Science.gov

Sample records for relationships including modelling

  1. Cement-aggregate compatibility and structure property relationships including modelling

    SciTech Connect

    Jennings, H.M.; Xi, Y.

    1993-07-15

    The role of aggregate, and its interface with cement paste, is discussed with a view toward establishing models that relate structure to properties. Both short (nm) and long (mm) range structure must be considered. The short range structure of the interface depends not only on the physical distribution of the various phases, but also on moisture content and reactivity of aggregate. Changes that occur on drying, i.e. shrinkage, may alter the structure which, in turn, feeds back to alter further drying and shrinkage. The interaction is dynamic, even without further hydration of cement paste, and the dynamic characteristic must be considered in order to fully understand and model its contribution to properties. Microstructure and properties are two subjects which have been pursued somewhat separately. This review discusses both disciplines with a view toward finding common research goals in the future. Finally, comment is made on possible chemical reactions which may occur between aggregate and cement paste.

  2. A proposed model to include a residual NAPL saturation in a hysteretic capillary pressure-saturation relationship.

    PubMed

    Van Geel, P J; Roy, S D

    2002-09-01

    A residual non-aqueous phase liquid (NAPL) present in the vadose zone can act as a contaminant source for many years as the compounds of concern partition to infiltrating groundwater and air contained in the soil voids. Current pressure-saturation-relative permeability relationships do not include a residual NAPL saturation term in their formulation. This paper presents the results of series of two- and three-phase pressure cell experiments conducted to evaluate the residual NAPL saturation and its impact on the pressure-saturation relationship. A model was proposed to incorporate a residual NAPL saturation term into an existing hysteretic three-phase parametric model developed by Parker and Lenhard [Water Resour. Res. 23(12) (1987) 2187], Lenhard and Parker [Water Resour. Res. 23(12) (1987) 2197] and Lenhard [J. Contam. Hydrol. 9 (1992) 243]. The experimental results indicated that the magnitude of the residual NAPL saturation was a function of the maximum total liquid saturation reached and the water saturation. The proposed model to incorporate a residual NAPL saturation term is similar in form to the entrapment model proposed by Parker and Lenhard, which was based on an expression presented by Land [Soc. Pet. Eng. J. (June 1968) 149]. PMID:12236556

  3. Including Magnetostriction in Micromagnetic Models

    NASA Astrophysics Data System (ADS)

    Conbhuí, Pádraig Ó.; Williams, Wyn; Fabian, Karl; Nagy, Lesleis

    2016-04-01

    The magnetic anomalies that identify crustal spreading are predominantly recorded by basalts formed at the mid-ocean ridges, whose magnetic signals are dominated by iron-titanium-oxides (Fe3-xTixO4), so called "titanomagnetites", of which the Fe2.4Ti0.6O4 (TM60) phase is the most common. With sufficient quantities of titanium present, these minerals exhibit strong magnetostriction. To date, models of these grains in the pseudo-single domain (PSD) range have failed to accurately account for this effect. In particular, a popular analytic treatment provided by Kittel (1949) for describing the magnetostrictive energy as an effective increase of the anisotropy constant can produce unphysical strains for non-uniform magnetizations. I will present a rigorous approach based on work by Brown (1966) and by Kroner (1958) for including magnetostriction in micromagnetic codes which is suitable for modelling hysteresis loops and finding remanent states in the PSD regime. Preliminary results suggest the more rigorously defined micromagnetic models exhibit higher coercivities and extended single domain ranges when compared to more simplistic approaches.

  4. Including the dynamic relationship between climatic variables and leaf area index in a hydrological model to improve streamflow prediction under a changing climate

    NASA Astrophysics Data System (ADS)

    Tesemma, Z. K.; Wei, Y.; Peel, M. C.; Western, A. W.

    2015-06-01

    Anthropogenic climate change is projected to enrich the atmosphere with carbon dioxide, change vegetation dynamics and influence the availability of water at the catchment scale. This study combines a nonlinear model for estimating changes in leaf area index (LAI) due to climatic fluctuations with the variable infiltration capacity (VIC) hydrological model to improve catchment streamflow prediction under a changing climate. The combined model was applied to 13 gauged sub-catchments with different land cover types (crop, pasture and tree) in the Goulburn-Broken catchment, Australia, for the "Millennium Drought" (1997-2009) relative to the period 1983-1995, and for two future periods (2021-2050 and 2071-2100) and two emission scenarios (Representative Concentration Pathway (RCP) 4.5 and RCP8.5) which were compared with the baseline historical period of 1981-2010. This region was projected to be warmer and mostly drier in the future as predicted by 38 Coupled Model Intercomparison Project Phase 5 (CMIP5) runs from 15 global climate models (GCMs) and for two emission scenarios. The results showed that during the Millennium Drought there was about a 29.7-66.3 % reduction in mean annual runoff due to reduced precipitation and increased temperature. When drought-induced changes in LAI were included, smaller reductions in mean annual runoff of between 29.3 and 61.4 % were predicted. The proportional increase in runoff due to modeling LAI was 1.3-10.2 % relative to not including LAI. For projected climate change under the RCP4.5 emission scenario, ignoring the LAI response to changing climate could lead to a further reduction in mean annual runoff of between 2.3 and 27.7 % in the near-term (2021-2050) and 2.3 to 23.1 % later in the century (2071-2100) relative to modeling the dynamic response of LAI to precipitation and temperature changes. Similar results (near-term 2.5-25.9 % and end of century 2.6-24.2 %) were found for climate change under the RCP8.5 emission scenario

  5. A modification of the finite-difference model for simulation of two dimensional ground-water flow to include surface-ground water relationships

    USGS Publications Warehouse

    Ozbilgin, M.M.; Dickerman, D.C.

    1984-01-01

    The two-dimensional finite-difference model for simulation of groundwater flow was modified to enable simulation of surface-water/groundwater interactions during periods of low streamflow. Changes were made to the program code in order to calculate surface-water heads for, and flow either to or from, contiguous surface-water bodies; and to allow for more convenient data input. Methods of data input and output were modified and entries (RSORT and HDRIVER) were added to the COEF and CHECKI subroutines to calculate surface-water heads. A new subroutine CALC was added to the program which initiates surface-water calculations. If CALC is not specified as a simulation option, the program runs the original version. The subroutines which solve the ground-water flow equations were not changed. Recharge, evapotranspiration, surface-water inflow, number of wells, pumping rate, and pumping duration can be varied for any time period. The Manning formula was used to relate stream depth and discharge in surface-water streams. Interactions between surface water and ground water are represented by the leakage term in the ground-water flow and surface-water mass balance equations. Documentation includes a flow chart, data deck instructions, input data, output summary, and program listing. Numerical results from the modified program are in good agreement with published analytical results. (USGS)

  6. An Integrated Biochemistry Laboratory, Including Molecular Modeling

    NASA Astrophysics Data System (ADS)

    Hall, Adele J. Wolfson Mona L.; Branham, Thomas R.

    1996-11-01

    ) experience with methods of protein purification; (iii) incorporation of appropriate controls into experiments; (iv) use of basic statistics in data analysis; (v) writing papers and grant proposals in accepted scientific style; (vi) peer review; (vii) oral presentation of results and proposals; and (viii) introduction to molecular modeling. Figure 1 illustrates the modular nature of the lab curriculum. Elements from each of the exercises can be separated and treated as stand-alone exercises, or combined into short or long projects. We have been able to offer the opportunity to use sophisticated molecular modeling in the final module through funding from an NSF-ILI grant. However, many of the benefits of the research proposal can be achieved with other computer programs, or even by literature survey alone. Figure 1.Design of project-based biochemistry laboratory. Modules (projects, or portions of projects) are indicated as boxes. Each of these can be treated independently, or used as part of a larger project. Solid lines indicate some suggested paths from one module to the next. The skills and knowledge required for protein purification and design are developed in three units: (i) an introduction to critical assays needed to monitor degree of purification, including an evaluation of assay parameters; (ii) partial purification by ion-exchange techniques; and (iii) preparation of a grant proposal on protein design by mutagenesis. Brief descriptions of each of these units follow, with experimental details of each project at the end of this paper. Assays for Lysozyme Activity and Protein Concentration (4 weeks) The assays mastered during the first unit are a necessary tool for determining the purity of the enzyme during the second unit on purification by ion exchange. These assays allow an introduction to the concept of specific activity (units of enzyme activity per milligram of total protein) as a measure of purity. In this first sequence, students learn a turbidimetric assay

  7. SEEPAGE MODEL FOR PA INCLUDING DRIFT COLLAPSE

    SciTech Connect

    C. Tsang

    2004-09-22

    The purpose of this report is to document the predictions and analyses performed using the seepage model for performance assessment (SMPA) for both the Topopah Spring middle nonlithophysal (Tptpmn) and lower lithophysal (Tptpll) lithostratigraphic units at Yucca Mountain, Nevada. Look-up tables of seepage flow rates into a drift (and their uncertainty) are generated by performing numerical simulations with the seepage model for many combinations of the three most important seepage-relevant parameters: the fracture permeability, the capillary-strength parameter 1/a, and the percolation flux. The percolation flux values chosen take into account flow focusing effects, which are evaluated based on a flow-focusing model. Moreover, multiple realizations of the underlying stochastic permeability field are conducted. Selected sensitivity studies are performed, including the effects of an alternative drift geometry representing a partially collapsed drift from an independent drift-degradation analysis (BSC 2004 [DIRS 166107]). The intended purpose of the seepage model is to provide results of drift-scale seepage rates under a series of parameters and scenarios in support of the Total System Performance Assessment for License Application (TSPA-LA). The SMPA is intended for the evaluation of drift-scale seepage rates under the full range of parameter values for three parameters found to be key (fracture permeability, the van Genuchten 1/a parameter, and percolation flux) and drift degradation shape scenarios in support of the TSPA-LA during the period of compliance for postclosure performance [Technical Work Plan for: Performance Assessment Unsaturated Zone (BSC 2002 [DIRS 160819], Section I-4-2-1)]. The flow-focusing model in the Topopah Spring welded (TSw) unit is intended to provide an estimate of flow focusing factors (FFFs) that (1) bridge the gap between the mountain-scale and drift-scale models, and (2) account for variability in local percolation flux due to

  8. Models of bovine babesiosis including juvenile cattle.

    PubMed

    Saad-Roy, C M; Shuai, Zhisheng; van den Driessche, P

    2015-03-01

    Bovine Babesiosis in cattle is caused by the transmission of protozoa of Babesia spp. by ticks as vectors. Juvenile cattle (<9 months of age) have resistance to Bovine Babesiosis, rarely show symptoms, and acquire immunity upon recovery. Susceptibility to the disease varies between breeds of cattle. Models of the dynamics of Bovine Babesiosis transmitted by the cattle tick that include these factors are formulated as systems of ordinary differential equations. Basic reproduction numbers are calculated, and it is proved that if these numbers are below the threshold value of one, then Bovine Babesiosis dies out. However, above the threshold number of one, the disease may approach an endemic state. In this case, control measures are suggested by determining target reproduction numbers. The percentage of a particular population (for example, the adult bovine population) needed to be controlled to eradicate the disease is evaluated numerically using Columbia data from the literature. PMID:25715822

  9. An Integrated Biochemistry Laboratory, Including Molecular Modeling

    NASA Astrophysics Data System (ADS)

    Hall, Adele J. Wolfson Mona L.; Branham, Thomas R.

    1996-11-01

    ) experience with methods of protein purification; (iii) incorporation of appropriate controls into experiments; (iv) use of basic statistics in data analysis; (v) writing papers and grant proposals in accepted scientific style; (vi) peer review; (vii) oral presentation of results and proposals; and (viii) introduction to molecular modeling. Figure 1 illustrates the modular nature of the lab curriculum. Elements from each of the exercises can be separated and treated as stand-alone exercises, or combined into short or long projects. We have been able to offer the opportunity to use sophisticated molecular modeling in the final module through funding from an NSF-ILI grant. However, many of the benefits of the research proposal can be achieved with other computer programs, or even by literature survey alone. Figure 1.Design of project-based biochemistry laboratory. Modules (projects, or portions of projects) are indicated as boxes. Each of these can be treated independently, or used as part of a larger project. Solid lines indicate some suggested paths from one module to the next. The skills and knowledge required for protein purification and design are developed in three units: (i) an introduction to critical assays needed to monitor degree of purification, including an evaluation of assay parameters; (ii) partial purification by ion-exchange techniques; and (iii) preparation of a grant proposal on protein design by mutagenesis. Brief descriptions of each of these units follow, with experimental details of each project at the end of this paper. Assays for Lysozyme Activity and Protein Concentration (4 weeks) The assays mastered during the first unit are a necessary tool for determining the purity of the enzyme during the second unit on purification by ion exchange. These assays allow an introduction to the concept of specific activity (units of enzyme activity per milligram of total protein) as a measure of purity. In this first sequence, students learn a turbidimetric assay

  10. Seepage Model for PA Including Dift Collapse

    SciTech Connect

    G. Li; C. Tsang

    2000-12-20

    The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M&O 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M&O 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in niches and in the cross drift to

  11. Including eddies in global ocean models

    NASA Astrophysics Data System (ADS)

    Semtner, Albert J.; Chervin, Robert M.

    The ocean is a turbulent fluid that is driven by winds and by surface exchanges of heat and moisture. It is as important as the atmosphere in governing climate through heat distribution, but so little is known about the ocean that it remains a “final frontier” on the face of the Earth. Many ocean currents are truly global in extent, such as the Antarctic Circumpolar Current and the “conveyor belt” that connects the North Atlantic and North Pacific oceans by flows around the southern tips of Africa and South America. It has long been a dream of some oceanographers to supplement the very limited observational knowledge by reconstructing the currents of the world ocean from the first principles of physics on a computer. However, until very recently, the prospect of doing this was thwarted by the fact that fluctuating currents known as “mesoscale eddies” could not be explicitly included in the calculation.

  12. Spaghetti Bridges: Modeling Linear Relationships

    ERIC Educational Resources Information Center

    Kroon, Cindy D.

    2016-01-01

    Mathematics and science are natural partners. One of many examples of this partnership occurs when scientific observations are made, thus providing data that can be used for mathematical modeling. Developing mathematical relationships elucidates such scientific principles. This activity describes a data-collection activity in which students employ…

  13. Modeling Emergent Macrophyte Distributions: Including Sub-dominant Species

    EPA Science Inventory

    Mixed stands of emergent vegetation are often present following drawdowns but models of wetland plant distributions fail to include subdominant species when predicting distributions. Three variations of a spatial plant distribution cellular automaton model were developed to explo...

  14. Dynamic hysteresis modeling including skin effect using diffusion equation model

    NASA Astrophysics Data System (ADS)

    Hamada, Souad; Louai, Fatima Zohra; Nait-Said, Nasreddine; Benabou, Abdelkader

    2016-07-01

    An improved dynamic hysteresis model is proposed for the prediction of hysteresis loop of electrical steel up to mean frequencies, taking into account the skin effect. In previous works, the analytical solution of the diffusion equation for low frequency (DELF) was coupled with the inverse static Jiles-Atherton (JA) model in order to represent the hysteresis behavior for a lamination. In the present paper, this approach is improved to ensure the reproducibility of measured hysteresis loops at mean frequency. The results of simulation are compared with the experimental ones. The selected results for frequencies 50 Hz, 100 Hz, 200 Hz and 400 Hz are presented and discussed.

  15. Modeling heart rate variability including the effect of sleep stages

    NASA Astrophysics Data System (ADS)

    Soliński, Mateusz; Gierałtowski, Jan; Żebrowski, Jan

    2016-02-01

    We propose a model for heart rate variability (HRV) of a healthy individual during sleep with the assumption that the heart rate variability is predominantly a random process. Autonomic nervous system activity has different properties during different sleep stages, and this affects many physiological systems including the cardiovascular system. Different properties of HRV can be observed during each particular sleep stage. We believe that taking into account the sleep architecture is crucial for modeling the human nighttime HRV. The stochastic model of HRV introduced by Kantelhardt et al. was used as the initial starting point. We studied the statistical properties of sleep in healthy adults, analyzing 30 polysomnographic recordings, which provided realistic information about sleep architecture. Next, we generated synthetic hypnograms and included them in the modeling of nighttime RR interval series. The results of standard HRV linear analysis and of nonlinear analysis (Shannon entropy, Poincaré plots, and multiscale multifractal analysis) show that—in comparison with real data—the HRV signals obtained from our model have very similar properties, in particular including the multifractal characteristics at different time scales. The model described in this paper is discussed in the context of normal sleep. However, its construction is such that it should allow to model heart rate variability in sleep disorders. This possibility is briefly discussed.

  16. Modeling heart rate variability including the effect of sleep stages.

    PubMed

    Soliński, Mateusz; Gierałtowski, Jan; Żebrowski, Jan

    2016-02-01

    We propose a model for heart rate variability (HRV) of a healthy individual during sleep with the assumption that the heart rate variability is predominantly a random process. Autonomic nervous system activity has different properties during different sleep stages, and this affects many physiological systems including the cardiovascular system. Different properties of HRV can be observed during each particular sleep stage. We believe that taking into account the sleep architecture is crucial for modeling the human nighttime HRV. The stochastic model of HRV introduced by Kantelhardt et al. was used as the initial starting point. We studied the statistical properties of sleep in healthy adults, analyzing 30 polysomnographic recordings, which provided realistic information about sleep architecture. Next, we generated synthetic hypnograms and included them in the modeling of nighttime RR interval series. The results of standard HRV linear analysis and of nonlinear analysis (Shannon entropy, Poincaré plots, and multiscale multifractal analysis) show that-in comparison with real data-the HRV signals obtained from our model have very similar properties, in particular including the multifractal characteristics at different time scales. The model described in this paper is discussed in the context of normal sleep. However, its construction is such that it should allow to model heart rate variability in sleep disorders. This possibility is briefly discussed. PMID:26931582

  17. A sonic boom propagation model including mean flow atmospheric effects

    NASA Astrophysics Data System (ADS)

    Salamone, Joe; Sparrow, Victor W.

    2012-09-01

    This paper presents a time domain formulation of nonlinear lossy propagation in onedimension that also includes the effects of non-collinear mean flow in the acoustic medium. The model equation utilized is an augmented Burgers equation that includes the effects of nonlinearity, geometric spreading, atmospheric stratification, and also absorption and dispersion due to thermoviscous and molecular relaxation effects. All elements of the propagation are implemented in the time domain and the effects of non-collinear mean flow are accounted for in each term of the model equation. Previous authors have presented methods limited to showing the effects of wind on ray tracing and/or using an effective speed of sound in their model equation. The present work includes the effects of mean flow for all terms included in the augmented Burgers equation with all of the calculations performed in the time-domain. The capability to include the effects of mean flow in the acoustic medium allows one to make predictions more representative of real-world atmospheric conditions. Examples are presented for nonlinear propagation of N-waves and shaped sonic booms. [Work supported by Gulfstream Aerospace Corporation.

  18. Phylogenetic Relationships of Five Asian Schilbid Genera Including Clupisoma (Siluriformes: Schilbeidae).

    PubMed

    Wang, Jing; Lu, Bin; Zan, Ruiguang; Chai, Jing; Ma, Wei; Jin, Wei; Duan, Rongyao; Luo, Jing; Murphy, Robert W; Xiao, Heng; Chen, Ziming

    2016-01-01

    The phylogenetic relationships of Asian schilbid catfishes of the genera Clupisoma, Ailia, Horabagrus, Laides and Pseudeutropius are poorly understood, especially those of Clupisoma. Herein, we reconstruct the phylogeny of 38 species of catfishes belonging to 28 genera and 14 families using the concatenated mitochondrial genes COI, cytb, and 16S rRNA, as well as the nuclear genes RAG1 and RAG2. The resulting phylogenetic trees consistently place Clupisoma as the sister taxon of Laides, and the five representative Asian schilbid genera form two monophyletic groups with the relationships (Ailia (Laides, Clupisoma)) and (Horabagrus, Pseudeutropius). The so-called "Big Asia" lineage relates distantly to African schilbids. Independent analyses of the mitochondrial and nuclear DNA data yield differing trees for the two Asian schilbid groups. Analyses of the mitochondrial gene data support a sister-group relationship for (Ailia (Laides, Clupisoma)) and the Sisoroidea and a sister-taxon association of (Horabagrus, Pseudeutropius) and the Bagridae. In contrast, analyses of the combined nuclear data indicate (Ailia (Laides, Clupisoma)) to be the sister group to (Horabagrus, Pseudeutropius). Our results indicate that the Horabagridae, recognized by some authors as consisting of Horabagrus, Pseudeutropius and Clupisoma does not include the latter genus. We formally erect a new family, Ailiidae fam. nov. for a monophyletic Asian group comprised of the genera Ailia, Laides and Clupisoma. PMID:26751688

  19. Phylogenetic Relationships of Five Asian Schilbid Genera Including Clupisoma (Siluriformes: Schilbeidae)

    PubMed Central

    Zan, Ruiguang; Chai, Jing; Ma, Wei; Jin, Wei; Duan, Rongyao; Luo, Jing; Murphy, Robert W.; Xiao, Heng; Chen, Ziming

    2016-01-01

    The phylogenetic relationships of Asian schilbid catfishes of the genera Clupisoma, Ailia, Horabagrus, Laides and Pseudeutropius are poorly understood, especially those of Clupisoma. Herein, we reconstruct the phylogeny of 38 species of catfishes belonging to 28 genera and 14 families using the concatenated mitochondrial genes COI, cytb, and 16S rRNA, as well as the nuclear genes RAG1 and RAG2. The resulting phylogenetic trees consistently place Clupisoma as the sister taxon of Laides, and the five representative Asian schilbid genera form two monophyletic groups with the relationships (Ailia (Laides, Clupisoma)) and (Horabagrus, Pseudeutropius). The so-called “Big Asia” lineage relates distantly to African schilbids. Independent analyses of the mitochondrial and nuclear DNA data yield differing trees for the two Asian schilbid groups. Analyses of the mitochondrial gene data support a sister-group relationship for (Ailia (Laides, Clupisoma)) and the Sisoroidea and a sister-taxon association of (Horabagrus, Pseudeutropius) and the Bagridae. In contrast, analyses of the combined nuclear data indicate (Ailia (Laides, Clupisoma)) to be the sister group to (Horabagrus, Pseudeutropius). Our results indicate that the Horabagridae, recognized by some authors as consisting of Horabagrus, Pseudeutropius and Clupisoma does not include the latter genus. We formally erect a new family, Ailiidae fam. nov. for a monophyletic Asian group comprised of the genera Ailia, Laides and Clupisoma. PMID:26751688

  20. Estimation of nonlinear pilot model parameters including time delay.

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.; Roland, V. R.; Wells, W. R.

    1972-01-01

    Investigation of the feasibility of using a Kalman filter estimator for the identification of unknown parameters in nonlinear dynamic systems with a time delay. The problem considered is the application of estimation theory to determine the parameters of a family of pilot models containing delayed states. In particular, the pilot-plant dynamics are described by differential-difference equations of the retarded type. The pilot delay, included as one of the unknown parameters to be determined, is kept in pure form as opposed to the Pade approximations generally used for these systems. Problem areas associated with processing real pilot response data are included in the discussion.

  1. A Mathematical Learning Model Including Interactions among Different Learnings

    NASA Astrophysics Data System (ADS)

    Nariyuki, Yasuhiro; Yamaguchi, Norikazu

    2015-03-01

    The mathematical learning model reported by Nitta [Phys. Rev. ST Phys. Educ. Res. 6, 020105 (2010)], which describes the transition from pre test score (fraction of the correct answer) to the post score, is extended to include interactions among different learnings. Numerical solutions of the model suggest that the effects of loss due to the different learnings possibly conceal interactive learnings from observational data.

  2. Cont-Bouchaud Percolation Model Including Tobin Tax

    NASA Astrophysics Data System (ADS)

    Ehrenstein, Gudrun

    The Tobin tax is an often discussed method to tame speculation and get a source of income. The discussion is especially heated when the financial markets are in crisis. In this article we refer to the foreign exchange markets. The Tobin tax should be a small international tax affecting all currency transactions and thus consequently reducing destabilizing speculations. In this way this tax should take over a control function. By including the Tobin tax in the microscopic model of Cont and Bouchaud one finds that this tax could be the right method to control foreign exchange operations and to get a good source of income.

  3. Multistage carcinogenesis modeling including cell cycle and DNA damage states

    NASA Astrophysics Data System (ADS)

    Hazelton, W.; Moolgavkar, S.

    The multistage clonal expansion model of carcinogenesis is generalized to include cell cycle states and corresponding DNA damage states with imperfect repair for normal and initiated stem cells. Initiated cells may undergo transformation to a malignant state, eventually leading to cancer incidence or death. The model allows oxidative or radiation induced DNA damage, checkpoint delay, DNA repair, apoptosis, and transformation rates to depend on the cell cycle state or DNA damage state of normal and initiated cells. A probability generating function approach is used to represent the time dependent probability distribution for cells in all states. The continuous time coupled Markov system representing this joint distribution satisfies a partial differential equation (pde). Time dependent survival and hazard functions are found through numerical solution of the characteristic equations for the pde. Although the hazard and survival can be calculated numerically, number and size distributions of pre-malignant lesions from models that are developed will be approximated through simulation. We use the model to explore predictions for hazard and survival as parameters representing cell cycle regulation and arrest are modified. Modification of these parameters may influence rates for cell division, apoptosis and malignant transformation that are important in carcinogenesis. We also explore enhanced repair that may be important for low-dose hypersensitivity and adaptive response, and degradation of repair processes or loss of checkpoint control that may drive genetic instability.

  4. Modeling of Radio Emission from Saturn's Rings Including Wakes

    NASA Astrophysics Data System (ADS)

    Molnar, L. A.; Dunn, D. E.; Cully, J. C.; Young, D. J.

    2000-10-01

    We have extended the ``simrings" radiative transfer software package (Dunn, Molnar, and Fix 1999) to include idealized ring wakes. The package consists four principle, modular components: ``simprob," which computes Mie scattering functions for individual particles specified by size and composition; ``simrings," which uses a Monte Carlo simulation to compute the complete scattering function and thermal emission of a ring slab specified by particle size distribution and density (including the possibility of wake density enhancements); ``simplot," which uses these functions along with geometric information and a full description of the planet brightness to compute the ring brightness as a function of azimuth as viewed from Earth; and "simcoord", which combines this information for a series of rings to make a final model of the radio emission as viewed on the sky. We compare sample results from this package with those of a simple, analytic model that ignores multiple scattering. This allows us to show qualitatively under what conditions one might observe east-west asymmetry in the rings caused by multiple scattering off wakes (as we earlier suggested may be the case: Dunn, Molnar, and Fix 1996), and to quantitatively compare models with data maps. The principle advantage of our idealized wakes is the relative ease with which we can consider a wide range of parameter space. The utility of this depends on these wakes having net scattering properties resembling those of more realistic wakes. We compare our idealized wakes with the gravitational simulations of Daisaka and Ida (1999) and find that this is the case for directly transmitted flux as a function of azimuth and inclination. As complete scattering properties of realistic simulations become available, we can use them as alternative inputs to ``simplot," producing model radio maps for them. Finally, we compare preliminary runs of the ``simrings" package with radio data spanning a range of observing wavelengths and

  5. A Prediction Model for Chronic Kidney Disease Includes Periodontal Disease

    PubMed Central

    Fisher, Monica A.; Taylor, George W.

    2009-01-01

    Background An estimated 75% of the seven million Americans with moderate-to-severe chronic kidney disease are undiagnosed. Improved prediction models to identify high-risk subgroups for chronic kidney disease enhance the ability of health care providers to prevent or delay serious sequelae, including kidney failure, cardiovascular disease, and premature death. Methods We identified 11,955 adults ≥18 years of age in the Third National Health and Nutrition Examination Survey. Chronic kidney disease was defined as an estimated glomerular filtration rate of 15 to 59 ml/minute/1.73 m2. High-risk subgroups for chronic kidney disease were identified by estimating the individual probability using β coefficients from the model of traditional and non-traditional risk factors. To evaluate this model, we performed standard diagnostic analyses of sensitivity, specificity, positive predictive value, and negative predictive value using 5%, 10%, 15%, and 20% probability cutoff points. Results The estimated probability of chronic kidney disease ranged from virtually no probability (0%) for an individual with none of the 12 risk factors to very high probability (98%) for an older, non-Hispanic white edentulous former smoker, with diabetes ≥10 years, hypertension, macroalbuminuria, high cholesterol, low high-density lipoprotein, high C-reactive protein, lower income, and who was hospitalized in the past year. Evaluation of this model using an estimated 5% probability cutoff point resulted in 86% sensitivity, 85% specificity, 18% positive predictive value, and 99% negative predictive value. Conclusion This United States population–based study suggested the importance of considering multiple risk factors, including periodontal status, because this improves the identification of individuals at high risk for chronic kidney disease and may ultimately reduce its burden. PMID:19228085

  6. Kinetic models of gene expression including non-coding RNAs

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2011-03-01

    In cells, genes are transcribed into mRNAs, and the latter are translated into proteins. Due to the feedbacks between these processes, the kinetics of gene expression may be complex even in the simplest genetic networks. The corresponding models have already been reviewed in the literature. A new avenue in this field is related to the recognition that the conventional scenario of gene expression is fully applicable only to prokaryotes whose genomes consist of tightly packed protein-coding sequences. In eukaryotic cells, in contrast, such sequences are relatively rare, and the rest of the genome includes numerous transcript units representing non-coding RNAs (ncRNAs). During the past decade, it has become clear that such RNAs play a crucial role in gene expression and accordingly influence a multitude of cellular processes both in the normal state and during diseases. The numerous biological functions of ncRNAs are based primarily on their abilities to silence genes via pairing with a target mRNA and subsequently preventing its translation or facilitating degradation of the mRNA-ncRNA complex. Many other abilities of ncRNAs have been discovered as well. Our review is focused on the available kinetic models describing the mRNA, ncRNA and protein interplay. In particular, we systematically present the simplest models without kinetic feedbacks, models containing feedbacks and predicting bistability and oscillations in simple genetic networks, and models describing the effect of ncRNAs on complex genetic networks. Mathematically, the presentation is based primarily on temporal mean-field kinetic equations. The stochastic and spatio-temporal effects are also briefly discussed.

  7. Development of an Aeroelastic Analysis Including a Viscous Flow Model

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Bakhle, Milind A.

    2001-01-01

    Under this grant, Version 4 of the three-dimensional Navier-Stokes aeroelastic code (TURBO-AE) has been developed and verified. The TURBO-AE Version 4 aeroelastic code allows flutter calculations for a fan, compressor, or turbine blade row. This code models a vibrating three-dimensional bladed disk configuration and the associated unsteady flow (including shocks, and viscous effects) to calculate the aeroelastic instability using a work-per-cycle approach. Phase-lagged (time-shift) periodic boundary conditions are used to model the phase lag between adjacent vibrating blades. The direct-store approach is used for this purpose to reduce the computational domain to a single interblade passage. A disk storage option, implemented using direct access files, is available to reduce the large memory requirements of the direct-store approach. Other researchers have implemented 3D inlet/exit boundary conditions based on eigen-analysis. Appendix A: Aeroelastic calculations based on three-dimensional euler analysis. Appendix B: Unsteady aerodynamic modeling of blade vibration using the turbo-V3.1 code.

  8. Progress Towards an LES Wall Model Including Unresolved Roughness

    NASA Astrophysics Data System (ADS)

    Craft, Kyle; Redman, Andrew; Aikens, Kurt

    2015-11-01

    Wall models used in large eddy simulations (LES) are often based on theories for hydraulically smooth walls. While this is reasonable for many applications, there are also many where the impact of surface roughness is important. A previously developed wall model has been used primarily for jet engine aeroacoustics. However, jet simulations have not accurately captured thick initial shear layers found in some experimental data. This may partly be due to nozzle wall roughness used in the experiments to promote turbulent boundary layers. As a result, the wall model is extended to include the effects of unresolved wall roughness through appropriate alterations to the log-law. The methodology is tested for incompressible flat plate boundary layers with different surface roughness. Correct trends are noted for the impact of surface roughness on the velocity profile. However, velocity deficit profiles and the Reynolds stresses do not collapse as well as expected. Possible reasons for the discrepancies as well as future work will be presented. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Computational resources on TACC Stampede were provided under XSEDE allocation ENG150001.

  9. A constitutive model for the forces of a magnetic bearing including eddy currents

    NASA Technical Reports Server (NTRS)

    Taylor, D. L.; Hebbale, K. V.

    1993-01-01

    A multiple magnet bearing can be developed from N individual electromagnets. The constitutive relationships for a single magnet in such a bearing is presented. Analytical expressions are developed for a magnet with poles arranged circumferencially. Maxwell's field equations are used so the model easily includes the effects of induced eddy currents due to the rotation of the journal. Eddy currents must be included in any dynamic model because they are the only speed dependent parameter and may lead to a critical speed for the bearing. The model is applicable to bearings using attraction or repulsion.

  10. Polarimetric Models of Circumstellar Discs Including Aggregate Dust Grains

    NASA Astrophysics Data System (ADS)

    Mohan, Mahesh

    output files and to apply a size distribution to the data. The second circumstellar disc investigated is the debris disc of the M dwarf star AU Mic. The disc was modelled, using the radiative transfer code Hyperion, based on F606W (HST) and JHK0-band (Keck II) scattered light observations and F606Wband polarized light observations. Initially, the disc is modelled as a two component structure using two grain types: compact silicate grains and porous dirty ice water. Both models are able to reproduce the observed SED and the F606W and H-band surface brightness profiles, but are unable to fit the observed F606W degree of polarization. Therefore, a more complex/realistic grain model was examined (ballistic aggregate particles). In addition, recent millimetre observations suggest the existence of a planetesimal belt < 3 AU from the central star. This belt is included in the BAM2 model and was successful in fitting the observed SED, F606W and H-band surface brightness and F606W polarization. These results demonstrate the limitations of spherical grain models and indicate the importance of modelling more realistic dust grains.

  11. A model for including thermal conduction in molecular dynamics simulations

    NASA Technical Reports Server (NTRS)

    Wu, Yue; Friauf, Robert J.

    1989-01-01

    A technique is introduced for including thermal conduction in molecular dynamics simulations for solids. A model is developed to allow energy flow between the computational cell and the bulk of the solid when periodic boundary conditions cannot be used. Thermal conduction is achieved by scaling the velocities of atoms in a transitional boundary layer. The scaling factor is obtained from the thermal diffusivity, and the results show good agreement with the solution for a continuous medium at long times. The effects of different temperature and size of the system, and of variations in strength parameter, atomic mass, and thermal diffusivity were investigated. In all cases, no significant change in simulation results has been found.

  12. Analytical Jacobian Calculation in RT Model Including Polarization Effect

    NASA Astrophysics Data System (ADS)

    Okabayashi, Y.; Yoshida, Y.; Ota, Y.

    2014-12-01

    The greenhouse gas observing satellite "GOSAT" launched in January 2009 has been observing global distribution of CO2 and CH4. The TANSO-FTS mounted on GOSAT measures the two polarized components (called "P" and "S") of short wavelength infrared (SWIR) spectrum reflected from the earth's surface. In NIES, column-averaged dry air mole fraction of CO2 and CH4 (XCO2 and XCH4) are retrieved from SWIR spectra. However, the observed polarization information is not effectively utilized in the retrieval process due to the large computational cost of a vector RT model, instead the polarization synthesized spectra and a scalar RT model are used in the operational processing. An optical path length modification due to aerosol scattering is known as the major error source for XCO2 and XCH4 retrieval from SWIR spectra. Because the aerosol scattering changes polarization state of light, more accurate or additional aerosol information is expected by using the observed polarization spectra effectively in the retrieval process, which improves the retrieval accuracy of XCO2 and XCH4. In addition, for information content analysis, sensitivity analysis and error analysis, Jacobian matrix is important onto retrieval algorithm design before analyses for actual observed data. However, in the case of using RT model including polarization effect in retrieval process, the computational cost of Jacobian matrix calculations in maximum a posteriori retrieval is significantly large. Efficient calculation of analytical Jacobian is necessary. As a first step, we are implementing an analytical Jacobian calculation function to the vector RT model "Pstar". RT scheme of Pstar is based on hybrid method comprising the discrete ordinate and matrix operator methods. The reflection/transmission matrices and source vectors are obtained for each vertical layer through the discrete ordinate solution, and the vertically inhomogeneous system is constructed using the matrix operator method. Because the delta

  13. Goldilocks models of higher-dimensional inflation (including modulus stabilization)

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; Enns, Jared J. H.; Hayman, Peter; Patil, Subodh P.

    2016-08-01

    We explore the mechanics of inflation within simplified extra-dimensional models involving an inflaton interacting with the Einstein-Maxwell system in two extra dimensions. The models are Goldilocks-like inasmuch as they are just complicated enough to include a mechanism to stabilize the extra-dimensional size (or modulus), yet simple enough to solve explicitly the full extra-dimensional field equations using only simple tools. The solutions are not restricted to the effective 4D regime with H ll mKK (the latter referring to the characteristic mass splitting of the Kaluza-Klein excitations) because the full extra-dimensional Einstein equations are solved. This allows an exploration of inflationary physics in a controlled calculational regime away from the usual four-dimensional lamp-post. The inclusion of modulus stabilization is important because experience with string models teaches that this is usually what makes models fail: stabilization energies easily dominate the shallow potentials required by slow roll and so open up directions to evolve that are steeper than those of the putative inflationary direction. We explore (numerically and analytically) three representative kinds of inflationary scenarios within this simple setup. In one the radion is trapped in an inflaton-dependent local minimum whose non-zero energy drives inflation. Inflation ends as this energy relaxes to zero when the inflaton finds its own minimum. The other two involve power-law scaling solutions during inflation. One of these is a dynamical attractor whose features are relatively insensitive to initial conditions but whose slow-roll parameters cannot be arbitrarily small; the other is not an attractor but can roll much more slowly, until eventually transitioning to the attractor. The scaling solutions can satisfy H > mKK, but when they do standard 4D fluctuation calculations need not apply. When in a 4D regime the solutions predict η simeq 0 and so r simeq 0.11 when ns simeq 0.96 and so

  14. Energy loss in a partonic transport model including bremsstrahlung processes

    SciTech Connect

    Fochler, Oliver; Greiner, Carsten; Xu Zhe

    2010-08-15

    A detailed investigation of the energy loss of gluons that traverse a thermal gluonic medium simulated within the perturbative QCD-based transport model BAMPS (a Boltzmann approach to multiparton scatterings) is presented in the first part of this work. For simplicity the medium response is neglected in these calculations. The energy loss from purely elastic interactions is compared with the case where radiative processes are consistently included based on the matrix element by Gunion and Bertsch. From this comparison, gluon multiplication processes gg{yields}ggg are found to be the dominant source of energy loss within the approach employed here. The consequences for the quenching of gluons with high transverse momentum in fully dynamic simulations of Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC) energy of {radical}(s)=200A GeV are discussed in the second major part of this work. The results for central collisions as discussed in a previous publication are revisited, and first results on the nuclear modification factor R{sub AA} for noncentral Au+Au collisions are presented. They show a decreased quenching compared to central collisions while retaining the same shape. The investigation of the elliptic flow v{sub 2} is extended up to nonthermal transverse momenta of 10 GeV, exhibiting a maximum v{sub 2} at roughly 4 to 5 GeV and a subsequent decrease. Finally the sensitivity of the aforementioned results on the specific implementation of the effective modeling of the Landau-Pomeranchuk-Migdal (LPM) effect via a formation-time-based cutoff is explored.

  15. Modeling Spatial Relationships within a Fuzzy Framework.

    ERIC Educational Resources Information Center

    Petry, Frederick E.; Cobb, Maria A.

    1998-01-01

    Presents a model for representing and storing binary topological and directional relationships between 2-dimensional objects that is used to provide a basis for fuzzy querying capabilities. A data structure called an abstract spatial graph (ASG) is defined for the binary relationships that maintains all necessary information regarding topology and…

  16. Constitutive modelling of evolving flow anisotropy including distortional hardening

    SciTech Connect

    Pietryga, Michael P.; Vladimirov, Ivaylo N.; Reese, Stefanie

    2011-05-04

    The paper presents a new constitutive model for anisotropic metal plasticity that takes into account the expansion or contraction (isotropic hardening), translation (kinematic hardening) and change of shape (distortional hardening) of the yield surface. The experimentally observed region of high curvature ('nose') on the yield surface in the loading direction and flattened shape in the reverse loading direction are modelled here by means of the concept of directional distortional hardening. The modelling of directional distortional hardening is accomplished by means of an evolving fourth-order tensor. The applicability of the model is illustrated by fitting experimental subsequent yield surfaces at finite plastic deformation. Comparisons with test data for aluminium low and high work hardening alloys display a good agreement between the simulation results and the experimental data.

  17. Modelers and policymakers : improving the relationships.

    SciTech Connect

    Karas, Thomas H.

    2004-06-01

    On April 22 and 23, 2004, a diverse group of 14 policymakers, modelers, analysts, and scholars met with some 22 members of the Sandia National Laboratories staff to explores ways in which the relationships between modelers and policymakers in the energy and environment fields (with an emphasis on energy) could be made more productive for both. This report is not a transcription of that workshop, but draws very heavily on its proceedings. It first describes the concept of modeling, the varying ways in which models are used to support policymaking, and the institutional context for those uses. It then proposes that the goal of modelers and policymakers should be a relationship of mutual trust, built on a foundation of communication, supported by the twin pillars of policy relevance and technical credibility. The report suggests 20 guidelines to help modelers improve the relationship, followed by 10 guidelines to help policymakers toward the same goal.

  18. Testing causal models of the relationship between childhood gender atypical behaviour and parent-child relationship.

    PubMed

    Alanko, Katarina; Santtila, Pekka; Salo, Benny; Jern, Patrik; Johansson, Ada; Sandnabba, N Kenneth

    2011-06-01

    An association between childhood gender atypical behaviour (GAB) and a negative parent-child relationship has been demonstrated in several studies, yet the causal relationship of this association is not fully understood. In the present study, different models of causation between childhood GAB and parent-child relationships were tested. Direction of causation modelling was applied to twin data from a population-based sample (n= 2,565) of Finnish 33- to 43-year-old twins. Participants completed retrospective self-report questionnaires. Five different models of causation were then fitted to the data: GAB → parent-child relationship, parent-child relationship → GAB, reciprocal causation, a bivariate genetic model, and a model assuming no correlation. It was found that a model in which GAB and quality of mother-child, and father-child relationship reciprocally affect each other best fitted the data. The findings are discussed in light of how we should understand, including causality, the association between GAB and parent-child relationship.

  19. NASA Trapezoidal Wing Computations Including Transition and Advanced Turbulence Modeling

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.; Lee-Rausch, E. M.

    2012-01-01

    Flow about the NASA Trapezoidal Wing is computed with several turbulence models by using grids from the first High Lift Prediction Workshop in an effort to advance understanding of computational fluid dynamics modeling for this type of flowfield. Transition is accounted for in many of the computations. In particular, a recently-developed 4-equation transition model is utilized and works well overall. Accounting for transition tends to increase lift and decrease moment, which improves the agreement with experiment. Upper surface flap separation is reduced, and agreement with experimental surface pressures and velocity profiles is improved. The predicted shape of wakes from upstream elements is strongly influenced by grid resolution in regions above the main and flap elements. Turbulence model enhancements to account for rotation and curvature have the general effect of increasing lift and improving the resolution of the wing tip vortex as it convects downstream. However, none of the models improve the prediction of surface pressures near the wing tip, where more grid resolution is needed.

  20. Modeling Insurgent Dynamics Including Heterogeneity. A Statistical Physics Approach

    NASA Astrophysics Data System (ADS)

    Johnson, Neil F.; Manrique, Pedro; Hui, Pak Ming

    2013-05-01

    Despite the myriad complexities inherent in human conflict, a common pattern has been identified across a wide range of modern insurgencies and terrorist campaigns involving the severity of individual events—namely an approximate power-law x - α with exponent α≈2.5. We recently proposed a simple toy model to explain this finding, built around the reported loose and transient nature of operational cells of insurgents or terrorists. Although it reproduces the 2.5 power-law, this toy model assumes every actor is identical. Here we generalize this toy model to incorporate individual heterogeneity while retaining the model's analytic solvability. In the case of kinship or team rules guiding the cell dynamics, we find that this 2.5 analytic result persists—however an interesting new phase transition emerges whereby this cell distribution undergoes a transition to a phase in which the individuals become isolated and hence all the cells have spontaneously disintegrated. Apart from extending our understanding of the empirical 2.5 result for insurgencies and terrorism, this work illustrates how other statistical physics models of human grouping might usefully be generalized in order to explore the effect of diverse human social, cultural or behavioral traits.

  1. A new offline dust cycle model that includes dynamic vegetation

    NASA Astrophysics Data System (ADS)

    Shannon, Sarah; Lunt, Daniel

    2010-05-01

    Current offline dust cycle models are unable to predict variability in the extent of arid and semi-arid regions caused by the transient response of vegetation cover to the climate. As a consequence, it is not possible to test whether inter-annual variability in the dust loading is caused by vegetation changes or other processes. A new dust cycle model is presented which uses the Lund-Potsdam-Jena dynamic global vegetation model (Sitch et al., 2003) to calculate time varying dust sources. Surface emissions are calculated by simulating the processes of saltation and sandblasting (Tegen et al., 2002). Dust particles are transported as independent tracers within the TOMCAT chemical transport (Chipperfield, 2006). Dust is removed from the atmosphere by gravitational settling and sub-cloud scavenging. To improve the performance of the model, threshold values for vegetation cover, soil moisture, snow depth and threshold friction velocity, used to determine surface emissions are tuned. The effectiveness of three sub-cloud scavenging schemes are also tested. The tuning experiments are evaluated against multiple measurement datasets. The tuned model is used to investigate whether changes in vegetation cover in the Sahel can explain the four-fold increase in dust concentrations measured at Barbados during the 1980s relative to the 1960s (Prospero and Nees, 1986). Results show there was an expansion of the Sahara in 1984 relative to 1966 resulting in a doubling of emissions from the Sahel. However, this alone is not enough to account for the high dust concentrations measured at Barbados. This finding adds strength to the hypothesis that human induced soil degradation in North Africa may be responsible for the increase in high dust concentrations at Barbados during the 1980s relative to the 1960s. Chipperfield, M. P. (2006). "New version of the TOMCAT/SLIMCAT off-line chemical transport model: Intercomparison of stratospheric tracer experiments." Quarterly Journal of the Royal

  2. Digital elevation model visibility including Earth's curvature and atmosphere refraction

    NASA Astrophysics Data System (ADS)

    Santossilva, Ewerton; Vieiradias, Luiz Alberto

    1990-03-01

    There are some instances in which the Earth's curvature and the atmospheric refraction, optical or electronic, are important factors when digital elevation models are used for visibility calculations. This work deals with this subject, suggesting a practical approach to solve this problem. Some examples, from real terrain data, are presented. The equipment used was an IBM-PC like computer with a SITIM graphic card.

  3. Probabilistic constitutive relationships for cyclic material strength models

    NASA Technical Reports Server (NTRS)

    Boyce, L.; Chamis, C. C.

    1988-01-01

    A methodology is developed that provides a probabilistic treatment for the lifetime of structural components of aerospace propulsion systems subjected to fatigue. Material strength degradation models, based on primitive variables, include both a fatigue strength reduction model and a fatigue crack growth model. Probabilistic analysis is based on simulation, and both maximum entropy and maximum penalized likelihood methods are used for the generation of probability density functions. The resulting constitutive relationships are included in several computer programs.

  4. Modeling shelter-in-place including sorption on indoor surfaces

    SciTech Connect

    Chan, Wanyu R.; Price, Phillip N.; Gadgil, Ashok J.; Nazaroff, William W.; Loosmore, Gwen A.; Sugiyama, Gayle A.

    2003-11-01

    Intentional or accidental large-scale airborne toxic releases (e.g. terrorist attacks or industrial accidents) can cause severe harm to nearby communities. As part of an emergency response plan, shelter-in-place (SIP) can be an effective response option, especially when evacuation is infeasible. Reasonably tight building envelopes provide some protection against exposure to peak concentrations when toxic release passes over an area. They also provide some protection in terms of cumulative exposure, if SIP is terminated promptly after the outdoor plume has passed. The purpose of this work is to quantify the level of protection offered by existing houses, and the importance of sorption/desorption to and from surfaces on the effectiveness of SIP. We examined a hypothetical chlorine gas release scenario simulated by the National Atmospheric Release Advisory Center (NARAC). We used a standard infiltration model to calculate the distribution of time dependent infiltration rates within each census tract. Large variation in the air tightness of dwellings makes some houses more protective than others. Considering only the median air tightness, model results showed that if sheltered indoors, the total population intake of non-sorbing toxic gas is only 50% of the outdoor level 4 hours from the start of the release. Based on a sorption/desorption model by Karlsson and Huber (1996), we calculated that the sorption process would further lower the total intake of the population by an additional 50%. The potential benefit of SIP can be considerably higher if the comparison is made in terms of health effects because of the non-linear acute effect dose-response curve of many chemical warfare agents and toxic industrial substances.

  5. Comparison of Joint Modeling Approaches Including Eulerian Sliding Interfaces

    SciTech Connect

    Lomov, I; Antoun, T; Vorobiev, O

    2009-12-16

    Accurate representation of discontinuities such as joints and faults is a key ingredient for high fidelity modeling of shock propagation in geologic media. The following study was done to improve treatment of discontinuities (joints) in the Eulerian hydrocode GEODYN (Lomov and Liu 2005). Lagrangian methods with conforming meshes and explicit inclusion of joints in the geologic model are well suited for such an analysis. Unfortunately, current meshing tools are unable to automatically generate adequate hexahedral meshes for large numbers of irregular polyhedra. Another concern is that joint stiffness in such explicit computations requires significantly reduced time steps, with negative implications for both the efficiency and quality of the numerical solution. An alternative approach is to use non-conforming meshes and embed joint information into regular computational elements. However, once slip displacement on the joints become comparable to the zone size, Lagrangian (even non-conforming) meshes could suffer from tangling and decreased time step problems. The use of non-conforming meshes in an Eulerian solver may alleviate these difficulties and provide a viable numerical approach for modeling the effects of faults on the dynamic response of geologic materials. We studied shock propagation in jointed/faulted media using a Lagrangian and two Eulerian approaches. To investigate the accuracy of this joint treatment the GEODYN calculations have been compared with results from the Lagrangian code GEODYN-L which uses an explicit treatment of joints via common plane contact. We explore two approaches to joint treatment in the code, one for joints with finite thickness and the other for tight joints. In all cases the sliding interfaces are tracked explicitly without homogenization or blending the joint and block response into an average response. In general, rock joints will introduce an increase in normal compliance in addition to a reduction in shear strength. In the

  6. A Model for Axial Magnetic Bearings Including Eddy Currents

    NASA Technical Reports Server (NTRS)

    Kucera, Ladislav; Ahrens, Markus

    1996-01-01

    This paper presents an analytical method of modelling eddy currents inside axial bearings. The problem is solved by dividing an axial bearing into elementary geometric forms, solving the Maxwell equations for these simplified geometries, defining boundary conditions and combining the geometries. The final result is an analytical solution for the flux, from which the impedance and the force of an axial bearing can be derived. Several impedance measurements have shown that the analytical solution can fit the measured data with a precision of approximately 5%.

  7. Neighboring extremal optimal control design including model mismatch errors

    SciTech Connect

    Kim, T.J.; Hull, D.G.

    1994-11-01

    The mismatch control technique that is used to simplify model equations of motion in order to determine analytic optimal control laws is extended using neighboring extremal theory. The first variation optimal control equations are linearized about the extremal path to account for perturbations in the initial state and the final constraint manifold. A numerical example demonstrates that the tuning procedure inherent in the mismatch control method increases the performance of the controls to the level of a numerically-determined piecewise-linear controller.

  8. Inelastic deformation and phenomenological modeling of aluminum including transient effect

    SciTech Connect

    Cho, C.W.

    1980-01-01

    A review was made of several phenomenological theories which have recently been proposed to describe the inelastic deformation of crystalline solids. Hart's deformation theory has many advantages, but there are disagreements with experimental deformation at stress levels below yield. A new inelastic deformation theory was proposed, introducing the concept of microplasticity. The new model consists of five deformation elements: a friction element representing a deformation element controlled by dislocation glide, a nonrecoverable plastic element representing the dislocation leakage rate over the strong dislocation barriers, a microplastic element representing the dislocation leakage rate over the weak barriers, a short range anelastic spring element representing the recoverable anelastic strain stored by piled-up dislocations against the weak barriers, and a long range anelastic spring element representing the recoverable strain stored by piled-up dislocations against the strong barriers. Load relaxation and tensile testing in the plastic range were used to determine the material parameters for the plastic friction elements. The short range and long range anelastic moduli and the material parameters for the kinetics of microplasticity were determined by the measurement of anelastic loops and by performing load relaxation tests in the microplastic region. Experimental results were compared with a computer simulation of the transient deformation behavior of commercial purity aluminum. An attempt was made to correlate the material parameters and the microstructure from TEM. Stability of material parameters during inelastic deformation was discussed and effect of metallurgical variables was examined experimentally. 71 figures, 5 tables.

  9. Relationship of sea level muon charge ratio to primary composition including nuclear target effects

    NASA Technical Reports Server (NTRS)

    Goned, A.; Shalaby, M.; Salem, A. M.; Roushdy, M.

    1985-01-01

    The discrepancy between the muon charge ratio observed at low energies and that calculated using pp data is removed by including nuclear target effects. Calculations at high energies show that the primary iron spectrum is expected to change slope from 2 to 2.2 to 2.4 to 2.5 for energies approx. 4 x 10 to the 3 GeV/nucleon if scaling features continue to the highest energies.

  10. A Generic Model of Dyadic Social Relationships

    PubMed Central

    Favre, Maroussia; Sornette, Didier

    2015-01-01

    We introduce a model of dyadic social interactions and establish its correspondence with relational models theory (RMT), a theory of human social relationships. RMT posits four elementary models of relationships governing human interactions, singly or in combination: Communal Sharing, Authority Ranking, Equality Matching, and Market Pricing. To these are added the limiting cases of asocial and null interactions, whereby people do not coordinate with reference to any shared principle. Our model is rooted in the observation that each individual in a dyadic interaction can do either the same thing as the other individual, a different thing or nothing at all. To represent these three possibilities, we consider two individuals that can each act in one out of three ways toward the other: perform a social action X or Y, or alternatively do nothing. We demonstrate that the relationships generated by this model aggregate into six exhaustive and disjoint categories. We propose that four of these categories match the four relational models, while the remaining two correspond to the asocial and null interactions defined in RMT. We generalize our results to the presence of N social actions. We infer that the four relational models form an exhaustive set of all possible dyadic relationships based on social coordination. Hence, we contribute to RMT by offering an answer to the question of why there could exist just four relational models. In addition, we discuss how to use our representation to analyze data sets of dyadic social interactions, and how social actions may be valued and matched by the agents. PMID:25826403

  11. Evaluating plume dispersion models: Expanding the practice to include the model physics

    SciTech Connect

    Weil, J.C.

    1994-12-31

    Plume dispersion models are used in a variety of air-quality applications including the determination of source emission limits, new source sites, etc. The cost of pollution control and siting has generated much interest in model evaluation and accuracy. Two questions are of primary concern: (1) How well does a model predict the high ground-level concentrations (GLCs) that are necessary in assessing compliance with air-quality regulations? This prompts an operational performance evaluation; (2) Is the model based on sound physical principles and does it give good predictions for the {open_quotes}right{close_quotes} reasons? This prompts a model physics evaluation. Although air-quality managers are interested primarily in operational performance, model physics should be an equally important issue. The purpose in establishing good physics is to build confidence in model predictions beyond the limited experimental range, i.e., for new source applications.

  12. A Mercury orientation model including non-zero obliquity and librations

    NASA Astrophysics Data System (ADS)

    Margot, Jean-Luc

    2009-12-01

    Planetary orientation models describe the orientation of the spin axis and prime meridian of planets in inertial space as a function of time. The models are required for the planning and execution of Earth-based or space-based observational work, e.g. to compute viewing geometries and to tie observations to planetary coordinate systems. The current orientation model for Mercury is inadequate because it uses an obsolete spin orientation, neglects oscillations in the spin rate called longitude librations, and relies on a prime meridian that no longer reflects its intended dynamical significance. These effects result in positional errors on the surface of ~1.5 km in latitude and up to several km in longitude, about two orders of magnitude larger than the finest image resolution currently attainable. Here we present an updated orientation model which incorporates modern values of the spin orientation, includes a formulation for longitude librations, and restores the dynamical significance to the prime meridian. We also use modern values of the orbit normal, spin axis orientation, and precession rates to quantify an important relationship between the obliquity and moment of inertia differences.

  13. Supervisor's Interactive Model of Organizational Relationships

    ERIC Educational Resources Information Center

    O'Reilly, Frances L.; Matt, John; McCaw, William P.

    2014-01-01

    The Supervisor's Interactive Model of Organizational Relationships (SIMOR) integrates two models addressed in the leadership literature and then highlights the importance of relationships. The Supervisor's Interactive Model of Organizational Relationships combines the modified Hersey and Blanchard model of situational leadership, the…

  14. A simple model clarifies the complicated relationships of complex networks

    NASA Astrophysics Data System (ADS)

    Zheng, Bojin; Wu, Hongrun; Kuang, Li; Qin, Jun; Du, Wenhua; Wang, Jianmin; Li, Deyi

    2014-08-01

    Real-world networks such as the Internet and WWW have many common traits. Until now, hundreds of models were proposed to characterize these traits for understanding the networks. Because different models used very different mechanisms, it is widely believed that these traits origin from different causes. However, we find that a simple model based on optimisation can produce many traits, including scale-free, small-world, ultra small-world, Delta-distribution, compact, fractal, regular and random networks. Moreover, by revising the proposed model, the community-structure networks are generated. By this model and the revised versions, the complicated relationships of complex networks are illustrated. The model brings a new universal perspective to the understanding of complex networks and provide a universal method to model complex networks from the viewpoint of optimisation.

  15. Including Microbial Acclimation in Carbon Cycle Models: Letting Data Guide Model Development (Invited)

    NASA Astrophysics Data System (ADS)

    Mayes, M. A.; Wang, G.; Tang, G.; Xu, X.; Jagadamma, S.

    2013-12-01

    Carbon cycle models are traditionally parameterized with ad hoc soil pools, empirical decay constants and first-order decomposition as a function of substrate supply. Decomposition of vegetative and faunal inputs, however, involves enzymatically-facilitated depolymerization by the microbial community. Traditional soil models are calibrated to match existing distribution of soil carbon, but they are not parameterized to predict the response of soil carbon to climate change due to microbial community shifts or physiological changes, i.e., acclimation. As an example, we will show how the temperature sensitivity of carbon use efficiency can influence the decomposition of different substrates and affect the release of CO2 from soil organic matter. Acclimation to warmer conditions could also involve shifts in microbial community composition or function, e.g., fungi: bacteria ratio shift. Experimental data is needed to decide how to parameterize models to accommodate functional or compositional changes. We will explore documented cases of microbial acclimation to warming, discuss methods to include microbial acclimation in carbon cycle models, and explore the need for additional experimental data to validate the next generation of microbially-facilitated carbon cycle models.

  16. Modeling time-lagged reciprocal psychological empowerment-performance relationships.

    PubMed

    Maynard, M Travis; Luciano, Margaret M; D'Innocenzo, Lauren; Mathieu, John E; Dean, Matthew D

    2014-11-01

    Employee psychological empowerment is widely accepted as a means for organizations to compete in increasingly dynamic environments. Previous empirical research and meta-analyses have demonstrated that employee psychological empowerment is positively related to several attitudinal and behavioral outcomes including job performance. While this research positions psychological empowerment as an antecedent influencing such outcomes, a close examination of the literature reveals that this relationship is primarily based on cross-sectional research. Notably, evidence supporting the presumed benefits of empowerment has failed to account for potential reciprocal relationships and endogeneity effects. Accordingly, using a multiwave, time-lagged design, we model reciprocal relationships between psychological empowerment and job performance using a sample of 441 nurses from 5 hospitals. Incorporating temporal effects in a staggered research design and using structural equation modeling techniques, our findings provide support for the conventional positive correlation between empowerment and subsequent performance. Moreover, accounting for the temporal stability of variables over time, we found support for empowerment levels as positive influences on subsequent changes in performance. Finally, we also found support for the reciprocal relationship, as performance levels were shown to relate positively to changes in empowerment over time. Theoretical and practical implications of the reciprocal psychological empowerment-performance relationships are discussed. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  17. Modeling time-lagged reciprocal psychological empowerment-performance relationships.

    PubMed

    Maynard, M Travis; Luciano, Margaret M; D'Innocenzo, Lauren; Mathieu, John E; Dean, Matthew D

    2014-11-01

    Employee psychological empowerment is widely accepted as a means for organizations to compete in increasingly dynamic environments. Previous empirical research and meta-analyses have demonstrated that employee psychological empowerment is positively related to several attitudinal and behavioral outcomes including job performance. While this research positions psychological empowerment as an antecedent influencing such outcomes, a close examination of the literature reveals that this relationship is primarily based on cross-sectional research. Notably, evidence supporting the presumed benefits of empowerment has failed to account for potential reciprocal relationships and endogeneity effects. Accordingly, using a multiwave, time-lagged design, we model reciprocal relationships between psychological empowerment and job performance using a sample of 441 nurses from 5 hospitals. Incorporating temporal effects in a staggered research design and using structural equation modeling techniques, our findings provide support for the conventional positive correlation between empowerment and subsequent performance. Moreover, accounting for the temporal stability of variables over time, we found support for empowerment levels as positive influences on subsequent changes in performance. Finally, we also found support for the reciprocal relationship, as performance levels were shown to relate positively to changes in empowerment over time. Theoretical and practical implications of the reciprocal psychological empowerment-performance relationships are discussed. (PsycINFO Database Record (c) 2014 APA, all rights reserved). PMID:25111249

  18. Rotorcraft Transmission Noise Path Model, Including Distributed Fluid Film Bearing Impedance Modeling

    NASA Technical Reports Server (NTRS)

    Hambric, Stephen A.; Hanford, Amanda D.; Shepherd, Micah R.; Campbell, Robert L.; Smith, Edward C.

    2010-01-01

    A computational approach for simulating the effects of rolling element and journal bearings on the vibration and sound transmission through gearboxes has been demonstrated. The approach, using ARL/Penn State s CHAMP methodology, uses Component Mode Synthesis of housing and shafting modes computed using Finite Element (FE) models to allow for rapid adjustment of bearing impedances in gearbox models. The approach has been demonstrated on NASA GRC s test gearbox with three different bearing configurations: in the first condition, traditional rolling element (ball and roller) bearings were installed, and in the second and third conditions, the traditional bearings were replaced with journal and wave bearings (wave bearings are journal bearings with a multi-lobed wave pattern on the bearing surface). A methodology for computing the stiffnesses and damping in journal and wave bearings has been presented, and demonstrated for the journal and wave bearings used in the NASA GRC test gearbox. The FE model of the gearbox, along with the rolling element bearing coupling impedances, was analyzed to compute dynamic transfer functions between forces applied to the meshing gears and accelerations on the gearbox housing, including several locations near the bearings. A Boundary Element (BE) acoustic model was used to compute the sound radiated by the gearbox. Measurements of the Gear Mesh Frequency (GMF) tones were made by NASA GRC at several operational speeds for the rolling element and journal bearing gearbox configurations. Both the measurements and the CHAMP numerical model indicate that the journal bearings reduce vibration and noise for the second harmonic of the gear meshing tones, but show no clear benefit to using journal bearings to reduce the amplitudes of the fundamental gear meshing tones. Also, the numerical model shows that the gearbox vibrations and radiated sound are similar for journal and wave bearing configurations.

  19. Couple Infertility: From the Perspective of the Close-Relationship Model.

    ERIC Educational Resources Information Center

    Higgins, Barbara S.

    1990-01-01

    Presents Close-Relationship Model as comprehensive framework in which to examine interrelated nature of causes and effects of infertility on marital relationship. Includes these factors: physical and psychological characteristics of both partners; joint, couple characteristics; physical and social environment; and relationship itself. Discusses…

  20. Similitude requirements and scaling relationships as applied to model testing

    NASA Technical Reports Server (NTRS)

    Wolowicz, C. H.; Brown, J. S., Jr.; Gilbert, W. P.

    1979-01-01

    The similitude requirements for the most general test conditions are presented. These similitude requirements are considered in relation to the scaling relationships, test technique, test conditions (including supersonic flow), and test objectives. Particular emphasis is placed on satisfying the various similitude requirements for incompressible and compressible flow conditions. For free flying models tests, the test velocities for incompressible flow are scaled from Froude number similitude requirements and those for compressible flow are scaled from Mach number similitude requirements. The limitations of various test techniques are indicated, with emphasis on the free flying model.

  1. Environmental assessment of biofuel chains based on ecosystem modelling, including land-use change effects

    NASA Astrophysics Data System (ADS)

    Gabrielle, B.; Gagnaire, N.; Massad, R.; Prieur, V.; Python, Y.

    2012-04-01

    . Compared to the standard methodology currently used in LCA, based on fixed emissions for N2O, the use of model-derived estimates leads to a 10 to 40% reduction in the overall life-cycle GHG emissions of biofuels. This emphasizes the importance of regional factors in the relationship between agricultural inputs and emissions (altogether with biomass yields) in the outcome of LCAs. When excluding indirect land-use change effects (iLUC), 1st generation pathways enabled GHG savings ranging from 50 to 73% compared to fossile-derived equivalents, while this figure reached 88% for 2nd generation bioethanol from miscanthus. Including iLUC reduced the savings to less than 5% for bio-diesel from rapeseed, 10 to 45% for 1st generation bioethanol and to 60% for miscanthus. These figures apply to the year 2007 and should be extended to a larger number of years, but the magnitude of N2O emissions was similar between 2007, 2008 and 2009 over the Ile de France region.

  2. Uncertainty in measurement: a review of monte carlo simulation using microsoft excel for the calculation of uncertainties through functional relationships, including uncertainties in empirically derived constants.

    PubMed

    Farrance, Ian; Frenkel, Robert

    2014-02-01

    The Guide to the Expression of Uncertainty in Measurement (usually referred to as the GUM) provides the basic framework for evaluating uncertainty in measurement. The GUM however does not always provide clearly identifiable procedures suitable for medical laboratory applications, particularly when internal quality control (IQC) is used to derive most of the uncertainty estimates. The GUM modelling approach requires advanced mathematical skills for many of its procedures, but Monte Carlo simulation (MCS) can be used as an alternative for many medical laboratory applications. In particular, calculations for determining how uncertainties in the input quantities to a functional relationship propagate through to the output can be accomplished using a readily available spreadsheet such as Microsoft Excel. The MCS procedure uses algorithmically generated pseudo-random numbers which are then forced to follow a prescribed probability distribution. When IQC data provide the uncertainty estimates the normal (Gaussian) distribution is generally considered appropriate, but MCS is by no means restricted to this particular case. With input variations simulated by random numbers, the functional relationship then provides the corresponding variations in the output in a manner which also provides its probability distribution. The MCS procedure thus provides output uncertainty estimates without the need for the differential equations associated with GUM modelling. The aim of this article is to demonstrate the ease with which Microsoft Excel (or a similar spreadsheet) can be used to provide an uncertainty estimate for measurands derived through a functional relationship. In addition, we also consider the relatively common situation where an empirically derived formula includes one or more 'constants', each of which has an empirically derived numerical value. Such empirically derived 'constants' must also have associated uncertainties which propagate through the functional relationship

  3. Toward a Transactional Model of Parent-Adolescent Relationship Quality and Adolescent Psychological Adjustment

    ERIC Educational Resources Information Center

    Fanti, Kostas A.; Henrich, Christopher C.; Brookmeyer, Kathryn A.; Kuperminc, Gabriel P.

    2008-01-01

    The present study includes externalizing problems, internalizing problems, mother-adolescent relationship quality, and father-adolescent relationship quality in the same structural equation model and tests the longitudinal reciprocal association among all four variables over a 1-year period. A transactional model in which adolescents'…

  4. The Lag Model, a Turbulence Model for Wall Bounded Flows Including Separation

    NASA Technical Reports Server (NTRS)

    Olsen, Michael E.; Coakley, Thomas J.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    A new class of turbulence model is described for wall bounded, high Reynolds number flows. A specific turbulence model is demonstrated, with results for favorable and adverse pressure gradient flowfields. Separation predictions are as good or better than either Spalart Almaras or SST models, do not require specification of wall distance, and have similar or reduced computational effort compared with these models.

  5. Organizational Models of Medical School Relationships to the Clinical Enterprise.

    ERIC Educational Resources Information Center

    Culbertson, Richard A.; And Others

    1996-01-01

    Analyzed existing relationships between medical schools and clinical enterprises to develop models of these relationships. Four conceptual models were identified: (1) "single ownership, owned integrated system"; (2) "general partner"; (3) "limited partner"; and (4) "wholly owned, subsidiary." The advantages and disadvantages of each model are…

  6. Modeling species-abundance relationships in multi-species collections

    USGS Publications Warehouse

    Peng, S.; Yin, Z.; Ren, H.; Guo, Q.

    2003-01-01

    Species-abundance relationship is one of the most fundamental aspects of community ecology. Since Motomura first developed the geometric series model to describe the feature of community structure, ecologists have developed many other models to fit the species-abundance data in communities. These models can be classified into empirical and theoretical ones, including (1) statistical models, i.e., negative binomial distribution (and its extension), log-series distribution (and its extension), geometric distribution, lognormal distribution, Poisson-lognormal distribution, (2) niche models, i.e., geometric series, broken stick, overlapping niche, particulate niche, random assortment, dominance pre-emption, dominance decay, random fraction, weighted random fraction, composite niche, Zipf or Zipf-Mandelbrot model, and (3) dynamic models describing community dynamics and restrictive function of environment on community. These models have different characteristics and fit species-abundance data in various communities or collections. Among them, log-series distribution, lognormal distribution, geometric series, and broken stick model have been most widely used.

  7. A finite element model of the face including an orthotropic skin model under in vivo tension.

    PubMed

    Flynn, Cormac; Stavness, Ian; Lloyd, John; Fels, Sidney

    2015-01-01

    Computer models of the human face have the potential to be used as powerful tools in surgery simulation and animation development applications. While existing models accurately represent various anatomical features of the face, the representation of the skin and soft tissues is very simplified. A computer model of the face is proposed in which the skin is represented by an orthotropic hyperelastic constitutive model. The in vivo tension inherent in skin is also represented in the model. The model was tested by simulating several facial expressions by activating appropriate orofacial and jaw muscles. Previous experiments calculated the change in orientation of the long axis of elliptical wounds on patients' faces for wide opening of the mouth and an open-mouth smile (both 30(o)). These results were compared with the average change of maximum principal stress direction in the skin calculated in the face model for wide opening of the mouth (18(o)) and an open-mouth smile (25(o)). The displacements of landmarks on the face for four facial expressions were compared with experimental measurements in the literature. The corner of the mouth in the model experienced the largest displacement for each facial expression (∼11-14 mm). The simulated landmark displacements were within a standard deviation of the measured displacements. Increasing the skin stiffness and skin tension generally resulted in a reduction in landmark displacements upon facial expression. PMID:23919890

  8. A performance model of Thermal Imaging System (TISs) which includes the human observer's response to state of the art displays

    NASA Astrophysics Data System (ADS)

    Blanchard, Denise M.

    1991-09-01

    This paper presents a model for predicting the performance of thermal imaging systems (TISs). This model combines conventional modeling relationships and recently reported characteristics of display monitors to determine the signal-to-noise ratio (SNR) out of the TIS. Also included are the results of psychophysical experiments which evaluated the capability of a human observer to detect the presence of an object displayed on the same monitor. The model is then used to determine the noise equivalent temperature difference (NEdeltaT) based on background photon noise limited (BLIP) operating conditions of the TIS. Finally, the minimum detectable temperature difference (MDT) in the scene is determined from the maximum signal-to-noise ratio of the monitor.

  9. Data Base Design Using Entity-Relationship Models.

    ERIC Educational Resources Information Center

    Davis, Kathi Hogshead

    1983-01-01

    The entity-relationship (ER) approach to database design is defined, and a specific example of an ER model (personnel-payroll) is examined. The requirements for converting ER models into specific database management systems are discussed. (Author/MSE)

  10. A Verilog-A large signal model for InP DHBT including thermal effects

    NASA Astrophysics Data System (ADS)

    Yuxia, Shi; Zhi, Jin; Zhijian, Pan; Yongbo, Su; Yuxiong, Cao; Yan, Wang

    2013-06-01

    A large signal model for InP/InGaAs double heterojunction bipolar transistors including thermal effects has been reported, which demonstrated good agreements of simulations with measurements. On the basis of the previous model in which the double heterojunction effect, current blocking effect and high current effect in current expression are considered, the effect of bandgap narrowing with temperature has been considered in transport current while a formula for model parameters as a function of temperature has been developed. This model is implemented by Verilog-A and embedded in ADS. The proposed model is verified with DC and large signal measurements.

  11. Constitutive Relationships and Models in Continuum Theories of Multiphase Flows. [conferences

    NASA Technical Reports Server (NTRS)

    Decker, Rand (Editor)

    1989-01-01

    In April, 1989, a workshop on constitutive relationships and models in continuum theories of multiphase flows was held at NASA's Marshall Space Flight Center. Topics of constitutive relationships for the partial or per phase stresses, including the concept of solid phase pressure are discussed. Models used for the exchange of mass, momentum, and energy between the phases in a multiphase flow are also discussed. The program, abstracts, and texts of the presentations from the workshop are included.

  12. Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model

    NASA Astrophysics Data System (ADS)

    Fader, M.; von Bloh, W.; Shi, S.; Bondeau, A.; Cramer, W.

    2015-11-01

    In the Mediterranean region, climate and land use change are expected to impact on natural and agricultural ecosystems by warming, reduced rainfall, direct degradation of ecosystems and biodiversity loss. Human population growth and socioeconomic changes, notably on the eastern and southern shores, will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive agro-ecosystem and hydrological model. This study presents the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (Lund-Potsdam-Jena managed Land - LPJmL): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. With the development presented in this study, LPJmL is now able to simulate in good detail and mechanistically the functioning of Mediterranean agriculture with a comprehensive representation of ecophysiological processes for all vegetation types (natural and agricultural) and in a consistent framework that produces estimates of carbon, agricultural and hydrological variables for the entire Mediterranean basin. This development paves the way for further model extensions aiming at the representation of alternative agro-ecosystems (e.g. agroforestry), and opens the door for a large number of applications in the Mediterranean region, for example assessments of the consequences of land use transitions, the influence of management practices and climate change impacts.

  13. Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model

    NASA Astrophysics Data System (ADS)

    Fader, M.; von Bloh, W.; Shi, S.; Bondeau, A.; Cramer, W.

    2015-06-01

    Climate and land use change in the Mediterranean region is expected to affect natural and agricultural ecosystems by decreases in precipitation, increases in temperature as well as biodiversity loss and anthropogenic degradation of natural resources. Demographic growth in the Eastern and Southern shores will require increases in food production and put additional pressure on agro-ecosystems and water resources. Coping with these challenges requires informed decisions that, in turn, require assessments by means of a comprehensive agro-ecosystem and hydrological model. This study presents the inclusion of 10 Mediterranean agricultural plants, mainly perennial crops, in an agro-ecosystem model (LPJmL): nut trees, date palms, citrus trees, orchards, olive trees, grapes, cotton, potatoes, vegetables and fodder grasses. The model was successfully tested in three model outputs: agricultural yields, irrigation requirements and soil carbon density. With the development presented in this study, LPJmL is now able to simulate in good detail and mechanistically the functioning of Mediterranean agriculture with a comprehensive representation of ecophysiological processes for all vegetation types (natural and agricultural) and in a consistent framework that produces estimates of carbon, agricultural and hydrological variables for the entire Mediterranean basin. This development pave the way for further model extensions aiming at the representation of alternative agro-ecosystems (e.g. agroforestry), and opens the door for a large number of applications in the Mediterranean region, for example assessments on the consequences of land use transitions, the influence of management practices and climate change impacts.

  14. Extension of the ADC Charge-Collection Model to Include Multiple Junctions

    NASA Technical Reports Server (NTRS)

    Edmonds, Larry D.

    2011-01-01

    The ADC model is a charge-collection model derived for simple p-n junction silicon diodes having a single reverse-biased p-n junction at one end and an ideal substrate contact at the other end. The present paper extends the model to include multiple junctions, and the goal is to estimate how collected charge is shared by the different junctions.

  15. A meta-analysis including dose-response relationship between night shift work and the risk of colorectal cancer.

    PubMed

    Wang, Xiao; Ji, Alin; Zhu, Yi; Liang, Zhen; Wu, Jian; Li, Shiqi; Meng, Shuai; Zheng, Xiangyi; Xie, Liping

    2015-09-22

    A meta-analysis was conducted to quantitatively evaluate the correlation between night shift work and the risk of colorectal cancer. We searched for publications up to March 2015 using PubMed, Web of Science, Cochrane Library, EMBASE and the Chinese National Knowledge Infrastructure databases, and the references of the retrieved articles and relevant reviews were also checked. OR and 95% CI were used to assess the degree of the correlation between night shift work and risk of colorectal cancer via fixed- or random-effect models. A dose-response meta-analysis was performed as well. The pooled OR estimates of the included studies illustrated that night shift work was correlated with an increased risk of colorectal cancer (OR = 1.318, 95% CI 1.121-1.551). No evidence of publication bias was detected. In the dose-response analysis, the rate of colorectal cancer increased by 11% for every 5 years increased in night shift work (OR = 1.11, 95% CI 1.03-1.20). In conclusion, this meta-analysis indicated that night shift work was associated with an increased risk of colorectal cancer. Further researches should be conducted to confirm our findings and clarify the potential biological mechanisms.

  16. Including operational data in QMRA model: development and impact of model inputs.

    PubMed

    Jaidi, Kenza; Barbeau, Benoit; Carrière, Annie; Desjardins, Raymond; Prévost, Michèle

    2009-03-01

    A Monte Carlo model, based on the Quantitative Microbial Risk Analysis approach (QMRA), has been developed to assess the relative risks of infection associated with the presence of Cryptosporidium and Giardia in drinking water. The impact of various approaches for modelling the initial parameters of the model on the final risk assessments is evaluated. The Monte Carlo simulations that we performed showed that the occurrence of parasites in raw water was best described by a mixed distribution: log-Normal for concentrations > detection limit (DL), and a uniform distribution for concentrations < DL. The selection of process performance distributions for modelling the performance of treatment (filtration and ozonation) influences the estimated risks significantly. The mean annual risks for conventional treatment are: 1.97E-03 (removal credit adjusted by log parasite = log spores), 1.58E-05 (log parasite = 1.7 x log spores) or 9.33E-03 (regulatory credits based on the turbidity measurement in filtered water). Using full scale validated SCADA data, the simplified calculation of CT performed at the plant was shown to largely underestimate the risk relative to a more detailed CT calculation, which takes into consideration the downtime and system failure events identified at the plant (1.46E-03 vs. 3.93E-02 for the mean risk). PMID:18957777

  17. Isospin mixing within relativistic mean-field models including the delta meson

    NASA Astrophysics Data System (ADS)

    Graeff, C. A.; Marinelli, J. R.

    2011-09-01

    We investigate isospin mixing effects in the asymmetry as obtained in parity-violating electron scattering from 4He, 12C, 16O, 40Ca and 56Ni. The scattering analysis is developed within plane (PWBA) and distorted wave (DWBA) Born approximations accounting for nucleon form factors, which are given by the Galster parametrization. We use Walecka's Model (QHD), including the σ, ω, ρ and δ mesons as well as the electromagnetic interaction. The δ meson effects are specially interesting once it should add a contribution for isospin mixing together with the electromagnetic and ρ meson fields. Our model includes lagrangians with nonlinear terms as well as lagrangians including density dependent couplings. The model is solved in a Hartree approximation with spherical symmetry using a self-consistent calculation by means of an expansion of the nuclear wave functions and potentials in an harmonic oscillator basis. Results using four different parametrizations are obtained and compared with calculations using non-relativistic models.

  18. Dynamic causal modelling of brain-behaviour relationships.

    PubMed

    Rigoux, L; Daunizeau, J

    2015-08-15

    In this work, we expose a mathematical treatment of brain-behaviour relationships, which we coin behavioural Dynamic Causal Modelling or bDCM. This approach aims at decomposing the brain's transformation of stimuli into behavioural outcomes, in terms of the relative contribution of brain regions and their connections. In brief, bDCM places the brain at the interplay between stimulus and behaviour: behavioural outcomes arise from coordinated activity in (hidden) neural networks, whose dynamics are driven by experimental inputs. Estimating neural parameters that control network connectivity and plasticity effectively performs a neurobiologically-constrained approximation to the brain's input-outcome transform. In other words, neuroimaging data essentially serves to enforce the realism of bDCM's decomposition of input-output relationships. In addition, post-hoc artificial lesions analyses allow us to predict induced behavioural deficits and quantify the importance of network features for funnelling input-output relationships. This is important, because this enables one to bridge the gap with neuropsychological studies of brain-damaged patients. We demonstrate the face validity of the approach using Monte-Carlo simulations, and its predictive validity using empirical fMRI/behavioural data from an inhibitory control task. Lastly, we discuss promising applications of this work, including the assessment of functional degeneracy (in the healthy brain) and the prediction of functional recovery after lesions (in neurological patients).

  19. Relationships among certain joint constitutive models.

    SciTech Connect

    Segalman, Daniel Joseph; Starr, Michael James

    2004-09-01

    In a recent paper, Starr and Segalman demonstrated that any Masing model can be represented as a parallel-series Iwan model. A preponderance of the constitutive models that have been suggested for simulating mechanical joints are Masing models, and the purpose of this discussion is to demonstrate how the Iwan representation of those models can yield insight into their character. In particular, this approach can facilitate a critical comparison among numerous plausible constitutive models. It is explicitly shown that three-parameter models such as Smallwood's (Ramberg-Osgood) calculate parameters in such a manner that macro-slip is not an independent parameter, yet the model admits macro-slip. The introduction of a fourth parameter is therefore required. It is shown that when a macro-slip force is specified for the Smallwood model the result is a special case of the Segalman four-parameter model. Both of these models admit a slope discontinuity at the inception of macro-slip. A five-parameter model that has the beneficial features of Segalman's four-parameter model is proposed. This model manifests a force-displacement curve having a continuous first derivative.

  20. Examining the Relationship between Physical Models and Students' Science Practices

    NASA Astrophysics Data System (ADS)

    Miller, Alison Riley

    Scientists engage with practices like model development and use, data analysis and interpretation, explanation construction, and argumentation in order to expand the frontiers of science, so it can be inferred that students' engagement with science practices may help them deepen their own science understanding. As one of three dimensions on which the Next Generation Science Standards is built, science practices are recognized as an important component of science instruction. However, the contexts in which these practices happen are under-researched. Furthermore, research on science practices among students tends to focus on one or two practices in isolation when, in reality, students and scientists tend to engage with multiple overlapping practices. This study focused on identifying and characterizing multiple science practices as eighth and ninth-grade Earth Science students participated in a small group collaborative problem solving activity both with and without the use of a physical model. This study found a range of sophistication in the observed science practices as well as a relationship between the frequency of those practices and the accuracy of the groups' outcomes. Based on this relationship, groups were assigned to one of three categories. Further analysis revealed that model use varied among the three categories of groups. Comparisons across these three group categories suggest that there may be a bootstrapping relationship between students' engagement with science practices and the development of their content understanding. This metaphor of bootstrapping is used to represent how students may develop deeper science content understanding through engagement with science practices and concurrently develop greater facility with science practices as they learn science content. Implications are presented for curriculum designers, teachers and teacher educators. These include recommendations for curriculum design that encourage structured opportunities for

  1. Modeling the performance of direct-detection Doppler lidar systems including cloud and solar background variability.

    PubMed

    McGill, M J; Hart, W D; McKay, J A; Spinhirne, J D

    1999-10-20

    Previous modeling of the performance of spaceborne direct-detection Doppler lidar systems assumed extremely idealized atmospheric models. Here we develop a technique for modeling the performance of these systems in a more realistic atmosphere, based on actual airborne lidar observations. The resulting atmospheric model contains cloud and aerosol variability that is absent in other simulations of spaceborne Doppler lidar instruments. To produce a realistic simulation of daytime performance, we include solar radiance values that are based on actual measurements and are allowed to vary as the viewing scene changes. Simulations are performed for two types of direct-detection Doppler lidar system: the double-edge and the multichannel techniques. Both systems were optimized to measure winds from Rayleigh backscatter at 355 nm. Simulations show that the measurement uncertainty during daytime is degraded by only approximately 10-20% compared with nighttime performance, provided that a proper solar filter is included in the instrument design. PMID:18324169

  2. Rabbit-Specific Ventricular Model of Cardiac Electrophysiological Function including Specialized Conduction System

    PubMed Central

    Bordas, R.; Gillow, K.; Lou, Q.; Efimov, I. R.; Gavaghan, D.; Kohl, P.; Grau, V.; Rodriguez, B.

    2011-01-01

    The function of the ventricular specialized conduction system in the heart is to ensure the coordinated electrical activation of the ventricles. It is therefore critical to the overall function of the heart, and has also been implicated as an important player in various diseases, including lethal ventricular arrhythmias such as ventricular fibrillation and drug-induced torsades de pointes. However, current ventricular models of electrophysiology usually ignore, or include highly simplified representations of the specialized conduction system. Here, we describe the development of a image-based, species-consistent, anatomically-detailed model of rabbit ventricular electrophysiology that incorporates a detailed description of the free-running part of the specialized conduction system. Techniques used for the construction of the geometrical model of the specialized conduction system from a magnetic resonance dataset and integration of the system model into a ventricular anatomical model, developed from the same dataset, are described. Computer simulations of rabbit ventricular electrophysiology are conducted using the novel anatomical model and rabbit-specific membrane kinetics to investigate the importance of the components and properties of the conduction system in determining ventricular function under physiological conditions. Simulation results are compared to panoramic optical mapping experiments for model validation and results interpretation. Full access is provided to the anatomical models developed in this study. PMID:21672547

  3. SAMI2-PE: A model of the ionosphere including multistream interhemispheric photoelectron transport

    NASA Astrophysics Data System (ADS)

    Varney, R. H.; Swartz, W. E.; Hysell, D. L.; Huba, J. D.

    2012-06-01

    In order to improve model comparisons with recently improved incoherent scatter radar measurements at the Jicamarca Radio Observatory we have added photoelectron transport and energy redistribution to the two dimensional SAMI2 ionospheric model. The photoelectron model uses multiple pitch angle bins, includes effects associated with curved magnetic field lines, and uses an energy degradation procedure which conserves energy on coarse, non-uniformly spaced energy grids. The photoelectron model generates secondary electron production rates and thermal electron heating rates which are then passed to the fluid equations in SAMI2. We then compare electron and ion temperatures and electron densities of this modified SAMI2 model with measurements of these parameters over a range of altitudes from 90 km to 1650 km (L = 1.26) over a 24 hour period. The new electron heating model is a significant improvement over the semi-empirical model used in SAMI2. The electron temperatures above the F-peak from the modified model qualitatively reproduce the shape of the measurements as functions of time and altitude and quantitatively agree with the measurements to within ˜30% or better during the entire day, including during the rapid temperature increase at dawn.

  4. Land surface hydrology parameterization for atmospheric general circulation models including subgrid scale spatial variability

    NASA Technical Reports Server (NTRS)

    Entekhabi, D.; Eagleson, P. S.

    1989-01-01

    Parameterizations are developed for the representation of subgrid hydrologic processes in atmospheric general circulation models. Reasonable a priori probability density functions of the spatial variability of soil moisture and of precipitation are introduced. These are used in conjunction with the deterministic equations describing basic soil moisture physics to derive expressions for the hydrologic processes that include subgrid scale variation in parameters. The major model sensitivities to soil type and to climatic forcing are explored.

  5. Analysis of a generalized model for influenza including differential susceptibility due to immunosuppression

    NASA Astrophysics Data System (ADS)

    Hincapié, Doracelly; Ospina, Juan

    2014-06-01

    Recently, a mathematical model of pandemic influenza was proposed including typical control strategies such as antivirals, vaccination and school closure; and considering explicitly the effects of immunity acquired from the early outbreaks on the ulterior outbreaks of the disease. In such model the algebraic expression for the basic reproduction number (without control strategies) and the effective reproduction number (with control strategies) were derived and numerically estimated. A drawback of this model of pandemic influenza is that it ignores the effects of the differential susceptibility due to immunosuppression and the effects of the complexity of the actual contact networks between individuals. We have developed a generalized model which includes such effects of heterogeneity. Specifically we consider the influence of the air network connectivity in the spread of pandemic influenza and the influence of the immunosuppresion when the population is divided in two immune classes. We use an algebraic expression, namely the Tutte polynomial, to characterize the complexity of the contact network. Until now, The influence of the air network connectivity in the spread of pandemic influenza has been studied numerically, but not algebraic expressions have been used to summarize the level of network complexity. The generalized model proposed here includes the typical control strategies previously mentioned (antivirals, vaccination and school closure) combined with restrictions on travel. For the generalized model the corresponding reproduction numbers will be algebraically computed and the effect of the contact network will be established in terms of the Tutte polynomial of the network.

  6. Modeling temporal relationships in large scale clinical associations

    PubMed Central

    Hanauer, David A; Ramakrishnan, Naren

    2013-01-01

    Objective We describe an approach for modeling temporal relationships in a large scale association analysis of electronic health record data. The addition of temporal information can inform hypothesis generation and help to explain the relationships. We applied this approach on a dataset containing 41.2 million time-stamped International Classification of Diseases, Ninth Revision (ICD-9) codes from 1.6 million patients. Methods We performed two independent analyses including a pairwise association analysis using a χ2 test and a temporal analysis using a binomial test. Data were visualized using network diagrams and reviewed for clinical significance. Results We found nearly 400 000 highly associated pairs of ICD-9 codes with varying numbers of strong temporal associations ranging from ≥1 day to ≥10 years apart. Most of the findings were not considered clinically novel, although some, such as an association between Helicobacter pylori infection and diabetes, have recently been reported in the literature. The temporal analysis in our large cohort, however, revealed that diabetes usually preceded the diagnoses of H pylori, raising questions about possible cause and effect. Discussion Such analyses have significant limitations, some of which are due to known problems with ICD-9 codes and others to potentially incomplete data even at a health system level. Nevertheless, large scale association analyses with temporal modeling can help provide a mechanism for novel discovery in support of hypothesis generation. Conclusions Temporal relationships can provide an additional layer of meaning in identifying and interpreting clinical associations. PMID:23019240

  7. Including nonequilibrium interface kinetics in a continuum model for melting nanoscaled particles

    PubMed Central

    Back, Julian M.; McCue, Scott W.; Moroney, Timothy J.

    2014-01-01

    The melting temperature of a nanoscaled particle is known to decrease as the curvature of the solid-melt interface increases. This relationship is most often modelled by a Gibbs–Thomson law, with the decrease in melting temperature proposed to be a product of the curvature of the solid-melt interface and the surface tension. Such a law must break down for sufficiently small particles, since the curvature becomes singular in the limit that the particle radius vanishes. Furthermore, the use of this law as a boundary condition for a Stefan-type continuum model is problematic because it leads to a physically unrealistic form of mathematical blow-up at a finite particle radius. By numerical simulation, we show that the inclusion of nonequilibrium interface kinetics in the Gibbs–Thomson law regularises the continuum model, so that the mathematical blow up is suppressed. As a result, the solution continues until complete melting, and the corresponding melting temperature remains finite for all time. The results of the adjusted model are consistent with experimental findings of abrupt melting of nanoscaled particles. This small-particle regime appears to be closely related to the problem of melting a superheated particle. PMID:25399918

  8. Modeling the Relationship between Prosodic Sensitivity and Early Literacy

    ERIC Educational Resources Information Center

    Holliman, Andrew; Critten, Sarah; Lawrence, Tony; Harrison, Emily; Wood, Clare; Hughes, David

    2014-01-01

    A growing literature has demonstrated that prosodic sensitivity is related to early literacy development; however, the precise nature of this relationship remains unclear. It has been speculated in recent theoretical models that the observed relationship between prosodic sensitivity and early literacy might be partially mediated by children's…

  9. Love Relationships: Attachment Style and the Investment Model.

    ERIC Educational Resources Information Center

    Pistole, Carole M.; And Others

    1995-01-01

    Examined association of adult attachment styles and Rusbult's investment model of relationships. Responses from 239 participants indicated those who are securely attached experience greater satisfaction, fewer costs, and greater commitment in their relationships than do other attachment groups. Other findings and implications for counseling were…

  10. Magnetofluid Simulations of the Global Solar Wind Including Pickup Ions and Turbulence Modeling

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.; Usmanov, Arcadi V.; Matthaeus, William H.

    2011-01-01

    I will describe a three-dimensional magnetohydrodynamic model of the solar wind that takes into account turbulent heating of the wind by velocity and magnetic fluctuations as well as a variety of effects produced by interstellar pickup protons. In this report, the interstellar pickup protons are treated as one fluid and the protons and electrons are treated together as a second fluid. The model equations include a Reynolds decomposition of the plasma velocity and magnetic field into mean and fluctuating quantities, as well as energy transfer from interstellar pickup protons to solar wind protons that results in the deceleration of the solar wind. The model is used to simulate the global steady-state structure of the solar wind in the region from 0.3 to 100 AU. Where possible, the model is compared with Voyager data. Initial results from generalization to a three-fluid model is described elsewhere in this session.

  11. A statistical model including age to predict passenger postures in the rear seats of automobiles.

    PubMed

    Park, Jangwoon; Ebert, Sheila M; Reed, Matthew P; Hallman, Jason J

    2016-06-01

    Few statistical models of rear seat passenger posture have been published, and none has taken into account the effects of occupant age. This study developed new statistical models for predicting passenger postures in the rear seats of automobiles. Postures of 89 adults with a wide range of age and body size were measured in a laboratory mock-up in seven seat configurations. Posture-prediction models for female and male passengers were separately developed by stepwise regression using age, body dimensions, seat configurations and two-way interactions as potential predictors. Passenger posture was significantly associated with age and the effects of other two-way interaction variables depended on age. A set of posture-prediction models are presented for women and men, and the prediction results are compared with previously published models. This study is the first study of passenger posture to include a large cohort of older passengers and the first to report a significant effect of age for adults. The presented models can be used to position computational and physical human models for vehicle design and assessment. Practitioner Summary: The significant effects of age, body dimensions and seat configuration on rear seat passenger posture were identified. The models can be used to accurately position computational human models or crash test dummies for older passengers in known rear seat configurations.

  12. A statistical model including age to predict passenger postures in the rear seats of automobiles.

    PubMed

    Park, Jangwoon; Ebert, Sheila M; Reed, Matthew P; Hallman, Jason J

    2016-06-01

    Few statistical models of rear seat passenger posture have been published, and none has taken into account the effects of occupant age. This study developed new statistical models for predicting passenger postures in the rear seats of automobiles. Postures of 89 adults with a wide range of age and body size were measured in a laboratory mock-up in seven seat configurations. Posture-prediction models for female and male passengers were separately developed by stepwise regression using age, body dimensions, seat configurations and two-way interactions as potential predictors. Passenger posture was significantly associated with age and the effects of other two-way interaction variables depended on age. A set of posture-prediction models are presented for women and men, and the prediction results are compared with previously published models. This study is the first study of passenger posture to include a large cohort of older passengers and the first to report a significant effect of age for adults. The presented models can be used to position computational and physical human models for vehicle design and assessment. Practitioner Summary: The significant effects of age, body dimensions and seat configuration on rear seat passenger posture were identified. The models can be used to accurately position computational human models or crash test dummies for older passengers in known rear seat configurations. PMID:26328769

  13. New Models of CKD Care Including Pharmacists: Improving Medication Reconciliation and Medication Management

    PubMed Central

    St Peter, Wendy L.; Wazny, Lori D.; Patel, Uptal D.

    2014-01-01

    Purpose of review Chronic kidney disease patients are complex, have many medication-related problems (MRPs) and high rates of medication nonadherence, and are less adherent to some medications than patients with higher levels of kidney function. Nonadherence in CKD patients increases the odds of uncontrolled hypertension, which can increase the risk of CKD progression. This review discusses reasons for gaps in medication-related care for CKD patients, pharmacy services to reduce these gaps, and successful models that incorporate pharmacist care. Recent findings Pharmacists are currently being trained to deliver patient-centered care, including identification and management of MRPs and helping patients overcome barriers to improve medication adherence. A growing body of evidence indicates that pharmacist services for CKD patients, including medication reconciliation and medication therapy management, positively affect clinical and cost outcomes including lower rates of decline in glomerular filtration rates, reduced mortality, and fewer hospitalizations and hospital days, but more robust research is needed. Team-based models including pharmacists exist today and are being studied in a wide range of innovative care and reimbursement models. Summary Opportunities are growing to include pharmacists as integral members of CKD and dialysis healthcare teams to reduce MRPs, increase medication adherence, and improve patient outcomes. PMID:24076556

  14. Innovative Liner Concepts: Experiments and Impedance Modeling of Liners Including the Effect of Bias Flow

    NASA Technical Reports Server (NTRS)

    Kelly, Jeff; Betts, Juan Fernando; Fuller, Chris

    2000-01-01

    The study of normal impedance of perforated plate acoustic liners including the effect of bias flow was studied. Two impedance models were developed by modeling the internal flows of perforate orifices as infinite tubes with the inclusion of end corrections to handle finite length effects. These models assumed incompressible and compressible flows, respectively, between the far field and the perforate orifice. The incompressible model was used to predict impedance results for perforated plates with percent open areas ranging from 5% to 15%. The predicted resistance results showed better agreement with experiments for the higher percent open area samples. The agreement also tended to deteriorate as bias flow was increased. For perforated plates with percent open areas ranging from 1% to 5%, the compressible model was used to predict impedance results. The model predictions were closer to the experimental resistance results for the 2% to 3% open area samples. The predictions tended to deteriorate as bias flow was increased. The reactance results were well predicted by the models for the higher percent open area, but deteriorated as the percent open area was lowered (5%) and bias flow was increased. A fit was done on the incompressible model to the experimental database. The fit was performed using an optimization routine that found the optimal set of multiplication coefficients to the non-dimensional groups that minimized the least squares slope error between predictions and experiments. The result of the fit indicated that terms not associated with bias flow required a greater degree of correction than the terms associated with the bias flow. This model improved agreement with experiments by nearly 15% for the low percent open area (5%) samples when compared to the unfitted model. The fitted model and the unfitted model performed equally well for the higher percent open area (10% and 15%).

  15. Evaluating Modeled Variables Included in the NOAA Water Vapor Flux Tool

    NASA Astrophysics Data System (ADS)

    Darby, L. S.; White, A. B.; Coleman, T.

    2015-12-01

    The NOAA/ESRL/Physical Sciences Division has a Water Vapor Flux Tool showing observed and forecast meteorological variables related to heavy precipitation. Details about this tool will be presented in a companion paper by White et al. (2015, this conference). We evaluate 3-hr precipitation forecasts from four models (the HRRR, HRRRexp, RAP, and RAPexp) that were added to the tool in Dec. 2014. The Rapid Refresh (RAP) and the High-Resolution Rapid Refresh (HRRR) models are run operationally by NOAA, are initialized hourly, and produce forecasts out to 15 hours. The RAP and HRRR have experimental versions (RAPexp and HRRRexp, respectively) that are run near-real time at the NOAA/ESRL/Global Systems Division. Our analysis of eight rain days includes atmospheric river events in Dec. 2014 and Feb. 2015. We evaluate the forecasts using observations at two sites near the California coast - Bodega Bay (BBY, 15 m ASL) and Cazadero (CZC, 478 m ASL), and an inland site near Colfax, CA (CFC, 643 m ASL). Various criteria were used to evaluate the forecasts. (1) The Pielke criteria: we compare the RMSE and unbiased RMSE of the model output to the standard deviation of the observations, and we compare the standard deviation of the model output to the standard deviation of the observations; (2) we compare the modeled 24-hr precipitation to the observed 24-hr precipitation; and (3) we assess the correlation coefficient between the modeled and observed precipitation. Based on these criteria, the RAP slightly outperformed the other models. Only the RAP and the HRRRexp had forecasts that met the Pielke criteria. All of the models were able to predict the observed 24-hour precipitation, within 10%, in only 8-16% of their forecasts. All models achieved a correlation coefficient value above the 90th percentile in 12.5% of their forecasts. The station most likely to have a forecast that met any of the criteria was the inland mountain station CFC; the least likely was the coastal mountain

  16. Comparison of lead isotopes with source apportionment models, including SOM, for air particulates.

    PubMed

    Gulson, Brian; Korsch, Michael; Dickson, Bruce; Cohen, David; Mizon, Karen; Davis, J Michael

    2007-08-01

    We have measured high precision lead isotopes in PM(2.5) particulates from a highly-trafficked site (Mascot) and rural site (Richmond) in the Sydney Basin, New South Wales, Australia to compare with isotopic data from total suspended particulates (TSP) from other sites in the Sydney Basin and evaluate relationships with source fingerprints obtained from multi-element PM(2.5) data. The isotopic data for the period 1998 to 2004 show seasonal peaks and troughs that are more pronounced in the rural site for the PM(2.5).samples but are consistent with the TSP. The Self Organising Map (SOM) method has been applied to the multi-element PM(2.5) data to evaluate its use in obtaining fingerprints for comparison with standard statistical procedures (ANSTO model). As seasonal effects are also significant for the multi-element data, the SOM modelling is reported as site and season dependent. At the Mascot site, the ANSTO model exhibits decreasing (206)Pb/(204)Pb ratios with increasing contributions of fingerprints for "secondary smoke" (industry), "soil", "smoke" and "seaspray". Similar patterns were shown by SOM winter fingerprints for both sites. At the rural site, there are large isotopic variations but for the majority of samples these are not associated with increased contributions from the main sources with the ANSTO model. For two winter sampling times, there are increased contributions from "secondary industry", "smoke", "soil" and seaspray with one time having a source or sources of Pb similar to that of Mascot. The only positive relationship between increasing (206)Pb/(204)Pb ratio and source contributions is found at the rural site using the SOM summer fingerprints, both of which show a significant contribution from sulphur. Several of the fingerprints using either model have significant contributions from black carbon (BC) and/or sulphur (S) that probably derive from diesel fuels and industrial sources. Increased contributions from sources with the SOM summer

  17. MEMLS3&a: Microwave Emission Model of Layered Snowpacks adapted to include backscattering

    NASA Astrophysics Data System (ADS)

    Proksch, M.; Mätzler, C.; Wiesmann, A.; Lemmetyinen, J.; Schwank, M.; Löwe, H.; Schneebeli, M.

    2015-08-01

    The Microwave Emission Model of Layered Snowpacks (MEMLS) was originally developed for microwave emissions of snowpacks in the frequency range 5-100 GHz. It is based on six-flux theory to describe radiative transfer in snow including absorption, multiple volume scattering, radiation trapping due to internal reflection and a combination of coherent and incoherent superposition of reflections between horizontal layer interfaces. Here we introduce MEMLS3&a, an extension of MEMLS, which includes a backscatter model for active microwave remote sensing of snow. The reflectivity is decomposed into diffuse and specular components. Slight undulations of the snow surface are taken into account. The treatment of like- and cross-polarization is accomplished by an empirical splitting parameter q. MEMLS3&a (as well as MEMLS) is set up in a way that snow input parameters can be derived by objective measurement methods which avoid fitting procedures of the scattering efficiency of snow, required by several other models. For the validation of the model we have used a combination of active and passive measurements from the NoSREx (Nordic Snow Radar Experiment) campaign in Sodankylä, Finland. We find a reasonable agreement between the measurements and simulations, subject to uncertainties in hitherto unmeasured input parameters of the backscatter model. The model is written in Matlab and the code is publicly available for download through the following website: http://www.iapmw.unibe.ch/research/projects/snowtools/memls.html.

  18. An exact stochastic hybrid model of excitable membranes including spatio-temporal evolution.

    PubMed

    Buckwar, Evelyn; Riedler, Martin G

    2011-12-01

    In this paper, we present a mathematical description for excitable biological membranes, in particular neuronal membranes. We aim to model the (spatio-) temporal dynamics, e.g., the travelling of an action potential along the axon, subject to noise, such as ion channel noise. Using the framework of Piecewise Deterministic Processes (PDPs) we provide an exact mathematical description-in contrast to pseudo-exact algorithms considered in the literature-of the stochastic process one obtains coupling a continuous time Markov chain model with a deterministic dynamic model of a macroscopic variable, that is coupling Markovian channel dynamics to the time-evolution of the transmembrane potential. We extend the existing framework of PDPs in finite dimensional state space to include infinite-dimensional evolution equations and thus obtain a stochastic hybrid model suitable for modelling spatio-temporal dynamics. We derive analytic results for the infinite-dimensional process, such as existence, the strong Markov property and its extended generator. Further, we exemplify modelling of spatially extended excitable membranes with PDPs by a stochastic hybrid version of the Hodgkin-Huxley model of the squid giant axon. Finally, we discuss the advantages of the PDP formulation in view of analytical and numerical investigations as well as the application of PDPs to structurally more complex models of excitable membranes. PMID:21243359

  19. A cerebrovascular response model for functional neuroimaging including dynamic cerebral autoregulation

    PubMed Central

    Diamond, Solomon Gilbert; Perdue, Katherine L.; Boas, David A.

    2009-01-01

    Functional neuroimaging techniques such as functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS) can be used to isolate an evoked response to a stimulus from significant background physiological fluctuations. Data analysis approaches typically use averaging or linear regression to remove this physiological baseline with varying degrees of success. Biophysical model-based analysis of the functional hemodynamic response has also been advanced previously with the Balloon and Windkessel models. In the present work, a biophysical model of systemic and cerebral circulation and gas exchange is applied to resting state NIRS neuroimaging data from 10 human subjects. The model further includes dynamic cerebral autoregulation, which modulates the cerebral arteriole compliance to control cerebral blood flow. This biophysical model allows for prediction, from noninvasive blood pressure measurements, of the background hemodynamic fluctuations in the systemic and cerebral circulations. Significantly higher correlations with the NIRS data were found using the biophysical model predictions compared to blood pressure regression and compared to transfer function analysis (multifactor ANOVA, p<0.0001). This finding supports the further development and use of biophysical models for removing baseline activity in functional neuroimaging analysis. Future extensions of this work could model changes in cerebrovascular physiology that occur during development, aging and disease. PMID:19442671

  20. The Relationships between Modelling and Argumentation from the Perspective of the Model of Modelling Diagram

    ERIC Educational Resources Information Center

    Mendonça, Paula Cristina Cardoso; Justi, Rosária

    2013-01-01

    Some studies related to the nature of scientific knowledge demonstrate that modelling is an inherently argumentative process. This study aims at discussing the relationship between modelling and argumentation by analysing data collected during the modelling-based teaching of ionic bonding and intermolecular interactions. The teaching activities…

  1. Analytical linear energy transfer model including secondary particles: calculations along the central axis of the proton pencil beam

    NASA Astrophysics Data System (ADS)

    Marsolat, F.; De Marzi, L.; Pouzoulet, F.; Mazal, A.

    2016-01-01

    In proton therapy, the relative biological effectiveness (RBE) depends on various types of parameters such as linear energy transfer (LET). An analytical model for LET calculation exists (Wilkens’ model), but secondary particles are not included in this model. In the present study, we propose a correction factor, L sec, for Wilkens’ model in order to take into account the LET contributions of certain secondary particles. This study includes secondary protons and deuterons, since the effects of these two types of particles can be described by the same RBE-LET relationship. L sec was evaluated by Monte Carlo (MC) simulations using the GATE/GEANT4 platform and was defined by the ratio of the LET d distributions of all protons and deuterons and only primary protons. This method was applied to the innovative Pencil Beam Scanning (PBS) delivery systems and L sec was evaluated along the beam axis. This correction factor indicates the high contribution of secondary particles in the entrance region, with L sec values higher than 1.6 for a 220 MeV clinical pencil beam. MC simulations showed the impact of pencil beam parameters, such as mean initial energy, spot size, and depth in water, on L sec. The variation of L sec with these different parameters was integrated in a polynomial function of the L sec factor in order to obtain a model universally applicable to all PBS delivery systems. The validity of this correction factor applied to Wilkens’ model was verified along the beam axis of various pencil beams in comparison with MC simulations. A good agreement was obtained between the corrected analytical model and the MC calculations, with mean-LET deviations along the beam axis less than 0.05 keV μm-1. These results demonstrate the efficacy of our new correction of the existing LET model in order to take into account secondary protons and deuterons along the pencil beam axis.

  2. Analytical linear energy transfer model including secondary particles: calculations along the central axis of the proton pencil beam.

    PubMed

    Marsolat, F; De Marzi, L; Pouzoulet, F; Mazal, A

    2016-01-21

    In proton therapy, the relative biological effectiveness (RBE) depends on various types of parameters such as linear energy transfer (LET). An analytical model for LET calculation exists (Wilkens' model), but secondary particles are not included in this model. In the present study, we propose a correction factor, L sec, for Wilkens' model in order to take into account the LET contributions of certain secondary particles. This study includes secondary protons and deuterons, since the effects of these two types of particles can be described by the same RBE-LET relationship. L sec was evaluated by Monte Carlo (MC) simulations using the GATE/GEANT4 platform and was defined by the ratio of the LET d distributions of all protons and deuterons and only primary protons. This method was applied to the innovative Pencil Beam Scanning (PBS) delivery systems and L sec was evaluated along the beam axis. This correction factor indicates the high contribution of secondary particles in the entrance region, with L sec values higher than 1.6 for a 220 MeV clinical pencil beam. MC simulations showed the impact of pencil beam parameters, such as mean initial energy, spot size, and depth in water, on L sec. The variation of L sec with these different parameters was integrated in a polynomial function of the L sec factor in order to obtain a model universally applicable to all PBS delivery systems. The validity of this correction factor applied to Wilkens' model was verified along the beam axis of various pencil beams in comparison with MC simulations. A good agreement was obtained between the corrected analytical model and the MC calculations, with mean-LET deviations along the beam axis less than 0.05 keV μm(-1). These results demonstrate the efficacy of our new correction of the existing LET model in order to take into account secondary protons and deuterons along the pencil beam axis.

  3. Analytical linear energy transfer model including secondary particles: calculations along the central axis of the proton pencil beam.

    PubMed

    Marsolat, F; De Marzi, L; Pouzoulet, F; Mazal, A

    2016-01-21

    In proton therapy, the relative biological effectiveness (RBE) depends on various types of parameters such as linear energy transfer (LET). An analytical model for LET calculation exists (Wilkens' model), but secondary particles are not included in this model. In the present study, we propose a correction factor, L sec, for Wilkens' model in order to take into account the LET contributions of certain secondary particles. This study includes secondary protons and deuterons, since the effects of these two types of particles can be described by the same RBE-LET relationship. L sec was evaluated by Monte Carlo (MC) simulations using the GATE/GEANT4 platform and was defined by the ratio of the LET d distributions of all protons and deuterons and only primary protons. This method was applied to the innovative Pencil Beam Scanning (PBS) delivery systems and L sec was evaluated along the beam axis. This correction factor indicates the high contribution of secondary particles in the entrance region, with L sec values higher than 1.6 for a 220 MeV clinical pencil beam. MC simulations showed the impact of pencil beam parameters, such as mean initial energy, spot size, and depth in water, on L sec. The variation of L sec with these different parameters was integrated in a polynomial function of the L sec factor in order to obtain a model universally applicable to all PBS delivery systems. The validity of this correction factor applied to Wilkens' model was verified along the beam axis of various pencil beams in comparison with MC simulations. A good agreement was obtained between the corrected analytical model and the MC calculations, with mean-LET deviations along the beam axis less than 0.05 keV μm(-1). These results demonstrate the efficacy of our new correction of the existing LET model in order to take into account secondary protons and deuterons along the pencil beam axis. PMID:26732530

  4. Multifluid Simulations of the Global Solar Wind Including Pickup Ions and Turbulence Modeling

    NASA Technical Reports Server (NTRS)

    Goldstein, Melvyn L.; Usmanov, A. V.

    2011-01-01

    I will describe a three-dimensional magnetohydrodynamic model of the solar wind that takes into account turbulent heating of the wind by velocity and magnetic fluctuations as well as a variety of effects produced by interstellar pickup protons. The interstellar pickup protons are treated in the model as one fluid and the protons and electrons are treated together as a second fluid. The model equations include a Reynolds decomposition of the plasma velocity and magnetic field into mean and fluctuating quantities, as well as energy transfer from interstellar pickup protons to solar wind protons that results in the deceleration of the solar wind. The model is used to simulate the global steady-state structure of the solar wind in the region from 0.3 to 100 AU. The simulation assumes that the background magnetic field on the Sun is either a dipole (aligned or tilted with respect to the solar rotation axis) or one that is deduced from solar magnetograms.

  5. The ghost of social environments past: dominance relationships include current interactions and experience carried over from previous groups.

    PubMed

    Tanner, Colby J; Salali, Gul Deniz; Jackson, Andrew L

    2011-12-23

    Dominance hierarchies pervade animal societies. Within a static social environment, in which group size and composition are unchanged, an individual's hierarchy rank results from intrinsic (e.g. body size) and extrinsic (e.g. previous experiences) factors. Little is known, however, about how dominance relationships are formed and maintained when group size and composition are dynamic. Using a fusion-fission protocol, we fused groups of previously isolated shore crabs (Carcinus maenas) into larger groups, and then restored groups to their original size and composition. Pre-fusion hierarchies formed independently of individuals' sizes, and were maintained within a static group via winner/loser effects. Post-fusion hierarchies differed from pre-fusion ones; losing fights during fusion led to a decline in an individual's rank between pre- and post-fusion conditions, while spending time being aggressive during fusion led to an improvement in rank. In post-fusion tanks, larger individuals achieved better ranks than smaller individuals. In conclusion, dominance hierarchies in crabs represent a complex combination of intrinsic and extrinsic factors, in which experiences from previous groups can carry over to affect current competitive interactions.

  6. Global Reference Atmospheric Models, Including Thermospheres, for Mars, Venus and Earth

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, C. G.; Keller, Vernon W.

    2006-01-01

    This document is the viewgraph slides of the presentation. Marshall Space Flight Center's Natural Environments Branch has developed Global Reference Atmospheric Models (GRAMs) for Mars, Venus, Earth, and other solar system destinations. Mars-GRAM has been widely used for engineering applications including systems design, performance analysis, and operations planning for aerobraking, entry descent and landing, and aerocapture. Preliminary results are presented, comparing Mars-GRAM with measurements from Mars Reconnaissance Orbiter (MRO) during its aerobraking in Mars thermosphere. Venus-GRAM is based on the Committee on Space Research (COSPAR) Venus International Reference Atmosphere (VIRA), and is suitable for similar engineering applications in the thermosphere or other altitude regions of the atmosphere of Venus. Until recently, the thermosphere in Earth-GRAM has been represented by the Marshall Engineering Thermosphere (MET) model. Earth-GRAM has recently been revised. In addition to including an updated version of MET, it now includes an option to use the Naval Research Laboratory Mass Spectrometer Incoherent Scatter Radar Extended Model (NRLMSISE-00) as an alternate thermospheric model. Some characteristics and results from Venus-GRAM and Earth-GRAM thermospheres are also presented.

  7. Improving weather predictability by including land-surface model parameter uncertainty

    NASA Astrophysics Data System (ADS)

    Orth, Rene; Dutra, Emanuel; Pappenberger, Florian

    2016-04-01

    The land surface forms an important component of Earth system models and interacts nonlinearly with other parts such as ocean and atmosphere. To capture the complex and heterogenous hydrology of the land surface, land surface models include a large number of parameters impacting the coupling to other components of the Earth system model. Focusing on ECMWF's land-surface model HTESSEL we present in this study a comprehensive parameter sensitivity evaluation using multiple observational datasets in Europe. We select 6 poorly constrained effective parameters (surface runoff effective depth, skin conductivity, minimum stomatal resistance, maximum interception, soil moisture stress function shape, total soil depth) and explore their sensitivity to model outputs such as soil moisture, evapotranspiration and runoff using uncoupled simulations and coupled seasonal forecasts. Additionally we investigate the possibility to construct ensembles from the multiple land surface parameters. In the uncoupled runs we find that minimum stomatal resistance and total soil depth have the most influence on model performance. Forecast skill scores are moreover sensitive to the same parameters as HTESSEL performance in the uncoupled analysis. We demonstrate the robustness of our findings by comparing multiple best performing parameter sets and multiple randomly chosen parameter sets. We find better temperature and precipitation forecast skill with the best-performing parameter perturbations demonstrating representativeness of model performance across uncoupled (and hence less computationally demanding) and coupled settings. Finally, we construct ensemble forecasts from ensemble members derived with different best-performing parameterizations of HTESSEL. This incorporation of parameter uncertainty in the ensemble generation yields an increase in forecast skill, even beyond the skill of the default system. Orth, R., E. Dutra, and F. Pappenberger, 2016: Improving weather predictability by

  8. Finite element modeling of contaminant transport in soils including the effect of chemical reactions.

    PubMed

    Javadi, A A; Al-Najjar, M M

    2007-05-17

    The movement of chemicals through soils to the groundwater is a major cause of degradation of water resources. In many cases, serious human and stock health implications are associated with this form of pollution. Recent studies have shown that the current models and methods are not able to adequately describe the leaching of nutrients through soils, often underestimating the risk of groundwater contamination by surface-applied chemicals, and overestimating the concentration of resident solutes. Furthermore, the effect of chemical reactions on the fate and transport of contaminants is not included in many of the existing numerical models for contaminant transport. In this paper a numerical model is presented for simulation of the flow of water and air and contaminant transport through unsaturated soils with the main focus being on the effects of chemical reactions. The governing equations of miscible contaminant transport including advection, dispersion-diffusion and adsorption effects together with the effect of chemical reactions are presented. The mathematical framework and the numerical implementation of the model are described in detail. The model is validated by application to a number of test cases from the literature and is then applied to the simulation of a physical model test involving transport of contaminants in a block of soil with particular reference to the effects of chemical reactions. Comparison of the results of the numerical model with the experimental results shows that the model is capable of predicting the effects of chemical reactions with very high accuracy. The importance of consideration of the effects of chemical reactions is highlighted.

  9. Investigating the Relationship between Students' Views of Scientific Models and Their Development of Models

    ERIC Educational Resources Information Center

    Cheng, Meng-Fei; Lin, Jang-Long

    2015-01-01

    Understanding the nature of models and engaging in modeling practice have been emphasized in science education. However, few studies discuss the relationships between students' views of scientific models and their ability to develop those models. Hence, this study explores the relationship between students' views of scientific models and their…

  10. A numerical model including PID control of a multizone crystal growth furnace

    NASA Astrophysics Data System (ADS)

    Panzarella, Charles H.; Kassemi, Mohammad

    This paper presents a 2D axisymmetric combined conduction and radiation model of a multizone crystal growth furnace. The model is based on a programmable multizone furnace (PMZF) designed and built at NASA Lewis Research Center for growing high quality semiconductor crystals. A novel feature of this model is a control algorithm which automatically adjusts the power in any number of independently controlled heaters to establish the desired crystal temperatures in the furnace model. The control algorithm eliminates the need for numerous trial and error runs previously required to obtain the same results. The finite element code, FIDAP, used to develop the furnace model, was modified to directly incorporate the control algorithm. This algorithm, which presently uses PID control, and the associated heat transfer model are briefly discussed. Together, they have been used to predict the heater power distributions for a variety of furnace configurations and desired temperature profiles. Examples are included to demonstrate the effectiveness of the PID controlled model in establishing isothermal, Bridgman, and other complicated temperature profies in the sample. Finally, an example is given to show how the algorithm can be used to change the desired profile with time according to a prescribed temperature-time evolution.

  11. Transmission line model for strained quantum well lasers including carrier transport and carrier heating effects.

    PubMed

    Xia, Mingjun; Ghafouri-Shiraz, H

    2016-03-01

    This paper reports a new model for strained quantum well lasers, which are based on the quantum well transmission line modeling method where effects of both carrier transport and carrier heating have been included. We have applied this new model and studied the effect of carrier transport on the output waveform of a strained quantum well laser both in time and frequency domains. It has been found that the carrier transport increases the turn-on, turn-off delay times and damping of the quantum well laser transient response. Also, analysis in the frequency domain indicates that the carrier transport causes the output spectrum of the quantum well laser in steady state to exhibit a redshift which has a narrower bandwidth and lower magnitude. The simulation results of turning-on transients obtained by the proposed model are compared with those obtained by the rate equation laser model. The new model has also been used to study the effects of pump current spikes on the laser output waveforms properties, and it was found that the presence of current spikes causes (i) wavelength blueshift, (ii) larger bandwidth, and (iii) reduces the magnitude and decreases the side-lobe suppression ratio of the laser output spectrum. Analysis in both frequency and time domains confirms that the new proposed model can accurately predict the temporal and spectral behaviors of strained quantum well lasers. PMID:26974607

  12. Does including physiology improve species distribution model predictions of responses to recent climate change?

    PubMed

    Buckley, Lauren B; Waaser, Stephanie A; MacLean, Heidi J; Fox, Richard

    2011-12-01

    Thermal constraints on development are often invoked to predict insect distributions. These constraints tend to be characterized in species distribution models (SDMs) by calculating development time based on a constant lower development temperature (LDT). Here, we assessed whether species-specific estimates of LDT based on laboratory experiments can improve the ability of SDMs to predict the distribution shifts of six U.K. butterflies in response to recent climate warming. We find that species-specific and constant (5 degrees C) LDT degree-day models perform similarly at predicting distributions during the period of 1970-1982. However, when the models for the 1970-1982 period are projected to predict distributions in 1995-1999 and 2000-2004, species-specific LDT degree-day models modestly outperform constant LDT degree-day models. Our results suggest that, while including species-specific physiology in correlative models may enhance predictions of species' distribution responses to climate change, more detailed models may be needed to adequately account for interspecific physiological differences. PMID:22352161

  13. A structural model for the in vivo human cornea including collagen-swelling interaction.

    PubMed

    Cheng, Xi; Petsche, Steven J; Pinsky, Peter M

    2015-08-01

    A structural model of the in vivo cornea, which accounts for tissue swelling behaviour, for the three-dimensional organization of stromal fibres and for collagen-swelling interaction, is proposed. Modelled as a binary electrolyte gel in thermodynamic equilibrium, the stromal electrostatic free energy is based on the mean-field approximation. To account for active endothelial ionic transport in the in vivo cornea, which modulates osmotic pressure and hydration, stromal mobile ions are shown to satisfy a modified Boltzmann distribution. The elasticity of the stromal collagen network is modelled based on three-dimensional collagen orientation probability distributions for every point in the stroma obtained by synthesizing X-ray diffraction data for azimuthal angle distributions and second harmonic-generated image processing for inclination angle distributions. The model is implemented in a finite-element framework and employed to predict free and confined swelling of stroma in an ionic bath. For the in vivo cornea, the model is used to predict corneal swelling due to increasing intraocular pressure (IOP) and is adapted to model swelling in Fuchs' corneal dystrophy. The biomechanical response of the in vivo cornea to a typical LASIK surgery for myopia is analysed, including tissue fluid pressure and swelling responses. The model provides a new interpretation of the corneal active hydration control (pump-leak) mechanism based on osmotic pressure modulation. The results also illustrate the structural necessity of fibre inclination in stabilizing the corneal refractive surface with respect to changes in tissue hydration and IOP. PMID:26156299

  14. A structural model for the in vivo human cornea including collagen-swelling interaction

    PubMed Central

    Cheng, Xi; Petsche, Steven J.; Pinsky, Peter M.

    2015-01-01

    A structural model of the in vivo cornea, which accounts for tissue swelling behaviour, for the three-dimensional organization of stromal fibres and for collagen-swelling interaction, is proposed. Modelled as a binary electrolyte gel in thermodynamic equilibrium, the stromal electrostatic free energy is based on the mean-field approximation. To account for active endothelial ionic transport in the in vivo cornea, which modulates osmotic pressure and hydration, stromal mobile ions are shown to satisfy a modified Boltzmann distribution. The elasticity of the stromal collagen network is modelled based on three-dimensional collagen orientation probability distributions for every point in the stroma obtained by synthesizing X-ray diffraction data for azimuthal angle distributions and second harmonic-generated image processing for inclination angle distributions. The model is implemented in a finite-element framework and employed to predict free and confined swelling of stroma in an ionic bath. For the in vivo cornea, the model is used to predict corneal swelling due to increasing intraocular pressure (IOP) and is adapted to model swelling in Fuchs' corneal dystrophy. The biomechanical response of the in vivo cornea to a typical LASIK surgery for myopia is analysed, including tissue fluid pressure and swelling responses. The model provides a new interpretation of the corneal active hydration control (pump-leak) mechanism based on osmotic pressure modulation. The results also illustrate the structural necessity of fibre inclination in stabilizing the corneal refractive surface with respect to changes in tissue hydration and IOP. PMID:26156299

  15. Modeling of single char combustion, including CO oxidation in its boundary layer

    SciTech Connect

    Lee, C.H.; Longwell, J.P.; Sarofim, A.F.

    1994-10-25

    The combustion of a char particle can be divided into a transient phase where its temperature increases as it is heated by oxidation, and heat transfer from the surrounding gas to an approximately constant temperature stage where gas phase reaction is important and which consumes most of the carbon and an extinction stage caused by carbon burnout. In this work, separate models were developed for the transient heating where gas phase reactions were unimportant and for the steady temperature stage where gas phase reactions were treated in detail. The transient char combustion model incorporates intrinsic char surface production of CO and CO{sub 2}, internal pore diffusion and external mass and heat transfer. The model provides useful information for particle ignition, burning temperature profile, combustion time, and carbon consumption rate. A gas phase reaction model incorporating the full set of 28 elementary C/H/O reactions was developed. This model calculated the gas phase CO oxidation reaction in the boundary layer at particle temperatures of 1250 K and 2500 K by using the carbon consumption rate and the burning temperature at the pseudo-steady state calculated from the temperature profile model but the transient heating was not included. This gas phase model can predict the gas species, and the temperature distributions in the boundary layer, the CO{sub 2}/CO ratio, and the location of CO oxidation. A mechanistic heat and mass transfer model was added to the temperature profile model to predict combustion behavior in a fluidized bed. These models were applied to data from the fluidized combustion of Newlands coal char particles. 52 refs., 60 figs.

  16. Including Finite Surface Span Effects in Empirical Jet-Surface Interaction Noise Models

    NASA Technical Reports Server (NTRS)

    Brown, Cliff

    2016-01-01

    The effect of finite span on the jet-surface interaction noise source and the jet mixing noise shielding and reflection effects is considered using recently acquired experimental data. First, the experimental setup and resulting data are presented with particular attention to the role of surface span on far-field noise. These effects are then included in existing empirical models that have previously assumed that all surfaces are semi-infinite. This extended abstract briefly describes the experimental setup and data leaving the empirical modeling aspects for the final paper.

  17. Producing High-Accuracy Lattice Models from Protein Atomic Coordinates Including Side Chains

    PubMed Central

    Mann, Martin; Saunders, Rhodri; Smith, Cameron; Backofen, Rolf; Deane, Charlotte M.

    2012-01-01

    Lattice models are a common abstraction used in the study of protein structure, folding, and refinement. They are advantageous because the discretisation of space can make extensive protein evaluations computationally feasible. Various approaches to the protein chain lattice fitting problem have been suggested but only a single backbone-only tool is available currently. We introduce LatFit, a new tool to produce high-accuracy lattice protein models. It generates both backbone-only and backbone-side-chain models in any user defined lattice. LatFit implements a new distance RMSD-optimisation fitting procedure in addition to the known coordinate RMSD method. We tested LatFit's accuracy and speed using a large nonredundant set of high resolution proteins (SCOP database) on three commonly used lattices: 3D cubic, face-centred cubic, and knight's walk. Fitting speed compared favourably to other methods and both backbone-only and backbone-side-chain models show low deviation from the original data (~1.5 Å RMSD in the FCC lattice). To our knowledge this represents the first comprehensive study of lattice quality for on-lattice protein models including side chains while LatFit is the only available tool for such models. PMID:22934109

  18. Producing high-accuracy lattice models from protein atomic coordinates including side chains.

    PubMed

    Mann, Martin; Saunders, Rhodri; Smith, Cameron; Backofen, Rolf; Deane, Charlotte M

    2012-01-01

    Lattice models are a common abstraction used in the study of protein structure, folding, and refinement. They are advantageous because the discretisation of space can make extensive protein evaluations computationally feasible. Various approaches to the protein chain lattice fitting problem have been suggested but only a single backbone-only tool is available currently. We introduce LatFit, a new tool to produce high-accuracy lattice protein models. It generates both backbone-only and backbone-side-chain models in any user defined lattice. LatFit implements a new distance RMSD-optimisation fitting procedure in addition to the known coordinate RMSD method. We tested LatFit's accuracy and speed using a large nonredundant set of high resolution proteins (SCOP database) on three commonly used lattices: 3D cubic, face-centred cubic, and knight's walk. Fitting speed compared favourably to other methods and both backbone-only and backbone-side-chain models show low deviation from the original data (~1.5 Å RMSD in the FCC lattice). To our knowledge this represents the first comprehensive study of lattice quality for on-lattice protein models including side chains while LatFit is the only available tool for such models. PMID:22934109

  19. Producing high-accuracy lattice models from protein atomic coordinates including side chains.

    PubMed

    Mann, Martin; Saunders, Rhodri; Smith, Cameron; Backofen, Rolf; Deane, Charlotte M

    2012-01-01

    Lattice models are a common abstraction used in the study of protein structure, folding, and refinement. They are advantageous because the discretisation of space can make extensive protein evaluations computationally feasible. Various approaches to the protein chain lattice fitting problem have been suggested but only a single backbone-only tool is available currently. We introduce LatFit, a new tool to produce high-accuracy lattice protein models. It generates both backbone-only and backbone-side-chain models in any user defined lattice. LatFit implements a new distance RMSD-optimisation fitting procedure in addition to the known coordinate RMSD method. We tested LatFit's accuracy and speed using a large nonredundant set of high resolution proteins (SCOP database) on three commonly used lattices: 3D cubic, face-centred cubic, and knight's walk. Fitting speed compared favourably to other methods and both backbone-only and backbone-side-chain models show low deviation from the original data (~1.5 Å RMSD in the FCC lattice). To our knowledge this represents the first comprehensive study of lattice quality for on-lattice protein models including side chains while LatFit is the only available tool for such models.

  20. A reduced Iwan model that includes pinning for bolted joint mechanics

    DOE PAGESBeta

    Brake, Matthew Robert

    2016-05-12

    Bolted are joints are prevalent in most assembled structures; however, predictive models for the behavior of these joints do not yet exist. Many calibrated models have been proposed to represent the stiffness and energy dissipation characteristics of a bolted joint. In particular, the Iwan model put forth by Segalman and later extended by Mignolet has been shown to be able to predict the response of a jointed structure over a range of excitations once calibrated at a nominal load. The Iwan model, however, is not widely adopted due to the high computational expense of implementing it in a numerical simulation.more » To address this, an analytical, closed form representation of the Iwan model is derived under the hypothesis that upon a load reversal, the distribution of friction elements within the interface resembles a scaled version of the original distribution of friction elements. In conclusion, the Iwan model is extended to include the pinning behavior inherent in a bolted joint.« less

  1. A full model for simulation of electrochemical cells including complex behavior

    NASA Astrophysics Data System (ADS)

    Esperilla, J. J.; Félez, J.; Romero, G.; Carretero, A.

    This communication presents a model of electrochemical cells developed in order to simulate their electrical, chemical and thermal behavior showing the differences when thermal effects are or not considered in the charge-discharge process. The work presented here has been applied to the particular case of the Pb,PbSO 4|H 2SO 4 (aq)|PbO 2,Pb cell, which forms the basis of the lead-acid batteries so widely used in the automotive industry and as traction batteries in electric or hybrid vehicles. Each half-cell is considered independently in the model. For each half-cell, in addition to the main electrode reaction, a secondary reaction is considered: the hydrogen evolution reaction in the negative electrode and the oxygen evolution reaction in the positive. The equilibrium potential is calculated with the Nernst equation, in which the activity coefficients are fitted to an exponential function using experimental data. On the other hand, the two main mechanisms that produce the overpotential are considered, that is the activation or charge transfer and the diffusion mechanisms. First, an isothermal model has been studied in order to show the behavior of the main phenomena. A more complex model has also been studied including thermal behavior. This model is very useful in the case of traction batteries in electric and hybrid vehicles where high current intensities appear. Some simulation results are also presented in order to show the accuracy of the proposed models.

  2. RELAP5-3D Code Includes ATHENA Features and Models

    SciTech Connect

    Riemke, Richard A.; Davis, Cliff B.; Schultz, Richard R.

    2006-07-01

    Version 2.3 of the RELAP5-3D computer program includes all features and models previously available only in the ATHENA version of the code. These include the addition of new working fluids (i.e., ammonia, blood, carbon dioxide, glycerol, helium, hydrogen, lead-bismuth, lithium, lithium-lead, nitrogen, potassium, sodium, and sodium-potassium) and a magnetohydrodynamic model that expands the capability of the code to model many more thermal-hydraulic systems. In addition to the new working fluids along with the standard working fluid water, one or more noncondensable gases (e.g., air, argon, carbon dioxide, carbon monoxide, helium, hydrogen, krypton, nitrogen, oxygen, SF{sub 6}, xenon) can be specified as part of the vapor/gas phase of the working fluid. These noncondensable gases were in previous versions of RELAP5-3D. Recently four molten salts have been added as working fluids to RELAP5-3D Version 2.4, which has had limited release. These molten salts will be in RELAP5-3D Version 2.5, which will have a general release like RELAP5-3D Version 2.3. Applications that use these new features and models are discussed in this paper. (authors)

  3. RELAP5-3D Code Includes Athena Features and Models

    SciTech Connect

    Richard A. Riemke; Cliff B. Davis; Richard R. Schultz

    2006-07-01

    Version 2.3 of the RELAP5-3D computer program includes all features and models previously available only in the ATHENA version of the code. These include the addition of new working fluids (i.e., ammonia, blood, carbon dioxide, glycerol, helium, hydrogen, lead-bismuth, lithium, lithium-lead, nitrogen, potassium, sodium, and sodium-potassium) and a magnetohydrodynamic model that expands the capability of the code to model many more thermal-hydraulic systems. In addition to the new working fluids along with the standard working fluid water, one or more noncondensable gases (e.g., air, argon, carbon dioxide, carbon monoxide, helium, hydrogen, krypton, nitrogen, oxygen, sf6, xenon) can be specified as part of the vapor/gas phase of the working fluid. These noncondensable gases were in previous versions of RELAP5- 3D. Recently four molten salts have been added as working fluids to RELAP5-3D Version 2.4, which has had limited release. These molten salts will be in RELAP5-3D Version 2.5, which will have a general release like RELAP5-3D Version 2.3. Applications that use these new features and models are discussed in this paper.

  4. A Modelling Framework for Gene Regulatory Networks Including Transcription and Translation.

    PubMed

    Edwards, R; Machina, A; McGregor, G; van den Driessche, P

    2015-06-01

    Qualitative models of gene regulatory networks have generally considered transcription factors to regulate directly the expression of other transcription factors, without any intermediate variables. In fact, gene expression always involves transcription, which produces mRNA molecules, followed by translation, which produces protein molecules, which can then act as transcription factors for other genes (in some cases after post-transcriptional modifications). Suppressing these multiple steps implicitly assumes that the qualitative behaviour does not depend on them. Here we explore a class of expanded models that explicitly includes both transcription and translation, keeping track of both mRNA and protein concentrations. We mainly deal with regulation functions that are steep sigmoids or step functions, as is often done in protein-only models. We find that flow cannot be constrained to switching domains, though there can still be asymptotic approach to singular stationary points (fixed points in the vicinity of switching thresholds). This avoids the thorny issue of singular flow, but leads to somewhat more complicated possibilities for flow between threshold crossings. In the infinitely fast limit of either mRNA or protein rates, we find that solutions converge uniformly to solutions of the corresponding protein-only model on arbitrary finite time intervals. This leaves open the possibility that the limit system (with one type of variable infinitely fast) may have different asymptotic behaviour, and indeed, we find an example in which stability of a fixed point in the protein-only model is lost in the expanded model. Our results thus show that including mRNA as a variable may change the behaviour of solutions. PMID:25758753

  5. SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM

    NASA Astrophysics Data System (ADS)

    Porod, W.; Staub, F.

    2012-11-01

    We describe recent extensions of the program SPhenoincluding flavour aspects, CP-phases, R-parity violation and low energy observables. In case of flavour mixing all masses of supersymmetric particles are calculated including the complete flavour structure and all possible CP-phases at the 1-loop level. We give details on implemented seesaw models, low energy observables and the corresponding extension of the SUSY Les Houches Accord. Moreover, we comment on the possibilities to include MSSM extensions in SPheno. Catalogue identifier: ADRV_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADRV_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 154062 No. of bytes in distributed program, including test data, etc.: 1336037 Distribution format: tar.gz Programming language: Fortran95. Computer: PC running under Linux, should run in every Unix environment. Operating system: Linux, Unix. Classification: 11.6. Catalogue identifier of previous version: ADRV_v1_0 Journal reference of previous version: Comput. Phys. Comm. 153(2003)275 Does the new version supersede the previous version?: Yes Nature of problem: The first issue is the determination of the masses and couplings of supersymmetric particles in various supersymmetric models, the R-parity conserved MSSM with generation mixing and including CP-violating phases, various seesaw extensions of the MSSM and the MSSM with bilinear R-parity breaking. Low energy data on Standard Model fermion masses, gauge couplings and electroweak gauge boson masses serve as constraints. Radiative corrections from supersymmetric particles to these inputs must be calculated. Theoretical constraints on the soft SUSY breaking parameters from a high scale theory are imposed and the parameters at the electroweak scale are obtained from the

  6. The Relationship of Values in Elementary School 4th Grade Social Studies Textbook with the Attainments and Their Level of Being Included in Student Workbooks

    ERIC Educational Resources Information Center

    Kilic, Abdurrahman

    2012-01-01

    In this study, the relationship of values in elementary school 4th grade Social Studies textbook with the attainments and their level of being included in student workbook are tried to be determined. Case study, which is a qualitative research method, was applied for this research. To collect data, document analysis technique, which is among the…

  7. Include dispersion in quantum chemical modeling of enzymatic reactions: the case of isoaspartyl dipeptidase.

    PubMed

    Zhang, Hai-Mei; Chen, Shi-Lu

    2015-06-01

    The lack of dispersion in the B3LYP functional has been proposed to be the main origin of big errors in quantum chemical modeling of a few enzymes and transition metal complexes. In this work, the essential dispersion effects that affect quantum chemical modeling are investigated. With binuclear zinc isoaspartyl dipeptidase (IAD) as an example, dispersion is included in the modeling of enzymatic reactions by two different procedures, i.e., (i) geometry optimizations followed by single-point calculations of dispersion (approach I) and (ii) the inclusion of dispersion throughout geometry optimization and energy evaluation (approach II). Based on a 169-atom chemical model, the calculations show a qualitative consistency between approaches I and II in energetics and most key geometries, demonstrating that both approaches are available with the latter preferential since both geometry and energy are dispersion-corrected in approach II. When a smaller model without Arg233 (147 atoms) was used, an inconsistency was observed, indicating that the missing dispersion interactions are essentially responsible for determining equilibrium geometries. Other technical issues and mechanistic characteristics of IAD are also discussed, in particular with respect to the effects of Arg233.

  8. Sensitivity of an atmospheric photochemistry model to chlorine perturbations including consideration of uncertainty propagation

    NASA Technical Reports Server (NTRS)

    Stolarski, R. S.; Douglass, A. R.

    1986-01-01

    Models of stratospheric photochemistry are generally tested by comparing their predictions for the composition of the present atmosphere with measurements of species concentrations. These models are then used to make predictions of the atmospheric sensitivity to perturbations. Here the problem of the sensitivity of such a model to chlorine perturbations ranging from the present influx of chlorine-containing compounds to several times that influx is addressed. The effects of uncertainties in input parameters, including reaction rate coefficients, cross sections, solar fluxes, and boundary conditions, are evaluated using a Monte Carlo method in which the values of the input parameters are randomly selected. The results are probability distributions for present atmosheric concentrations and for calculated perturbations due to chlorine from fluorocarbons. For more than 300 Monte Carlo runs the calculated ozone perturbation for continued emission of fluorocarbons at today's rates had a mean value of -6.2 percent, with a 1-sigma width of 5.5 percent. Using the same runs but only allowing the cases in which the calculated present atmosphere values of NO, NO2, and ClO at 25 km altitude fell within the range of measurements yielded a mean ozone depletion of -3 percent, with a 1-sigma deviation of 2.2 percent. The model showed a nonlinear behavior as a function of added fluorocarbons. The mean of the Monte Carlo runs was less nonlinear than the model run using mean value of the input parameters.

  9. Multiple tail models including inverse measures for structural design under uncertainties

    NASA Astrophysics Data System (ADS)

    Ramu, Palaniappan

    Sampling-based reliability estimation with expensive computer models may be computationally prohibitive due to a large number of required simulations. One way to alleviate the computational expense is to extrapolate reliability estimates from observed levels to unobserved levels. Classical tail modeling techniques provide a class of models to enable this extrapolation using asymptotic theory by approximating the tail region of the cumulative distribution function (CDF). This work proposes three alternate tail extrapolation techniques including inverse measures that can complement classical tail modeling. The proposed approach, multiple tail models, applies the two classical and three alternate extrapolation techniques simultaneously to estimate inverse measures at the extrapolation regions and use the median as the best estimate. It is observed that the range of the five estimates can be used as a good approximation of the error associated with the median estimate. Accuracy and computational efficiency are competing factors in selecting sample size. Yet, as our numerical studies reveal, the accuracy lost to the reduction of computational power is very small in the proposed method. The method is demonstrated on standard statistical distributions and complex engineering examples.

  10. Relationship between Urinary N-Desmethyl-Acetamiprid and Typical Symptoms including Neurological Findings: A Prevalence Case-Control Study.

    PubMed

    Marfo, Jemima Tiwaa; Fujioka, Kazutoshi; Ikenaka, Yoshinori; Nakayama, Shouta M M; Mizukawa, Hazuki; Aoyama, Yoshiko; Ishizuka, Mayumi; Taira, Kumiko

    2015-01-01

    Neonicotinoid insecticides are nicotinic acetylcholine receptor agonists used worldwide. Their environmental health effects including neurotoxicity are of concern. We previously determined a metabolite of acetamiprid, N-desmethyl-acetamiprid in the urine of a patient, who exhibited some typical symptoms including neurological findings. We sought to investigate the association between urinary N-desmethyl-acetamiprid and the symptoms by a prevalence case-control study. Spot urine samples were collected from 35 symptomatic patients of unknown origin and 50 non-symptomatic volunteers (non-symptomatic group, NSG, 4-87 year-old). Patients with recent memory loss, finger tremor, and more than five of six symptoms (headache, general fatigue, palpitation/chest pain, abdominal pain, muscle pain/weakness/spasm, and cough) were in the typical symptomatic group (TSG, n = 19, 5-69 year-old); the rest were in the atypical symptomatic group (ASG, n = 16, 5-78 year-old). N-desmethyl-acetamiprid and six neonicotinoids in the urine were quantified by liquid chromatography-tandem mass spectrometry. The detection of N-desmethyl-acetamiprid was the most frequent and highest in TSG (47.4%, 6.0 ppb (frequency, maximum)), followed by in ASG (12.5%, 4.4 ppb) and in NSG (6.0%, 2.2 ppb), however acetamiprid was not detected. Thiamethoxam was detected in TSG (31.6%, 1.4 ppb), in ASG (6.3%, 1.9 ppb), but not in NSG. Nitenpyram was detected in TSG (10.5%, 1.2 ppb), in ASG (6.3%, not quantified) and in NSG (2.0%, not quantified). Clothianidin was only detected in ASG (6.3%, not quantified), and in NSG (2.0%, 1.6 ppb). Thiacloprid was detected in ASG (6.3%, 0.1 ppb). The cases in TSG with detection of N-desmethyl-acetamiprid and thiamethoxam were aged 5 to 62 years and 13 to 62 years, respectively. Detection of N-desmethyl-acetamiprid was associated with increased prevalence of the symptoms (odds ratio: 14, 95% confidence interval: 3.5-57). Urinary N-desmethyl-acetamiprid can be used as a

  11. Relationship between Urinary N-Desmethyl-Acetamiprid and Typical Symptoms including Neurological Findings: A Prevalence Case-Control Study

    PubMed Central

    Ikenaka, Yoshinori; Nakayama, Shouta M. M.; Mizukawa, Hazuki; Aoyama, Yoshiko; Ishizuka, Mayumi; Taira, Kumiko

    2015-01-01

    Neonicotinoid insecticides are nicotinic acetylcholine receptor agonists used worldwide. Their environmental health effects including neurotoxicity are of concern. We previously determined a metabolite of acetamiprid, N-desmethyl-acetamiprid in the urine of a patient, who exhibited some typical symptoms including neurological findings. We sought to investigate the association between urinary N-desmethyl-acetamiprid and the symptoms by a prevalence case-control study. Spot urine samples were collected from 35 symptomatic patients of unknown origin and 50 non-symptomatic volunteers (non-symptomatic group, NSG, 4–87 year-old). Patients with recent memory loss, finger tremor, and more than five of six symptoms (headache, general fatigue, palpitation/chest pain, abdominal pain, muscle pain/weakness/spasm, and cough) were in the typical symptomatic group (TSG, n = 19, 5–69 year-old); the rest were in the atypical symptomatic group (ASG, n = 16, 5–78 year-old). N-desmethyl-acetamiprid and six neonicotinoids in the urine were quantified by liquid chromatography-tandem mass spectrometry. The detection of N-desmethyl-acetamiprid was the most frequent and highest in TSG (47.4%, 6.0 ppb (frequency, maximum)), followed by in ASG (12.5%, 4.4 ppb) and in NSG (6.0%, 2.2 ppb), however acetamiprid was not detected. Thiamethoxam was detected in TSG (31.6%, 1.4 ppb), in ASG (6.3%, 1.9 ppb), but not in NSG. Nitenpyram was detected in TSG (10.5%, 1.2 ppb), in ASG (6.3%, not quantified) and in NSG (2.0%, not quantified). Clothianidin was only detected in ASG (6.3%, not quantified), and in NSG (2.0%, 1.6 ppb). Thiacloprid was detected in ASG (6.3%, 0.1 ppb). The cases in TSG with detection of N-desmethyl-acetamiprid and thiamethoxam were aged 5 to 62 years and 13 to 62 years, respectively. Detection of N-desmethyl-acetamiprid was associated with increased prevalence of the symptoms (odds ratio: 14, 95% confidence interval: 3.5–57). Urinary N-desmethyl-acetamiprid can be used as a

  12. [Relationship between the included levels of coffee pulp and the protein content in rations for monogastric animals].

    PubMed

    Gómez-Brenes, R A; Bendaña, G; González, J M; Braham, J E; Bressani, R

    1985-09-01

    The purpose of this research was to determine the effect of including fresh and ensilaged coffee pulp in rations for monogastric animals, and find the best protein and coffee pulp levels in rations for rats. Fresh coffee pulp and pulp ensilaged for 12 months were used; both kinds of pulp were sun-dried before incorporating them into the rations. The chemical analyses of the pulps revealed a lower content in caffeine, tannins, chlorogenic acid and caffeic acid in the ensilaged pulp than in fresh coffee pulp. Thirty-two experimental rations were prepared, 16 with fresh coffee pulp and 16 with the ensilaged by-product, distributed into four different protein levels (10, 15, 20 and 25%), and three levels of pulp (15, 30 and 45%) for each protein level. The rations thus prepared were fed to Wistar albino rats for a six-week period. The parameters used to measure the effect of the two types of pulp were mortality rate, food consumption, weight gain, food conversion and apparent digestibility of the rations. Ensilaged pulp had a higher nutritive value, lower toxicity and better digestibility than fresh pulp. The increase in the protein level of the ration resulted in partial protection against the negative effects of coffee pulp on the performance of animals, since this improved as the protein level of the ration increased.

  13. Exploring Third-Grade Student Model-Based Explanations about Plant Relationships within an Ecosystem

    NASA Astrophysics Data System (ADS)

    Zangori, Laura; Forbes, Cory T.

    2015-12-01

    Elementary students should have opportunities to develop scientific models to reason and build understanding about how and why plants depend on relationships within an ecosystem for growth and survival. However, scientific modeling practices are rarely included within elementary science learning environments and disciplinary content is often treated as discrete pieces separate from scientific practice. Elementary students have few, if any, opportunities to reason about how individual organisms, such as plants, hold critical relationships with their surrounding environment. The purpose of this design-based research study is to build a learning performance to identify and explore the third-grade students' baseline understanding of and their reasoning about plant-ecosystem relationships when engaged in the practices of modeling. The developed learning performance integrated scientific content and core scientific activity to identify and measure how students build knowledge about the role of plants in ecosystems through the practices of modeling. Our findings indicate that the third-grade students' ideas about plant growth include abiotic and biotic relationships. Further, they used their models to reason about how and why these relationships were necessary to maintain plant stasis. However, while the majority of the third-grade students were able to identify and reason about plant-abiotic relationships, a much smaller group reasoned about plant-abiotic-animal relationships. Implications from the study suggest that modeling serves as a tool to support elementary students in reasoning about system relationships, but they require greater curricular and instructional support in conceptualizing how and why ecosystem relationships are necessary for plant growth and development. This paper is based on data from a doctoral dissertation. An earlier version of this paper was presented at the 2015 international conference for the National Association for Research in Science

  14. Hierarchical longitudinal models of relationships in social networks

    PubMed Central

    Paul, Sudeshna; O’Malley, A. James

    2013-01-01

    Summary Motivated by the need to understand the dynamics of relationship formation and dissolution over time in real-world social networks we develop a new longitudinal model for transitions in the relationship status of pairs of individuals (“dyads”). We first specify a model for the relationship status of a single dyad and then extend it to account for important inter-dyad dependencies (e.g., transitivity – “a friend of a friend is a friend”) and heterogeneity. Model parameters are estimated using Bayesian analysis implemented via Markov chain Monte Carlo. We use the model to perform novel analyses of two diverse longitudinal friendship networks: an excerpt of the Teenage Friends and Lifestyle Study (a moderately sized network) and the Framingham Heart Study (FHS) (a large network). PMID:24729637

  15. A Multivariate Model of Parent-Adolescent Relationship Variables in Early Adolescence

    ERIC Educational Resources Information Center

    McKinney, Cliff; Renk, Kimberly

    2011-01-01

    Given the importance of predicting outcomes for early adolescents, this study examines a multivariate model of parent-adolescent relationship variables, including parenting, family environment, and conflict. Participants, who completed measures assessing these variables, included 710 culturally diverse 11-14-year-olds who were attending a middle…

  16. Exploring Third-Grade Student Model-Based Explanations about Plant Relationships within an Ecosystem

    ERIC Educational Resources Information Center

    Zangori, Laura; Forbes, Cory T.

    2015-01-01

    Elementary students should have opportunities to develop scientific models to reason and build understanding about how and why plants depend on relationships within an ecosystem for growth and survival. However, scientific modeling practices are rarely included within elementary science learning environments and disciplinary content is often…

  17. Model for the catalytic oxidation of CO, including gas-phase impurities and CO desorption

    NASA Astrophysics Data System (ADS)

    Buendía, G. M.; Rikvold, P. A.

    2013-07-01

    We present results of kinetic Monte Carlo simulations of a modified Ziff-Gulari-Barshad model for the reaction CO+O → CO2 on a catalytic surface. Our model includes impurities in the gas phase, CO desorption, and a modification known to eliminate the unphysical O poisoned phase. The impurities can adsorb and desorb on the surface, but otherwise remain inert. In a previous work that did not include CO desorption [Buendía and Rikvold, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.85.031143 85, 031143 (2012)], we found that the impurities have very distinctive effects on the phase diagram and greatly diminish the reactivity of the system. If the impurities do not desorb, once the system reaches a stationary state, the CO2 production disappears. When the impurities are allowed to desorb, there are regions where the CO2 reaction window reappears, although greatly reduced. Following experimental evidence that indicates that temperature effects are crucial in many catalytic processes, here we further analyze these effects by including a CO desorption rate. We find that the CO desorption has the effect to smooth the transition between the reactive and the CO rich phase, and most importantly it can counteract the negative effects of the presence of impurities by widening the reactive window such that now the system remains catalytically active in the whole range of CO pressures.

  18. HPTAM, a two-dimensional Heat Pipe Transient Analysis Model, including the startup from a frozen state

    NASA Technical Reports Server (NTRS)

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    1995-01-01

    A two-dimensional Heat Pipe Transient Analysis Model, 'HPTAM,' was developed to simulate the transient operation of fully-thawed heat pipes and the startup of heat pipes from a frozen state. The model incorporates: (a) sublimation and resolidification of working fluid; (b) melting and freezing of the working fluid in the porous wick; (c) evaporation of thawed working fluid and condensation as a thin liquid film on a frozen substrate; (d) free-molecule, transition, and continuum vapor flow regimes, using the Dusty Gas Model; (e) liquid flow and heat transfer in the porous wick; and (f) thermal and hydrodynamic couplings of phases at their respective interfaces. HPTAM predicts the radius of curvature of the liquid meniscus at the liquid-vapor interface and the radial location of the working fluid level (liquid or solid) in the wick. It also includes the transverse momentum jump condition (capillary relationship of Pascal) at the liquid-vapor interface and geometrically relates the radius of curvature of the liquid meniscus to the volume fraction of vapor in the wick. The present model predicts the capillary limit and partial liquid recess (dryout) in the evaporator wick, and incorporates a liquid pooling submodel, which simulates accumulation of the excess liquid in the vapor core at the condenser end.

  19. HPTAM, a two-dimensional Heat Pipe Transient Analysis Model, including the startup from a frozen state

    NASA Astrophysics Data System (ADS)

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    1995-09-01

    A two-dimensional Heat Pipe Transient Analysis Model, 'HPTAM,' was developed to simulate the transient operation of fully-thawed heat pipes and the startup of heat pipes from a frozen state. The model incorporates: (a) sublimation and resolidification of working fluid; (b) melting and freezing of the working fluid in the porous wick; (c) evaporation of thawed working fluid and condensation as a thin liquid film on a frozen substrate; (d) free-molecule, transition, and continuum vapor flow regimes, using the Dusty Gas Model; (e) liquid flow and heat transfer in the porous wick; and (f) thermal and hydrodynamic couplings of phases at their respective interfaces. HPTAM predicts the radius of curvature of the liquid meniscus at the liquid-vapor interface and the radial location of the working fluid level (liquid or solid) in the wick. It also includes the transverse momentum jump condition (capillary relationship of Pascal) at the liquid-vapor interface and geometrically relates the radius of curvature of the liquid meniscus to the volume fraction of vapor in the wick. The present model predicts the capillary limit and partial liquid recess (dryout) in the evaporator wick, and incorporates a liquid pooling submodel, which simulates accumulation of the excess liquid in the vapor core at the condenser end.

  20. General hypothesis and shell model for the synthesis of semiconductor nanotubes, including carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Mohammad, S. Noor

    2010-09-01

    Semiconductor nanotubes, including carbon nanotubes, have vast potential for new technology development. The fundamental physics and growth kinetics of these nanotubes are still obscured. Various models developed to elucidate the growth suffer from limited applicability. An in-depth investigation of the fundamentals of nanotube growth has, therefore, been carried out. For this investigation, various features of nanotube growth, and the role of the foreign element catalytic agent (FECA) in this growth, have been considered. Observed growth anomalies have been analyzed. Based on this analysis, a new shell model and a general hypothesis have been proposed for the growth. The essential element of the shell model is the seed generated from segregation during growth. The seed structure has been defined, and the formation of droplet from this seed has been described. A modified definition of the droplet exhibiting adhesive properties has also been presented. Various characteristics of the droplet, required for alignment and organization of atoms into tubular forms, have been discussed. Employing the shell model, plausible scenarios for the formation of carbon nanotubes, and the variation in the characteristics of these carbon nanotubes have been articulated. The experimental evidences, for example, for the formation of shell around a core, dipole characteristics of the seed, and the existence of nanopores in the seed, have been presented. They appear to justify the validity of the proposed model. The diversities of nanotube characteristics, fundamentals underlying the creation of bamboo-shaped carbon nanotubes, and the impurity generation on the surface of carbon nanotubes have been elucidated. The catalytic action of FECA on growth has been quantified. The applicability of the proposed model to the nanotube growth by a variety of mechanisms has been elaborated. These mechanisms include the vapor-liquid-solid mechanism, the oxide-assisted growth mechanism, the self

  1. Standardized Competencies for Parenteral Nutrition Order Review and Parenteral Nutrition Preparation, Including Compounding: The ASPEN Model.

    PubMed

    Boullata, Joseph I; Holcombe, Beverly; Sacks, Gordon; Gervasio, Jane; Adams, Stephen C; Christensen, Michael; Durfee, Sharon; Ayers, Phil; Marshall, Neil; Guenter, Peggi

    2016-08-01

    Parenteral nutrition (PN) is a high-alert medication with a complex drug use process. Key steps in the process include the review of each PN prescription followed by the preparation of the formulation. The preparation step includes compounding the PN or activating a standardized commercially available PN product. The verification and review, as well as preparation of this complex therapy, require competency that may be determined by using a standardized process for pharmacists and for pharmacy technicians involved with PN. An American Society for Parenteral and Enteral Nutrition (ASPEN) standardized model for PN order review and PN preparation competencies is proposed based on a competency framework, the ASPEN-published interdisciplinary core competencies, safe practice recommendations, and clinical guidelines, and is intended for institutions and agencies to use with their staff.

  2. Standardized Competencies for Parenteral Nutrition Order Review and Parenteral Nutrition Preparation, Including Compounding: The ASPEN Model.

    PubMed

    Boullata, Joseph I; Holcombe, Beverly; Sacks, Gordon; Gervasio, Jane; Adams, Stephen C; Christensen, Michael; Durfee, Sharon; Ayers, Phil; Marshall, Neil; Guenter, Peggi

    2016-08-01

    Parenteral nutrition (PN) is a high-alert medication with a complex drug use process. Key steps in the process include the review of each PN prescription followed by the preparation of the formulation. The preparation step includes compounding the PN or activating a standardized commercially available PN product. The verification and review, as well as preparation of this complex therapy, require competency that may be determined by using a standardized process for pharmacists and for pharmacy technicians involved with PN. An American Society for Parenteral and Enteral Nutrition (ASPEN) standardized model for PN order review and PN preparation competencies is proposed based on a competency framework, the ASPEN-published interdisciplinary core competencies, safe practice recommendations, and clinical guidelines, and is intended for institutions and agencies to use with their staff. PMID:27317615

  3. Dynamic modelling and response characteristics of a magnetic bearing rotor system including auxiliary bearings

    NASA Technical Reports Server (NTRS)

    Free, April M.; Flowers, George T.; Trent, Victor S.

    1993-01-01

    Auxiliary bearings are a critical feature of any magnetic bearing system. They protect the soft iron core of the magnetic bearing during an overload or failure. An auxiliary bearing typically consists of a rolling element bearing or bushing with a clearance gap between the rotor and the inner race of the support. The dynamics of such systems can be quite complex. It is desired to develop a rotor-dynamic model and assess the dynamic behavior of a magnetic bearing rotor system which includes the effects of auxiliary bearings. Of particular interest is the effects of introducing sideloading into such a system during failure of the magnetic bearing. A model is developed from an experimental test facility and a number of simulation studies are performed. These results are presented and discussed.

  4. A model for Huanglongbing spread between citrus plants including delay times and human intervention

    NASA Astrophysics Data System (ADS)

    Vilamiu, Raphael G. d'A.; Ternes, Sonia; Braga, Guilherme A.; Laranjeira, Francisco F.

    2012-09-01

    The objective of this work was to present a compartmental deterministic mathematical model for representing the dynamics of HLB disease in a citrus orchard, including delay in the disease's incubation phase in the plants, and a delay period on the nymphal stage of Diaphorina citri, the most important HLB insect vector in Brazil. Numerical simulations were performed to assess the possible impacts of human detection efficiency of symptomatic plants, as well as the influence of a long incubation period of HLB in the plant.

  5. DEVELOPMENT OF A PRODUCT MODEL FOR CUT-AND-COVER TUNNELS INCLUDING DEGRADATIONS

    NASA Astrophysics Data System (ADS)

    Aruga, Takashi; Yabuki, Nobuyoshi; Arai, Yasushi

    Cut-and-Cover tunnels are constructed on site. The various conditions of environments and techniques of construction make a significant influence on the quality of the tunnel. It is extremely difficult to rebuild the tunnel even if a structural trouble is found once the construction is completed. Thus, suitable maintenance is needed to ensure the tunnel is in a healthy condition. To execute better maintenance, the information on design and construction of the tunnel is vital for inspection of degradation, estimation of occurrence factors and planning of repair or refurbishing works. In this paper, we developed a product model for representing cut-and-cover tunnels including degradations for effective information use in maintenance work. As its first step, we investigated the characteristics of cut-and-cover tunnels and degradations about reinforced concrete members and developed a conceptual model. Then, we implemented the conceptual product model by expanding Industry Foundation Classes (IFC). Finally, we verified the product model by applying it to a simple tunnel.

  6. Development and Application of a Nonbonded Cu2+ Model That Includes the Jahn–Teller Effect

    PubMed Central

    2015-01-01

    Metal ions are both ubiquitous to and crucial in biology. In classical simulations, they are typically described as simple van der Waals spheres, making it difficult to provide reliable force field descriptions for them. An alternative is given by nonbonded dummy models, in which the central metal atom is surrounded by dummy particles that each carry a partial charge. While such dummy models already exist for other metal ions, none is available yet for Cu2+ because of the challenge to reproduce the Jahn–Teller distortion. This challenge is addressed in the current study, where, for the first time, a dummy model including a Jahn–Teller effect is developed for Cu2+. We successfully validate its usefulness by studying metal binding in two biological systems: the amyloid-β peptide and the mixed-metal enzyme superoxide dismutase. We believe that our parameters will be of significant value for the computational study of Cu2+-dependent biological systems using classical models. PMID:26167255

  7. Habitability of super-Earth planets around other suns: models including Red Giant Branch evolution.

    PubMed

    von Bloh, W; Cuntz, M; Schröder, K-P; Bounama, C; Franck, S

    2009-01-01

    The unexpected diversity of exoplanets includes a growing number of super-Earth planets, i.e., exoplanets with masses of up to several Earth masses and a similar chemical and mineralogical composition as Earth. We present a thermal evolution model for a 10 Earth-mass planet orbiting a star like the Sun. Our model is based on the integrated system approach, which describes the photosynthetic biomass production and takes into account a variety of climatological, biogeochemical, and geodynamical processes. This allows us to identify a so-called photosynthesis-sustaining habitable zone (pHZ), as determined by the limits of biological productivity on the planetary surface. Our model considers solar evolution during the main-sequence stage and along the Red Giant Branch as described by the most recent solar model. We obtain a large set of solutions consistent with the principal possibility of life. The highest likelihood of habitability is found for "water worlds." Only mass-rich water worlds are able to realize pHZ-type habitability beyond the stellar main sequence on the Red Giant Branch.

  8. Habitability of super-Earth planets around other suns: models including Red Giant Branch evolution.

    PubMed

    von Bloh, W; Cuntz, M; Schröder, K-P; Bounama, C; Franck, S

    2009-01-01

    The unexpected diversity of exoplanets includes a growing number of super-Earth planets, i.e., exoplanets with masses of up to several Earth masses and a similar chemical and mineralogical composition as Earth. We present a thermal evolution model for a 10 Earth-mass planet orbiting a star like the Sun. Our model is based on the integrated system approach, which describes the photosynthetic biomass production and takes into account a variety of climatological, biogeochemical, and geodynamical processes. This allows us to identify a so-called photosynthesis-sustaining habitable zone (pHZ), as determined by the limits of biological productivity on the planetary surface. Our model considers solar evolution during the main-sequence stage and along the Red Giant Branch as described by the most recent solar model. We obtain a large set of solutions consistent with the principal possibility of life. The highest likelihood of habitability is found for "water worlds." Only mass-rich water worlds are able to realize pHZ-type habitability beyond the stellar main sequence on the Red Giant Branch. PMID:19630504

  9. A laboratory model of the aortic root flow including the coronary arteries

    NASA Astrophysics Data System (ADS)

    Querzoli, Giorgio; Fortini, Stefania; Espa, Stefania; Melchionna, Simone

    2016-08-01

    Cardiovascular flows have been extensively investigated by means of in vitro models to assess the prosthetic valve performances and to provide insight into the fluid dynamics of the heart and proximal aorta. In particular, the models for the study of the flow past the aortic valve have been continuously improved by including, among other things, the compliance of the vessel and more realistic geometries. The flow within the sinuses of Valsalva is known to play a fundamental role in the dynamics of the aortic valve since they host a recirculation region that interacts with the leaflets. The coronary arteries originate from the ostia located within two of the three sinuses, and their presence may significantly affect the fluid dynamics of the aortic root. In spite of their importance, to the extent of the authors' knowledge, coronary arteries were not included so far when modeling in vitro the transvalvular aortic flow. We present a pulse duplicator consisting of a passively pulsing ventricle, a compliant proximal aorta, and coronary arteries connected to the sinuses of Valsalva. The coronary flow is modulated by a self-regulating device mimicking the physiological mechanism, which is based on the contraction and relaxation of the heart muscle during the cardiac cycle. Results show that the model reproduces satisfyingly the coronary flow. The analysis of the time evolution of the velocity and vorticity fields within the aortic root reveals the main characteristics of the backflow generated through the aorta in order to feed the coronaries during the diastole. Experiments without coronary flow have been run for comparison. Interestingly, the lifetime of the vortex forming in the sinus of Valsalva during the systole is reduced by the presence of the coronaries. As a matter of fact, at the end of the systole, that vortex is washed out because of the suction generated by the coronary flow. Correspondingly, the valve closure is delayed and faster compared to the case with

  10. Modeling the impact of spatial relationships on horizontal curve safety.

    PubMed

    Findley, Daniel J; Hummer, Joseph E; Rasdorf, William; Zegeer, Charles V; Fowler, Tyler J

    2012-03-01

    The curved segments of roadways are more hazardous because of the additional centripetalforces exerted on a vehicle, driver expectations, and other factors. The safety of a curve is dependent on various factors, most notably by geometric factors, but the location of a curve in relation to other curves is also thought to influence the safety of those curves because of a driver's expectation to encounter additional curves. The link between an individual curve's geometric characteristics and its safety performance has been established, but spatial considerations are typically not included in a safety analysis. The spatial considerations included in this research consisted of four components: distance to adjacent curves, direction of turn of the adjacent curves, and radius and length of the adjacent curves. The primary objective of this paper is to quantify the spatial relationship between adjacent horizontal curves and horizontal curve safety using a crash modification factor. Doing so enables a safety professional to more accurately estimate safety to allocate funding to reduce or prevent future collisions and more efficiently design new roadway sections to minimize crash risk where there will be a series of curves along a route. The most important finding from this research is the statistical significance of spatial considerations for the prediction of horizontal curve safety. The distances to adjacent curves were found to be a reliable predictor of observed collisions. This research recommends a model which utilizes spatial considerations for horizontal curve safety prediction in addition to current Highway Safety Manual prediction capabilities using individual curve geometric features.

  11. A range of complex probabilistic models for RNA secondary structure prediction that includes the nearest-neighbor model and more.

    PubMed

    Rivas, Elena; Lang, Raymond; Eddy, Sean R

    2012-02-01

    The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using complex nearest-neighbor models, including CONTRAfold, Simfold, and ContextFold. Little work has been reported on generative probabilistic models (stochastic context-free grammars [SCFGs]) of comparable complexity, although probabilistic models are generally easier to train and to use. To explore a range of probabilistic models of increasing complexity, and to directly compare probabilistic, thermodynamic, and discriminative approaches, we created TORNADO, a computational tool that can parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor model and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or arbitrary scores. By using TORNADO, we find that probabilistic nearest-neighbor models perform comparably to (but not significantly better than) discriminative methods. We find that complex statistical models are prone to overfitting RNA structure and that evaluations should use structurally nonhomologous training and test data sets. Overfitting has affected at least one published method (ContextFold). The most important barrier to improving statistical approaches for RNA secondary structure prediction is the lack of diversity of well-curated single-sequence RNA secondary structures in current RNA databases. PMID:22194308

  12. A range of complex probabilistic models for RNA secondary structure prediction that includes the nearest-neighbor model and more.

    PubMed

    Rivas, Elena; Lang, Raymond; Eddy, Sean R

    2012-02-01

    The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using complex nearest-neighbor models, including CONTRAfold, Simfold, and ContextFold. Little work has been reported on generative probabilistic models (stochastic context-free grammars [SCFGs]) of comparable complexity, although probabilistic models are generally easier to train and to use. To explore a range of probabilistic models of increasing complexity, and to directly compare probabilistic, thermodynamic, and discriminative approaches, we created TORNADO, a computational tool that can parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor model and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or arbitrary scores. By using TORNADO, we find that probabilistic nearest-neighbor models perform comparably to (but not significantly better than) discriminative methods. We find that complex statistical models are prone to overfitting RNA structure and that evaluations should use structurally nonhomologous training and test data sets. Overfitting has affected at least one published method (ContextFold). The most important barrier to improving statistical approaches for RNA secondary structure prediction is the lack of diversity of well-curated single-sequence RNA secondary structures in current RNA databases.

  13. Including sugar cane in the agro-ecosystem model ORCHIDEE-STICS

    NASA Astrophysics Data System (ADS)

    Valade, A.; Vuichard, N.; Ciais, P.; Viovy, N.

    2010-12-01

    With 4 million ha currently grown for ethanol in Brazil only, approximately half the global bioethanol production in 2005 (Smeets 2008), and a devoted land area expected to expand globally in the years to come, sugar cane is at the heart of the biofuel debate. Indeed, ethanol made from biomass is currently the most widespread option for alternative transportation fuels. It was originally promoted as a carbon neutral energy resource that could bring energy independence to countries and local opportunities to farmers, until attention was drawn to its environmental and socio-economical drawbacks. It is still not clear to which extent it is a solution or a contributor to climate change mitigation. Dynamic Global Vegetation models can help address these issues and quantify the potential impacts of biofuels on ecosystems at scales ranging from on-site to global. The global agro-ecosystem model ORCHIDEE describes water, carbon and energy exchanges at the soil-atmosphere interface for a limited number of natural and agricultural vegetation types. In order to integrate agricultural management to the simulations and to capture more accurately the specificity of crops' phenology, ORCHIDEE has been coupled with the agronomical model STICS. The resulting crop-oriented vegetation model ORCHIDEE-STICS has been used so far to simulate temperate crops such as wheat, corn and soybean. As a generic ecosystem model, each grid cell can include several vegetation types with their own phenology and management practices, making it suitable to spatial simulations. Here, ORCHIDEE-STICS is altered to include sugar cane as a new agricultural Plant functional Type, implemented and parametrized using the STICS approach. An on-site calibration and validation is then performed based on biomass and flux chamber measurements in several sites in Australia and variables such as LAI, dry weight, heat fluxes and respiration are used to evaluate the ability of the model to simulate the specific

  14. An ecosystem model of the global ocean including Fe, Si, P colimitations

    NASA Astrophysics Data System (ADS)

    Aumont, Olivier; Maier-Reimer, Ernst; Blain, StéPhane; Monfray, P.

    2003-06-01

    Observations have shown that large areas of the world ocean are characterized by lower than expected chlorophyll concentrations given the ambient phosphate and nitrate levels. In these High Nutrient-Low Chlorophyll regions, limitations of phytoplankton growth by other nutrients like silicate or iron have been hypothesized and further evidenced by in situ experiments. To explore these limitations, a nine-component ecosystem model has been embedded in the Hamburg model of the oceanic carbon cycle (HAMOCC5). This model includes phosphate, silicate, dissolved iron, two phytoplankton size fractions (nanophytoplankton and diatoms), two zooplankton size fractions (microzooplankton and mesozooplankton), one detritus and semilabile dissolved organic matter. The model is able to reproduce the main characteristics of two of the three main HNLC areas, i.e., the Southern Ocean and the equatorial Pacific. In the subarctic Pacific, silicate and phosphate surface concentrations are largely underestimated because of deficiencies in ocean dynamics. The low chlorophyll concentrations in HNLC areas are explained by the traditional hypothesis of a simultaneous iron-grazing limitation: Diatoms are limited by iron whereas nanophytoplankton is controlled by very efficient grazing by microzooplankton. Phytoplankton assimilates 18 × 109 mol Fe yr-1 of which 73% is supplied by regeneration within the euphotic zone. The model predicts that the ocean carries with it about 75% of the phytoplankton demand for new iron, assuming a 1% solubility for atmospheric iron. Finally, it is shown that a higher supply of iron to surface water leads to a higher export production but paradoxically to a lower primary productivity.

  15. Personality, Relationship Conflict, and Teamwork-Related Mental Models

    PubMed Central

    Vîrgă, Delia; CurŞeu, Petru Lucian; Maricuţoiu, Laurenţiu; Sava, Florin A.; Macsinga, Irina; Măgurean, Silvia

    2014-01-01

    This study seeks to explore whether neuroticism, agreeableness, and conscientiousness moderate the influence of relationship conflict experienced in groups on changes in group members' evaluative cognitions related to teamwork quality (teamwork-related mental models). Data from 216 students, nested in 48 groups were analyzed using a multilevel modeling approach. Our results show that the experience of relationship conflict leads to a negative shift from the pre-task to the post-task teamwork-related mental models. Moreover, the results indicate that conscientiousness buffered the negative association between relationship conflict and the change in teamwork-related mental models. Our results did not support the hypothesized moderating effect of agreeableness and show that the detrimental effect of relationship conflict on the shift in teamwork-related mental models is accentuated for group members scoring low rather than high on neuroticism. These findings open new research venues for exploring the association between personality, coping styles and change in teamwork-related mental models. PMID:25372143

  16. Personality, relationship conflict, and teamwork-related mental models.

    PubMed

    Vîrgă, Delia; Curşeu, Petru Lucian; CurŞeu, Petru Lucian; Maricuţoiu, Laurenţiu; Sava, Florin A; Macsinga, Irina; Măgurean, Silvia

    2014-01-01

    This study seeks to explore whether neuroticism, agreeableness, and conscientiousness moderate the influence of relationship conflict experienced in groups on changes in group members' evaluative cognitions related to teamwork quality (teamwork-related mental models). Data from 216 students, nested in 48 groups were analyzed using a multilevel modeling approach. Our results show that the experience of relationship conflict leads to a negative shift from the pre-task to the post-task teamwork-related mental models. Moreover, the results indicate that conscientiousness buffered the negative association between relationship conflict and the change in teamwork-related mental models. Our results did not support the hypothesized moderating effect of agreeableness and show that the detrimental effect of relationship conflict on the shift in teamwork-related mental models is accentuated for group members scoring low rather than high on neuroticism. These findings open new research venues for exploring the association between personality, coping styles and change in teamwork-related mental models.

  17. Distinguishing sediment waves from slope failure deposits: Field examples, including the 'humboldt slide', and modelling results

    USGS Publications Warehouse

    Lee, H.J.; Syvitski, J.P.M.; Parker, G.; Orange, Daniel L.; Locat, J.; Hutton, E.W.H.; Imran, J.

    2002-01-01

    Migrating sediment waves have been reported in a variety of marine settings, including submarine levee-fan systems, floors of fjords, and other basin or continental slope environments. Examination of such wave fields reveals nine diagnostic characteristics. When these characteristics are applied to several features previously attributed to submarine landslide deformation, they suggest that the features should most likely be reinterpreted as migrating sediment-wave fields. Sites that have been reinterpreted include the 'Humboldt slide' on the Eel River margin in northern California, the continental slope in the Gulf of Cadiz, the continental shelf off the Malaspina Glacier in the Gulf of Alaska, and the Adriatic shelf. A reassessment of all four features strongly suggests that numerous turbidity currents, separated by intervals of ambient hemipelagic sedimentation, deposited the wave fields over thousands of years. A numerical model of hyperpycnal discharge from the Eel River, for example, shows that under certain alongshore-current conditions, such events can produce turbidity currents that flow across the 'Humboldt slide', serving as the mechanism for the development of migrating sediment waves. Numerical experiments also demonstrate that where a series of turbidity currents flows across a rough seafloor (i.e. numerical steps), sediment waves can form and migrate upslope. Hemipelagic sedimentation between turbidity current events further facilitates the upslope migration of the sediment waves. Physical modelling of turbidity currents also confirms the formation and migration of seafloor bedforms. The morphologies of sediment waves generated both numerically and physically in the laboratory bear a strong resemblance to those observed in the field, including those that were previously described as submarine landslides.

  18. A coupled general circulation model for the Late Jurassic including fully interactive carbon cycling

    NASA Astrophysics Data System (ADS)

    Williams, J.; Valdes, P. J.; Leith, T. L.; Sagoo, N.

    2011-12-01

    The climatology of a coupled atmosphere - ocean (including sea ice) general circulation model for the Late Jurassic epoch (Kimmeridgian stage) is presented. The simulation framework used is the FAMOUS climate model [Jones et al, Climate Dynamics 25, 189-204 (2005)], which is a reduced resolution configuration of the UK Met Office model HadCM3 [Pope et al, Climate Dynamics 16, 123-46 (2000)]. In order to enable computation of carbon fluxes through the Earth System, fully interactive terrestrial and oceanic carbon cycle modules are added to FAMOUS. These include temporally evolving vegetation on land and populations of zooplankton, phytoplankton and nitrogenous nutrients in the ocean. The Kimmeridgian was a time of significantly enhanced carbon dioxide concentrations in the atmosphere (roughly four times preindustrial) and as such is a useful test bed for "paleocalibration" of a future climate perturbed by anthropogenic emissions of greenhouse gases [Barron et al, Paleoceanography 10 (5) 953-962 (1995) for example]. From a geological perspective, the Kimmeridgian was also a time of significant laying down of hydrocarbon reserves (particularly in the North Sea) and thus the inclusion of a fully interactive carbon cycle in FAMOUS enables the study of the dysoxic (low oxygen) and circulatory conditions relevant to their formation and preservation. The parameter space of both the terrestrial and oceanic carbon cycles was explored using the Latin Hypercube method [Mckay, Proceedings of the 24th conference on winter simulation, ACM Press, Arlington, Virginia, 57-564 (1992)], which enables efficient yet rigorous sampling of multiple covarying parameters. These parameters were validated using present day observations of meteorological, vegetative and biological parameters since the data available for the Jurassic itself is relatively scarce. To remove subjective bias in the validation process, the "Arcsine Mielke" skill score was used [Watterson, Int. J. Climatology, 16, 379

  19. Jet Noise Modeling for Coannular Nozzles Including the Effects of Chevrons

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J.

    2003-01-01

    Development of good predictive models for jet noise has always been plagued by the difficulty in obtaining good quality data over a wide range of conditions in different facilities.We consider such issues very carefully in selecting data to be used in developing our model. Flight effects are of critical importance, and none of the means of determining them are without significant problems. Free-jet flight simulation facilities are very useful, and can provide meaningful data so long as they can be analytically transformed to the flight frame of reference. In this report we show that different methodologies used by NASA and industry to perform this transformation produce very different results, especially in the rear quadrant; this compels us to rely largely on static data to develop our model, but we show reasonable agreement with simulated flight data when these transformation issues are considered. A persistent problem in obtaining good quality data is noise generated in the experimental facility upstream of the test nozzle: valves, elbows, obstructions, and especially the combustor can contribute significant noise, and much of this noise is of a broadband nature, easily confused with jet noise. Muffling of these sources is costly in terms of size as well as expense, and it is particularly difficult in flight simulation facilities, where compactness of hardware is very important, as discussed by Viswanathan (Ref. 13). We feel that the effects of jet density on jet mixing noise may have been somewhat obscured by these problems, leading to the variable density exponent used in most jet noise prediction procedures including our own. We investigate this issue, applying Occam s razor, (e.g., Ref. 14), in a search for the simplest physically meaningful model that adequately describes the observed phenomena. In a similar vein, we see no reason to reject the Lighthill approach; it provides a very solid basis upon which to build a predictive procedure, as we believe we

  20. Analytical model for radiative transfer including the effects of a rough material interface.

    PubMed

    Giddings, Thomas E; Kellems, Anthony R

    2016-08-20

    The reflected and transmitted radiance due to a source located above a water surface is computed based on models for radiative transfer in continuous optical media separated by a discontinuous air-water interface with random surface roughness. The air-water interface is described as the superposition of random, unresolved roughness on a deterministic realization of a stochastic wave surface at resolved scales. Under the geometric optics assumption, the bidirectional reflection and transmission functions for the air-water interface are approximated by applying regular perturbation methods to Snell's law and including the effects of a random surface roughness component. Formal analytical solutions to the radiative transfer problem under the small-angle scattering approximation account for the effects of scattering and absorption as light propagates through the atmosphere and water and also capture the diffusive effects due to the interaction of light with the rough material interface that separates the two optical media. Results of the analytical models are validated against Monte Carlo simulations, and the approximation to the bidirectional reflection function is also compared to another well-known analytical model.

  1. Analytical model for radiative transfer including the effects of a rough material interface.

    PubMed

    Giddings, Thomas E; Kellems, Anthony R

    2016-08-20

    The reflected and transmitted radiance due to a source located above a water surface is computed based on models for radiative transfer in continuous optical media separated by a discontinuous air-water interface with random surface roughness. The air-water interface is described as the superposition of random, unresolved roughness on a deterministic realization of a stochastic wave surface at resolved scales. Under the geometric optics assumption, the bidirectional reflection and transmission functions for the air-water interface are approximated by applying regular perturbation methods to Snell's law and including the effects of a random surface roughness component. Formal analytical solutions to the radiative transfer problem under the small-angle scattering approximation account for the effects of scattering and absorption as light propagates through the atmosphere and water and also capture the diffusive effects due to the interaction of light with the rough material interface that separates the two optical media. Results of the analytical models are validated against Monte Carlo simulations, and the approximation to the bidirectional reflection function is also compared to another well-known analytical model. PMID:27556978

  2. A phase-field model for incoherent martensitic transformations including plastic accommodation processes in the austenite

    NASA Astrophysics Data System (ADS)

    Kundin, J.; Raabe, D.; Emmerich, H.

    2011-10-01

    If alloys undergo an incoherent martensitic transformation, then plastic accommodation and relaxation accompany the transformation. To capture these mechanisms we develop an improved 3D microelastic-plastic phase-field model. It is based on the classical concepts of phase-field modeling of microelastic problems (Chen, L.Q., Wang Y., Khachaturyan, A.G., 1992. Philos. Mag. Lett. 65, 15-23). In addition to these it takes into account the incoherent formation of accommodation dislocations in the austenitic matrix, as well as their inheritance into the martensitic plates based on the crystallography of the martensitic transformation. We apply this new phase-field approach to the butterfly-type martensitic transformation in a Fe-30 wt%Ni alloy in direct comparison to recent experimental data (Sato, H., Zaefferer, S., 2009. Acta Mater. 57, 1931-1937). It is shown that the therein proposed mechanisms of plastic accommodation during the transformation can indeed explain the experimentally observed morphology of the martensitic plates as well as the orientation between martensitic plates and the austenitic matrix. The developed phase-field model constitutes a general simulations approach for different kinds of phase transformation phenomena that inherently include dislocation based accommodation processes. The approach does not only predict the final equilibrium topology, misfit, size, crystallography, and aspect ratio of martensite-austenite ensembles resulting from a transformation, but it also resolves the associated dislocation dynamics and the distribution, and the size of the crystals itself.

  3. Mating programs including genomic relationships

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Computer mating programs have helped breeders minimize pedigree inbreeding and avoid recessive defects by mating animals with parents that have fewer common ancestors. With genomic selection, breed associations, AI organizations, and on-farm software providers could use new programs to minimize geno...

  4. Modelling and control of a microgrid including photovoltaic and wind generation

    NASA Astrophysics Data System (ADS)

    Hussain, Mohammed Touseef

    Extensive increase of distributed generation (DG) penetration and the existence of multiple DG units at distribution level have introduced the notion of micro-grid. This thesis develops a detailed non-linear and small-signal dynamic model of a microgrid that includes PV, wind and conventional small scale generation along with their power electronics interfaces and the filters. The models developed evaluate the amount of generation mix from various DGs for satisfactory steady state operation of the microgrid. In order to understand the interaction of the DGs on microgrid system initially two simpler configurations were considered. The first one consists of microalternator, PV and their electronics, and the second system consists of microalternator and wind system each connected to the power system grid. Nonlinear and linear state space model of each microgrid are developed. Small signal analysis showed that the large participation of PV/wind can drive the microgrid to the brink of unstable region without adequate control. Non-linear simulations are carried out to verify the results obtained through small-signal analysis. The role of the extent of generation mix of a composite microgrid consisting of wind, PV and conventional generation was investigated next. The findings of the smaller systems were verified through nonlinear and small signal modeling. A central supervisory capacitor energy storage controller interfaced through a STATCOM was proposed to monitor and enhance the microgrid operation. The potential of various control inputs to provide additional damping to the system has been evaluated through decomposition techniques. The signals identified to have damping contents were employed to design the supervisory control system. The controller gains were tuned through an optimal pole placement technique. Simulation studies demonstrate that the STATCOM voltage phase angle and PV inverter phase angle were the best inputs for enhanced stability boundaries.

  5. Three-layer model for the surface second-harmonic generation yield including multiple reflections

    NASA Astrophysics Data System (ADS)

    Anderson, Sean M.; Mendoza, Bernardo S.

    2016-09-01

    We present the three-layer model to calculate the surface second-harmonic generation (SSHG) yield. This model considers that the surface is represented by three regions or layers. The first layer is the vacuum region with a dielectric function ɛv(ω ) =1 from where the fundamental electric field impinges on the material. The second layer is a thin layer (ℓ ) of thickness d characterized by a dielectric function ɛℓ(ω ) , and it is in this layer where the SSHG takes place. The third layer is the bulk region denoted by b and characterized by ɛb(ω ) . Both the vacuum and bulk layers are semi-infinite. The model includes the multiple reflections of both the fundamental and the second-harmonic (SH) fields that take place at the thin layer ℓ . We obtain explicit expressions for the SSHG yield for the commonly used s and p polarizations of the incoming 1 ω and outgoing 2 ω electric fields, where no assumptions for the symmetry of the surface are made. These symmetry assumptions ultimately determine which components of the surface nonlinear second-order susceptibility tensor χ (-2 ω ;ω ,ω ) are different from zero, and thus contribute to the SSHG yield. Then, we particularize the results for the most commonly investigated surfaces, the (001), (110), and (111) crystallographic faces, taking their symmetries into account. We use the three-layer model and compare it against the experimental results of a Si(111)(1 ×1 ):H surface, as a test case, and use it to predict the SSHG yield of a Si(001)(2 ×1 ) surface.

  6. A model of force balance in Jupiter's magnetodisc including hot plasma pressure anisotropy

    NASA Astrophysics Data System (ADS)

    Nichols, J. D.; Achilleos, N.; Cowley, S. W. H.

    2015-12-01

    We present an iterative vector potential model of force balance in Jupiter's magnetodisc that includes the effects of hot plasma pressure anisotropy. The fiducial model produces results that are consistent with Galileo magnetic field and plasma data over the whole radial range of the model. The hot plasma pressure gradient and centrifugal forces dominate in the regions inward of ˜20 RJ and outward of ˜50 RJ, respectively, while for realistic values of the pressure anisotropy, the anisotropy current is either the dominant component or at least comparable with the hot plasma pressure gradient current in the region in between. With the inclusion of hot plasma pressure anisotropy, the ˜1.2 and ˜2.7° shifts in the latitudes of the main oval and Ganymede footprint, respectively, associated with variations over the observed range of the hot plasma parameter Kh, which is the product of hot pressure and unit flux tube volume, are comparable to the shifts observed in auroral images. However, the middle magnetosphere is susceptible to the firehose instability, with peak equatorial values of βh∥e-βh⊥e≃1 - 2, for Kh=2.0 - 2.5 × 107 Pa m T-1. For larger values of Kh,βh∥e-βh⊥e exceeds 2 near ˜25 RJ and the model does not converge. This suggests that small-scale plasmoid release or "drizzle" of iogenic plasma may often occur in the middle magnetosphere, thus forming a significant mode of plasma mass loss, alongside plasmoids, at Jupiter.

  7. A surplus production model including environmental effects: Application to the Senegalese white shrimp stocks

    NASA Astrophysics Data System (ADS)

    Thiaw, Modou; Gascuel, Didier; Jouffre, Didier; Thiaw, Omar Thiom

    2009-12-01

    In Senegal, two stocks of white shrimp ( Penaeusnotialis) are intensively exploited, one in the north and another in the south. We used surplus production models including environmental effects to analyse their changes in abundance over the past 10 years and to estimate their Maximum Sustainable Yield (MSY) and the related fishing effort ( EMSY). First, yearly abundance indices were estimated from commercial statistics using GLM techniques. Then, two environmental indices were alternatively tested in the model: the coastal upwelling intensity from wind speeds provided by the SeaWifs database and the primary production derived from satellite infrared images of chlorophyll a. Models were fitted, with or without the environmental effect, to the 1996-2005 time series. They express stock abundance and catches as functions of the fishing effort and the environmental index (when considered). For the northern stock, fishing effort and abundance fluctuate over the period without any clear trends. The model based on the upwelling index explains 64.9% of the year-to-year variability. It shows that the stock was slightly overexploited in 2002-2003 and is now close to full exploitation. Stock abundance strongly depends on environmental conditions; consequently, the MSY estimate varies from 300 to 900 tons according to the upwelling intensity. For the southern stock, fishing effort has strongly increased over the past 10 years, while abundance has been reduced 4-fold. The environment has a significant effect on abundance but only explains a small part of the year-to-year variability. The best fit is obtained using the primary production index ( R2 = 0.75), and the stock is now significantly overfished regardless of environmental conditions. MSY varies from 1200 to 1800 tons according to environmental conditions. Finally, in northern Senegal, the upwelling is highly variable from year to year and constitutes the major factor determining productivity. In the south, hydrodynamic

  8. Parameter Estimation of Binary Neutron Stars using an Effective One Body Model including Tidal Interaction

    NASA Astrophysics Data System (ADS)

    Rizzo, Monica; O'Shaughnessy, Richard; Bernuzzi, Sebastiano; Lackey, Benjamin

    2016-03-01

    Ground gravitational wave detectors, built to detect perturbations in spacetime, can pick up signals produced by inspiraling binary neutron stars, the remnants of the core collapse of massive stars. A new EOB model (Bernuzzi et al. 2015) simulates the inspiral and merger of binary neutron star systems, including how they are deformed due to tides. We used a Bayesian parameter estimation algorithm to infer how well a plausible gravitational wave detection would allow us to constrain this tidal deformability. We then compared our results to prior investigations (Wade et al. 2014) which employed a post-Newtonian-based approximation for the inspiral. I would like to thank the RIT Department of Physics and Astronomy, and the RIT Center for Computational Relativity and Gravitation.

  9. Three-dimensional finite difference viscoelastic wave modelling including surface topography

    NASA Astrophysics Data System (ADS)

    Hestholm, Stig

    1999-12-01

    I have undertaken 3-D finite difference (FD) modelling of seismic scattering fromfree-surface topography. Exact free-surface boundary conditions for arbitrary 3-D topographies have been derived for the particle velocities. The boundary conditions are combined with a velocity-stress formulation of the full viscoelastic wave equations. A curved grid represents the physical medium and its upper boundary represents the free-surface topography. The wave equations are numerically discretized by an eighth-order FD method on a staggered grid in space, and a leap-frog technique and the Crank-Nicholson method in time. I simulate scattering from teleseismic P waves by using plane incident wave fronts and real topography from a 60 x 60 km area that includes the NORESS array of seismic receiver stations in southeastern Norway. Synthetic snapshots and seismograms of the wavefield show clear conversion from P to Rg (short-period fundamental-mode Rayleigh) waves in areas of rough topography, which is consistent with numerous observations. By parallelization on fast supercomputers, it is possible to model higher frequencies and/or larger areas than before.

  10. 3-D FEM Modeling of fiber/matrix interface debonding in UD composites including surface effects

    NASA Astrophysics Data System (ADS)

    Pupurs, A.; Varna, J.

    2012-02-01

    Fiber/matrix interface debond growth is one of the main mechanisms of damage evolution in unidirectional (UD) polymer composites. Because for polymer composites the fiber strain to failure is smaller than for the matrix multiple fiber breaks occur at random positions when high mechanical stress is applied to the composite. The energy released due to each fiber break is usually larger than necessary for the creation of a fiber break therefore a partial debonding of fiber/matrix interface is typically observed. Thus the stiffness reduction of UD composite is contributed both from the fiber breaks and from the interface debonds. The aim of this paper is to analyze the debond growth in carbon fiber/epoxy and glass fiber/epoxy UD composites using fracture mechanics principles by calculation of energy release rate GII. A 3-D FEM model is developed for calculation of energy release rate for fiber/matrix interface debonds at different locations in the composite including the composite surface region where the stress state differs from the one in the bulk composite. In the model individual partially debonded fiber is surrounded by matrix region and embedded in a homogenized composite.

  11. The Effects of Including Observed Means or Latent Means as Covariates in Multilevel Models for Cluster Randomized Trials

    ERIC Educational Resources Information Center

    Aydin, Burak; Leite, Walter L.; Algina, James

    2016-01-01

    We investigated methods of including covariates in two-level models for cluster randomized trials to increase power to detect the treatment effect. We compared multilevel models that included either an observed cluster mean or a latent cluster mean as a covariate, as well as the effect of including Level 1 deviation scores in the model. A Monte…

  12. Including oxygen enhancement ratio in ion beam treatment planning: model implementation and experimental verification.

    PubMed

    Scifoni, E; Tinganelli, W; Weyrather, W K; Durante, M; Maier, A; Krämer, M

    2013-06-01

    We present a method for adapting a biologically optimized treatment planning for particle beams to a spatially inhomogeneous tumor sensitivity due to hypoxia, and detected e.g., by PET functional imaging. The TRiP98 code, established treatment planning system for particles, has been extended for including explicitly the oxygen enhancement ratio (OER) in the biological effect calculation, providing the first set up of a dedicated ion beam treatment planning approach directed to hypoxic tumors, TRiP-OER, here reported together with experimental tests. A simple semi-empirical model for calculating the OER as a function of oxygen concentration and dose averaged linear energy transfer, generating input tables for the program is introduced. The code is then extended in order to import such tables coming from the present or alternative models, accordingly and to perform forward and inverse planning, i.e., predicting the survival response of differently oxygenated areas as well as optimizing the required dose for restoring a uniform survival effect in the whole irradiated target. The multiple field optimization results show how the program selects the best beam components for treating the hypoxic regions. The calculations performed for different ions, provide indications for the possible clinical advantages of a multi-ion treatment. Finally the predictivity of the code is tested through dedicated cell culture experiments on extended targets irradiation using specially designed hypoxic chambers, providing a qualitative agreement, despite some limits in full survival calculations arising from the RBE assessment. The comparison of the predictions resulting by using different model tables are also reported. PMID:23681217

  13. INTERIOR MODELS OF SATURN: INCLUDING THE UNCERTAINTIES IN SHAPE AND ROTATION

    SciTech Connect

    Helled, Ravit; Guillot, Tristan

    2013-04-20

    The accurate determination of Saturn's gravitational coefficients by Cassini could provide tighter constraints on Saturn's internal structure. Also, occultation measurements provide important information on the planetary shape which is often not considered in structure models. In this paper we explore how wind velocities and internal rotation affect the planetary shape and the constraints on Saturn's interior. We show that within the geodetic approach the derived physical shape is insensitive to the assumed deep rotation. Saturn's re-derived equatorial and polar radii at 100 mbar are found to be 54,445 {+-} 10 km and 60,365 {+-} 10 km, respectively. To determine Saturn's interior, we use one-dimensional three-layer hydrostatic structure models and present two approaches to include the constraints on the shape. These approaches, however, result in only small differences in Saturn's derived composition. The uncertainty in Saturn's rotation period is more significant: with Voyager's 10{sup h}39{sup m} period, the derived mass of heavy elements in the envelope is 0-7 M{sub Circled-Plus }. With a rotation period of 10{sup h}32{sup m}, this value becomes <4 M{sub Circled-Plus }, below the minimum mass inferred from spectroscopic measurements. Saturn's core mass is found to depend strongly on the pressure at which helium phase separation occurs, and is estimated to be 5-20 M{sub Circled-Plus }. Lower core masses are possible if the separation occurs deeper than 4 Mbar. We suggest that the analysis of Cassini's radio occultation measurements is crucial to test shape models and could lead to constraints on Saturn's rotation profile and departures from hydrostatic equilibrium.

  14. Cultivating Knowledge Sharing through the Relationship Management Maturity Model

    ERIC Educational Resources Information Center

    Martin, Valerie A.; Hatzakis, Tally; Lycett, Mark; Macredie, Robert

    2005-01-01

    Purpose: The purpose of this paper is to present the development of the relationship management maturity model (RMMM), the output of an initiative aimed at bridging the gap between business units and the IT organisation. It does this through improving and assessing knowledge sharing between business and IT staff in Finco, a large financial…

  15. Modeling the Relationships between Subdimensions of Environmental Literacy

    ERIC Educational Resources Information Center

    Genc, Murat; Akilli, Mustafa

    2016-01-01

    The aim of this study is to demonstrate the relationships between subdimensions of environmental literacy using Structural Equation Modeling (SEM). The study was conducted by the analysis of students' answers to questionnaires data using SEM. Initially, Kaiser-Meyer-Olkin and Bartlett's tests were done to test appropriateness of subdimensions to…

  16. The Relationships Between Modelling and Argumentation from the Perspective of the Model of Modelling Diagram

    NASA Astrophysics Data System (ADS)

    Cardoso Mendonça, Paula Cristina; Justi, Rosária

    2013-09-01

    Some studies related to the nature of scientific knowledge demonstrate that modelling is an inherently argumentative process. This study aims at discussing the relationship between modelling and argumentation by analysing data collected during the modelling-based teaching of ionic bonding and intermolecular interactions. The teaching activities were planned from the transposition of the main modelling stages that constitute the 'Model of Modelling Diagram' so that students could experience each of such stages. All the lessons were video recorded and their transcriptions supported the elaboration of case studies for each group of students. From the analysis of the case studies, we identified argumentative situations when students performed all of the modelling stages. Our data show that the argumentative situations were related to sense making, articulating and persuasion purposes, and were closely related to the generation of explanations in the modelling processes. They also show that representations are important resources for argumentation. Our results are consistent with some of those already reported in the literature regarding the relationship between modelling and argumentation, but are also divergent when they show that argumentation is not only related to the model evaluation phase.

  17. Relationship duration moderates associations between attachment and relationship quality: meta-analytic support for the temporal adult romantic attachment model.

    PubMed

    Hadden, Benjamin W; Smith, C Veronica; Webster, Gregory D

    2014-02-01

    Although research has examined associations between attachment dimensions and relationship outcomes, theory has ignored how these associations change over time in adult romantic relationships. We proposed the Temporal Adult Romantic Attachment (TARA) model, which predicts that the negative associations between anxious and avoidant attachment on one hand and relationship satisfaction and commitment on the other will be more negative as relationship durations increase. Meta-analyses largely confirmed that negative associations between both insecure attachment dimensions and both relationship outcomes were more negative among longer relationship durations in cross-sectional samples. We also explored gender differences in these associations. The present review not only integrates the literature on adult attachment and romantic relationship satisfaction/commitment but also highlights the importance of relationship duration as a key moderator of the associations among these variables. We discuss the broad implications of these effects and our meta-analytic findings for the TARA model, attachment theory, and romantic relationships.

  18. Power Calculations for General Linear Multivariate Models Including Repeated Measures Applications.

    PubMed

    Muller, Keith E; Lavange, Lisa M; Ramey, Sharon Landesman; Ramey, Craig T

    1992-12-01

    Recently developed methods for power analysis expand the options available for study design. We demonstrate how easily the methods can be applied by (1) reviewing their formulation and (2) describing their application in the preparation of a particular grant proposal. The focus is a complex but ubiquitous setting: repeated measures in a longitudinal study. Describing the development of the research proposal allows demonstrating the steps needed to conduct an effective power analysis. Discussion of the example also highlights issues that typically must be considered in designing a study. First, we discuss the motivation for using detailed power calculations, focusing on multivariate methods in particular. Second, we survey available methods for the general linear multivariate model (GLMM) with Gaussian errors and recommend those based on F approximations. The treatment includes coverage of the multivariate and univariate approaches to repeated measures, MANOVA, ANOVA, multivariate regression, and univariate regression. Third, we describe the design of the power analysis for the example, a longitudinal study of a child's intellectual performance as a function of mother's estimated verbal intelligence. Fourth, we present the results of the power calculations. Fifth, we evaluate the tradeoffs in using reduced designs and tests to simplify power calculations. Finally, we discuss the benefits and costs of power analysis in the practice of statistics. We make three recommendations: Align the design and hypothesis of the power analysis with the planned data analysis, as best as practical.Embed any power analysis in a defensible sensitivity analysis.Have the extent of the power analysis reflect the ethical, scientific, and monetary costs. We conclude that power analysis catalyzes the interaction of statisticians and subject matter specialists. Using the recent advances for power analysis in linear models can further invigorate the interaction. PMID:24790282

  19. Relationship between X(5) models and the interacting boson model

    SciTech Connect

    Barea, Jose; Arias, Jose M.; Garcia-Ramos, Jose Enrique

    2010-08-15

    The connections between the X(5) models [the original X(5) using an infinite square well, X(5)-{beta}{sup 8}, X(5)-{beta}{sup 6}, X(5)-{beta}{sup 4}, and X(5)-{beta}{sup 2}], based on particular solutions of the geometrical Bohr Hamiltonian with harmonic potential in the {gamma} degree of freedom, and the interacting boson model (IBM) are explored. This work is the natural extension of the work presented in Garcia-Ramos and Arias, Phys. Rev. C 77, 054307 (2008) for the E(5) models. For that purpose, a quite general one- and two-body IBM Hamiltonian is used and a numerical fit to the different X(5) model energies is performed; then the obtained wave functions are used to calculate B(E2) transition rates. It is shown that within the IBM one can reproduce well the results for energies and B(E2) transition rates obtained with all these X(5) models, although the agreement is not so impressive as for the E(5) models. From the fitted IBM parameters the corresponding energy surface can be extracted and, surprisingly, only the X(5) case corresponds in the moderately large N limit to an energy surface very close to the one expected for a critical point, whereas the rest of models are situated a little further away.

  20. Modeling climate-wildfire relationships in Southern California

    NASA Astrophysics Data System (ADS)

    Jin, Y.; Randerson, J. T.; Goulden, M.; Faivre, N. R.; Capps, S. B.; Hall, A. D.

    2012-12-01

    Southern California has experienced a series of extraordinarily large and destructive fires over the past decade. Whether fire weather or fuels are the dominant controls for Southern California's fires is still an on-going debate. We here consider the larger picture of wildfire for the entire region and for the past 50 years of fire history. The data used for statistical analysis include monthly precipitation and temperature from PRISM, daily relative humidity and wind speed from a multi-decade reconstruction of climate with MM5 from 1959 to 2007, and California's Fire and Resource Assessment Program (FRAP) historical fire perimeters. 57% of fires occurred in summer (JJA), accounting for 38% of burned area on average. The cumulative precipitation from three previous water years is highly correlated with the number of fires in summer. Relative humidity and temperature, however, explain the most interannual variations in summer burned area. About 49% of burned areas occurred during Santa Ana (SA) events, among which 92% occurred in fall from September to November. Relative humidity during Santa Ana events controls the interannual SA-associated burned areas; number of Santa Ana days and wind speed play additional roles. We built empirical models for both number of fires and burned areas for non-SA and SA fires in summer and fall, respectively. The correlation coefficients between the predicted number of fires and the observations are approximately 0.7. The performance of the statistical model for the burned area is slightly lower. Our results on the contemporary relationships between fire and climate will reduce the uncertainty of predictions of climate change impacts on future fire occurrence and severity.

  1. A Thermal Evolution Model of the Earth Including the Biosphere, Continental Growth and Mantle Hydration

    NASA Astrophysics Data System (ADS)

    Höning, D.; Spohn, T.

    2014-12-01

    By harvesting solar energy and converting it to chemical energy, photosynthetic life plays an important role in the energy budget of Earth [2]. This leads to alterations of chemical reservoirs eventually affecting the Earth's interior [4]. It further has been speculated [3] that the formation of continents may be a consequence of the evolution life. A steady state model [1] suggests that the Earth without its biosphere would evolve to a steady state with a smaller continent coverage and a dryer mantle than is observed today. We present a model including (i) parameterized thermal evolution, (ii) continental growth and destruction, and (iii) mantle water regassing and outgassing. The biosphere enhances the production rate of sediments which eventually are subducted. These sediments are assumed to (i) carry water to depth bound in stable mineral phases and (ii) have the potential to suppress shallow dewatering of the underlying sediments and crust due to their low permeability. We run a Monte Carlo simulation for various initial conditions and treat all those parameter combinations as success which result in the fraction of continental crust coverage observed for present day Earth. Finally, we simulate the evolution of an abiotic Earth using the same set of parameters but a reduced rate of continental weathering and erosion. Our results suggest that the origin and evolution of life could have stabilized the large continental surface area of the Earth and its wet mantle, leading to the relatively low mantle viscosity we observe at present. Without photosynthetic life on our planet, the Earth would be geodynamical less active due to a dryer mantle, and would have a smaller fraction of continental coverage than observed today. References[1] Höning, D., Hansen-Goos, H., Airo, A., Spohn, T., 2014. Biotic vs. abiotic Earth: A model for mantle hydration and continental coverage. Planetary and Space Science 98, 5-13. [2] Kleidon, A., 2010. Life, hierarchy, and the

  2. Quantifying the Earthquake Clustering that Independent Sources with Stationary Rates (as Included in Current Risk Models) Can Produce.

    NASA Astrophysics Data System (ADS)

    Fitzenz, D. D.; Nyst, M.; Apel, E. V.; Muir-Wood, R.

    2014-12-01

    The recent Canterbury earthquake sequence (CES) renewed public and academic awareness concerning the clustered nature of seismicity. Multiple event occurrence in short time and space intervals is reminiscent of aftershock sequences, but aftershock is a statistical definition, not a label one can give an earthquake in real-time. Aftershocks are defined collectively as what creates the Omori event rate decay after a large event or are defined as what is taken away as "dependent events" using a declustering method. It is noteworthy that depending on the declustering method used on the Canterbury earthquake sequence, the number of independent events varies a lot. This lack of unambiguous definition of aftershocks leads to the need to investigate the amount of clustering inherent in "declustered" risk models. This is the task we concentrate on in this contribution. We start from a background source model for the Canterbury region, in which 1) centroids of events of given magnitude are distributed using a latin-hypercube lattice, 2) following the range of preferential orientations determined from stress maps and focal mechanism, 3) with length determined using the local scaling relationship and 4) rates from a and b values derived from the declustered pre-2010 catalog. We then proceed to create tens of thousands of realizations of 6 to 20 year periods, and we define criteria to identify which successions of events in the region would be perceived as a sequence. Note that the spatial clustering expected is a lower end compared to a fully uniform distribution of events. Then we perform the same exercise with rates and b-values determined from the catalog including the CES. If the pre-2010 catalog was long (or rich) enough, then the computed "stationary" rates calculated from it would include the CES declustered events (by construction, regardless of the physical meaning of or relationship between those events). In regions of low seismicity rate (e.g., Canterbury before

  3. Numerical modelling of seawater intrusion in Shenzhen (China) using a 3D density-dependent model including tidal effects

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Yang, Qingchun; Martín, Jordi D.; Juncosa, Ricardo

    2013-04-01

    During the 1990s, groundwater overexploitation has resulted in seawater intrusion in the coastal aquifer of the Shenzhen city, China. Although water supply facilities have been improved and alleviated seawater intrusion in recent years, groundwater overexploitation is still of great concern in some local areas. In this work we present a three-dimensional density-dependent numerical model developed with the FEFLOW code, which is aimed at simulating the extent of seawater intrusion while including tidal effects and different groundwater pumping scenarios. Model calibration, using waterheads and reported chloride concentration, has been performed based on the data from 14 boreholes, which were monitored from May 2008 to December 2009. A fairly good fitness between the observed and computed values was obtained by a manual trial-and-error method. Model prediction has been carried out forward 3 years with the calibrated model taking into account high, medium and low tide levels and different groundwater exploitation schemes. The model results show that tide-induced seawater intrusion significantly affects the groundwater levels and concentrations near the estuarine of the Dasha river, which implies that an important hydraulic connection exists between this river and groundwater, even considering that some anti-seepage measures were taken in the river bed. Two pumping scenarios were considered in the calibrated model in order to predict the future changes in the water levels and chloride concentration. The numerical results reveal a decreased tendency of seawater intrusion if groundwater exploitation does not reach an upper bound of about 1.32 × 104 m3/d. The model results provide also insights for controlling seawater intrusion in such coastal aquifer systems.

  4. Including Overweight or Obese Students in Physical Education: A Social Ecological Constraint Model

    ERIC Educational Resources Information Center

    Li, Weidong; Rukavina, Paul

    2012-01-01

    In this review, we propose a social ecological constraint model to study inclusion of overweight or obese students in physical education by integrating key concepts and assumptions from ecological constraint theory in motor development and social ecological models in health promotion and behavior. The social ecological constraint model proposes…

  5. Examining the relationship between school district size and science achievement in Texas including rural school administrator perceptions of challenges and solutions

    NASA Astrophysics Data System (ADS)

    Mann, Matthew James

    Rural and small schools have almost one-third of all public school enrollment in America, yet typically have the fewest financial and research based resources. Educational models have been developed with either the urban or suburban school in mind, and the rural school is often left with no other alternative except this paradigm. Rural based educational resources are rare and the ability to access these resources for rural school districts almost non-existent. Federal and state based education agencies provide some rural educational based programs, but have had virtually no success in answering rural school issues. With federal and state interest in science initiatives, the challenge that rural schools face weigh in. To align with that focus, this study examined Texas middle school student achievement in science and its relationship with school district enrollment size. This study involved a sequential transformative mixed methodology with the quantitative phase driving the second qualitative portion. The quantitative research was a non-experimental causal-comparative study conducted to determine whether there is a significant difference between student achievement on the 2010 Texas Assessment of Knowledge and Skills 8 th grade science results and school district enrollment size. The school districts were distributed into four categories by size including: a) small districts (32-550); b) medium districts (551-1500); c) large districts (1501-6000); and d) mega-sized districts (6001-202,773). A one-way analysis of variance (ANOVA) was conducted to compare the district averages from the 2010 TAKS 8th grade science assessment results and the four district enrollment groups. The second phase of the study was qualitative utilizing constructivism and critical theory to identify the issues facing rural and small school administrators concerning science based curriculum and development. These themes and issues were sought through a case study method and through use of semi

  6. Extending Galactic Habitable Zone Modelling to Include the Emergence of Intelligent Life

    NASA Astrophysics Data System (ADS)

    Morrison, I. S.; Gowanlock, M. G.

    2014-03-01

    Previous studies of the Galactic Habitable Zone (GHZ) have been concerned with identifying those regions of the Galaxy that may favour the emergence of "complex life" - typically defined to be land-based life. A planet is deemed "habitable" if it meets a set of assumed criteria for supporting the emergence of such complex life. The notion of the GHZ, and the premise that sufficient chemical evolution is required for planet formation, was quantified by Gonzalez et al. (2001). This work was later broadened to include dangers to the formation and habitability of terrestrial planets by Lineweaver et al. (2004) and then studied using a Monte Carlo simulation on the resolution of individual stars in the previous work of Gowanlock et al. (2011). The model developed in the latter work considers the stellar number density distribution and formation history of the Galaxy, planet formation mechanisms and the hazards to planetary biospheres as a result of supernova sterilization events that take place in the vicinity of the planets. Based on timescales taken from the origin and evolution of complex life on Earth, the model suggests large numbers of potentially habitable planets exist in our Galaxy, with the greatest concentration likely being towards the inner Galaxy. In this work we extend the assessment of habitability to consider the potential for life to further evolve on habitable planets to the point of intelligence - which we term the propensity for the emergence of intelligent life. We assume the propensity is strongly influenced by the time durations available for evolutionary processes to proceed undisturbed by the "resetting" effect of nearby supernovae. The model of Gowanlock et al. (2011) is used to produce a representative population of habitable planets by matching major observable properties of the Milky Way. Account is taken of the birth and death dates of each habitable planet and the timing of supernova events in each planet's vicinity. The times between

  7. Detecting relationships between physiological variables using graphical models.

    PubMed Central

    Imhoff, Michael; Fried, Ronald; Gather, Ursula

    2002-01-01

    In intensive care physiological variables of the critically ill are measured and recorded in short time intervals. The proper extraction and interpretation of the information contained in this flood of information can hardly be done by experience alone. Intelligent alarm systems are needed to provide suitable bedside decision support. So far there is no commonly accepted standard for detecting the actual clinical state from the patient record. We use the statistical methodology of graphical models based on partial correlations for detecting time-varying relationships between physiological variables. Graphical models provide information on the relationships among physiological variables that is helpful e.g. for variable selection. Separate analyses for different pathophysiological states show that distinct clinical states are characterized by distinct partial correlation structures. Hence, this technique can provide new insights into physiological mechanisms. PMID:12463843

  8. Evaluation of an Impedance Model for Perforates Including the Effect of Bias Flow

    NASA Technical Reports Server (NTRS)

    Betts, J. F.; Follet, J. I.; Kelly, J. J.; Thomas, R. H.

    2000-01-01

    A new bias flow impedance model is developed for perforated plates from basic principles using as little empiricisms as possible. A quality experimental database was used to determine the predictive validity of the model. Results show that the model performs better for higher (15%) rather than lower (5%) percent open area (POA) samples. Based on the least squares ratio of numerical vs. experimental results, model predictions were on average within 20% and 30% for the higher and lower (POA), respectively. It is hypothesized on the work of other investigators that at lower POAs the higher fluid velocities in the perforate's orifices start forming unsteady vortices, which is not accounted for in our model. The numerical model, in general also underpredicts the experiments. It is theorized that the actual acoustic C(sub D) is lower than the measured raylometer C(sub D) used in the model. Using a larger C(sub D) makes the numerical model predict lower impedances. The frequency domain model derived in this paper shows very good agreement with another model derived using a time domain approach.

  9. [Relationship between two models of personality in old individuals].

    PubMed

    Calvet, Benjamin; Bricaud, Magali; Clément, Jean-Pierre

    2014-12-01

    The relationships between the seven dimensions of the Cloninger psychobiological model and the five factors of the Costa and McCrae model were examined in 54 elderly subjects from the French general population. The dimensions of temperament (novelty seeking, harm avoidance, reward dependence) and character (determination, cooperation, transcendence) from the Cloninger's model were measured by the temperament and character inventory whereas the five factors of Costa and McCrae model (neuroticism, extraversion, openness to experience, agreeableness and conscientiousness) were evaluated using the NEO PI-R. Multiple regression analyses show that some dimensions of the temperament and character inventory predict some dimensions of the Big five and vice versa. Therefore we suggest that the Big five model could be related to brain monoaminergic activities.

  10. Extension of an atmospheric dispersion model to include building wake effects

    SciTech Connect

    Weil, J.C.; Brower, R.P.; Corio, L.A.

    1999-07-01

    A modification to a dispersion model for the convective boundary layer (CBL) is proposed to deal with stack sources located on or near buildings and affected by the turbulent wake of the building. Wake effects are greatest within the near wake or cavity region close to the building. The approach is to combine an earlier wake model with the CBL model such that the appropriate concentration and dispersion limits are satisfied at short, intermediate, and large downwind distances.

  11. Threshold voltage model of junctionless cylindrical surrounding gate MOSFETs including fringing field effects

    NASA Astrophysics Data System (ADS)

    Gupta, Santosh Kumar

    2015-12-01

    2D Analytical model of the body center potential (BCP) in short channel junctionless Cylindrical Surrounding Gate (JLCSG) MOSFETs is developed using evanescent mode analysis (EMA). This model also incorporates the gate bias dependent inner and outer fringing capacitances due to the gate-source/drain fringing fields. The developed model provides results in good agreement with simulated results for variations of different physical parameters of JLCSG MOSFET viz. gate length, channel radius, doping concentration, and oxide thickness. Using the BCP, an analytical model for the threshold voltage has been derived and validated against results obtained from 3D device simulator.

  12. A New Finite-Conductivity Droplet Evaporation Model Including Liquid Turbulence Effect

    NASA Technical Reports Server (NTRS)

    Balasubramanyam, M. S.; Chen, C. P.; Trinh, H. P.

    2006-01-01

    A new approach to account for finite thermal conductivity and turbulence effects within atomizing droplets of an evaporating spray is presented in this paper. The model is an extension of the T-blob and T-TAB atomization/spray model of Trinh and Chen [9]. This finite conductivity model is based on the two-temperature film theory in which the turbulence characteristics of the droplet are used to estimate the effective thermal diffusivity for the liquid-side film thickness. Both one-way and two-way coupled calculations were performed to investigate the performance cf this model against the published experimental data.

  13. A Conceptual Model of Training Transfer that Includes the Physical Environment

    ERIC Educational Resources Information Center

    Hillsman, Terron L.; Kupritz, Virginia W.

    2007-01-01

    The study presents the physical environment as an emerging factor impacting training transfer and proposes to position this variable in the Baldwin and Ford (1988) model of the training transfer process. The amended model positions workplace design, one element of the physical environment, as a part of organizational context in the work…

  14. Thermal modeling of phase change solidification in thermal control devices including natural convection effects

    NASA Technical Reports Server (NTRS)

    Ukanwa, A. O.; Stermole, F. J.; Golden, J. O.

    1972-01-01

    Natural convection effects in phase change thermal control devices were studied. A mathematical model was developed to evaluate natural convection effects in a phase change test cell undergoing solidification. Although natural convection effects are minimized in flight spacecraft, all phase change devices are ground tested. The mathematical approach to the problem was to first develop a transient two-dimensional conduction heat transfer model for the solidification of a normal paraffin of finite geometry. Next, a transient two-dimensional model was developed for the solidification of the same paraffin by a combined conduction-natural-convection heat transfer model. Throughout the study, n-hexadecane (n-C16H34) was used as the phase-change material in both the theoretical and the experimental work. The models were based on the transient two-dimensional finite difference solutions of the energy, continuity, and momentum equations.

  15. Modeling Shock Propagation to the Outer Heliosphere Including Heat Flux and Pickup Protons

    NASA Astrophysics Data System (ADS)

    Detman, T. R.; Intriligator, D. S.; Dryer, M.; Sun, W.; Deehr, C. S.; Intriligator, J.

    2012-12-01

    We compare different models of solar wind heat flux in the distant heliosphere in the context of simulating the propagation of the strong Halloween 2003 solar events to ACE, Ulysses, Cassini, and Voyager 2. We will modify our time-dependent, 3D MHD Hybrid Heliospheric Modeling System with Pickup Ions, HHMS-PI (Detman, et al.,JGR, 2011; Intriligator, et al., JGR, 2012) by installing an approximation of the Hollweg Collisionless Electron Heat Flux model (Hollweg, JGR, 1976). We evaluate each simulation against observations at ACE, Ulysses, and Voyager 2. We will compare results from HHMS-PI with heat flux against our previous results. We then plan to make similar comparisons with other heat flux models, e.g. the model based on field magnitude by Scime, et al., (JGR, 1995).

  16. A Sheath Model for Negative Ion Sources Including the Formation of a Virtual Cathode

    SciTech Connect

    McAdams, R.; King, D. B.; Surrey, E.

    2011-09-26

    A one dimensional model of the sheath between the plasma and the wall in a negative ion source has been developed. The plasma consists of positive ions, electrons and negative ions. The model takes into account the emission of negative ions from the wall into the sheath and thus represents the conditions in a caesiated ion source with surface production of negative ions. At high current densities of the emitted negative ions, the sheath is unable to support the transport of all the negative ions to the plasma and a virtual cathode is formed. This model takes this into account and allows the calculation of the transported negative ions across the sheath with the virtual cathode. The model has been extended to allow the linkage between plasma conditions at the sheath edge and the plasma to be made. Comparisons are made between the results of the model and experimental measurements.

  17. Simulated village locations in Thailand: A multi-scale model including a neural network approach

    PubMed Central

    Malanson, George P.; Entwisle, Barbara

    2010-01-01

    The simulation of rural land use systems, in general, and rural settlement dynamics in particular has developed with synergies of theory and methods for decades. Three current issues are: linking spatial patterns and processes, representing hierarchical relations across scales, and considering nonlinearity to address complex non-stationary settlement dynamics. We present a hierarchical simulation model to investigate complex rural settlement dynamics in Nang Rong, Thailand. This simulation uses sub-models to allocate new villages at three spatial scales. Regional and sub-regional models, which involve a nonlinear space-time autoregressive model implemented in a neural network approach, determine the number of new villages to be established. A dynamic village niche model, establishing pattern-process link, was designed to enable the allocation of villages into specific locations. Spatiotemporal variability in model performance indicates the pattern of village location changes as a settlement frontier advances from rice-growing lowlands to higher elevations. Experiments results demonstrate this simulation model can enhance our understanding of settlement development in Nang Rong and thus gain insight into complex land use systems in this area. PMID:21399748

  18. Measuring and modeling the lifetime of nitrous oxide including its variability

    NASA Astrophysics Data System (ADS)

    Prather, Michael J.; Hsu, Juno; DeLuca, Nicole M.; Jackman, Charles H.; Oman, Luke D.; Douglass, Anne R.; Fleming, Eric L.; Strahan, Susan E.; Steenrod, Stephen D.; Søvde, O. Amund; Isaksen, Ivar S. A.; Froidevaux, Lucien; Funke, Bernd

    2015-06-01

    The lifetime of nitrous oxide, the third-most-important human-emitted greenhouse gas, is based to date primarily on model studies or scaling to other gases. This work calculates a semiempirical lifetime based on Microwave Limb Sounder satellite measurements of stratospheric profiles of nitrous oxide, ozone, and temperature; laboratory cross-section data for ozone and molecular oxygen plus kinetics for O(1D); the observed solar spectrum; and a simple radiative transfer model. The result is 116 ± 9 years. The observed monthly-to-biennial variations in lifetime and tropical abundance are well matched by four independent chemistry-transport models driven by reanalysis meteorological fields for the period of observation (2005-2010), but all these models overestimate the lifetime due to lower abundances in the critical loss region near 32 km in the tropics. These models plus a chemistry-climate model agree on the nitrous oxide feedback factor on its own lifetime of 0.94 ± 0.01, giving N2O perturbations an effective residence time of 109 years. Combining this new empirical lifetime with model estimates of residence time and preindustrial lifetime (123 years) adjusts our best estimates of the human-natural balance of emissions today and improves the accuracy of projected nitrous oxide increases over this century.

  19. Modeling the development of biofilm density including active bacteria, inert biomass, and extracellular polymeric substances.

    PubMed

    Laspidou, Chrysi S; Rittmann, Bruce E

    2004-01-01

    We present the unified multi-component cellular automaton (UMCCA) model, which predicts quantitatively the development of the biofilm's composite density for three biofilm components: active bacteria, inert or dead biomass, and extracellular polymeric substances. The model also describes the concentrations of three soluble organic components (soluble substrate and two types of soluble microbial products) and oxygen. The UMCCA model is a hybrid discrete-differential mathematical model and introduces the novel feature of biofilm consolidation. Our hypothesis is that the fluid over the biofilm creates pressures and vibrations that cause the biofilm to consolidate, or pack itself to a higher density over time. Each biofilm compartment in the model output consolidates to a different degree that depends on the age of its biomass. The UMCCA model also adds a cellular automaton algorithm that identifies the path of least resistance and directly moves excess biomass along that path, thereby ensuring that the excess biomass is distributed efficiently. A companion paper illustrates the trends that the UMCCA model is able to represent and shows a comparison with experimental results. PMID:15276752

  20. A feedback model for leukemia including cell competition and the action of the immune system

    NASA Astrophysics Data System (ADS)

    Balea, S.; Halanay, A.; Neamtu, M.

    2014-12-01

    A mathematical model, coupling the dynamics of short-term stem-like cells and mature leukocytes in leukemia with that of the immune system, is investigated. The model is described by a system of nine delay differential equations with nine delays. Three equilibrium points E0, E1, E2 are highlighted. The stability and the existence of the Hopf bifurcation for the equilibrium points are investigated. In the analysis of the model, the rate of asymmetric division and the rate of symmetric division are very important.

  1. A Model for Predicting Grain Boundary Cracking in Polycrystalline Viscoplastic Materials Including Scale Effects

    SciTech Connect

    Allen, D.H.; Helms, K.L.E.; Hurtado, L.D.

    1999-04-06

    A model is developed herein for predicting the mechanical response of inelastic crystalline solids. Particular emphasis is given to the development of microstructural damage along grain boundaries, and the interaction of this damage with intragranular inelasticity caused by dislocation dissipation mechanisms. The model is developed within the concepts of continuum mechanics, with special emphasis on the development of internal boundaries in the continuum by utilizing a cohesive zone model based on fracture mechanics. In addition, the crystalline grains are assumed to be characterized by nonlinear viscoplastic mechanical material behavior in order to account for dislocation generation and migration. Due to the nonlinearities introduced by the crack growth and viscoplastic constitution, a numerical algorithm is utilized to solve representative problems. Implementation of the model to a finite element computational algorithm is therefore briefly described. Finally, sample calculations are presented for a polycrystalline titanium alloy with particular focus on effects of scale on the predicted response.

  2. An accurate simulation model for single-photon avalanche diodes including important statistical effects

    NASA Astrophysics Data System (ADS)

    Qiuyang, He; Yue, Xu; Feifei, Zhao

    2013-10-01

    An accurate and complete circuit simulation model for single-photon avalanche diodes (SPADs) is presented. The derived model is not only able to simulate the static DC and dynamic AC behaviors of an SPAD operating in Geiger-mode, but also can emulate the second breakdown and the forward bias behaviors. In particular, it considers important statistical effects, such as dark-counting and after-pulsing phenomena. The developed model is implemented using the Verilog-A description language and can be directly performed in commercial simulators such as Cadence Spectre. The Spectre simulation results give a very good agreement with the experimental results reported in the open literature. This model shows a high simulation accuracy and very fast simulation rate.

  3. The Dynamic Modelling of a Spur Gear in Mesh Including Friction and a Crack

    NASA Astrophysics Data System (ADS)

    Howard, Ian; Jia, Shengxiang; Wang, Jiande

    2001-09-01

    To improve the current generation of diagnostic techniques, many researchers are actively developing advanced dynamic models of gear case vibration to ascertain the effect of different types of gear train damage. This paper details a simplified gear dynamic model aimed at exploring the effect of friction on the resultant gear case vibration. The model incorporates the effect of variations in gear tooth torsional mesh stiffness, developed using finite element analysis, as the gears mesh together. The method of introducing the frictional force between teeth into the dynamic equations is given. The comparison between the results with friction and without friction was investigated using Matlab and Simulink models developed from the differential equations. The effects the single tooth crack has on the frequency spectrum and on the common diagnostic functions of the resulting gearbox component vibrations are also shown.

  4. Global warming in a coupled climate model including oceanic eddy-induced advection

    NASA Astrophysics Data System (ADS)

    Hirst, Anthony C.; Gordon, Hal B.; O'Farrell, Siobhan P.

    The Gent and McWilliams (GM) parameterization for large-scale water transport caused by mesoscale oceanic eddies is introduced into the oceanic component of a global coupled ocean-atmosphere model. Parallel simulations with and without the GM scheme are performed to examine the effect of this parameterization on model behavior under constant atmospheric CO2 and on the model response to increasing CO2. The control (constant CO2) runs show substantial differences in the oceanic stratification and extent of convection, similar to differences found previously using uncoupled ocean models. The transient (increasing CO2) runs show moderate differences in the rate of oceanic heat sequestration (less in the GM case), as expected based on passive tracer uptake studies. However, the surface warming is weaker in the GM case, especially over the Southern Ocean, which is contrary to some recent supposition. Reasons for the reduced warming in the GM case are discussed.

  5. Progress in turbulence modeling for complex flow fields including effects of compressibility

    NASA Technical Reports Server (NTRS)

    Wilcox, D. C.; Rubesin, M. W.

    1980-01-01

    Two second-order-closure turbulence models were devised that are suitable for predicting properties of complex turbulent flow fields in both incompressible and compressible fluids. One model is of the "two-equation" variety in which closure is accomplished by introducing an eddy viscosity which depends on both a turbulent mixing energy and a dissipation rate per unit energy, that is, a specific dissipation rate. The other model is a "Reynolds stress equation" (RSE) formulation in which all components of the Reynolds stress tensor and turbulent heat-flux vector are computed directly and are scaled by the specific dissipation rate. Computations based on these models are compared with measurements for the following flow fields: (a) low speed, high Reynolds number channel flows with plane strain or uniform shear; (b) equilibrium turbulent boundary layers with and without pressure gradients or effects of compressibility; and (c) flow over a convex surface with and without a pressure gradient.

  6. A 1D coupled Schroedinger drift-diffusion model including collisions

    SciTech Connect

    Baro, M. . E-mail: baro@wias-berlin.de; Abdallah, N. Ben . E-mail: naoufel@mip.ups-tlse.fr; Degond, P. . E-mail: degond@mip.ups-tlse.fr; El Ayyadi, A. . E-mail: elayyadi@mathematik.uni-mainz.de

    2005-02-10

    We consider a one-dimensional coupled stationary Schroedinger drift-diffusion model for quantum semiconductor device simulations. The device domain is decomposed into a part with large quantum effects (quantum zone) and a part where quantum effects are negligible (classical zone). We give boundary conditions at the classic-quantum interface which are current preserving. Collisions within the quantum zone are introduced via a Pauli master equation. To illustrate the validity we apply the model to three resonant tunneling diodes.

  7. Accurate and efficient modeling of global seismic wave propagation for an attenuative Earth model including the center

    NASA Astrophysics Data System (ADS)

    Toyokuni, Genti; Takenaka, Hiroshi

    2012-06-01

    We propose a method for modeling global seismic wave propagation through an attenuative Earth model including the center. This method enables accurate and efficient computations since it is based on the 2.5-D approach, which solves wave equations only on a 2-D cross section of the whole Earth and can correctly model 3-D geometrical spreading. We extend a numerical scheme for the elastic waves in spherical coordinates using the finite-difference method (FDM), to solve the viscoelastodynamic equation. For computation of realistic seismic wave propagation, incorporation of anelastic attenuation is crucial. Since the nature of Earth material is both elastic solid and viscous fluid, we should solve stress-strain relations of viscoelastic material, including attenuative structures. These relations represent the stress as a convolution integral in time, which has had difficulty treating viscoelasticity in time-domain computation such as the FDM. However, we now have a method using so-called memory variables, invented in the 1980s, followed by improvements in Cartesian coordinates. Arbitrary values of the quality factor (Q) can be incorporated into the wave equation via an array of Zener bodies. We also introduce the multi-domain, an FD grid of several layers with different grid spacings, into our FDM scheme. This allows wider lateral grid spacings with depth, so as not to perturb the FD stability criterion around the Earth center. In addition, we propose a technique to avoid the singularity problem of the wave equation in spherical coordinates at the Earth center. We develop a scheme to calculate wavefield variables on this point, based on linear interpolation for the velocity-stress, staggered-grid FDM. This scheme is validated through a comparison of synthetic seismograms with those obtained by the Direct Solution Method for a spherically symmetric Earth model, showing excellent accuracy for our FDM scheme. As a numerical example, we apply the method to simulate seismic

  8. Including sugar cane in the agro-ecosystem model ORCHIDEE-STICS: calibration and validation

    NASA Astrophysics Data System (ADS)

    Valade, A.; Vuichard, N.; Ciais, P.; Viovy, N.

    2011-12-01

    Sugarcane is currently the most efficient bioenergy crop with regards to the energy produced per hectare. With approximately half the global bioethanol production in 2005, and a devoted land area expected to expand globally in the years to come, sugar cane is at the heart of the biofuel debate. Dynamic global vegetation models coupled with agronomical models are powerful and novel tools to tackle many of the environmental issues related to biofuels if they are carefully calibrated and validated against field observations. Here we adapt the agro-terrestrial model ORCHIDEE-STICS for sugar cane simulations. Observation data of LAI are used to evaluate the sensitivity of the model to parameters of nitrogen absorption and phenology, which are calibrated in a systematic way for six sites in Australia and La Reunion. We find that the optimal set of parameters is highly dependent on the sites' characteristics and that the model can reproduce satisfactorily the evolution of LAI. This careful calibration of ORCHIDEE-STICS for sugar cane biomass production for different locations and technical itineraries provides a strong basis for further analysis of the impacts of bioenergy-related land use change on carbon cycle budgets. As a next step, a sensitivity analysis is carried out to estimate the uncertainty of the model in biomass and carbon flux simulation due to its parameterization.

  9. Large Eddy simulation of turbulence: A subgrid scale model including shear, vorticity, rotation, and buoyancy

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.

    1994-01-01

    The Reynolds numbers that characterize geophysical and astrophysical turbulence (Re approximately equals 10(exp 8) for the planetary boundary layer and Re approximately equals 10(exp 14) for the Sun's interior) are too large to allow a direct numerical simulation (DNS) of the fundamental Navier-Stokes and temperature equations. In fact, the spatial number of grid points N approximately Re(exp 9/4) exceeds the computational capability of today's supercomputers. Alternative treatments are the ensemble-time average approach, and/or the volume average approach. Since the first method (Reynolds stress approach) is largely analytical, the resulting turbulence equations entail manageable computational requirements and can thus be linked to a stellar evolutionary code or, in the geophysical case, to general circulation models. In the volume average approach, one carries out a large eddy simulation (LES) which resolves numerically the largest scales, while the unresolved scales must be treated theoretically with a subgrid scale model (SGS). Contrary to the ensemble average approach, the LES+SGS approach has considerable computational requirements. Even if this prevents (for the time being) a LES+SGS model to be linked to stellar or geophysical codes, it is still of the greatest relevance as an 'experimental tool' to be used, inter alia, to improve the parameterizations needed in the ensemble average approach. Such a methodology has been successfully adopted in studies of the convective planetary boundary layer. Experienc e with the LES+SGS approach from different fields has shown that its reliability depends on the healthiness of the SGS model for numerical stability as well as for physical completeness. At present, the most widely used SGS model, the Smagorinsky model, accounts for the effect of the shear induced by the large resolved scales on the unresolved scales but does not account for the effects of buoyancy, anisotropy, rotation, and stable stratification. The

  10. A two-phase solid/fluid model for dense granular flows including dilatancy effects

    NASA Astrophysics Data System (ADS)

    Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Koné, El-Hadj; Narbona-Reina, Gladys

    2016-04-01

    Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [{Iverson et al.}, 2010]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure [{Bouchut et al.}, 2016]. The model is derived from a 3D two-phase model proposed by {Jackson} [2000] based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work [{Bouchut et al.}, 2015]. In particular, {Pitman and Le} [2005] replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's model by closing the mixture equations by a weak compressibility relation following {Roux and Radjai} [1998]. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To

  11. Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes

    SciTech Connect

    García-Gen, Santiago; Sousbie, Philippe; Rangaraj, Ganesh; Lema, Juan M.; Rodríguez, Jorge; Steyer, Jean-Philippe; Torrijos, Michel

    2015-01-15

    Highlights: • Fractionation of solid wastes into readily and slowly biodegradable fractions. • Kinetic coefficients estimation from mono-digestion batch assays. • Validation of kinetic coefficients with a co-digestion continuous experiment. • Simulation of batch and continuous experiments with an ADM1-based model. - Abstract: A methodology to estimate disintegration and hydrolysis kinetic parameters of solid wastes and validate an ADM1-based anaerobic co-digestion model is presented. Kinetic parameters of the model were calibrated from batch reactor experiments treating individually fruit and vegetable wastes (among other residues) following a new protocol for batch tests. In addition, decoupled disintegration kinetics for readily and slowly biodegradable fractions of solid wastes was considered. Calibrated parameters from batch assays of individual substrates were used to validate the model for a semi-continuous co-digestion operation treating simultaneously 5 fruit and vegetable wastes. The semi-continuous experiment was carried out in a lab-scale CSTR reactor for 15 weeks at organic loading rate ranging between 2.0 and 4.7 g VS/L d. The model (built in Matlab/Simulink) fit to a large extent the experimental results in both batch and semi-continuous mode and served as a powerful tool to simulate the digestion or co-digestion of solid wastes.

  12. A model of protein translation including codon bias, nonsense errors, and ribosome recycling.

    PubMed

    Gilchrist, Michael A; Wagner, Andreas

    2006-04-21

    We present and analyse a model of protein translation at the scale of an individual messenger RNA (mRNA) transcript. The model we develop is unique in that it incorporates the phenomena of ribosome recycling and nonsense errors. The model conceptualizes translation as a probabilistic wave of ribosome occupancy traveling down a heterogeneous medium, the mRNA transcript. Our results show that the heterogeneity of the codon translation rates along the mRNA results in short-scale spikes and dips in the wave. Nonsense errors attenuate this wave on a longer scale while ribosome recycling reinforces it. We find that the combination of nonsense errors and codon usage bias can have a large effect on the probability that a ribosome will completely translate a transcript. We also elucidate how these forces interact with ribosome recycling to determine the overall translation rate of an mRNA transcript. We derive a simple cost function for nonsense errors using our model and apply this function to the yeast (Saccharomyces cervisiae) genome. Using this function we are able to detect position dependent selection on codon bias which correlates with gene expression levels as predicted a priori. These results indirectly validate our underlying model assumptions and confirm that nonsense errors can play an important role in shaping codon usage bias. PMID:16171830

  13. A bone remodelling model including the effect of damage on the steering of BMUs.

    PubMed

    Martínez-Reina, J; Reina, I; Domínguez, J; García-Aznar, J M

    2014-04-01

    Bone remodelling in cortical bone is performed by the so-called basic multicellular units (BMUs), which produce osteons after completing the remodelling sequence. Burger et al. (2003) hypothesized that BMUs follow the direction of the prevalent local stress in the bone. More recently, Martin (2007) has shown that BMUs must be somehow guided by microstructural damage as well. The interaction of both variables, strain and damage, in the guidance of BMUs has been incorporated into a bone remodelling model for cortical bone. This model accounts for variations in porosity, anisotropy and damage level. The bone remodelling model has been applied to a finite element model of the diaphysis of a human femur. The trajectories of the BMUs have been analysed throughout the diaphysis and compared with the orientation of osteons measured experimentally. Some interesting observations, like the typical fan arrangement of osteons near the periosteum, can be explained with the proposed remodelling model. Moreover, the efficiency of BMUs in damage repairing has been shown to be greater if BMUs are guided by damage.

  14. Simulation of tumor induced angiogenesis using an analytical adaptive modeling including dynamic sprouting and blood flow modeling.

    PubMed

    Naghavi, Nadia; Hosseini, Farideh S; Sardarabadi, Mohammad; Kalani, Hadi

    2016-09-01

    In this paper, an adaptive model for tumor induced angiogenesis is developed that integrates generation and diffusion of a growth factor originated from hypoxic cells, adaptive sprouting from a parent vessel, blood flow and structural adaptation. The proposed adaptive sprout spacing model (ASS) determines position, time and number of sprouts which are activated from a parent vessel and also the developed vascular network is modified by a novel sprout branching prediction algorithm. This algorithm couples local vascular endothelial growth factor (VEGF) concentrations, stresses due to the blood flow and stochastic branching to the structural reactions of each vessel segment in response to mechanical and biochemical stimuli. The results provide predictions for the time-dependent development of the network structure, including the position and diameters of each segment and the resulting distributions of blood flow and VEGF. Considering time delays between sprout progressions and number of sprouts activated at different time durations provides information about micro-vessel density in the network. Resulting insights could be useful for motivating experimental investigations of vascular pattern in tumor induced angiogenesis and development of therapies targeting angiogenesis. PMID:27179697

  15. An independent-atom-model description of ion-molecule collisions including geometric screening corrections

    NASA Astrophysics Data System (ADS)

    Lüdde, Hans Jürgen; Achenbach, Alexander; Kalkbrenner, Thilo; Jankowiak, Hans-Christian; Kirchner, Tom

    2016-04-01

    A new model to account for geometric screening corrections in an independent-atom-model description of ion-molecule collisions is introduced. The ion-molecule cross sections for net capture and net ionization are represented as weighted sums of atomic cross sections with weight factors that are determined from a geometric model of overlapping cross section areas. Results are presented for proton collisions with targets ranging from diatomic to complex polyatomic molecules. Significant improvement compared to simple additivity rule results and in general good agreement with experimental data are found. The flexibility of the approach opens up the possibility to study more detailed observables such as orientation-dependent and charge-state-correlated cross sections for a large class of complex targets ranging from biomolecules to atomic clusters.

  16. Hybrid Model for Plasma Thruster Plume Simulation Including PIC-MCC Electrons Treatment

    SciTech Connect

    Alexandrov, A. L.; Bondar, Ye. A.; Schweigert, I. V.

    2008-12-31

    The simulation of stationary plasma thruster plume is important for spacecraft design due to possible interaction plume with spacecraft surface. Such simulations are successfully performed using the particle-in-cell technique for describing the motion of charged particles, namely the propellant ions. In conventional plume models the electrons are treated using various fluid approaches. In this work, we suggest an alternative approach, where the electron kinetics is considered 'ab initio', using the particle-in-cell--Monte Carlo collision method. To avoid the large computational expenses due to small time steps, the relaxation of simulated plume plasma is split into the fast relaxation of the electrons distribution function and the slow one of the ions. The model is self-consistent but hybrid, since the simultaneous electron and ion motion is not really modeled. The obtained electron temperature profile is in good agreement with experiment.

  17. Callisto plasma interactions: Hybrid modeling including induction by a subsurface ocean

    NASA Astrophysics Data System (ADS)

    Lindkvist, Jesper; Holmström, Mats; Khurana, Krishan K.; Fatemi, Shahab; Barabash, Stas

    2015-06-01

    By using a hybrid plasma solver (ions as particles and electrons as a fluid), we have modeled the interaction between Callisto and Jupiter's magnetosphere for variable ambient plasma parameters. We compared the results with the magnetometer data from flybys (C3, C9, and C10) by the Galileo spacecraft. Modeling the interaction between Callisto and Jupiter's magnetosphere is important to establish the origin of the magnetic field perturbations observed by Galileo and thought to be related to a subsurface ocean. Using typical upstream magnetospheric plasma parameters and a magnetic dipole corresponding to the inductive response inside the moon, we show that the model results agree well with observations for the C3 and C9 flybys, but agrees poorly with the C10 flyby close to Callisto. The study does support the existence of a subsurface ocean at Callisto.

  18. Finding practical phenomenological models that include both photoresist behavior and etch process effects

    NASA Astrophysics Data System (ADS)

    Jung, Sunwook; Do, Thuy; Sturtevant, John

    2015-03-01

    For more than five decades, the semiconductor industry has overcome technology challenges with innovative ideas that have continued to enable Moore's Law. It is clear that multi-patterning lithography is vital for 20nm half pitch using 193i. Multi-patterning exposure sequences and pattern multiplication processes can create complicated tolerance accounting due to the variability associated with the component processes. It is essential to ensure good predictive accuracy of compact etch models used in multipatterning simulation. New modelforms have been developed to account for etch bias behavior at 20 nm and below. The new modeling components show good results in terms of global fitness and some improved predication capability for specific features. We've also investigated a new methodology to make the etch model aware of 3D resist profiles.

  19. 3D frequency airborne electromagnetic modeling including topography with direct solution

    NASA Astrophysics Data System (ADS)

    Li, W.; Zeng, Z.

    2015-12-01

    Three-dimensional modeling of frequency airborne electromagnetic data is vital to improve the understanding of electromagnetic (EM) responses collected in increasingly complex geologic settings. We developed a modeling scheme for 3D airborne electromagnetic modeling in frequency domain with topography using edge finite element. The rectangular mesh can be transformed to hexahedral in order to simulate the topography effect. The finite element algorithm uses a single edge shape function at each edge of hexahedral elements, guaranteeing the continuity of the tangential electric field while conserving the continuity of magnetic flux at boundaries. Sources singularities are eliminated through a secondary-field approach, in which the primary fields are computed analytically for a homogeneous or a 1D layered background; the secondary fields are computed using edge finite element. The solution of the linear system of equations was obtained using a massive parallel multifrontal solver, because such solver are robust for indefinite and ill-conditioned linear systems. Parallel computing were investigated for their use in mitigating the computational overburden associated with the use of a direct solver, and of its feasibility for 3D frequency airborne electromagnetic forward modeling with the edge finite element. For the multisource problem, when using a direct solver, only competitive if the same factors are used to achieve a solution for multi right-hand sides. We tested our proposed approach using 1D and 3D synthetic models, and they demonstrated it is robust and suitable for 3D frequency airborne electromagnetic modeling. The codes could thus be used to help design new survey, as well to estimate subsurface conductivities through the implementation of an appropriate inversion scheme.

  20. Including new equatorial African data in global Holocene magnetic field models

    NASA Astrophysics Data System (ADS)

    Korte, M.; Brown, M.; Frank, U.

    2012-04-01

    Global paleomagnetic field reconstructions of the Holocene are a useful tool to study the past evolution of the geomagnetic field at the Earth's surface and the core-mantle boundary, or to estimate shielding against galactic cosmic rays. This protection is currently weak over the South Atlantic anomaly, a feature stretching between South America and Africa. Knowledge of the long-term evolution of this anomaly and whether there are preferred longitudinal ranges of weak fields is required for a better understanding of the geodynamo process and to estimate past magnetic shielding, e.g., for any studies involving the production of cosmogenic isotopes. The distribution of archeo- and paleomagnetic data available for global field reconstructions is highly inhomogeneous. It is strongly biased towards Europe and particularly sparse for Africa and South America. New data from these regions are necessary to confirm or improve field descriptions in Holocene spherical harmonic magnetic field models particularly for the evolution of this presently anomalous region. We present new inclination and relative intensity records from two neighbouring lakes in southern Ethiopia: Chew Bahir and Lake Chamo. Measurements were taken on three sediment cores from Chew Bahir, in which the complete Holocene is preserved in the topmost 4 m, and one 17 m long composite profile from Lake Chamo, which spans approximately the last 7 ka. Our age models are constrained by 10 AMS radiocarbon ages through the Holocene. We investigate the influence of these new records on magnetic field models CALS3k.4 and CALS10k.1b by augmenting previously modeled data with our new data and performing the modeling with otherwise unchanged parameters. Model predictions particularly for the equatorial African region and surroundings are compared and differences discussed.

  1. A meta-analysis of the relationship between glutathione S-transferase T1 null/presence gene polymorphism and the risk of lung cancer including 31802 subjects.

    PubMed

    Zhou, Hua-Fu; Feng, Xu; Zheng, Bao-Shi; Qian, Jun; He, Wei

    2013-10-01

    The relationship between glutathione S-transferase T1 (GSTT1) null/presence gene polymorphism and the risk of lung cancer from the published reports are still conflicting. This study was conducted to evaluate the relationship between GSTT1 null/presence gene polymorphism and the risk of lung cancer using meta-analysis method. The association studies were identified from PubMed, and Cochrane Library on July 1, 2012, and eligible investigations were included and synthesized using meta-analysis method. 51 reports were recruited into this meta-analysis for the association of null genotype of GSTT1 with lung cancer susceptibility, consisting of 15,140 patients with lung cancer and 16,662 controls. There was a marked association between GSTT1 null genotype and lung cancer risk in overall populations (OR = 1.15, 95 % CI 1.04-1.27, P = 0.007). Furthermore, GSTT1 null genotype was associated with the lung cancer risk in Asians (OR = 1.47, 95 % CI 1.23-1.76, P < 0.0001). However, GSTT1 null genotype was not associated with the risk of lung cancer in Caucasians, Brazilian population and Africans. In conclusion, GSTT1 null genotype is associated with the lung cancer in overall populations and in Asians.

  2. A Two-Phase Solid/Fluid Model for Dense Granular Flows Including Dilatancy Effects

    NASA Astrophysics Data System (ADS)

    Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Narbona-Reina, Gladys

    2015-04-01

    We propose a thin layer depth-averaged two-phase model to describe solid-fluid mixtures such as debris flows. It describes the velocity of the two phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure, that itself modifies the friction within the granular phase (Iverson et al., 2010). The model is derived from a 3D two-phase model proposed by Jackson (2000) based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work (Bouchut et al., 2014). In particular, Pitman and Le replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's equations. We close the mixture equations by a weak compressibility relation involving a critical density, or equivalently a critical pressure. Moreover, we relax one boundary condition, making it possible for the fluid to escape the granular media when compression of the granular mass occurs. Furthermore, we introduce second order terms in the equations making it possible to describe the evolution of the pore fluid pressure in response to the compression/dilatation of the granular mass without prescribing an extra ad-hoc equation for the pore pressure. We prove that the energy balance associated with this Jackson closure is dissipative, as well as its thin layer associated model. We present several numerical tests for the 1D case that are compared to the

  3. A Two-Phase Solid/Fluid Model for Dense Granular Flows Including Dilatancy Effects

    NASA Astrophysics Data System (ADS)

    Mangeney, A.; Bouchut, F.; Fernández-Nieto, E. D.; Narbona-Reina, G.; Kone, E. H.

    2014-12-01

    We propose a thin layer depth-averaged two-phase model to describe solid-fluid mixtures such as debris flows. It describes the velocity of the two phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure, that itself modifies the friction within the granular phase (Iverson et al., 2010). The model is derived from a 3D two-phase model proposed by Jackson (2000) based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work (Bouchut et al., 2014). In particular, Pitman and Le replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's equations. We close the mixture equations by a weak compressibility relation involving a critical density, or equivalently a critical pressure. Moreover, we relax one boundary condition, making it possible for the fluid to escape the granular media when compression of the granular mass occurs. Furthermore, we introduce second order terms in the equations making it possible to describe the evolution of the pore fluid pressure in response to the compression/dilatation of the granular mass without prescribing an extra ad-hoc equation for the pore pressure. We prove that the energy balance associated with this Jackson closure is dissipative, as well as its thin layer associated model. We present several numerical tests for the 1D case that are compared to the

  4. Evaluation of European air quality modelled by CAMx including the volatility basis set scheme

    NASA Astrophysics Data System (ADS)

    Ciarelli, Giancarlo; Aksoyoglu, Sebnem; Crippa, Monica; Jimenez, Jose-Luis; Nemitz, Eriko; Sellegri, Karine; Äijälä, Mikko; Carbone, Samara; Mohr, Claudia; O'Dowd, Colin; Poulain, Laurent; Baltensperger, Urs; Prévôt, André S. H.

    2016-08-01

    Four periods of EMEP (European Monitoring and Evaluation Programme) intensive measurement campaigns (June 2006, January 2007, September-October 2008 and February-March 2009) were modelled using the regional air quality model CAMx with VBS (volatility basis set) approach for the first time in Europe within the framework of the EURODELTA-III model intercomparison exercise. More detailed analysis and sensitivity tests were performed for the period of February-March 2009 and June 2006 to investigate the uncertainties in emissions as well as to improve the modelling of organic aerosol (OA). Model performance for selected gas phase species and PM2.5 was evaluated using the European air quality database AirBase. Sulfur dioxide (SO2) and ozone (O3) were found to be overestimated for all the four periods, with O3 having the largest mean bias during June 2006 and January-February 2007 periods (8.9 pbb and 12.3 ppb mean biases respectively). In contrast, nitrogen dioxide (NO2) and carbon monoxide (CO) were found to be underestimated for all the four periods. CAMx reproduced both total concentrations and monthly variations of PM2.5 for all the four periods with average biases ranging from -2.1 to 1.0 µg m-3. Comparisons with AMS (aerosol mass spectrometer) measurements at different sites in Europe during February-March 2009 showed that in general the model overpredicts the inorganic aerosol fraction and underpredicts the organic one, such that the good agreement for PM2.5 is partly due to compensation of errors. The effect of the choice of VBS scheme on OA was investigated as well. Two sensitivity tests with volatility distributions based on previous chamber and ambient measurements data were performed. For February-March 2009 the chamber case reduced the total OA concentrations by about 42 % on average. In contrast, a test based on ambient measurement data increased OA concentrations by about 42 % for the same period bringing model and observations into better agreement

  5. The island coalescence problem: Scaling of reconnection in extended fluid models including higher-order moments

    SciTech Connect

    Ng, Jonathan; Huang, Yi-Min; Hakim, Ammar; Bhattacharjee, A.; Stanier, Adam; Daughton, William; Wang, Liang; Germaschewski, Kai

    2015-11-15

    As modeling of collisionless magnetic reconnection in most space plasmas with realistic parameters is beyond the capability of today's simulations, due to the separation between global and kinetic length scales, it is important to establish scaling relations in model problems so as to extrapolate to realistic scales. Recently, large scale particle-in-cell simulations of island coalescence have shown that the time averaged reconnection rate decreases with system size, while fluid systems at such large scales in the Hall regime have not been studied. Here, we perform the complementary resistive magnetohydrodynamic (MHD), Hall MHD, and two fluid simulations using a ten-moment model with the same geometry. In contrast to the standard Harris sheet reconnection problem, Hall MHD is insufficient to capture the physics of the reconnection region. Additionally, motivated by the results of a recent set of hybrid simulations which show the importance of ion kinetics in this geometry, we evaluate the efficacy of the ten-moment model in reproducing such results.

  6. Dusty Plasma Modeling of the Fusion Reactor Sheath Including Collisional-Radiative Effects

    SciTech Connect

    Dezairi, Aouatif; Samir, Mhamed; Eddahby, Mohamed; Saifaoui, Dennoun; Katsonis, Konstantinos; Berenguer, Chloe

    2008-09-07

    The structure and the behavior of the sheath in Tokamak collisional plasmas has been studied. The sheath is modeled taking into account the presence of the dust{sup 2} and the effects of the charged particle collisions and radiative processes. The latter may allow for optical diagnostics of the plasma.

  7. Improvement of subsurface process in land surface modeling including lateral flow under unsaturated zone

    NASA Astrophysics Data System (ADS)

    Kim, J.; Mohanty, B.

    2013-12-01

    Lateral subsurface flow is an important component in local water budgets through its direct impact on soil moisture. However, most of the land surface models are one-dimensional considering only vertical interactions and neglecting the horizontal flow of water at the grid or sub-grid scales. Subsurface flow can be affected by surface topography and non-homogenous soil properties controlling the lateral flow of water. In this study, we improved the subsurface flow process in land surface model (Community Land Model, CLM) by considering the lateral flow based on topography and heterogeneous soil hydraulic properties in unsaturated zone. The changes in flow direction derived from topographic factor are used to consider the lateral movement of water at the near surface. Furthermore, vertical and horizontal hydraulic conductivities for each layer in unsaturated zone are estimated using different averaging methods and anisotropic factors. Based on the hydraulic conductivities of each layer for heterogeneous soil profiles we considered lateral flow of soil water between soil columns. These approaches were tested at several different sites (e.g. field and watershed scales). The results showed the appropriate vertical and horizontal hydraulic conductivities with depth for each site and the improved subsurface flow process by considering the lateral flow in land surface models.

  8. LES studies of wind farms including wide turbine spacings and comparisons with the CWBL engineering model

    NASA Astrophysics Data System (ADS)

    Stevens, Richard; Gayme, Dennice; Meyers, Johan; Meneveau, Charles

    2015-11-01

    We present results from large eddy simulations (LES) of wind farms consisting of tens to hundreds of turbines with respective streamwise and spanwise spacings approaching 35 and 12 turbine diameters. Even in staggered farms where the distance between consecutive turbines in the flow direction is more than 50 turbine diameters, we observe visible wake effects. In aligned farms, the performance of the turbines in the fully developed regime, where the power output as function of the downstream position becomes constant, is shown to primarily depend on the streamwise distance between consecutive turbine rows. However, for other layouts the power production in the fully developed regime mainly depends on the geometrical mean turbine spacing (inverse turbine density). These findings agree very well with predictions from our recently developed coupled wake boundary layer (CWBL) model, which introduces a two way coupling between the wake (Jensen) and top-down model approaches (Stevens et al. JRSE 7, 023115, 2015). To further validate the CWBL model we apply it to the problem of determining the optimal wind turbine thrust coefficient for power maximization over the entire farm. The CWBL model predictions agree very well with recent LES results (Goit & Meyers, JFM 768, 5-50, 2015). FOM Fellowships for Young Energy Scientists (YES!), NSF (IIA 1243482, the WINDINSPIRE project), ERC (FP7-Ideas, 306471).

  9. The island coalescence problem: Scaling of reconnection in extended fluid models including higher-order moments

    SciTech Connect

    Ng, Jonathan; Huang, Yi -Min; Hakim, Ammar; Bhattacharjee, A.; Stanier, Adam; Daughton, William; Wang, Liang; Germaschewski, Kai

    2015-11-05

    As modeling of collisionless magnetic reconnection in most space plasmas with realistic parameters is beyond the capability of today's simulations, due to the separation between global and kinetic length scales, it is important to establish scaling relations in model problems so as to extrapolate to realistic scales. Furthermore, large scale particle-in-cell simulations of island coalescence have shown that the time averaged reconnection rate decreases with system size, while fluid systems at such large scales in the Hall regime have not been studied. Here, we perform the complementary resistive magnetohydrodynamic (MHD), Hall MHD, and two fluid simulations using a ten-moment model with the same geometry. In contrast to the standard Harris sheet reconnection problem, Hall MHD is insufficient to capture the physics of the reconnection region. Additionally, motivated by the results of a recent set of hybrid simulations which show the importance of ion kinetics in this geometry, we evaluate the efficacy of the ten-moment model in reproducing such results.

  10. A population-competition model for analyzing transverse optical patterns including optical control and structural anisotropy

    NASA Astrophysics Data System (ADS)

    Tse, Y. C.; Chan, Chris K. P.; Luk, M. H.; Kwong, N. H.; Leung, P. T.; Binder, R.; Schumacher, Stefan

    2015-08-01

    We present a detailed study of a low-dimensional population-competition (PC) model suitable for analysis of the dynamics of certain modulational instability patterns in extended systems. The model is applied to analyze the transverse optical exciton-polariton patterns in semiconductor quantum well microcavities. It is shown that, despite its simplicity, the PC model describes quite well the competitions among various two-spot and hexagonal patterns when four physical parameters, representing density saturation, hexagon stabilization, anisotropy, and switching beam intensity, are varied. The combined effects of the last three parameters are given detailed considerations here. Although the model is developed in the context of semiconductor polariton patterns, its equations have more general applicability, and the results obtained here may benefit the investigation of other pattern-forming systems. The simplicity of the PC model allows us to organize all steady state solutions in a parameter space ‘phase diagram’. Each region in the phase diagram is characterized by the number and type of solutions. The main numerical task is to compute inter-region boundary surfaces, where some steady states either appear, disappear, or change their stability status. The singularity types of the boundary points, given by Catastrophe theory, are shown to provide a simple geometric overview of the boundary surfaces. With all stable and unstable steady states and the phase boundaries delimited and characterized, we have attained a comprehensive understanding of the structure of the four-parameter phase diagram. We analyze this rich structure in detail and show that it provides a transparent and organized interpretation of competitions among various patterns built on the hexagonal state space.

  11. Structural equation models of relationships between exercise and cognitive abilities.

    PubMed

    Clarkson-Smith, L; Hartley, A A

    1990-09-01

    Data were obtained from 300 men and women aged 55 to 91. Separate structural equation models of relationships between physical exercise and 3 cognitive performance variables--reaction time, working memory, and reasoning--fit the data well. Other variables in the models were age, health, education, and morale. Age and exercise affected each performance variable directly; education had a direct effect on reasoning only. There were also indirect effects of age and health on performance variables, mediated through exercise. The main hypothesis of the study, that exercise contributes to performance, was supported. A large decrease in model fit resulted when the path from exercise to each performance variable was deleted. Hypotheses that age-related deficits are primarily accounted for by lack of exercise or by poor health were not supported.

  12. A catchment-scale groundwater model including sewer pipe leakage in an urban system

    NASA Astrophysics Data System (ADS)

    Peche, Aaron; Fuchs, Lothar; Spönemann, Peter; Graf, Thomas; Neuweiler, Insa

    2016-04-01

    Keywords: pipe leakage, urban hydrogeology, catchment scale, OpenGeoSys, HYSTEM-EXTRAN Wastewater leakage from subsurface sewer pipe defects leads to contamination of the surrounding soil and groundwater (Ellis, 2002; Wolf et al., 2004). Leakage rates at pipe defects have to be known in order to quantify contaminant input. Due to inaccessibility of subsurface pipe defects, direct (in-situ) measurements of leakage rates are tedious and associated with a high degree of uncertainty (Wolf, 2006). Proposed catchment-scale models simplify leakage rates by neglecting unsaturated zone flow or by reducing spatial dimensions (Karpf & Krebs, 2013, Boukhemacha et al., 2015). In the present study, we present a physically based 3-dimensional numerical model incorporating flow in the pipe network, in the saturated zone and in the unsaturated zone to quantify leakage rates on the catchment scale. The model consists of the pipe network flow model HYSTEM-EXTAN (itwh, 2002), which is coupled to the subsurface flow model OpenGeoSys (Kolditz et al., 2012). We also present the newly developed coupling scheme between the two flow models. Leakage functions specific to a pipe defect are derived from simulations of pipe leakage using spatially refined grids around pipe defects. In order to minimize computational effort, these leakage functions are built into the presented numerical model using unrefined grids around pipe defects. The resulting coupled model is capable of efficiently simulating spatially distributed pipe leakage coupled with subsurficial water flow in a 3-dimensional environment. References: Boukhemacha, M. A., Gogu, C. R., Serpescu, I., Gaitanaru, D., & Bica, I. (2015). A hydrogeological conceptual approach to study urban groundwater flow in Bucharest city, Romania. Hydrogeology Journal, 23(3), 437-450. doi:10.1007/s10040-014-1220-3. Ellis, J. B., & Revitt, D. M. (2002). Sewer losses and interactions with groundwater quality. Water Science and Technology, 45(3), 195

  13. Modeling relationships between calving traits: a comparison between standard and recursive mixed models

    PubMed Central

    2010-01-01

    Background The use of structural equation models for the analysis of recursive and simultaneous relationships between phenotypes has become more popular recently. The aim of this paper is to illustrate how these models can be applied in animal breeding to achieve parameterizations of different levels of complexity and, more specifically, to model phenotypic recursion between three calving traits: gestation length (GL), calving difficulty (CD) and stillbirth (SB). All recursive models considered here postulate heterogeneous recursive relationships between GL and liabilities to CD and SB, and between liability to CD and liability to SB, depending on categories of GL phenotype. Methods Four models were compared in terms of goodness of fit and predictive ability: 1) standard mixed model (SMM), a model with unstructured (co)variance matrices; 2) recursive mixed model 1 (RMM1), assuming that residual correlations are due to the recursive relationships between phenotypes; 3) RMM2, assuming that correlations between residuals and contemporary groups are due to recursive relationships between phenotypes; and 4) RMM3, postulating that the correlations between genetic effects, contemporary groups and residuals are due to recursive relationships between phenotypes. Results For all the RMM considered, the estimates of the structural coefficients were similar. Results revealed a nonlinear relationship between GL and the liabilities both to CD and to SB, and a linear relationship between the liabilities to CD and SB. Differences in terms of goodness of fit and predictive ability of the models considered were negligible, suggesting that RMM3 is plausible. Conclusions The applications examined in this study suggest the plausibility of a nonlinear recursive effect from GL onto CD and SB. Also, the fact that the most restrictive model RMM3, which assumes that the only cause of correlation is phenotypic recursion, performs as well as the others indicates that the phenotypic recursion

  14. HydroCube: an entity-relationship hydrogeological data model

    NASA Astrophysics Data System (ADS)

    Wojda, Piotr; Brouyère, Serge; Derouane, Johan; Dassargues, Alain

    2010-12-01

    Managing, handling and accessing hydrogeological information depends heavily on the applied hydrogeological data models, which differ between institutions and countries. The effective dissemination of hydrogeological information requires the convergence of such models to make hydrogeological information accessible to multiple users such as universities, water suppliers, and administration and research organisations. Furthermore, because hydrogeological studies are complex, they require a wide variety of high-quality hydrogeological data with appropriate metadata in clearly designed and coherent structures. A need exists, therefore, to develop and implement hydrogeological data models that cover, as much as possible, the full hydrogeological domain. A new data model, called HydroCube, was developed for the Walloon Region in Belgium in 2005. The HydroCube model presents an innovative holistic project-based approach which covers a full set of hydrogeological concepts and features, allowing for effective hydrogeological project management. The model stores data relating to the project locality, hydrogeological equipment, and related observations and measurements. In particular, it focuses on specialized hydrogeological field experiments such as pumping and tracer tests. This logical data model uses entity-relationship diagrams and it has been implemented in the Microsoft Access environment. It has been enriched with a fully functional user interface.

  15. Micromagnetic model for studies on Magnetic Tunnel Junction switching dynamics, including local current density

    NASA Astrophysics Data System (ADS)

    Frankowski, Marek; Czapkiewicz, Maciej; Skowroński, Witold; Stobiecki, Tomasz

    2014-02-01

    We present a model introducing the Landau-Lifshitz-Gilbert equation with a Slonczewski's Spin-Transfer-Torque (STT) component in order to take into account spin polarized current influence on the magnetization dynamics, which was developed as an Object Oriented MicroMagnetic Framework extension. We implement the following computations: magnetoresistance of vertical channels is calculated from the local spin arrangement, local current density is used to calculate the in-plane and perpendicular STT components as well as the Oersted field, which is caused by the vertical current flow. The model allows for an analysis of all listed components separately, therefore, the contribution of each physical phenomenon in dynamic behavior of Magnetic Tunnel Junction (MTJ) magnetization is discussed. The simulated switching voltage is compared with the experimental data measured in MTJ nanopillars.

  16. A finite element model for wave propagation in an inhomogeneous material including experimental validation

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Dahl, Milo D.

    1987-01-01

    A finite element model was developed to solve for the acoustic pressure field in a nonhomogeneous region. The derivations from the governing equations assumed that the material properties could vary with position resulting in a nonhomogeneous variable property two-dimensional wave equation. This eliminated the necessity of finding the boundary conditions between the different materials. For a two media region consisting of part air (in the duct) and part bulk absorber (in the wall), a model was used to describe the bulk absorber properties in two directions. An experiment to verify the numerical theory was conducted in a rectangular duct with no flow and absorbing material mounted on one wall. Changes in the sound field, consisting of planar waves was measured on the wall opposite the absorbing material. As a function of distance along the duct, fairly good agreement was found in the standing wave pattern upstream of the absorber and in the decay of pressure level opposite the absorber.

  17. A model for thermal oxidation of Si and SiC including material expansion

    NASA Astrophysics Data System (ADS)

    Christen, T.; Ioannidis, A.; Winkelmann, C.

    2015-02-01

    A model based on drift-diffusion-reaction kinetics for Si and SiC oxidation is discussed, which takes the material expansion into account with an additional convection term. The associated velocity field is determined self-consistently from the local reaction rate. The approach allows a calculation of the densities of volatile species in an nm-resolution at the oxidation front. The model is illustrated with simulation results for the growth and impurity redistribution during Si oxidation and for carbon and silicon emission during SiC oxidation. The approach can be useful for the prediction of Si and/or C interstitial distribution, which is particularly relevant for the quality of metal-oxide-semiconductor electronic devices.

  18. A finite element model for wave propagation in an inhomogeneous material including experimental validation

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Dahl, Milo D.

    1987-01-01

    A finite element model was developed to solve for the acoustic pressure field in a nonhomogeneous region. The derivations from the governing equations assumed that the material properties could vary with position resulting in a nonhomogeneous variable property two-dimensional wave equation. This eliminated the necessity of finding the boundary conditions between the different materials. For a two media region consisting of part air (in the duct) and part bulk absorber (in the wall), a model was used to describe the bulk absorber properties in two directions. An experiment to verify the numerical theory was conducted in a rectangular duct with no flow and absorbing material mounted on one wall. Changes in the sound field, consisting of planar waves, was measured on the wall opposite the absorbing material. As a function of distance along the duct, fairly good agreement was found in the standing wave pattern upstream of the absorber and in the decay of pressure level opposite the absorber.

  19. Ion-biomolecule collisions studied within the independent atom model including geometric screening corrections

    NASA Astrophysics Data System (ADS)

    Lüdde, H. J.; Achenbach, A.; Kalkbrenner, T.; Jankowiak, H. C.; Kirchner, T.

    2016-05-01

    A recently introduced model to account for geometric screening corrections in an independent-atom-model description of ion-molecule collisions is applied to proton collisions from amino acids and DNA and RNA nucleobases. The correction coefficients are obtained from using a pixel counting method (PCM) for the exact calculation of the effective cross sectional area that emerges when the molecular cross section is pictured as a structure of (overlapping) atomic cross sections. This structure varies with the relative orientation of the molecule with respect to the projectile beam direction and, accordingly, orientation-independent total cross sections are obtained from averaging the pixel count over many orientations. We present net capture and net ionization cross sections over wide ranges of impact energy and analyze the strength of the screening effect by comparing the PCM results with Bragg additivity rule cross sections and with experimental data where available. Work supported by NSERC, Canada.

  20. A model for thermal oxidation of Si and SiC including material expansion

    SciTech Connect

    Christen, T. Ioannidis, A.; Winkelmann, C.

    2015-02-28

    A model based on drift-diffusion-reaction kinetics for Si and SiC oxidation is discussed, which takes the material expansion into account with an additional convection term. The associated velocity field is determined self-consistently from the local reaction rate. The approach allows a calculation of the densities of volatile species in an nm-resolution at the oxidation front. The model is illustrated with simulation results for the growth and impurity redistribution during Si oxidation and for carbon and silicon emission during SiC oxidation. The approach can be useful for the prediction of Si and/or C interstitial distribution, which is particularly relevant for the quality of metal-oxide-semiconductor electronic devices.

  1. A Multiscale Progressive Failure Modeling Methodology for Composites that Includes Fiber Strength Stochastics

    NASA Technical Reports Server (NTRS)

    Ricks, Trenton M.; Lacy, Thomas E., Jr.; Bednarcyk, Brett A.; Arnold, Steven M.; Hutchins, John W.

    2014-01-01

    A multiscale modeling methodology was developed for continuous fiber composites that incorporates a statistical distribution of fiber strengths into coupled multiscale micromechanics/finite element (FE) analyses. A modified two-parameter Weibull cumulative distribution function, which accounts for the effect of fiber length on the probability of failure, was used to characterize the statistical distribution of fiber strengths. A parametric study using the NASA Micromechanics Analysis Code with the Generalized Method of Cells (MAC/GMC) was performed to assess the effect of variable fiber strengths on local composite failure within a repeating unit cell (RUC) and subsequent global failure. The NASA code FEAMAC and the ABAQUS finite element solver were used to analyze the progressive failure of a unidirectional SCS-6/TIMETAL 21S metal matrix composite tensile dogbone specimen at 650 degC. Multiscale progressive failure analyses were performed to quantify the effect of spatially varying fiber strengths on the RUC-averaged and global stress-strain responses and failure. The ultimate composite strengths and distribution of failure locations (predominately within the gage section) reasonably matched the experimentally observed failure behavior. The predicted composite failure behavior suggests that use of macroscale models that exploit global geometric symmetries are inappropriate for cases where the actual distribution of local fiber strengths displays no such symmetries. This issue has not received much attention in the literature. Moreover, the model discretization at a specific length scale can have a profound effect on the computational costs associated with multiscale simulations.models that yield accurate yet tractable results.

  2. Redefining the maximum sustainable yield for the Schaefer population model including multiplicative environmental noise.

    PubMed

    Bousquet, Nicolas; Duchesne, Thierry; Rivest, Louis-Paul

    2008-09-01

    The focus of this article is to investigate the biological reference points, such as the maximum sustainable yield (MSY), in a common Schaefer (logistic) surplus production model in the presence of a multiplicative environmental noise. This type of model is used in fisheries stock assessment as a first-hand tool for biomass modelling. Under the assumption that catches are proportional to the biomass, we derive new conditions on the environmental noise distribution such that stationarity exists and extinction is avoided. We then get new explicit results about the stationary behavior of the biomass distribution for a particular specification of the noise, namely the biomass distribution itself and a redefinition of the MSY and related quantities that now depend on the value of the variance of the noise. Consequently, we obtain a more precise vision of how less optimistic the stochastic version of the MSY can be than the traditionally used (deterministic) MSY. In addition, we give empirical conditions on the error variance to approximate our specific noise by a lognormal noise, the latter being more natural and leading to easier inference in this context. These conditions are mild enough to make the explicit results of this paper valid in a number of practical applications. The outcomes of two case-studies about northwest Atlantic haddock [Spencer, P.D., Collie, J.S., 1997. Effect of nonlinear predation rates on rebuilding the Georges Bank haddock (Melanogrammus aeglefinus) stock. Can. J. Fish. Aquat. Sci. 54, 2920-2929] and South Atlantic albacore tuna [Millar, R.B., Meyer, R., 2000. Non-linear state space modelling of fisheries biomass dynamics by using Metropolis-Hastings within-Gibbs sampling. Appl. Stat. 49, 327-342] are used to illustrate the impact of our results in bioeconomic terms.

  3. A quark model calculation of yy->pipi including final-state interactions

    SciTech Connect

    H.G. Blundell; S. Godfrey; G. Hay; Eric Swanson

    2000-02-01

    A quark model calculation of the processes yy->pi+pi- and yy->pipi is performed. At tree level, only charged pions couple to the initial state photons and neutral pions are not exceeded in the final state. However a small but significant cross section is observed. We demonstrate that this may be accounted for by a rotation in isospin space induced by final-state interactions.

  4. Numerical modelling of the transport of trace gases including methane in the subsurface of Mars

    NASA Astrophysics Data System (ADS)

    Stevens, Adam H.; Patel, Manish R.; Lewis, Stephen R.

    2015-04-01

    We model the transport of gas through the martian subsurface in order to quantify the timescales of release of a trace gas with a source at depth using a Fickian model of diffusion through a putative martian regolith column. The model is then applied to the case of methane to determine if diffusive transport of gas can explain previous observations of methane in the martian atmosphere. We investigate which parameters in the model have the greatest effect on transport timescales and show that the calculated diffusivity is very sensitive to the pressure profile of the subsurface, but relatively insensitive to the temperature profile, though diffusive transport may be affected by other temperature dependent properties of the subsurface such as the local vapour pressure. Uncertainties in the structure and physical conditions of the martian subsurface also introduce uncertainties in the timescales calculated. It was found that methane may take several hundred thousand Mars-years to diffuse from a source at depth. Purely diffusive transport cannot explain transient release that varies on timescales of less than one martian year from sources such as serpentinization or methanogenic organisms at depths of more than 2 km. However, diffusion of gas released by the destabilisation of methane clathrate hydrates close to the surface, for example caused by transient mass wasting events or erosion, could produce a rapidly varying flux of methane into the atmosphere of more than 10-3 kg m-2 s-1 over a duration of less than half a martian year, consistent with observations of martian methane variability. Seismic events, magmatic intrusions or impacts could also potentially produce similar patterns of release, but are far more complex to simulate.

  5. Groundwater Flow Model Including Deeper Part On The Basis Of Field Data - Especially Determination Of Boundary Conditions And Hydraulic Parameters-

    NASA Astrophysics Data System (ADS)

    Machida, I.; Itadera, K.

    2005-12-01

    The final purpose of our study is to clarify the quantitative groundwater flow including deeper part, 500-1000m depth, in the basin in caldera on the mountain. The computer simulation is one the best methods to achieve this purpose. In such a study, however, it is difficult to determine the boundary conditions and hydraulic properties of geology in deeper part, generally. For this reason, we selected Gora basin as a study area, because many hydraulic data have been stored for more than 30 years in this basin. In addition, because the volcanic thermal water is mainly formed by mixing of groundwater and thermal component, the study for deeper groundwater flow can contribute the agenda for the protection of thermal groundwater which is regards as a limited resource. Gora basin, in Hakone area is one of the most famous spa (a resort having thermal groundwater or hot springs) in Japan. The area of the basin is approximately 10 square kilometers and has more than 200 deep wells. In our study, at first, the dataset of hydraulic head was created by using the stored data to construct the conceptual model for groundwater flow. The potential distribution exhibited that the groundwater flowed downward dominant. And the geomorphology can be regarded as hydraulic boundary even in deer part, that is to say, we can regard the ridge as no flow boundary in simulation model. Next, for quantitative understanding of groundwater flow, we need to obtain not only boundary conditions but also hydraulic property of geology, for example, hydraulic conductivity, K, as one of the important parameters. Generally, such a parameter has not been measured in past survey. So, we used the belief method for calculating the hydraulic conductivity by using the data of thermal logging test, which was similar to a slug test. As results of the analysis, the close relationship between K and well depth were obtained. This result implies that the K value depends on the overburden pressure of geology. That is

  6. The island coalescence problem: Scaling of reconnection in extended fluid models including higher-order moments

    DOE PAGESBeta

    Ng, Jonathan; Huang, Yi -Min; Hakim, Ammar; Bhattacharjee, A.; Stanier, Adam; Daughton, William; Wang, Liang; Germaschewski, Kai

    2015-11-05

    As modeling of collisionless magnetic reconnection in most space plasmas with realistic parameters is beyond the capability of today's simulations, due to the separation between global and kinetic length scales, it is important to establish scaling relations in model problems so as to extrapolate to realistic scales. Furthermore, large scale particle-in-cell simulations of island coalescence have shown that the time averaged reconnection rate decreases with system size, while fluid systems at such large scales in the Hall regime have not been studied. Here, we perform the complementary resistive magnetohydrodynamic (MHD), Hall MHD, and two fluid simulations using a ten-moment modelmore » with the same geometry. In contrast to the standard Harris sheet reconnection problem, Hall MHD is insufficient to capture the physics of the reconnection region. Additionally, motivated by the results of a recent set of hybrid simulations which show the importance of ion kinetics in this geometry, we evaluate the efficacy of the ten-moment model in reproducing such results.« less

  7. A stepped leader model for lightning including charge distribution in branched channels

    SciTech Connect

    Shi, Wei; Zhang, Li; Li, Qingmin

    2014-09-14

    The stepped leader process in negative cloud-to-ground lightning plays a vital role in lightning protection analysis. As lightning discharge usually presents significant branched or tortuous channels, the charge distribution along the branched channels and the stochastic feature of stepped leader propagation were investigated in this paper. The charge density along the leader channel and the charge in the leader tip for each lightning branch were approximated by introducing branch correlation coefficients. In combination with geometric characteristics of natural lightning discharge, a stochastic stepped leader propagation model was presented based on the fractal theory. By comparing simulation results with the statistics of natural lightning discharges, it was found that the fractal dimension of lightning trajectory in simulation was in the range of that observed in nature and the calculation results of electric field at ground level were in good agreement with the measurements of a negative flash, which shows the validity of this proposed model. Furthermore, a new equation to estimate the lightning striking distance to flat ground was suggested based on the present model. The striking distance obtained by this new equation is smaller than the value estimated by previous equations, which indicates that the traditional equations may somewhat overestimate the attractive effect of the ground.

  8. Modelling topical photodynamic therapy treatment including the continuous production of Protoporphyrin IX

    NASA Astrophysics Data System (ADS)

    Campbell, C. L.; Brown, C. T. A.; Wood, K.; Moseley, H.

    2016-11-01

    Most existing theoretical models of photodynamic therapy (PDT) assume a uniform initial distribution of the photosensitive molecule, Protoporphyrin IX (PpIX). This is an adequate assumption when the prodrug is systematically administered; however for topical PDT this is no longer a valid assumption. Topical application and subsequent diffusion of the prodrug results in an inhomogeneous distribution of PpIX, especially after short incubation times, prior to light illumination. In this work a theoretical simulation of PDT where the PpIX distribution depends on the incubation time and the treatment modality is described. Three steps of the PpIX production are considered. The first is the distribution of the topically applied prodrug, the second in the conversion from the prodrug to PpIX and the third is the light distribution which affects the PpIX distribution through photobleaching. The light distribution is modelled using a Monte Carlo radiation transfer model and indicates treatment depths of around 2 mm during daylight PDT and approximately 3 mm during conventional PDT. The results suggest that treatment depths are not only limited by the light penetration but also by the PpIX distribution.

  9. Analytic band Monte Carlo model for electron transport in Si including acoustic and optical phonon dispersion

    NASA Astrophysics Data System (ADS)

    Pop, Eric; Dutton, Robert W.; Goodson, Kenneth E.

    2004-11-01

    We describe the implementation of a Monte Carlo model for electron transport in silicon. The model uses analytic, nonparabolic electron energy bands, which are computationally efficient and sufficiently accurate for future low-voltage (<1V) nanoscale device applications. The electron-lattice scattering is incorporated using an isotropic, analytic phonon-dispersion model, which distinguishes between the optical/acoustic and the longitudinal/transverse phonon branches. We show that this approach avoids introducing unphysical thresholds in the electron distribution function, and that it has further applications in computing detailed phonon generation spectra from Joule heating. A set of deformation potentials for electron-phonon scattering is introduced and shown to yield accurate transport simulations in bulk silicon across a wide range of electric fields and temperatures. The shear deformation potential is empirically determined at Ξu=6.8eV, and consequently, the isotropically averaged scattering potentials with longitudinal and transverse acoustic phonons are DLA=6.39eV and DTA=3.01eV, respectively, in reasonable agreement with previous studies. The room-temperature electron mobility in strained silicon is also computed and shown to be in better agreement with the most recent phonon-limited data available. As a result, we find that electron coupling with g-type phonons is about 40% lower, and the coupling with f-type phonons is almost twice as strong as previously reported.

  10. Numerical Modeling of the Surface Fatigue Crack Propagation Including the Closure Effect

    NASA Astrophysics Data System (ADS)

    Guchinsky, Ruslan; Petinov, Sergei

    2016-01-01

    Presently modeling of surface fatigue crack growth for residual life assessment of structural elements is almost entirely based on application of the Linear Elastic Fracture Mechanics (LEFM). Generally, it is assumed that the crack front does not essentially change its shape, although it is not always confirmed by experiment. Furthermore, LEFM approach cannot be applied when the stress singularity vanishes due to material plasticity, one of the leading factors associated with the material degradation and fracture. Also, evaluation of stress intensity factors meets difficulties associated with changes in the stress state along the crack front circumference. An approach proposed for simulation the evolution of surface cracks based on application of the Strain-life criterion for fatigue failure and of the finite element modeling of damage accumulation. It takes into account the crack closure effect, the nonlinear behavior of damage accumulation and material compliance increasing due to the damage advance. The damage accumulation technique was applied to model the semi-elliptical crack growth from the initial defect in the steel compact specimen. The results of simulation are in good agreement with the published experimental data.

  11. Statistical method for sparse coding of speech including a linear predictive model

    NASA Astrophysics Data System (ADS)

    Rufiner, Hugo L.; Goddard, John; Rocha, Luis F.; Torres, María E.

    2006-07-01

    Recently, different methods for obtaining sparse representations of a signal using dictionaries of waveforms have been studied. They are often motivated by the way the brain seems to process certain sensory signals. Algorithms have been developed using a specific criterion to choose the waveforms occurring in the representation. The waveforms are choosen from a fixed dictionary and some algorithms also construct them as a part of the method. In the case of speech signals, most approaches do not take into consideration the important temporal correlations that are exhibited. It is known that these correlations are well approximated by linear models. Incorporating this a priori knowledge of the signal can facilitate the search for a suitable representation solution and also can help with its interpretation. Lewicki proposed a method to solve the noisy and overcomplete independent component analysis problem. In the present paper we propose a modification of this statistical technique for obtaining a sparse representation using a generative parametric model. The representations obtained with the method proposed here and other techniques are applied to artificial data and real speech signals, and compared using different coding costs and sparsity measures. The results show that the proposed method achieves more efficient representations of these signals compared to the others. A qualitative analysis of these results is also presented, which suggests that the restriction imposed by the parametric model is helpful in discovering meaningful characteristics of the signals.

  12. Modeling ozone removal to indoor materials, including the effects of porosity, pore diameter, and thickness.

    PubMed

    Gall, Elliott T; Siegel, Jeffrey A; Corsi, Richard L

    2015-04-01

    We develop an ozone transport and reaction model to determine reaction probabilities and assess the importance of physical properties such as porosity, pore diameter, and material thickness on reactive uptake of ozone to five materials. The one-dimensional model accounts for molecular diffusion from bulk air to the air-material interface, reaction at the interface, and diffusive transport and reaction through material pore volumes. Material-ozone reaction probabilities that account for internal transport and internal pore area, γ(ipa), are determined by a minimization of residuals between predicted and experimentally derived ozone concentrations. Values of γ(ipa) are generally less than effective reaction probabilities (γ(eff)) determined previously, likely because of the inclusion of diffusion into substrates and reaction with internal surface area (rather than the use of the horizontally projected external material areas). Estimates of γ(ipa) average 1 × 10(-7), 2 × 10(-7), 4 × 10(-5), 2 × 10(-5), and 4 × 10(-7) for two types of cellulose paper, pervious pavement, Portland cement concrete, and an activated carbon cloth, respectively. The transport and reaction model developed here accounts for observed differences in ozone removal to varying thicknesses of the cellulose paper, and estimates a near constant γ(ipa) as material thickness increases from 0.02 to 0.16 cm.

  13. Including dislocation flux in a continuum crystal plasticity model to produce size scale effects

    SciTech Connect

    Becker, R; Arsenlis, A; Bulatov, V V; Parks, D M

    2004-02-13

    A novel model has been developed to capture size scale and gradient effects within the context of continuum crystal plasticity by explicitly incorporating details of dislocation transport, coupling dislocation transport to slip, evolving spatial distributions of dislocations consistent with the flux, and capturing the interactions among various dislocation populations. Dislocation flux and density are treated as nodal degrees of freedom in the finite element model, and they are determined as part of the global system of equations. The creation, annihilation and flux of dislocations between elements are related by transport equations. Crystallographic slip is coupled to the dislocation flux and the stress state. The resultant gradients in dislocation density and local lattice rotations are analyzed for geometrically necessary and statistically stored dislocation contents that contribute to strength and hardening. Grain boundaries are treated as surfaces where dislocation flux is restricted depending on the relative orientations of the neighboring grains. Numerical results show different behavior near free surfaces and non-deforming surfaces resulting from differing levels of dislocation transmission. Simulations also show development of dislocation pile-ups at grain boundaries and an increase in flow strength reminiscent of the Hall-Petch model. The dislocation patterns have a characteristic size independent of the numerical discretization.

  14. Climate change impact modelling needs to include cross-sectoral interactions

    NASA Astrophysics Data System (ADS)

    Harrison, Paula A.; Dunford, Robert W.; Holman, Ian P.; Rounsevell, Mark D. A.

    2016-09-01

    Climate change impact assessments often apply models of individual sectors such as agriculture, forestry and water use without considering interactions between these sectors. This is likely to lead to misrepresentation of impacts, and consequently to poor decisions about climate adaptation. However, no published research assesses the differences between impacts simulated by single-sector and integrated models. Here we compare 14 indicators derived from a set of impact models run within single-sector and integrated frameworks across a range of climate and socio-economic scenarios in Europe. We show that single-sector studies misrepresent the spatial pattern, direction and magnitude of most impacts because they omit the complex interdependencies within human and environmental systems. The discrepancies are particularly pronounced for indicators such as food production and water exploitation, which are highly influenced by other sectors through changes in demand, land suitability and resource competition. Furthermore, the discrepancies are greater under different socio-economic scenarios than different climate scenarios, and at the sub-regional rather than Europe-wide scale.

  15. Kinetic model of water disinfection using peracetic acid including synergistic effects.

    PubMed

    Flores, Marina J; Brandi, Rodolfo J; Cassano, Alberto E; Labas, Marisol D

    2016-01-01

    The disinfection efficiencies of a commercial mixture of peracetic acid against Escherichia coli were studied in laboratory scale experiments. The joint and separate action of two disinfectant agents, hydrogen peroxide and peracetic acid, were evaluated in order to observe synergistic effects. A kinetic model for each component of the mixture and for the commercial mixture was proposed. Through simple mathematical equations, the model describes different stages of attack by disinfectants during the inactivation process. Based on the experiments and the kinetic parameters obtained, it could be established that the efficiency of hydrogen peroxide was much lower than that of peracetic acid alone. However, the contribution of hydrogen peroxide was very important in the commercial mixture. It should be noted that this improvement occurred only after peracetic acid had initiated the attack on the cell. This synergistic effect was successfully explained by the proposed scheme and was verified by experimental results. Besides providing a clearer mechanistic understanding of water disinfection, such models may improve our ability to design reactors. PMID:26819382

  16. Parametric reduced-order models of battery pack vibration including structural variation and prestress effects

    NASA Astrophysics Data System (ADS)

    Hong, Sung-Kwon; Epureanu, Bogdan I.; Castanier, Matthew P.

    2014-09-01

    The goal of this work is to develop a numerical model for the vibration of hybrid electric vehicle (HEV) battery packs to enable probabilistic forced response simulations for the effects of variations. There are two important types of variations that affect their structural response significantly: the prestress that is applied when joining the cells within a pack; and the small, random structural property discrepancies among the cells of a battery pack. The main contributions of this work are summarized as follows. In order to account for these two important variations, a new parametric reduced order model (PROM) formulation is derived by employing three key observations: (1) the stiffness matrix can be parameterized for different levels of prestress, (2) the mode shapes of a battery pack with cell-to-cell variation can be represented as a linear combination of the mode shapes of the nominal system, and (3) the frame holding each cell has vibratory motion. A numerical example of an academic battery pack with pouch cells is presented to demonstrate that the PROM captures the effects of both prestress and structural variation on battery packs. The PROM is validated numerically by comparing full-order finite element models (FEMs) of the same systems.

  17. Using Bayesian Networks to Model Hierarchical Relationships in Epidemiological Studies

    PubMed Central

    2011-01-01

    OBJECTIVES To propose an alternative procedure, based on a Bayesian network (BN), for estimation and prediction, and to discuss its usefulness for taking into account the hierarchical relationships among covariates. METHODS The procedure is illustrated by modeling the risk of diarrhea infection for 2,740 children aged 0 to 59 months in Cameroon. We compare the procedure with a standard logistic regression and with a model based on multi-level logistic regression. RESULTS The standard logistic regression approach is inadequate, or at least incomplete, in that it does not attempt to account for potentially causal relationships between risk factors. The multi-level logistic regression does model the hierarchical structure, but does so in a piecewise manner; the resulting estimates and interpretations differ from those of the BN approach proposed here. An advantage of the BN approach is that it enables one to determine the probability that a risk factor (and/or the outcome) is in any specific state, given the states of the others. The currently available approaches can only predict the outcome (disease), given the states of the covariates. CONCLUSION A major advantage of BNs is that they can deal with more complex interrelationships between variables whereas competing approaches deal at best only with hierarchical ones. We propose that BN be considered as well as a worthwhile method for summarizing the data in epidemiological studies whose aim is understanding the determinants of diseases and quantifying their effects. PMID:21779534

  18. Considering complementary relationship of evaporation in Budyko's hydrological model

    NASA Astrophysics Data System (ADS)

    Han, Songjun; Shao, Weiwei

    2013-04-01

    In Budyko's hydrological model, actual evaporation was partitioned from precipitation as a function of the relative magnitude of precipitation and potential evaporation. In practice, both Penman equation and Priestley-Taylor equation have been used to estimate the potential evaporation with same Budyko curve, and they are not distinguished under Budyko framework. Nevertheless, according to the complementary relationship of evaporation, the definitions of Penman equation and Priestley-Taylor equation are absolutely different. When water availability is not limited, evaporation occurs at Priestley-Taylor's evaporation (Ew, referred to as wet environment evaporation). As the surface dries without changing the available energy, the actual and Penman's potential evaporation (Epen) rates depart from Ew with opposite changes in fluxes. So the question is: what is the difference of the Budyko's hydrological model with potential evaporation estimated by Penman or Priestley-Taylor equation? How to consider the complementary relationship in Budyko framework? In this study, for both long-term (multiyear) and annual values on water balances in the 29 non-humid catchments in the middle Yellow River Basin of China, the performances of Budyko's hydrological model with potential evaporation estimated by Epen and Ew were distinguished and compared. The catchments with larger value of Ep/Ew (ratio of Penman potential evaporation to Priestley-Taylor evaporation) are characterized with smaller evaporation ratios. The value of Ep/Ew can be served as another variable besides dryness index to partition actual evaporation from precipitation. With Priestley-Taylor equation as energy supply, an empirical formula for the parameter of the Budyko in terms of Ep/Ew and curve is proposed. Therefore, the complementary relationship of evaporation should be considered in the Budyko framework.

  19. A Variational Inverse Model Study of Amazonian Methane Emissions including Observations from the AMAZONICA campaign

    NASA Astrophysics Data System (ADS)

    Wilson, C. J.; Gloor, M.; Chipperfield, M.; Miller, J. B.; Gatti, L.

    2013-12-01

    Methane (CH4) is a greenhouse gas which is emitted from a range of anthropogenic and natural sources, and since the industrial revolution its mean atmospheric concentration has climbed dramatically, reaching values unprecedented in at least the past 650,000 years. CH4 produces a relatively high radiative forcing effect upon the Earth's climate, and its atmospheric lifetime of approximately 10 years makes it a more appealing target for the mitigation of climate change over short timescales than long-lived greenhouse gases such as carbon dioxide. However, the spatial and temporal variation of CH4 emissions are still not well understood, though in recent years a number of top-down and bottom-up studies have attempted to construct improved emission budgets. Some top-down studies may suffer from poor observational coverage in tropical regions, however, especially in the planetary boundary layer, where the atmosphere is highly sensitive to emissions. For example, although satellite observations often take a large volume of measurements in tropical regions, these retrievals are not usually sensitive to concentrations at the planet's surface. Methane emissions from Amazon region, in particular, are often poorly constrained. Since emissions form this region, coming mainly from wetland and biomass burning sources, are thought to be relatively high, additional observations in this region would greatly help to constrain the geographical distribution of the global CH4 emission budget. In order to provide such measurements, the AMAZONICA project began to take regular flask measurements of CH4 and other trace gases from aircraft over four Amazonian sites from the year 2010 onwards. We first present a forward modelling study of these observations of Amazonian methane for the year 2010 using the TOMCAT Chemical Transport Model. The model is used to attribute variations at each site to a source type and region, and also to assess the ability of our current CH4 flux estimates to

  20. Software Engineering Laboratory (SEL) relationships, models, and management rules

    NASA Technical Reports Server (NTRS)

    Decker, William; Hendrick, Robert; Valett, Jon D.

    1991-01-01

    Over 50 individual Software Engineering Laboratory (SEL) research results, extracted from a review of published SEL documentation, that can be applied directly to managing software development projects are captured. Four basic categories of results are defined and discussed - environment profiles, relationships, models, and management rules. In each category, research results are presented as a single page that summarizes the individual result, lists potential uses of the result by managers, and references the original SEL documentation where the result was found. The document serves as a concise reference summary of applicable research for SEL managers.

  1. China's Marriage Law: a model for family responsibilities and relationships.

    PubMed

    Hare-Mustin, R T

    1982-12-01

    China's Marriage Law of 1981 is presented with a brief commentary. The law encompasses the responsibilities of spouses, parents, children, grandparents, and siblings to one another. The new law is contrasted with the 1950 Marriage Law, which prohibited such feudal practices of former times as arranged marriages and child betrothals. The 1981 law is concerned with equality and the lawful needs of women, children, and the aged. Family planning is encouraged. Divorce is made easier to obtain. Adoptees and stepchildren are provided for. The law provides a legislative model for personal relationships.

  2. China's Marriage Law: a model for family responsibilities and relationships.

    PubMed

    Hare-Mustin, R T

    1982-12-01

    China's Marriage Law of 1981 is presented with a brief commentary. The law encompasses the responsibilities of spouses, parents, children, grandparents, and siblings to one another. The new law is contrasted with the 1950 Marriage Law, which prohibited such feudal practices of former times as arranged marriages and child betrothals. The 1981 law is concerned with equality and the lawful needs of women, children, and the aged. Family planning is encouraged. Divorce is made easier to obtain. Adoptees and stepchildren are provided for. The law provides a legislative model for personal relationships. PMID:7160464

  3. Improving Public Health DSSs by Including Saharan Dust Forecasts Through Incorporation of NASA's GOCART Model Results

    NASA Technical Reports Server (NTRS)

    Berglund, Judith

    2007-01-01

    Approximately 2-3 billion metric tons of soil dust are estimated to be transported in the Earth's atmosphere each year. Global transport of desert dust is believed to play an important role in many geochemical, climatological, and environmental processes. This dust carries minerals and nutrients, but it has also been shown to carry pollutants and viable microorganisms capable of harming human, animal, plant, and ecosystem health. Saharan dust, which impacts the eastern United States (especially Florida and the southeast) and U.S. Territories in the Caribbean primarily during the summer months, has been linked to increases in respiratory illnesses in this region and has been shown to carry other human, animal, and plant pathogens. For these reasons, this candidate solution recommends integrating Saharan dust distribution and concentration forecasts from the NASA GOCART global dust cycle model into a public health DSS (decision support system), such as the CDC's (Centers for Disease Control and Prevention's) EPHTN (Environmental Public Health Tracking Network), for the eastern United States and Caribbean for early warning purposes regarding potential increases in respiratory illnesses or asthma attacks, potential disease outbreaks, or bioterrorism. This candidate solution pertains to the Public Health National Application but also has direct connections to Air Quality and Homeland Security. In addition, the GOCART model currently uses the NASA MODIS aerosol product as an input and uses meteorological forecasts from the NASA GEOS-DAS (Goddard Earth Observing System Data Assimilation System) GEOS-4 AGCM. In the future, VIIRS aerosol products and perhaps CALIOP aerosol products could be assimilated into the GOCART model to improve the results.

  4. Extending Galactic Habitable Zone Modeling to Include the Emergence of Intelligent Life.

    PubMed

    Morrison, Ian S; Gowanlock, Michael G

    2015-08-01

    Previous studies of the galactic habitable zone have been concerned with identifying those regions of the Galaxy that may favor the emergence of complex life. A planet is deemed habitable if it meets a set of assumed criteria for supporting the emergence of such complex life. In this work, we extend the assessment of habitability to consider the potential for life to further evolve to the point of intelligence--termed the propensity for the emergence of intelligent life, φI. We assume φI is strongly influenced by the time durations available for evolutionary processes to proceed undisturbed by the sterilizing effects of nearby supernovae. The times between supernova events provide windows of opportunity for the evolution of intelligence. We developed a model that allows us to analyze these window times to generate a metric for φI, and we examine here the spatial and temporal variation of this metric. Even under the assumption that long time durations are required between sterilizations to allow for the emergence of intelligence, our model suggests that the inner Galaxy provides the greatest number of opportunities for intelligence to arise. This is due to the substantially higher number density of habitable planets in this region, which outweighs the effects of a higher supernova rate in the region. Our model also shows that φI is increasing with time. Intelligent life emerged at approximately the present time at Earth's galactocentric radius, but a similar level of evolutionary opportunity was available in the inner Galaxy more than 2 Gyr ago. Our findings suggest that the inner Galaxy should logically be a prime target region for searches for extraterrestrial intelligence and that any civilizations that may have emerged there are potentially much older than our own.

  5. Areal Rainfall Estimation Using Moving Cars - Computer Experiments Including Hydrological Modeling

    NASA Astrophysics Data System (ADS)

    Rabiei, E.; Haberlandt, U.; Sester, M.; Fitzner, D.; Wallner, M.

    2015-12-01

    The benefit of using fine temporal and spatial rainfall data resolution can be significant for hydrological modeling especially for small scale applications (e.g. urban hydrology). It has been observed by Rabiei et al. (2013) that moving cars can be a possible new source of data when used for measuring rainfall amount (RainCars). The optical sensors operating the windscreen wipers showed the potential of being used for rainfall measurement purposes. Their measurement accuracy has been quantified in laboratory experiments. The main objective of this study is to investigate the benefit of using RainCars for estimating areal rainfall when these errors are considered explicitly. To this end, radar rainfall is considered as the reference and the other sources of data, i.e. RainCars and pseudo stations, are extracted from radar data. The goal is to compare the areal rainfall estimation by RainCars with pseudo stations and reference data. The value of the additional data is not only assessed for areal rainfall estimation performance, but also using hydrological modeling. In fact, the reference data simulates the reference discharge. The other sources of data also simulate the discharge that is to be compared with the reference discharge. The results show, that the RainCars provide useful additional information for areal rainfall estimation and hydrological modelling also if their measurement uncertainty is quite high. Rabiei, E., Haberlandt, U., Sester, M., Fitzner, D., 2013. Rainfall estimation using moving cars as rain gauges – laboratory experiments. Hydrol. Earth Syst. Sci., 17(11): 4701-4712.

  6. Individual welfare maximization in electricity markets including consumer and full transmission system modeling

    NASA Astrophysics Data System (ADS)

    Weber, James Daniel

    1999-11-01

    This dissertation presents a new algorithm that allows a market participant to maximize its individual welfare in the electricity spot market. The use of such an algorithm in determining market equilibrium points, called Nash equilibria, is also demonstrated. The start of the algorithm is a spot market model that uses the optimal power flow (OPF), with a full representation of the transmission system. The OPF is also extended to model consumer behavior, and a thorough mathematical justification for the inclusion of the consumer model in the OPF is presented. The algorithm utilizes price and dispatch sensitivities, available from the Hessian matrix of the OPF, to help determine an optimal change in an individual's bid. The algorithm is shown to be successful in determining local welfare maxima, and the prospects for scaling the algorithm up to realistically sized systems are very good. Assuming a market in which all participants maximize their individual welfare, economic equilibrium points, called Nash equilibria, are investigated. This is done by iteratively solving the individual welfare maximization algorithm for each participant until a point is reached where all individuals stop modifying their bids. It is shown that these Nash equilibria can be located in this manner. However, it is also demonstrated that equilibria do not always exist, and are not always unique when they do exist. It is also shown that individual welfare is a highly nonconcave function resulting in many local maxima. As a result, a more global optimization technique, using a genetic algorithm (GA), is investigated. The genetic algorithm is successfully demonstrated on several systems. It is also shown that a GA can be developed using special niche methods, which allow a GA to converge to several local optima at once. Finally, the last chapter of this dissertation covers the development of a new computer visualization routine for power system analysis: contouring. The contouring algorithm is

  7. Extending Galactic Habitable Zone Modeling to Include the Emergence of Intelligent Life.

    PubMed

    Morrison, Ian S; Gowanlock, Michael G

    2015-08-01

    Previous studies of the galactic habitable zone have been concerned with identifying those regions of the Galaxy that may favor the emergence of complex life. A planet is deemed habitable if it meets a set of assumed criteria for supporting the emergence of such complex life. In this work, we extend the assessment of habitability to consider the potential for life to further evolve to the point of intelligence--termed the propensity for the emergence of intelligent life, φI. We assume φI is strongly influenced by the time durations available for evolutionary processes to proceed undisturbed by the sterilizing effects of nearby supernovae. The times between supernova events provide windows of opportunity for the evolution of intelligence. We developed a model that allows us to analyze these window times to generate a metric for φI, and we examine here the spatial and temporal variation of this metric. Even under the assumption that long time durations are required between sterilizations to allow for the emergence of intelligence, our model suggests that the inner Galaxy provides the greatest number of opportunities for intelligence to arise. This is due to the substantially higher number density of habitable planets in this region, which outweighs the effects of a higher supernova rate in the region. Our model also shows that φI is increasing with time. Intelligent life emerged at approximately the present time at Earth's galactocentric radius, but a similar level of evolutionary opportunity was available in the inner Galaxy more than 2 Gyr ago. Our findings suggest that the inner Galaxy should logically be a prime target region for searches for extraterrestrial intelligence and that any civilizations that may have emerged there are potentially much older than our own. PMID:26274865

  8. Size-selection initiation model extended to include shape and random factors

    SciTech Connect

    Trenholme, J B; Feit, M D; Rubenchik, A M

    2005-11-02

    The Feit-Rubenchik size-selection damage model has been extended in a number of ways. More realistic thermal deposition profiles have been added. Non-spherical shapes (rods and plates) have been considered, with allowance for their orientation dependence. Random variations have been taken into account. An explicit form for the change of absorptivity with precursor size has been added. A simulation tool called GIDGET has been built to allow adjustment of the many possible parameters in order to fit experimental data of initiation density as a function of fluence and pulse duration. The result is a set of constraints on the possible properties of initiation precursors.

  9. Double pendulum model for a tennis stroke including a collision process

    NASA Astrophysics Data System (ADS)

    Youn, Sun-Hyun

    2015-10-01

    By means of adding a collision process between the ball and racket in the double pendulum model, we analyzed the tennis stroke. The ball and the racket system may be accelerated during the collision time; thus, the speed of the rebound ball does not simply depend on the angular velocity of the racket. A higher angular velocity sometimes gives a lower rebound ball speed. We numerically showed that the proper time-lagged racket rotation increased the speed of the rebound ball by 20%. We also showed that the elbow should move in the proper direction in order to add the angular velocity of the racket.

  10. A mixing length model for the aqueous boundary layer including the effect of wave breaking on enhancing gas transfer

    NASA Astrophysics Data System (ADS)

    Donelan, M. A.; Soloviev, A. V.

    2016-05-01

    A mixing length model for air-water gas transfer is developed to include the effects of wave breaking. The model requires both the shear velocity induced by the wind and the integrated wave dissipation. Both of these can be calculated for tanks and oceans by a full spectrum wave model. The gas transfer model is calibrated, with laboratory tank measurements of carbon dioxide flux, and transported to oceanic conditions to yield air-sea transfer velocity versus wind speed.

  11. Analytical model for tilting proprotor aircraft dynamics, including blade torsion and coupled bending modes, and conversion mode operation

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1974-01-01

    An analytical model is developed for proprotor aircraft dynamics. The rotor model includes coupled flap-lag bending modes, and blade torsion degrees of freedom. The rotor aerodynamic model is generally valid for high and low inflow, and for axial and nonaxial flight. For the rotor support, a cantilever wing is considered; incorporation of a more general support with this rotor model will be a straight-forward matter.

  12. THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC MODELING OF THE SOLAR WIND INCLUDING PICKUP PROTONS AND TURBULENCE TRANSPORT

    SciTech Connect

    Usmanov, Arcadi V.; Matthaeus, William H.; Goldstein, Melvyn L.

    2012-07-20

    To study the effects of interstellar pickup protons and turbulence on the structure and dynamics of the solar wind, we have developed a fully three-dimensional magnetohydrodynamic solar wind model that treats interstellar pickup protons as a separate fluid and incorporates the transport of turbulence and turbulent heating. The governing system of equations combines the mean-field equations for the solar wind plasma, magnetic field, and pickup protons and the turbulence transport equations for the turbulent energy, normalized cross-helicity, and correlation length. The model equations account for photoionization of interstellar hydrogen atoms and their charge exchange with solar wind protons, energy transfer from pickup protons to solar wind protons, and plasma heating by turbulent dissipation. Separate mass and energy equations are used for the solar wind and pickup protons, though a single momentum equation is employed under the assumption that the pickup protons are comoving with the solar wind protons. We compute the global structure of the solar wind plasma, magnetic field, and turbulence in the region from 0.3 to 100 AU for a source magnetic dipole on the Sun tilted by 0 Degree-Sign -90 Degree-Sign and compare our results with Voyager 2 observations. The results computed with and without pickup protons are superposed to evaluate quantitatively the deceleration and heating effects of pickup protons, the overall compression of the magnetic field in the outer heliosphere caused by deceleration, and the weakening of corotating interaction regions by the thermal pressure of pickup protons.

  13. Interpretation of thermoreflectance measurements with a two-temperature model including non-surface heat deposition

    NASA Astrophysics Data System (ADS)

    Regner, K. T.; Wei, L. C.; Malen, J. A.

    2015-12-01

    We develop a solution to the two-temperature diffusion equation in axisymmetric cylindrical coordinates to model heat transport in thermoreflectance experiments. Our solution builds upon prior solutions that account for two-channel diffusion in each layer of an N-layered geometry, but adds the ability to deposit heat at any location within each layer. We use this solution to account for non-surface heating in the transducer layer of thermoreflectance experiments that challenge the timescales of electron-phonon coupling. A sensitivity analysis is performed to identify important parameters in the solution and to establish a guideline for when to use the two-temperature model to interpret thermoreflectance data. We then fit broadband frequency domain thermoreflectance (BB-FDTR) measurements of SiO2 and platinum at a temperature of 300 K with our two-temperature solution to parameterize the gold/chromium transducer layer. We then refit BB-FDTR measurements of silicon and find that accounting for non-equilibrium between electrons and phonons in the gold layer does lessen the previously observed heating frequency dependence reported in Regner et al. [Nat. Commun. 4, 1640 (2013)] but does not completely eliminate it. We perform BB-FDTR experiments on silicon with an aluminum transducer and find limited heating frequency dependence, in agreement with time domain thermoreflectance results. We hypothesize that the discrepancy between thermoreflectance measurements with different transducers results in part from spectrally dependent phonon transmission at the transducer/silicon interface.

  14. Simulation of the contraction of the ventricles in a human heart model including atria and pericardium.

    PubMed

    Fritz, Thomas; Wieners, Christian; Seemann, Gunnar; Steen, Henning; Dössel, Olaf

    2014-06-01

    During the contraction of the ventricles, the ventricles interact with the atria as well as with the pericardium and the surrounding tissue in which the heart is embedded. The atria are stretched, and the atrioventricular plane moves toward the apex. The atrioventricular plane displacement (AVPD) is considered to be a major contributor to the ventricular function, and a reduced AVPD is strongly related to heart failure. At the same time, the epicardium slides almost frictionlessly on the pericardium with permanent contact. Although the interaction between the ventricles, the atria and the pericardium plays an important role for the deformation of the heart, this aspect is usually not considered in computational models. In this work, we present an electromechanical model of the heart, which takes into account the interaction between ventricles, pericardium and atria and allows to reproduce the AVPD. To solve the contact problem of epicardium and pericardium, a contact handling algorithm based on penalty formulation was developed, which ensures frictionless and permanent contact. Two simulations of the ventricular contraction were conducted, one with contact handling of pericardium and heart and one without. In the simulation with contact handling, the atria were stretched during the contraction of the ventricles, while, due to the permanent contact with the pericardium, their volume increased. In contrast to that, in the simulations without pericardium, the atria were also stretched, but the change in the atrial volume was much smaller. Furthermore, the pericardium reduced the radial contraction of the ventricles and at the same time increased the AVPD.

  15. Effect of neurosteroids on a model lipid bilayer including cholesterol: An Atomic Force Microscopy study.

    PubMed

    Sacchi, Mattia; Balleza, Daniel; Vena, Giulia; Puia, Giulia; Facci, Paolo; Alessandrini, Andrea

    2015-05-01

    Amphiphilic molecules which have a biological effect on specific membrane proteins, could also affect lipid bilayer properties possibly resulting in a modulation of the overall membrane behavior. In light of this consideration, it is important to study the possible effects of amphiphilic molecule of pharmacological interest on model systems which recapitulate some of the main properties of the biological plasma membranes. In this work we studied the effect of a neurosteroid, Allopregnanolone (3α,5α-tetrahydroprogesterone or Allo), on a model bilayer composed by the ternary lipid mixture DOPC/bSM/chol. We chose ternary mixtures which present, at room temperature, a phase coexistence of liquid ordered (Lo) and liquid disordered (Ld) domains and which reside near to a critical point. We found that Allo, which is able to strongly partition in the lipid bilayer, induces a marked increase in the bilayer area and modifies the relative proportion of the two phases favoring the Ld phase. We also found that the neurosteroid shifts the miscibility temperature to higher values in a way similarly to what happens when the cholesterol concentration is decreased. Interestingly, an isoform of Allo, isoAllopregnanolone (3β,5α-tetrahydroprogesterone or isoAllo), known to inhibit the effects of Allo on GABAA receptors, has an opposite effect on the bilayer properties.

  16. An Improved Heat Budget Estimation Including Bottom Effects for General Ocean Circulation Models

    NASA Technical Reports Server (NTRS)

    Carder, Kendall; Warrior, Hari; Otis, Daniel; Chen, R. F.

    2001-01-01

    This paper studies the effects of the underwater light field on heat-budget calculations of general ocean circulation models for shallow waters. The presence of a bottom significantly alters the estimated heat budget in shallow waters, which affects the corresponding thermal stratification and hence modifies the circulation. Based on the data collected during the COBOP field experiment near the Bahamas, we have used a one-dimensional turbulence closure model to show the influence of the bottom reflection and absorption on the sea surface temperature field. The water depth has an almost one-to-one correlation with the temperature rise. Effects of varying the bottom albedo by replacing the sea grass bed with a coral sand bottom, also has an appreciable effect on the heat budget of the shallow regions. We believe that the differences in the heat budget for the shallow areas will have an influence on the local circulation processes and especially on the evaporative and long-wave heat losses for these areas. The ultimate effects on humidity and cloudiness of the region are expected to be significant as well.

  17. Interpretation of thermoreflectance measurements with a two-temperature model including non-surface heat deposition

    SciTech Connect

    Regner, K. T.; Wei, L. C.; Malen, J. A.

    2015-12-21

    We develop a solution to the two-temperature diffusion equation in axisymmetric cylindrical coordinates to model heat transport in thermoreflectance experiments. Our solution builds upon prior solutions that account for two-channel diffusion in each layer of an N-layered geometry, but adds the ability to deposit heat at any location within each layer. We use this solution to account for non-surface heating in the transducer layer of thermoreflectance experiments that challenge the timescales of electron-phonon coupling. A sensitivity analysis is performed to identify important parameters in the solution and to establish a guideline for when to use the two-temperature model to interpret thermoreflectance data. We then fit broadband frequency domain thermoreflectance (BB-FDTR) measurements of SiO{sub 2} and platinum at a temperature of 300 K with our two-temperature solution to parameterize the gold/chromium transducer layer. We then refit BB-FDTR measurements of silicon and find that accounting for non-equilibrium between electrons and phonons in the gold layer does lessen the previously observed heating frequency dependence reported in Regner et al. [Nat. Commun. 4, 1640 (2013)] but does not completely eliminate it. We perform BB-FDTR experiments on silicon with an aluminum transducer and find limited heating frequency dependence, in agreement with time domain thermoreflectance results. We hypothesize that the discrepancy between thermoreflectance measurements with different transducers results in part from spectrally dependent phonon transmission at the transducer/silicon interface.

  18. Modeling radiation dosimetry to predict cognitive outcomes in pediatric patients with CNS embryonal tumors including medulloblastoma

    SciTech Connect

    Merchant, Thomas E. . E-mail: thomas.merchant@stjude.org; Kiehna, Erin N.; Li Chenghong; Shukla, Hemant; Sengupta, Saikat; Xiong Xiaoping; Gajjar, Amar; Mulhern, Raymond K.

    2006-05-01

    Purpose: Model the effects of radiation dosimetry on IQ among pediatric patients with central nervous system (CNS) tumors. Methods and Materials: Pediatric patients with CNS embryonal tumors (n = 39) were prospectively evaluated with serial cognitive testing, before and after treatment with postoperative, risk-adapted craniospinal irradiation (CSI) and conformal primary-site irradiation, followed by chemotherapy. Differential dose-volume data for 5 brain volumes (total brain, supratentorial brain, infratentorial brain, and left and right temporal lobes) were correlated with IQ after surgery and at follow-up by use of linear regression. Results: When the dose distribution was partitioned into 2 levels, both had a significantly negative effect on longitudinal IQ across all 5 brain volumes. When the dose distribution was partitioned into 3 levels (low, medium, and high), exposure to the supratentorial brain appeared to have the most significant impact. For most models, each Gy of exposure had a similar effect on IQ decline, regardless of dose level. Conclusions: Our results suggest that radiation dosimetry data from 5 brain volumes can be used to predict decline in longitudinal IQ. Despite measures to reduce radiation dose and treatment volume, the volume that receives the highest dose continues to have the greatest effect, which supports current volume-reduction efforts.

  19. Modelling of metal vapour in pulsed TIG including influence of self-absorption

    NASA Astrophysics Data System (ADS)

    Iwao, Toru; Mori, Yusuke; Okubo, Masato; Sakai, Tadashi; Tashiro, Shinichi; Tanaka, Manabu; Yumoto, Motoshige

    2010-11-01

    Pulsed TIG (tungsten inert gas) welding is used to improve the stability and speed of arc welding, and to allow greater control over the heat input to the weld. The temperature and the radiation power density of the pulsed arc vary as a function of time, as does the distribution of metal vapour, and its effects on the arc. A self-consistent two-dimensional model of the arc and electrodes is used to calculate the properties of the arc as a function of time. Self-absorption of radiation is treated by two methods, one taking into account absorption of radiation only within the control volume of emission, and the other taking into account absorption throughout the plasma. The relation between metal vapour and radiation power density is analysed by calculating the iron vapour distribution. The results show that the transport of iron vapour is strongly affected by the fast convective flow during the peak current period. During the base current period, the region containing a low concentration of metal vapour expands because of the low convective flow. The iron vapour distribution does not closely follow the current pulses. The temperature, iron vapour and radiation power density distributions depend on the self-absorption model used. The temperature distribution becomes broader when self-absorption of radiation from all directions is considered.

  20. Three-Dimensional Magnetohydrodynamic Modeling of the Solar Wind Including Pickup Protons and Turbulence Transport

    NASA Technical Reports Server (NTRS)

    Usmanov, Arcadi V.; Goldstein, Melvyn L.; Matthaeus, William H.

    2012-01-01

    To study the effects of interstellar pickup protons and turbulence on the structure and dynamics of the solar wind, we have developed a fully three-dimensional magnetohydrodynamic solar wind model that treats interstellar pickup protons as a separate fluid and incorporates the transport of turbulence and turbulent heating. The governing system of equations combines the mean-field equations for the solar wind plasma, magnetic field, and pickup protons and the turbulence transport equations for the turbulent energy, normalized cross-helicity, and correlation length. The model equations account for photoionization of interstellar hydrogen atoms and their charge exchange with solar wind protons, energy transfer from pickup protons to solar wind protons, and plasma heating by turbulent dissipation. Separate mass and energy equations are used for the solar wind and pickup protons, though a single momentum equation is employed under the assumption that the pickup protons are comoving with the solar wind protons.We compute the global structure of the solar wind plasma, magnetic field, and turbulence in the region from 0.3 to 100 AU for a source magnetic dipole on the Sun tilted by 0 deg - .90 deg and compare our results with Voyager 2 observations. The results computed with and without pickup protons are superposed to evaluate quantitatively the deceleration and heating effects of pickup protons, the overall compression of the magnetic field in the outer heliosphere caused by deceleration, and the weakening of corotating interaction regions by the thermal pressure of pickup protons.

  1. Moonlet induced wakes in planetary rings: Analytical model including eccentric orbits of moon and ring particles

    NASA Astrophysics Data System (ADS)

    Seiß, M.; Spahn, F.; Schmidt, Jürgen

    2010-11-01

    Saturn's rings host two known moons, Pan and Daphnis, which are massive enough to clear circumferential gaps in the ring around their orbits. Both moons create wake patterns at the gap edges by gravitational deflection of the ring material (Cuzzi, J.N., Scargle, J.D. [1985]. Astrophys. J. 292, 276-290; Showalter, M.R., Cuzzi, J.N., Marouf, E.A., Esposito, L.W. [1986]. Icarus 66, 297-323). New Cassini observations revealed that these wavy edges deviate from the sinusoidal waveform, which one would expect from a theory that assumes a circular orbit of the perturbing moon and neglects particle interactions. Resonant perturbations of the edges by moons outside the ring system, as well as an eccentric orbit of the embedded moon, may partly explain this behavior (Porco, C.C., and 34 colleagues [2005]. Science 307, 1226-1236; Tiscareno, M.S., Burns, J.A., Hedman, M.M., Spitale, J.N., Porco, C.C., Murray, C.D., and the Cassini Imaging team [2005]. Bull. Am. Astron. Soc. 37, 767; Weiss, J.W., Porco, C.C., Tiscareno, M.S., Burns, J.A., Dones, L. [2005]. Bull. Am. Astron. Soc. 37, 767; Weiss, J.W., Porco, C.C., Tiscareno, M.S. [2009]. Astron. J. 138, 272-286). Here we present an extended non-collisional streamline model which accounts for both effects. We describe the resulting variations of the density structure and the modification of the nonlinearity parameter q. Furthermore, an estimate is given for the applicability of the model. We use the streamwire model introduced by Stewart (Stewart, G.R. [1991]. Icarus 94, 436-450) to plot the perturbed ring density at the gap edges. We apply our model to the Keeler gap edges undulated by Daphnis and to a faint ringlet in the Encke gap close to the orbit of Pan. The modulations of the latter ringlet, induced by the perturbations of Pan (Burns, J.A., Hedman, M.M., Tiscareno, M.S., Nicholson, P.D., Streetman, B.J., Colwell, J.E., Showalter, M.R., Murray, C.D., Cuzzi, J.N., Porco, C.C., and the Cassini ISS team [2005]. Bull. Am

  2. Configuration-space quantum-soliton model including loss and gain

    NASA Astrophysics Data System (ADS)

    Fini, John M.; Hagelstein, Peter L.; Haus, Hermann A.

    1999-09-01

    We examine the effects of loss and gain on a quantum soliton using a configuration-space approach. A simple microscopic model of local photon-matter interaction is applied to solitons with arbitrary quantum superpositions of momentum. Such a theory is needed in the analysis and design of systems that manipulate the wave function of soliton center-of-mass coordinates. The formalism is tested by calculating the momentum noise induced by loss and gain, and by comparison with the well-known Gordon-Haus calculation [J. P. Gordon and H. A. Haus, Opt. Lett. 11, 665 (1986)]. The comparison provides physical insight and reproduces the old result as a special case.

  3. Parsing recursive sentences with a connectionist model including a neural stack and synaptic gating.

    PubMed

    Fedor, Anna; Ittzés, Péter; Szathmáry, Eörs

    2011-02-21

    It is supposed that humans are genetically predisposed to be able to recognize sequences of context-free grammars with centre-embedded recursion while other primates are restricted to the recognition of finite state grammars with tail-recursion. Our aim was to construct a minimalist neural network that is able to parse artificial sentences of both grammars in an efficient way without using the biologically unrealistic backpropagation algorithm. The core of this network is a neural stack-like memory where the push and pop operations are regulated by synaptic gating on the connections between the layers of the stack. The network correctly categorizes novel sentences of both grammars after training. We suggest that the introduction of the neural stack memory will turn out to be substantial for any biological 'hierarchical processor' and the minimalist design of the model suggests a quest for similar, realistic neural architectures.

  4. Robust and Adaptive OMR System Including Fuzzy Modeling, Fusion of Musical Rules, and Possible Error Detection

    NASA Astrophysics Data System (ADS)

    Rossant, Florence; Bloch, Isabelle

    2006-12-01

    This paper describes a system for optical music recognition (OMR) in case of monophonic typeset scores. After clarifying the difficulties specific to this domain, we propose appropriate solutions at both image analysis level and high-level interpretation. Thus, a recognition and segmentation method is designed, that allows dealing with common printing defects and numerous symbol interconnections. Then, musical rules are modeled and integrated, in order to make a consistent decision. This high-level interpretation step relies on the fuzzy sets and possibility framework, since it allows dealing with symbol variability, flexibility, and imprecision of music rules, and merging all these heterogeneous pieces of information. Other innovative features are the indication of potential errors and the possibility of applying learning procedures, in order to gain in robustness. Experiments conducted on a large data base show that the proposed method constitutes an interesting contribution to OMR.

  5. Energy-based fatigue model for shape memory alloys including thermomechanical coupling

    NASA Astrophysics Data System (ADS)

    Zhang, Yahui; Zhu, Jihong; Moumni, Ziad; Van Herpen, Alain; Zhang, Weihong

    2016-03-01

    This paper is aimed at developing a low cycle fatigue criterion for pseudoelastic shape memory alloys to take into account thermomechanical coupling. To this end, fatigue tests are carried out at different loading rates under strain control at room temperature using NiTi wires. Temperature distribution on the specimen is measured using a high speed thermal camera. Specimens are tested to failure and fatigue lifetimes of specimens are measured. Test results show that the fatigue lifetime is greatly influenced by the loading rate: as the strain rate increases, the fatigue lifetime decreases. Furthermore, it is shown that the fatigue cracks initiate when the stored energy inside the material reaches a critical value. An energy-based fatigue criterion is thus proposed as a function of the irreversible hysteresis energy of the stabilized cycle and the loading rate. Fatigue life is calculated using the proposed model. The experimental and computational results compare well.

  6. Areal rainfall estimation using moving cars - computer experiments including hydrological modeling

    NASA Astrophysics Data System (ADS)

    Rabiei, Ehsan; Haberlandt, Uwe; Sester, Monika; Fitzner, Daniel; Wallner, Markus

    2016-09-01

    The need for high temporal and spatial resolution precipitation data for hydrological analyses has been discussed in several studies. Although rain gauges provide valuable information, a very dense rain gauge network is costly. As a result, several new ideas have emerged to help estimating areal rainfall with higher temporal and spatial resolution. Rabiei et al. (2013) observed that moving cars, called RainCars (RCs), can potentially be a new source of data for measuring rain rate. The optical sensors used in that study are designed for operating the windscreen wipers and showed promising results for rainfall measurement purposes. Their measurement accuracy has been quantified in laboratory experiments. Considering explicitly those errors, the main objective of this study is to investigate the benefit of using RCs for estimating areal rainfall. For that, computer experiments are carried out, where radar rainfall is considered as the reference and the other sources of data, i.e., RCs and rain gauges, are extracted from radar data. Comparing the quality of areal rainfall estimation by RCs with rain gauges and reference data helps to investigate the benefit of the RCs. The value of this additional source of data is not only assessed for areal rainfall estimation performance but also for use in hydrological modeling. Considering measurement errors derived from laboratory experiments, the result shows that the RCs provide useful additional information for areal rainfall estimation as well as for hydrological modeling. Moreover, by testing larger uncertainties for RCs, they observed to be useful up to a certain level for areal rainfall estimation and discharge simulation.

  7. ECO: A Generic Eutrophication Model Including Comprehensive Sediment-Water Interaction

    PubMed Central

    Smits, Johannes G. C.; van Beek, Jan K. L.

    2013-01-01

    The content and calibration of the comprehensive generic 3D eutrophication model ECO for water and sediment quality is presented. Based on a computational grid for water and sediment, ECO is used as a tool for water quality management to simulate concentrations and mass fluxes of nutrients (N, P, Si), phytoplankton species, detrital organic matter, electron acceptors and related substances. ECO combines integral simulation of water and sediment quality with sediment diagenesis and closed mass balances. Its advanced process formulations for substances in the water column and the bed sediment were developed to allow for a much more dynamic calculation of the sediment-water exchange fluxes of nutrients as resulting from steep concentration gradients across the sediment-water interface than is possible with other eutrophication models. ECO is to more accurately calculate the accumulation of organic matter and nutrients in the sediment, and to allow for more accurate prediction of phytoplankton biomass and water quality in response to mitigative measures such as nutrient load reduction. ECO was calibrated for shallow Lake Veluwe (The Netherlands). Due to restoration measures this lake underwent a transition from hypertrophic conditions to moderately eutrophic conditions, leading to the extensive colonization by submerged macrophytes. ECO reproduces observed water quality well for the transition period of ten years. The values of its process coefficients are in line with ranges derived from literature. ECO’s calculation results underline the importance of redox processes and phosphate speciation for the nutrient return fluxes. Among other things, the results suggest that authigenic formation of a stable apatite-like mineral in the sediment can contribute significantly to oligotrophication of a lake after a phosphorus load reduction. PMID:23844160

  8. ECO: a generic eutrophication model including comprehensive sediment-water interaction.

    PubMed

    Smits, Johannes G C; van Beek, Jan K L

    2013-01-01

    The content and calibration of the comprehensive generic 3D eutrophication model ECO for water and sediment quality is presented. Based on a computational grid for water and sediment, ECO is used as a tool for water quality management to simulate concentrations and mass fluxes of nutrients (N, P, Si), phytoplankton species, detrital organic matter, electron acceptors and related substances. ECO combines integral simulation of water and sediment quality with sediment diagenesis and closed mass balances. Its advanced process formulations for substances in the water column and the bed sediment were developed to allow for a much more dynamic calculation of the sediment-water exchange fluxes of nutrients as resulting from steep concentration gradients across the sediment-water interface than is possible with other eutrophication models. ECO is to more accurately calculate the accumulation of organic matter and nutrients in the sediment, and to allow for more accurate prediction of phytoplankton biomass and water quality in response to mitigative measures such as nutrient load reduction. ECO was calibrated for shallow Lake Veluwe (The Netherlands). Due to restoration measures this lake underwent a transition from hypertrophic conditions to moderately eutrophic conditions, leading to the extensive colonization by submerged macrophytes. ECO reproduces observed water quality well for the transition period of ten years. The values of its process coefficients are in line with ranges derived from literature. ECO's calculation results underline the importance of redox processes and phosphate speciation for the nutrient return fluxes. Among other things, the results suggest that authigenic formation of a stable apatite-like mineral in the sediment can contribute significantly to oligotrophication of a lake after a phosphorus load reduction.

  9. Interspecies difference in placement of developing teeth and its relationship with cross-sectional geometry of the mandibular symphysis in four primate species including modern humans.

    PubMed

    Fukase, Hitoshi

    2012-02-01

    The form of the anthropoid mandibular symphysis has recently been addressed in association with spatial requirements for the forming anterior teeth. To evaluate potential relationships between the symphyseal shape and teeth further, the growth patterns of the symphyseal region and the positioning of the tooth crypts were examined using CT data, comparing four primate species (modern humans, chimpanzees, Japanese monkeys, and hamadryas baboons) with varied symphyseal curvature and tooth size. First, results showed that interspecies differences in overall mandibular shape including symphyseal inclination and bicanine width are consistently expressed throughout postnatal ontogeny, although local symphyseal configurations related to the superior transverse torus (STT) tended to change considerably during growth in chimpanzees. Second, the four species were found to exhibit differentiated formation positions of the incisor and canine crypts. In particular, I2 developed between I1 and C in humans with a broad bicanine space and small teeth, whereas it was positioned posterior to I1 and above C in the cercopithecines with an extremely narrow bicanine space. In chimpanzees, despite the large bicanine width, I1 and I2 grew with a large antero-posterior overlap owing to their large size. These results indicate that the dental positioning is determined in concert with the size balance of the available mandibular space and forming teeth. Finally, the positions/contours of I2 crypt were shown to correspond strongly with the STT across the taxa. This suggests that interspecies differences in symphyseal shape should be interpreted partially by the species-specific positional relationships of the developing anterior teeth.

  10. The coach-athlete relationship: a motivational model.

    PubMed

    Mageau, Geneviève A; Vallerand, Robert J

    2003-11-01

    The aim of this paper is to present a motivational model of the coach-athlete relationship that describes how coaches may influence athletes' motivation. In line with cognitive evaluation theory (Deci and Ryan, 1980, 1985) and the hierarchical model of intrinsic and extrinsic motivation (Vallerand, 1997, 2000), a motivational sequence is proposed where coaches' personal orientation towards coaching, the context within which they operate, and their perceptions of their athletes' behaviour and motivation influence coaches' behaviours. Also, coaches' behaviours in the form of autonomy-supportive behaviours, provision of structure and involvement have a beneficial impact on athletes' needs for autonomy, competence and relatedness, which, in turn, nurture athletes' intrinsic motivation and self-determined types of extrinsic motivation. Here, we first review coaches' autonomy-supportive behaviours. We then describe the psychological processes through which coaching behaviours have a positive influence on athletes' intrinsic and self-determined extrinsic motivation. Finally, we identify social and personality processes that determine coaching behaviours.

  11. Noninvasive model including right ventricular speckle tracking for the evaluation of pulmonary hypertension

    PubMed Central

    Mahran, Yossra; Schueler, Robert; Weber, Marcel; Pizarro, Carmen; Nickenig, Georg; Skowasch, Dirk; Hammerstingl, Christoph

    2016-01-01

    AIM To find parameters from transthorathic echocardiography (TTE) including speckle-tracking (ST) analysis of the right ventricle (RV) to identify precapillary pulmonary hypertension (PH). METHODS Forty-four patients with suspected PH undergoing right heart catheterization (RHC) were consecutively included (mean age 63.1 ± 14 years, 61% male gender). All patients underwent standardized TTE including ST analysis of the RV. Based on the subsequent TTE-derived measurements, the presence of PH was assessed: Left ventricular ejection fraction (LVEF) was calculated by Simpsons rule from 4Ch. Systolic pulmonary artery pressure (sPAP) was assessed with continuous wave Doppler of systolic tricuspid regurgitant velocity and regarded raised with values ≥ 30 mmHg as a surrogate parameter for RA pressure. A concomitantly elevated PCWP was considered a means to discriminate between the precapillary and postcapillary form of PH. PCWP was considered elevated when the E/e’ ratio was > 12 as a surrogate for LV diastolic pressure. E/e’ ratio was measured by gauging systolic and diastolic velocities of the lateral and septal mitral valve annulus using TDI mode. The results were then averaged with conventional measurement of mitral valve inflow. Furthermore, functional testing with six minutes walking distance (6MWD), ECG-RV stress signs, NT pro-BNP and other laboratory values were assessed. RESULTS PH was confirmed in 34 patients (precapillary PH, n = 15, postcapillary PH, n = 19). TTE showed significant differences in E/e’ ratio (precapillary PH: 12.3 ± 4.4, postcapillary PH: 17.3 ± 10.3, no PH: 12.1 ± 4.5, P = 0.02), LV volumes (ESV: 25.0 ± 15.0 mL, 49.9 ± 29.5 mL, 32.2 ± 13.6 mL, P = 0.027; EDV: 73.6 ± 24.0 mL, 110.6 ± 31.8 mL, 87.8 ± 33.0 mL, P = 0.021) and systolic pulmonary arterial pressure (sPAP: 61.2 ± 22.3 mmHg, 53.6 ± 20.1 mmHg, 31.2 ± 24.6 mmHg, P = 0.001). STRV analysis showed significant differences for apical RV longitudinal strain (RVAS: -7.5% ± 5

  12. Noninvasive model including right ventricular speckle tracking for the evaluation of pulmonary hypertension

    PubMed Central

    Mahran, Yossra; Schueler, Robert; Weber, Marcel; Pizarro, Carmen; Nickenig, Georg; Skowasch, Dirk; Hammerstingl, Christoph

    2016-01-01

    AIM To find parameters from transthorathic echocardiography (TTE) including speckle-tracking (ST) analysis of the right ventricle (RV) to identify precapillary pulmonary hypertension (PH). METHODS Forty-four patients with suspected PH undergoing right heart catheterization (RHC) were consecutively included (mean age 63.1 ± 14 years, 61% male gender). All patients underwent standardized TTE including ST analysis of the RV. Based on the subsequent TTE-derived measurements, the presence of PH was assessed: Left ventricular ejection fraction (LVEF) was calculated by Simpsons rule from 4Ch. Systolic pulmonary artery pressure (sPAP) was assessed with continuous wave Doppler of systolic tricuspid regurgitant velocity and regarded raised with values ≥ 30 mmHg as a surrogate parameter for RA pressure. A concomitantly elevated PCWP was considered a means to discriminate between the precapillary and postcapillary form of PH. PCWP was considered elevated when the E/e’ ratio was > 12 as a surrogate for LV diastolic pressure. E/e’ ratio was measured by gauging systolic and diastolic velocities of the lateral and septal mitral valve annulus using TDI mode. The results were then averaged with conventional measurement of mitral valve inflow. Furthermore, functional testing with six minutes walking distance (6MWD), ECG-RV stress signs, NT pro-BNP and other laboratory values were assessed. RESULTS PH was confirmed in 34 patients (precapillary PH, n = 15, postcapillary PH, n = 19). TTE showed significant differences in E/e’ ratio (precapillary PH: 12.3 ± 4.4, postcapillary PH: 17.3 ± 10.3, no PH: 12.1 ± 4.5, P = 0.02), LV volumes (ESV: 25.0 ± 15.0 mL, 49.9 ± 29.5 mL, 32.2 ± 13.6 mL, P = 0.027; EDV: 73.6 ± 24.0 mL, 110.6 ± 31.8 mL, 87.8 ± 33.0 mL, P = 0.021) and systolic pulmonary arterial pressure (sPAP: 61.2 ± 22.3 mmHg, 53.6 ± 20.1 mmHg, 31.2 ± 24.6 mmHg, P = 0.001). STRV analysis showed significant differences for apical RV longitudinal strain (RVAS: -7.5% ± 5

  13. Development of a new fertility prediction model for stallion semen, including flow cytometry.

    PubMed

    Barrier Battut, I; Kempfer, A; Becker, J; Lebailly, L; Camugli, S; Chevrier, L

    2016-09-01

    Several laboratories routinely use flow cytometry to evaluate stallion semen quality. However, objective and practical tools for the on-field interpretation of data concerning fertilizing potential are scarce. A panel of nine tests, evaluating a large number of compartments or functions of the spermatozoa: motility, morphology, viability, mitochondrial activity, oxidation level, acrosome integrity, DNA integrity, "organization" of the plasma membrane, and hypoosmotic resistance, was applied to a population of 43 stallions, 33 of which showing widely differing fertilities (19%-84% pregnancy rate per cycle [PRC]). Analyses were performed either within 2 hours after semen collection or after 24-hour storage at 4 °C in INRA96 extender, on three to six ejaculates for each stallion. The aim was to provide data on the distribution of values among said population, showing within-stallion and between-stallion variability, and to determine whether appropriate combinations of tests could evaluate the fertilizing potential of each stallion. Within-stallion repeatability, defined as intrastallion correlation (r = between-stallion variance/total variance) ranged between 0.29 and 0.84 for "conventional" variables (viability, morphology, and motility), and between 0.15 and 0.81 for "cytometric" variables. Those data suggested that analyzing six ejaculates would be adequate to characterize a stallion. For most variables, except those related to DNA integrity and some motility variables, results differed significantly between immediately performed analyses and analyses performed after 24 hours at 4 °C. Two "best-fit" combinations of variables were determined. Factorial discriminant analysis using a first combination of seven variables, including the polarization of mitochondria, acrosome integrity, DNA integrity, and hypoosmotic resistance, permitted exact determination of the fertility group for each stallion: fertile, that is, PRC higher than 55%; intermediate, that is, 45

  14. Relationship Characteristics Associated with the Experience of Hurt in Romantic Relationships: A Test of the Relational Turbulence Model

    ERIC Educational Resources Information Center

    Theiss, Jennifer A.; Knobloch, Leanne K.; Checton, Maria G.; Magsamen-Conrad, Kate

    2009-01-01

    We employed the relational turbulence model to identify (a) relationship characteristics associated with people's appraisals of hurtful messages, and (b) features of hurtful episodes and relationship characteristics that correspond with the directness of communication about hurt. We conducted a study in which 135 dating couples reported on their…

  15. A multivariate model of parent-adolescent relationship variables in early adolescence.

    PubMed

    McKinney, Cliff; Renk, Kimberly

    2011-08-01

    Given the importance of predicting outcomes for early adolescents, this study examines a multivariate model of parent-adolescent relationship variables, including parenting, family environment, and conflict. Participants, who completed measures assessing these variables, included 710 culturally diverse 11-14-year-olds who were attending a middle school in a Southeastern state. The parents of a subset of these adolescents (i.e., 487 mother-father pairs) participated in this study as well. Correlational analyses indicate that authoritative and authoritarian parenting, family cohesion and adaptability, and conflict are significant predictors of early adolescents' internalizing and externalizing problems. Structural equation modeling analyses indicate that fathers' parenting may not predict directly externalizing problems in male and female adolescents but instead may act through conflict. More direct relationships exist when examining mothers' parenting. The impact of parenting, family environment, and conflict on early adolescents' internalizing and externalizing problems and the importance of both gender and cross-informant ratings are emphasized.

  16. Analysis of Prey-Predator Three Species Fishery Model with Harvesting Including Prey Refuge and Migration

    NASA Astrophysics Data System (ADS)

    Roy, Sankar Kumar; Roy, Banani

    In this article, a prey-predator system with Holling type II functional response for the predator population including prey refuge region has been analyzed. Also a harvesting effort has been considered for the predator population. The density-dependent mortality rate for the prey, predator and super predator has been considered. The equilibria of the proposed system have been determined. Local and global stabilities for the system have been discussed. We have used the analytic approach to derive the global asymptotic stabilities of the system. The maximal predator per capita consumption rate has been considered as a bifurcation parameter to evaluate Hopf bifurcation in the neighborhood of interior equilibrium point. Also, we have used fishing effort to harvest predator population of the system as a control to develop a dynamic framework to investigate the optimal utilization of the resource, sustainability properties of the stock and the resource rent is earned from the resource. Finally, we have presented some numerical simulations to verify the analytic results and the system has been analyzed through graphical illustrations.

  17. Nuclear Reactor/Hydrogen Process Interface Including the HyPEP Model

    SciTech Connect

    Steven R. Sherman

    2007-05-01

    The Nuclear Reactor/Hydrogen Plant interface is the intermediate heat transport loop that will connect a very high temperature gas-cooled nuclear reactor (VHTR) to a thermochemical, high-temperature electrolysis, or hybrid hydrogen production plant. A prototype plant called the Next Generation Nuclear Plant (NGNP) is planned for construction and operation at the Idaho National Laboratory in the 2018-2021 timeframe, and will involve a VHTR, a high-temperature interface, and a hydrogen production plant. The interface is responsible for transporting high-temperature thermal energy from the nuclear reactor to the hydrogen production plant while protecting the nuclear plant from operational disturbances at the hydrogen plant. Development of the interface is occurring under the DOE Nuclear Hydrogen Initiative (NHI) and involves the study, design, and development of high-temperature heat exchangers, heat transport systems, materials, safety, and integrated system models. Research and development work on the system interface began in 2004 and is expected to continue at least until the start of construction of an engineering-scale demonstration plant.

  18. Model analysis of the relationship between intracellular PO2 and energy demand in skeletal muscle.

    PubMed

    Spires, Jessica; Gladden, L Bruce; Grassi, Bruno; Saidel, Gerald M; Lai, Nicola

    2012-12-01

    On the basis of experimental studies, the intracellular O(2) (iPo(2))-work rate (WR) relationship in skeletal muscle is not unique. One study found that iPo(2) reached a plateau at 60% of maximal WR, while another found that iPo(2) decreased linearly at higher WR, inferring capillary permeability-surface area (PS) and blood-tissue O(2) gradient, respectively, as alternative dominant factors for determining O(2) diffusion changes during exercise. This relationship is affected by several factors, including O(2) delivery and oxidative and glycolytic capacities of the muscle. In this study, these factors are examined using a mechanistic, mathematical model to analyze experimental data from contracting skeletal muscle and predict the effects of muscle contraction on O(2) transport, glycogenolysis, and iPo(2). The model describes convection, O(2) diffusion, and cellular metabolism, including anaerobic glycogenolysis. Consequently, the model simulates iPo(2) in response to muscle contraction under a variety of experimental conditions. The model was validated by comparison of simulations of O(2) uptake with corresponding experimental responses of electrically stimulated canine muscle under different O(2) content, blood flow, and contraction intensities. The model allows hypothetical variation of PS, glycogenolytic capacity, and blood flow and predictions of the distinctive effects of these factors on the iPo(2)-contraction intensity relationship in canine muscle. Although PS is the main factor regulating O(2) diffusion rate, model simulations indicate that PS and O(2) gradient have essential roles, depending on the specific conditions. Furthermore, the model predicts that different convection and diffusion patterns and metabolic factors may be responsible for different iPo(2)-WR relationships in humans. PMID:22972834

  19. Model analysis of the relationship between intracellular Po2 and energy demand in skeletal muscle

    PubMed Central

    Spires, Jessica; Gladden, L. Bruce; Grassi, Bruno; Saidel, Gerald M.

    2012-01-01

    On the basis of experimental studies, the intracellular O2 (iPo2)-work rate (WR) relationship in skeletal muscle is not unique. One study found that iPo2 reached a plateau at 60% of maximal WR, while another found that iPo2 decreased linearly at higher WR, inferring capillary permeability-surface area (PS) and blood-tissue O2 gradient, respectively, as alternative dominant factors for determining O2 diffusion changes during exercise. This relationship is affected by several factors, including O2 delivery and oxidative and glycolytic capacities of the muscle. In this study, these factors are examined using a mechanistic, mathematical model to analyze experimental data from contracting skeletal muscle and predict the effects of muscle contraction on O2 transport, glycogenolysis, and iPo2. The model describes convection, O2 diffusion, and cellular metabolism, including anaerobic glycogenolysis. Consequently, the model simulates iPo2 in response to muscle contraction under a variety of experimental conditions. The model was validated by comparison of simulations of O2 uptake with corresponding experimental responses of electrically stimulated canine muscle under different O2 content, blood flow, and contraction intensities. The model allows hypothetical variation of PS, glycogenolytic capacity, and blood flow and predictions of the distinctive effects of these factors on the iPo2-contraction intensity relationship in canine muscle. Although PS is the main factor regulating O2 diffusion rate, model simulations indicate that PS and O2 gradient have essential roles, depending on the specific conditions. Furthermore, the model predicts that different convection and diffusion patterns and metabolic factors may be responsible for different iPo2-WR relationships in humans. PMID:22972834

  20. Development of a robust DNA damage model including persistent telomere-associated damage with application to secondary cancer risk assessment.

    PubMed

    Rastgou Talemi, Soheil; Kollarovic, Gabriel; Lapytsko, Anastasiya; Schaber, Jörg

    2015-01-01

    Mathematical modelling has been instrumental to understand kinetics of radiation-induced DNA damage repair and associated secondary cancer risk. The widely accepted two-lesion kinetic (TLK) model assumes two kinds of double strand breaks, simple and complex ones, with different repair rates. Recently, persistent DNA damage associated with telomeres was reported as a new kind of DNA damage. We therefore extended existing versions of the TLK model by new categories of DNA damage and re-evaluated those models using extensive data. We subjected different versions of the TLK model to a rigorous model discrimination approach. This enabled us to robustly select a best approximating parsimonious model that can both recapitulate and predict transient and persistent DNA damage after ionizing radiation. Models and data argue for i) nonlinear dose-damage relationships, and ii) negligible saturation of repair kinetics even for high doses. Additionally, we show that simulated radiation-induced persistent telomere-associated DNA damage foci (TAF) can be used to predict excess relative risk (ERR) of developing secondary leukemia after fractionated radiotherapy. We suggest that TAF may serve as an additional measure to predict cancer risk after radiotherapy using high dose rates. This may improve predicting risk-dose dependency of ionizing radiation especially for long-term therapies. PMID:26359627

  1. Development of a robust DNA damage model including persistent telomere-associated damage with application to secondary cancer risk assessment

    PubMed Central

    Rastgou Talemi, Soheil; Kollarovic, Gabriel; Lapytsko, Anastasiya; Schaber, Jörg

    2015-01-01

    Mathematical modelling has been instrumental to understand kinetics of radiation-induced DNA damage repair and associated secondary cancer risk. The widely accepted two-lesion kinetic (TLK) model assumes two kinds of double strand breaks, simple and complex ones, with different repair rates. Recently, persistent DNA damage associated with telomeres was reported as a new kind of DNA damage. We therefore extended existing versions of the TLK model by new categories of DNA damage and re-evaluated those models using extensive data. We subjected different versions of the TLK model to a rigorous model discrimination approach. This enabled us to robustly select a best approximating parsimonious model that can both recapitulate and predict transient and persistent DNA damage after ionizing radiation. Models and data argue for i) nonlinear dose-damage relationships, and ii) negligible saturation of repair kinetics even for high doses. Additionally, we show that simulated radiation-induced persistent telomere-associated DNA damage foci (TAF) can be used to predict excess relative risk (ERR) of developing secondary leukemia after fractionated radiotherapy. We suggest that TAF may serve as an additional measure to predict cancer risk after radiotherapy using high dose rates. This may improve predicting risk-dose dependency of ionizing radiation especially for long-term therapies. PMID:26359627

  2. A gamma variate model that includes stretched exponential is a better fit for gastric emptying data from mice

    PubMed Central

    Bajzer, Željko; Gibbons, Simon J.; Coleman, Heidi D.; Linden, David R.

    2015-01-01

    Noninvasive breath tests for gastric emptying are important techniques for understanding the changes in gastric motility that occur in disease or in response to drugs. Mice are often used as an animal model; however, the gamma variate model currently used for data analysis does not always fit the data appropriately. The aim of this study was to determine appropriate mathematical models to better fit mouse gastric emptying data including when two peaks are present in the gastric emptying curve. We fitted 175 gastric emptying data sets with two standard models (gamma variate and power exponential), with a gamma variate model that includes stretched exponential and with a proposed two-component model. The appropriateness of the fit was assessed by the Akaike Information Criterion. We found that extension of the gamma variate model to include a stretched exponential improves the fit, which allows for a better estimation of T1/2 and Tlag. When two distinct peaks in gastric emptying are present, a two-component model is required for the most appropriate fit. We conclude that use of a stretched exponential gamma variate model and when appropriate a two-component model will result in a better estimate of physiologically relevant parameters when analyzing mouse gastric emptying data. PMID:26045615

  3. Direct radiative effect modeled for regional aerosols in central Europe including the effect of relative humidity

    NASA Astrophysics Data System (ADS)

    Iorga, G.; Hitzenberger, R.; Kasper-Giebl, A.; Puxbaum, Hans

    2007-01-01

    In view of both the climatic relevance of aerosols and the fact that aerosol burdens in central Europe are heavily impacted by anthropogenic sources, this study is focused on estimating the regional-scale direct radiative effect of aerosols in Austria. The aerosol data (over 80 samples in total) were collected during measurement campaigns at five sampling sites: the urban areas of Vienna, Linz, and Graz and on Mt. Rax (1644 m, regional background aerosol) and Mt. Sonnblick (3106 m, background aerosol). Aerosol mass size distributions were obtained with eight-stage (size range: 0.06-16 μm diameter) and six-stage (size range 0.1-10 μm) low-pressure cascade impactors. The size-segregated samples were analyzed for total carbon (TC), black carbon (BC), and inorganic ions. The aerosol at these five locations is compared in terms of size distributions, optical properties, and direct forcing. Mie calculations are performed for the dry aerosol at 60 wavelengths in the range 0.3-40 μm. Using mass growth factors determined earlier, the optical properties are also estimated for higher relative humidities (60%, 70%, 80%, and 90%). A box model was used to estimate direct radiative forcing (DRF). The presence of absorbing species (BC) was found to reduce the cooling effect of the aerosols. The water-soluble substances dominate radiative forcing at the urban sites, while on Rax and Sonnblick BC plays the most important role. This result can be explained by the effect of the surface albedo, which is much lower in the urban regions (0.16) than at the ice and snow-covered mountain sites. Shortwave (below 4 μm) and longwave surface albedo values for ice were 0.35 and 0.5, while for snow surface albedo, values of 0.8 (shortwave) and 0.5 (longwave) were used. In the case of dry aerosol, especially for urban sites, the unidentified material may contribute a large part to the forcing. Depending on the sampling site the estimated forcing gets more negative with increasing humidity

  4. TYPE II SUPERNOVAE: MODEL LIGHT CURVES AND STANDARD CANDLE RELATIONSHIPS

    SciTech Connect

    Kasen, Daniel; Woosley, S. E.

    2009-10-01

    A survey of Type II supernovae explosion models has been carried out to determine how their light curves and spectra vary with their mass, metallicity, and explosion energy. The presupernova models are taken from a recent survey of massive stellar evolution at solar metallicity supplemented by new calculations at subsolar metallicity. Explosions are simulated by the motion of a piston near the edge of the iron core and the resulting light curves and spectra are calculated using full multi-wavelength radiation transport. Formulae are developed that describe approximately how the model observables (light curve luminosity and duration) scale with the progenitor mass, explosion energy, and radioactive nucleosynthesis. Comparison with observational data shows that the explosion energy of typical supernovae (as measured by kinetic energy at infinity) varies by nearly an order of magnitude-from 0.5 to 4.0 x 10{sup 51} ergs, with a typical value of approx0.9 x 10{sup 51} ergs. Despite the large variation, the models exhibit a tight relationship between luminosity and expansion velocity, similar to that previously employed empirically to make SNe IIP standardized candles. This relation is explained by the simple behavior of hydrogen recombination in the supernova envelope, but we find a sensitivity to progenitor metallicity and mass that could lead to systematic errors. Additional correlations between light curve luminosity, duration, and color might enable the use of SNe IIP to obtain distances accurate to approx20% using only photometric data.

  5. Noise, sleep and poor health: Modeling the relationship between road traffic noise and cardiovascular problems.

    PubMed

    Fyhri, Aslak; Aasvang, Gunn Marit

    2010-10-01

    Several adverse effects have been associated with exposure to traffic noise. Studies supporting a noise-stress-health model have suggested links between noise level and increased noradrenalin concentrations in urine, hypertension and myocardial infarction. Among the more commonly documented effects, sleep disturbances have been regarded as being the most serious. Both noise annoyance and sleep disturbance have been proposed as important mediators of the impact of noise on health. The present paper investigates the relationships among long-term noise exposure, annoyance, sleeping problems and subjective health complaints by the use of a structural equation model. Further, it aims at giving insight into how noise sensitivity is related to sleep disturbances from road traffic noise. Finally, it examines whether any effect of noise exposure or response to noise can be detected on prevalence of cardiovascular problems, when information on sleep disturbances is included in a model. Data from a questionnaire survey conducted among a population sample in Oslo (N=2786) are combined with nighttime noise levels calculated from outside each respondents dwelling, at the bedroom façade. The results of the analysis showed significant relationships between noise annoyance at night and sleeping problems. The model also showed strong links among pseudoneurological complaints, annoyance and sleeping problems, thus pointing to the importance of including information on psychosomatic disorders and mild psychological problems in future studies looking at potential health effects of noise. The analysis showed no relationship between neither noise exposure nor response to noise and cardiovascular problems.

  6. Strategic Engagement: New Models of Relationship Management for Academic Librarians

    ERIC Educational Resources Information Center

    Eldridge, Jeanette; Fraser, Katie; Simmonds, Tony; Smyth, Neil

    2016-01-01

    How do we best bridge the gap between the Library and the diverse academic communities it serves? Librarians need new strategies for engagement. Traditional models of liaison, aligning solutions to disciplines, are yielding to functional specialisms, including a focus on building partnerships. This paper offers a snapshot of realignment across the…

  7. Relationships

    ERIC Educational Resources Information Center

    Circle, David

    2006-01-01

    The author of this brief article asserts that one of the keys to being successful--whether one is a music teacher, a college professor, a business owner, a doctor, a lawyer, or in any other career--is his or her relationship with people. Music educators are in the people business. They do not make a tangible product. Instead, they provide a…

  8. Data Relationships: Towards a Conceptual Model of Scientific Data Catalogs

    NASA Astrophysics Data System (ADS)

    Hourcle, J. A.

    2008-12-01

    As the amount of data, types of processing and storage formats increase, the total number of record permutations increase dramatically. The result is an overwhelming number of records that make identifying the best data object to answer a user's needs more difficult. The issue is further complicated as each archive's data catalog may be designed around different concepts - - anything from individual files to be served, series of similarly generated and processed data, or something entirely different. Catalogs may not only be flat tables, but may be structured as multiple tables with each table being a different data series, or a normalized structure of the individual data files. Merging federated search results from archives with different catalog designs can create situations where the data object of interest is difficult to find due to an overwhelming number of seemingly similar or entirely unwanted records. We present a reference model for discussing data catalogs and the complex relationships between similar data objects. We show how the model can be used to improve scientist's ability to quickly identify the best data object for their purposes and discuss technical issues required to use this model in a federated system.

  9. Duration Models to Analyze Dating Relationship: The Controversial Role of Gift Giving.

    ERIC Educational Resources Information Center

    Huang, Ming-Hui; Yu, Shihti

    2000-01-01

    Econometric duration models were used to analyze dating relationships of 225 college students. Using gifts to enhance the self, express love, and announce relationships helped ensure the success of relationships. Gifts that were too frequent or rare resulted in self-depreciation and anxiety and harmed relationships. (SK)

  10. The Benefits of Including Clinical Factors in Rectal Normal Tissue Complication Probability Modeling After Radiotherapy for Prostate Cancer

    SciTech Connect

    Defraene, Gilles; Van den Bergh, Laura; Al-Mamgani, Abrahim; Haustermans, Karin; Heemsbergen, Wilma; Van den Heuvel, Frank; Lebesque, Joos V.

    2012-03-01

    Purpose: To study the impact of clinical predisposing factors on rectal normal tissue complication probability modeling using the updated results of the Dutch prostate dose-escalation trial. Methods and Materials: Toxicity data of 512 patients (conformally treated to 68 Gy [n = 284] and 78 Gy [n = 228]) with complete follow-up at 3 years after radiotherapy were studied. Scored end points were rectal bleeding, high stool frequency, and fecal incontinence. Two traditional dose-based models (Lyman-Kutcher-Burman (LKB) and Relative Seriality (RS) and a logistic model were fitted using a maximum likelihood approach. Furthermore, these model fits were improved by including the most significant clinical factors. The area under the receiver operating characteristic curve (AUC) was used to compare the discriminating ability of all fits. Results: Including clinical factors significantly increased the predictive power of the models for all end points. In the optimal LKB, RS, and logistic models for rectal bleeding and fecal incontinence, the first significant (p = 0.011-0.013) clinical factor was 'previous abdominal surgery.' As second significant (p = 0.012-0.016) factor, 'cardiac history' was included in all three rectal bleeding fits, whereas including 'diabetes' was significant (p = 0.039-0.048) in fecal incontinence modeling but only in the LKB and logistic models. High stool frequency fits only benefitted significantly (p = 0.003-0.006) from the inclusion of the baseline toxicity score. For all models rectal bleeding fits had the highest AUC (0.77) where it was 0.63 and 0.68 for high stool frequency and fecal incontinence, respectively. LKB and logistic model fits resulted in similar values for the volume parameter. The steepness parameter was somewhat higher in the logistic model, also resulting in a slightly lower D{sub 50}. Anal wall DVHs were used for fecal incontinence, whereas anorectal wall dose best described the other two endpoints. Conclusions: Comparable

  11. Using structural equation modeling to investigate relationships among ecological variables

    USGS Publications Warehouse

    Malaeb, Z.A.; Kevin, Summers J.; Pugesek, B.H.

    2000-01-01

    Structural equation modeling is an advanced multivariate statistical process with which a researcher can construct theoretical concepts, test their measurement reliability, hypothesize and test a theory about their relationships, take into account measurement errors, and consider both direct and indirect effects of variables on one another. Latent variables are theoretical concepts that unite phenomena under a single term, e.g., ecosystem health, environmental condition, and pollution (Bollen, 1989). Latent variables are not measured directly but can be expressed in terms of one or more directly measurable variables called indicators. For some researchers, defining, constructing, and examining the validity of latent variables may be the end task of itself. For others, testing hypothesized relationships of latent variables may be of interest. We analyzed the correlation matrix of eleven environmental variables from the U.S. Environmental Protection Agency's (USEPA) Environmental Monitoring and Assessment Program for Estuaries (EMAP-E) using methods of structural equation modeling. We hypothesized and tested a conceptual model to characterize the interdependencies between four latent variables-sediment contamination, natural variability, biodiversity, and growth potential. In particular, we were interested in measuring the direct, indirect, and total effects of sediment contamination and natural variability on biodiversity and growth potential. The model fit the data well and accounted for 81% of the variability in biodiversity and 69% of the variability in growth potential. It revealed a positive total effect of natural variability on growth potential that otherwise would have been judged negative had we not considered indirect effects. That is, natural variability had a negative direct effect on growth potential of magnitude -0.3251 and a positive indirect effect mediated through biodiversity of magnitude 0.4509, yielding a net positive total effect of 0

  12. Mathematical Model of Two Phase Flow in Natural Draft Wet-Cooling Tower Including Flue Gas Injection

    NASA Astrophysics Data System (ADS)

    Hyhlík, Tomáš

    2016-03-01

    The previously developed model of natural draft wet-cooling tower flow, heat and mass transfer is extended to be able to take into account the flow of supersaturated moist air. The two phase flow model is based on void fraction of gas phase which is included in the governing equations. Homogeneous equilibrium model, where the two phases are well mixed and have the same velocity, is used. The effect of flue gas injection is included into the developed mathematical model by using source terms in governing equations and by using momentum flux coefficient and kinetic energy flux coefficient. Heat and mass transfer in the fill zone is described by the system of ordinary differential equations, where the mass transfer is represented by measured fill Merkel number and heat transfer is calculated using prescribed Lewis factor.

  13. A Commentary on the Relationship between Model Fit and Saturated Path Models in Structural Equation Modeling Applications

    ERIC Educational Resources Information Center

    Raykov, Tenko; Lee, Chun-Lung; Marcoulides, George A.; Chang, Chi

    2013-01-01

    The relationship between saturated path-analysis models and their fit to data is revisited. It is demonstrated that a saturated model need not fit perfectly or even well a given data set when fit to the raw data is examined, a criterion currently frequently overlooked by researchers utilizing path analysis modeling techniques. The potential of…

  14. Toward a Life Span Theory of Close Relationships: The Affective Relationships Model

    ERIC Educational Resources Information Center

    Takahashi, Keiko

    2005-01-01

    This article addresses how close relationships can be conceptualized so that they can be accurately understood over the life span. First, two typical clusters of theories of close relationships, the attachment theory and the social network theory, are compared and discussed with regard to their fundamental but controversial assumptions regarding…

  15. Nutrient Models Developments Using Runoff-Nutrient Relationships in an Agricultural Prairie Basin, Manitoba.

    NASA Astrophysics Data System (ADS)

    Mahmood, T. H.; Pomeroy, J. W.; Wheater, H. S.; Elliott, J. A.; Baulch, H. M.; Lindenschmidt, K. E.

    2015-12-01

    Nutrient export to streams and lakes from agricultural activities can result in significant deterioration of water quality and aquatic ecosystem health. In Western Canada, particular concerns arise for prairie agricultural systems, which are dominated by the effects of a cold climate. Insufficient attention has been given to understand the links between cold region watershed responses and nutrient concentration and a robust watershed-scale modeling framework is needed to simulate nutrient concentration and loads. Long-term, field observations of nutrient concentration-runoff relationships were used to develop nutrient concentration models for the Tobacco Creek Model Watershed (TCMW) which drains into the Red River basin. Field observations include streamflow concentrations of N and P at multiple scales from two headwater basins. Distinct nutrient concentration-runoff models for snowmelt, rain on snow (ROS) and rainfall runoff processes were developed from observed runoff-nutrient concentration relationships. Snowmelt runoff had a moderately positive correlation with particulate nutrient concentrations but no correlation with that of dissolved nutrients. ROS runoff had a weak relationship with both particulate and dissolved nutrient concentrations. Rainfall runoff had the strongest positive correlation with particulate nutrient concentrations but no association with that of dissolved nutrients. The modeling approach also identified a clear hysteretic behavior in the relationship between runoff and particulate nutrient concentration during the 2013 snowmelt runoff event at the basin outlet gauge. The models provide insight into the hydrological controls on nutrient export from cold regions watersheds and the strong effects of inter-annual climatic variability. Snowmelt runoff is a reliable exporter of large nutrient loads while nutrient export by rainfall runoff exceeded snowmelt runoff during hydrologically wet summers such as 2002, 2005, 2011 and 2013.

  16. A Systematic Assessment of the Relationship Between the Complexity and Fidelity of Hydrological Models

    NASA Astrophysics Data System (ADS)

    Addor, N.; Clark, M. P.; Nijssen, B.

    2015-12-01

    The relationship between the complexity and fidelity of hydrological models is challenging to investigate in a systematic way using current modeling frameworks. Its characterization has so far principally relied on the comparison of different models or of different modules within the same model. Shortcomings of these approaches include the difficulty to pinpoint model features that contribute to good simulations, given the small number of models or modeling hypotheses that are usually evaluated. We use the newly-developed Structure for Unifying Multiple Modeling Alternatives (SUMMA) to comprehensively and systematically explore modeling alternatives across the continuum of model complexity. We use SUMMA's flexibility to evaluate the impacts of explicitly representing or lumping physical processes and hydrological landscapes. Starting from conceptual models based on the Framework for Understanding Structural Errors (FUSE), we progressively increase model complexity and assess corresponding model fidelity. We scrutinize models' ability to reproduce observed events and the stability of their performance under changing climatic conditions (robustness). We will show preliminary results for catchments in different hydroclimatic regimes simulated using models of varying complexity. As a first step, model complexity will be quantified using computing time and the number of state variables; model robustness will be quantified using differential split-sample tests; and model performance will be quantified using a suite of multivariate and multi-scale diagnostic metrics. With this modeling approach we seek to uncover trade-offs between realism and practicality. A particular aim is to explore to which extent the replacement of conceptual formulations by physically explicit ones improves model performance, and whether this may lead to a reduction of uncertainty in hydrological simulations.

  17. Linear Equating for the NEAT Design: Parameter Substitution Models and Chained Linear Relationship Models

    ERIC Educational Resources Information Center

    Kane, Michael T.; Mroch, Andrew A.; Suh, Youngsuk; Ripkey, Douglas R.

    2009-01-01

    This paper analyzes five linear equating models for the "nonequivalent groups with anchor test" (NEAT) design with internal anchors (i.e., the anchor test is part of the full test). The analysis employs a two-dimensional framework. The first dimension contrasts two general approaches to developing the equating relationship. Under a "parameter…

  18. Mental Models and Creative Problem-Solving: The Relationship of Objective and Subjective Model Attributes

    ERIC Educational Resources Information Center

    Mumford, Michael D.; Hester, Kimberly S.; Robledo, Issac C.; Peterson, David R.; Day, Eric A.; Hougen, Dean F.; Barrett, Jamie D.

    2012-01-01

    Knowledge, or expertise, has been held to contribute to creative problem-solving. In this effort, the relationship of one form of knowledge, mental models, to creative problem-solving was assessed. Undergraduates were asked to solve either a marketing or an education problem calling for creative thought. Prior to generating solutions to these…

  19. NASTRAN thermal analyzer: Theory and application including a guide to modeling engineering problems, volume 1. [thermal analyzer manual

    NASA Technical Reports Server (NTRS)

    Lee, H. P.

    1977-01-01

    The NASTRAN Thermal Analyzer Manual describes the fundamental and theoretical treatment of the finite element method, with emphasis on the derivations of the constituent matrices of different elements and solution algorithms. Necessary information and data relating to the practical applications of engineering modeling are included.

  20. NASTRAN thermal analyzer: Theory and application including a guide to modeling engineering problems, volume 2. [sample problem library guide

    NASA Technical Reports Server (NTRS)

    Jackson, C. E., Jr.

    1977-01-01

    A sample problem library containing 20 problems covering most facets of Nastran Thermal Analyzer modeling is presented. Areas discussed include radiative interchange, arbitrary nonlinear loads, transient temperature and steady-state structural plots, temperature-dependent conductivities, simulated multi-layer insulation, and constraint techniques. The use of the major control options and important DMAP alters is demonstrated.

  1. Model Selection and Evaluation Based on Emerging Infectious Disease Data Sets including A/H1N1 and Ebola

    PubMed Central

    Liu, Wendi; Tang, Sanyi; Xiao, Yanni

    2015-01-01

    The aim of the present study is to apply simple ODE models in the area of modeling the spread of emerging infectious diseases and show the importance of model selection in estimating parameters, the basic reproduction number, turning point, and final size. To quantify the plausibility of each model, given the data and the set of four models including Logistic, Gompertz, Rosenzweg, and Richards models, the Bayes factors are calculated and the precise estimates of the best fitted model parameters and key epidemic characteristics have been obtained. In particular, for Ebola the basic reproduction numbers are 1.3522 (95% CI (1.3506, 1.3537)), 1.2101 (95% CI (1.2084, 1.2119)), 3.0234 (95% CI (2.6063, 3.4881)), and 1.9018 (95% CI (1.8565, 1.9478)), the turning points are November 7,November 17, October 2, and November 3, 2014, and the final sizes until December 2015 are 25794 (95% CI (25630, 25958)), 3916 (95% CI (3865, 3967)), 9886 (95% CI (9740, 10031)), and 12633 (95% CI (12515, 12750)) for West Africa, Guinea, Liberia, and Sierra Leone, respectively. The main results confirm that model selection is crucial in evaluating and predicting the important quantities describing the emerging infectious diseases, and arbitrarily picking a model without any consideration of alternatives is problematic. PMID:26451161

  2. Model Selection and Evaluation Based on Emerging Infectious Disease Data Sets including A/H1N1 and Ebola.

    PubMed

    Liu, Wendi; Tang, Sanyi; Xiao, Yanni

    2015-01-01

    The aim of the present study is to apply simple ODE models in the area of modeling the spread of emerging infectious diseases and show the importance of model selection in estimating parameters, the basic reproduction number, turning point, and final size. To quantify the plausibility of each model, given the data and the set of four models including Logistic, Gompertz, Rosenzweg, and Richards models, the Bayes factors are calculated and the precise estimates of the best fitted model parameters and key epidemic characteristics have been obtained. In particular, for Ebola the basic reproduction numbers are 1.3522 (95% CI (1.3506, 1.3537)), 1.2101 (95% CI (1.2084, 1.2119)), 3.0234 (95% CI (2.6063, 3.4881)), and 1.9018 (95% CI (1.8565, 1.9478)), the turning points are November 7,November 17, October 2, and November 3, 2014, and the final sizes until December 2015 are 25794 (95% CI (25630, 25958)), 3916 (95% CI (3865, 3967)), 9886 (95% CI (9740, 10031)), and 12633 (95% CI (12515, 12750)) for West Africa, Guinea, Liberia, and Sierra Leone, respectively. The main results confirm that model selection is crucial in evaluating and predicting the important quantities describing the emerging infectious diseases, and arbitrarily picking a model without any consideration of alternatives is problematic. PMID:26451161

  3. Mathematical multi-scale model of the cardiovascular system including mitral valve dynamics. Application to ischemic mitral insufficiency

    PubMed Central

    2011-01-01

    Background Valve dysfunction is a common cardiovascular pathology. Despite significant clinical research, there is little formal study of how valve dysfunction affects overall circulatory dynamics. Validated models would offer the ability to better understand these dynamics and thus optimize diagnosis, as well as surgical and other interventions. Methods A cardiovascular and circulatory system (CVS) model has already been validated in silico, and in several animal model studies. It accounts for valve dynamics using Heaviside functions to simulate a physiologically accurate "open on pressure, close on flow" law. However, it does not consider real-time valve opening dynamics and therefore does not fully capture valve dysfunction, particularly where the dysfunction involves partial closure. This research describes an updated version of this previous closed-loop CVS model that includes the progressive opening of the mitral valve, and is defined over the full cardiac cycle. Results Simulations of the cardiovascular system with healthy mitral valve are performed, and, the global hemodynamic behaviour is studied compared with previously validated results. The error between resulting pressure-volume (PV) loops of already validated CVS model and the new CVS model that includes the progressive opening of the mitral valve is assessed and remains within typical measurement error and variability. Simulations of ischemic mitral insufficiency are also performed. Pressure-Volume loops, transmitral flow evolution and mitral valve aperture area evolution follow reported measurements in shape, amplitude and trends. Conclusions The resulting cardiovascular system model including mitral valve dynamics provides a foundation for clinical validation and the study of valvular dysfunction in vivo. The overall models and results could readily be generalised to other cardiac valves. PMID:21942971

  4. Generalizing the correlated chromophore domain model of reversible photodegradation to include the effects of an applied electric field

    NASA Astrophysics Data System (ADS)

    Anderson, Benjamin; Kuzyk, Mark G.

    2014-03-01

    All observations of photodegradation and self-healing follow the predictions of the correlated chromophore domain model [Ramini et al., Polym. Chem. 4, 4948 (2013), 10.1039/c3py00263b]. In the present work, we generalize the domain model to describe the effects of an electric field by including induced dipole interactions between molecules in a domain by means of a self-consistent field approach. This electric field correction is added to the statistical mechanical model to calculate the distribution of domains that are central to healing. Also included in the model are the dynamics due to the formation of an irreversibly damaged species, which we propose involves damage to the polymer mediated through energy transfer from a dopant molecule after absorbing a photon. As in previous studies, the model with one-dimensional domains best explains all experimental data of the population as a function of time, temperature, intensity, concentration, and now applied electric field. Though the precise nature of a domain is yet to be determined, the fact that only one-dimensional domain models are consistent with observations suggests that they might be made of correlated dye molecules along polymer chains. Furthermore, the voltage-dependent measurements suggest that the largest polarizability axis of the molecules are oriented perpendicular to the chain.

  5. Styles in Intimate Relationships: The A-R-C Model.

    ERIC Educational Resources Information Center

    L'Abate, Luciano

    1983-01-01

    Links internal personality differentiation to external patterns of interpersonal style. Suggests three basic styles in intimate relationships: apathy, reactivity, and conductivity. Discusses each style in detail. (RC)

  6. A simple model of the right atrium of the human heart with the sinoatrial and atrioventricular nodes included.

    PubMed

    Podziemski, Piotr; Zebrowski, Jan J

    2013-08-01

    Existing atrial models with detailed anatomical structure and multi-variable cardiac transmembrane current models are too complex to allow to combine an investigation of long time dycal properties of the heart rhythm with the ability to effectively simulate cardiac electrical activity during arrhythmia. Other ways of modeling need to be investigated. Moreover, many state-of-the-art models of the right atrium do not include an atrioventricular node (AVN) and only rarely--the sinoatrial node (SAN). A model of the heart tissue within the right atrium including the SAN and AVN nodes was developed. Looking for a minimal model, currently we are testing our approach on chosen well-known arrhythmias, which were until now obtained only using much more complicated models, or were only observed in a clinical setting. Ultimately, the goal is to obtain a model able to generate sequences of RR intervals specific for the arrhythmias involving the AV junction as well as for other phenomena occurring within the atrium. The model should be fast enough to allow the study of heart rate variability and arrhythmias at a time scale of thousands of heart beats in real-time. In the model of the right atrium proposed here, different kinds of cardiac tissues are described by sets of different equations, with most of them belonging to the class of Liénard nonlinear dynamical systems. We have developed a series of models of the right atrium with differing anatomical simplifications, in the form of a 2D mapping of the atrium or of an idealized cylindrical geometry, including only those anatomical details required to reproduce a given physiological phenomenon. The simulations allowed to reconstruct the phase relations between the sinus rhythm and the location and properties of a parasystolic source together with the effect of this source on the resultant heart rhythm. We model the action potential conduction time alternans through the atrioventricular AVN junction observed in cardiac tissue in

  7. Time domain contact model for tyre/road interaction including nonlinear contact stiffness due to small-scale roughness

    NASA Astrophysics Data System (ADS)

    Andersson, P. B. U.; Kropp, W.

    2008-11-01

    Rolling resistance, traction, wear, excitation of vibrations, and noise generation are all attributes to consider in optimisation of the interaction between automotive tyres and wearing courses of roads. The key to understand and describe the interaction is to include a wide range of length scales in the description of the contact geometry. This means including scales on the order of micrometres that have been neglected in previous tyre/road interaction models. A time domain contact model for the tyre/road interaction that includes interfacial details is presented. The contact geometry is discretised into multiple elements forming pairs of matching points. The dynamic response of the tyre is calculated by convolving the contact forces with pre-calculated Green's functions. The smaller-length scales are included by using constitutive interfacial relations, i.e. by using nonlinear contact springs, for each pair of contact elements. The method is presented for normal (out-of-plane) contact and a method for assessing the stiffness of the nonlinear springs based on detailed geometry and elastic data of the tread is suggested. The governing equations of the nonlinear contact problem are solved with the Newton-Raphson iterative scheme. Relations between force, indentation, and contact stiffness are calculated for a single tread block in contact with a road surface. The calculated results have the same character as results from measurements found in literature. Comparison to traditional contact formulations shows that the effect of the small-scale roughness is large; the contact stiffness is only up to half of the stiffness that would result if contact is made over the whole element directly to the bulk of the tread. It is concluded that the suggested contact formulation is a suitable model to include more details of the contact interface. Further, the presented result for the tread block in contact with the road is a suitable input for a global tyre/road interaction model

  8. A Model for the Supervisor-Doctoral Student Relationship

    ERIC Educational Resources Information Center

    Mainhard, Tim; van der Rijst, Roeland; van Tartwijk, Jan; Wubbels, Theo

    2009-01-01

    The supervisor-doctoral student interpersonal relationship is important for the success of a PhD-project. Therefore, information about doctoral students' perceptions of their relationship with their supervisor can be useful for providing detailed feedback to supervisors aiming at improving the quality of their supervision. This paper describes the…

  9. A simple, analytic model of polymer electrolyte membrane fuel cell anode recirculation at operating power including nitrogen crossover

    NASA Astrophysics Data System (ADS)

    Promislow, Keith; St-Pierre, Jean; Wetton, Brian

    A simple, analytic model is presented that describes the steady state profile of anode nitrogen concentration in a polymer electrolyte membrane fuel cell operated with anode recirculation. The model is appropriate for fuel cells with straight gas channels and includes the effect of nitrogen crossover from cathode to anode through the membrane. The key analytic simplification in the model is that this crossover rate, when scaled to the gas flows in the channels, is small. This is a good approximation when the device is used at operating power levels. The model shows that the characteristic times for the anode nitrogen profiles to reach steady state are of the order of minutes and that the dilution effect of anode nitrogen is severe for pure recirculation. The model shows additionally that a small anode outlet bleed can significantly reduce the nitrogen dilution effect. Within the framework of the model, the energy efficiency of pure recirculation can be compared to hydrogen venting or partial anode bleeding. An optimal bleed rate is identified. The model and optimization analysis can be adapted to other fuel cell designs and operating conditions. Along with operating conditions, only two key parameters are needed: a nitrogen crossover coefficient and the marginal efficiency loss to compressors for increased anode stoichiometric gas flow.

  10. Stretch-rate relationships for turbulent premixed combustion LES subgrid models measured using temporally resolved diagnostics

    SciTech Connect

    Steinberg, Adam M.; Driscoll, James F.

    2010-07-15

    Temporally resolved measurements of turbulence-flame interaction were used to experimentally determine relationships for the strain-rate and curvature stretch-rate exerted on a premixed flame surface. These relationships include a series of transfer functions that are analogous to, but not equal to, stretch-efficiency functions. The measurements were obtained by applying high-repetition-rate particle image velocimetry in a turbulent slot Bunsen flame and were able to resolve the range of turbulent scales that cause flame surface straining and wrinkling. Fluid control masses were tracked in a Lagrangian manner as they interacted with the flame surface. From each interaction, the spatially and temporally filtered subgrid strain-rate and curvature stretch-rate were measured. By analyzing the statistics of thousands of turbulence-flame interactions, relationships for the strain-rate and curvature stretch-rate were determined that are appropriate for Large Eddy Simulation. It was found that the strain-rate exerted on the flame during these interactions was better correlated with the strength of the subgrid fluid-dynamic strain-rate field than with previously used characteristic strain-rates. Furthermore, stretch-efficiency functions developed from simplified vortex-flame interactions significantly over-predict the measurements. Hence, the proposed relationship relates the strain-rate on the flame to the filtered subgrid fluid-dynamic strain-rate field during real turbulence-flame interactions using an empirically determined Strain-Rate Transfer function. It was found that the curvature stretch-rate did not locally balance the strain-rate as has been proposed in previous models. A geometric relationship was found to exist between the subgrid flame surface wrinkling factor and subgrid curvature stretch-rate, which could be expressed using an empirically determined wrinkling factor transfer function. Curve fits to the measured relationships are provided that could be

  11. Spectral relationships for atmospheric correction. II. Improving NASA's standard and MUMM near infra-red modeling schemes.

    PubMed

    Goyens, C; Jamet, C; Ruddick, K G

    2013-09-01

    Spectral relationships, reflecting the spectral dependence of water-leaving reflectance, ρw(λ), can be easily implemented in current AC algorithms with the aim to improve ρw(λ) retrievals where the algorithms fail. The present study evaluates the potential of spectral relationships to improve the MUMM [Ruddick et al., 2006, Limnol. Oceanogr. 51, 1167-1179] and standard NASA [Bailey et al., 2010, Opt. Express 18, 7521-7527] near infra-red (NIR) modeling schemes included in the AC algorithm to account for non-zero ρw(λNIR), based on in situ coastal ρw(λ) and simulated Rayleigh corrected reflectance data. Two modified NIR-modeling schemes are investigated: (1) the standard NASA NIR-modeling scheme is forced with bounding relationships in the red spectral domain and with a NIR polynomial relationship and, (2) the constant NIR ρw(λ) ratio used in the MUMM NIR-modeling scheme is replaced by a NIR polynomial spectral relationship. Results suggest that the standard NASA NIR-modeling scheme performs better for all turbidity ranges and in particular in the blue spectral domain (percentage bias decreased by approximately 50%) when it is forced with the red and NIR spectral relationships. However, with these new constraints, more reflectance spectra are flagged due to non-physical Chlorophyll-a concentration estimations. The new polynomial-based MUMM NIR-modeling scheme yielded lower ρw(λ) retrieval errors and particularly in extremely turbid waters. However, including the polynomial NIR relationship significantly increased the sensitivity of the algorithm to errors on the selected aerosol model from nearby clear water pixels. PMID:24103991

  12. Spectral relationships for atmospheric correction. II. Improving NASA's standard and MUMM near infra-red modeling schemes.

    PubMed

    Goyens, C; Jamet, C; Ruddick, K G

    2013-09-01

    Spectral relationships, reflecting the spectral dependence of water-leaving reflectance, ρw(λ), can be easily implemented in current AC algorithms with the aim to improve ρw(λ) retrievals where the algorithms fail. The present study evaluates the potential of spectral relationships to improve the MUMM [Ruddick et al., 2006, Limnol. Oceanogr. 51, 1167-1179] and standard NASA [Bailey et al., 2010, Opt. Express 18, 7521-7527] near infra-red (NIR) modeling schemes included in the AC algorithm to account for non-zero ρw(λNIR), based on in situ coastal ρw(λ) and simulated Rayleigh corrected reflectance data. Two modified NIR-modeling schemes are investigated: (1) the standard NASA NIR-modeling scheme is forced with bounding relationships in the red spectral domain and with a NIR polynomial relationship and, (2) the constant NIR ρw(λ) ratio used in the MUMM NIR-modeling scheme is replaced by a NIR polynomial spectral relationship. Results suggest that the standard NASA NIR-modeling scheme performs better for all turbidity ranges and in particular in the blue spectral domain (percentage bias decreased by approximately 50%) when it is forced with the red and NIR spectral relationships. However, with these new constraints, more reflectance spectra are flagged due to non-physical Chlorophyll-a concentration estimations. The new polynomial-based MUMM NIR-modeling scheme yielded lower ρw(λ) retrieval errors and particularly in extremely turbid waters. However, including the polynomial NIR relationship significantly increased the sensitivity of the algorithm to errors on the selected aerosol model from nearby clear water pixels.

  13. The mathematical models of electromagnetic field dynamics and heat transfer in closed electrical contacts including Thomson effect

    NASA Astrophysics Data System (ADS)

    Kharin, Stanislav; Sarsengeldin, Merey; Kassabek, Samat

    2016-08-01

    We represent mathematical models of electromagnetic field dynamics and heat transfer in closed symmetric and asymmetric electrical contacts including Thomson effect, which are essentially nonlinear due to the dependence of thermal and electrical conductivities on temperature. Suggested solutions are based on the assumption of identity of equipotentials and isothermal surfaces, which agrees with experimental data and valid for both linear and nonlinear cases. Well known Kohlrausch temperature-potential relation is analytically justified.

  14. Quantitative structure-activity relationship (QSAR) for insecticides: development of predictive in vivo insecticide activity models.

    PubMed

    Naik, P K; Singh, T; Singh, H

    2009-07-01

    Quantitative structure-activity relationship (QSAR) analyses were performed independently on data sets belonging to two groups of insecticides, namely the organophosphates and carbamates. Several types of descriptors including topological, spatial, thermodynamic, information content, lead likeness and E-state indices were used to derive quantitative relationships between insecticide activities and structural properties of chemicals. A systematic search approach based on missing value, zero value, simple correlation and multi-collinearity tests as well as the use of a genetic algorithm allowed the optimal selection of the descriptors used to generate the models. The QSAR models developed for both organophosphate and carbamate groups revealed good predictability with r(2) values of 0.949 and 0.838 as well as [image omitted] values of 0.890 and 0.765, respectively. In addition, a linear correlation was observed between the predicted and experimental LD(50) values for the test set data with r(2) of 0.871 and 0.788 for both the organophosphate and carbamate groups, indicating that the prediction accuracy of the QSAR models was acceptable. The models were also tested successfully from external validation criteria. QSAR models developed in this study should help further design of novel potent insecticides.

  15. Physical models have gender‐specific effects on student understanding of protein structure–function relationships

    PubMed Central

    Harris, Michelle A.; Chang, Wesley S.; Dent, Erik W.; Nordheim, Erik V.; Franzen, Margaret A.

    2016-01-01

    Abstract Understanding how basic structural units influence function is identified as a foundational/core concept for undergraduate biological and biochemical literacy. It is essential for students to understand this concept at all size scales, but it is often more difficult for students to understand structure–function relationships at the molecular level, which they cannot as effectively visualize. Students need to develop accurate, 3‐dimensional mental models of biomolecules to understand how biomolecular structure affects cellular functions at the molecular level, yet most traditional curricular tools such as textbooks include only 2‐dimensional representations. We used a controlled, backward design approach to investigate how hand‐held physical molecular model use affected students' ability to logically predict structure–function relationships. Brief (one class period) physical model use increased quiz score for females, whereas there was no significant increase in score for males using physical models. Females also self‐reported higher learning gains in their understanding of context‐specific protein function. Gender differences in spatial visualization may explain the gender‐specific benefits of physical model use observed. © 2016 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 44(4):326–335, 2016. PMID:26923186

  16. Physical models have gender-specific effects on student understanding of protein structure-function relationships.

    PubMed

    Forbes-Lorman, Robin M; Harris, Michelle A; Chang, Wesley S; Dent, Erik W; Nordheim, Erik V; Franzen, Margaret A

    2016-07-01

    Understanding how basic structural units influence function is identified as a foundational/core concept for undergraduate biological and biochemical literacy. It is essential for students to understand this concept at all size scales, but it is often more difficult for students to understand structure-function relationships at the molecular level, which they cannot as effectively visualize. Students need to develop accurate, 3-dimensional mental models of biomolecules to understand how biomolecular structure affects cellular functions at the molecular level, yet most traditional curricular tools such as textbooks include only 2-dimensional representations. We used a controlled, backward design approach to investigate how hand-held physical molecular model use affected students' ability to logically predict structure-function relationships. Brief (one class period) physical model use increased quiz score for females, whereas there was no significant increase in score for males using physical models. Females also self-reported higher learning gains in their understanding of context-specific protein function. Gender differences in spatial visualization may explain the gender-specific benefits of physical model use observed. © 2016 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 44(4):326-335, 2016. PMID:26923186

  17. Physical models have gender-specific effects on student understanding of protein structure-function relationships

    PubMed Central

    Harris, Michelle A.; Chang, Wesley S.; Dent, Erik W.; Nordheim, Erik V.; Franzen, Margaret A.

    2016-01-01

    Understanding how basic structural units influence function is identified as a foundational/core concept for undergraduate biological and biochemical literacy. It is essential for students to understand this concept at all size scales, but it is often more difficult for students to understand structure-function relationships at the molecular level, which they cannot as effectively visualize. Students need to develop accurate, 3-dimensional (3D) mental models of biomolecules to understand how biomolecular structure affects cellular functions at the molecular level, yet most traditional curricular tools such as textbooks include only 2-dimensional (2D) representations. We used a controlled, backwards design approach to investigate how hand-held physical molecular model use affected students’ ability to logically predict structure-function relationships. Brief (one class period) physical model use increased quiz score for females, whereas there was no significant increase in score for males using physical models. Females also self-reported higher learning gains in their understanding of context-specific protein function. Gender differences in spatial visualization may explain the gender-specific benefits of physical model use observed. PMID:26923186

  18. Information System Success Model for Customer Relationship Management System in Health Promotion Centers

    PubMed Central

    Choi, Wona; Rho, Mi Jung; Park, Jiyun; Kim, Kwang-Jum; Kwon, Young Dae

    2013-01-01

    Objectives Intensified competitiveness in the healthcare industry has increased the number of healthcare centers and propelled the introduction of customer relationship management (CRM) systems to meet diverse customer demands. This study aimed to develop the information system success model of the CRM system by investigating previously proposed indicators within the model. Methods The evaluation areas of the CRM system includes three areas: the system characteristics area (system quality, information quality, and service quality), the user area (perceived usefulness and user satisfaction), and the performance area (personal performance and organizational performance). Detailed evaluation criteria of the three areas were developed, and its validity was verified by a survey administered to CRM system users in 13 nationwide health promotion centers. The survey data were analyzed by the structural equation modeling method, and the results confirmed that the model is feasible. Results Information quality and service quality showed a statistically significant relationship with perceived usefulness and user satisfaction. Consequently, the perceived usefulness and user satisfaction had significant influence on individual performance as well as an indirect influence on organizational performance. Conclusions This study extends the research area on information success from general information systems to CRM systems in health promotion centers applying a previous information success model. This lays a foundation for evaluating health promotion center systems and provides a useful guide for successful implementation of hospital CRM systems. PMID:23882416

  19. The use of food consumption data in assessments of exposure to food chemicals including the application of probabilistic modelling.

    PubMed

    Lambe, Joyce

    2002-02-01

    Emphasis on public health and consumer protection, in combination with globalisation of the food market, has created a strong demand for exposure assessments of food chemicals. The food chemicals for which exposure assessments are required include food additives, pesticide residues, environmental contaminants, mycotoxins, novel food ingredients, packaging-material migrants, flavouring substances and nutrients. A wide range of methodologies exists for estimating exposure to food chemicals, and the method chosen for a particular exposure assessment is influenced by the nature of the chemical, the purpose of the assessment and the resources available. Sources of food consumption data currently used in exposure assessments range from food balance sheets to detailed food consumption surveys of individuals and duplicate-diet studies. The fitness-for-purpose of the data must be evaluated in the context of data quality and relevance to the assessment objective. Methods to combine the food consumption data with chemical concentration data may be deterministic or probabilistic. Deterministic methods estimate intakes of food chemicals that may occur in a population, but probabilistic methods provide the advantage of estimating the probability with which different levels of intake will occur. Probabilistic analysis permits the exposure assessor to model the variability (true heterogeneity) and uncertainty (lack of knowledge) that may exist in the exposure variables, including food consumption data, and thus to examine the full distribution of possible resulting exposures. Challenges for probabilistic modelling include the selection of appropriate modes of inputting food consumption data into the models. PMID:12002785

  20. Time-domain simulation of constitutive relations for nonlinear acoustics including relaxation for frequency power law attenuation media modeling

    NASA Astrophysics Data System (ADS)

    Jiménez, Noé; Camarena, Francisco; Redondo, Javier; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.

    2015-10-01

    We report a numerical method for solving the constitutive relations of nonlinear acoustics, where multiple relaxation processes are included in a generalized formulation that allows the time-domain numerical solution by an explicit finite differences scheme. Thus, the proposed physical model overcomes the limitations of the one-way Khokhlov-Zabolotskaya-Kuznetsov (KZK) type models and, due to the Lagrangian density is implicitly included in the calculation, the proposed method also overcomes the limitations of Westervelt equation in complex configurations for medical ultrasound. In order to model frequency power law attenuation and dispersion, such as observed in biological media, the relaxation parameters are fitted to both exact frequency power law attenuation/dispersion media and also empirically measured attenuation of a variety of tissues that does not fit an exact power law. Finally, a computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the finite difference scheme, and, on the other hand, improve stability trough artificial attenuation when shock waves are present. This technique avoids the use of high-order finite-differences schemes leading to fast calculations. The present algorithm is especially suited for practical configuration where spatial discontinuities are present in the domain (e.g. axisymmetric domains or zero normal velocity boundary conditions in general). The accuracy of the method is discussed by comparing the proposed simulation solutions to one dimensional analytical and k-space numerical solutions.

  1. The use of food consumption data in assessments of exposure to food chemicals including the application of probabilistic modelling.

    PubMed

    Lambe, Joyce

    2002-02-01

    Emphasis on public health and consumer protection, in combination with globalisation of the food market, has created a strong demand for exposure assessments of food chemicals. The food chemicals for which exposure assessments are required include food additives, pesticide residues, environmental contaminants, mycotoxins, novel food ingredients, packaging-material migrants, flavouring substances and nutrients. A wide range of methodologies exists for estimating exposure to food chemicals, and the method chosen for a particular exposure assessment is influenced by the nature of the chemical, the purpose of the assessment and the resources available. Sources of food consumption data currently used in exposure assessments range from food balance sheets to detailed food consumption surveys of individuals and duplicate-diet studies. The fitness-for-purpose of the data must be evaluated in the context of data quality and relevance to the assessment objective. Methods to combine the food consumption data with chemical concentration data may be deterministic or probabilistic. Deterministic methods estimate intakes of food chemicals that may occur in a population, but probabilistic methods provide the advantage of estimating the probability with which different levels of intake will occur. Probabilistic analysis permits the exposure assessor to model the variability (true heterogeneity) and uncertainty (lack of knowledge) that may exist in the exposure variables, including food consumption data, and thus to examine the full distribution of possible resulting exposures. Challenges for probabilistic modelling include the selection of appropriate modes of inputting food consumption data into the models.

  2. A model of oxygen uptake kinetics in response to exercise: including a means of calculating oxygen demand/deficit/debt.

    PubMed

    Stirling, J R; Zakynthinaki, M S; Saltin, B

    2005-09-01

    We present a new model of the underlying dynamics of the oxygen uptake VO2(v,t) kinetics for various exercise intensities. This model is in the form of a set of nonlinear coupled vector fields for the VO2(v,t) and v, the derivative of the exercise intensity with respect to time. We also present a new and novel means for calculating the oxygen demand, D(v,t), and hence also the oxygen deficit and debt, given the time series of the VO2(v,t). This enables us to give better predictions for these values especially for when exercising at or close to maximal exercise intensities. Our model also allows us to predict the oxygen uptake time series given the time series for the exercise intensity as well as to investigate the oxygen uptake response to nonlinear exercise intensities. Neither of these features is possible using the currently used three-phase model. We also present a review of both the underlying physiology and the three-phase model. This includes for the first time a complete set of the analytical solutions of the three-phase model for the oxygen deficit and debt. PMID:15998492

  3. Constitutive models for granular materials including quasi-static frictional behaviour: Toward a thermodynamic theory of plasticity

    NASA Astrophysics Data System (ADS)

    Svendsen, B.; Hutter, K.; Laloui, L.

    This work deals with the thermodynamic formulation of constitutive models for materials whose quasi-static behaviour is governed by internal friction, e.g., dry granular materials. The process of internal friction is represented here phenomenologically with the help of a second-order, symmetric-tensor-valued internal variable. A general class of models for the evolution of this variable is considered, including as special cases a hypoelastic-like form for this relation as well as the hypoplastic form of Kolymbas (1991). The thermodynamic formulation is carried out in the context of the Müller-Liu entropy principle. Among other things, it is shown that for the hypoelastic-type models, a true equilibrium inelastic Cauchy stress exists. On the other hand, such a stress does not exist for the hypoplastic model due to its rate-independence and incremental non-linearity. With the help of a slight generalization of the notion of thermodynamic equilibrium, i.e., to thermodynamic ``quasi-equilibrium,'' however, such a Cauchy stress can be formulated for the hypoplastic model. As it turns out, this quasi-equilibrium for the Cauchy stress represents a thermodynamic generalization of the so-called quasi-static stress postulated for example by Goddard (1986) in the context of his viscoplastic model for a frictional-dissipative, and in particular for granular, materials.

  4. Identification of microstructural characteristics in lightweight aggregate concretes by micromechanical modelling including the interfacial transition zone (ITZ)

    SciTech Connect

    Ke, Y.; Ortola, S.; Beaucour, A.L.; Dumontet, H.

    2010-11-15

    An approach which combines both experimental techniques and micromechanical modelling is developed in order to characterise the elastic behaviour of lightweight aggregate concretes (LWAC). More than three hundred LWAC specimens with various lightweight aggregate types (5) of several volume ratios and three different mortar matrices (normal, HP, VHP) are tested. The modelling is based on iterative homogenisation process and includes the ITZ specificities experimentally observed with scanning electron microscopy (SEM). In agreement with experimental measurements, the effects of mix design parameters as well as of the interfacial transition zone (ITZ) on concrete mechanical performances are quantitatively analysed. Confrontations with experimental results allow identifying the elastic moduli of LWA which are difficult to determine experimentally. Whereas the traditional empirical formulas are not sufficiently precise, predictions of LWAC elastic behaviours computed with the micromechanical models appear in good agreement with experimental measurements.

  5. Research and development program for non-linear structural modeling with advanced time-temperature dependent constitutive relationships

    NASA Technical Reports Server (NTRS)

    Walker, K. P.

    1981-01-01

    Results of a 20-month research and development program for nonlinear structural modeling with advanced time-temperature constitutive relationships are reported. The program included: (1) the evaluation of a number of viscoplastic constitutive models in the published literature; (2) incorporation of three of the most appropriate constitutive models into the MARC nonlinear finite element program; (3) calibration of the three constitutive models against experimental data using Hastelloy-X material; and (4) application of the most appropriate constitutive model to a three dimensional finite element analysis of a cylindrical combustor liner louver test specimen to establish the capability of the viscoplastic model to predict component structural response.

  6. Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys

    NASA Astrophysics Data System (ADS)

    Cai, J.; Ye, Y. Y.

    1996-09-01

    A simple analytical embedded-atom method (EAM) model is developed. The model includes a long-range force. In this model, the electron-density function is taken as a decreasing exponential function, the two-body potential is defined as a function like a form given by Rose et al. [Phys. Rev. B 33, 7983 (1986)], and the embedding energy is assumed to be an universal form recently suggested by Banerjea and Smith. The embedding energy has a positive curvature. The model is applied to seven fcc metals (Al, Ag, Au, Cu, Ni, Pd, and Pt) and their binary alloys. All the considered properties, whether for pure metal systems or for alloy systems, are predicted to be satisfactory at least qualitatively. The model resolves the problems of Johnson's model for predicting the properties of the alloys involving metal Pd. However, more importantly, (i) by investigating the structure stability of seven fcc metals using the present model, we found that the stability energy is dominated by both the embedding energy and the pair potential for fcc-bcc stability while the pair potential dominates and is underestimated for fcc-hcp stability; and (ii) we find that the predicted total energy as a function of lattice parameter is in good agreement with the equation of state of Rose et al. for all seven fcc metals, and that this agreement is closely related to the electron density, i.e., the lower the contribution from atoms of the second-nearest neighbor to host density, the better the agreement becomes. We conclude the following: (i) for an EAM, where angle force is not considered, the long-range force is necessary for a prediction of the structure stability; or (ii) the dependence of the electron density on angle should be considered so as to improve the structure-stability energy. The conclusions are valid for all EAM models where an angle force is not considered.

  7. One Dimensional Analysis Model of a Condensing Spray Chamber Including Rocket Exhaust Using SINDA/FLUINT and CEA

    NASA Technical Reports Server (NTRS)

    Sakowski, Barbara; Edwards, Daryl; Dickens, Kevin

    2014-01-01

    Modeling droplet condensation via CFD codes can be very tedious, time consuming, and inaccurate. CFD codes may be tedious and time consuming in terms of using Lagrangian particle tracking approaches or particle sizing bins. Also since many codes ignore conduction through the droplet and or the degradating effect of heat and mass transfer if noncondensible species are present, the solutions may be inaccurate. The modeling of a condensing spray chamber where the significant size of the water droplets and the time and distance these droplets take to fall, can make the effect of droplet conduction a physical factor that needs to be considered in the model. Furthermore the presence of even a relatively small amount of noncondensible has been shown to reduce the amount of condensation [Ref 1]. It is desirable then to create a modeling tool that addresses these issues. The path taken to create such a tool is illustrated. The application of this tool and subsequent results are based on the spray chamber in the Spacecraft Propulsion Research Facility (B2) located at NASA's Plum Brook Station that tested an RL-10 engine. The platform upon which the condensation physics is modeled is SINDAFLUINT. The use of SINDAFLUINT enables the ability to model various aspects of the entire testing facility, including the rocket exhaust duct flow and heat transfer to the exhaust duct wall. The ejector pumping system of the spray chamber is also easily implemented via SINDAFLUINT. The goal is to create a transient one dimensional flow and heat transfer model beginning at the rocket, continuing through the condensing spray chamber, and finally ending with the ejector pumping system. However the model of the condensing spray chamber may be run independently of the rocket and ejector systems detail, with only appropriate mass flow boundary conditions placed at the entrance and exit of the condensing spray chamber model. The model of the condensing spray chamber takes into account droplet

  8. One Dimensional Analysis Model of a Condensing Spray Chamber Including Rocket Exhaust Using SINDA/FLUINT and CEA

    NASA Technical Reports Server (NTRS)

    Sakowski, Barbara A.; Edwards, Daryl; Dickens, Kevin

    2014-01-01

    Modeling droplet condensation via CFD codes can be very tedious, time consuming, and inaccurate. CFD codes may be tedious and time consuming in terms of using Lagrangian particle tracking approaches or particle sizing bins. Also since many codes ignore conduction through the droplet and or the degradating effect of heat and mass transfer if noncondensible species are present, the solutions may be inaccurate. The modeling of a condensing spray chamber where the significant size of the water droplets and the time and distance these droplets take to fall, can make the effect of droplet conduction a physical factor that needs to be considered in the model. Furthermore the presence of even a relatively small amount of noncondensible has been shown to reduce the amount of condensation. It is desirable then to create a modeling tool that addresses these issues. The path taken to create such a tool is illustrated. The application of this tool and subsequent results are based on the spray chamber in the Spacecraft Propulsion Research Facility (B2) located at NASA's Plum Brook Station that tested an RL-10 engine. The platform upon which the condensation physics is modeled is SINDAFLUINT. The use of SINDAFLUINT enables the ability to model various aspects of the entire testing facility, including the rocket exhaust duct flow and heat transfer to the exhaust duct wall. The ejector pumping system of the spray chamber is also easily implemented via SINDAFLUINT. The goal is to create a transient one dimensional flow and heat transfer model beginning at the rocket, continuing through the condensing spray chamber, and finally ending with the ejector pumping system. However the model of the condensing spray chamber may be run independently of the rocket and ejector systems detail, with only appropriate mass flow boundary conditions placed at the entrance and exit of the condensing spray chamber model. The model of the condensing spray chamber takes into account droplet conduction as

  9. Inequity in work and intimate relationships: a Spillover-Crossover model.

    PubMed

    Bakker, Arnold B; Petrou, Paraskevas; Tsaousis, Ioannis

    2012-01-01

    This study among 267 Greek teachers and their partners tested and expanded the recently proposed Spillover-Crossover model (SCM) of well-being. Accordingly, experiences built up at work spill over to the home domain, and then influence the partner. The authors integrated equity theory in the model by formulating hypotheses about exchange in interpersonal relationships. Structural equation modeling analyses supported the spillover hypothesis that teachers who lose their work engagement as a result of an inequitable relationship with their students invest less in the relationship with their partner. In addition, the results supported the crossover hypothesis that teachers' relationship investments, in turn, show a negative relationship with inequity in the intimate relationship as perceived by the partner; and inequity in the intimate relationship contributed to partner depression. The findings are discussed in light of the SCM of well-being. PMID:22059998

  10. Analyzing the Validity of Relationship Banking through Agent-based Modeling

    NASA Astrophysics Data System (ADS)

    Nishikido, Yukihito; Takahashi, Hiroshi

    This article analyzes the validity of relationship banking through agent-based modeling. In the analysis, we especially focus on the relationship between economic conditions and both lenders' and borrowers' behaviors. As a result of intensive experiments, we made the following interesting findings: (1) Relationship banking contributes to reducing bad loan; (2) relationship banking is more effective in enhancing the market growth compared to transaction banking, when borrowers' sales scale is large; (3) keener competition among lenders may bring inefficiency to the market.

  11. A three-dimensional model of the human masticatory system, including the mandible, the dentition and the temporomandibular joints.

    PubMed

    Pileicikiene, Gaivile; Varpiotas, Edvinas; Surna, Rimas; Surna, Algimantas

    2007-01-01

    The objective of this study was to create a three-dimensional mathematical model of a human masticatory system, including the mandible, the dentition and the temporomandibular joints. Object of research was one 20 year old dead man. The research was approved by Committee of bioethics (Kaunas University of Medicine). Required extent of computed tomography scanning and required high amount and high resolution of images increased X-ray radiation for the object and made this research impossible to perform on alive human. Spiral computed tomography scanning was performed to achieve two-dimensional images, necessary for creating three-dimensional model. The 3D modeling was done using the "Image pro plus" and "Imageware"software. A three-dimensional physiological (normal) model of a human masticatory system, simulating the mandible, the dentition and the temporomandibular joints was generated. This model system will be used subsequently in stress analysis comparison for the physiological and pathological systems after improvement of its physical properties. We suggest that computer simulation is a promising way to study musculoskeletal biomechanics of masticatory system.

  12. USING STRUCTURAL EQUATION MODELING TO INVESTIGATE RELATIONSHIPS AMONG ECOLOGICAL VARIABLES

    EPA Science Inventory

    This paper gives an introductory account of Structural Equation Modeling (SEM) and demonstrates its application using LISREL< with a model utilizing environmental data. Using nine EMAP data variables, we analyzed their correlation matrix with an SEM model. The model characterized...

  13. Three-Dimensional Computer Model of the Right Atrium Including the Sinoatrial and Atrioventricular Nodes Predicts Classical Nodal Behaviours

    PubMed Central

    Li, Jue; Inada, Shin; Schneider, Jurgen E.; Zhang, Henggui; Dobrzynski, Halina; Boyett, Mark R.

    2014-01-01

    The aim of the study was to develop a three-dimensional (3D) anatomically-detailed model of the rabbit right atrium containing the sinoatrial and atrioventricular nodes to study the electrophysiology of the nodes. A model was generated based on 3D images of a rabbit heart (atria and part of ventricles), obtained using high-resolution magnetic resonance imaging. Segmentation was carried out semi-manually. A 3D right atrium array model (∼3.16 million elements), including eighteen objects, was constructed. For description of cellular electrophysiology, the Rogers-modified FitzHugh-Nagumo model was further modified to allow control of the major characteristics of the action potential with relatively low computational resource requirements. Model parameters were chosen to simulate the action potentials in the sinoatrial node, atrial muscle, inferior nodal extension and penetrating bundle. The block zone was simulated as passive tissue. The sinoatrial node, crista terminalis, main branch and roof bundle were considered as anisotropic. We have simulated normal and abnormal electrophysiology of the two nodes. In accordance with experimental findings: (i) during sinus rhythm, conduction occurs down the interatrial septum and into the atrioventricular node via the fast pathway (conduction down the crista terminalis and into the atrioventricular node via the slow pathway is slower); (ii) during atrial fibrillation, the sinoatrial node is protected from overdrive by its long refractory period; and (iii) during atrial fibrillation, the atrioventricular node reduces the frequency of action potentials reaching the ventricles. The model is able to simulate ventricular echo beats. In summary, a 3D anatomical model of the right atrium containing the cardiac conduction system is able to simulate a wide range of classical nodal behaviours. PMID:25380074

  14. A new scoring system for the chances of identifying a BRCA1/2 mutation outperforms existing models including BRCAPRO

    PubMed Central

    Evans, D; Eccles, D; Rahman, N; Young, K; Bulman, M; Amir, E; Shenton, A; Howell, A; Lalloo, F

    2004-01-01

    Methods: DNA samples from affected subjects from 422 non-Jewish families with a history of breast and/or ovarian cancer were screened for BRCA1 mutations and a subset of 318 was screened for BRCA2 by whole gene screening techniques. Using a combination of results from screening and the family history of mutation negative and positive kindreds, a simple scoring system (Manchester scoring system) was devised to predict pathogenic mutations and particularly to discriminate at the 10% likelihood level. A second separate dataset of 192 samples was subsequently used to test the model's predictive value. This was further validated on a third set of 258 samples and compared against existing models. Results: The scoring system includes a cut-off at 10 points for each gene. This equates to >10% probability of a pathogenic mutation in BRCA1 and BRCA2 individually. The Manchester scoring system had the best trade-off between sensitivity and specificity at 10% prediction for the presence of mutations as shown by its highest C-statistic and was far superior to BRCAPRO. Conclusion: The scoring system is useful in identifying mutations particularly in BRCA2. The algorithm may need modifying to include pathological data when calculating whether to screen for BRCA1 mutations. It is considerably less time-consuming for clinicians than using computer models and if implemented routinely in clinical practice will aid in selecting families most suitable for DNA sampling for diagnostic testing. PMID:15173236

  15. Relationship between indices of iron status and coronary risk factors including diabetes and the metabolic syndrome in Saudi subjects without overt coronary disease.

    PubMed

    Alissa, Eman M; Ahmed, Waqar H; Al-Ama, Nabeel; Ferns, Gordon A A

    2007-01-01

    There have been inconsistent reports on the relationship between iron status and coronary artery diseases (CAD), and little data on this relationship in non-Caucasian populations. We assessed dietary iron by questionnaire and measured serum iron and ferritin levels in 270 Saudi male subjects without established CAD, 130 of whom were angiogram negative. Serum lipid profile, glucose, high sensitivity-C reactive protein (hs-CRP), serum soluble intercellular adhesion molecules-1 (sICAM-1), and caeruloplasmin were measured in all subjects. The angiogram negative patients, had lower serum ferritin (p<0.05) and iron (p<0.0001) levels than the 140 subjects without reported cardiovascular diseases (CVD). Serum iron correlated with serum triglycerides (p<0.0001) and total cholesterol (p<0.05) levels for this latter group and the groups combined. Serum ferritin correlated with serum total cholesterol and low-density lipoprotein (LDL)-cholesterol in the combined group (p<0.05), and was correlated with blood glucose and serum LDL-cholesterol (p<0.05) in the subjects without reported CVD. After adjustment for confounding variables, serum iron levels remained a significant correlate with total calorie intake and serum triglycerides. Serum ferritin also correlated significantly with cholesterol intake and fasting serum total cholesterol. Dietary iron was significantly related to dietary cholesterol and fiber, age, smoking habits, and serum total cholesterol level. Hence, indices of iron status were related to several coronary risk factors in the Saudi population.

  16. A predator-prey model with a holling type I functional response including a predator mutual interference

    USGS Publications Warehouse

    Seo, G.; DeAngelis, D.L.

    2011-01-01

    The most widely used functional response in describing predator-prey relationships is the Holling type II functional response, where per capita predation is a smooth, increasing, and saturating function of prey density. Beddington and DeAngelis modified the Holling type II response to include interference of predators that increases with predator density. Here we introduce a predator-interference term into a Holling type I functional response. We explain the ecological rationale for the response and note that the phase plane configuration of the predator and prey isoclines differs greatly from that of the Beddington-DeAngelis response; for example, in having three possible interior equilibria rather than one. In fact, this new functional response seems to be quite unique. We used analytical and numerical methods to show that the resulting system shows a much richer dynamical behavior than the Beddington-DeAngelis response, or other typically used functional responses. For example, cyclic-fold, saddle-fold, homoclinic saddle connection, and multiple crossing bifurcations can all occur. We then use a smooth approximation to the Holling type I functional response with predator mutual interference to show that these dynamical properties do not result from the lack of smoothness, but rather from subtle differences in the functional responses. ?? 2011 Springer Science+Business Media, LLC.

  17. Laurentian Great Lakes Phytoplankton and Their Water Quality Characteristics, Including a Diatom-Based Model for Paleoreconstruction of Phosphorus

    PubMed Central

    Reavie, Euan D.; Heathcote, Adam J.; Shaw Chraïbi, Victoria L.

    2014-01-01

    Recent shifts in water quality and food web characteristics driven by anthropogenic impacts on the Laurentian Great Lakes warranted an examination of pelagic primary producers as tracers of environmental change. The distributions of the 263 common phytoplankton taxa were related to water quality variables to determine taxon-specific responses that may be useful in indicator models. A detailed checklist of taxa and their environmental optima are provided. Multivariate analyses indicated a strong relationship between total phosphorus (TP) and patterns in the diatom assemblages across the Great Lakes. Of the 118 common diatom taxa, 90 (76%) had a directional response along the TP gradient. We further evaluated a diatom-based transfer function for TP based on the weighted-average abundance of taxa, assuming unimodal distributions along the TP gradient. The r2 between observed and inferred TP in the training dataset was 0.79. Substantial spatial and environmental autocorrelation within the training set of samples justified the need for further model validation. A randomization procedure indicated that the actual transfer function consistently performed better than functions based on reshuffled environmental data. Further, TP was minimally confounded by other environmental variables, as indicated by the relatively large amount of unique variance in the diatoms explained by TP. We demonstrated the effectiveness of the transfer function by hindcasting TP concentrations using fossil diatom assemblages in a Lake Superior sediment core. Passive, multivariate analysis of the fossil samples against the training set indicated that phosphorus was a strong determinant of historical diatom assemblages, verifying that the transfer function was suited to reconstruct past TP in Lake Superior. Collectively, these results showed that phytoplankton coefficients for water quality can be robust indicators of Great Lakes pelagic condition. The diatom-based transfer function can be used in

  18. Laurentian Great Lakes phytoplankton and their water quality characteristics, including a diatom-based model for paleoreconstruction of phosphorus.

    PubMed

    Reavie, Euan D; Heathcote, Adam J; Shaw Chraïbi, Victoria L

    2014-01-01

    Recent shifts in water quality and food web characteristics driven by anthropogenic impacts on the Laurentian Great Lakes warranted an examination of pelagic primary producers as tracers of environmental change. The distributions of the 263 common phytoplankton taxa were related to water quality variables to determine taxon-specific responses that may be useful in indicator models. A detailed checklist of taxa and their environmental optima are provided. Multivariate analyses indicated a strong relationship between total phosphorus (TP) and patterns in the diatom assemblages across the Great Lakes. Of the 118 common diatom taxa, 90 (76%) had a directional response along the TP gradient. We further evaluated a diatom-based transfer function for TP based on the weighted-average abundance of taxa, assuming unimodal distributions along the TP gradient. The r(2) between observed and inferred TP in the training dataset was 0.79. Substantial spatial and environmental autocorrelation within the training set of samples justified the need for further model validation. A randomization procedure indicated that the actual transfer function consistently performed better than functions based on reshuffled environmental data. Further, TP was minimally confounded by other environmental variables, as indicated by the relatively large amount of unique variance in the diatoms explained by TP. We demonstrated the effectiveness of the transfer function by hindcasting TP concentrations using fossil diatom assemblages in a Lake Superior sediment core. Passive, multivariate analysis of the fossil samples against the training set indicated that phosphorus was a strong determinant of historical diatom assemblages, verifying that the transfer function was suited to reconstruct past TP in Lake Superior. Collectively, these results showed that phytoplankton coefficients for water quality can be robust indicators of Great Lakes pelagic condition. The diatom-based transfer function can be used in

  19. Relativistic ab initio model potential calculations including spin-orbit effects through the Wood-Boring Hamiltonian

    NASA Astrophysics Data System (ADS)

    Seijo, Luis

    1995-05-01

    Presented in this paper, is a practical implementation of the use of the Wood-Boring Hamiltonian [Phys. Rev. B 18, 2701 (1978)] in atomic and molecular ab initio core model potential calculations (AIMP), as a means to include spin-orbit relativistic effects, in addition to the mass-velocity and Darwin operators, which were already included in the spin-free version of the relativistic AIMP method. Calculations on the neutral and singly ionized atoms of the halogen elements and sixth-row p-elements Tl-Rn are presented, as well as on the one or two lowest lying states of the diatomic molecules HX, HX+, (X=F, Cl, Br, I, At) TlH, PbH, BiH, and PoH. The calculated spin-orbit splittings and bonding properties show a stable, good quality, of the size of what can be expected from an effective potential method.

  20. User's Manual for HPTAM: a Two-Dimensional Heat Pipe Transient Analysis Model, Including the Startup from a Frozen State

    NASA Technical Reports Server (NTRS)

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    1995-01-01

    This report describes the user's manual for 'HPTAM,' a two-dimensional Heat Pipe Transient Analysis Model. HPTAM is described in detail in the UNM-ISNPS-3-1995 report which accompanies the present manual. The model offers a menu that lists a number of working fluids and wall and wick materials from which the user can choose. HPTAM is capable of simulating the startup of heat pipes from either a fully-thawed or frozen condition of the working fluid in the wick structure. The manual includes instructions for installing and running HPTAM on either a UNIX, MS-DOS or VMS operating system. Samples for input and output files are also provided to help the user with the code.

  1. User's manual for HPTAM: A two-dimensional Heat Pipe Transient Analysis Model, including the startup from a frozen state

    NASA Astrophysics Data System (ADS)

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    1995-09-01

    This report describes the user's manual for 'HPTAM,' a two-dimensional Heat Pipe Transient Analysis Model. HPTAM is described in detail in the UNM-ISNPS-3-1995 report which accompanies the present manual. The model offers a menu that lists a number of working fluids and wall and wick materials from which the user can choose. HPTAM is capable of simulating the startup of heat pipes from either a fully-thawed or frozen condition of the working fluid in the wick structure. The manual includes instructions for installing and running HPTAM on either a UNIX, MS-DOS or VMS operating system. Samples for input and output files are also provided to help the user with the code.

  2. CMAQ model performance enhanced when in-cloud secondary organic aerosol is included: comparisons of organic carbon predictions with measurements.

    PubMed

    Carlton, Annmarie G; Turpin, Barbara I; Altieri, Katye E; Seitzinger, Sybil P; Mathur, Rohit; Roselle, Shawn J; Weber, Rodney J

    2008-12-01

    Mounting evidence suggests that low-volatility (particle-phase) organic compounds form in the atmosphere through aqueous phase reactions in clouds and aerosols. Although some models have begun including secondary organic aerosol (SOA) formation through cloud processing, validation studies that compare predictions and measurements are needed. In this work, agreement between modeled organic carbon (OC) and aircraft measurements of water soluble OC improved for all 5 of the compared ICARTT NOAA-P3 flights during August when an in-cloud SOA (SOAcld) formation mechanism was added to CMAQ (a regional-scale atmospheric model). The improvement was most dramatic for the August 14th flight, a flight designed specifically to investigate clouds. During this flight the normalized mean bias for layer-averaged OC was reduced from -64 to -15% and correlation (r) improved from 0.5 to 0.6. Underpredictions of OC aloft by atmospheric models may be explained, in part, by this formation mechanism (SOAcld). OC formation aloft contributes to long-range pollution transport and has implications to radiative forcing, regional air quality and climate. PMID:19192800

  3. CMAQ model performance enhanced when in-cloud secondary organic aerosol is included: comparisons of organic carbon predictions with measurements.

    PubMed

    Carlton, Annmarie G; Turpin, Barbara I; Altieri, Katye E; Seitzinger, Sybil P; Mathur, Rohit; Roselle, Shawn J; Weber, Rodney J

    2008-12-01

    Mounting evidence suggests that low-volatility (particle-phase) organic compounds form in the atmosphere through aqueous phase reactions in clouds and aerosols. Although some models have begun including secondary organic aerosol (SOA) formation through cloud processing, validation studies that compare predictions and measurements are needed. In this work, agreement between modeled organic carbon (OC) and aircraft measurements of water soluble OC improved for all 5 of the compared ICARTT NOAA-P3 flights during August when an in-cloud SOA (SOAcld) formation mechanism was added to CMAQ (a regional-scale atmospheric model). The improvement was most dramatic for the August 14th flight, a flight designed specifically to investigate clouds. During this flight the normalized mean bias for layer-averaged OC was reduced from -64 to -15% and correlation (r) improved from 0.5 to 0.6. Underpredictions of OC aloft by atmospheric models may be explained, in part, by this formation mechanism (SOAcld). OC formation aloft contributes to long-range pollution transport and has implications to radiative forcing, regional air quality and climate.

  4. Including Thermal Fluctuations in Actomyosin Stable States Increases the Predicted Force per Motor and Macroscopic Efficiency in Muscle Modelling

    PubMed Central

    2016-01-01

    Muscle contractions are generated by cyclical interactions of myosin heads with actin filaments to form the actomyosin complex. To simulate actomyosin complex stable states, mathematical models usually define an energy landscape with a corresponding number of wells. The jumps between these wells are defined through rate constants. Almost all previous models assign these wells an infinite sharpness by imposing a relatively simple expression for the detailed balance, i.e., the ratio of the rate constants depends exponentially on the sole myosin elastic energy. Physically, this assumption corresponds to neglecting thermal fluctuations in the actomyosin complex stable states. By comparing three mathematical models, we examine the extent to which this hypothesis affects muscle model predictions at the single cross-bridge, single fiber, and organ levels in a ceteris paribus analysis. We show that including fluctuations in stable states allows the lever arm of the myosin to easily and dynamically explore all possible minima in the energy landscape, generating several backward and forward jumps between states during the lifetime of the actomyosin complex, whereas the infinitely sharp minima case is characterized by fewer jumps between states. Moreover, the analysis predicts that thermal fluctuations enable a more efficient contraction mechanism, in which a higher force is sustained by fewer attached cross-bridges. PMID:27626630

  5. Laboratory Studies of the Reactive Chemistry and Changing CCN Properties of Secondary Organic Aerosol, Including Model Development

    SciTech Connect

    Scot Martin

    2013-01-31

    The chemical evolution of secondary-organic-aerosol (SOA) particles and how this evolution alters their cloud-nucleating properties were studied. Simplified forms of full Koehler theory were targeted, specifically forms that contain only those aspects essential to describing the laboratory observations, because of the requirement to minimize computational burden for use in integrated climate and chemistry models. The associated data analysis and interpretation have therefore focused on model development in the framework of modified kappa-Koehler theory. Kappa is a single parameter describing effective hygroscopicity, grouping together several separate physicochemical parameters (e.g., molar volume, surface tension, and van't Hoff factor) that otherwise must be tracked and evaluated in an iterative full-Koehler equation in a large-scale model. A major finding of the project was that secondary organic materials produced by the oxidation of a range of biogenic volatile organic compounds for diverse conditions have kappa values bracketed in the range of 0.10 +/- 0.05. In these same experiments, somewhat incongruently there was significant chemical variation in the secondary organic material, especially oxidation state, as was indicated by changes in the particle mass spectra. Taken together, these findings then support the use of kappa as a simplified yet accurate general parameter to represent the CCN activation of secondary organic material in large-scale atmospheric and climate models, thereby greatly reducing the computational burden while simultaneously including the most recent mechanistic findings of laboratory studies.

  6. A non-linear mathematical model for dynamic analysis of spur gears including shaft and bearing dynamics

    NASA Technical Reports Server (NTRS)

    Ozguven, H. Nevzat

    1991-01-01

    A six-degree-of-freedom nonlinear semi-definite model with time varying mesh stiffness has been developed for the dynamic analysis of spur gears. The model includes a spur gear pair, two shafts, two inertias representing load and prime mover, and bearings. As the shaft and bearing dynamics have also been considered in the model, the effect of lateral-torsional vibration coupling on the dynamics of gears can be studied. In the nonlinear model developed several factors such as time varying mesh stiffness and damping, separation of teeth, backlash, single- and double-sided impacts, various gear errors and profile modifications have been considered. The dynamic response to internal excitation has been calculated by using the 'static transmission error method' developed. The software prepared (DYTEM) employs the digital simulation technique for the solution, and is capable of calculating dynamic tooth and mesh forces, dynamic factors for pinion and gear, dynamic transmission error, dynamic bearing forces and torsions of shafts. Numerical examples are given in order to demonstrate the effect of shaft and bearing dynamics on gear dynamics.

  7. Including Thermal Fluctuations in Actomyosin Stable States Increases the Predicted Force per Motor and Macroscopic Efficiency in Muscle Modelling.

    PubMed

    Marcucci, Lorenzo; Washio, Takumi; Yanagida, Toshio

    2016-09-01

    Muscle contractions are generated by cyclical interactions of myosin heads with actin filaments to form the actomyosin complex. To simulate actomyosin complex stable states, mathematical models usually define an energy landscape with a corresponding number of wells. The jumps between these wells are defined through rate constants. Almost all previous models assign these wells an infinite sharpness by imposing a relatively simple expression for the detailed balance, i.e., the ratio of the rate constants depends exponentially on the sole myosin elastic energy. Physically, this assumption corresponds to neglecting thermal fluctuations in the actomyosin complex stable states. By comparing three mathematical models, we examine the extent to which this hypothesis affects muscle model predictions at the single cross-bridge, single fiber, and organ levels in a ceteris paribus analysis. We show that including fluctuations in stable states allows the lever arm of the myosin to easily and dynamically explore all possible minima in the energy landscape, generating several backward and forward jumps between states during the lifetime of the actomyosin complex, whereas the infinitely sharp minima case is characterized by fewer jumps between states. Moreover, the analysis predicts that thermal fluctuations enable a more efficient contraction mechanism, in which a higher force is sustained by fewer attached cross-bridges. PMID:27626630

  8. Modeling the significance of including C redistribution when determining changes in net carbon storage along a cultivated toposequence

    NASA Astrophysics Data System (ADS)

    Chirinda, Ngonidzashe; Olesen, Jørgen E.; Heckrath, Goswin; Paradelo Pérez, Marcos; Taghizadeh-Toosi, Arezoo

    2016-04-01

    Globally, soil carbon (C) reserves are second only to those in the ocean, and accounts for a significant C reservoir. In the case of arable soils, the quantity of stored C is influenced by various factors (e.g. management practices). Currently, the topography related influences on in-field soil C dynamics remain largely unknown. However, topography is known to influence a multiplicity of factors that regulate C input, storage and redistribution. To understand the patterns and untangle the complexity of soil C dynamics in arable landscapes, our study was conducted with soils from shoulderslope and footslope positions on a 7.1 ha winter wheat field in western Denmark. We first collected soil samples from shoulderslope and footslope positions with various depth intervals down to 100 cm and analyzed them for physical and chemical properties including texture and soil organic C contents. In-situ carbon dioxide (CO2) concentrations were measured at different soil profile depths at both positions for a year. Soil moisture content and temperature at 5 and 40 cm depth was measured continuously. Additionally, surface soil CO2 fluxes at shoulderslope and footslope positions were measured. We then used measurement data collected from the two landscape positions to calibrate the one-dimensional mechanistic model SOILCO2 module of the HYDRUS-1D software package and obtained soil CO2 fluxes from soil profile at two landscape positions. Furthermore, we tested whether the inclusion of vertical and lateral soil C movement improved the modeling of C dynamics in cultivated landscapes. For that, soil profile CO2 fluxes were compared with those obtained using a simple process-based soil whole profile C model, C-TOOL, which was modified to include vertical and lateral movement of C on landscape. Our results highlight the need to consider vertical and lateral soil C movement in the modeling of C dynamics in cultivated landscapes, for better qualification of net carbon storage.

  9. Quantitative Structure--Activity Relationship Modeling of Rat Acute Toxicity by Oral Exposure

    EPA Science Inventory

    Background: Few Quantitative Structure-Activity Relationship (QSAR) studies have successfully modeled large, diverse rodent toxicity endpoints. Objective: In this study, a combinatorial QSAR approach has been employed for the creation of robust and predictive models of acute toxi...

  10. The Soul Mates Model: A Seven-Stage Model for Couple's Long-Term Relationship Development and Flourishing

    ERIC Educational Resources Information Center

    De La Lama, Luisa Batthyany; De La Lama, Luis; Wittgenstein, Ariana

    2012-01-01

    This article presents the integrative soul mates relationship development model, which provides the helping professionals with a conceptual map for couples' relationship development from dating, to intimacy, to soul mating, and long-term flourishing. This model is informed by a holistic, a developmental, and a positive psychology conceptualization…

  11. A Three-Dimensional Human Atrial Model with Fiber Orientation. Electrograms and Arrhythmic Activation Patterns Relationship

    PubMed Central

    Tobón, Catalina; Ruiz-Villa, Carlos A.; Heidenreich, Elvio; Romero, Lucia; Hornero, Fernando; Saiz, Javier

    2013-01-01

    The most common sustained cardiac arrhythmias in humans are atrial tachyarrhythmias, mainly atrial fibrillation. Areas of complex fractionated atrial electrograms and high dominant frequency have been proposed as critical regions for maintaining atrial fibrillation; however, there is a paucity of data on the relationship between the characteristics of electrograms and the propagation pattern underlying them. In this study, a realistic 3D computer model of the human atria has been developed to investigate this relationship. The model includes a realistic geometry with fiber orientation, anisotropic conductivity and electrophysiological heterogeneity. We simulated different tachyarrhythmic episodes applying both transient and continuous ectopic activity. Electrograms and their dominant frequency and organization index values were calculated over the entire atrial surface. Our simulations show electrograms with simple potentials, with little or no cycle length variations, narrow frequency peaks and high organization index values during stable and regular activity as the observed in atrial flutter, atrial tachycardia (except in areas of conduction block) and in areas closer to ectopic activity during focal atrial fibrillation. By contrast, cycle length variations and polymorphic electrograms with single, double and fragmented potentials were observed in areas of irregular and unstable activity during atrial fibrillation episodes. Our results also show: 1) electrograms with potentials without negative deflection related to spiral or curved wavefronts that pass over the recording point and move away, 2) potentials with a much greater proportion of positive deflection than negative in areas of wave collisions, 3) double potentials related with wave fragmentations or blocking lines and 4) fragmented electrograms associated with pivot points. Our model is the first human atrial model with realistic fiber orientation used to investigate the relationship between different

  12. Models of Workplace Incivility: The Relationships to Instigated Incivility and Negative Outcomes

    PubMed Central

    Holm, Kristoffer; Torkelson, Eva; Bäckström, Martin

    2015-01-01

    The aim of the study was to investigate workplace incivility as a social process, examining its components and relationships to both instigated incivility and negative outcomes in the form of well-being, job satisfaction, turnover intentions, and sleeping problems. The different components of incivility that were examined were experienced and witnessed incivility from coworkers as well as supervisors. In addition, the organizational factors, social support, control, and job demands, were included in the models. A total of 2871 (2058 women and 813 men) employees who were connected to the Swedish Hotel and Restaurant Workers Union completed an online questionnaire. Overall, the results from structural equation modelling indicate that whereas instigated incivility to a large extent was explained by witnessing coworker incivility, negative outcomes were to a high degree explained by experienced supervisor incivility via mediation through perceived low social support, low control, and high job demands. Unexpectedly, the relationships between incivility (experienced coworker and supervisor incivility, as well as witnessed supervisor incivility) and instigated incivility were moderated by perceived high control and high social support. The results highlight the importance of including different components of workplace incivility and organizational factors in future studies of the area. PMID:26557714

  13. Models of Workplace Incivility: The Relationships to Instigated Incivility and Negative Outcomes.

    PubMed

    Holm, Kristoffer; Torkelson, Eva; Bäckström, Martin

    2015-01-01

    The aim of the study was to investigate workplace incivility as a social process, examining its components and relationships to both instigated incivility and negative outcomes in the form of well-being, job satisfaction, turnover intentions, and sleeping problems. The different components of incivility that were examined were experienced and witnessed incivility from coworkers as well as supervisors. In addition, the organizational factors, social support, control, and job demands, were included in the models. A total of 2871 (2058 women and 813 men) employees who were connected to the Swedish Hotel and Restaurant Workers Union completed an online questionnaire. Overall, the results from structural equation modelling indicate that whereas instigated incivility to a large extent was explained by witnessing coworker incivility, negative outcomes were to a high degree explained by experienced supervisor incivility via mediation through perceived low social support, low control, and high job demands. Unexpectedly, the relationships between incivility (experienced coworker and supervisor incivility, as well as witnessed supervisor incivility) and instigated incivility were moderated by perceived high control and high social support. The results highlight the importance of including different components of workplace incivility and organizational factors in future studies of the area. PMID:26557714

  14. GIS-based models for water quantity and quality assessment in the Júcar River Basin, Spain, including climate change effects.

    PubMed

    Ferrer, Javier; Pérez-Martín, Miguel A; Jiménez, Sara; Estrela, Teodoro; Andreu, Joaquín

    2012-12-01

    This paper describes two different GIS models - one stationary (GeoImpress) and the other non-stationary (Patrical) - that assess water quantity and quality in the Júcar River Basin District, a large river basin district (43,000km(2)) located in Spain. It aims to analyze the status of surface water (SW) and groundwater (GW) bodies in relation to the European Water Framework Directive (WFD) and to support measures to achieve the WFD objectives. The non-stationary model is used for quantitative analysis of water resources, including long-term water resource assessment; estimation of available GW resources; and evaluation of climate change impact on water resources. The main results obtained are the following: recent water resources have been reduced by approximately 18% compared to the reference period 1961-1990; the GW environmental volume required to accomplish the WFD objectives is approximately 30% of the GW annual resources; and the climate change impact on water resources for the short-term (2010-2040), based on a dynamic downscaling A1B scenario, implies a reduction in water resources by approximately 19% compared to 1990-2000 and a reduction of approximately 40-50% for the long-term (2070-2100), based on dynamic downscaling A2 and B2 scenarios. The model also assesses the impact of various fertilizer application scenarios on the status of future GW quality (nitrate) and if these future statuses will meet the WFD requirements. The stationary model generates data on the actual and future chemical status of SW bodies in the river basin according to the modeled scenarios and reflects the implementation of different types of measures to accomplish the Urban Waste Water Treatment Directive and the WFD. Finally, the selection and prioritization of additional measures to accomplish the WFD are based on cost-effectiveness analysis.

  15. GIS-based models for water quantity and quality assessment in the Júcar River Basin, Spain, including climate change effects.

    PubMed

    Ferrer, Javier; Pérez-Martín, Miguel A; Jiménez, Sara; Estrela, Teodoro; Andreu, Joaquín

    2012-12-01

    This paper describes two different GIS models - one stationary (GeoImpress) and the other non-stationary (Patrical) - that assess water quantity and quality in the Júcar River Basin District, a large river basin district (43,000km(2)) located in Spain. It aims to analyze the status of surface water (SW) and groundwater (GW) bodies in relation to the European Water Framework Directive (WFD) and to support measures to achieve the WFD objectives. The non-stationary model is used for quantitative analysis of water resources, including long-term water resource assessment; estimation of available GW resources; and evaluation of climate change impact on water resources. The main results obtained are the following: recent water resources have been reduced by approximately 18% compared to the reference period 1961-1990; the GW environmental volume required to accomplish the WFD objectives is approximately 30% of the GW annual resources; and the climate change impact on water resources for the short-term (2010-2040), based on a dynamic downscaling A1B scenario, implies a reduction in water resources by approximately 19% compared to 1990-2000 and a reduction of approximately 40-50% for the long-term (2070-2100), based on dynamic downscaling A2 and B2 scenarios. The model also assesses the impact of various fertilizer application scenarios on the status of future GW quality (nitrate) and if these future statuses will meet the WFD requirements. The stationary model generates data on the actual and future chemical status of SW bodies in the river basin according to the modeled scenarios and reflects the implementation of different types of measures to accomplish the Urban Waste Water Treatment Directive and the WFD. Finally, the selection and prioritization of additional measures to accomplish the WFD are based on cost-effectiveness analysis. PMID:22959072

  16. Working Models about Mother-Child Relationships in Abandoned Children.

    ERIC Educational Resources Information Center

    Garcia-Torres, Belen; Guerrero, Pilar Garcia-Calvo

    2000-01-01

    Sixty abandoned and 36 non-abandoned school-aged children were told six short stories about mother-child relationships. Abandoned children showed less positive affect attribution to the mother, more compliant behavior in the child, and more justification of the mother when her behaviors were unfair. (Contains references.) (Author/CR)

  17. Modeling Best Practice through Online Learning: Building Relationships

    ERIC Educational Resources Information Center

    Cerniglia, Ellen G.

    2011-01-01

    Students may fear that they will feel unsupported and isolated when engaged in online learning. They don't know how they will be able to build relationships with their teacher and classmates solely based on written words, without facial expressions, tone of voice, and other nonverbal communication cues. Traditionally, online learning required…

  18. The Force-Frequency Relationship: Insights from Mathematical Modeling

    ERIC Educational Resources Information Center

    Puglisi, Jose L.; Negroni, Jorge A.; Chen-Izu, Ye; Bers, Donald M.

    2013-01-01

    The force-frequency relationship has intrigued researchers since its discovery by Bowditch in 1871. Many attempts have been made to construct mathematical descriptions of this phenomenon, beginning with the simple formulation of Koch-Wesser and Blinks in 1963 to the most sophisticated ones of today. This property of cardiac muscle is amplified by…

  19. Adolescents' working models and styles for relationships with parents, friends, and romantic partners.

    PubMed

    Furman, Wyndol; Simon, Valerie A; Shaffer, Laura; Bouchey, Heather A

    2002-01-01

    This study examined the links among adolescents' representations of their relationships with parents, friends, and romantic partners. Sixty-eight adolescents were interviewed three times to assess their working models for each of these types of relationships. Working models of friendships were related to working models of relationships with parents and romantic partners. Working models of relationships with parents and romantic partners were inconsistently related. A similar pattern of results was obtained for self-report measures of relational styles for the three types of relationships. Perceived experiences were also related. Specifically, support in relationships with parents tended to be related to support in romantic relationships and friendships, but the latter two were unrelated. On the other hand, self and other controlling behaviors in friendships were related to corresponding behaviors in romantic relationships. Negative interactions in the three types of relationships also tended to be related. Taken together, the findings indicate that the representations of the three types of relationships are distinct, yet related. Discussion focuses on the nature of the links among the three.

  20. Computational Modeling of Open-Irrigated Electrodes for Radiofrequency Cardiac Ablation Including Blood Motion-Saline Flow Interaction.

    PubMed

    González-Suárez, Ana; Berjano, Enrique; Guerra, Jose M; Gerardo-Giorda, Luca

    2016-01-01

    Radiofrequency catheter ablation (RFCA) is a routine treatment for cardiac arrhythmias. During RFCA, the electrode-tissue interface temperature should be kept below 80 °C to avoid thrombus formation. Open-irrigated electrodes facilitate power delivery while keeping low temperatures around the catheter. No computational model of an open-irrigated electrode in endocardial RFCA accounting for both the saline irrigation flow and the blood motion in the cardiac chamber has been proposed yet. We present the first computational model including both effects at once. The model has been validated against existing experimental results. Computational results showed that the surface lesion width and blood temperature are affected by both the electrode design and the irrigation flow rate. Smaller surface lesion widths and blood temperatures are obtained with higher irrigation flow rate, while the lesion depth is not affected by changing the irrigation flow rate. Larger lesions are obtained with increasing power and the electrode-tissue contact. Also, larger lesions are obtained when electrode is placed horizontally. Overall, the computational findings are in close agreement with previous experimental results providing an excellent tool for future catheter research.

  1. Computational Modeling of Open-Irrigated Electrodes for Radiofrequency Cardiac Ablation Including Blood Motion-Saline Flow Interaction

    PubMed Central

    González-Suárez, Ana; Berjano, Enrique; Guerra, Jose M.; Gerardo-Giorda, Luca

    2016-01-01

    Radiofrequency catheter ablation (RFCA) is a routine treatment for cardiac arrhythmias. During RFCA, the electrode-tissue interface temperature should be kept below 80°C to avoid thrombus formation. Open-irrigated electrodes facilitate power delivery while keeping low temperatures around the catheter. No computational model of an open-irrigated electrode in endocardial RFCA accounting for both the saline irrigation flow and the blood motion in the cardiac chamber has been proposed yet. We present the first computational model including both effects at once. The model has been validated against existing experimental results. Computational results showed that the surface lesion width and blood temperature are affected by both the electrode design and the irrigation flow rate. Smaller surface lesion widths and blood temperatures are obtained with higher irrigation flow rate, while the lesion depth is not affected by changing the irrigation flow rate. Larger lesions are obtained with increasing power and the electrode-tissue contact. Also, larger lesions are obtained when electrode is placed horizontally. Overall, the computational findings are in close agreement with previous experimental results providing an excellent tool for future catheter research. PMID:26938638

  2. Computational Modeling of Open-Irrigated Electrodes for Radiofrequency Cardiac Ablation Including Blood Motion-Saline Flow Interaction.

    PubMed

    González-Suárez, Ana; Berjano, Enrique; Guerra, Jose M; Gerardo-Giorda, Luca

    2016-01-01

    Radiofrequency catheter ablation (RFCA) is a routine treatment for cardiac arrhythmias. During RFCA, the electrode-tissue interface temperature should be kept below 80 °C to avoid thrombus formation. Open-irrigated electrodes facilitate power delivery while keeping low temperatures around the catheter. No computational model of an open-irrigated electrode in endocardial RFCA accounting for both the saline irrigation flow and the blood motion in the cardiac chamber has been proposed yet. We present the first computational model including both effects at once. The model has been validated against existing experimental results. Computational results showed that the surface lesion width and blood temperature are affected by both the electrode design and the irrigation flow rate. Smaller surface lesion widths and blood temperatures are obtained with higher irrigation flow rate, while the lesion depth is not affected by changing the irrigation flow rate. Larger lesions are obtained with increasing power and the electrode-tissue contact. Also, larger lesions are obtained when electrode is placed horizontally. Overall, the computational findings are in close agreement with previous experimental results providing an excellent tool for future catheter research. PMID:26938638

  3. Modelled hydraulic redistribution by sunflower (Helianthus annuus L.) matches observed data only after including night-time transpiration.

    PubMed

    Neumann, Rebecca B; Cardon, Zoe G; Teshera-Levye, Jennifer; Rockwell, Fulton E; Zwieniecki, Maciej A; Holbrook, N Michele

    2014-04-01

    The movement of water from moist to dry soil layers through the root systems of plants, referred to as hydraulic redistribution (HR), occurs throughout the world and is thought to influence carbon and water budgets and ecosystem functioning. The realized hydrologic, biogeochemical and ecological consequences of HR depend on the amount of redistributed water, whereas the ability to assess these impacts requires models that correctly capture HR magnitude and timing. Using several soil types and two ecotypes of sunflower (Helianthus annuus L.) in split-pot experiments, we examined how well the widely used HR modelling formulation developed by Ryel et al. matched experimental determination of HR across a range of water potential driving gradients. H. annuus carries out extensive night-time transpiration, and although over the last decade it has become more widely recognized that night-time transpiration occurs in multiple species and many ecosystems, the original Ryel et al. formulation does not include the effect of night-time transpiration on HR. We developed and added a representation of night-time transpiration into the formulation, and only then was the model able to capture the dynamics and magnitude of HR we observed as soils dried and night-time stomatal behaviour changed, both influencing HR.

  4. Evaluation and optimization of a micro-tubular solid oxide fuel cell stack model including an integrated cooling system

    NASA Astrophysics Data System (ADS)

    Hering, Martin; Brouwer, Jacob; Winkler, Wolfgang

    2016-01-01

    A micro-tubular solid oxide fuel cell stack model including an integrated cooling system was developed using a quasi three-dimensional, spatially resolved, transient thermodynamic, physical and electrochemical model that accounts for the complex geometrical relations between the cells and cooling-tubes. For the purpose of model evaluation, reference operating, geometrical and material properties are determined. The reference stack design is composed of 3294 cells, with a diameter of 2 mm, and 61 cooling-tubes. The stack is operated at a power density of 300 mW/cm2 and air is used as the cooling fluid inside the integrated cooling system. Regarding the performance, the reference design achieves an electrical stack efficiency of around 57% and a power output of 1.1 kW. The maximum occurring temperature of the positive electrode electrolyte negative electrode (PEN)-structure is 1369 K. As a result of a design of experiments, parameters of a best-case design are determined. The best-case design achieves a comparable power output of 1.1 kW with an electrical efficiency of 63% and a maximum occurring temperature of the PEN-structure of 1268 K. Nevertheless, the best-case design has an increased volume based on the higher diameter of 3 mm and increased spacing between the cells.

  5. Including local rainfall dynamics and uncertain boundary conditions into a 2-D regional-local flood modelling cascade

    NASA Astrophysics Data System (ADS)

    Bermúdez, María; Neal, Jeffrey C.; Bates, Paul D.; Coxon, Gemma; Freer, Jim E.; Cea, Luis; Puertas, Jerónimo

    2016-04-01

    Flood inundation models require appropriate boundary conditions to be specified at the limits of the domain, which commonly consist of upstream flow rate and downstream water level. These data are usually acquired from gauging stations on the river network where measured water levels are converted to discharge via a rating curve. Derived streamflow estimates are therefore subject to uncertainties in this rating curve, including extrapolating beyond the maximum observed ratings magnitude. In addition, the limited number of gauges in reach-scale studies often requires flow to be routed from the nearest upstream gauge to the boundary of the model domain. This introduces additional uncertainty, derived not only from the flow routing method used, but also from the additional lateral rainfall-runoff contributions downstream of the gauging point. Although generally assumed to have a minor impact on discharge in fluvial flood modeling, this local hydrological input may become important in a sparse gauge network or in events with significant local rainfall. In this study, a method to incorporate rating curve uncertainty and the local rainfall-runoff dynamics into the predictions of a reach-scale flood inundation model is proposed. Discharge uncertainty bounds are generated by applying a non-parametric local weighted regression approach to stage-discharge measurements for two gauging stations, while measured rainfall downstream from these locations is cascaded into a hydrological model to quantify additional inflows along the main channel. A regional simplified-physics hydraulic model is then applied to combine these inputs and generate an ensemble of discharge and water elevation time series at the boundaries of a local-scale high complexity hydraulic model. Finally, the effect of these rainfall dynamics and uncertain boundary conditions are evaluated on the local-scale model. Improvements in model performance when incorporating these processes are quantified using observed

  6. Parental concern about vaccine safety in Canadian children partially immunized at age 2: a multivariable model including system level factors.

    PubMed

    MacDonald, Shannon E; Schopflocher, Donald P; Vaudry, Wendy

    2014-01-01

    Children who begin but do not fully complete the recommended series of childhood vaccines by 2 y of age are a much larger group than those who receive no vaccines. While parents who refuse all vaccines typically express concern about vaccine safety, it is critical to determine what influences parents of 'partially' immunized children. This case-control study examined whether parental concern about vaccine safety was responsible for partial immunization, and whether other personal or system-level factors played an important role. A random sample of parents of partially and completely immunized 2 y old children were selected from a Canadian regional immunization registry and completed a postal survey assessing various personal and system-level factors. Unadjusted odds ratios (OR) and adjusted ORs (aOR) were calculated with logistic regression. While vaccine safety concern was associated with partial immunization (OR 7.338, 95% CI 4.138-13.012), other variables were more strongly associated and reduced the strength of the relationship between concern and partial immunization in multivariable analysis (aOR 2.829, 95% CI 1.151-6.957). Other important factors included perceived disease susceptibility and severity (aOR 4.629, 95% CI 2.017-10.625), residential mobility (aOR 3.908, 95% CI 2.075-7.358), daycare use (aOR 0.310, 95% CI 0.144-0.671), number of needles administered at each visit (aOR 7.734, 95% CI 2.598-23.025) and access to a regular physician (aOR 0.219, 95% CI 0.057-0.846). While concern about vaccine safety may be addressed through educational strategies, this study suggests that additional program and policy-level strategies may positively impact immunization uptake.

  7. DEVELOPMENT OF PLASTICITY MODEL USING NON ASSOCIATED FLOW RULE FOR HCP MATERIALS INCLUDING ZIRCONIUM FOR NUCLEAR APPLICATIONS

    SciTech Connect

    Michael V. Glazoff; Jeong-Whan Yoon

    2013-08-01

    In this report (prepared in collaboration with Prof. Jeong Whan Yoon, Deakin University, Melbourne, Australia) a research effort was made to develop a non associated flow rule for zirconium. Since Zr is a hexagonally close packed (hcp) material, it is impossible to describe its plastic response under arbitrary loading conditions with any associated flow rule (e.g. von Mises). As a result of strong tension compression asymmetry of the yield stress and anisotropy, zirconium displays plastic behavior that requires a more sophisticated approach. Consequently, a new general asymmetric yield function has been developed which accommodates mathematically the four directional anisotropies along 0 degrees, 45 degrees, 90 degrees, and biaxial, under tension and compression. Stress anisotropy has been completely decoupled from the r value by using non associated flow plasticity, where yield function and plastic potential have been treated separately to take care of stress and r value directionalities, respectively. This theoretical development has been verified using Zr alloys at room temperature as an example as these materials have very strong SD (Strength Differential) effect. The proposed yield function reasonably well models the evolution of yield surfaces for a zirconium clock rolled plate during in plane and through thickness compression. It has been found that this function can predict both tension and compression asymmetry mathematically without any numerical tolerance and shows the significant improvement compared to any reported functions. Finally, in the end of the report, a program of further research is outlined aimed at constructing tensorial relationships for the temperature and fluence dependent creep surfaces for Zr, Zircaloy 2, and Zircaloy 4.

  8. Including the effects of elastic compressibility and volume changes in geodynamical modeling of crust-lithosphere-mantle deformation

    NASA Astrophysics Data System (ADS)

    de Monserrat, Albert; Morgan, Jason P.

    2016-04-01

    Materials in Earth's interior are exposed to thermomechanical (e.g. variations in stress/pressure and temperature) and chemical (e.g. phase changes, serpentinization, melting) processes that are associated with volume changes. Most geodynamical codes assume the incompressible Boussinesq approximation, where changes in density due to temperature or phase change effect buoyancy, yet volumetric changes are not allowed, and mass is not locally conserved. Elastic stresses induced by volume changes due to thermal expansion, serpentinization, and melt intrusion should cause 'cold' rocks to brittlely fail at ~1% strain. When failure/yielding is an important rheological feature, we think it plausible that volume-change-linked stresses may have a significant influence on the localization of deformation. Here we discuss a new Lagrangian formulation for "elasto-compressible -visco-plastic" flow. In this formulation, the continuity equation has been generalised from a Boussinesq incompressible formulation to include recoverable, elastic, volumetric deformations linked to the local state of mean compressive stress. This formulation differs from the 'anelastic approximation' used in compressible viscous flow in that pressure- and temperature- dependent volume changes are treated as elastic deformation for a given pressure, temperature, and composition/phase. This leads to a visco-elasto-plastic formulation that can model the effects of thermal stresses, pressure-dependent volume changes, and local phase changes. We use a modified version of the (Miliman-based) FEM code M2TRI to run a set of numerical experiments for benchmarking purposes. Three benchmarks are being used to assess the accuracy of this formulation: (1) model the effects on density of a compressible mantle under the influence of gravity; (2) model the deflection of a visco-elastic beam under the influence of gravity, and its recovery when gravitational loading is artificially removed; (3) Modelling the stresses

  9. Observation of current variations off the New Guinea coast including the 1997-1998 El Niño period and their relationship with Sverdrup transport

    NASA Astrophysics Data System (ADS)

    Ueki, Iwao; Kashino, Yuji; Kuroda, Yoshifumi

    2003-07-01

    Seasonal and interannual variations of the New Guinea Coastal Current (NGCC) and New Guinea Coastal Undercurrent (NGCUC) were investigated by examining the 5 years' data from acoustic Doppler current profiler moorings at two sites (2°S 142°E, 2.5°S 142°E) off the New Guinea coast. The NGCC flowed northwestward as is usual and intensified during the boreal summer, then weakened or even reversed direction to southeastward during the boreal winter. This seasonal change correlated to the monsoonal wind variation. However, during the 1997-1998 El Niño, the southeastward NGCC during the boreal winter was not observed, and northwestward flow was dominant throughout the year. On the other hand, the NGCUC flowed steadily northwestward all year-round and intensified during the boreal summer. During the growing phase of the El Niño, the NGCUC intensified, and its northwestward flow reached from the surface to a depth of 250 m. Comparison between the volume transport of these currents and the Sverdrup transport along 2°S in the ocean interior indicated a mean difference of 13 × 106 m3 s-1 northward. The relationship between variations of these two transports showed a negative correlation on seasonal timescales except during the El Niño. During the mature phase of the El Niño, northward Sverdrup transport was enhanced significantly, furthermore the transport of these currents was also northward. The result demonstrates a process by which anomalous water volumes can flow into the equatorial region due to an imbalance between the volume transport in the ocean interior and the western boundary.

  10. Identifying and Evaluating the Relationships that Control a Land Surface Model's Hydrological Behavior

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Mahanama, Sarith P.

    2012-01-01

    The inherent soil moisture-evaporation relationships used in today 's land surface models (LSMs) arguably reflect a lot of guesswork given the lack of contemporaneous evaporation and soil moisture observations at the spatial scales represented by regional and global models. The inherent soil moisture-runoff relationships used in the LSMs are also of uncertain accuracy. Evaluating these relationships is difficult but crucial given that they have a major impact on how the land component contributes to hydrological and meteorological variability within the climate system. The relationships, it turns out, can be examined efficiently and effectively with a simple water balance model framework. The simple water balance model, driven with multi-decadal observations covering the conterminous United States, shows how different prescribed relationships lead to different manifestations of hydrological variability, some of which can be compared directly to observations. Through the testing of a wide suite of relationships, the simple model provides estimates for the underlying relationships that operate in nature and that should be operating in LSMs. We examine the relationships currently used in a number of different LSMs in the context of the simple water balance model results and make recommendations for potential first-order improvements to these LSMs.

  11. Novel relationships among ten fish model species revealed based on a phylogenomic analysis using ESTs.

    PubMed

    Steinke, Dirk; Salzburger, Walter; Meyer, Axel

    2006-06-01

    The power of comparative phylogenomic analyses also depends on the amount of data that are included in such studies. We used expressed sequence tags (ESTs) from fish model species as a proof of principle approach in order to test the reliability of using ESTs for phylogenetic inference. As expected, the robustness increases with the amount of sequences. Although some progress has been made in the elucidation of the phylogeny of teleosts, relationships among the main lineages of the derived fish (Euteleostei) remain poorly defined and are still debated. We performed a phylogenomic analysis of a set of 42 of orthologous genes from 10 available fish model systems from seven different orders (Salmoniformes, Siluriformes, Cypriniformes, Tetraodontiformes, Cyprinodontiformes, Beloniformes, and Perciformes) of euteleostean fish to estimate divergence times and evolutionary relationships among those lineages. All 10 fish species serve as models for developmental, aquaculture, genomic, and comparative genetic studies. The phylogenetic signal and the strength of the contribution of each of the 42 orthologous genes were estimated with randomly chosen data subsets. Our study revealed a molecular phylogeny of higher-level relationships of derived teleosts, which indicates that the use of multiple genes produces robust phylogenies, a finding that is expected to apply to other phylogenetic issues among distantly related taxa. Our phylogenomic analyses confirm that the euteleostean superorders Ostariophysi and Acanthopterygii are monophyletic and the Protacanthopterygii and Ostariophysi are sister clades. In addition, and contrary to the traditional phylogenetic hypothesis, our analyses determine that killifish (Cyprinodontiformes), medaka (Beloniformes), and cichlids (Perciformes) appear to be more closely related to each other than either of them is to pufferfish (Tetraodontiformes). All 10 lineages split before or during the fragmentation of the supercontinent Pangea in the

  12. Novel relationships among ten fish model species revealed based on a phylogenomic analysis using ESTs.

    PubMed

    Steinke, Dirk; Salzburger, Walter; Meyer, Axel

    2006-06-01

    The power of comparative phylogenomic analyses also depends on the amount of data that are included in such studies. We used expressed sequence tags (ESTs) from fish model species as a proof of principle approach in order to test the reliability of using ESTs for phylogenetic inference. As expected, the robustness increases with the amount of sequences. Although some progress has been made in the elucidation of the phylogeny of teleosts, relationships among the main lineages of the derived fish (Euteleostei) remain poorly defined and are still debated. We performed a phylogenomic analysis of a set of 42 of orthologous genes from 10 available fish model systems from seven different orders (Salmoniformes, Siluriformes, Cypriniformes, Tetraodontiformes, Cyprinodontiformes, Beloniformes, and Perciformes) of euteleostean fish to estimate divergence times and evolutionary relationships among those lineages. All 10 fish species serve as models for developmental, aquaculture, genomic, and comparative genetic studies. The phylogenetic signal and the strength of the contribution of each of the 42 orthologous genes were estimated with randomly chosen data subsets. Our study revealed a molecular phylogeny of higher-level relationships of derived teleosts, which indicates that the use of multiple genes produces robust phylogenies, a finding that is expected to apply to other phylogenetic issues among distantly related taxa. Our phylogenomic analyses confirm that the euteleostean superorders Ostariophysi and Acanthopterygii are monophyletic and the Protacanthopterygii and Ostariophysi are sister clades. In addition, and contrary to the traditional phylogenetic hypothesis, our analyses determine that killifish (Cyprinodontiformes), medaka (Beloniformes), and cichlids (Perciformes) appear to be more closely related to each other than either of them is to pufferfish (Tetraodontiformes). All 10 lineages split before or during the fragmentation of the supercontinent Pangea in the

  13. The Relationship between Students' Epistemologies and Model-Based Reasoning.

    ERIC Educational Resources Information Center

    Gobert, Janice; Discenna, Jennifer

    Models and modeling are frequently used as instructional tools in science education to convey important information concerning both the explanatory and structural features of topic areas in science. The efficacy of models as such rests almost entirely upon students' ability to conceptualize them as abstracted "representations" of scientific…

  14. Negative childhood experiences and adult love relationships: the role of internal working models of attachment.

    PubMed

    McCarthy, Gerard; Maughan, Barbara

    2010-09-01

    This study investigated links between internal working models of attachment and the quality of adult love relationships in a high risk sample of women (n = 34), all of whom reported negative parenting in childhood. Half of the sample was identified as having a history of satisfying adult love relationships, while the remainder had experienced ongoing adult relationship problems. Measures of internal working models of attachment were made using the Adult Attachment Interview (AAI). A strong association was found between attachment classifications and the quality of adult love relationships. In addition, women with satisfying love relationships demonstrated significantly higher coherence of mind ratings than those with poor relationship histories. Insecure working models of attachment were associated with problems in adult love relationships. Although secure/autonomous attachment status was linked to optimal adult relationship outcomes, some women with a history of satisfying love relationships had insecure working models of attachment. These results suggest that the ways that adults process early experiences may influence later psychosocial functioning.

  15. The Exploration of the Relationship between Guessing and Latent Ability in IRT Models

    ERIC Educational Resources Information Center

    Gao, Song

    2011-01-01

    This study explored the relationship between successful guessing and latent ability in IRT models. A new IRT model was developed with a guessing function integrating probability of guessing an item correctly with the examinee's ability and the item parameters. The conventional 3PL IRT model was compared with the new 2PL-Guessing model on…

  16. Modelling the maximum voluntary joint torque/angular velocity relationship in human movement.

    PubMed

    Yeadon, Maurice R; King, Mark A; Wilson, Cassie

    2006-01-01

    The force exerted by a muscle is a function of the activation level and the maximum (tetanic) muscle force. In "maximum" voluntary knee extensions muscle activation is lower for eccentric muscle velocities than for concentric velocities. The aim of this study was to model this "differential activation" in order to calculate the maximum voluntary knee extensor torque as a function of knee angular velocity. Torque data were collected on two subjects during maximal eccentric-concentric knee extensions using an isovelocity dynamometer with crank angular velocities ranging from 50 to 450 degrees s(-1). The theoretical tetanic torque/angular velocity relationship was modelled using a four parameter function comprising two rectangular hyperbolas while the activation/angular velocity relationship was modelled using a three parameter function that rose from submaximal activation for eccentric velocities to full activation for high concentric velocities. The product of these two functions gave a seven parameter function which was fitted to the joint torque/angular velocity data, giving unbiased root mean square differences of 1.9% and 3.3% of the maximum torques achieved. Differential activation accounts for the non-hyperbolic behaviour of the torque/angular velocity data for low concentric velocities. The maximum voluntary knee extensor torque that can be exerted may be modelled accurately as the product of functions defining the maximum torque and the maximum voluntary activation level. Failure to include differential activation considerations when modelling maximal movements will lead to errors in the estimation of joint torque in the eccentric phase and low velocity concentric phase.

  17. Modeling the relationship between the environment and human experiences.

    PubMed

    Vink, P; Bazley, C; Jacobs, K

    2016-08-12

    Within this special issue, different aspects of the environment are studied: aspects that are distant from the human body, close to the body and touching the human body. Consequently, different human senses are involved in these studies as well as the different consequences and effects on the brain and human behaviour. This special issue also highlights many remaining questions about the effects and relationships between environments and human beings and the need for more studies and research. In particular, future studies are needed that address long-term effects and the effects of the combinations of elements which provide comfort or discomfort.

  18. Modeling the relationship between the environment and human experiences.

    PubMed

    Vink, P; Bazley, C; Jacobs, K

    2016-08-12

    Within this special issue, different aspects of the environment are studied: aspects that are distant from the human body, close to the body and touching the human body. Consequently, different human senses are involved in these studies as well as the different consequences and effects on the brain and human behaviour. This special issue also highlights many remaining questions about the effects and relationships between environments and human beings and the need for more studies and research. In particular, future studies are needed that address long-term effects and the effects of the combinations of elements which provide comfort or discomfort. PMID:27567796

  19. Modeling study of surface ozone source-receptor relationships in East Asia

    NASA Astrophysics Data System (ADS)

    Li, Jie; Yang, Wenyi; Wang, Zifa; Chen, Huansheng; Hu, Bo; Li, Jianjun.; Sun, Yele.; Fu, Pingqing; Zhang, Yuqia

    2016-01-01

    Ozone source-receptor relationships over East Asia have been quantitatively investigated using a chemical transport model including an on-line tracer-tagged procedure, with a particular focus on the source regions of different daily ozone mixing ratios. Comparison with observations showed that the model reproduced surface ozone and tropospheric nitrogen dioxide column densities. Long-range transport from outside East Asia contributed the greatest fraction to annual surface ozone over remote regions, the Korean peninsula, and Japan, reaching 50%-80% of total ozone. Self-contributions accounted for 5%-20% ozone in the Korean peninsula and Japan, whereas the contribution of trans-boundary transport from photochemical production in China was less than 5%-10%. At extra-high ozone levels, self-contributions reached 50%-60% in the Korean peninsula. Ozone source-receptor relationships showed high seasonal variability over East Asia. Significant transport was also found between sub-regions in China, which presents a great challenge to policy-makers because most current control strategies are confined to specific regions.

  20. Occupational value and relationships to meaning and health: elaborations of the ValMO-model.

    PubMed

    Erlandsson, Lena-Karin; Eklund, Mona; Persson, Dennis

    2011-03-01

    This study investigates the theoretical assumption of the Value and Meaning in Occupations model. The aim was to explore the relationship between occupational value, perceived meaning, and subjective health in a sample of individuals of working age, 50 men and 250 women. Frequency of experienced values in occupations was assessed through the Occupational Value instrument with pre-defined items. Perceived meaning was operationalized and assessed by the Sense of Coherence measure. Subjective health was estimated by two questions from the SF-36 questionnaire. The analyses implied descriptive analyses, correlations, and logistic regression analyses in which sociodemographic variables were included. The findings showed highly significant relationships between occupational value and perceived meaning and when belonging to the high group of occupational value the likelihood was tripled of belonging to the high group of perceived meaning. When married or cohabitating there was double the likelihood of belonging to the high group of perceived meaning. Although perceived meaning was found to be positively associated with subjective health, working full time was the most important factor in explaining subjective health, compared with working less than full time. The results confirm assumptions in the ValMO-model, and the importance of focusing on occupational value in clinical practice is highlighted. PMID:20350271

  1. Including swell-shrink dynamics in dual-permeability numerical modeling of preferential water flow and solute transport in soils

    NASA Astrophysics Data System (ADS)

    Coppola, Antonio; Comegna, Alessandro; Gerke, Horst; Basile, Angelo

    2015-04-01

    The classical dual-permeability approach introduced by Gerke and van Genuchten for modeling water flow and solute transport in porous media with preferential flow pathways, was extended to account for shrinking effects on macropore and matrix domain hydraulic properties. Conceptually, the soil is treated as a dual-permeability bulk porous medium consisting of two dynamic interacting pore domains (1) the fracture (from shrinkage) pore domain and (2) the aggregate (interparticles plus structural) or matrix pore domain, respectively. The model assumes that the swell-shrink dynamics is represented by the inversely proportional volume changes of the fracture and matrix domains, while the overall porosity of the total soil, and hence the layer thickness, remains constant. Swell-shrink dynamics was incorporated in the model by either changing the coupled domain-specific hydraulic properties according to the shrinkage characteristics of the matrix, or partly by allowing the fractional contribution of the two domains to change with the pressure head. As a first step, the hysteresis in the swell-shrink dynamics was not included. We also assumed that the aggregate behavior and its hydraulic properties depend only on the average aggregate water content and not on its internal real distribution. Compared to the rigid approach, the combined effect of the changing weight and that of the void ratio on the hydraulic properties in the shrinking approach induce much larger and deeper water and solute transfer from the fractures to the matrix during wetting processes. The analysis shows a systematic underestimation of the wetting front propagation times, as well as of the solute travel times and concentrations when the volume of the aggregate domain is assumed to remain constant. The combined and interacting effects of the dynamic weight and the evolution of matrix pressure head in the shrinking approach is responsible for a bimodal behavior of the water exchange term, which in turn

  2. Quantitative structure-property relationship modeling of remote liposome loading of drugs.

    PubMed

    Cern, Ahuva; Golbraikh, Alexander; Sedykh, Aleck; Tropsha, Alexander; Barenholz, Yechezkel; Goldblum, Amiram

    2012-06-10

    Remote loading of liposomes by trans-membrane gradients is used to achieve therapeutically efficacious intra-liposome concentrations of drugs. We have developed Quantitative Structure Property Relationship (QSPR) models of remote liposome loading for a data set including 60 drugs studied in 366 loading experiments internally or elsewhere. Both experimental conditions and computed chemical descriptors were employed as independent variables to predict the initial drug/lipid ratio (D/L) required to achieve high loading efficiency. Both binary (to distinguish high vs. low initial D/L) and continuous (to predict real D/L values) models were generated using advanced machine learning approaches and 5-fold external validation. The external prediction accuracy for binary models was as high as 91-96%; for continuous models the mean coefficient R(2) for regression between predicted versus observed values was 0.76-0.79. We conclude that QSPR models can be used to identify candidate drugs expected to have high remote loading capacity while simultaneously optimizing the design of formulation experiments.

  3. Quantitative Structure – Property Relationship Modeling of Remote Liposome Loading Of Drugs

    PubMed Central

    Cern, Ahuva; Golbraikh, Alexander; Sedykh, Aleck; Tropsha, Alexander; Barenholz, Yechezkel; Goldblum, Amiram

    2012-01-01

    Remote loading of liposomes by trans-membrane gradients is used to achieve therapeutically efficacious intra-liposome concentrations of drugs. We have developed Quantitative Structure Property Relationship (QSPR) models of remote liposome loading for a dataset including 60 drugs studied in 366 loading experiments internally or elsewhere. Both experimental conditions and computed chemical descriptors were employed as independent variables to predict the initial drug/lipid ratio (D/L) required to achieve high loading efficiency. Both binary (to distinguish high vs. low initial D/L) and continuous (to predict real D/L values) models were generated using advanced machine learning approaches and five-fold external validation. The external prediction accuracy for binary models was as high as 91–96%; for continuous models the mean coefficient R2 for regression between predicted versus observed values was 0.76–0.79. We conclude that QSPR models can be used to identify candidate drugs expected to have high remote loading capacity while simultaneously optimizing the design of formulation experiments. PMID:22154932

  4. Quantitative structure-property relationship modeling of remote liposome loading of drugs.

    PubMed

    Cern, Ahuva; Golbraikh, Alexander; Sedykh, Aleck; Tropsha, Alexander; Barenholz, Yechezkel; Goldblum, Amiram

    2012-06-10

    Remote loading of liposomes by trans-membrane gradients is used to achieve therapeutically efficacious intra-liposome concentrations of drugs. We have developed Quantitative Structure Property Relationship (QSPR) models of remote liposome loading for a data set including 60 drugs studied in 366 loading experiments internally or elsewhere. Both experimental conditions and computed chemical descriptors were employed as independent variables to predict the initial drug/lipid ratio (D/L) required to achieve high loading efficiency. Both binary (to distinguish high vs. low initial D/L) and continuous (to predict real D/L values) models were generated using advanced machine learning approaches and 5-fold external validation. The external prediction accuracy for binary models was as high as 91-96%; for continuous models the mean coefficient R(2) for regression between predicted versus observed values was 0.76-0.79. We conclude that QSPR models can be used to identify candidate drugs expected to have high remote loading capacity while simultaneously optimizing the design of formulation experiments. PMID:22154932

  5. Evolutionary relationships between 15 Plasmodium species from new and old world primates (including humans): an 18S rDNA cladistic analysis.

    PubMed

    Leclerc, M C; Hugot, J P; Durand, P; Renaud, F

    2004-12-01

    We present a new phylogenetic analysis of 15 primate Plasmodium species based on 18S rDNA sequences including new sequences of Plasmodium coatneyi, P. fieldi, P. gonderi, P. hylobati and P. simium. The results are discussed in the context of the parasite host species and their geographical distribution. Contrary to other phylogenies constructed with this 18S rDNA molecule, we observed that the topology of phylogenetic trees was not affected either by the quality of the nucleotide matrices, or by the species present in the outgroup. This analysis showed the following. (1) The polyphyly of human Plasmodium is confirmed. (2) The monophyly of Plasmodium from Old World monkeys is confirmed by the new added sequences and P. gonderi, an African species, possibly could be at the root of this group. (3) The most parsimonious biogeographical hypothesis is that P. vivax originated in Asia; thus, its related species P. simium appears to be derived through a transfer from the human P. vivax to New World monkey species in South America. (4) Sampling efforts of non-human primate Plasmodium could permit improvement of the knowledge of primate Plasmodium phylogeny and also consideration of the risks of malaria emergence from monkey reservoirs.

  6. Exploring the Relationship between Mathematical Modelling and Classroom Discourse

    ERIC Educational Resources Information Center

    Redmond, Trevor; Sheehy, Joanne; Brown, Raymond

    2010-01-01

    This paper explores the notion that the discourse of the mathematics classroom impacts on the practices that students engage when modelling mathematics. Using excerpts of a Year 12 student's report on modelling Newton's law of cooling, this paper argues that when students engage with the discourse of their mathematics classroom in a manner that…

  7. Results of the oxygen Fick method in a closed blood circulation model including "total arteriovenous diffusive shunt of oxygen".

    PubMed

    Ozbek, Mustafa; Akay, Ahmet

    2004-09-01

    It is considered that arteriovenous diffusive shunts of oxygen may cause inaccuracy of the oxygen Fick method as[Formula: see text] where[Formula: see text] is the pulmonary oxygen uptake,[Formula: see text] is the cardiac output, and CaO(2) and CvO(2) are the arterial and venous oxygen contents, respectively.A simple circulation model, including the whole circulation with nine well-mixed compartments (C1, ... C9), is constructed: the[Formula: see text] is assigned as constant as 6000 ml min(-1); the blood portions of 60 ml move at an interval of 600 ms. C1 and C2 compartments, each having 60 ml volume, represent the blood of pulmonary microcirculation, C3 represents the arterial blood with a volume of 1500 ml, C4, ..., C8, each also having a volume of 60 ml, represent the blood of peripheral microcirculation, whereas C9 represents the venous blood with a volume of 3000 ml. The pulmonary oxygen uptake[Formula: see text], related to C1 and C2, the oxygen release[Formula: see text], related to C4,...,C8, as well as a "total arteriovenous diffusive shunt of oxygen"[Formula: see text], from the arterial blood (C3) to the venous blood (C9), are calculated simultaneously. The alveolar gas has a constant oxygen partial pressure, and the pulmonary diffusion capacity is also constant; similar to modeling the pulmonry, oxygen diffusion, constant partial oxygen pressures for all peripheral tissues as well as constant diffusion capacities for all peripheral oxygen diffusion are also assigned. The diffusion capacities for the[Formula: see text] (between C3 and C9) are arbitrarily assigned.The Fick method gives incorrect results depending on the total arteriovenous diffusive shunt of oxygen[Formula: see text]. But the mechanism determining the magnitude of[Formula: see text] remains unclear.

  8. Thomas Kuhn's 'Structure of Scientific Revolutions' applied to exercise science paradigm shifts: example including the Central Governor Model.

    PubMed

    Pires, Flávio de Oliveira; de Oliveira Pires, Flávio

    2013-07-01

    According to Thomas Kuhn, the scientific progress of any discipline could be distinguished by a pre-paradigm phase, a normal science phase and a revolution phase. The science advances when a scientific revolution takes place after silent period of normal science and the scientific community moves ahead to a paradigm shift. I suggest there has been a recent change of course in the direction of the exercise science. According to the 'current paradigm', exercise would be probably limited by alterations in either central command or peripheral skeletal muscles, and fatigue would be developed in a task-dependent manner. Instead, the central governor model (GCM) has proposed that all forms of exercise are centrally-regulated, the central nervous system would calculate the metabolic cost required to complete a task in order to avoid catastrophic body failure. Some have criticized the CGM and supported the traditional interpretation, but recently the scientific community appears to have begun an intellectual trajectory to accept this theory. First, the increased number of citations of articles that have supported the CGM could indicate that the community has changed the focus. Second, relevant journals have devoted special editions to promote the debate on subjects challenged by the CGM. Finally, scientists from different fields have recognized mechanisms included in the CGM to understand the exercise limits. Given the importance of the scientific community in demarcating a Kuhnian paradigm shift, I suggest that these three aspects could indicate an increased acceptance of a centrally-regulated effort model, to understand the limits of exercise.

  9. Risk Models of Dating Aggression across Different Adolescent Relationships: A Developmental Psychopathology Approach

    ERIC Educational Resources Information Center

    Williams, Tricia S.; Connolly, Jennifer; Pepler, Debra; Craig, Wendy; Laporte, Lise

    2008-01-01

    The present study examined physical dating aggression in different adolescent relationships and assessed linear, threshold, and moderator risk models for recurrent aggressive relationships. The 621 participants (59% girls, 41% boys) were drawn from a 1-year longitudinal survey of Canadian high school youths ranging from Grade 9 through Grade 12.…

  10. The Roots and Consequences of Early Mother-Child Relationship: A Multilevel Model of Evaluation.

    ERIC Educational Resources Information Center

    Seitamo, Leila

    Part of an ongoing longitudinal research project, a study was made to develop a method and a multilevel model for evaluating at its earliest stages the relationship between a mother and her child. The main hypothesis of the study was that the early mother-child relationship, consisting of maternal responses and a mother's images of her role in…

  11. Scale and hierarchical relationships when incorporating observed data into fish models

    EPA Science Inventory

    Identifying correlations between environmental variables and fish presence or density is usually the main focus of efforts to model fish-habitat relationships. These relationships, however, can be confounded by scale and hierarchical effects. In particular the strength of fish –...

  12. Validating the Relationship Qualities of Influence and Persuasion with the Family Social Relations Model.

    ERIC Educational Resources Information Center

    Hsiung, Rachel Oakley; Bagozzi, Richard P.

    2003-01-01

    Uses the family social relations model (SRM) to test for the personal relationship qualities of influence and persuasion in the family decision-making context of buying a new car. Uncovers patterns in the relationship qualities of influence and persuasion across three decisions families make when buying a new car (i.e., how much to spend, car…

  13. Bayesian Geostatistical Model-Based Estimates of Soil-Transmitted Helminth Infection in Nigeria, Including Annual Deworming Requirements

    PubMed Central

    Oluwole, Akinola S.; Ekpo, Uwem F.; Karagiannis-Voules, Dimitrios-Alexios; Abe, Eniola M.; Olamiju, Francisca O.; Isiyaku, Sunday; Okoronkwo, Chukwu; Saka, Yisa; Nebe, Obiageli J.; Braide, Eka I.; Mafiana, Chiedu F.; Utzinger, Jürg; Vounatsou, Penelope

    2015-01-01

    Background The acceleration of the control of soil-transmitted helminth (STH) infections in Nigeria, emphasizing preventive chemotherapy, has become imperative in light of the global fight against neglected tropical diseases. Predictive risk maps are an important tool to guide and support control activities. Methodology STH infection prevalence data were obtained from surveys carried out in 2011 using standard protocols. Data were geo-referenced and collated in a nationwide, geographic information system database. Bayesian geostatistical models with remotely sensed environmental covariates and variable selection procedures were utilized to predict the spatial distribution of STH infections in Nigeria. Principal Findings We found that hookworm, Ascaris lumbricoides, and Trichuris trichiura infections are endemic in 482 (86.8%), 305 (55.0%), and 55 (9.9%) locations, respectively. Hookworm and A. lumbricoides infection co-exist in 16 states, while the three species are co-endemic in 12 states. Overall, STHs are endemic in 20 of the 36 states of Nigeria, including the Federal Capital Territory of Abuja. The observed prevalence at endemic locations ranged from 1.7% to 51.7% for hookworm, from 1.6% to 77.8% for A. lumbricoides, and from 1.0% to 25.5% for T. trichiura. Model-based predictions ranged from 0.7% to 51.0% for hookworm, from 0.1% to 82.6% for A. lumbricoides, and from 0.0% to 18.5% for T. trichiura. Our models suggest that day land surface temperature and dense vegetation are important predictors of the spatial distribution of STH infection in Nigeria. In 2011, a total of 5.7 million (13.8%) school-aged children were predicted to be infected with STHs in Nigeria. Mass treatment at the local government area level for annual or bi-annual treatment of the school-aged population in Nigeria in 2011, based on World Health Organization prevalence thresholds, were estimated at 10.2 million tablets. Conclusions/Significance The predictive risk maps and estimated

  14. A Rapid Approach to Modeling Species-Habitat Relationships

    NASA Technical Reports Server (NTRS)

    Carter, Geoffrey M.; Breinger, David R.; Stolen, Eric D.

    2005-01-01

    A growing number of species require conservation or management efforts. Success of these activities requires knowledge of the species' occurrence pattern. Species-habitat models developed from GIS data sources are commonly used to predict species occurrence but commonly used data sources are often developed for purposes other than predicting species occurrence and are of inappropriate scale and the techniques used to extract predictor variables are often time consuming and cannot be repeated easily and thus cannot efficiently reflect changing conditions. We used digital orthophotographs and a grid cell classification scheme to develop an efficient technique to extract predictor variables. We combined our classification scheme with a priori hypothesis development using expert knowledge and a previously published habitat suitability index and used an objective model selection procedure to choose candidate models. We were able to classify a large area (57,000 ha) in a fraction of the time that would be required to map vegetation and were able to test models at varying scales using a windowing process. Interpretation of the selected models confirmed existing knowledge of factors important to Florida scrub-jay habitat occupancy. The potential uses and advantages of using a grid cell classification scheme in conjunction with expert knowledge or an habitat suitability index (HSI) and an objective model selection procedure are discussed.

  15. The Use of Haemoglobin as a Model for Teaching the Relationship Between Structure and Function

    ERIC Educational Resources Information Center

    Diggins, F. W. E.

    1974-01-01

    Presents information about an atomic model of haemoglobin and describes the oxygenation mechanism as a teaching principle to illustrate the relationship between structure and function at the molecular level. (Author/PEB)

  16. A Conceptual Model of Relationships among Constructivist Learning Environment Perceptions, Epistemological Beliefs, and Learning Approaches

    ERIC Educational Resources Information Center

    Ozkal, Kudret; Tekkaya, Ceren; Cakiroglu, Jale; Sungur, Semra

    2009-01-01

    This study proposed a conceptual model of relationships among constructivist learning environment perception variables (Personal Relevance, Uncertainty, Critical Voice, Shared Control, and Student Negotiation), scientific epistemological belief variables (fixed and tentative), and learning approach. It was proposed that learning environment…

  17. Receptor modelling of fine particles in southern England using CMB including comparison with AMS-PMF factors

    NASA Astrophysics Data System (ADS)

    Yin, J.; Cumberland, S. A.; Harrison, R. M.; Allan, J.; Young, D. E.; Williams, P. I.; Coe, H.

    2015-02-01

    PM2.5 was collected during a winter campaign at two southern England sites, urban background North Kensington (NK) and rural Harwell (HAR), in January-February 2012. Multiple organic and inorganic source tracers were analysed and used in a Chemical Mass Balance (CMB) model, which apportioned seven separate primary sources, that explained on average 53% (NK) and 56% (HAR) of the organic carbon (OC), including traffic, woodsmoke, food cooking, coal combustion, vegetative detritus, natural gas and dust/soil. With the addition of source tracers for secondary biogenic aerosol at the NK site, 79% of organic carbon was accounted for. Secondary biogenic sources were represented by oxidation products of α-pinene and isoprene, but only the former made a substantial contribution to OC. Particle source contribution estimates for PM2.5 mass were obtained by the conversion of the OC estimates and combining with inorganic components ammonium nitrate, ammonium sulfate and sea salt. Good mass closure was achieved with 81% (92% with the addition of the secondary biogenic source) and 83% of the PM2.5 mass explained at NK and HAR respectively, with the remainder being secondary organic matter. While the most important sources of OC are vehicle exhaust (21 and 16%) and woodsmoke (15 and 28%) at NK and HAR respectively, food cooking emissions are also significant, particularly at the urban NK site (11% of OC), in addition to the secondary biogenic source, only measured at NK, which represented about 26%. In comparison, the major source components for PM2.5 at NK and HAR are inorganic ammonium salts (51 and 56%), vehicle exhaust emissions (8 and 6%), secondary biogenic (10% measured at NK only), woodsmoke (4 and 7%) and sea salt (7 and 8%), whereas food cooking (4 and 1%) showed relatively smaller contributions to PM2.5. Results from the CMB model were compared with source contribution estimates derived from the AMS-PMF method. The overall mass of organic matter accounted for is rather

  18. Isoxazole analogues bind the system xc- transporter: structure-activity relationship and pharmacophore model.

    PubMed

    Patel, Sarjubhai A; Rajale, Trideep; O'Brien, Erin; Burkhart, David J; Nelson, Jared K; Twamley, Brendan; Blumenfeld, Alex; Szabon-Watola, Monika I; Gerdes, John M; Bridges, Richard J; Natale, Nicholas R

    2010-01-01

    Analogues of amino methylisoxazole propionic acid (AMPA), were prepared from a common intermediate 12, including lipophilic analogues using lateral metalation and electrophilic quenching, and were evaluated at System xc-. Both the 5-naphthylethyl-(16) and 5-naphthylmethoxymethyl-(17) analogues adopt an E-conformation in the solid state, yet while the former has robust binding at System xc-, the latter is virtually devoid of activity. The most potent analogues were amino acid naphthyl-ACPA 7g, and hydrazone carboxylic acid, 11e Y=Y'=3,5-(CF(3))(2), which both inhibited glutamate uptake by the System xc- transporter with comparable potency to the endogenous substrate cystine, whereas in contrast the closed isoxazolo[3,4-d] pyridazinones 13 have significantly lower activity. A preliminary pharmacophore model has been constructed to provide insight into the analogue structure-activity relationships.

  19. Reappraising the Relationships between Physics Students' Mental Models and Predictions: An Example of Heat Convection

    ERIC Educational Resources Information Center

    Chiou, Guo-Li

    2013-01-01

    Although prediction is claimed to be a prime function of mental models, to what extent students can run their mental models to make predictions of physical phenomena remains uncertain. The purpose of this study, therefore, was first to investigate 30 physics students' mental models of heat convection, and then to examine the relationship between…

  20. Regular smokeless tobacco use is not a reliable predictor of smoking onset when psychosocial predictors are included in the model.

    PubMed

    O'Connor, Richard J; Flaherty, Brian P; Quinio Edwards, Beth; Kozlowski, Lynn T

    2003-08-01

    Tomar analyzed the CDC's Teenage Attitudes and Practices Survey (TAPS) and reported smokeless tobacco may act as a starter product for or gateway to cigarettes. Regular smokeless tobacco users at baseline were said to be 3.45 times more likely than never users of smokeless tobacco to become cigarette smokers after 4 years (95% CI=1.84-6.47). However, this analysis did not take into account well-known psychosocial predictors of smoking initiation. We reanalyzed TAPS to assess whether including psychosocial predictors of smoking affected the smokeless tobacco gateway effect. Experimenting with smoking, OR=2.09 (95% CI=1.51-2.90); below average school performance, OR=9.32 (95% CI=4.18-20.77); household members smoking, OR=1.49 (95% CI=1.13-1.95); frequent depressive symptoms, OR=2.19 (95% CI=1.25-3.84); fighting, OR=1.48 (95% CI=1.08-2.03); and motorcycle riding, OR=1.42 (95% CI=1.06-1.91) diminished the effect of both regular, OR=1.68 (95% CI=.83-3.41), and never regular smokeless tobacco use, OR=1.41 (95% CI=.96-2.05), to be statistically unreliable. Analyzing results from a sample of true never smokers (never a single puff) showed a similar pattern of results. Our results indicate that complex multivariate models are needed to evaluate recruitment to smoking and single factors that are important in that process. Tomar's analysis should not be used as reliable evidence that smokeless tobacco may be a starter product for cigarettes.

  1. Probing the structural and dynamical properties of liquid water with models including non-local electron correlation.

    PubMed

    Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost

    2015-08-01

    Water is a ubiquitous liquid that displays a wide range of anomalous properties and has a delicate structure that challenges experiment and simulation alike. The various intermolecular interactions that play an important role, such as repulsion, polarization, hydrogen bonding, and van der Waals interactions, are often difficult to reproduce faithfully in atomistic models. Here, electronic structure theories including all these interactions at equal footing, which requires the inclusion of non-local electron correlation, are used to describe structure and dynamics of bulk liquid water. Isobaric-isothermal (NpT) ensemble simulations based on the Random Phase Approximation (RPA) yield excellent density (0.994 g/ml) and fair radial distribution functions, while various other density functional approximations produce scattered results (0.8-1.2 g/ml). Molecular dynamics simulation in the microcanonical (NVE) ensemble based on Møller-Plesset perturbation theory (MP2) yields dynamical properties in the condensed phase, namely, the infrared spectrum and diffusion constant. At the MP2 and RPA levels of theory, ice is correctly predicted to float on water, resolving one of the anomalies as resulting from a delicate balance between van der Waals and hydrogen bonding interactions. For several properties, obtaining quantitative agreement with experiment requires correction for nuclear quantum effects (NQEs), highlighting their importance, for structure, dynamics, and electronic properties. A computed NQE shift of 0.6 eV for the band gap and absorption spectrum illustrates the latter. Giving access to both structure and dynamics of condensed phase systems, non-local electron correlation will increasingly be used to study systems where weak interactions are of paramount importance. PMID:26254660

  2. Probing the structural and dynamical properties of liquid water with models including non-local electron correlation.

    PubMed

    Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost

    2015-08-01

    Water is a ubiquitous liquid that displays a wide range of anomalous properties and has a delicate structure that challenges experiment and simulation alike. The various intermolecular interactions that play an important role, such as repulsion, polarization, hydrogen bonding, and van der Waals interactions, are often difficult to reproduce faithfully in atomistic models. Here, electronic structure theories including all these interactions at equal footing, which requires the inclusion of non-local electron correlation, are used to describe structure and dynamics of bulk liquid water. Isobaric-isothermal (NpT) ensemble simulations based on the Random Phase Approximation (RPA) yield excellent density (0.994 g/ml) and fair radial distribution functions, while various other density functional approximations produce scattered results (0.8-1.2 g/ml). Molecular dynamics simulation in the microcanonical (NVE) ensemble based on Møller-Plesset perturbation theory (MP2) yields dynamical properties in the condensed phase, namely, the infrared spectrum and diffusion constant. At the MP2 and RPA levels of theory, ice is correctly predicted to float on water, resolving one of the anomalies as resulting from a delicate balance between van der Waals and hydrogen bonding interactions. For several properties, obtaining quantitative agreement with experiment requires correction for nuclear quantum effects (NQEs), highlighting their importance, for structure, dynamics, and electronic properties. A computed NQE shift of 0.6 eV for the band gap and absorption spectrum illustrates the latter. Giving access to both structure and dynamics of condensed phase systems, non-local electron correlation will increasingly be used to study systems where weak interactions are of paramount importance.

  3. Probing the structural and dynamical properties of liquid water with models including non-local electron correlation

    SciTech Connect

    Del Ben, Mauro Hutter, Jürg; VandeVondele, Joost

    2015-08-07

    Water is a ubiquitous liquid that displays a wide range of anomalous properties and has a delicate structure that challenges experiment and simulation alike. The various intermolecular interactions that play an important role, such as repulsion, polarization, hydrogen bonding, and van der Waals interactions, are often difficult to reproduce faithfully in atomistic models. Here, electronic structure theories including all these interactions at equal footing, which requires the inclusion of non-local electron correlation, are used to describe structure and dynamics of bulk liquid water. Isobaric-isothermal (NpT) ensemble simulations based on the Random Phase Approximation (RPA) yield excellent density (0.994 g/ml) and fair radial distribution functions, while various other density functional approximations produce scattered results (0.8-1.2 g/ml). Molecular dynamics simulation in the microcanonical (NVE) ensemble based on Møller-Plesset perturbation theory (MP2) yields dynamical properties in the condensed phase, namely, the infrared spectrum and diffusion constant. At the MP2 and RPA levels of theory, ice is correctly predicted to float on water, resolving one of the anomalies as resulting from a delicate balance between van der Waals and hydrogen bonding interactions. For several properties, obtaining quantitative agreement with experiment requires correction for nuclear quantum effects (NQEs), highlighting their importance, for structure, dynamics, and electronic properties. A computed NQE shift of 0.6 eV for the band gap and absorption spectrum illustrates the latter. Giving access to both structure and dynamics of condensed phase systems, non-local electron correlation will increasingly be used to study systems where weak interactions are of paramount importance.

  4. Relationship between Cole-Cole model parameters and spectral decomposition parameters derived from SIP data

    NASA Astrophysics Data System (ADS)

    Weigand, M.; Kemna, A.

    2016-06-01

    Spectral induced polarization (SIP) data are commonly analysed using phenomenological models. Among these models the Cole-Cole (CC) model is the most popular choice to describe the strength and frequency dependence of distinct polarization peaks in the data. More flexibility regarding the shape of the spectrum is provided by decomposition schemes. Here the spectral response is decomposed into individual responses of a chosen elementary relaxation model, mathematically acting as kernel in the involved integral, based on a broad range of relaxation times. A frequently used kernel function is the Debye model, but also the CC model with some other a priorly specified frequency dispersion (e.g. Warburg model) has been proposed as kernel in the decomposition. The different decomposition approaches in use, also including conductivity and resistivity formulations, pose the question to which degree the integral spectral parameters typically derived from the obtained relaxation time distribution are biased by the approach itself. Based on synthetic SIP data sampled from an ideal CC response, we here investigate how the two most important integral output parameters deviate from the corresponding CC input parameters. We find that the total chargeability may be underestimated by up to 80 per cent and the mean relaxation time may be off by up to three orders of magnitude relative to the original values, depending on the frequency dispersion of the analysed spectrum and the proximity of its peak to the frequency range limits considered in the decomposition. We conclude that a quantitative comparison of SIP parameters across different studies, or the adoption of parameter relationships from other studies, for example when transferring laboratory results to the field, is only possible on the basis of a consistent spectral analysis procedure. This is particularly important when comparing effective CC parameters with spectral parameters derived from decomposition results.

  5. Relationships among Hypermedia-Based Mental Models and Hypermedia Knowledge.

    ERIC Educational Resources Information Center

    Ayersman, David J.; Reed, W. Michael

    1998-01-01

    Analysis of data from two studies of undergraduates (n12 and n18) enrolled in a hypermedia-in-education course at West Virginia University determined that the group with more hypermedia knowledge more frequently cited nonlinear models, supporting the premise that students require hypermedia experience before they can use nonlinear information…

  6. A Model and Typology of Government-NGO Relationships.

    ERIC Educational Resources Information Center

    Coston, Jennifer M.

    1998-01-01

    A model of government-nongovernmental organization relations defines eight types based on such dimensions as government resistance to/acceptance of pluralism, balance of power, and degree of formality. The types are characterized as follows: repression, rivalry, competition, contracting, third party, cooperation, complementarity, and…

  7. Estimating species - area relationships by modeling abundance and frequency subject to incomplete sampling.

    PubMed

    Yamaura, Yuichi; Connor, Edward F; Royle, J Andrew; Itoh, Katsuo; Sato, Kiyoshi; Taki, Hisatomo; Mishima, Yoshio

    2016-07-01

    Models and data used to describe species-area relationships confound sampling with ecological process as they fail to acknowledge that estimates of species richness arise due to sampling. This compromises our ability to make ecological inferences from and about species-area relationships. We develop and illustrate hierarchical community models of abundance and frequency to estimate species richness. The models we propose separate sampling from ecological processes by explicitly accounting for the fact that sampled patches are seldom completely covered by sampling plots and that individuals present in the sampling plots are imperfectly detected. We propose a multispecies abundance model in which community assembly is treated as the summation of an ensemble of species-level Poisson processes and estimate patch-level species richness as a derived parameter. We use sampling process models appropriate for specific survey methods. We propose a multispecies frequency model that treats the number of plots in which a species occurs as a binomial process. We illustrate these models using data collected in surveys of early-successional bird species and plants in young forest plantation patches. Results indicate that only mature forest plant species deviated from the constant density hypothesis, but the null model suggested that the deviations were too small to alter the form of species-area relationships. Nevertheless, results from simulations clearly show that the aggregate pattern of individual species density-area relationships and occurrence probability-area relationships can alter the form of species-area relationships. The plant community model estimated that only half of the species present in the regional species pool were encountered during the survey. The modeling framework we propose explicitly accounts for sampling processes so that ecological processes can be examined free of sampling artefacts. Our modeling approach is extensible and could be applied to a

  8. Estimating species - area relationships by modeling abundance and frequency subject to incomplete sampling.

    PubMed

    Yamaura, Yuichi; Connor, Edward F; Royle, J Andrew; Itoh, Katsuo; Sato, Kiyoshi; Taki, Hisatomo; Mishima, Yoshio

    2016-07-01

    Models and data used to describe species-area relationships confound sampling with ecological process as they fail to acknowledge that estimates of species richness arise due to sampling. This compromises our ability to make ecological inferences from and about species-area relationships. We develop and illustrate hierarchical community models of abundance and frequency to estimate species richness. The models we propose separate sampling from ecological processes by explicitly accounting for the fact that sampled patches are seldom completely covered by sampling plots and that individuals present in the sampling plots are imperfectly detected. We propose a multispecies abundance model in which community assembly is treated as the summation of an ensemble of species-level Poisson processes and estimate patch-level species richness as a derived parameter. We use sampling process models appropriate for specific survey methods. We propose a multispecies frequency model that treats the number of plots in which a species occurs as a binomial process. We illustrate these models using data collected in surveys of early-successional bird species and plants in young forest plantation patches. Results indicate that only mature forest plant species deviated from the constant density hypothesis, but the null model suggested that the deviations were too small to alter the form of species-area relationships. Nevertheless, results from simulations clearly show that the aggregate pattern of individual species density-area relationships and occurrence probability-area relationships can alter the form of species-area relationships. The plant community model estimated that only half of the species present in the regional species pool were encountered during the survey. The modeling framework we propose explicitly accounts for sampling processes so that ecological processes can be examined free of sampling artefacts. Our modeling approach is extensible and could be applied to a

  9. Estimating species – area relationships by modeling abundance and frequency subject to incomplete sampling

    USGS Publications Warehouse

    Yamaura, Yuichi; Connor, Edward F.; Royle, Andy; Itoh, Katsuo; Sato, Kiyoshi; Taki, Hisatomo; Mishima, Yoshio

    2016-01-01

    Models and data used to describe species–area relationships confound sampling with ecological process as they fail to acknowledge that estimates of species richness arise due to sampling. This compromises our ability to make ecological inferences from and about species–area relationships. We develop and illustrate hierarchical community models of abundance and frequency to estimate species richness. The models we propose separate sampling from ecological processes by explicitly accounting for the fact that sampled patches are seldom completely covered by sampling plots and that individuals present in the sampling plots are imperfectly detected. We propose a multispecies abundance model in which community assembly is treated as the summation of an ensemble of species-level Poisson processes and estimate patch-level species richness as a derived parameter. We use sampling process models appropriate for specific survey methods. We propose a multispecies frequency model that treats the number of plots in which a species occurs as a binomial process. We illustrate these models using data collected in surveys of early-successional bird species and plants in young forest plantation patches. Results indicate that only mature forest plant species deviated from the constant density hypothesis, but the null model suggested that the deviations were too small to alter the form of species–area relationships. Nevertheless, results from simulations clearly show that the aggregate pattern of individual species density–area relationships and occurrence probability–area relationships can alter the form of species–area relationships. The plant community model estimated that only half of the species present in the regional species pool were encountered during the survey. The modeling framework we propose explicitly accounts for sampling processes so that ecological processes can be examined free of sampling artefacts. Our modeling approach is extensible and could be applied

  10. Parametric modeling for quantitative analysis of pulmonary structure to function relationships

    NASA Astrophysics Data System (ADS)

    Haider, Clifton R.; Bartholmai, Brian J.; Holmes, David R., III; Camp, Jon J.; Robb, Richard A.

    2005-04-01

    While lung anatomy is well understood, pulmonary structure-to-function relationships such as the complex elastic deformation of the lung during respiration are less well documented. Current methods for studying lung anatomy include conventional chest radiography, high-resolution computed tomography (CT scan) and magnetic resonance imaging with polarized gases (MRI scan). Pulmonary physiology can be studied using spirometry or V/Q nuclear medicine tests (V/Q scan). V/Q scanning and MRI scans may demonstrate global and regional function. However, each of these individual imaging methods lacks the ability to provide high-resolution anatomic detail, associated pulmonary mechanics and functional variability of the entire respiratory cycle. Specifically, spirometry provides only a one-dimensional gross estimate of pulmonary function, and V/Q scans have poor spatial resolution, reducing its potential for regional assessment of structure-to-function relationships. We have developed a method which utilizes standard clinical CT scanning to provide data for computation of dynamic anatomic parametric models of the lung during respiration which correlates high-resolution anatomy to underlying physiology. The lungs are segmented from both inspiration and expiration three-dimensional (3D) data sets and transformed into a geometric description of the surface of the lung. Parametric mapping of lung surface deformation then provides a visual and quantitative description of the mechanical properties of the lung. Any alteration in lung mechanics is manifest by alterations in normal deformation of the lung wall. The method produces a high-resolution anatomic and functional composite picture from sparse temporal-spatial methods which quantitatively illustrates detailed anatomic structure to pulmonary function relationships impossible for translational methods to provide.

  11. Modeling, Simulation, and Control of a Solar Electric Propulsion Vehicle in Near-Earth Vicinity Including Solar Array Degradation

    NASA Technical Reports Server (NTRS)

    Witzberger, Kevin (Inventor); Hojnicki, Jeffery (Inventor); Manzella, David (Inventor)

    2016-01-01

    Modeling and control software that integrates the complexities of solar array models, a space environment, and an electric propulsion system into a rigid body vehicle simulation and control model is provided. A rigid body vehicle simulation of a solar electric propulsion (SEP) vehicle may be created using at least one solar array model, at least one model of a space environment, and at least one model of a SEP propulsion system. Power availability and thrust profiles may be determined based on the rigid body vehicle simulation as the SEP vehicle transitions from a low Earth orbit (LEO) to a higher orbit or trajectory. The power availability and thrust profiles may be displayed such that a user can use the displayed power availability and thrust profiles to determine design parameters for an SEP vehicle mission.

  12. A Mechanistic Model of Botrytis cinerea on Grapevines That Includes Weather, Vine Growth Stage, and the Main Infection Pathways

    PubMed Central

    González-Domínguez, Elisa; Caffi, Tito; Ciliberti, Nicola; Rossi, Vittorio

    2015-01-01

    A mechanistic model for Botrytis cinerea on grapevine was developed. The model, which accounts for conidia production on various inoculum sources and for multiple infection pathways, considers two infection periods. During the first period (“inflorescences clearly visible” to “berries groat-sized”), the model calculates: i) infection severity on inflorescences and young clusters caused by conidia (SEV1). During the second period (“majority of berries touching” to “berries ripe for harvest”), the model calculates: ii) infection severity of ripening berries by conidia (SEV2); and iii) severity of berry-to-berry infection caused by mycelium (SEV3). The model was validated in 21 epidemics (vineyard × year combinations) between 2009 and 2014 in Italy and France. A discriminant function analysis (DFA) was used to: i) evaluate the ability of the model to predict mild, intermediate, and severe epidemics; and ii) assess how SEV1, SEV2, and SEV3 contribute to epidemics. The model correctly classified the severity of 17 of 21 epidemics. Results from DFA were also used to calculate the daily probabilities that an ongoing epidemic would be mild, intermediate, or severe. SEV1 was the most influential variable in discriminating between mild and intermediate epidemics, whereas SEV2 and SEV3 were relevant for discriminating between intermediate and severe epidemics. The model represents an improvement of previous B. cinerea models in viticulture and could be useful for making decisions about Botrytis bunch rot control. PMID:26457808

  13. The relationship between observed fatigue damage and life estimation models

    NASA Technical Reports Server (NTRS)

    Kurath, Peter; Socie, Darrell F.

    1988-01-01

    Observations of the surface of laboratory specimens subjected to axial and torsional fatigue loadings has resulted in the identification of three damage fatigue phenomena: crack nucleation, shear crack growth, and tensile crack growth. Material, microstructure, state of stress/strain, and loading amplitude all influence which of the three types of fatigue damage occurs during a dominant fatigue life fraction. Fatigue damage maps are employed to summarize the experimental observations. Appropriate bulk stress/strain damage parameters are suggested to model fatigue damage for the dominant fatigue life fraction. Extension of the damage map concept to more complex loadings is presented.

  14. Interpretable, probability-based confidence metric for continuous quantitative structure-activity relationship models.

    PubMed

    Keefer, Christopher E; Kauffman, Gregory W; Gupta, Rishi Raj

    2013-02-25

    A great deal of research has gone into the development of robust confidence in prediction and applicability domain (AD) measures for quantitative structure-activity relationship (QSAR) models in recent years. Much of the attention has historically focused on structural similarity, which can be defined in many forms and flavors. A concept that is frequently overlooked in the realm of the QSAR applicability domain is how the local activity landscape plays a role in how accurate a prediction is or is not. In this work, we describe an approach that pairs information about both the chemical similarity and activity landscape of a test compound's neighborhood into a single calculated confidence value. We also present an approach for converting this value into an interpretable confidence metric that has a simple and informative meaning across data sets. The approach will be introduced to the reader in the context of models built upon four diverse literature data sets. The steps we will outline include the definition of similarity used to determine nearest neighbors (NN), how we incorporate the NN activity landscape with a similarity-weighted root-mean-square distance (wRMSD) value, and how that value is then calibrated to generate an intuitive confidence metric for prospective application. Finally, we will illustrate the prospective performance of the approach on five proprietary models whose predictions and confidence metrics have been tracked for more than a year.

  15. An integrated mathematical model for chemical oxygen demand (COD) removal in moving bed biofilm reactors (MBBR) including predation and hydrolysis.

    PubMed

    Revilla, Marta; Galán, Berta; Viguri, Javier R

    2016-07-01

    An integrated mathematical model is proposed for modelling a moving bed biofilm reactor (MBBR) for removal of chemical oxygen demand (COD) under aerobic conditions. The composite model combines the following: (i) a one-dimensional biofilm model, (ii) a bulk liquid model, and (iii) biological processes in the bulk liquid and biofilm considering the interactions among autotrophic, heterotrophic and predator microorganisms. Depending on the values for the soluble biodegradable COD loading rate (SCLR), the model takes into account a) the hydrolysis of slowly biodegradable compounds in the bulk liquid, and b) the growth of predator microorganisms in the bulk liquid and in the biofilm. The integration of the model and the SCLR allows a general description of the behaviour of COD removal by the MBBR under various conditions. The model is applied for two in-series MBBR wastewater plant from an integrated cellulose and viscose production and accurately describes the experimental concentrations of COD, total suspended solids (TSS), nitrogen and phosphorous obtained during 14 months working at different SCLRs and nutrient dosages. The representation of the microorganism group distribution in the biofilm and in the bulk liquid allow for verification of the presence of predator microorganisms in the second reactor under some operational conditions.

  16. A revised dosimetric characterization of the model S700 electronic brachytherapy source containing an anode-centering plastic insert and other components not included in the 2006 model

    SciTech Connect

    Hiatt, Jessica R.; Davis, Stephen D.; Rivard, Mark J.

    2015-06-15

    Purpose: The model S700 Axxent electronic brachytherapy source by Xoft, Inc., was characterized by Rivard et al. in 2006. Since then, the source design was modified to include a new insert at the source tip. Current study objectives were to establish an accurate source model for simulation purposes, dosimetrically characterize the new source and obtain its TG-43 brachytherapy dosimetry parameters, and determine dose differences between the original simulation model and the current model S700 source design. Methods: Design information from measurements of dissected model S700 sources and from vendor-supplied CAD drawings was used to aid establishment of an updated Monte Carlo source model, which included the complex-shaped plastic source-centering insert intended to promote water flow for cooling the source anode. These data were used to create a model for subsequent radiation transport simulations in a water phantom. Compared to the 2006 simulation geometry, the influence of volume averaging close to the source was substantially reduced. A track-length estimator was used to evaluate collision kerma as a function of radial distance and polar angle for determination of TG-43 dosimetry parameters. Results for the 50 kV source were determined every 0.1 cm from 0.3 to 15 cm and every 1° from 0° to 180°. Photon spectra in water with 0.1 keV resolution were also obtained from 0.5 to 15 cm and polar angles from 0° to 165°. Simulations were run for 10{sup 10} histories, resulting in statistical uncertainties on the transverse plane of 0.04% at r = 1 cm and 0.06% at r = 5 cm. Results: The dose-rate distribution ratio for the model S700 source as compared to the 2006 model exceeded unity by more than 5% for roughly one quarter of the solid angle surrounding the source, i.e., θ ≥ 120°. The radial dose function diminished in a similar manner as for an {sup 125}I seed, with values of 1.434, 0.636, 0.283, and 0.0975 at 0.5, 2, 5, and 10 cm, respectively. The radial dose

  17. Modifications to the steady-state 41-node thermoregulatory model including validation of the respiratory and diffusional water loss equations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    After the simplified version of the 41-Node Stolwijk Metabolic Man Model was implemented on the Sigma 3 and UNIVAC 1110 computers in batch mode, it became desirable to make certain revisions. First, the availability of time-sharing terminals makes it possible to provide the capability and flexibility of conversational interaction between user and model. Secondly, recent physiological studies show the need to revise certain parameter values contained in the model. Thirdly, it was desired to make quantitative and accurate predictions of evaporative water loss for humans in an orbiting space station. The result of the first phase of this effort are reported.

  18. Analytical modeling of AlGaN/AlN/GaN heterostructures including effects of distributed surface donor states

    SciTech Connect

    Goyal, Nitin; Fjeldly, Tor A.

    2014-07-14

    In this paper, a physics based analytical model is presented for calculation of the two-dimensional electron gas density and the bare surface barrier height of AlGaN/AlN/GaN material stacks. The presented model is based on the concept of distributed surface donor states and the self-consistent solution of Poisson equation at the different material interfaces. The model shows good agreement with the reported experimental data and can be used for the design and characterization of advanced GaN devices for power and radio frequency applications.

  19. Model and Processes of Acceptance and Commitment Therapy (ACT) for Chronic Pain Including a Closer Look at the Self.

    PubMed

    Yu, Lin; McCracken, Lance M

    2016-02-01

    Acceptance and commitment therapy (ACT) is one of the so called "third-wave" cognitive behavioral therapies. It has been increasingly applied to chronic pain, and there is accumulating evidence to support its effectiveness. ACT is based on a model of general human functioning called the psychological flexibility (PF) model. Most facets of the PF model have been examined in chronic pain. However, a potential key facet related to "self" appears underappreciated. Indeed, a positive or healthy sense of self seems essential to our well-being, and there have been numerous studies of the self in chronic pain. At the same time, these studies are not currently well organized or easy to summarize. This lack of clarity and integration creates barriers to progress in this area of research. PF with its explicit inclusion of self-related therapeutic processes within a broad, integrative, theoretical model may help. The current review summarizes the PF model in the context of chronic pain with a specific emphasis on the parts of the model that address self-related processes. PMID:26803836

  20. Model and Processes of Acceptance and Commitment Therapy (ACT) for Chronic Pain Including a Closer Look at the Self.

    PubMed

    Yu, Lin; McCracken, Lance M

    2016-02-01

    Acceptance and commitment therapy (ACT) is one of the so called "third-wave" cognitive behavioral therapies. It has been increasingly applied to chronic pain, and there is accumulating evidence to support its effectiveness. ACT is based on a model of general human functioning called the psychological flexibility (PF) model. Most facets of the PF model have been examined in chronic pain. However, a potential key facet related to "self" appears underappreciated. Indeed, a positive or healthy sense of self seems essential to our well-being, and there have been numerous studies of the self in chronic pain. At the same time, these studies are not currently well organized or easy to summarize. This lack of clarity and integration creates barriers to progress in this area of research. PF with its explicit inclusion of self-related therapeutic processes within a broad, integrative, theoretical model may help. The current review summarizes the PF model in the context of chronic pain with a specific emphasis on the parts of the model that address self-related processes.

  1. The Relationship of Coping, Self-Worth, and Subjective Well-Being: A Structural Equation Model

    ERIC Educational Resources Information Center

    Smedema, Susan Miller; Catalano, Denise; Ebener, Deborah J.

    2010-01-01

    The purpose of this study was to determine the relationship between various coping-related variables and the evaluation of self-worth and subjective well-being among persons with spinal cord injury. Positive coping variables included hope, proactive coping style, and sense of humor, whereas negative coping variables included perceptions of stress,…

  2. Predictor Relationships between Values Held by Married Individuals, Resilience and Conflict Resolution Styles: A Model Suggestion

    ERIC Educational Resources Information Center

    Tosun, Fatma; Dilmac, Bulent

    2015-01-01

    The aim of the present research is to reveal the predictor relationships between the values held by married individuals, resilience and conflict resolution styles. The research adopts a relational screening model that is a sub-type of the general screening model. The sample of the research consists of 375 married individuals, of which 173 are…

  3. A Response to Estelle R. Jorgensen, "Four Philosophical Models of the Relationship between Theory and Practice"

    ERIC Educational Resources Information Center

    Allsup, Randall Everett

    2005-01-01

    Each of the four philosophical models that Estelle Jorgensen has put forth contests, adheres to, or adjusts the hierarchical relationships between dualities, specifically the theory and practice of musical learning. Moreover, models of polarity, according to Jorgensen, accommodate dualities by buffering edges, emphasizing the interconnectedness of…

  4. Relationships among Adolescents' Leisure Motivation, Leisure Involvement, and Leisure Satisfaction: A Structural Equation Model

    ERIC Educational Resources Information Center

    Chen, Ying-Chieh; Li, Ren-Hau; Chen, Sheng-Hwang

    2013-01-01

    The purpose of this cross-sectional study was to test a cause-and-effect model of factors affecting leisure satisfaction among Taiwanese adolescents. A structural equation model was proposed in which the relationships among leisure motivation, leisure involvement, and leisure satisfaction were explored. The study collected data from 701 adolescent…

  5. Models and Domains of Supervision and Their Relationship to Professional Development

    ERIC Educational Resources Information Center

    Schafer, William M.

    2007-01-01

    The author describes four models of supervision--administrative, traditional mental health, relationship-based, and mindfulness practice--with their corresponding domains of staff development. Each model's communication style, participant roles, and assumptions of how change occurs provide a framework for understanding the relative needs…

  6. The Impact of Consultation Models on Interpersonal Relationships during Problem Solving

    ERIC Educational Resources Information Center

    Neall, Michael Timothy

    2012-01-01

    Client-centered and consultee-centered consultation models are predominately used in K-12 schools to meet the needs of at-risk learners and ensure equitable access to educational services. Although the efficacy of both models has significant support in the literature, studies regarding relationships formed during problem solving in consultation…

  7. The Family of Origin Parachute Model: Landing Safely in Adult Romantic Relationships

    ERIC Educational Resources Information Center

    Busby, Dean M.; Gardner, Brandt C.; Taniguchi, Narumi

    2005-01-01

    This study investigates the utility of the family of origin parachute model in predicting longitudinal outcomes for couples in romantic relationships. This conceptual model contains common family variables that are theoretically and empirically related to later adult functioning and are believed to influence attitudes that adult children develop…

  8. The Learning-Teaching Nexus: Modelling the Learning-Teaching Relationship in Higher Education

    ERIC Educational Resources Information Center

    Knewstubb, Bernadette

    2016-01-01

    The teaching-learning relationship is often described as a conversation. However, many models of teaching and learning depict the worlds of teacher and learner as enclosed and inaccessible, linked by apparently transferred communicative meanings. A new interdisciplinary learning-teaching nexus (LTN) model combines perspectives from higher…

  9. Monitoring and modeling wetland chloride concentrations in relationship to oil and gas development.

    PubMed

    Post van der Burg, Max; Tangen, Brian A

    2015-03-01

    Extraction of oil and gas via unconventional methods is becoming an important aspect of energy production worldwide. Studying the effects of this development in countries where these technologies are being widely used may provide other countries, where development may be proposed, with some insight in terms of concerns associated with development. A fairly recent expansion of unconventional oil and gas development in North America provides such an opportunity. Rapid increases in energy development in North America have caught the attention of managers and scientists as a potential stressor for wildlife and their habitats. Of particular concern in the Northern Great Plains of the U.S. is the potential for chloride-rich produced water associated with unconventional oil and gas development to alter the water chemistry of wetlands. We describe a landscape scale modeling approach designed to examine the relationship between potential chloride contamination in wetlands and patterns of oil and gas development. We used a spatial Bayesian hierarchical modeling approach to assess multiple models explaining chloride concentrations in wetlands. These models included effects related to oil and gas wells (e.g. age of wells, number of wells) and surficial geology (e.g. glacial till, outwash). We found that the model containing the number of wells and the surficial geology surrounding a wetland best explained variation in chloride concentrations. Our spatial predictions showed regions of localized high chloride concentrations. Given the spatiotemporal variability of regional wetland water chemistry, we do not regard our results as predictions of contamination, but rather as a way to identify locations that may require more intensive sampling or further investigation. We suggest that an approach like the one outlined here could easily be extended to more of an adaptive monitoring approach to answer questions about chloride contamination risk that are of interest to managers. PMID

  10. Monitoring and modeling wetland chloride concentrations in relationship to oil and gas development.

    PubMed

    Post van der Burg, Max; Tangen, Brian A

    2015-03-01

    Extraction of oil and gas via unconventional methods is becoming an important aspect of energy production worldwide. Studying the effects of this development in countries where these technologies are being widely used may provide other countries, where development may be proposed, with some insight in terms of concerns associated with development. A fairly recent expansion of unconventional oil and gas development in North America provides such an opportunity. Rapid increases in energy development in North America have caught the attention of managers and scientists as a potential stressor for wildlife and their habitats. Of particular concern in the Northern Great Plains of the U.S. is the potential for chloride-rich produced water associated with unconventional oil and gas development to alter the water chemistry of wetlands. We describe a landscape scale modeling approach designed to examine the relationship between potential chloride contamination in wetlands and patterns of oil and gas development. We used a spatial Bayesian hierarchical modeling approach to assess multiple models explaining chloride concentrations in wetlands. These models included effects related to oil and gas wells (e.g. age of wells, number of wells) and surficial geology (e.g. glacial till, outwash). We found that the model containing the number of wells and the surficial geology surrounding a wetland best explained variation in chloride concentrations. Our spatial predictions showed regions of localized high chloride concentrations. Given the spatiotemporal variability of regional wetland water chemistry, we do not regard our results as predictions of contamination, but rather as a way to identify locations that may require more intensive sampling or further investigation. We suggest that an approach like the one outlined here could easily be extended to more of an adaptive monitoring approach to answer questions about chloride contamination risk that are of interest to managers.

  11. Monitoring and modeling wetland chloride concentrations in relationship to oil and gas development

    USGS Publications Warehouse

    Post van der Burg, Max; Tangen, Brian A.

    2015-01-01

    Extraction of oil and gas via unconventional methods is becoming an important aspect of energy production worldwide. Studying the effects of this development in countries where these technologies are being widely used may provide other countries, where development may be proposed, with some insight in terms of concerns associated with development. A fairly recent expansion of unconventional oil and gas development in North America provides such an opportunity. Rapid increases in energy development in North America have caught the attention of managers and scientists as a potential stressor for wildlife and their habitats. Of particular concern in the Northern Great Plains of the U.S. is the potential for chloride-rich produced water associated with unconventional oil and gas development to alter the water chemistry of wetlands. We describe a landscape scale modeling approach designed to examine the relationship between potential chloride contamination in wetlands and patterns of oil and gas development. We used a spatial Bayesian hierarchical modeling approach to assess multiple models explaining chloride concentrations in wetlands. These models included effects related to oil and gas wells (e.g. age of wells, number of wells) and surficial geology (e.g. glacial till, outwash). We found that the model containing the number of wells and the surficial geology surrounding a wetland best explained variation in chloride concentrations. Our spatial predictions showed regions of localized high chloride concentrations. Given the spatiotemporal variability of regional wetland water chemistry, we do not regard our results as predictions of contamination, but rather as a way to identify locations that may require more intensive sampling or further investigation. We suggest that an approach like the one outlined here could easily be extended to more of an adaptive monitoring approach to answer questions about chloride contamination risk that are of interest to managers.

  12. The relationship between sea-level and bottom pressure variability in an eddy permitting ocean model

    NASA Astrophysics Data System (ADS)

    Bingham, Rory J.; Hughes, Chris W.

    2008-02-01

    We investigate the relationship between sea-level (after application of an inverse-barometer correction) and ocean bottom pressure, in an eddy-permitting ocean model. We find the presence of eddies can disrupt this relationship even on timescales as short as 10-20 days, but only in the regions of most energetic eddy variability. Away from eddies, the relationship is similar to that seen in a coarser-resolution model, with a tight relationship between sea-level and bottom pressure at high frequencies, but with significant correlations between sea-level and bottom pressure at interannual timescales seen only in shelf sea regions. In the deep ocean, regions where sea-level and bottom pressure remain related out to the longest timescales are in the Arctic Ocean and regions of the Southern Ocean, where particularly large amplitude barotropic fluctuations are found but where the mesoscale signal is weak.

  13. Using Carl Rogers' person-centered model to explain interpersonal relationships at a school of nursing.

    PubMed

    Bryan, Venise D; Lindo, Jascinth; Anderson-Johnson, Pauline; Weaver, Steve

    2015-01-01

    Faculty members are viewed as nurturers within the academic setting and may be able to influence students' behaviors through the formation of positive interpersonal relationships. Faculty members' attributes that best facilitated positive interpersonal relationships according to Carl Rogers' Person-Centered Model was studied. Students (n = 192) enrolled in a 3-year undergraduate nursing program in urban Jamaica were randomly selected to participate in this descriptive cross-sectional study. A 38-item questionnaire on interpersonal relationships with nursing faculty and students' perceptions of their teachers was utilized to collect data. Factor analysis was used to create factors of realness, prizing, and empathetic understanding. Multiple linear regression analysis on the interaction of the 3 factors and interpersonal relationship scores was performed while controlling for nursing students' study year and age. One hundred sixty-five students (mean age: 23.18 ± 4.51years; 99% female) responded. The regression model explained over 46% of the variance. Realness (β = 0.50, P < .001) was the only significant predictor of the interpersonal relationship scores assigned by the nursing students. Of the total number of respondents, 99 students (60%) reported satisfaction with the interpersonal relationships shared with faculty. Nursing students' perception of faculty members' realness appeared to be the most significant attribute in fostering positive interpersonal relationships.

  14. Using Carl Rogers' person-centered model to explain interpersonal relationships at a school of nursing.

    PubMed

    Bryan, Venise D; Lindo, Jascinth; Anderson-Johnson, Pauline; Weaver, Steve

    2015-01-01

    Faculty members are viewed as nurturers within the academic setting and may be able to influence students' behaviors through the formation of positive interpersonal relationships. Faculty members' attributes that best facilitated positive interpersonal relationships according to Carl Rogers' Person-Centered Model was studied. Students (n = 192) enrolled in a 3-year undergraduate nursing program in urban Jamaica were randomly selected to participate in this descriptive cross-sectional study. A 38-item questionnaire on interpersonal relationships with nursing faculty and students' perceptions of their teachers was utilized to collect data. Factor analysis was used to create factors of realness, prizing, and empathetic understanding. Multiple linear regression analysis on the interaction of the 3 factors and interpersonal relationship scores was performed while controlling for nursing students' study year and age. One hundred sixty-five students (mean age: 23.18 ± 4.51years; 99% female) responded. The regression model explained over 46% of the variance. Realness (β = 0.50, P < .001) was the only significant predictor of the interpersonal relationship scores assigned by the nursing students. Of the total number of respondents, 99 students (60%) reported satisfaction with the interpersonal relationships shared with faculty. Nursing students' perception of faculty members' realness appeared to be the most significant attribute in fostering positive interpersonal relationships. PMID:25839954

  15. A 1-D Size Specific Numerical Model for Gravel Transport That Includes Sediment Exchange with a Floodplain

    NASA Astrophysics Data System (ADS)

    Lauer, Wesley; Viparelli, Enrica; Piegay, Herve

    2014-05-01

    Sedimentary deposits adjacent to rivers can represent important sources and sinks for bed material sediment, particularly on decadal and longer timescales. The Morphodynamics and Sediment Tracers in 1-D model (MAST-1D) is a size-specific sediment transport model that allows for active exchange between channel and floodplain sediment on river reaches of tens to hundreds of kilometers in length. The model is intended to provide a mechanism for performing a first-order assessment of the likely importance of off-channel sediment exchange in controlling decadal-scale geomorphic trends, thereby helping plan and/or prioritize field data collection and higher resolution modeling work. The model develops a sediment budget for short segments of an alluvial valley. Each segment encompasses several active river bends. In each segment, a sediment transport capacity computation is performed to determine the downstream flux of bed material sediment, following the approach of most other 1-D sediment transport models. However, the model differs from most other bed evolution models in that sediment can be exchanged with the floodplain in each segment, and mass conservation is applied to both the active layer and floodplain sediment storage reservoirs. The potential for net imbalances in overall exchange as well as the size specific nature of the computations allows the model to simulate reach-scale aggradation/degradation and/or changes in bed texture. The inclusion of fine sediment in the model allows it to track geochemical tracer material and also provides a mechanism to simulate, to first order, the effects of changes in the supply of silt and clay on overall channel hydraulic capacity. The model is applied to a ~40 km reach of the Ain River, a tributary of the Rhône River in eastern France that has experienced a significant sediment deficit as a result of the construction of several dams between 1920 and 1970. MAST-1D simulations result in both incision and the formation of a

  16. A new test statistic for climate models that includes field and spatial dependencies using Gaussian Markov random fields

    NASA Astrophysics Data System (ADS)

    Nosedal-Sanchez, Alvaro; Jackson, Charles S.; Huerta, Gabriel

    2016-07-01

    A new test statistic for climate model evaluation has been developed that potentially mitigates some of the limitations that exist for observing and representing field and space dependencies of climate phenomena. Traditionally such dependencies have been ignored when climate models have been evaluated against observational data, which makes it difficult to assess whether any given model is simulating observed climate for the right reasons. The new statistic uses Gaussian Markov random fields for estimating field and space dependencies within a first-order grid point neighborhood structure. We illustrate the ability of Gaussian Markov random fields to represent empirical estimates of field and space covariances using "witch hat" graphs. We further use the new statistic to evaluate the tropical response of a climate model (CAM3.1) to changes in two parameters important to its representation of cloud and precipitation physics. Overall, the inclusion of dependency information did not alter significantly the recognition of those regions of parameter space that best approximated observations. However, there were some qualitative differences in the shape of the response surface that suggest how such a measure could affect estimates of model uncertainty.

  17. A Solution Strategy to Include the Opening of the Opercular Slits in Moving-Mesh CFD Models of Suction Feeding.

    PubMed

    Van Wassenbergh, Sam

    2015-07-01

    The gill cover of fish and pre-metamorphic salamanders has a key role in suction feeding by acting as a one-way valve. It initially closes and avoids an inflow of water through the gill slits, after which it opens to allow outflow of the water that was sucked through the mouth into the expanded buccopharyngeal cavity. However, due to the inability of analytical models (relying on the continuity principle) to calculate the flow of fluid through a cavity with two openings and that was changing in shape and size, stringent boundary conditions had to be used in previously developed mathematical models after the moment of the valve's opening. By solving additionally for the conservation of momentum, computational fluid dynamics (CFD) has the capacity to dynamically simulate these flows, but this technique also faces complications in modeling a transition from closed to open valves. Here, I present a relatively simple solution strategy to incorporate the opening of the valves, exemplified in an axisymmetrical model of a suction-feeding sunfish in ANSYS Fluent software. By controlling viscosity of a separately defined fluid entity in the region of the opercular cavity, early inflow can be blocked (high viscosity assigned) and later outflow can be allowed (changing viscosity to that of water). Finally, by analyzing the CFD solution obtained for the sunfish model, a few new insights into the biomechanics of suction feeding are gained.

  18. A new test statistic for climate models that includes field and spatial dependencies using Gaussian Markov random fields

    DOE PAGESBeta

    Nosedal-Sanchez, Alvaro; Jackson, Charles S.; Huerta, Gabriel

    2016-07-20

    A new test statistic for climate model evaluation has been developed that potentially mitigates some of the limitations that exist for observing and representing field and space dependencies of climate phenomena. Traditionally such dependencies have been ignored when climate models have been evaluated against observational data, which makes it difficult to assess whether any given model is simulating observed climate for the right reasons. The new statistic uses Gaussian Markov random fields for estimating field and space dependencies within a first-order grid point neighborhood structure. We illustrate the ability of Gaussian Markov random fields to represent empirical estimates of fieldmore » and space covariances using "witch hat" graphs. We further use the new statistic to evaluate the tropical response of a climate model (CAM3.1) to changes in two parameters important to its representation of cloud and precipitation physics. Overall, the inclusion of dependency information did not alter significantly the recognition of those regions of parameter space that best approximated observations. However, there were some qualitative differences in the shape of the response surface that suggest how such a measure could affect estimates of model uncertainty.« less

  19. Relationship between soil erodibility and modeled infiltration rate in different soils

    NASA Astrophysics Data System (ADS)

    Wang, Guoqiang; Fang, Qingqing; Wu, Binbin; Yang, Huicai; Xu, Zongxue

    2015-09-01

    The relationship between soil erodibility, which is hard to measure, and modeled infiltration rate were rarely researched. Here, the soil erodibility factors (K and Ke in the USLE, Ki and K1 in the WEPP) were calculated and the infiltration rates were modeled based on the designed laboratory simulation experiments and proposed infiltration model, in order to build their relationship. The impacts of compost amendment on the soil erosion characteristics and relationship were also studied. Two contrasting agricultural soils (bare and cultivated fluvo-aquic soils) were used, and different poultry compost contents (control, low and high) were applied to both soils. The results indicated that the runoff rate, sediment yield rate and soil erodibility of the bare soil treatments were generally higher than those of the corresponding cultivated soil treatments. The application of composts generally decreased sediment yield and soil erodibility but did not always decrease runoff. The comparison of measured and modeled infiltration rates indicated that the model represented the infiltration processes well with an N-S coefficient of 0.84 for overall treatments. Significant negative logarithmic correlations have been found between final infiltration rate (FIR) and the four soil erodibility factors, and the relationship between USLE-K and FIR demonstrated the best correlation. The application of poultry composts would not influence the logarithmic relationship between FIR and soil erodibility. Our study provided a useful tool to estimate soil erodibility.

  20. Modeling and simulation of centroid and inversion charge density in cylindrical surrounding gate MOSFETs including quantum effects

    NASA Astrophysics Data System (ADS)

    Vimala, P.; Balamurugan, N. B.

    2013-11-01

    An analytical model for surrounding gate metal—oxide—semiconductor field effect transistors (MOSFETs) considering quantum effects is presented. To achieve this goal, we have used a variational approach for solving the Poissonand Schrodinger equations. This model is developed to provide an analytical expression for the inversion charge distribution function for all regions of the device operation. This expression is used to calculate the other important parameters like the inversion charge centroid, threshold voltage and inversion charge density. The calculated expressions for the above parameters are simple and accurate. The validity of this model was checked for the devices with different device dimensions and bias voltages. The calculated results are compared with the simulation results and they show good agreement.

  1. Uncertainty of streamwater solute fluxes in five contrasting headwater catchments including model uncertainty and natural variability (Invited)

    NASA Astrophysics Data System (ADS)

    Aulenbach, B. T.; Burns, D. A.; Shanley, J. B.; Yanai, R. D.; Bae, K.; Wild, A.; Yang, Y.; Dong, Y.

    2013-12-01

    There are many sources of uncertainty in estimates of streamwater solute flux. Flux is the product of discharge and concentration (summed over time), each of which has measurement uncertainty of its own. Discharge can be measured almost continuously, but concentrations are usually determined from discrete samples, which increases uncertainty dependent on sampling frequency and how concentrations are assigned for the periods between samples. Gaps between samples can be estimated by linear interpolation or by models that that use the relations between concentration and continuously measured or known variables such as discharge, season, temperature, and time. For this project, developed in cooperation with QUEST (Quantifying Uncertainty in Ecosystem Studies), we evaluated uncertainty for three flux estimation methods and three different sampling frequencies (monthly, weekly, and weekly plus event). The constituents investigated were dissolved NO3, Si, SO4, and dissolved organic carbon (DOC), solutes whose concentration dynamics exhibit strongly contrasting behavior. The evaluation was completed for a 10-year period at five small, forested watersheds in Georgia, New Hampshire, New York, Puerto Rico, and Vermont. Concentration regression models were developed for each solute at each of the three sampling frequencies for all five watersheds. Fluxes were then calculated using (1) a linear interpolation approach, (2) a regression-model method, and (3) the composite method - which combines the regression-model method for estimating concentrations and the linear interpolation method for correcting model residuals to the observed sample concentrations. We considered the best estimates of flux to be derived using the composite method at the highest sampling frequencies. We also evaluated the importance of sampling frequency and estimation method on flux estimate uncertainty; flux uncertainty was dependent on the variability characteristics of each solute and varied for

  2. Resolution-independent modelling of environmental effects in semi-analytic models of galaxy formation that include ram-pressure stripping of both hot and cold gas

    NASA Astrophysics Data System (ADS)

    Luo, Yu; Kang, Xi; Kauffmann, Guinevere; Fu, Jian

    2016-05-01

    The quenching of star formation in satellite galaxies is observed over a wide range of dark matter halo masses and galaxy environments. In the recent Guo et al. and Fu et al. semi-analytic + N-body models, the gaseous environment of the satellite galaxy is governed by the properties of the dark matter subhalo in which it resides. This quantity depends of the resolution of the N-body simulation, leading to a divergent fraction of quenched satellites in high- and low-resolution simulations. Here, we incorporate an analytic model to trace the subhaloes below the resolution limit. We demonstrate that we then obtain better converged results between the Millennium I and II simulations, especially for the satellites in the massive haloes (log Mhalo = [14, 15]). We also include a new physical model for the ram-pressure stripping of cold gas in satellite galaxies. However, we find very clear discrepancies with observed trends in quenched satellite galaxy fractions as a function of stellar mass at fixed halo mass. At fixed halo mass, the quenched fraction of satellites does not depend on stellar mass in the models, but increases strongly with mass in the data. In addition to the overprediction of low-mass passive satellites, the models also predict too few quenched central galaxies with low stellar masses, so the problems in reproducing quenched fractions are not purely of environmental origin. Further improvements to the treatment of the gas-physical processes regulating the star formation histories of galaxies are clearly necessary to resolve these problems.

  3. Exploring the Social Impact of Being a Typical Peer Model for Included Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Locke, Jill; Rotheram-Fuller, Erin; Kasari, Connie

    2012-01-01

    This study examined the social impact of being a typical peer model as part of a social skills intervention for children with autism spectrum disorder (ASD). Participants were drawn from a randomized-controlled-treatment trial that examined the effects of targeted interventions on the social networks of 60 elementary-aged children with ASD.…

  4. Robust semicoherent searches for continuous gravitational waves with noise and signal models including hours to days long transients

    NASA Astrophysics Data System (ADS)

    Keitel, David

    2016-04-01

    The vulnerability to single-detector instrumental artifacts in standard detection methods for long-duration quasimonochromatic gravitational waves from nonaxisymmetric rotating neutron stars [continuous waves (CWs)] was addressed in past work [D. Keitel et al., Phys. Rev. D 89, 064023 (2014).] by a Bayesian approach. An explicit model of persistent single-detector disturbances led to a generalized detection statistic with improved robustness against such artifacts. Since many strong outliers in semicoherent searches of LIGO data are caused by transient disturbances that last only a few hours, we extend the noise model to cover such limited-duration disturbances, and demonstrate increased robustness in realistic simulated data. Besides long-duration CWs, neutron stars could also emit transient signals which, for a limited time, also follow the CW signal model (tCWs). As a pragmatic alternative to specialized transient searches, we demonstrate how to make standard semicoherent CW searches more sensitive to transient signals. Considering tCWs in a single segment of a semicoherent search, Bayesian model selection yields a new detection statistic that does not add significant computational cost. On simulated data, we find that it increases sensitivity towards tCWs, even of varying durations, while not sacrificing sensitivity to classical CW signals, and still being robust to transient or persistent single-detector instrumental artifacts.

  5. A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. physical basis

    USGS Publications Warehouse

    Iverson, Richard M.; George, David L.

    2014-01-01

    To simulate debris-flow behaviour from initiation to deposition, we derive a depth-averaged, two-phase model that combines concepts of critical-state soil mechanics, grain-flow mechanics and fluid mechanics. The model's balance equations describe coupled evolution of the solid volume fraction, m, basal pore-fluid pressure, flow thickness and two components of flow velocity. Basal friction is evaluated using a generalized Coulomb rule, and fluid motion is evaluated in a frame of reference that translates with the velocity of the granular phase, vs. Source terms in each of the depth-averaged balance equations account for the influence of the granular dilation rate, defined as the depth integral of ∇⋅vs. Calculation of the dilation rate involves the effects of an elastic compressibility and an inelastic dilatancy angle proportional to m−meq, where meq is the value of m in equilibrium with the ambient stress state and flow rate. Normalization of the model equations shows that predicted debris-flow behaviour depends principally on the initial value of m−meq and on the ratio of two fundamental timescales. One of these timescales governs downslope debris-flow motion, and the other governs pore-pressure relaxation that modifies Coulomb friction and regulates evolution of m. A companion paper presents a suite of model predictions and tests.

  6. Radiative decays of double heavy baryons in a relativistic constituent three-quark model including hyperfine mixing effects

    SciTech Connect

    Branz, Tanja; Faessler, Amand; Gutsche, Thomas; Lyubovitskij, Valery E.; Oexl, Bettina; Ivanov, Mikhail A.; Koerner, Juergen G.

    2010-06-01

    We study flavor-conserving radiative decays of double-heavy baryons using a manifestly Lorentz covariant constituent three-quark model. Decay rates are calculated and compared to each other in the full theory, keeping masses finite, and also in the heavy quark limit. We discuss in some detail hyperfine mixing effects.

  7. Should a water colour parameter be included in lake total phosphorus prediction models used for the Water Framework Directive?

    PubMed

    Vinogradoff, Susan I; Oliver, Ian W

    2015-01-01

    Under the Water Framework Directive (WFD) lakes are classified according to a variety of criteria. This classification facilitates state of the environment assessments and helps identify work needed to achieve the objectives of the WFD, which are broadly to maintain and/or restore water quality and ecological status at a level recognised as good or high. To achieve high or good status, lakes must meet a criterion for total phosphorus (TP) that is linked to a predicted reference condition value that is derived by various models. Lakes which fail to meet good status may require expensive remedial actions to be undertaken, thus accurate identification of the reference condition TP concentration is vital for effective environmental management. However, the models currently employed could be improved for some regions, particularly those with carbon rich soils. By examining 19 reference condition lakes (i.e. lakes essentially non-impacted by humans) in peaty areas of Scotland, we found that a simple parameter linked to water colour and humic substances was a better predictor of TP than the currently employed models (R(2) 0.585 vs R(2) < 0.01). Therefore, for Scotland and elsewhere, in regions with carbon rich soils and lakes with humic waters the TP predictive models could be improved by development and incorporation of a parameter related to water colour and humic components.

  8. Numerical Modeling of the Hydrothermal System at East Pacific Rise 9°50'N Including Anhydrite Precipitation

    NASA Astrophysics Data System (ADS)

    Kolandaivelu, K. P.; Lowell, R. P.

    2015-12-01

    To better understand the effects of anhydrite precipitation on mid-ocean ridge hydrothermal systems, we conducted 2-D numerical simulations of two-phase hydrothermal circulation in a NaCl-H2O fluid at the East Pacific Rise 9°50'N. The simulations were constrained by key observational thermal data and seismicity that suggests the fluid flow is primarily along axis with recharge focused into a small zone near a 4th order discontinuity. The simulations considered an open-top square box with a fixed seafloor pressure of 25 MPa, and nominal seafloor temperature of 10 °C. The sides of the box were assumed to be impermeable and insulated. We considered two models: a homogeneous model with a permeability of 10-13 m2 and a heterogeneous model in which layer 2A extrusives were given a higher permeability. Both models had a fixed bottom temperature distribution and initial porosity of 0.1. Assuming that anhydrite precipitation resulted from the decrease in solubility with increasing temperature as downwelling fluid gets heated, we calculated the rate of porosity decrease and sealing times in each cell at certain time snapshots in the simulations. The results showed that sealing would occur most rapidly in limited regions near the base of the high-temperature plumes, where complete sealing could occur on decadal time scales. Though more detailed analysis is needed, it appeared that the areas of rapid sealing would likely have negligible impact on the overall circulation pattern and hydrothermal vent temperatures. The simulations also indicated that sealing due to anhydrite precipitation would occur more slowly at the margins of the ascending plumes. The sealing times in the deep recharge zone determined in these simulations were considerably greater than estimated from 1D analytical calculations, suggesting that with a 2D model, focused recharge at the EPR 9°50'N site may occur, at least on a decadal time scale.

  9. A dynamic model of a cantilever beam with a closed, embedded horizontal crack including local flexibilities at crack tips

    NASA Astrophysics Data System (ADS)

    Liu, J.; Zhu, W. D.; Charalambides, P. G.; Shao, Y. M.; Xu, Y. F.; Fang, X. M.

    2016-11-01

    As one of major failure modes of mechanical structures subjected to periodic loads, embedded cracks due to fatigue can cause catastrophic failure of machineries. Understanding the dynamic characteristics of a structure with an embedded crack is helpful for early crack detection and diagnosis. In this work, a new three-segment beam model with local flexibilities at crack tips is developed to investigate the vibration of a cantilever beam with a closed, fully embedded horizontal crack, which is assumed to be not located at its clamped or free end or distributed near its top or bottom side. The three-segment beam model is assumed to be a linear elastic system, and it does not account for the nonlinear crack closure effect; the top and bottom segments always stay in contact at their interface during the beam vibration. It can model the effects of local deformations in the vicinity of the crack tips, which cannot be captured by previous methods in the literature. The middle segment of the beam containing the crack is modeled by a mechanically consistent, reduced bending moment. Each beam segment is assumed to be an Euler-Bernoulli beam, and the compliances at the crack tips are analytically determined using a J-integral approach and verified using commercial finite element software. Using compatibility conditions at the crack tips and the transfer matrix method, the nature frequencies and mode shapes of the cracked cantilever beam are obtained. The three-segment beam model is used to investigate the effects of local flexibilities at crack tips on the first three natural frequencies and mode shapes of the cracked cantilever beam. A stationary wavelet transform (SWT) method is used to process the mode shapes of the cracked cantilever beam; jumps in single-level SWT decomposition detail coefficients can be used to identify the length and location of an embedded horizontal crack.

  10. The relationship between relational models and individualism and collectivism: evidence from culturally diverse work groups.

    PubMed

    Vodosek, Markus

    2009-04-01

    Relational models theory (Fiske, 1991 ) proposes that all thinking about social relationships is based on four elementary mental models: communal sharing, authority ranking, equality matching, and market pricing. Triandis and his colleagues (e.g., Triandis, Kurowski, & Gelfand, 1994 ) have suggested a relationship between the constructs of horizontal and vertical individualism and collectivism and Fiske's relational models. However, no previous research has examined this proposed relationship empirically. The objective of the current study was to test the association between the two frameworks in order to further our understanding of why members of culturally diverse groups may prefer different relational models in interactions with other group members. Findings from this study support a relationship between Triandis' constructs and Fiske's four relational models and uphold Fiske's ( 1991 ) claim that the use of the relational models is culturally dependent. As hypothesized, horizontal collectivism was associated with a preference for equality matching and communal sharing, vertical individualism was related to a preference for authority ranking, and vertical collectivism was related to a preference for authority ranking and communal sharing. However, contrary to expectations, horizontal individualism was not related to a preference for equality matching and market pricing, and vertical individualism was not associated with market pricing. By showing that there is a relationship between Triandis' and Fiske's frameworks, this study closes a gap in relational models theory, namely how culture relates to people's preferences for relational models. Thus, the findings from this study will enable future researchers to explain and predict what relational models are likely to be used in a certain cultural context.

  11. Effective Advocacy in Rural Domains: Applying an Ecological Model to Understanding Advocates' Relationships.

    PubMed

    Johnson, Melencia; McGrath, Shelly A; Miller, Michelle Hughes

    2014-01-23

    Past scholarship has explored the ecological model as it pertains to intimate partner violence from the victim's perspective. Missing from this literature is the application of the ecological model to victim advocates, specifically rural victim advocates. This article explores the microsystem and exosystem levels of the ecological model to understand victim advocates' relationships with their clients and criminal justice personnel. To investigate these relationships, we used a sample of rural advocates located within the Mississippi Delta Region. The findings from the interviews and focus group indicate that the density of rural relationships both help facilitate and create barriers to effective victim advocacy. Social capital specific to the rural domain is being generated by the advocates to benefit themselves and their clients.

  12. Potential of the Galaxy from the Besançon galaxy model including non-axisymmetric components: Preliminary results

    NASA Astrophysics Data System (ADS)

    Fernández-Trincado, J. G.; Robin, A. C.; Bienaymé, O.; Reylé, C.; Valenzuela, O.; Pichardo, B.

    2014-07-01

    In this contributed poster we present a preliminary attempt to compute a non-axisymmetric potential together with previous axisymmetric potential of the Besançon galaxy model. The contribution by non-axisymmetric components are modeled by the superposition of inhomogeneous ellipsoids to approximate the triaxial bar and superposition of homogeneous oblate spheroids for a stellar halo, possibly triaxial. Finally, we have computed the potential and force field for these non-axisymmetric components in order to constraint the total mass of the Milky Way. We present preliminary results for the rotation curve and the contribution of the bar to it. This approach will allow future studies of dynamical constraints from comparisons of kinematical simulations with upcoming surveys such as RAVE, BRAVA, APOGEE, and GAIA in the near future. More details, are presented in https://gaia.ub.edu/Twiki/pub/GREATITNFC/ProgramFinalconference/Poster_JG.Fern%e1ndez.pdf.

  13. Charged-current inclusive neutrino cross sections in the superscaling model including quasielastic, pion production and meson-exchange contributions

    NASA Astrophysics Data System (ADS)

    Ivanov, M. V.; Megias, G. D.; González-Jiménez, R.; Moreno, O.; Barbaro, M. B.; Caballero, J. A.; Donnelly, T. W.

    2016-08-01

    Charged current inclusive neutrino-nucleus cross sections are evaluated using the superscaling model for quasielastic scattering and its extension to the pion production region. The contribution of two-particle-two-hole vector meson-exchange current excitations is also considered within a fully relativistic model tested against electron scattering data. The results are compared with the inclusive neutrino-nucleus data from the T2K and SciBooNE experiments. For experiments where < {E}ν > ∼ 0.8 {{GeV}}, the three mechanisms considered in this work provide good agreement with the data. However, when the neutrino energy is larger, effects from beyond the Δ also appear to be playing a role. The results show that processes induced by vector two-body currents play a minor role in the inclusive cross sections at the kinematics considered.

  14. Radiation-driven winds of hot stars. VI - Analytical solutions for wind models including the finite cone angle effect

    NASA Technical Reports Server (NTRS)

    Kudritzki, R. P.; Pauldrach, A.; Puls, J.; Abbott, D. C.

    1989-01-01

    Analytical solutions for radiation-driven winds of hot stars including the important finite cone angle effect (see Pauldrach et al., 1986; Friend and Abbott, 1986) are derived which approximate the detailed numerical solutions of the exact wind equation of motion very well. They allow a detailed discussion of the finite cone angle effect and provide for given line force parameters k, alpha, delta definite formulas for mass-loss rate M and terminal velocity v-alpha as function of stellar parameters.

  15. Development and Internal Validation of a Predictive Model Including Pulse Oximetry for Hospitalization of Under-Five Children in Bangladesh

    PubMed Central

    Raihana, Shahreen; Dunsmuir, Dustin; Huda, Tanvir; Zhou, Guohai; Rahman, Qazi Sadeq-ur; Garde, Ainara; Moinuddin, Md; Karlen, Walter; Dumont, Guy A.; Kissoon, Niranjan; El Arifeen, Shams; Larson, Charles; Ansermino, J. Mark

    2015-01-01

    Background The reduction in the deaths of millions of children who die from infectious diseases requires early initiation of treatment and improved access to care available in health facilities. A major challenge is the lack of objective evidence to guide front line health workers in the community to recognize critical illness in children earlier in their course. Methods We undertook a prospective observational study of children less than 5 years of age presenting at the outpatient or emergency department of a rural tertiary care hospital between October 2012 and April 2013. Study physicians collected clinical signs and symptoms from the facility records, and with a mobile application performed recordings of oxygen saturation, heart rate and respiratory rate. Facility physicians decided the need for hospital admission without knowledge of the oxygen saturation. Multiple logistic predictive models were tested. Findings Twenty-five percent of the 3374 assessed children, with a median (interquartile range) age of 1.02 (0.42–2.24), were admitted to hospital. We were unable to contact 20% of subjects after their visit. A logistic regression model using continuous oxygen saturation, respiratory rate, temperature and age combined with dichotomous signs of chest indrawing, lethargy, irritability and symptoms of cough, diarrhea and fast or difficult breathing predicted admission to hospital with an area under the receiver operating characteristic curve of 0.89 (95% confidence interval -CI: 0.87 to 0.90). At a risk threshold of 25% for admission, the sensitivity was 77% (95% CI: 74% to 80%), specificity was 87% (95% CI: 86% to 88%), positive predictive value was 70% (95% CI: 67% to 73%) and negative predictive value was 91% (95% CI: 90% to 92%). Conclusion A model using oxygen saturation, respiratory rate and temperature in combination with readily obtained clinical signs and symptoms predicted the need for hospitalization of critically ill children. External validation of

  16. Bidirectional Relationship between Chronic Kidney Disease and Periodontal Disease: Structural Equation Modeling

    PubMed Central

    Fisher, Monica A.; Taylor, George W.; West, Brady T.; McCarthy, Ellen T.

    2011-01-01

    Periodontal disease is associated with diabetes, heart disease, and chronic kidney disease (CKD), an effect postulated to be due in part to endovascular inflammation. While a bidirectional relationship between CKD and periodontal disease is plausible, it has not been previously reported in the literature. Over 11 200 adults 18 years or older were identified in the Third National Health and Nutrition Examination Survey. Analyses were conducted in two stages. First, multivariable logistic regression models were fitted to test the hypothesis that periodontal disease was independently associated with CKD. Given the potential that the periodontal disease and CKD relationship may be bidirectional, a two-step analytic approach was used that involved 1) tests for mediation, and 2) structural equation models to examine more complex direct and indirect effects of periodontal disease on CKD, and vice versa. In two separate models periodontal disease (ORAdj =1.62 (95% CI: 1.17-2.26) and edentulism (ORAdj = 1.83 (1.31-2.55) and periodontal disease score (ORAdj = 1.01 (1.01-1.02) were associated with CKD, when simultaneously adjusting for 14 other factors. Three of four structural equation models were most plausible suggesting bidirectional relationships. Collectively, these analyses provide for the first time empirical support for a bidirectional relationship between CKD and periodontal disease, and mediation of that relationship by diabetes duration and hypertension. PMID:20927035

  17. The electric field in capacitively coupled RF discharges: a smooth step model that includes thermal and dynamic effects

    NASA Astrophysics Data System (ADS)

    Brinkmann, Ralf Peter

    2015-12-01

    The electric field in radio-frequency driven capacitively coupled plasmas (RF-CCP) is studied, taking thermal (finite electron temperature) and dynamic (finite electron mass) effects into account. Two dimensionless numbers are introduced, the ratios ε ={λ\\text{D}}/l of the electron Debye length {λ\\text{D}} to the minimum plasma gradient length l (typically the sheath thickness) and η ={ω\\text{RF}}/{ω\\text{pe}} of the RF frequency {ω\\text{RF}} to the electron plasma frequency {ω\\text{pe}} . Assuming both numbers small but finite, an asymptotic expansion of an electron fluid model is carried out up to quadratic order inclusively. An expression for the electric field is obtained which yields (i) the space charge field in the sheath, (ii) the generalized Ohmic and ambipolar field in the plasma, and (iii) a smooth interpolation for the transition in between. The new expression is a direct generalization of the Advanced Algebraic Approximation (AAA) proposed by the same author (2009 J. Phys. D: Appl. Phys. 42 194009), which can be recovered for η \\to 0 , and of the established Step Model (SM) by Godyak (1976 Sov. J. Plasma Phys. 2 78), which corresponds to the simultaneous limits η \\to 0 , ε \\to 0 . A comparison of the hereby proposed Smooth Step Model (SSM) with a numerical solution of the full dynamic problem proves very satisfactory.

  18. Modeling the Nonlinear, Strain Rate Dependent Deformation of Shuttle Leading Edge Materials with Hydrostatic Stress Effects Included

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Carney, Kelly S.

    2004-01-01

    An analysis method based on a deformation (as opposed to damage) approach has been developed to model the strain rate dependent, nonlinear deformation of woven ceramic matrix composites, such as the Reinforced Carbon Carbon (RCC) material used on the leading edges of the Space Shuttle. In the developed model, the differences in the tension and compression deformation behaviors have also been accounted for. State variable viscoplastic equations originally developed for metals have been modified to analyze the ceramic matrix composites. To account for the tension/compression asymmetry in the material, the effective stress and effective inelastic strain definitions have been modified. The equations have also been modified to account for the fact that in an orthotropic composite the in-plane shear response is independent of the stiffness in the normal directions. The developed equations have been implemented into LS-DYNA through the use of user defined subroutines (UMATs). Several sample qualitative calculations have been conducted, which demonstrate the ability of the model to qualitatively capture the features of the deformation response present in woven ceramic matrix composites.

  19. A Discrete Model for Simulation of Composites Plate Impact Including Coupled Intra- and Inter-ply Failure

    NASA Astrophysics Data System (ADS)

    Jäger, Sebastian; Pickett, Anthony; Middendorf, Peter

    2016-04-01

    Laminated composites can undergo complex damage mechanisms when subjected to transverse impact. For unidirectional laminates it is well recognized that delamination failure usually initiates via intra-ply shear cracks that run parallel to the fibres. These cracks extend to the interface of adjacent orthogonal plies, where they are either stopped, or propagate further as inter-ply delamination cracks. These mechanisms largely determine impact energy absorption and post-delamination bending stiffness of the laminate. Important load transfer mechanisms will occur that may lead to fibre failure and ultimate rupture of the laminate. In recent years most Finite Element (FE) models to predict delamination usually stack layers of ply elements with interface elements to represent inter-ply stiffness and treat possible delamination. The approach is computationally efficient and does give some estimate of delamination zones and damaged laminate bending stiffness. However, these models do not properly account for coupled intra-ply shear failure and delamination crack growth, and therefore cannot provide accurate results on crack initiation and propagation. An alternative discrete meso-scale FE model is presented that accounts for this coupling, which is validated against common delamination tests and impact delamination from the Compression After Impact (CAI) test. Ongoing research is using damage prediction from the CAI simulation as a basis for residual strength analysis, which will be the published in future work.

  20. Modeling the Nonlinear, Strain Rate Dependent Deformation of Woven Ceramic Matrix Composites With Hydrostatic Stress Effects Included

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Carney, Kelly S.

    2004-01-01

    An analysis method based on a deformation (as opposed to damage) approach has been developed to model the strain rate dependent, nonlinear deformation of woven ceramic matrix composites with a plain weave fiber architecture. In the developed model, the differences in the tension and compression response have also been considered. State variable based viscoplastic equations originally developed for metals have been modified to analyze the ceramic matrix composites. To account for the tension/compression asymmetry in the material, the effective stress and effective inelastic strain definitions have been modified. The equations have also been modified to account for the fact that in an orthotropic composite the in-plane shear stiffness is independent of the stiffness in the normal directions. The developed equations have been implemented into a commercially available transient dynamic finite element code, LS-DYNA, through the use of user defined subroutines (UMATs). The tensile, compressive, and shear deformation of a representative plain weave woven ceramic matrix composite are computed and compared to experimental results. The computed values correlate well to the experimental data, demonstrating the ability of the model to accurately compute the deformation response of woven ceramic matrix composites.

  1. Species-environment relationships and potential for distribution modelling in coastal waters

    NASA Astrophysics Data System (ADS)

    Snickars, M.; Gullström, M.; Sundblad, G.; Bergström, U.; Downie, A.-L.; Lindegarth, M.; Mattila, J.

    2014-01-01

    Due to increasing pressure on the marine environment there is a growing need to understand species-environment relationships. To provide background for prioritising among variables (predictors) for use in distribution models, the relevance of predictors for benthic species was reviewed using the coastal Baltic Sea as a case-study area. Significant relationships for three response groups (fish, macroinvertebrates, macrovegetation) and six predictor categories (bottom topography, biotic features, hydrography, wave exposure, substrate and spatiotemporal variability) were extracted from 145 queried peer-reviewed field-studies covering three decades and six subregions. In addition, the occurrence of interaction among predictors was analysed. Hydrography was most often found in significant relationships, had low level of interaction with other predictors, but also had the most non-significant relationships. Depth and wave exposure were important in all subregions and are readily available, increasing their applicability for cross-regional modelling efforts. Otherwise, effort to model species distributions may prove challenging at larger scale as the relevance of predictors differed among both response groups and regions. Fish and hard bottom macrovegetation have the largest modelling potential, as they are structured by a set of predictors that at the same time are accurately mapped. A general importance of biotic features implies that these need to be accounted for in distribution modelling, but the mapping of most biotic features is challenging, which currently lowers the applicability. The presence of interactions suggests that predictive methods allowing for interactive effects are preferable. Detailing these complexities is important for future distribution modelling.

  2. Particle modelling of low-pressure radio-frequency magnetron discharges including the effects of self-induced electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Benyoucef, D.; Yousfi, M.

    2014-08-01

    Modelling of radio-frequency (RF) magnetron discharges is performed using a particle-in-cell/Monte Carlo technique in the case of low-pressure argon gas at 4 mTorr and high external magnetic field in order to self-maintain the discharge and to generate an energetic quasi-ion beam required for cathode sputtering applications. An emphasis is made, for the first time in the literature in the case of low-pressure RF discharges, on the development of a particle model coupled with the full set of electromagnetic field equations. The aim is to analyse the effect on the RF plasma features of the plasma-induced magnetic field resulting from the coupling of the Maxwell-Ampere equation. We also analysed the effect of the electric field due to the time variation of magnetic field resulting from the coupling of the Maxwell-Faraday equation. For the present asymmetrical plasma reactor, the mean relative difference on, for instance, the ion density with and without the consideration of plasma-induced magnetic and electric fields due to the time variation of the magnetic field can reach about 2.5% in the region of the plasma bulk and about 10% in the lateral sheath. The effects of these two induced electromagnetic fields are in fact higher in the regions where the radial magnetic field generated by the external magnets belonging to the magnetron configuration is low. These non-negligible relative differences clearly show the importance of rigorously taking into account, beyond the usual Poisson's equation for the space charge electric field, the full set of electromagnetic Maxwell equations for a more accurate modelling of these low-pressure discharges, particularly when the total current density reaches a few mA cm-2.

  3. The visualization of DHSI based on the relationship model of CL and SA

    NASA Astrophysics Data System (ADS)

    Wang, Haibo; Guo, Huijuan; Xue, Chengqi

    2013-03-01

    The source and cause of cognitive load (CL) and situation awareness (SA) in digital human-system interface (DHSI) is explained. Based on the analysis of cognitive procedure and the relation of CL and SA, The relationship model of CL and SA in DHSI is put forward. Using the association target and the relationship model of CL and SA, the method and strategy of information visualization of DHSI is presented which is based on the cognitive psychology. Selecting the Boeing 757 autopilot as the case, the comparison of design is shown.

  4. Implementing the COACH relationship model: health promotion for mothers and children.

    PubMed

    Hanks, C; Kitzman, H; Milligan, R

    1995-12-01

    Program designers and nurses developed and implemented the COACH Relationship Model to help low-income mothers change health-related behaviors as part of a clinical trial conducted from 1990 to 1994 of the impact of nurse home visitation. By first orienting the program nurses to the theoretical underpinnings (caring, ecological, role supplementation, and self-efficacy theories) and then involving them in developing program materials to translate the theoretical and philosophical concepts into nursing interventions, the essential features of the relationship model were retained through the implementation process.

  5. Model of gene transcription including the return of a RNA polymerase to the beginning of a transcriptional cycle

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2009-11-01

    The gene transcription occurs via the RNA polymerase (RNAP) recruitment on the DNA promoter sequence, formation of a locally open DNA chain, promoter escape, steps of the RNA synthesis, and RNA and RNAP release after reading the final DNA base. Just after the end of the RNA synthesis, RNAP surrounds the closed DNA chain and may diffuse along DNA, desorb, or reach the promoter and start the RNA-synthesis cycle again. We present a generic kinetic model taking the latter steps into account and show analytically and by Monte Carlo simulations that it predicts transcriptional bursts even in the absence of explicit regulation of the transcription by master proteins.

  6. Measuring and Modeling Naturally Occurring Radioactive Material: Interpreting the Relationship Between the Natural Radionuclides Present

    SciTech Connect

    Lombardo, A.J.; Mucha, A.F.

    2008-07-01

    The regulatory release of sites and facilities (property) for restricted or unrestricted use has evolved beyond prescribed levels to model-derived dose and risk based limits. Dose models for deriving corresponding soil and structure radionuclide concentration guidelines are necessarily simplified representations of complex processes. A conceptual site model is often developed to present a reasonable and somewhat conservative representation of the physical and chemical properties of the impacted material. Dose modeling software is then used to estimate resulting dose and/or radionuclide specific acceptance criteria (activity concentrations). When the source term includes any or all of the uranium, thorium or actinium natural decay series radionuclides the interpretation of the relationship between the individual radionuclides of the series is critical to a technically correct and complete assessment of risk and/or derivation of radionuclide specific acceptance criteria. Unlike man-made radionuclides, modeling and measuring naturally occurring radioactive material (NORM) and technologically enhanced NORM (TENORM) source terms involves the interpretation of the relationship between the radionuclide present, e.g., secular equilibrium, enrichment, depletion or transient equilibrium. Isotopes of uranium, radium, and thorium occur in all three natural decay series. Each of the three series also produces a radon gas isotope as one of its progeny. In nature, the radionuclides in the three natural decay series are in a state that is approaching or has achieved secular equilibrium, in which the activities of all radionuclides within each series are nearly equal. However, ores containing the three natural decay series may begin in approximate secular equilibrium, but after processing, equilibrium may be broken and certain elements (and the radioactive isotopes of that element) may be concentrated or removed. Where the original ore may have contained one long chain of natural

  7. Investigating the relationship between inflation and growth: Evidence from panel ARDL models

    NASA Astrophysics Data System (ADS)

    Chu, Jenq Fei; Sek, Siok Kun

    2014-07-01

    The study of the relationship between inflation and growth is important as it provides crucial information for policy decisions. In this study, we seek to investigate the short-run and long-run relationship between inflation and growth in 3 groups of countries: high income, low income and middle income groups using the Auto Regression Distributed Lag models. The MG (Mean Group) and PMG (Pooled Mean Group) estimations are applied in this analysis. The Hausman Test is conducted to decide between the MG and PMG estimators. The panel data take the period of 1960-2012. As the result, MG estimator is preferred by all the 3 groups of countries. The results provide the dynamic relationships (short-run and the long-run relationships) between the three variables tested. The highly significant error correction term in the low income and middle income group further confirms the existence of a stable long-run relationship. The long-run relationship exists in the high income group but it is not significant. Comparisons of the results across the three groups of countries have revealed deeper information on the relationship across different income levels.

  8. Segment Tracking via a Spatiotemporal Linking Process including Feedback Stabilization in an n-D Lattice Model.

    PubMed

    Dellen, Babette; Aksoy, Eren Erdal; Wörgötter, Florentin

    2009-01-01

    Model-free tracking is important for solving tasks such as moving-object tracking and action recognition in cases where no prior object knowledge is available. For this purpose, we extend the concept of spatially synchronous dynamics in spin-lattice models to the spatiotemporal domain to track segments within an image sequence. The method is related to synchronization processes in neural networks and based on superparamagnetic clustering of data. Spin interactions result in the formation of clusters of correlated spins, providing an automatic labeling of corresponding image regions. The algorithm obeys detailed balance. This is an important property as it allows for consistent spin-transfer across subsequent frames, which can be used for segment tracking. Therefore, in the tracking process the correct equilibrium will always be found, which is an important advance as compared with other more heuristic tracking procedures. In the case of long image sequences, i.e., movies, the algorithm is augmented with a feedback mechanism, further stabilizing segment tracking. PMID:22291568

  9. A self-consistent model for a SOA-based fiber ring laser including the mode-locked pulse properties

    NASA Astrophysics Data System (ADS)

    Zarikas, Vasilios; Vlachos, Kyriakos

    2006-07-01

    In this paper, we present a self-consistent model of an optically mode-locked semiconductor fiber ring laser. The fiber laser uses a semiconductor optical amplifier (SOA) as the gain medium, while mode-locking is achieved by its gain modulation, via an external optical pulsed signal. We solved the model analytically developing a novel technique, where we have assumed double saturation of the SOA by both the mode-locked and the externally introduced pulsed signal. The study revealed the locus of the laser parameters to achieve mode-locking. In particular, it was found that SOA gain and energy of the externally introduced signal are two critical parameters that must simultaneously set properly for exact mode-locking. Another outcome of our analysis is that the study of the chirp parameter should be carried out keeping the nonlinear terms of the SOA gain. We have also investigated a slightly detuning regime of operation that revealed a fast change of the mode-locking process.

  10. Segment Tracking via a Spatiotemporal Linking Process including Feedback Stabilization in an n-D Lattice Model

    PubMed Central

    Dellen, Babette; Aksoy, Eren Erdal; Wörgötter, Florentin

    2009-01-01

    Model-free tracking is important for solving tasks such as moving-object tracking and action recognition in cases where no prior object knowledge is available. For this purpose, we extend the concept of spatially synchronous dynamics in spin-lattice models to the spatiotemporal domain to track segments within an image sequence. The method is related to synchronization processes in neural networks and based on superparamagnetic clustering of data. Spin interactions result in the formation of clusters of correlated spins, providing an automatic labeling of corresponding image regions. The algorithm obeys detailed balance. This is an important property as it allows for consistent spin-transfer across subsequent frames, which can be used for segment tracking. Therefore, in the tracking process the correct equilibrium will always be found, which is an important advance as compared with other more heuristic tracking procedures. In the case of long image sequences, i.e., movies, the algorithm is augmented with a feedback mechanism, further stabilizing segment tracking. PMID:22291568

  11. A generalized approach to the modeling of the species-area relationship.

    PubMed

    Conceição, Katiane Silva; Ulrich, Werner; Diniz, Carlos Alberto Ribeiro; Rodrigues, Francisco Aparecido; de Andrade, Marinho Gomes

    2014-01-01

    This paper proposes a statistical generalized species-area model (GSAM) to represent various patterns of species-area relationship (SAR), which is one of the fundamental patterns in ecology. The approach enables the generalization of many preliminary models, as power-curve model, which is commonly used to mathematically describe the SAR. The GSAM is applied to simulated data set of species diversity in areas of different sizes and a real-world data of insects of Hymenoptera order has been modeled. We show that the GSAM enables the identification of the best statistical model and estimates the number of species according to the area. PMID:25171161

  12. Laser-induced electron dynamics including photoionization: A heuristic model within time-dependent configuration interaction theory.

    PubMed

    Klinkusch, Stefan; Saalfrank, Peter; Klamroth, Tillmann

    2009-09-21

    We report simulations of laser-pulse driven many-electron dynamics by means of a simple, heuristic extension of the time-dependent configuration interaction singles (TD-CIS) approach. The extension allows for the treatment of ionizing states as nonstationary states with a finite, energy-dependent lifetime to account for above-threshold ionization losses in laser-driven many-electron dynamics. The extended TD-CIS method is applied to the following specific examples: (i) state-to-state transitions in the LiCN molecule which correspond to intramolecular charge transfer, (ii) creation of electronic wave packets in LiCN including wave packet analysis by pump-probe spectroscopy, and, finally, (iii) the effect of ionization on the dynamic polarizability of H(2) when calculated nonperturbatively by TD-CIS.