensions, seat configurations and two-way interactions as potential predictors. Passenger posture was significantly associated with age and the effects of other two-way interaction variables depended on age. A set of posture-prediction models are presented for women and men, and the prediction results are compared with previously published models. This study is the first study of passenger posture to include a large cohort of older passengers and the first to report a significant effect of age for adults. The presented models can be used to position computational and physical human models for vehicle design and assessment. Practitioner Summary: The significant effects of age, body dimensions and seat configuration on rear seat passenger posture were identified. The models can be used to accurately position computational human models or crash test dummies for older passengers in known rear seat configurations.
Gerlock, April A; Grimesey, Jackie; Sayre, George
2014-07-01
The protracted conflict in Iraq and Afghanistan and an all-volunteer military has resulted in multiple war zone deployments for many service members. While quick redeployment turnaround has left little time for readjustment for either the service member or family, dealing with the long-term sequelae of combat exposure often leaves families and intimate partners ill-prepared for years after deployments. Using a modified grounded theory approach, digitally recorded couple interviews of 23 couples were purposefully selected from a larger sample of 441 couples to better understand the impact of war zone deployment on the couple. The veteran sample was recruited from a randomly selected cohort of men in treatment for posttraumatic stress disorder (PTSD). Overall, it was found when veterans experiencing deployment-related PTSD reenter or start new intimate relationships they may bring with them a unique cluster of interrelated issues which include PTSD symptoms, physical impairment, high rates of alcohol and/or drug abuse, and psychological and physical aggression. These factors contributed to a dynamic of exacerbating conflict. How these couples approached relationship qualities of mutuality, balanced locus of control and weakness tolerance across six axes of caregiving, disability, responsibility, trauma, communication, and community impacted the couple's capacity to communicate and resolve conflict. This dyadic relationship model is used to help inform implications for clinical practice. © 2013 American Association for Marriage and Family Therapy.
A reduced Iwan model that includes pinning for bolted joint mechanics
Brake, M. R. W.
2016-10-28
Bolted joints are prevalent in most assembled structures; however, predictive models for their behavior do not exist. Calibrated models, such as the Iwan model, are able to predict the response of a jointed structure over a range of excitations once calibrated at a nominal load. The Iwan model, though, is not widely adopted due to the high computational expense of implementation. To address this, an analytical solution of the Iwan model is derived under the hypothesis that for an arbitrary load reversal, there is a new distribution of dry friction elements, which are now stuck, that approximately resemble a scaled version of the original distribution of dry friction elements. The dry friction elements internal to the Iwan model do not have a uniform set of parameters and are described by a distribution of parameters, i.e., which internal dry friction elements are stuck or slipping at a given load, that ultimately governs the behavior of the joint as it transitions from microslip to macroslip. This hypothesis allows the model to require no information from previous loading cycles. Additionally, the model is extended to include the pinning behavior inherent in a bolted joint. Modifications of the resulting framework are discussed to highlight how the constitutive model for friction can be changed (in the case of an Iwan–Stribeck formulation) or how the distribution of dry friction elements can be changed (as is the case for the Iwan plasticity model). Finally, the reduced Iwan plus pinning model is then applied to the Brake–Reuß beam in order to discuss methods to deduce model parameters from experimental data.
NASA Technical Reports Server (NTRS)
Kelly, Jeff; Betts, Juan Fernando; Fuller, Chris
2000-01-01
The study of normal impedance of perforated plate acoustic liners including the effect of bias flow was studied. Two impedance models were developed by modeling the internal flows of perforate orifices as infinite tubes with the inclusion of end corrections to handle finite length effects. These models assumed incompressible and compressible flows, respectively, between the far field and the perforate orifice. The incompressible model was used to predict impedance results for perforated plates with percent open areas ranging from 5% to 15%. The predicted resistance results showed better agreement with experiments for the higher percent open area samples. The agreement also tended to deteriorate as bias flow was increased. For perforated plates with percent open areas ranging from 1% to 5%, the compressible model was used to predict impedance results. The model predictions were closer to the experimental resistance results for the 2% to 3% open area samples. The predictions tended to deteriorate as bias flow was increased. The reactance results were well predicted by the models for the higher percent open area, but deteriorated as the percent open area was lowered (5%) and bias flow was increased. A fit was done on the incompressible model to the experimental database. The fit was performed using an optimization routine that found the optimal set of multiplication coefficients to the non-dimensional groups that minimized the least squares slope error between predictions and experiments. The result of the fit indicated that terms not associated with bias flow required a greater degree of correction than the terms associated with the bias flow. This model improved agreement with experiments by nearly 15% for the low percent open area (5%) samples when compared to the unfitted model. The fitted model and the unfitted model performed equally well for the higher percent open area (10% and 15%).
A reduced Iwan model that includes pinning for bolted joint mechanics
Brake, M. R. W.
2016-10-28
Bolted joints are prevalent in most assembled structures; however, predictive models for their behavior do not exist. Calibrated models, such as the Iwan model, are able to predict the response of a jointed structure over a range of excitations once calibrated at a nominal load. The Iwan model, though, is not widely adopted due to the high computational expense of implementation. To address this, an analytical solution of the Iwan model is derived under the hypothesis that for an arbitrary load reversal, there is a new distribution of dry friction elements, which are now stuck, that approximately resemble a scaledmore » version of the original distribution of dry friction elements. The dry friction elements internal to the Iwan model do not have a uniform set of parameters and are described by a distribution of parameters, i.e., which internal dry friction elements are stuck or slipping at a given load, that ultimately governs the behavior of the joint as it transitions from microslip to macroslip. This hypothesis allows the model to require no information from previous loading cycles. Additionally, the model is extended to include the pinning behavior inherent in a bolted joint. Modifications of the resulting framework are discussed to highlight how the constitutive model for friction can be changed (in the case of an Iwan–Stribeck formulation) or how the distribution of dry friction elements can be changed (as is the case for the Iwan plasticity model). Finally, the reduced Iwan plus pinning model is then applied to the Brake–Reuß beam in order to discuss methods to deduce model parameters from experimental data.« less
Evaluating Modeled Variables Included in the NOAA Water Vapor Flux Tool
NASA Astrophysics Data System (ADS)
Darby, L. S.; White, A. B.; Coleman, T.
2015-12-01
The NOAA/ESRL/Physical Sciences Division has a Water Vapor Flux Tool showing observed and forecast meteorological variables related to heavy precipitation. Details about this tool will be presented in a companion paper by White et al. (2015, this conference). We evaluate 3-hr precipitation forecasts from four models (the HRRR, HRRRexp, RAP, and RAPexp) that were added to the tool in Dec. 2014. The Rapid Refresh (RAP) and the High-Resolution Rapid Refresh (HRRR) models are run operationally by NOAA, are initialized hourly, and produce forecasts out to 15 hours. The RAP and HRRR have experimental versions (RAPexp and HRRRexp, respectively) that are run near-real time at the NOAA/ESRL/Global Systems Division. Our analysis of eight rain days includes atmospheric river events in Dec. 2014 and Feb. 2015. We evaluate the forecasts using observations at two sites near the California coast - Bodega Bay (BBY, 15 m ASL) and Cazadero (CZC, 478 m ASL), and an inland site near Colfax, CA (CFC, 643 m ASL). Various criteria were used to evaluate the forecasts. (1) The Pielke criteria: we compare the RMSE and unbiased RMSE of the model output to the standard deviation of the observations, and we compare the standard deviation of the model output to the standard deviation of the observations; (2) we compare the modeled 24-hr precipitation to the observed 24-hr precipitation; and (3) we assess the correlation coefficient between the modeled and observed precipitation. Based on these criteria, the RAP slightly outperformed the other models. Only the RAP and the HRRRexp had forecasts that met the Pielke criteria. All of the models were able to predict the observed 24-hour precipitation, within 10%, in only 8-16% of their forecasts. All models achieved a correlation coefficient value above the 90th percentile in 12.5% of their forecasts. The station most likely to have a forecast that met any of the criteria was the inland mountain station CFC; the least likely was the coastal mountain
Diehl, S; Zambrano, J; Carlsson, B
2016-01-01
A reduced model of a completely stirred-tank bioreactor coupled to a settling tank with recycle is analyzed in its steady states. In the reactor, the concentrations of one dominant particulate biomass and one soluble substrate component are modelled. While the biomass decay rate is assumed to be constant, growth kinetics can depend on both substrate and biomass concentrations, and optionally model substrate inhibition. Compressive and hindered settling phenomena are included using the Bürger-Diehl settler model, which consists of a partial differential equation. Steady-state solutions of this partial differential equation are obtained from an ordinary differential equation, making steady-state analysis of the entire plant difficult. A key result showing that the ordinary differential equation can be replaced with an approximate algebraic equation simplifies model analysis. This algebraic equation takes the location of the sludge-blanket during normal operation into account, allowing for the limiting flux capacity caused by compressive settling to easily be included in the steady-state mass balance equations for the entire plant system. This novel approach grants the possibility of more realistic solutions than other previously published reduced models, comprised of yet simpler settler assumptions. The steady-state concentrations, solids residence time, and the wastage flow ratio are functions of the recycle ratio. Solutions are shown for various growth kinetics; with different values of biomass decay rate, influent volumetric flow, and substrate concentration.
Kooijman, Gerben; Ouweltjes, Okke
2009-04-01
A lumped element electroacoustic model for a synthetic jet actuator is presented. The model includes the nonlinear flow resistance associated with flow separation and employs a finite difference scheme in the time domain. As opposed to more common analytical frequency domain electroacoustic models, in which the nonlinear resistance can only be considered as a constant, it allows the calculation of higher harmonics, i.e., distortion components, generated as a result of this nonlinear resistance. Model calculations for the time-averaged momentum flux of the synthetic jet as well as the radiated sound power spectrum are compared to experimental results for various configurations. It is shown that a significantly improved prediction of the momentum flux-and thus flow velocity-of the jet is obtained when including the nonlinear resistance. Here, the current model performs slightly better than an analytical model. For the power spectrum of radiated sound, a reasonable agreement is obtained when assuming a plausible slight asymmetry in the nonlinear resistance. However, results suggest that loudspeaker nonlinearities play a significant role as well in the generation of the first few higher harmonics.
MEMLS3&a: Microwave Emission Model of Layered Snowpacks adapted to include backscattering
NASA Astrophysics Data System (ADS)
Proksch, M.; Mätzler, C.; Wiesmann, A.; Lemmetyinen, J.; Schwank, M.; Löwe, H.; Schneebeli, M.
2015-08-01
The Microwave Emission Model of Layered Snowpacks (MEMLS) was originally developed for microwave emissions of snowpacks in the frequency range 5-100 GHz. It is based on six-flux theory to describe radiative transfer in snow including absorption, multiple volume scattering, radiation trapping due to internal reflection and a combination of coherent and incoherent superposition of reflections between horizontal layer interfaces. Here we introduce MEMLS3&a, an extension of MEMLS, which includes a backscatter model for active microwave remote sensing of snow. The reflectivity is decomposed into diffuse and specular components. Slight undulations of the snow surface are taken into account. The treatment of like- and cross-polarization is accomplished by an empirical splitting parameter q. MEMLS3&a (as well as MEMLS) is set up in a way that snow input parameters can be derived by objective measurement methods which avoid fitting procedures of the scattering efficiency of snow, required by several other models. For the validation of the model we have used a combination of active and passive measurements from the NoSREx (Nordic Snow Radar Experiment) campaign in Sodankylä, Finland. We find a reasonable agreement between the measurements and simulations, subject to uncertainties in hitherto unmeasured input parameters of the backscatter model. The model is written in Matlab and the code is publicly available for download through the following website: http://www.iapmw.unibe.ch/research/projects/snowtools/memls.html.
MEMLS3&a: Microwave Emission Model of Layered Snowpacks adapted to include backscattering
NASA Astrophysics Data System (ADS)
Proksch, M.; Mätzler, C.; Wiesmann, A.; Lemmetyinen, J.; Schwank, M.; Löwe, H.; Schneebeli, M.
2015-03-01
The Microwave Emission Model of Layered Snowpacks (MEMLS) was originally developed for microwave emissions of snowpacks in the frequency range 5-100 GHz. It is based on six-flux theory to describe radiative transfer in snow including absorption, multiple volume scattering, radiation trapping due to internal reflection and a combination of coherent and incoherent superposition of reflections between horizontal layer interfaces. Here we introduce MEMLS3&a, an extension of MEMLS, which includes a backscatter model for active microwave remote sensing of snow. The reflectivity is decomposed into diffuse and specular components. Slight undulations of the snow surface are taken into account. The treatment of like and cross polarization is accomplished by an empirical splitting parameter q. MEMLS3&a (as well as MEMLS) is set up in a way that snow input parameters can be derived by objective measurement methods which avoids fitting procedures of the scattering efficiency of snow, required by several other models. For the validation of the model we have used a combination of active and passive measurements from the NoSREx campaign in Sodankylä, Finland. We find a reasonable agreement between the measurements and simulations, subject to uncertainties in hitherto unmeasured input parameters of the backscatter model. The model is written in MATLAB and the code is publicly available for download through the following website: http://www.iapmw.unibe.ch/research/projects/snowtools/memls.html.
Ribes, J; Ferrer, J; Bouzas, A; Seco, A
2002-10-01
A complete model of a primary settler including both sedimentation and biological processes is presented. It is a one-dimensional model based on the solids flux concept and the conservation of mass that uses the Takács model for the settling velocity, which is corrected by a compression function in the lower layers. The biological model is based on the ASM2 and enlarged with the fermentation model proposed by this research group. The settler was split in ten layers and the flux terms in the mass balance for each layer is obtained by means of the settling model. A pilot plant has been operated to study the primary sludge fermentation and volatile fatty acids (VFA) elutriation in a primary settler tank. The model has been tested with pilot plant experimental data with very good results. It has been able to simulate the VFA production in the settler and their elutriation with the influent wastewater for all the studied experiments. The developed model is easily applicable to secondary settlers and thickeners, also taking into account biological activity inside them.
Safe distance car-following model including backward-looking and its stability analysis
NASA Astrophysics Data System (ADS)
Yang, Da; Jin, Peter Jing; Pu, Yun; Ran, Bin
2013-03-01
The focus of this paper is the car-following behavior including backward-looking, simply called the bi-directional looking car-following behavior. This study is motivated by the potential changes of the physical properties of traffic flow caused by the fast developing intelligent transportation system (ITS), especially the new connected vehicle technology. Existing studies on this topic focused on general motors (GM) models and optimal velocity (OV) models. The safe distance car-following model, Gipps' model, which is more widely used in practice have not drawn too much attention in the bi-directional looking context. This paper explores the property of the bi-directional looking extension of Gipps' safe distance model. The stability condition of the proposed model is derived using the linear stability theory and is verified using numerical simulations. The impacts of the driver and vehicle characteristics appeared in the proposed model on the traffic flow stability are also investigated. It is found that taking into account the backward-looking effect in car-following has three types of effect on traffic flow: stabilizing, destabilizing and producing non-physical phenomenon. This conclusion is more sophisticated than the study results based on the OV bi-directional looking car-following models. Moreover, the drivers who have the smaller reaction time or the larger additional delay and think the other vehicles have larger maximum decelerations can stabilize traffic flow.
Diamond, Solomon Gilbert; Perdue, Katherine L.; Boas, David A.
2009-01-01
Functional neuroimaging techniques such as functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS) can be used to isolate an evoked response to a stimulus from significant background physiological fluctuations. Data analysis approaches typically use averaging or linear regression to remove this physiological baseline with varying degrees of success. Biophysical model-based analysis of the functional hemodynamic response has also been advanced previously with the Balloon and Windkessel models. In the present work, a biophysical model of systemic and cerebral circulation and gas exchange is applied to resting state NIRS neuroimaging data from 10 human subjects. The model further includes dynamic cerebral autoregulation, which modulates the cerebral arteriole compliance to control cerebral blood flow. This biophysical model allows for prediction, from noninvasive blood pressure measurements, of the background hemodynamic fluctuations in the systemic and cerebral circulations. Significantly higher correlations with the NIRS data were found using the biophysical model predictions compared to blood pressure regression and compared to transfer function analysis (multifactor ANOVA, p<0.0001). This finding supports the further development and use of biophysical models for removing baseline activity in functional neuroimaging analysis. Future extensions of this work could model changes in cerebrovascular physiology that occur during development, aging and disease. PMID:19442671
An exact stochastic hybrid model of excitable membranes including spatio-temporal evolution.
Buckwar, Evelyn; Riedler, Martin G
2011-12-01
In this paper, we present a mathematical description for excitable biological membranes, in particular neuronal membranes. We aim to model the (spatio-) temporal dynamics, e.g., the travelling of an action potential along the axon, subject to noise, such as ion channel noise. Using the framework of Piecewise Deterministic Processes (PDPs) we provide an exact mathematical description-in contrast to pseudo-exact algorithms considered in the literature-of the stochastic process one obtains coupling a continuous time Markov chain model with a deterministic dynamic model of a macroscopic variable, that is coupling Markovian channel dynamics to the time-evolution of the transmembrane potential. We extend the existing framework of PDPs in finite dimensional state space to include infinite-dimensional evolution equations and thus obtain a stochastic hybrid model suitable for modelling spatio-temporal dynamics. We derive analytic results for the infinite-dimensional process, such as existence, the strong Markov property and its extended generator. Further, we exemplify modelling of spatially extended excitable membranes with PDPs by a stochastic hybrid version of the Hodgkin-Huxley model of the squid giant axon. Finally, we discuss the advantages of the PDP formulation in view of analytical and numerical investigations as well as the application of PDPs to structurally more complex models of excitable membranes. © Springer-Verlag 2011
Comparison of lead isotopes with source apportionment models, including SOM, for air particulates.
Gulson, Brian; Korsch, Michael; Dickson, Bruce; Cohen, David; Mizon, Karen; Davis, J Michael
2007-08-01
We have measured high precision lead isotopes in PM(2.5) particulates from a highly-trafficked site (Mascot) and rural site (Richmond) in the Sydney Basin, New South Wales, Australia to compare with isotopic data from total suspended particulates (TSP) from other sites in the Sydney Basin and evaluate relationships with source fingerprints obtained from multi-element PM(2.5) data. The isotopic data for the period 1998 to 2004 show seasonal peaks and troughs that are more pronounced in the rural site for the PM(2.5).samples but are consistent with the TSP. The Self Organising Map (SOM) method has been applied to the multi-element PM(2.5) data to evaluate its use in obtaining fingerprints for comparison with standard statistical procedures (ANSTO model). As seasonal effects are also significant for the multi-element data, the SOM modelling is reported as site and season dependent. At the Mascot site, the ANSTO model exhibits decreasing (206)Pb/(204)Pb ratios with increasing contributions of fingerprints for "secondary smoke" (industry), "soil", "smoke" and "seaspray". Similar patterns were shown by SOM winter fingerprints for both sites. At the rural site, there are large isotopic variations but for the majority of samples these are not associated with increased contributions from the main sources with the ANSTO model. For two winter sampling times, there are increased contributions from "secondary industry", "smoke", "soil" and seaspray with one time having a source or sources of Pb similar to that of Mascot. The only positive relationship between increasing (206)Pb/(204)Pb ratio and source contributions is found at the rural site using the SOM summer fingerprints, both of which show a significant contribution from sulphur. Several of the fingerprints using either model have significant contributions from black carbon (BC) and/or sulphur (S) that probably derive from diesel fuels and industrial sources. Increased contributions from sources with the SOM summer
Data Base Design Using Entity-Relationship Models.
ERIC Educational Resources Information Center
Davis, Kathi Hogshead
1983-01-01
The entity-relationship (ER) approach to database design is defined, and a specific example of an ER model (personnel-payroll) is examined. The requirements for converting ER models into specific database management systems are discussed. (Author/MSE)
Extending the IP3 receptor model to include competition with partial agonists.
Handy, Gregory A; Peercy, Bradford E
2012-10-07
The inositol 1,4,5-trisphosphate (IP(3)) receptor is a Ca(2+) channel located in the endoplasmic reticulum and is regulated by IP(3) and Ca(2+). This channel is critical to calcium signaling in cell types as varied as neurons and pancreatic beta cells to mast cells. De Young and Keizer (1992) created an eight-state, nine-variable model of the IP(3) receptor. In their model, they accounted for three binding sites, a site for IP(3), activating Ca(2+), and deactivating Ca(2+). The receptor is only open if IP(3) and activating Ca(2+) is bound. Li and Rinzel followed up this paper in 1994 by introducing a reduction that made it into a two variable system. A recent publication by Rossi et al. (2009) studied the effect of introducing IP(3)-like molecules, referred to as partial agonists (PA), into the cell to determine the structure-function relationship between IP(3) and its receptor. Initial results suggest a competitive model, where IP(3) and PA fight for the same binding site. We extend the original eight-state model to a 12-state model in order to illustrate this competition, and perform a similar reduction to that of Li and Rinzel in the first modeling study we are aware of considering PA effect on an IP(3) receptor. Using this reduction we solve for the equilibrium open probability for calcium release in the model. We replicate graphs provided by the Rossi paper, and find that optimizing the subunit affinities for IP(3) and PA yields a good fit to the data. We plug our extended reduced model into a full cell model, in order to analyze the effects PA have on whole cell properties specifically the propagation of calcium waves in two dimensions. We conclude that PA creates qualitatively different calcium dynamics than would simply reducing IP(3), but that effectively PA can act as an IP(3) knockdown. Copyright © 2012 Elsevier Ltd. All rights reserved.
Developing parameters for multi-mode ambient air models including the nanometer mode
NASA Astrophysics Data System (ADS)
Tronville, Paolo; Rivers, Richard
2017-06-01
The particle count, surface and mass in an occupied space can be modeled when the HVAC system airflows are known, along with the particle-size distribution for outdoor air, internal generation rates as a function of particle size, and the efficiency as a function of particle size for filters present. Outdoor air particle-size distribution is rarely available, but measures of particle mass concentration, PM2.5 and PM10, are often available for building locations. Outdoor air aerosol size distributions are well modeled by sums of two or three log-normal distributions, with essentially all mass in two larger modes. Studies have also shown that some mode parameters are, in general, related by simple functions. This paper shows how these relationships can be combined with known characteristics of PM2.5 and PM10 samplers to create reasonable inclusive models of outdoor air aerosol-size distributions. This information plus knowledge of indoor particle generation allows calculation of aerosol mass in occupied spaces. Estimation of parameters of aerosol modes with sizes below100 nm and measurement of filter efficiencies in that range are described.
Multifluid Simulations of the Global Solar Wind Including Pickup Ions and Turbulence Modeling
NASA Technical Reports Server (NTRS)
Goldstein, Melvyn L.; Usmanov, A. V.
2011-01-01
I will describe a three-dimensional magnetohydrodynamic model of the solar wind that takes into account turbulent heating of the wind by velocity and magnetic fluctuations as well as a variety of effects produced by interstellar pickup protons. The interstellar pickup protons are treated in the model as one fluid and the protons and electrons are treated together as a second fluid. The model equations include a Reynolds decomposition of the plasma velocity and magnetic field into mean and fluctuating quantities, as well as energy transfer from interstellar pickup protons to solar wind protons that results in the deceleration of the solar wind. The model is used to simulate the global steady-state structure of the solar wind in the region from 0.3 to 100 AU. The simulation assumes that the background magnetic field on the Sun is either a dipole (aligned or tilted with respect to the solar rotation axis) or one that is deduced from solar magnetograms.
Sengör, S Sevinç; Barua, Sutapa; Gikas, Petros; Ginn, Timothy R; Peyton, Brent; Sani, Rajesh K; Spycher, Nicolas F
2009-10-01
Heavy metals can significantly affect the kinetics of substrate biodegradation and microbial growth, including lag times and specific growth rates. A model to describe microbial metabolic lag as a function of the history of substrate concentration has been previously described by Wood et al. (Water Resour Res 31:553-563) and Ginn (Water Resour Res 35:1395-1408). In the present study, this model is extended by including the effect of heavy metals on metabolic lag by developing an inhibitor-dependent functional to account for the metabolic state of the microorganisms. The concentration of the inhibiting metal is explicitly incorporated into the functional. The validity of the model is tested against experimental data on the effects of zinc on Pseudomonas species isolated from Lake Coeur d'Alene sediments, Idaho, U.S.A., as well as the effects of nickel or cobalt on a mixed microbial culture collected from the aeration tank of a wastewater treatment plant in Athens, Greece. The simulations demonstrate the ability to incorporate the effect of metals on metabolism through lag, yield coefficient, and specific growth rates. The model includes growth limitation due to insufficient transfer of oxygen into the growth medium.
Global Reference Atmospheric Models, Including Thermospheres, for Mars, Venus and Earth
NASA Technical Reports Server (NTRS)
Justh, Hilary L.; Justus, C. G.; Keller, Vernon W.
2006-01-01
This document is the viewgraph slides of the presentation. Marshall Space Flight Center's Natural Environments Branch has developed Global Reference Atmospheric Models (GRAMs) for Mars, Venus, Earth, and other solar system destinations. Mars-GRAM has been widely used for engineering applications including systems design, performance analysis, and operations planning for aerobraking, entry descent and landing, and aerocapture. Preliminary results are presented, comparing Mars-GRAM with measurements from Mars Reconnaissance Orbiter (MRO) during its aerobraking in Mars thermosphere. Venus-GRAM is based on the Committee on Space Research (COSPAR) Venus International Reference Atmosphere (VIRA), and is suitable for similar engineering applications in the thermosphere or other altitude regions of the atmosphere of Venus. Until recently, the thermosphere in Earth-GRAM has been represented by the Marshall Engineering Thermosphere (MET) model. Earth-GRAM has recently been revised. In addition to including an updated version of MET, it now includes an option to use the Naval Research Laboratory Mass Spectrometer Incoherent Scatter Radar Extended Model (NRLMSISE-00) as an alternate thermospheric model. Some characteristics and results from Venus-GRAM and Earth-GRAM thermospheres are also presented.
Improving weather predictability by including land-surface model parameter uncertainty
NASA Astrophysics Data System (ADS)
Orth, Rene; Dutra, Emanuel; Pappenberger, Florian
2016-04-01
The land surface forms an important component of Earth system models and interacts nonlinearly with other parts such as ocean and atmosphere. To capture the complex and heterogenous hydrology of the land surface, land surface models include a large number of parameters impacting the coupling to other components of the Earth system model. Focusing on ECMWF's land-surface model HTESSEL we present in this study a comprehensive parameter sensitivity evaluation using multiple observational datasets in Europe. We select 6 poorly constrained effective parameters (surface runoff effective depth, skin conductivity, minimum stomatal resistance, maximum interception, soil moisture stress function shape, total soil depth) and explore their sensitivity to model outputs such as soil moisture, evapotranspiration and runoff using uncoupled simulations and coupled seasonal forecasts. Additionally we investigate the possibility to construct ensembles from the multiple land surface parameters. In the uncoupled runs we find that minimum stomatal resistance and total soil depth have the most influence on model performance. Forecast skill scores are moreover sensitive to the same parameters as HTESSEL performance in the uncoupled analysis. We demonstrate the robustness of our findings by comparing multiple best performing parameter sets and multiple randomly chosen parameter sets. We find better temperature and precipitation forecast skill with the best-performing parameter perturbations demonstrating representativeness of model performance across uncoupled (and hence less computationally demanding) and coupled settings. Finally, we construct ensemble forecasts from ensemble members derived with different best-performing parameterizations of HTESSEL. This incorporation of parameter uncertainty in the ensemble generation yields an increase in forecast skill, even beyond the skill of the default system. Orth, R., E. Dutra, and F. Pappenberger, 2016: Improving weather predictability by
Constitutive Relationships and Models in Continuum Theories of Multiphase Flows. [conferences
NASA Technical Reports Server (NTRS)
Decker, Rand (Editor)
1989-01-01
In April, 1989, a workshop on constitutive relationships and models in continuum theories of multiphase flows was held at NASA's Marshall Space Flight Center. Topics of constitutive relationships for the partial or per phase stresses, including the concept of solid phase pressure are discussed. Models used for the exchange of mass, momentum, and energy between the phases in a multiphase flow are also discussed. The program, abstracts, and texts of the presentations from the workshop are included.
An Ab Initio Exciton Model Including Charge-Transfer Excited States
Li, Xin; Parrish, Robert M.; Liu, Fang; ...
2017-06-15
Here, the Frenkel exciton model is a useful tool for theoretical studies of multichromophore systems. We recently showed that the exciton model could be used to coarse-grain electronic structure in multichromophoric systems, focusing on singly excited exciton states. However, our previous implementation excluded charge-transfer excited states, which can play an important role in light-harvesting systems and near-infrared optoelectronic materials. Recent studies have also emphasized the significance of charge-transfer in singlet fission, which mediates the coupling between the locally excited states and the multiexcitonic states. In this work, we report on an ab initio exciton model that incorporates charge-transfer excited statesmore » and demonstrate that the model provides correct charge-transfer excitation energies and asymptotic behavior. Comparison with TDDFT and EOM-CC2 calculations shows that our exciton model is robust with respect to system size, screening parameter, and different density functionals. Inclusion of charge-transfer excited states makes the exciton model more useful for studies of singly excited states and provides a starting point for future construction of a model that also includes double-exciton states.« less
A structural model for the in vivo human cornea including collagen-swelling interaction
Cheng, Xi; Petsche, Steven J.; Pinsky, Peter M.
2015-01-01
A structural model of the in vivo cornea, which accounts for tissue swelling behaviour, for the three-dimensional organization of stromal fibres and for collagen-swelling interaction, is proposed. Modelled as a binary electrolyte gel in thermodynamic equilibrium, the stromal electrostatic free energy is based on the mean-field approximation. To account for active endothelial ionic transport in the in vivo cornea, which modulates osmotic pressure and hydration, stromal mobile ions are shown to satisfy a modified Boltzmann distribution. The elasticity of the stromal collagen network is modelled based on three-dimensional collagen orientation probability distributions for every point in the stroma obtained by synthesizing X-ray diffraction data for azimuthal angle distributions and second harmonic-generated image processing for inclination angle distributions. The model is implemented in a finite-element framework and employed to predict free and confined swelling of stroma in an ionic bath. For the in vivo cornea, the model is used to predict corneal swelling due to increasing intraocular pressure (IOP) and is adapted to model swelling in Fuchs' corneal dystrophy. The biomechanical response of the in vivo cornea to a typical LASIK surgery for myopia is analysed, including tissue fluid pressure and swelling responses. The model provides a new interpretation of the corneal active hydration control (pump-leak) mechanism based on osmotic pressure modulation. The results also illustrate the structural necessity of fibre inclination in stabilizing the corneal refractive surface with respect to changes in tissue hydration and IOP. PMID:26156299
Model for resistance evolution in shape memory alloys including R-phase
NASA Astrophysics Data System (ADS)
Brammajyosula, Ravindra; Buravalla, Vidyashankar; Khandelwal, Ashish
2011-03-01
The electrical resistance behavior of a shape memory alloy (SMA) wire can be used for sensing the state of an SMA device. Hence, this study investigates the resistance evolution in SMAs. A lumped parameter model with cosine kinetics to capture the resistance variation during the phase transformation is developed. Several SMA materials show the presence of trigonal or rhombohedral (R) phase as an intermediate phase, apart from the commonly recognized austenite and martensite phases. Most of the SMA models ignore the R-phase effect in their prediction of thermomechanical response. This may be acceptable since the changes in thermomechanical response associated with the R-phase are relatively less. However, the resistivity related effects are pronounced in the presence of the R-phase and its appearance introduces non-monotonicity in the resistivity evolution. This leads to additional complexities in the use of resistance signal for sensing and control. Hence, a lumped model is developed here for resistance evolution including the R-phase effects. A phase-diagram-based model is proposed for predicting electro-thermomechanical response. Both steady state hysteretic response and transient response are modeled. The model predictions are compared with the available test data. Numerical studies have shown that the model is able to capture all the essential features of the resistance evolution in SMAs in the presence of the R-phase.
Buckley, Lauren B; Waaser, Stephanie A; MacLean, Heidi J; Fox, Richard
2011-12-01
Thermal constraints on development are often invoked to predict insect distributions. These constraints tend to be characterized in species distribution models (SDMs) by calculating development time based on a constant lower development temperature (LDT). Here, we assessed whether species-specific estimates of LDT based on laboratory experiments can improve the ability of SDMs to predict the distribution shifts of six U.K. butterflies in response to recent climate warming. We find that species-specific and constant (5 degrees C) LDT degree-day models perform similarly at predicting distributions during the period of 1970-1982. However, when the models for the 1970-1982 period are projected to predict distributions in 1995-1999 and 2000-2004, species-specific LDT degree-day models modestly outperform constant LDT degree-day models. Our results suggest that, while including species-specific physiology in correlative models may enhance predictions of species' distribution responses to climate change, more detailed models may be needed to adequately account for interspecific physiological differences.
Xia, Mingjun; Ghafouri-Shiraz, H
2016-03-01
This paper reports a new model for strained quantum well lasers, which are based on the quantum well transmission line modeling method where effects of both carrier transport and carrier heating have been included. We have applied this new model and studied the effect of carrier transport on the output waveform of a strained quantum well laser both in time and frequency domains. It has been found that the carrier transport increases the turn-on, turn-off delay times and damping of the quantum well laser transient response. Also, analysis in the frequency domain indicates that the carrier transport causes the output spectrum of the quantum well laser in steady state to exhibit a redshift which has a narrower bandwidth and lower magnitude. The simulation results of turning-on transients obtained by the proposed model are compared with those obtained by the rate equation laser model. The new model has also been used to study the effects of pump current spikes on the laser output waveforms properties, and it was found that the presence of current spikes causes (i) wavelength blueshift, (ii) larger bandwidth, and (iii) reduces the magnitude and decreases the side-lobe suppression ratio of the laser output spectrum. Analysis in both frequency and time domains confirms that the new proposed model can accurately predict the temporal and spectral behaviors of strained quantum well lasers.
A numerical model including PID control of a multizone crystal growth furnace
NASA Technical Reports Server (NTRS)
Panzarella, Charles H.; Kassemi, Mohammad
1992-01-01
This paper presents a 2D axisymmetric combined conduction and radiation model of a multizone crystal growth furnace. The model is based on a programmable multizone furnace (PMZF) designed and built at NASA Lewis Research Center for growing high quality semiconductor crystals. A novel feature of this model is a control algorithm which automatically adjusts the power in any number of independently controlled heaters to establish the desired crystal temperatures in the furnace model. The control algorithm eliminates the need for numerous trial and error runs previously required to obtain the same results. The finite element code, FIDAP, used to develop the furnace model, was modified to directly incorporate the control algorithm. This algorithm, which presently uses PID control, and the associated heat transfer model are briefly discussed. Together, they have been used to predict the heater power distributions for a variety of furnace configurations and desired temperature profiles. Examples are included to demonstrate the effectiveness of the PID controlled model in establishing isothermal, Bridgman, and other complicated temperature profies in the sample. Finally, an example is given to show how the algorithm can be used to change the desired profile with time according to a prescribed temperature-time evolution.
Including source uncertainty and prior information in the analysis of stable isotope mixing models.
Ward, Eric J; Semmens, Brice X; Schindler, Daniel E
2010-06-15
Stable isotope mixing models offer a statistical framework for estimating the contribution of multiple sources (such as prey) to a mixture distribution. Recent advances in these models have estimated the source proportions using Bayesian methods, but have not explicitly accounted for uncertainty in the mean and variance of sources. We demonstrate that treating these quantities as unknown parameters can reduce bias in the estimated source contributions, although model complexity is increased (thereby increasing the variance of estimates). The advantages of this fully Bayesian approach are particularly apparent when the source geometry is poor or sample sizes are small. A second benefit to treating source quantities as parameters is that prior source information can be included. We present findings from 9 lake food-webs, where the consumer of interest (fish) has a diet composed of 5 sources: aquatic insects, snails, zooplankton, amphipods, and terrestrial insects. We compared the traditional Bayesian stable isotope mixing model with fixed source parameters to our fully Bayesian model-with and without an informative prior. The informative prior has much less impact than the choice of model-the traditional mixing model with fixed source parameters estimates the diet to be dominated by aquatic insects, while the fully Bayesian model estimates the diet to be more balanced but with greater importance of zooplankton. The findings from this example demonstrate that there can be stark differences in inference between the two model approaches, particularly when the source geometry of the mixing model is poor. These analyses also emphasize the importance of investing substantial effort toward characterizing the variation in the isotopic characteristics of source pools to appropriately quantify uncertainties in their contributions to consumers in food webs.
Modeling of single char combustion, including CO oxidation in its boundary layer
Lee, C.H.; Longwell, J.P.; Sarofim, A.F.
1994-10-25
The combustion of a char particle can be divided into a transient phase where its temperature increases as it is heated by oxidation, and heat transfer from the surrounding gas to an approximately constant temperature stage where gas phase reaction is important and which consumes most of the carbon and an extinction stage caused by carbon burnout. In this work, separate models were developed for the transient heating where gas phase reactions were unimportant and for the steady temperature stage where gas phase reactions were treated in detail. The transient char combustion model incorporates intrinsic char surface production of CO and CO{sub 2}, internal pore diffusion and external mass and heat transfer. The model provides useful information for particle ignition, burning temperature profile, combustion time, and carbon consumption rate. A gas phase reaction model incorporating the full set of 28 elementary C/H/O reactions was developed. This model calculated the gas phase CO oxidation reaction in the boundary layer at particle temperatures of 1250 K and 2500 K by using the carbon consumption rate and the burning temperature at the pseudo-steady state calculated from the temperature profile model but the transient heating was not included. This gas phase model can predict the gas species, and the temperature distributions in the boundary layer, the CO{sub 2}/CO ratio, and the location of CO oxidation. A mechanistic heat and mass transfer model was added to the temperature profile model to predict combustion behavior in a fluidized bed. These models were applied to data from the fluidized combustion of Newlands coal char particles. 52 refs., 60 figs.
Including surface ligand effects in continuum elastic models of nanocrystal vibrations.
Lee, Elizabeth M Y; Mork, A Jolene; Willard, Adam P; Tisdale, William A
2017-07-28
The measured low frequency vibrational energies of some quantum dots (QDs) deviate from the predictions of traditional elastic continuum models. Recent experiments have revealed that these deviations can be tuned by changing the ligands that passivate the QD surface. This observation has led to speculation that these deviations are due to a mass-loading effect of the surface ligands. In this article, we address this speculation by formulating a continuum elastic theory that includes the dynamical loading by elastic surface ligands. We demonstrate that this model is capable of accurately reproducing the l = 0 phonon energy across a variety of different QD samples, including cores with different ligand identities and epitaxially grown CdSe/CdS core/shell heterostructures. We highlight that our model performs well even in the small QD regime, where traditional elastic continuum models are especially prone to failure. Furthermore, we show that our model combined with Raman measurements can be used to infer the elastic properties of surface bound ligands, such as sound velocities and elastic moduli, that are otherwise challenging to measure.
Including surface ligand effects in continuum elastic models of nanocrystal vibrations
NASA Astrophysics Data System (ADS)
Lee, Elizabeth M. Y.; Mork, A. Jolene; Willard, Adam P.; Tisdale, William A.
2017-07-01
The measured low frequency vibrational energies of some quantum dots (QDs) deviate from the predictions of traditional elastic continuum models. Recent experiments have revealed that these deviations can be tuned by changing the ligands that passivate the QD surface. This observation has led to speculation that these deviations are due to a mass-loading effect of the surface ligands. In this article, we address this speculation by formulating a continuum elastic theory that includes the dynamical loading by elastic surface ligands. We demonstrate that this model is capable of accurately reproducing the l = 0 phonon energy across a variety of different QD samples, including cores with different ligand identities and epitaxially grown CdSe/CdS core/shell heterostructures. We highlight that our model performs well even in the small QD regime, where traditional elastic continuum models are especially prone to failure. Furthermore, we show that our model combined with Raman measurements can be used to infer the elastic properties of surface bound ligands, such as sound velocities and elastic moduli, that are otherwise challenging to measure.
Henkel, Marius; Schmidberger, Anke; Vogelbacher, Markus; Kühnert, Christian; Beuker, Janina; Bernard, Thomas; Schwartz, Thomas; Syldatk, Christoph; Hausmann, Rudolf
2014-08-01
The production of rhamnolipid biosurfactants by Pseudomonas aeruginosa is under complex control of a quorum sensing-dependent regulatory network. Due to a lack of understanding of the kinetics applicable to the process and relevant interrelations of variables, current processes for rhamnolipid production are based on heuristic approaches. To systematically establish a knowledge-based process for rhamnolipid production, a deeper understanding of the time-course and coupling of process variables is required. By combining reaction kinetics, stoichiometry, and experimental data, a process model for rhamnolipid production with P. aeruginosa PAO1 on sunflower oil was developed as a system of coupled ordinary differential equations (ODEs). In addition, cell density-based quorum sensing dynamics were included in the model. The model comprises a total of 36 parameters, 14 of which are yield coefficients and 7 of which are substrate affinity and inhibition constants. Of all 36 parameters, 30 were derived from dedicated experimental results, literature, and databases and 6 of them were used as fitting parameters. The model is able to describe data on biomass growth, substrates, and products obtained from a reference batch process and other validation scenarios. The model presented describes the time-course and interrelation of biomass, relevant substrates, and products on a process level while including a kinetic representation of cell density-dependent regulatory mechanisms.
Including Finite Surface Span Effects in Empirical Jet-Surface Interaction Noise Models
NASA Technical Reports Server (NTRS)
Brown, Clifford A.
2016-01-01
The effect of finite span on the jet-surface interaction noise source and the jet mixing noise shielding and reflection effects is considered using recently acquired experimental data. First, the experimental setup and resulting data are presented with particular attention to the role of surface span on far-field noise. These effects are then included in existing empirical models that have previously assumed that all surfaces are semi-infinite. This extended abstract briefly describes the experimental setup and data leaving the empirical modeling aspects for the final paper.
NASA Technical Reports Server (NTRS)
Fuller, C. R.
1986-01-01
A simplified analytical model of transmission of noise into the interior of propeller-driven aircraft has been developed. The analysis includes directivity and relative phase effects of the propeller noise sources, and leads to a closed form solution for the coupled motion between the interior and exterior fields via the shell (fuselage) vibrational response. Various situations commonly encountered in considering sound transmission into aircraft fuselages are investigated analytically and the results obtained are compared to measurements in real aircraft. In general the model has proved successful in identifying basic mechanisms behind noise transmission phenomena.
Marsolat, F; De Marzi, L; Pouzoulet, F; Mazal, A
2016-01-21
In proton therapy, the relative biological effectiveness (RBE) depends on various types of parameters such as linear energy transfer (LET). An analytical model for LET calculation exists (Wilkens' model), but secondary particles are not included in this model. In the present study, we propose a correction factor, L sec, for Wilkens' model in order to take into account the LET contributions of certain secondary particles. This study includes secondary protons and deuterons, since the effects of these two types of particles can be described by the same RBE-LET relationship. L sec was evaluated by Monte Carlo (MC) simulations using the GATE/GEANT4 platform and was defined by the ratio of the LET d distributions of all protons and deuterons and only primary protons. This method was applied to the innovative Pencil Beam Scanning (PBS) delivery systems and L sec was evaluated along the beam axis. This correction factor indicates the high contribution of secondary particles in the entrance region, with L sec values higher than 1.6 for a 220 MeV clinical pencil beam. MC simulations showed the impact of pencil beam parameters, such as mean initial energy, spot size, and depth in water, on L sec. The variation of L sec with these different parameters was integrated in a polynomial function of the L sec factor in order to obtain a model universally applicable to all PBS delivery systems. The validity of this correction factor applied to Wilkens' model was verified along the beam axis of various pencil beams in comparison with MC simulations. A good agreement was obtained between the corrected analytical model and the MC calculations, with mean-LET deviations along the beam axis less than 0.05 keV μm(-1). These results demonstrate the efficacy of our new correction of the existing LET model in order to take into account secondary protons and deuterons along the pencil beam axis.
Steel, Catherine; Macdonald, James; Schroder, Thomas
2017-05-15
Previous reviews have found equivocal evidence of an association between therapists' internalized relational models and the therapeutic relationship and have neglected empirical literature based on Sullivan's notion of introject. This review expanded upon previous reviews to examine the effect of therapist internalized relational models on a broader conceptualization of the therapeutic relationship. Systematic search processes identified 22 papers measuring therapist attachment and/or introject and therapeutic relationship: 19 on therapist attachment, 5 on introject with 2 overlapping. Overall, despite heterogeneity in design and variable methodological quality, evidence suggests that therapist attachment affects therapeutic relationship quality, observed in client-rated evaluation, therapist negative countertransference, empathy, and problems in therapy. Interaction effects between client and therapist attachment style were also found. Evidence suggesting that therapist introject also affects therapeutic relationship quality, including therapists' manner and feelings toward their clients, was stronger. Evidence clearly shows that therapists' internalized relational models affect the therapeutic relationship. More research is necessary to clarify exactly how therapist and client internalized relational models interact and translate these findings into clinical practice. © 2017 Wiley Periodicals, Inc.
An air/sea flux model including the effects of capillary waves
NASA Technical Reports Server (NTRS)
Bourassa, Mark A.
1993-01-01
An improved model of the air/sea interface is developed. The improvements consist in including the effect of capillary (surface tension) waves on the tropical surface fluxes and the consideration of the sea state, both of which increase the magnitude of tropical surface fluxes. Changes in surface stress are most significant in the low wind-speed regions, which include the areas where westerly bursts occur. It is shown that the changes, from the regular wind conditions to those of a westerly burst or El-Nino, can double when the effects of capillary waves are considered. This implies a much stronger coupling between the ocean and the atmosphere than is predicted by other boundary layer models.
Including Flocculation in a Numerical Sediment Transport Model for a Partially-Mixed Estuary
NASA Astrophysics Data System (ADS)
Tarpley, D.; Harris, C. K.; Friedrichs, C. T.
2016-12-01
Particle settling velocity impacts the transport of suspended sediment to the first order but fine-grained material like muds tend to form loosely bound aggregates (flocs) whose settling velocity can vary widely. Properties of flocculated sediment such as settling velocity and particle density are difficult to predict because they change in response to several factors including salinity, suspended sediment concentration, turbulent mixing, and organic content. Knowledge of the mechanisms governing flocculation of cohesive sediment is rapidly expanding; especially in response to recent technical advances. As the understanding of particle dynamics progresses, numerical models describing flocculation and break-up are being developed with varying degrees of complexity. While complex models capture the dynamics of the system, their computational costs may prohibit their incorporation into larger model domains. It is important to determine if the computational costs of intricate floc models are justifiable compared to simpler formulations. For this study, we implement an idealized two-dimensional model designed to represent a longitudinal section of a partially mixed estuary that neglects across-channel variation but exhibits salinity driven estuarine circulation. The idealized domain is designed to mimic the primary features of the York River, VA. Suspended load, erosion and deposition are calculated within the sediment transport routines of the COAWST modeling system. We compare different methods for prescribing settling velocity of fine-grained material. The simplest, standard model neglects flocculation dynamics while the complex treatment is a size-class-based flocculation model (FLOCMOD). Differences in tidal and daily averages of suspended load, bulk settling velocity and bed deposition are compared between the standard and FLOCMOD runs, to examine the relative impact of flocculation on sediment transport patterns. We expect FLOCMOD to have greater variability and
Bongers, Mathilda L; de Ruysscher, Dirk; Oberije, Cary; Lambin, Philippe; Uyl-de Groot, Carin A; Coupé, V M H
2016-01-01
With the shift toward individualized treatment, cost-effectiveness models need to incorporate patient and tumor characteristics that may be relevant to treatment planning. In this study, we used multistate statistical modeling to inform a microsimulation model for cost-effectiveness analysis of individualized radiotherapy in lung cancer. The model tracks clinical events over time and takes patient and tumor features into account. Four clinical states were included in the model: alive without progression, local recurrence, metastasis, and death. Individual patients were simulated by repeatedly sampling a patient profile, consisting of patient and tumor characteristics. The transitioning of patients between the health states is governed by personalized time-dependent hazard rates, which were obtained from multistate statistical modeling (MSSM). The model simulations for both the individualized and conventional radiotherapy strategies demonstrated internal and external validity. Therefore, MSSM is a useful technique for obtaining the correlated individualized transition rates that are required for the quantification of a microsimulation model. Moreover, we have used the hazard ratios, their 95% confidence intervals, and their covariance to quantify the parameter uncertainty of the model in a correlated way. The obtained model will be used to evaluate the cost-effectiveness of individualized radiotherapy treatment planning, including the uncertainty of input parameters. We discuss the model-building process and the strengths and weaknesses of using MSSM in a microsimulation model for individualized radiotherapy in lung cancer.
The force-frequency relationship: insights from mathematical modeling.
Puglisi, Jose L; Negroni, Jorge A; Chen-Izu, Ye; Bers, Donald M
2013-03-01
The force-frequency relationship has intrigued researchers since its discovery by Bowditch in 1871. Many attempts have been made to construct mathematical descriptions of this phenomenon, beginning with the simple formulation of Koch-Wesser and Blinks in 1963 to the most sophisticated ones of today. This property of cardiac muscle is amplified by β-adrenergic stimulation, and, in a coordinated way, the neurohumoral state alters both frequency (acting on the sinoatrial node) as well as force generation (modifying ventricular myocytes). This synchronized tuning is needed to meet new metabolic demands. Cardiac modelers have already linked mechanical and electrical activity in their formulations and showed how those activities feedback on each other. However, now it is necessary to include neurological control to have a complete description of heart performance, especially when changes in frequency are involved. Study of arrhythmias (or antiarrhythmic drugs) based on mathematical models should incorporate this effect to make useful predictions or point out potential pharmaceutical targets.
Modeling and controller design of a wind energy conversion system including a matrix converter
NASA Astrophysics Data System (ADS)
Barakati, S. Masoud
In this thesis, a grid-connected wind-energy converter system including a matrix converter is proposed. The matrix converter, as a power electronic converter, is used to interface the induction generator with the grid and control the wind turbine shaft speed. At a given wind velocity, the mechanical power available from a wind turbine is a function of its shaft speed. Through the matrix converter, the terminal voltage and frequency of the induction generator is controlled, based on a constant V/f strategy, to adjust the turbine shaft speed and accordingly, control the active power injected into the grid to track maximum power for all wind velocities. The power factor at the interface with the grid is also controlled by the matrix converter to either ensure purely active power injection into the grid for optimal utilization of the installed wind turbine capacity or assist in regulation of voltage at the point of connection. Furthermore, the reactive power requirements of the induction generator are satisfied by the matrix converter to avoid use of self-excitation capacitors. The thesis addresses two dynamic models: a comprehensive dynamic model for a matrix converter and an overall dynamical model for the proposed wind turbine system. The developed matrix converter dynamic model is valid for both steady-state and transient analyses, and includes all required functions, i.e., control of the output voltage, output frequency, and input displacement power factor. The model is in the qdo reference frame for the matrix converter input and output voltage and current fundamental components. The validity of this model is confirmed by comparing the results obtained from the developed model and a simplified fundamental-frequency equivalent circuit-based model. In developing the overall dynamic model of the proposed wind turbine system, individual models of the mechanical aerodynamic conversion, drive train, matrix converter, and squirrel-cage induction generator are developed
Relationships among certain joint constitutive models.
Segalman, Daniel Joseph; Starr, Michael James
2004-09-01
In a recent paper, Starr and Segalman demonstrated that any Masing model can be represented as a parallel-series Iwan model. A preponderance of the constitutive models that have been suggested for simulating mechanical joints are Masing models, and the purpose of this discussion is to demonstrate how the Iwan representation of those models can yield insight into their character. In particular, this approach can facilitate a critical comparison among numerous plausible constitutive models. It is explicitly shown that three-parameter models such as Smallwood's (Ramberg-Osgood) calculate parameters in such a manner that macro-slip is not an independent parameter, yet the model admits macro-slip. The introduction of a fourth parameter is therefore required. It is shown that when a macro-slip force is specified for the Smallwood model the result is a special case of the Segalman four-parameter model. Both of these models admit a slope discontinuity at the inception of macro-slip. A five-parameter model that has the beneficial features of Segalman's four-parameter model is proposed. This model manifests a force-displacement curve having a continuous first derivative.
A High-Rate, Single-Crystal Model including Phase Transformations, Plastic Slip, and Twinning
Addessio, Francis L.; Bronkhorst, Curt Allan; Bolme, Cynthia Anne; Brown, Donald William; Cerreta, Ellen Kathleen; Lebensohn, Ricardo A.; Lookman, Turab; Luscher, Darby Jon; Mayeur, Jason Rhea; Morrow, Benjamin M.; Rigg, Paulo A.
2016-08-09
An anisotropic, rate-dependent, single-crystal approach for modeling materials under the conditions of high strain rates and pressures is provided. The model includes the effects of large deformations, nonlinear elasticity, phase transformations, and plastic slip and twinning. It is envisioned that the model may be used to examine these coupled effects on the local deformation of materials that are subjected to ballistic impact or explosive loading. The model is formulated using a multiplicative decomposition of the deformation gradient. A plate impact experiment on a multi-crystal sample of titanium was conducted. The particle velocities at the back surface of three crystal orientations relative to the direction of impact were measured. Molecular dynamics simulations were conducted to investigate the details of the high-rate deformation and pursue issues related to the phase transformation for titanium. Simulations using the single crystal model were conducted and compared to the high-rate experimental data for the impact loaded single crystals. The model was found to capture the features of the experiments.
Simplified models for the evolution of supernova remnants including particle acceleration
NASA Astrophysics Data System (ADS)
Drury, L. O'C.; Markiewicz, W. J.; Voelk, H. J.
1989-11-01
A system of coupled ordinary differential equations is presented which models the dynamical evolution of a supernova remnant including the acceleration of the Galactic cosmic rays. In contrast to earlier two-fluid models the closure parameters needed for a hydrodynamic approximation of the cosmic ray 'gas' are not taken as prescribed constants but are estimated dynamically within the model. Diffusive coupling between the outer shock and the remnant interior is introduced; this is shown to be an important moderator of the acceleration as is heating of the thermal plasma by Alfven wave dissipation. For reasonable estimates of the suprathermal particle injection rate into the acceleration process, of the diffusion coefficient appropriate to the accelerated particles, of the coupling between interior and shock, and of wave heating, solutions are found which appear consistent both with observations of young remnants and the idea that the bulk of the Galactic cosmic rays are produced in supernova remnants.
A flexible and qualitatively stable model for cell cycle dynamics including DNA damage effects.
Jeffries, Clark D; Johnson, Charles R; Zhou, Tong; Simpson, Dennis A; Kaufmann, William K
2012-01-01
This paper includes a conceptual framework for cell cycle modeling into which the experimenter can map observed data and evaluate mechanisms of cell cycle control. The basic model exhibits qualitative stability, meaning that regardless of magnitudes of system parameters its instances are guaranteed to be stable in the sense that all feasible trajectories converge to a certain trajectory. Qualitative stability can also be described by the signs of real parts of eigenvalues of the system matrix. On the biological side, the resulting model can be tuned to approximate experimental data pertaining to human fibroblast cell lines treated with ionizing radiation, with or without disabled DNA damage checkpoints. Together these properties validate a fundamental, first order systems view of cell dynamics. Classification Codes: 15A68.
Zhang, Benfeng; Han, Tao; Tang, Gongbin; Zhang, Qiaozhen; Omori, Tatsuya; Hashimoto, Ken-Ya
2017-09-01
This paper discusses lateral propagation of surface acoustic waves (SAWs) in periodic grating structures when two types of SAWs exist simultaneously and are coupled. The thin plate model proposed by the authors is extended to include the coupling between two different SAW modes. First, lateral SAW propagation in an infinitely long periodic grating is modeled and discussed. Then, the model is applied to the Al-grating/42° YX-LiTaO3 (42-LT) substrate structure, and it is shown that the slowness curve shape changes from concave to convex with the Al grating thickness. The transverse responses are also analyzed on an infinitely long interdigital transducer on the structure, and good agreement is achieved between the present and the finite-element method analyses. Finally, SAW resonators are fabricated on the Cu grating/42-LT substrate structure, and it is experimentally verified that the slowness curve shape of the shear horizontal SAW changes with the Cu thickness.
RELAP5-3D Code Includes Athena Features and Models
Richard A. Riemke; Cliff B. Davis; Richard R. Schultz
2006-07-01
Version 2.3 of the RELAP5-3D computer program includes all features and models previously available only in the ATHENA version of the code. These include the addition of new working fluids (i.e., ammonia, blood, carbon dioxide, glycerol, helium, hydrogen, lead-bismuth, lithium, lithium-lead, nitrogen, potassium, sodium, and sodium-potassium) and a magnetohydrodynamic model that expands the capability of the code to model many more thermal-hydraulic systems. In addition to the new working fluids along with the standard working fluid water, one or more noncondensable gases (e.g., air, argon, carbon dioxide, carbon monoxide, helium, hydrogen, krypton, nitrogen, oxygen, sf6, xenon) can be specified as part of the vapor/gas phase of the working fluid. These noncondensable gases were in previous versions of RELAP5- 3D. Recently four molten salts have been added as working fluids to RELAP5-3D Version 2.4, which has had limited release. These molten salts will be in RELAP5-3D Version 2.5, which will have a general release like RELAP5-3D Version 2.3. Applications that use these new features and models are discussed in this paper.
A lower trophic ecosystem model including iron effects in the Okhotsk Sea
NASA Astrophysics Data System (ADS)
Okunishi, Takeshi; Kishi, Michio J.; Ono, Yukiko; Yamashita, Toshihiko
2007-09-01
We applied a three-dimensional ecosystem-physical coupled model including iron the effect to the Okhotsk Sea. In order to clarify the sources of iron, four dissolved iron compartments, based on the sources of supply, were added to Kawamiya et al.'s [1995, An ecological-physical coupled model applied to Station Papa. Journal of Oceanography, 51, 635-664] model (KKYS) to create our ecosystem model (KKYS-Fe). We hypothesized that four processes supply iron to sea water: atmospheric loadings from Northeastern Asia, input from the Amur River, dissolution from sediments and regeneration by zooplankton and bacteria. We simulated one year, from 1 January 2001 to 31 December 2001, using both KKYS-Fe and KKYS. KKYS could not reproduce the surface nitrate distribution after the spring bloom, whereas KKYS-Fe agreed well with observations in the northwestern Pacific because it includes iron limitation of phytoplankton growth. During the spring bloom, the main source of iron at the sea surface is from the atmosphere. The contribution of riverine iron to the total iron utilized for primary production is small in the Okhotsk Sea. Atmospheric deposition, the iron flux from sediment and regeneration of iron in the water column play important roles in maintaining high primary production in the Okhotsk Sea.
Application of transonic codes to aeroelastic modeling of airfoils including active controls
NASA Technical Reports Server (NTRS)
Batina, J. T.; Yang, T. Y.
1984-01-01
A study is performed using aeroelastic modeling to investigate the stability behavior of airfoils in small-disturbance transonic flow. Two conventional airfoils, NACA 64.A006 and NACA 64A010, and a supercritical airfoil, MBB A-3, are considered. Three sets of unsteady aerodynamic data are computed using three different transonic codes (LTRAN2-NLR, LTRAN2-HI, and USTS) for comparison purposes. Stability results obtained using a constant matrix, state-space, aeroelastic model are presented in a root-locus format. Use of the state-space model is demonstrated through application to flutter suppression using active controls. Aeroelastic effects due to simple, constant gain, partial feedback, control laws that utilize displacement, velocity, and acceleration sensing are studied using a variety of control gains. Calculations are also performed using linear subsonic aerodynamic theory to reveal the differences between including and not including transonic effects in the aeroelastic model. Aeroelastic stability behavior of these airfoils is physically interpreted and discussed in detail.
Including policy and management in socio-hydrology models: initial conceptualizations
NASA Astrophysics Data System (ADS)
Hermans, Leon; Korbee, Dorien
2017-04-01
Socio-hydrology studies the interactions in coupled human-water systems. So far, the use of dynamic models that capture the direct feedback between societal and hydrological systems has been dominant. What has not yet been included with any particular emphasis, is the policy or management layer, which is a central element in for instance integrated water resources management (IWRM) or adaptive delta management (ADM). Studying the direct interactions between human-water systems generates knowledges that eventually helps influence these interactions in ways that may ensure better outcomes - for society and for the health and sustainability of water systems. This influence sometimes occurs through spontaneous emergence, uncoordinated by societal agents - private sector, citizens, consumers, water users. However, the term 'management' in IWRM and ADM also implies an additional coordinated attempt through various public actors. This contribution is a call to include the policy and management dimension more prominently into the research focus of the socio-hydrology field, and offers first conceptual variables that should be considered in attempts to include this policy or management layer in socio-hydrology models. This is done by drawing on existing frameworks to study policy processes throughout both planning and implementation phases. These include frameworks such as the advocacy coalition framework, collective learning and policy arrangements, which all emphasis longer-term dynamics and feedbacks between actor coalitions in strategic planning and implementation processes. A case about longter-term dynamics in the management of the Haringvliet in the Netherlands is used to illustrate the paper.
SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM
NASA Astrophysics Data System (ADS)
Porod, W.; Staub, F.
2012-11-01
We describe recent extensions of the program SPhenoincluding flavour aspects, CP-phases, R-parity violation and low energy observables. In case of flavour mixing all masses of supersymmetric particles are calculated including the complete flavour structure and all possible CP-phases at the 1-loop level. We give details on implemented seesaw models, low energy observables and the corresponding extension of the SUSY Les Houches Accord. Moreover, we comment on the possibilities to include MSSM extensions in SPheno. Catalogue identifier: ADRV_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADRV_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 154062 No. of bytes in distributed program, including test data, etc.: 1336037 Distribution format: tar.gz Programming language: Fortran95. Computer: PC running under Linux, should run in every Unix environment. Operating system: Linux, Unix. Classification: 11.6. Catalogue identifier of previous version: ADRV_v1_0 Journal reference of previous version: Comput. Phys. Comm. 153(2003)275 Does the new version supersede the previous version?: Yes Nature of problem: The first issue is the determination of the masses and couplings of supersymmetric particles in various supersymmetric models, the R-parity conserved MSSM with generation mixing and including CP-violating phases, various seesaw extensions of the MSSM and the MSSM with bilinear R-parity breaking. Low energy data on Standard Model fermion masses, gauge couplings and electroweak gauge boson masses serve as constraints. Radiative corrections from supersymmetric particles to these inputs must be calculated. Theoretical constraints on the soft SUSY breaking parameters from a high scale theory are imposed and the parameters at the electroweak scale are obtained from the
Venetsanos, A G; Bartzis, J G; Würtz, J; Papailiou, D D
2003-04-25
A two-dimensional shallow layer model has been developed to predict dense gas dispersion, under realistic conditions, including complex features such as two-phase releases, obstacles and inclined ground. The model attempts to predict the time and space evolution of the cloud formed after a release of a two-phase pollutant into the atmosphere. The air-pollutant mixture is assumed ideal. The cloud evolution is described mathematically through the Cartesian, two-dimensional, shallow layer conservation equations for mixture mass, mixture momentum in two horizontal directions, total pollutant mass fraction (vapor and liquid) and mixture internal energy. Liquid mass fraction is obtained assuming phase equilibrium. Account is taken in the conservation equations for liquid slip and eventual liquid rainout through the ground. Entrainment of ambient air is modeled via an entrainment velocity model, which takes into account the effects of ground friction, ground heat transfer and relative motion between cloud and surrounding atmosphere. The model additionally accounts for thin obstacles effects in three ways. First a stepwise description of the obstacle is generated, following the grid cell faces, taking into account the corresponding area blockage. Then obstacle drag on the passing cloud is modeled by adding flow resistance terms in the momentum equations. Finally the effect of extra vorticity generation and entrainment enhancement behind obstacles is modeled by adding locally into the entrainment formula without obstacles, a characteristic velocity scale defined from the obstacle pressure drop and the local cloud height.The present model predictions have been compared against theoretical results for constant volume and constant flux gravity currents. It was found that deviations of the predicted cloud footprint area change with time from the theoretical were acceptably small, if one models the frictional forces between cloud and ambient air, neglecting the Richardson
Tanner, Colby J; Salali, Gul Deniz; Jackson, Andrew L
2011-12-23
Dominance hierarchies pervade animal societies. Within a static social environment, in which group size and composition are unchanged, an individual's hierarchy rank results from intrinsic (e.g. body size) and extrinsic (e.g. previous experiences) factors. Little is known, however, about how dominance relationships are formed and maintained when group size and composition are dynamic. Using a fusion-fission protocol, we fused groups of previously isolated shore crabs (Carcinus maenas) into larger groups, and then restored groups to their original size and composition. Pre-fusion hierarchies formed independently of individuals' sizes, and were maintained within a static group via winner/loser effects. Post-fusion hierarchies differed from pre-fusion ones; losing fights during fusion led to a decline in an individual's rank between pre- and post-fusion conditions, while spending time being aggressive during fusion led to an improvement in rank. In post-fusion tanks, larger individuals achieved better ranks than smaller individuals. In conclusion, dominance hierarchies in crabs represent a complex combination of intrinsic and extrinsic factors, in which experiences from previous groups can carry over to affect current competitive interactions.
Multiple tail models including inverse measures for structural design under uncertainties
NASA Astrophysics Data System (ADS)
Ramu, Palaniappan
Sampling-based reliability estimation with expensive computer models may be computationally prohibitive due to a large number of required simulations. One way to alleviate the computational expense is to extrapolate reliability estimates from observed levels to unobserved levels. Classical tail modeling techniques provide a class of models to enable this extrapolation using asymptotic theory by approximating the tail region of the cumulative distribution function (CDF). This work proposes three alternate tail extrapolation techniques including inverse measures that can complement classical tail modeling. The proposed approach, multiple tail models, applies the two classical and three alternate extrapolation techniques simultaneously to estimate inverse measures at the extrapolation regions and use the median as the best estimate. It is observed that the range of the five estimates can be used as a good approximation of the error associated with the median estimate. Accuracy and computational efficiency are competing factors in selecting sample size. Yet, as our numerical studies reveal, the accuracy lost to the reduction of computational power is very small in the proposed method. The method is demonstrated on standard statistical distributions and complex engineering examples.
Noor, Saqib; Pridham, Cerianne; Fawcett, Tim; Barclay, Mark; Feng, Y T; Hassan, Oubay; Pallister, Ian
2013-06-01
Biomechanical testing has been a cornerstone for the development of surgical implants used in fracture stabilisation. In a multi-disciplinary collaboration complex at the University of Wales, Swansea, novel computerised clinically relevant models were developed using advanced computational engineering. In-house software (developed initially for commercial aerospace engineering), allowed accurate finite element analysis (FEA) models of the whole femur to be created, including the internal architecture of the bone, by means of linear interpolation of greyscale images from multiaxial CT scans. This allowed for modelling the changing trabecular structure and bone mineral density as seen in progressive osteoporosis. Falls from standing were modelled in a variety of directions (with and without muscle action) using analysis programmes which resulted in fractures consistent with those seen in clinical practice. By meshing implants into these models and repeating the mechanism of injury in simulation, periprosthetic fractures were also recreated. Further development with simulated physiological activities (e.g. walking and rising from sitting) along with attrition in the bone (in the boundary zones where stress concentration occurs) will allow further known modes of failure in implants to be reproduced. Robust simulation of macro and micro-scale events will allow the testing of novel new designs in simulations far more complex than conventional biomechanical testing will allow.
Zhang, Hai-Mei; Chen, Shi-Lu
2015-06-09
The lack of dispersion in the B3LYP functional has been proposed to be the main origin of big errors in quantum chemical modeling of a few enzymes and transition metal complexes. In this work, the essential dispersion effects that affect quantum chemical modeling are investigated. With binuclear zinc isoaspartyl dipeptidase (IAD) as an example, dispersion is included in the modeling of enzymatic reactions by two different procedures, i.e., (i) geometry optimizations followed by single-point calculations of dispersion (approach I) and (ii) the inclusion of dispersion throughout geometry optimization and energy evaluation (approach II). Based on a 169-atom chemical model, the calculations show a qualitative consistency between approaches I and II in energetics and most key geometries, demonstrating that both approaches are available with the latter preferential since both geometry and energy are dispersion-corrected in approach II. When a smaller model without Arg233 (147 atoms) was used, an inconsistency was observed, indicating that the missing dispersion interactions are essentially responsible for determining equilibrium geometries. Other technical issues and mechanistic characteristics of IAD are also discussed, in particular with respect to the effects of Arg233.
NASA Technical Reports Server (NTRS)
Stolarski, R. S.; Douglass, A. R.
1986-01-01
Models of stratospheric photochemistry are generally tested by comparing their predictions for the composition of the present atmosphere with measurements of species concentrations. These models are then used to make predictions of the atmospheric sensitivity to perturbations. Here the problem of the sensitivity of such a model to chlorine perturbations ranging from the present influx of chlorine-containing compounds to several times that influx is addressed. The effects of uncertainties in input parameters, including reaction rate coefficients, cross sections, solar fluxes, and boundary conditions, are evaluated using a Monte Carlo method in which the values of the input parameters are randomly selected. The results are probability distributions for present atmosheric concentrations and for calculated perturbations due to chlorine from fluorocarbons. For more than 300 Monte Carlo runs the calculated ozone perturbation for continued emission of fluorocarbons at today's rates had a mean value of -6.2 percent, with a 1-sigma width of 5.5 percent. Using the same runs but only allowing the cases in which the calculated present atmosphere values of NO, NO2, and ClO at 25 km altitude fell within the range of measurements yielded a mean ozone depletion of -3 percent, with a 1-sigma deviation of 2.2 percent. The model showed a nonlinear behavior as a function of added fluorocarbons. The mean of the Monte Carlo runs was less nonlinear than the model run using mean value of the input parameters.
NASA Technical Reports Server (NTRS)
Stolarski, R. S.; Douglass, A. R.
1986-01-01
Models of stratospheric photochemistry are generally tested by comparing their predictions for the composition of the present atmosphere with measurements of species concentrations. These models are then used to make predictions of the atmospheric sensitivity to perturbations. Here the problem of the sensitivity of such a model to chlorine perturbations ranging from the present influx of chlorine-containing compounds to several times that influx is addressed. The effects of uncertainties in input parameters, including reaction rate coefficients, cross sections, solar fluxes, and boundary conditions, are evaluated using a Monte Carlo method in which the values of the input parameters are randomly selected. The results are probability distributions for present atmosheric concentrations and for calculated perturbations due to chlorine from fluorocarbons. For more than 300 Monte Carlo runs the calculated ozone perturbation for continued emission of fluorocarbons at today's rates had a mean value of -6.2 percent, with a 1-sigma width of 5.5 percent. Using the same runs but only allowing the cases in which the calculated present atmosphere values of NO, NO2, and ClO at 25 km altitude fell within the range of measurements yielded a mean ozone depletion of -3 percent, with a 1-sigma deviation of 2.2 percent. The model showed a nonlinear behavior as a function of added fluorocarbons. The mean of the Monte Carlo runs was less nonlinear than the model run using mean value of the input parameters.
Kim, Sun Jung; Yoo, Il Young
2016-03-01
The purpose of this study was to explain the health promotion behavior of Chinese international students in Korea using a structural equation model including acculturation factors. A survey using self-administered questionnaires was employed. Data were collected from 272 Chinese students who have resided in Korea for longer than 6 months. The data were analyzed using structural equation modeling. The p value of final model is .31. The fitness parameters of the final model such as goodness of fit index, adjusted goodness of fit index, normed fit index, non-normed fit index, and comparative fit index were more than .95. Root mean square of residual and root mean square error of approximation also met the criteria. Self-esteem, perceived health status, acculturative stress and acculturation level had direct effects on health promotion behavior of the participants and the model explained 30.0% of variance. The Chinese students in Korea with higher self-esteem, perceived health status, acculturation level, and lower acculturative stress reported higher health promotion behavior. The findings can be applied to develop health promotion strategies for this population. Copyright © 2016. Published by Elsevier B.V.
ERIC Educational Resources Information Center
Kiely, Mary Theresa
2011-01-01
General education teachers support the inclusion of students with disabilities, but researchers have found supports for students with disabilities in general education settings to be less than adequate. How teachers make decisions about supporting the learning of included students with disabilities is not well understood and may well be driven by…
An extended gene protein/products Boolean network model including post-transcriptional regulation.
Benso, Alfredo; Di Carlo, Stefano; Politano, Gianfranco; Savino, Alessandro; Vasciaveo, Alessandro
2014-05-07
Networks Biology allows the study of complex interactions between biological systems using formal, well structured, and computationally friendly models. Several different network models can be created, depending on the type of interactions that need to be investigated. Gene Regulatory Networks (GRN) are an effective model commonly used to study the complex regulatory mechanisms of a cell. Unfortunately, given their intrinsic complexity and non discrete nature, the computational study of realistic-sized complex GRNs requires some abstractions. Boolean Networks (BNs), for example, are a reliable model that can be used to represent networks where the possible state of a node is a boolean value (0 or 1). Despite this strong simplification, BNs have been used to study both structural and dynamic properties of real as well as randomly generated GRNs. In this paper we show how it is possible to include the post-transcriptional regulation mechanism (a key process mediated by small non-coding RNA molecules like the miRNAs) into the BN model of a GRN. The enhanced BN model is implemented in a software toolkit (EBNT) that allows to analyze boolean GRNs from both a structural and a dynamic point of view. The open-source toolkit is compatible with available visualization tools like Cytoscape and allows to run detailed analysis of the network topology as well as of its attractors, trajectories, and state-space. In the paper, a small GRN built around the mTOR gene is used to demonstrate the main capabilities of the toolkit. The extended model proposed in this paper opens new opportunities in the study of gene regulation. Several of the successful researches done with the support of BN to understand high-level characteristics of regulatory networks, can now be improved to better understand the role of post-transcriptional regulation for example as a network-wide noise-reduction or stabilization mechanisms.
An extended gene protein/products boolean network model including post-transcriptional regulation
2014-01-01
Background Networks Biology allows the study of complex interactions between biological systems using formal, well structured, and computationally friendly models. Several different network models can be created, depending on the type of interactions that need to be investigated. Gene Regulatory Networks (GRN) are an effective model commonly used to study the complex regulatory mechanisms of a cell. Unfortunately, given their intrinsic complexity and non discrete nature, the computational study of realistic-sized complex GRNs requires some abstractions. Boolean Networks (BNs), for example, are a reliable model that can be used to represent networks where the possible state of a node is a boolean value (0 or 1). Despite this strong simplification, BNs have been used to study both structural and dynamic properties of real as well as randomly generated GRNs. Results In this paper we show how it is possible to include the post-transcriptional regulation mechanism (a key process mediated by small non-coding RNA molecules like the miRNAs) into the BN model of a GRN. The enhanced BN model is implemented in a software toolkit (EBNT) that allows to analyze boolean GRNs from both a structural and a dynamic point of view. The open-source toolkit is compatible with available visualization tools like Cytoscape and allows to run detailed analysis of the network topology as well as of its attractors, trajectories, and state-space. In the paper, a small GRN built around the mTOR gene is used to demonstrate the main capabilities of the toolkit. Conclusions The extended model proposed in this paper opens new opportunities in the study of gene regulation. Several of the successful researches done with the support of BN to understand high-level characteristics of regulatory networks, can now be improved to better understand the role of post-transcriptional regulation for example as a network-wide noise-reduction or stabilization mechanisms. PMID:25080304
Model for the catalytic oxidation of CO, including gas-phase impurities and CO desorption.
Buendía, G M; Rikvold, P A
2013-07-01
We present results of kinetic Monte Carlo simulations of a modified Ziff-Gulari-Barshad model for the reaction CO+O → CO(2) on a catalytic surface. Our model includes impurities in the gas phase, CO desorption, and a modification known to eliminate the unphysical O poisoned phase. The impurities can adsorb and desorb on the surface, but otherwise remain inert. In a previous work that did not include CO desorption [Buendía and Rikvold, Phys. Rev. E 85, 031143 (2012)], we found that the impurities have very distinctive effects on the phase diagram and greatly diminish the reactivity of the system. If the impurities do not desorb, once the system reaches a stationary state, the CO(2) production disappears. When the impurities are allowed to desorb, there are regions where the CO(2) reaction window reappears, although greatly reduced. Following experimental evidence that indicates that temperature effects are crucial in many catalytic processes, here we further analyze these effects by including a CO desorption rate. We find that the CO desorption has the effect to smooth the transition between the reactive and the CO rich phase, and most importantly it can counteract the negative effects of the presence of impurities by widening the reactive window such that now the system remains catalytically active in the whole range of CO pressures.
Relationship between mental states in depression: the assimilation model perspective.
Osatuke, Katerine; Stiles, William B; Barkham, Michael; Hardy, Gillian E; Shapiro, David A
2011-11-30
Metacognitive theories describe relationships between mental-affective self-states, including the capacity of one self-state to reflect upon another self-state. The assimilation model is a metacognitive approach that understands self-states as made of traces of experiences at different levels of integration. Psychological problems are understood as impaired accessibility of certain self-states to the person's normal awareness. These states are distressing or otherwise subjectively problematic when they emerge. This exploratory study used the assimilation framework to describe mental states in 17 clients who participated in a clinical trial of cognitive-behavioral therapy for depression. Three clinically sophisticated raters examined transcripts of 1h-long psychotherapy session per client to construct qualitative descriptions of self-states and their relationship patterns in these depressed individuals. We then systematically compared and integrated these raters' descriptions of the clients' self-states. In each case, we found a conflict between two internally incompatible states: an interpersonally submissive state and an interpersonally dominant one, a pattern consistent with the model's theoretical description of depression.
Extension of the association structure in joint models to include weighted cumulative effects.
Mauff, Katya; Steyerberg, Ewout W; Nijpels, Giel; van der Heijden, Amber A W A; Rizopoulos, Dimitris
2017-10-15
Motivated by a study measuring diabetes-related risk factors and complications, we postulate an extension to the standard formulation of joint models for longitudinal and survival outcomes, wherein the longitudinal outcome has a cumulative effect on the hazard of the event, weighted by recency. We focus on the relationship between the biomarker HbA1c and the development of sight threatening retinopathy, since the impact of the HbA1c marker on the risk of sight threatening retinopathy is expected to be cumulative, with the evolution of the HbA1c marker over time contributing to progressively greater damage to the vascular structure of the retina. Opting for a parametric approach, we propose the use of the normal and skewed normal probability density functions as weight functions, estimating the relevant parameters directly from the data. The use of the recency-weighted cumulative effect specification allows us to incorporate differences in the development of the longitudinal profile over time in the calculation of hazard ratios between subjects. The proposed functions provide us with parameters with clinically relevant interpretations while retaining a degree of flexibility. In addition, they also allow answering of important clinical questions regarding the relative importance of various segments of the biomarkers history in the estimation of the risk of the event. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
A new model for including the effect of fly ash on biochemical methane potential.
Gertner, Pablo; Huiliñir, César; Pinto-Villegas, Paula; Castillo, Alejandra; Montalvo, Silvio; Guerrero, Lorna
2017-10-01
The modelling of the effect of trace elements on anaerobic digestion, and specifically the effect of fly ash, has been scarcely studied. Thus, the present work was aimed at the development of a new function that allows accumulated methane models to predict the effect of FA on the volume of methane accumulation. For this, purpose five fly ash concentrations (10, 25, 50, 250 and 500mg/L) using raw and pre-treated sewage sludge were used to calibrate the new function, while three fly ash concentrations were used (40, 150 and 350mg/L) for validation. Three models for accumulated methane volume (the modified Gompertz equation, the logistic function, and the transfer function) were evaluated. The results showed that methane production increased in the presence of FA when the sewage sludge was not pre-treated, while with pretreated sludge there is inhibition of methane production at FA concentrations higher than 50mg/L. In the calibration of the proposed function, it fits well with the experimental data under all the conditions, including the inhibition and stimulating zones, with the values of the parameters of the methane production models falling in the range of those reported in the literature. For validation experiments, the model succeeded in representing the behavior of new experiments in both the stimulating and inhibiting zones, with NRMSE and R(2) ranging from 0.3577 to 0.03714 and 0.2209 to 0.9911, respectively. Thus, the proposed model is robust and valid for the studied conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
New Grid of Models for ELM WDs Including Element Diffusion and Rotational Mixing
NASA Astrophysics Data System (ADS)
Istrate, A. G.
2017-03-01
We present our latest results for the modelling of extremely low-mass white dwarfs (ELM WDs) in which, for the first time, we study the combined effects of rotational mixing and element diffusion. In particular, we investigate how their general properties, such as their evolutionary timescales, the hydrogen envelope mass and their surface composition are affected compared to the case when just element diffusion is included. The formation of ELM WDs through the LMXB channel in environments with different metallicities is modelled using the state-of-the-art stellar evolution code MESA. Rotational mixing is found to counteract the effect of gravitational settling in the surface of young, bloated ELM proto-WDs suggesting that it is the key process needed to explain the observed metals (especially calcium) abundances in their atmospheres.
Particle-based modeling of heterogeneous chemical kinetics including mass transfer
NASA Astrophysics Data System (ADS)
Sengar, A.; Kuipers, J. A. M.; van Santen, Rutger A.; Padding, J. T.
2017-08-01
Connecting the macroscopic world of continuous fields to the microscopic world of discrete molecular events is important for understanding several phenomena occurring at physical boundaries of systems. An important example is heterogeneous catalysis, where reactions take place at active surfaces, but the effective reaction rates are determined by transport limitations in the bulk fluid and reaction limitations on the catalyst surface. In this work we study the macro-micro connection in a model heterogeneous catalytic reactor by means of stochastic rotation dynamics. The model is able to resolve the convective and diffusive interplay between participating species, while including adsorption, desorption, and reaction processes on the catalytic surface. Here we apply the simulation methodology to a simple straight microchannel with a catalytic strip. Dimensionless Damkohler numbers are used to comment on the spatial concentration profiles of reactants and products near the catalyst strip and in the bulk. We end the discussion with an outlook on more complicated geometries and increasingly complex reactions.
NASA Technical Reports Server (NTRS)
Free, April M.; Flowers, George T.; Trent, Victor S.
1993-01-01
Auxiliary bearings are a critical feature of any magnetic bearing system. They protect the soft iron core of the magnetic bearing during an overload or failure. An auxiliary bearing typically consists of a rolling element bearing or bushing with a clearance gap between the rotor and the inner race of the support. The dynamics of such systems can be quite complex. It is desired to develop a rotor-dynamic model and assess the dynamic behavior of a magnetic bearing rotor system which includes the effects of auxiliary bearings. Of particular interest is the effects of introducing sideloading into such a system during failure of the magnetic bearing. A model is developed from an experimental test facility and a number of simulation studies are performed. These results are presented and discussed.
Boullata, Joseph I; Holcombe, Beverly; Sacks, Gordon; Gervasio, Jane; Adams, Stephen C; Christensen, Michael; Durfee, Sharon; Ayers, Phil; Marshall, Neil; Guenter, Peggi
2016-08-01
Parenteral nutrition (PN) is a high-alert medication with a complex drug use process. Key steps in the process include the review of each PN prescription followed by the preparation of the formulation. The preparation step includes compounding the PN or activating a standardized commercially available PN product. The verification and review, as well as preparation of this complex therapy, require competency that may be determined by using a standardized process for pharmacists and for pharmacy technicians involved with PN. An American Society for Parenteral and Enteral Nutrition (ASPEN) standardized model for PN order review and PN preparation competencies is proposed based on a competency framework, the ASPEN-published interdisciplinary core competencies, safe practice recommendations, and clinical guidelines, and is intended for institutions and agencies to use with their staff. © 2016 American Society for Parenteral and Enteral Nutrition.
Yoshihara, Lena; Roth, Christian J; Wall, Wolfgang A
2017-04-01
In this article, a novel approach is presented for combining standard fluid-structure interaction with additional volumetric constraints to model fluid flow into and from homogenised solid domains. The proposed algorithm is particularly interesting for investigations in the field of respiratory mechanics as it enables the mutual coupling of airflow in the conducting part and local tissue deformation in the respiratory part of the lung by means of a volume constraint. In combination with a classical monolithic fluid-structure interaction approach, a comprehensive model of the human lung can be established that will be useful to gain new insights into respiratory mechanics in health and disease. To illustrate the validity and versatility of the novel approach, three numerical examples including a patient-specific lung model are presented. The proposed algorithm proves its capability of computing clinically relevant airflow distribution and tissue strain data at a level of detail that is not yet achievable, neither with current imaging techniques nor with existing computational models. Copyright © 2016 John Wiley & Sons, Ltd.
Habitability of super-Earth planets around other suns: models including Red Giant Branch evolution.
von Bloh, W; Cuntz, M; Schröder, K-P; Bounama, C; Franck, S
2009-01-01
The unexpected diversity of exoplanets includes a growing number of super-Earth planets, i.e., exoplanets with masses of up to several Earth masses and a similar chemical and mineralogical composition as Earth. We present a thermal evolution model for a 10 Earth-mass planet orbiting a star like the Sun. Our model is based on the integrated system approach, which describes the photosynthetic biomass production and takes into account a variety of climatological, biogeochemical, and geodynamical processes. This allows us to identify a so-called photosynthesis-sustaining habitable zone (pHZ), as determined by the limits of biological productivity on the planetary surface. Our model considers solar evolution during the main-sequence stage and along the Red Giant Branch as described by the most recent solar model. We obtain a large set of solutions consistent with the principal possibility of life. The highest likelihood of habitability is found for "water worlds." Only mass-rich water worlds are able to realize pHZ-type habitability beyond the stellar main sequence on the Red Giant Branch.
NASA Astrophysics Data System (ADS)
Printsypar, G.; Iliev, O.; Rief, S.
2011-12-01
Paper production is a challenging problem which attracts attention of many scientists. The process which is of our interest takes place in the pressing section of a paper machine. The paper layer is dried by means of the pressing it against fabrics, i.e. press felts. The paper-felt sandwich is transported through the press nips at high speed (for more details see [3]). Since the natural drainage of water in the felts is much longer than the drying in the pressing section we include in the consideration the dynamic capillary effect. The dynamic capillary pressure-saturation relation proposed by Hassanizadeh and Gray (see [2]) is adopted for the pressing process. One of the other issues which is taken into account while modeling the pressing section is the appearance of fully saturated regions. We include in consideration two flow regimes: the one-phase water flow and the two-phase air-water flow. It leads to a free boundary problem. We also account for the complexity of the paper-felt sandwich porous structure. Apart from the two flow regimes the computational domain is divided by layers into nonoverlapping subdomains. Then, the system of equations describing transport processes in the pressing section is stated taking into account all these features. The presented model is discretized by the finite volume method. We carry out some numerical experiments for different configurations of the pressing section (roll press, shoe press) and for parameters which are typical for paper-felt sandwich during the paper production process. The experiments show that the dynamic capillary effect has a significant influence on the distribution of pressure even for small values of the material coefficient (see Fig. 1). The obtained results are in agreement with laboratory experiment performed in [1], which states that the distribution of the pressure is not symmetric with the maximum value occurring in front of the center of the pressing nip and the minimum value less than entry
Andersen, Morten; Vinther, Frank; Ottesen, Johnny T
2013-11-01
This paper presents a mathematical model of the HPA axis. The HPA axis consists of the hypothalamus, the pituitary and the adrenal glands in which the three hormones CRH, ACTH and cortisol interact through receptor dynamics. Furthermore, it has been suggested that receptors in the hippocampus have an influence on the axis. A model is presented with three coupled, non-linear differential equations, with the hormones CRH, ACTH and cortisol as variables. The model includes the known features of the HPA axis, and includes the effects from the hippocampus through its impact on CRH in the hypothalamus. The model is investigated both analytically and numerically for oscillating solutions, related to the ultradian rhythm seen in data, and for multiple fixed points related to hypercortisolemic and hypocortisolemic depression. The existence of an attracting trapping region guarantees that solution curves stay non-negative and bounded, which can be interpreted as a mathematical formulation of homeostasis. No oscillating solutions are present when using physiologically reasonable parameter values. This indicates that the ultradian rhythm originate from different mechanisms. Using physiologically reasonable parameters, the system has a unique fixed point, and the system is globally stable. Therefore, solutions converge to the fixed point for all initial conditions. This is in agreement with cortisol levels returning to normal, after periods of mild stress, in healthy individuals. Perturbing parameters lead to a bifurcation, where two additional fixed points emerge. Thus, the system changes from having a unique stable fixed point into having three fixed points. Of the three fixed points, two are stable and one is unstable. Further investigations show that solutions converge to one of the two stable fixed points depending on the initial conditions. This could explain why healthy people becoming depressed usually fall into one of two groups: a hypercortisolemic depressive group or
A laboratory model of the aortic root flow including the coronary arteries
NASA Astrophysics Data System (ADS)
Querzoli, Giorgio; Fortini, Stefania; Espa, Stefania; Melchionna, Simone
2016-08-01
Cardiovascular flows have been extensively investigated by means of in vitro models to assess the prosthetic valve performances and to provide insight into the fluid dynamics of the heart and proximal aorta. In particular, the models for the study of the flow past the aortic valve have been continuously improved by including, among other things, the compliance of the vessel and more realistic geometries. The flow within the sinuses of Valsalva is known to play a fundamental role in the dynamics of the aortic valve since they host a recirculation region that interacts with the leaflets. The coronary arteries originate from the ostia located within two of the three sinuses, and their presence may significantly affect the fluid dynamics of the aortic root. In spite of their importance, to the extent of the authors' knowledge, coronary arteries were not included so far when modeling in vitro the transvalvular aortic flow. We present a pulse duplicator consisting of a passively pulsing ventricle, a compliant proximal aorta, and coronary arteries connected to the sinuses of Valsalva. The coronary flow is modulated by a self-regulating device mimicking the physiological mechanism, which is based on the contraction and relaxation of the heart muscle during the cardiac cycle. Results show that the model reproduces satisfyingly the coronary flow. The analysis of the time evolution of the velocity and vorticity fields within the aortic root reveals the main characteristics of the backflow generated through the aorta in order to feed the coronaries during the diastole. Experiments without coronary flow have been run for comparison. Interestingly, the lifetime of the vortex forming in the sinus of Valsalva during the systole is reduced by the presence of the coronaries. As a matter of fact, at the end of the systole, that vortex is washed out because of the suction generated by the coronary flow. Correspondingly, the valve closure is delayed and faster compared to the case with
Modeling the Relationship between Prosodic Sensitivity and Early Literacy
ERIC Educational Resources Information Center
Holliman, Andrew; Critten, Sarah; Lawrence, Tony; Harrison, Emily; Wood, Clare; Hughes, David
2014-01-01
A growing literature has demonstrated that prosodic sensitivity is related to early literacy development; however, the precise nature of this relationship remains unclear. It has been speculated in recent theoretical models that the observed relationship between prosodic sensitivity and early literacy might be partially mediated by children's…
Investigating Supervisory Relationships and Therapeutic Alliances Using Structural Equation Modeling
ERIC Educational Resources Information Center
DePue, Mary Kristina; Lambie, Glenn W.; Liu, Ren; Gonzalez, Jessica
2016-01-01
The authors used structural equation modeling to examine the contribution of supervisees' supervisory relationship levels to therapeutic alliance (TA) scores with their clients in practicum. Results showed that supervisory relationship scores positively contributed to the TA. Client and counselor ratings of the TA also differed.
Investigating Supervisory Relationships and Therapeutic Alliances Using Structural Equation Modeling
ERIC Educational Resources Information Center
DePue, Mary Kristina; Lambie, Glenn W.; Liu, Ren; Gonzalez, Jessica
2016-01-01
The authors used structural equation modeling to examine the contribution of supervisees' supervisory relationship levels to therapeutic alliance (TA) scores with their clients in practicum. Results showed that supervisory relationship scores positively contributed to the TA. Client and counselor ratings of the TA also differed.
Modeling the Relationship between Prosodic Sensitivity and Early Literacy
ERIC Educational Resources Information Center
Holliman, Andrew; Critten, Sarah; Lawrence, Tony; Harrison, Emily; Wood, Clare; Hughes, David
2014-01-01
A growing literature has demonstrated that prosodic sensitivity is related to early literacy development; however, the precise nature of this relationship remains unclear. It has been speculated in recent theoretical models that the observed relationship between prosodic sensitivity and early literacy might be partially mediated by children's…
NASA Technical Reports Server (NTRS)
Tournier, Jean-Michel; El-Genk, Mohamed S.
1995-01-01
A two-dimensional Heat Pipe Transient Analysis Model, 'HPTAM,' was developed to simulate the transient operation of fully-thawed heat pipes and the startup of heat pipes from a frozen state. The model incorporates: (a) sublimation and resolidification of working fluid; (b) melting and freezing of the working fluid in the porous wick; (c) evaporation of thawed working fluid and condensation as a thin liquid film on a frozen substrate; (d) free-molecule, transition, and continuum vapor flow regimes, using the Dusty Gas Model; (e) liquid flow and heat transfer in the porous wick; and (f) thermal and hydrodynamic couplings of phases at their respective interfaces. HPTAM predicts the radius of curvature of the liquid meniscus at the liquid-vapor interface and the radial location of the working fluid level (liquid or solid) in the wick. It also includes the transverse momentum jump condition (capillary relationship of Pascal) at the liquid-vapor interface and geometrically relates the radius of curvature of the liquid meniscus to the volume fraction of vapor in the wick. The present model predicts the capillary limit and partial liquid recess (dryout) in the evaporator wick, and incorporates a liquid pooling submodel, which simulates accumulation of the excess liquid in the vapor core at the condenser end.
NASA Astrophysics Data System (ADS)
Tournier, Jean-Michel; El-Genk, Mohamed S.
1995-09-01
A two-dimensional Heat Pipe Transient Analysis Model, 'HPTAM,' was developed to simulate the transient operation of fully-thawed heat pipes and the startup of heat pipes from a frozen state. The model incorporates: (a) sublimation and resolidification of working fluid; (b) melting and freezing of the working fluid in the porous wick; (c) evaporation of thawed working fluid and condensation as a thin liquid film on a frozen substrate; (d) free-molecule, transition, and continuum vapor flow regimes, using the Dusty Gas Model; (e) liquid flow and heat transfer in the porous wick; and (f) thermal and hydrodynamic couplings of phases at their respective interfaces. HPTAM predicts the radius of curvature of the liquid meniscus at the liquid-vapor interface and the radial location of the working fluid level (liquid or solid) in the wick. It also includes the transverse momentum jump condition (capillary relationship of Pascal) at the liquid-vapor interface and geometrically relates the radius of curvature of the liquid meniscus to the volume fraction of vapor in the wick. The present model predicts the capillary limit and partial liquid recess (dryout) in the evaporator wick, and incorporates a liquid pooling submodel, which simulates accumulation of the excess liquid in the vapor core at the condenser end.
Including sugar cane in the agro-ecosystem model ORCHIDEE-STICS
NASA Astrophysics Data System (ADS)
Valade, A.; Vuichard, N.; Ciais, P.; Viovy, N.
2010-12-01
With 4 million ha currently grown for ethanol in Brazil only, approximately half the global bioethanol production in 2005 (Smeets 2008), and a devoted land area expected to expand globally in the years to come, sugar cane is at the heart of the biofuel debate. Indeed, ethanol made from biomass is currently the most widespread option for alternative transportation fuels. It was originally promoted as a carbon neutral energy resource that could bring energy independence to countries and local opportunities to farmers, until attention was drawn to its environmental and socio-economical drawbacks. It is still not clear to which extent it is a solution or a contributor to climate change mitigation. Dynamic Global Vegetation models can help address these issues and quantify the potential impacts of biofuels on ecosystems at scales ranging from on-site to global. The global agro-ecosystem model ORCHIDEE describes water, carbon and energy exchanges at the soil-atmosphere interface for a limited number of natural and agricultural vegetation types. In order to integrate agricultural management to the simulations and to capture more accurately the specificity of crops' phenology, ORCHIDEE has been coupled with the agronomical model STICS. The resulting crop-oriented vegetation model ORCHIDEE-STICS has been used so far to simulate temperate crops such as wheat, corn and soybean. As a generic ecosystem model, each grid cell can include several vegetation types with their own phenology and management practices, making it suitable to spatial simulations. Here, ORCHIDEE-STICS is altered to include sugar cane as a new agricultural Plant functional Type, implemented and parametrized using the STICS approach. An on-site calibration and validation is then performed based on biomass and flux chamber measurements in several sites in Australia and variables such as LAI, dry weight, heat fluxes and respiration are used to evaluate the ability of the model to simulate the specific
Horiuchi, Masahisa; Nakakuma, Miwa; Arimura, Emi; Ushikai, Miharu; Yoshida, Goichiro
2015-01-01
The food habit is involved in the onset and development of lifestyle-related diseases. In this review I would like to describe a historical case of vitamin B1 deficiency, as well as our case study of fatty acid metabolism abnormality due to carnitine deficiency. In history, the army and navy personnel in Japan at the end of the 19th century received food rations based on a high-carbohydrate diet including white rice, resulting in the onset of beriberi. An epidemiological study by Kenkan Takaki revealed the relationship between the onset of beriberi and rice intake. Then, Takaki was successful in preventing the onset of beriberi by changing the diet. However, the primary cause had yet to be elucidated. Finally, Christian Eijkman established an animal model of beriberi (chickens) showing peripheral neuropathy, and he identified the existence of an anti-beriberi substance, vitamin B1. This is an example of the successful control of a disease by integrating the results of epidemiological and experimental studies. In our study using a murine model of fatty acid metabolism abnormality caused by carnitine deficiency, cardiac abnormality and fatty liver developed depending on the amount of dietary fat. In addition, the mice showed disturbance of orexin neuron activity related to the sleep-arousal system, which is involved in fatigue symptoms under fasting condition, one of the states showing enhanced fatty acid metabolism. These findings suggest that fatty acid toxicity is enhanced when the mice are more dependent on fatty acid metabolism. Almost simultaneously, a human epidemiological study showed that narcolepsy, which is caused by orexin system abnormality, is associated with the polymorphism of the gene coding for carnitine palmitoyltransferase 1B, which is involved in carnitine metabolism. To understand the pathological mechanism of fatty acid toxicity, not only an experimental approach using animal models, but also an epidemiological approach is necessary. The
Rivas, Elena; Lang, Raymond; Eddy, Sean R.
2012-01-01
The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using complex nearest-neighbor models, including CONTRAfold, Simfold, and ContextFold. Little work has been reported on generative probabilistic models (stochastic context-free grammars [SCFGs]) of comparable complexity, although probabilistic models are generally easier to train and to use. To explore a range of probabilistic models of increasing complexity, and to directly compare probabilistic, thermodynamic, and discriminative approaches, we created TORNADO, a computational tool that can parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor model and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or arbitrary scores. By using TORNADO, we find that probabilistic nearest-neighbor models perform comparably to (but not significantly better than) discriminative methods. We find that complex statistical models are prone to overfitting RNA structure and that evaluations should use structurally nonhomologous training and test data sets. Overfitting has affected at least one published method (ContextFold). The most important barrier to improving statistical approaches for RNA secondary structure prediction is the lack of diversity of well-curated single-sequence RNA secondary structures in current RNA databases. PMID:22194308
Rivas, Elena; Lang, Raymond; Eddy, Sean R
2012-02-01
The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using complex nearest-neighbor models, including CONTRAfold, Simfold, and ContextFold. Little work has been reported on generative probabilistic models (stochastic context-free grammars [SCFGs]) of comparable complexity, although probabilistic models are generally easier to train and to use. To explore a range of probabilistic models of increasing complexity, and to directly compare probabilistic, thermodynamic, and discriminative approaches, we created TORNADO, a computational tool that can parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor model and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or arbitrary scores. By using TORNADO, we find that probabilistic nearest-neighbor models perform comparably to (but not significantly better than) discriminative methods. We find that complex statistical models are prone to overfitting RNA structure and that evaluations should use structurally nonhomologous training and test data sets. Overfitting has affected at least one published method (ContextFold). The most important barrier to improving statistical approaches for RNA secondary structure prediction is the lack of diversity of well-curated single-sequence RNA secondary structures in current RNA databases.
ERIC Educational Resources Information Center
Mendonça, Paula Cristina Cardoso; Justi, Rosária
2013-01-01
Some studies related to the nature of scientific knowledge demonstrate that modelling is an inherently argumentative process. This study aims at discussing the relationship between modelling and argumentation by analysing data collected during the modelling-based teaching of ionic bonding and intermolecular interactions. The teaching activities…
ERIC Educational Resources Information Center
Mendonça, Paula Cristina Cardoso; Justi, Rosária
2013-01-01
Some studies related to the nature of scientific knowledge demonstrate that modelling is an inherently argumentative process. This study aims at discussing the relationship between modelling and argumentation by analysing data collected during the modelling-based teaching of ionic bonding and intermolecular interactions. The teaching activities…
Moreau, Caroline; Pautas, Eric; Duverlie, Charlotte; Berndt, Celia; Andro, Marion; Mahé, Isabelle; Emmerich, Joseph; Lacut, Karine; Le Gal, Grégoire; Peyron, Isabelle; Gouin-Thibault, Isabelle; Golmard, Jean-Louis; Loriot, Marie-Anne; Siguret, Virginie
2014-04-01
Indandione VKAs have been widely used for decades, especially in Eastern Europe and France. Contrary to coumarin VKAs, the relative contribution of individual factors to the indandione-VKA response is poorly known. In the present multicentre study, we sought to develop and validate a model including genetic and non-genetic factors to predict the daily fluindione dose requirement in elderly patients in whom VKA dosing is challenging. We prospectively recorded clinical and therapeutic data in 230 Caucasian inpatients mean aged 85 ± 6 years, who had reached international normalized ratio stabilisation (range 2.0-3.0) on fluindione. In the derivation cohort (n=156), we analysed 13 polymorphisms in seven genes potentially involved in the pharmacological effect or vitamin-K cycle (VKORC1, CYP4F2, EPHX1) and fluindione metabolism/transport (CYP2C9, CYP2C19, CYP3A5, ABCB1). We built a regression model incorporating non-genetic and genetic data and evaluated the model performances in a separate cohort (n=74).Body-weight, amiodarone intake, VKORC1, CYP4F2, ABCB1 genotypes were retained in the final model, accounting for 31.5% of dose variability. None influence of CYP2C9 was observed. Our final model showed good performances: in 83.3% of the validation cohort patients, the dose was accurately predicted within 5 mg, i.e.the usual step used for adjusting fluindione dosage. In conclusion, in addition to body-weight and amiodarone-intake, pharmacogenetic factors (VKORC1, CYP4F2, ABCB1) related to the pharmacodynamic effect and transport of fluindione significantly influenced the dose requirement in elderly patients while CYP2C9 did not. Studies are required to know whether fluindione could be an alternative VKA in carriers of polymorphic CYP2C9 alleles, hypersensitive to coumarins.
Importance of global aerosol modeling including secondary organic aerosol formed from monoterpene
NASA Astrophysics Data System (ADS)
Goto, Daisuke; Takemura, Toshihiko; Nakajima, Teruyuki
2008-04-01
A global three-dimensional aerosol transport-radiation model, coupled to an atmospheric general circulation model (AGCM), has been extended to improve the model process for organic aerosols, particularly secondary organic aerosols (SOA), and to estimate SOA contributions to direct and indirect radiative effects. Because the SOA formation process is complicated and unknown, the results in different model simulations include large differences. In this work, we simulate SOA production assuming various parameterizations of (1) primary organic aerosols (POA) mass concentrations, (2) oxidant species concentrations, and (3) volatile organic compound (VOC) concentrations in the SOA formation through gas-to-particle conversion governed by equilibrium partitioning of monoterpene oxidation products. Comparisons of results from observations, other models, and our simulations with/without the SOA partitioning theory lead to some findings of the influence of SOA on the radiation and cloud fields. First, the SOA number concentrations control cloud droplet effective radii near water cloud tops in the tropics and can affect the estimation of the aerosol indirect radiative effect. Second, SOA simulation results strongly depend on POA concentrations and emission data, so that disregarding this dependence may lead to a significant underestimation of the aerosol radiative effect because most of other studies assume that the SOA production level in the preindustrial era is same as in the current level. The global annual mean production of SOA formed from monoterpene is evaluated in this study as 6.74 Tg a-1, and the global annual mean radiative forcings of the direct and indirect effects by SOA from monoterpene are calculated to be -0.01 and -0.19 W m-2, respectively.
An ecosystem model of the global ocean including Fe, Si, P colimitations
NASA Astrophysics Data System (ADS)
Aumont, Olivier; Maier-Reimer, Ernst; Blain, StéPhane; Monfray, P.
2003-06-01
Observations have shown that large areas of the world ocean are characterized by lower than expected chlorophyll concentrations given the ambient phosphate and nitrate levels. In these High Nutrient-Low Chlorophyll regions, limitations of phytoplankton growth by other nutrients like silicate or iron have been hypothesized and further evidenced by in situ experiments. To explore these limitations, a nine-component ecosystem model has been embedded in the Hamburg model of the oceanic carbon cycle (HAMOCC5). This model includes phosphate, silicate, dissolved iron, two phytoplankton size fractions (nanophytoplankton and diatoms), two zooplankton size fractions (microzooplankton and mesozooplankton), one detritus and semilabile dissolved organic matter. The model is able to reproduce the main characteristics of two of the three main HNLC areas, i.e., the Southern Ocean and the equatorial Pacific. In the subarctic Pacific, silicate and phosphate surface concentrations are largely underestimated because of deficiencies in ocean dynamics. The low chlorophyll concentrations in HNLC areas are explained by the traditional hypothesis of a simultaneous iron-grazing limitation: Diatoms are limited by iron whereas nanophytoplankton is controlled by very efficient grazing by microzooplankton. Phytoplankton assimilates 18 × 109 mol Fe yr-1 of which 73% is supplied by regeneration within the euphotic zone. The model predicts that the ocean carries with it about 75% of the phytoplankton demand for new iron, assuming a 1% solubility for atmospheric iron. Finally, it is shown that a higher supply of iron to surface water leads to a higher export production but paradoxically to a lower primary productivity.
NASA Astrophysics Data System (ADS)
Chen, Chang-Kun; Li, Zhi; Sun, Yun-Feng
A new model for describing the disaster system including instantaneous and continuous action synchronously has been developed. The model is composed of three primary parts, that is, the impact from its causative disaster events, stochastic noise of disaster node and self-healing function, and every part is modeled concretely in terms of their characteristics in practice. Some key parameters, namely link appearance probability, retardation coefficient, ultimate repair capacity of government, dynamical modes considering different disaster evolving chains, and the positions of link with the specific performance in disaster network system are involved. Combined with a case study, the proposed model is applied to a certain disaster evolution system, and the influence law of different parameters on disaster evolution process, in disaster networks with instantaneous-action and/or continuous-action, is presented and compared. The results indicate that the destructive impact in the networks by link in continuous action is far greater an order of magnitude than that in instantaneous action. If a link in continuous action emerges in the disaster network system, properties of the causative event for the link, link appearance probability and its position in the network all have a notable influence to the severity of the disaster network. In addition, some peculiar phenomena are also commendably observed in the disaster evolution process based on the model, such as the multipeaks emerging in the destroyed rate number curve for some crisis nodes caused by their various inducing paths together with the relevant retardation coefficients, the existence of the critical value for ultimate repair capacity to recover the disaster node, and so on.
Moretti, Rocco; Lyskov, Sergey; Das, Rhiju; Meiler, Jens; Gray, Jeffrey J
2017-09-28
The Rosetta molecular modeling software package provides a large number of experimentally validated tools for modeling and designing proteins, nucleic acids, and other biopolymers, with new protocols being added continually. While freely available to academic users, external usage is limited by the need for expertise in the Unix command line environment. To make Rosetta protocols available to a wider audience, we previously created a web server called ROSIE (Rosetta Online Server that Includes Everyone), which provides a common environment for hosting web-accessible Rosetta protocols. Here we describe a simplification of the ROSIE protocol specification format, one that permits easier implementation of Rosetta protocols. Whereas the previous format required creating multiple separate files in different locations, the new format allows specification of the protocol in a single file. This new, simplified protocol specification has more than doubled the number of Rosetta protocols available under ROSIE. These new applications include pKa determination, lipid accessibility calculation, RNA redesign, protein-protein docking, protein-small molecule docking, symmetric docking, antibody docking, cyclic toxin docking, critical binding peptide determination, and mapping small molecule binding sites. ROSIE is freely available to academic users at http://rosie.rosettacommons.org. This article is protected by copyright. All rights reserved. © 2017 The Protein Society.
Models of Shared Leadership: Evolving Structures and Relationships.
ERIC Educational Resources Information Center
Hallinger, Philip; Richardson, Don
1988-01-01
Explores potential changes in the power relationships among teachers and principals. Describes and analyzes the following models of teacher decision-making: (1) Instructional Leadership Teams; (2) Principals' Advisory Councils; (3) School Improvement Teams; and (4) Lead Teacher Committees. (FMW)
Ikenaka, Yoshinori; Nakayama, Shouta M. M.; Mizukawa, Hazuki; Aoyama, Yoshiko; Ishizuka, Mayumi; Taira, Kumiko
2015-01-01
Neonicotinoid insecticides are nicotinic acetylcholine receptor agonists used worldwide. Their environmental health effects including neurotoxicity are of concern. We previously determined a metabolite of acetamiprid, N-desmethyl-acetamiprid in the urine of a patient, who exhibited some typical symptoms including neurological findings. We sought to investigate the association between urinary N-desmethyl-acetamiprid and the symptoms by a prevalence case-control study. Spot urine samples were collected from 35 symptomatic patients of unknown origin and 50 non-symptomatic volunteers (non-symptomatic group, NSG, 4–87 year-old). Patients with recent memory loss, finger tremor, and more than five of six symptoms (headache, general fatigue, palpitation/chest pain, abdominal pain, muscle pain/weakness/spasm, and cough) were in the typical symptomatic group (TSG, n = 19, 5–69 year-old); the rest were in the atypical symptomatic group (ASG, n = 16, 5–78 year-old). N-desmethyl-acetamiprid and six neonicotinoids in the urine were quantified by liquid chromatography-tandem mass spectrometry. The detection of N-desmethyl-acetamiprid was the most frequent and highest in TSG (47.4%, 6.0 ppb (frequency, maximum)), followed by in ASG (12.5%, 4.4 ppb) and in NSG (6.0%, 2.2 ppb), however acetamiprid was not detected. Thiamethoxam was detected in TSG (31.6%, 1.4 ppb), in ASG (6.3%, 1.9 ppb), but not in NSG. Nitenpyram was detected in TSG (10.5%, 1.2 ppb), in ASG (6.3%, not quantified) and in NSG (2.0%, not quantified). Clothianidin was only detected in ASG (6.3%, not quantified), and in NSG (2.0%, 1.6 ppb). Thiacloprid was detected in ASG (6.3%, 0.1 ppb). The cases in TSG with detection of N-desmethyl-acetamiprid and thiamethoxam were aged 5 to 62 years and 13 to 62 years, respectively. Detection of N-desmethyl-acetamiprid was associated with increased prevalence of the symptoms (odds ratio: 14, 95% confidence interval: 3.5–57). Urinary N-desmethyl-acetamiprid can be used as a
Marfo, Jemima Tiwaa; Fujioka, Kazutoshi; Ikenaka, Yoshinori; Nakayama, Shouta M M; Mizukawa, Hazuki; Aoyama, Yoshiko; Ishizuka, Mayumi; Taira, Kumiko
2015-01-01
Neonicotinoid insecticides are nicotinic acetylcholine receptor agonists used worldwide. Their environmental health effects including neurotoxicity are of concern. We previously determined a metabolite of acetamiprid, N-desmethyl-acetamiprid in the urine of a patient, who exhibited some typical symptoms including neurological findings. We sought to investigate the association between urinary N-desmethyl-acetamiprid and the symptoms by a prevalence case-control study. Spot urine samples were collected from 35 symptomatic patients of unknown origin and 50 non-symptomatic volunteers (non-symptomatic group, NSG, 4-87 year-old). Patients with recent memory loss, finger tremor, and more than five of six symptoms (headache, general fatigue, palpitation/chest pain, abdominal pain, muscle pain/weakness/spasm, and cough) were in the typical symptomatic group (TSG, n = 19, 5-69 year-old); the rest were in the atypical symptomatic group (ASG, n = 16, 5-78 year-old). N-desmethyl-acetamiprid and six neonicotinoids in the urine were quantified by liquid chromatography-tandem mass spectrometry. The detection of N-desmethyl-acetamiprid was the most frequent and highest in TSG (47.4%, 6.0 ppb (frequency, maximum)), followed by in ASG (12.5%, 4.4 ppb) and in NSG (6.0%, 2.2 ppb), however acetamiprid was not detected. Thiamethoxam was detected in TSG (31.6%, 1.4 ppb), in ASG (6.3%, 1.9 ppb), but not in NSG. Nitenpyram was detected in TSG (10.5%, 1.2 ppb), in ASG (6.3%, not quantified) and in NSG (2.0%, not quantified). Clothianidin was only detected in ASG (6.3%, not quantified), and in NSG (2.0%, 1.6 ppb). Thiacloprid was detected in ASG (6.3%, 0.1 ppb). The cases in TSG with detection of N-desmethyl-acetamiprid and thiamethoxam were aged 5 to 62 years and 13 to 62 years, respectively. Detection of N-desmethyl-acetamiprid was associated with increased prevalence of the symptoms (odds ratio: 14, 95% confidence interval: 3.5-57). Urinary N-desmethyl-acetamiprid can be used as a
Lee, H.J.; Syvitski, J.P.M.; Parker, G.; Orange, Daniel L.; Locat, J.; Hutton, E.W.H.; Imran, J.
2002-01-01
Migrating sediment waves have been reported in a variety of marine settings, including submarine levee-fan systems, floors of fjords, and other basin or continental slope environments. Examination of such wave fields reveals nine diagnostic characteristics. When these characteristics are applied to several features previously attributed to submarine landslide deformation, they suggest that the features should most likely be reinterpreted as migrating sediment-wave fields. Sites that have been reinterpreted include the 'Humboldt slide' on the Eel River margin in northern California, the continental slope in the Gulf of Cadiz, the continental shelf off the Malaspina Glacier in the Gulf of Alaska, and the Adriatic shelf. A reassessment of all four features strongly suggests that numerous turbidity currents, separated by intervals of ambient hemipelagic sedimentation, deposited the wave fields over thousands of years. A numerical model of hyperpycnal discharge from the Eel River, for example, shows that under certain alongshore-current conditions, such events can produce turbidity currents that flow across the 'Humboldt slide', serving as the mechanism for the development of migrating sediment waves. Numerical experiments also demonstrate that where a series of turbidity currents flows across a rough seafloor (i.e. numerical steps), sediment waves can form and migrate upslope. Hemipelagic sedimentation between turbidity current events further facilitates the upslope migration of the sediment waves. Physical modelling of turbidity currents also confirms the formation and migration of seafloor bedforms. The morphologies of sediment waves generated both numerically and physically in the laboratory bear a strong resemblance to those observed in the field, including those that were previously described as submarine landslides.
Geological evolution of the North Sea: a dynamic 3D model including petroleum system elements
NASA Astrophysics Data System (ADS)
Sabine, Heim; Rüdiger, Lutz; Dirk, Kaufmann; Lutz, Reinhardt
2013-04-01
This study investigates the sedimentary basin evolution of the German North Sea with a focus on petroleum generation, migration and accumulation. The study is conducted within the framework of the project "Geoscientific Potential of the German North Sea (GPDN)", a joint project of federal (BGR, BSH) and state authorities (LBEG) with partners from industry and scientific institutions. Based on the structural model of the "Geotektonischer Atlas 3D" (GTA3D, LBEG), this dynamic 3D model contains additionally the northwestern part ("Entenschnabel" area) of the German North Sea. Geological information, e.g. lithostratigraphy, facies and structural data, provided by industry, was taken from published research projects, or literature data such as the Southern Permian Basin Atlas (SPBA; Doornenbal et al., 2010). Numerical modeling was carried out for a sedimentary succession containing 17 stratigraphic layers and several sublayers, representing the sedimentary deposition from the Devonian until Present. Structural details have been considered in terms of simplified faults and salt structures, as well as main erosion and salt movement events. Lithology, facies and the boundary conditions e.g. heat flow, paleo water-depth and sediment water interface temperature were assigned. The system calibration is based on geochemical and petrological data, such as maturity of organic matter (VRr) and present day temperature. Due to the maturity of the sedimentary organic matter Carboniferous layers are the major source rocks for gas generation. Main reservoir rocks are the Rotliegend sandstones, furthermore, sandstones of the Lower Triassic and Jurassic can serve as reservoir rocks in areas where the Zechstein salts are absent. The model provides information on the temperature and maturity distribution within the main source rock layers as well as information of potential hydrocarbon generation based on kinetic data for gas liberation. Finally, this dynamic 3D model offers a first
Jet Noise Modeling for Coannular Nozzles Including the Effects of Chevrons
NASA Technical Reports Server (NTRS)
Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J.
2003-01-01
Development of good predictive models for jet noise has always been plagued by the difficulty in obtaining good quality data over a wide range of conditions in different facilities.We consider such issues very carefully in selecting data to be used in developing our model. Flight effects are of critical importance, and none of the means of determining them are without significant problems. Free-jet flight simulation facilities are very useful, and can provide meaningful data so long as they can be analytically transformed to the flight frame of reference. In this report we show that different methodologies used by NASA and industry to perform this transformation produce very different results, especially in the rear quadrant; this compels us to rely largely on static data to develop our model, but we show reasonable agreement with simulated flight data when these transformation issues are considered. A persistent problem in obtaining good quality data is noise generated in the experimental facility upstream of the test nozzle: valves, elbows, obstructions, and especially the combustor can contribute significant noise, and much of this noise is of a broadband nature, easily confused with jet noise. Muffling of these sources is costly in terms of size as well as expense, and it is particularly difficult in flight simulation facilities, where compactness of hardware is very important, as discussed by Viswanathan (Ref. 13). We feel that the effects of jet density on jet mixing noise may have been somewhat obscured by these problems, leading to the variable density exponent used in most jet noise prediction procedures including our own. We investigate this issue, applying Occam s razor, (e.g., Ref. 14), in a search for the simplest physically meaningful model that adequately describes the observed phenomena. In a similar vein, we see no reason to reject the Lighthill approach; it provides a very solid basis upon which to build a predictive procedure, as we believe we
Mercury chemistry in the MBL: Modeling results including Hg + halogen atom reaction rate constants
NASA Astrophysics Data System (ADS)
Hedgecock, I. M.; Pirrone, N.
2003-04-01
The inclusion, of recently published kinetic data for the reactions between gas phase elemental Hg and halogen atoms and molecules, in a photochemical box model including aerosols of the Marine Boundary Layer (MBL), suggests that the cycling of Hg over the world's oceans may be much more dynamic than was once thought, as a direct result of halogen activation from marine aerosols. The rate of gas phase oxidation of Hg(0) in the model leads to high concentrations of gas phase oxidised Hg (Hg(II)), which is deposited to the sea surface either directly from the gas phase or indirectly via scavenging by sea salt and non-sea-salt sulphate aerosol particles and subsequent deposition. The model base run predicts Hg(II) concentrations higher than those measured in the marine atmosphere, and a lifetime for Hg(0) of a matter of days, rather than months as has been generally assumed. In light of previous measurements and the known stability of the hemispherical background concentration of Hg(0) the influence of liquid water content (the number of deliquescent aerosol droplets), cloud optical depth at the top of the boundary layer, and the Henry's Law constants for HgCl2 and HgBr2 have been investigated. In order to maintain a stable background concentration of Hg(0) a source strength (for emission from the sea, or entrainment from the free troposphere) of at least 15 ng m-2 hr-1 is required, which seems most unlikely considering results from flux chamber experiments. The model therefore either overestimates the rate of gas phase oxidation or lacks a fundamental reduction process. The evidence from studies of mercury depletion events in the Arctic troposphere lend support to the fast reaction between Hg(0) and Br containing radicals which have been included in the model, it is necessary therefore to investigate homogeneous and heterogeneous mechanisms for the reduction of Hg(II) to Hg(0) in order to explain the measured Hg(II) concentrations in the MBL and the stable
Boundary element modeling of earthquake site effects including the complete incident wavefield
NASA Astrophysics Data System (ADS)
Kim, Kyoung-Tae
Numerical modeling of earthquake site effects in realistic, three-dimensional structures, including high frequencies, low surface velocities and surface topography, has not been possible simply because the amount of computer memory constrains the number of grid points available. In principle, this problem is reduced in the Boundary Element Method (BEM) since only the surface of the velocity discontinuity is discretized; wave propagation both inside and outside this boundary is computed analytically. Equivalent body forces are determined on the boundary by solving a matrix equation containing frequency-domain displacement and stress Green's functions from every point on the boundary to every other point. This matrix problem has imposed a practical limit on the size or maximum frequency of previous BEM models. Although the matrix can be quite large, it also seems to be fairly sparse. We have used iterative matrix algorithms of the PETSc package and direct solution algorithms of the ScaLAPACK on the massively parallel supercomputers at Cornell, San Diego and Michigan. Preconditioning has been applied using blockwise ILU decomposition for the iterative approach or LU decomposition for the direct approach. The matrix equation is solved using the GMRES method for the iterative approach and a tri-diagonal solver for the direct approach. Previous BEM applications typically have assumed a single, incident plane wave. However, it is clear that for more realistic ground motion simulations, we need to consider the complete incident wavefield. If we assume that the basin or three-dimensional structure of interest is embedded in a surrounding plane-layered medium, we may use the propagator matrix method to solve for the displacements and stresses at depth on the boundary. This is done in the frequency domain with integration over wavenumber so that all P, S, mode conversions, reverberations and surface waves are included. The Boundary Element Method succeeds in modeling
Dynamic modelling and analysis of multi-machine power systems including wind farms
NASA Astrophysics Data System (ADS)
Tabesh, Ahmadreza
2005-11-01
This thesis introduces a small-signal dynamic model, based on a frequency response approach, for the analysis of a multi-machine power system with special focus on an induction machine based wind farm. The proposed approach is an alternative method to the conventional eigenvalue analysis method which is widely employed for small-signal dynamic analyses of power systems. The proposed modelling approach is successfully applied and evaluated for a power system that (i) includes multiple synchronous generators, and (ii) a wind farm based on either fixed-speed, variable-speed, or doubly-fed induction machine based wind energy conversion units. The salient features of the proposed method, as compared with the conventional eigenvalue analysis method, are: (i) computational efficiency since the proposed method utilizes the open-loop transfer-function matrix of the system, (ii) performance indices that are obtainable based on frequency response data and quantitatively describe the dynamic behavior of the system, and (iii) capability to formulate various wind energy conversion unit, within a wind farm, in a modular form. The developed small-signal dynamic model is applied to a set of multi-machine study systems and the results are validated based on comparison (i) with digital time-domain simulation results obtained from PSCAD/EMTDC software tool, and (ii) where applicable with eigenvalue analysis results.
Modeling within-host dynamics of influenza virus infection including immune responses.
Pawelek, Kasia A; Huynh, Giao T; Quinlivan, Michelle; Cullinane, Ann; Rong, Libin; Perelson, Alan S
2012-01-01
Influenza virus infection remains a public health problem worldwide. The mechanisms underlying viral control during an uncomplicated influenza virus infection are not fully understood. Here, we developed a mathematical model including both innate and adaptive immune responses to study the within-host dynamics of equine influenza virus infection in horses. By comparing modeling predictions with both interferon and viral kinetic data, we examined the relative roles of target cell availability, and innate and adaptive immune responses in controlling the virus. Our results show that the rapid and substantial viral decline (about 2 to 4 logs within 1 day) after the peak can be explained by the killing of infected cells mediated by interferon activated cells, such as natural killer cells, during the innate immune response. After the viral load declines to a lower level, the loss of interferon-induced antiviral effect and an increased availability of target cells due to loss of the antiviral state can explain the observed short phase of viral plateau in which the viral level remains unchanged or even experiences a minor second peak in some animals. An adaptive immune response is needed in our model to explain the eventual viral clearance. This study provides a quantitative understanding of the biological factors that can explain the viral and interferon kinetics during a typical influenza virus infection.
Wang, Y. T.; Xu, L. X.; Gui, Y. X.
2010-10-15
In this paper, we investigate the integrated Sachs-Wolfe effect in the quintessence cold dark matter model with constant equation of state and constant speed of sound in dark energy rest frame, including dark energy perturbation and its anisotropic stress. Comparing with the {Lambda}CDM model, we find that the integrated Sachs-Wolfe (ISW)-power spectrums are affected by different background evolutions and dark energy perturbation. As we change the speed of sound from 1 to 0 in the quintessence cold dark matter model with given state parameters, it is found that the inclusion of dark energy anisotropic stress makes the variation of magnitude of the ISW source uncertain due to the anticorrelation between the speed of sound and the ratio of dark energy density perturbation contrast to dark matter density perturbation contrast in the ISW-source term. Thus, the magnitude of the ISW-source term is governed by the competition between the alterant multiple of (1+3/2xc-circumflex{sub s}{sup 2}) and that of {delta}{sub de}/{delta}{sub m} with the variation of c-circumflex{sub s}{sup 2}.
Doğan, Tunca; Karaçalı, Bilge
2013-01-01
Identifying shared sequence segments along amino acid sequences generally requires a collection of closely related proteins, most often curated manually from the sequence datasets to suit the purpose at hand. Currently developed statistical methods are strained, however, when the collection contains remote sequences with poor alignment to the rest, or sequences containing multiple domains. In this paper, we propose a completely unsupervised and automated method to identify the shared sequence segments observed in a diverse collection of protein sequences including those present in a smaller fraction of the sequences in the collection, using a combination of sequence alignment, residue conservation scoring and graph-theoretical approaches. Since shared sequence fragments often imply conserved functional or structural attributes, the method produces a table of associations between the sequences and the identified conserved regions that can reveal previously unknown protein families as well as new members to existing ones. We evaluated the biological relevance of the method by clustering the proteins in gold standard datasets and assessing the clustering performance in comparison with previous methods from the literature. We have then applied the proposed method to a genome wide dataset of 17793 human proteins and generated a global association map to each of the 4753 identified conserved regions. Investigations on the major conserved regions revealed that they corresponded strongly to annotated structural domains. This suggests that the method can be useful in predicting novel domains on protein sequences.
ERIC Educational Resources Information Center
Cheng, Meng-Fei; Lin, Jang-Long
2015-01-01
Understanding the nature of models and engaging in modeling practice have been emphasized in science education. However, few studies discuss the relationships between students' views of scientific models and their ability to develop those models. Hence, this study explores the relationship between students' views of scientific models and their…
ERIC Educational Resources Information Center
Cheng, Meng-Fei; Lin, Jang-Long
2015-01-01
Understanding the nature of models and engaging in modeling practice have been emphasized in science education. However, few studies discuss the relationships between students' views of scientific models and their ability to develop those models. Hence, this study explores the relationship between students' views of scientific models and their…
ERIC Educational Resources Information Center
Kilic, Abdurrahman
2012-01-01
In this study, the relationship of values in elementary school 4th grade Social Studies textbook with the attainments and their level of being included in student workbook are tried to be determined. Case study, which is a qualitative research method, was applied for this research. To collect data, document analysis technique, which is among the…
Modelling and control of a microgrid including photovoltaic and wind generation
NASA Astrophysics Data System (ADS)
Hussain, Mohammed Touseef
Extensive increase of distributed generation (DG) penetration and the existence of multiple DG units at distribution level have introduced the notion of micro-grid. This thesis develops a detailed non-linear and small-signal dynamic model of a microgrid that includes PV, wind and conventional small scale generation along with their power electronics interfaces and the filters. The models developed evaluate the amount of generation mix from various DGs for satisfactory steady state operation of the microgrid. In order to understand the interaction of the DGs on microgrid system initially two simpler configurations were considered. The first one consists of microalternator, PV and their electronics, and the second system consists of microalternator and wind system each connected to the power system grid. Nonlinear and linear state space model of each microgrid are developed. Small signal analysis showed that the large participation of PV/wind can drive the microgrid to the brink of unstable region without adequate control. Non-linear simulations are carried out to verify the results obtained through small-signal analysis. The role of the extent of generation mix of a composite microgrid consisting of wind, PV and conventional generation was investigated next. The findings of the smaller systems were verified through nonlinear and small signal modeling. A central supervisory capacitor energy storage controller interfaced through a STATCOM was proposed to monitor and enhance the microgrid operation. The potential of various control inputs to provide additional damping to the system has been evaluated through decomposition techniques. The signals identified to have damping contents were employed to design the supervisory control system. The controller gains were tuned through an optimal pole placement technique. Simulation studies demonstrate that the STATCOM voltage phase angle and PV inverter phase angle were the best inputs for enhanced stability boundaries.
A Monte Carlo Model of Radiative Transfer Including Linear and Circular Polarization
NASA Astrophysics Data System (ADS)
Guirado, Daniel; Moreno, F.
2009-09-01
A Monte Carlo model of radiative transfer through a spherical shell of dust with an optional solid nucleus in its center has been developed. This model calculates the four of the Stokes parameters of the light outgoing the shell and those of the incoming light onto the nucleus. Hence, not only the flux, but also the degree of both linear and circular polarization can be computed. The model may represent a comet but also any sort of interplanetary or interstellar dust cloud. As the scattering matrix of the dust cloud is an input, properties of the light scattered by any kind of dust particles can be computed, including aligned particles, asymmetrical grains and scatterers made of optically active materials, which have been historically proposed as possible explanations of the degree of circular polarization observed in light scattered by comets. Any optical thickness of the dust shell can be considered, because this method works for both single and multiple scattering conditions. We will describe the model in detail and present a collection of benchmarks in order to validate the assumed hypothesizes and the reliability of the code. We will also present some results on circular polarization of a comet-like system (spherical shell with a kilometer-sized nucleus in its core). These results indicate that circular polarization can arise even for light scattered by a spherical comet with a coma made of spherical and optically inactive grains, if the symmetry of the system around the direction of the incident light is broken by observing just a small non central region of the comet, but not the entire cloud.
NASA Astrophysics Data System (ADS)
Prechtel, Alexander; Ray, Nadja; Rupp, Andreas
2017-04-01
We want to present an approach for the mathematical, mechanistic modeling and numerical treatment of processes leading to the formation, stability, and turnover of soil micro-aggregates. This aims at deterministic aggregation models including detailed mechanistic pore-scale descriptions to account for the interplay of geochemistry and microbiology, and the link to soil functions as, e.g., the porosity. We therefore consider processes at the pore scale and the mesoscale (laboratory scale). At the pore scale transport by diffusion, advection, and drift emerging from electric forces can be taken into account, in addition to homogeneous and heterogeneous reactions of species. In the context of soil micro-aggregates the growth of biofilms or other glueing substances as EPS (extracellular polymeric substances) is important and affects the structure of the pore space in space and time. This model is upscaled mathematically in the framework of (periodic) homogenization to transfer it to the mesoscale resulting in effective coefficients/parameters there. This micro-macro model thus couples macroscopic equations that describe the transport and fluid flow at the scale of the porous medium (mesoscale) with averaged time- and space-dependent coefficient functions. These functions may be explicitly computed by means of auxiliary cell problems (microscale). Finally, the pore space in which the cell problems are defined is time and space dependent and its geometry inherits information from the transport equation's solutions. The microscale problems rely on versatile combinations of cellular automata and discontiuous Galerkin methods while on the mesoscale mixed finite elements are used. The numerical simulations allow to study the interplay between these processes.
A model of force balance in Jupiter's magnetodisc including hot plasma pressure anisotropy
NASA Astrophysics Data System (ADS)
Nichols, J. D.; Achilleos, N.; Cowley, S. W. H.
2015-12-01
We present an iterative vector potential model of force balance in Jupiter's magnetodisc that includes the effects of hot plasma pressure anisotropy. The fiducial model produces results that are consistent with Galileo magnetic field and plasma data over the whole radial range of the model. The hot plasma pressure gradient and centrifugal forces dominate in the regions inward of ˜20 RJ and outward of ˜50 RJ, respectively, while for realistic values of the pressure anisotropy, the anisotropy current is either the dominant component or at least comparable with the hot plasma pressure gradient current in the region in between. With the inclusion of hot plasma pressure anisotropy, the ˜1.2 and ˜2.7° shifts in the latitudes of the main oval and Ganymede footprint, respectively, associated with variations over the observed range of the hot plasma parameter Kh, which is the product of hot pressure and unit flux tube volume, are comparable to the shifts observed in auroral images. However, the middle magnetosphere is susceptible to the firehose instability, with peak equatorial values of βh∥e-βh⊥e≃1 - 2, for Kh=2.0 - 2.5 × 107 Pa m T-1. For larger values of Kh,βh∥e-βh⊥e exceeds 2 near ˜25 RJ and the model does not converge. This suggests that small-scale plasmoid release or "drizzle" of iogenic plasma may often occur in the middle magnetosphere, thus forming a significant mode of plasma mass loss, alongside plasmoids, at Jupiter.
Three-layer model for the surface second-harmonic generation yield including multiple reflections
NASA Astrophysics Data System (ADS)
Anderson, Sean M.; Mendoza, Bernardo S.
2016-09-01
We present the three-layer model to calculate the surface second-harmonic generation (SSHG) yield. This model considers that the surface is represented by three regions or layers. The first layer is the vacuum region with a dielectric function ɛv(ω ) =1 from where the fundamental electric field impinges on the material. The second layer is a thin layer (ℓ ) of thickness d characterized by a dielectric function ɛℓ(ω ) , and it is in this layer where the SSHG takes place. The third layer is the bulk region denoted by b and characterized by ɛb(ω ) . Both the vacuum and bulk layers are semi-infinite. The model includes the multiple reflections of both the fundamental and the second-harmonic (SH) fields that take place at the thin layer ℓ . We obtain explicit expressions for the SSHG yield for the commonly used s and p polarizations of the incoming 1 ω and outgoing 2 ω electric fields, where no assumptions for the symmetry of the surface are made. These symmetry assumptions ultimately determine which components of the surface nonlinear second-order susceptibility tensor χ (-2 ω ;ω ,ω ) are different from zero, and thus contribute to the SSHG yield. Then, we particularize the results for the most commonly investigated surfaces, the (001), (110), and (111) crystallographic faces, taking their symmetries into account. We use the three-layer model and compare it against the experimental results of a Si(111)(1 ×1 ):H surface, as a test case, and use it to predict the SSHG yield of a Si(001)(2 ×1 ) surface.
How to Include Steep Bank Retreat in 2D/3D Morphological Models?
NASA Astrophysics Data System (ADS)
Jagers, B.; Spruyt, A.; Mosselman, E.
2011-12-01
State-of-the-art 2D/3D morphological models like open source Delft3D include an increasing number of features, such as multiple cohesive and non-cohesive sediment fractions, bed load and separate suspended load (including density effects), sediment fraction interaction processes such as hiding and exposure, ripple and dune predictors, consolidation, and bed composition stratigraphy. However, this and similar models have been developed for simulating morphological changes under the assumption that horizontal scales are large compared to the vertical scale and that the processes affecting the bed are hence dominantly vertical fluxes. However, near banks and steep slopes the processes have a significant horizontal component: a crucial aspect in the simulation of meandering rivers. Although simple or engineering solutions have been added to many of these models to get some erosion of dry areas, scientifically based bank erosion formulations are generally lacking in these models. Although such formulations may be complex and non-deterministic, that is not the main reason why they haven't been implemented: resolving the shift of bank-lines on the grid is the main problem. Defining bank-lines along the nearest grid lines of a rectangular computational grid leads to staircase lines that impede any reasonable determination of the hydraulic loads on the banks. An adaptive curvilinear boundary-fitted grid may at first glance seem to solve this problem, but arbitrary bank retreat and advance deform such a grid prohibitively within a few bank-line update steps and cause stationary features of the landscape (e.g. a bridge or local sediment composition) to move with the grid or to diffuse due to numerical limitations. We have therefore chosen a new approach in which shifting bank-lines are followed as separate moving objects on a fixed grid, using local immersed-boundary techniques to solve the flow and sediment transport in the vicinity of the bank-lines. We show some results
NASA Astrophysics Data System (ADS)
Rizzo, Monica; O'Shaughnessy, Richard; Bernuzzi, Sebastiano; Lackey, Benjamin
2016-03-01
Ground gravitational wave detectors, built to detect perturbations in spacetime, can pick up signals produced by inspiraling binary neutron stars, the remnants of the core collapse of massive stars. A new EOB model (Bernuzzi et al. 2015) simulates the inspiral and merger of binary neutron star systems, including how they are deformed due to tides. We used a Bayesian parameter estimation algorithm to infer how well a plausible gravitational wave detection would allow us to constrain this tidal deformability. We then compared our results to prior investigations (Wade et al. 2014) which employed a post-Newtonian-based approximation for the inspiral. I would like to thank the RIT Department of Physics and Astronomy, and the RIT Center for Computational Relativity and Gravitation.
NASA Astrophysics Data System (ADS)
Son, Yurak; Kamano, Takuya; Yasuno, Takashi; Suzuki, Takayuki; Harada, Hironobu
This paper describes the generation of adaptive gait patterns using new Central Pattern Generators (CPGs) including motor dynamic models for a quadruped robot under various environment. The CPGs act as the flexible oscillators of the joints and make the desired angle of the joints. The CPGs are mutually connected each other, and the sets of their coupling parameters are adjusted by genetic algorithm so that the quadruped robot can realize the stable and adequate gait patterns. As a result of generation, the suitable CPG networks for not only a walking straight gait pattern but also rotation gait patterns are obtained. Experimental results demonstrate that the proposed CPG networks are effective to automatically adjust the adaptive gait patterns for the tested quadruped robot under various environment. Furthermore, the target tracking control based on image processing is achieved by combining the generated gait patterns.
NASA Astrophysics Data System (ADS)
Sharma, Reena; Raghuwanshi, Sanjeev Kumar
2017-02-01
Line surveillance and management information in erbium-doped fiber amplifiers (EDFAs) can be broadcast by modulating the amplitude of the low-frequency lightwave information signal, the process termed as overmodulation in the literature. This paper presents systematic solutions for the overmodulated pump and information signal transfer functions for EDFA. It includes amplified spontaneous emission (ASE) that has an impact on outcomes in the high-gain system. To the extent of our belief, the methodical model simulated with the current approach leads to a distinct perspective of an outcome in the respective field. The test bed described here is realistic. It specifically represents the overmodulation behavior in an EDFA under the influence of ASE.
An extension of the VIRA electron temperature and density models to include solar cycle variations
NASA Astrophysics Data System (ADS)
Brace, L. H.; Theis, R. F.
The original VIRA ionosphere model was based primarily on the Pioneer Venus Orbiter (PVO) data obtained at solar maximum (F10.7~200) in 1979 and 1980 when periapsis was being maintained deep in the Venusian ionosphere. In situ measurements provided data on temperature, composition, density, and drift velocity, while the radio occultation method provided height profiles of electron density, N_e. The solar cycle variation was deduced by comparison with the Venera 9 and 10 occultation data from the previous solar minimum. No data were available on the solar cycle variations of other ionospheric parameters, because periapsis had already risen out of the ionosphere by the time solar activity began to decline early in 1983. During the Entry period in the Fall of 1992, however, PVO got a brief glimpse of the nightside ionosphere at lower solar activity (F10.7~120). During the intervening decade important in situ data were obtained on the upper nightside ionosphere that extends far down stream from the planet. This region was found to be highly sensitive to solar wind interactions and solar activity. In this paper, we discuss ways in which the later PVO data can be used to extend the VIRA model to higher altitudes and to include the solar cycle variations. As an example, we present some pre-entry Orbiter Electron Temperature Probe measurements that provide new clues as to the dayside T_e behavior at low solar activity.
Equivalent Plate Structural Modeling for Wing Shape Optimization Including Transverse Shear
NASA Technical Reports Server (NTRS)
Livne, Eli
1994-01-01
A new technique for structural modeling of airplane wings is presented taking transverse shear effects into account. The kinematic assumptions of first-order shear deformation plate theory In combination with numerical analysis, where simple polynomials are used to define geometry, construction, and displacement approximations, lead to analytical expressions for elements of the stiffness and mass matrices and load vector. Contributions from the cover skins, spar and rib caps, and spar and rib webs are included as well as concentrated springs and concentrated masses. Limitations of wing modeling techniques based on classical plate theory are discussed, and the Improved accuracy of the new equivalent plate technique is demonstrated through comparison with finite element analysis and test results. Expressions for analytical derivatives of stiffness, mass, and load terms with respect to wing shape are given. Based on these, it is possible to obtain analytic sensitivities of displacements, stresses, and natural frequencies with respect to planform shape and depth distribution. This makes the new capability an effective structural tool for wing shape optimization.
Equivalent plate structural modeling for wing shape optimization including transverse shear
NASA Technical Reports Server (NTRS)
Livne, Eli
1994-01-01
A new technique for structural modeling of airplanes wings is presented taking transverse shear effects into account. The kinematic assumptions of first-order shear deformation plate theory in combination with numerical analysis, where simple polynomials are used to define geometry, construction, and displacement approximations, lead to analytical expressions for elements of the stiffness and mass matrices and load vector. Contributions from the cover skins, spar and rib caps, and spar and rib webs are included as well as concentrated springs and concentrated masses. Limitations of wing modeling techniques based on classical plate theory are discussed, and the improved accuracy of the new equivalent plate technique is demonstrated through comparison with finite element analysis and test results. Expressions for analytical derivatives of stiffness, mass, and load terms with respect to wing shape are given. Based on these, it is possible to obtain analytic sensitivities of displacements, stresses, and natural frequencies with respect to planform shape and depth distribution. This makes the new capability an effective structural tool for wing shape optimization.
Three-dimensional finite difference viscoelastic wave modelling including surface topography
NASA Astrophysics Data System (ADS)
Hestholm, Stig
1999-12-01
I have undertaken 3-D finite difference (FD) modelling of seismic scattering fromfree-surface topography. Exact free-surface boundary conditions for arbitrary 3-D topographies have been derived for the particle velocities. The boundary conditions are combined with a velocity-stress formulation of the full viscoelastic wave equations. A curved grid represents the physical medium and its upper boundary represents the free-surface topography. The wave equations are numerically discretized by an eighth-order FD method on a staggered grid in space, and a leap-frog technique and the Crank-Nicholson method in time. I simulate scattering from teleseismic P waves by using plane incident wave fronts and real topography from a 60 x 60 km area that includes the NORESS array of seismic receiver stations in southeastern Norway. Synthetic snapshots and seismograms of the wavefield show clear conversion from P to Rg (short-period fundamental-mode Rayleigh) waves in areas of rough topography, which is consistent with numerous observations. By parallelization on fast supercomputers, it is possible to model higher frequencies and/or larger areas than before.
A.S. Agarwal; U. Landau; X. Shan; J.H. Payer
2006-03-14
Crevice corrosion may be limited by the capacity of the external cathodic region to support anodic dissolution currents within the crevice. The analysis here focuses on behavior of metal surfaces covered by a thin ({approx}microns) layer of the electrolyte film including particulates. The particulates can affect the cathode current capacity (I{sub total}) by increasing the solution resistance (''volume effect'') and by decreasing the electrode area (''surface effect''). In addition, there can be particulate effects on oxygen reduction kinetics and oxygen transport. This work simulates and characterizes the effect of a uniform particulate monolayer on the cathode current capacity for steady state conditions in the presence of a thin electrolyte film. Particulate configurations with varying particle size, shape, arrangement, volume fraction, and electrode area coverage were numerically modeled as a function of the properties of the system. It is observed that the effects of particles can be fully accounted for in terms of two corrections: the volume blockage effect on the electrolyte resistivity can be correlated using Bruggeman's equation, and the electrode coverage effect can be modeled in terms of a simple area correction to the kinetics expression. For the range of parameters analyzed, applying these two correction factors, cathodes covered with thin electrolyte films that contain particles can be represented in terms of equivalent homogeneous electrolytes that can then be analyzed using simpler approaches. Continuing work will examine the effects of greater volume fractions of particles and multiple particle layers.
Coupling Time Decoding and Trajectory Decoding using a Target-Included Model in the Motor Cortex
Hatsopoulos, Nicholas G.; Wu, Wei
2012-01-01
Significant progress has been made within the last decade in motor cortical decoding that predicts movement behaviors from population neuronal activity in the motor cortex. A majority of these decoding methods have focused on estimating a subject’s hand trajectory in a continuous movement. We recently proposed a time identification decoding approach and showed that if a stereotyped movement is well represented by a sequence of targets (or landmarks), then the main structure of the movement can be reconstructed by detecting the reaching times at those targets. Both trajectory decoding and landmark-time decoding have their particular advantages, whereas a coupling of these two different strategies has not been examined. In this article we propose a synergy that comes from combining these two approaches for a stereotyped movement under a linear state-space framework. We develop a new decoding procedure based on a forward-backward propagation where the target is used in the initial stage in the backward step. Experimental results show that the new method significantly improves decoding accuracy over the non-target-included models. Furthermore, the coupling based on the new target-included method effectively combines the time decoding and trajectory decoding and further improves the decoding accuracy. PMID:22379284
Stucki, S; Orozco-terWengel, P; Forester, B R; Duruz, S; Colli, L; Masembe, C; Negrini, R; Landguth, E; Jones, M R; Bruford, M W; Taberlet, P; Joost, S
2016-11-01
With the increasing availability of both molecular and topo-climatic data, the main challenges facing landscape genomics - that is the combination of landscape ecology with population genomics - include processing large numbers of models and distinguishing between selection and demographic processes (e.g. population structure). Several methods address the latter, either by estimating a null model of population history or by simultaneously inferring environmental and demographic effects. Here we present samβada, an approach designed to study signatures of local adaptation, with special emphasis on high performance computing of large-scale genetic and environmental data sets. samβada identifies candidate loci using genotype-environment associations while also incorporating multivariate analyses to assess the effect of many environmental predictor variables. This enables the inclusion of explanatory variables representing population structure into the models to lower the occurrences of spurious genotype-environment associations. In addition, samβada calculates local indicators of spatial association for candidate loci to provide information on whether similar genotypes tend to cluster in space, which constitutes a useful indication of the possible kinship between individuals. To test the usefulness of this approach, we carried out a simulation study and analysed a data set from Ugandan cattle to detect signatures of local adaptation with samβada, bayenv, lfmm and an FST outlier method (FDIST approach in arlequin) and compare their results. samβada - an open source software for Windows, Linux and Mac OS X available at http://lasig.epfl.ch/sambada - outperforms other approaches and better suits whole-genome sequence data processing.
Onishi, Janet C; Park, Joong-Wook; Prado, Julio; Eades, Susan C; Mirza, Mustajab H; Fugaro, Michael N; Häggblom, Max M; Reinemeyer, Craig R
2012-10-12
Carbohydrate overload models of equine acute laminitis are used to study the development of lameness. It is hypothesized that a diet-induced shift in cecal bacterial communities contributes to the development of the pro-inflammatory state that progresses to laminar failure. It is proposed that vasoactive amines, protease activators and endotoxin, all bacterial derived bioactive metabolites, play a role in disease development. Questions regarding the oral bioavailability of many of the bacterial derived bioactive metabolites remain. This study evaluates the possibility that a carbohydrate-induced overgrowth of potentially pathogenic cecal bacteria occurs and that bacterial translocation contributes toward the development of the pro-inflammatory state. Two groups of mixed-breed horses were used, those with laminitis induced by cornstarch (n=6) or oligofructan (n=6) and non-laminitic controls (n=8). Cecal fluid and tissue homogenates of extra-intestinal sites including the laminae were used to enumerate Gram-negative and -positive bacteria. Horses that developed Obel grade2 lameness, revealed a significant overgrowth of potentially pathogenic Gram-positive and Gram-negative intestinal bacteria within the cecal fluid. Although colonization of extra-intestinal sites with potentially pathogenic bacteria was not detected, results of this study indicate that cecal/colonic lymphadenopathy and eosinophilia develop in horses progressing to lameness. It is hypothesized that the pro-inflammatory state in carbohydrate overload models of equine acute laminitis is driven by an immune response to the rapid overgrowth of Gram-positive and Gram-negative cecal bacterial communities in the gut. Further equine research is indicated to study the immunological response, involving the lymphatic system that develops in the model.
INTERIOR MODELS OF SATURN: INCLUDING THE UNCERTAINTIES IN SHAPE AND ROTATION
Helled, Ravit; Guillot, Tristan
2013-04-20
The accurate determination of Saturn's gravitational coefficients by Cassini could provide tighter constraints on Saturn's internal structure. Also, occultation measurements provide important information on the planetary shape which is often not considered in structure models. In this paper we explore how wind velocities and internal rotation affect the planetary shape and the constraints on Saturn's interior. We show that within the geodetic approach the derived physical shape is insensitive to the assumed deep rotation. Saturn's re-derived equatorial and polar radii at 100 mbar are found to be 54,445 {+-} 10 km and 60,365 {+-} 10 km, respectively. To determine Saturn's interior, we use one-dimensional three-layer hydrostatic structure models and present two approaches to include the constraints on the shape. These approaches, however, result in only small differences in Saturn's derived composition. The uncertainty in Saturn's rotation period is more significant: with Voyager's 10{sup h}39{sup m} period, the derived mass of heavy elements in the envelope is 0-7 M{sub Circled-Plus }. With a rotation period of 10{sup h}32{sup m}, this value becomes <4 M{sub Circled-Plus }, below the minimum mass inferred from spectroscopic measurements. Saturn's core mass is found to depend strongly on the pressure at which helium phase separation occurs, and is estimated to be 5-20 M{sub Circled-Plus }. Lower core masses are possible if the separation occurs deeper than 4 Mbar. We suggest that the analysis of Cassini's radio occultation measurements is crucial to test shape models and could lead to constraints on Saturn's rotation profile and departures from hydrostatic equilibrium.
NASA Astrophysics Data System (ADS)
Scifoni, E.; Tinganelli, W.; Weyrather, W. K.; Durante, M.; Maier, A.; Krämer, M.
2013-06-01
We present a method for adapting a biologically optimized treatment planning for particle beams to a spatially inhomogeneous tumor sensitivity due to hypoxia, and detected e.g., by PET functional imaging. The TRiP98 code, established treatment planning system for particles, has been extended for including explicitly the oxygen enhancement ratio (OER) in the biological effect calculation, providing the first set up of a dedicated ion beam treatment planning approach directed to hypoxic tumors, TRiP-OER, here reported together with experimental tests. A simple semi-empirical model for calculating the OER as a function of oxygen concentration and dose averaged linear energy transfer, generating input tables for the program is introduced. The code is then extended in order to import such tables coming from the present or alternative models, accordingly and to perform forward and inverse planning, i.e., predicting the survival response of differently oxygenated areas as well as optimizing the required dose for restoring a uniform survival effect in the whole irradiated target. The multiple field optimization results show how the program selects the best beam components for treating the hypoxic regions. The calculations performed for different ions, provide indications for the possible clinical advantages of a multi-ion treatment. Finally the predictivity of the code is tested through dedicated cell culture experiments on extended targets irradiation using specially designed hypoxic chambers, providing a qualitative agreement, despite some limits in full survival calculations arising from the RBE assessment. The comparison of the predictions resulting by using different model tables are also reported.
Van Epps, J Scott; Vorp, David A
2008-10-01
The biomechanical milieu of the coronary arteries is unique in that they experience mechanical deformations of twisting, bending, and stretching due to their tethering to the epicardial surface. Spatial variations in stresses caused by these deformations could account for the heterogeneity of atherosclerotic plaques within the coronary tree. The goal of this work was to utilize previously reported shear moduli to calculate a shear strain parameter for a Fung-type exponential model of the arterial wall and determine if this single constant can account for the observed behavior of arterial segments under torsion. A Fung-type exponential strain-energy function was adapted to include a torsional shear strain term. The material parameter for this term was determined from previously published data describing the relationship between shear modulus and circumferential stress and longitudinal stretch ratio. Values for the shear strain parameter were determined for three geometries representing the mean porcine left anterior descending coronary artery dimensions plus or minus one standard deviation. Finite element simulation of triaxial biomechanical testing was then used to validate the model. The mean value calculated for the shear strain parameter was 0.0759+/-0.0009 (N=3 geometries). In silico triaxial experiments demonstrated that the shear modulus is directly proportional to the applied pressure at a constant longitudinal stretch ratio and to the stretch ratio at a constant pressure. Shear moduli determined from these simulations showed excellent agreement to shear moduli reported in literature. Previously published models describing the torsional shear behavior of porcine coronary arteries require a total of six independent constants. We have reduced that description into a single parameter in a Fung-type exponential strain-energy model. This model will aid in the estimation of wall stress distributions of vascular segments undergoing torsion, as such information
ERIC Educational Resources Information Center
Aydin, Burak; Leite, Walter L.; Algina, James
2016-01-01
We investigated methods of including covariates in two-level models for cluster randomized trials to increase power to detect the treatment effect. We compared multilevel models that included either an observed cluster mean or a latent cluster mean as a covariate, as well as the effect of including Level 1 deviation scores in the model. A Monte…
ERIC Educational Resources Information Center
Aydin, Burak; Leite, Walter L.; Algina, James
2016-01-01
We investigated methods of including covariates in two-level models for cluster randomized trials to increase power to detect the treatment effect. We compared multilevel models that included either an observed cluster mean or a latent cluster mean as a covariate, as well as the effect of including Level 1 deviation scores in the model. A Monte…
Mating programs including genomic relationships
USDA-ARS?s Scientific Manuscript database
Computer mating programs have helped breeders minimize pedigree inbreeding and avoid recessive defects by mating animals with parents that have fewer common ancestors. With genomic selection, breed associations, AI organizations, and on-farm software providers could use new programs to minimize geno...
Extending the actor-partner interdependence model to include cross-informant data.
van Dulmen, Manfred H M; Goncy, Elizabeth A
2010-12-01
This paper illustrates an extension of the APIM technique within a path analysis framework by using cross-informant data on the outcome variable. Data for the current study were derived from a sample of young adult heterosexual couples who had been in a romantic relationship for at least four months (N = 115 couples). The findings from the current study indicate that romantic relationship satisfaction is associated with externalizing behavior problems among both females and males, but that both dyadic data and cross-informant reports are needed to understand this association. Not considering dyadic or cross-informant data may lead to different, and potentially misleading, claims. The findings from the current study provide clear evidence that incorporating cross-informant data in dyadic data analyses provides important new insights into understanding the association between romantic relationship functioning and individual outcomes. Published by Elsevier Ltd.
ERIC Educational Resources Information Center
Department of Defense, Washington, DC.
Updated Defense Economic Impact Modeling System (DEIMS) manpower data are provided. Skilled-labor demand by job categories and industrial sectors are estimated for 163 skill categories. Both defense and non-defense demands are presented for the years 1982 to 1987. The average annual percentage growth for the time period is also estimated. Data are…
Ac modelling of D2 automotive HID lamps including plasma and electrodes
NASA Astrophysics Data System (ADS)
Flesch, P.; Neiger, M.
2004-10-01
The 35 W D2 automotive headlight lamp with an electrode gap of around 4 mm is a well known example of a short-arc high-intensity discharge (HID) lamp. It has a filling of xenon, mercury, and sodium/scandium iodide and is driven by a rectangular-wave current of 0.4 A, 400 Hz. Other fields of application of HID lamps are video projection (UHP), street and industrial lighting, floodlighting, etc. Due to their small size and short timescales, HID lamps are often experimentally difficult to investigate or even inaccessible. Thus modelling gets more and more important. The challenges in modelling such lamps are e.g. the important plasma-electrode interaction, the time dependence (electrodes change with 400 Hz from anode to cathode phase and vice versa in the case of D2 lamps), and the complex plasma composition (Xe, Hg, NaI, ScI3 in the case of D2 lamps). Additionally the electrodes might change their well-defined tip geometry during operation, causing substantial changes in electrode temperature or electrode fall voltages. This paper intends to address all these questions and compare results of numerical simulations with measurements of plasma and electrode temperatures. Special focus is directed towards the important electrode-plasma interaction, which, even after seven decades of HID lamps, has not been understood satisfactorily. The results presented in this paper are very important for a better understanding of dc and ac HID lamps including the treatment of complex plasma compositions, the choice of the work functions, and the effect of different electrode geometries. Furthermore the results of the numerical simulations will lead to improved or new HID lamps.
Fast hybrid SPECT simulation including efficient septal penetration modelling (SP-PSF).
Staelens, Steven; de Wit, Tim; Beekman, Freek
2007-06-07
Single photon emission computed tomography (SPECT) images are degraded by the detection of scattered photons and photons that penetrate the collimator septa. In this paper, a previously proposed Monte Carlo software that employs fast object scatter simulation using convolution-based forced detection (CFD) is extended towards a wide range of medium and high energy isotopes measured using various collimators. To this end, a fast method was developed for incorporating effects of septal penetrating (SP) photons. The SP contributions are obtained by calculating the object attenuation along the path from primary emission to detection followed by sampling a pre-simulated and scalable septal penetration point spread function (SP-PSF). We found that with only a very slight reduction in accuracy, we could accelerate the SP simulation by four orders of magnitude. To achieve this, we combined: (i) coarse sampling of the activity and attenuation distribution; (ii) simulation of the penetration only for a coarse grid of detector pixels followed by interpolation and (iii) neglection of SP-PSF elements below a certain threshold. By inclusion of this SP-PSF-based simulation it became possible to model both primary and septal penetrated photons while only 10% extra computation time was added to the CFD-based Monte Carlo simulator. As a result, a SPECT simulation of a patient-like distribution including SP now takes less than 5 s per projection angle on a dual processor PC. Therefore, the simulator is well-suited as an efficient projector for fully 3D model-based reconstruction or as a fast data-set generator for applications such as image processing optimization or observer studies.
Planetary spacecraft cost modeling utilizing labor estimating relationships
NASA Technical Reports Server (NTRS)
Williams, Raymond
1990-01-01
A basic computerized technology is presented for estimating labor hours and cost of unmanned planetary and lunar programs. The user friendly methodology designated Labor Estimating Relationship/Cost Estimating Relationship (LERCER) organizes the forecasting process according to vehicle subsystem levels. The level of input variables required by the model in predicting cost is consistent with pre-Phase A type mission analysis. Twenty one program categories were used in the modeling. To develop the model, numerous LER and CER studies were surveyed and modified when required. The result of the research along with components of the LERCER program are reported.
Hierarchical longitudinal models of relationships in social networks
Paul, Sudeshna; O’Malley, A. James
2013-01-01
Summary Motivated by the need to understand the dynamics of relationship formation and dissolution over time in real-world social networks we develop a new longitudinal model for transitions in the relationship status of pairs of individuals (“dyads”). We first specify a model for the relationship status of a single dyad and then extend it to account for important inter-dyad dependencies (e.g., transitivity – “a friend of a friend is a friend”) and heterogeneity. Model parameters are estimated using Bayesian analysis implemented via Markov chain Monte Carlo. We use the model to perform novel analyses of two diverse longitudinal friendship networks: an excerpt of the Teenage Friends and Lifestyle Study (a moderately sized network) and the Framingham Heart Study (FHS) (a large network). PMID:24729637
Relationships between water table and model simulated ET
Prem B. Parajuli; Gretchen F. Sassenrath; Ying Ouyang
2013-01-01
This research was conducted to develop relationships among evapotranspiration (ET), percolation (PERC), groundwater discharge to the stream (GWQ), and water table fluctuations through a modeling approach. The Soil and Water Assessment Tool (SWAT) hydrologic and crop models were applied in the Big Sunflower River watershed (BSRW; 7660 km2) within the Yazoo River Basin...
NASA Astrophysics Data System (ADS)
Calov, Reinhard; Beyer, Sebastian; Greve, Ralf; Kleiner, Thomas; Rückamp, Martin; Humbert, Angelika; Ganopolski, Andrey
2017-04-01
We present simulations with the dynamic/thermodynamic ice sheet model SICOPOLIS (version 3) coupled to HYDRO, a model of basal hydrology. SICOPOLIS describes the evolution of ice thickness, temperature and water content of ice sheets. Recently, the treatment of longitudinal and lateral stresses ("shelfy stream approximation") for the dynamics and the enthalpy method as an alternative method for solving the energy equation were included into the model. HYDRO describes the basal water transport using the hydrological potential. In a bi-directional coupling, HYDRO receives the basal water fluxes from SICOPOLIS, while the basal water from HYDRO affects the basal sliding in SICOPOLIS. Here, we present offline simulations with HYDRO as well as simulations with SICOPOLIS-only and the coupled model SICOPOLIS-HYDRO. Several sensitivity studies highlight the importance of basal processes. In particular, we inspect the role of horizontal resolution. It shows that not only horizontal resolution plays an important role for resolving outlet glaciers, but also the coupled model better reproduces outlet glaciers compared to the uncoupled one; even the North-East-Greenland Ice Stream is modelled quite well without the need for special regional tuning.
Exploring Third-Grade Student Model-Based Explanations about Plant Relationships within an Ecosystem
ERIC Educational Resources Information Center
Zangori, Laura; Forbes, Cory T.
2015-01-01
Elementary students should have opportunities to develop scientific models to reason and build understanding about how and why plants depend on relationships within an ecosystem for growth and survival. However, scientific modeling practices are rarely included within elementary science learning environments and disciplinary content is often…
Exploring Third-Grade Student Model-Based Explanations about Plant Relationships within an Ecosystem
ERIC Educational Resources Information Center
Zangori, Laura; Forbes, Cory T.
2015-01-01
Elementary students should have opportunities to develop scientific models to reason and build understanding about how and why plants depend on relationships within an ecosystem for growth and survival. However, scientific modeling practices are rarely included within elementary science learning environments and disciplinary content is often…
Exploring Third-Grade Student Model-Based Explanations about Plant Relationships within an Ecosystem
NASA Astrophysics Data System (ADS)
Zangori, Laura; Forbes, Cory T.
2015-12-01
Elementary students should have opportunities to develop scientific models to reason and build understanding about how and why plants depend on relationships within an ecosystem for growth and survival. However, scientific modeling practices are rarely included within elementary science learning environments and disciplinary content is often treated as discrete pieces separate from scientific practice. Elementary students have few, if any, opportunities to reason about how individual organisms, such as plants, hold critical relationships with their surrounding environment. The purpose of this design-based research study is to build a learning performance to identify and explore the third-grade students' baseline understanding of and their reasoning about plant-ecosystem relationships when engaged in the practices of modeling. The developed learning performance integrated scientific content and core scientific activity to identify and measure how students build knowledge about the role of plants in ecosystems through the practices of modeling. Our findings indicate that the third-grade students' ideas about plant growth include abiotic and biotic relationships. Further, they used their models to reason about how and why these relationships were necessary to maintain plant stasis. However, while the majority of the third-grade students were able to identify and reason about plant-abiotic relationships, a much smaller group reasoned about plant-abiotic-animal relationships. Implications from the study suggest that modeling serves as a tool to support elementary students in reasoning about system relationships, but they require greater curricular and instructional support in conceptualizing how and why ecosystem relationships are necessary for plant growth and development. This paper is based on data from a doctoral dissertation. An earlier version of this paper was presented at the 2015 international conference for the National Association for Research in Science
NASA Astrophysics Data System (ADS)
Höning, D.; Spohn, T.
2014-12-01
By harvesting solar energy and converting it to chemical energy, photosynthetic life plays an important role in the energy budget of Earth [2]. This leads to alterations of chemical reservoirs eventually affecting the Earth's interior [4]. It further has been speculated [3] that the formation of continents may be a consequence of the evolution life. A steady state model [1] suggests that the Earth without its biosphere would evolve to a steady state with a smaller continent coverage and a dryer mantle than is observed today. We present a model including (i) parameterized thermal evolution, (ii) continental growth and destruction, and (iii) mantle water regassing and outgassing. The biosphere enhances the production rate of sediments which eventually are subducted. These sediments are assumed to (i) carry water to depth bound in stable mineral phases and (ii) have the potential to suppress shallow dewatering of the underlying sediments and crust due to their low permeability. We run a Monte Carlo simulation for various initial conditions and treat all those parameter combinations as success which result in the fraction of continental crust coverage observed for present day Earth. Finally, we simulate the evolution of an abiotic Earth using the same set of parameters but a reduced rate of continental weathering and erosion. Our results suggest that the origin and evolution of life could have stabilized the large continental surface area of the Earth and its wet mantle, leading to the relatively low mantle viscosity we observe at present. Without photosynthetic life on our planet, the Earth would be geodynamical less active due to a dryer mantle, and would have a smaller fraction of continental coverage than observed today. References[1] Höning, D., Hansen-Goos, H., Airo, A., Spohn, T., 2014. Biotic vs. abiotic Earth: A model for mantle hydration and continental coverage. Planetary and Space Science 98, 5-13. [2] Kleidon, A., 2010. Life, hierarchy, and the
A Multivariate Model of Parent-Adolescent Relationship Variables in Early Adolescence
ERIC Educational Resources Information Center
McKinney, Cliff; Renk, Kimberly
2011-01-01
Given the importance of predicting outcomes for early adolescents, this study examines a multivariate model of parent-adolescent relationship variables, including parenting, family environment, and conflict. Participants, who completed measures assessing these variables, included 710 culturally diverse 11-14-year-olds who were attending a middle…
A Multivariate Model of Parent-Adolescent Relationship Variables in Early Adolescence
ERIC Educational Resources Information Center
McKinney, Cliff; Renk, Kimberly
2011-01-01
Given the importance of predicting outcomes for early adolescents, this study examines a multivariate model of parent-adolescent relationship variables, including parenting, family environment, and conflict. Participants, who completed measures assessing these variables, included 710 culturally diverse 11-14-year-olds who were attending a middle…
Extending the Actor-Partner Interdependence Model to Include Cross-Informant Data
ERIC Educational Resources Information Center
van Dulmen, Manfred H. M.; Goncy, Elizabeth A.
2010-01-01
This paper illustrates an extension of the APIM technique within a path analysis framework by using cross-informant data on the outcome variable. Data for the current study were derived from a sample of young adult heterosexual couples who had been in a romantic relationship for at least four months (N = 115 couples). The findings from the current…
Extending the Actor-Partner Interdependence Model to Include Cross-Informant Data
ERIC Educational Resources Information Center
van Dulmen, Manfred H. M.; Goncy, Elizabeth A.
2010-01-01
This paper illustrates an extension of the APIM technique within a path analysis framework by using cross-informant data on the outcome variable. Data for the current study were derived from a sample of young adult heterosexual couples who had been in a romantic relationship for at least four months (N = 115 couples). The findings from the current…
Including Maximum Sustained Wind Speed in a Time Series Model to Forecast Hurricane Movement
1993-03-01
March, 1993 ii Table of Contents Page I. Hurricane Forecasti...g I 1. 1 Hurricane Forecast Models .......................... 2 1.2 H-xrricane Forecasting... Hurricane Forecast Models Tremendous amounts of research have gone into the prediction of where a hurricane will hit land with little improvement over...model is less than the CURRY model (17:295). Based on this analysis, we can conclude that the hurricane forecast ability for the FINAL model is better
Satpathy, Preseela; Biernacki, Piotr; Cypionka, Heribert; Steinigeweg, Sven
2016-12-05
A modified Anaerobic Digestion Model No. 1 (ADM1xp) including lactate was applied to a full-scale biogas plant. This model considers monosaccharides to degrade through lactic acid, which further degrades majorly into acetate followed by propionate and butyrate. Experimental data were derived from the previous works in the same laboratory, and the proposed parameters were validated against batch experiments. After successful validation, the biogas plant bearing a fermenter size of 7 dam(3) and operated with food waste and cattle manure was simulated. The biogas production and methane content were reliably simulated, and a good fit could be obtained against the experimental data with an average difference of less than 1%. When compared to the original ADM1 model, the performance of the lactate-incorporated model was found to be improved. Inclusion of lactate as a parameter in the ADM1xp model is recommended for an increased sensitivity and enhanced prediction principally for systems dealing with high carbohydrate and lactate loads.
The force-frequency relationship: insights from mathematical modeling
Negroni, Jorge A.; Chen-Izu, Ye; Bers, Donald M.
2013-01-01
The force-frequency relationship has intrigued researchers since its discovery by Bowditch in 1871. Many attempts have been made to construct mathematical descriptions of this phenomenon, beginning with the simple formulation of Koch-Wesser and Blinks in 1963 to the most sophisticated ones of today. This property of cardiac muscle is amplified by β-adrenergic stimulation, and, in a coordinated way, the neurohumoral state alters both frequency (acting on the sinoatrial node) as well as force generation (modifying ventricular myocytes). This synchronized tuning is needed to meet new metabolic demands. Cardiac modelers have already linked mechanical and electrical activity in their formulations and showed how those activities feedback on each other. However, now it is necessary to include neurological control to have a complete description of heart performance, especially when changes in frequency are involved. Study of arrhythmias (or antiarrhythmic drugs) based on mathematical models should incorporate this effect to make useful predictions or point out potential pharmaceutical targets. PMID:23471245
NASA Astrophysics Data System (ADS)
Lu, Wei; Yang, Qingchun; Martín, Jordi D.; Juncosa, Ricardo
2013-04-01
During the 1990s, groundwater overexploitation has resulted in seawater intrusion in the coastal aquifer of the Shenzhen city, China. Although water supply facilities have been improved and alleviated seawater intrusion in recent years, groundwater overexploitation is still of great concern in some local areas. In this work we present a three-dimensional density-dependent numerical model developed with the FEFLOW code, which is aimed at simulating the extent of seawater intrusion while including tidal effects and different groundwater pumping scenarios. Model calibration, using waterheads and reported chloride concentration, has been performed based on the data from 14 boreholes, which were monitored from May 2008 to December 2009. A fairly good fitness between the observed and computed values was obtained by a manual trial-and-error method. Model prediction has been carried out forward 3 years with the calibrated model taking into account high, medium and low tide levels and different groundwater exploitation schemes. The model results show that tide-induced seawater intrusion significantly affects the groundwater levels and concentrations near the estuarine of the Dasha river, which implies that an important hydraulic connection exists between this river and groundwater, even considering that some anti-seepage measures were taken in the river bed. Two pumping scenarios were considered in the calibrated model in order to predict the future changes in the water levels and chloride concentration. The numerical results reveal a decreased tendency of seawater intrusion if groundwater exploitation does not reach an upper bound of about 1.32 × 104 m3/d. The model results provide also insights for controlling seawater intrusion in such coastal aquifer systems.
NASA Astrophysics Data System (ADS)
Fitzenz, D. D.; Nyst, M.; Apel, E. V.; Muir-Wood, R.
2014-12-01
The recent Canterbury earthquake sequence (CES) renewed public and academic awareness concerning the clustered nature of seismicity. Multiple event occurrence in short time and space intervals is reminiscent of aftershock sequences, but aftershock is a statistical definition, not a label one can give an earthquake in real-time. Aftershocks are defined collectively as what creates the Omori event rate decay after a large event or are defined as what is taken away as "dependent events" using a declustering method. It is noteworthy that depending on the declustering method used on the Canterbury earthquake sequence, the number of independent events varies a lot. This lack of unambiguous definition of aftershocks leads to the need to investigate the amount of clustering inherent in "declustered" risk models. This is the task we concentrate on in this contribution. We start from a background source model for the Canterbury region, in which 1) centroids of events of given magnitude are distributed using a latin-hypercube lattice, 2) following the range of preferential orientations determined from stress maps and focal mechanism, 3) with length determined using the local scaling relationship and 4) rates from a and b values derived from the declustered pre-2010 catalog. We then proceed to create tens of thousands of realizations of 6 to 20 year periods, and we define criteria to identify which successions of events in the region would be perceived as a sequence. Note that the spatial clustering expected is a lower end compared to a fully uniform distribution of events. Then we perform the same exercise with rates and b-values determined from the catalog including the CES. If the pre-2010 catalog was long (or rich) enough, then the computed "stationary" rates calculated from it would include the CES declustered events (by construction, regardless of the physical meaning of or relationship between those events). In regions of low seismicity rate (e.g., Canterbury before
A spatial model of cellular molecular trafficking including active transport along microtubules.
Cangiani, A; Natalini, R
2010-12-21
We consider models of Ran-driven nuclear transport of molecules such as proteins in living cells. The mathematical model presented is the first to take into account for the active transport of molecules along the cytoplasmic microtubules. All parameters entering the models are thoroughly discussed. The model is tested by numerical simulations based on discontinuous Galerkin finite element methods. The numerical experiments are compared to the behavior observed experimentally.
NASA Astrophysics Data System (ADS)
Wu, Jin-Sui; Yin, Shang-Xian; Zhao, Dong-Yu
2009-06-01
A particle model for resistance of flow in isotropic porous media is developed based on the fractal geometry theory and on the drag force flowing around sphere. The proposed model is expressed as a function of porosity, fluid property, particle size, fluid velocity (or Reynolds number) and fractal characters Df of particles in porous media. The model predictions are in good agreement with the experimental data. The validity of the proposed model is thus verified.
Including Overweight or Obese Students in Physical Education: A Social Ecological Constraint Model
ERIC Educational Resources Information Center
Li, Weidong; Rukavina, Paul
2012-01-01
In this review, we propose a social ecological constraint model to study inclusion of overweight or obese students in physical education by integrating key concepts and assumptions from ecological constraint theory in motor development and social ecological models in health promotion and behavior. The social ecological constraint model proposes…
Including Overweight or Obese Students in Physical Education: A Social Ecological Constraint Model
ERIC Educational Resources Information Center
Li, Weidong; Rukavina, Paul
2012-01-01
In this review, we propose a social ecological constraint model to study inclusion of overweight or obese students in physical education by integrating key concepts and assumptions from ecological constraint theory in motor development and social ecological models in health promotion and behavior. The social ecological constraint model proposes…
Hunt, Daniel L; Rai, Shesh N
2005-01-01
Usually, in teratological dose finding studies, there are not only threshold effects but also extra variations that cannot be accounted for by the beta-binomial model alone. The beta-binomial model assumes correlation between fetuses in the same litter. The general random effect threshold (RE) model allows the additional variability that arises due to correlation and between litter variability to be modeled, in combination with threshold in the model. The goal of this research was to investigate a threshold dose-response model with random effects (RE) to model the variability that exists between litters of animals in studies of toxic agents. Data from a developmental toxicity study of a toxic agent were analysed, using the proposed RE threshold dose-response model, which is an extension of logit in form. Also, an approximate likelihood function was used to derive parameter estimates from this model, and tests were performed to determine the significance of the model parameters, in particular, the RE parameter. A simulation study was conducted to assess the performance of the RE threshold model in estimating the model parameters. 2005 John Wiley & Sons, Ltd.
Conchúir, Shane Ó.; Der, Bryan S.; Drew, Kevin; Kuroda, Daisuke; Xu, Jianqing; Weitzner, Brian D.; Renfrew, P. Douglas; Sripakdeevong, Parin; Borgo, Benjamin; Havranek, James J.; Kuhlman, Brian; Kortemme, Tanja; Bonneau, Richard; Gray, Jeffrey J.; Das, Rhiju
2013-01-01
The Rosetta molecular modeling software package provides experimentally tested and rapidly evolving tools for the 3D structure prediction and high-resolution design of proteins, nucleic acids, and a growing number of non-natural polymers. Despite its free availability to academic users and improving documentation, use of Rosetta has largely remained confined to developers and their immediate collaborators due to the code’s difficulty of use, the requirement for large computational resources, and the unavailability of servers for most of the Rosetta applications. Here, we present a unified web framework for Rosetta applications called ROSIE (Rosetta Online Server that Includes Everyone). ROSIE provides (a) a common user interface for Rosetta protocols, (b) a stable application programming interface for developers to add additional protocols, (c) a flexible back-end to allow leveraging of computer cluster resources shared by RosettaCommons member institutions, and (d) centralized administration by the RosettaCommons to ensure continuous maintenance. This paper describes the ROSIE server infrastructure, a step-by-step ‘serverification’ protocol for use by Rosetta developers, and the deployment of the first nine ROSIE applications by six separate developer teams: Docking, RNA de novo, ERRASER, Antibody, Sequence Tolerance, Supercharge, Beta peptide design, NCBB design, and VIP redesign. As illustrated by the number and diversity of these applications, ROSIE offers a general and speedy paradigm for serverification of Rosetta applications that incurs negligible cost to developers and lowers barriers to Rosetta use for the broader biological community. ROSIE is available at http://rosie.rosettacommons.org. PMID:23717507
Personality, Relationship Conflict, and Teamwork-Related Mental Models
Vîrgă, Delia; CurŞeu, Petru Lucian; Maricuţoiu, Laurenţiu; Sava, Florin A.; Macsinga, Irina; Măgurean, Silvia
2014-01-01
This study seeks to explore whether neuroticism, agreeableness, and conscientiousness moderate the influence of relationship conflict experienced in groups on changes in group members' evaluative cognitions related to teamwork quality (teamwork-related mental models). Data from 216 students, nested in 48 groups were analyzed using a multilevel modeling approach. Our results show that the experience of relationship conflict leads to a negative shift from the pre-task to the post-task teamwork-related mental models. Moreover, the results indicate that conscientiousness buffered the negative association between relationship conflict and the change in teamwork-related mental models. Our results did not support the hypothesized moderating effect of agreeableness and show that the detrimental effect of relationship conflict on the shift in teamwork-related mental models is accentuated for group members scoring low rather than high on neuroticism. These findings open new research venues for exploring the association between personality, coping styles and change in teamwork-related mental models. PMID:25372143
Extending Galactic Habitable Zone Modelling to Include the Emergence of Intelligent Life
NASA Astrophysics Data System (ADS)
Morrison, I. S.; Gowanlock, M. G.
2014-03-01
Previous studies of the Galactic Habitable Zone (GHZ) have been concerned with identifying those regions of the Galaxy that may favour the emergence of "complex life" - typically defined to be land-based life. A planet is deemed "habitable" if it meets a set of assumed criteria for supporting the emergence of such complex life. The notion of the GHZ, and the premise that sufficient chemical evolution is required for planet formation, was quantified by Gonzalez et al. (2001). This work was later broadened to include dangers to the formation and habitability of terrestrial planets by Lineweaver et al. (2004) and then studied using a Monte Carlo simulation on the resolution of individual stars in the previous work of Gowanlock et al. (2011). The model developed in the latter work considers the stellar number density distribution and formation history of the Galaxy, planet formation mechanisms and the hazards to planetary biospheres as a result of supernova sterilization events that take place in the vicinity of the planets. Based on timescales taken from the origin and evolution of complex life on Earth, the model suggests large numbers of potentially habitable planets exist in our Galaxy, with the greatest concentration likely being towards the inner Galaxy. In this work we extend the assessment of habitability to consider the potential for life to further evolve on habitable planets to the point of intelligence - which we term the propensity for the emergence of intelligent life. We assume the propensity is strongly influenced by the time durations available for evolutionary processes to proceed undisturbed by the "resetting" effect of nearby supernovae. The model of Gowanlock et al. (2011) is used to produce a representative population of habitable planets by matching major observable properties of the Milky Way. Account is taken of the birth and death dates of each habitable planet and the timing of supernova events in each planet's vicinity. The times between
Multivariable modeling of radiotherapy outcomes, including dose-volume and clinical factors
El Naqa, Issam; Bradley, Jeffrey; Blanco, Angel I.; Lindsay, Patricia E.; Vicic, Milos; Hope, Andrew; Deasy, Joseph O. . E-mail: deasy@wustl.edu
2006-03-15
Purpose: The probability of a specific radiotherapy outcome is typically a complex, unknown function of dosimetric and clinical factors. Current models are usually oversimplified. We describe alternative methods for building multivariable dose-response models. Methods: Representative data sets of esophagitis and xerostomia are used. We use a logistic regression framework to approximate the treatment-response function. Bootstrap replications are performed to explore variable selection stability. To guard against under/overfitting, we compare several analytical and data-driven methods for model-order estimation. Spearman's coefficient is used to evaluate performance robustness. Novel graphical displays of variable cross correlations and bootstrap selection are demonstrated. Results: Bootstrap variable selection techniques improve model building by reducing sample size effects and unveiling variable cross correlations. Inference by resampling and Bayesian approaches produced generally consistent guidance for model order estimation. The optimal esophagitis model consisted of 5 dosimetric/clinical variables. Although the xerostomia model could be improved by combining clinical and dose-volume factors, the improvement would be small. Conclusions: Prediction of treatment response can be improved by mixing clinical and dose-volume factors. Graphical tools can mitigate the inherent complexity of multivariable modeling. Bootstrap-based variable selection analysis increases the reliability of reported models. Statistical inference methods combined with Spearman's coefficient provide an efficient approach to estimating optimal model order.
Evaluation of an Impedance Model for Perforates Including the Effect of Bias Flow
NASA Technical Reports Server (NTRS)
Betts, J. F.; Follet, J. I.; Kelly, J. J.; Thomas, R. H.
2000-01-01
A new bias flow impedance model is developed for perforated plates from basic principles using as little empiricisms as possible. A quality experimental database was used to determine the predictive validity of the model. Results show that the model performs better for higher (15%) rather than lower (5%) percent open area (POA) samples. Based on the least squares ratio of numerical vs. experimental results, model predictions were on average within 20% and 30% for the higher and lower (POA), respectively. It is hypothesized on the work of other investigators that at lower POAs the higher fluid velocities in the perforate's orifices start forming unsteady vortices, which is not accounted for in our model. The numerical model, in general also underpredicts the experiments. It is theorized that the actual acoustic C(sub D) is lower than the measured raylometer C(sub D) used in the model. Using a larger C(sub D) makes the numerical model predict lower impedances. The frequency domain model derived in this paper shows very good agreement with another model derived using a time domain approach.
A New Finite-Conductivity Droplet Evaporation Model Including Liquid Turbulence Effect
NASA Technical Reports Server (NTRS)
Balasubramanyam, M. S.; Chen, C. P.; Trinh, H. P.
2006-01-01
A new approach to account for finite thermal conductivity and turbulence effects within atomizing droplets of an evaporating spray is presented in this paper. The model is an extension of the T-blob and T-TAB atomization/spray model of Trinh and Chen [9]. This finite conductivity model is based on the two-temperature film theory in which the turbulence characteristics of the droplet are used to estimate the effective thermal diffusivity for the liquid-side film thickness. Both one-way and two-way coupled calculations were performed to investigate the performance cf this model against the published experimental data.
NASA Astrophysics Data System (ADS)
Parra, J.; Vicuña, Cristián Molina
2017-08-01
Planetary gearboxes are important components of many industrial applications. Vibration analysis can increase their lifetime and prevent expensive repair and safety concerns. However, an effective analysis is only possible if the vibration features of planetary gearboxes are properly understood. In this paper, models are used to study the frequency content of planetary gearbox vibrations under non-fault and different fault conditions. Two different models are considered: phenomenological model, which is an analytical-mathematical formulation based on observation, and lumped-parameter model, which is based on the solution of the equations of motion of the system. Results of both models are not directly comparable, because the phenomenological model provides the vibration on a fixed radial direction, such as the measurements of the vibration sensor mounted on the outer part of the ring gear. On the other hand, the lumped-parameter model provides the vibrations on the basis of a rotating reference frame fixed to the carrier. To overcome this situation, a function to decompose the lumped-parameter model solutions to a fixed reference frame is presented. Finally, comparisons of results from both model perspectives and experimental measurements are presented.
NASA Astrophysics Data System (ADS)
Gupta, Santosh Kumar
2015-12-01
2D Analytical model of the body center potential (BCP) in short channel junctionless Cylindrical Surrounding Gate (JLCSG) MOSFETs is developed using evanescent mode analysis (EMA). This model also incorporates the gate bias dependent inner and outer fringing capacitances due to the gate-source/drain fringing fields. The developed model provides results in good agreement with simulated results for variations of different physical parameters of JLCSG MOSFET viz. gate length, channel radius, doping concentration, and oxide thickness. Using the BCP, an analytical model for the threshold voltage has been derived and validated against results obtained from 3D device simulator.
Complete band gaps including non-local effects occur only in the relaxed micromorphic model
NASA Astrophysics Data System (ADS)
Madeo, Angela; Neff, Patrizio; d'Agostino, Marco Valerio; Barbagallo, Gabriele
2016-11-01
In this paper, we substantiate the claim implicitly made in previous works that the relaxed micromorphic model is the only linear, isotropic, reversibly elastic, nonlocal generalized continuum model able to describe complete band-gaps on a phenomenological level. To this end, we recapitulate the response of the standard Mindlin-Eringen micromorphic model with the full micro-distortion gradient ∇P, the relaxed micromorphic model depending only on the Curl P of the micro-distortion P, and a variant of the standard micromorphic model, in which the curvature depends only on the divergence Div P of the micro distortion. The Div-model has size-effects, but the dispersion analysis for plane waves shows the incapability of that model to even produce a partial band gap. Combining the curvature to depend quadratically on Div P and Curl P shows that such a model is similar to the standard Mindlin-Eringen model, which can eventually show only a partial band gap.
Love and anger in romantic relationships: a discrete systems model.
Ellis, B J; Malamuth, N M
2000-06-01
In a study of 124 dating couples, we tested a discrete systems model of the functions of two emotion systems in romantic relationships: love and anger/upset. This model posits that the operation of these systems reflects adaptations shaped by natural selection to solve different adaptive problems. Accordingly, we hypothesized that the love and anger/upset emotion systems would be largely independent in the classes of information they track in romantic relationships, in the psychological mechanisms that process that information, and in the resultant behavior generated. Consistent with the discrete systems model, and in contrast to a competing "crossover" model, differences across relationships in feelings of love covaried with differences in strategic facilitation but not in strategic interference by partners. Similarly, differences in feelings of anger/upset during conflict covaried with differences in strategic interference but not strategic facilitation. In turn, feelings of love predicted commitment-promoting behavior but not partner-directed aggression, whereas levels of anger/upset predicted aggression but not commitment. As also predicted by our model, the love and anger/upset emotion systems converged to predict relationship satisfaction.
Modeling the relationship between land use and surface water quality.
Tong, Susanna T Y; Chen, Wenli
2002-12-01
It is widely known that watershed hydrology is dependent on many factors, including land use, climate, and soil conditions. But the relative impacts of different types of land use on the surface water are yet to be ascertained and quantified. This research attempted to use a comprehensive approach to examine the hydrologic effects of land use at both a regional and a local scale. Statistical and spatial analyses were employed to examine the statistical and spatial relationships of land use and the flow and water quality in receiving waters on a regional scale in the State of Ohio. Besides, a widely accepted watershed-based water quality assessment tool, the Better Assessment Science Integrating Point and Nonpoint Sources (BASINS), was adopted to model the plausible effects of land use on water quality in a local watershed in the East Fork Little Miami River Basin. The results from the statistical analyses revealed that there was a significant relationship between land use and in-stream water quality, especially for nitrogen, phosphorus and Fecal coliform. The geographic information systems (GIS) spatial analyses identified the watersheds that have high levels of contaminants and percentages of agricultural and urban lands. Furthermore, the hydrologic and water quality modeling showed that agricultural and impervious urban lands produced a much higher level of nitrogen and phosphorus than other land surfaces. From this research, it seems that the approach adopted in this study is comprehensive, covering both the regional and local scales. It also reveals that BASINS is a very useful and reliable tool, capable of characterizing the flow and water quality conditions for the study area under different watershed scales. With little modification, these models should be able to adapt to other watersheds or to simulate other contaminants. They also can be used to study the plausible impacts of global environmental change. In addition, the information on the hydrologic
NASA Astrophysics Data System (ADS)
Canuto, V. M.
1994-06-01
The Reynolds numbers that characterize geophysical and astrophysical turbulence (Re approximately equals 108 for the planetary boundary layer and Re approximately equals 1014 for the Sun's interior) are too large to allow a direct numerical simulation (DNS) of the fundamental Navier-Stokes and temperature equations. In fact, the spatial number of grid points N approximately Re9/4 exceeds the computational capability of today's supercomputers. Alternative treatments are the ensemble-time average approach, and/or the volume average approach. Since the first method (Reynolds stress approach) is largely analytical, the resulting turbulence equations entail manageable computational requirements and can thus be linked to a stellar evolutionary code or, in the geophysical case, to general circulation models. In the volume average approach, one carries out a large eddy simulation (LES) which resolves numerically the largest scales, while the unresolved scales must be treated theoretically with a subgrid scale model (SGS). Contrary to the ensemble average approach, the LES+SGS approach has considerable computational requirements. Even if this prevents (for the time being) a LES+SGS model to be linked to stellar or geophysical codes, it is still of the greatest relevance as an 'experimental tool' to be used, inter alia, to improve the parameterizations needed in the ensemble average approach. Such a methodology has been successfully adopted in studies of the convective planetary boundary layer. Experienc e with the LES+SGS approach from different fields has shown that its reliability depends on the healthiness of the SGS model for numerical stability as well as for physical completeness. At present, the most widely used SGS model, the Smagorinsky model, accounts for the effect of the shear induced by the large resolved scales on the unresolved scales but does not account for the effects of buoyancy, anisotropy, rotation, and stable stratification. The latter phenomenon
An Effective Model to Increase Student Attitude and Achievement: Narrative Including Analogies
ERIC Educational Resources Information Center
Akkuzu, Nalan; Akcay, Husamettin
2011-01-01
This study describes the analogical models and narratives used to introduce and teach Grade 9 chemical covalent compounds which are relatively abstract and difficult for students. We explained each model's development during the lessons and analyzed understanding students derived from these learning materials. In this context, achievement,…
A Conceptual Model of Training Transfer that Includes the Physical Environment
ERIC Educational Resources Information Center
Hillsman, Terron L.; Kupritz, Virginia W.
2007-01-01
The study presents the physical environment as an emerging factor impacting training transfer and proposes to position this variable in the Baldwin and Ford (1988) model of the training transfer process. The amended model positions workplace design, one element of the physical environment, as a part of organizational context in the work…
NASA Technical Reports Server (NTRS)
Ukanwa, A. O.; Stermole, F. J.; Golden, J. O.
1972-01-01
Natural convection effects in phase change thermal control devices were studied. A mathematical model was developed to evaluate natural convection effects in a phase change test cell undergoing solidification. Although natural convection effects are minimized in flight spacecraft, all phase change devices are ground tested. The mathematical approach to the problem was to first develop a transient two-dimensional conduction heat transfer model for the solidification of a normal paraffin of finite geometry. Next, a transient two-dimensional model was developed for the solidification of the same paraffin by a combined conduction-natural-convection heat transfer model. Throughout the study, n-hexadecane (n-C16H34) was used as the phase-change material in both the theoretical and the experimental work. The models were based on the transient two-dimensional finite difference solutions of the energy, continuity, and momentum equations.
A general BRDF/BSDF model including out-of-plane dependence
NASA Astrophysics Data System (ADS)
Thomas, M. E.; Joseph, R. I.; Tropf, W. J.; Brown, A. M.
2010-08-01
A semi-empirical reflectance/scatterance model has evolved over the years to represent a diverse set of materials from coated substrates to optical windows. This model separates the BRDF/BSDF into four basic components, specular, near-specular, diffuse, and Lambertian (random diffuse) terms. The specular and near-specular components employ a Gaussian phase function and the Fresnel power reflection coefficient. The Lambertian component uses Kubelka-Munk theory for the total integrated reflectance and transmittance. The model features wavelength, angle, and full hemispherical dependencies. It is applied to a variety of samples, from painted surfaces to transparent windows, with good success. This parameterized modeling approach is attractive because algorithms that use the model can be computationally efficient. Previous work has only considered in-plane effects. The present paper now explicitly takes into account the out-of-plane contribution and improves the total integrated factors.
Modeling Shock Propagation to the Outer Heliosphere Including Heat Flux and Pickup Protons
NASA Astrophysics Data System (ADS)
Detman, T. R.; Intriligator, D. S.; Dryer, M.; Sun, W.; Deehr, C. S.; Intriligator, J.
2012-12-01
We compare different models of solar wind heat flux in the distant heliosphere in the context of simulating the propagation of the strong Halloween 2003 solar events to ACE, Ulysses, Cassini, and Voyager 2. We will modify our time-dependent, 3D MHD Hybrid Heliospheric Modeling System with Pickup Ions, HHMS-PI (Detman, et al.,JGR, 2011; Intriligator, et al., JGR, 2012) by installing an approximation of the Hollweg Collisionless Electron Heat Flux model (Hollweg, JGR, 1976). We evaluate each simulation against observations at ACE, Ulysses, and Voyager 2. We will compare results from HHMS-PI with heat flux against our previous results. We then plan to make similar comparisons with other heat flux models, e.g. the model based on field magnitude by Scime, et al., (JGR, 1995).
Gasification of biomass in a fixed bed downdraft gasifier--a realistic model including tar.
Barman, Niladri Sekhar; Ghosh, Sudip; De, Sudipta
2012-03-01
This study presents a model for fixed bed downdraft biomass gasifiers considering tar also as one of the gasification products. A representative tar composition along with its mole fractions, as available in the literature was used as an input parameter within the model. The study used an equilibrium approach for the applicable gasification reactions and also considered possible deviations from equilibrium to further upgrade the equilibrium model to validate a range of reported experimental results. Heat balance was applied to predict the gasification temperature and the predicted values were compared with reported results in literature. A comparative study was made with some reference models available in the literature and also with experimental results reported in the literature. Finally a predicted variation of performance of the gasifier by this validated model for different air-fuel ratio and moisture content was also discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Neural network modelling of non-linear hydrological relationships
NASA Astrophysics Data System (ADS)
Abrahart, R. J.; See, L. M.
2007-09-01
Two recent studies have suggested that neural network modelling offers no worthwhile improvements in comparison to the application of weighted linear transfer functions for capturing the non-linear nature of hydrological relationships. The potential of an artificial neural network to perform simple non-linear hydrological transformations under controlled conditions is examined in this paper. Eight neural network models were developed: four full or partial emulations of a recognised non-linear hydrological rainfall-runoff model; four solutions developed on an identical set of inputs and a calculated runoff coefficient output. The use of different input combinations enabled the competencies of solutions developed on a reduced number of parameters to be assessed. The selected hydrological model had a limited number of inputs and contained no temporal component. The modelling process was based on a set of random inputs that had a uniform distribution and spanned a modest range of possibilities. The initial cloning operations permitted a direct comparison to be performed with the equation-based relationship. It also provided more general information about the power of a neural network to replicate mathematical equations and model modest non-linear relationships. The second group of experiments explored a different relationship that is of hydrological interest; the target surface contained a stronger set of non-linear properties and was more challenging. Linear modelling comparisons were performed against traditional least squares multiple linear regression solutions developed on identical datasets. The reported results demonstrate that neural networks are capable of modelling non-linear hydrological processes and are therefore appropriate tools for hydrological modelling.
Dissecting the two models of TCR structure-function relationships.
Cohn, Melvin
2016-08-01
There are only two comprehensive models attempting to account for the TCR structure-function relationships, referred to as the Standard or Centric model (Model I) and the Tritope model (Model II). This essay is written to analyze comparatively the two formulations of restrictive reactivity, stressing in particular the logic of each. Model I is essentially built on an analogy between the TCR and the BCR. Given a TCR with only one combining site (paratope), restrictive recognition requires that its ligand be viewed as a composite structure between the peptide and restricting element. It is this relationship that entrains a set of correlates that makes Model I untenable. Model II is predicated on the postulate that the recognition of the allele-specific determinants expressed by MHC-encoded restricting elements (R) is germline encoded and selected, whereas the recognition of peptide (P) is somatically encoded and selected. These selective pressures must operate on definable structures and this, in turn, necessitates a multiply recognitive T cell antigen receptor (TCR) with independent anti-R and anti-P paratopes that function coherently to signal restrictive reactivity. The consequences of this "two repertoire" postulate give us a concept of TCR structure quite distinct from that at present generally accepted, as well as a surprising relationship between numbers of functional TCR V gene segments and allele-specific determinants in the species. In the end, both models must deal with the relationship between the epitope-paratope interaction(s) and the signals to the T cell necessary for its differentiation and function.
NASA Astrophysics Data System (ADS)
Cardoso Mendonça, Paula Cristina; Justi, Rosária
2013-09-01
Some studies related to the nature of scientific knowledge demonstrate that modelling is an inherently argumentative process. This study aims at discussing the relationship between modelling and argumentation by analysing data collected during the modelling-based teaching of ionic bonding and intermolecular interactions. The teaching activities were planned from the transposition of the main modelling stages that constitute the 'Model of Modelling Diagram' so that students could experience each of such stages. All the lessons were video recorded and their transcriptions supported the elaboration of case studies for each group of students. From the analysis of the case studies, we identified argumentative situations when students performed all of the modelling stages. Our data show that the argumentative situations were related to sense making, articulating and persuasion purposes, and were closely related to the generation of explanations in the modelling processes. They also show that representations are important resources for argumentation. Our results are consistent with some of those already reported in the literature regarding the relationship between modelling and argumentation, but are also divergent when they show that argumentation is not only related to the model evaluation phase.
NASA Astrophysics Data System (ADS)
Neumann, R. B.; Cardon, Z. G.; Rockwell, F. E.; Teshera-Levye, J.; Zwieniecki, M.; Holbrook, N. M.
2013-12-01
The movement of water from moist to dry soil layers through the root systems of plants, referred to as hydraulic redistribution (HR), occurs throughout the world and is thought to influence carbon and water budgets and ecosystem functioning. The realized hydrologic, biogeochemical, and ecological consequences of HR depend on the amount of redistributed water, while the ability to assess these impacts requires models that correctly capture HR magnitude and timing. Using several soil types and two eco-types of Helianthus annuus L. in split-pot experiments, we examined how well the widely used HR modeling formulation developed by Ryel et al. (2002) could match experimental determination of HR across a range of water potential driving gradients. H. annuus carries out extensive nighttime transpiration, and though over the last decade it has become more widely recognized that nighttime transpiration occurs in multiple species and many ecosystems, the original Ryel et al. (2002) formulation does not include the effect of nighttime transpiration on HR. We developed and added a representation of nighttime transpiration into the formulation, and only then was the model able to capture the dynamics and magnitude of HR we observed as soils dried and nighttime stomatal behavior changed, both influencing HR.
Simulated village locations in Thailand: A multi-scale model including a neural network approach
Malanson, George P.; Entwisle, Barbara
2010-01-01
The simulation of rural land use systems, in general, and rural settlement dynamics in particular has developed with synergies of theory and methods for decades. Three current issues are: linking spatial patterns and processes, representing hierarchical relations across scales, and considering nonlinearity to address complex non-stationary settlement dynamics. We present a hierarchical simulation model to investigate complex rural settlement dynamics in Nang Rong, Thailand. This simulation uses sub-models to allocate new villages at three spatial scales. Regional and sub-regional models, which involve a nonlinear space-time autoregressive model implemented in a neural network approach, determine the number of new villages to be established. A dynamic village niche model, establishing pattern-process link, was designed to enable the allocation of villages into specific locations. Spatiotemporal variability in model performance indicates the pattern of village location changes as a settlement frontier advances from rice-growing lowlands to higher elevations. Experiments results demonstrate this simulation model can enhance our understanding of settlement development in Nang Rong and thus gain insight into complex land use systems in this area. PMID:21399748
Modeling of seismic isolation bearings including shear deformation and stability effects
Chan Ghee Koh ); Kelly, J.M. )
1989-11-01
Elastomeric bearings designed for aseismic base isolation typically have a low shear rigidity in order to achieve a low isolation frequency and are thus modeled by a flexural-shear column on the basis of Haringx's theory. The buckling load of a flexural-shear column is considerably reduced by the shear effect. It is therefore essential to account for the stability effect due to a compressive load on the dynamic performance of these bearings. In this paper, an exact viscoelastic model consistent with Haringx's theory is first reviewed. A simplified symmetric model consisting of springs and rigid plates is then discussed. Experimental results for four different sets of natural rubber bearings are presented. It is shown that both models can describe with good accuracy the stability effects on the dynamic stiffness, damping factor and height reduction of bearings. In spite of its simplicity, the simplified model is found to agree very well with the exact model. Lastly, using the simplified model, the applicability of the Southwell plot to predict the buckling load of elastomeric isolation bearings is examined.
Simulated village locations in Thailand: A multi-scale model including a neural network approach.
Tang, Wenwu; Malanson, George P; Entwisle, Barbara
2009-04-01
The simulation of rural land use systems, in general, and rural settlement dynamics in particular has developed with synergies of theory and methods for decades. Three current issues are: linking spatial patterns and processes, representing hierarchical relations across scales, and considering nonlinearity to address complex non-stationary settlement dynamics. We present a hierarchical simulation model to investigate complex rural settlement dynamics in Nang Rong, Thailand. This simulation uses sub-models to allocate new villages at three spatial scales. Regional and sub-regional models, which involve a nonlinear space-time autoregressive model implemented in a neural network approach, determine the number of new villages to be established. A dynamic village niche model, establishing pattern-process link, was designed to enable the allocation of villages into specific locations. Spatiotemporal variability in model performance indicates the pattern of village location changes as a settlement frontier advances from rice-growing lowlands to higher elevations. Experiments results demonstrate this simulation model can enhance our understanding of settlement development in Nang Rong and thus gain insight into complex land use systems in this area.
Measuring and modeling the lifetime of nitrous oxide including its variability
NASA Astrophysics Data System (ADS)
Prather, Michael J.; Hsu, Juno; DeLuca, Nicole M.; Jackman, Charles H.; Oman, Luke D.; Douglass, Anne R.; Fleming, Eric L.; Strahan, Susan E.; Steenrod, Stephen D.; Søvde, O. Amund; Isaksen, Ivar S. A.; Froidevaux, Lucien; Funke, Bernd
2015-06-01
The lifetime of nitrous oxide, the third-most-important human-emitted greenhouse gas, is based to date primarily on model studies or scaling to other gases. This work calculates a semiempirical lifetime based on Microwave Limb Sounder satellite measurements of stratospheric profiles of nitrous oxide, ozone, and temperature; laboratory cross-section data for ozone and molecular oxygen plus kinetics for O(1D); the observed solar spectrum; and a simple radiative transfer model. The result is 116 ± 9 years. The observed monthly-to-biennial variations in lifetime and tropical abundance are well matched by four independent chemistry-transport models driven by reanalysis meteorological fields for the period of observation (2005-2010), but all these models overestimate the lifetime due to lower abundances in the critical loss region near 32 km in the tropics. These models plus a chemistry-climate model agree on the nitrous oxide feedback factor on its own lifetime of 0.94 ± 0.01, giving N2O perturbations an effective residence time of 109 years. Combining this new empirical lifetime with model estimates of residence time and preindustrial lifetime (123 years) adjusts our best estimates of the human-natural balance of emissions today and improves the accuracy of projected nitrous oxide increases over this century.
Extension of Lithium Ion Cell Model to Include Transient and Low-Temperature Behaviour
NASA Astrophysics Data System (ADS)
Dudley, G.
2014-08-01
Current-interruption resistance measurements have been analysed in detail allowing the ESTEC lithium ion cell electrical/thermal model to be extended to allow modelling of cell voltage in response to imposed current changes at low temperatures and short time scales where activation polarisation becomes important. Whilst an unnecessary complication in most cases, this extension is needed under certain circumstances such as the simulation of Mars rover batteries forced to operate at low temperature and possible effects of battery voltage transients on battery-bus power subsystems. Comparison with test data show that the model is capable of giving a good fit in these circumstances.
Salas, Rosa Ana
2013-11-12
We propose a modeling procedure specifically designed for a ferrite inductor excited by a waveform in time domain. We estimate the loss resistance in the core (parameter of the electrical model of the inductor) by means of a Finite Element Method in 2D which leads to significant computational advantages over the 3D model. The methodology is validated for an RM (rectangular modulus) ferrite core working in the linear and the saturation regions. Excellent agreement is found between the experimental data and the computational results.
Salas, Rosa Ana
2013-01-01
We propose a modeling procedure specifically designed for a ferrite inductor excited by a waveform in time domain. We estimate the loss resistance in the core (parameter of the electrical model of the inductor) by means of a Finite Element Method in 2D which leads to significant computational advantages over the 3D model. The methodology is validated for an RM (rectangular modulus) ferrite core working in the linear and the saturation regions. Excellent agreement is found between the experimental data and the computational results. PMID:28788382
Allen, D.H.; Helms, K.L.E.; Hurtado, L.D.
1999-04-06
A model is developed herein for predicting the mechanical response of inelastic crystalline solids. Particular emphasis is given to the development of microstructural damage along grain boundaries, and the interaction of this damage with intragranular inelasticity caused by dislocation dissipation mechanisms. The model is developed within the concepts of continuum mechanics, with special emphasis on the development of internal boundaries in the continuum by utilizing a cohesive zone model based on fracture mechanics. In addition, the crystalline grains are assumed to be characterized by nonlinear viscoplastic mechanical material behavior in order to account for dislocation generation and migration. Due to the nonlinearities introduced by the crack growth and viscoplastic constitution, a numerical algorithm is utilized to solve representative problems. Implementation of the model to a finite element computational algorithm is therefore briefly described. Finally, sample calculations are presented for a polycrystalline titanium alloy with particular focus on effects of scale on the predicted response.
Progress in turbulence modeling for complex flow fields including effects of compressibility
NASA Technical Reports Server (NTRS)
Wilcox, D. C.; Rubesin, M. W.
1980-01-01
Two second-order-closure turbulence models were devised that are suitable for predicting properties of complex turbulent flow fields in both incompressible and compressible fluids. One model is of the "two-equation" variety in which closure is accomplished by introducing an eddy viscosity which depends on both a turbulent mixing energy and a dissipation rate per unit energy, that is, a specific dissipation rate. The other model is a "Reynolds stress equation" (RSE) formulation in which all components of the Reynolds stress tensor and turbulent heat-flux vector are computed directly and are scaled by the specific dissipation rate. Computations based on these models are compared with measurements for the following flow fields: (a) low speed, high Reynolds number channel flows with plane strain or uniform shear; (b) equilibrium turbulent boundary layers with and without pressure gradients or effects of compressibility; and (c) flow over a convex surface with and without a pressure gradient.
A chain kinematic model to assess the movement of lower-limb including wobbling masses.
Thouzé, A; Monnet, T; Bélaise, C; Lacouture, P; Begon, M
2016-01-01
Computer simulation models have shown that wobbling mass on the lower limb affects the joint kinetics. Our objective was to propose a non-invasive method to estimate bones and wobbling mass kinematics in the lower limb during hopping. The chain kinematic model has set degrees of freedom at the joints and free wobbling bodies. By comparison to a model without wobbling bodies, the marker residual was reduced by 20% but the joint kinematics remains unchanged. Wobbling bodies' displacements reached 6.9 ± 3.5° and 6.9 ± 2.4 mm relative to the modelled bones. This original method is a first step to assess wobbling mass effect on joint kinetics.
The Dynamic Modelling of a Spur Gear in Mesh Including Friction and a Crack
NASA Astrophysics Data System (ADS)
Howard, Ian; Jia, Shengxiang; Wang, Jiande
2001-09-01
To improve the current generation of diagnostic techniques, many researchers are actively developing advanced dynamic models of gear case vibration to ascertain the effect of different types of gear train damage. This paper details a simplified gear dynamic model aimed at exploring the effect of friction on the resultant gear case vibration. The model incorporates the effect of variations in gear tooth torsional mesh stiffness, developed using finite element analysis, as the gears mesh together. The method of introducing the frictional force between teeth into the dynamic equations is given. The comparison between the results with friction and without friction was investigated using Matlab and Simulink models developed from the differential equations. The effects the single tooth crack has on the frequency spectrum and on the common diagnostic functions of the resulting gearbox component vibrations are also shown.
Baumgartner, Christian; Böhm, Christian; Baumgartner, Daniela
2005-04-01
Machine learning has a great potential to mine potential markers from high-dimensional metabolic data without any a priori knowledge. Exemplarily, we investigated metabolic patterns of three severe metabolic disorders, PAHD, MCADD, and 3-MCCD, on which we constructed classification models for disease screening and diagnosis using a decision tree paradigm and logistic regression analysis (LRA). For the LRA model-building process we assessed the relevance of established diagnostic flags, which have been developed from the biochemical knowledge of newborn metabolism, and compared the models' error rates with those of the decision tree classifier. Both approaches yielded comparable classification accuracy in terms of sensitivity (>95.2%), while the LRA models built on flags showed significantly enhanced specificity. The number of false positive cases did not exceed 0.001%.
Extending the Scope of the Acculturation/Pidginization Model to Include Cognition.
ERIC Educational Resources Information Center
Schumann, John H.
1990-01-01
Examines five cognitive models for second-language acquisition (SLA) and assesses how each might account for the Pidginized interlanguage found in the early stages of second-language acquisition. (23 references) (JL)
Simulating pattern-process relationships to validate landscape genetic models
A. J. Shirk; S. A. Cushman; E. L. Landguth
2012-01-01
Landscapes may resist gene flow and thereby give rise to a pattern of genetic isolation within a population. The mechanism by which a landscape resists gene flow can be inferred by evaluating the relationship between landscape models and an observed pattern of genetic isolation. This approach risks false inferences because researchers can never feasibly test all...
Cultivating Knowledge Sharing through the Relationship Management Maturity Model
ERIC Educational Resources Information Center
Martin, Valerie A.; Hatzakis, Tally; Lycett, Mark; Macredie, Robert
2005-01-01
Purpose: The purpose of this paper is to present the development of the relationship management maturity model (RMMM), the output of an initiative aimed at bridging the gap between business units and the IT organisation. It does this through improving and assessing knowledge sharing between business and IT staff in Finco, a large financial…
Modeling the Relationships between Subdimensions of Environmental Literacy
ERIC Educational Resources Information Center
Genc, Murat; Akilli, Mustafa
2016-01-01
The aim of this study is to demonstrate the relationships between subdimensions of environmental literacy using Structural Equation Modeling (SEM). The study was conducted by the analysis of students' answers to questionnaires data using SEM. Initially, Kaiser-Meyer-Olkin and Bartlett's tests were done to test appropriateness of subdimensions to…
Violence in Young Adolescents' Relationships: A Path Model
ERIC Educational Resources Information Center
Josephson, Wendy L.; Proulx, Jocelyn B.
2008-01-01
A structural equation model based on social cognitive theory was used to predict relationship violence from young adolescents' knowledge, self-efficacy, attitudes, and alternative conflict strategies (n = 143 male and 147 female grade 7-9 students). A direct causal effect was supported for violence-tolerant attitudes and psychologically aggressive…
A negotiation model for the doctor-patient relationship.
Botelho, R J
1992-06-01
A model has been developed to help physicians negotiate with patients in more explicit and effective ways. This model provides physician teachers and learners with a framework and a common language to describe the dynamic nature of the doctor-patient negotiation. This framework consists of three dimensions: content, relationship levels, and the problem-solving phases. The constructs of disease, illness, sickness and the patient's context are used to describe the content of negotiation: this is what the doctor and patient are talking about. Autonomy, power, control and responsibility are the constructs that define the relationship levels: autonomism, egalitarianism, parentalism, and autocracy. These levels describe how the doctor and patient relate to one another during their negotiation. The problem-solving phases are relationship building, agenda setting, assessment, problem clarification, management and closure. Teachers and learners can use this model to describe how the doctor and the patient affect the negotiation process, and how the process in turn affects the doctor-patient relationship and medical care. With practice using this model, physicians can increase their repertoire of negotiating strategies that will efficiently enhance doctor-patient collaboration, the problem-solving process and the health of the patient and family.
Assessment of Gilligan's Model: Development of the Relationship Self Inventory.
ERIC Educational Resources Information Center
Reinhart, Mary Ann; And Others
This study designed and tested the Relationship Self Inventory (RSI) intended to measure the self-descriptive value of Gilligan's "connected self-in-relation-to-others" model. Gilligan's research indicates that the formation of self based on connection with others and an orientation to care (connected self) is associated primarily with…
Cultivating Knowledge Sharing through the Relationship Management Maturity Model
ERIC Educational Resources Information Center
Martin, Valerie A.; Hatzakis, Tally; Lycett, Mark; Macredie, Robert
2005-01-01
Purpose: The purpose of this paper is to present the development of the relationship management maturity model (RMMM), the output of an initiative aimed at bridging the gap between business units and the IT organisation. It does this through improving and assessing knowledge sharing between business and IT staff in Finco, a large financial…
Violence in Young Adolescents' Relationships: A Path Model
ERIC Educational Resources Information Center
Josephson, Wendy L.; Proulx, Jocelyn B.
2008-01-01
A structural equation model based on social cognitive theory was used to predict relationship violence from young adolescents' knowledge, self-efficacy, attitudes, and alternative conflict strategies (n = 143 male and 147 female grade 7-9 students). A direct causal effect was supported for violence-tolerant attitudes and psychologically aggressive…
Modeling the Relationships between Subdimensions of Environmental Literacy
ERIC Educational Resources Information Center
Genc, Murat; Akilli, Mustafa
2016-01-01
The aim of this study is to demonstrate the relationships between subdimensions of environmental literacy using Structural Equation Modeling (SEM). The study was conducted by the analysis of students' answers to questionnaires data using SEM. Initially, Kaiser-Meyer-Olkin and Bartlett's tests were done to test appropriateness of subdimensions to…
NASA Astrophysics Data System (ADS)
Schwarm, Fritz-Walter; Schönherr, G.; Becker, P. A.; Wolff, M. T.; Wilms, J.; Ferrigno, C.; West, B.
2013-04-01
A physical model for the radiation emitted from accretion columns of neutron stars with magnetic fields on the order of 1012 G has to reflect the large-scale dynamical structure of the inflowing matter as well as the quantum mechanical scattering processes leading to the formation of cyclotron resonant scattering features (CRSFs). Becker & Wolff (B&W) developed an analytic model for the broadband continuum while the CRSFs have been investigated by Schönherr & Schwarm (S&S). While both models describe the separate trends seen in observational data very well, a fully self-consistent fitting approach to determine the physical parameters (e.g., accretion rate, magnetic field strength) of the accretion column in accreting X-ray pulsars requires accounting for both processes in one unified model. We present our first approach towards such an unified hybrid model covering both the macro- and the microphysics of the accreting plasma. We assume a cylinder symmetrical dual layer structure of the accretion column. The inner layer reflects the dynamical structure described by the B&W model while the optical thin outer layer acts as a CRSF forming region similar to a photosphere. We adopt the parameters from a fit of the B&W model to Her X-1 and calculate the emergent radiation as well as the dynamical properties such as bulk velocity within the core of the accretion column. Radiation escaping the optical thick core region is further altered by the outer shell, a thin layer with an optical depth on the order of 10-4-10-2 Thomson optical depth, adding cyclotron lines by processing it through the S&S model. This hybrid model is only a first step towards an unified model for accreting neutron stars with strong magnetic fields. In the future we will investigate the insertion of a third layer in the middle as a transition region, parameter boundaries, and also incorporate general relativity with the ultimate goal to use this new tool to model phase-resolved spectroscopy of
On the Relationship Between Sigma Models and Spin Chains
NASA Astrophysics Data System (ADS)
Controzzi, D.; Hawkins, E.
We consider the two-dimensional O(3) non-linear sigma model with topological term using a lattice regularization introduced by Shankar and Read [Nucl. Phys. B 336, 457 (1990)], that is suitable for studying the strong coupling regime. When this lattice model is quantized, the coefficient θ of the topological term is quantized as θ=2πs, with s integer or half-integer. We study in detail the relationship between the low energy behaviour of this theory and the one-dimensional spin-s Heisenberg model. We generalize the analysis to sigma models with other symmetries.
NASA Technical Reports Server (NTRS)
Holland, D. B.; Virgin, L. N.; Belvin, W. K.
2003-01-01
This paper presents a parameter study of the effect of boom axial loading on the global dynamics of a 2-meter solar sail scale model. The experimental model used is meant for building expertise in finite element analysis and experimental execution, not as a predecessor to any planned flight mission or particular design concept. The results here are to demonstrate the ability to predict and measure structural dynamics and mode shapes in the presence of axial loading.
Improving wetland simulations by including heat transport in groundwater flow modeling
Bravo, H.R.; Jiang, F.; Hunt, R.J.
2004-01-01
A procedure was developed to automatically calibrate a groundwater flow and heat transport model, resulting in the estimation of hydraulic conductivity and flux across the water table in wetland systems. This paper describes differences between previous approaches and this study, and summarizes some challenges in the method implementation. The procedure was validated in a sequence of hypothetical models with known structure and parameters, and applied to a wetlands system located near Wilton, Wisconsin. Copyright ASCE 2004.
A Novel Mean-Value Model of the Cardiovascular System Including a Left Ventricular Assist Device.
Ochsner, Gregor; Amacher, Raffael; Schmid Daners, Marianne
2017-06-01
Time-varying elastance models (TVEMs) are often used for simulation studies of the cardiovascular system with a left ventricular assist device (LVAD). Because these models are computationally expensive, they cannot be used for long-term simulation studies. In addition, their equilibria are periodic solutions, which prevent the extraction of a linear time-invariant model that could be used e.g. for the design of a physiological controller. In the current paper, we present a new type of model to overcome these problems: the mean-value model (MVM). The MVM captures the behavior of the cardiovascular system by representative mean values that do not change within the cardiac cycle. For this purpose, each time-varying element is manually converted to its mean-value counterpart. We compare the derived MVM to a similar TVEM in two simulation experiments. In both cases, the MVM is able to fully capture the inter-cycle dynamics of the TVEM. We hope that the new MVM will become a useful tool for researchers working on physiological control algorithms. This paper provides a plant model that enables for the first time the use of tools from classical control theory in the field of physiological LVAD control.
Including sugar cane in the agro-ecosystem model ORCHIDEE-STICS: calibration and validation
NASA Astrophysics Data System (ADS)
Valade, A.; Vuichard, N.; Ciais, P.; Viovy, N.
2011-12-01
Sugarcane is currently the most efficient bioenergy crop with regards to the energy produced per hectare. With approximately half the global bioethanol production in 2005, and a devoted land area expected to expand globally in the years to come, sugar cane is at the heart of the biofuel debate. Dynamic global vegetation models coupled with agronomical models are powerful and novel tools to tackle many of the environmental issues related to biofuels if they are carefully calibrated and validated against field observations. Here we adapt the agro-terrestrial model ORCHIDEE-STICS for sugar cane simulations. Observation data of LAI are used to evaluate the sensitivity of the model to parameters of nitrogen absorption and phenology, which are calibrated in a systematic way for six sites in Australia and La Reunion. We find that the optimal set of parameters is highly dependent on the sites' characteristics and that the model can reproduce satisfactorily the evolution of LAI. This careful calibration of ORCHIDEE-STICS for sugar cane biomass production for different locations and technical itineraries provides a strong basis for further analysis of the impacts of bioenergy-related land use change on carbon cycle budgets. As a next step, a sensitivity analysis is carried out to estimate the uncertainty of the model in biomass and carbon flux simulation due to its parameterization.
NASA Astrophysics Data System (ADS)
Kawasaki, Akira; Kubota, Kenichi; Funaki, Ikkoh; Okuno, Yoshihiro
2016-09-01
Steady-state and self-field magnetoplasmadynamic (MPD) thruster, which utilizes high-intensity direct-current (DC) discharge, is one of the prospective candidates of future high-power electric propulsion devices. In order to accurately assess the thrust performance and the electrode temperature, input electric power and wall heat flux must correctly be evaluated where electrostatic sheaths formed in close proximity of the electrodes affect these quantities. Conventional model simulates only plasma flows occurring in MPD thrusters with the absence of electrostatic sheath consideration. Therefore, this study extends the conventional model to a coupled magnetohydrodynamic (MHD) and thermal model by incorporating the phenomena relevant to the electrostatic sheaths. The sheaths are implemented as boundary condition of the MHD model on the walls. This model simulated the operation of the 100-kW-class thruster at discharge current ranging from 6 to 10 kA with argon propellant. The extended model reproduced the discharge voltages and wall heat load which are consistent with past experimental results. In addition, the simulation results indicated that cathode sheath voltages account for approximately 5-7 V subject to approximately 20 V of discharge voltages applied between the electrodes. This work was supported by JSPS KAKENHI Grant Numbers 26289328 and 15J10821.
Wang, Xuelin; Wang, Liling; Zhou, Jianjun; Hu, Yujin
2014-08-01
A three-dimensional finite element model is developed for the simulation of the sound transmission through the human auditory periphery consisting of the external ear canal, middle ear and cochlea. The cochlea is modelled as a straight duct divided into two fluid-filled scalae by the basilar membrane (BM) having an orthotropic material property with dimensional variation along its length. In particular, an active feed-forward mechanism is added into the passive cochlear model to represent the activity of the outer hair cells (OHCs). An iterative procedure is proposed for calculating the nonlinear response resulting from the active cochlea in the frequency domain. Results on the middle-ear transfer function, BM steady-state frequency response and intracochlear pressure are derived. A good match of the model predictions with experimental data from the literatures demonstrates the validity of the ear model for simulating sound pressure gain of middle ear, frequency to place map, cochlear sensitivity and compressive output for large intensity input. The current model featuring an active cochlea is able to correlate directly the sound stimulus in the ear canal with the vibration of BM and provides a tool to explore the mechanisms by which sound pressure in the ear canal is converted to a stimulus for the OHCs.
NASA Technical Reports Server (NTRS)
Canuto, V. M.
1994-01-01
The Reynolds numbers that characterize geophysical and astrophysical turbulence (Re approximately equals 10(exp 8) for the planetary boundary layer and Re approximately equals 10(exp 14) for the Sun's interior) are too large to allow a direct numerical simulation (DNS) of the fundamental Navier-Stokes and temperature equations. In fact, the spatial number of grid points N approximately Re(exp 9/4) exceeds the computational capability of today's supercomputers. Alternative treatments are the ensemble-time average approach, and/or the volume average approach. Since the first method (Reynolds stress approach) is largely analytical, the resulting turbulence equations entail manageable computational requirements and can thus be linked to a stellar evolutionary code or, in the geophysical case, to general circulation models. In the volume average approach, one carries out a large eddy simulation (LES) which resolves numerically the largest scales, while the unresolved scales must be treated theoretically with a subgrid scale model (SGS). Contrary to the ensemble average approach, the LES+SGS approach has considerable computational requirements. Even if this prevents (for the time being) a LES+SGS model to be linked to stellar or geophysical codes, it is still of the greatest relevance as an 'experimental tool' to be used, inter alia, to improve the parameterizations needed in the ensemble average approach. Such a methodology has been successfully adopted in studies of the convective planetary boundary layer. Experienc e with the LES+SGS approach from different fields has shown that its reliability depends on the healthiness of the SGS model for numerical stability as well as for physical completeness. At present, the most widely used SGS model, the Smagorinsky model, accounts for the effect of the shear induced by the large resolved scales on the unresolved scales but does not account for the effects of buoyancy, anisotropy, rotation, and stable stratification. The
NASA Technical Reports Server (NTRS)
Canuto, V. M.
1994-01-01
The Reynolds numbers that characterize geophysical and astrophysical turbulence (Re approximately equals 10(exp 8) for the planetary boundary layer and Re approximately equals 10(exp 14) for the Sun's interior) are too large to allow a direct numerical simulation (DNS) of the fundamental Navier-Stokes and temperature equations. In fact, the spatial number of grid points N approximately Re(exp 9/4) exceeds the computational capability of today's supercomputers. Alternative treatments are the ensemble-time average approach, and/or the volume average approach. Since the first method (Reynolds stress approach) is largely analytical, the resulting turbulence equations entail manageable computational requirements and can thus be linked to a stellar evolutionary code or, in the geophysical case, to general circulation models. In the volume average approach, one carries out a large eddy simulation (LES) which resolves numerically the largest scales, while the unresolved scales must be treated theoretically with a subgrid scale model (SGS). Contrary to the ensemble average approach, the LES+SGS approach has considerable computational requirements. Even if this prevents (for the time being) a LES+SGS model to be linked to stellar or geophysical codes, it is still of the greatest relevance as an 'experimental tool' to be used, inter alia, to improve the parameterizations needed in the ensemble average approach. Such a methodology has been successfully adopted in studies of the convective planetary boundary layer. Experienc e with the LES+SGS approach from different fields has shown that its reliability depends on the healthiness of the SGS model for numerical stability as well as for physical completeness. At present, the most widely used SGS model, the Smagorinsky model, accounts for the effect of the shear induced by the large resolved scales on the unresolved scales but does not account for the effects of buoyancy, anisotropy, rotation, and stable stratification. The
NASA Astrophysics Data System (ADS)
Toyokuni, Genti; Takenaka, Hiroshi
2012-06-01
We propose a method for modeling global seismic wave propagation through an attenuative Earth model including the center. This method enables accurate and efficient computations since it is based on the 2.5-D approach, which solves wave equations only on a 2-D cross section of the whole Earth and can correctly model 3-D geometrical spreading. We extend a numerical scheme for the elastic waves in spherical coordinates using the finite-difference method (FDM), to solve the viscoelastodynamic equation. For computation of realistic seismic wave propagation, incorporation of anelastic attenuation is crucial. Since the nature of Earth material is both elastic solid and viscous fluid, we should solve stress-strain relations of viscoelastic material, including attenuative structures. These relations represent the stress as a convolution integral in time, which has had difficulty treating viscoelasticity in time-domain computation such as the FDM. However, we now have a method using so-called memory variables, invented in the 1980s, followed by improvements in Cartesian coordinates. Arbitrary values of the quality factor (Q) can be incorporated into the wave equation via an array of Zener bodies. We also introduce the multi-domain, an FD grid of several layers with different grid spacings, into our FDM scheme. This allows wider lateral grid spacings with depth, so as not to perturb the FD stability criterion around the Earth center. In addition, we propose a technique to avoid the singularity problem of the wave equation in spherical coordinates at the Earth center. We develop a scheme to calculate wavefield variables on this point, based on linear interpolation for the velocity-stress, staggered-grid FDM. This scheme is validated through a comparison of synthetic seismograms with those obtained by the Direct Solution Method for a spherically symmetric Earth model, showing excellent accuracy for our FDM scheme. As a numerical example, we apply the method to simulate seismic
Including the effects of debris cover in a distributed glacier energy balance model (Invited)
NASA Astrophysics Data System (ADS)
Pellicciotti, F.; Reid, T.; Carenzo, M.; Brock, B. W.
2010-12-01
Distributed models of glacier energy balance, which make use of digital elevation models and extensive spatial data on local meteorology, have become very useful tools for predicting glacial ablation and runoff in recent years. They generally function by running a one-dimensional energy balance model at every point on a grid on the glacier surface - for each point in the grid the ablation is calculated based on the balance of heat fluxes at the ice-air boundary. However, one key component has been missing from distributed models to date, namely the effects of debris cover. Many glacier ablation zones are mantled in near-continuous blankets of rock debris, and debris-covered glaciers are important drivers of the water cycle in the European Alps, Andes and Himalayas. Moreover, debris covers have been seen to expand in recent years, so it is essential to assess exactly how the presence of debris may affect a glacier’s surface energy balance and potential responses to climate changes. The effects of a debris cover are complicated by the varying surface roughness, albedo and thermal properties of the debris in question, but generally a debris cover reduces glacier melt rate by insulating the glacier surface from direct solar radiation. Even on glaciers where the debris cover is not continuous, isolated patches of debris caused by rockfalls can affect the glacier evolution by introducing differential ablation across the glacier surface, thus creating ice-cored moraines that may persist after ‘clean’ parts of the glacier have wasted away. This paper presents the results of incorporating a one-dimensional ‘debris energy balance model’ called DEB-Model (Reid and Brock 2010) into a distributed melt model for Haut Glacier d’Arolla, Switzerland. DEB-Model numerically estimates debris surface temperature by considering the balance of heat fluxes at the air-debris interface, then calculates heat conduction through the debris in order to estimate melt rates at the
A two-phase solid/fluid model for dense granular flows including dilatancy effects
NASA Astrophysics Data System (ADS)
Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Koné, El-Hadj; Narbona-Reina, Gladys
2016-04-01
Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [{Iverson et al.}, 2010]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure [{Bouchut et al.}, 2016]. The model is derived from a 3D two-phase model proposed by {Jackson} [2000] based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work [{Bouchut et al.}, 2015]. In particular, {Pitman and Le} [2005] replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's model by closing the mixture equations by a weak compressibility relation following {Roux and Radjai} [1998]. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To
NASA Astrophysics Data System (ADS)
Ward, Logan; Liu, Ruoqian; Krishna, Amar; Hegde, Vinay I.; Agrawal, Ankit; Choudhary, Alok; Wolverton, Chris
2017-07-01
While high-throughput density functional theory (DFT) has become a prevalent tool for materials discovery, it is limited by the relatively large computational cost. In this paper, we explore using DFT data from high-throughput calculations to create faster, surrogate models with machine learning (ML) that can be used to guide new searches. Our method works by using decision tree models to map DFT-calculated formation enthalpies to a set of attributes consisting of two distinct types: (i) composition-dependent attributes of elemental properties (as have been used in previous ML models of DFT formation energies), combined with (ii) attributes derived from the Voronoi tessellation of the compound's crystal structure. The ML models created using this method have half the cross-validation error and similar training and evaluation speeds to models created with the Coulomb matrix and partial radial distribution function methods. For a dataset of 435 000 formation energies taken from the Open Quantum Materials Database (OQMD), our model achieves a mean absolute error of 80 meV/atom in cross validation, which is lower than the approximate error between DFT-computed and experimentally measured formation enthalpies and below 15% of the mean absolute deviation of the training set. We also demonstrate that our method can accurately estimate the formation energy of materials outside of the training set and be used to identify materials with especially large formation enthalpies. We propose that our models can be used to accelerate the discovery of new materials by identifying the most promising materials to study with DFT at little additional computational cost.
NASA Astrophysics Data System (ADS)
Mann, Matthew James
Rural and small schools have almost one-third of all public school enrollment in America, yet typically have the fewest financial and research based resources. Educational models have been developed with either the urban or suburban school in mind, and the rural school is often left with no other alternative except this paradigm. Rural based educational resources are rare and the ability to access these resources for rural school districts almost non-existent. Federal and state based education agencies provide some rural educational based programs, but have had virtually no success in answering rural school issues. With federal and state interest in science initiatives, the challenge that rural schools face weigh in. To align with that focus, this study examined Texas middle school student achievement in science and its relationship with school district enrollment size. This study involved a sequential transformative mixed methodology with the quantitative phase driving the second qualitative portion. The quantitative research was a non-experimental causal-comparative study conducted to determine whether there is a significant difference between student achievement on the 2010 Texas Assessment of Knowledge and Skills 8 th grade science results and school district enrollment size. The school districts were distributed into four categories by size including: a) small districts (32-550); b) medium districts (551-1500); c) large districts (1501-6000); and d) mega-sized districts (6001-202,773). A one-way analysis of variance (ANOVA) was conducted to compare the district averages from the 2010 TAKS 8th grade science assessment results and the four district enrollment groups. The second phase of the study was qualitative utilizing constructivism and critical theory to identify the issues facing rural and small school administrators concerning science based curriculum and development. These themes and issues were sought through a case study method and through use of semi
Relationship between X(5) models and the interacting boson model
Barea, Jose; Arias, Jose M.; Garcia-Ramos, Jose Enrique
2010-08-15
The connections between the X(5) models [the original X(5) using an infinite square well, X(5)-{beta}{sup 8}, X(5)-{beta}{sup 6}, X(5)-{beta}{sup 4}, and X(5)-{beta}{sup 2}], based on particular solutions of the geometrical Bohr Hamiltonian with harmonic potential in the {gamma} degree of freedom, and the interacting boson model (IBM) are explored. This work is the natural extension of the work presented in Garcia-Ramos and Arias, Phys. Rev. C 77, 054307 (2008) for the E(5) models. For that purpose, a quite general one- and two-body IBM Hamiltonian is used and a numerical fit to the different X(5) model energies is performed; then the obtained wave functions are used to calculate B(E2) transition rates. It is shown that within the IBM one can reproduce well the results for energies and B(E2) transition rates obtained with all these X(5) models, although the agreement is not so impressive as for the E(5) models. From the fitted IBM parameters the corresponding energy surface can be extracted and, surprisingly, only the X(5) case corresponds in the moderately large N limit to an energy surface very close to the one expected for a critical point, whereas the rest of models are situated a little further away.
Cheng, Lei; Li, Yizeng; Grosh, Karl
2013-01-01
An approximate boundary condition is developed in this paper to model fluid shear viscosity at boundaries of coupled fluid-structure system. The effect of shear viscosity is approximated by a correction term to the inviscid boundary condition, written in terms of second order in-plane derivatives of pressure. Both thin and thick viscous boundary layer approximations are formulated; the latter subsumes the former. These approximations are used to develop a variational formation, upon which a viscous finite element method (FEM) model is based, requiring only minor modifications to the boundary integral contributions of an existing inviscid FEM model. Since this FEM formulation has only one degree of freedom for pressure, it holds a great computational advantage over the conventional viscous FEM formulation which requires discretization of the full set of linearized Navier-Stokes equations. The results from thick viscous boundary layer approximation are found to be in good agreement with the prediction from a Navier-Stokes model. When applicable, thin viscous boundary layer approximation also gives accurate results with computational simplicity compared to the thick boundary layer formulation. Direct comparison of simulation results using the boundary layer approximations and a full, linearized Navier-Stokes model are made and used to evaluate the accuracy of the approximate technique. Guidelines are given for the parameter ranges over which the accurate application of the thick and thin boundary approximations can be used for a fluid-structure interaction problem. PMID:23729844
Deslandes, Samuel; Mariot, Jean-Pierre; Serveto, Sébastien
2008-07-19
The present paper deals with a virtual model devoted to isokinetics and isometrics assessment of a human muscular group in the common joints, knee, ankle, hip, shoulder, cervical spine, etc. This virtual model with an analytical analysis followed by a numerical simulation is able to predict measurement errors of the joint torque due to offset of rotation centers between the body segment and the ergometer arm. As soon as offset is present, errors increase due to the influence of inertial effects, gravity effects, stiffness due to the limb strapping on the ergometer arm or Coulomb friction between limb and ergometer. The analytical model is written in terms of Lagrange formalism and the numerical model uses ADAMS software adapted to multi-body dynamics simulations. Results of models show a maximal relative error of 11%, for a 10% relative offset between the rotation centers. Inertial contributions are found to be negligible but gravity effects must be discussed in regard to the measured torque. Stiffness or friction effects may also increase the torque error; in particular when offset occurs, it is shown that errors due to friction have to be considered for all torque level while only stiffness effects have to be considered for torque less than 25Nm. This study also emphasizes the influence of the angular range of motion at a given angular position.
Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes
García-Gen, Santiago; Sousbie, Philippe; Rangaraj, Ganesh; Lema, Juan M.; Rodríguez, Jorge; Steyer, Jean-Philippe; Torrijos, Michel
2015-01-15
Highlights: • Fractionation of solid wastes into readily and slowly biodegradable fractions. • Kinetic coefficients estimation from mono-digestion batch assays. • Validation of kinetic coefficients with a co-digestion continuous experiment. • Simulation of batch and continuous experiments with an ADM1-based model. - Abstract: A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowly biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 g VS/L d. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes.
A synthetic model for blood coagulation including blood slip at the vessel wall.
Fasano, Antonio; Pavlova, Jevgenija; Sequeira, Adélia
2013-01-01
Modeling blood coagulation has taken various directions in recent years, depending on the aspects that authors wish to emphasize. In this paper we want to address an issue that has been systematically ignored in the relevant literature, namely the effect of blood slip at the vessels wall. The presence of a slip results in an increased supply of activated platelets to the clotting site. We calculate such a contribution showing that, in extreme cases, it can be even dominant. Indeed, raising the concentration of activated platelets induces an acceleration of thrombin production and eventually of the whole clot progression. The model explains the difference between arterial and venous thrombi. We confine to the coagulation stage known as "propagation phase" in the context of the so called cell based model. The paper is preparatory for a deeper analysis in which the clotting process is coupled to blood rheology and that will be carried out in the future by the same authors. At the present stage, the extremely complex biochemistry has been simplified adopting a leaner, though virtual, system of diffusion-convection-reaction equations, in the optics of providing "modular" models, that can be reduced or enlarged so to meet specific modeling requirements.
NASA Astrophysics Data System (ADS)
Kumar, P.; Wiltshire, A.; Asharaf, S.; Ahrens, B.; Lucas-Picher, P.; Christensen, J. H.; Gobiet, A.; Saeed, F.; Hagemann, S.; Jacob, D.
2011-12-01
This study presents the possible regional climate change over SA with a focus over India as simulated by three very-high-resolution regional climate models. The models are driven by the same lateral boundary conditions from two global models (ECHAM5-MPIOM and HadCM3) under the IPCC AR4 SRES A1B scenario at horizontal resolution of ~25km, except one model which is simulated for only one GCM. The results are presented for two time slices 2021-2050 and 2070-2099. The analysis concentrates along precipitation and temperature over land and focuses mainly on the monsoon season. The circulation parameter is also discussed. In general all models show a clear signal of gradual wide-spread warming throughout the 21st century. The ensemble-mean warming evident at the end of 2050 is 1-2K, whereas it is 3-5K at the end of century. The projected pattern of the precipitation change shows spatial variability. The increase in precipitation is noticed over peninsular and coastal areas and no change or decrease over areas away from the ocean. The influence of the driving GCM on projected precipitation change simulated with each RCM is as strong as the variability among the RCMs driven with one GCM. Some results of the first uncertainties assessment are also presented.
Results of including geometric nonlinearities in an aeroelastic model of an F/A-18
NASA Technical Reports Server (NTRS)
Buttrill, Carey S.
1989-01-01
An integrated, nonlinear simulation model suitable for aeroelastic modeling of fixed-wing aircraft has been developed. While the author realizes that the subject of modeling rotating, elastic structures is not closed, it is believed that the equations of motion developed and applied herein are correct to second order and are suitable for use with typical aircraft structures. The equations are not suitable for large elastic deformation. In addition, the modeling framework generalizes both the methods and terminology of non-linear rigid-body airplane simulation and traditional linear aeroelastic modeling. Concerning the importance of angular/elastic inertial coupling in the dynamic analysis of fixed-wing aircraft, the following may be said. The rigorous inclusion of said coupling is not without peril and must be approached with care. In keeping with the same engineering judgment that guided the development of the traditional aeroelastic equations, the effect of non-linear inertial effects for most airplane applications is expected to be small. A parameter does not tell the whole story, however, and modes flagged by the parameter as significant also need to be checked to see if the coupling is not a one-way path, i.e., the inertially affected modes can influence other modes.
Hybrid Model for Plasma Thruster Plume Simulation Including PIC-MCC Electrons Treatment
Alexandrov, A. L.; Bondar, Ye. A.; Schweigert, I. V.
2008-12-31
The simulation of stationary plasma thruster plume is important for spacecraft design due to possible interaction plume with spacecraft surface. Such simulations are successfully performed using the particle-in-cell technique for describing the motion of charged particles, namely the propellant ions. In conventional plume models the electrons are treated using various fluid approaches. In this work, we suggest an alternative approach, where the electron kinetics is considered 'ab initio', using the particle-in-cell--Monte Carlo collision method. To avoid the large computational expenses due to small time steps, the relaxation of simulated plume plasma is split into the fast relaxation of the electrons distribution function and the slow one of the ions. The model is self-consistent but hybrid, since the simultaneous electron and ion motion is not really modeled. The obtained electron temperature profile is in good agreement with experiment.
Accurate method for including solid-fluid boundary interactions in mesoscopic model fluids
Berkenbos, A. Lowe, C.P.
2008-04-20
Particle models are attractive methods for simulating the dynamics of complex mesoscopic fluids. Many practical applications of this methodology involve flow through a solid geometry. As the system is modeled using particles whose positions move continuously in space, one might expect that implementing the correct stick boundary condition exactly at the solid-fluid interface is straightforward. After all, unlike discrete methods there is no mapping onto a grid to contend with. In this article we describe a method that, for axisymmetric flows, imposes both the no-slip condition and continuity of stress at the interface. We show that the new method then accurately reproduces correct hydrodynamic behavior right up to the location of the interface. As such, computed flow profiles are correct even using a relatively small number of particles to model the fluid.
Jauchem, James R
2010-03-01
Conducted energy weapons (CEWs) are used by law-enforcement personnel to incapacitate individuals quickly and effectively, without causing lethality. CEWs have been deployed for relatively long or repeated exposures during law-enforcement operations. The purpose of this technical note is to describe, in detail, some aspects of an anesthetized swine model used in our laboratory and to answer specific questions related to the model. In particular, tiletamine/zolazepam-induced, propofol-maintained anesthesia appears to be a useful technique for studying effects of CEW applications on muscle contraction and blood factors such as muscle enzymes. Because effects of CEWs on breathing have not been fully elucidated, a spontaneously breathing model is preferable to one in which mechanical ventilation is supplied. Placement of the swine in a supine position may facilitate measurement of muscle contractions, without compromising other physiological parameters.
NASA Astrophysics Data System (ADS)
Lüdde, Hans Jürgen; Achenbach, Alexander; Kalkbrenner, Thilo; Jankowiak, Hans-Christian; Kirchner, Tom
2016-04-01
A new model to account for geometric screening corrections in an independent-atom-model description of ion-molecule collisions is introduced. The ion-molecule cross sections for net capture and net ionization are represented as weighted sums of atomic cross sections with weight factors that are determined from a geometric model of overlapping cross section areas. Results are presented for proton collisions with targets ranging from diatomic to complex polyatomic molecules. Significant improvement compared to simple additivity rule results and in general good agreement with experimental data are found. The flexibility of the approach opens up the possibility to study more detailed observables such as orientation-dependent and charge-state-correlated cross sections for a large class of complex targets ranging from biomolecules to atomic clusters.
Viscoelastic Model of Cross-Linked Polyethylene Including Effects of Temperature and Crystallinity
NASA Astrophysics Data System (ADS)
Olasz, L.; Gudmundson, P.
2005-12-01
Characterization of the mechanical behavior of cross-linked polyethylene (XLPE) commonly used in high voltage cable insulation was performed by an extensive set of isothermal uniaxial tensile relaxation tests. Tensile relaxation experiments were complemented by pressure-volume-temperature experiments as well as density and crystallinity measurements. Based on the experimental results, a viscoelastic power law model with four parameters was formulated, incorporating temperature and crystallinity dependence. It was found that a master curve can be developed by both horizontal and vertical shifting of the relaxation curves. The model was evaluated by making comparisons of the predicted stress responses with the measured responses in relaxation tests with transient temperature histories.
Modeling of precipitation strengthening in Inconel 718 including non-spherical γ″ precipitates
NASA Astrophysics Data System (ADS)
Ahmadi, M. R.; Rath, M.; Povoden-Karadeniz, E.; Primig, S.; Wojcik, T.; Danninger, A.; Stockinger, M.; Kozeschnik, E.
2017-07-01
In this study, the classical strengthening equations for weak and strong particles are advanced to account for oblate-shaped γ″ precipitates in Inconel 718. The model is verified on quantitative stereology of size and distribution for both shearable and non-shearable mechanisms. The evolution of precipitation strengthening of aged superalloy Inconel 718 is simulated. In addition to precipitation strengthening, contributions of solid solution strengthening and the grain size effect are considered. Simulation results indicate a sound prediction of the final yield strength based on the presented model.
Three-dimensional time domain model of lightning including corona effects
NASA Technical Reports Server (NTRS)
Podgorski, Andrew S.
1991-01-01
A new 3-D lightning model that incorporates the effect of corona is described for the first time. The new model is based on a Thin Wire Time Domain Lightning (TWTDL) Code developed previously. The TWTDL Code was verified during the 1985 and 1986 lightning seasons by the measurements conducted at the 553 m CN Tower in Toronto, Ontario. The inclusion of corona in the TWTDL code allowed study of the corona effects on the lightning current parameters and the associated electric field parameters.
European air quality modelled by CAMx including the volatility basis set scheme
NASA Astrophysics Data System (ADS)
Ciarelli, G.; Aksoyoglu, S.; Crippa, M.; Jimenez, J. L.; Nemitz, E.; Sellegri, K.; Äijälä, M.; Carbone, S.; Mohr, C.; O'Dowd, C.; Poulain, L.; Baltensperger, U.; Prévôt, A. S. H.
2015-12-01
Four periods of EMEP (European Monitoring and Evaluation Programme) intensive measurement campaigns (June 2006, January 2007, September-October 2008 and February-March 2009) were modelled using the regional air quality model CAMx with VBS (Volatility Basis Set) approach for the first time in Europe within the framework of the EURODELTA-III model intercomparison exercise. More detailed analysis and sensitivity tests were performed for the period of February-March 2009 and June 2006 to investigate the uncertainties in emissions as well as to improve the modelling of organic aerosols (OA). Model performance for selected gas phase species and PM2.5 was evaluated using the European air quality database Airbase. Sulfur dioxide (SO2) and ozone (O3) were found to be overestimated for all the four periods with O3 having the largest mean bias during June 2006 and January-February 2007 periods (8.93 and 12.30 ppb mean biases, respectively). In contrast, nitrogen dioxide (NO2) and carbon monoxide (CO) were found to be underestimated for all the four periods. CAMx reproduced both total concentrations and monthly variations of PM2.5 very well for all the four periods with average biases ranging from -2.13 to 1.04 μg m-3. Comparisons with AMS (Aerosol Mass Spectrometer) measurements at different sites in Europe during February-March 2009, showed that in general the model over-predicts the inorganic aerosol fraction and under-predicts the organic one, such that the good agreement for PM2.5 is partly due to compensation of errors. The effect of the choice of volatility basis set scheme (VBS) on OA was investigated as well. Two sensitivity tests with volatility distributions based on previous chamber and ambient measurements data were performed. For February-March 2009 the chamber-case reduced the total OA concentrations by about 43 % on average. On the other hand, a test based on ambient measurement data increased OA concentrations by about 47 % for the same period bringing model
Evaluation of European air quality modelled by CAMx including the volatility basis set scheme
NASA Astrophysics Data System (ADS)
Ciarelli, Giancarlo; Aksoyoglu, Sebnem; Crippa, Monica; Jimenez, Jose-Luis; Nemitz, Eriko; Sellegri, Karine; Äijälä, Mikko; Carbone, Samara; Mohr, Claudia; O'Dowd, Colin; Poulain, Laurent; Baltensperger, Urs; Prévôt, André S. H.
2016-08-01
Four periods of EMEP (European Monitoring and Evaluation Programme) intensive measurement campaigns (June 2006, January 2007, September-October 2008 and February-March 2009) were modelled using the regional air quality model CAMx with VBS (volatility basis set) approach for the first time in Europe within the framework of the EURODELTA-III model intercomparison exercise. More detailed analysis and sensitivity tests were performed for the period of February-March 2009 and June 2006 to investigate the uncertainties in emissions as well as to improve the modelling of organic aerosol (OA). Model performance for selected gas phase species and PM2.5 was evaluated using the European air quality database AirBase. Sulfur dioxide (SO2) and ozone (O3) were found to be overestimated for all the four periods, with O3 having the largest mean bias during June 2006 and January-February 2007 periods (8.9 pbb and 12.3 ppb mean biases respectively). In contrast, nitrogen dioxide (NO2) and carbon monoxide (CO) were found to be underestimated for all the four periods. CAMx reproduced both total concentrations and monthly variations of PM2.5 for all the four periods with average biases ranging from -2.1 to 1.0 µg m-3. Comparisons with AMS (aerosol mass spectrometer) measurements at different sites in Europe during February-March 2009 showed that in general the model overpredicts the inorganic aerosol fraction and underpredicts the organic one, such that the good agreement for PM2.5 is partly due to compensation of errors. The effect of the choice of VBS scheme on OA was investigated as well. Two sensitivity tests with volatility distributions based on previous chamber and ambient measurements data were performed. For February-March 2009 the chamber case reduced the total OA concentrations by about 42 % on average. In contrast, a test based on ambient measurement data increased OA concentrations by about 42 % for the same period bringing model and observations into better agreement
A Two-Phase Solid/Fluid Model for Dense Granular Flows Including Dilatancy Effects
NASA Astrophysics Data System (ADS)
Mangeney, A.; Bouchut, F.; Fernández-Nieto, E. D.; Narbona-Reina, G.; Kone, E. H.
2014-12-01
We propose a thin layer depth-averaged two-phase model to describe solid-fluid mixtures such as debris flows. It describes the velocity of the two phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure, that itself modifies the friction within the granular phase (Iverson et al., 2010). The model is derived from a 3D two-phase model proposed by Jackson (2000) based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work (Bouchut et al., 2014). In particular, Pitman and Le replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's equations. We close the mixture equations by a weak compressibility relation involving a critical density, or equivalently a critical pressure. Moreover, we relax one boundary condition, making it possible for the fluid to escape the granular media when compression of the granular mass occurs. Furthermore, we introduce second order terms in the equations making it possible to describe the evolution of the pore fluid pressure in response to the compression/dilatation of the granular mass without prescribing an extra ad-hoc equation for the pore pressure. We prove that the energy balance associated with this Jackson closure is dissipative, as well as its thin layer associated model. We present several numerical tests for the 1D case that are compared to the
A Two-Phase Solid/Fluid Model for Dense Granular Flows Including Dilatancy Effects
NASA Astrophysics Data System (ADS)
Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Narbona-Reina, Gladys
2015-04-01
We propose a thin layer depth-averaged two-phase model to describe solid-fluid mixtures such as debris flows. It describes the velocity of the two phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure, that itself modifies the friction within the granular phase (Iverson et al., 2010). The model is derived from a 3D two-phase model proposed by Jackson (2000) based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work (Bouchut et al., 2014). In particular, Pitman and Le replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's equations. We close the mixture equations by a weak compressibility relation involving a critical density, or equivalently a critical pressure. Moreover, we relax one boundary condition, making it possible for the fluid to escape the granular media when compression of the granular mass occurs. Furthermore, we introduce second order terms in the equations making it possible to describe the evolution of the pore fluid pressure in response to the compression/dilatation of the granular mass without prescribing an extra ad-hoc equation for the pore pressure. We prove that the energy balance associated with this Jackson closure is dissipative, as well as its thin layer associated model. We present several numerical tests for the 1D case that are compared to the
Ng, Jonathan; Huang, Yi-Min; Hakim, Ammar; Bhattacharjee, A.; Stanier, Adam; Daughton, William; Wang, Liang; Germaschewski, Kai
2015-11-15
As modeling of collisionless magnetic reconnection in most space plasmas with realistic parameters is beyond the capability of today's simulations, due to the separation between global and kinetic length scales, it is important to establish scaling relations in model problems so as to extrapolate to realistic scales. Recently, large scale particle-in-cell simulations of island coalescence have shown that the time averaged reconnection rate decreases with system size, while fluid systems at such large scales in the Hall regime have not been studied. Here, we perform the complementary resistive magnetohydrodynamic (MHD), Hall MHD, and two fluid simulations using a ten-moment model with the same geometry. In contrast to the standard Harris sheet reconnection problem, Hall MHD is insufficient to capture the physics of the reconnection region. Additionally, motivated by the results of a recent set of hybrid simulations which show the importance of ion kinetics in this geometry, we evaluate the efficacy of the ten-moment model in reproducing such results.
Wada, Mami; Suzuki, Masao; Liu, Cuihua; Kaneko, Yumiko; Fukuda, Shigekazu; Ando, Koichi; Matsufuji, Naruhiro
2013-01-01
To understand the biological response of normal cells to fractionated carbon beam irradiation, the effects of potentially lethal damage repair (PLDR) and sublethal damage repair (SLDR) were both taken into account in a linear-quadratic (LQ) model. The model was verified by the results of a fractionated cell survival experiment with normal human fibroblast cells. Cells were irradiated with 200-kV X-rays and monoenergetic carbon ion beams (290 MeV/u) at two irradiation depths, corresponding to linear energy transfers (LETs) of approximately 13 keV/μm and 75 keV/μm, respectively, at the Heavy Ion Medical Accelerator in Chiba of the National Institute of Radiological Sciences. When we only took into account the repair factor of PLDR, γ, which was derived from the delayed assay, the cell survival response to fractionated carbon ion irradiation was not fully explained in some cases. When both the effects of SLDR and PLDR were taken into account in the LQ model, the cell survival response was well reproduced. The model analysis suggested that PLDR occurs in any type of radiation. The γ factors ranged from 0.36–0.93. In addition, SLD was perfectly repaired during the fraction interval for the lower LET irradiations but remained at about 30% for the high-LET irradiation. PMID:23449640
Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes.
García-Gen, Santiago; Sousbie, Philippe; Rangaraj, Ganesh; Lema, Juan M; Rodríguez, Jorge; Steyer, Jean-Philippe; Torrijos, Michel
2015-01-01
A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowly biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 gVS/Ld. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dusty Plasma Modeling of the Fusion Reactor Sheath Including Collisional-Radiative Effects
Dezairi, Aouatif; Samir, Mhamed; Eddahby, Mohamed; Saifaoui, Dennoun; Katsonis, Konstantinos; Berenguer, Chloe
2008-09-07
The structure and the behavior of the sheath in Tokamak collisional plasmas has been studied. The sheath is modeled taking into account the presence of the dust{sup 2} and the effects of the charged particle collisions and radiative processes. The latter may allow for optical diagnostics of the plasma.
NASA Astrophysics Data System (ADS)
Stevens, Richard; Gayme, Dennice; Meyers, Johan; Meneveau, Charles
2015-11-01
We present results from large eddy simulations (LES) of wind farms consisting of tens to hundreds of turbines with respective streamwise and spanwise spacings approaching 35 and 12 turbine diameters. Even in staggered farms where the distance between consecutive turbines in the flow direction is more than 50 turbine diameters, we observe visible wake effects. In aligned farms, the performance of the turbines in the fully developed regime, where the power output as function of the downstream position becomes constant, is shown to primarily depend on the streamwise distance between consecutive turbine rows. However, for other layouts the power production in the fully developed regime mainly depends on the geometrical mean turbine spacing (inverse turbine density). These findings agree very well with predictions from our recently developed coupled wake boundary layer (CWBL) model, which introduces a two way coupling between the wake (Jensen) and top-down model approaches (Stevens et al. JRSE 7, 023115, 2015). To further validate the CWBL model we apply it to the problem of determining the optimal wind turbine thrust coefficient for power maximization over the entire farm. The CWBL model predictions agree very well with recent LES results (Goit & Meyers, JFM 768, 5-50, 2015). FOM Fellowships for Young Energy Scientists (YES!), NSF (IIA 1243482, the WINDINSPIRE project), ERC (FP7-Ideas, 306471).
Ng, Jonathan; Huang, Yi -Min; Hakim, Ammar; Bhattacharjee, A.; Stanier, Adam; Daughton, William; Wang, Liang; Germaschewski, Kai
2015-11-05
As modeling of collisionless magnetic reconnection in most space plasmas with realistic parameters is beyond the capability of today's simulations, due to the separation between global and kinetic length scales, it is important to establish scaling relations in model problems so as to extrapolate to realistic scales. Furthermore, large scale particle-in-cell simulations of island coalescence have shown that the time averaged reconnection rate decreases with system size, while fluid systems at such large scales in the Hall regime have not been studied. Here, we perform the complementary resistive magnetohydrodynamic (MHD), Hall MHD, and two fluid simulations using a ten-moment model with the same geometry. In contrast to the standard Harris sheet reconnection problem, Hall MHD is insufficient to capture the physics of the reconnection region. Additionally, motivated by the results of a recent set of hybrid simulations which show the importance of ion kinetics in this geometry, we evaluate the efficacy of the ten-moment model in reproducing such results.
Modeling the impact of spatial relationships on horizontal curve safety.
Findley, Daniel J; Hummer, Joseph E; Rasdorf, William; Zegeer, Charles V; Fowler, Tyler J
2012-03-01
The curved segments of roadways are more hazardous because of the additional centripetalforces exerted on a vehicle, driver expectations, and other factors. The safety of a curve is dependent on various factors, most notably by geometric factors, but the location of a curve in relation to other curves is also thought to influence the safety of those curves because of a driver's expectation to encounter additional curves. The link between an individual curve's geometric characteristics and its safety performance has been established, but spatial considerations are typically not included in a safety analysis. The spatial considerations included in this research consisted of four components: distance to adjacent curves, direction of turn of the adjacent curves, and radius and length of the adjacent curves. The primary objective of this paper is to quantify the spatial relationship between adjacent horizontal curves and horizontal curve safety using a crash modification factor. Doing so enables a safety professional to more accurately estimate safety to allocate funding to reduce or prevent future collisions and more efficiently design new roadway sections to minimize crash risk where there will be a series of curves along a route. The most important finding from this research is the statistical significance of spatial considerations for the prediction of horizontal curve safety. The distances to adjacent curves were found to be a reliable predictor of observed collisions. This research recommends a model which utilizes spatial considerations for horizontal curve safety prediction in addition to current Highway Safety Manual prediction capabilities using individual curve geometric features. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hadden, Benjamin W; Smith, C Veronica; Webster, Gregory D
2014-02-01
Although research has examined associations between attachment dimensions and relationship outcomes, theory has ignored how these associations change over time in adult romantic relationships. We proposed the Temporal Adult Romantic Attachment (TARA) model, which predicts that the negative associations between anxious and avoidant attachment on one hand and relationship satisfaction and commitment on the other will be more negative as relationship durations increase. Meta-analyses largely confirmed that negative associations between both insecure attachment dimensions and both relationship outcomes were more negative among longer relationship durations in cross-sectional samples. We also explored gender differences in these associations. The present review not only integrates the literature on adult attachment and romantic relationship satisfaction/commitment but also highlights the importance of relationship duration as a key moderator of the associations among these variables. We discuss the broad implications of these effects and our meta-analytic findings for the TARA model, attachment theory, and romantic relationships.
NASA Astrophysics Data System (ADS)
Jiang, Xin; Liu, Xiao-Zhou; Wu, Jun-Ru
2009-07-01
Experimental results have shown that in the megahertz frequency range the relationship between the acoustic attenuation coefficient in soft tissues and frequency is nearly linear. The classical continuum mechanics (CCM), which assumes that the material is uniform and continuous, fails to explain this relationship particularly in the high megahertz range. Doublet mechanics (DM) is a new elastic theory which takes the discrete nature of material into account. The current DM theory however does not consider the loss. We revise the doublet mechanics (DM) theory by including the loss term, and calculate the attenuation of a soft tissue as a function of frequency using the modified the DM theory (MDM). The MDM can now well explain the nearly linear relationship between the acoustic attenuation coefficient in soft tissues and frequency.
A model for calculating polymer injectivity including the effects of shear degradation
Sorbie, K.S.; Roberts, L.J.
1984-04-01
Polymers are frequently injected into oil reservoirs in order to improve recovery. As they reduce the in-situ mobility of the aqueous phase (either by viscosity increase or permeability reduction), the fluid injectivity generally drops. It is very useful to be able to estimate in advance from a few laboratory measured quantities the injectivity of the polymer and whether the polymer is likely to be seriously degraded by the high shear experienced in the near-wellbore region. It is difficult to calculate the injectivity of the polymer solutions due to their complex rheological behaviour within porous media, especially when the polymer mechanically degrades. In this paper, the authors investigate one approach to calculating the injectivity of polymers in the general case where mechanical degradation occurs. A kinetic model for polymer degradation is proposed which is used to obtain the radial viscosity profile of the degrading polymer. This may in turn be used to calculate the steady-state pressure drops associated with the degrading polymer. The model is based on a discrete multicomponent representation of the polymer molecular weight distribution (MWD). During mechanical degradation, the MWD changes as higher components degrade into lower molecular weight fragments. The degradation rate of a given component of the MWD is related to the local shear/elongational stress within the porous medium and the concentration of the component (C /SUB i/ ). The model is used to match the results of experiments studying the shear degradation of polyacrylamide (PAM) in radial sandstone cores. The quantitative predictions of the model are very satisfactory. In addition, the model gives insight into the mechanism of shear degradation of polymers in porous media.
A wave-based model for the marginal ice zone including a floe breaking parameterization
NASA Astrophysics Data System (ADS)
Dumont, D.; Kohout, A.; Bertino, L.
2011-04-01
The marginal ice zone (MIZ) is the boundary between the open ocean and ice-covered seas, where sea ice is significantly affected by the onslaught of ocean waves. Waves are responsible for the breakup of ice floes and determine the extent of the MIZ and floe size distribution. When the ice cover is highly fragmented, its behavior is qualitatively different from that of pack ice with large floes. Therefore, it is important to incorporate wave-ice interactions into sea ice-ocean models. In order to achieve this goal, two effects are considered: the role of sea ice as a dampener of wave energy and the wave-induced breakup of ice floes. These two processes act in concert to modify the incident wave spectrum and determine the main properties of the MIZ. A simple but novel parameterization for floe breaking is derived by considering alternatively ice as a flexible and rigid material and by using current estimates of ice critical flexural strain and strength. This parameterization is combined with a wave scattering model in a one-dimensional numerical framework to evaluate the floe size distribution and the extent of the MIZ. The model predicts a sharp transition between fragmented sea ice and the central pack, thus providing a natural definition for the MIZ. Reasonable values are found for the extent of the MIZ given realistic initial and boundary conditions. The numerical setting is commensurate with typical ice-ocean models, with the future implementation into two-dimensional sea ice models in mind.
NASA Astrophysics Data System (ADS)
Tse, Y. C.; Chan, Chris K. P.; Luk, M. H.; Kwong, N. H.; Leung, P. T.; Binder, R.; Schumacher, Stefan
2015-08-01
We present a detailed study of a low-dimensional population-competition (PC) model suitable for analysis of the dynamics of certain modulational instability patterns in extended systems. The model is applied to analyze the transverse optical exciton-polariton patterns in semiconductor quantum well microcavities. It is shown that, despite its simplicity, the PC model describes quite well the competitions among various two-spot and hexagonal patterns when four physical parameters, representing density saturation, hexagon stabilization, anisotropy, and switching beam intensity, are varied. The combined effects of the last three parameters are given detailed considerations here. Although the model is developed in the context of semiconductor polariton patterns, its equations have more general applicability, and the results obtained here may benefit the investigation of other pattern-forming systems. The simplicity of the PC model allows us to organize all steady state solutions in a parameter space ‘phase diagram’. Each region in the phase diagram is characterized by the number and type of solutions. The main numerical task is to compute inter-region boundary surfaces, where some steady states either appear, disappear, or change their stability status. The singularity types of the boundary points, given by Catastrophe theory, are shown to provide a simple geometric overview of the boundary surfaces. With all stable and unstable steady states and the phase boundaries delimited and characterized, we have attained a comprehensive understanding of the structure of the four-parameter phase diagram. We analyze this rich structure in detail and show that it provides a transparent and organized interpretation of competitions among various patterns built on the hexagonal state space.
NASA Astrophysics Data System (ADS)
Wagner, T. M.; Graf, H. F.; Yano, J. I.
2009-04-01
The convective cloud field model is a convection parameterisation based on the representation of a full cumulus cloud spectrum using a dynamical quasi-equilibrium closure. It employs a one dimensional entraining parcel model whose properties are simulated on a refined vertical resolution (~100 m) in order to capture the complex cloud microphysical processes in convective clouds. We introduced an enhanced microphysics compared to those currently used in convection parameterisations, containing warm and mixed phase cloud microphysics processes and incorporates aerosol effects by linking the cloud droplet number concentration to the aerosol amount. Similar to the Arakawa and Schubert (1974) quasi-equilibrium closure we allow for the mutual influence of clouds via the environment. Instead of assuming instantaneous stabilisation of the environment though, the clouds are dynamically interacting for the length of the large scale model time step without necessarily adopting an equilibrium situation. The model is evaluated in single column mode (SCM) for continental and tropical convection using the ARM SGP and TWP-ICE cases. Moreover it is evaluated in global mode using the global atmospheric circulation model ECHAM5. For the SCM cases the precipitation, heating and moistening rates for the simulated period is better represented than with the Tiedtke massflux scheme which is the usual convection parameterisation within ECHAM5. Moreover, we find a clear response to an enhanced aerosol loading which generally leads to a reduction of convective precipitation. Globally, the CCFM produces slightly higher convective precipitation rates and especially responds better to convective instability over lower latitudes and the storm track regions.
A catchment-scale groundwater model including sewer pipe leakage in an urban system
NASA Astrophysics Data System (ADS)
Peche, Aaron; Fuchs, Lothar; Spönemann, Peter; Graf, Thomas; Neuweiler, Insa
2016-04-01
Keywords: pipe leakage, urban hydrogeology, catchment scale, OpenGeoSys, HYSTEM-EXTRAN Wastewater leakage from subsurface sewer pipe defects leads to contamination of the surrounding soil and groundwater (Ellis, 2002; Wolf et al., 2004). Leakage rates at pipe defects have to be known in order to quantify contaminant input. Due to inaccessibility of subsurface pipe defects, direct (in-situ) measurements of leakage rates are tedious and associated with a high degree of uncertainty (Wolf, 2006). Proposed catchment-scale models simplify leakage rates by neglecting unsaturated zone flow or by reducing spatial dimensions (Karpf & Krebs, 2013, Boukhemacha et al., 2015). In the present study, we present a physically based 3-dimensional numerical model incorporating flow in the pipe network, in the saturated zone and in the unsaturated zone to quantify leakage rates on the catchment scale. The model consists of the pipe network flow model HYSTEM-EXTAN (itwh, 2002), which is coupled to the subsurface flow model OpenGeoSys (Kolditz et al., 2012). We also present the newly developed coupling scheme between the two flow models. Leakage functions specific to a pipe defect are derived from simulations of pipe leakage using spatially refined grids around pipe defects. In order to minimize computational effort, these leakage functions are built into the presented numerical model using unrefined grids around pipe defects. The resulting coupled model is capable of efficiently simulating spatially distributed pipe leakage coupled with subsurficial water flow in a 3-dimensional environment. References: Boukhemacha, M. A., Gogu, C. R., Serpescu, I., Gaitanaru, D., & Bica, I. (2015). A hydrogeological conceptual approach to study urban groundwater flow in Bucharest city, Romania. Hydrogeology Journal, 23(3), 437-450. doi:10.1007/s10040-014-1220-3. Ellis, J. B., & Revitt, D. M. (2002). Sewer losses and interactions with groundwater quality. Water Science and Technology, 45(3), 195
NASA Astrophysics Data System (ADS)
Frankowski, Marek; Czapkiewicz, Maciej; Skowroński, Witold; Stobiecki, Tomasz
2014-02-01
We present a model introducing the Landau-Lifshitz-Gilbert equation with a Slonczewski's Spin-Transfer-Torque (STT) component in order to take into account spin polarized current influence on the magnetization dynamics, which was developed as an Object Oriented MicroMagnetic Framework extension. We implement the following computations: magnetoresistance of vertical channels is calculated from the local spin arrangement, local current density is used to calculate the in-plane and perpendicular STT components as well as the Oersted field, which is caused by the vertical current flow. The model allows for an analysis of all listed components separately, therefore, the contribution of each physical phenomenon in dynamic behavior of Magnetic Tunnel Junction (MTJ) magnetization is discussed. The simulated switching voltage is compared with the experimental data measured in MTJ nanopillars.
A kinematic eddy viscosity model including the influence of density variations and preturbulence
NASA Technical Reports Server (NTRS)
Cohen, L. S.
1973-01-01
A model for the kinematic eddy viscosity was developed which accounts for the turbulence produced as a result of jet interactions between adjacent streams as well as the turbulence initially present in the streams. In order to describe the turbulence contribution from jet interaction, the eddy viscosity suggested by Prandtl was adopted, and a modification was introduced to account for the effect of density variation through the mixing layer. The form of the modification was ascertained from a study of the compressible turbulent boundary layer on a flat plate. A kinematic eddy viscosity relation which corresponds to the initial turbulence contribution was derived by employing arguments used by Prandtl in his mixing length hypothesis. The resulting expression for self-preserving flow is similar to that which describes the mixing of a submerged jet. Application of the model has led to analytical predictions which are in good agreement with available turbulent mixing experimental data.
NASA Astrophysics Data System (ADS)
Lüdde, H. J.; Achenbach, A.; Kalkbrenner, T.; Jankowiak, H. C.; Kirchner, T.
2016-05-01
A recently introduced model to account for geometric screening corrections in an independent-atom-model description of ion-molecule collisions is applied to proton collisions from amino acids and DNA and RNA nucleobases. The correction coefficients are obtained from using a pixel counting method (PCM) for the exact calculation of the effective cross sectional area that emerges when the molecular cross section is pictured as a structure of (overlapping) atomic cross sections. This structure varies with the relative orientation of the molecule with respect to the projectile beam direction and, accordingly, orientation-independent total cross sections are obtained from averaging the pixel count over many orientations. We present net capture and net ionization cross sections over wide ranges of impact energy and analyze the strength of the screening effect by comparing the PCM results with Bragg additivity rule cross sections and with experimental data where available. Work supported by NSERC, Canada.
A model for thermal oxidation of Si and SiC including material expansion
Christen, T. Ioannidis, A.; Winkelmann, C.
2015-02-28
A model based on drift-diffusion-reaction kinetics for Si and SiC oxidation is discussed, which takes the material expansion into account with an additional convection term. The associated velocity field is determined self-consistently from the local reaction rate. The approach allows a calculation of the densities of volatile species in an nm-resolution at the oxidation front. The model is illustrated with simulation results for the growth and impurity redistribution during Si oxidation and for carbon and silicon emission during SiC oxidation. The approach can be useful for the prediction of Si and/or C interstitial distribution, which is particularly relevant for the quality of metal-oxide-semiconductor electronic devices.
2011-03-01
Hypothesized that snow plows wear down mountain road pavement markings. 2007 Craig et al. -Edge lines degrade slower than center/skip lines 2007...retroreflectivity to create the models. They discovered that paint pavement markings last 80% longer on Portland Cement Concrete than Asphalt Concrete at low AADT...retroreflectivity, while yellow markings lost 21%. Lu and Barter attributed the sizable degradation to snow removal, sand application, and studded
NASA Technical Reports Server (NTRS)
Ricks, Trenton M.; Lacy, Thomas E., Jr.; Bednarcyk, Brett A.; Arnold, Steven M.; Hutchins, John W.
2014-01-01
A multiscale modeling methodology was developed for continuous fiber composites that incorporates a statistical distribution of fiber strengths into coupled multiscale micromechanics/finite element (FE) analyses. A modified two-parameter Weibull cumulative distribution function, which accounts for the effect of fiber length on the probability of failure, was used to characterize the statistical distribution of fiber strengths. A parametric study using the NASA Micromechanics Analysis Code with the Generalized Method of Cells (MAC/GMC) was performed to assess the effect of variable fiber strengths on local composite failure within a repeating unit cell (RUC) and subsequent global failure. The NASA code FEAMAC and the ABAQUS finite element solver were used to analyze the progressive failure of a unidirectional SCS-6/TIMETAL 21S metal matrix composite tensile dogbone specimen at 650 degC. Multiscale progressive failure analyses were performed to quantify the effect of spatially varying fiber strengths on the RUC-averaged and global stress-strain responses and failure. The ultimate composite strengths and distribution of failure locations (predominately within the gage section) reasonably matched the experimentally observed failure behavior. The predicted composite failure behavior suggests that use of macroscale models that exploit global geometric symmetries are inappropriate for cases where the actual distribution of local fiber strengths displays no such symmetries. This issue has not received much attention in the literature. Moreover, the model discretization at a specific length scale can have a profound effect on the computational costs associated with multiscale simulations.models that yield accurate yet tractable results.
The extension of a uniform canopy reflectance model to include row effects
NASA Technical Reports Server (NTRS)
Suits, G. H. (Principal Investigator)
1981-01-01
The effect of row structure is assumed to be caused by the variation in density of vegetation across rows rather than to a profile in canopy height. The calculation of crop reflectance using vegetation density modulation across rows follows a parallel procedure to that for a uniform canopy. Predictions using the row model for wheat show that the effect of changes in sun to row azimuth are greatest in Landsat Band 5 (red band) and can result in underestimation of crop vigor.
Numerical modelling of the transport of trace gases including methane in the subsurface of Mars
NASA Astrophysics Data System (ADS)
Stevens, Adam H.; Patel, Manish R.; Lewis, Stephen R.
2015-04-01
We model the transport of gas through the martian subsurface in order to quantify the timescales of release of a trace gas with a source at depth using a Fickian model of diffusion through a putative martian regolith column. The model is then applied to the case of methane to determine if diffusive transport of gas can explain previous observations of methane in the martian atmosphere. We investigate which parameters in the model have the greatest effect on transport timescales and show that the calculated diffusivity is very sensitive to the pressure profile of the subsurface, but relatively insensitive to the temperature profile, though diffusive transport may be affected by other temperature dependent properties of the subsurface such as the local vapour pressure. Uncertainties in the structure and physical conditions of the martian subsurface also introduce uncertainties in the timescales calculated. It was found that methane may take several hundred thousand Mars-years to diffuse from a source at depth. Purely diffusive transport cannot explain transient release that varies on timescales of less than one martian year from sources such as serpentinization or methanogenic organisms at depths of more than 2 km. However, diffusion of gas released by the destabilisation of methane clathrate hydrates close to the surface, for example caused by transient mass wasting events or erosion, could produce a rapidly varying flux of methane into the atmosphere of more than 10-3 kg m-2 s-1 over a duration of less than half a martian year, consistent with observations of martian methane variability. Seismic events, magmatic intrusions or impacts could also potentially produce similar patterns of release, but are far more complex to simulate.
Modeling the Corona and Solar Wind using ADAPT Maps that Include Far-Side Observations
2013-11-01
document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated...Government’s approval or disapproval of its ideas or findings. Approved for public release; distribution is unlimited. REPORT DOCUMENTATION PAGE...Los Alamos National Laboratory ( LANL ) and the National Solar Observatory (NSO), has developed a model that produces more realistic estimates of the
A stepped leader model for lightning including charge distribution in branched channels
Shi, Wei; Zhang, Li; Li, Qingmin
2014-09-14
The stepped leader process in negative cloud-to-ground lightning plays a vital role in lightning protection analysis. As lightning discharge usually presents significant branched or tortuous channels, the charge distribution along the branched channels and the stochastic feature of stepped leader propagation were investigated in this paper. The charge density along the leader channel and the charge in the leader tip for each lightning branch were approximated by introducing branch correlation coefficients. In combination with geometric characteristics of natural lightning discharge, a stochastic stepped leader propagation model was presented based on the fractal theory. By comparing simulation results with the statistics of natural lightning discharges, it was found that the fractal dimension of lightning trajectory in simulation was in the range of that observed in nature and the calculation results of electric field at ground level were in good agreement with the measurements of a negative flash, which shows the validity of this proposed model. Furthermore, a new equation to estimate the lightning striking distance to flat ground was suggested based on the present model. The striking distance obtained by this new equation is smaller than the value estimated by previous equations, which indicates that the traditional equations may somewhat overestimate the attractive effect of the ground.
Including dislocation flux in a continuum crystal plasticity model to produce size scale effects
Becker, R; Arsenlis, A; Bulatov, V V; Parks, D M
2004-02-13
A novel model has been developed to capture size scale and gradient effects within the context of continuum crystal plasticity by explicitly incorporating details of dislocation transport, coupling dislocation transport to slip, evolving spatial distributions of dislocations consistent with the flux, and capturing the interactions among various dislocation populations. Dislocation flux and density are treated as nodal degrees of freedom in the finite element model, and they are determined as part of the global system of equations. The creation, annihilation and flux of dislocations between elements are related by transport equations. Crystallographic slip is coupled to the dislocation flux and the stress state. The resultant gradients in dislocation density and local lattice rotations are analyzed for geometrically necessary and statistically stored dislocation contents that contribute to strength and hardening. Grain boundaries are treated as surfaces where dislocation flux is restricted depending on the relative orientations of the neighboring grains. Numerical results show different behavior near free surfaces and non-deforming surfaces resulting from differing levels of dislocation transmission. Simulations also show development of dislocation pile-ups at grain boundaries and an increase in flow strength reminiscent of the Hall-Petch model. The dislocation patterns have a characteristic size independent of the numerical discretization.
NASA Astrophysics Data System (ADS)
Campbell, C. L.; Brown, C. T. A.; Wood, K.; Moseley, H.
2016-11-01
Most existing theoretical models of photodynamic therapy (PDT) assume a uniform initial distribution of the photosensitive molecule, Protoporphyrin IX (PpIX). This is an adequate assumption when the prodrug is systematically administered; however for topical PDT this is no longer a valid assumption. Topical application and subsequent diffusion of the prodrug results in an inhomogeneous distribution of PpIX, especially after short incubation times, prior to light illumination. In this work a theoretical simulation of PDT where the PpIX distribution depends on the incubation time and the treatment modality is described. Three steps of the PpIX production are considered. The first is the distribution of the topically applied prodrug, the second in the conversion from the prodrug to PpIX and the third is the light distribution which affects the PpIX distribution through photobleaching. The light distribution is modelled using a Monte Carlo radiation transfer model and indicates treatment depths of around 2 mm during daylight PDT and approximately 3 mm during conventional PDT. The results suggest that treatment depths are not only limited by the light penetration but also by the PpIX distribution.
Ng, Jonathan; Huang, Yi -Min; Hakim, Ammar; ...
2015-11-05
As modeling of collisionless magnetic reconnection in most space plasmas with realistic parameters is beyond the capability of today's simulations, due to the separation between global and kinetic length scales, it is important to establish scaling relations in model problems so as to extrapolate to realistic scales. Furthermore, large scale particle-in-cell simulations of island coalescence have shown that the time averaged reconnection rate decreases with system size, while fluid systems at such large scales in the Hall regime have not been studied. Here, we perform the complementary resistive magnetohydrodynamic (MHD), Hall MHD, and two fluid simulations using a ten-moment modelmore » with the same geometry. In contrast to the standard Harris sheet reconnection problem, Hall MHD is insufficient to capture the physics of the reconnection region. Additionally, motivated by the results of a recent set of hybrid simulations which show the importance of ion kinetics in this geometry, we evaluate the efficacy of the ten-moment model in reproducing such results.« less
A stepped leader model for lightning including charge distribution in branched channels
NASA Astrophysics Data System (ADS)
Shi, Wei; Li, Qingmin; Zhang, Li
2014-09-01
The stepped leader process in negative cloud-to-ground lightning plays a vital role in lightning protection analysis. As lightning discharge usually presents significant branched or tortuous channels, the charge distribution along the branched channels and the stochastic feature of stepped leader propagation were investigated in this paper. The charge density along the leader channel and the charge in the leader tip for each lightning branch were approximated by introducing branch correlation coefficients. In combination with geometric characteristics of natural lightning discharge, a stochastic stepped leader propagation model was presented based on the fractal theory. By comparing simulation results with the statistics of natural lightning discharges, it was found that the fractal dimension of lightning trajectory in simulation was in the range of that observed in nature and the calculation results of electric field at ground level were in good agreement with the measurements of a negative flash, which shows the validity of this proposed model. Furthermore, a new equation to estimate the lightning striking distance to flat ground was suggested based on the present model. The striking distance obtained by this new equation is smaller than the value estimated by previous equations, which indicates that the traditional equations may somewhat overestimate the attractive effect of the ground.
NASA Astrophysics Data System (ADS)
Hong, Sung-Kwon; Epureanu, Bogdan I.; Castanier, Matthew P.
2014-09-01
The goal of this work is to develop a numerical model for the vibration of hybrid electric vehicle (HEV) battery packs to enable probabilistic forced response simulations for the effects of variations. There are two important types of variations that affect their structural response significantly: the prestress that is applied when joining the cells within a pack; and the small, random structural property discrepancies among the cells of a battery pack. The main contributions of this work are summarized as follows. In order to account for these two important variations, a new parametric reduced order model (PROM) formulation is derived by employing three key observations: (1) the stiffness matrix can be parameterized for different levels of prestress, (2) the mode shapes of a battery pack with cell-to-cell variation can be represented as a linear combination of the mode shapes of the nominal system, and (3) the frame holding each cell has vibratory motion. A numerical example of an academic battery pack with pouch cells is presented to demonstrate that the PROM captures the effects of both prestress and structural variation on battery packs. The PROM is validated numerically by comparing full-order finite element models (FEMs) of the same systems.
Climate change impact modelling needs to include cross-sectoral interactions
NASA Astrophysics Data System (ADS)
Harrison, Paula A.; Dunford, Robert W.; Holman, Ian P.; Rounsevell, Mark D. A.
2016-09-01
Climate change impact assessments often apply models of individual sectors such as agriculture, forestry and water use without considering interactions between these sectors. This is likely to lead to misrepresentation of impacts, and consequently to poor decisions about climate adaptation. However, no published research assesses the differences between impacts simulated by single-sector and integrated models. Here we compare 14 indicators derived from a set of impact models run within single-sector and integrated frameworks across a range of climate and socio-economic scenarios in Europe. We show that single-sector studies misrepresent the spatial pattern, direction and magnitude of most impacts because they omit the complex interdependencies within human and environmental systems. The discrepancies are particularly pronounced for indicators such as food production and water exploitation, which are highly influenced by other sectors through changes in demand, land suitability and resource competition. Furthermore, the discrepancies are greater under different socio-economic scenarios than different climate scenarios, and at the sub-regional rather than Europe-wide scale.
Including Rebinding Reactions in Well-Mixed Models of Distributive Biochemical Reactions.
Lawley, Sean D; Keener, James P
2016-11-15
The behavior of biochemical reactions requiring repeated enzymatic substrate modification depends critically on whether the enzymes act processively or distributively. Whereas processive enzymes bind only once to a substrate before carrying out a sequence of modifications, distributive enzymes release the substrate after each modification and thus require repeated bindings. Recent experimental and computational studies have revealed that distributive enzymes can act processively due to rapid rebindings (so-called quasi-processivity). In this study, we derive an analytical estimate of the probability of rapid rebinding and show that well-mixed ordinary differential equation models can use this probability to quantitatively replicate the behavior of spatial models. Importantly, rebinding requires that connections be added to the well-mixed reaction network; merely modifying rate constants is insufficient. We then use these well-mixed models to suggest experiments to 1) detect quasi-processivity and 2) test the theory. Finally, we show that rapid rebindings drastically alter the reaction's Michaelis-Menten rate equations.
Kinetic model of water disinfection using peracetic acid including synergistic effects.
Flores, Marina J; Brandi, Rodolfo J; Cassano, Alberto E; Labas, Marisol D
2016-01-01
The disinfection efficiencies of a commercial mixture of peracetic acid against Escherichia coli were studied in laboratory scale experiments. The joint and separate action of two disinfectant agents, hydrogen peroxide and peracetic acid, were evaluated in order to observe synergistic effects. A kinetic model for each component of the mixture and for the commercial mixture was proposed. Through simple mathematical equations, the model describes different stages of attack by disinfectants during the inactivation process. Based on the experiments and the kinetic parameters obtained, it could be established that the efficiency of hydrogen peroxide was much lower than that of peracetic acid alone. However, the contribution of hydrogen peroxide was very important in the commercial mixture. It should be noted that this improvement occurred only after peracetic acid had initiated the attack on the cell. This synergistic effect was successfully explained by the proposed scheme and was verified by experimental results. Besides providing a clearer mechanistic understanding of water disinfection, such models may improve our ability to design reactors.
Gall, Elliott T; Siegel, Jeffrey A; Corsi, Richard L
2015-04-07
We develop an ozone transport and reaction model to determine reaction probabilities and assess the importance of physical properties such as porosity, pore diameter, and material thickness on reactive uptake of ozone to five materials. The one-dimensional model accounts for molecular diffusion from bulk air to the air-material interface, reaction at the interface, and diffusive transport and reaction through material pore volumes. Material-ozone reaction probabilities that account for internal transport and internal pore area, γ(ipa), are determined by a minimization of residuals between predicted and experimentally derived ozone concentrations. Values of γ(ipa) are generally less than effective reaction probabilities (γ(eff)) determined previously, likely because of the inclusion of diffusion into substrates and reaction with internal surface area (rather than the use of the horizontally projected external material areas). Estimates of γ(ipa) average 1 × 10(-7), 2 × 10(-7), 4 × 10(-5), 2 × 10(-5), and 4 × 10(-7) for two types of cellulose paper, pervious pavement, Portland cement concrete, and an activated carbon cloth, respectively. The transport and reaction model developed here accounts for observed differences in ozone removal to varying thicknesses of the cellulose paper, and estimates a near constant γ(ipa) as material thickness increases from 0.02 to 0.16 cm.
Galactic habitable zone around M and FGK stars with chemical evolution models that include dust
NASA Astrophysics Data System (ADS)
Spitoni, E.; Gioannini, L.; Matteucci, F.
2017-09-01
Context. The Galactic habitable zone is defined as the region with a metallicity that is high enough to form planetary systems in which Earth-like planets could be born and might be capable of sustaining life. Life in this zone needs to survive the destructive effects of nearby supernova explosion events. Aims: Galactic chemical evolution models can be useful tools for studying the galactic habitable zones in different systems. Our aim here is to find the Galactic habitable zone using chemical evolution models for the Milky Way disk, adopting the most recent prescriptions for the evolution of dust and for the probability of finding planetary systems around M and FGK stars. Moreover, for the first time, we express these probabilities in terms of the dust-to-gas ratio of the interstellar medium in the solar neighborhood as computed by detailed chemical evolution models. Methods: At a fixed Galactic time and Galactocentric distance, we determined the number of M and FGK stars that host earths (but no gas giant planets) that survived supernova explosions, using the formalism of our Paper I. Results: The probabilities of finding terrestrial planets but not gas giant planets around M stars deviate substantially from the probabilities around FGK stars for supersolar values of [Fe/H]. For both FGK and M stars, the maximum number of stars hosting habitable planets is at 8 kpc from the Galactic Center when destructive effects by supernova explosions are taken into account. Currently, M stars with habitable planets are ≃10 times more frequent than FGK stars. Moreover, we provide a sixth-order polynomial fit (and a linear fit, but that is more approximated) for the relation found with chemical evolution models in the solar neighborhood between the [Fe/H] abundances and the dust-to-gas ratio. Conclusions: The most likely Galactic zone in which to find terrestrial habitable planets around M and FGK stars is the annular 2 kpc wide region that is centered at 8 kpc from the
NASA Astrophysics Data System (ADS)
Wilson, C. J.; Gloor, M.; Chipperfield, M.; Miller, J. B.; Gatti, L.
2013-12-01
Methane (CH4) is a greenhouse gas which is emitted from a range of anthropogenic and natural sources, and since the industrial revolution its mean atmospheric concentration has climbed dramatically, reaching values unprecedented in at least the past 650,000 years. CH4 produces a relatively high radiative forcing effect upon the Earth's climate, and its atmospheric lifetime of approximately 10 years makes it a more appealing target for the mitigation of climate change over short timescales than long-lived greenhouse gases such as carbon dioxide. However, the spatial and temporal variation of CH4 emissions are still not well understood, though in recent years a number of top-down and bottom-up studies have attempted to construct improved emission budgets. Some top-down studies may suffer from poor observational coverage in tropical regions, however, especially in the planetary boundary layer, where the atmosphere is highly sensitive to emissions. For example, although satellite observations often take a large volume of measurements in tropical regions, these retrievals are not usually sensitive to concentrations at the planet's surface. Methane emissions from Amazon region, in particular, are often poorly constrained. Since emissions form this region, coming mainly from wetland and biomass burning sources, are thought to be relatively high, additional observations in this region would greatly help to constrain the geographical distribution of the global CH4 emission budget. In order to provide such measurements, the AMAZONICA project began to take regular flask measurements of CH4 and other trace gases from aircraft over four Amazonian sites from the year 2010 onwards. We first present a forward modelling study of these observations of Amazonian methane for the year 2010 using the TOMCAT Chemical Transport Model. The model is used to attribute variations at each site to a source type and region, and also to assess the ability of our current CH4 flux estimates to
Novel evolutionary relationship among four fish model systems.
Chen, Wei-Jen; Ortí, Guillermo; Meyer, Axel
2004-09-01
Knowledge of the correct phylogenetic relationships among animals is crucial for the valid interpretation of evolutionary trends in biology. Zebrafish, medaka, pufferfish and cichilds are fish models for development, genomics and comparative genetics studies, although their phylogenetic relationships have not been tested rigorously. The results of phylogenomic analysis based on 20 nuclear protein-coding genes confirmed the basal placement of zebrafish in the fish phylogeny but revealed an unexpected relationship among the other three species, contrary to traditionally held systematic views based on morphology. Our analyses show that medaka (Beloniformes) and cichlids (Perciformes) appear to be more closely related to each other than either of them is to pufferfish (Tetraodontiformes), suggesting that a re-interpretation of some findings in comparative biology might be required. In addition, phylogenomic analyses show that fish typically have more copies of nuclear genes than land vertebrates, supporting the fish-specific genome duplication hypothesis.
The relationship between psoriasis and depression: A multiple mediation model.
Łakuta, Patryk; Marcinkiewicz, Kamil; Bergler-Czop, Beata; Brzezińska-Wcisło, Ligia
2016-12-01
This study examined the relationship between psoriasis and depression, proposing a multiple mediation model to analyse the relationship. A total of 193 patients with psoriasis aged 20-67 years completed the Beck Depression Inventory, the Stigmatization Scale, the Appearance Schemas Inventory-Revised, and the Body Emotions Scale. The Body Surface Area index was used to assess severity of psoriasis. Serial multiple mediation analysis revealed that experiences of stigmatization, maladaptive beliefs about appearance and its salience to one's self-evaluation, and negative emotional attitudes towards the body, jointly, sequentially mediated the relationship between the presence of skin lesions of psoriasis and depressive symptoms. These results highlight the importance of the associations between stigmatization and cognitive and affective aspects of body image in relation to depression in patients with psoriasis. We suggest that prevention and intervention programs for psoriasis patients that target body image enhancement would be worthy of further research.
Relationships between Visual Static Models and Students' Written Solutions to Fraction Tasks
ERIC Educational Resources Information Center
Anderson-Pence, Katie L.; Moyer-Packenham, Patricia S.; Westenskow, Arla; Shumway, Jessica; Jordan, Kerry
2014-01-01
The purpose of this study was to deconstruct the relationship between visual static models and students' written solutions to fraction problems using a large sample of students' solutions. Participants in the study included 162 third-grade and 209 fourth-grade students from 17 different classrooms. Students' written responses to open-ended tasks…
Relationships between Visual Static Models and Students' Written Solutions to Fraction Tasks
ERIC Educational Resources Information Center
Anderson-Pence, Katie L.; Moyer-Packenham, Patricia S.; Westenskow, Arla; Shumway, Jessica; Jordan, Kerry
2014-01-01
The purpose of this study was to deconstruct the relationship between visual static models and students' written solutions to fraction problems using a large sample of students' solutions. Participants in the study included 162 third-grade and 209 fourth-grade students from 17 different classrooms. Students' written responses to open-ended tasks…
Cherkasskaya, Eugenia; Rosario, Margaret
2017-01-24
The etiology of low female sexual desire, the most prevalent sexual complaint in women, is multi-determined, implicating biological and psychological factors, including women's early parent-child relationships and bodily self-representations. The current study evaluated a model that hypothesized that sexual body self-representations (sexual subjectivity, self-objectification, genital self-image) explain (i.e., mediate) the relation between internalized working models of parent-child relationships (attachment, separation-individuation, parental identification) and sexual desire in heterosexual women. We recruited 614 young, heterosexual women (M = 25.5 years, SD = 4.63) through social media. The women completed an online survey. Structural equation modeling was used. The hypotheses were supported in that the relation between internalized working models of parent-child relationships (attachment and separation-individuation) and sexual desire was mediated by sexual body self-representations (sexual body esteem, self-objectification, genital self-image). However, parental identification was not related significantly to sexual body self-representations or sexual desire in the model. Current findings demonstrated that understanding female sexual desire necessitates considering women's internalized working models of early parent-child relationships and their experiences of their bodies in a sexual context. Treatment of low or absent desire in women would benefit from modalities that emphasize early parent-child relationships as well as interventions that foster mind-body integration.
NASA Technical Reports Server (NTRS)
Berglund, Judith
2007-01-01
Approximately 2-3 billion metric tons of soil dust are estimated to be transported in the Earth's atmosphere each year. Global transport of desert dust is believed to play an important role in many geochemical, climatological, and environmental processes. This dust carries minerals and nutrients, but it has also been shown to carry pollutants and viable microorganisms capable of harming human, animal, plant, and ecosystem health. Saharan dust, which impacts the eastern United States (especially Florida and the southeast) and U.S. Territories in the Caribbean primarily during the summer months, has been linked to increases in respiratory illnesses in this region and has been shown to carry other human, animal, and plant pathogens. For these reasons, this candidate solution recommends integrating Saharan dust distribution and concentration forecasts from the NASA GOCART global dust cycle model into a public health DSS (decision support system), such as the CDC's (Centers for Disease Control and Prevention's) EPHTN (Environmental Public Health Tracking Network), for the eastern United States and Caribbean for early warning purposes regarding potential increases in respiratory illnesses or asthma attacks, potential disease outbreaks, or bioterrorism. This candidate solution pertains to the Public Health National Application but also has direct connections to Air Quality and Homeland Security. In addition, the GOCART model currently uses the NASA MODIS aerosol product as an input and uses meteorological forecasts from the NASA GEOS-DAS (Goddard Earth Observing System Data Assimilation System) GEOS-4 AGCM. In the future, VIIRS aerosol products and perhaps CALIOP aerosol products could be assimilated into the GOCART model to improve the results.
Areal Rainfall Estimation Using Moving Cars - Computer Experiments Including Hydrological Modeling
NASA Astrophysics Data System (ADS)
Rabiei, E.; Haberlandt, U.; Sester, M.; Fitzner, D.; Wallner, M.
2015-12-01
The benefit of using fine temporal and spatial rainfall data resolution can be significant for hydrological modeling especially for small scale applications (e.g. urban hydrology). It has been observed by Rabiei et al. (2013) that moving cars can be a possible new source of data when used for measuring rainfall amount (RainCars). The optical sensors operating the windscreen wipers showed the potential of being used for rainfall measurement purposes. Their measurement accuracy has been quantified in laboratory experiments. The main objective of this study is to investigate the benefit of using RainCars for estimating areal rainfall when these errors are considered explicitly. To this end, radar rainfall is considered as the reference and the other sources of data, i.e. RainCars and pseudo stations, are extracted from radar data. The goal is to compare the areal rainfall estimation by RainCars with pseudo stations and reference data. The value of the additional data is not only assessed for areal rainfall estimation performance, but also using hydrological modeling. In fact, the reference data simulates the reference discharge. The other sources of data also simulate the discharge that is to be compared with the reference discharge. The results show, that the RainCars provide useful additional information for areal rainfall estimation and hydrological modelling also if their measurement uncertainty is quite high. Rabiei, E., Haberlandt, U., Sester, M., Fitzner, D., 2013. Rainfall estimation using moving cars as rain gauges – laboratory experiments. Hydrol. Earth Syst. Sci., 17(11): 4701-4712.
Extending Galactic Habitable Zone Modeling to Include the Emergence of Intelligent Life.
Morrison, Ian S; Gowanlock, Michael G
2015-08-01
Previous studies of the galactic habitable zone have been concerned with identifying those regions of the Galaxy that may favor the emergence of complex life. A planet is deemed habitable if it meets a set of assumed criteria for supporting the emergence of such complex life. In this work, we extend the assessment of habitability to consider the potential for life to further evolve to the point of intelligence--termed the propensity for the emergence of intelligent life, φI. We assume φI is strongly influenced by the time durations available for evolutionary processes to proceed undisturbed by the sterilizing effects of nearby supernovae. The times between supernova events provide windows of opportunity for the evolution of intelligence. We developed a model that allows us to analyze these window times to generate a metric for φI, and we examine here the spatial and temporal variation of this metric. Even under the assumption that long time durations are required between sterilizations to allow for the emergence of intelligence, our model suggests that the inner Galaxy provides the greatest number of opportunities for intelligence to arise. This is due to the substantially higher number density of habitable planets in this region, which outweighs the effects of a higher supernova rate in the region. Our model also shows that φI is increasing with time. Intelligent life emerged at approximately the present time at Earth's galactocentric radius, but a similar level of evolutionary opportunity was available in the inner Galaxy more than 2 Gyr ago. Our findings suggest that the inner Galaxy should logically be a prime target region for searches for extraterrestrial intelligence and that any civilizations that may have emerged there are potentially much older than our own.
NASA Astrophysics Data System (ADS)
Weber, James Daniel
1999-11-01
This dissertation presents a new algorithm that allows a market participant to maximize its individual welfare in the electricity spot market. The use of such an algorithm in determining market equilibrium points, called Nash equilibria, is also demonstrated. The start of the algorithm is a spot market model that uses the optimal power flow (OPF), with a full representation of the transmission system. The OPF is also extended to model consumer behavior, and a thorough mathematical justification for the inclusion of the consumer model in the OPF is presented. The algorithm utilizes price and dispatch sensitivities, available from the Hessian matrix of the OPF, to help determine an optimal change in an individual's bid. The algorithm is shown to be successful in determining local welfare maxima, and the prospects for scaling the algorithm up to realistically sized systems are very good. Assuming a market in which all participants maximize their individual welfare, economic equilibrium points, called Nash equilibria, are investigated. This is done by iteratively solving the individual welfare maximization algorithm for each participant until a point is reached where all individuals stop modifying their bids. It is shown that these Nash equilibria can be located in this manner. However, it is also demonstrated that equilibria do not always exist, and are not always unique when they do exist. It is also shown that individual welfare is a highly nonconcave function resulting in many local maxima. As a result, a more global optimization technique, using a genetic algorithm (GA), is investigated. The genetic algorithm is successfully demonstrated on several systems. It is also shown that a GA can be developed using special niche methods, which allow a GA to converge to several local optima at once. Finally, the last chapter of this dissertation covers the development of a new computer visualization routine for power system analysis: contouring. The contouring algorithm is
Review of Numerical Models in Underwater Acoustics, Including Recently Developed Fast-Field Program,
1984-12-15
scope of bringing together researchers in different fields of wave propagation (electromagnetics, optics , seismics, underwater acoustics) to exchange...discussed in this paper. A more detailed description can be found in references ə-10>. The starting point for all the models is the wave equation for a...harmonic point source with time dppendence exp(-iwt), V2*(x’yz) + * ] (x,Y,z) = -6(x-Xo)6(y-yo)6(z-zo ) (1) * *exp(-iwt) (2) At any point (x,y,z) in
Walzer, Amy S; Czopp, Alexander M
2011-01-01
The stereotype content model (SCM) posits that warmth and competence are the key components underlying judgments about social groups. Because competence can encompass different components (e.g., intelligence, talent) different group members may be perceived to be competent for different reasons. Therefore, we believe it may be important to specify the type of competence being assessed when examining perceptions of groups that are positively stereotyped (i.e., Black athletes and musical Blacks). Consistent with the SCM, these subgroups were perceived as high in competence-talent but not in competence-intelligence and low in warmth. Both the intelligence and talent frame of competence fit in the SCM's social structural hypothesis.
Double pendulum model for a tennis stroke including a collision process
NASA Astrophysics Data System (ADS)
Youn, Sun-Hyun
2015-10-01
By means of adding a collision process between the ball and racket in the double pendulum model, we analyzed the tennis stroke. The ball and the racket system may be accelerated during the collision time; thus, the speed of the rebound ball does not simply depend on the angular velocity of the racket. A higher angular velocity sometimes gives a lower rebound ball speed. We numerically showed that the proper time-lagged racket rotation increased the speed of the rebound ball by 20%. We also showed that the elbow should move in the proper direction in order to add the angular velocity of the racket.
Microregion model of a contact line including evaporation, kinetics and slip
NASA Astrophysics Data System (ADS)
Anderson, Daniel; Janecek, Vladislav
2016-11-01
We consider the evaporation of a liquid on a uniformly heated solid substrate. In the framework of lubrication theory we consider hydrodynamics, heat conduction, phase change, evaporation kinetics, and slip. Our model focuses only on the contact line 'inner' region which allows us to quantify the impact of evaporation on the apparent contact angle and microregion heat transfer. The linearized problem with respect to the substrate overheating is solved analytically. The analytical solutions are compared with full numerical solutions and to predictions of Hocking.
Sabater-Galindo, Marta; Fernandez-Llimos, Fernando; Sabater-Hernández, Daniel; Martínez-Martínez, Fernando; Benrimoj, Shalom Isaac
2016-03-01
To identify health care professional-patient relationship theoretical models and individual factors that may have an influence on this relationship and be relevant to community pharmacy practice. Using the recommended methodology by Prisma Statement, a search was undertaken in PubMed for health care professional-patient relationship theoretical models that included individual factors. Eight theoretical models met the inclusion criteria. These models were classified based on their aim, their focus on the interaction process, external factors influencing the process, and their practical applications. The most common influential modifiable factors were knowledge, needs, values, expectations, beliefs and perceptions. 'The Theory of Goal Attainment' (TGA) appears to be the most useful model for community pharmacy practice. The perceptions and expectations of both patients and pharmacists could be the two most interesting modifiable factors to apply in pharmacy practice. These modifiable influential factors could be altered by specific training such as behavioral aspects. No theoretical model has been specifically developed for analyzing the community pharmacist-patient relationship. TGA may be appropriate for community pharmacy practice, since it takes into consideration both, attaining patients health outcomes, as well as improving patient-pharmacist relationship. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Machida, I.; Itadera, K.
2005-12-01
The final purpose of our study is to clarify the quantitative groundwater flow including deeper part, 500-1000m depth, in the basin in caldera on the mountain. The computer simulation is one the best methods to achieve this purpose. In such a study, however, it is difficult to determine the boundary conditions and hydraulic properties of geology in deeper part, generally. For this reason, we selected Gora basin as a study area, because many hydraulic data have been stored for more than 30 years in this basin. In addition, because the volcanic thermal water is mainly formed by mixing of groundwater and thermal component, the study for deeper groundwater flow can contribute the agenda for the protection of thermal groundwater which is regards as a limited resource. Gora basin, in Hakone area is one of the most famous spa (a resort having thermal groundwater or hot springs) in Japan. The area of the basin is approximately 10 square kilometers and has more than 200 deep wells. In our study, at first, the dataset of hydraulic head was created by using the stored data to construct the conceptual model for groundwater flow. The potential distribution exhibited that the groundwater flowed downward dominant. And the geomorphology can be regarded as hydraulic boundary even in deer part, that is to say, we can regard the ridge as no flow boundary in simulation model. Next, for quantitative understanding of groundwater flow, we need to obtain not only boundary conditions but also hydraulic property of geology, for example, hydraulic conductivity, K, as one of the important parameters. Generally, such a parameter has not been measured in past survey. So, we used the belief method for calculating the hydraulic conductivity by using the data of thermal logging test, which was similar to a slug test. As results of the analysis, the close relationship between K and well depth were obtained. This result implies that the K value depends on the overburden pressure of geology. That is
NASA Technical Reports Server (NTRS)
Usmanov, Arcadi V.; Goldstein, Melvyn L.; Matthaeus, William H.
2012-01-01
To study the effects of interstellar pickup protons and turbulence on the structure and dynamics of the solar wind, we have developed a fully three-dimensional magnetohydrodynamic solar wind model that treats interstellar pickup protons as a separate fluid and incorporates the transport of turbulence and turbulent heating. The governing system of equations combines the mean-field equations for the solar wind plasma, magnetic field, and pickup protons and the turbulence transport equations for the turbulent energy, normalized cross-helicity, and correlation length. The model equations account for photoionization of interstellar hydrogen atoms and their charge exchange with solar wind protons, energy transfer from pickup protons to solar wind protons, and plasma heating by turbulent dissipation. Separate mass and energy equations are used for the solar wind and pickup protons, though a single momentum equation is employed under the assumption that the pickup protons are comoving with the solar wind protons.We compute the global structure of the solar wind plasma, magnetic field, and turbulence in the region from 0.3 to 100 AU for a source magnetic dipole on the Sun tilted by 0 deg - .90 deg and compare our results with Voyager 2 observations. The results computed with and without pickup protons are superposed to evaluate quantitatively the deceleration and heating effects of pickup protons, the overall compression of the magnetic field in the outer heliosphere caused by deceleration, and the weakening of corotating interaction regions by the thermal pressure of pickup protons.
The evolution of massive stars including mass loss - Presupernova models and explosion
NASA Technical Reports Server (NTRS)
Woosley, S. E.; Langer, Norbert; Weaver, Thomas A.
1993-01-01
The evolution of massive stars of 35, 40, 60, and 85 solar masses is followed through all stages of nuclear burning to the point of Fe core collapse. Critical nuclear reaction and mass-loss rates are varied. Efficient mass loss during the Wolf-Rayet (WR) stage is likely to lead to final masses as small as 4 solar masses. For a reasonable parameterization of the mass loss, there may be convergence of all WR stars, both single and in binaries, to a narrow band of small final masses. Our representative model, a 4.25 solar-mass WR presupernova derived from a 60 solar mass star, is followed through a simulated explosion, and its explosive nucleosynthesis and light curve are determined. Its properties are similar to those observed in Type Ib supernovae. The effects of the initial mass and mass loss on the presupernova structure of small mass WR models is also explored. Important properties of the presupernova star and its explosion can only be obtained by following the complete evolution starting on the main sequence.
Usmanov, Arcadi V.; Matthaeus, William H.; Goldstein, Melvyn L.
2012-07-20
To study the effects of interstellar pickup protons and turbulence on the structure and dynamics of the solar wind, we have developed a fully three-dimensional magnetohydrodynamic solar wind model that treats interstellar pickup protons as a separate fluid and incorporates the transport of turbulence and turbulent heating. The governing system of equations combines the mean-field equations for the solar wind plasma, magnetic field, and pickup protons and the turbulence transport equations for the turbulent energy, normalized cross-helicity, and correlation length. The model equations account for photoionization of interstellar hydrogen atoms and their charge exchange with solar wind protons, energy transfer from pickup protons to solar wind protons, and plasma heating by turbulent dissipation. Separate mass and energy equations are used for the solar wind and pickup protons, though a single momentum equation is employed under the assumption that the pickup protons are comoving with the solar wind protons. We compute the global structure of the solar wind plasma, magnetic field, and turbulence in the region from 0.3 to 100 AU for a source magnetic dipole on the Sun tilted by 0 Degree-Sign -90 Degree-Sign and compare our results with Voyager 2 observations. The results computed with and without pickup protons are superposed to evaluate quantitatively the deceleration and heating effects of pickup protons, the overall compression of the magnetic field in the outer heliosphere caused by deceleration, and the weakening of corotating interaction regions by the thermal pressure of pickup protons.
The 4-parameter Compressible Packing Model (CPM) including a critical cavity size ratio
NASA Astrophysics Data System (ADS)
Roquier, Gerard
2017-06-01
The 4-parameter Compressible Packing Model (CPM) has been developed to predict the packing density of mixtures constituted by bidisperse spherical particles. The four parameters are: the wall effect and the loosening effect coefficients, the compaction index and a critical cavity size ratio. The two geometrical interactions have been studied theoretically on the basis of a spherical cell centered on a secondary class bead. For the loosening effect, a critical cavity size ratio, below which a fine particle can be inserted into a small cavity created by touching coarser particles, is introduced. This is the only parameter which requires adaptation to extend the model to other types of particles. The 4-parameter CPM demonstrates its efficiency on frictionless glass beads (300 values), spherical particles numerically simulated (20 values), round natural particles (125 values) and crushed particles (335 values) with correlation coefficients equal to respectively 99.0%, 98.7%, 97.8%, 96.4% and mean deviations equal to respectively 0.007, 0.006, 0.007, 0.010.
Sacchi, Mattia; Balleza, Daniel; Vena, Giulia; Puia, Giulia; Facci, Paolo; Alessandrini, Andrea
2015-05-01
Amphiphilic molecules which have a biological effect on specific membrane proteins, could also affect lipid bilayer properties possibly resulting in a modulation of the overall membrane behavior. In light of this consideration, it is important to study the possible effects of amphiphilic molecule of pharmacological interest on model systems which recapitulate some of the main properties of the biological plasma membranes. In this work we studied the effect of a neurosteroid, Allopregnanolone (3α,5α-tetrahydroprogesterone or Allo), on a model bilayer composed by the ternary lipid mixture DOPC/bSM/chol. We chose ternary mixtures which present, at room temperature, a phase coexistence of liquid ordered (Lo) and liquid disordered (Ld) domains and which reside near to a critical point. We found that Allo, which is able to strongly partition in the lipid bilayer, induces a marked increase in the bilayer area and modifies the relative proportion of the two phases favoring the Ld phase. We also found that the neurosteroid shifts the miscibility temperature to higher values in a way similarly to what happens when the cholesterol concentration is decreased. Interestingly, an isoform of Allo, isoAllopregnanolone (3β,5α-tetrahydroprogesterone or isoAllo), known to inhibit the effects of Allo on GABAA receptors, has an opposite effect on the bilayer properties.
NASA Technical Reports Server (NTRS)
Usmanov, Arcadi V.; Goldstein, Melvyn L.; Matthaeus, William H.
2012-01-01
To study the effects of interstellar pickup protons and turbulence on the structure and dynamics of the solar wind, we have developed a fully three-dimensional magnetohydrodynamic solar wind model that treats interstellar pickup protons as a separate fluid and incorporates the transport of turbulence and turbulent heating. The governing system of equations combines the mean-field equations for the solar wind plasma, magnetic field, and pickup protons and the turbulence transport equations for the turbulent energy, normalized cross-helicity, and correlation length. The model equations account for photoionization of interstellar hydrogen atoms and their charge exchange with solar wind protons, energy transfer from pickup protons to solar wind protons, and plasma heating by turbulent dissipation. Separate mass and energy equations are used for the solar wind and pickup protons, though a single momentum equation is employed under the assumption that the pickup protons are comoving with the solar wind protons.We compute the global structure of the solar wind plasma, magnetic field, and turbulence in the region from 0.3 to 100 AU for a source magnetic dipole on the Sun tilted by 0 deg - .90 deg and compare our results with Voyager 2 observations. The results computed with and without pickup protons are superposed to evaluate quantitatively the deceleration and heating effects of pickup protons, the overall compression of the magnetic field in the outer heliosphere caused by deceleration, and the weakening of corotating interaction regions by the thermal pressure of pickup protons.
An Improved Heat Budget Estimation Including Bottom Effects for General Ocean Circulation Models
NASA Technical Reports Server (NTRS)
Carder, Kendall; Warrior, Hari; Otis, Daniel; Chen, R. F.
2001-01-01
This paper studies the effects of the underwater light field on heat-budget calculations of general ocean circulation models for shallow waters. The presence of a bottom significantly alters the estimated heat budget in shallow waters, which affects the corresponding thermal stratification and hence modifies the circulation. Based on the data collected during the COBOP field experiment near the Bahamas, we have used a one-dimensional turbulence closure model to show the influence of the bottom reflection and absorption on the sea surface temperature field. The water depth has an almost one-to-one correlation with the temperature rise. Effects of varying the bottom albedo by replacing the sea grass bed with a coral sand bottom, also has an appreciable effect on the heat budget of the shallow regions. We believe that the differences in the heat budget for the shallow areas will have an influence on the local circulation processes and especially on the evaporative and long-wave heat losses for these areas. The ultimate effects on humidity and cloudiness of the region are expected to be significant as well.
Merchant, Thomas E. . E-mail: thomas.merchant@stjude.org; Kiehna, Erin N.; Li Chenghong; Shukla, Hemant; Sengupta, Saikat; Xiong Xiaoping; Gajjar, Amar; Mulhern, Raymond K.
2006-05-01
Purpose: Model the effects of radiation dosimetry on IQ among pediatric patients with central nervous system (CNS) tumors. Methods and Materials: Pediatric patients with CNS embryonal tumors (n = 39) were prospectively evaluated with serial cognitive testing, before and after treatment with postoperative, risk-adapted craniospinal irradiation (CSI) and conformal primary-site irradiation, followed by chemotherapy. Differential dose-volume data for 5 brain volumes (total brain, supratentorial brain, infratentorial brain, and left and right temporal lobes) were correlated with IQ after surgery and at follow-up by use of linear regression. Results: When the dose distribution was partitioned into 2 levels, both had a significantly negative effect on longitudinal IQ across all 5 brain volumes. When the dose distribution was partitioned into 3 levels (low, medium, and high), exposure to the supratentorial brain appeared to have the most significant impact. For most models, each Gy of exposure had a similar effect on IQ decline, regardless of dose level. Conclusions: Our results suggest that radiation dosimetry data from 5 brain volumes can be used to predict decline in longitudinal IQ. Despite measures to reduce radiation dose and treatment volume, the volume that receives the highest dose continues to have the greatest effect, which supports current volume-reduction efforts.
A model of plasma current through a hole of Rogowski probe including sheath effects
Furui, H. Ejiri, A.; Takase, Y.; Sonehara, M.; Tsujii, N.; Yamaguchi, T.; Shinya, T.; Togashi, H.; Homma, H.; Nakamura, K.; Takeuchi, T.; Yajima, S.; Yoshida, Y.; Toida, K.; Takahashi, W.; Yamazaki, H.; Nagashima, Y.
2016-04-15
In TST-2 Ohmic discharges, local current is measured using a Rogowski probe by changing the angle between the local magnetic field and the direction of the hole of the Rogowski probe. The angular dependence shows a peak when the direction of the hole is almost parallel to the local magnetic field. The obtained width of the peak was broader than that of the theoretical curve expected from the probe geometry. In order to explain this disagreement, we consider the effect of sheath in the vicinity of the Rogowski probe. A sheath model was constructed and electron orbits were numerically calculated. From the calculation, it was found that the electron orbit is affected by E × B drift due to the sheath electric field. Such orbit causes the broadening of the peak in the angular dependence and the dependence agrees with the experimental results. The dependence of the broadening on various plasma parameters was studied numerically and explained qualitatively by a simplified analytical model.
An Improved Heat Budget Estimation Including Bottom Effects for General Ocean Circulation Models
NASA Technical Reports Server (NTRS)
Carder, Kendall; Warrior, Hari; Otis, Daniel; Chen, R. F.
2001-01-01
This paper studies the effects of the underwater light field on heat-budget calculations of general ocean circulation models for shallow waters. The presence of a bottom significantly alters the estimated heat budget in shallow waters, which affects the corresponding thermal stratification and hence modifies the circulation. Based on the data collected during the COBOP field experiment near the Bahamas, we have used a one-dimensional turbulence closure model to show the influence of the bottom reflection and absorption on the sea surface temperature field. The water depth has an almost one-to-one correlation with the temperature rise. Effects of varying the bottom albedo by replacing the sea grass bed with a coral sand bottom, also has an appreciable effect on the heat budget of the shallow regions. We believe that the differences in the heat budget for the shallow areas will have an influence on the local circulation processes and especially on the evaporative and long-wave heat losses for these areas. The ultimate effects on humidity and cloudiness of the region are expected to be significant as well.
Fritz, Thomas; Wieners, Christian; Seemann, Gunnar; Steen, Henning; Dössel, Olaf
2014-06-01
During the contraction of the ventricles, the ventricles interact with the atria as well as with the pericardium and the surrounding tissue in which the heart is embedded. The atria are stretched, and the atrioventricular plane moves toward the apex. The atrioventricular plane displacement (AVPD) is considered to be a major contributor to the ventricular function, and a reduced AVPD is strongly related to heart failure. At the same time, the epicardium slides almost frictionlessly on the pericardium with permanent contact. Although the interaction between the ventricles, the atria and the pericardium plays an important role for the deformation of the heart, this aspect is usually not considered in computational models. In this work, we present an electromechanical model of the heart, which takes into account the interaction between ventricles, pericardium and atria and allows to reproduce the AVPD. To solve the contact problem of epicardium and pericardium, a contact handling algorithm based on penalty formulation was developed, which ensures frictionless and permanent contact. Two simulations of the ventricular contraction were conducted, one with contact handling of pericardium and heart and one without. In the simulation with contact handling, the atria were stretched during the contraction of the ventricles, while, due to the permanent contact with the pericardium, their volume increased. In contrast to that, in the simulations without pericardium, the atria were also stretched, but the change in the atrial volume was much smaller. Furthermore, the pericardium reduced the radial contraction of the ventricles and at the same time increased the AVPD.
A coupling method for a cardiovascular simulation model which includes the Kalman filter.
Hasegawa, Yuki; Shimayoshi, Takao; Amano, Akira; Matsuda, Tetsuya
2012-01-01
Multi-scale models of the cardiovascular system provide new insight that was unavailable with in vivo and in vitro experiments. For the cardiovascular system, multi-scale simulations provide a valuable perspective in analyzing the interaction of three phenomenons occurring at different spatial scales: circulatory hemodynamics, ventricular structural dynamics, and myocardial excitation-contraction. In order to simulate these interactions, multiscale cardiovascular simulation systems couple models that simulate different phenomena. However, coupling methods require a significant amount of calculation, since a system of non-linear equations must be solved for each timestep. Therefore, we proposed a coupling method which decreases the amount of calculation by using the Kalman filter. In our method, the Kalman filter calculates approximations for the solution to the system of non-linear equations at each timestep. The approximations are then used as initial values for solving the system of non-linear equations. The proposed method decreases the number of iterations required by 94.0% compared to the conventional strong coupling method. When compared with a smoothing spline predictor, the proposed method required 49.4% fewer iterations.
Regner, K. T.; Wei, L. C.; Malen, J. A.
2015-12-21
We develop a solution to the two-temperature diffusion equation in axisymmetric cylindrical coordinates to model heat transport in thermoreflectance experiments. Our solution builds upon prior solutions that account for two-channel diffusion in each layer of an N-layered geometry, but adds the ability to deposit heat at any location within each layer. We use this solution to account for non-surface heating in the transducer layer of thermoreflectance experiments that challenge the timescales of electron-phonon coupling. A sensitivity analysis is performed to identify important parameters in the solution and to establish a guideline for when to use the two-temperature model to interpret thermoreflectance data. We then fit broadband frequency domain thermoreflectance (BB-FDTR) measurements of SiO{sub 2} and platinum at a temperature of 300 K with our two-temperature solution to parameterize the gold/chromium transducer layer. We then refit BB-FDTR measurements of silicon and find that accounting for non-equilibrium between electrons and phonons in the gold layer does lessen the previously observed heating frequency dependence reported in Regner et al. [Nat. Commun. 4, 1640 (2013)] but does not completely eliminate it. We perform BB-FDTR experiments on silicon with an aluminum transducer and find limited heating frequency dependence, in agreement with time domain thermoreflectance results. We hypothesize that the discrepancy between thermoreflectance measurements with different transducers results in part from spectrally dependent phonon transmission at the transducer/silicon interface.
The evolution of massive stars including mass loss - Presupernova models and explosion
NASA Technical Reports Server (NTRS)
Woosley, S. E.; Langer, Norbert; Weaver, Thomas A.
1993-01-01
The evolution of massive stars of 35, 40, 60, and 85 solar masses is followed through all stages of nuclear burning to the point of Fe core collapse. Critical nuclear reaction and mass-loss rates are varied. Efficient mass loss during the Wolf-Rayet (WR) stage is likely to lead to final masses as small as 4 solar masses. For a reasonable parameterization of the mass loss, there may be convergence of all WR stars, both single and in binaries, to a narrow band of small final masses. Our representative model, a 4.25 solar-mass WR presupernova derived from a 60 solar mass star, is followed through a simulated explosion, and its explosive nucleosynthesis and light curve are determined. Its properties are similar to those observed in Type Ib supernovae. The effects of the initial mass and mass loss on the presupernova structure of small mass WR models is also explored. Important properties of the presupernova star and its explosion can only be obtained by following the complete evolution starting on the main sequence.
Perceptual-center modeling is affected by including acoustic rate-of-change modulations.
Harsin, C A
1997-02-01
This study investigated the acoustic correlates of perceptual centers (p-centers) in CV and VC syllables and developed an acoustic p-center model. In Part 1, listeners located syllables' p-centers by a method-of-adjustment procedure. The CV syllables contained the consonants /s/,/r/,/n/,/t/,/d/,/k/, and /g/; the VCs, the consonants /s/,/r/, and /n/. The vowel in all syllables was /a/. The results of this experiment replicated and extended previous findings regarding the effects of phonetic variation on p-centers. In Part 2, a digital signal processing procedure was used to acoustically model p-center perception. Each stimulus was passed through a six-band digital filter, and the outputs were processed to derive low-frequency modulation components. These components were weighted according to a perceived modulation magnitude function and recombined to create six psychoacoustic envelopes containing modulation energies from 3 to 47 Hz. In this analysis, p-centers were found to be highly correlated with the time-weighted function of the rate-of-change in the psychoacoustic envelopes, multiplied by the psychoacoustic envelope magnitude increment. The results were interpreted as suggesting (1) the probable role of low-frequency energy modulations in p-center perception, and (2) the presence of perceptual processes that integrate multiple articulatory events into a single syllabic event.
Selzer, D; Hahn, T; Naegel, A; Heisig, M; Kostka, K H; Lehr, C M; Neumann, D; Schaefer, U F; Wittum, G
2013-01-28
This work investigates in vitro finite dose skin absorption of the model compounds flufenamic acid and caffeine experimentally and mathematically. The mass balance in different skin compartments (donor, stratum corneum (SC), deeper skin layers (DSL), lateral skin parts and acceptor) is analyzed as a function of time. For both substances high amounts were found in the lateral skin compartment after 6h of incubation, which emphasizes not to elide these parts in the modeling. Here, three different mathematical models were investigated and tested with the experimental data: a pharmacokinetic model (PK), a detailed microscopic two-dimensional diffusion model (MICRO) and a macroscopic homogenized diffusion model (MACRO). While the PK model was fitted to the experimental data, the MICRO and the MACRO models employed input parameters derived from infinite dose studies to predict the underlying diffusion process. All models could satisfyingly predict or describe the experimental data. The PK model and MACRO model also feature the lateral parts.
NASA Astrophysics Data System (ADS)
Seiß, M.; Spahn, F.; Schmidt, Jürgen
2010-11-01
Saturn's rings host two known moons, Pan and Daphnis, which are massive enough to clear circumferential gaps in the ring around their orbits. Both moons create wake patterns at the gap edges by gravitational deflection of the ring material (Cuzzi, J.N., Scargle, J.D. [1985]. Astrophys. J. 292, 276-290; Showalter, M.R., Cuzzi, J.N., Marouf, E.A., Esposito, L.W. [1986]. Icarus 66, 297-323). New Cassini observations revealed that these wavy edges deviate from the sinusoidal waveform, which one would expect from a theory that assumes a circular orbit of the perturbing moon and neglects particle interactions. Resonant perturbations of the edges by moons outside the ring system, as well as an eccentric orbit of the embedded moon, may partly explain this behavior (Porco, C.C., and 34 colleagues [2005]. Science 307, 1226-1236; Tiscareno, M.S., Burns, J.A., Hedman, M.M., Spitale, J.N., Porco, C.C., Murray, C.D., and the Cassini Imaging team [2005]. Bull. Am. Astron. Soc. 37, 767; Weiss, J.W., Porco, C.C., Tiscareno, M.S., Burns, J.A., Dones, L. [2005]. Bull. Am. Astron. Soc. 37, 767; Weiss, J.W., Porco, C.C., Tiscareno, M.S. [2009]. Astron. J. 138, 272-286). Here we present an extended non-collisional streamline model which accounts for both effects. We describe the resulting variations of the density structure and the modification of the nonlinearity parameter q. Furthermore, an estimate is given for the applicability of the model. We use the streamwire model introduced by Stewart (Stewart, G.R. [1991]. Icarus 94, 436-450) to plot the perturbed ring density at the gap edges. We apply our model to the Keeler gap edges undulated by Daphnis and to a faint ringlet in the Encke gap close to the orbit of Pan. The modulations of the latter ringlet, induced by the perturbations of Pan (Burns, J.A., Hedman, M.M., Tiscareno, M.S., Nicholson, P.D., Streetman, B.J., Colwell, J.E., Showalter, M.R., Murray, C.D., Cuzzi, J.N., Porco, C.C., and the Cassini ISS team [2005]. Bull. Am
Do fungi need to be included within environmental radiation protection assessment models?
Guillén, J; Baeza, A; Beresford, N A; Wood, M D
2017-09-01
Fungi are used as biomonitors of forest ecosystems, having comparatively high uptakes of anthropogenic and naturally occurring radionuclides. However, whilst they are known to accumulate radionuclides they are not typically considered in radiological assessment tools for environmental (non-human biota) assessment. In this paper the total dose rate to fungi is estimated using the ERICA Tool, assuming different fruiting body geometries, a single ellipsoid and more complex geometries considering the different components of the fruit body and their differing radionuclide contents based upon measurement data. Anthropogenic and naturally occurring radionuclide concentrations from the Mediterranean ecosystem (Spain) were used in this assessment. The total estimated weighted dose rate was in the range 0.31-3.4 μGy/h (5(th)-95(th) percentile), similar to natural exposure rates reported for other wild groups. The total estimated dose was dominated by internal exposure, especially from (226)Ra and (210)Po. Differences in dose rate between complex geometries and a simple ellipsoid model were negligible. Therefore, the simple ellipsoid model is recommended to assess dose rates to fungal fruiting bodies. Fungal mycelium was also modelled assuming a long filament. Using these geometries, assessments for fungal fruiting bodies and mycelium under different scenarios (post-accident, planned release and existing exposure) were conducted, each being based on available monitoring data. The estimated total dose rate in each case was below the ERICA screening benchmark dose, except for the example post-accident existing exposure scenario (the Chernobyl Exclusion Zone) for which a dose rate in excess of 35 μGy/h was estimated for the fruiting body. Estimated mycelium dose rate in this post-accident existing exposure scenario was close to the 400 μGy/h benchmark for plants, although fungi are generally considered to be less radiosensitive than plants. Further research on appropriate
BEAM ON TARGET MODEL Produces All Gamma Ray Burst Phenomena Including Afterglow
NASA Astrophysics Data System (ADS)
Greyber, H.
2000-12-01
While one must applaud the splendid research by L. Piro et al and L. Amati et al reported in SCIENCE recently, one must question, as M. Rees and S. Woolsey have done, their conclusion that a ``supranova model" is the only explanation for these new X-ray observations. In fact L. Piro was quoted as saying, ``Our data helps rule out the scenario where two neutron stars or black holes collide. We think GRBs result from something similar to a supernova explosion, but much more powerful." A relatively unknown physical model for GRBs, Greyber's Beam On Target model (BOT), dating back to the first CGRO observations, can plausibly explain the iron emission lines observed for GRB991216, and also the mass of the dense medium within a light-day of the GRB being roughly equivalent to at least one-tenth solar mass, as well as the initial shedding of material followed by the GRB event. When a galaxy forms under gravitational collapse in the presence of a primordial magnetic field, Mestel and Strittmatter demonstrated that, for finite Ohmic diffusion, a growing equatorial current loop is formed. Even if this stable ``Storage Ring" has only 10exp-9 of the total energy released during a typical galaxy's formation, the relativistic beam can possess 10exp58 ergs. The GRB ``fireball" occurs when a target star races across the powerful beam, blowing off target material as a hot, rapidly expanding plasma cloud, simulating an explosion. Since currents in space are known to be sometimes filamentary, sharp millisecond spikes can be expected in some GRBs. Proton and alpha particle nuclear reactions produce a gamma ray beam. Beam particles impinging on denser cloud material create an electromagnetic shower, producing X-ray, optical and radio radiation. Since the Storage Ring has an intense magnetic field around it, synchrotron radiation is expected. The beam, striking a highly evolved massive target star, produces the iron emission lines. H. D. Greyber, in ``After the Dark Ages:When Galaxies
NASA Technical Reports Server (NTRS)
Johnson, W.
1974-01-01
An analytical model is developed for proprotor aircraft dynamics. The rotor model includes coupled flap-lag bending modes, and blade torsion degrees of freedom. The rotor aerodynamic model is generally valid for high and low inflow, and for axial and nonaxial flight. For the rotor support, a cantilever wing is considered; incorporation of a more general support with this rotor model will be a straight-forward matter.
Energy-based fatigue model for shape memory alloys including thermomechanical coupling
NASA Astrophysics Data System (ADS)
Zhang, Yahui; Zhu, Jihong; Moumni, Ziad; Van Herpen, Alain; Zhang, Weihong
2016-03-01
This paper is aimed at developing a low cycle fatigue criterion for pseudoelastic shape memory alloys to take into account thermomechanical coupling. To this end, fatigue tests are carried out at different loading rates under strain control at room temperature using NiTi wires. Temperature distribution on the specimen is measured using a high speed thermal camera. Specimens are tested to failure and fatigue lifetimes of specimens are measured. Test results show that the fatigue lifetime is greatly influenced by the loading rate: as the strain rate increases, the fatigue lifetime decreases. Furthermore, it is shown that the fatigue cracks initiate when the stored energy inside the material reaches a critical value. An energy-based fatigue criterion is thus proposed as a function of the irreversible hysteresis energy of the stabilized cycle and the loading rate. Fatigue life is calculated using the proposed model. The experimental and computational results compare well.
Daneshmand, Farhang; Ghavanloo, Esmaeal; Amabili, Marco
2011-07-07
Wave propagation along the microtubules is one of the issues of major concern in various microtubule cellular functions. In this study, the general wave propagation behavior in protein microtubules is investigated based on a first-order shear deformation shell theory for orthotropic materials, with particular emphasis on the role of strongly anisotropic elastic properties of microtubules. According to experimental observation, the first-order shear deformation theory is used for the modeling of microtubule walls. A general displacement representation is introduced and a type of coupled polynomial eigenvalue problem is developed. Numerical examples describe the effects of shear deformation and rotary inertia on wave velocities in orthotropic microtubules. Finally, the influences of the microtubule shear modulus, axial external force, effective thickness and material temperature dependency on wave velocities along the microtubule protofilaments, helical pathway and radial directions are elucidated. Most results presented in the present investigation have been absent from the literature for the wave propagation in microtubules.
Clarke, R A; Lee, S; Eapen, V
2012-09-04
Tourette syndrome (TS) is a highly heritable neuropsychiatric disorder characterised by motor and vocal tics. Despite decades of research, the aetiology of TS has remained elusive. Recent successes in gene discovery backed by rapidly advancing genomic technologies have given us new insights into the genetic basis of the disorder, but the growing collection of rare and disparate findings have added confusion and complexity to the attempts to translate these findings into neurobiological mechanisms resulting in symptom genesis. In this review, we explore a previously unrecognised genetic link between TS and a competing series of trans-synaptic complexes (neurexins (NRXNs), neuroligins (NLGNs), leucine-rich repeat transmembrane proteins (LRRTMs), leucine rich repeat neuronals (LRRNs) and cerebellin precursor 2 (CBLN2)) that links it with autism spectrum disorder through neurodevelopmental pathways. The emergent neuropathogenetic model integrates all five genes so far found to be uniquely disrupted in TS into a single pathogenetic chain of events described in context with clinical and research implications.
Non-insect crustacean models in developmental genetics including an encomium to Parhyale hawaiensis.
Stamataki, Evangelia; Pavlopoulos, Anastasios
2016-08-01
The impressive diversity of body plans, lifestyles and segmental specializations exhibited by crustaceans (barnacles, copepods, shrimps, crabs, lobsters and their kin) provides great material to address longstanding questions in evolutionary developmental biology. Recent advances in forward and reverse genetics and in imaging approaches applied in the amphipod Parhyale hawaiensis and other emerging crustacean model species have made it possible to probe the molecular and cellular basis of crustacean diversity. A number of biological and technical qualities like the slow tempo and holoblastic cleavage mode, the stereotypy of many cellular processes, the functional and morphological diversity of limbs along the body axis, and the availability of various experimental manipulations, have made Parhyale a powerful system to study normal development and regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.
The equation-transform model for Dirac–Morse problem including Coulomb tensor interaction
Ortakaya, Sami
2013-11-15
The approximate solutions of Dirac equation with Morse potential in the presence of Coulomb-like tensor potential are obtained by using Laplace transform (LT) approach. The energy eigenvalue equation of the Dirac particles is found and some numerical results are obtained. By using convolution integral, the corresponding radial wave functions are presented in terms of confluent hypergeometric functions. -- Highlights: •The Dirac equation with tensor interaction is solved by using Laplace transform. •For solving this equation, we introduce the equation-transform model. •Numerical results and plots for pseudospin and spin symmetric solutions are given. •The obtained numerical results by using transform method are compared with orthogonal polynomial method.
Parsing recursive sentences with a connectionist model including a neural stack and synaptic gating.
Fedor, Anna; Ittzés, Péter; Szathmáry, Eörs
2011-02-21
It is supposed that humans are genetically predisposed to be able to recognize sequences of context-free grammars with centre-embedded recursion while other primates are restricted to the recognition of finite state grammars with tail-recursion. Our aim was to construct a minimalist neural network that is able to parse artificial sentences of both grammars in an efficient way without using the biologically unrealistic backpropagation algorithm. The core of this network is a neural stack-like memory where the push and pop operations are regulated by synaptic gating on the connections between the layers of the stack. The network correctly categorizes novel sentences of both grammars after training. We suggest that the introduction of the neural stack memory will turn out to be substantial for any biological 'hierarchical processor' and the minimalist design of the model suggests a quest for similar, realistic neural architectures. Copyright Â© 2010 Elsevier Ltd. All rights reserved.
ECO: a generic eutrophication model including comprehensive sediment-water interaction.
Smits, Johannes G C; van Beek, Jan K L
2013-01-01
The content and calibration of the comprehensive generic 3D eutrophication model ECO for water and sediment quality is presented. Based on a computational grid for water and sediment, ECO is used as a tool for water quality management to simulate concentrations and mass fluxes of nutrients (N, P, Si), phytoplankton species, detrital organic matter, electron acceptors and related substances. ECO combines integral simulation of water and sediment quality with sediment diagenesis and closed mass balances. Its advanced process formulations for substances in the water column and the bed sediment were developed to allow for a much more dynamic calculation of the sediment-water exchange fluxes of nutrients as resulting from steep concentration gradients across the sediment-water interface than is possible with other eutrophication models. ECO is to more accurately calculate the accumulation of organic matter and nutrients in the sediment, and to allow for more accurate prediction of phytoplankton biomass and water quality in response to mitigative measures such as nutrient load reduction. ECO was calibrated for shallow Lake Veluwe (The Netherlands). Due to restoration measures this lake underwent a transition from hypertrophic conditions to moderately eutrophic conditions, leading to the extensive colonization by submerged macrophytes. ECO reproduces observed water quality well for the transition period of ten years. The values of its process coefficients are in line with ranges derived from literature. ECO's calculation results underline the importance of redox processes and phosphate speciation for the nutrient return fluxes. Among other things, the results suggest that authigenic formation of a stable apatite-like mineral in the sediment can contribute significantly to oligotrophication of a lake after a phosphorus load reduction.
Rest, J.; Hofman, G.L.
1997-06-01
The Dispersion Analysis Research Tool (DART) contains models for fission-gas induced fuel swelling, interaction of fuel with the matrix aluminum, resultant reaction-product swelling, and calculation of the stress gradient within the fuel particle. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by a comparison of DART calculations of fuel swelling of U{sub 3}SiAl-Al and U{sub 3}Si{sub 2}-Al for various dispersion fuel element designs with the data. DART results are compared with data for fuel swelling Of U{sub 3}SiAl-Al in plate, tube, and rod configurations as a function of fission density. Plate and tube calculations were performed at a constant fuel temperature of 373 K and 518 K, respectively. An irradiation temperature of 518 K results in a calculated aluminide layer thickness for the Russian tube that is in the center of the measured range (16 {mu}m). Rod calculations were performed with a temperature gradient across the rod characterized by surface and central temperatures of 373 K and 423 K, respectively. The effective yield stress of irradiated Al matrix material and the aluminide was determined by comparing the results of DART calculations with postirradiation immersion volume measurement of U{sub 3}SiAl plates. The values for the effective yield stress were used in all subsequent simulations. The lower calculated fuel swelling in the rod-type element is due to an assumed biaxial stress state. Fuel swelling in plates results in plate thickness increase only. Likewise, in tubes, only the wall thickness increases. Irradiation experiments have shown that plate-type dispersion fuel elements can develop blisters or pillows at high U-235 burnup when fuel compounds exhibiting breakaway swelling are used at moderate to high fuel volume fractions. DART-calculated interaction layer thickness and fuel swelling follows the trends of the observations. 3 refs., 2 figs.
NASA Astrophysics Data System (ADS)
Kumar, P.; Sokolik, I. N.; Nenes, A.
2008-09-01
Dust and black carbon aerosol have long been known to have potentially important and diverse impacts on cloud droplet formation. Most studies to date focus on the soluble fraction of such particles, and ignore interactions of the insoluble fraction with water vapor (even if known to be hydrophilic). To address this gap, we develop a new parameterization framework that considers cloud droplet formation within an ascending air parcel containing insoluble (but wettable) particles mixed with aerosol containing an appreciable soluble fraction. Activation of particles with a soluble fraction is described through well-established Köhler Theory, while the activation of hydrophilic insoluble particles is treated by "adsorption-activation" theory. In the latter, water vapor is adsorbed onto insoluble particles, the activity of which is described by a multilayer Frankel-Halsey-Hill (FHH) adsorption isotherm modified to account for particle curvature. We further develop FHH activation theory, and i) find combinations of the adsorption parameters AFHH, BFHH for which activation into cloud droplets is not possible, and, ii) express activation properties (critical supersaturation) that follow a simple power law with respect to dry particle diameter. Parameterization formulations are developed for sectional and lognormal aerosol size distribution functions. The new parameterization is tested by comparing the parameterized cloud droplet number concentration against predictions with a detailed numerical cloud model, considering a wide range of particle populations, cloud updraft conditions, water vapor condensation coefficient and FHH adsorption isotherm characteristics. The agreement between parameterization and parcel model is excellent, with an average error of 10% and R2 ~0.98.
NASA Astrophysics Data System (ADS)
Kumar, P.; Sokolik, I. N.; Nenes, A.
2009-04-01
Dust and black carbon aerosol have long been known to exert potentially important and diverse impacts on cloud droplet formation. Most studies to date focus on the soluble fraction of these particles, and overlook interactions of the insoluble fraction with water vapor (even if known to be hydrophilic). To address this gap, we developed a new parameterization that considers cloud droplet formation within an ascending air parcel containing insoluble (but wettable) particles externally mixed with aerosol containing an appreciable soluble fraction. Activation of particles with a soluble fraction is described through well-established Köhler theory, while the activation of hydrophilic insoluble particles is treated by "adsorption-activation" theory. In the latter, water vapor is adsorbed onto insoluble particles, the activity of which is described by a multilayer Frenkel-Halsey-Hill (FHH) adsorption isotherm modified to account for particle curvature. We further develop FHH activation theory to i) find combinations of the adsorption parameters AFHH, BFHH which yield atmospherically-relevant behavior, and, ii) express activation properties (critical supersaturation) that follow a simple power law with respect to dry particle diameter. The new parameterization is tested by comparing the parameterized cloud droplet number concentration against predictions with a detailed numerical cloud model, considering a wide range of particle populations, cloud updraft conditions, water vapor condensation coefficient and FHH adsorption isotherm characteristics. The agreement between parameterization and parcel model is excellent, with an average error of 10% and R2~0.98. A preliminary sensitivity study suggests that the sublinear response of droplet number to Köhler particle concentration is not as strong for FHH particles.
Areal rainfall estimation using moving cars - computer experiments including hydrological modeling
NASA Astrophysics Data System (ADS)
Rabiei, Ehsan; Haberlandt, Uwe; Sester, Monika; Fitzner, Daniel; Wallner, Markus
2016-09-01
The need for high temporal and spatial resolution precipitation data for hydrological analyses has been discussed in several studies. Although rain gauges provide valuable information, a very dense rain gauge network is costly. As a result, several new ideas have emerged to help estimating areal rainfall with higher temporal and spatial resolution. Rabiei et al. (2013) observed that moving cars, called RainCars (RCs), can potentially be a new source of data for measuring rain rate. The optical sensors used in that study are designed for operating the windscreen wipers and showed promising results for rainfall measurement purposes. Their measurement accuracy has been quantified in laboratory experiments. Considering explicitly those errors, the main objective of this study is to investigate the benefit of using RCs for estimating areal rainfall. For that, computer experiments are carried out, where radar rainfall is considered as the reference and the other sources of data, i.e., RCs and rain gauges, are extracted from radar data. Comparing the quality of areal rainfall estimation by RCs with rain gauges and reference data helps to investigate the benefit of the RCs. The value of this additional source of data is not only assessed for areal rainfall estimation performance but also for use in hydrological modeling. Considering measurement errors derived from laboratory experiments, the result shows that the RCs provide useful additional information for areal rainfall estimation as well as for hydrological modeling. Moreover, by testing larger uncertainties for RCs, they observed to be useful up to a certain level for areal rainfall estimation and discharge simulation.
ECO: A Generic Eutrophication Model Including Comprehensive Sediment-Water Interaction
Smits, Johannes G. C.; van Beek, Jan K. L.
2013-01-01
The content and calibration of the comprehensive generic 3D eutrophication model ECO for water and sediment quality is presented. Based on a computational grid for water and sediment, ECO is used as a tool for water quality management to simulate concentrations and mass fluxes of nutrients (N, P, Si), phytoplankton species, detrital organic matter, electron acceptors and related substances. ECO combines integral simulation of water and sediment quality with sediment diagenesis and closed mass balances. Its advanced process formulations for substances in the water column and the bed sediment were developed to allow for a much more dynamic calculation of the sediment-water exchange fluxes of nutrients as resulting from steep concentration gradients across the sediment-water interface than is possible with other eutrophication models. ECO is to more accurately calculate the accumulation of organic matter and nutrients in the sediment, and to allow for more accurate prediction of phytoplankton biomass and water quality in response to mitigative measures such as nutrient load reduction. ECO was calibrated for shallow Lake Veluwe (The Netherlands). Due to restoration measures this lake underwent a transition from hypertrophic conditions to moderately eutrophic conditions, leading to the extensive colonization by submerged macrophytes. ECO reproduces observed water quality well for the transition period of ten years. The values of its process coefficients are in line with ranges derived from literature. ECO’s calculation results underline the importance of redox processes and phosphate speciation for the nutrient return fluxes. Among other things, the results suggest that authigenic formation of a stable apatite-like mineral in the sediment can contribute significantly to oligotrophication of a lake after a phosphorus load reduction. PMID:23844160
Forest evaporation models: relationships between stand growth and evaporation
NASA Astrophysics Data System (ADS)
Le Maitre, D. C.; Versfeld, D. B.
1997-06-01
The relationships between forest stand structure, growth and evaporation were analysed to determine whether forest evaporation can be estimated from stand growth data. This approach permits rapid assessment of the potential impacts of afforestation on the water regime. The basis for this approach is (a) that growth rates are determined by water availability and limited by the maximum water extraction potential, and (b) that stand evaporation is proportional to biomass and biomass increment. The relationships between stand growth and evaporation were modelled for a set of catchment experiments where estimates of both growth and evaporation were available. The predicted mean evaporation, over periods of several years, was generally within 10% of the measured mean annual evaporation (rainfall minus streamflow) when the model from one catchment was applied to other catchments planted with the same species. The residual evaporation, after fitting the models, was correlated with rainfall: above-average rainfall resulted in above-average evaporation. This relationship could be used to derive estimates for dry and wet years. Analyses using the models provide additional evidence that Eucalyptus grandis may be depleting groundwater reserves in catchments where its roots can reach the water table. The models are designed to be integrated into a plantation management system which uses a geographic information system for spatial analysis and modelling. The use of readily available growth parameters as predictor variables may reduce our dependence on intricate process-based models. This is seen as an efficient way of extrapolating existing catchment data — reflecting the impacts of forestry on water supplies across a range of sites, climatic zones and species. This approach has the potential for further development, especially in dealing with low flows and faster growing species.
Models of professional regulation: institutionalizing an agency relationship.
Tuohy, Carolyn Hughes
2013-03-27
The regulation of medical practice can historically be understood as a second-level agency relationship whereby the state delegated authority to professional bodies to police the primary agency relationship between the individual physician and the patient. Borow, Levi and Glekin show how different national systems vary in the degree to which they insist on institutionally insulating the agency function from the promotion of private professional interests, and relate these variations to different models of the health care state. In fact these differences have even deeper roots in different "liberal" or "coordinated" varieties of capitalist political economies. Neither model is inherently more efficient than the other: what matters is the internal coherence or logic of these systems that conditions the expectations of actors in responding to particular challenges. The territory that Borow, Levi and Glekin have usefully mapped invites further exploration in this regard.This is a commentary on http://www.ijhpr.org/content/2/1/8.
Detecting relationships between physiological variables using graphical models.
Imhoff, Michael; Fried, Ronald; Gather, Ursula
2002-01-01
In intensive care physiological variables of the critically ill are measured and recorded in short time intervals. The proper extraction and interpretation of the information contained in this flood of information can hardly be done by experience alone. Intelligent alarm systems are needed to provide suitable bedside decision support. So far there is no commonly accepted standard for detecting the actual clinical state from the patient record. We use the statistical methodology of graphical models based on partial correlations for detecting time-varying relationships between physiological variables. Graphical models provide information on the relationships among physiological variables that is helpful e.g. for variable selection. Separate analyses for different pathophysiological states show that distinct clinical states are characterized by distinct partial correlation structures. Hence, this technique can provide new insights into physiological mechanisms. PMID:12463843
[Relationship between two models of personality in old individuals].
Calvet, Benjamin; Bricaud, Magali; Clément, Jean-Pierre
2014-12-01
The relationships between the seven dimensions of the Cloninger psychobiological model and the five factors of the Costa and McCrae model were examined in 54 elderly subjects from the French general population. The dimensions of temperament (novelty seeking, harm avoidance, reward dependence) and character (determination, cooperation, transcendence) from the Cloninger's model were measured by the temperament and character inventory whereas the five factors of Costa and McCrae model (neuroticism, extraversion, openness to experience, agreeableness and conscientiousness) were evaluated using the NEO PI-R. Multiple regression analyses show that some dimensions of the temperament and character inventory predict some dimensions of the Big five and vice versa. Therefore we suggest that the Big five model could be related to brain monoaminergic activities.
NASA Astrophysics Data System (ADS)
McLarty, Dustin Fogle
Distributed energy systems are a promising means by which to reduce both emissions and costs. Continuous generators must be responsive and highly efficiency to support building dynamics and intermittent on-site renewable power. Fuel cell -- gas turbine hybrids (FC/GT) are fuel-flexible generators capable of ultra-high efficiency, ultra-low emissions, and rapid power response. This work undertakes a detailed study of the electrochemistry, chemistry and mechanical dynamics governing the complex interaction between the individual systems in such a highly coupled hybrid arrangement. The mechanisms leading to the compressor stall/surge phenomena are studied for the increased risk posed to particular hybrid configurations. A novel fuel cell modeling method introduced captures various spatial resolutions, flow geometries, stack configurations and novel heat transfer pathways. Several promising hybrid configurations are analyzed throughout the work and a sensitivity analysis of seven design parameters is conducted. A simple estimating method is introduced for the combined system efficiency of a fuel cell and a turbine using component performance specifications. Existing solid oxide fuel cell technology is capable of hybrid efficiencies greater than 75% (LHV) operating on natural gas, and existing molten carbonate systems greater than 70% (LHV). A dynamic model is calibrated to accurately capture the physical coupling of a FC/GT demonstrator tested at UC Irvine. The 2900 hour experiment highlighted the sensitivity to small perturbations and a need for additional control development. Further sensitivity studies outlined the responsiveness and limits of different control approaches. The capability for substantial turn-down and load following through speed control and flow bypass with minimal impact on internal fuel cell thermal distribution is particularly promising to meet local demands or provide dispatchable support for renewable power. Advanced control and dispatch
Mahran, Yossra; Schueler, Robert; Weber, Marcel; Pizarro, Carmen; Nickenig, Georg; Skowasch, Dirk; Hammerstingl, Christoph
2016-01-01
AIM To find parameters from transthorathic echocardiography (TTE) including speckle-tracking (ST) analysis of the right ventricle (RV) to identify precapillary pulmonary hypertension (PH). METHODS Forty-four patients with suspected PH undergoing right heart catheterization (RHC) were consecutively included (mean age 63.1 ± 14 years, 61% male gender). All patients underwent standardized TTE including ST analysis of the RV. Based on the subsequent TTE-derived measurements, the presence of PH was assessed: Left ventricular ejection fraction (LVEF) was calculated by Simpsons rule from 4Ch. Systolic pulmonary artery pressure (sPAP) was assessed with continuous wave Doppler of systolic tricuspid regurgitant velocity and regarded raised with values ≥ 30 mmHg as a surrogate parameter for RA pressure. A concomitantly elevated PCWP was considered a means to discriminate between the precapillary and postcapillary form of PH. PCWP was considered elevated when the E/e’ ratio was > 12 as a surrogate for LV diastolic pressure. E/e’ ratio was measured by gauging systolic and diastolic velocities of the lateral and septal mitral valve annulus using TDI mode. The results were then averaged with conventional measurement of mitral valve inflow. Furthermore, functional testing with six minutes walking distance (6MWD), ECG-RV stress signs, NT pro-BNP and other laboratory values were assessed. RESULTS PH was confirmed in 34 patients (precapillary PH, n = 15, postcapillary PH, n = 19). TTE showed significant differences in E/e’ ratio (precapillary PH: 12.3 ± 4.4, postcapillary PH: 17.3 ± 10.3, no PH: 12.1 ± 4.5, P = 0.02), LV volumes (ESV: 25.0 ± 15.0 mL, 49.9 ± 29.5 mL, 32.2 ± 13.6 mL, P = 0.027; EDV: 73.6 ± 24.0 mL, 110.6 ± 31.8 mL, 87.8 ± 33.0 mL, P = 0.021) and systolic pulmonary arterial pressure (sPAP: 61.2 ± 22.3 mmHg, 53.6 ± 20.1 mmHg, 31.2 ± 24.6 mmHg, P = 0.001). STRV analysis showed significant differences for apical RV longitudinal strain (RVAS: -7.5% ± 5
Development of a new fertility prediction model for stallion semen, including flow cytometry.
Barrier Battut, I; Kempfer, A; Becker, J; Lebailly, L; Camugli, S; Chevrier, L
2016-09-01
Several laboratories routinely use flow cytometry to evaluate stallion semen quality. However, objective and practical tools for the on-field interpretation of data concerning fertilizing potential are scarce. A panel of nine tests, evaluating a large number of compartments or functions of the spermatozoa: motility, morphology, viability, mitochondrial activity, oxidation level, acrosome integrity, DNA integrity, "organization" of the plasma membrane, and hypoosmotic resistance, was applied to a population of 43 stallions, 33 of which showing widely differing fertilities (19%-84% pregnancy rate per cycle [PRC]). Analyses were performed either within 2 hours after semen collection or after 24-hour storage at 4 °C in INRA96 extender, on three to six ejaculates for each stallion. The aim was to provide data on the distribution of values among said population, showing within-stallion and between-stallion variability, and to determine whether appropriate combinations of tests could evaluate the fertilizing potential of each stallion. Within-stallion repeatability, defined as intrastallion correlation (r = between-stallion variance/total variance) ranged between 0.29 and 0.84 for "conventional" variables (viability, morphology, and motility), and between 0.15 and 0.81 for "cytometric" variables. Those data suggested that analyzing six ejaculates would be adequate to characterize a stallion. For most variables, except those related to DNA integrity and some motility variables, results differed significantly between immediately performed analyses and analyses performed after 24 hours at 4 °C. Two "best-fit" combinations of variables were determined. Factorial discriminant analysis using a first combination of seven variables, including the polarization of mitochondria, acrosome integrity, DNA integrity, and hypoosmotic resistance, permitted exact determination of the fertility group for each stallion: fertile, that is, PRC higher than 55%; intermediate, that is, 45
Landau quantized dynamics and spectra for group-VI dichalcogenides, including a model quantum wire
NASA Astrophysics Data System (ADS)
Horing, Norman J. M.
2017-06-01
This work is concerned with the derivation of the Green's function for Landau-quantized carriers in the Group-VI dichalcogenides. In the spatially homogeneous case, the Green's function is separated into a Peierls phase factor and a translationally invariant part which is determined in a closed form integral representation involving only elementary functions. The latter is expanded in an eigenfunction series of Laguerre polynomials. These results for the retarded Green's function are presented in both position and momentum representations, and yet another closed form representation is derived in circular coordinates in terms of the Bessel wave function of the second kind (not to be confused with the Bessel function). The case of a quantum wire is also addressed, representing the quantum wire in terms of a model one-dimensional δ (x ) -potential profile. This retarded Green's function for propagation directly along the wire is determined exactly in terms of the corresponding Green's function for the system without the δ (x ) -potential, and the Landau quantized eigenenergy dispersion relation is examined. The thermodynamic Green's function for the dichalcogenide carriers in a normal magnetic field is formulated here in terms of its spectral weight, and its solution is presented in a momentum/integral representation involving only elementary functions, which is subsequently expanded in Laguerre eigenfunctions and presented in both momentum and position representations.
Pilgrim, Matthew G.; Lengyel, Imre; Lanzirotti, Antonio; Newville, Matt; Fearn, Sarah; Emri, Eszter; Knowles, Jonathan C.; Messinger, Jeffrey D.; Read, Russell W.; Guidry, Clyde; Curcio, Christine A.
2017-01-01
Purpose Extracellular deposits containing hydroxyapatite, lipids, proteins, and trace metals that form between the basal lamina of the RPE and the inner collagenous layer of Bruch's membrane are hallmarks of early AMD. We examined whether cultured RPE cells could produce extracellular deposits containing all of these molecular components. Methods Retinal pigment epithelium cells isolated from freshly enucleated porcine eyes were cultured on Transwell membranes for up to 6 months. Deposit composition and structure were characterized using light, fluorescence, and electron microscopy; synchrotron x-ray diffraction and x-ray fluorescence; secondary ion mass spectroscopy; and immunohistochemistry. Results Apparently functional primary RPE cells, when cultured on 10-μm-thick inserts with 0.4-μm-diameter pores, can produce sub-RPE deposits that contain hydroxyapatite, lipids, proteins, and trace elements, without outer segment supplementation, by 12 weeks. Conclusions The data suggest that sub-RPE deposit formation is initiated, and probably regulated, by the RPE, as well as the loss of permeability of the Bruch's membrane and choriocapillaris complex associated with age and early AMD. This cell culture model of early AMD lesions provides a novel system for testing new therapeutic interventions against sub-RPE deposit formation, an event occurring well in advance of the onset of vision loss. PMID:28146236
Clarke, R A; Lee, S; Eapen, V
2012-01-01
Tourette syndrome (TS) is a highly heritable neuropsychiatric disorder characterised by motor and vocal tics. Despite decades of research, the aetiology of TS has remained elusive. Recent successes in gene discovery backed by rapidly advancing genomic technologies have given us new insights into the genetic basis of the disorder, but the growing collection of rare and disparate findings have added confusion and complexity to the attempts to translate these findings into neurobiological mechanisms resulting in symptom genesis. In this review, we explore a previously unrecognised genetic link between TS and a competing series of trans-synaptic complexes (neurexins (NRXNs), neuroligins (NLGNs), leucine-rich repeat transmembrane proteins (LRRTMs), leucine rich repeat neuronals (LRRNs) and cerebellin precursor 2 (CBLN2)) that links it with autism spectrum disorder through neurodevelopmental pathways. The emergent neuropathogenetic model integrates all five genes so far found to be uniquely disrupted in TS into a single pathogenetic chain of events described in context with clinical and research implications. PMID:22948383
Nuclear Reactor/Hydrogen Process Interface Including the HyPEP Model
Steven R. Sherman
2007-05-01
The Nuclear Reactor/Hydrogen Plant interface is the intermediate heat transport loop that will connect a very high temperature gas-cooled nuclear reactor (VHTR) to a thermochemical, high-temperature electrolysis, or hybrid hydrogen production plant. A prototype plant called the Next Generation Nuclear Plant (NGNP) is planned for construction and operation at the Idaho National Laboratory in the 2018-2021 timeframe, and will involve a VHTR, a high-temperature interface, and a hydrogen production plant. The interface is responsible for transporting high-temperature thermal energy from the nuclear reactor to the hydrogen production plant while protecting the nuclear plant from operational disturbances at the hydrogen plant. Development of the interface is occurring under the DOE Nuclear Hydrogen Initiative (NHI) and involves the study, design, and development of high-temperature heat exchangers, heat transport systems, materials, safety, and integrated system models. Research and development work on the system interface began in 2004 and is expected to continue at least until the start of construction of an engineering-scale demonstration plant.
A fully model-based MPC solution including VSB shot dose assignment and shape correction
NASA Astrophysics Data System (ADS)
Bork, Ingo; Buck, Peter; Reddy, Murali; Durvasula, Bhardwaj
2015-10-01
The value of using multiple dose levels for individual shots on VSB (Variable Shaped Beam) mask writers has been demonstrated earlier [1][2]. The main advantage of modulating dose on a per shot basis is the fact that higher dose levels can be used selectively for critical features while other areas of the mask with non-critical feature types can be exposed at lower dose levels. This reduces the amount of backscattering and mask write time penalty compared to a global overdose-undersize approach. While dose assignment to certain polygons or parts of polygons (VSB shots) can easily be accomplished via DRC rules on layers with limited shape variations like contact or VIA layers, it can be challenging to come up with consistent rules for layers consisting of a very broad range of shapes, generally found on metal layers. This work introduces a method for fully model-based modulation of shot dose for VSB machines supporting between two and eight dose levels and demonstrates results achieved with this method.
Burkhardt, Carmen; Zacharias, Martin
2001-01-01
Binding of monovalent and divalent cations to two adenine–adenine platform structures from the Tetrahymena group I intron ribozyme has been studied using continuum solvent models based on the generalised Born and the finite-difference Poisson–Boltzmann approaches. The adenine–adenine platform RNA motif forms an experimentally characterised monovalent ion binding site important for ribozyme folding and function. Qualitative agreement between calculated and experimental ion placements and binding selectivity was obtained. The inclusion of solvation effects turned out to be important to obtain low energy structures and ion binding placements in agreement with the experiment. The calculations indicate that differences in solvation of the isolated ions contribute to the calculated ion binding preference. However, Coulomb attraction and van der Waals interactions due to ion size differences and RNA conformational adaptation also influence the calculated ion binding affinity. The calculated alkali ion binding selectivity for both platforms followed the order K+ > Na+ > Rb+ > Cs+ > Li+ (Eisenman series VI) in the case of allowing RNA conformational relaxation during docking. With rigid RNA an Eisenman series V was obtained (K+ > Rb+ > Na+ > Cs+ > Li+). Systematic energy minimisation docking simulations starting from several hundred initial placements of potassium ions on the surface of platform containing RNA fragments identified a coordination geometry in agreement with the experiment as the lowest energy binding site. The approach could be helpful to identify putative ion binding sites in nucleic acid structures determined at low resolution or with experimental methods that do not allow identification of ion binding sites. PMID:11574672
NASA Astrophysics Data System (ADS)
Roy, Sankar Kumar; Roy, Banani
In this article, a prey-predator system with Holling type II functional response for the predator population including prey refuge region has been analyzed. Also a harvesting effort has been considered for the predator population. The density-dependent mortality rate for the prey, predator and super predator has been considered. The equilibria of the proposed system have been determined. Local and global stabilities for the system have been discussed. We have used the analytic approach to derive the global asymptotic stabilities of the system. The maximal predator per capita consumption rate has been considered as a bifurcation parameter to evaluate Hopf bifurcation in the neighborhood of interior equilibrium point. Also, we have used fishing effort to harvest predator population of the system as a control to develop a dynamic framework to investigate the optimal utilization of the resource, sustainability properties of the stock and the resource rent is earned from the resource. Finally, we have presented some numerical simulations to verify the analytic results and the system has been analyzed through graphical illustrations.
Kimura, S Roy; Rajamani, Ramkumar; Langley, David R
2011-12-21
We present a simple and practical method to include ligand electronic polarization in molecular dynamics (MD) simulation of biomolecular systems. The method involves periodically spawning quantum mechanical (QM) electrostatic potential (ESP) calculations on an extra set of computer processors using molecular coordinate snapshots from a running parallel MD simulation. The QM ESPs are evaluated for the small-molecule ligand in the presence of the electric field induced by the protein, solvent, and ion charges within the MD snapshot. Partial charges on ligand atom centers are fit through the multi-conformer restrained electrostatic potential (RESP) fit method on several successive ESPs. The RESP method was selected since it produces charges consistent with the AMBER/GAFF force-field used in the simulations. The updated charges are introduced back into the running simulation when the next snapshot is saved. The result is a simulation whose ligand partial charges continuously respond in real-time to the short-term mean electrostatic field of the evolving environment without incurring additional wall-clock time. We show that (1) by incorporating the cost of polarization back into the potential energy of the MD simulation, the algorithm conserves energy when run in the microcanonical ensemble and (2) the mean solvation free energies for 15 neutral amino acid side chains calculated with the quantum polarized fluctuating charge method and thermodynamic integration agree better with experiment relative to the Amber fixed charge force-field.
Zhou, Hua-Fu; Feng, Xu; Zheng, Bao-Shi; Qian, Jun; He, Wei
2013-10-01
The relationship between glutathione S-transferase T1 (GSTT1) null/presence gene polymorphism and the risk of lung cancer from the published reports are still conflicting. This study was conducted to evaluate the relationship between GSTT1 null/presence gene polymorphism and the risk of lung cancer using meta-analysis method. The association studies were identified from PubMed, and Cochrane Library on July 1, 2012, and eligible investigations were included and synthesized using meta-analysis method. 51 reports were recruited into this meta-analysis for the association of null genotype of GSTT1 with lung cancer susceptibility, consisting of 15,140 patients with lung cancer and 16,662 controls. There was a marked association between GSTT1 null genotype and lung cancer risk in overall populations (OR = 1.15, 95 % CI 1.04-1.27, P = 0.007). Furthermore, GSTT1 null genotype was associated with the lung cancer risk in Asians (OR = 1.47, 95 % CI 1.23-1.76, P < 0.0001). However, GSTT1 null genotype was not associated with the risk of lung cancer in Caucasians, Brazilian population and Africans. In conclusion, GSTT1 null genotype is associated with the lung cancer in overall populations and in Asians.
Fukushima, T; Homma, T; Harakawa, K; Sakata, N; Azuma, T
1988-08-01
Visualization experiments were performed to elucidate the complicated flow pattern in pulsatile flow through arterial bifurcations. Human common carotid arteries, which were made transparent, and glass-models simulating Y- and T-shaped bifurcations were used. Pulsatile flow with wave forms similar to those of arterial flow was generated with a piston pump, elastic tube, airchamber, and valves controlling the outflow resistance. Helically recirculating flow with a pattern similar to that of the horseshoe vortex produced around wall-based protuberances in circular tubes was observed in pulsatile flow through all the bifurcations used in the present study. This flow type, which we shall refer to as the horseshoe vortex, has also been demonstrated to occur at the human common carotid bifurcation in steady flow with Reynolds numbers above 100. Time-varying flows also produced the horseshoe vortex mostly during the decelerating phase. Fluid particles of dye solution approaching the bifurcation apex diverged, divided into two directions perpendicularly, and then showed helical motion representing the horseshoe vortex formation. While this helical flow was produced, the stagnation points appeared on the wall upstream of the apex. Their position was dependent upon the flow distribution ratio between the branches in the individual arteries. The region affected by the horseshoe vortex was smaller during pulsatile flow than during steady flow. Lowering the Reynolds number together with the Womersley number weakened the intensity of helical flow. A separation bubble, resulting from the divergence or wall roughness, was observed at the outer or inner wall of the branch vessels and made the flow more complicated.
Bajzer, Željko; Gibbons, Simon J.; Coleman, Heidi D.; Linden, David R.
2015-01-01
Noninvasive breath tests for gastric emptying are important techniques for understanding the changes in gastric motility that occur in disease or in response to drugs. Mice are often used as an animal model; however, the gamma variate model currently used for data analysis does not always fit the data appropriately. The aim of this study was to determine appropriate mathematical models to better fit mouse gastric emptying data including when two peaks are present in the gastric emptying curve. We fitted 175 gastric emptying data sets with two standard models (gamma variate and power exponential), with a gamma variate model that includes stretched exponential and with a proposed two-component model. The appropriateness of the fit was assessed by the Akaike Information Criterion. We found that extension of the gamma variate model to include a stretched exponential improves the fit, which allows for a better estimation of T1/2 and Tlag. When two distinct peaks in gastric emptying are present, a two-component model is required for the most appropriate fit. We conclude that use of a stretched exponential gamma variate model and when appropriate a two-component model will result in a better estimate of physiologically relevant parameters when analyzing mouse gastric emptying data. PMID:26045615
Bajzer, Željko; Gibbons, Simon J; Coleman, Heidi D; Linden, David R; Farrugia, Gianrico
2015-08-01
Noninvasive breath tests for gastric emptying are important techniques for understanding the changes in gastric motility that occur in disease or in response to drugs. Mice are often used as an animal model; however, the gamma variate model currently used for data analysis does not always fit the data appropriately. The aim of this study was to determine appropriate mathematical models to better fit mouse gastric emptying data including when two peaks are present in the gastric emptying curve. We fitted 175 gastric emptying data sets with two standard models (gamma variate and power exponential), with a gamma variate model that includes stretched exponential and with a proposed two-component model. The appropriateness of the fit was assessed by the Akaike Information Criterion. We found that extension of the gamma variate model to include a stretched exponential improves the fit, which allows for a better estimation of T1/2 and Tlag. When two distinct peaks in gastric emptying are present, a two-component model is required for the most appropriate fit. We conclude that use of a stretched exponential gamma variate model and when appropriate a two-component model will result in a better estimate of physiologically relevant parameters when analyzing mouse gastric emptying data.
Using machine learning to model dose-response relationships.
Linden, Ariel; Yarnold, Paul R; Nallamothu, Brahmajee K
2016-12-01
Establishing the relationship between various doses of an exposure and a response variable is integral to many studies in health care. Linear parametric models, widely used for estimating dose-response relationships, have several limitations. This paper employs the optimal discriminant analysis (ODA) machine-learning algorithm to determine the degree to which exposure dose can be distinguished based on the distribution of the response variable. By framing the dose-response relationship as a classification problem, machine learning can provide the same functionality as conventional models, but can additionally make individual-level predictions, which may be helpful in practical applications like establishing responsiveness to prescribed drug regimens. Using data from a study measuring the responses of blood flow in the forearm to the intra-arterial administration of isoproterenol (separately for 9 black and 13 white men, and pooled), we compare the results estimated from a generalized estimating equations (GEE) model with those estimated using ODA. Generalized estimating equations and ODA both identified many statistically significant dose-response relationships, separately by race and for pooled data. Post hoc comparisons between doses indicated ODA (based on exact P values) was consistently more conservative than GEE (based on estimated P values). Compared with ODA, GEE produced twice as many instances of paradoxical confounding (findings from analysis of pooled data that are inconsistent with findings from analyses stratified by race). Given its unique advantages and greater analytic flexibility, maximum-accuracy machine-learning methods like ODA should be considered as the primary analytic approach in dose-response applications. © 2016 John Wiley & Sons, Ltd.
Characteristics of the complementary relationship-based evapotranspiration models
NASA Astrophysics Data System (ADS)
Moroizumi, T.; Nakamichi, T.; Miura, T.
2010-12-01
Three complementary relationship-based evapotranspiration models were applied in six urban areas of Japan. The models are the CRAE model by Morton, the AA model by Brutsaert and Stricker, and the MAA model by Otsuki et al. The characteristics of these models and the validity of their use in urban areas were evaluated by a comparison with the estimation results from rural areas located near each urban area and with the results of previous measurement studies. The main findings are as follows: 1) the amounts of estimated evapotranspiration in urban areas differed significantly, whereas the difference in the amounts in rural areas was relatively small. 2) all three models underestimated the actual evapotranspiration in urban areas from humid surfaces, like water and green spaces. 3) when evaluated comprehensively on a daily basis, however, the three models overestimated the actual evapotranspiration in urban areas. 4) the MAA model was able to estimate the actual evapotranspiration reasonably well in urban areas with errors of 30-230 mm per year. Moreover, it was found that Priestley and Taylor’s coefficient and ground heat storage flux estimation for urban areas are necessary for obtaining reliable estimations.
Professional approaches to stroke treatment in Japan: a relationship-centred model.
Slingsby, Brian Taylor
2006-04-01
To examine how stroke professionals in Japan approach rehabilitation therapy. This qualitative study was based on Grounded Theory. Data collection included (1) non-participatory observation, (2) non-structured interviews, and (3) semi-structured interviews. A national hospital located in an urban area of the prefecture of Kanagawa in Japan specializing in the treatment of stroke and other neurological disorders. Stroke professionals (doctors, nurses, clinical psychologists, physiotherapists, occupational therapists and speech therapists), patients and patients' families. (1) Professionals recognized patient motivation as a factor related to rehabilitation outcome, but believed it to be a direct product of fostered fiduciary relationships and effective patient interaction. (2) Professionals regarded fiduciary relationships as the most important determinant of rehabilitation outcome. (3) Professionals adapted their behaviour and communication style in aims of fostering fiduciary relationships. These findings informed a three-component model of care: the Relationship-centred Model. The Relationship-centred Model describes how stroke professionals in Japan approach rehabilitative therapy. This model of care may be preferred by patients in other countries who also favour a family-centred approach to decision making.
On the Relationship between the Higher-Order Factor Model and the Hierarchical Factor Model.
ERIC Educational Resources Information Center
Yung, Yiu-Fai; Thissen, David; McLeod, Lori D.
1999-01-01
Explores the relationship between the higher-order factor model and the hierarchical factor model and shows that the Schmid-Leiman transformation process (J. Schmid and J. Leiman, 1957) produces constrained hierarchical factor solutions. Shows that the two models are not mathematically equivalent unless appropriate direct effects are added. (SLD)
Dynamic Models Including Uncertainty
2009-01-22
least in part with this grant) • H.T. Banks, Prof ., North Carolina State University • G. M. Kepler, Res. Assoc, North Carolina State University • S...8217W- C -( ( »II 2 »P] i=i i’=i - N m nEE d 2{a2p) 2tttid^y ’tax dei N N EE WP) (4.19) 4.2.9 Finite Difference Scheme for Fokker
HydroCube: an entity-relationship hydrogeological data model
NASA Astrophysics Data System (ADS)
Wojda, Piotr; Brouyère, Serge; Derouane, Johan; Dassargues, Alain
2010-12-01
Managing, handling and accessing hydrogeological information depends heavily on the applied hydrogeological data models, which differ between institutions and countries. The effective dissemination of hydrogeological information requires the convergence of such models to make hydrogeological information accessible to multiple users such as universities, water suppliers, and administration and research organisations. Furthermore, because hydrogeological studies are complex, they require a wide variety of high-quality hydrogeological data with appropriate metadata in clearly designed and coherent structures. A need exists, therefore, to develop and implement hydrogeological data models that cover, as much as possible, the full hydrogeological domain. A new data model, called HydroCube, was developed for the Walloon Region in Belgium in 2005. The HydroCube model presents an innovative holistic project-based approach which covers a full set of hydrogeological concepts and features, allowing for effective hydrogeological project management. The model stores data relating to the project locality, hydrogeological equipment, and related observations and measurements. In particular, it focuses on specialized hydrogeological field experiments such as pumping and tracer tests. This logical data model uses entity-relationship diagrams and it has been implemented in the Microsoft Access environment. It has been enriched with a fully functional user interface.
Defraene, Gilles; Van den Bergh, Laura; Al-Mamgani, Abrahim; Haustermans, Karin; Heemsbergen, Wilma; Van den Heuvel, Frank; Lebesque, Joos V.
2012-03-01
Purpose: To study the impact of clinical predisposing factors on rectal normal tissue complication probability modeling using the updated results of the Dutch prostate dose-escalation trial. Methods and Materials: Toxicity data of 512 patients (conformally treated to 68 Gy [n = 284] and 78 Gy [n = 228]) with complete follow-up at 3 years after radiotherapy were studied. Scored end points were rectal bleeding, high stool frequency, and fecal incontinence. Two traditional dose-based models (Lyman-Kutcher-Burman (LKB) and Relative Seriality (RS) and a logistic model were fitted using a maximum likelihood approach. Furthermore, these model fits were improved by including the most significant clinical factors. The area under the receiver operating characteristic curve (AUC) was used to compare the discriminating ability of all fits. Results: Including clinical factors significantly increased the predictive power of the models for all end points. In the optimal LKB, RS, and logistic models for rectal bleeding and fecal incontinence, the first significant (p = 0.011-0.013) clinical factor was 'previous abdominal surgery.' As second significant (p = 0.012-0.016) factor, 'cardiac history' was included in all three rectal bleeding fits, whereas including 'diabetes' was significant (p = 0.039-0.048) in fecal incontinence modeling but only in the LKB and logistic models. High stool frequency fits only benefitted significantly (p = 0.003-0.006) from the inclusion of the baseline toxicity score. For all models rectal bleeding fits had the highest AUC (0.77) where it was 0.63 and 0.68 for high stool frequency and fecal incontinence, respectively. LKB and logistic model fits resulted in similar values for the volume parameter. The steepness parameter was somewhat higher in the logistic model, also resulting in a slightly lower D{sub 50}. Anal wall DVHs were used for fecal incontinence, whereas anorectal wall dose best described the other two endpoints. Conclusions: Comparable
ERIC Educational Resources Information Center
Anderson, Judy; White, Paul; Sullivan, Peter
2005-01-01
Schematic models have been used extensively in educational research to represent relationships between variables diagrammatically, including the interrelationships between factors associated with teachers' beliefs and practices. A review of such models informed the development of a new model that was used to plan an investigation into primary…
Modeling spatio-temporal relationships: retrospect and prospect
NASA Astrophysics Data System (ADS)
Griffith, Daniel A.
2010-06-01
Interest in space-time modeling is experiencing a resurgence, in part because more and more sizeable space-time datasets are becoming readily available. Currently techniques to describe these data, many of which have existed for years, are being utilized and improved. This paper surveys general categories of these techniques (i.e., autoregressive-integrated-moving-average models, space-time autoregressive models, three-dimensional geostatistical models, and panel data models), in retrospect, demonstrates a future prospect (i.e., spatial filtering models), and suggests important topics for incorporation into a research agenda, including ones pertaining to non-normal random variables, panel data models, space-time heterogeneity, missing data, and distributional properties of space-time filters.
Flores-Alsina, Xavier; Comas, Joaquim; Rodriguez-Roda, Ignasi; Gernaey, Krist V; Rosen, Christian
2009-10-01
The main objective of this paper is to demonstrate how including the occurrence of filamentous bulking sludge in a secondary clarifier model will affect the predicted process performance during the simulation of WWTPs. The IWA Benchmark Simulation Model No. 2 (BSM2) is hereby used as a simulation case study. Practically, the proposed approach includes a risk assessment model based on a knowledge-based decision tree to detect favourable conditions for the development of filamentous bulking sludge. Once such conditions are detected, the settling characteristics of the secondary clarifier model are automatically changed during the simulation by modifying the settling model parameters to mimic the effect of growth of filamentous bacteria. The simulation results demonstrate that including effects of filamentous bulking in the secondary clarifier model results in a more realistic plant performance. Particularly, during the periods when the conditions for the development of filamentous bulking sludge are favourable--leading to poor activated sludge compaction, low return and waste TSS concentrations and difficulties in maintaining the biomass in the aeration basins--a subsequent reduction in overall pollution removal efficiency is observed. Also, a scenario analysis is conducted to examine i) the influence of sludge retention time (SRT), the external recirculation flow rate (Q(r)) and the air flow rate in the bioreactor (modelled as k(L)a) as factors promoting bulking sludge, and ii) the effect on the model predictions when the settling properties are changed due to a possible proliferation of filamentous microorganisms. Finally, the potentially adverse effects of certain operational procedures are highlighted, since such effects are normally not considered by state-of-the-art models that do not include microbiology-related solids separation problems.
Software Engineering Laboratory (SEL) relationships, models, and management rules
NASA Technical Reports Server (NTRS)
Decker, William; Hendrick, Robert; Valett, Jon D.
1991-01-01
Over 50 individual Software Engineering Laboratory (SEL) research results, extracted from a review of published SEL documentation, that can be applied directly to managing software development projects are captured. Four basic categories of results are defined and discussed - environment profiles, relationships, models, and management rules. In each category, research results are presented as a single page that summarizes the individual result, lists potential uses of the result by managers, and references the original SEL documentation where the result was found. The document serves as a concise reference summary of applicable research for SEL managers.
NASA Astrophysics Data System (ADS)
Raksharam; Dutta, Aloke K.
2017-04-01
In this paper, a unified analytical model for the drain current of a symmetric Double-Gate Junctionless Field-Effect Transistor (DG-JLFET) is presented. The operation of the device has been classified into four modes: subthreshold, semi-depleted, accumulation, and hybrid; with the main focus of this work being on the accumulation mode, which has not been dealt with in detail so far in the literature. A physics-based model, using a simplified one-dimensional approach, has been developed for this mode, and it has been successfully integrated with the model for the hybrid mode. It also includes the effect of carrier mobility degradation due to the transverse electric field, which was hitherto missing in the earlier models reported in the literature. The piece-wise models have been unified using suitable interpolation functions. In addition, the model includes two most important short-channel effects pertaining to DG-JLFETs, namely the Drain Induced Barrier Lowering (DIBL) and the Subthreshold Swing (SS) degradation. The model is completely analytical, and is thus computationally highly efficient. The results of our model have shown an excellent match with those obtained from TCAD simulations for both long- and short-channel devices, as well as with the experimental data reported in the literature.
NASA Astrophysics Data System (ADS)
Cheng, Meng-Fei; Lin, Jang-Long
2015-10-01
Understanding the nature of models and engaging in modeling practice have been emphasized in science education. However, few studies discuss the relationships between students' views of scientific models and their ability to develop those models. Hence, this study explores the relationship between students' views of scientific models and their self-generated models, and also whether views of models and modeling practice may be influenced by other factors, such as science learning performance and interest. The participants were 402 ninth-grade students in Taiwan. Data were collected using the Students' Understanding of Models in Science (SUMS) survey and students' self-evaluations of their own science learning interests and performance on a Likert-scale. The students' self-developed models explaining why three different magnetic phenomena occur were also evaluated on a schema of five levels, from lower (observational and fragmented models) to higher (microscopic and coherent models).The results reveal that most students' models remained only at the level of description of observable magnetic phenomena. A small number of the students were able to visualize unseen mechanisms, but these models were fragmented. However, several students with better science learning performance were able to develop coherent microscopic models to explain the three magnetic phenomena. The analyses indicated that most sub-factors of the SUMS survey were positively correlated with students' self-developed models, science learning performance and science learning interest. This study provides implications for teaching the nature of models and modeling practice.
ERIC Educational Resources Information Center
National Committee for Adoption, Inc., Washington, DC.
There is national concern for the estimated 100,000 "special needs" children who are not quickly adopted because of age, race, ethnic background, sibling relationship, medical condition, or physical, mental or emotional handicaps. That concern has been translated into concrete recommendations in the form of a model act written by the…
Dynamic model of a micro-tubular solid oxide fuel cell stack including an integrated cooling system
NASA Astrophysics Data System (ADS)
Hering, Martin; Brouwer, Jacob; Winkler, Wolfgang
2017-02-01
A novel dynamic micro-tubular solid oxide fuel cell (MT-SOFC) and stack model including an integrated cooling system is developed using a quasi three-dimensional, spatially resolved, transient thermodynamic, physical and electrochemical model that accounts for the complex geometrical relations between the cells and cooling-tubes. The modeling approach includes a simplified tubular geometry and stack design including an integrated cooling structure, detailed pressure drop and gas property calculations, the electrical and physical constraints of the stack design that determine the current, as well as control strategies for the temperature. Moreover, an advanced heat transfer balance with detailed radiative heat transfer between the cells and the integrated cooling-tubes, convective heat transfer between the gas flows and the surrounding structures and conductive heat transfer between the solid structures inside of the stack, is included. The detailed model can be used as a design basis for the novel MT-SOFC stack assembly including an integrated cooling system, as well as for the development of a dynamic system control strategy. The evaluated best-case design achieves very high electrical efficiency between around 75 and 55% in the entire power density range between 50 and 550 mW /cm2 due to the novel stack design comprising an integrated cooling structure.
Dwyer, Greg; Firestone, Jeffrey; Stevens, T Emiko
2005-01-01
Interactions between insects and their baculovirus pathogens are often described using simple disease models. Baculoviruses, however, are transmitted when insects consume virus-contaminated foliage, and foliage variability, whether within or between host-plant species, can affect viral infectiousness. Insect-baculovirus interactions may thus be embedded in a tritrophic interaction with the insect's host plant, but disease models include only the host and the pathogen. We tested these models by measuring the transmission of a baculovirus of gypsy moths (Lymantria dispar) on red oak (Quercus rubra) and white oak (Quercus alba) in the field in six experiments over four years. In all experiments, there were only weak effects of host-tree species, and in only one did the best-fitting model include tree species effects. These weak effects of foliage variability on transmission were not due to a lack of foliage variability on viral infectiousness, because when larvae were force-fed virus-contaminated foliage, infection rates were higher on white oak. Our results suggest that feeding behavior plays an important role in baculovirus transmission and that models can usefully describe baculovirus dynamics even without including foliage variability. Our work provides a clear example of how two-species models are sometimes sufficient to describe what appear to be tritrophic interactions.
McLerran, Larry; Skokov, Vladimir V.
2016-09-19
We modify the McLerran–Venugopalan model to include only a finite number of sources of color charge. In the effective action for such a system of a finite number of sources, there is a point-like interaction and a Coulombic interaction. The point interaction generates the standard fluctuation term in the McLerran–Venugopalan model. The Coulomb interaction generates the charge screening originating from well known evolution in x. Such a model may be useful for computing angular harmonics of flow measured in high energy hadron collisions for small systems. In this study we provide a basic formulation of the problem on a lattice.
NASA Astrophysics Data System (ADS)
McLerran, Larry; Skokov, Vladimir V.
2017-01-01
We modify the McLerran-Venugopalan model to include only a finite number of sources of color charge. In the effective action for such a system of a finite number of sources, there is a point-like interaction and a Coulombic interaction. The point interaction generates the standard fluctuation term in the McLerran-Venugopalan model. The Coulomb interaction generates the charge screening originating from well known evolution in x. Such a model may be useful for computing angular harmonics of flow measured in high energy hadron collisions for small systems. In this paper we provide a basic formulation of the problem on a lattice.
McLerran, Larry; Skokov, Vladimir V.
2016-09-19
We modify the McLerran–Venugopalan model to include only a finite number of sources of color charge. In the effective action for such a system of a finite number of sources, there is a point-like interaction and a Coulombic interaction. The point interaction generates the standard fluctuation term in the McLerran–Venugopalan model. The Coulomb interaction generates the charge screening originating from well known evolution in x. Such a model may be useful for computing angular harmonics of flow measured in high energy hadron collisions for small systems. In this study we provide a basic formulation of the problem on a lattice.
Models of professional regulation: institutionalizing an agency relationship
2013-01-01
The regulation of medical practice can historically be understood as a second-level agency relationship whereby the state delegated authority to professional bodies to police the primary agency relationship between the individual physician and the patient. Borow, Levi and Glekin show how different national systems vary in the degree to which they insist on institutionally insulating the agency function from the promotion of private professional interests, and relate these variations to different models of the health care state. In fact these differences have even deeper roots in different “liberal” or “coordinated” varieties of capitalist political economies. Neither model is inherently more efficient than the other: what matters is the internal coherence or logic of these systems that conditions the expectations of actors in responding to particular challenges. The territory that Borow, Levi and Glekin have usefully mapped invites further exploration in this regard. This is a commentary on http://www.ijhpr.org/content/2/1/8. PMID:23537144