Kang, Yuan; Pan, Weijian; Liang, Siyun; Li, Ning; Zeng, Lixuan; Zhang, Qiuyun; Luo, Jiwen
2016-10-01
There is limited study to simultaneously determine the relative bioavailability of heavy metals such as Cd, Pb, Cu, Cr(VI), and Ni in soil samples. In the present study, the bioaccessibility of heavy metals using in vitro assay was compared with the relative bioavailability of heavy metals using in vivo mouse model. The bioaccessibility of heavy metals ranged from 9.05 ± 0.97 % (Cr) to 42.8 ± 3.52 % (Cd). The uptake profile of heavy metals in soil and solution samples in mouse revealed that the uptake kinetics could be fitted to a two-compartment model. The relative bioavailability of heavy meals ranged from 34.8 ± 7.0 % (Ni) to 131 ± 20.3 % (Cu). Poor correlation between bioaccessibility and relative bioavailability of heavy metals was observed (r (2) = 0.11, p > 0.05). The relative bioavailability of heavy metals was significantly higher than the bioaccessibility of heavy metals (p < 0.05). The present study indicated that the in vitro digestion method should be carefully employed in risk assessment.
USDA-ARS?s Scientific Manuscript database
Red carrots contain lycopene in addition to ß-Carotene. The utility of red carrot as a functional food depends in part on the bioavailability of its constituent carotenoids. Lycopene bioavailability was compared in Mongolian gerbils (Meriones unguiculatus) fed freeze-dried red carrot and tomato pa...
Relative Bioavailability and Bioaccessability and Speciation of ...
Background: Assessment of soil arsenic (As) bioavailability may profoundly affect the extent of remediation required at contaminated sites by improving human exposure estimates. Because small adjustments in soil As bioavailability estimates can significantly alter risk assessments and remediation goals, convenient, rapid, reliable, and inexpensive tools are needed to determine soil As bioavailability. Objectives: We evaluated inexpensive methods for assessing As bioavailability in soil as a means to improve human exposure estimates and potentially reduce remediation costs. Methods: Nine soils from residential sites affected by mining or smelting activity and two National Institute of Standards and Technology standard reference materials were evaluated for As bioavailability, bioaccessibility, and speciation. Arsenic bioavailability was determined using an in vivo mouse model, and As bioaccessibility was determined using the Solubility/Bioavailability Research Consortium in vitro assay. Arsenic speciation in soil and selected soil physicochemical properties were also evaluated to determine whether these parameters could be used as predictors of As bio¬availability and bioaccessibility. Results: In the mouse assay, we compared bioavailabilities of As in soils with that for sodium arsenate. Relative bioavailabilities (RBAs) of soil As ranged from 11% to 53% (mean, 33%). In vitro soil As bioaccessibility values were strongly correlated with soil As RBAs (R
Nix, D E David E; Adam, R D Rodney D; Auclair, Barbara; Krueger, T S Todd S; Godo, P G Paul G; Peloquin, C A Charles A
2004-01-01
Clofazimine is potentially useful for the treatment of disease due to multidrug resistant Mycobacterium tuberculosis, as well as leprosy and certain chronic skin diseases. Its pharmacokinetics have been incompletely characterized. This study was conducted to explore issues relating to bioavailability in the presence of food, orange juice, and antacid. A 5 drug regimen consisting of clofazimine, cycloserine, ethionamide, para-aminosalicyclic acid, and pyridoxime was administered to healthy subjects four times using a four period cross-over design with two weeks washout between treatments. Subjects also received orange juice, a high fat meal, aluminum/magnesium antacid, or only water in random order with the drug regimen. The pharmacokinetics of clofazimine were assessed using individual- and population-based methods and relative bioavailability compared to fasting administration was determined. Clofazimine exhibited a sometimes prolonged and variable lag-time and considerable variability in plasma concentrations. From the population analysis (one-compartment model), the mean oral clearance was 76.7 l/h (CV=74.2%) and mean apparent volume of distribution was 1470 l (CV=36.3%). The first-order absorption rate constant ranged from 0.716 to 1.33 h(-1) (pooled CV=61.7%). Residual (proportional) error was 49.1%. Estimates of bioavailability compared to fasting administration were 145% (90% CI, 107-183%) for administration with high fat food, 82.0% (63.2-101%) for administration with orange juice, and 78.5% (55.1-102%) for administration with antacid. Administration of clofazimine with a high fat meal provides the greatest bioavailability, however, bioavailability is associated with high inter- and intra-subject variability. Both orange juice and aluminum-magnesium antacid produced a reduction in mean bioavailability of clofazimine.
Alterations of the arginine metabolome in asthma.
Lara, Abigail; Khatri, Sumita B; Wang, Zeneng; Comhair, Suzy A A; Xu, Weiling; Dweik, Raed A; Bodine, Melanie; Levison, Bruce S; Hammel, Jeffrey; Bleecker, Eugene; Busse, William; Calhoun, William J; Castro, Mario; Chung, Kian Fan; Curran-Everett, Douglas; Gaston, Benjamin; Israel, Elliot; Jarjour, Nizar; Moore, Wendy; Peters, Stephen P; Teague, W Gerald; Wenzel, Sally; Hazen, Stanley L; Erzurum, Serpil C
2008-10-01
As the sole nitrogen donor in nitric oxide (NO) synthesis and key intermediate in the urea cycle, arginine and its metabolic pathways are integrally linked to cellular respiration, metabolism, and inflammation. We hypothesized that arginine (Arg) bioavailability would be associated with airflow abnormalities and inflammation in subjects with asthma, and would be informative for asthma severity. Arg bioavailability was assessed in subjects with severe and nonsevere asthma and healthy control subjects by determination of plasma Arg relative to its metabolic products, ornithine and citrulline, and relative to methylarginine inhibitors of NO synthases, and by serum arginase activity. Inflammatory parameters, including fraction of exhaled NO (Fe(NO)), IgE, skin test positivity to allergens, bronchoalveolar lavage, and blood eosinophils, were also evaluated. Subjects with asthma had greater Arg bioavailability, but also increased Arg catabolism compared with healthy control subjects, as evidenced by higher levels of Fe(NO) and serum arginase activity. However, Arg bioavailability was positively associated with Fe(NO) only in healthy control subjects; Arg bioavailability was unrelated to Fe(NO) or other inflammatory parameters in severe or nonsevere asthma. Inflammatory parameters were related to airflow obstruction and reactivity in nonsevere asthma, but not in severe asthma. Conversely, Arg bioavailability was related to airflow obstruction in severe asthma, but not in nonsevere asthma. Modeling confirmed that measures of Arg bioavailabilty predict airflow obstruction only in severe asthma. Unlike Fe(NO), Arg bioavailability is not a surrogate measure of inflammation; however, Arg bioavailability is strongly associated with airflow abnormalities in severe asthma.
Self-microemulsifying drug delivery system improves curcumin dissolution and bioavailability.
Wu, Xuemei; Xu, Jianhua; Huang, Xiuwang; Wen, Caixia
2011-01-01
Curcumin has a wide spectrum of biological and pharmacological activities, but it has not yet been approved as a therapeutic agent because of its low solubility and stability in aqueous solution, and the relatively low bioavailability in vivo. To overcome these limitations, self-microemulsifying drug delivery system (SMEDDS) of curcumin was developed. Various oils, surfactants, and cosurfactants were selected to optimize the formulation. Pseudoternary phase diagrams were constructed and orthogonal design was used to compare the oil-in-water (o/w) microemulsion-forming capacity of different oils/surfactants/cosurfactants. The solubility of curcumin in various oils and cosurfactants was determined to find suitable ingredients with a good solubilizing capacity. Droplet size was measured to obtain the concentration of oil, surfactant, and cosurfactant for forming stable microemulsion. Furthermore, its quality and bioavailability in mice were assessed. Pseudoternary phase diagrams and solubility test showed that the formulation of SMEDDS composed of 20% ethanol, 60% Cremophor RH40®, and 20% isopropyl myristate, in which the concentration of curcumin reached 50 mg/mL. Curcumin was released completely from SMEDDS at 10 minutes. The developed SMEDDS formulation improved the oral bioavailability of curcumin significantly, and the relative oral bioavailability of SMEDDS compared with curcumin suspension was 1213%. The SMEDDS can significantly increase curcumin dissolution in vitro and bioavailability in vivo.
KuKanich, K; KuKanich, B; Guess, S; Heinrich, E
2016-01-01
Sucralfate impairs absorption of ciprofloxacin and other fluoroquinolones in humans, but no sucralfate-fluoroquinolone interaction has been reported in dogs. Veterinary formularies recommend avoiding concurrent administration of these medications, which might impact compliance, therapeutic success, and resistance selection from fluoroquinolones. To determine whether a drug interaction exists when sucralfate is administered to fed dogs concurrently with ciprofloxacin or enrofloxacin, and whether a 2 hour delay between fluoroquinolone and sucralfate affects fluoroquinolone absorption. Five healthy Greyhounds housed in a research colony. This was a randomized crossover study. Treatments included oral ciprofloxacin (C) or oral enrofloxacin (E) alone, each fluoroquinolone concurrently with an oral suspension of sucralfate (CS, ES), and sucralfate suspension 2 hours after each fluoroquinolone (C2S, E2S). Fluoroquinolone concentrations were evaluated using liquid chromatography with mass spectrometry. Drug exposure of ciprofloxacin was highly variable (AUC 5.52-22.47 h μg/mL) compared to enrofloxacin (AUC 3.86-7.50 h μg/mL). The mean relative bioavailability for ciprofloxacin and concurrent sucralfate was 48% (range 8-143%) compared to ciprofloxacin alone. Relative bioavailability of ciprofloxacin improved to 87% (range 37-333%) when sucralfate was delayed by 2 hours. By contrast, relative bioavailability for enrofloxacin and concurrent sucralfate was 104% (94-115%). A possible clinically relevant drug interaction for the relative bioavailability of ciprofloxacin with sucralfate was found. No significant difference in bioavailability was documented for enrofloxacin with sucralfate. Further research is warranted in fasted dogs and clinical cases requiring enrofloxacin or other approved fluoroquinolones in combination with sucralfate. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc on behalf of the American College of Veterinary Internal Medicine.
Moore, Kenneth T; Krook, Mark A; Vaidyanathan, Seema; Sarich, Troy C; Damaraju, C V; Fields, Larry E
2014-07-01
Because some patients have difficulty swallowing a whole tablet, we investigated the relative bioavailability of a crushed 20 mg rivaroxaban tablet and of 2 alternative crushed tablet dosing strategies. Stability and nasogastric (NG) tube adsorption characteristics of a crushed rivaroxaban tablet were assessed. Then, in 55 healthy adults, relative bioavailability of rivaroxaban administered orally as a whole tablet (Reference [Whole-Oral]), crushed tablet in applesauce suspension (Crushed-Oral), or crushed tablet in water suspension via NG tube (Crushed-NG) were determined. There were no significant changes in mean percent of non-degraded rivaroxaban recovered over 4 hours from crushed tablet suspensions (>98.4% recovery across all suspensions and time points) or after NG tube exposure (recovery: 99.1% for silicone and 98.9% for polyvinyl chloride NG tubes). Relative bioavailability was similar between Crushed-Oral and Reference dosing (Cmax and AUC∞ were within the 80-125% bioequivalence limits). Relative bioavailability was also similar between the Crushed-NG and Reference dosing (AUC∞ was within bioequivalence limits; Cmax [90% CI range: 78.5-85.8%] was only slightly below the 80% lower bioequivalence limit). A crushed rivaroxaban tablet was stable and when administered orally or via NG tube, displayed similar relative bioavailability compared to a whole tablet administered orally. © 2014, The American College of Clinical Pharmacology.
Zhang, Zhengzan; Quan, Guilan; Wu, Qiaoli; Zhou, Chan; Li, Feng; Bai, Xuequn; Li, Ge; Pan, Xin; Wu, Chuanbin
2015-05-01
The aim of this study was to load amorphous hydrophobic drug into ordered mesoporous silica (SBA-15) by supercritical carbon dioxide technology in order to improve the dissolution and bioavailability of the drug. Asarone was selected as a model drug due to its lipophilic character and poor bioavailability. In vitro dissolution and in vivo bioavailability of the obtained Asarone-SBA-15 were significantly improved as compared to the micronized crystalline drug. This study offers an effective, safe, and environmentally benign means of solving the problems relating to the solubility and bioavailability of hydrophobic molecules. Copyright © 2015 Elsevier B.V. All rights reserved.
Olivares-Morales, Andrés; Ghosh, Avijit; Aarons, Leon; Rostami-Hodjegan, Amin
2016-11-01
A new minimal Segmented Transit and Absorption model (mSAT) model has been recently proposed and combined with intrinsic intestinal effective permeability (P eff,int ) to predict the regional gastrointestinal (GI) absorption (f abs ) of several drugs. Herein, this model was extended and applied for the prediction of oral bioavailability and pharmacokinetics of oxybutynin and its enantiomers to provide a mechanistic explanation of the higher relative bioavailability observed for oxybutynin's modified-release OROS® formulation compared to its immediate-release (IR) counterpart. The expansion of the model involved the incorporation of mechanistic equations for the prediction of release, transit, dissolution, permeation and first-pass metabolism. The predicted pharmacokinetics of oxybutynin enantiomers after oral administration for both the IR and OROS® formulations were in close agreement with the observed data. The predicted absolute bioavailability for the IR formulation was within 5% of the observed value, and the model adequately predicted the higher relative bioavailability observed for the OROS® formulation vs. the IR counterpart. From the model predictions, it can be noticed that the higher bioavailability observed for the OROS® formulation was mainly attributable to differences in the intestinal availability (F G ) rather than due to a higher colonic f abs , thus confirming previous hypotheses. The predicted f abs was almost 70% lower for the OROS® formulation compared to the IR formulation, whereas the F G was almost eightfold higher than in the IR formulation. These results provide further support to the hypothesis of an increased F G as the main factor responsible for the higher bioavailability of oxybutynin's OROS® formulation vs. the IR.
Narala, Arjun; Veerabrahma, Kishan
2013-01-01
Quetiapine fumarate is an antipsychotic drug with poor oral bioavailability (9%) due to first-pass metabolism. Present work is an attempt to improve oral bioavailability of quetiapine fumarate by incorporating in solid lipid nanoparticles (SLN). Six quetiapine fumarate SLN formulations were developed using three different lipids by hot homogenisation followed by ultrasonication. The drug excipient compatibility was studied by differential scanning calorimetry (DSC). Stable quetiapine fumarate SLNs having a mean particle size of 200–250 nm with entrapment efficiency varying in between 80% and 92% were developed. The physical stability of optimized formulation F3 was checked at room temperature for 2 months. Comparative bioavailability studies were conducted in male Wistar rats after oral administration of quetiapine fumarate suspension and SLN formulation. The relative bioavailability of quetiapine fumarate from optimized SLN preparation was increased by 3.71 times when compared with the reference quetiapine fumarate suspension. The obtained results are indicative of SLNs as potential lipid carriers for improving the bioavailability of quetiapine fumarate by minimizing first-pass metabolism. PMID:26555970
Iron Bioavailability and Provitamin A from Sweet Potato- and Cereal-Based Complementary Foods
Christides, Tatiana; Amagloh, Francis Kweku; Coad, Jane
2015-01-01
Iron and vitamin A deficiencies in childhood are public health problems in the developing world. Introduction of cereal-based complementary foods, that are often poor sources of both vitamin A and bioavailable iron, increases the risk of deficiency in young children. Alternative foods with higher levels of vitamin A and bioavailable iron could help alleviate these micronutrient deficiencies. The objective of this study was to compare iron bioavailability of β-carotene-rich sweet potato-based complementary foods (orange-flesh based sweet potato (OFSP) ComFa and cream-flesh sweet potato based (CFSP) ComFa with a household cereal-based complementary food (Weanimix) and a commercial cereal (Cerelac®), using the in vitro digestion/Caco-2 cell model. Iron bioavailability relative to total iron, concentrations of iron-uptake inhibitors (fibre, phytates, and polyphenols), and enhancers (ascorbic acid, ß-carotene and fructose) was also evaluated. All foods contained similar amounts of iron, but bioavailability varied: Cerelac® had the highest, followed by OFSP ComFa and Weanimix, which had equivalent bioavailable iron; CFSP ComFa had the lowest bioavailability. The high iron bioavailability from Cerelac® was associated with the highest levels of ascorbic acid, and the lowest levels of inhibitors; polyphenols appeared to limit sweet potato-based food iron bioavailability. Taken together, the results do not support that CFSP- and OFSP ComFa are better sources of bioavailable iron compared with non-commercial/household cereal-based weaning foods; however, they may be a good source of provitamin A in the form of β-carotene. PMID:28231217
Kives, Sari; Hahn, Philip M; White, Emily; Stanczyk, Frank Z; Reid, Robert L
2005-03-01
Separate crossover studies compared the bioavailability of oral vs. vaginal routes of administration for the Yuzpe (n=5) and levonorgestrel regimens (n=4) of emergency contraception. Twice the standard dose of the Yuzpe regimen (200 microg of ethinyl estradiol, 1000 microg of levonorgestrel) or the levonorgestrel regimen (1500 microg of levonorgestrel) was self-administered vaginally. One week later, each subject received orally the standard dose of the assigned medication. Serial blood samples were collected over 24 h and assayed for levonorgestrel and ethinyl estradiol (for the Yuzpe regimen only). Paired t tests were used to compare oral vs. vaginal administration for maximum concentration (Cmax), time to maximum concentration (Tmax) and area under the curve over 24 h (AUC0-24). Relative bioavailability (vaginal/oral) was derived from AUC0-24. Vaginal administration of double the standard dose of the Yuzpe regimen resulted in a lower Cmax (vaginal=5.4 vs. oral=14.6 ng/mL, p=.038) and a later Tmax (5.9 vs. 2.0 h, p=.066) for levonorgestrel, compared to oral administration. Corresponding ethinyl estradiol concentrations were higher (786 vs. 391 pg/mL, p=.039) and peaked later (4.0 vs. 1.9 hr, p=.154) with vaginal administration. Relative bioavailabilities for levonorgestrel and ethinyl estradiol were 58% and 175%, respectively. Similarly, vaginal administration of the levonorgestrel regimen resulted in a lower Cmax (vaginal=5.4 vs. oral=15.2 ng/mL, p=.006) and a later Tmax (7.4 vs. 1.3 h, p=.037) for levonorgestel, compared to oral administration. The relative bioavailability was 62%. Our preliminary data suggest that vaginal administration of these emergency contraception regimens appears to require at least three times the standard oral dose to achieve equivalent systemic levonorgestrel concentrations.
Roe, Mark A; Collings, Rachel; Hoogewerff, Jurian; Fairweather-Tait, Susan J
2009-03-01
Food iron fortification is a sustainable and relatively simple strategy to reduce/prevent iron deficiency but is a challenge for the food industry because of possible adverse organoleptic changes caused by the added iron. A micronized dispersible ferric pyrophosphate, trademarked as SunActive Fe, has recently been developed. SunActive Fe has a small particle size, is water soluble and may be suitable for fortifying liquid products. To determine the relative bioavailability of SunActive Fe and its suitability for addition to pure apple juice. Iron absorption from SunActive Fe added to pure apple juice (Minute Maid) was compared with absorption from ferrous sulphate, a highly bioavailable form of iron, in 15 women with relatively low iron stores. Both forms of iron were enriched with an iron stable isotope and iron absorption from the apple juice drinks was calculated from the isotopic enrichment of red blood cells 14 days after the last test meal. Although mean absorption of iron from SunActive Fe was significantly lower than from ferrous sulphate (5.5% compared with 9.1%), the mean bioavailability of SunActive Fe iron relative to ferrous sulphate was 0.6, indicating that it is a good source of bioavailable iron. Iron Absorption from SunActive Fe was positively correlated (r = 0.97, P = 0.01) with absorption from ferrous sulphate, and negatively correlated with serum ferritin concentration (ferrous sulphate r = -0.81, P < 0.001; SunActive Fe r = -0.76, P = 0.01). SunActive Fe was well absorbed from apple juice and is a potentially useful fortificant for liquid food products.
Heat-treated hull flour does not affect iron bioavailability in rats.
Martino, Hércia Stampini Duarte; Carvalho, Ariela Werneck de; Silva, Cassiano Oliveira da; Dantas, Maria Inês de Souza; Natal, Dorina Isabel Gomes; Ribeiro, Sônia Machado Rocha; Costa, Neuza Maria Brunoro
2011-06-01
In this study the chemical composition and iron bioavailability of hull and hull-less soybean flour from the new cultivar UFVTN 105AP was evaluated. The hemoglobin depletion-repletion method was used in Wistar rats. Soybean hull flour presented 37% more total dietary fiber and higher content of iron than hull-less soybean flour. The phytate:iron molar ratio, however, was 2-fold lower in the soybean hull flour in compared to the hull-less soybean flour. Animals fed soybean hull flour presented hemoglobin gains similar to those of the control diet group (p > 0.05). The Relative Biological Values of hull and hull-less soybean flour were 68.5% and 67.1%, respectively, compared to the control group. Heat-treated soybean hull flour (150 degrees C/30 minutes) showed high content of iron and low phytate, which favors the iron bioavailability. Thus, the soybean hull flour is a better source of dietary fiber and iron than hull-less soybean flour at comparable bioavailabilities.
Meng, Y Gloria; Hoyte, Kwame; Lutman, Jeff; Lu, Yanmei; Iyer, Suhasini; DeForge, Laura E; Theil, Frank-Peter; Fielder, Paul J; Prabhu, Saileta
2012-01-01
The neonatal Fc receptor (FcRn) plays an important and well-known role in immunoglobulin G (IgG) catabolism; however, its role in the disposition of IgG after subcutaneous (SC) administration, including bioavailability, is relatively unknown. To examine the potential effect of FcRn on IgG SC bioavailability, we engineered three anti-amyloid β monoclonal antibody (mAb) reverse chimeric mouse IgG2a (mIgG2a) Fc variants (I253A.H435A, N434H and N434Y) with different binding affinities to mouse FcRn (mFcRn) and compared their SC bioavailability to that of the wild-type (WT) mAb in mice. Our results indicated that the SC bioavailability of mIgG2a was affected by mFcRn-binding affinity. Variant I253A.H435A, which did not bind to mFcRn at either pH 6.0 or pH 7.4, had the lowest bioavailability (41.8%). Variant N434Y, which had the greatest increase in binding affinity at both pH 6.0 and pH 7.4, had comparable bioavailability to the WT antibody (86.1% vs. 76.3%), whereas Variant N434H, which had modestly increased binding affinity at pH 6.0 to mFcRn and affinity comparable to the WT antibody at pH 7.4, had the highest bioavailability (94.7%). A semi-mechanism-based pharmacokinetic model, which described well the observed data with the WT antibody and variant I253A.H435A, is consistent with the hypothesis that the decreased bioavailability of variant I253A.H435A was due to loss of the FcRn-mediated protection from catabolism at the absorption site. Together, these data demonstrate that FcRn plays an important role in SC bioavailability of therapeutic IgG antibodies. PMID:22327433
Effects of polymer molecular weight on relative oral bioavailability of curcumin.
Tsai, Yin-Meng; Chang-Liao, Wan-Ling; Chien, Chao-Feng; Lin, Lie-Chwen; Tsai, Tung-Hu
2012-01-01
Polylactic-co-glycolic acid (PLGA) nanoparticles have been used to increase the relative oral bioavailability of hydrophobic compounds and polyphenols in recent years, but the effects of the molecular weight of PLGA on bioavailability are still unknown. This study investigated the influence of polymer molecular weight on the relative oral bioavailability of curcumin, and explored the possible mechanism accounting for the outcome. Curcumin encapsulated in low (5000-15,000) and high (40,000-75,000) molecular weight PLGA (LMw-NPC and HMw-NPC, respectively) were prepared using an emulsification-solvent evaporation method. Curcumin alone and in the nanoformulations was administered orally to freely mobile rats, and blood samples were collected to evaluate the bioavailability of curcumin, LMw-NPC, and HMw-NPC. An ex vivo experimental gut absorption model was used to investigate the effects of different molecular weights of PLGA formulation on absorption of curcumin. High-performance liquid chromatography with diode array detection was used for quantification of curcumin in biosamples. There were no significant differences in particle properties between LMw-NPC and HMw-NPC, but the relative bioavailability of HMw-NPC was 1.67-fold and 40-fold higher than that of LMw-NPC and conventional curcumin, respectively. In addition, the mean peak concentration (C(max)) of conventional curcumin, LMw-NPC, and HMw-NPC was 0.028, 0.042, and 0.057 μg/mL, respectively. The gut absorption study further revealed that the HMw-PLGA formulation markedly increased the absorption rate of curcumin in the duodenum and resulted in excellent bioavailability compared with conventional curcumin and LMw-NPC. Our findings demonstrate that different molecular weights of PLGA have varying bioavailability, contributing to changes in the absorption rate at the duodenum. The results of this study provide the rationale for design of a nanomedicine delivery system to enhance the bioavailability of water-insoluble pharmaceutical compounds and functional foods.
Effects of polymer molecular weight on relative oral bioavailability of curcumin
Tsai, Yin-Meng; Chang-Liao, Wan-Ling; Chien, Chao-Feng; Lin, Lie-Chwen; Tsai, Tung-Hu
2012-01-01
Background Polylactic-co-glycolic acid (PLGA) nanoparticles have been used to increase the relative oral bioavailability of hydrophobic compounds and polyphenols in recent years, but the effects of the molecular weight of PLGA on bioavailability are still unknown. This study investigated the influence of polymer molecular weight on the relative oral bioavailability of curcumin, and explored the possible mechanism accounting for the outcome. Methods Curcumin encapsulated in low (5000–15,000) and high (40,000–75,000) molecular weight PLGA (LMw-NPC and HMw-NPC, respectively) were prepared using an emulsification-solvent evaporation method. Curcumin alone and in the nanoformulations was administered orally to freely mobile rats, and blood samples were collected to evaluate the bioavailability of curcumin, LMw-NPC, and HMw-NPC. An ex vivo experimental gut absorption model was used to investigate the effects of different molecular weights of PLGA formulation on absorption of curcumin. High-performance liquid chromatography with diode array detection was used for quantification of curcumin in biosamples. Results There were no significant differences in particle properties between LMw-NPC and HMw-NPC, but the relative bioavailability of HMw-NPC was 1.67-fold and 40-fold higher than that of LMw-NPC and conventional curcumin, respectively. In addition, the mean peak concentration (Cmax) of conventional curcumin, LMw-NPC, and HMw-NPC was 0.028, 0.042, and 0.057 μg/mL, respectively. The gut absorption study further revealed that the HMw-PLGA formulation markedly increased the absorption rate of curcumin in the duodenum and resulted in excellent bioavailability compared with conventional curcumin and LMw-NPC. Conclusion Our findings demonstrate that different molecular weights of PLGA have varying bioavailability, contributing to changes in the absorption rate at the duodenum. The results of this study provide the rationale for design of a nanomedicine delivery system to enhance the bioavailability of water-insoluble pharmaceutical compounds and functional foods. PMID:22745556
Li, Wen-Yi; Yu, Guo; Hogan, Renee M; Mohandas, Rajesh; Frye, Reginald F; Gumpricht, Eric; Markowitz, John S
2018-01-01
The purpose of this study was to compare the bioavailability between 2 milk thistle-containing dietary supplements, Product B and IsaGenesis, in healthy volunteers. Bioavailability between Product B, originally formulated as a powdered capsule, and IsaGenesis, reformulated as a soft gel, were compared by measuring silybin A and silybin B as surrogate pharmacokinetic markers for differences in absorption and bioavailability. For this randomized, open-label, crossover pharmacokinetic study, 12 healthy volunteers consumed a single-dose serving of each supplement separated by at least a 7-day washout period. Serial blood samples were obtained at 0, 0.5, 1, 1.5, 2, 3, 4, 6, and 8 hours and analyzed via LC-MS/MS. Rapid absorption and elimination of silybin A and silybin B have been observed after oral administration of both Product B and IsaGenesis. However, the absorption rate and extent, as indicated by mean the C max and mean plasma AUC, were significantly higher for the IsaGenesis soft gel formulation. The dose-corrected mean C max was 365% and 450% greater for silybin A and B, respectively, relative to powdered Product B. The time to T max was reached, on average, at least 1 hour earlier with IsaGenesis relative to Product B for both silybin A and silybin B. The IsaGenesis soft gel formulation provided substantially greater absorption and bioavailability of silybin A and silybin B relative to the powdered Product B supplement. ClinicalTrials.gov Identifier: NCT02529605. Copyright © 2018 Elsevier HS Journals, Inc. All rights reserved.
Thiol-Based Selective Extraction Assay to Comparatively Assess Bioavailable Mercury in Sediments
Ticknor, Jonathan L.; Kucharzyk, Katarzyna H.; Porter, Kaitlyn A.; Deshusses, Marc A.; Hsu-Kim, Heileen
2015-01-01
Abstract Bioaccumulation of methylmercury in the aquatic food web is governed in part by the methylation of inorganic divalent mercury (Hg(II)) by anaerobic microorganisms. In sulfidic settings, a small fraction of total Hg(II) is typically bioavailable to methylating microorganisms. Quantification of this fraction is difficult due to uncertainties in the speciation of Hg(II) and the mechanisms of uptake by methylating microbes. However, recent studies have shown that the bioavailable fraction is likely to include a portion of Hg(II) associated with solid phases, that is, nanostructured mercuric sulfides. Moreover, addition of thiols to suspensions of methylating cultures coincides with increased uptake into cells and methylmercury production. Here, we present a thiol-based selective extraction assay to provide information on the bioavailable Hg fraction in sediments. In the procedure, sediment samples were exposed to a nitrogen-purged solution of glutathione (GSH) for 30 min and the amount of GSH-leachable mercury was quantified. In nine sediment samples from a marine location, the relative GSH-leachable mercury concentration was strongly correlated to the relative amount of methylmercury in the sediments (r2=0.91, p<0.0001) across an order of magnitude of methylmercury concentration values. The approach was further applied to anaerobic sediment slurry microcosm experiments in which sediments were cultured under the same microbial growth conditions but were amended with multiple forms of Hg with a known spectrum of bioavailability. GSH-leachable Hg concentrations increased with observed methylmercury concentrations in the microcosms, matching the trend of species bioavailability in our previous work. Results suggest that a thiol-based selective leaching approach is an improvement compared with other proposed methods to assess Hg bioavailability in sediment and that this approach could provide a basis for comparison of sites where Hg methylation is a concern. PMID:26244001
Reddy, Manju B; Armah, Seth M
2018-06-20
Iron deficiency is a leading global nutritional problem. Ferrous sulfate (FeSO 4 ) is the most common iron source used for supplementation. Because of many side effects associated with its consumption, it is important to identify new forms of iron. The objectives of this study were to assess the bioavailability of iron-enriched Aspergillus oryzae, Aspiron (ASP), evaluate the toxicity of high-dose iron supplementation with ASP, and determine the ASP impact on gut microbiota in rats. In this study, we investigated iron bioavailability using the hemoglobin repletion test. Aspartate aminotransferase, alanine aminotransferase, and blood urea nitrogen levels were determined to evaluate the effect on liver and kidney functions. Protein carbonyls were measured to assess oxidative damage to proteins. Fecal samples at the end of the 14 day repletion period were used for 16S rRNA sequencing for gut microbiota analysis. The slope ratio method using a common intercept linear regression model was used to compare the bioavailability of ASP to FeSO 4 . Iron repletion increased hemoglobin concentrations with both ASP and FeSO 4 treatments compared to the control group, except in the lowest ASP group. The slope ratio indicated that relative iron bioavailability of ASP was 60% of that of FeSO 4 when hemoglobin change was compared to iron in the diet. Similar results were obtained when absolute iron intake was compared on the basis of food consumption. In comparison to the control, protein carbonyl concentrations were significantly ( p < 0.05) higher in the FeSO 4 group but not with the ASP group. Supplementation with both sources of iron reduced the Enterobacteriaceae population in the gut microbiota of the rats. A higher relative abundance of bacteria from the phylum Verrucomicrobia was also observed with the highest dose of ASP. Iron-enriched A. oryzae with 60% relative bioavailability of FeSO 4 did not show any signs of adverse effects after 14 days of iron supplementation. Future human studies are needed to understand the ASP detailed effect on gut microbiota.
Li, Kan; Li, Chao; Yu, Nan-Yang; Juhasz, Albert L; Cui, Xin-Yi; Ma, Lena Q
2015-01-06
Food is a major source of human exposure to perfluorooctanoic acid (PFOA), however, PFOA bioavailability in food has not been studied. An in vivo mouse model and three in vitro methods (unified BARGE method, UBM; physiologically based extraction test, PBET; and in vitro digestion method, IVD) were used to determine the relative bioavailability and bioaccessibility of PFOA in the presence of 17 foods. PFOA was mixed with foods of different nutritional compositions and fed to mice over a 7-d period. PFOA relative bioavailability was determined by comparing PFOA accumulation in the liver following PFOA exposure via food to that in water. PFOA bioavailability relative to water ranged from 4.30 ± 0.80 to 69.0 ± 11.9% and was negatively correlated with lipid content (r = 0.76). This was possibly due to competitive sorption of free fatty acids with PFOA onto transporters on intestine epithelial cells. Besides, cations in the gastrointestinal tract, such as Ca(2+) and Mg(2+), are capable of complexing PFOA and partitioning to the lipid phase. On the other hand, when assessed using in vitro assays, PFOA bioaccessibility varied with methods, being 8.7-73% (UBM), 9.8-99% (PBET), and 21-114% (IVD). PFOA bioaccessibility was negatively correlated with lipid content when assessed using UBM (r = 0.82); however, a poor correlation with food composition was observed for PBET and IVD (r = 0.01-0.50). When in vivo and in vitro data were compared, a strong correlation was observed for UBM (r = 0.79), but poor relationships were observed for PBET and IVD (r = 0.11-0.22). This was probably because the higher lipolysis ability and presence of Ca(2+) and Mg(2+) in the gastrointestinal fluid of UBM resulted in a lower potential to form stable micelles compared to PBET and IVD. These results indicated that PFOA relative bioavailability was mainly affected by lipid content in foods, and UBM has the potential to determine PFOA bioaccessibility in food samples.
The effect of dietary factors on strawberry anthocyanins oral bioavailability.
Xiao, Di; Sandhu, Amandeep; Huang, Yancui; Park, Eunyoung; Edirisinghe, Indika; Burton-Freeman, Britt M
2017-11-15
Strawberries are a dietary source of anthocyanins, particularly pelargonidin glycosides. Dietary anthocyanins have received increasing attention among researchers and consumers due to their health benefits. The oral bioavailability of anthocyanins is reported to be low and various dietary factors may influence their oral bioavailability further. Milk is suggested to reduce (poly)phenols' oral bioavailability. However, the effect of milk on anthocyanin oral bioavailability remains uncertain. Likewise, mixed nutrient meals may influence the oral bioavailability of anthocyanins. Therefore, the purpose of this study was to assess the effect of milk on the oral bioavailability and other pharmacokinetic (PK) variables of strawberry anthocyanins consumed with and without a meal. Nine healthy participants consumed a strawberry beverage prepared in milk or water with a standard meal on two occasions. On two additional occasions, the beverages were given to a subset (n = 4) of participants to determine the impact of the meal on anthocyanin PK variables, including oral bioavailability. Independent of the meal, beverages prepared in milk significantly reduced the peak plasma concentrations (C max ) of pelargonidin-3-O-glucoside (P-3-G), pelargonidin-glucuronide (PG) and pelargonidin-3-O-rutinoside (P-3-R), as well as the PG and P-3-R area under the curve (AUC) (p < 0.05) compared to beverages prepared in water. Milk did not influence the oral relative bioavailability of pelargonidin anthocyanins under meal conditions; however, the oral relative bioavailability of pelargonidin anthocyanins was reduced by ∼50% by milk under without meal conditions (p < 0.05). Consuming strawberry beverages made with milk and consuming those made with water with and without a meal influenced different aspects of strawberry anthocyanin PKs. The significance of this effect on clinical efficacy requires additional research.
Using soil properties to predict in vivo bioavailability of lead in soils.
Wijayawardena, M A Ayanka; Naidu, Ravi; Megharaj, Mallavarapu; Lamb, Dane; Thavamani, Palanisami; Kuchel, Tim
2015-11-01
Soil plays a significant role in controlling the potential bioavailability of contaminants in the environment. In this study, eleven soils were used to investigate the relationship between soil properties and relative bioavailability (RB) of lead (Pb). To minimise the effect of source of Pb on in vivo bioavailability, uncontaminated study soils were spiked with 1500 mg Pb/kg soil and aged for 10-12 months prior to investigating the relationships between soil properties and in vivo RB of Pb using swine model. The biological responses to oral administration of Pb in aqueous phase or as spiked soils were compared by applying a two-compartment pharmacokinetic model to blood Pb concentration. The study revealed that RB of Pb from aged soils ranged from 30±9% to 83±7%. The very different RB of Pb in these soils was attributed to variations in the soils' physico-chemical properties. This was established using sorption studies showing: firstly, Freundlich partition coefficients that ranged from 21 to 234; and secondly, a strongly significant (R(2)=0.94, P<0.001) exponential relationship between RB and Freundlich partition coefficient (Kd). This simple exponential model can be used to predict relative bioavailability of Pb in contaminated soils. To the best of our knowledge, this is the first such model derived using sorption partition coefficient to predict the relative bioavailability of Pb. Copyright © 2015 Elsevier Ltd. All rights reserved.
Walczyk, Thomas; Kastenmayer, Peter; Storcksdieck Genannt Bonsmann, Stefan; Zeder, Christophe; Grathwohl, Dominik; Hurrell, Richard F
2013-06-01
The main purpose of this study was to establish bioavailability data in humans for the new (Fe) fortification compound ferrous ammonium phosphate (FAP), which was specially developed for fortification of difficult-to-fortify foods where soluble Fe compounds cannot be used due to their negative impact on product stability. A double-blind, randomized clinical trial with cross-over design was conducted to obtain bioavailability data for FAP in humans. In this trial, Fe absorption from FAP-fortified full-cream milk powder was compared to that from ferric pyrophosphate (FPP) and ferrous sulfate. Fe absorption was determined in 38 young women using the erythrocyte incorporation dual stable isotope technique (⁵⁷Fe, ⁵⁸Fe). Geometric mean Fe absorption from ferrous sulfate, FAP and FPP was 10.4, 7.4 and 3.3 %, respectively. Fe from FAP was significantly better absorbed from milk than Fe from FPP (p < 0.0001). Fe absorption from FAP was significantly lower than Fe absorption from ferrous sulfate, which was used as water-soluble reference compound (p = 0.0002). Absorption ratios of FAP and FPP relative to ferrous sulfate as a measure of relative bioavailability were 0.71 and 0.32, respectively. The results of the present studies show that replacing FPP with FAP in full-cream milk could significantly improve iron bioavailability.
Determining bioavailability of food folates in a controlled intervention study.
Hannon-Fletcher, Mary P; Armstrong, Nicola C; Scott, John M; Pentieva, Kristina; Bradbury, Ian; Ward, Mary; Strain, J J; Dunn, Adele A; Molloy, Anne M; Kerr, Maeve A; McNulty, Helene
2004-10-01
The concept of dietary folate equivalents (DFEs) in the United States recognizes the differences in bioavailability between natural food folates and the synthetic vitamin, folic acid. However, many published reports on folate bioavailability are problematic because of several confounding factors. We compared the bioavailability of food folates with that of folic acid under controlled conditions. To broadly represent the extent to which natural folates are conjugated in foods, we used 2 natural sources of folate, spinach (50% polyglutamyl folate) and yeast (100% polyglutamyl folate). Ninety-six men were randomly assigned according to their screening plasma homocysteine (tHcy) concentration to 1 of 4 treatment groups for an intervention period of 30 d. Each subject received (daily under supervision) either a folate-depleted "carrier" meal or a drink plus 1) placebo tablet, 2) 200 microg folic acid in a tablet, 3) 200 microg natural folate provided as spinach, or 4) 200 microg natural folate provided as yeast. Among the subjects who completed the intervention, responses (increase in serum folate, lowering of tHcy) relative to those in the placebo group (n = 18) were significant in the folic acid group (n = 18) but not in the yeast folate (n = 19) or the spinach folate (n = 18) groups. Both natural sources of folate were significantly less bioavailable than was folic acid. Overall estimations of folate bioavailability relative to that of folic acid were found to be between 30% (spinach) and 59% (yeast). Relative bioavailability estimates were consistent with the estimates from the metabolic study that were used as a basis to derive the US DFE value.
Bioavailable Citrus sinensis Extract: Polyphenolic Composition and Biological Activity.
Pepe, Giacomo; Pagano, Francesco; Adesso, Simona; Sommella, Eduardo; Ostacolo, Carmine; Manfra, Michele; Chieppa, Marcello; Sala, Marina; Russo, Mariateresa; Marzocco, Stefania; Campiglia, Pietro
2017-04-15
Citrus plants contain large amounts of flavonoids with beneficial effects on human health. In the present study, the antioxidant and anti-inflammatory potential of bioavailable polyphenols from Citrus sinensis was evaluated in vitro and ex vivo, using the murine macrophages cell line J774A.1 and primary peritoneal macrophages. Following simulated gastro-intestinal digestion, the in vitro bioavailability of Citrus sinensis polyphenolic extract was assessed using the human cell line Caco-2 grown as monolayers on a transwell membrane. Data demonstrated a relative permeation of its compounds (8.3%). Thus, the antioxidant and anti-inflammatory effect of polyphenolic Citrus sinensis fraction (Cs) was compared to the bioavailable one (CsB). Results revealed that Citrus extract were able to reduce macrophages pro-inflammatory mediators, including nitric oxide, iNOS, COX-2 and different cytokines. Moreover, the effect of Citrus sinensis polyphenols was associated with antioxidant effects, such as a reduction of reactive oxygen species (ROS) and heme-oxygenase-1 (HO-1) increased expression. Our results provide evidence that the bioavailable polyphenolic constituents of the Citrus sinensis extract accumulate prevalently at intestinal level and could reach systemic circulation exerting their effect. The bioavailable fraction showed a higher anti-inflammatory and antioxidant potential compared to the initial extract, thus highlighting its potential nutraceutical value.
Chen, Zhi-Qiang; Liu, Ying; Zhao, Ji-Hui; Wang, Lan; Feng, Nian-Ping
2012-01-01
Indirubin, isolated from the leaves of the Chinese herb Isatis tinctoria L, is a protein kinase inhibitor and promising antitumor agent. However, the poor water solubility of indirubin has limited its application. In this study, a supersaturatable self-microemulsifying drug delivery system (S-SMEDDS) was developed to improve the oral bioavailability of indirubin. A prototype S-SMEDDS was designed using solubility studies and phase diagram construction. Precipitation inhibitors were selected from hydrophilic polymers according to their crystallization-inhibiting capacity through in vitro precipitation tests. In vitro release of indirubin from S-SMEDDS was examined to investigate its likely release behavior in vivo. The in vivo bioavailability of indirubin from S-SMEDDS and from SMEDDS was compared in rats. The prototype formulation of S-SMEDDS comprised Maisine™ 35-1:Cremophor(®) EL:Transcutol(®) P (15:40:45, w/w/w). Polyvinylpyrrolidone K17, a hydrophilic polymer, was used as a precipitation inhibitor based on its better crystallization-inhibiting capacity compared with polyethylene glycol 4000 and hydroxypropyl methylcellulose. In vitro release analysis showed more rapid drug release from S-SMEDDS than from SMEDDS. In vivo bioavailability analysis in rats indicated that improved oral absorption was achieved and that the relative bioavailability of S-SMEDDS was 129.5% compared with SMEDDS. The novel S-SMEDDS developed in this study increased the dissolution rate and improved the oral bioavailability of indirubin in rats. The results suggest that S-SMEDDS is a superior means of oral delivery of indirubin.
Zhao, Xiaoyun; Li, Wei; Luo, Qiuhua; Zhang, Xiangrong
2014-03-01
Flurbiprofen was formulated into nanoparticle suspension to improve its oral bioavailability. Hydroxypropyl-β-cyclodextrin inclusion-flurbiprofen complex (HP-β-CD-FP) was prepared, then incorporating this complex into poly(alkyl-cyanoacrylate) (PACA) nanoparticles. HP-β-CD-FP-PACA nanoparticle was prepared by the emulsion solvent polymerization method. The zeta potential was -26.8 mV, the mean volume particle diameter was 134 nm, drug encapsulation efficiency was 53.3 ± 3.6 % and concentration was 1.5 mg/mL. The bioavailability of flurbiprofen from optimized nanoparticles was assessed in male Wistar rats at a dose of 15 mg/kg. As compared to the flurbiprofen suspension, 211.6 % relative bioavailability was observed for flurbiprofen nanoparticles. The reduced particle size and increased surface area may contribute to improve oral bioavailability of flurbiprofen.
NASA Astrophysics Data System (ADS)
Koukina, S. E.; Vetrov, A. A.
2013-09-01
This study focuses on sediments from small restricted exchange environments along the Karelian shore of Kandalaksha Bay (White Sea, Russian Arctic), which are known as separating basins and are characterised by contrasting oxidising conditions within the water column and the occurrence of anoxia. In the basins that were studied, no significant contamination by trace heavy metals (Pb, Cu, Zn and Cr, in particular) was detected. The comparative study of the two most bioavailable metal forms, namely, labile (acid soluble) and organically bound (alkali soluble) forms, indicated that acetic acid and sodium pyrophosphate released 3-11% and 2-12%, respectively, of the total metal content from sediments. The most bioavailable parts of metals are weakly bound to organic matter and, to a greater extent, associated with easily soluble amorphous Fe-oxides. Among the studied elements, most of the bioavailable Zn and Cu was most likely bound to organic substances, whereas bioavailable Cr and Mn were controlled to a greater extent by the formation of Fe-oxyhydroxide. The elements studied could be arranged in the following decreasing order of average potential bioavailability: Cu > Zn > Mn > Fe > Cr > Pb. In the separating basins, the relative proportion of labile bioavailable metals is enhanced in relation to the neighbouring open coastal sea.
Haro-Vicente, Juan Francisco; Pérez-Conesa, Darío; Rincón, Francisco; Ros, Gaspar; Martínez-Graciá, Carmen; Vidal, Maria Luisa
2008-12-01
Food iron (Fe) fortification is an adequate approach for preventing Fe-deficiency anemia. Poorly water-soluble Fe compounds have good sensory attributes but low bioavailability. The reduction of the particle size of Fe fortificants and the addition of ascorbic acid might increase the bioavailability of low-soluble compounds. The present work aims to compare the Fe absorption and bioavailability of micronized dispersible ferric pyrophosphate (MDFP) (poorly soluble) to ferrous sufate (FS) (highly soluble) added to a fruit juice in presence or absence of ascorbic acid (AA) by using the hemoglobin repletion assay in rats. After a hemoglobin depletion period, four fruit juices comprised of (1) FS, (2) MDFP, (3) FS + AA, (4) MDFP + AA were produced and administered to a different group of rats (n = 18) over 21 days. During the repletion period, Fe balance, hemoglobin regeneration efficiency (HRE), relative bioavailability (RBV) and Fe tissue content were determined in the short, medium and long term. Fe absorption and bioavailability showed no significant differences between fortifying the fruit juice with FS or MDFP. The addition of AA to the juice enhanced Fe absorption during the long-term balance study within the same Fe source. HRE and Fe utilization increased after AA addition in both FS and MDFP groups in every period. Fe absorption and bioavailability from MDFP were comparable to FS added to a fruit juice in rats. Further, the addition of AA enhanced Fe absorption in the long term, as well as Fe bioavailability throughout the repletion period regardless of the Fe source employed.
Dissolved oxygen as an indicator of bioavailable dissolved organic carbon in groundwater
Chapelle, Francis H.; Bradley, Paul M.; McMahon, Peter B.; Kaiser, Karl; Benner, Ron
2012-01-01
Concentrations of dissolved oxygen (DO) plotted vs. dissolved organic carbon (DOC) in groundwater samples taken from a coastal plain aquifer of South Carolina (SC) showed a statistically significant hyperbolic relationship. In contrast, DO-DOC plots of groundwater samples taken from the eastern San Joaquin Valley of California (CA) showed a random scatter. It was hypothesized that differences in the bioavailability of naturally occurring DOC might contribute to these observations. This hypothesis was examined by comparing nine different biochemical indicators of DOC bioavailability in groundwater sampled from these two systems. Concentrations of DOC, total hydrolysable neutral sugars (THNS), total hydrolysable amino acids (THAA), mole% glycine of THAA, initial bacterial cell counts, bacterial growth rates, and carbon dioxide production/consumption were greater in SC samples relative to CA samples. In contrast, the mole% glucose of THNS and the aromaticity (SUVA254) of DOC was greater in CA samples. Each of these indicator parameters were observed to change with depth in the SC system in a manner consistent with active biodegradation. These results are uniformly consistent with the hypothesis that the bioavailability of DOC is greater in SC relative to CA groundwater samples. This, in turn, suggests that the presence/absence of a hyperbolic DO-DOC relationship may be a qualitative indicator of relative DOC bioavailability in groundwater systems.
de Ambrosis, A; Vishnumohan, S; Paterson, J; Haber, P; Arcot, J
2017-01-01
The aim of the study was to measure the relative bioavailability of labeled pteroylglutamic acid (13C5-PteGlu) from a pectin-coated fortified rice in vivo to measure any effect of the edible coating on folic acid bioavailability. Healthy volunteers (N=26) aged 18-39 years received three test meals in three randomized short-term cross-over trials: Trial 1: aqueous 400 μg 13C5-PteGlu, Trial 2: 200 g cooked white rice+400 μg 13C5-PteGlu,Trial 3: 200 g fortified cooked white rice with pectin-coated premix containing 400 μg 13C5-PteGlu. Blood samples were drawn at 0,1,2,5 and 8 h postprandial. The concentration of 13C5-5 methyl-tetrahydrofolate appearing in plasma was quantified using high performance liquid chromatography-mass spectrometry (MS)/MS. For 24 h before baseline estimation and during the area under the curve (AUC) study, the subjects were placed on a low folate diet (∼100 μg/day). The relative bioavailability of the folic acid following Trial 3 was measured by comparing the 13C5-5 methyl-tetrahydrofuran (THF) AUC with Trials 1 and 2. The bioavailability of folic acid in a pectin-coated rice premix was 68.7% (range 47-105) and 86.5% (range 65-115) in uncoated fortified rice relative to aqueous folic acid. This study is the first demonstration of the bioavailability of folate in pectin-coated fortified rice in humans.
Shahbaz, Ali Khan; Iqbal, Muhammad; Jabbar, Abdul; Hussain, Sabir; Ibrahim, Muhammad
2018-03-01
Application of immobilizing agents may efficiently reduce the bioavailability of nickel (Ni) in the soil. Here we report the effect of biochar (BC), gravel sludge (GS) and zeolite (ZE) as a sole treatment and their combinations on the bioavailability of Ni after their application into a Ni-polluted soil. The bioavailability of Ni after the application of immobilizing agents was assessed through an indicator plant (red clover) and chemical indicators of bioavailability like soil water extract (SWE), DTPA and Ca(NO 3 ) 2 extracts. Additionally, the effects of Ni bioavailability and immobilizing agents on the growth, physiological and biochemical attributes of red clover were also observed. Application of ZE significantly reduced Ni concentrations in all chemical extracts compared to rest of the treatments. Similarly, the combined application of BC and ZE (BC+ ZE) significantly reduced Ni concentrations, reactive oxygen species (ROS) whereas, significant enhancement in the growth, physiological and biochemical attributes along with an improvement in antioxidant defence machinery of red clover plant, compared to rest of the treatments, were observed. Furthermore, BC+ ZE treatment significantly reduced bioconcentration factor (BCF) and bioaccumulation factor (BAF) of Ni in red clover, compared to rest of the treatments. The Ni concentrations in red clover leaves individually reflected a good correlation with Ni concentrations in the extracts (SWE at R 2 =0.79, DTPA extract at R 2 =0.84 and Ca(NO 3 ) 2 extracts at R 2 =0.86). Our results indicate that combined application of ZE and BC can significantly reduce the Ni bioavailability in the soil while in parallel improve the antioxidant defence mechanism in plants. Copyright © 2017 Elsevier Inc. All rights reserved.
Juhasz, Albert L; Weber, John; Naidu, Ravi; Gancarz, Dorota; Rofe, Allan; Todor, Damian; Smith, Euan
2010-07-01
In this study, cadmium (Cd) relative bioavailability in contaminated (n = 5) and spiked (n = 2) soils was assessed using an in vivo mouse model following administration of feed containing soil or Cd acetate (reference material) over a 15 day exposure period. Cadmium relative bioavailability varied depending on whether the accumulation of Cd in the kidneys, liver, or kidney plus liver was used for relative bioavailability calculations. When kidney plus liver Cd concentrations were used, Cd relative bioavailability ranged from 10.1 to 92.1%. Cadmium relative bioavailability was higher (14.4-115.2%) when kidney Cd concentrations were used, whereas lower values (7.2-76.5%) were derived when liver Cd concentrations were employed in calculations. Following in vivo studies, four in vitro methodologies (SBRC, IVG, PBET, and DIN), encompassing both gastric and intestinal phases, were assessed for their ability to predict Cd relative bioavailability. Pearson correlations demonstrated a strong linear relationship between Cd relative bioavailability and Cd bioaccessibility (0.62-0.91), however, stronger in vivo-in vitro relationships were observed when Cd relative bioavailability was calculated using kidney plus liver Cd concentrations. Whereas all in vitro assays could predict Cd relative bioavailability with varying degrees of confidence (r(2) = 0.348-0.835), large y intercepts were calculated for a number of in vitro assays which is undesirable for in vivo-in vitro predictive models. However, determination of Cd bioaccessibility using the intestinal phase of the PBET assay resulted in a small y intercept (5.14; slope =1.091) and the best estimate of in vivo Cd relative bioavailability (r(2) = 0.835).
The oral bioavailability and toxicokinetics of methylmercury in common loon (Gavia immer) chicks
Fournier, F.; Karasov, W.H.; Kenow, K.P.; Meyer, M.W.; Hines, R.K.
2002-01-01
We compared the toxicokinetics of methylmercury in captive common loon chicks during two time intervals to assess the impact of feather growth on the kinetics of mercury. We also determined the oral bioavailability of methylmercury during these trials to test for age-related changes. The blood concentration-time curves for individuals dosed during feather development (initiated 35 days post hatch) were best described by a one-compartment toxicokinetic model with an elimination half-life of 3 days. The data for birds dosed following completion of feather growth (84 days post hatch) were best fitted by a two-compartment elimination model that includes an initial rapid distribution phase with a half-life of 0.9 days, followed by a slow elimination phase with a half-life of 116 days. We determined the oral bioavailability of methylmercury during the first dosing interval by comparing the ratios of the area under the blood concentration-time curves (AUC0→∞) for orally and intravenously dosed chicks. The oral bioavailability of methylmercury during the first dosing period was 0.83. We also determined bioavailability during both dosing periods using a second measure because of irregularities with intravenous results in the second period. This second bioavailability measure estimated the percentage of the dose that was deposited in the blood volume (f), and the results show that there was no difference in bioavailability among dosing periods. The results of this study highlight the importance of feather growth on the toxicokinetics of methylmercury.
Feng, Jia; Xu, Lishuang; Gao, Renchao; Luo, Yanfei; Tang, Xing
2012-06-01
The aim of this study was to evaluate several polymer carriers with regard to the bioavailability enhancement of bifendate solid dispersions (SD) prepared by hot-melt extrusion (HME) and select the most appropriate polymer carrier. Solid dispersions containing bifendate in different polymers, including Plasdone(®) S-630, Eudragit(®) EPO and Kollidon(®) VA 64 were prepared by hot-melt extrusion. Differential scanning calorimetry (DSC), Powder X-ray diffraction (XRD) and dissolution testing were used to characterize the systems. Then, the thermal degradation during the HME process and the storage stability of tablets consisting of bifendate-Kollidon(®) VA 64 SD were investigated. Finally, the oral bioavailability of bifendate dosage forms with bifendate-Plasdone(®) S-630 (1/9), bifendate-Eudragit(®) EPO (1/4) and bifendate-Kollidon(®) VA 64 (1/9) SD in beagle dogs was compared with that of commercially available benfidate pills. DSC and XDR analysis showed the dispersion of the drug in the polymer on a molecular basis or in the amorphous state. The drug release from both bifendate-Plasdone(®) S-630 SD and bifendate-Eudragit(®) EPO SD was up to more than 90% with the pH 1.2 simulated gastric fluid as the dissolution medium, while the relative bioavailability was just 87.8 ± 51.8% and 110 ± 62% compared with commercial pills, respectively. The directly compressed tablets with bifendate-Kollidon(®) VA 64 SD were found to dissolve rapidly over 95% within 30 min and the relative bioavailability was 145.0 ± 35.2%. The bioavailability of water-insoluble bifendate was markedly enhanced by dispersing the drug in the polymer carrier Kollidon(®) VA 64 employing HME technology.
Hu, Mei; Zhang, Jinjie; Ding, Rui; Fu, Yao; Gong, Tao; Zhang, Zhirong
2017-04-01
The clinical use of dabigatran etexilate (DABE) is limited by its poor absorption and relatively low bioavailability. Our study aimed to explore the potential of a mixed micelle system composed of Soluplus ® and D-alpha tocopheryl polyethylene glycol 1000 succinate (TPGS) to improve the oral absorption and bioavailability of DBAE. DBAE was first encapsulated into Soluplus/TPGS mixed micelles by a simple thin film hydration method. The DBAE loaded micelles displayed an average size distribution of around 83.13 nm. The cellular uptake of DBAE loaded micelles in Caco-2 cell monolayer was significantly enhanced by 2-2.6 fold over time as compared with DBAE suspension. Both lipid raft/caveolae and macropinocytosis-mediated the cell uptake of DBAE loaded micelles through P-glycoprotein (P-gp)-independent pathway. Compared with the DBAE suspension, the intestinal absorption of DBAE from DBAE mixed micelles in rats was significantly improved by 8 and 5-fold in ileum at 2 h and 4 h, respectively. Moreover, DBAE mixed micelles were absorbed into systemic circulation via both portal vein and lymphatic pathway. The oral bioavailability of DBAE mixed micelles in rats was 3.37 fold higher than that of DBAE suspension. DBAE mixed micelles exhibited a comparable anti-thrombolytic activity with a thrombosis inhibition rate of 63.18% compared with DBAE suspension in vivo. Thus, our study provides a promising drug delivery system to enhance the oral bioavailability and therapeutic efficacy of DBAE.
2013-01-01
Background 3,3′-Diindolylmethane (DIM) is known as an agent of natural origin that provides protection against different cancers due to the broad spectrum of its biological activities in vivo. However, this substance has a very poor biodistribution and absorption in animal tissues. This preclinical trial was conducted to evaluate the pharmacokinetics and bioavailability of various DIM formulations in animal model. Materials and methods The pharmacokinetic parameters of one crystalline DIM formulation and one liquid DIM formulation (oil solution) compared to non-formulated crystalline DIM (control) were tested in 200 rats. The formulations were orally administered to animals by gavage at doses of 200 mg/kg per DIM (crystalline DIM formulation and non-formulated crystalline DIM) and 0.1 mg/kg per DIM (DIM in oil solution). DIM plasma elimination was measured using HPLC method; after that, the area under the curve (AUC), relative bioavailability, and absolute bioavailability were estimated for two formulations in relation to non-formulated crystalline DIM. Results and conclusion The highest bioavailability was achieved by administering liquid DIM (oil solution), containing cod liver oil and polysorbate. The level of DIM in rat blood plasma was about fivefold higher, though the 2,000-fold lower dose was administered compared to crystalline DIM forms. The novel pharmacological DIM substance with high bioavailability may be considered as a promising targeted antitumor chemopreventive agent. It could be used to prevent breast and ovarian cancer development in patients with heterozygous inherited and sporadic BRCA1 gene mutations. Further preclinical and clinical trials are needed to prove this concept. PMID:24325835
Beyond Yellow Curry: Assessing Commercial Curcumin Absorption Technologies.
Douglass, Brad J; Clouatre, Dallas L
2015-01-01
Few natural products have demonstrated the range of protective and therapeutic promise as have turmeric and its principal bioactive components: curcumin, demethoxycurcumin, and bisdemethoxycurcumin. Success in translating this potential into tangible benefits has been limited by inherently poor intestinal absorption, rapid metabolism, and limited systemic bioavailability. Seeking to overcome these limitations, food ingredient formulators have begun to employ a variety of approaches to enhance absorption and bioactivity. Many of these strategies improve upon the age-old practice of consuming turmeric in fat-based sauces, such as in a fat-rich yellow curry. However, there exists uncertainty as to how the various commercially available offerings compare to each other in terms of either uptake or efficacy, and this uncertainty leaves physicians and nutritionists with a dearth of data for making recommendations to interested patients and consumers. Further complicating the issue are recent data suggesting that formulation strategies may not equally enhance the absorption of individual curcuminoids, a significant issue in that these curcuminoids exhibit somewhat different physiologic properties. This review introduces needed order to the curcumin marketplace by examining bioavailability studies on a number of commercial curcumin ingredients and evaluating them on a level playing field. The comparative analysis includes standard pharmacokinetic parameters and a new metric, relative mass efficiency (E). Relative mass efficiency allows for the comparison of different formulations even in cases in which the weight percentage of curcuminoids is vastly different. A hydrophilic carrier dispersed curcuminoid formula exhibits 45.9 times the bioavailability of the standard purified 95 percent curcuminoid preparation and, based on relative mass efficiency, 1.5 times the bioavailability of the next best commercial ingredient, a cyclodextrin complex. Delivery strategies can significantly improve the bioavailability of curcuminoids. Total formula mass is important for making practical formulation decisions about dosing, cost and space.
Chen, Zhi-Qiang; Liu, Ying; Zhao, Ji-Hui; Wang, Lan; Feng, Nian-Ping
2012-01-01
Background Indirubin, isolated from the leaves of the Chinese herb Isatis tinctoria L, is a protein kinase inhibitor and promising antitumor agent. However, the poor water solubility of indirubin has limited its application. In this study, a supersaturatable self-microemulsifying drug delivery system (S-SMEDDS) was developed to improve the oral bioavailability of indirubin. Methods A prototype S-SMEDDS was designed using solubility studies and phase diagram construction. Precipitation inhibitors were selected from hydrophilic polymers according to their crystallization-inhibiting capacity through in vitro precipitation tests. In vitro release of indirubin from S-SMEDDS was examined to investigate its likely release behavior in vivo. The in vivo bioavailability of indirubin from S-SMEDDS and from SMEDDS was compared in rats. Results The prototype formulation of S-SMEDDS comprised Maisine™ 35-1:Cremophor® EL:Transcutol® P (15:40:45, w/w/w). Polyvinylpyrrolidone K17, a hydrophilic polymer, was used as a precipitation inhibitor based on its better crystallization-inhibiting capacity compared with polyethylene glycol 4000 and hydroxypropyl methylcellulose. In vitro release analysis showed more rapid drug release from S-SMEDDS than from SMEDDS. In vivo bioavailability analysis in rats indicated that improved oral absorption was achieved and that the relative bioavailability of S-SMEDDS was 129.5% compared with SMEDDS. Conclusion The novel S-SMEDDS developed in this study increased the dissolution rate and improved the oral bioavailability of indirubin in rats. The results suggest that S-SMEDDS is a superior means of oral delivery of indirubin. PMID:22403491
Pharmaceutical development and optimization of azithromycin suppository for paediatric use.
Kauss, Tina; Gaubert, Alexandra; Boyer, Chantal; Ba, Boubakar B; Manse, Muriel; Massip, Stephane; Léger, Jean-Michel; Fawaz, Fawaz; Lembege, Martine; Boiron, Jean-Michel; Lafarge, Xavier; Lindegardh, Niklas; White, Nicholas J; Olliaro, Piero; Millet, Pascal; Gaudin, Karen
2013-01-30
Pharmaceutical development and manufacturing process optimization work was undertaken in order to propose a potential paediatric rectal formulation of azithromycin as an alternative to existing oral or injectable formulations. The target product profile was to be easy-to-use, cheap and stable in tropical conditions, with bioavailability comparable to oral forms, rapidly achieving and maintaining bactericidal concentrations. PEG solid solution suppositories were characterized in vitro using visual, HPLC, DSC, FTIR and XRD analyses. In vitro drug release and in vivo bioavailability were assessed; a study in rabbits compared the bioavailability of the optimized solid solution suppository to rectal solution and intra-venous product (as reference) and to the previous, non-optimized formulation (suspended azithromycin suppository). The bioavailability of azithromycin administered as solid solution suppositories relative to intra-venous was 43%, which compared well to the target of 38% (oral product in humans). The results of 3-month preliminary stability and feasibility studies were consistent with industrial production scale-up. This product has potential both as a classical antibiotic and as a product for use in severely ill children in rural areas. Industrial partners for further development are being sought. Copyright © 2012 Elsevier B.V. All rights reserved.
Pharmaceutical development and optimization of azithromycin suppository for paediatric use
Kauss, Tina; Gaubert, Alexandra; Boyer, Chantal; Ba, Boubakar B.; Manse, Muriel; Massip, Stephane; Léger, Jean-Michel; Fawaz, Fawaz; Lembege, Martine; Boiron, Jean-Michel; Lafarge, Xavier; Lindegardh, Niklas; White, Nicholas J.; Olliaro, Piero; Millet, Pascal; Gaudin, Karen
2013-01-01
Pharmaceutical development and manufacturing process optimization work was undertaken in order to propose a potential paediatric rectal formulation of azithromycin as an alternative to existing oral or injectable formulations. The target product profile was to be easy-to-use, cheap and stable in tropical conditions, with bioavailability comparable to oral forms, rapidly achieving and maintaining bactericidal concentrations. PEG solid solution suppositories were characterized in vitro using visual, HPLC, DSC, FTIR and XRD analyses. In vitro drug release and in vivo bioavailability were assessed; a study in rabbits compared the bioavailability of the optimized solid solution suppository to rectal solution and intra-venous product (as reference) and to the previous, non-optimized formulation (suspended azithromycin suppository). The bioavailability of azithromycin administered as solid solution suppositories relative to intra-venous was 43%, which compared well to the target of 38% (oral product in humans). The results of 3-month preliminary stability and feasibility studies were consistent with industrial production scale-up. This product has potential both as a classical antibiotic and as a product for use in severely ill children in rural areas. Industrial partners for further development are being sought. PMID:23220079
Guo, Ruixue; Guo, Xinbo; Hu, Xiaodan; Abbasi, Arshad Mehmood; Zhou, Lin; Li, Tong; Fu, Xiong; Liu, Rui Hai
2017-12-01
The purpose of this work was to improve the oral bioavailability of a poorly soluble functional food ingredient, the total flavones of Hippophaë rhamnoides L. (TFH). A self-microemulsion drug delivery system (SMEDDS) was developed to overcome the problems of poor absorption of TFH in vivo. The optimal SMEDDS significantly enhanced the solubility of TFH up to 530 times compared to that in water. The mean droplet size was 61.76 nm with uniform distribution. And the loaded system was stable at 25 °C for 3 mo with transparent appearance. The in vitro release of TFH from SMEDDS was faster and more complete than that from suspension. After oral administration of TFH-SMEDDS in rats, the relative bioavailability of TFH was dramatically improved for 3.09 times compared with the unencapsulated form. The investigation indicated the potential application of SMEDDS as a vehicle to improve the oral bioavailability of TFH. The lipid-based nanotechnology, namely self-microemulsion drug delivery system (SMEDDS) was used to improve the bioavailability and oral delivery of total flavones of Hippophaë rhamnoides L. (TFH). The relevant bioavailability of TFH could be remarkably 3-fold improved by the optimized SMEDDS. The SMEDDS produced via a simple one-step process for poorly soluble TFH to achieve a significant improvement in the bioavailability, may endorse the promising utilization of TFH in functional foods as well as pharmaceutical fields with an enhanced absorption in vivo. © 2017 Institute of Food Technologists®.
NASA Astrophysics Data System (ADS)
Jastrow, J. D.; Burke, V. J.; Vugteveen, T. W.; Fan, Z.; Hofmann, S. M.; Lederhouse, J. S.; Matamala, R.; Michaelson, G. J.; Mishra, U.; Ping, C. L.
2015-12-01
The decomposability of soil organic carbon (SOC) in permafrost regions is a key uncertainty in efforts to predict carbon release from thawing permafrost and its impacts. The cold and often wet environment is the dominant factor limiting decomposer activity, and soil organic matter is often preserved in a relatively undecomposed and uncomplexed state. Thus, the impacts of soil warming and permafrost thaw are likely to depend at least initially on the genesis and past history of organic matter degradation before its stabilization in permafrost. We compared the bioavailability and relative degradation state of SOC in active layer and permafrost soils from Arctic tundra in Alaska. To assess readily bioavailable SOC, we quantified salt (0.5 M K2SO4) extractable organic matter (SEOM), which correlates well with carbon mineralization rates in short-term soil incubations. To assess the relative degradation state of SOC, we used particle size fractionation to isolate fibric (coarse) from more degraded (fine) particulate organic matter (POM) and separated mineral-associated organic matter into silt- and clay-sized fractions. On average, bulk SOC concentrations in permafrost were lower than in comparable active layer horizons. Although SEOM represented a very small proportion of the bulk SOC, this proportion was greater in permafrost than in comparable active layer soils. A large proportion of bulk SOC was found in POM for all horizons. Even for mineral soils, about 40% of bulk SOC was in POM pools, indicating that organic matter in both active layer and permafrost mineral soils was relatively undecomposed compared to typical temperate soils. Not surprisingly, organic soils had a greater proportion of POM and mineral soils had greater silt- and clay-sized carbon pools, while cryoturbated soils were intermediate. For organic horizons, permafrost organic matter was generally more degraded than in comparable active layer horizons. However, in mineral and cryoturbated horizons, the presence of permafrost appeared to have little effect on SOC distribution among size fractions. Future studies will investigate the utility of using organic matter pools defined by SEOM and particle size to predict the bioavailable pools characterized through more time-consuming long-term incubation studies of permafrost region soils.
Gong, Ping; Nan, Xiaofei; Barker, Natalie D; Boyd, Robert E; Chen, Yixin; Wilkins, Dawn E; Johnson, David R; Suedel, Burton C; Perkins, Edward J
2016-03-08
Chemical bioavailability is an important dose metric in environmental risk assessment. Although many approaches have been used to evaluate bioavailability, not a single approach is free from limitations. Previously, we developed a new genomics-based approach that integrated microarray technology and regression modeling for predicting bioavailability (tissue residue) of explosives compounds in exposed earthworms. In the present study, we further compared 18 different regression models and performed variable selection simultaneously with parameter estimation. This refined approach was applied to both previously collected and newly acquired earthworm microarray gene expression datasets for three explosive compounds. Our results demonstrate that a prediction accuracy of R(2) = 0.71-0.82 was achievable at a relatively low model complexity with as few as 3-10 predictor genes per model. These results are much more encouraging than our previous ones. This study has demonstrated that our approach is promising for bioavailability measurement, which warrants further studies of mixed contamination scenarios in field settings.
Zhang, Yilan; Luo, Rui; Chen, Yi; Ke, Xue; Hu, Danrong; Han, Miaomiao
2014-06-01
The objective of this study was to develop a suitable formulation for baicalein (a poorly water-soluble drug exhibiting high melting point) to prepare solid dispersions using hot melt extrusion (HME). Proper carriers and plasticizers were selected by calculating the Hansen solubility parameters, evaluating melting processing condition, and measuring the solubility of obtained melts. The characteristic of solid dispersions prepared by HME was evaluated. The dissolution performance of the extrudates was compared to the pure drug and the physical mixtures. Physicochemical properties of the extrudates were characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform infrared spectroscopy (FTIR). Relative bioavailability after oral administration in beagle dogs was assessed. As a result, Kollidon VA64 and Eudragit EPO were selected as two carriers; Cremophor RH was used as the plasticizer. The dissolution of all the extrudates was significantly improved. DSC and PXRD results suggested that baicalein in the extrudates was amorphous. FTIR spectroscopy revealed the interaction between drug and polymers. After oral administration, the relative bioavailability of solid dispersions with VA64 and EPO was comparative, about 2.4- and 2.9-fold greater compared to the pure drug, respectively.
Carr, Anitra C; Bozonet, Stephanie M; Vissers, Margreet C M
2013-11-11
Kiwifruit are a rich source of vitamin C and also contain numerous phytochemicals, such as flavonoids, which may influence the bioavailability of kiwifruit-derived vitamin C. The aim of this study was to compare the relative bioavailability of synthetic versus kiwifruit-derived vitamin C using a randomised cross-over pharmacokinetic study design. Nine non-smoking males (aged 18-35 years) received either a chewable tablet (200 mg vitamin C) or the equivalent dose from gold kiwifruit (Actinidia chinensis var. Sungold). Fasting blood and urine were collected half hourly to hourly over the eight hours following intervention. The ascorbate content of the plasma and urine was determined using HPLC with electrochemical detection. Plasma ascorbate levels increased from 0.5 h after the intervention (P = 0.008). No significant differences in the plasma time-concentration curves were observed between the two interventions (P = 0.645). An estimate of the total increase in plasma ascorbate indicated complete uptake of the ingested vitamin C tablet and kiwifruit-derived vitamin C. There was an increase in urinary ascorbate excretion, relative to urinary creatinine, from two hours post intervention (P < 0.001). There was also a significant difference between the two interventions, with enhanced ascorbate excretion observed in the kiwifruit group (P = 0.016). Urinary excretion was calculated as ~40% and ~50% of the ingested dose from the vitamin C tablet and kiwifruit arms, respectively. Overall, our pharmacokinetic study has shown comparable relative bioavailability of kiwifruit-derived vitamin C and synthetic vitamin C.
Shin, Hye Seong; Kim, Jong Woong; Lee, Dong Gu; Lee, Sanghyun; Kil, Dong Yong
2016-08-01
Dietary lutein and its food sources have gained great attention due to its health-promoting effects on humans, especially for certain eye diseases. However, relative bioavailability (RBV) of lutein among lutein-rich feed ingredients that lead to lutein-enriched egg production has not been determined. Thus, the RBV of lutein in corn distillers dried grains with solubles (DDGS) as compared to lutein in corn gluten meal (CGM) was evaluated based on lutein retention in egg yolk. Increasing inclusion levels of DDGS or CGM in diets increased (linear, P < 0.01) Roche colour score and lutein concentrations of egg yolk without affecting laying performance. Multiple regression analysis revealed that the bioavailability of lutein in DDGS was less (P < 0.05) than that of lutein in CGM, with the RBV of lutein in DDGS being 61.6% when the bioavailability of lutein in CGM was assumed to be 100% for lutein retention in egg yolk. The results of the present experiment indicate that the DDGS can be a potential ingredient for laying hens to improve egg yolk colour and lutein concentrations of egg yolk although lutein in DDGS is less bioavailable than lutein in CGM. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
du Plessis, Lissinda H; Govender, Katya; Denti, Paolo; Wiesner, Lubbe
2015-11-01
The oral absorption of compounds with low aqueous solubility, such as lumefantrine, is typically limited by the dissolution rate in the gastro-intestinal tract, resulting in erratic absorption and highly variable bioavailability. In previous studies we reported on the ability of Pheroid vesicles to improve the bioavailability of poorly soluble drugs. In the present study a Pro-Pheroid formulation, a modification of the previous formulation, was applied to improve the solubility of lumefantrine after oral administration and compared to lumefantrine in DMSO:water (1:9 v/v) solution (reference solution). A bioavailability study of lumefantrine was conducted in a mouse model in fed and fasted states. When using the reference solution, the bioavailability of the lumefantrine heavily depended on food intake, resulting in a 2.7 times higher bioavailability in the fed state when compared to the fasted state. It also showed large between-subject variability. When formulated using Pro-Pheroid, the bioavailability of lumefantrine was 3.5 times higher as compared to lumefantrine in the reference solution and fasting state. Pro-Pheroid also dramatically reduced the effects of food intake and the between-subject variability for bioavailability observed with the reference. In vivo antimalarial efficacy was also evaluated with lumefantrine formulated using Pro-Pheroid technology compared to the reference solution. The results indicated that lumefantrine in Pro-Pheroid formulation exhibited improved antimalarial activity in vitro by 46.8%, when compared to the reference. The results of the Peters' 4-day suppressive test indicated no significant difference in the efficacy or mean survival time of the mice in the Pro-Pheroid formulation and reference test groups when compared to the positive control, chloroquine. These findings suggest that using the Pro-Pheroid formulation improves the bioavailability of lumefantrine, eliminates the food effect associated with lumefantrine as well as significantly reduces the between subject variability in bioavailability when compared to the reference solution. Copyright © 2015 Elsevier B.V. All rights reserved.
Mönch, Sabine; Netzel, Michael; Netzel, Gabriele; Ott, Undine; Frank, Thomas; Rychlik, Michael
2016-01-01
Different dietary sources of folate have differing bioavailabilities, which may affect their nutritional "value." In order to examine if these differences also occur within the same food products, a short-term human pilot study was undertaken as a follow-up study to a previously published human trial to evaluate the relative native folate bioavailabilities from low-fat Camembert cheese compared to pteroylmonoglutamic acid as the reference dose. Two healthy human subjects received the test foods in a randomized cross-over design separated by a 14-day equilibrium phase. Folate body pools were saturated with a pteroylmonoglutamic acid supplement before the first testing and between the testings. Folates in test foods and blood plasma were analyzed by stable isotope dilution assays. The biokinetic parameters C max, t max, and area under the curve (AUC) were determined in plasma within the interval of 0-12 h. When comparing the ratio estimates of AUC and C max for the different Camembert cheeses, a higher bioavailability was found for the low-fat Camembert assessed in the present study (≥64%) compared to a different brand in our previous investigation (8.8%). It is suggested that these differences may arise from the different folate distribution in the soft dough and firm rind as well as differing individual folate vitamer proportions. The results clearly underline the importance of the food matrix, even within the same type of food product, in terms of folate bioavailability. Moreover, our findings add to the increasing number of studies questioning the general assumption of 50% bioavailability as the rationale behind the definition of folate equivalents. However, more research is needed to better understand the interactions between individual folate vitamers and other food components and the potential impact on folate bioavailability and metabolism.
Mönch, Sabine; Netzel, Michael; Netzel, Gabriele; Ott, Undine; Frank, Thomas; Rychlik, Michael
2016-01-01
Different dietary sources of folate have differing bioavailabilities, which may affect their nutritional “value.” In order to examine if these differences also occur within the same food products, a short-term human pilot study was undertaken as a follow-up study to a previously published human trial to evaluate the relative native folate bioavailabilities from low-fat Camembert cheese compared to pteroylmonoglutamic acid as the reference dose. Two healthy human subjects received the test foods in a randomized cross-over design separated by a 14-day equilibrium phase. Folate body pools were saturated with a pteroylmonoglutamic acid supplement before the first testing and between the testings. Folates in test foods and blood plasma were analyzed by stable isotope dilution assays. The biokinetic parameters Cmax, tmax, and area under the curve (AUC) were determined in plasma within the interval of 0–12 h. When comparing the ratio estimates of AUC and Cmax for the different Camembert cheeses, a higher bioavailability was found for the low-fat Camembert assessed in the present study (≥64%) compared to a different brand in our previous investigation (8.8%). It is suggested that these differences may arise from the different folate distribution in the soft dough and firm rind as well as differing individual folate vitamer proportions. The results clearly underline the importance of the food matrix, even within the same type of food product, in terms of folate bioavailability. Moreover, our findings add to the increasing number of studies questioning the general assumption of 50% bioavailability as the rationale behind the definition of folate equivalents. However, more research is needed to better understand the interactions between individual folate vitamers and other food components and the potential impact on folate bioavailability and metabolism. PMID:27092303
Regulation of the Bioavailability of TGF-β and TGF-β-Related Proteins
Robertson, Ian B.; Rifkin, Daniel B.
2016-01-01
The bioavailability of members of the transforming growth factor β (TGF-β) family is controlled by a number of mechanisms. Bona fide TGF-β is sequestered into the matrix in a latent state and must be activated before it can bind to its receptors. Here, we review the molecules and mechanisms that regulate the bioavailability of TGF-β and compare these mechanisms with those used to regulate other TGF-β family members. We also assess the physiological significance of various latent TGF-β activators, as well as other extracellular modulators of TGF-β family signaling, by examining the available in vivo data from knockout mouse models and other biological systems. PMID:27252363
Tako, Elad; Hoekenga, Owen A; Kochian, Leon V; Glahn, Raymond P
2013-01-04
Iron (Fe) deficiency is the most common micronutrient deficiency worldwide. Iron biofortification is a preventative strategy that alleviates Fe deficiency by improving the amount of absorbable Fe in crops. In the present study, we used an in vitro digestion/Caco 2 cell culture model as the guiding tool for breeding and development of two maize (Zea mays L.) lines with contrasting Fe bioavailability (ie. Low and High). Our objective was to confirm and validate the in vitro results and approach. Also, to compare the capacities of our two maize hybrid varieties to deliver Fe for hemoglobin (Hb) synthesis and to improve the Fe status of Fe deficient broiler chickens. We compared the Fe-bioavailability between these two maize varieties with the presence or absence of added Fe in the maize based-diets. Diets were made with 75% (w/w) maize of either low or high Fe-bioavailability maize, with or without Fe (ferric citrate). Chicks (Gallus gallus) were fed the diets for 6 wk. Hb, liver ferritin and Fe related transporter/enzyme gene-expression were measured. Hemoglobin maintenance efficiency (HME) and total body Hb Fe values were used to estimate Fe bioavailability from the diets. DMT-1, DcytB and ferroportin expressions were higher (P<0.05) in the "Low Fe" group than in the "High Fe" group (no added Fe), indicating lower Fe status and adaptation to less Fe-bioavailability. At times, Hb concentrations (d 21,28,35), HME (d 21), Hb-Fe (as from d 14) and liver ferritin were higher in the "High Fe" than in the "Low Fe" groups (P<0.05), indicating greater Fe absorption from the diet and improved Fe status. We conclude that the High Fe-bioavailability maize contains more bioavailable Fe than the Low Fe-bioavailability maize, presumably due to a more favorable matrix for absorption. Maize shows promise for Fe biofortification; therefore, human trials should be conducted to determine the efficacy of consuming the high bioavailable Fe maize to reduce Fe deficiency.
Qi, Jianping; Zhuang, Jie; Wu, Wei; Lu, Yi; Song, Yunmei; Zhang, Zhetao; Jia, Jia; Ping, Qineng
2011-01-01
Background: A microemulsion is an effective formulation for improving the oral bioavailability of poorly soluble drugs. In this paper, a water-in-oil (w/o) microemulsion was investigated as a system for enhancing the oral bioavailability of Biopharmaceutic Classification System (BCS) III drugs. Methods: The microemulsion formulation was optimized using a pseudoternary phase diagram, comprising propylene glycol dicaprylocaprate (PG), Cremophor® RH40, and water (30/46/24 w/w). Results: The microemulsion increased the oral bioavailability of hydroxysafflor yellow A which was highly water-soluble but very poorly permeable. The relative bioavailability of hydroxysafflor yellow A microemulsion was about 1937% compared with a control solution in bile duct-nonligated rats. However, the microemulsion showed lower enhanced absorption ability in bile duct-ligated rats, and the relative bioavailability was only 181%. In vitro experiments were further employed to study the mechanism of the enhanced effect of the microemulsion. In vitro lipolysis showed that the microemulsion was digested very quickly by pancreatic lipase. About 60% of the microemulsion was digested within 1 hour. Furthermore, the particle size of the microemulsion after digestion was very small (53.3 nm) and the digested microemulsion had high physical stability. An everted gut sac model demonstrated that cumulative transport of the digested microemulsion was significantly higher than that of the diluted microemulsion. Conclusion: These results suggested that digestion of the microemulsion by pancreatic lipase plays an important role in enhancing oral bioavailability of water-soluble drugs. PMID:21720510
Preparation and enhancement of oral bioavailability of curcumin using microemulsions vehicle.
Hu, Liandong; Jia, Yanhong; Niu, Feng; Jia, Zheng; Yang, Xun; Jiao, Kuiliang
2012-07-25
A new microemulsions system of curcumin (CUR-MEs) was successfully developed to improve the solubility and bioavailability of curcumin. Several formulations of the microemulsions system were prepared and evaluated using different ratios of oils, surfactants, and co-surfactants (S&CoS). The optimal formulation, which consists of Capryol 90 (oil), Cremophor RH40 (surfactant), and Transcutol P aqueous solution (co-surfactant), could enhance the solubility of curcumin up to 32.5 mg/mL. The pharmacokinetic study of microemulsions was performed in rats compared to the corresponding suspension. The stability of microemulsions after dilution was excellence. Microemulsions have significantly increased the C(max) and area under the curve (AUC) in comparison to that in suspension (p < 0.05). The relative bioavailability of curcumin in microemulsions was 22.6-fold higher than that in suspension. The results indicated that the CUR-MEs could be used as an effective formulation for enhancing the oral bioavailability of curcumin.
Guan, Qingxiang; Zhang, Guangyuan; Sun, Shilin; Fan, Hongbo; Sun, Cheng; Zhang, Shaoyuan
2016-05-01
To improve bioavailability of pueraria flavones (PF), a self-microemulsifying drug delivery system (SMEDDS) dropping pills composed of PF, Crodamol GTCC, Maisine 35-1, Cremophor RH 40, 1,2-propylene glycol and polyethylene glycol 6000 (PEG6000) was developed. Particle size, zeta potential, morphology and in vitro drug release were investigated, respectively. Pharmacokinetics, bioavailability of PF-SMEDDS dropping pills and commercial Yufengningxin dropping pills were also evaluated and compared in rats. Puerarin treated as the representative component of PF was analyzed. Dynamic light scattering showed the ability of PF-SMEDDS dropping pills to form a nanoemulsion droplet size in aqueous media. The type of media showed no significant effects on the release rate of PF. PF-SMEDDS dropping pills were able to improve the in vitro release rate of PF, and the in vitro release of these dropping pills was significantly faster than that of Yufengningxin dropping pills. There was a dramatic difference between the mean value of t1/2, peak concentration (Cmax), the area of concentration-time curve from 0 to 6 h (AUC0-6 h) of PF-SMEDDS dropping pills and that of commercial Yufengningxin dropping pills. A pharmacokinetic study showed that the bioavailability of PF was greatly enhanced by PF-SMEDDS dropping pills. The value of Cmax and relative bioavailability of PF-SMEDDS dropping pills were dramatically improved by an average of 1.69- and 2.36-fold compared with that of Yufengningxin dropping pills after gavage administration, respectively. It was concluded that bioavailability of PF was greatly improved and that PF-SMEDDS dropping pills might be an encouraging strategy to enhance the oral bioavailability of PF.
NASA Technical Reports Server (NTRS)
Putcha, Lakshmi; Boyd, Jason L.; Cintron, Nitza; Berens, Kurt L.
2004-01-01
Space motion sickness (SMS) is often treated in space with promethazine (PMZ). Common side effects of PMZ administration (50 mg intramuscular) on the ground are drowsiness and impaired cognitive performance. Anecdotal reports indicate that these effects are absent or less pronounced in space. This suggests that the availability of PMZ to the body (bioavailability) and/or the response of the body to PMZ (pharmacodynamics) may change during space flight. Opportunities for clinical research in space are limited. The study described here is our response to a NASA Research Announcement for proposals for flight-based research needed to improve, or answer specific questions about, diagnosis and therapy during space flight, and post-flight rehabilitation. We propose here to evaluate noninvasive methods for determining the bioavailability and pharmacodynamics of PMZ. The specific objectives of the proposed research are to 1) compare pharmacokinetic and pharmacodynamic parameters of PMZ, estimated from saliva and plasma levels after administration of PMZ, 2) estimate the relative bioavailability of the three dosage forms of PMZ that are often administered to control motion sickness symptoms in space, and 3) establish the dose-response relationship of PMZ. We will estimate the bioavailability of an intramuscular injection (IM), oral tablet, and rectal suppository of PMZ in noma1 subjects during ambulatory and antiorthostatic bed rest (ABR) conditions using novel stable isotope techniques. We will compare and contrast the bioavailability of PMZ during normal and microgravity conditions to examine changes in drug absorption and bioavailability during microgravit. Results of this study will validate methods for an approved in-flight investigation with this medication awaiting an opportunity for manifestation..
Jain, Jay Prakash; Leong, F Joel; Chen, Lan; Kalluri, Sampath; Koradia, Vishal; Stein, Daniel S; Wolf, Marie-Christine; Sunkara, Gangadhar; Kota, Jagannath
2017-09-01
The artemether-lumefantrine combination requires food intake for the optimal absorption of lumefantrine. In an attempt to enhance the bioavailability of lumefantrine, new solid dispersion formulations (SDF) were developed, and the pharmacokinetics of two SDF variants were assessed in a randomized, open-label, sequential two-part study in healthy volunteers. In part 1, the relative bioavailability of the two SDF variants was compared with that of the conventional formulation after administration of a single dose of 480 mg under fasted conditions in three parallel cohorts. In part 2, the pharmacokinetics of lumefantrine from both SDF variants were evaluated after a single dose of 480 mg under fed conditions and a single dose of 960 mg under fasted conditions. The bioavailability of lumefantrine from SDF variant 1 and variant 2 increased up to ∼48-fold and ∼24-fold, respectively, relative to that of the conventional formulation. Both variants demonstrated a positive food effect and a less than proportional increase in exposure between the 480-mg and 960-mg doses. Most adverse events (AEs) were mild to moderate in severity and not suspected to be related to the study drug. All five drug-related AEs occurred in subjects taking SDF variant 2. No clinically significant treatment-emergent changes in vital signs, electrocardiograms, or laboratory blood assessments were noted. The solid dispersion formulation enhances the lumefantrine bioavailability to a significant extent, and SDF variant 1 is superior to SDF variant 2. Copyright © 2017 Jain et al.
Dissolved oxygen as an indicator of bioavailable dissolved organic carbon in groundwater.
Chapelle, Francis H; Bradley, Paul M; McMahon, Peter B; Kaiser, Karl; Benner, Ron
2012-01-01
Concentrations of dissolved oxygen (DO) plotted vs. dissolved organic carbon (DOC) in groundwater samples taken from a coastal plain aquifer of South Carolina (SC) showed a statistically significant hyperbolic relationship. In contrast, DO-DOC plots of groundwater samples taken from the eastern San Joaquin Valley of California (CA) showed a random scatter. It was hypothesized that differences in the bioavailability of naturally occurring DOC might contribute to these observations. This hypothesis was examined by comparing nine different biochemical indicators of DOC bioavailability in groundwater sampled from these two systems. Concentrations of DOC, total hydrolysable neutral sugars (THNS), total hydrolysable amino acids (THAA), mole% glycine of THAA, initial bacterial cell counts, bacterial growth rates, and carbon dioxide production/consumption were greater in SC samples relative to CA samples. In contrast, the mole% glucose of THNS and the aromaticity (SUVA(254)) of DOC was greater in CA samples. Each of these indicator parameters were observed to change with depth in the SC system in a manner consistent with active biodegradation. These results are uniformly consistent with the hypothesis that the bioavailability of DOC is greater in SC relative to CA groundwater samples. This, in turn, suggests that the presence/absence of a hyperbolic DO-DOC relationship may be a qualitative indicator of relative DOC bioavailability in groundwater systems. Ground Water © 2011, National Ground Water Association. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.
Kamel, Amany O; Mahmoud, Azza A
2013-01-01
The purpose of this study was to develop spray dried self-nanoemulsifying drug delivery system (SNEDDS) tablets of rosuvastatin using mannitol as a carrier. SNEDDS were prepared using Capryol 90, poloxamer 407 and Transcutol P or triacetin as oil, surfactant and cosurfactants, respectively. The prepared systems were characterized and their cytotoxicity was evaluated using Caco-2 cell lines. A comparative bioavailability study was performed in human volunteers relative to the conventional commercial product. Results showed better self-nanoemulsifying ability of systems containing triacetin compared to Transcutol P. SNEDDS formed uni-modal nanoemulsion droplet size distributions with droplet size less than 50 nm and polydispersity index values ranging from 0.127 to 0.275. The solubilizing capacity of rosuvastatin was affected by both surfactant and cosurfactant concentrations. Upon spray drying, systems prepared using Transcutol P tended to be soft and tacky and were sticking to the walls of the dryer. The redispersion of rosuvastatin from solid SNEDDS was very fast (100% within 5 minutes). Optimized SNEDDS prepared with triacetin were safe with no cytotoxic effect on Caco-2 cells. The anticancer effect of rosuvastatin was enhanced when incorporated in SNEDDS (IC50 value decreased from 4 to 3 microg/ml) due to the increase in penetration of SNEDDS inside the cells. The relative bioavailability for SNEDDS tablets compared to the commercial tablets was 167%. The effective solubilization, penetration and enhancement in bioavailability of SNEDDS tablets proves their potential as a safe, and effective drug delivery system for poorly-soluble drugs.
Comparing different methods for assessing contaminant bioavailability during sediment remediation.
Jia, Fang; Liao, Chunyang; Xue, Jiaying; Taylor, Allison; Gan, Jay
2016-12-15
Sediment contamination by persistent organic pollutants from historical episodes is widespread and remediation is often needed to clean up severely contaminated sites. Measuring contaminant bioavailability in a before-and-after manner lends to improved assessment of remediation effectiveness. However, a number of bioavailability measurement methods have been developed, posing a challenge in method selection for practitioners. In this study, three different bioavailability measurement methods, i.e., solid phase microextraction (SPME), Tenax desorption, and isotope dilution method (IDM), were compared in evaluating changes in bioavailability of DDT and its degradates in sediment following simulated remediation treatments. When compared to the unamended sediments, all three methods predicted essentially the same degrees of changes in bioavailability after amendment with activated carbon, charcoal or sand. After normalizing over the unamended control, measurements by different methods were linearly correlated with each other, with slopes close to 1. The same observation was further made with a Superfund site marine sediment. This finding suggests that different methods may be used in evaluating remediation efficiency. However, Tenax desorption or IDM consistently offered better sensitivity than SPME in detecting bioavailability changes. Results from this study highlight the value of considering bioavailability when evaluating remediation effectiveness and provide guidance on the selection of bioavailability measurement methods in such assessments. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhong, Huan; Wang, Wen-Xiong
2009-03-01
This study compared the relative importance of three types of sorption (organic matter-particle, mercury-organic matter and mercury-particle) in controlling the overall mercury partitioning and bioavailability in sediments. We found that all three types of sorption were important for both inorganic mercury (Hg) and methylated mercury (MeHg). Mercury-particle sorption was more important than mercury-fulvic acid (FA) sorption in increasing the mercury concentrations with increasing aging. Bioavailability (quantified by gut juice extraction from sipunculans) was mainly controlled by mercury-particle sorption, while FA-particle and mercury-FA sorption were not as important, especially for MeHg. Bacterial activity also increased the partitioning of Hg or MeHg in the sediments and was further facilitated by the presence of organic matter. The bioavailability of Hg or MeHg from sediments was only slightly influenced by bacterial activity. This study highlights the importance of sorption from various sources (especially mercury-particle sorption) as well as bacteria in controlling the partitioning and bioavailability of Hg or MeHg in sediments.
Carr, Anitra C.; Bozonet, Stephanie M.; Vissers, Margreet C. M.
2013-01-01
Kiwifruit are a rich source of vitamin C and also contain numerous phytochemicals, such as flavonoids, which may influence the bioavailability of kiwifruit-derived vitamin C. The aim of this study was to compare the relative bioavailability of synthetic versus kiwifruit-derived vitamin C using a randomised cross-over pharmacokinetic study design. Nine non-smoking males (aged 18–35 years) received either a chewable tablet (200 mg vitamin C) or the equivalent dose from gold kiwifruit (Actinidia chinensis var. Sungold). Fasting blood and urine were collected half hourly to hourly over the eight hours following intervention. The ascorbate content of the plasma and urine was determined using HPLC with electrochemical detection. Plasma ascorbate levels increased from 0.5 h after the intervention (P = 0.008). No significant differences in the plasma time-concentration curves were observed between the two interventions (P = 0.645). An estimate of the total increase in plasma ascorbate indicated complete uptake of the ingested vitamin C tablet and kiwifruit-derived vitamin C. There was an increase in urinary ascorbate excretion, relative to urinary creatinine, from two hours post intervention (P < 0.001). There was also a significant difference between the two interventions, with enhanced ascorbate excretion observed in the kiwifruit group (P = 0.016). Urinary excretion was calculated as ~40% and ~50% of the ingested dose from the vitamin C tablet and kiwifruit arms, respectively. Overall, our pharmacokinetic study has shown comparable relative bioavailability of kiwifruit-derived vitamin C and synthetic vitamin C. PMID:24284610
Relative oral bioavailability of 3-MCPD from 3-MCPD fatty acid esters in rats.
Abraham, Klaus; Appel, Klaus E; Berger-Preiss, Edith; Apel, Elisabeth; Gerling, Susanne; Mielke, Hans; Creutzenberg, Otto; Lampen, Alfonso
2013-04-01
In order to quantify the relative oral bioavailability of 3-chloropropane-1,2-diol (3-MCPD) from 3-MCPD fatty acid diesters in vivo, 1,2-dipalmitoyl-3-chloropropane-1,2-diol (3-MCPD diester) and 3-MCPD were orally applied to rats in equimolar doses. In both cases, the time courses of 3-MCPD concentrations were measured in blood, various organs, tissues and intestinal luminal contents. The results show that 3-MCPD is released by enzymatic hydrolysis from the 3-MCPD diester in the gastrointestinal tract and distributed to blood, organs and tissues. Based on the measurements in blood, the areas under the curve (AUC) for 3-MCPD were calculated. By comparing both AUC, the relative amount of 3-MCPD bioavailable from the 3-MCPD diester was calculated to be 86 % on average of the amount bioavailable following administration of 3-MCPD. In view of limited experimental data, it is justified for the purpose of risk assessment to assume complete hydrolysis of the diesters in the gastro-intestinal tract. Therefore, assessment of the extent of exposure to 3-MCPD released from its fatty acid esters should be performed in the same way as exposure to the same molar quantity of 3-MCPD.
Oral ingestion of soil and dust is a key pathway for human exposures to metal and metalloid contaminants. It is widely recognized that the site-specific bioavailability of metals in soil and dust may be reduced relative to the metal bioavailability in media such as water and food...
Blode, Hartmut; Schürmann, Rolf; Benda, Norbert
2008-03-01
A new combined oral contraceptive formulation has been developed consisting of a beta-cyclodextrin (betadex) clathrate formulation of ethinyl estradiol in combination with drospirenone (EE-betadex clathrate/drsp). In this novel EE-betadex clathrate/drsp preparation, betadex serves as an inert complexing agent to enhance stability and shelf-life. The study was conducted to investigate the relative bioavailability and pharmacokinetic parameters of EE and drsp after oral administration of EE-betadex clathrate/drsp. This was an open-label, randomized, single-dose, three-period, three-treatment, crossover study conducted in 18 healthy postmenopausal women aged 45-75 years. The women received single oral doses of 40 mcg EE/6 mg drsp formulated as EE-betadex clathrate/drsp or EE/drsp (EE as a free steroid) tablets, or as a microcrystalline suspension on three separate occasions. Serum samples were collected for pharmacokinetic analyses. The relative bioavailability of EE and drsp after EE-betadex clathrate/drsp tablet administration was comparable with that achieved with the EE/drsp tablet (107% and 101%, respectively). In addition, the inclusion of EE in a betadex clathrate does not affect the pharmacokinetics of either EE or drsp. There were no safety concerns with any of the medications. The betadex clathrate formulation of EE, when combined with DRSP, does not affect the pharmacokinetics and relative bioavailability of either EE or drsp.
Beyond Yellow Curry: Assessing Commercial Curcumin Absorption Technologies
Douglass, Brad J.; Clouatre, Dallas L.
2015-01-01
BACKGROUND: Few natural products have demonstrated the range of protective and therapeutic promise as have turmeric and its principal bioactive components: curcumin, demethoxycurcumin, and bisdemethoxycurcumin. Success in translating this potential into tangible benefits has been limited by inherently poor intestinal absorption, rapid metabolism, and limited systemic bioavailability. Seeking to overcome these limitations, food ingredient formulators have begun to employ a variety of approaches to enhance absorption and bioactivity. Many of these strategies improve upon the age-old practice of consuming turmeric in fat-based sauces, such as in a fat-rich yellow curry. However, there exists uncertainty as to how the various commercially available offerings compare to each other in terms of either uptake or efficacy, and this uncertainty leaves physicians and nutritionists with a dearth of data for making recommendations to interested patients and consumers. Further complicating the issue are recent data suggesting that formulation strategies may not equally enhance the absorption of individual curcuminoids, a significant issue in that these curcuminoids exhibit somewhat different physiologic properties. OBJECTIVE: This review introduces needed order to the curcumin marketplace by examining bioavailability studies on a number of commercial curcumin ingredients and evaluating them on a level playing field. METHODS: The comparative analysis includes standard pharmacokinetic parameters and a new metric, relative mass efficiency (E). Relative mass efficiency allows for the comparison of different formulations even in cases in which the weight percentage of curcuminoids is vastly different. RESULTS: A hydrophilic carrier dispersed curcuminoid formula exhibits 45.9 times the bioavailability of the standard purified 95 percent curcuminoid preparation and, based on relative mass efficiency, 1.5 times the bioavailability of the next best commercial ingredient, a cyclodextrin complex. CONCLUSIONS: Delivery strategies can significantly improve the bioavailability of curcuminoids. Total formula mass is important for making practical formulation decisions about dosing, cost and space. PMID:25856323
Cho, Hyun-Jong; Park, Jin Woo; Yoon, In-Soo; Kim, Dae-Duk
2014-01-01
Docetaxel is a potent anticancer drug, but development of an oral formulation has been hindered mainly due to its poor oral bioavailability. In this study, solid lipid nanoparticles (SLNs) surface-modified by Tween 80 or D-alpha-tocopheryl poly(ethylene glycol 1000) succinate (TPGS 1000) were prepared and evaluated in terms of their feasibility as oral delivery systems for docetaxel. Tween 80-emulsified and TPGS 1000-emulsified tristearin-based lipidic nanoparticles were prepared by a solvent-diffusion method, and their particle size distribution, zeta potential, drug loading, and particle morphology were characterized. An in vitro release study showed a sustained-release profile of docetaxel from the SLNs compared with an intravenous docetaxel formulation (Taxotere®). Tween 80-emulsified SLNs showed enhanced intestinal absorption, lymphatic uptake, and relative oral bioavailability of docetaxel compared with Taxotere in rats. These results may be attributable to the absorption-enhancing effects of the tristearin nanoparticle. Moreover, compared with Tween 80-emulsified SLNs, the intestinal absorption and relative oral bioavailability of docetaxel in rats were further improved in TPGS 1000-emulsified SLNs, probably due to better inhibition of drug efflux by TPGS 1000, along with intestinal lymphatic uptake. Taken together, it is worth noting that these surface-modified SLNs may serve as efficient oral delivery systems for docetaxel. PMID:24531717
Etcheverry, Paz; Grusak, Michael A.; Fleige, Lisa E.
2012-01-01
A review of in vitro bioaccessibility and bioavailability methods for polyphenols and selected nutrients is presented. The review focuses on in vitro solubility, dialyzability, the dynamic gastrointestinal model (TIM)™, and Caco-2 cell models, the latter primarily for uptake and transport, and a discussion of how these methods have been applied to generate data for a range of nutrients, carotenoids, and polyphenols. Recommendations are given regarding which methods are most justified for answering bioaccessibility or bioavailability related questions for specific nutrients. The need for more validation studies in which in vivo results are compared to in vitro results is also discussed. PMID:22934067
Rainbow, P S; Blackmore, G
2001-06-01
The use of selected organisms as biomonitors of trace metal bioavailabilities allows comparisons to be made over space and time. The concentrations of 11 trace metals (arsenic, cadmium, chromium, cobalt, copper, iron, lead, manganese, nickel, silver, zinc) were measured in the bodies of two barnacle species, Balanus amphitrite and Tetraclita squamosa, from up to 18 littoral sites from Hong Kong coastal waters in April 1998. These data provide evidence on the geographical variation in metal bioavailabilities at this time, and are compared selectively against historical data sets for 1986 and 1989. Geographical variation in bioavailabilities is clear for several metals, with hotspots for arsenic, copper, nickel and silver at Chai Wan Kok, and for lead in Junk Bay. Victoria Harbour sites head the rankings for silver and arsenic, and Tolo Harbour sites exhibit relatively elevated cobalt, manganese and zinc. Many bioavailabilities of trace metals to barnacles are lower in Hong Kong coastal waters in 1998 than in 1986. The two barnacle species are widespread and the extensive data set presented is a benchmark which can be compared to the results of similar biomonitoring programmes elsewhere in the Indo-Pacific and beyond.
PAH effects on meio- and microbial benthic communities strongly depend on bioavailability.
Lindgren, J Fredrik; Hassellöv, Ida-Maja; Dahllöf, Ingela
2014-01-01
The effects of anthropogenic pollutants in dissimilar habitats can vary depending on differences in bioavailability. The factors determining bioavailability are not yet fully understood. This study was performed to evaluate whether analysis of total PAH concentrations in sediments is a satisfactory measurement to indicate environmental effects or if bioavailability is needed to be taken into account. We have here performed a 60-day experiment, where nominal PAH concentrations of 1,300 μg/kg sediment were added to three different marine sediments. Meiofaunal and microbial communities were analyzed for alterations in community response at 30 and 60 days. Results showed that bioavailability of PAHs varied between the three different sediments. Nonetheless, the petroleum addition gave rise to significant negative effects on all three sediments at both time points. The two direct measurements of toxicity on the microbial community, potential nitrification and denitrification, displayed a lower effect of the PAH addition in the muddy sediment at both time points, compared to the other two sediment types. No effects were seen in the analysis of meiofaunal community structure. Measurements of PAH bioavailability in the three sediment types concurred with the results from the microbial community, revealing a lower bioavailability in the muddy sediment compared to the other two sediment types, 34% compared to sandy and 18% compared to organic at day 0. At day 60 it was 61% lower compared to sandy and 20% lower compared to organic. The negative effects of the PAH addition on the microbial nitrogen cycle were in six out of eight cases best correlated to the amount of alkylated bioavailable PAH in the sediments, and thus microbial nitrogen cycle is a possible good indicator for assessing PAH-induced stress. The results presented here have implications for risk analysis studies of petroleum-contaminated marine sediments; consequently, sediment characteristics and its effects on bioavailability are important to include. In addition, these results add to the understanding that bioavailability measurements of PAHs are a more correct assessment compared to measurements of total PAH concentrations, and need to be included when estimating effects of PAHs in marine benthic communities. Copyright © 2013 Elsevier B.V. All rights reserved.
2013-01-01
Background Iron (Fe) deficiency is the most common micronutrient deficiency worldwide. Iron biofortification is a preventative strategy that alleviates Fe deficiency by improving the amount of absorbable Fe in crops. In the present study, we used an in vitro digestion/Caco 2 cell culture model as the guiding tool for breeding and development of two maize (Zea mays L.) lines with contrasting Fe bioavailability (ie. Low and High). Our objective was to confirm and validate the in vitro results and approach. Also, to compare the capacities of our two maize hybrid varieties to deliver Fe for hemoglobin (Hb) synthesis and to improve the Fe status of Fe deficient broiler chickens. Methods We compared the Fe-bioavailability between these two maize varieties with the presence or absence of added Fe in the maize based-diets. Diets were made with 75% (w/w) maize of either low or high Fe-bioavailability maize, with or without Fe (ferric citrate). Chicks (Gallus gallus) were fed the diets for 6 wk. Hb, liver ferritin and Fe related transporter/enzyme gene-expression were measured. Hemoglobin maintenance efficiency (HME) and total body Hb Fe values were used to estimate Fe bioavailability from the diets. Results DMT-1, DcytB and ferroportin expressions were higher (P < 0.05) in the "Low Fe" group than in the "High Fe" group (no added Fe), indicating lower Fe status and adaptation to less Fe-bioavailability. At times, Hb concentrations (d 21,28,35), HME (d 21), Hb-Fe (as from d 14) and liver ferritin were higher in the "High Fe" than in the "Low Fe" groups (P < 0.05), indicating greater Fe absorption from the diet and improved Fe status. Conclusions We conclude that the High Fe-bioavailability maize contains more bioavailable Fe than the Low Fe-bioavailability maize, presumably due to a more favorable matrix for absorption. Maize shows promise for Fe biofortification; therefore, human trials should be conducted to determine the efficacy of consuming the high bioavailable Fe maize to reduce Fe deficiency. PMID:23286295
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juhasz, Albert L., E-mail: Albert.Juhasz@unisa.edu
In this study, the bioavailability of DDTr (sum of DDT, DDD and DDE isomers) in pesticide-contaminated soil was assessed using an in vivo mouse model. DDTr relative bioavailability (RBA) ranged from 18.7±0.9 (As35) to 60.8±7.8% (As36) indicating that a significant portion of soil-bound DDTr was not available for absorption following ingestion. When DDTr bioaccessibility was assessed using the organic Physiologically Based Extraction Test (org-PBET), the inclusion of a sorption sink (silicone cord) enhanced DDTr desorption by up to 20-fold (1.6–3.8% versus 18.9–56.3%) compared to DDTr partitioning into gastrointestinal fluid alone. Enhanced desorption occurred as a result of the silicone cordmore » acting as a reservoir for solubilized DDTr to partition into, thereby creating a flux for further desorption until equilibrium was achieved. When the relationship between in vivo and in vitro data was assessed, a strong correlation was observed between the mouse bioassay and the org-PBET+silicone cord (slope=0.94, y-intercept=3.5, r{sup 2}=0.72) suggesting that the in vitro approach may provide a robust surrogate measure for the prediction of DDTr RBA in contaminated soil. - Highlights: • An optimised mouse assay was used to quantify DDTr relative bioavailability in soil. • DDTr bioaccessibility was also determined using an in vitro sorption sink approach. • A strong correlation was observed between in vivo and in vitro data. • The sorption sink approach may be used to predict DDTr relative bioavailability.« less
Joshi, Rayanta P; Negi, Geeta; Kumar, Ashutosh; Pawar, Yogesh B; Munjal, Bhushan; Bansal, Arvind K; Sharma, Shyam S
2013-08-01
Curcumin has shown to be effective against various diabetes related complications. However major limitation with curcumin is its low bioavailability. In this study we formulated and characterized self nano emulsifying drug delivery system (SNEDDS) curcumin formulation to enhance its bioavailability and then evaluated its efficacy in experimental diabetic neuropathy. Bioavailability studies were performed in male Sprague Dawley rats. Further to evaluate the efficacy of formulation in diabetic neuropathy various parameters like nerve function and sensorimotor perception were assessed along with study of inflammatory proteins (NF-κB, IKK-β, COX-2, iNOS, TNF-α and IL-6). Nanotechnology based formulation resulted in prolonged plasma exposure and bioavailability. SNEDDS curcumin provided better results against functional, behavioural and biochemical deficits in experimental diabetic neuropathy, when compared with naive curcumin. Further western blot analysis confirmed the greater neuroprotective action of SNEDDS curcumin. SNEDDS curcumin formulation due to higher bioavailability was found to afford enhanced protection in diabetic neuropathy. In this study the authors formulated and characterized a self-emulsifying drug delivery system for formulation to enhance curcumin bioavailability in experimental diabetic neuropathy. Enhanced efficacy was demonstrated in a rat model. Copyright © 2013 Elsevier Inc. All rights reserved.
Undre, Nasrullah; Dickinson, James
2017-04-04
Tacrolimus, an immunosuppressant widely used in solid organ transplantation, is available as a prolonged-release capsule for once-daily oral administration. In the immediate postsurgical period, if patients cannot take intact capsules orally, tacrolimus therapy is often initiated as a suspension of the capsule contents, delivered orally or via a nasogastric tube. This study evaluated the relative bioavailability of prolonged-release tacrolimus suspension versus intact capsules in healthy participants. A phase 1, open-label, single-dose, cross-over study. A single clinical research unit. In total, 20 male participants, 18-55 years old, entered and completed the study. All participants received nasogastric administration of tacrolimus 10 mg suspension in treatment period 1, with randomisation to oral administration of suspension or intact capsules in periods 2 and 3. Blood concentration-time profile over 144 hours was used to estimate pharmacokinetic parameters. Primary end point: relative bioavailability of prolonged-release intact capsule versus oral or nasogastric administration of prolonged-release tacrolimus suspension (area under the concentration-time curve (AUC) from time 0 to infinity post-tacrolimus dose (AUC 0-∞ ); AUC measured until the last quantifiable concentration (AUC 0-tz ); maximum observed concentration (C max ); time to C max (T max )). Tolerability was assessed throughout the study. Relative bioavailability of prolonged-release tacrolimus suspension administered orally was similar to intact capsules, with a ratio of least-square means for AUC 0-tz and AUC 0-∞ of 1.05 (90% CI 0.96 to 1.14). Bioavailability was lower with suspension administered via a nasogastric tube versus intact capsules (17%; ratio 0.83; CI 0.76 to 0.92). C max was higher for oral and nasogastric suspension (30% and 28%, respectively), and median T max was shorter (difference 1.0 and 1.5 hours postdose, respectively) versus intact capsules (2.0 hours). Single 10 mg doses of tacrolimus were well tolerated. Compared with intact capsules, the rate of absorption of prolonged-release tacrolimus from suspension was faster, leading to higher peak blood concentrations and shorter time to peak; relative bioavailability was similar with suspension administered orally. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Yen, Ching-Chi; Hsu, Mei-Chich; Wu, Yu-Tse
2017-01-01
Resveratrol (RES), a natural polyphenolic compound, exerts anti-fatigue activity, but its administration is complicated by its low water solubility. To improve RES bioavailability, this study developed a self-nanoemulsifying drug delivery system (SNEDDS) for RES and evaluated its anti-fatigue activity and rat exercise performance by measuring fatigue-related parameters, namely lactate, ammonia, plasma creatinine phosphokinase, and glucose levels and the swimming time to exhaustion. Through solubility and emulsification testing, the optimized SNEDDS composed of Capryol 90, Cremophor EL, and Tween 20 was developed; the average particle size in this formulation, which had favorable self-emulsification ability, was approximately 41.3 ± 4.1 nm. Pharmacokinetic studies revealed that the oral bioavailability of the optimized RES-SNEDDS increased by 3.2-fold compared with that of the unformulated RES-solution. Pretreatment using the RES-SNEDDS before exercise accelerated the recovery of lactate after exercise; compared with the vehicle group, the plasma ammonia level in the RES-SNEDDS group significantly decreased by 65.4%, whereas the glucose level significantly increased by approximately 1.8-fold. Moreover, the swimming time to exhaustion increased by 2.1- and 1.8-fold, respectively, compared with the vehicle and RES-solution pretreatment groups. Therefore, the developed RES-SNEDDS not only enhances the oral bioavailability of RES but may also exert anti-fatigue pharmacological effect. PMID:28841149
Salem, Ahmed Hamed; Agarwal, Suresh K; Dunbar, Martin; Nuthalapati, Silpa; Chien, David; Freise, Kevin J; Wong, Shekman L
2016-11-01
Venetoclax is a selective, first-in-class, B-cell lymphoma-2 inhibitor that has demonstrated clinical efficacy in several hematological malignancies. Two studies evaluated the relative bioavailability of venetoclax in healthy subjects: (1) a bioequivalence study to compare the bioavailability of the film-coated tablet with that of an earlier uncoated tablet and (2) a food effect study to evaluate the effect of food on venetoclax pharmacokinetics. Both studies were open-label, single-dose, crossover studies. In the bioequivalence study, 15 subjects received a single dose of venetoclax 50 mg under nonfasting conditions, in each of 2 periods; one period used the uncoated tablet, and the other used the film-coated tablet. In the food effect study, 24 subjects received a single dose of venetoclax film-coated 100-mg tablet under fasting conditions, after a low-fat breakfast or after a high-fat breakfast in different periods. The venetoclax film-coated tablet was bioequivalent to the uncoated tablet, which indicates that the film coating does not affect bioavailability. The median T max of venetoclax was delayed by about 2 hours when administered with food. Compared with fasting conditions, C max and AUC increased by approximately 3.4-fold following a low-fat breakfast. High-fat meals increased C max and AUC by approximately 50% relative to low-fat meals. The mean terminal half-life was comparable between the high-fat meal and fasting conditions (19.1 versus 16.1 hours). Based on these results and the venetoclax exposure-response profile, venetoclax should be administered with food and without specific recommendations for fat content to ensure adequate and consistent bioavailability. © 2016, The American College of Clinical Pharmacology.
Peters, Adam; Wilson, Iain; Merrington, Graham; Chowdhury, M Jasim
2018-01-01
An indicative compliance assessment of the Europe-wide bioavailable lead Environmental Quality Standard of 1.2 µg L -1 (EQS) was undertaken against regulatory freshwater monitoring data from six European member states and FOREGS database. Bio-met, a user-friendly tool based upon Biotic Ligand Models (BLMs) was used to account for bioavailability, along with the current European Water Framework Directive lead dissolved organic carbon correction approach. The outputs from both approaches were compared to the BLM. Of the 9054 freshwater samples assessed only 0.6% exceeded the EQS of 1.2 µg L -1 after accounting for bioavailability. The data showed that ambient background concentrations of lead across Europe are unlikely to influence general compliance with the EQS, although there may be isolated local issues. The waters showing the greatest sensitivity to potential lead exposures are characterized by relatively low DOC (< 0.5 mg L -1 ), regardless of the pH and calcium concentrations.
Drug Bioavailability Data: (Un)Available.
ERIC Educational Resources Information Center
Capomacchia, Anthony C.; And Others
1979-01-01
The obtainability of drug bioavailability data from both brand-name and generic-drug manufacturers was studied to document the relative change in availability to pharmacy students of drug bioavailability data between 1978 and 1976 for drugs exhibiting bioavailability problems. The results indicate no major change. (JMD)
Zang, Yifei; Wei, Xiaorong; Hao, Mingde
2015-01-01
The bioavailability and fractionation of Cu reflect its deliverability in soil. Little research has investigated Cu supply to crops in soil under long-term rotation and fertilisation on the Loess Plateau. A field experiment was conducted in randomized complete block design to determine the bioavailability and distribution of Cu fractions in a Heilu soil (Calcaric Regosol) after 18 years of rotation and fertilisation. The experiment started in 1984, including five cropping systems (fallow control, alfalfa cropping, maize cropping, winter wheat cropping, and grain-legume rotation of pea/winter wheat/winter wheat + millet) and five fertiliser treatments (unfertilised control, N, P, N + P, and N + P + manure). Soil samples were collected in 2002 for chemical analysis. Available Cu was assessed by diethylene triamine pentaacetic acid (DTPA) extraction, and Cu was fractionated by sequential extraction. Results showed that DTPA-Cu was lower in cropping systems compared with fallow control. Application of fertilisers resulted in no remarkable changes in DTPA-Cu compared with unfertilised control. Correlation and path analyses revealed that soil pH and CaCO3 directly affected Cu bioavailability, whereas available P indirectly affected Cu bioavailability. The concentrations of Cu fractions (carbonate and Fe/Al oxides) in the plough layer were lower in cropping systems, while the values in the plough sole were higher under grain-legume rotation relative to fallow control. Manure with NP fertiliser increased Cu fractions bound to organic matter and minerals in the plough layer, and its effects in the plough sole varied with cropping systems. The direct sources (organic-matter-bound fraction and carbonate-bound fraction) of available Cu contributed much to Cu bioavailability. The mineral-bound fraction of Cu acted as an indicator of Cu supply potential in the soil. PMID:26694965
Zang, Yifei; Wei, Xiaorong; Hao, Mingde
2015-01-01
The bioavailability and fractionation of Cu reflect its deliverability in soil. Little research has investigated Cu supply to crops in soil under long-term rotation and fertilisation on the Loess Plateau. A field experiment was conducted in randomized complete block design to determine the bioavailability and distribution of Cu fractions in a Heilu soil (Calcaric Regosol) after 18 years of rotation and fertilisation. The experiment started in 1984, including five cropping systems (fallow control, alfalfa cropping, maize cropping, winter wheat cropping, and grain-legume rotation of pea/winter wheat/winter wheat + millet) and five fertiliser treatments (unfertilised control, N, P, N + P, and N + P + manure). Soil samples were collected in 2002 for chemical analysis. Available Cu was assessed by diethylene triamine pentaacetic acid (DTPA) extraction, and Cu was fractionated by sequential extraction. Results showed that DTPA-Cu was lower in cropping systems compared with fallow control. Application of fertilisers resulted in no remarkable changes in DTPA-Cu compared with unfertilised control. Correlation and path analyses revealed that soil pH and CaCO3 directly affected Cu bioavailability, whereas available P indirectly affected Cu bioavailability. The concentrations of Cu fractions (carbonate and Fe/Al oxides) in the plough layer were lower in cropping systems, while the values in the plough sole were higher under grain-legume rotation relative to fallow control. Manure with NP fertiliser increased Cu fractions bound to organic matter and minerals in the plough layer, and its effects in the plough sole varied with cropping systems. The direct sources (organic-matter-bound fraction and carbonate-bound fraction) of available Cu contributed much to Cu bioavailability. The mineral-bound fraction of Cu acted as an indicator of Cu supply potential in the soil.
Ji, Hongyu; Tang, Jingling; Li, Mengting; Ren, Jinmei; Zheng, Nannan; Wu, Linhua
2016-01-01
The present study was to formulate curcumin solid lipid nanoparticles (Cur-SLNs) with P-gp modulator excipients, TPGS and Brij78, to enhance the solubility and bioavailability of curcumin. The formulation was optimized by Plackett-Burman screening design and Box-Behnken experiment design. Then physiochemical properties, entrapment efficiency and in vitro release of Cur-SLNs were characterized. In vivo pharmacokinetics study and in situ single-pass intestinal perfusion were performed to investigate the effects of Cur-SLNs on the bioavailability and intestinal absorption of curcumin. The optimized formulations showed an average size of 135.3 ± 1.5 nm with a zeta potential value of -24.7 ± 2.1 mV and 91.09% ± 1.23% drug entrapment efficiency, meanwhile displayed a sustained release profile. In vivo pharmacokinetic study showed AUC0→t for Cur-SLNs was 12.27-folds greater than curcumin suspension and the relative bioavailability of Cur-SLNs was 942.53%. Meanwhile, Tmax and t(1/2) of curcumin for Cur-SLNs were both delayed comparing to the suspensions (p < 0.01). The in situ intestinal absorption study revealed that the effective permeability (Peff) value of curcumin for SLNs was significantly improved (p < 0.01) comparing to curcumin solution. Cur-SLNs with TPGS and Brij78 could improve the oral bioavailability and intestinal absorption of curcumin effectively.
Lai, Jie; Lu, Yi; Yin, Zongning; Hu, Fuqiang; Wu, Wei
2010-01-01
Efforts to improve the oral bioavailability of cyclosporine A (CyA) remains a challenge in the field of drug delivery. In this study, glyceryl monooleate (GMO)/poloxamer 407 cubic nanoparticles were evaluated as potential vehicles to improve the oral bioavailability of CyA. Cubic nanoparticles were prepared via the fragmentation of a bulk GMO/poloxamer 407 cubic phase gel by sonication and homogenization. The cubic inner structure formed was verified using Cryo-TEM. The mean diameters of the nanoparticles were about 180 nm, and the entrapment efficiency of these particles for CyA was over 85%. The in vitro release of CyA from these nanoparticles was less than 5% at 12 h. The results of a pharmacokinetic study in beagle dogs showed improved absorption of CyA from cubic nanoparticles as compared to microemulsion-based Neoral®; higher Cmax (1371.18 ± 37.34 vs 969.68 ± 176.3 ng mL−1), higher AUC0–t (7757.21 ± 1093.64 vs 4739.52 ± 806.30 ng h mL−1) and AUC0–∞ (9004.77 ± 1090.38 vs 5462.31 ± 930.76 ng h mL−1). The relative oral bioavailability of CyA cubic nanoparticles calculated on the basis of AUC0–∞ was about 178% as compared to Neoral®. The enhanced bioavailability of CyA is likely due to facilitated absorption by cubic nanoparticles rather than improved release. PMID:20161984
Influence of deposition and spray pattern of nasal powders on insulin bioavailability.
Pringels, E; Callens, C; Vervaet, C; Dumont, F; Slegers, G; Foreman, P; Remon, J P
2006-03-09
The influence of the deposition pattern and spray characteristics of nasal powder formulations on the insulin bioavailability was investigated in rabbits. The formulations were prepared by freeze drying a dispersion containing a physical mixture of drum dried waxy maize starch (DDWM)/Carbopol 974P (90/10, w/w) or a spray-dried mixture of Amioca starch/Carbopol 974P (25/75, w/w). The deposition in the nasal cavity of rabbits and in a silicone human nose model after actuation of three nasal delivery devices (Monopowder, Pfeiffer and experimental system) was compared and related to the insulin bioavailability. Posterior deposition of the powder formulation in the nasal cavity lowered the insulin bioavailability. To study the spray pattern, the shape and cross-section of the emitted powder cloud were analysed. It was concluded that the powder bulk density of the formulation influenced the spray pattern. Consequently, powders of different bulk density were prepared by changing the solid fraction of the freeze dried dispersion and by changing the freezing rate during freeze drying. After nasal delivery of these powder formulations no influence of the powder bulk density and of the spray pattern on the insulin bioavailability was observed.
McDougall, Gordon J.; Alegría, Amparo; Alminger, Marie; Arrigoni, Eva; Aura, Anna‐Marja; Brito, Catarina; Cilla, Antonio; El, Sedef N.; Karakaya, Sibel; Martínez‐Cuesta, Marie C.; Santos, Claudia N.
2015-01-01
Various secondary plant metabolites or phytochemicals, including polyphenols and carotenoids, have been associated with a variety of health benefits, such as reduced incidence of type 2 diabetes, cardiovascular diseases, and several types of cancer, most likely due to their involvement in ameliorating inflammation and oxidative stress. However, discrepancies exist between their putative effects when comparing observational and intervention studies, especially when using pure compounds. These discrepancies may in part be explained by differences in intake levels and their bioavailability. Prior to exerting their bioactivity, these compounds must be made bioavailable, and considerable differences may arise due to their matrix release, changes during digestion, uptake, metabolism, and biodistribution, even before considering dose‐ and host‐related factors. Though many insights have been gained on factors affecting secondary plant metabolite bioavailability, many gaps still exist in our knowledge. In this position paper, we highlight several major gaps in our understanding of phytochemical bioavailability, including effects of food processing, changes during digestion, involvement of cellular transporters in influx/efflux through the gastrointestinal epithelium, changes during colonic fermentation, and their phase I and phase II metabolism following absorption. PMID:25988374
Wu, Jun-Yong; Li, Yong-Jiang; Han, Meng; Hu, Xiong-Bin; Yang, Le; Wang, Jie-Min; Xiang, Da-Xiong
2018-08-01
Puerarin is a phytochemical with various pharmacological effects, but poor water solubility and low oral bioavailability limited usage of puerarin. The purpose of this study was to develop a new microemulsion (ME) based on phospholipid complex technique to improve the oral bioavailability of puerarin. Puerarin phospholipid complex (PPC) was prepared by a solvent evaporation method and was characterized by X-ray diffraction and infrared spectroscopy. Pseudo-ternary phase diagrams were constructed to investigate the effects of different oil on the emulsifying performance of the blank ME. Intestinal mucosal injury test was conducted to evaluate safety of PPC-ME, and no sign of damage on duodenum, jejunum and ileum of rats was observed using hematoxylin-eosin staining. In pharmacokinetic study of PPC-ME, a significantly greater C max (1.33 µg/mL) was observed when compared to puerarin (C max 0.55 µg/mL) or PPC (C max 0.70 µg/mL); the relative oral bioavailability of PPC-ME was 3.16-fold higher than puerarin. In conclusion, the ME combined with the phospholipid complex technique was a promising strategy to enhance the oral bioavailability of puerarin.
Schmitz, Thierry; Leitner, Verena M; Bernkop-Schnürch, Andreas
2005-05-01
Low molecular weight heparin (LMWH) is an agent of choice in the anti-coagulant therapy and prophylaxis of thrombosis and coronary syndromes. However, the therapeutic use is partially limited due to a poor oral bioavailability. It was therefore the aim of this study to design and evaluate a highly efficient stomach-targeted oral delivery system for LMWH. In order to appraise the influence of the molecular weight on the oral bioavailability, mini-tablets comprising 3 kDa (279 IU) and 6 kDa (300 IU) LMWH, respectively, were generated and tested in vivo in rats. The potential of the test formulations based on thiolated polycarbophil, was evaluated in comparison to hydroxyethylcellulose (HEC) as control carrier matrix. The plasma levels of LMWH after oral versus subcutaneous administration were determined in order to calculate the relative bioavailability. With the delivery system containing 3 kDa LMWH (279 IU) a relative bioavailability of 19.1% was achieved, offering a significantly (p < 0.05) better bioavailability than the control system displaying a relative bioavailability of 8.1% The 6 kDa LMWH (300 IU) formulation displayed a relative bioavailability of 10.7% in contrast to the control displaying a relative bioavailability of 2.1%. In conclusion, these results suggest that mucoadhesive thiolated polymers are a promising tool for the non-invasive stomach-targeted systemic delivery of LMWH as model for a hydrophilic macromolecular polysaccharide. Copyright 2005 Wiley-Liss, Inc
Perignon, Marlène; Barré, Tangui; Gazan, Rozenn; Amiot, Marie-Josèphe; Darmon, Nicole
2018-01-01
Nutritional adequacy depends on nutrient intakes and bioavailability which strongly varies with the plant- or animal-origin of foods. The aim was to estimate iron, zinc, protein and vitamin A bioavailability from individual diets, and investigate its relation with the animal-to-plant ratio (A/P) of diets. Bioavailability was estimated in 1899 French diets using diet-based algorithms or food-group specific conversion factors. Nutrient inadequacy was estimated based on i) bioavailability calculated in each individual diet and ii) average bioavailability assumed for Western-diets. Mean iron absorption, zinc absorption, protein quality and β-carotene conversion factor were 13%, 30%, 92%, and 17:1, respectively. Bioavailability displayed a high variability between individual diets, poorly explained by their A/P. Using individual bioavailability led to different inadequacy prevalence than with average factors assumed for Western-diets. In this population, the A/P does not seem sufficient to predict nutrient bioavailability and the corresponding recommended intakes. Nutritional adequacy should be assessed using bioavailability accounting for individual diets composition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Radwan, Mahasen A; AlQuadeib, Bushra T; Šiller, Lidija; Wright, Matthew C; Horrocks, Benjamin
2017-11-01
Amphotericin B (AMB) is used most commonly in severe systemic life-threatening fungal infections. There is currently an unmet need for an efficacious (AMB) formulation amenable to oral administration with better bioavailability and lower nephrotoxicity. Novel PEGylated polylactic-polyglycolic acid copolymer (PLGA-PEG) nanoparticles (NPs) formulations of AMB were therefore studied for their ability to kill Candida albicans (C. albicans). The antifungal activity of AMB formulations was assessed in C. albicans. Its bioavalability was investigated in nine groups of rats (n = 6). Toxicity was examined by an in vitro blood hemolysis assay, and in vivo nephrotoxicity after single and multiple dosing for a week by blood urea nitrogen (BUN) and plasma creatinine (PCr) measurements. The MIC of AMB loaded to PLGA-PEG NPs against C. albicans was reduced two to threefold compared with free AMB. Novel oral AMB delivery loaded to PLGA-PEG NPs was markedly systemically available compared to Fungizone® in rats. The addition of 2% of GA to the AMB formulation significantly (p < 0.05) improved the bioavailability from 1.5 to 10.5% and the relative bioavailability was > 790% that of Fungizone®. The novel AMB formulations showed minimal toxicity and better efficacy compared to Fungizone®. No nephrotoxicity in rats was detected after a week of multiple dosing of AMB NPs based on BUN and PCr, which remained at normal levels. An oral delivery system of AMB-loaded to PLGA-PEG NPs with better efficacy and minimal toxicity was formulated. The addition of glycyrrhizic acid (GA) to AMB NPs formulation resulted in a significant oral absorption and improved bioavailability in rats.
Mady, Fatma M; Shaker, Mohamed A
2017-01-01
Despite the fact that various studies have investigated the clinical relevance of ellagic acid (EA) as a naturally existing bioactive substance in cancer therapy, little has been reported regarding the efficient strategy for improving its oral bioavailability. In this study, we report the formulation of EA-loaded nanoparticles (EA-NPs) to find a way to enhance its bioactivity as well as bioavailability after oral administration. Poly(ε-caprolactone) (PCL) was selected as the biodegradable polymer for the formulation of EA-NPs through the emulsion-diffusion-evaporation technique. The obtained NPs have been characterized by measuring particle size, zeta potential, Fourier transform infrared, differential scanning calorimetry, and X-ray diffraction. The entrapment efficiency and the release profile of EA was also determined. In vitro cellular uptake and cytotoxicity of the obtained NPs were evaluated using Caco-2 and HCT-116 cell lines, respectively. Moreover, in vivo study has been performed to measure the oral bioavailability of EA-NPs compared to free EA, using New Zealand white rabbits. NPs with distinct shape were obtained with high entrapment and loading efficiencies. Diffusion-driven release profile of EA from the prepared NPs was determined. EA-NP-treated HCT-116 cells showed relatively lower cell viability compared to free EA-treated cells. Fluorometric imaging revealed the cellular uptake and efficient localization of EA-NPs in the nuclear region of Caco-2 cells. In vivo testing revealed that the oral administration of EA-NPs produced a 3.6 times increase in the area under the curve compared to that of EA. From these results, it can be concluded that incorporation of EA into PCL as NPs enhances its oral bioavailability and activity.
Mady, Fatma M; Shaker, Mohamed A
2017-01-01
Despite the fact that various studies have investigated the clinical relevance of ellagic acid (EA) as a naturally existing bioactive substance in cancer therapy, little has been reported regarding the efficient strategy for improving its oral bioavailability. In this study, we report the formulation of EA-loaded nanoparticles (EA-NPs) to find a way to enhance its bioactivity as well as bioavailability after oral administration. Poly(ε-caprolactone) (PCL) was selected as the biodegradable polymer for the formulation of EA-NPs through the emulsion–diffusion–evaporation technique. The obtained NPs have been characterized by measuring particle size, zeta potential, Fourier transform infrared, differential scanning calorimetry, and X-ray diffraction. The entrapment efficiency and the release profile of EA was also determined. In vitro cellular uptake and cytotoxicity of the obtained NPs were evaluated using Caco-2 and HCT-116 cell lines, respectively. Moreover, in vivo study has been performed to measure the oral bioavailability of EA-NPs compared to free EA, using New Zealand white rabbits. NPs with distinct shape were obtained with high entrapment and loading efficiencies. Diffusion-driven release profile of EA from the prepared NPs was determined. EA-NP-treated HCT-116 cells showed relatively lower cell viability compared to free EA-treated cells. Fluorometric imaging revealed the cellular uptake and efficient localization of EA-NPs in the nuclear region of Caco-2 cells. In vivo testing revealed that the oral administration of EA-NPs produced a 3.6 times increase in the area under the curve compared to that of EA. From these results, it can be concluded that incorporation of EA into PCL as NPs enhances its oral bioavailability and activity. PMID:29066891
Bioavailability and Pharmacokinetics of Oral Cocaine in Humans.
Coe, Marion A; Jufer Phipps, Rebecca A; Cone, Edward J; Walsh, Sharon L
2018-06-01
The pharmacokinetic profile of oral cocaine has not been fully characterized and prospective data on oral bioavailability are limited. A within-subject study was performed to characterize the bioavailability and pharmacokinetics of oral cocaine. Fourteen healthy inpatient participants (six males) with current histories of cocaine use were administered two oral doses (100 and 200 mg) and one intravenous (IV) dose (40 mg) of cocaine during three separate dosing sessions. Plasma samples were collected for up to 24 h after dosing and analyzed for cocaine and metabolites by gas chromatography-mass spectrometry. Pharmacokinetic parameters were calculated by non-compartmental analysis, and a two-factor model was used to assess for dose and sex differences. The mean ± SEM oral cocaine bioavailability was 0.32 ± 0.04 after 100 and 0.45 ± 0.06 after 200 mg oral cocaine. Volume of distribution (Vd) and clearance (CL) were both greatest after 100 mg oral (Vd = 4.2 L/kg; CL = 116.2 mL/[min kg]) compared to 200 mg oral (Vd = 2.9 L/kg; CL = 87.5 mL/[min kg]) and 40 mg IV (Vd = 1.3 L/kg; CL = 32.7 mL/[min kg]). Oral cocaine area-under-thecurve (AUC) and peak concentration increased in a dose-related manner. AUC metabolite-to-parent ratios of benzoylecgonine and ecgonine methyl ester were significantly higher after oral compared to IV administration and highest after the lower oral dose. In addition, minor metabolites were detected in higher concentrations after oral compared to IV cocaine. Oral cocaine produced a pharmacokinetic profile different from IV cocaine, which appears as a rightward and downward shift in the concentration-time profile. Cocaine bioavailability values were similar to previous estimates. Oral cocaine also produced a unique metabolic profile, with greater concentrations of major and minor metabolites.
Rajpal, Saurabh; Katikaneni, Pavan; Deshotels, Matthew; Pardue, Sibile; Glawe, John; Shen, Xinggui; Akkus, Nuri; Modi, Kalgi; Bhandari, Ruchi; Dominic, Paari; Reddy, Pratap; Kolluru, Gopi K; Kevil, Christopher G
2018-05-01
Hydrogen sulfide (H 2 S) has emerged as an important physiological and pathophysiological signaling molecule in the cardiovascular system influencing vascular tone, cytoprotective responses, redox reactions, vascular adaptation, and mitochondrial respiration. However, bioavailable levels of H 2 S in its various biochemical metabolite forms during clinical cardiovascular disease remain poorly understood. We performed a case-controlled study to quantify and compare the bioavailability of various biochemical forms of H 2 S in patients with and without cardiovascular disease (CVD). In our study, we used the reverse-phase high performance liquid chromatography monobromobimane assay to analytically measure bioavailable pools of H 2 S. Single nucleotide polymorphisms (SNPs) were also identified using DNA Pyrosequencing. We found that plasma acid labile sulfide levels were significantly reduced in Caucasian females with CVD compared with those without the disease. Conversely, plasma bound sulfane sulfur levels were significantly reduced in Caucasian males with CVD compared with those without the disease. Surprisingly, gender differences of H 2 S bioavailability were not observed in African Americans, although H 2 S bioavailability was significantly lower overall in this ethnic group compared to Caucasians. We also performed SNP analysis of H 2 S synthesizing enzymes and found a significant increase in cystathionine gamma-lyase (CTH) 1364 G-T allele frequency in patients with CVD compared to controls. Lastly, plasma H 2 S bioavailability was found to be predictive for cardiovascular disease in Caucasian subjects as determined by receiver operator characteristic analysis. These findings reveal that plasma H 2 S bioavailability could be considered a biomarker for CVD in an ethnic and gender manner. Cystathionine gamma-lyase 1346 G-T SNP might also contribute to the risk of cardiovascular disease development. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Xie, Xiaoxia; Tao, Qing; Zou, Yina; Zhang, Fengyi; Guo, Miao; Wang, Ying; Wang, Hui; Zhou, Qian; Yu, Shuqin
2011-09-14
The overall goal of this paper was to develop poly(lactic-co-glycolic acid) nanoparticles (PLGA-NPs) of curcumin (CUR), named CUR-PLGA-NPs, and to study the effect and mechanisms enhancing the oral bioavailability of CUR. CUR-PLGA-NPs were prepared according to a solid-in-oil-in-water (s/o/w) solvent evaporation method and exhibited a smooth and spherical shape with diameters of about 200 nm. Characterization of CUR-PLGA-NPs showed CUR was successfully encapsulated on the PLGA polymer. The entrapment efficiency and loading rate of CUR were 91.96 and 5.75%, respectively. CUR-PLGA-NPs showed about 640-fold in water solubility relative to that of n-CUR. A sustained CUR release to a total of approximately 77% was discovered from CUR-PLGA-NPs in artificial intestinal juice, but only about 48% in artificial gastric juice. After oral administration of CUR-PLGA-NPs, the relative bioavailability was 5.6-fold and had a longer half-life compared with that of native curcumin. The results showed that the effect in improving oral bioavailability of CUR may be associated with improved water solubility, higher release rate in the intestinal juice, enhanced absorption by improved permeability, inhibition of P-glycoprotein (P-gp)-mediated efflux, and increased residence time in the intestinal cavity. Thus, encapsulating hydrophobic drugs on PLGA polymer is a promising method for sustained and controlled drug delivery with improved bioavailability of Biopharmaceutics Classification System (BCS) class IV, such as CUR.
Nanoemulsion formulation of fisetin improves bioavailability and antitumour activity in mice.
Ragelle, Héloïse; Crauste-Manciet, Sylvie; Seguin, Johanne; Brossard, Denis; Scherman, Daniel; Arnaud, Philippe; Chabot, Guy G
2012-05-10
The natural flavonoid fisetin (3,3',4',7-tetrahydroxyflavone) has shown antitumour activity but its administration is complicated by its low water solubility. Our aim was to incorporate fisetin into a nanoemulsion to improve its pharmacokinetics and therapeutic efficacy. Solubility and emulsification tests allowed to develop an optimal nanoemulsion composed of Miglyol 812N/Labrasol/Tween 80/Lipoid E80/water (10%/10%/2.5%/1.2%/76.3%). The nanoemulsion had an oil droplet diameter of 153 ± 2 nm, a negative zeta potential (-28.4 ± 0.6 mV) and a polydispersity index of 0.129. The nanoemulsion was stable at 4 °C for 30 days, but phase separation occurred at 20 °C. Pharmacokinetic studies in mice revealed that the fisetin nanoemulsion injected intravenously (13 mg/kg) showed no significant difference in systemic exposure compared to free fisetin. However, when the fisetin nanoemulsion was administered intraperitoneally, a 24-fold increase in fisetin relative bioavailability was noted, compared to free fisetin. Additionally, the antitumour activity of the fisetin nanoemulsion in Lewis lung carcinoma bearing mice occurred at lower doses (36.6 mg/kg) compared to free fisetin (223 mg/kg). In conclusion, we have developed a stable nanoemulsion of fisetin and have shown that it could improve its relative bioavailability and antitumour activity. Copyright © 2012 Elsevier B.V. All rights reserved.
Yang, Jun-Hui; Mao, Kun-Jun; Huang, Ping; Ye, Yin-Jun; Guo, Hua-Shan; Cai, Bao-Chang
2018-02-01
1. The purpose of the present study was to investigate the effect of piperine (PP) on the pharmacokinetics of rosmarinic acid (RA) in rat plasma and to determine whether PP could enhance the oral bioavailability of RA via inhibition of its glucuronidation. 2. The pharmacokinetic profiles of RA between oral administration of RA (50 mg/kg) alone and in combination with different oral dose PP (20, 40, 60, and 80 mg/kg) to rats were investigated via a validated UPLC/MS/MS method. 3. The AUC and C max of RA were significantly increased in combination with different dose PP dose dependently, especially in the presence of 60 and 80 mg/kg PP (p < 0.01). The relative bioavailability of RA in the presence of 20, 40, 60, and 80 mg/kg PP was 1.24-, 1.32-, 2.02-, and 2.26-folds higher, respectively, compared with the control group given RA alone. Compared with RA, the pharmacokinetic modulations of RA glucuronide were even more apparent, and the glucuronidation of RA was remarkedly inhibited. 4. This study demonstrated that PP significantly improved the in vivo bioavailability of RA partly attributing to the inhibition of gut and hepatic metabolism enzymes of RA.
Fadke, Janki; Desai, Jagruti; Thakkar, Hetal
2015-12-01
The objective of the present work was to formulate tablet dosage form of itraconazole with enhanced bioavailability. Spherical crystal agglomerates (SCA) of itraconazole prepared by quasi emulsification solvent diffusion method using Soluplus and polyethylene glycol 4000 (PEG 4000) showed increased solubility (540 μg/ml) in 0.1 N hydrochloric acid as compared to pure drug (12 μg/ml). A Fourier transform infrared (FTIR) study indicated compatibility of drug with the excipients. The developed SCA were spherical with smooth surface having an average size of 412 μm. The significantly improved micromeritic properties compared to the plain drug suggested its suitability for direct compression. The antifungal activity of itraconazole was retained in the SCA form as evidenced from the results of the disc diffusion method. The optimized SCA formulation could be easily compressed into tablet with desirable characteristics of hardness (5 kg/cm(2)) and disintegration time (6.3 min). The in vitro dissolution studies showed significant difference in the dissolution profiles of pure drug (21%) and SCA formulation (85%) which was even greater than that of marketed preparation (75%). In vivo pharmacokinetic showed significant enhancement in C max and AUC0-t with relative bioavailability of 225%. The SCA formulation seems to be promising for enhancement of oral bioavailability of itraconazole.
Han, Shuping; Naito, Wataru; Hanai, Yoshimichi; Masunaga, Shigeki
2013-09-15
To develop efficient and effective methods of assessing and managing the risk posed by metals to aquatic life, it is important to determine the effects of water chemistry on the bioavailability of metals in surface water. In this study, we employed the diffusive gradients in thin-films (DGT) to determine the bioavailability of metals (Ni, Cu, Zn, and Pb) in Japanese water systems. The DGT results were compared with a chemical equilibrium model (WHAM 7.0) calculation to examine its robustness and utility to predict dynamic metal speciation. The DGT measurements showed that biologically available fractions of metals in the rivers impacted by mine drainage and metal industries were relatively high compared with those in urban rivers. Comparison between the DGT results and the model calculation indicated good agreement for Zn. The model calculation concentrations for Ni and Cu were higher than the DGT concentrations at most sites. As for Pb, the model calculation depended on whether the precipitated iron(III) hydroxide or precipitated aluminum(III) hydroxide was assumed to have an active surface. Our results suggest that the use of WHAM 7.0 combined with the DGT method can predict bioavailable concentrations of most metals (except for Pb) with reasonable accuracy. Copyright © 2013. Published by Elsevier Ltd.
Zhu, Le; Glahn, Raymond P; Nelson, Deanna; Miller, Dennis D
2009-06-10
Iron bioavailability from supplements and fortificants varies depending upon the form of the iron and the presence or absence of iron absorption enhancers and inhibitors. Our objectives were to compare the effects of pH and selected enhancers and inhibitors and food matrices on the bioavailability of iron in soluble ferric pyrophosphate (SFP) to other iron fortificants using a Caco-2 cell culture model with or without the combination of in vitro digestion. Ferritin formation was the highest in cells treated with SFP compared to those treated with other iron compounds or chelates. Exposure to pH 2 followed by adjustment to pH 7 markedly decreased FeSO(4) bioavailability but had a smaller effect on bioavailabilities from SFP and sodium iron(III) ethylenediaminetetraacetate (NaFeEDTA), suggesting that chelating agents minimize the effects of pH on iron bioavailability. Adding ascorbic acid (AA) and cysteine to SFP in a 20:1 molar ratio increased ferritin formation by 3- and 2-fold, respectively, whereas adding citrate had no significant effect on the bioavailability of SFP. Adding phytic acid (10:1) and tannic acid (1:1) to iron decreased iron bioavailability from SFP by 91 and 99%, respectively. The addition of zinc had a marked inhibitory effect on iron bioavailability. Calcium and magnesium also inhibited iron bioavailability but to a lesser extent. Incorporating SFP in rice greatly reduced iron bioavailability from SFP, but this effect can be partially reversed with the addition of AA. SFP and FeSO(4) were taken up similarly when added to nonfat dry milk. Our results suggest that dietary factors known to enhance and inhibit iron bioavailability from various iron sources affect iron bioavailability from SFP in similar directions. However, the magnitude of the effects of iron absorption inhibitors on SFP iron appears to be smaller than on iron salts, such as FeSO(4) and FeCl(3). This supports the hypothesis that SFP is a promising iron source for food fortification and dietary supplements.
Bioavailability of AREDS1 micronutrients from softgel capsules and tablets: a pilot study
Johnson, Elizabeth J.; Vishwanathan, Rohini; Rasmussen, Helen M.
2014-01-01
Purpose The benefits of antioxidant micronutrients in slowing progression to advanced stages of age-related macular degeneration (AMD) was supported by the 4/day tablet form investigated in the Age-related Eye Disease Study 1 (AREDS1) and the 2/day softgel form in the Age-related Eye Disease Study 2 (AREDS2). However, the choices of excipient, dosage form, and ingredient chemistry as well as the patient physiologies and pathologies can influence bioavailability and efficacy. The objective of the study was to explore the influence of dosage form on the bioavailability of the five primary AREDS1 and Tier-2 AREDS2 micronutrients: the metals zinc and copper, β-carotene, and vitamins E and C. The intent was to establish by chemical analysis the relative bioavailabilities of these five micronutrients in plasma, or serum for the metals, as well as to identify any opportunities for improvements. Methods A total of 15 healthy men (5) and women (10) were recruited for a controlled, randomized, three-arm, crossover trial of the AREDS1 micronutrients. The study investigated responses in bioabsorption to a single dose of either four tablets or two softgels at the full dose level, or one softgel at the half-dose level. The bioavailability of each micronutrient was based on the pharmacokinetic profiles established through 15 samplings for each ingredient/dosage form in plasma/serum over the course of one week. Results Bioavailability was estimated using model-independent and model-dependent procedures. A statistical advantage of the dosage form was observed in only two cases from the exaggerated effects using the half-dose softgel and for the tablet dosage form for β-carotene and vitamin E. An unanticipated complexity was suggested by the bimodal absorption of zinc. For these micronutrients, no disadvantage (though potential advantage) was inferred for the water-soluble components presented in a softgel formulation. Increased fractional absorption was observed for the smaller dose (one capsule versus two), but it was not sufficient to reach the level achieved by the full dose of either four tablets or two softgels. A model-dependent analysis permitted an estimation of the percentage of micronutrients absorbed, with zinc, the single most important ingredient, absorbed at about a 10% level. Conclusions The results suggest modestly contradictory requirements in the dosage form for water-soluble and lipid-soluble ingredients, as based on a goal of improved bioavailability. Comparative consistency in bioavailability was observed across dosage forms, and most nutrients between AREDS1 and AREDS2 (full dose) formulations relative to the significant variations observed within this controlled population. The results emphasize the importance of defining the requisite bioavailability of each micronutrient and the influence of the dosage form that provides it. With the recognition of global and population-specific micronutrient deficiencies, notably in the elderly populations afflicted with AMD and their significant metabolic and health consequences, establishing efficient means of supplementation are of continuing epidemiologic interest. PMID:25352732
Ezzati, Mohammad; Carr, Bruce R
2015-01-01
Suppression of estrogen production and reduction of menstrual blood flow are the mainstays of medical treatment of endometriosis-related pain and have been traditionally achieved by methods such as combined hormonal contraception, progestins and GnRH analogs, all with comparable efficacies, though different side-effect profiles. Elagolix is the frontrunner among an emerging class of GnRH antagonists, which unlike their peptide predecessors has a nonpeptide structure resulting in its oral bioavailability. Phase I and II clinical trials have demonstrated safety of elagolix and its efficacy in partial and reversible suppression of ovarian estrogen production resulting in improvements in endometriosis-related pain. Phase III clinical trials are currently underway and elagolix may become a valuable addition to the armamentarium of pharmacological agents to treat endometriosis-related pain.
Bolan, Nanthi; Mahimairaja, Santiago; Kunhikrishnan, Anitha; Seshadri, Balaji; Thangarajan, Ramya
2015-06-01
In this work, bioavailability and ecotoxicity of arsenite (As(III)) and arsenate (As(V)) species were compared between solution culture and soil system. Firstly, the adsorption of As(III) and As(V) was compared using a number of non-allophanic and allophanic soils. Secondly, the bioavailability and ecotoxicity were examined using germination, phytoavailability, earthworm, and soil microbial activity tests. Both As-spiked soils and As-contaminated sheep dip soils were used to test bioavailability and ecotoxicity. The sheep dip soil which contained predominantly As(V) species was subject to flooding to reduce As(V) to As(III) and then used along with the control treatment soil to compare the bioavailability between As species. Adsorption of As(V) was much higher than that of As(III), and the difference in adsorption between these two species was more pronounced in the allophanic than non-allophanic soils. In the solution culture, there was no significant difference in bioavailability and ecotoxicity, as measured by germination and phytoavailability tests, between these two As species. Whereas in the As-spiked soils, the bioavailability and ecotoxicity were higher for As(III) than As(V), and the difference was more pronounced in the allophanic than non-allophanic soils. Bioavailability of As increased with the flooding of the sheep dip soils which may be attributed to the reduction of As(V) to As(III) species. The results in this study have demonstrated that while in solution, the bioavailability and ecotoxicity do not vary between As(III) and As(V), in soils, the latter species is less bioavailable than the former species because As(V) is more strongly retained than As(III). Since the bioavailability and ecotoxicity of As depend on the nature of As species present in the environment, risk-based remediation approach should aim at controlling the dynamics of As transformation.
Xu, Man; Yu, Qing; Zhao, Qianru; Chen, Wei; Lin, Yuanjie; Jin, Yong
2016-01-01
The main objective of this study was to develop and evaluate a W/O microemulsion formulation of troxerutin to improve its oral bioavailability. The W/O microemulsion was optimized using a pseudo-ternary phase diagram and evaluated for physical properties. In vitro MDCK cell permeability studies were carried out to evaluate the permeability enhancement effect of microemulsion, and in vivo absorption of troxerutin microemulsion in the intestine was compared with that of solution after single-dose administration (56.7 mg/kg) in male Wistar rats. The optimal formulation consisted of lecithin, ethanol, isopropyl myristate and water (23.30/11.67/52.45/12.59 w/w) was physicochemical stable and the mean droplet size was about 50.20 nm. In vitro study, the troxerutin-loaded microemulsion showed higher intestinal membrane permeability across MDCK monolayer when compared with the control solution. The W/O microemulsion can significantly promote the intestinal absorption of troxerutin in rats in vivo, and the relative bioavailability of the microemulsion was about 205.55% compared to control solution. These results suggest that novel W/O microemulsion could be used as an effective formulation for improving the oral bioavailability of troxerutin.
Nikooyeh, Bahareh; Neyestani, Tirang R
2017-06-01
Bread, as the staple food of Iranians, with average per capita consumption of 300 g d -1 , could potentially be a good vehicle for many fortificants, including iron. In this study, iron bioavailability from flat breads (three fortified and one whole wheat unfortified) was investigated using in vitro simulation of gastrointestinal digestion and absorption in a caco-2 cell model. Despite having a lower ferritin/protein ratio in comparison with fortified breads, whole wheat bread showed higher iron bioavailability than the other three types of bread. Assuming iron bioavailability from the ferrous sulfate supplement used as standard was about 10%, the estimated bioavailability of iron from the test breads was calculated as 5.0-8.0%. Whole wheat bread (∼8%), as compared with the fortified breads (∼5-6.5%), had higher iron bioavailability. Iron from unfortified whole wheat bread is more bioavailable than from three types of iron-fortified breads. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Hu, Ying; Cheng, Zhiqiang; Heller, Larry I; Krasnoff, Stuart B; Glahn, Raymond P; Welch, Ross M
2006-11-29
Four different colored beans (white, red, pinto, and black beans) were investigated for factors affecting iron bioavailability using an in vitro digestion/human Caco-2 cell model. Iron bioavailability from whole beans, dehulled beans, and their hulls was determined. The results show that white beans contained higher levels of bioavailable iron compared to red, pinto, and black beans. These differences in bioavailable iron were not due to bean-iron and bean-phytate concentrations. Flavonoids in the colored bean hulls were found to be contributing to the low bioavailability of iron in the non-white colored beans. White bean hulls contained no detectable flavonoids but did contain an unknown factor that may promote iron bioavailability. The flavonoids, kaempferol and astragalin (kaempferol-3-O-glucoside), were identified in red and pinto bean hulls via HPLC and MS. Some unidentified anthocyanins were also detected in the black bean hulls but not in the other colored bean hulls. Kaempferol, but not astragalin, was shown to inhibit iron bioavailability. Treating in vitro bean digests with 40, 100, 200, 300, 400, 500, and 1000 microM kaempferol significantly inhibited iron bioavailability (e.g., 15.5% at 40 microM and 62.8% at 1000 microM) in a concentration-dependent fashion. Thus, seed coat kaempferol was identified as a potent inhibitory factor affecting iron bioavailability in the red and pinto beans studied. Results comparing the inhibitory effects of kaempferol, quercitrin, and astragalin on iron bioavailability suggest that the 3',4'-dihydroxy group on the B-ring in flavonoids contributes to the lower iron bioavailability.
Hollands, Wendy J; Hart, David J; Dainty, Jack R; Hasselwander, Oliver; Tiihonen, Kirsti; Wood, Richard; Kroon, Paul A
2013-07-01
Flavanol-rich foods are known to exert beneficial effects on cardiovascular health. The biological effects depend on bioavailability of flavanols which may be influenced by food matrix and dose ingested. We compared the bioavailability and dose-response of epicatechin from whole apple and an epicatechin-rich extract, and the effects on plasma and urinary nitric oxide (NO) metabolites. In a randomized, placebo-controlled, crossover trial, subjects consumed drinks containing 70 and 140 mg epicatechin from an apple extract and an apple puree containing 70 mg epicatechin. Blood and urine samples were collected for 24 h post ingestion. Maximum plasma concentration, AUC(0-24 h) , absorption and urinary excretion were all significantly higher after ingestion of both epicatechin drinks compared with apple puree (p < 0.05). Time to maximum plasma concentration was significantly later for the puree compared with the drinks (p < 0.01). Epicatechin bioavailability was >2-fold higher after ingestion of the 140 mg epicatechin drink compared to the 70 mg epicatechin drink (p < 0.05). Excretion of NO metabolites was higher for all test products compared with placebo, which was significant for the high dose drink (p = 0.016). Oral bioavailability of apple epicatechin increases at higher doses, is reduced by whole apple matrix and has the potential to increase NO bioavailability. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bioavailability of syrup and tablet formulations of cefetamet pivoxil.
Ducharme, M P; Edwards, D J; McNamara, P J; Stoeckel, K
1993-12-01
Two studies examining the bioavailability of cefetamet pivoxil in healthy male subjects were conducted. In the first, the bioavailabilities of the 250-mg (M250) and M500 tablet formulations of cefetamet pivoxil to be marketed were compared with that of a tablet used in clinical trials. All products were given with food at a dose of 500 mg. In the second study, the bioavailability of the syrup formulation was evaluated under both fasting and nonfasting conditions and compared with that of the M500 tablet formulation given with food. The absolute bioavailabilities of the M500 and M250 tablets (55.0% +/- 8.0% and 55.7% +/- 7.0%, respectively) were not significantly different from that of the clinical-trial formulation (49.8% +/- 8.5%). The newer tablet formulations exhibited faster absorption as evidenced by higher peak concentrations (3.8 [M500] and 3.9 [M250] mg/liter compared with 3.2 mg/liter for the clinical-trial formulation), a shorter time to peak concentration, and a shorter mean absorption time. The syrup formulation was found to have significantly lower absolute bioavailability (37.9% +/- 6.0%) compared with that of the M500 tablet (58.4% +/- 9.0%) when both were given with food. Food had no significant effect on the bioavailability of the syrup, which averaged 34.0% +/- 8.6% under fasting conditions, although absorption was delayed by food (mean absorption time increased from 2.2 to 3.9 h). This contrasts with the results of previous studies documenting significant increases in tablet bioavailability with food. Despite the lower bioavailability of the syrup, unbound-cefetamet concentrations are expected to remain above the MICs for 90% of the strains tested for susceptible organisms for approximately 10 h of the usual 12-h dosing interval with both syrup and tablet formulations of cefetamet pivoxil given with food.
Bioavailability of syrup and tablet formulations of cefetamet pivoxil.
Ducharme, M P; Edwards, D J; McNamara, P J; Stoeckel, K
1993-01-01
Two studies examining the bioavailability of cefetamet pivoxil in healthy male subjects were conducted. In the first, the bioavailabilities of the 250-mg (M250) and M500 tablet formulations of cefetamet pivoxil to be marketed were compared with that of a tablet used in clinical trials. All products were given with food at a dose of 500 mg. In the second study, the bioavailability of the syrup formulation was evaluated under both fasting and nonfasting conditions and compared with that of the M500 tablet formulation given with food. The absolute bioavailabilities of the M500 and M250 tablets (55.0% +/- 8.0% and 55.7% +/- 7.0%, respectively) were not significantly different from that of the clinical-trial formulation (49.8% +/- 8.5%). The newer tablet formulations exhibited faster absorption as evidenced by higher peak concentrations (3.8 [M500] and 3.9 [M250] mg/liter compared with 3.2 mg/liter for the clinical-trial formulation), a shorter time to peak concentration, and a shorter mean absorption time. The syrup formulation was found to have significantly lower absolute bioavailability (37.9% +/- 6.0%) compared with that of the M500 tablet (58.4% +/- 9.0%) when both were given with food. Food had no significant effect on the bioavailability of the syrup, which averaged 34.0% +/- 8.6% under fasting conditions, although absorption was delayed by food (mean absorption time increased from 2.2 to 3.9 h). This contrasts with the results of previous studies documenting significant increases in tablet bioavailability with food. Despite the lower bioavailability of the syrup, unbound-cefetamet concentrations are expected to remain above the MICs for 90% of the strains tested for susceptible organisms for approximately 10 h of the usual 12-h dosing interval with both syrup and tablet formulations of cefetamet pivoxil given with food. PMID:8109939
β-Cryptoxanthin is more bioavailable in humans from fermented orange juice than from orange juice.
Hornero-Méndez, Dámaso; Cerrillo, Isabel; Ortega, Ángeles; Rodríguez-Griñolo, María-Rosario; Escudero-López, Blanca; Martín, Franz; Fernández-Pachón, María-Soledad
2018-10-01
Carotenoids, especially β-cryptoxanthin, exert multiple biological activities in the organism. Various processing techniques can improve carotenoid bioavailability in relation to the food matrix. The study objective was to compare the bioavailability of carotenoids from orange juice (OJ) with that from a beverage obtained by alcoholic fermentation of orange juice (FOB). Seven volunteers were recruited for a randomized, controlled, and crossover study. Post-intake plasma carotenoid concentrations were measured by HPLC in the subjects at 0-8 h after their consumption of OJ or FOB. β-Cryptoxanthin and lutein absorption was significantly higher from FOB than from OJ, but no significant difference in zeaxanthin absorption was found. The mean baseline-corrected area under the concentration curve (AUC 0-8 h ) for β-cryptoxanthin, lutein and zeaxanthin was 24.6-, 1.3- and 4.65-fold larger, respectively, after FOB versus OJ consumption. This fermented orange beverage could be an abundant source of bioavailable carotenoids, and its regular consumption may exert healthy effects. Copyright © 2018 Elsevier Ltd. All rights reserved.
O'Shea, Joseph P; Nagarsekar, Kalpa; Wieber, Alena; Witt, Vanessa; Herbert, Elisabeth; O'Driscoll, Caitriona M; Saal, Christoph; Lubda, Dieter; Griffin, Brendan T; Dressman, Jennifer B
2017-10-01
Mesoporous silicas (SLC) have demonstrated considerable potential to improve bioavailability of poorly soluble drugs by facilitating rapid dissolution and generating supersaturation. The addition of certain polymers can further enhance the dissolution of these formulations by preventing drug precipitation. This study uses fenofibrate as a model drug to investigate the performance of an SLC-based formulation, delivered with hydroxypropyl methylcellulose acetate succinate (HPMCAS) as a precipitation inhibitor, in pigs. The ability of biorelevant dissolution testing to predict the in vivo performance was also assessed. Fenofibrate-loaded mesoporous silica (FF-SLC), together with HPMCAS, displayed significant improvements in biorelevant dissolution tests relative to a reference formulation consisting of a physical mixture of crystalline fenofibrate with HPMCAS. In vivo assessment in fasted pigs demonstrated bioavailabilities of 86.69 ± 35.37% with combination of FF-SLC and HPMCAS in capsule form and 75.47 ± 14.58% as a suspension, compared to 19.92 ± 9.89% with the reference formulation. A positive correlation was identified between bioavailability and dissolution efficiency. The substantial improvements in bioavailability of fenofibrate from the SLC-based formulations confirm the ability of this formulation strategy to overcome the dissolution and solubility limitations, further raising the prospects of a future commercially available SLC-based formulation. © 2017 Royal Pharmaceutical Society.
Yokel, R A; Rhineheimer, S S; Brauer, R D; Sharma, P; Elmore, D; McNamara, P J
2001-03-21
The objectives were to estimate aluminum (Al) oral bioavailability under conditions that model its consumption in drinking water, and to test the hypotheses that stomach contents and co-administration of the major components of hard water affect Al absorption. Rats received intragastric 26Al in the absence and presence of food in the stomach and with or without concomitant calcium (Ca) and magnesium (Mg) at concentrations found in hard drinking water. The use of 26Al enables the study of Al pharmacokinetics at physiological Al concentrations without interference from 27Al in the environment or the subject. 27Al was intravenously administered throughout the study. Repeated blood withdrawal enabled determination of oral 26Al bioavailability from the area under its serum concentrationxtime curve compared to serum 27Al concentration in relation to its infusion rate. Oral Al bioavailability averaged 0.28%. The presence of food in the stomach and Ca and Mg in the water that contained the orally dosed 26Al appeared to delay but not significantly alter the extent of 26Al absorption. The present and published results suggest oral bioavailability of Al from drinking water is very low, about 0.3%. The present results suggest it is independent of stomach contents and water hardness.
Relative bioavailability of an extemporaneous ondansetron 4-mg capsule formulation versus solution.
Lam, Y W Francis; Javors, Martin A; Ait-Daoud, Nassima; Roache, John D; Johnson, Bankole A
2004-04-01
To compare the relative bioavailability of an extemporaneous ondansetron capsule formulation with that of an identical dose of the commercially available solution formulation. Open-label, randomized, two-way crossover study. University-affiliated research laboratory. Sixteen (eight men, eight women) healthy, nonsmoking volunteers. Participants were randomly assigned to receive a 4-mg dose of either the commercially available ondansetron solution or the extemporaneous ondansetron capsule formulation. Blood sampling was performed over 12 hours after dosing. After a washout period of at least 3 days, each participant was switched to the alternate formulation, and blood sampling was repeated. Ondansetron was well absorbed after administration of both formulations, with the solution achieving a faster rate of drug absorption over the first hour of dosing. After the peak plasma concentration was achieved, the plasma concentration-time curves of both formulations declined at a similar steady rate. There were no significant differences in pharmacokinetic parameters between the two formulations, and the relative bioavailability of the capsule versus the solution formulation was 101%. Similar concentration-time curves and pharmacokinetic parameters were achieved with the two formulations. The commercially available solution would be a useful alternative formulation for administration of low-dose ondansetron in research and clinical settings.
USDA-ARS?s Scientific Manuscript database
This study examined the range of Fe concentration and relative Fe bioavailability of 24 varieties of cooked lentils, as well as the impact of seed coat removal on lentil Fe nutritional quality. Relative Fe bioavailability was assessed by the in vitro/Caco-2 cell culture method. While Fe concentrat...
Jung, Su Yon; Barrington, Wendy E; Lane, Dorothy S; Chen, Chu; Chlebowski, Rowan; Corbie-Smith, Giselle; Hou, Lifang; Zhang, Zuo-Feng; Paek, Min-So; Crandall, Carolyn J
2017-03-01
Bioavailable insulin-like growth factor-I (IGF-I) interacts with obesity and exogenous estrogen (E) in a racial disparity in obesity-related cancer risk, yet their interconnected pathways are not fully characterized. We investigated whether circulating bioavailable IGF-I acted as a mediator of the racial disparity in obesity-related cancers such as breast and colorectal (CR) cancers and how obesity and E use regulate this relationship. A total of 2,425 white and 164 African American (AA) postmenopausal women from the Women's Health Initiative Observational Study were followed from October 1, 1993 through August 29, 2014. To assess bioactive IGF-I as a mediator of race-cancer relationship, we used the Baron-Kenny method and quantitative estimation of the mediation effect. Compared with white women, AA women had higher IGF-I levels; their higher risk of CR cancer, after accounting for IGF-I, was no longer significant. IGF-I was associated with breast and CR cancers even after controlling for race. Among viscerally obese (waist/hip ratio >0.85) and overall nonobese women (body mass index <30), IGF-I was a strong mediator, reducing the racial disparity in both cancers by 30% and 60%, respectively. In E-only users and nonusers, IGF-I explained the racial disparity in CR cancer only modestly. Bioavailable IGF-I is potentially important in racial disparities in obesity-related breast and CR cancer risk between postmenopausal AA and white women. Body fat distribution and E use may be part of the interconnected hormonal pathways related to racial difference in IGF-I levels and obesity-related cancer risk.
Jung, Su Yon; Barrington, Wendy E.; Lane, Dorothy S.; Chen, Chu; Chlebowski, Rowan; Corbie-Smith, Giselle; Hou, Lifang; Zhang, Zuo-Feng; Paek, Min-So; Crandall, Carolyn J.
2016-01-01
Objectives Bioavailable insulin-like growth factor (IGF)-I interacts with obesity and exogenous estrogen in a racial disparity in obesity-related cancer risk, yet their interconnected pathways are not fully characterized. We investigated whether circulating bioavailable IGF-I acted as a mediator of the racial disparity in obesity-related cancers such as breast and colorectal (CR) cancers and how obesity and estrogen use regulate this relationship. Methods A total of 2,425 white and 164 African American (AA) postmenopausal women from the Women's Health Initiative Observational Study were followed from October 1, 1993, through August 29, 2014. To assess bioactive IGF-I as a mediator of race–cancer relationship, we used the Baron-Kenny method and quantitative estimation of the mediation effect. Results Compared with white women, AA women had higher IGF-I levels; their higher risk of CR cancer, after accounting for IGF-I, was no longer significant. IGF-I was associated with breast and CR cancers even after controlling for race. Among viscerally obese (waist/hip ratio >0.85) and overall non-obese women (body mass index <30), IGF-I was a strong mediator, reducing the racial disparity in both cancers by 30% and 60%, respectively. In estrogen-only users and nonusers, IGF-I explained the racial disparity in CR cancer only modestly. Conclusions Bioavailable IGF-I is potentially important in racial disparities in obesity-related breast and CR cancer risk between postmenopausal AA and white women. Body fat distribution and estrogen use may be part of the interconnected hormonal pathways related to racial difference in IGF-I levels and obesity-related cancer risk. PMID:27749737
Nanoparticulation improves bioavailability of Erlotinib.
Yang, Kyung Mi; Shin, In Chul; Park, Joo Won; Kim, Kab-Sig; Kim, Dae Kyong; Park, Kyungmoon; Kim, Kunhong
2017-09-01
Nanoparticulation using fat and supercritical fluid (NUFS TM ) is a drug delivery platform technology enabling efficient and effective formulation of poorly soluble drugs. We performed experiments to examine whether NUFS™ could improve poor bioavailability and reduce fed-fasted bioavailability variances of erlotinib (Ert). NUFS-Ert was prepared using NUFS™ technology; its physical properties were characterized, and drug release was measured. Furthermore, in vitro and in vivo efficacy tests and pharmacokinetic analysis were performed. NUFS-Ert nanoparticles had an average size of 250 nm and were stable for 2 months at 40 °C, 4 °C, and room temperature. The dissolution rate of NUFS-Ert increased in bio-relevant dissolution media. NUFS-Ert was more potent in inhibiting EGF signaling and in suppressing the proliferation of A549, a human non-small cell lung cancer cell line. Furthermore, A549 xenografts in BALB/c nude mice treated with NUFS-Ert regressed more efficiently than those in the mice treated with vehicle or Tarceva ® . In addition, experimental lung metastasis was more efficiently inhibited by NUFS-Ert than by Tarceva ® . The relative bioavailability of NUFS-Ert compared with that of Tarceva ® was 550% and the ratio of the area under the concentration-time curve (AUC) of fed state to the AUC of fasted state was 1.8 for NUFS-Ert and 5.8 for Tarceva ® . NUFS-Ert could improve poor bioavailability and reduce fed-fasted bioavailability variances of Ert. NUFS-Ert was more efficacious than Tarceva ® .
Bioavailability of zinc, copper, and manganese from infant diets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, J.G.
1987-01-01
A series of trace element absorption experiments were performed using the Sprague-Dawley suckling rat put and infant rhesis monkey (Macaca mulatta) with extrinsic radiolabeling to assess the bioavailability of Zn, Cu, and Mn from infant diets and to examine specific factors that affect absorption of these essential nutrients. Bioavailability of Cu as assessed by 6 h liver uptake (% of /sup 64/Cu dose) was highest from human milk and cow milk based formula and significantly lower from cow milk and soy based formula. Copper bioavailability from infant cereal products as assessed by whole body uptake (% of /sup 64/Cu dose)more » in d 20 rats, 9 h postintubation, was low compared to the bioavailability from cow milk or human milk alone. /sup 65/Zn uptake in d 20 rats, 9 h postintubation, was significantly lower from cereals fed alone or in combination with cow or human milk as compared to the uptake from the milks fed alone. Zn bioavailability varied among cereal diets, (lowest from cereals containing phytate and highest from cereal/fruit products). Mn bioavailability from infant diets was assessed using a modified suckling rat pup model. Bioavailability (24 h whole body retention of /sup 54/Mn) was high from all milks and commercial formulas tested.« less
Mohsen, Amira Mohamed; AbouSamra, Mona Mahmoud; ElShebiney, Shaimaa Ahmed
2017-08-01
This study was designed to investigate the potency of niosomes, for glimepiride (GLM) encapsulation, aiming at enhancing its oral bioavailability and hypoglycemic efficacy. Niosomes containing nonionic surfactants (NIS) were prepared by thin film hydration technique and characterized. In-vitro release study was performed using a dialysis technique. In-vivo pharmacodynamic studies, as well as pharmacokinetic evaluation were performed on alloxan-induced diabetic rats. GLM niosomes exhibited high-entrapment efficiency percentages (E.E. %) up to 98.70% and a particle size diameter ranging from 186.8 ± 18.69 to 797.7 ± 12.45 nm, with negatively charged zeta potential (ZP). Different GLM niosomal formulation showed retarded in vitro release, compared to free drug. In-vivo studies revealed the superiority of GLM niosomes in lowering blood glucose level (BGL) and in maintaining a therapeutic level of GLM for a longer period of time, as compared to free drug and market product. There was no significant difference between mean plasma AUC 0-48 hr of GLM-loaded niosomes and that of market product. GLM-loaded niosomes exhibited seven-fold enhancement in relative bioavailability in comparison with free drug. These findings reinforce the potential use of niosomes for enhancing the oral bioavailability and prolonged delivery of GLM via oral administration.
Design and evaluation of oral nanoemulsion drug delivery system of mebudipine.
Khani, Samira; Keyhanfar, Fariborz; Amani, Amir
2016-07-01
A nanoemulsion drug delivery system was developed to increase the oral bioavailability of mebudipine as a calcium channel blocker with very low bioavailability profile. The impact of nano-formulation on the pharmacokinetic parameters of mebudipine in rats was investigated. Nanoemulsion formulations containing ethyl oleate, Tween 80, Span 80, polyethylene glycol 400, ethanol and deionized water were prepared using probe sonicator. The optimum formulation was evaluated for physicochemical properties, such as particle size, morphology and stability. The particle size of optimum formulation was 22.8 ± 4.0 nm. Based on the results of this study, the relative bioavailability of mebudipine nanoemulsion was enhanced by about 2.6-, 2.0- and 1.9-fold, respectively, compared with suspension, ethyl oleate solution and micellar solution. In conclusion, nanoemulsion is an interesting option for the delivery of poorly water soluble molecules, such as mebudipine.
Pharmacokinetics of brotizolam in healthy subjects following intravenous and oral administration
Jochemsen, Roeline; Wesselman, J. G. J.; Hermans, J.; van Boxtel, C. J.; Breimer, D. D.
1983-01-01
1 Pharmacokinetics and bioavailability of brotizolam after i.v. and oral administration were studied in healthy young volunteers. 2 Kinetic parameters after i.v. administration were: volume of distribution 0.66 ± 0.19 1/kg, total plasma clearance 113 ± 28 ml/min, distribution half-life 11 ± 6 min, and elimination half-life 4.8 ± 1.4 h (mean values ± s.d.). 3 Kinetic parameters after oral administration were: absorption lag-time 8 ± 12 min, absorption half-life 10 ± 11 min, and elimination half-life 5.1 ± 1.2 h (mean values ± s.d.). 4 Bioavailability of brotizolam was 70 ± 22% when calculated by comparing oral and intravenous area-under-curve values, corrected for intra-individual half-life differences. An alternative calculation method, which is relatively independent of large clearance variations, provided a bioavailability of 70 ± 24% (range: 47-117%). PMID:6661374
Relative Bioavailability and Bioaccessability and Speciation of Arsenic in Contaminated Soils
Background: Assessment of soil arsenic (As) bioavailability may profoundly affect the extent of remediation required at contaminated sites by improving human exposure estimates. Because small adjustments in soil As bioavailability estimates can significantly alter risk assessment...
Shahnaz, Gul; Vetter, Anja; Barthelmes, Jan; Rahmat, Deni; Laffleur, Flavia; Iqbal, Javed; Perera, Glen; Schlocker, Wolfgang; Dünnhaput, Sarah; Augustijns, Patrick; Bernkop-Schnürch, Andreas
2012-05-30
The purpose of this study was to develop thiolated nanoparticles to enhance the bioavailability for the nasal application of leuprolide. Thiolated chitosan-thioglycolic acid (chitosan-TGA) and unmodified chitosan nanoparticles (NPs) were developed via ionic gelation with tripolyphosphate (TPP). Leuprolide was incorporated during the formulation process of NPs. The thiolated (chitosan-TGA) NPs had a mean size of 252 ± 82 nm, a zeta potential of +10.9 ± 4 mV, and payload of leuprolide was 12 ± 2.8. Sustained release of leuprolide from thiolated NPs was demonstrated over 6h, which might be attributed to inter- and/or intramolecular disulfide formation within the NPs network. Ciliary beat frequency (CBF) study demonstrated that thiolated NPs can be considered as suitable additives for nasal drug delivery systems. Compared to leuprolide solution, unmodified NPs and thiolated NPs provoked increased leuprolide transport through porcine nasal mucosa by 2.0 and 5.2 folds, respectively. The results of a pharmacokinetic study in male Sprague-Dawley rats showed improved transport of leuprolide from thiolated NPs as compared to leuprolide solution. Thiolated NPs had a 6.9-fold increase in area under the curve, more than 4-fold increase in elimination half-life, and a ∼3.8-fold increase in maximum plasma concentration compared to nasal solution alone. The relative nasal bioavailability (versus s.c. injection) of leuprolide thiolated NPs calculated on the basis of AUC((0-6)) was about 19.6% as compared to leuprolide solution 2.8%. The enhanced bioavailability of leuprolide is likely due to facilitated transport by thiolated NPs rather than improved release. Copyright © 2012. Published by Elsevier B.V.
Nekkanti, Vijaykumar; Wang, Zhijun; Betageri, Guru V
2016-08-01
The objective of this study was to develop proliposomes and self-nanoemulsifying drug delivery system (SNEDDS) for a poorly bioavailable drug, valsartan, and to compare their in vivo pharmacokinetics. Proliposomes were prepared by thin-film hydration method using different lipids such as soy phosphatidylcholine (SPC), hydrogenated soy phosphatidylcholine (HSPC), distearyl phosphatidylcholine (DSPC), dimyristoylphosphatidylcholine (DMPC), and dimyristoyl phosphatidylglycerol sodium (DMPG) and cholesterol in various ratios. SNEDDS formulations were prepared using varying concentrations of capmul MCM, labrafil M 2125, and Tween 80. Both proliposomes and SNEDDS were evaluated for particle size, zeta potential, in vitro drug release, in vitro permeability, and in vivo pharmacokinetics. In vitro drug release was carried out in purified water and 0.1 N HCl using USP type II dissolution apparatus. In vitro drug permeation was studied using parallel artificial membrane permeation assay (PAMPA) and everted rat intestinal permeation techniques. Among the formulations, the proliposomes with drug/DMPG/cholesterol in the ratio of 1:1:0.5 and SNEDDS with capmul MCM (16.0% w/w), labrafil M 2125 (64.0% w/w), and Tween 80 (18.0% w/w) showed the desired particle size and zeta potential. Enhanced drug release was observed with proliposomes and SNEDDS as compared to pure valsartan. Valsartan permeability across PAMPA and everted rat intestinal permeation models was significantly higher with proliposomes and SNEDDS. Following single oral administration of proliposomes and SNEDDS, a relative bioavailability of 202.36 and 196.87%, respectively, was achieved compared to pure valsartan suspension. The study results indicated that both proliposomes and SNEDDS formulations are comparable in improving the oral bioavailability of valsartan.
Davidson, Michael H; Johnson, Judith; Rooney, Michael W; Kyle, Michael L; Kling, Douglas F
2012-01-01
Omega-3 (OM-3) fatty acid products are indicated for the treatment of severe hypertriglyceridemia; however, the omega-3-acid ethyl ester (OM-3 EE) formulations require significant pancreatic lipase stimulation with high-fat meals for adequate intestinal absorption of the metabolites eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). A novel omega-3 free fatty acid (OM-3 FFA) formulation (Epanova(®), Omthera Pharmaceuticals Inc., Princeton, NJ) was developed to maximize EPA and DHA bioavailability during a low-fat diet. To compare the relative bioavailability of EPA and DHA from single 4-gram doses of OM-3 FFA and a prescription OM-3 EE (Lovaza(®), GlaxoSmithKline, Research Triangle Park, NC). This was a randomized, open-label, single dose, 4-way crossover, bioavailability study of OM-3 FFA and OM-3 EE administered during periods of low-fat and high-fat consumption to 54 overweight adults. Bioavailability was determined by the ln-transformed area under the plasma concentration versus time curve (AUC(0-t)) during a 24-hour interval for EPA and DHA (baseline-adjusted). The baseline-adjusted AUC(0-t) for total EPA + DHA during the low-fat period was 4.0-fold greater with OM-3 FFA compared with OM-3 EE (2650.2 vs 662.0 nmol·h/mL, respectively; P < .0001). During the high-fat period, AUC(0-t) for OM-3 FFA was approximately 1.3-fold greater than OM-3 EE (P < .0001). During the low-fat period, 30 of 51 (58.8%) subjects dosed with OM-3 FFA maintained an AUC(0-t) that was ≥50% of the respective high-fat AUC(0-t) in contrast to only 3 of 50 (6.0%) subjects dosed with OM-3 EE. During a low-fat consumption period, the OM-3 FFA formulation provided dramatically improved bioavailability over the OM-3 EE formulation in overweight subjects. These findings offer a potential therapeutic advantage of the OM-3 FFA formulation for the treatment of severe hypertriglyceridemia as these patients are expected to adhere to a low-fat diet. Copyright © 2012 National Lipid Association. Published by Elsevier Inc. All rights reserved.
Li, Wan; Zhang, Tianpeng; Ye, Yanghuan; Zhang, Xingwang; Wu, Baojian
2015-11-30
Chemotherapy via the oral route remains a considerable challenge due to poor water-solubility and permeability of anticancer agents. This study aimed to construct lipid nanoparticles using broccoli-derived lipids for oral delivery of tripterine (Tri), a natural anticancer candidate, and to enhance its oral bioavailability. Tri-loaded broccoli lipid nanoparticles (Tri-BLNs) were prepared by a solvent-diffusion method. The resulting Tri-BLNs were 75±10 nm in particle size with entrapment efficiency over 98%. In vitro release study indicated that Tri was almost not released from Tri-BLNs (<2%), whereas the lipolytic experiment showed that Tri-BLNs possessed a relatively strong anti-enzymatic degradation ability to Tri-CLNs (Tri-loaded common lipid nanoparticles). In situ single-pass intestinal perfusion manifested that the effective permeability of Tri-BLNs were significantly higher than that of Tri-CLNs. Further, Tri-BLNs exhibited more efficient cellular uptake in MDCK-II cells as evidenced by flow cytometry and confocal microscopy. The relative bioavailability of Tri-BLNs and Tri-CLNs was 494.13% and 281.95% compared with Tri suspensions, respectively. Depending on the ability in enhancement of biomembrane permeability, broccoli-derived lipids as an alternative source should be useful to construct lipid nanoparticles for bettering oral delivery of drugs with low bioavailability. Copyright © 2015 Elsevier B.V. All rights reserved.
Assessment of the effects of nickel on benthic macroinvertebrates in the field.
Peters, Adam; Simpson, Peter; Merrington, Graham; Schlekat, Chris; Rogevich-Garman, Emily
2014-01-01
A field-based evaluation of the biological effects of potential nickel (Ni) exposures was conducted using monitoring data for benthic macroinvertebrates and water chemistry parameters for streams in England and Wales. Observed benthic community metrics were compared to expected community metrics under reference conditions using RIVPACS III+ software. In order to evaluate relationships between Ni concentrations and benthic community metrics, bioavailable Ni concentrations were also calculated for each site. A limiting effect from Ni on the 90th percentile of the maximum achievable ecological quality was derived at "bioavailable Ni" exposures of 10.3 μg l(-1). As snails have been identified as particularly sensitive to nickel exposure, snail abundance in the field in response to nickel exposure, relative to reference conditions, was also analysed. A "low effects" threshold for snail abundance based on an average of spring and autumn data was derived as 3.9 μg l(-1) bioavailable Ni. There was no apparent effect of Ni exposure on the abundance of Ephemeroptera (mayflies), Plecoptera (stoneflies) or Tricoptera (caddisflies) when expressed relative to a reference condition within the range of "bioavailable Ni" exposures observed within the dataset. Nickel exposure concentrations co-vary with the concentrations of other stressors in the dataset, and high concentrations of Ni are also associated with elevated concentrations of other contaminants.
Mönch, Sabine; Netzel, Michael; Netzel, Gabriele; Ott, Undine; Frank, Thomas; Rychlik, Michael
2015-01-01
Different sources of folate may have different bioavailability and hence may impact the standard definition of folate equivalents. In order to examine this, a short term human study was undertaken to evaluate the relative native folate bioavailabilities from spinach, Camembert cheese and wheat germs compared to pteroylmonoglutamic acid as the reference dose. The study had a single-centre, randomised, four-treatment, four-period, four-sequence, cross-over design, i.e. the four (food) items to be tested (referred to as treatments) were administered in sequences according to the Latin square, so that each experimental treatment occurred only once within each sequence and once within each study period. Each of the 24 subjects received the four experimental items separated by a 14-day equilibrium phase and received a pteroylmonoglutamic acid supplement for 14 days before the first testing and between the testings for saturation of body pools. Folates in test foods, plasma and urine samples were determined by stable isotope dilution assays, and in urine and plasma, the concentrations of 5-methyltetrahydrofolate were evaluated. Standard non-compartmental methods were applied to determine the biokinetic parameters C(max), t(max) and AUC from baseline corrected 5-methyltetrahydrofolate concentrations within the interval from 0 to 12 hours. The variability of AUC and C(max) was moderate for spinach and oral solution of pteroylmonoglutamic acid but high for Camembert cheese and very high for wheat germs. The median t(max) was lowest for spinach, though t(max) showed a high variability among all treatments. When comparing the ratio estimates of AUC and C(max) for the different test foods, highest bioavailability was found for spinach followed by that for wheat germs and Camembert cheese. The results underline the dependence of folate bioavailability on the type of food ingested. Therefore, the general assumption of 50% bioavailability as the rationale behind the definition of folate equivalents has to be questioned and requires further investigation.
Solymosi, Tamás; Ötvös, Zsolt; Angi, Réka; Ordasi, Betti; Jordán, Tamás; Semsey, Sándor; Molnár, László; Ránky, Soma; Filipcsei, Genovéva; Heltovics, Gábor; Glavinas, Hristos
2017-10-30
Particle size reduction of drug crystals in the presence of surfactants (often called "top-down" production methods) is a standard approach used in the pharmaceutical industry to improve bioavailability of poorly soluble drugs. Based on the mathematical model used to predict the fraction dose absorbed this formulation approach is successful when dissolution rate is the main rate limiting factor of oral absorption. In case compound solubility is also a major factor this approach might not result in an adequate improvement in bioavailability. Abiraterone acetate is poorly water soluble which is believed to be responsible for its very low bioavailability in the fasted state and its significant positive food effect. In this work, we have successfully used in vitro dissolution, solubility and permeability measurements in biorelevant media to describe the dissolution characteristics of different abiraterone acetate formulations. Mathematical modeling of fraction dose absorbed indicated that reducing the particle size of the drug cannot be expected to result in significant improvement in bioavailability in the fasted state. In the fed state, the same formulation approach can result in a nearly complete absorption of the dose; thereby, further increasing the food effect. Using a "bottom-up" formulation method we improved both the dissolution rate and the apparent solubility of the compound. In beagle dog studies, this resulted in a ≫>10-fold increase in bioavailability in the fasted state when compared to the marketed drug and the elimination of the food effect. Calculated values of fraction dose absorbed were in agreement with the observed relative bioavailability values in beagle dogs. Copyright © 2017 Elsevier B.V. All rights reserved.
Vergne, Sébastien; Bennetau-Pelissero, Catherine; Lamothe, Valérie; Chantre, Philippe; Potier, Mylène; Asselineau, Julien; Perez, Paul; Durand, Marlène; Moore, Nicholas; Sauvant, Patrick
2008-02-01
Soya isoflavones, genistein and daidzein, are the focus of numerous studies investigating their potential effects on health and results remain controversial. Bioavailability is clearly a crucial factor influencing their bioefficacy and could explain these discrepancies. This study aimed at assessing: (1) the isoflavone content of sixty-nine European soya-derivative products sold on the French market; (2) the bioavailability of isoflavones comparing supplement with food. Twelve healthy volunteers were recruited in a randomized two-way crossover trial and received 35 mg isoflavones equivalent aglycone either through supplements or through cheese, both containing different patterns of isoflavone conjugates and different daidzein:genistein ratios. A specific ELISA method was used to assess the plasma and urinary concentrations of isoflavones and thus the pharmacokinetic parameters, which were then normalized to mg of each isoflavone ingested. Results showed that the normalized Cmax of daidzein (P = 0.002) and similarly the normalized AUC0 --> infinity and Cmax of genistein (P = 0.002) from soya-based capsules were higher than that from soya-based cheese. In conclusion, this work completes studies on isoflavone bioavailability and presents new data regarding isoflavone concentrations in soya-derivative products. Assuming that isoflavone conjugation patterns do not influence isoflavone bioavailability, this study shows that isoflavones contained in capsules are more bioavailable than those contained in soya-based cheese. Although the supplement is more bioavailable, the relative importance of this is difficult to interpret as there is little evidence that supplements are biologically active in human subjects to date and further studies will be necessary for this specific supplement to prove its efficacy.
Venkatesh, D. Nagasamy; Baskaran, Mahendran; Karri, Veera Venkata Satyanarayana Reddy; Mannemala, Sai Sandeep; Radhakrishna, Kollipara; Goti, Sandip
2015-01-01
Nelfinavir mesylate (NFV) is an anti-viral drug, used in the treatment of Acquired Immunodeficiency Syndrome (AIDS). Poor oral bioavailability and shorter half-life (3.5–5 h) remain a major clinical limitation of NFV leading to unpredictable drug bioavailability and frequent dosing. In this context, the objective of the present study was to formulate NFV loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), which can increase the solubility and oral bioavailability along with sustained release of the drug. NFV loaded PLGA-NPs were prepared by nanoprecipitation method using PLGA and Poloxomer 407. The prepared NPs were evaluated for particle size, zeta potential, morphology, drug content, entrapment efficiency (EE) and in vitro dissolution studies. Oral bioavailability studies were carried out in New Zealand rabbits by administering developed NFV PLGA-NPs and pure drug suspension. PLGA-NPs prepared by using 1:4 ratio of drug and PLGA, with a stirring rate of 1500 rpm for 4 h. The prepared NPs were in the size of 185 ± 0.83 nm with a zeta potential of 28.7 ± 0.09 mV. The developed NPs were found to be spherical with uniform size distribution. The drug content and EE of the optimized formulation were found to be 36 ± 0.19% and 72 ± 0.47% respectively. After oral administration of NFV PLGA-NPs, the relative bioavailability was enhanced about 4.94 fold compared to NFV suspension as a control. The results describe an effective strategy for oral delivery of NFV loaded PLGA NPs that helps in enhancing bioavailability and reduce the frequency of dosing. PMID:26702262
21 CFR 320.25 - Guidelines for the conduct of an in vivo bioavailability study.
Code of Federal Regulations, 2014 CFR
2014-04-01
... physician determines that there is a potential benefit to the patient. (b) Basic design. The basic design of... to or to meet any comparative labeling claims made in relation to the drug product that is the...
21 CFR 320.25 - Guidelines for the conduct of an in vivo bioavailability study.
Code of Federal Regulations, 2012 CFR
2012-04-01
... physician determines that there is a potential benefit to the patient. (b) Basic design. The basic design of... to or to meet any comparative labeling claims made in relation to the drug product that is the...
21 CFR 320.25 - Guidelines for the conduct of an in vivo bioavailability study.
Code of Federal Regulations, 2011 CFR
2011-04-01
... physician determines that there is a potential benefit to the patient. (b) Basic design. The basic design of... to or to meet any comparative labeling claims made in relation to the drug product that is the...
21 CFR 320.25 - Guidelines for the conduct of an in vivo bioavailability study.
Code of Federal Regulations, 2013 CFR
2013-04-01
... physician determines that there is a potential benefit to the patient. (b) Basic design. The basic design of... to or to meet any comparative labeling claims made in relation to the drug product that is the...
Ren, Xiaoya; Zeng, Guangming; Tang, Lin; Wang, Jingjing; Wan, Jia; Liu, Yani; Yu, Jiangfang; Yi, Huan; Ye, Shujing; Deng, Rui
2018-01-01
Contamination of soils with persistent organic pollutants (POPs), such as organochlorine pesticide, polybrominated diphenyl ethers, halohydrocarbon, polycyclic aromatic hydrocarbons (PAHs) is of increasing concern. Microbial degradation is potential mechanism for the removal of POPs, but it is often restricted by low bioavailability of POPs. Thus, it is important to enhance bioavailability of POPs in soil bioremediation. A series of reviews on bioavailability of POPs has been published in the past few years. However, bioavailability of POPs in relation to soil organic matter, minerals and soil microbes has been little studied. To fully understand POPs bioavailability in soil, research on interactions of POPs with soil components and microbial responses in bioavailability limitation conditions are needed. This review focuses on bioavailability mechanisms of POPs in terms of sorption, transport and microbial adaptation, which is particularly novel. In consideration of the significance of bioavailability, further studies should investigate the influence of various bioremediation strategies on POPs bioavailability. Copyright © 2017 Elsevier B.V. All rights reserved.
Gundogdu, E; Alvarez, I Gonzalez; Karasulu, E
2011-01-01
Fexofenadine (FEX) has high solubility and low permeability (BCS, Class III). In this work, novel FEX loaded water in oil microemulsion (w/o) was designed to improve bioavailability and compared with Fexofen® syrup in in vitro and in vivo studies. In addition, pharmacokinetic parameters in permeability studies were estimated by using WinNonLin software program. w/o microemulsion system was optimized using a pseudoternary phase diagram, composed of span 80/lutrol F 68 (9.5:0.5 w/w), oleic acide, isopropyl alcohol and water as surfactant mixture; oil and cosurfactant was developed for oral drug delivery. w/o microemulsion systems were characterized by phase behavior, particle size, viscosity and solubilization capacity. In vitro studies were studied using Caco-2 cell monolayer. Pharmacokinetic parameters of w/o microemulsion were investigated in rabbits and compared to Fexofen® syrup. Fexofen® syrup and microemulsion were administered by oral gavage at 6 mg/kg of the same concentration. The experimental results indicated that microemulsion (HLB = 5.53) formed nanometer sized droplets (33.29 ± 1.76) and had good physical stability. This microemulsion increased the oral bioavailability of FEX which was highly water-soluble but fairly impermeable. The relative bioavailability of FEX microemulsion was about 376.76% compared with commercial syrup in rabbits. In vitro experiments were further employed for the enhanced effect of the microemulsion for FEX. These results suggest that novel w/o microemulsion plays an important role in enhancing oral bioavailability of low permeability drugs. PMID:21904453
Nair, Arun; Menzies, Daniel; Hopkinson, Pippa; McFarlane, Lesley; Lipworth, Brian J
2009-01-01
AIMS The systemic bioavailability of inhaled fluticasone propionate (FP) depends primarily on lung absorption and can be quantified by measuring suppression of overnight and early morning urinary cortisol/creatinine (OUCC and EMUCC, respectively). The aim of the study was to determine the relative bioavailability of hydrofluoroalkane (HFA) FP to the lungs via anti-static plastic (Zerostat-V and Aerochamber Max), metal (Nebuchamber) anti-static spacers and metered dose inhaler [Flixotide Evohaler (EH) (pMDI)]. METHODS A randomized, double-blind, double-dummy, four-way crossover design was used. Eighteen mild to moderate asthmatics received single doses of placebo/HFA-FP 2 mg via the 280-ml Zerostat-V (ZS); 250-ml Nebuchamber (NC); 197-ml Aerochamber Max (AC); and pMDI (EH). Measurements of OUCC and EMUCC were made at baseline and 10 h after each dose. RESULTS Significant suppression of OUCC and EMUCC occurred from baseline with all three spacers, but not Evohaler (geometric mean fold suppression, 95% confidence interval): ZS, 2.74 (1.75, 4.30), P < 0.001; NC, 3.31 (1.81, 6.06), P < 0.001; AC, 4.98 (3.39, 7.31), P < 0.001; and for EH this was 1.42 (0.92, 2.21), P = 0.169 (equating to a 64, 70, 80 and 30% fall in OUCC via the ZS, NC, AC and EH devices, respectively). There were significant differences between all three spacers vs. EH. When compared with the Evohaler, the Zerostat V resulted in 48% greater suppression (P = 0.009); the Nebuchamber 57% greater suppression (P = 0.001); and the Aerochamber Max 71% greater suppression of OUCC (P < 0.001). CONCLUSION All three antistatic spacers significantly increased the relative systemic bioavailability of HFA-FP compared with the standard pMDI. PMID:19220273
Harwood, Amanda D; Landrum, Peter F; Weston, Donald P; Lydy, Michael J
2013-02-01
The presence of pyrethroids in both urban and agricultural sediments at levels lethal to invertebrates has been well documented. However, variations in bioavailability among sediments make accurate predictions of toxicity based on whole sediment concentrations difficult. A proposed solution to this problem is the use of bioavailability-based estimates, such as solid phase microextraction (SPME) fibers and Tenax beads. This study compared three methods to assess the bioavailability and ultimately toxicity of pyrethroid pesticides including field-deployed SPME fibers, laboratory-exposed SPME fibers, and a 24-h Tenax extraction. The objective of the current study was to compare the ability of these methods to quantify the bioavailable fraction of pyrethroids in contaminated field sediments that were toxic to benthic invertebrates. In general, Tenax proved a more sensitive method than SPME fibers and a correlation between Tenax extractable concentrations and mortality was observed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Baek, Hyung Hee; Kim, Dae-Hwan; Kwon, So Young; Rho, Shin-Joung; Kim, Dong-Wuk; Choi, Han-Gon; Kim, Yong-Ro; Yong, Chul Soon
2012-03-01
To develop a novel ibuprofen-loaded solid dispersion with enhanced bioavailability using cycloamylose, it was prepared using spray-drying techniques with cycloamylose at a weight ratio of 1:1. The effect of cycloamylose on aqueous solubility of ibuprofen was investigated. The physicochemical properties of solid dispersions were investigated using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction. The dissolution and bioavailability in rats were evaluated compared with ibuprofen powder. This ibuprofen-loaded solid dispersion improved about 14-fold drug solubility. Ibuprofen was present in an unchanged crystalline state, and cycloamylose played the simple role of a solubilizing agent in this solid dispersion. Moreover, the dispersion gave 2-fold higher AUC (area under the drug concentration-time curve) value compared with a ibuprofen powder, indicating that it improved the oral bioavailability of ibuprofen in rats. Thus, the solid dispersion may be useful to deliver ibuprofen with enhanced bioavailability without crystalline change.
Londhe, Vaishali; Shirsat, Rucha
2018-04-01
Iloperidone is a second-generation antipsychotic drug which is used for the treatment of schizophrenia and has very low aqueous solubility and bioavailability. This drug also undergoes first-pass metabolism. The aim of this work is to formulate fast-dissolving sublingual films of iloperidone to improve its bioavailability. Sublingual films were prepared by solvent casting method. Hydroxypropyl methyl cellulose E5, propylene glycol 400, and transcutol HP were optimized using Box-Behnken three-level statistical design on the basis of disintegration time and folding endurance of films. Iloperidone:hydroxypropyl-β-cyclodextrin kneaded complex was used in films instead of plain drug due to its low solubility. Optimized film was further evaluated for drug content, pH, dissolution studies, ex vivo permeation studies, and pharmacokinetic studies in rats. The optimized film disintegrated within 30 s. The in vitro dissolution of the film showed 80.3 ± 3.4% drug dissolved within first 5 min. In ex vivo permeation studies using sublingual tissue, flux achieved within first 15 min by film was around 117.1 ± 0.35 (mcg/cm 2 /h) which was ten times more than that of plain drug. This formulation showed excellent uniformity. AUC and C max of film were significantly higher (p < 0.001) as compared to plain drug and relative bioavailability of the films was 148% when compared to the plain drug. Thus, this study showed optimized fast-dissolving sublingual film to improve permeation and bioavailability of iloperidone. Fast-dissolving films will be customer-friendly approach for geadiatric schizophrenic patients.
COMPETITIVE INFLUENCE OF PHOSPHORUS AND CALCIUM ON PB IN-VITRO BIOAVAILABILITY
The bioavailability of a metal is heavily related to the speciation of the particular metal. Further, the complexity of examining metal bioavailability is compounded by the presence of competitive ions. Thus, equally contaminated soils with varying concentrations of competitive e...
Bioaccessibility tests accurately estimate bioavailability of lead to quail
Beyer, W. Nelson; Basta, Nicholas T; Chaney, Rufus L.; Henry, Paula F.; Mosby, David; Rattner, Barnett A.; Scheckel, Kirk G.; Sprague, Dan; Weber, John
2016-01-01
Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from five Pb-contaminated Superfund sites had relative bioavailabilities from 33%-63%, with a mean of about 50%. Treatment of two of the soils with phosphorus significantly reduced the bioavailability of Pb. Bioaccessibility of Pb in the test soils was then measured in six in vitro tests and regressed on bioavailability. They were: the “Relative Bioavailability Leaching Procedure” (RBALP) at pH 1.5, the same test conducted at pH 2.5, the “Ohio State University In vitro Gastrointestinal” method (OSU IVG), the “Urban Soil Bioaccessible Lead Test”, the modified “Physiologically Based Extraction Test” and the “Waterfowl Physiologically Based Extraction Test.” All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the RBALP pH 2.5 and OSU IVG tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter (24%), or present as Pb sulfate (18%). Additional Pb was associated with P (chloropyromorphite, hydroxypyromorphite and tertiary Pb phosphate), and with Pb carbonates, leadhillite (a lead sulfate carbonate hydroxide), and Pb sulfide. The formation of chloropyromorphite reduced the bioavailability of Pb and the amendment of Pb-contaminated soils with P may be a thermodynamically favored means to sequester Pb.
Bioaccessibility tests accurately estimate bioavailability of lead to quail.
Beyer, W Nelson; Basta, Nicholas T; Chaney, Rufus L; Henry, Paula F P; Mosby, David E; Rattner, Barnett A; Scheckel, Kirk G; Sprague, Daniel T; Weber, John S
2016-09-01
Hazards of soil-borne lead (Pb) to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, the authors measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from 5 Pb-contaminated Superfund sites had relative bioavailabilities from 33% to 63%, with a mean of approximately 50%. Treatment of 2 of the soils with phosphorus (P) significantly reduced the bioavailability of Pb. Bioaccessibility of Pb in the test soils was then measured in 6 in vitro tests and regressed on bioavailability: the relative bioavailability leaching procedure at pH 1.5, the same test conducted at pH 2.5, the Ohio State University in vitro gastrointestinal method, the urban soil bioaccessible lead test, the modified physiologically based extraction test, and the waterfowl physiologically based extraction test. All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the relative bioavailability leaching procedure at pH 2.5 and Ohio State University in vitro gastrointestinal tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter (24%), or present as Pb sulfate (18%). Additional Pb was associated with P (chloropyromorphite, hydroxypyromorphite, and tertiary Pb phosphate) and with Pb carbonates, leadhillite (a lead sulfate carbonate hydroxide), and Pb sulfide. The formation of chloropyromorphite reduced the bioavailability of Pb, and the amendment of Pb-contaminated soils with P may be a thermodynamically favored means to sequester Pb. Environ Toxicol Chem 2016;35:2311-2319. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.
Chaurasia, Sundeep; Patel, Ravi R; Chaubey, Pramila; Kumar, Nagendra; Khan, Gayasuddin; Mishra, Brahmeshwar
2015-10-05
Soluthin MD(®), a unique phosphatidylcholine-maltodextrin based hydrophilic lipopolysaccharide, which exhibits superior biocompatibility and bioavailability enhancer properties for poorly water soluble drug(s). Curcumin (CUR) is a potential natural anticancer drug with low bioavailability due to poor aqueous solubility. The study aims at formulation and optimization of CUR loaded lipopolysaccharide nanocarriers (C-LPNCs) to enhance oral bioavailability and anticancer efficacy in colon-26 tumor-bearing mice in vitro and in vivo. The Optimized C-LPNCs demonstrated favorable mean particle size (108 ± 3.4 nm) and percent entrapment efficiency (65.29 ± 1.0%). Pharmacokinetic parameters revealed ∼130-fold increase in oral bioavailability and cytotoxicity studies demonstrated ∼23-fold reduction in 50% cell growth inhibition when treated with optimized C-LPNCs as compared to pure CUR. In vivo anticancer study performed with optimized C-LPNCs showed significant increase in efficacy compared with pure CUR. Thus, lipopolysaccharide nanocarriers show potential delivery strategy to improve oral bioavailability and anticancer efficacy of CUR in the treatment of colorectal cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.
Emond, Jennifer A; Patterson, Ruth E; Natarajan, Loki; Laughlin, Gail A; Gold, Ellen B; Pierce, John P
2011-05-01
We examined if the reduced risk of breast cancer events seen among women without baseline hot flash symptoms in the Women's Healthy Eating and Living (WHEL) dietary intervention trial was related to changes in sex hormone concentrations. Baseline and year one concentrations of total and bioavailable estradiol, and testosterone and sex hormone-binding globulin (SHBG) were compared by intervention arm among 447 postmenopausal women without hot flashes. Cox proportional hazard models tested interaction terms between study arm and baseline hormone concentrations adjusted for study site, antiestrogen use, positive nodes, tumor size, oophorectomy status, and hormone replacement therapy use. Sex hormone concentrations did not differ by study arm at baseline nor at year one. Twenty-two (9.8%) events occurred in the intervention arm versus 42 (18.9%) in the comparison arm (P = 0.009). Baseline bioavailable testosterone was significantly, positively associated with additional events (HR 1.69, 95% CI: 1.00-2.84; P = 0.049). There were significant interactions between the intervention and total (P = 0.015), and bioavailable (P = 0.050) testosterone: the intervention was more protective among participants with higher baseline total (HR 0.3, 95% CI: 0.2-0.7) or bioavailable (HR 0.4, 95% CI: 0.2-0.7) testosterone than for participants with lower baseline total (HR 0.8, 95% CI: 0.4-1.5) or bioavailable (HR 0.8, 95% CI: 0.4-1.5) testosterone. No significant effects were seen for estradiol or SHBG. The WHEL dietary intervention may have modified other risk factors of recurrence correlated with testosterone. Sex hormones should be considered as part of a larger biological system related to the risk of breast cancer recurrence. ©2011 AACR.
Della Lucia, Ceres M; Vaz Tostes, Maria das Graças; Silveira, Carlos Mário M; Bordalo, Lívia A; Rodrigues, Fabiana C; Pinheiro-Sant'Ana, Helena Maria; Martino, Hércia S D; Costa, Neuza Maria B
2013-03-01
This study aimed to evaluate iron (Fe) bioavailability in Wistar rats fed with rice fortified with micronized ferric pyrophosphate (FP) by Ultra Rice (UR) technology with or without addition of yacon flour as a source of 7.5% of fructooligosaccharides (FOS). Diets were supplied with 12 mg iron/kg from the following sources: ferrous sulfate (FS - control diet), fortified rice with micronized ferric pyrophosphate (Ultra Rice) (UR diet), ferrous sulfate + yacon flour (FS + Y diet) or Ultra Rice + yacon flour (UR + Y diet). Blood samples were collected at the end of depletion and repletion stages for determination of hemoglobin concentration and calculation of the relative biological value (RBV). Also, the content of short chain fatty acids (SCFA) (acetic, propionic and butyric acids) from animals' stools and caecum weight were determined. The UR diet showed high iron bioavailability (RBV = 84.7%). However, the addition of yacon flour in the diet containing fortified rice (UR + Y diet) decreased RBV (63.1%) significantly below the other three groups (p < 0.05). Groups that received yacon flour showed higher acetic acid values compared to those who did not. In conclusion, fortified UR with micronized ferric pyrophosphate showed high iron bioavailability but the addition of yacon flour at 7.5% FOS reduced iron bioavailability despite increased caecum weight and SCFA concentration.
Croteau, Marie-Noele; Cain, Daniel J.; Fuller, Christopher C.
2017-01-01
We extend the use of a novel tracing technique to quantify the bioavailability of zinc (Zn) associated with natural particles using snails enriched with a less common Zn stable isotope. Lymnaea stagnalis is a model species that has relatively fast Zn uptake rates from the dissolved phase, enabling their rapid enrichment in 67Zn during the initial phase of labeling. Isotopically enriched snails were subsequently exposed to algae mixed with increasing amounts of metal-rich particles collected from two acid mine drainage impacted rivers. Zinc bioavailability from the natural particles was inferred from calculations of 66Zn assimilation into the snail’s soft tissues. Zinc assimilation efficiency (AE) varied from 28% for the Animas River particles to 45% for the Snake River particles, indicating that particle-bound, or sorbed Zn, was bioavailable from acid mine drainage wastes. The relative binding strength of Zn sorption to the natural particles was inversely related to Zn bioavailability; a finding that would not have been possible without using the reverse labeling approach. Differences in the chemical composition of the particles suggest that their geochemical properties may influence the extent of Zn bioavailability.
Croteau, Marie-Noële; Cain, Daniel J; Fuller, Christopher C
2017-03-07
We extend the use of a novel tracing technique to quantify the bioavailability of zinc (Zn) associated with natural particles using snails enriched with a less common Zn stable isotope. Lymnaea stagnalis is a model species that has relatively fast Zn uptake rates from the dissolved phase, enabling their rapid enrichment in 67 Zn during the initial phase of labeling. Isotopically enriched snails were subsequently exposed to algae mixed with increasing amounts of metal-rich particles collected from two acid mine drainage impacted rivers. Zinc bioavailability from the natural particles was inferred from calculations of 66 Zn assimilation into the snail's soft tissues. Zinc assimilation efficiency (AE) varied from 28% for the Animas River particles to 45% for the Snake River particles, indicating that particle-bound, or sorbed Zn, was bioavailable from acid mine drainage wastes. The relative binding strength of Zn sorption to the natural particles was inversely related to Zn bioavailability; a finding that would not have been possible without using the reverse labeling approach. Differences in the chemical composition of the particles suggest that their geochemical properties may influence the extent of Zn bioavailability.
Liao, Li; Hua, Hua; Zhao, Jun-Ning; Luo, Heng; Yang, An-Dong
2014-03-01
To establish a fast sensitive, reproducible LC-MS/MS method to study pharmacokinetic properties of THC, and compare relative bioavailability of THC and its solid dispersion in mice. 200 mice were divided randomly into two groups, and administered orally with THC and THC-solid dispersion after fasting (calculate on THC:400 mg x kg(-1)), used HPLC-MS/MS method to determine the THC concentration of each period at the following times: baseline ( predose ), 15, 30, 45 min, 1, 1.5, 2, 3, 4, 6, 24 h after dosing. Calculating the pharmacokinetic parameters according to the C-t curv, and then use the Phoenix WinNonlin software for data analysis. The calibration curves were linear over the range 9.06-972 microg x L(-1) for THC (R2 = 0.999). The limit of detection (LOD) was 0.7 microg x L(-1), respectively. The average extraction recoveries for THC was above 75%, The methodology recoveries were between 79% and 108%. The intra-day and inter-day RSD were less than 13%, the stability test showed that the plasma samples was stable under different conditions (RSD < 15%). The precision, accuracy, recovery and applicability were found to be adequate for pharmacokinetic studies. Pharmacokinetic parameters of THC and THC-solid dispersion orally to mice shows as fllows: T(max), were 60 and 15 min, AUC(0-t) were 44 500.43 and 57 497.81 mg x L(-1) x min, AUC(0-infinity) were 51 226.00 and 68 031.48 mg x L(-1) x min, MRT(0-infinity) were 596.915 6, 661.747 7 min, CL(z)/F were 0.007 809 and 0.005 88 L x min(-1) x kg(-1). Compared with THC, the MRT and t1/2 of the THC-solid dispersion were all slightly extended, the t(max) was significantly reduced, AUC(0-24 h), AUC(0-infinity) and C(max) were all significantly higher, the relative bioavailability of THC-solid dispersion is 1.34 times of THC. The results of the experiment shows that the precision, accuracy, recovery and applicability were found to be adequate for the pharmacokinetic studies. After oral administration to mice, the relative bioavailability of THC-solid dispersion show significant improvement compared to THC.
Hartman-Craven, Brenda; Christofides, Anna; O'Connor, Deborah L; Zlotkin, Stanley
2009-01-01
Background Deficiencies of iron and folic acid during pregnancy can lead to adverse outcomes for the fetus, thus supplements are recommended. Adherence to current tablet-based supplements is documented to be poor. Recently a powdered form of micronutrients has been developed which may decrease side-effects and thus improve adherence. However, before testing the efficacy of the supplement as an alternate choice for supplementation during pregnancy, the bioavailability of the iron needs to be determined. Our objective was to measure the relative bioavailability of iron and folic acid from a powdered supplement that can be sprinkled on semi-solid foods or beverages versus a traditional tablet supplement in pregnant women. Methods Eighteen healthy pregnant women (24 – 32 weeks gestation) were randomized to receive the supplements in a crossover design. Following ingestion of each supplement, the changes (over baseline) in serum iron and folate over 8 hours were determined. The powdered supplement contained 30 mg of iron as micronized dispersible ferric pyrophosphate with an emulsifier coating and 600 μg folic acid; the tablet contained 27 mg iron from ferrous fumarate and 1000 μg folic acid. Results Overall absorption of iron from the powdered supplement was significantly lower than the tablet (p = 0.003). There was no difference in the overall absorption of folic acid between supplements. Based on the differences in the area under the curve and doses, the relative bioavailability of iron from powdered supplement was lower than from the tablet (0.22). Conclusion The unexpected lower bioavailability of iron from the powdered supplement is contrary to previously published reports. However, since pills and capsules are known to be poorly accepted by some women during pregnancy, it is reasonable to continue to explore alternative micronutrient delivery systems and forms of iron for this purpose. Trial Registration ClinicalTrials.gov NCT00789490 PMID:19635145
Becerra, Carlos R; Yoshida, Kenichiro; Mizuguchi, Hirokazu; Patel, Manish; Von Hoff, Daniel
2017-06-01
TAS-102 (trifluridine/tipiracil) is composed of an antineoplastic thymidine-based nucleoside analogue trifluridine (FTD), and a thymidine phosphorylase inhibitor, tipiracil (TPI), at a molar ratio of 1:0.5 (weight ratio, 1:0.471). A phase 1 study evaluated relative bioavailability of TAS-102 tablets compared with an oral solution containing equivalent amounts of FTD and TPI. In an open-label, 2-sequence, 3-period, crossover bioavailability study (part 1), patients 18 years or older with advanced solid tumors were randomized to receive TAS-102 tablets (60 mg; 3 × 20-mg tablets) on day 1 and TAS-102 oral solution (60 mg) on days 8 and 15, or the opposite sequence. In an extension (part 2), all patients received TAS-102 tablets. Of the 46 patients treated in the crossover study, 38 were evaluable in the crossover bioavailability pharmacokinetic population. For area under the concentration-time curve (AUC) 0-∞ and AUC 0-last for FTD and TPI, and maximum plasma concentration (C max ) for TPI, the 90% confidence intervals (CIs) of the geometric mean ratios were within the 0.80 to 1.25 boundary for demonstration of bioequivalence; for FTD C max , the lower limit of the 90%CI was 0.786. The most frequently reported treatment-related grade 3 or 4 adverse events were neutropenia (7 patients) and decreased neutrophil count (3 patients). Although the lower limit of the 90%CI for the geometric mean ratio of FTD C max was slightly lower than 0.80, the bioavailability of the TAS-102 tablet is considered clinically similar to that of a TAS-102 oral solution. TAS-102 was well tolerated in this population of patients with advanced solid tumors. © 2016, The American College of Clinical Pharmacology.
BIOACCESSIBILITY TESTS ACCURATELY ESTIMATE ...
Hazards of soil-borne Pb to wild birds may be more accurately quantified if the bioavailability of that Pb is known. To better understand the bioavailability of Pb to birds, we measured blood Pb concentrations in Japanese quail (Coturnix japonica) fed diets containing Pb-contaminated soils. Relative bioavailabilities were expressed by comparison with blood Pb concentrations in quail fed a Pb acetate reference diet. Diets containing soil from five Pb-contaminated Superfund sites had relative bioavailabilities from 33%-63%, with a mean of about 50%. Treatment of two of the soils with P significantly reduced the bioavailability of Pb. The bioaccessibility of the Pb in the test soils was then measured in six in vitro tests and regressed on bioavailability. They were: the “Relative Bioavailability Leaching Procedure” (RBALP) at pH 1.5, the same test conducted at pH 2.5, the “Ohio State University In vitro Gastrointestinal” method (OSU IVG), the “Urban Soil Bioaccessible Lead Test”, the modified “Physiologically Based Extraction Test” and the “Waterfowl Physiologically Based Extraction Test.” All regressions had positive slopes. Based on criteria of slope and coefficient of determination, the RBALP pH 2.5 and OSU IVG tests performed very well. Speciation by X-ray absorption spectroscopy demonstrated that, on average, most of the Pb in the sampled soils was sorbed to minerals (30%), bound to organic matter 24%, or present as Pb sulfate 18%. Ad
Feng, Yingshu; Sun, Congyong; Yuan, Yangyang; Zhu, Yuan; Wan, Jinyi; Firempong, Caleb Kesse; Omari-Siaw, Emmanuel; Xu, Yang; Pu, Zunqin; Yu, Jiangnan; Xu, Ximing
2016-03-30
In the present study, a formulation system consisting of cholesterol and phosphatidyl choline was used to prepare an effective chlorogenic acid-loaded liposome (CAL) with an improved oral bioavailability and an increased antioxidant activity. The developed liposomal formulation produced regular, spherical and multilamellar-shaped distribution nanoparticles. The pharmacokinetic analysis of CAL compared with chlorogenic acid (CA), showed a higher value of Cmax(6.42 ± 1.49 min versus 3.97 ± 0.39 min) and a delayed Tmax(15 min versus 10 min), with 1.29-fold increase in relative oral bioavailability. The tissue distribution in mice also demonstrated that CAL predominantly accumulated in the liver which indicated hepatic targeting potential of the drug. The increased activities of antioxidant enzymes (Total Superoxide Dismutase (T-SOD) and Glutathione Peroxidase (GSH-Px)) and total antioxidant capacity (T-AOC), in addition to decreased level of malondialdehyde (MDA) in CCl4-induced hepatotoxicity study further revealed that CAL exhibited significant hepatoprotective and antioxidant effects. Collectively, these findings present a liposomal formulation with significantly improved oral bioavailability and an increased in vivo antioxidant activity of CA. Copyright © 2016 Elsevier B.V. All rights reserved.
Ke, Zhongcheng; Hou, Xuefeng; Jia, Xiao-bin
2016-01-01
Background The main purpose of this research was to design a self-nanoemulsifying drug delivery system (SNEDDS) for improving the bioavailability of cyclovirobuxine D as a poorly water-soluble drug. Materials and methods Solubility trials, emulsifying studies, and pseudo-ternary phase diagrams were used to screen the SNEDDS formulations. The optimized drug-loaded SNEDDS was prepared at a mass ratio of 3:24:38:38 for cyclovirobuxine D, oleic acid, Solutol SH15, and propylene glycol, respectively. The optimized formulation was characterized in terms of physicochemical and pharmacokinetic parameters compared with marketed cyclovirobuxine D tablets. Results The optimized cyclovirobuxine-D-loaded SNEDDS was spontaneously dispersed to form a nanoemulsion with a globule size of 64.80±3.58 nm, which exhibited significant improvement of drug solubility, rapid absorption rate, and enhanced area under the curve, together with increased permeation and decreased efflux. Fortunately, there was a nonsignificant cytotoxic effect toward Caco-2 cells. The relative bioavailability of SNEDDS was 200.22% in comparison with market tablets, in rabbits. Conclusion SNEDDS could be a potential candidate for an oral dosage form of cyclovirobuxine D with improved bioavailability. PMID:27418807
Bioavailability enhancement of atovaquone using hot melt extrusion technology.
Kate, Laxman; Gokarna, Vinod; Borhade, Vivek; Prabhu, Priyanka; Deshpande, Vinita; Pathak, Sulabha; Sharma, Shobhona; Patravale, Vandana
2016-04-30
Emerging parasite resistance and poor oral bioavailability of anti-malarials are the two cardinal issues which hinder the clinical success of malaria chemotherapy. Atovaquone-Proguanil is a WHO approved fixed dose combination used to tackle the problem of emerging resistance. However, Atovaquone is a highly lipophilic drug having poor aqueous solubility (less than 0.2 μg/ml) thus reducing its oral bioavailability. The aim of the present investigation was to explore hot melt extrusion (HME) as a solvent-free technique to enhance solubility and oral bioavailability of Atovaquone and to develop an oral dosage form for Atovaquone-Proguanil combination. Solid dispersion of Atovaquone was successfully developed using HME. The solid dispersion was characterized for DSC, FTIR, XRD, SEM, and flow properties. It was filled in size 2 hard gelatin capsules. The formulation showed better release as compared to Malarone® tablets, and 3.2-fold and 4.6-fold higher bioavailability as compared to Malarone® tablets and Atovaquone respectively. The enhanced bioavailability also resulted in 100% anti-malarial activity in murine infection model at 1/8(th) therapeutic dose. Thus the developed methodology shows promising potential to solve the problems associated with Atovaquone therapy, namely its high cost and poor oral bioavailability, resulting in increased therapeutic efficacy of Atovaquone. Copyright © 2016 Elsevier B.V. All rights reserved.
Kim, Rog-Young; Yoon, Jeong-Ki; Kim, Tae-Seung; Yang, Jae E; Owens, Gary; Kim, Kwon-Rae
2015-12-01
Worldwide regulatory frameworks for the assessment and remediation of contaminated soils have moved towards a risk-based approach, taking contaminant bioavailability into consideration. However, there is much debate on the precise definition of bioavailability and on the standardization of methods for the measurement of bioavailability so that it can be reliably applied as a tool for risk assessment. Therefore, in this paper, we reviewed the existing definitions of heavy metal bioavailability in relation to plant uptake (phytoavailability), in order to better understand both the conceptual and operational aspects of bioavailability. The related concepts of specific and non-specific adsorption, as well as complex formation and organic ligand affinity were also intensively discussed to explain the variations of heavy metal solubility and mobility in soils. Further, the most frequently used methods to measure bioavailable metal soil fractions based on both chemical extractions and mechanistic geochemical models were reviewed. For relatively highly mobile metals (Cd, Ni, and Zn), a neutral salt solution such as 0.01 M CaCl2 or 1 M NH4NO3 was recommended, whereas a strong acid or chelating solution such as 0.43 M HNO3 or 0.05 M DTPA was recommended for strongly soil-adsorbed and less mobile metals (Cu, Cr, and Pb). While methods which assessed the free metal ion activity in the pore water such as DGT and DMT or WHAM/Model VI, NICA-Donnan model, and TBLM are advantageous for providing a more direct measure of bioavailability, few of these models have to date been properly validated.
Gao, Xiang; Ndongo, Marie-Noella; Checchio, Tina M; Cook, Jack; Duncan, Barbara; LaBadie, Robert R
2015-01-01
The relative bioavailability and bioequivalence of 20-mg doses of a pediatric formulation of sildenafil extemporaneous preparation suspension (EP; 10 mg/mL), the sildenafil 20-mg intact tablet and the crushed sildenafil 20-mg tablet mixed with apple sauce were assessed in a single-dose, randomized, open-label, 3-way crossover study with 18 healthy adult volunteers. Blood samples were collected at predefined times and analyzed for sildenafil plasma concentrations. Natural log-transformed sildenafil pharmacokinetic parameters (Cmax , AUClast , and AUCinf ) were used to estimate relative bioavailability and construct 90% confidence intervals (CI) using a mixed-effects model. Bioequivalence was concluded among the three formulations with one exception, in which the EP suspension showed a 15% decrease in Cmax with a lower 90% CI of 76% compared with the intact tablet. The 15% decrease in sildenafil Cmax is not considered to be clinically relevant. Therefore, the EP suspension is considered to be an appropriate pediatric formulation. All 3 formulations were well tolerated in healthy adult volunteers. © 2014, The American College of Clinical Pharmacology.
Chang, Ming-Tsung; Tsai, Tong-Rong; Lee, Chun-Yann; Wei, Yu-Sheng; Chen, Ying-Jie; Chen, Chun-Ren; Tzen, Jason T C
2013-10-09
Utilization of curcumin has been limited due to its poor oral bioavailability. Oral bioavailability of hydrophobic compounds might be elevated via encapsulation in artificial seed oil bodies. This study aimed to improve oral bioavailability of curcumin via this encapsulation. Unfortunately, curcumin was indissoluble in various seed oils. A mixed dissolvent formula was used to dissolve curcumin, and the admixture was successfully encapsulated in artificial oil bodies stabilized by recombinant sesame caleosin. The artificial oil bodies of relatively small sizes (150 nm) were stably solidified in the forms of powder and tablet. Oral bioavailability of curcumin with or without encapsulation in artificial oil bodies was assessed in Sprague-Dawley male rats. The results showed that encapsulation of curcumin significantly elevated its bioavailability and provided the highest maximum whole blood concentration (Cmax), 37 ± 28 ng/mL, in the experimental animals 45 ± 17 min (t(max)) after oral administration. Relative bioavailability calculated on the basis of the area under the plasma concentration-time curve (AUC) was increased by 47.7 times when curcumin was encapsulated in the artificial oil bodies. This novel formulation of artificial oil bodies seems to possess great potential to encapsulate hydrophobic drugs for oral administration.
Jain, S K; Gill, M S; Pawar, H S; Suresh, Sarasija
2014-09-01
Curcumin-diclofenac conjugate as been synthesized by esterification of phenolic group of curcumin with the acid moiety of diclofenac, and characterized by mass spectrometry, NMR, FTIR, DSC, thermogravimetric analysis and X-ray diffraction analysis. The relative solubility of curcumin-diclofenac conjugate, curcumin and diclofenac; stability of curcumin-diclofenac conjugate in intestinal extract; permeability study of curcumin-diclofenac conjugate using the everted rat intestinal sac method; stability of curcumin-diclofenac conjugate in gastrointestinal fluids and in vitro efficacy have been evaluated. In vivo bioavailability of curcumin-diclofenac conjugate and curcumin in Sprague-Dawley rats, and antiarthritic activity of curcumin-diclofenac conjugate, curcumin and diclofenac in modified streptococcal cell wall-induced arthritis model in Balb/c mice to mimic rheumatoid arthritis in humans have also been studied. In all of the above studies, curcumin-diclofenac conjugate exhibited enhanced stability as compared to curcumin; its activity was twice that of diclofenac in inhibiting thermal protein denaturation taken as a measure of in vitro antiinflammatory activity; it enhanced the bioavailability of curcumin by more than five folds, and significantly (P<0.01) alleviated the symptoms of arthritis in streptococcal cell wall-induced arthritis model as compared to both diclofenac and curcumin.
Choi, Jin-Seok; Choi, In; Choi, Dong-Hyun
2013-01-01
The aim of this study was to investigate the effects of nifedipine on the bioavailability and pharmacokinetics of repaglinide in rats. The effect of nifedipine on P-glycoprotein (P-gp) and cytochrome P450 (CYP) 3A4 activity was evaluated. The pharmacokinetic parameters of repaglinide and blood glucose concentrations were also determined in rats after oral (0.5 mg/kg) and intravenous (0.2 mg/kg) administration of repaglinide to rats in the presence and absence of nifedipine (1 and 3 mg/kg). Administration of nifedipine resulted in inhibition CYP3A4 activity with an IC50 value of 7.8 μM, and nifedipine significantly inhibited P-gp activity in a concentration-dependent manner. Compared to the oral control group, nifedipine significantly increased the area under the plasma concentration-time curve (AUC0-∞) and the peak plasma concentration (Cmax) of repaglinide by 49.3 and 25.5%, respectively. Nifedipine significantly decreased the total body clearance (CL/F) of repaglinide by 22.0% compared to the oral control group. Nifedipine also increased the absolute bioavailability (AB) of repaglinide by 50.0% compared to the oral control group (33.6%). In addition, the relative bioavailability (RB) of repaglinide was 1.16- to 1.49-fold greater than that of the control group. Compared to the intravenous control, nifedipine significantly increased AUC0-∞ of repaglinide. Blood glucose concentrations had significant differences compared to the oral control groups. Nifedipine enhanced the oral bioavailability of repaglinide, which may be mainly attributable to inhibition of CYP3A4-mediated metabolism of repaglinide in the small intestine and/or in the liver and to inhibition of the P-gp efflux transporter in the small intestine and/or reduction of total body clearance by nifedipine. The current study has raised awareness of potential drug interactions by concomitant use of repaglinide with nifedipine.
The bioavailability of a metal is heavily related to the speciation of the particular metal. Further, the complexity of examining metal bioavailability is compounded by the presence of competitive ions. Thus, equally contaminated soils with varying concentrations of competitive e...
Predicting oral relative bioavailability of arsenic in soil from in vitro bioaccessibility
Several investigations have been conducted to develop in vitro bioaccessibility (IVBA) assays that reliably predict in vivo oral relative bioavailability (RBA) of arsenic (As). This study describes a meta-regression model relating soil As RBA and IVBA that is based upon data comb...
Hindle, M.; Peers, E. M.; Parry-Billings, M.; Chrystyn, H.
1997-01-01
Aims The number of dry powder inhaler (DPI) devices could increase because they are easier to use than a metered dose inhaler (MDI). Using urinary excretion, the relative bioavailability of salbutamol to the lungs and the body for a prototype DPI has been compared with an MDI. Methods A randomized, double-blind, two way crossover study compared the amount of salbutamol in the urine 30 min following inhalation of 2×100 μg salbutamol from a prototype DPI (Innovata Biomed Ltd, UK) and a Ventolin® (Allen and Hanburys Ltd, UK) MDI in 10 volunteers. The amount of salbutamol and its metabolite, the ester sulphate conjugate, renally excreted up to 24 h post inhalation was also determined to evaluate the relative bioavailability of salbutamol to the body. Results The mean (s.d.) 30 min post-treatment urinary excretion for the prototype DPI and MDI was 8.4 (2.6) and 5.0 (1.9) μg, respectively (P<0.001). The total amount of salbutamol and its ester metabolite excreted in the urine over the 24 h period after inhalation was 187.9 (77.6) and 137.6 (40.0) μg (P<0.05). Conclusions The prototype DPI delivered more salbutamol to the body and the lungs than a conventional MDI. This finding supports further development of the prototype DPI. The urinary salbutamol method is able to discriminate between two different inhalation systems. PMID:9088593
NASA Astrophysics Data System (ADS)
Schroll, R.; Folberth, C.; Scherb, H.; Suhadolc, M.; Munch, J. C.
2009-04-01
Aim of this work was the development of a new non-biological factor to determine microbial in-situ bioavailability of chemicals in soils. Pesticide residues were extracted from ten highly different agricultural soils that had been incubated with the 14C-herbicide isoproturon (IPU) under comparable soil conditions (water tension - 15 kPa; soil density 1.3 g cm 3). Two different pesticide extraction approaches were compared: (i) 14C-Pesticide residues were measured in the pore water (PW) which was extracted from soil by centrifugation; (ii) 14C-Pesticide residues were extracted from soil samples with an excess of water (EEW). We introduce the pesticide's in-situ mass distribution quotient (iMDQ) as a measure for pesticide bioavailability, which is calculated as a quotient of adsorbed and dissolved chemical amounts for both approaches (iMDQPW, iMDQEEW). Pesticide mineralization in soils served as a reference for real microbial availability. A highly significant correlation between iMDQPW and mineralization showed that pore water extraction is adequate to assess IPU bioavailability. In contrast, no correlation exists between IPU mineralization and its extractability from soil with an excess of water. Therefore, it can be concluded that soil equilibration at comparable conditions and subsequent pore water extraction is vital for a isoproturon bioavailability ranking of soils.
Role of organic acids on the bioavailability of selenium in soil: A review.
Dinh, Quang Toan; Li, Zhe; Tran, Thi Anh Thu; Wang, Dan; Liang, Dongli
2017-10-01
Organic Acids (OAs) are important components in the rhizosphere soil and influence Se bioavailability in soil. OAs have a bidirectional contrasting effect on Se bioavailability. Understanding the interaction of OAs with Se is essential to assessing Se bioavailability in soil and clarifying the role of OAs in controlling the behavior and fate of Se in soil. This review examines the mechanisms for the (im)mobilization of Se by OAs and discusses the practical implications of these mechanisms in relation to sequestration and bioavailability of Se in soil. Copyright © 2017 Elsevier Ltd. All rights reserved.
Allam, Ayat; Fetih, Gihan
2016-01-01
The aim of the present work was to prepare and evaluate sublingual fast dissolving films containing metoprolol tartrate-loaded niosomes. Niosomes were utilized to allow for prolonged release of the drug, whereas the films were used to increase the drug's bioavailability via the sublingual route. Niosomes were prepared using span 60 and cholesterol at different drug to surfactant ratios. The niosomes were characterized for size, zeta-potential, and entrapment efficiency. The selected niosomal formulation was incorporated into polymeric films using hydroxypropyl methyl cellulose E15 and methyl cellulose as film-forming polymers and Avicel as superdisintegrant. The physical characteristics (appearance, texture, pH, uniformity of weight and thickness, disintegration time, and palatability) of the prepared films were studied, in addition to evaluating the in vitro drug release, stability, and in vivo pharmacokinetics in rabbits. The release of the drug from the medicated film was fast (99.9% of the drug was released within 30 minutes), while the drug loaded into the niosomes, either incorporated into the film or not, showed only 22.85% drug release within the same time. The selected sublingual film showed significantly higher rate of drug absorption and higher drug plasma levels compared with that of commercial oral tablet. The plasma levels remained detectable for 24 hours following sublingual administration, compared with only 12 hours after administration of the oral tablet. In addition, the absolute bioavailability of the drug (ie, relative to intravenous administration) following sublingual administration was found to be significantly higher (91.06%±13.28%), as compared with that after oral tablet administration (39.37%±11.4%). These results indicate that the fast dissolving niosomal film could be a promising delivery system to enhance the bioavailability and prolong the therapeutic effect of metoprolol tartrate.
Allam, Ayat; Fetih, Gihan
2016-01-01
The aim of the present work was to prepare and evaluate sublingual fast dissolving films containing metoprolol tartrate-loaded niosomes. Niosomes were utilized to allow for prolonged release of the drug, whereas the films were used to increase the drug’s bioavailability via the sublingual route. Niosomes were prepared using span 60 and cholesterol at different drug to surfactant ratios. The niosomes were characterized for size, zeta-potential, and entrapment efficiency. The selected niosomal formulation was incorporated into polymeric films using hydroxypropyl methyl cellulose E15 and methyl cellulose as film-forming polymers and Avicel as superdisintegrant. The physical characteristics (appearance, texture, pH, uniformity of weight and thickness, disintegration time, and palatability) of the prepared films were studied, in addition to evaluating the in vitro drug release, stability, and in vivo pharmacokinetics in rabbits. The release of the drug from the medicated film was fast (99.9% of the drug was released within 30 minutes), while the drug loaded into the niosomes, either incorporated into the film or not, showed only 22.85% drug release within the same time. The selected sublingual film showed significantly higher rate of drug absorption and higher drug plasma levels compared with that of commercial oral tablet. The plasma levels remained detectable for 24 hours following sublingual administration, compared with only 12 hours after administration of the oral tablet. In addition, the absolute bioavailability of the drug (ie, relative to intravenous administration) following sublingual administration was found to be significantly higher (91.06%±13.28%), as compared with that after oral tablet administration (39.37%±11.4%). These results indicate that the fast dissolving niosomal film could be a promising delivery system to enhance the bioavailability and prolong the therapeutic effect of metoprolol tartrate. PMID:27536063
Bartelink, Imke H; Savic, Rada M; Dorsey, Grant; Ruel, Theodore; Gingrich, David; Scherpbier, Henriette J; Capparelli, Edmund; Jullien, Vincent; Young, Sera L; Achan, Jane; Plenty, Albert; Charlebois, Edwin; Kamya, Moses; Havlir, Diane; Aweeka, Francesca
2015-03-01
Malnutrition may impact the pharmacokinetics (PKs) of antiretroviral medications and virologic responses in HIV-infected children. The authors therefore evaluated the PK of nevirapine (NVP), efavirenz (EFV) and lopinavir (LPV) in associations with nutritional status in a cohort of HIV-infected Ugandan children. Sparse dried blood spot samples from Ugandan children were used to estimate plasma concentrations. Historical PK data from children from 3 resource-rich countries (RRC) were utilized to develop the PK models. Concentrations in 330 dried blood spot from 163 Ugandan children aged 0.7-7 years were analyzed in reference to plasma PK data (1189 samples) from 204 children from RRC aged 0.5-12 years. Among Ugandan children, 48% was malnourished (underweight, thin or stunted). Compared to RRC, Ugandan children exhibited reduced bioavailability of EFV and LPV; 11% (P=0.045) and 18% (P=0.008), respectively. In contrast, NVP bioavailability was 46% higher in Ugandan children (P<0.001) with a trend toward greater bioavailability when malnourished. Children receiving LPV, EFV or NVP had comparable risk of virologic failure. Among children on NVP, low height and weight for age Z scores were associated with reduced risk of virologic failure (P=0.034, P=0.068, respectively). Ugandan children demonstrated lower EFV and LPV and higher NVP exposure compared to children in RRC, perhaps reflecting the consequence of malnutrition on bioavailability. In children receiving NVP, the relation between exposure, malnutrition and outcome turned out to be marginally significant. Further investigations are warranted using more intensive PK measurements and adequate adherence assessments, to further assess causes of virologic failure in Ugandan children.
Formulation with ascorbic acid and sucrose modulates catechin bioavailability from green tea
Peters, Catrina M.; Green, Rodney J.; Janle, Elsa M.; Ferruzzi, Mario G.
2009-01-01
In order to investigate the impact of common food ingredients on catechin absorption, green tea (GT) extract (50 mg) was formulated plain, with sucrose (GT+S), with ascorbic acid (GT+AA) and with sucrose and ascorbic acid (GT+S+AA). Bioavailability and bioaccessibility were assessed in Sprague Dawley rats and an in vitro digestion/Caco-2 cell model respectively. Absorption of epigallocatechin (EGC) and epigallocatechin gallate (EGCG) was significantly (P<0.05) enhanced in GT+S+AA formulations (AUC0-6h= 3237.0 and 181.8 pmol*h/L plasma respectively) relative to GT control (AUC0-6h = 1304.1 and 61.0 pmol*h/L plasma respectively). In vitro digestive recovery was higher for EGC and epicatechin (EC) (∼51-53%) relative to EGCG and epicatechin gallate (ECG) (< 20%) and was modestly enhanced in GT+S and GT+S+AA formulations. Accumulation of EGC, EGCG and ECG by Caco-2 cells was significantly (P<0.05) higher from GT+S+AA compared to other formulations while retention of catechins was enhanced in presence of ascorbic acid. These data suggest that formulation with sucrose and ascorbic acid may improve catechin bioavailability by enhancing bioaccessibility and intestinal uptake from tea. PMID:20161530
USDA-ARS?s Scientific Manuscript database
Due to low Fe bioavailability and low consumption per meal, lentil must be fortified to contribute significant bioavailable Fe in the Bangladeshi diet. Moreover, since red lentil is dehulled prior to consumption, opportunity exists at this point to fortify lentil with Fe. Thus, in the present study...
Pharmacokinetics of intramuscular microparticle depot of valdecoxib in an experimental model.
Agnihotri, Sagar M; Vavia, Pradeep R
2009-09-01
We did a prospective study to investigate pharmacokinetics of a single intramuscularly (i.m.) administered Valdecoxib (VC) polymeric microparticles in New Zealand white rabbits. Poly[lac(glc-leu)] microparticles encapsulating a potent cyclooxygenase-2- selective inhibitor, VC, were prepared by emulsion and solvent evaporation technique and administered i.m. to rabbits for pharmacokinetic study. A single i.m. dose of drug-loaded poly[lac(glc-leu)] microparticles resulted in sustained therapeutic drug levels in the plasma for 49 days. The relative bioavailability was increased severalfold as compared with unencapsulated drug. Injectable poly[lac(glc-leu)] microparticles hold promise for increasing drug bioavailability and reducing dosing frequency for better management of rheumatoid arthritis.
Linard, Erica N; Apul, Onur G; Karanfil, Tanju; van den Hurk, Peter; Klaine, Stephen J
2017-08-15
Despite carbon nanomaterials' (CNMs) potential to alter the bioavailability of adsorbed contaminants, information characterizing the relationship between adsorption behavior and bioavailability of CNM-adsorbed contaminants is still limited. To investigate the influence of CNM morphology and organic contaminant (OC) physicochemical properties on this relationship, adsorption isotherms were generated for a suite of polycyclic aromatic hydrocarbons (PAHs) on multiwalled carbon nanotubes (MWCNTs) and exfoliated graphene (GN) in conjunction with determining the bioavailability of the adsorbed PAHs to Pimphales promelas using bile analysis via fluorescence spectroscopy. Although it appeared that GN adsorbed PAHs indiscriminately compared to MWCNTs, the subsequent bioavailability of GN-adsorbed PAHs was more sensitive to PAH morphology than MWCNTs. GN was effective at reducing bioavailability of linear PAHs by ∼70%, but had little impact on angular PAHs. MWCNTs were sensitive to molecular size, where bioavailability of two-ringed naphthalene was reduced by ∼80%, while bioavailability of the larger PAHs was reduced by less than 50%. Furthermore, the reduction in bioavailability of CNM-adsorbed PAHs was negatively correlated with the amount of CNM surface area covered by the adsorbed-PAHs. This study shows that the variability in bioavailability of CNM-adsorbed PAHs is largely driven by PAH size, configuration and surface area coverage.
Zhang, Kexia; Zhang, Meiyu; Liu, Ziying; Zhang, Yuanyuan; Gu, Liqiang; Hu, Gaosheng; Chen, Xiaohui; Jia, Jingming
2016-09-01
Quercetin (QT) is a natural flavonoid with various biological activities and pharmacological actions. However, the bioavailability of QT is relatively low due to its low solubility which severely limits its use. In this study, we intended to improve the bioavailability of QT by preparing quercetin-phospholipid complex (QT-PC) and investigate the protective effect of QT-PC against carbon tetrachloride (CCl4) induced acute liver damage in Sprague-Dawley (SD) rats. The physicochemical properties of QT-PC were characterized in terms of infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), powder X-ray diffraction (XRPD) and water/n-octanol solubility. FTIR, DSC and XRPD data confirmed the formation of QT-PC. The water solubility of QT was improved significantly in the prepared complex, indicating its increased hydrophilicity. Oral bioavailability of QT and QT-PC was evaluated in SD rats, and the plasma QT was estimated by HPLC-MS. QT-PC exhibited higher Cmax (1.58±0.11 vs. 0.67±0.08μg/mL), increased AUC0-∞ (8.60±1.25 vs. 2.41±0.51mg/Lh) and t1/2z (7.76±1.09 vs. 4.81±0.87h) when compared to free QT. The greater absorption of QT-PC group suggested the improved bioavailability. Moreover, biochemical changes and histopathological observations revealed that QT-PC provided better protection to rat liver than free QT at the same dose. Thus, phospholipid complexation might be one of the suitable approaches to improve the oral bioavailability of QT and obtain better protective effects against CCl4 induced acute liver damage in SD rats than free QT at the same dose level. Copyright © 2016 Elsevier B.V. All rights reserved.
Tawfik, Mai Ahmed; Tadros, Mina Ibrahim; Mohamed, Magdy Ibrahim
2018-05-21
Vardenafil hydrochloride (VAR) is an erectile dysfunction treating drug. VAR has a short elimination half-life (4-5 h) and suffers low oral bioavailability (15%). This work aimed to explore the dual potential of VAR-dendrimer complexes as drug release modulators and oral bioavailability enhancers. VAR-dendrimer complexes were prepared by solvent evaporation technique using four dendrimer generations (G4.5, G5, G5.5 and G6) at three concentrations (190 nM, 380 nM and 950 nM). The systems were evaluated for intermolecular interactions, particle size, zeta potential, drug entrapment efficiency percentages (EE%) and drug released percentages after 2 h (Q 2h ) and 24 h (Q 24h ). The results were statistically analyzed, and the system showing the highest desirability was selected for further pharmacokinetic studies in rabbits, in comparison to Levitra ® tablets. The highest desirability (0.82) was achieved with D10 system comprising VAR (10 mg) and G6 (190 nM). It possessed small particle size (113.85 nm), low PDI (0.19), positive zeta potential (+21.53), high EE% (75.24%), promising Q 2 h (41.45%) and Q 24 h (74.05%). Compared to Levitra ® tablets, the significantly (p < 0.01) delayed T max , prolonged MRT (0-∞) and higher relative bioavailability (3.7-fold) could clarify the dual potential of D10 as a sustained release system capable of enhancing VAR oral bioavailability.
Nakayama, Hirokazu; Echizen, Hirotoshi; Ogawa, Ryuichi; Akabane, Atsuya; Kato, Toshiaki; Orii, Takao
2017-06-01
Phenobarbital is well tolerated and effective for controlling agitation or preventing convulsion at the end of life. No information is available concerning parenteral bioavailability of phenobarbital when induration develops at the injection or infusion site. We investigated whether induration at injection or infusion site is related to phenobarbital bioavailability via parenteral routes of continuous subcutaneous infusion and intermittent subcutaneous or intramuscular injection. A retrospective analysis was conducted on the medical data obtained from 18 patients who received chronic subcutaneous or intramuscular injections of phenobarbital for the prevention of convulsions and underwent plasma concentration monitoring of the drug. Patients whose concomitant medications were altered during the observation periods were excluded from the analysis. Comparisons were performed for concentration/dose (C/D) ratios obtained from patients with induration at injection or infusion sites (induration group, n = 6) and those without induration (noninduration group, n = 12). P < 0.05 was considered statistically significant. The induration group showed significantly reduced C/D ratio compared with the noninduration group [median (range): 0.131 (0.114-0.334) versus 0.219 (0.180-0.322) d/L, P < 0.05). Assuming that systemic clearance was constant in our patients, changes in the C/D ratio would have contributed to 40% (median) reduction in bioavailability of the drug from the injection or infusion site. Our data suggest that absolute bioavailability of phenobarbital may be reduced when induration develops at the injection or infusion site in patients treated parenterally by continuous subcutaneous infusion or intramuscular injection.
Influence of PEG coating on the oral bioavailability of gold nanoparticles in rats.
Alalaiwe, Ahmed; Roberts, Georgia; Carpinone, Paul; Munson, John; Roberts, Stephen
2017-11-01
Metallic nanoparticles can be produced in a variety of shapes, sizes, and surface chemistries, making them promising potential tools for drug delivery. Most studies to date have evaluated uptake of metallic nanoparticles from the GI tract with methods that are at best semi-quantitative. This study used the classical method of comparing blood concentration area under the curve (AUC) following intravenous and oral doses to determine the oral bioavailability of 1, 2 and 5 kDa PEG-coated 5 nm gold nanoparticles (AuNPs). Male rats were given a single intravenous dose (0.8 mg/kg) or oral (gavage) dose (8 mg/kg) of a PEG-coated AuNP, and the concentration of gold was measured in blood over time and in tissues (liver, spleen and kidney) at sacrifice. Blood concentrations following oral administration were inversely related to PEG size, and the AUC in blood was significantly greater for the 1 kDa PEG-coated AuNPs than particles coated with 2 or 5 kDa PEG. However, bioavailabilities of all of the particles were very low (< 0.1%). Concentrations in liver, spleen and kidney were similar after the intravenous doses, but kidney showed the highest concentrations after an oral dose. In addition to providing information on the bioavailability of AuNPs coated with PEG in the 1-5 kDa range, this study demonstrates the utility of applying the blood AUC approach to assess the quantitative oral bioavailability of metallic nanoparticles.
Ribas-Agustí, Albert; Martín-Belloso, Olga; Soliva-Fortuny, Robert; Elez-Martínez, Pedro
2017-06-13
Phenolic compounds are important constituents of plant-based foods, as their presence is related to protective effects on health. To exert their biological activity, phenolic compounds must be released from the matrix during digestion in an absorbable form (bioaccessible) and finally absorbed and transferred to the bloodstream (bioavailable). Chemical structure and matrix interactions are some food-related factors that hamper phenolic compounds bioaccessibility and bioavailability, and that can be counteracted by food processing. It has been shown that food processing can induce chemical or physical modifications in food that enhance phenolic compounds bioaccessibility and bioavailability. These changes include: (i) chemical modifications into more bioaccessible and bioavailable forms; (ii) cleavage of covalent or hydrogen bonds or hydrophobic forces that attach phenolic compounds to matrix macromolecules; (iii) damaging microstructural barriers such as cell walls that impede the release from the matrix; and (iv) create microstructures that protect phenolic compounds until they are absorbed. Indeed, food processing can produce degradation of phenolic compounds, however, it is possible to counteract it by modulating the operating conditions in favor of increased bioaccessibility and bioavailability. This review compiles the current knowledge on the effects of processing on phenolic compounds bioaccessibility or bioavailability, while suggesting new guidelines in the search of optimal processing conditions as a step forward towards the design of healthier foods.
El-Say, Khalid M; Ahmed, Tarek A; Ahmed, Osama A A; Hosny, Khaled M; Abd-Allah, Fathy I
2017-09-01
Owing to limited solubility, vitamin K undergoes low bioavailability with large inter-individual variability after oral administration. This article aimed to prepare self-nanoemulsifying lyophilized tablets (SNELTs) for the flash oral transmucosal delivery of vitamin K. Twenty-one formulae of vitamin K self-nanoemulsifying drug delivery systems (SNEDDS) were prepared using different concentrations of vitamin K, Labrasol, and Transcutol according to mixture design. The SNEDDS was loaded on porous carriers and formulated as lyophilized tablets. The release profile and the pharmacokinetic parameters of vitamin K SNELTs were evaluated in comparison with commercial tablets and ampoules on human volunteers. Results revealed that the optimized SNEDDS showed the smallest and most stable nanoemulsion globules. SNELTs were prepared successfully and showed substantial superiority drug release compared with the commercial tablets. Interestingly, SNELTs enhanced both rate and extent of vitamin K absorption as well as relative bioavailability (169.67%) in healthy subjects compared with the commercial tablets. SNELTs revealed promising no significant difference in the area under the curve compared with the commercial intramuscular injection. SNELTs enhanced dissolution and bioavailability that expected to have the strong impact on the efficiency of vitamin K in the prophylaxis and treatment of bleeding disorders in patients with hepatic dysfunction. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Duan, Luchun; Naidu, Ravi; Liu, Yanju; Dong, Zhaomin; Mallavarapu, Megharaj; Herde, Paul; Kuchel, Tim; Semple, Kirk T
2016-09-01
There are many uncertainties concerning variations in benzo[a]pyrene (B[a]P) soil guidelines protecting human health based on carcinogenic data obtained in animal studies. Although swine is recognised as being much more representative of the human child in terms of body size, gut physiology and genetic profile the rat/mice model is commonly used in practice. We compare B[a]P bioavailability using a rat model to that estimated in a swine model, to investigate the correlation between these two animal models. This may help reduce uncertainty in applying bioavailability to human health risk assessment. Twelve spiked soil samples and a spiked silica sand (reference material) were dosed to rats in parallel with a swine study. B[a]P bioavailability was estimated by the area under the plasma B[a]P concentration-time curve (AUC) and faecal excretion as well in the rats. Direct comparison between the two animal models was made for: firstly, relative bioavailability (RB) using AUC assay; and secondly, the two assays in the rat model. Both AUC and faecal excretion assays showed linear dose-response for the reference material. However, absolute bioavailability was significantly higher when using faecal excretion assay (p<0.001). In aged soils faecal excretion estimated based on solvent extraction was not accurate due to the form of non-extractable fraction through ageing. A significant correlation existed between the two models using RB for soil samples (RBrat=0.26RBswine+17.3, R(2)=0.70, p<0.001), despite the regression slope coefficient revealing that the rat model would underestimate RB by about one quarter compared to using swine. In the comparison employed in this study, an interspecies difference of four in RB using AUC assay was identified between the rat and swine models regarding pharmacokinetic differences, which supported the body weight scaling method recommended by US EPA. Future research should focus on the carcinogenic competency (pharmacodynamics) used in experiment animals and humans. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Tongzhou; Zhang, Zhen; Mao, Yanqing; Yan, Dickson Y S
2016-04-01
In situ sediment remediation using Ca(NO3)2 or CaO2 for odor mitigation and acid volatile sulfide (AVS) and organic pollutant (such as TPH and PAHs) removal was reported in many studies and fieldwork. Yet, the associated effects on metal mobilization and potential distortion in bioavailability were not well documented. In this study, contaminated river sediment was treated by Ca(NO3)2 and CaO2 in bench studies. Through the investigation of AVS removal, organic matter removal, the changes in sediment oxidation-reduction potential (ORP), microbial activity, and other indigenous parameters, the effects on metal bioavailability, bioaccessibility, and fraction redistribution in sediment were evaluated. The major mechanisms for sediment treated by Ca(NO3)2 and CaO2 are biostimulation with indigenous denitrifying bacteria and chemical oxidation, respectively. After applying Ca(NO3)2 and CaO2, the decreases of metal concentrations in the treated sediment were insignificant within a 35-day incubation period. However, the [SEMtot-AVS]/f OC increased near to the effective boundary of toxicity (100 μmol g(-1) organic carbon (OC)), indicating that both bioavailability and bioaccessibility of metals (Cu, Zn, and Ni) to benthic organisms are enhanced after remediation. Metals were found redistributed from relatively stable fractions (oxidizable and residual fractions) to weakly bound fractions (exchangeable and reducible fractions), and the results are in line with the enhanced metal bioavailability. Compared with Ca(NO3)2, CaO2 led to higher enhancement in metal bioavailability and bioaccessibility, and more significant metal redistribution, probably due to its stronger chemical reactive capacity to AVS and sediment organic matter. The reactions in CaO2-treated sediment would probably shift from physicochemical to biochemical heterotrophic oxidation for sediment organic matter degradation. Therefore, further investigation on the long-term metal redistribution and associated mobility as well as bioavailability is recommended.
Origins and bioavailability of dissolved organic matter in groundwater
Shen, Yuan; Chapelle, Francis H.; Strom, Eric W.; Benner, Ronald
2015-01-01
Dissolved organic matter (DOM) in groundwater influences water quality and fuels microbial metabolism, but its origins, bioavailability and chemical composition are poorly understood. The origins and concentrations of dissolved organic carbon (DOC) and bioavailable DOM were monitored during a long-term (2-year) study of groundwater in a fractured-rock aquifer in the Carolina slate belt. Surface precipitation was significantly correlated with groundwater concentrations of DOC, bioavailable DOM and chromophoric DOM, indicating strong hydrological connections between surface and ground waters. The physicochemical and biological processes shaping the concentrations and compositions of DOM during its passage through the soil column to the saturated zone are conceptualized in the regional chromatography model. The model provides a framework for linking hydrology with the processes affecting the transformation, remineralization and microbial production of DOM during passage through the soil column. Lignin-derived phenols were relatively depleted in groundwater DOM indicating substantial removal in the unsaturated zone, and optical properties of chromophoric DOM indicated lower molecular weight DOM in groundwater relative to surface water. The prevalence of glycine, γ-aminobutyric acid, and d-enantiomers of amino acids indicated the DOM was highly diagenetically altered. Bioassay experiments were used to establish DOC-normalized yields of amino acids as molecular indicators of DOM bioavailability in groundwater. A relatively small fraction (8 ± 4 %) of DOC in groundwater was bioavailable. The relatively high yields of specific d-enantiomers of amino acids indicated a substantial fraction (15–34 %) of groundwater DOC was of bacterial origin.
Ahmed, Shiek S. S. J.; Ramakrishnan, V.
2012-01-01
Background Poor oral bioavailability is an important parameter accounting for the failure of the drug candidates. Approximately, 50% of developing drugs fail because of unfavorable oral bioavailability. In silico prediction of oral bioavailability (%F) based on physiochemical properties are highly needed. Although many computational models have been developed to predict oral bioavailability, their accuracy remains low with a significant number of false positives. In this study, we present an oral bioavailability model based on systems biological approach, using a machine learning algorithm coupled with an optimal discriminative set of physiochemical properties. Results The models were developed based on computationally derived 247 physicochemical descriptors from 2279 molecules, among which 969, 605 and 705 molecules were corresponds to oral bioavailability, intestinal absorption (HIA) and caco-2 permeability data set, respectively. The partial least squares discriminate analysis showed 49 descriptors of HIA and 50 descriptors of caco-2 are the major contributing descriptors in classifying into groups. Of these descriptors, 47 descriptors were commonly associated to HIA and caco-2, which suggests to play a vital role in classifying oral bioavailability. To determine the best machine learning algorithm, 21 classifiers were compared using a bioavailability data set of 969 molecules with 47 descriptors. Each molecule in the data set was represented by a set of 47 physiochemical properties with the functional relevance labeled as (+bioavailability/−bioavailability) to indicate good-bioavailability/poor-bioavailability molecules. The best-performing algorithm was the logistic algorithm. The correlation based feature selection (CFS) algorithm was implemented, which confirms that these 47 descriptors are the fundamental descriptors for oral bioavailability prediction. Conclusion The logistic algorithm with 47 selected descriptors correctly predicted the oral bioavailability, with a predictive accuracy of more than 71%. Overall, the method captures the fundamental molecular descriptors, that can be used as an entity to facilitate prediction of oral bioavailability. PMID:22815781
Ahmed, Shiek S S J; Ramakrishnan, V
2012-01-01
Poor oral bioavailability is an important parameter accounting for the failure of the drug candidates. Approximately, 50% of developing drugs fail because of unfavorable oral bioavailability. In silico prediction of oral bioavailability (%F) based on physiochemical properties are highly needed. Although many computational models have been developed to predict oral bioavailability, their accuracy remains low with a significant number of false positives. In this study, we present an oral bioavailability model based on systems biological approach, using a machine learning algorithm coupled with an optimal discriminative set of physiochemical properties. The models were developed based on computationally derived 247 physicochemical descriptors from 2279 molecules, among which 969, 605 and 705 molecules were corresponds to oral bioavailability, intestinal absorption (HIA) and caco-2 permeability data set, respectively. The partial least squares discriminate analysis showed 49 descriptors of HIA and 50 descriptors of caco-2 are the major contributing descriptors in classifying into groups. Of these descriptors, 47 descriptors were commonly associated to HIA and caco-2, which suggests to play a vital role in classifying oral bioavailability. To determine the best machine learning algorithm, 21 classifiers were compared using a bioavailability data set of 969 molecules with 47 descriptors. Each molecule in the data set was represented by a set of 47 physiochemical properties with the functional relevance labeled as (+bioavailability/-bioavailability) to indicate good-bioavailability/poor-bioavailability molecules. The best-performing algorithm was the logistic algorithm. The correlation based feature selection (CFS) algorithm was implemented, which confirms that these 47 descriptors are the fundamental descriptors for oral bioavailability prediction. The logistic algorithm with 47 selected descriptors correctly predicted the oral bioavailability, with a predictive accuracy of more than 71%. Overall, the method captures the fundamental molecular descriptors, that can be used as an entity to facilitate prediction of oral bioavailability.
21 CFR 320.24 - Types of evidence to measure bioavailability or establish bioequivalence.
Code of Federal Regulations, 2011 CFR
2011-04-01
... effectiveness of the drug product, for purposes of measuring bioavailability, or appropriately designed comparative clinical trials, for purposes of demonstrating bioequivalence. This approach is the least accurate...
21 CFR 320.24 - Types of evidence to measure bioavailability or establish bioequivalence.
Code of Federal Regulations, 2013 CFR
2013-04-01
... effectiveness of the drug product, for purposes of measuring bioavailability, or appropriately designed comparative clinical trials, for purposes of demonstrating bioequivalence. This approach is the least accurate...
21 CFR 320.24 - Types of evidence to measure bioavailability or establish bioequivalence.
Code of Federal Regulations, 2014 CFR
2014-04-01
... effectiveness of the drug product, for purposes of measuring bioavailability, or appropriately designed comparative clinical trials, for purposes of demonstrating bioequivalence. This approach is the least accurate...
21 CFR 320.24 - Types of evidence to measure bioavailability or establish bioequivalence.
Code of Federal Regulations, 2012 CFR
2012-04-01
... effectiveness of the drug product, for purposes of measuring bioavailability, or appropriately designed comparative clinical trials, for purposes of demonstrating bioequivalence. This approach is the least accurate...
21 CFR 320.24 - Types of evidence to measure bioavailability or establish bioequivalence.
Code of Federal Regulations, 2010 CFR
2010-04-01
... effectiveness of the drug product, for purposes of measuring bioavailability, or appropriately designed comparative clinical trials, for purposes of demonstrating bioequivalence. This approach is the least accurate...
Differences in relative bioavailability of traditional Bangladeshi meal plans
USDA-ARS?s Scientific Manuscript database
Background: Iron (Fe) deficiency is the most common nutrient deficiency worldwide. Large intakes of micronutrient-poor staple crops, coupled with low intakes of highly bioavailable dietary Fe is a major cause of this deficiency. Objective: This study examined the Fe concentration and relative Fe ...
Formulation and Characterization of Anthocyanins-Loaded Nanoparticles.
Dupeyrón, Danay; Kawakami, Monique; Rieumont, Jacques; Carvalho, José Carlos
2017-01-01
Açaí berry, from the Euterpe oleracea Mart. Palm, has been described as the most important fruit in the Brazilian Amazon. Several studies have reported that anthocyanins (ACNs), one of the components of the açaí, have enormous potential for pharmaceuticals applications. However, the bioavailability of anthocyanins is relatively low compared to that of other flavonoids. Then, in the present work, anthocyanins-loaded nanoparticles have been developed to overcome their poor bioavailability. A two-level factorial design with three factors was considered to evaluate the effect of EUDRAGIT ® L100, polyethylene glycol 2000 (PEG 2000) and polysorbate 80 on encapsulation efficiency (EE) of anthocyanins. Also, major parameters of nanoparticles were assessed by using mainly SEM microscopy and Dynamic light scattering. PEG 2000 was the only individual factor that has statistical significance (95% confidence level). The process yields (PY) were found in between 67% and 92%; the particle size and morphology analysis showed two distribution size, one for NPs and another for the agglomerates. The pH-sensitive polymer together with the hydrophilic polymer showed to be suitable as ACNs delivery system. The delayed release profile of ACNs, observed for all formulations, can enhance their poor bioavailability. Nevertheless, ACNs bioavailability in vivo remains to be studied. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Baron, G; Altomare, A; Regazzoni, L; Redaelli, V; Grandi, S; Riva, A; Morazzoni, P; Mazzolari, A; Carini, M; Vistoli, G; Aldini, G
2017-09-10
The aim of the present investigation was to better understand the pharmacokinetic profile of bilberry (Vaccinium Myrtillus) anthocyanins and the role of glucose transporters (sGLT1 and GLUT2) on their absorption. In particular, the absorption of 15 different anthocyanins contained in a standardized bilberry extract (Mirtoselect ® ) was measured in rats by a validated LC-ESI-MS/MS approach. The plasma concentration peak (Cmax) of 11.1ng/mL was reached after 30min and fasting condition significantly increased the bioavailability of anthocyanins by more than 7 fold in respect to fed rats. Glucose co-administration did not interfere with the overall anthocyanin uptake. Bioavailability of each anthocyanin was then estimated by comparing the relative content in plasma vs extract. The 15 anthocyanins behaved differently in term of bioavailability and both the aglycone and the sugar moiety were found to affect the absorption. For instance, arabinoside moiety was detrimental while cyanidin enhanced bioavailability. Computational studies permitted to rationalize such results, highlighting the role of glucose transporters (sGLT1 and GLUT2) in anthocyanins absorption. In particular a significant correlation was found for the 15 anthocyanins between sGLT1 and GLUT2 recognition and absorption. Copyright © 2017 Elsevier B.V. All rights reserved.
Chavasit, Visith; Porasuphatana, Suparat; Suthutvoravut, Umaporn; Zeder, Christroph; Hurrell, Richard
2015-12-01
A quick-cooking rice, produced from broken rice, is a convenient ingredient for complementary foods in Thailand. The rice is fortified with micronutrients including iron during the processing procedure, which can cause unacceptable sensory changes. A quick-cooking rice fortified with ferric ammonium citrate (FAC) or a mixture of ferrous sulphate (FeSO4 ) and ferric sodium ethylenediaminetetraacetic acid (NaFeEDTA), with a 2:1 molar ratio of iron from FeSO4 : iron from NaFeEDTA (FeSO4 + NaFeEDTA), gave a product that was organoleptically acceptable. The study compared iron absorption by infants and young children fed with micronutrient-fortified quick-cooking rice containing the test iron compounds or FeSO4 . Micronutrient-fortified quick-cooking rice prepared as a traditional Thai dessert was fed to two groups of 15 8-24-month healthy Thai children. The iron fortificants were isotopically labelled with (57) Fe for the reference FeSO4 or (58) Fe for the tested fortificants, and iron absorption was quantified based on erythrocyte incorporation of the iron isotopes 14 days after feeding. The relative bioavailability of FAC and of the FeSO4 + NaFeEDTA was obtained by comparing their iron absorption with that of FeSO4 . Mean fractional iron absorption was 5.8% [±standard error (SE) 1.9] from FAC and 10.3% (±SE 1.9) from FeSO4 + NaFeEDTA. The relative bioavailability of FAC was 83% (P = 0.02). The relative bioavailability of FeSO4 + NaFeEDTA was 145% (P = 0.001). Iron absorption from the rice containing FAC or FeSO4 + NaFeEDTA was sufficiently high to be used in its formulation, although iron absorption from FeSO4 + NaFeEDTA was significantly higher (P < 0.00001). © 2015 John Wiley & Sons Ltd.
Comparison of mouse and swine bioassays for determination of soil arsenic relative bioavailability
Evaluation of soil arsenic (As) relative bioavailability (RBA) is essential to accurately assess human exposure to As contaminated soils via the incidental ingestion pathway. A variety of animal bioassays have been developed to estimate As RBA in contaminated soils and dusts, wit...
Sandhu, Amandeep K; Huang, Yancui; Xiao, Di; Park, Eunyoung; Edirisinghe, Indika; Burton-Freeman, Britt
2016-06-22
Plasma strawberry anthocyanins were characterized in overweight (BMI: 26 ± 2 kg/m(2)) adults (n = 14) on the basis of meal timing. At each visit, subjects ingested three study drinks: two control and one strawberry drink. A strawberry drink was given at either 2 h before the breakfast meal (BM), with the meal (WM), or 2 h after the meal (AM), and control drinks were given at the alternative time points. Plasma anthocyanins and their metabolic conjugates were assessed hourly for 10 h using a triple-quadrupole liquid chromatography mass spectrometer. Maximum concentrations (Cmax), area under the curve (AUC), and bioavailability of pelargonidin-based anthocyanins determined from the main conjugated metabolite (pelargonidin glucuronide) were greater when a strawberry drink was consumed 2 h before the meal (BM) compared to consumption WM or AM (p < 0.05). Our results indicate that the timing of strawberry consumption relative to a meal impacts anthocyanin pharmacokinetic variables.
Bioavailability enhancement of curcumin by complexation with phosphatidyl choline.
Gupta, Nishant Kumar; Dixit, Vinod Kumar
2011-05-01
Curcumin is a major constituent of rhizomes of Curcuma longa. Pharmacokinetic studies of curcumin reveal its poor absorption through intestine. Objective of the present study was to enhance bioavailability of curcumin by its complexation with phosphatidyl choline (PC). Complex of curcumin was prepared with PC and characterized on the basis of solubility, melting point, differential scanning calorimetry, thin layer chromatography, and infrared spectroscopic analysis. Everted intestine sac technique was used to study ex vivo drug absorption of curcumin-PC (CU-PC) complex and plain curcumin. Pharmacokinetic studies were performed in rats, and hepatoprotective activity of CU-PC complex was also compared with curcumin and CU-PC physical mixture in isolated rat hepatocytes. Analytical reports along with spectroscopic data revealed the formation of complex. The results of ex vivo study show that CU-PC complex has significantly increased absorption compared with curcumin, when given in equimolar doses. Complex showed enhanced bioavailability, improved pharmacokinetics, and increased hepatoprotective activity as compared with curcumin or CU-PC physical mixture. Enhanced bioavailability of CU-PC complex may be due to the amphiphilic nature of the complex, which greatly enhance the water and lipid solubility of the curcumin. The present study clearly indicates the superiority of complex over curcumin, in terms of better absorption, enhanced bioavailability, and improved pharmacokinetics. Copyright © 2010 Wiley-Liss, Inc.
Kalam, Mohd Abul; Raish, Mohammad; Ahmed, Ajaz; Alkharfy, Khalid M; Mohsin, Kazi; Alshamsan, Aws; Al-Jenoobi, Fahad I; Al-Mohizea, Abdullah M; Shakeel, Faiyaz
2017-07-01
Thymoquinone (TQ) is a poorly water soluble bioactive compound which shows poor oral bioavailability upon oral administration. Due to poor aqueous solubility and bioavailability of TQ, various self-nanoemulsifying drug delivery systems (SNEDDS) of TQ were developed and evaluated for enhancement of its hepatoprotective effects and oral bioavailability. Hepatoprotective and pharmacokinetic studies of TQ suspension and TQ-SNEDDS were carried out in rat models. Different SNEDDS formulations of TQ were developed and thermodynamically stable TQ-SNEDDS were characterized for physicochemical parameters and evaluated for drug release studies via dialysis membrane. Optimized SNEDDS formulation of TQ was selected for further evaluation of in vivo evaluation. In vivo hepatoprotective investigations showed significant hepatoprotective effects for optimized TQ-SNEDDS in comparison with TQ suspension. The oral administration of optimized SNEDDS showed significant improvement in in vivo absorption of TQ in comparison with TQ suspension. The relatively bioavailability of TQ was enhanced 3.87-fold by optimized SNEDDS in comparison with TQ suspension. The results of this research work indicated the potential of SNEDDS in enhancing relative bioavailability and therapeutic effects of natural bioactive compounds such as TQ. Copyright © 2017 Elsevier B.V. All rights reserved.
Assessment of nevirapine bioavailability from targeted sites in the human gastrointestinal tract.
Macha, Sreeraj; Yong, Chan-Loi; MacGregor, Thomas R; Castles, Mark; Quinson, Anne-Marie; Rouyrre, Nicolas; Wilding, Ian
2009-12-01
This study investigated absorption of nevirapine (NVP) from targeted sites of the gastrointestinal tract using remotely activated capsules and gamma scintigraphy. A total of 24 participants were randomized to receive 50 mg NVP orally as a suspension or via remotely activated capsules for release into the ascending colon. The 24 participants were then rerandomized into parallel groups of n = 8 for drug release into the ileum, jejunum, or descending colon. The mean gastric emptying time of capsules ranged from 0.88 to 3.35 hours. The small intestinal and colon transit time ranged from 4.08 to 7.76 hours and 17.6 to 21.2 hours, respectively, and capsule recovery time ranged from 27.6 to 34.4 hours. The relative bioavailability ratio of NVP in the jejunum was 1.06 (90% confidence interval [CI]: 1.00-1.12) compared to suspension. In the ileum, ascending colon, and descending colon, bioavailability decreased to 0.89 (0.80-0.99), 0.82 (0.71-0.95), and 0.58 (0.22-1.53), respectively. The absorption rate decreased by approximately 10-fold from the jejunum (3.83 h(-1)) to the descending colon (0.338 h(-1)), and t(max) increased from 2.42 hours (jejunum) to 16.3 hours (descending colon). Overall, NVP is absorbed from all 4 sites of the gastrointestinal tract, and the rate of absorption decreased from the jejunum to the descending colon. Relative bioavailability of NVP was in the order of jejunum > ileum > ascending colon > descending colon.
Son, Jino; Lee, Yun-Sik; Lee, Sung-Eun; Shin, Key-Il; Cho, Kijong
2017-01-01
Bioavailability and toxicity of Cu, Mn, and Ni in Paronychiurus kimi were investigated after 28 days of exposure to OECD artificial soil spiked with these metals. Uptake and effect of Cu, Mn, and Ni on the reproduction of P. kimi were related to different metal fractions (water-soluble, 0.01 M CaCl 2 -extractable or porewater metal concentrations). Cu and Mn concentrations in P. kimi increased with increasing Cu and Mn concentrations in the soil, while Ni contents in P. kimi reached a plateau at a concentration higher than 200 mg/kg in soil. Both uptake and juvenile production related well to different metal fractions, suggesting that these metal fractions are suitable for assessing bioavailability and toxicity of metals in P. kimi. When toxicity for reproduction was compared, as reflected by EC 50 values, the order of metal toxicity varied depending upon how exposure concentration was expressed. Moreover, the results of proteomic analysis showed that several proteins involved in the immune system, neuronal outgrowth, and metal ion binding were up-regulated in P. kimi following short-term (7 days) exposure to sublethal level (corresponding to 50% of the EC 50 ) of Cu, Mn, or Ni, respectively. This suggests that the ecotoxicoproteomic approach seems to be a promising tool for early exposure warnings below which significant adverse effects are unlikely to occur. This study demonstrated that a combination of chemical and biological measures can provide information about metal bioavailability and toxicity to which P. kimi has been exposed.
Stepanauskas, R.; Moran, M.A.; Bergamaschi, B.A.; Hollibaugh, J.T.
2005-01-01
We analyzed bioavailability, photoreactivity, fluorescence, and isotopic composition of dissolved organic carbon (DOC) collected at 13 stations in the Sacramento-San Joaquin River Delta during various seasons to estimate the persistence of DOC from diverse shallow water habitat sources. Prospective large-scale wetland restorations in the Delta may change the amount of DOC available to the food web as well as change the quality of Delta water exported for municipal use. Our study indicates that DOC contributed by Delta sources is relatively refractory and likely mostly the dissolved remnants of vascular plant material from degrading soils and tidal marshes rather than phytoplankton production. Therefore, the prospective conversion of agricultural land into submerged, phytoplankton-dominated habitats may reduce the undesired export of DOC from the Delta to municipal users. A median of 10% of Delta DOC was rapidly utilizable by bacterioplankton. A moderate dose of simulated solar radiation (286 W m-2 for 4 h) decreased the DOC bioavailability by an average of 40%, with a larger relative decrease in samples with higher initial DOC bioavailability. Potentially, a DOC-based microbial food web could support ???0.6 ?? 109 g C of protist production in the Delta annually, compared to ???17 ?? 109 g C phytoplankton primary production. Thus, DOC utilization via the microbial food web is unlikely to play an important role in the nutrition of Delta zooplankton and fish, and the possible decrease in DOC concentration due to wetland restoration is unlikely to have a direct effect on Delta fish productivity. ?? Springer 2005.
Wu, Zhongbin; Guo, Dan; Deng, Li; Zhang, Yue; Yang, Qiuxia; Chen, Jianming
2011-01-01
The aim of this study was to develop a new phospholipid complex self-emulsifying drug delivery system (PC-SEDDS) to enhance bioavailability of oral etoposide, a drug with poor water solubility. Etoposide-phospholipid complex (EPC) was prepared by reacting etoposide and phospholipid in tetrahydrofuran and confirmed as a phospholipid compound by differential scanning calorimetry (DSC). Solubility of EPC and etoposide was determined in various vehicles. Pseudoternary phase diagrams were constructed to identify the efficient self-emulsification region of EPC-SEDDS, and the effects of oil concentration, drug loading, and aqueous media on droplet size were investigated. The optimal formulation of EPC-SEDDS was EPC:octyl and decyl monoglyceride (ODO):Cremopher EL:PEG-400 (1:20:48:32) (w/w/w/w). Compared with etoposide-phospholipid complex suspension (EPCS) and etoposide suspension (ES), cumulative release of etoposide from EPC-SEDDS increased by 1.31 and 2.65 fold at 24 hours, respectively. Compared with ES, relative bioavailability of EPC-SEDDS, E-SEDDS, and EPCS after oral administration in rats was enhanced by 60.21-, 44.9-, and 8.44- fold, respectively. The synergistic effect between PC and SEDDS contributed to the enhanced bioavailability of etoposide. It was concluded that PC-SEDDS proved to be a potential system for delivering orally administered hydrophobic compounds including etoposide.
Modification of an Existing In vitro Method to Predict Relative Bioavailable Arsenic in Soils
The soil matrix can sequester arsenic (As) and reduces its exposure by soil ingestion. In vivo dosing studies and in vitro gastrointestinal (IVG) methods have been used to predict relative bioavailable (RBA) As. Originally, the Ohio State University (OSU-IVG) method predicted R...
In vitro bioaccessibility assays (IVBA) estimate arsenic (As) relative bioavailability (RBA) in contaminated soils to improve the accuracy of site-specific human exposure assessments and risk calculations. For an IVBA assay to gain acceptance for use in risk assessment, it must ...
Siedlikowski, Maia; Bradley, Mark; Kubow, Stan; Goodrich, Jaclyn M; Franzblau, Alfred; Basu, Niladri
2016-08-01
Methylmercury (MeHg) is a global contaminant of concern and human exposures are largely realized via seafood consumption. While it is assumed that 95-100% of the ingested MeHg from seafood reaches systemic circulation, recent in vitro studies have yielded results to suggest otherwise. Of the published studies to have characterized the bioaccessibility or bioavailability of MeHg from seafood, only a handful of seafood species have been characterized, there exists tremendous variability in data within and across species, few species of relevance to North America have been studied, and none of the in vitro studies have adapted results to an epidemiology study. The objective of the current study was two-fold: (a) to characterize in vitro MeHg bioaccessibility and bioavailability from ten commonly consumed types of seafood in North America; and (b) to apply the bioaccessibility and bioavailability data from the in vitro study to an existing human MeHg exposure assessment study. Raw seafood samples (cod, crab, halibut, salmon, scallop, shrimp, tilapia, and three tuna types: canned light, canned white, fresh) were purchased in Montreal and their MeHg concentrations generally overlapped with values reported elsewhere. The bioaccessibility of MeHg from these samples ranged from 50.1±19.2 (canned white tuna) to 100% (shrimp and scallop) of the amount measured in the raw undigested sample. The bioavailability of MeHg from these samples ranged from 29.3±10.4 (crab) to 67.4±9.7% (salmon) of the value measured in the raw undigested sample. There were significant correlations between the initial MeHg concentration in seafood with the percent of that Hg that was bioaccessible (r=-0.476) and bioavailable (r=-0.294). When the in vitro data were applied to an existing MeHg exposure assessment study, the estimated amount of MeHg absorbed into systemic circulation decreased by 25% and 42% when considering bioaccessibility and bioavailability, respectively. When the in vitro data were integrated into a regression model relating dietary MeHg intake from seafood with hair and blood Hg biomarkers, there were no differences in key model parameters when comparing the default model (that assumes 100% bioavailability) with models adjusted for the in vitro bioaccessibility and bioavailability data. In conclusion this work adds to a growing number of studies that together suggest that MeHg bioavailability from seafood may be less than 100%, but also documents the challenges when integrating such in vitro data into human exposure and risk assessments. Copyright © 2016 Elsevier Inc. All rights reserved.
Siedlikowski, Maia; Bradley, Mark; Kubow, Stan; Goodrich, Jaclyn M.; Franzblau, Alfred; Basu, Niladri
2016-01-01
Methylmercury (MeHg) is a global contaminant of concern and human exposures are largely realized via seafood consumption. While it is assumed that 95 to 100% of the ingested MeHg from seafood reaches systemic circulation, recent in vitro studies have yielded results to suggest otherwise. Of the published studies to have characterized the bioaccessibility or bioavailability of MeHg from seafood, only a handful of seafood species have been characterized, there exists tremendous variability in data within and across species, few species of relevance to North America have been studied, and none of the in vitro studies have adapted results to an epidemiology study. The objective of the current study was two-fold: a) to characterize in vitro MeHg bioaccessibility and bioavailability from ten commonly consumed types of seafood in North America; and b) to apply the bioaccessibility and bioavailability data from the in vitro study to an existing human MeHg exposure assessment study. Raw seafood samples (cod, crab, halibut, salmon, scallop, shrimp, tilapia, and three tuna types: canned light, canned white, fresh) were purchased in Montreal and their MeHg concentrations generally overlapped with values reported elsewhere. The bioaccessibility of MeHg from these samples ranged from 50.1±19.2 (canned white tuna) to 100% (shrimp and scallop) of the amount measured in the raw undigested sample. The bioavailability of MeHg from these samples ranged from 29.3±10.4 (crab) to 67.4±9.7% (salmon) of the value measured in the raw undigested sample. There were significant correlations between the initial MeHg concentration in seafood with the percent of that Hg that was bioaccessible (r= -0.476) and bioavailable (r=-0.294). When the in vitro data were applied to an existing MeHg exposure assessment study, the estimated amount of MeHg absorbed into systemic circulation decreased by 25% and 42% when considering bioaccessibility and bioavailability, respectively. When the in vitro data were integrated into a regression model relating dietary MeHg intake from seafood with hair and blood Hg biomarkers, there were no differences in key model parameters when comparing the default model (that assumes 100% bioavailability) with models adjusted for the in vitro bioaccessibility and bioavailability data. In conclusion this work adds to a growing number of studies that together suggest that MeHg bioavailability from seafood may be less than 100%, but also documents the challenges when integrating such in vitro data into human exposure and risk assessments. PMID:26896323
Phospholipid-based solid drug formulations for oral bioavailability enhancement: A meta-analysis.
Fong, Sophia Yui Kau; Brandl, Martin; Bauer-Brandl, Annette
2015-12-01
Low bioavailability nowadays often represents a challenge in oral dosage form development. Solid formulations composed of drug and phospholipid (PL), which, upon contact with water, eventually form multilamellar liposomes (i.e. 'proliposomes'), are an emerging approach to solve such issue. Regarded as an 'improved' version of liposomes concerning storage stability, the potential and versatility of a range of such formulations for oral drug delivery have been extensively discussed. However, a systematic and quantitative analysis of the studies that applied solid PL for oral bioavailability enhancement is currently lacking. Such analysis is necessary for providing an overview of the research progress and addressing the question on how promising this approach can be on bioavailability enhancement. The current review performed a systematic search of references in three evidence-based English databases, Medline, Embase, and SciFinder, from the year of 1985 up till March 2015. A total of 112 research articles and 82 patents that involved solid PL-based formulations were identified. The majority of such formulations was intended for oral drug delivery (55%) and was developed to address low bioavailability issues (49%). A final of 54 studies that applied such formulations for bioavailability enhancement of 43 different drugs with poor water solubility and/or permeability were identified. These proof-of-concept studies with in vitro (n=31) and/or animal (n=23) evidences have been systematically summarized. Meta-analyses were conducted to measure the overall enhancement power (percent increase compared to control group) of solid PL formulations on drugs' solubility, permeability and oral bioavailability, which were found to be 127.4% (95% CI [86.1, 168.7]), 59.6% (95% CI [30.1, 89.0]), and 18.5% (95% CI [10.1, 26.9]) respectively. Correlations between the enhancement factors and in silico physiochemical properties of drugs were also performed to check if such approach can be used to identify the best candidates for oral solid PL formulation. In addition to scientific literature, 13 solid PL formulation-related patents that addressed the issue of low oral bioavailability have been identified and summarized; whereas no clinical study was identified from the current search. By providing systematic information and meta-analysis on studies that applied the principle of 'proliposomes' for oral bioavailability enhancement, the current review should be insightful for formulation scientists who wish to adopt the PL based approach to overcome the solubility, permeability and bioavailability issues of orally delivered drugs. Copyright © 2015 Elsevier B.V. All rights reserved.
Cassidy, Aedin; Brown, Jonathan E; Hawdon, Anne; Faughnan, Marian S; King, Laurence J; Millward, Joe; Zimmer-Nechemias, Linda; Wolfe, Brian; Setchell, Kenneth D R
2006-01-01
The precise role that isoflavones play in the health-related effects of soy foods, and their potential for adverse effects are controversial. This may be due in part to a lack of basic knowledge regarding their bioavailability and metabolism, particularly as it relates to the soy source. To date, there is little information concerning possible differences in the bioavailability of isoflavones derived from natural soy foods consumed at physiologically relevant intakes and whether age- or gender-related differences influence that bioavailability. In the current study of healthy adults [premenopausal (n = 21) and postmenopausal (n = 17) women and a group of men (n = 21)], we examined the effect of age, gender, and the food matrix on the bioavailability of isoflavones for both the aglycon and glucoside forms that are naturally present in 3 different soy foods, soy milk, textured vegetable protein, and tempeh. The study was designed as a random crossover trial so that all individuals received each of the 3 foods. The dose of isoflavones administered to each individual as a single bolus dose was 0.44 mg/kg body weight. Pharmacokinetic parameters were normalized to mg of each isoflavone ingested per kilogram body weight to account for differences in daidzein and genistein content between the diets. Serum isoflavone concentrations in all individuals and groups increased rapidly after the ingestion of each soy food; as expected, genistein concentrations exceeded daidzein concentrations in serum. In this small study, gender differences in peak concentrations of daidzein were observed, with higher levels attained in women. Consumption of tempeh (mainly isoflavone aglycon) resulted in higher serum peak levels of both daidzein (P < 0.001) and genistein (P < 0.01) and the associated area under the curve (P < 0.001 and P < 0.03, respectively) compared with textured vegetable protein (predominantly isoflavone glucosides). However, soy milk was absorbed faster and peak levels of isoflavones were attained earlier than with the other soy foods. Only 30% of the subjects were equol producers and no differences in equol production with age or gender were observed.
Clemens, Pamela L; Cloyd, James C; Kriel, Robert L; Remmel, Rory P
2007-01-01
Maintenance of effective drug concentrations is essential for adequate treatment of epilepsy. Some antiepileptic drugs can be successfully administered rectally when the oral route of administration is temporarily unavailable. Oxcarbazepine is a newer antiepileptic drug that is rapidly converted to a monohydroxy derivative, the active compound. This study aimed to characterise the bioavailability, metabolism and tolerability of rectally administered oxcarbazepine suspension using a randomised, crossover design in ten healthy volunteers. Two subjects received 300 mg doses of oxcarbazepine suspension via rectal and oral routes and eight received 450 mg doses. A washout period of at least 2 weeks elapsed between doses. The rectal dose was diluted 1:1 with water. Blood samples and urine were collected for 72 hours post-dose. Adverse effects were assessed at each blood collection time-point using a self-administered questionnaire. Plasma was assayed for oxcarbazepine and monohydroxy derivative; urine was assayed for monohydroxy derivative and monohydroxy derivative-glucuronide. Maximum plasma concentration (C(max)) and time to reach C(max) (t(max)) were obtained directly from the plasma concentration-time curves. The areas under the concentration-time curve (AUCs) were determined via non-compartmental analysis. Relative bioavailability was calculated and the C(max) and AUCs were compared using Wilcoxon signed-rank tests. Mean relative bioavailability calculated from plasma AUCs was 8.3% (SD 5.5%) for the monohydroxy derivative and 10.8% (SD 7.3%) for oxcarbazepine. Oxcarbazepine and monohydroxy derivative C(max) and AUC values were significantly lower following rectal administration (p < 0.01). The total amount of monohydroxy derivative excreted in the urine following rectal administration was 10 +/- 5% of the amount excreted following oral administration. Oral absorption was consistent with previous studies. The most common adverse effects were headache and fatigue with no discernible differences between routes. Monohydroxy derivative bioavailability following rectal administration of oxcarbazepine suspension is significantly lower than following oral administration, most likely because of poor oxcarbazepine water solubility. It is unlikely that adequate monohydroxy derivative concentrations can be achieved with rectal administration of diluted oxcarbazepine suspension.
McDonald, Rebecca; Danielsson Glende, Øyvind; Dale, Ola; Strang, John
2018-02-01
Non-injectable naloxone formulations are being developed for opioid overdose reversal, but only limited data have been published in the peer-reviewed domain. Through examination of a hitherto-unsearched database, we expand public knowledge of non-injectable formulations, tracing their development and novelty, with the aim to describe and compare their pharmacokinetic properties. (i) The PatentScope database of the World Intellectual Property Organization was searched for relevant English-language patent applications; (ii) Pharmacokinetic data were extracted, collated and analysed; (iii) PubMed was searched using Boolean search query '(nasal OR intranasal OR nose OR buccal OR sublingual) AND naloxone AND pharmacokinetics'. Five hundred and twenty-two PatentScope and 56 PubMed records were identified: three published international patent applications and five peer-reviewed papers were eligible. Pharmacokinetic data were available for intranasal, sublingual, and reference routes. Highly concentrated formulations (10-40 mg mL -1 ) had been developed and tested. Sublingual bioavailability was very low (1%; relative to intravenous). Non-concentrated intranasal spray (1 mg mL -1 ; 1 mL per nostril) had low bioavailability (11%). Concentrated intranasal formulations (≥10 mg mL -1 ) had bioavailability of 21-42% (relative to intravenous) and 26-57% (relative to intramuscular), with peak concentrations (dose-adjusted C max = 0.8-1.7 ng mL -1 ) reached in 19-30 min (t max ). Exploratory analysis identified intranasal bioavailability as associated positively with dose and negatively with volume. We find consistent direction of development of intranasal sprays to high-concentration, low-volume formulations with bioavailability in the 20-60% range. These have potential to deliver a therapeutic dose in 0.1 mL volume. [McDonald R, Danielsson Glende Ø, Dale O, Strang J. International patent applications for non-injectable naloxone for opioid overdose reversal: Exploratory search and retrieve analysis of the PatentScope database. Drug Alcohol Rev 2017;00:000-000]. © 2017 Australasian Professional Society on Alcohol and other Drugs.
Xu, Lishuang; Luo, Yanfei; Feng, Jia; Xu, Ming; Tao, Xiaoguang; He, Haibing; Tang, Xing
2012-01-17
The objective of this study was to develop none gastric resident sustained-release pellets loaded with dipyridamole with a high bioavailability. Two different kinds of core pellets, one containing citric acid as a pH-modifier (CAP) and, the other without pH-modifier (NCAP) were prepared by extrusion-spheronization and then coated with mixtures of enteric soluble and insoluble polymers (referred to as CAP(1) and NCAP(1)) or insoluble polymer alone (referred to as CAP(2) and NCAP(2)). The relative bioavailability of the sustained-release pellets was studied in fasted beagle dogs after oral administration using a commercially available immediate release tablet (IRT) as a reference. The in vitro release, in vivo absorption and in vitro-in vivo correlation were also evaluated. Results revealed that the plasma drug concentrations after administration of CAP(2), NCAP(1) and NCAP(2) were undetectable, indicating that the drug release was almost zero from the preparations throughout the gastro-intestinal tract. The C(max), T(max) and AUC((0→24)) of CAP(1) were 0.78 ± 0.23 (μg/ml), 3.80 ± 0.30 (h), and 6.74 ± 0.47 (μg/mlh), respectively. While the corresponding values were 2.23 ± 0.32 (μg/ml), 3.00 ± 0.44 (h) and 9.42 ± 0.69 (μg/mlh) for IRT. The relative bioavailability of CAP(1) was 71.55% compared with IRT. By combined incorporation of a pH-modifier into the core of pellets to modify the inner micro-environment and employing mixtures of enteric soluble and insoluble polymers as a retarding layer, drugs with high solubility in stomach and limited solubility in small intestine, such as DIP, could be successfully formulated as sustained release preparations with no pH-dependence in drug release and enhanced bioavailability. Copyright © 2011 Elsevier B.V. All rights reserved.
Choi, Jin-Seok; Lee, Sang-Eun; Jang, Woo Suk; Byeon, Jong Chan; Park, Jeong-Sook
2018-09-01
The aim of this study was to develop a dutasteride (DUT) solid dispersion (SD) using hydrophilic substances to enhance its dissolution (%) and oral bioavailability in rats. DUT-SD formulations were prepared with various co-polymers using a solvent evaporation method. The physical properties of DUT-SD formulations were confirmed using field emission scanning electron microscopy (FE-SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and attenuated total reflectance Fourier transform infrared (ATR-FT-IR) spectroscopy. The toxicity and oral bioavailability of DUT-SD formulations were evaluated. Tocopheryl polyethylene glycol-1000-succinate (TPGS) was chosen as the solubilizer; and methylene chloride, and Aerosil® 200 or microcrystalline cellulose (MCC) were chosen as the solvent and carrier, respectively, based on a solubility test and pre-dissolution study. The dissolution levels of DUT-SD formulations were 86.3 ± 2.3% (F15) and 95.1 ± 1.9% (F16) after 1 h, which were higher than those of the commercial product, i.e., Avodart® (75.8 ± 1.5%) in 0.1 N HCl containing 1% (w/v) sodium lauryl sulfate (SLS). The F16 formulation was found to be stable, after assessing its dissolution (%) and drug content (%) for 6 months. The DUT-SD formulations resulted in relative bioavailability (BA) values of 126.4% (F15) and 132.1% (F16), which were enhanced compared to that of Avodart®. Dissolution (%) and relative BA values were both increased by hydrogen interaction between TPGS and DUT. This study might contribute to a new formulation (powder) whose oral bioavailability is greater than that of Avodart® (soft capsule), which could facilitate to the use of the SD system during the production process. Copyright © 2018 Elsevier B.V. All rights reserved.
Lin, Shiuan-Pey; Hou, Yu-Chi; Liao, Tzu-Yun; Tsai, Shang-Yuan
2014-03-01
Preparation of magnolol-loaded amorphous solid dispersion was investigated for improving the bioavailability. A solid dispersion of magnolol was prepared with polyvinylpyrrolidone K-30 (PVP) by melting method, and the physical properties were characterized by using differential scanning calorimetry, powder X-ray diffractometry, Fourier transformation-infrared spectroscopy and scanning electron microscope. In addition, dissolution test was also performed. Subsequently, the bioavailability of magnolol pure compound, its physical mixture and solid dispersion were compared in rabbits. The blood samples withdrawn via marginal ear vein at specific time points were assayed by HPLC method. Oral administration of the solid dispersion of magnolol with PVP significantly increased the systemic exposures of magnolol and magnolol sulfates/glucuronides by 80.1% and 142.8%, respectively, compared to those given with magnolol pure compound. Magnolol-loaded amorphous solid dispersion with PVP has demonstrated enhanced bioavailability of magnolol in rabbits.
Juhasz, Albert L; Herde, Paul; Smith, Euan
2016-10-01
In this study, the bioavailability of DDTr (sum of DDT, DDD and DDE isomers) in pesticide-contaminated soil was assessed using an in vivo mouse model. DDTr relative bioavailability (RBA) ranged from 18.7±0.9 (As35) to 60.8±7.8% (As36) indicating that a significant portion of soil-bound DDTr was not available for absorption following ingestion. When DDTr bioaccessibility was assessed using the organic Physiologically Based Extraction Test (org-PBET), the inclusion of a sorption sink (silicone cord) enhanced DDTr desorption by up to 20-fold (1.6-3.8% versus 18.9-56.3%) compared to DDTr partitioning into gastrointestinal fluid alone. Enhanced desorption occurred as a result of the silicone cord acting as a reservoir for solubilized DDTr to partition into, thereby creating a flux for further desorption until equilibrium was achieved. When the relationship between in vivo and in vitro data was assessed, a strong correlation was observed between the mouse bioassay and the org-PBET+silicone cord (slope=0.94, y-intercept=3.5, r(2)=0.72) suggesting that the in vitro approach may provide a robust surrogate measure for the prediction of DDTr RBA in contaminated soil. Copyright © 2016 Elsevier Inc. All rights reserved.
Dhumal, Ravindra S; Biradar, Shailesh V; Aher, Suyog; Paradkar, Anant R
2009-06-01
Cefuroxime axetil (CA), a poorly soluble, broad spectrum cephalosporin ester prodrug, is hydrolysed by intestinal esterase prior to absorption, leading to poor and variable bioavailability. The objective was therefore to formulate a stable amorphous solid dispersion of the drug with enhanced solubility and stability against enzymatic degradation. Spray drying was used to obtain a solid dispersion of CA with Gelucire 50/13 and Aerosil 200 (SDCAGA), and a solid dispersion of CA with polyvinyl pyrrolidone (SDCAP); amorphous CA (ACA) was obtained by spray drying CA alone. The formulations were characterized by differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy studies, and compared for solubility, dissolution and bioavailability in rats. SDCAP and SDCAGA showed improved solubility and dissolution profiles owing to amorphization and formation of solid dispersions with hydrophilic carriers. The improved stability of amorphous CA in solid dispersions compared to ACA alone was attributed to hydrogen bonding interactions involving the amide of CA with the carbonyl of polyvinyl pyrrolidone in SDCAP, whereas in SDCAGA the interactions were at multiple sites involving the amide and carbonyl of CA with the carbonyl and hydroxyl of Gelucire 50/13. However, SDCAGA showed superior bioavailability compared to SDCAP, ACA and CA. Improvement in physical stability of solid dispersions was attributed to hydrogen bonding, while improvement in bioavailability of SDCAGA compared to SDCAP, in spite of comparable solubility and dissolution profile, may be attributed to Gelucire, which utilizes intestinal esterase for lipolysis, protecting the prodrug from enzymatic degradation to its non-absorbable base form.
USDA-ARS?s Scientific Manuscript database
Assessing the bioavailability of non-heme iron and zinc is essential for recommending diets that meet the increased growth-related demand for these nutrients. We studied the bioavailability of iron and zinc from a rice-based meal in 16 adolescent boys and girls, 13–15 y of age, from 2 government-run...
Yoon, Youngdae; Kang, Yerin; Chae, Yooeun; Kim, Sunghoon; Lee, Youngshim; Jeong, Seung-Woo; An, Youn-Joo
2016-02-01
We investigated the quantification of bioavailable arsenic in contaminated soils and evaluation of soil-washing processes in the aspect of bioavailability using a novel bacterial bioreporter developed in present study. The whole-cell bioreporter (WCB) was genetically engineered by fusing the promoter of nik operon from Escherichia coli and green fluorescent protein as a sensing domain and reporter domain. Among eight well-known hazardous heavy metals and metalloid, this system responded specifically to arsenic, thereby inferring association of As(III) with NikR inhibits the repression. Moreover, the response was proportional to the concentration of As(III), thereby it was capable to determine the amount of bioavailable arsenic quantitatively in contaminated soils. The bioavailable portion of arsenic was 5.9 (3.46-10.96) and 0.9 (0.27-1.74) % of total from amended and site soils, respectively, suggesting the bioavailability of arsenic in soils was related to the soil properties and duration of aging. On the other hand, only 1.37 (0.21-2.97) % of total arsenic was extracted into soil solutions and 19.88 (11.86-28.27) % of arsenic in soil solution was bioavailable. This result showed that the soluble arsenic is not all bioavailable and most of bioavailable arsenic in soils is water non-extractable. In addition, the bioavailable arsenic was increased after soil-washing while total amount was decreased, thereby suggesting the soil-washing processes release arsenic associated with soil materials to be bioavailable. Therefore, it would be valuable to have a tool to assess bioavailability and the bioavailability should be taken into consideration for soil remediation plans.
Ahmed, Osama A A; Hosny, Khaled M; Al-Sawahli, Majid M; Fahmy, Usama A
2015-01-01
The current study focuses on utilization of the natural biocompatible polymer zein to formulate simvastatin (SMV) nanoparticles coated with caseinate, to improve solubility and hence bioavailability, and in addition, to modify SMV-release characteristics. This formulation can be utilized for oral or possible depot parenteral applications. Fifteen formulations were prepared by liquid-liquid phase separation method, according to the Box-Behnken design, to optimize formulation variables. Sodium caseinate was used as an electrosteric stabilizer. The factors studied were: percentage of SMV in the SMV-zein mixture (X1), ethanol concentration (X2), and caseinate concentration (X3). The selected dependent variables were mean particle size (Y1), SMV encapsulation efficiency (Y2), and cumulative percentage of drug permeated after 1 hour (Y3). The diffusion of SMV from the prepared nanoparticles specified by the design was carried out using an automated Franz diffusion cell apparatus. The optimized SMV-zein formula was investigated for in vivo pharmacokinetic parameters compared with an oral SMV suspension. The optimized nanosized SMV-zein formula showed a 131 nm mean particle size and 89% encapsulation efficiency. In vitro permeation studies displayed delayed permeation characteristics, with about 42% and 85% of SMV cumulative amount released after 12 and 48 hours, respectively. Bioavailability estimation in rats revealed an augmentation in SMV bioavailability from the optimized SMV-zein formulation, by fourfold relative to SMV suspension. Formulation of caseinate-coated SMV-zein nanoparticles improves the pharmacokinetic profile and bioavailability of SMV. Accordingly, improved hypolipidemic activities for longer duration could be achieved. In addition, the reduced dosage rate of SMV-zein nanoparticles improves patient tolerability and compliance.
Zaghloul, Abdel-Azim; Lila, Ahmad; Abd-Allah, Fathy; Nada, Aly
2017-06-01
Metformin hydrochloride (MtHCL) is an oral antidiabetic drug and has many other therapeutic benefits. It has poor bioavailability, narrow absorption window and extensive liver metabolism. Moreover, children and elders face difficulty to swallow the commercial oral tablets. Preparation, in vitro/in vivo evaluation of MtHCL suppositories for rectal administration to solve some of these problems. Suppository fatty bases (Witepsol ® , Suppocire ® and Massa ® ; different grades) and PEG bases 1000, 4000 and 6000 (different ratios), were used to prepare rectal suppository formulations each containing 500 mg drug. These were characterized for manufacturing defects, and pharmacotechnical performance and formulations showing superior results were subjected to bioavailability testing in human volunteers compared with the commercial oral tablet (Ref) applying LC-MS/MS developed analytical technique. The preparation method produced suppositories with satisfactory characteristics and free of manufacturing defects. The fatty bases were superior compared with PEG bases regarding the physical characteristics. Three formulations were chosen for bioavailability testing and the results showed comparable bioavailability compared to the Ref. The fatty bases showed superior characteristics compared with the PEG bases. MtHCL formulated in selected fatty bases could be a potential alternative to the commercial oral tablets particularly for pediatric and geriatric patients.
Van den Bergh, An; Van Hemelryck, Sandy; Bevernage, Jan; Van Peer, Achiel; Brewster, Marcus; Mackie, Claire; Mannaert, Erik
2018-06-11
The aim of the presented retrospective analysis was to verify whether a previously proposed Janssen Biopharmaceutical Classification System (BCS)-like decision tree, based on preclinical bioavailability data of a solution and suspension formulation, would facilitate informed decision making on the clinical formulation development strategy. In addition, the predictive value of (in vitro) selection criteria, such as solubility, human permeability, and/or a clinical dose number (Do), were evaluated, potentially reducing additional supporting formulation bioavailability studies in animals. The absolute ( F abs,sol ) and relative ( F rel, susp/sol ) bioavailability of an oral solution and suspension, respectively, in rat or dog and the anticipated BCS classification were analyzed for 89 Janssen compounds with 28 of these having F rel,susp/sol and F abs,sol in both rat and dog at doses around 10 and 5 mg/kg, respectively. The bioavailability outcomes in the dog aligned well with a BCS-like classification based upon the solubility of the active pharmaceutical ingredient (API) in biorelevant media, while the alignment was less clear for the bioavailability data in the rat. A retrospective analysis on the clinically tested formulations for a set of 12 Janssen compounds confirmed that the previously proposed animal bioavailability-based decision tree facilitated decisions on the oral formulation type, with the dog as the most discriminative species. Furthermore, the analysis showed that based on a Do for a standard human dose of 100 mg in aqueous and/or biorelevant media, a similar formulation type would have been selected compared to the one suggested by the animal data. However, the concept of a Do did not distinguish between solubility enhancing or enabling formulations and does not consider the API permeability, and hence, it produces the risk of slow and potentially incomplete oral absorption of an API with poor intestinal permeability. In cases where clinical dose estimations are available early in development, the preclinical bioavailability studies and dose number calculations, used to guide formulation selection, may be performed at more relevant doses instead of the proposed standard human dose. It should be noted, however, that unlike in late development, there is uncertainty on the clinical dose estimated in the early clinical phases because that dose is usually only based on in vitro and/or in vivo animal pharmacology models, or early clinical biomarker information. Therefore, formulation strategies may be adjusted based on emerging data supporting clinical doses. In summary, combined early information on in vitro-assessed API solubility and permeability, preclinical suspension/solution bioavailability data in relation to the intravenous clearance, and metabolic pathways of the API can strengthen formulation decisions. However, these data may not always fully distinguish between conventional (e.g., to be taken with food), enhancing, and enabling formulations. Therefore, to avoid overinvestment in complex and expensive enabling technologies, it is useful to evaluate a conventional and solubility (and/or permeability) enhancing formulation under fasted and fed conditions, as part of a first-in-human study or in a subsequent early human bioavailability study, for compounds with high Do, a low animal F rel,susp/sol , or low F abs,sol caused by precipitation of the solubilized API.
Ikegami, Kengo; Tagawa, Kozo; Osawa, Takashi
2006-09-01
To determine the usefulness of monkey as an animal model, bioavailability and in vivo release behaviors of theophylline (TP) after oral administration of controlled-release beads in dogs, monkeys, and minipigs were evaluated. Controlled-release beads were prepared using a centrifugal-fluid type granulator, that is, CF-granulator, and Ethylcellulose (EC) was used as controlled-release coating agent. Aqueous solution and EC-coated beads, which contained TP were orally administered to animals after at least 1-week intervals. In dogs and minipigs, their relative bioavailabilities of EC-coated beads were 33.1% and 47.0%, respectively, and in vivo TP release from EC-coated beads in the gastrointestinal tract of dogs and minipigs were not reflected in vitro data. In monkeys, relative bioavailability of EC-coated beads was 80.0% and the highest among the three species, and release amount of TP from EC-coated beads at 24 h after oral administration was 82.8% and 92.4%, which was almost correlated to in vitro data. Therefore, the discrepancy of the relative bioavailability in three species is considered to be due to the difference of in vivo release behavior of TP. The monkey may be useful animal model for bioavailability studies of controlled-release dosage forms of TP from the viewpoint of in vitro-in vivo release correlation. (c) 2006 Wiley-Liss, Inc. and the American Pharmacists Association.
Cao, Yizheng; Teng, Jing; Selbo, Jon
2017-11-09
Epigallocatechin gallate (EGCG) has been recognized as the most prominent green tea extract due to its healthy influences. The high instability and low bioavailability, however, strongly limit its utilization in food and drug industries. This work, for the first time, develops amorphous solid dispersion of EGCG to enhance its bioavailability and physical stability. Four commonly used polymeric excipients are found to be compatible with EGCG in water-dioxane mixtures via a stepwise mixing method aided by vigorous mechanical interference. The dispersions are successfully generated by lyophilization. The physical stability of the dispersions is significantly improved compared to pure amorphous EGCG in stress condition (elevated temperature and relative humidity) and simulated gastrointestinal tract environment. From the drug release tests, one of the dispersions, EGCG-Soluplus ® 50:50 ( w / w ) shows a dissolution profile that only 50% EGCG is released in the first 20 min, and the remains are slowly released in 24 h. This sustained release profile may open up new possibilities to increase EGCG bioavailability via extending its elimination time in plasma.
Lu, Yingnian; Wu, Kefeng; Li, Li; He, Yuhui; Cui, Liao; Liang, Nianci; Mu, Bozhong
2013-01-01
The objective of this study was to develop an oral microemulsion formulation of the antitumor diterpenoid agent, ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic-acid (henceforth referred to as 5F), to enhance its bioavailability and evaluate its hepatotoxicity. Pseudoternary phase diagrams showed that the optimal microemulsion formulation contained 45% water, 10% castor oil as the oil phase, 15% Cremophor EL as the surfactant, and 30% as a cosurfactant mixture of 1,2-propanediol and polyethylene glycol (PEG)-400 (2:1, w/w). The microemulsion preparation was characterized and its droplet diameter was within 50 nm. Release of 5F in vitro from the microemulsion was slightly increased compared with a suspension containing the same amount of active drug. Pharmacokinetic parameters in vivo indicated that bioavailability was markedly improved, with the relative bioavailability being 616.15% higher for the microemulsion than for the suspension. Toxicity tests showed that the microemulsion had no hepatotoxicity in mice. These results suggest the potential for 5F microemulsion to be administered by the oral route.
Solid lipid nanoparticles for enhancing vinpocetine's oral bioavailability.
Luo, YiFan; Chen, DaWei; Ren, LiXiang; Zhao, XiuLi; Qin, Jing
2006-08-10
An ultrasonic-solvent emulsification technique was adopted to prepare vinpocetine loaded Glyceryl monostearate (GMS) nanodispersions with narrow size distribution. To increase the lipid load the process was conducted at 50 degrees C, and in order to prepare nanoparticle using an ultrasonic-solvent emulsification technique. The mean particle size and droplet size distribution, drug loading capacity, drug entrapment efficiency (EE%), zeta potential, and long-term physical stability of the SLNs were investigated in detail respectively. Drug release from two sorts of VIN-SLN was studied using a dialysis bag method. A pharmacokinetic study was conducted in male rats after oral administration of 10 mg kg(-1) VIN in different formulations, it was found that the relative bioavailability of VIN in SLNs was significantly increased compared with that of the VIN solution. The amount of surfactant also had a marked effect on the oral absorption of VIN with SLN formulations. The absorption mechanism of the SLN formulations was also discussed. These results indicated that VIN absorption is enhanced significantly by employing SLN formulations. SLNs offer a new approach to improve the oral bioavailability of poorly soluble drugs.
Schall, R; Müller, F O; Duursema, L; Groenewoud, G; Hundt, H K; Middle, M V; Mogilnicka, E M; Swart, K J
1995-11-01
Twenty male volunteers who were slow metabolisers of isoniazid, completed this single-blind, single-dose, randomised, cross-over study to compare the bioavailability of rifampicin (CAS 13292-46-1), isoniazid (CAS 54-85-3) and ethambutol (CAS 1070-11-7) from Myrin tablets (test preparation) with the bioavailability of these drugs from a combination of capsules containing rifampicin and tablets containing isoniazid and ethambutol (reference). There were 2 treatment periods and on clinic days volunteers were given either the reference (300 mig rifampicin plus 200 mg isoniazid and 600 mg ethambutol HCl), or the test preparation (300 mg rifampicin, 150 mg isoniazid and 600 mg ethambutol HCl). Serial blood samples were drawn from the volunteers and rifampicin, isoniazid and ethambutol assays were performed. The results of this study indicate that the test preparation is equivalent to the reference with respect to both the rate and the extent of absorption of rifampicin, isoniazid (after adjustment for the different doses of isoniazid and ethambutol).
Cao, Yizheng; Teng, Jing; Selbo, Jon
2017-01-01
Epigallocatechin gallate (EGCG) has been recognized as the most prominent green tea extract due to its healthy influences. The high instability and low bioavailability, however, strongly limit its utilization in food and drug industries. This work, for the first time, develops amorphous solid dispersion of EGCG to enhance its bioavailability and physical stability. Four commonly used polymeric excipients are found to be compatible with EGCG in water-dioxane mixtures via a stepwise mixing method aided by vigorous mechanical interference. The dispersions are successfully generated by lyophilization. The physical stability of the dispersions is significantly improved compared to pure amorphous EGCG in stress condition (elevated temperature and relative humidity) and simulated gastrointestinal tract environment. From the drug release tests, one of the dispersions, EGCG-Soluplus® 50:50 (w/w) shows a dissolution profile that only 50% EGCG is released in the first 20 min, and the remains are slowly released in 24 h. This sustained release profile may open up new possibilities to increase EGCG bioavailability via extending its elimination time in plasma. PMID:29120370
Nasrolahi, A; Smith, B D; Ehsanpour, M; Afkhami, M; Rainbow, P S
2014-10-01
The fouling barnacle Amphibalanus amphitrite is a cosmopolitan biomonitor of trace metal bioavailabilities, with an international comparative data set of body metal concentrations. Bioavailabilities of As, Cd, Cr, Cu, Fe, Mn, Pb, V and Zn to A. amphitrite were investigated at 19 sites along the Iranian coast of the understudied Persian Gulf. Commercial and fishing ports showed extremely high Cu bioavailabilities, associated with high Zn bioavailabilities, possibly from antifouling paints and procedures. V availability was raised at one port, perhaps associated with fuel leakage. Cd bioavailabilities were raised at sites near the Strait of Hormuz, perhaps affected by adjacent upwelling off Oman. The As data allow a reinterpretation of the typical range of accumulated As concentrations in A. amphitrite. The Persian Gulf data add a new region to the A. amphitrite database, confirming its importance in assessing the ecotoxicologically significant trace metal contamination of coastal waters across the world. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sierra, Jordi; Roig, Neus; Giménez Papiol, Gemma; Pérez-Gallego, Elena; Schuhmacher, Marta
2017-12-15
The aim of this work is to predict the bioavailability of the Potentially Toxic Elements (PTEs) Cd, Pb, Hg, Ni, Cu, Zn, As, Cr and Se in 6 sites within the Ebro River basin. In situ Diffusive gradient in thin-films (DGTs) and classical sampling have been used and compared. The potentially bioavailable fractions of each PTE was estimated by modelling their chemical speciation using three programs (WHAM 7.0, Visual MINTEQ 3.1 and Bio-met), following the suggestions published in recent European regulations. Results of the equilibrium-based models WHAM 7.0 and Visual MINTEQ 3.1 indicate that As, Cd, Ni, Se and Zn, predominate as free metals ions or forming inorganic soluble complexes. Copper, Pb and Hg bioavailability is conditioned by their affinity to dissolved humic substances. According to Visual MINTEQ 3.1, Cr is subjected to redox reactions, being Cr (VI) present (at low concentrations) in the studied rivers. According to Bio-met model, the bioavailability of Cu and Zn is highly influenced by soluble organic matter and water hardness, respectively. For most PTEs, the bioavailability estimated by deploying DGTs in river waters tends to be slightly lower than the estimation obtained with speciation models, since in real conditions more environmental factors take place comparing to the finite number of parameters considered in models. Copyright © 2017 Elsevier B.V. All rights reserved.
Gioscia-Ryan, Rachel A; LaRocca, Thomas J; Sindler, Amy L; Zigler, Melanie C; Murphy, Michael P; Seals, Douglas R
2014-06-15
Age-related arterial endothelial dysfunction, a key antecedent of the development of cardiovascular disease (CVD), is largely caused by a reduction in nitric oxide (NO) bioavailability as a consequence of oxidative stress. Mitochondria are a major source and target of vascular oxidative stress when dysregulated. Mitochondrial dysregulation is associated with primary ageing, but its role in age-related endothelial dysfunction is unknown. Our aim was to determine the efficacy of a mitochondria-targeted antioxidant, MitoQ, in ameliorating vascular endothelial dysfunction in old mice. Ex vivo carotid artery endothelium-dependent dilation (EDD) to increasing doses of acetylcholine was impaired by ∼30% in old (∼27 months) compared with young (∼8 months) mice as a result of reduced NO bioavailability (P < 0.05). Acute (ex vivo) and chronic (4 weeks in drinking water) administration of MitoQ completely restored EDD in older mice by improving NO bioavailability. There were no effects of age or MitoQ on endothelium-independent dilation to sodium nitroprusside. The improvements in endothelial function with MitoQ supplementation were associated with the normalization of age-related increases in total and mitochondria-derived arterial superoxide production and oxidative stress (nitrotyrosine abundance), as well as with increases in markers of vascular mitochondrial health, including antioxidant status. MitoQ also reversed the age-related increase in endothelial susceptibility to acute mitochondrial damage (rotenone-induced impairment in EDD). Our results suggest that mitochondria-derived oxidative stress is an important mechanism underlying the development of endothelial dysfunction in primary ageing. Mitochondria-targeted antioxidants such as MitoQ represent a promising novel strategy for the preservation of vascular endothelial function with advancing age and the prevention of age-related CVD. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Gioscia-Ryan, Rachel A; LaRocca, Thomas J; Sindler, Amy L; Zigler, Melanie C; Murphy, Michael P; Seals, Douglas R
2014-01-01
Age-related arterial endothelial dysfunction, a key antecedent of the development of cardiovascular disease (CVD), is largely caused by a reduction in nitric oxide (NO) bioavailability as a consequence of oxidative stress. Mitochondria are a major source and target of vascular oxidative stress when dysregulated. Mitochondrial dysregulation is associated with primary ageing, but its role in age-related endothelial dysfunction is unknown. Our aim was to determine the efficacy of a mitochondria-targeted antioxidant, MitoQ, in ameliorating vascular endothelial dysfunction in old mice. Ex vivo carotid artery endothelium-dependent dilation (EDD) to increasing doses of acetylcholine was impaired by ∼30% in old (∼27 months) compared with young (∼8 months) mice as a result of reduced NO bioavailability (P < 0.05). Acute (ex vivo) and chronic (4 weeks in drinking water) administration of MitoQ completely restored EDD in older mice by improving NO bioavailability. There were no effects of age or MitoQ on endothelium-independent dilation to sodium nitroprusside. The improvements in endothelial function with MitoQ supplementation were associated with the normalization of age-related increases in total and mitochondria-derived arterial superoxide production and oxidative stress (nitrotyrosine abundance), as well as with increases in markers of vascular mitochondrial health, including antioxidant status. MitoQ also reversed the age-related increase in endothelial susceptibility to acute mitochondrial damage (rotenone-induced impairment in EDD). Our results suggest that mitochondria-derived oxidative stress is an important mechanism underlying the development of endothelial dysfunction in primary ageing. Mitochondria-targeted antioxidants such as MitoQ represent a promising novel strategy for the preservation of vascular endothelial function with advancing age and the prevention of age-related CVD. PMID:24665093
Zhang, Yanzhuo; Zhi, Zhizhuang; Li, Xue; Gao, Jian; Song, Yaling
2013-09-15
The main objective of this study was to develop carboxylated ordered mesoporous carbon microparticles (c-MCMs) loaded with a poorly water-soluble drug, intended to be orally administered, able to enhance the drug loading capacity and improve the oral bioavailability. A model drug, carvedilol (CAR), was loaded onto c-MCMs via a procedure involving a combination of adsorption equilibrium and solvent evaporation. The physicochemical properties of the drug-loaded composites were systematically studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and HPLC. It was found that c-MCM has a high drug loading level up to 41.6%, and higher than that of the mesoporous silica template. Incorporation of CAR in both drug carriers enhanced the solubility and dissolution rate of the drug, compared to the pure crystalline drug. After loading CAR into c-MCMs, its oral bioavailability was compared with the marketed product in dogs. The results showed that the bioavailability of CAR was improved 179.3% compared with that of the commercial product when c-MCM was used as the drug carrier. We believe that the present study will help in the design of oral drug delivery systems for enhanced oral bioavailability of poorly water-soluble drugs. Copyright © 2013 Elsevier B.V. All rights reserved.
Wang, Jianxu; Xia, Jicheng; Feng, Xinbin
2017-01-15
Screening of optimal chelating ligands which not only have high capacities to enhance plant uptake of mercury (Hg) from soil but also can decrease bioavailable Hg concentration in soil is necessary to establish a viable chemically-assisted phytoextraction. Therefore, Brassica juncea was exposed to historically Hg-contaminated soil (total Hg, 90 mg kg -1 ) to investigate the efficiency of seven chelating agents [ammonium thiosulphate, sodium thiosulphate, ammonium sulfate, ammonium chloride, sodium nitrate, ethylenediaminetetraacetic acid (EDTA), and sodium sulfite] at enhancing Hg phytoextraction; the leaching of bioavailable Hg caused by these chelating agents was also investigated. The Hg concentration in control (treated with double-distilled water) plant tissues was below 1 mg kg -1 . The remarkably higher Hg concentration was found in plants receiving ammonium thiosulphate and sodium sulfite treatments. The bioaccumulation factors and translocation factors of ammonium thiosulphate and sodium sulfite treatments were significantly higher than those of the other treatments. The more efficient uptake of Hg by plants upon treatment with ammonium thiosulphate and sodium sulfite compared to the other treatments might be explained by the formation of special Hg-thiosulphate complexes that could be preferentially taken up by the roots and transported in plant tissues. The application of sulfite significantly increased bioavailable Hg concentration in soil compared with that in initial soil and control soil, whereas ammonium thiosulphate significantly decreased bioavailable Hg concentration. The apparent decrease of bioavailable Hg in ammonium thiosulphate-treated soil compared with that in sodium sulfite-treated soil might be attributable to the unstable Hg-thiosulphate complexes formed between thiosulphate and Hg; they could react to produce less bioavailable Hg in the soil. The results of this study indicate that ammonium thiosulphate may be an optimal chelating ligand for phytoextraction due to its great potential to enhance Hg accumulation in plants while decreasing bioavailable Hg concentration in the soil. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Budi Hartono, Sandy; Hadisoewignyo, Lannie; Yang, Yanan; Meka, Anand Kumar; Antaresti; Yu, Chengzhong
2016-12-01
In the present work, a simple method was used to develop composite curcumin-amine functionalized mesoporous silica nanoparticles (MSN). The nanoparticles were used to improve the bioavailability of curcumin in mice through oral administration. We investigated the effect of particle size on the release profile, solubility and oral bioavailability of curcumin in mice, including amine functionalized mesoporous silica micron-sized-particles (MSM) and MSN (100-200 nm). Curcumin loaded within amine functionalized MSN (MSN-A-Cur) had a better release profile and a higher solubility compared to amine MSM (MSM-A-Cur). The bioavailability of MSN-A-Cur and MSM-A-Cur was considerably higher than that of ‘free curcumin’. These results indicate promising features of amine functionalized MSN as a carrier to deliver low solubility drugs with improved bioavailability via the oral route.
Pharmacokinetics of Intranasal Scopolamine Gel Formulation (Inscop)
NASA Technical Reports Server (NTRS)
Boyd, Jason L.; Du, Brian; Daniels, Vernie; Simmons, Rita; Buckey, Jay; Putcha, Lakshmi
2009-01-01
Space Motion Sickness (SMS) is commonly experienced by astronauts and often requires treatment with medications during early flight days of space missions. Orally administered scopolamine is commonly used by astronauts to prevent SMS. Bioavailability of oral (PO) SMS medications is often low and highly variable. Intranasal (IN) administration of medications achieves higher and more reliable bioavailability than from an equivalent PO dose. Methods: To test the safety and reliability of INSCOP, two clinical studies were performed, a dose escalation study and a comparison study administering INSCOP during normal ambulation and head down tilt bedrest. Efficacy was evaluated by testing INSCOP with two, different motion sickness inducing paradigms. Results: Preliminary results indicate that INSCOP demonstrates linear pharmacokinetics and a low side effect profile. In head down tilt bedrest, relative bioavailability of INSCOP was increased for females at both doses (0.2 and 0.4 mg) and for males at the higher dose (0.4 mg) but is reduced at the lower dose (0.2 mg) compared to normal ambulation. INSCOP displays gender specific differences during ABR. One of the treatment efficacy trials conducted at Dartmouth Hitchcock Medical Center demonstrated that INSCOP is efficacious at both doses (0.2 and 0.4 mg) in suppressing motion sickness symptoms as indicated by longer chair ride times with INSCOP administration than with placebo, and efficacy increases with dose. Similar results were seen using another motion sickness simulator, the motion simulator dome, at the Naval Aerospace Medical Research Laboratory, with significantly increased time in the dome in motion-susceptible subjects when using INSCOP compared to untreated controls. Conclusion: Higher bioavailability, linear pharmacokinetics, a low incidence of side effects, and a favorable efficacy profile make INSCOP a desirable formulation for prophylactic and rescue treatment of astronauts in space and military personnel on duty.
Morgan, Timothy M; Soh, Bob
2017-03-01
To test the feasibility of a novel rivastigmine nasal spray as prospective treatment for dementia. A single dose, crossover absolute bioavailability and safety study was conducted with rivastigmine intravenous solution (1 mg) and nasal spray (3.126 mg) in eight healthy elderly individuals, aged 58-75 years. Absolute bioavailability (F) of the nasal spray was significant at 0.62 (0.15) for F > 0 (P < 0.001, n = 8). The systemic dose absorbed was 2.0 (0.6) mg, time to maximum plasma concentration was 1.1 (0.5) h and maximum plasma concentration was 6.9 (2.0) ng ml -1 . The NAP226-90 to rivastigmine AUC 0-∞ ratio was 0.78 (0.19). The single dose safety was good with two of five mild adverse events related to the nasal spray. Nasal and throat irritation were perceived as mild and transient, and both had resolved at 20 min post-nasal dose. An estimated dose of two or three sprays twice-daily with nasal spray would deliver comparable rivastigmine exposure and efficacy as a 6-9.7 mg day -1 oral dose and a 10 cm 2 transdermal patch, respectively. The rivastigmine nasal spray had superior absolute bioavailability compared to historical values for oral capsule and transdermal patch determined by other researchers. It had rapid onset of action, low NAP226-90 to rivastigmine exposure ratio and a favourable safety and tolerability profile. The ability to achieve adjustable, individual, twice-daily dosing during waking hours has good potential to minimise undesirable cholinergic burden and sleep disturbances whilst delivering an effective dose for the treatment of dementia associated with Alzheimer's and Parkinson's disease. © 2016 The British Pharmacological Society.
Hong, Shiqi; Shen, Shoucang; Tan, David Cheng Thiam; Ng, Wai Kiong; Liu, Xueming; Chia, Leonard S O; Irwan, Anastasia W; Tan, Reginald; Nowak, Steven A; Marsh, Kennan; Gokhale, Rajeev
2016-01-01
Encapsulation of drugs in mesoporous silica using co-spray drying process has been recently explored as potential industrial method. However, the impact of spray drying on manufacturability, physiochemical stability and bioavailability in relation to conventional drug load processes are yet to be fully investigated. Using a 2(3) factorial design, this study aims to investigate the effect of drug-loading process (co-spray drying and solvent impregnation), mesoporous silica pore size (SBA-15, 6.5 nm and MCM-41, 2.5 nm) and percentage drug load (30% w/w and 50% w/w) on material properties, crystallinity, physicochemical stability, release profiles and bioavailability of fenofibrate (FEN) loaded into mesoporous silica. From the scanning electronic microscopy (SEM) images, powder X-ray diffraction and Differential scanning calorimetry measurements, it is indicated that the co-spray drying process was able to load up to 50% (w/w) FEN in amorphous form onto the mesoporous silica as compared to the 30% (w/w) for solvent impregnation. The in vitro dissolution rate of the co-spray dried formulations was also significantly (p = 0.044) better than solvent impregnated formulations at the same drug loading. Six-month accelerated stability test at 40 °C/75 RH in open dish indicated excellent physical and chemical stability of formulations prepared by both methods. The amorphous state of FEN and the enhanced dissolution profiles were well preserved, and very low levels of degradation were detected after storage. The dog data for the three selected co-spray-dried formulations revealed multiple fold increment in FEN bioavailability compared to the reference crystalline FEN. These results validate the viability of co-spray-dried mesoporous silica formulations with high amorphous drug load as potential drug delivery systems for poorly water soluble drugs.
Formulation and Pharmacokinetic Evaluation of Polymeric Dispersions Containing Valsartan.
Chella, Naveen; Daravath, Bhaskar; Kumar, Dinesh; Tadikonda, Rama Rao
2016-10-01
Valsartan exhibits poor aqueous solubility and dissolution rate limited absorption. The lower solubility in the upper part of gastrointestinal tract (pH-dependant solubility) where its absorption window exists further contributes to the low oral bioavailability of valsartan. The present work was aimed to improve the in vivo pharmacokinetics of valsartan by preparing amorphous polymeric dispersions using Eudragit E 100 as carrier. Eudragit E 100 is a cationic polymer soluble in gastric fluid up to pH 5.0 and exhibits pH-dependent release. Hence, the dispersions prepared using Eudragit E 100 rapidly dissolves at lower pH presenting drug in molecularly dispersed and soluble form at its absorption site. Polymeric solid dispersions were prepared in different drug-to-carrier ratios. The prepared dispersions were evaluated for drug-carrier interactions, solid-state transitions and drug-release properties with the help of Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and in vitro dissolution studies. The optimized formulation containing valsartan was tested in rats for bioavailability and pharmacokinetic parameters and compared with that of valsartan pure drug. The results from FTIR studies indicated no interactions between drug and excipients. DSC studies confirmed reduction in crystallinity of drug. The dissolution studies performed in 0.1 N HCl showed significant improvement (p < 0.05) in the dissolution of valsartan. In vivo pharmacokinetic studies showed 199 % relative bioavailability with significant improvement (p < 0.05) in area under the curve compared to valsartan pure drug. Eudragit E 100 can be used to improve the dissolution of drugs that show low solubility at lower pH and thereby enhancing the bioavailability.
Bioavailability of intranasal promethazine dosage forms in dogs
NASA Technical Reports Server (NTRS)
Ramanathan, R.; Geary, R. S.; Bourne, D. W.; Putcha, L.
1998-01-01
Intramuscular promethazine (PMZ) is used aboard the US Space Shuttle to ameliorate symptoms of space motion sickness. Bioavailability after an oral dose of PMZ during space flight is thought to be impaired because of gastrointestinal disturbances associated with weightlessness and space motion sickness. In an attempt to find an alternative dosage form for use in space, we evaluated two intranasal (i.n.) dosage forms of PMZ in dogs for absorption and bioavailability relative to that of an equivalent intramuscular dose. Promethazine (5 mg kg-1) was administered as two intranasal dosage forms and as an intramuscular (i.m.) dose to three dogs in a randomised cross-over design. Serial blood samples were taken and analysed for PMZ concentrations and the absorption and bioavailability of PMZ were calculated for the three dosage forms. PMZ absorption from the carboxymethyl cellulose microsphere i.n. dosage form was more rapid and complete than from the myverol cubic gel formulation or from an i.m. injection. Bioavailability of the microsphere formulation was also greater than that of the gel formulation (AUC 3009 vs 1727 ng h ml-1). The bioavailability of the two i.n. dosage forms (relative to that of the i.m. injection) were 94% (microsphere) and 54% (gel). The i.n. microsphere formulation of PMZ offers great promise as an effective non-invasive alternative for treating space motion sickness due to its rapid absorption and bioavailability equivalent to the i.m. dose.
Hesperidinase encapsulation towards hesperitin production targeting improved bioavailability.
Furtado, Andreia F M; Nunes, Mario A P; Ribeiro, Maria H L
2012-11-01
Hesperidin (hesperitin-7-O-rutinoside) and hesperitin (hesperitin-7-O-glucoside) show anti-inflammatory, antimicrobial, antioxidant, and anticarcinogenic effects and prevent bone loss. However, hesperidin has a low bioavailability compared to hesperitin due to the rutinoside moiety attached to the flavonoid. The removal of the rhamnose group to yield the corresponding flavonoid glucoside (hesperetin-7-glucoside) improved the bioavailability of the aglycone, hesperetin, in humans. In line with these assumptions, the aim of this work was the enzymatic production of hesperitin from hesperidin with hesperidinase. Despite the low hesperidin solubility in the reaction medium, the enzymatic bioconversion was carried with hesperidin soluble at lower concentrations (≤0.05 mg ml(-1)) and insoluble for high concentrations (>0.1-50 mg ml(-1)). A twofold increase in maximum reaction rates overtook the expected values, pointing to the enzyme ability to degrade insoluble hesperidin. To improve the bioprocess, hesperidinase was tested soluble and immobilized in calcium alginate (2%), k-carrageenan (2%), and chitosan (2%) beads. The immobilization was carried out by adsorption and encapsulation. Chitosan was cross-linked with glutaraldehyde (1% and 2%) and sodium sulfate (13.5% and 15%) in acetate buffer (0.02 M, pH 4.0). The relation between bioprocessing conditions and hesperidinase stability was studied. A residual activity of 193% was obtained with immobilized hesperidinase compared to the soluble form. A half-life of 770 min was attained with hesperidinase encapsulated in calcium alginate beads. The results presented in this work highlight the potential of hesperidinase encapsulation towards hesperitin production with insoluble substrate. To our knowledge, this work presents for the first time the potential of hesperidinase encapsulation on hydrogels for hesperitin production. This is an important achievement for pharmaceutical and nutraceutical applications of hesperitin because this compound presents a higher bioavailability compared to hesperidin. Copyright © 2012 John Wiley & Sons, Ltd.
Li, Chong; Deng, Li; Zhang, Yan; Su, Ting-Ting; Jiang, Yin; Chen, Zhang-Bao
2012-11-01
The aim of this study is to investigate the feasibility of silica-coated ethosome as a novel oral delivery system for the poorly water-soluble curcumin (as a model drug). The silica-coated ethosomes loading curcumin (CU-SE) were prepared by alcohol injection method with homogenization, followed by the precipitation of silica by sol-gel process. The physical and chemical features of CU-SEs, and curcumin release were determined in vitro. The pharmacodynamics and bioavailability measurements were sequentially performed. The mean diameter of CU-SE was (478.5 +/- 80.3) nm and the polydispersity index was 0.285 +/- 0.042, while the mean value of apparent drug entrapment efficiency was 80.77%. In vitro assays demonstrated that CU-SEs were significantly stable with improved release properties when compared with curcumin-loaded ethosomes (CU-ETs) without silica-coatings. The bioavailability of CU-SEs and CU-ETs was 11.86- and 5.25-fold higher, respectively, than that of curcumin suspensions (CU-SUs) in in vivo assays. The silica coatings significantly promoted the stability of ethosomes and CU-SEs exhibited 2.26-fold increase in bioavailablity relative to CU-ETs, indicating that the silica-coated ethosomes might be a potential approach for oral delivery of poorly water-soluble drugs especially the active ingredients of traditional Chinese medicine with improved bioavailability.
Wang, Yan-ping; Gan, Yong; Zhang, Xin-xin
2011-10-01
To develop a novel gastroretentive drug delivery system based on a self-microemulsifying (SME) lipid mixture for improving the oral absorption of the immunosuppressant tacrolimus. Liquid SME mixture, composed of Cremophor RH40 and monocaprylin glycerate, was blended with polyethylene oxide, chitosan, polyvinylpyrrolidone and mannitol, and then transformed into tablets via granulation, with ethanol as the wetting agent. The tablets were characterized in respect of swelling, bioadhesive and SME properties. In vitro dissolution was conducted using an HCl buffer at pH 1.2. Oral bioavailability of the tablets was examined in fasted beagle dogs. The tablet could expand to 13.5 mm in diameter and 15 mm in thickness during the initial 20 min of contact with the HCl buffer at pH 1.2. The bioadhesive strength was as high as 0.98±0.06 N/cm(2). The SME gastroretentive sustained-release tablets preserved the SME capability of the liquid SME formations under transmission electron microscope. The drug-release curve was fit to the zero-order release model, which was helpful in reducing fluctuations in blood concentration. Compared with the commercially available capsules of tacrolimus, the relative bioavailability of the SME gastroretentive sustained-release tablets was 553.4%±353.8%. SME gastroretentive sustained-release tablets can enhance the oral bioavailability of tacrolimus with poor solubility and a narrow absorption window.
Barbafieri, Meri; Giorgetti, Lucia
2016-12-01
In this work, the model plant for genotoxicity studies Vicia faba L. was used to investigate the relation between Boron (B) content and bioavailability in soil and plant genotoxic/phytotoxic response. A total of nine soil samples were investigated: two soil samples were collected from a B-polluted industrial area in Cecina (Tuscany, Italy), the other samples were obtained by spiking control soil (from a not polluted area of the basin) with seven increased doses of B, from about 20 to 100 mg B kg -1 . As expected, B availability, evaluated by chemical extraction, was higher (twofold) in spiked soils when compared with collected polluted soils with the same B total content. To analyze the phytotoxic effects of B, seed germination, root elongation, biomass production, and B accumulation in plant tissues were considered in V. faba plants grown in the various soils. Moreover, the cytotoxic/genotoxic effects of B were investigated in root meristems by mitotic index (MI) and micronuclei frequency (MCN) analysis. The results highlighted that V. faba was a B-sensitive plant and the appearance of phytotoxic effects, which altered plant growth parameters, were linearly correlated to the bioavailable B concentration in soils. Concerning the occurrence of cytotoxic/genotoxic effects induced by B, no linear correlation was observed even if MCN frequency was logarithmic correlated with the concentration of B bioavailable in soils.
Gao, Haoshi; Wei, Yue; Xi, Long; Sun, Yuanyuan; Zhang, Tianhong
2018-05-01
Bergenin (BN) is a Biopharmaceutics Classification System class IV (BCS IV) drug with poor hydrophilicity and lipophilicity and is potentially eliminated by the efflux function of P-glycoprotein (P-gp). These factors may explain its low oral bioavailability. In the present study, a BN-phospholipid complex solid dispersion (BNPC-SD) was prepared by solvent evaporation and characterized based on differential scanning calorimetry, powder X-ray diffraction, scanning electron microscopy, infrared diffraction, solubility, octanol-water partition coefficient, and in vitro dissolution. To investigate how P-gp can inhibit BN absorption in vivo, the P-gp inhibitor verapamil was co-administered with BNPC-SD to Sprague Dawley rats. By in situ single-pass intestinal perfusion, the membrane permeability of BN from BNPC-SD was higher than that of BN given alone and was improved further by co-administered verapamil. A pharmacokinetics study was done in Sprague Dawley rats, with plasma BN levels estimated by high-performance liquid chromatography. C max and AUC 0 → t values for BN were significantly higher for BNPC-SD than for BN given alone and were increased further by verapamil. Thus, the relative oral bioavailability of BNPC-SD as well as BNPC-SD co-administered with verapamil was 156.33 and 202.46%, respectively, compared with the value for BN given alone. These results showed that BNPC-SD can increase the oral bioavailability of BCS IV drugs.
The effect of phosphate treatment on lead relative bioavailability (Pb RBA) was assessed in three distinct Pb-contaminated soils. Phosphoric acid (PA) or rock phosphate were added to smelter (PP2), nonferrous slag (SH15), and shooting range (SR01) impacted soils at a P:Pb molar ...
Kim, Dong Wuk; Kwon, Min Seok; Yousaf, Abid Mehmood; Balakrishnan, Prabagar; Park, Jong Hyuck; Kim, Dong Shik; Lee, Beom-Jin; Park, Young Joon; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon
2014-12-19
The intention of this study was to compare the physicochemical properties, stability and bioavailability of a clopidogrel napadisilate (CN)-loaded solid dispersion (SD) and solid self-microemulsifying drug delivery system (solid SMEDDS). SD was prepared by a surface attached method using different ratios of Cremophor RH60 (surfactant) and HPMC (polymer), optimized based on their drug solubility. Liquid SMEDDS was composed of oil (peceol), a surfactant (Cremophor RH60) and a co-surfactant (Transcutol HP). A pseudo-ternary phase diagram was constructed to identify the emulsifying domain, and the optimized liquid SMEDDS was spray dried with an inert solid carrier (silicon dioxide), producing the solid SMEDDS. The physicochemical properties, solubility, dissolution, stability and pharmacokinetics were assessed and compared to clopidogrel napadisilate (CN) and bisulfate (CB) powders. In solid SMEDDS, liquid SMEDDS was absorbed or coated inside the pores of silicon dioxide. In SD, hydrophilic polymer and surfactants were adhered onto drug surface. The drug was in crystalline and molecularly dispersed form in SD and solid SMEDDS, respectively. Solid SMEDDS and SD greatly increased the solubility of CN but gave lower drug solubility compared to CB powder. These preparations significantly improved the dissolution of CN, but the latter more increased than the former. Stability under accelerated condition showed that they were more stable compared to CB powder, and SD was more stable than solid SMEDDS. They significantly increased the oral bioavailability of CN powder. Furthermore, SD showed significantly improved oral bioavailability compared to solid SMEDDS and CB powder. Thus, SD with excellent stability and bioavailability is recommended as an alternative for the clopidogrel-based oral formulation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yousaf, Abid Mehmood; Kim, Dong Wuk; Oh, Yu-Kyoung; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon
2015-01-01
Background The intention of this research was to prepare and compare various solubility-enhancing nanoparticulated systems in order to select a nanoparticulated formulation with the most improved oral bioavailability of poorly water-soluble fenofibrate. Methods The most appropriate excipients for different nanoparticulated preparations were selected by determining the drug solubility in 1% (w/v) aqueous solutions of each carrier. The polyvinylpyrrolidone (PVP) nanospheres, hydroxypropyl-β-cyclodextrin (HP-β-CD) nanocorpuscles, and gelatin nanocapsules were formulated as fenofibrate/PVP/sodium lauryl sulfate (SLS), fenofibrate/HP-β-CD, and fenofibrate/gelatin at the optimized weight ratios of 2.5:4.5:1, 1:4, and 1:8, respectively. The three solid-state products were achieved using the solvent-evaporation method through the spray-drying technique. The physicochemical characterization of these nanoparticles was accomplished by powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and Fourier-transform infrared spectroscopy. Their physicochemical properties, aqueous solubility, dissolution rate, and pharmacokinetics in rats were investigated in comparison with the drug powder. Results Among the tested carriers, PVP, HP-β-CD, gelatin, and SLS showed better solubility and were selected as the most appropriate constituents for various nanoparticulated systems. All of the formulations significantly improved the aqueous solubility, dissolution rate, and oral bioavailability of fenofibrate compared to the drug powder. The drug was present in the amorphous form in HP-β-CD nanocorpuscles; however, in other formulations, it existed in the crystalline state with a reduced intensity. The aqueous solubility and dissolution rates of the nanoparticles (after 30 minutes) were not significantly different from one another. Among the nanoparticulated systems tested in this study, the initial dissolution rates (up to 10 minutes) were higher with the PVP nanospheres and HP-β-CD nanocorpuscles; however, neither of them resulted in the highest oral bioavailability. Irrespective of relatively retarded dissolution rate, gelatin nanocapsules showed the highest apparent aqueous solubility and furnished the most improved oral bioavailability of the drug (~5.5-fold), owing to better wetting and diminution in crystallinity. Conclusion Fenofibrate-loaded gelatin nanocapsules prepared using the solvent-evaporation method through the spray-drying technique could be a potential oral pharmaceutical product for administering the poorly water-soluble fenofibrate with an enhanced bioavailability. PMID:25784807
Wu, Tao; Li, Xi-Ping; Xu, Yan-Jiao; Du, Guang; Liu, Dong
2013-11-01
Baicalin is a major bioactive component of Scutellaria baicalensis and a substrate of multiple drug resistance-associated protein 2. Expression of multiple drug resistance-associated protein 2 is regulated by NF-E2-related factor 2. The aim of this study was to explore whether ursodeoxycholic acid, an NF-E2-related factor 2 activator, could influence the oral bioavailability of baicalin. A single dose of baicalin (200 mg/kg) was given orally to rats pretreated with ursodeoxycholic acid (75 mg/kg and 150 mg/kg, per day, intragastrically) or normal saline (per day, intragastrically) for six consecutive days. The plasma concentration of baicalin was measured with the HPLC method. The result indicated that the oral bioavailability of baicalin was significantly and dose-dependently reduced in rats pretreated with ursodeoxycholic acid. Compared with control rats, the mean area under concentration-time curve of baicalin was reduced from 13.25 ± 0.24 mg/L h to 7.62 ± 0.15 mg/L h and 4.97 ± 0.21 mg/L h, and the C(max) value was decreased from 1.31 ± 0.03 mg/L to 0.62 ± 0.05 mg/L and 0.36 ± 0.04 mg/L in rats pretreated with ursodeoxycholic acid at doses of 75 mg/kg and 150 mg/kg, respectively, for six consecutive days. Hence, ursodeoxycholic acid treatment reduced the oral bioavailability of baicalin in rats, probably due to the enhanced efflux of baicalin from the intestine and liver by multiple drug resistance-associated protein 2. Georg Thieme Verlag KG Stuttgart · New York.
CORRELATING METAL SPECIATION IN SOILS
Understanding bioavailability of metals from exposure to contaminated soils is a challenging aspect of environmental research. This presentation will examine three areas of research with respect to metal speciation in soils as it relates to bioavailability: 1) Pb immobilization a...
Bioavailability and Pharmacodynamics of Promethazine in Human Subjects
NASA Technical Reports Server (NTRS)
Putcha, Lakshmi; Flynn, Chris; Paloski, W. H. (Technical Monitor)
2000-01-01
Space Motion Sickness (SMS) is often treated in space with promethazine (PMZ). Anecdotal reports indicate that the common side effects of drowsiness and decrements in cognitive performance that are associated with PMZ administration (50 mg IM on the ground, are absent or less pronounced in space suggesting I that-the bioavailability and/or pharmacodynamic behavior of PMZ may be altered during space flight. There are limited flight opportunities available for clinical research in space, the NRA-99, therefore, solicits research required to improve, or answer specific questions about in-flight diagnosis, therapy, and post-flight rehabilitation. We propose here, to establish a noninvasive method for pharmacodynamic and therapeutic assessment of PMZ. The specific objectives of the proposed research are to, 1. Establish a saliva to plasma ratio of PMZ after administration, 2. Estimate the relative bioavailability of the three flight-specific dosage forms of PMZ, and 3. Establish the dose-response relationship of PMZ. We will estimate the bioavailability of intramuscular injection (IM), oral tablets and rectal suppositories in normal subjects during ambulatory and antiorthostatic; bed rest (ABR) conditions using novel stable isotope techniques. Drowsiness, cognitive performance and salivary flow rate will be measured as a function of circulating drug concentrations after administration of three IM doses of PMZ. We will compare and contrast the bioavailability of PMZ during normal and ABR conditions to examine whether or not ABR can simulate changes in drug, absorption and availability similar to those anticipated in a microgravity environment. Results of this study will validate methods for an approved study with this medication awaiting a flight opportunity for manifestation. These data will also provide the much needed information on the dynamics and therapeutic index. of this medication and their implications on crew fatigue and performance in space. Key words: Promethazine, stable isotopes, bioavailability, pharmacodynamics, cognitive performance, antiorthostatic bed rest.
Improved Dissolution and Oral Bioavailability of Celecoxib by a Dry Elixir System.
Cho, Kwan Hyung; Jee, Jun-Pil; Yang, Da A; Kim, Sung Tae; Kang, Dongjin; Kim, Dae-Young; Sim, Taeyong; Park, Sang Yeob; Kim, Kyeongsoon; Jang, Dong-Jin
2018-02-01
The purpose of this study was to develop and evaluate a dry elixir (DE) system for enhancing the dissolution rate and oral bioavailability of celecoxib. DE system has been used for improving solubility, oral bioavailability of poorly water-soluble drugs. The encapsulated drugs or solubilized drugs in the matrix are rapidly dissolved due to the co-solvent effect, resting in both an enhanced dissolution and bioavailability. DEs containing celecoxib were prepared by spray-drying method and characterized by morphology, drug/ethanol content, drug crystallinity, dissolution rate and oral bioavailability. The ethanol content and drug content in DE system could be easily altered by controlling the spraydrying conditions. The dissolution profile of celecoxib from DE proved to be much higher than that of celecoxib powder due to the nano-structured matrix, amorphous state and encapsulated ethanol. The bioavailability of celecoxib from DEs was compared with celecoxib powder alone and commercial product (Celebrex®) in rats. In particular, blood concentrations of celecoxib form DE formulation were much greater than those of native celecoxib and market product. The data demonstrate that the DE system could provide an useful solid dosage form to enhance the solubility, dissolution rate and oral bioavailability of celecoxib.
Rumen Microorganisms Decrease Bioavailability of Inorganic Selenium Supplements.
Galbraith, M L; Vorachek, W R; Estill, C T; Whanger, P D; Bobe, G; Davis, T Z; Hall, J A
2016-06-01
Despite the availability of selenium (Se)-enriched trace mineral supplements, we have observed low Se status in cattle and sheep offered traditional inorganic Se supplements. Reasons for this may include inadequate intake or low bioavailability of inorganic Se sources. The objective of this study was to determine whether rumen microorganisms (RMO) alter the bioavailability of Se sources commonly used in Se supplements. Rumen microorganisms were isolated from ewes (n = 4) and incubated ex vivo with no Se (control), with inorganic Na selenite or Na selenate, or with organic selenomethionine (SeMet). Total Se incorporated into RMO and the amount of elemental Se formed were determined under equivalent conditions. Incorporation of Se from Na selenite, Na selenate, or SeMet into RMO was measured as fold change compared with control (no added Se). Incorporation of Se into microbial mass was greater for SeMet (13.2-fold greater than no-Se control) compared with inorganic Se supplements (P = 0.02); no differences were observed between inorganic Na selenate (3.3-fold greater than no-Se control) and Na selenite (3.5-fold greater than no-Se control; P = 0.97). Formation of non-bioavailable, elemental Se was less for RMO incubated with SeMet compared with inorganic Se sources (P = 0.01); no differences were observed between Na selenate and Na selenite (P = 0.09). The clinical importance of these results is that the oral bioavailability of organic SeMet should be greater compared with inorganic Se sources because of greater RMO incorporation of Se and decreased formation of elemental Se by RMO.
Bioavailability of Plant-Derived Antioxidants
Abourashed, Ehab A.
2013-01-01
Natural products with antioxidant properties have been extensively utilized in the pharmaceutical and food industry and have also been very popular as health-promoting herbal products. This review provides a summary of the literature published around the first decade of the 21st century regarding the oral bioavailability of carotenoids, polyphenols and sulfur compounds as the three major classes of plant-derived antioxidants. The reviewed original research includes more than 40 compounds belonging to the above mentioned classes of natural antioxidants. In addition, related reviews published during the same period have been cited. A brief introduction to general bioavailability-related definitions, procedures and considerations is also included. PMID:26784467
Enhanced bioavailability and bioefficacy of an amorphous solid dispersion of curcumin.
Chuah, Ai Mey; Jacob, Bindya; Jie, Zhang; Ramesh, Subbarayan; Mandal, Shibajee; Puthan, Jithesh K; Deshpande, Parag; Vaidyanathan, Vadakkanchery V; Gelling, Richard W; Patel, Gaurav; Das, Tapas; Shreeram, Sathyavageeswaran
2014-08-01
Curcumin has been shown to have a wide variety of biological activities for various human diseases including inflammation, diabetes and cancer. However, the poor oral bioavailability of curcumin poses a significant pharmacological barrier to its use therapeutically and/or as a functional food. Here we report the evaluation of the bioavailability and bio-efficacy of curcumin as an amorphous solid dispersion (ASD) in a matrix consisting of hydroxypropyl methyl cellulose (HPMC), lecithin and isomalt using hot melt extrusion for application in food products. Oral pharmacokinetic studies in rats showed that ASD curcumin was ∼13-fold more bioavailable compared to unformulated curcumin. Evaluation of the anti-inflammatory activity of ASD curcumin in vivo demonstrated enhanced bio-efficacy compared to unformulated curcumin at 10-fold lower dose. Thus ASD curcumin provides a more potent and efficacious formulation of curcumin which may also help in masking the colour, taste and smell which currently limit its application as a functional food ingredient. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nekkanti, Vijaykumar; Venkatesan, Natarajan; Wang, Zhijun; Betageri, Guru V
2015-01-01
The objective of our investigational work was to develop a proliposomal formulation to improve the oral bioavailability of valsartan. Proliposomes were formulated by thin film hydration technique using different ratios of phospholipids:drug:cholesterol. The prepared proliposomes were evaluated for vesicle size, encapsulation efficiency, morphological properties, in vitro drug release, in vitro permeability and in vivo pharmacokinetics. In vitro drug-release studies were performed in simulated gastric fluid (pH 1.2) and purified water using dialysis bag method. In vitro drug permeation was studied using parallel artificial membrane permeation assay (PAMPA), Caco-2 monolayer and everted rat intestinal perfusion techniques. In vivo pharmacokinetic studies were conducted in male Sprague Dawley (SD) rats. Among the proliposomal formulations, F-V was found to have the highest encapsulation efficiency of 95.6 ± 2.9% with a vesicle size of 364.1 ± 14.9 nm. The in vitro dissolution studies indicated an improved drug release from proliposomal formulation, F-V in comparison to pure drug suspension in both, purified water and pH 1.2 dissolution media after 12 h. Permeability across PAMPA, Caco-2 cell and everted rat intestinal perfusion studies were higher with F-V formulation as compared to pure drug. Following single oral administration of F-V formulation, a relative bioavailability of 202.36% was achieved as compared to pure valsartan.
Pi, Chao; Feng, Ting; Liang, Jing; Liu, Hao; Huang, Dongmei; Zhan, Chenglin; Yuan, Jiyuan; Lee, Robert J; Zhao, Ling; Wei, Yumeng
2018-06-01
Felodipine (FD) has been widely used in anti-hypertensive treatment. However, it has extremely low aqueous solubility and poor bioavailability. To address these problems, FD hollow microspheres as multiple-unit dosage forms were synthesized by a solvent diffusion evaporation method. Particle size of the hollow microspheres, types of ethylcellulose (EC), amounts of EC, polyvinyl pyrrolidone (PVP) and FD were investigated based on an orthogonal experiment of three factors and three levels. In addition, the release kinetics in vitro and pharmacokinetics in beagle dogs of the optimized FD hollow microspheres was investigated and compared with Plendil (commercial FD sustained-release tablets) as a single-unit dosage form. Results showed that the optimal formulation was composed of EC 10 cp :PVP:FD (0.9:0.16:0.36, w/w). The FD hollow microspheres were globular with a hollow structure and have high drug loading (17.69±0.44%) and floating rate (93.82±4.05%) in simulated human gastric fluid after 24h. Pharmacokinetic data showed that FD hollow microspheres exhibited sustained-release behavior and significantly improved relative bioavailability of FD compared with the control. Pharmacodynamic study showed that the FD hollow microspheres could effectively lower blood pressure. Therefore, these findings demonstrated that the hollow microspheres were an effective sustained-release delivery system for FD. Copyright © 2018 Elsevier B.V. All rights reserved.
Biochemical indicators for the bioavailability of organic carbon in ground water
Chapelle, F.H.; Bradley, P.M.; Goode, D.J.; Tiedeman, C.; Lacombe, P.J.; Kaiser, K.; Benner, R.
2009-01-01
The bioavailability of total organic carbon (TOC) was examined in ground water from two hydrologically distinct aquifers using biochemical indicators widely employed in chemical oceanography. Concentrations of total hydrolyzable neutral sugars (THNS), total hydrolyzable amino acids (THAA), and carbon-normalized percentages of TOC present as THNS and THAA (referred to as "yields") were assessed as indicators of bioavailability. A shallow coastal plain aquifer in Kings Bay, Georgia, was characterized by relatively high concentrations (425 to 1492 ??M; 5.1 to 17.9 mg/L) of TOC but relatively low THNS and THAA yields (???0.2%-1.0%). These low yields are consistent with the highly biodegraded nature of TOC mobilized from relatively ancient (Pleistocene) sediments overlying the aquifer. In contrast, a shallow fractured rock aquifer in West Trenton, New Jersey, exhibited lower TOC concentrations (47 to 325 ??M; 0.6 to 3.9 mg/L) but higher THNS and THAA yields (???1% to 4%). These higher yields were consistent with the younger, and thus more bioavailable, TOC being mobilized from modern soils overlying the aquifer. Consistent with these apparent differences in TOC bioavailability, no significant correlation between TOC and dissolved inorganic carbon (DIC), a product of organic carbon mineralization, was observed at Kings Bay, whereas a strong correlation was observed at West Trenton. In contrast to TOC, THNS and THAA concentrations were observed to correlate with DIC at the Kings Bay site. These observations suggest that biochemical indicators such as THNS and THAA may provide information concerning the bioavailability of organic carbon present in ground water that is not available from TOC measurements alone.
CORRELATING METAL SPECIATION IN SOILS TO RISK
Understanding bioavailability of metals from exposure to contaminated soils is a challenging aspect of environmental research. This presentation will examine three areas of research with respect to metal speciation in soils as it relates to bioavailability: 1) Pb immobilization a...
Luoma, Samuel N.; Khan, Farhan R.; Croteau, Marie-Noële
2014-01-01
Bioavailability of Me-ENMs to aquatic organisms links their release into the environment to ecological implications. Close examination shows some important differences in the conceptual models that define bioavailability for metals and Me-ENMs. Metals are delivered to aquatic animals from Me-ENMs via water, ingestion, and incidental surface exposure. Both metal released from the Me-ENM and uptake of the nanoparticle itself contribute to bioaccumulation. Some mechanisms of toxicity and some of the metrics describing exposure may differ from metals alone. Bioavailability is driven by complex interaction of particle attributes, environmental transformations, and biological traits. Characterization of Me-ENMs is an essential part of understanding bioavailability and requires novel methodologies. The relative importance of the array of processes that could affect Me-ENM bioavailability remains poorly known, but new approaches and models are developing rapidly. Enough is known, however, to conclude that traditional approaches to exposure assessment for metals would not be adequate to assess risks from Me-ENMs.
McClements, David Julian
2013-12-01
The oral bioavailability of many lipophilic bioactives, such as pharmaceuticals and nutraceuticals, is relatively low due to their poor solubility, permeability and/or chemical stability within the human gastrointestinal tract (GIT). The oral bioavailability of lipophilic bioactives can be improved by designing food matrices that control their release, solubilization, transport and absorption within the GIT. This article discusses the challenges associated with delivering lipophilic bioactive components, the impact of food composition and structure on oral bioavailability and the design of functional and medical foods for improving the oral bioavailability of lipophilic bioactives. Food-based delivery systems can be used to improve the oral bioavailability of lipophilic bioactives. There are a number of potential advantages to delivering lipophilic bioactives using functional or medical foods: greater compliance than conventional delivery forms; increased bioavailability and efficacy; and reduced variability in biological effects. However, food matrices are structurally complex multicomponent materials and research is still needed to identify optimum structures and compositions for particular bioactives.
Dickmann, Robin S; Strasburg, Gale M; Romsos, Dale R; Wilson, Lori A; Lai, Grace H; Huang, Hsimin
2016-03-01
Ferric orthophosphate (FePO₄) has had limited use as an iron fortificant in ready-to-eat (RTE) cereal because of its variable bioavailability, the mechanism of which is poorly understood. Even though FePO₄ has desirable sensory properties as compared to other affordable iron fortificants, few published studies have well-characterized its physicochemical properties. Semi-crystalline materials such as FePO₄ have varying degrees of molecular disorder, referred to as amorphous content, which is hypothesized to be an important factor in bioavailability. The objective of this study was to systematically measure the physicochemical factors of particle size, surface area, amorphous content, and solubility underlying the variation in FePO₄ bioavailability. Five commercial FePO₄ sources and ferrous sulfate were added to individual batches of RTE cereal. The relative bioavailability value (RBV) of each iron source, determined using the AOAC Rat Hemoglobin Repletion Bioassay, ranged from 51% to 99% (p < 0.05), which is higher than typically reported. Solubility in dilute HCl accurately predicted RBV (R² = 0.93, p = 0.008). Amorphous content measured by Dynamic Vapor Sorption ranged from 1.7% to 23.8% and was a better determinant of solubility (R² = 0.91; p = 0.0002) than surface area (R² = 0.83; p = 0.002) and median particle size (R² = 0.59; p = 0.12). The results indicate that while solubility of FePO₄ is highly predictive of RBV, solubility, in turn, is strongly linked to amorphous content and surface area. This information may prove useful for the production of FePO₄ with the desired RBV.
Dickmann, Robin S.; Strasburg, Gale M.; Romsos, Dale R.; Wilson, Lori A.; Lai, Grace H.; Huang, Hsimin
2016-01-01
Ferric orthophosphate (FePO4) has had limited use as an iron fortificant in ready-to-eat (RTE) cereal because of its variable bioavailability, the mechanism of which is poorly understood. Even though FePO4 has desirable sensory properties as compared to other affordable iron fortificants, few published studies have well-characterized its physicochemical properties. Semi-crystalline materials such as FePO4 have varying degrees of molecular disorder, referred to as amorphous content, which is hypothesized to be an important factor in bioavailability. The objective of this study was to systematically measure the physicochemical factors of particle size, surface area, amorphous content, and solubility underlying the variation in FePO4 bioavailability. Five commercial FePO4 sources and ferrous sulfate were added to individual batches of RTE cereal. The relative bioavailability value (RBV) of each iron source, determined using the AOAC Rat Hemoglobin Repletion Bioassay, ranged from 51% to 99% (p < 0.05), which is higher than typically reported. Solubility in dilute HCl accurately predicted RBV (R2 = 0.93, p = 0.008). Amorphous content measured by Dynamic Vapor Sorption ranged from 1.7% to 23.8% and was a better determinant of solubility (R2 = 0.91; p = 0.0002) than surface area (R2 = 0.83; p = 0.002) and median particle size (R2 = 0.59; p = 0.12). The results indicate that while solubility of FePO4 is highly predictive of RBV, solubility, in turn, is strongly linked to amorphous content and surface area. This information may prove useful for the production of FePO4 with the desired RBV. PMID:26938556
Qiao, Jiang-Tao; Liu, Tong-Xu; Wang, Xiang-Qin; Li, Fang-Bai; Lv, Ya-Hui; Cui, Jiang-Hu; Zeng, Xiao-Duo; Yuan, Yu-Zhen; Liu, Chuan-Ping
2018-03-01
The fates of cadmium (Cd) and arsenic (As) in paddy fields are generally opposite; thus, the inconsistent transformation of Cd and As poses large challenges for their remediation. In this study, the impacts of zero valent iron (ZVI) and/or biochar amendments on Cd and As bioavailability were examined in pot trials with rice. Comparison with the untreated soil, both Cd and As accumulation in different rice tissues decreased significantly in the ZVI-biochar amendments and the Cd and As accumulation in rice decreased with increasing ZVI contents. In particular, the concentrations of Cd (0.15 ± 0.01 mg kg -1 ) and As (0.17 ± 0.01 mg kg -1 ) in rice grains were decreased by 93% and 61% relative to the untreated soil, respectively. A sequential extraction analysis indicated that with increasing Fe ratios in the ZVI-biochar mixtures, bioavailable Cd and As decreased, and the immobilized Cd and As increased. Furthermore, high levels of Fe, Cd, and As were detected in Fe plaque of the ZVI-biochar amendments in comparison with the single biochar or single ZVI amendments. The ZVI-biochar mixture may have a synergistic effect that simultaneously reduces Cd and As bioavailability by increasing the formation of amorphous Fe and Fe plaque for Cd and As immobilization. The single ZVI amendment significantly decreased As bioavailability, while the single biochar amendment significantly reduced the bioavailability of Cd compared with the combined amendments. Hence, using a ZVI-biochar mixture as a soil amendment could be a promising strategy for safely-utilizing Cd and As co-contaminated sites in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yan, Lin; Reeves, Philip G; Johnson, LuAnn K
2010-10-01
We assessed the bioavailability of selenium (Se) from a protein isolate and tofu (bean curd) prepared from naturally produced high-Se soybeans. The Se concentrations of the soybeans, the protein isolate and tofu were 5.2±0.2, 11.4±0.1 and 7.4±0.1mg/kg, respectively. Male weanling Sprague-Dawley rats were depleted of Se by feeding them a 30% Torula yeast-based diet (4.1μg Se/kg) for 56 days, and then they were replenished with Se for an additional 50 days by feeding them the same diet containing 14, 24 or 30 μg Se/kg from the protein isolate or 13, 23 or 31 μg Se/kg from tofu, respectively. l-Selenomethionine (SeMet) was used as a reference. Selenium bioavailability was determined on the basis of the restoration of Se-dependent enzyme activities and tissue Se concentrations in Se-depleted rats, comparing those responses for the protein isolate and tofu to those for SeMet by using a slope-ratio method. Dietary supplementation with the protein isolate or tofu resulted in linear or log-linear, dose-dependent increases in glutathione peroxidase activities in blood and liver and in thioredoxin reductase activity in liver. Furthermore, supplementation with the protein isolate or tofu resulted in linear or log-linear, dose-dependent increases in the Se concentrations of plasma, liver, muscle and kidneys. These results indicated an overall bioavailability of approximately 101% for Se from the protein isolate and 94% from tofu, relative to SeMet. We conclude that Se from naturally produced high-Se soybeans is highly bioavailable in this model and that high-Se soybeans may be a good dietary source of Se. Published by Elsevier GmbH.
Selenium bioavailability from soy protein isolate and tofu in rats fed a torula yeast-based diet.
Yan, Lin; Graef, George L; Reeves, Philip G; Johnson, LuAnn K
2009-12-23
Selenium (Se) is an essential nutrient, and soy is a major plant source of dietary protein to humans. The United States produces one-third of the world's soybeans, and the Se-rich Northern Plains produce a large share of the nation's soybeans. The present study used a rat model to determine the bioavailability of Se from a protein isolate and tofu (bean curd) prepared from a soybean cultivar we recently developed specifically for food grade markets. The soybean seeds contained 2.91 mg Se/kg. Male Sprague-Dawley rats were depleted of Se by feeding them a 30% Torula yeast-based diet containing 5 microg Se/kg; after 56 days, they were replenished of Se for an additional 50 days by feeding them the same diet supplemented with 20, 30, or 40 microg Se/kg from soy protein isolate or tofu. l-Selenomethionine (SeMet) was used as a reference. Selenium bioavailability was determined on the basis of the responses of Se-dependent enzyme activities and tissue Se contents, comparing those responses for each soy product to those for SeMet using a slope-ratio method. Dietary supplementation with the protein isolate or tofu resulted in dose-dependent increases in glutathione peroxidase activities in blood and liver and thioredoxin reductase activity in liver, as well as dose-dependent increases in the Se contents of plasma, liver, muscle, and kidneys. These responses indicated an overall bioavailability of approximately 97% for Se from both the protein isolate and tofu, relative to SeMet. These results demonstrate that Se from this soybean cultivar is highly bioavailable in this model and that high-Se soybeans can be good dietary sources of Se.
Lu, Ying-Yuan; Dai, Wen-Bing; Wang, Xin; Wang, Xiao-Wei; Liu, Jun-Yi; Li, Pu; Lou, Ya-Qing; Lu, Chuang; Zhang, Qiang; Zhang, Guo-Liang
2018-02-01
The objective of this study was to investigate the effect of crystalline state and a formulation of self-nanoemulsifying drug delivery system (SNEDDS) on oral bioavailability of 6-benzyl-1-benzyloxymethyl-5-iodouracil (W-1), a novel non-nucleoside reverse transcriptase inhibitor, in rats. The crystalline states of W-1 were characterized by scanning electron microscope (SEM), differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). The SNEDDS was formulated by medium-chain lipids, characterized by droplet particle size. The plasma concentrations of W-1 were measured by high performance liquid chromatography (HPLC). The results indicated that W-1 compound were presented as crystalline forms, A and B, the degree of crystallization in form B was higher than that in form A. The SNEDDS of W-1 displayed a significant increase in the dissolution rate than W-1 powder. Furthermore, after oral administration of W-1 (100 mg/kg), the pharmacokinetic parameters of form A, form B, and W-1 SNEDDS were as follows: AUC 0-t 526.4 ± 123.5, 305.1 ± 58.5 and 2297 ± 451 ng h/mL (p < .05, when W-1 SNEDDS were compared with either form A or form B), respectively. With SNEDDS formulation, the relative bioavailabilities were enhanced by 4.36-fold and 7.53-fold over the form A and form B of W-1, respectively. In conclusion, the present results suggested that the crystalline states of W-1 might lead to the lower oral bioavailability, and SNEDDS formulation is a promising strategy of improving bioavailability, in spite of that crystalline states usually carry small lot-to-lot variability.
Ahmed, Osama AA; Hosny, Khaled M; Al-Sawahli, Majid M; Fahmy, Usama A
2015-01-01
The current study focuses on utilization of the natural biocompatible polymer zein to formulate simvastatin (SMV) nanoparticles coated with caseinate, to improve solubility and hence bioavailability, and in addition, to modify SMV-release characteristics. This formulation can be utilized for oral or possible depot parenteral applications. Fifteen formulations were prepared by liquid–liquid phase separation method, according to the Box–Behnken design, to optimize formulation variables. Sodium caseinate was used as an electrosteric stabilizer. The factors studied were: percentage of SMV in the SMV-zein mixture (X1), ethanol concentration (X2), and caseinate concentration (X3). The selected dependent variables were mean particle size (Y1), SMV encapsulation efficiency (Y2), and cumulative percentage of drug permeated after 1 hour (Y3). The diffusion of SMV from the prepared nanoparticles specified by the design was carried out using an automated Franz diffusion cell apparatus. The optimized SMV-zein formula was investigated for in vivo pharmacokinetic parameters compared with an oral SMV suspension. The optimized nanosized SMV-zein formula showed a 131 nm mean particle size and 89% encapsulation efficiency. In vitro permeation studies displayed delayed permeation characteristics, with about 42% and 85% of SMV cumulative amount released after 12 and 48 hours, respectively. Bioavailability estimation in rats revealed an augmentation in SMV bioavailability from the optimized SMV-zein formulation, by fourfold relative to SMV suspension. Formulation of caseinate-coated SMV-zein nanoparticles improves the pharmacokinetic profile and bioavailability of SMV. Accordingly, improved hypolipidemic activities for longer duration could be achieved. In addition, the reduced dosage rate of SMV-zein nanoparticles improves patient tolerability and compliance. PMID:25670883
Comparison of (-)-epigallocatechin-3-O-gallate (EGCG) and O-methyl EGCG bioavailability in rats.
Oritani, Yukihiro; Setoguchi, Yuko; Ito, Ryouichi; Maruki-Uchida, Hiroko; Ichiyanagi, Takashi; Ito, Tatsuhiko
2013-01-01
(-)-Epigallocatechin-3-O-(3-O-methyl)gallate (EGCG3″Me) and (-)-epigallocatechin-3-O-(4-O-methyl)gallate (EGCG4″Me) are O-methyl derivatives of (-)-epigallocatechin-3-O-gallate (EGCG) present in tea cultivars such as Benifuuki. Although O-methyl EGCGs have various bioactivities, their bioavailabilities have not been determined. In this study, we compared the bioavailability of EGCG and O-methyl EGCGs in rats, and clarified the pharmacokinetics of O-methyl EGCGs. Following oral administration (100 mg/kg), the areas under the concentration-time curves (AUCs) for EGCG, EGCG3″Me, and EGCG4″Me were 39.6 ± 14.2 µg·h/L, 317.2 ± 43.7 µg·h/L, and 51.9 ± 11.0 µg·h/L, respectively. The AUC after intravenous administration (10 mg/kg) was 2772 ± 480 µg·h/L for EGCG, 8209 ± 549 µg·h/L for EGCG3″Me, and 2465 ± 262 µg·h/L for EGCG4″Me. The bioavailability of EGCG3″Me (0.38%) was the highest (EGCG: 0.14% and EGCG4″Me: 0.21%). The distribution volume of EGCG3″Me (0.26 ± 0.02 L/kg) was the lowest (EGCG: 0.94 ± 0.16 L/kg and EGCG4″Me: 0.93 ± 0.14 L/kg). These results suggested that the higher AUC of EGCG3″Me after oral administration was related to its high bioavailability and low distribution volume. These findings supported the stronger bioactivity of EGCG3″Me in vivo.
Lebo, J.A.; Huckins, J.N.; Petty, J.D.; Cranor, W.L.; Ho, K.T.
2003-01-01
Coarse (whole) and finely ground Ambersorb 1500 and coarse and fine coconut charcoal were compared as to their efficiencies in scavenging organic contaminants desorbed from sediment. Aqueous slurries of a test sediment spiked (1 ppm) with p,p???-DDE (DDE), 2,2???,5,5???-tetrachlorobiphenyl (TCB), naphthalene (NAP), or phenanthrene (PHEN), and containing 1% levels of the test carbons were treated by shaking at 35 ??C while exposed to clusters of low-density polyethylene membrane (detox spiders). Controls consisted of spiked sediments and detox spiders but no added carbon of any kind and thus represented unimpeded bioavailabilities (to the spiders). After the treatments - agitation periods from 2.5 to 60 h, depending on contaminant hydrophobicity - the exposed detox spiders were analyzed. The fine carbon of either type was more effective than its coarser variant in obstructing contaminant bioavailabilities. The finer variants of both carbons obstructed the bioavailabilities of NAP and PHEN equally well as did the coarser variants of both. Whole Ambersorb 1500 and coarse coconut charcoal were similarly ineffective in intercepting TCB and DDE. Ground Ambersorb 1500 obstructed virtually all bioavailability of all four contaminants and was far more effective than fine coconut charcoal in intercepting DDE and TCB. An additional experiment compared the effectiveness of ground Ambersorb 1500 and fine coconut charcoal in obstructing the bioavailabilities from sediment of a broad array of spiked organochlorine pesticides. The performance of ground Ambersorb 1500 was again found to be superior; the bioavailable levels of each of the 27 pesticides were markedly lower in the presence of ground Ambersorb 1500 than in the presence of fine coconut charcoal.
Kunhikrishnan, Anitha; Choppala, Girish; Seshadri, Balaji; Wijesekara, Hasintha; Bolan, Nanthi S; Mbene, Kenneth; Kim, Won-Il
2017-01-15
In this work, the effects of various wastewater sources (storm water, sewage effluent, piggery effluent, and dairy effluent) on the reduction, and subsequent mobility and bioavailability of arsenate [As(V)] and chromate [Cr(VI)] were compared using both spiked and field contaminated soils. Wastewater addition to soil can increase the supply of carbon, nutrients, and stimulation of microorganisms which are considered to be important factors enhancing the reduction of metal(loid)s including As and Cr. The wastewater-induced mobility and bioavailability of As(V) and Cr(VI) were examined using leaching, earthworm, and soil microbial activity tests. The rate of reduction of As(V) was much less than that of Cr(VI) both in the presence and absence of wastewater addition. Wastewater addition increased the reduction of both As(V) and Cr(VI) compared to the control (Milli-Q water) and the effect was more pronounced in the case of Cr(VI). The leaching experiment indicated that Cr(VI) was more mobile than As(V). Wastewater addition increased the mobility and bioavailability of As(V), but had an opposite effect on Cr(VI). The difference in the mobility and bioavailability of Cr(VI) and As(V) between wastewater sources can be attributed to the difference in their dissolved organic carbon (DOC) content. The DOC provides carbon as an electron donor for the reduction of As(V) and Cr(VI) and also serves as a complexing agent thereby impacting their mobility and bioavailability. The DOC-induced reduction increased both the mobility and bioavailability of As, but it caused an opposite effect in the case of Cr. Copyright © 2016 Elsevier Ltd. All rights reserved.
Peters, Adam; Schlekat, Christian E; Merrington, Graham
2016-10-01
A bioavailability-based environmental quality standard (EQS) was established for nickel in freshwaters under the European Union's Water Framework Directive. Bioavailability correction based on pH, water hardness, and dissolved organic carbon is a demonstrable improvement on existing hardness-based quality standards, which may be underprotective in high-hardness waters. The present study compares several simplified bioavailability tools developed to implement the Ni EQS (biomet, M-BAT, and PNECPro) against the full bioavailability normalization procedure on which the EQS was based. Generally, all tools correctly distinguished sensitive waters from insensitive waters, although with varying degrees of accuracy compared with full normalization. Biomet and M-BAT predictions were consistent with, but less accurate than, full bioavailability normalization results, whereas PNECpro results were generally more conservative. The comparisons revealed important differences in tools in development, which results in differences in the predictions. Importantly, the models used for the development of PNECpro use a different ecotoxicity dataset, and a different bioavailability normalization approach using fewer biotic ligand models (BLMs) than that used for the derivation of the Ni EQS. The failure to include all of the available toxicity data, and all of the appropriate NiBLMs, has led to some significant differences between the predictions provided by PNECpro and those calculated using the process agreed to in Europe under the Water Framework Directive and other chemicals management programs (such as REACH). These considerable differences mean that PNECpro does not reflect the behavior, fate, and ecotoxicity of nickel, and raises concerns about its applicability for checking compliance against the Ni EQS. Environ Toxicol Chem 2016;35:2397-2404. © 2016 SETAC. © 2016 SETAC.
Prokop, Zbyněk; Nečasová, Anežka; Klánová, Jana; Čupr, Pavel
2016-03-01
A novel approach was developed for rapid assessment of bioavailability and potential mobility of contaminants in soil. The response of the same test organism to the organic extract, water extract and solid phase of soil was recorded and compared. This approach was designed to give an initial estimate of the total organic toxicity (response to organic extractable fraction), as well as the mobile (response to water extract) and bioavailable fraction (response to solid phase) of soil samples. Eighteen soil samples with different levels of pollution and content of organic carbon were selected to validate the novel three-step ecotoxicological evaluation approach. All samples were chemically analysed for priority contaminants, including aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), hexachlorocyclohexane (HCH) and dichlordiphenyltrichloroethane (DDT). The ecotoxicological evaluation involved determination of toxicity of the organic, mobile and bioavailable fractions of soil to the test organism, bacterium Bacillus cereus. We found a good correlation between the chemical analysis and the toxicity of organic extract. The low toxicity of water extracts indicated low water solubility, and thus, low potential mobility of toxic contaminants present in the soil samples. The toxicity of the bioavailable fraction was significantly greater than the toxicity of water-soluble (mobile) fraction of the contaminants as deduced from comparing untreated samples and water extracts. The bioavailability of the contaminants decreased with increasing concentrations of organic carbon in evaluated soil samples. In conclusion, the three-step ecotoxicological evaluation utilised in this study can give a quick insight into soil contamination in context with bioavailability and mobility of the contaminants present. This information can be useful for hazard identification and risk assessment of soil-associated contaminants. Graphical Abstract New three-step ecotoxicological evaluation by using the same organism.
Yokel, Robert A; Florence, Rebecca L
2006-10-03
There are estimates of oral aluminum (Al) bioavailability from drinking water, but little information on Al bioavailability from foods. Foods contribute approximately 95% and drinking water 1-2% of the typical human's daily Al intake. The objectives were to estimate oral Al bioavailability from a representative food containing the food additive acidic sodium aluminum phosphate (acidic SALP), a leavening agent in baked goods. Rats were acclimated to a special diet that resulted in no stomach contents 14 h after its withdrawal. They were trained to rapidly consume a biscuit containing 1.5% acidic SALP. Oral Al bioavailability was then determined from a biscuit containing 1% or 2% acidic SALP, synthesized to contain (26)Al. The rats received concurrent (27)Al infusion. Blood was repeatedly withdrawn and serum analyzed for (26)Al by accelerator mass spectrometry. Total Al was determined by atomic absorption spectrometry. Oral (26)Al bioavailability was determined from the area under the (26)Al, compared to (27)Al, serum concentrationxtime curves. Oral Al bioavailability (F) from biscuit containing 1% or 2% acidic (26)Al-SALP averaged approximately 0.11% and 0.13%; significantly less than from water, which was previously shown to be approximately 0.3%. The time to maximum serum (26)Al concentration was 4.2 and 6h after consumption of biscuit containing 1% or 2% (26)Al-acidic SALP, respectively, compared to 1-2h following (26)Al in water. These results of oral Al bioavailability from acidic (26)Al-SALP in a biscuit (F approximately 0.1%) and results from (26)Al in water (F approximately 0.3%) x the contributions of food and drinking water to the typical human's daily Al intake ( approximately 5-10mg from food and 0.1mg from water, respectively) suggest food provides approximately 25-fold more Al to systemic circulation, and potential Al body burden, than does drinking water.
Bioavailability and toxicity of dietborne copper and zinc to fish
Clearwater, Susan J.; Farag, Aïda M.; Meyer, J.S.
2002-01-01
To date, most researchers have used dietborne metal concentrations rather than daily doses to define metal exposure and this has resulted in contradictory data within and between fish species. It has also resulted in the impression that high concentrations of dietborne Cu and Zn (e.g.>900 mg kg−1 dry diet) are relatively non-toxic to fish. We re-analyzed existing data using rations and dietborne metal concentrations and used daily dose, species and life stage to define the toxicity of dietborne Cu and Zn to fish. Partly because of insufficient information we were unable to find consistent relationships between metal toxicity in laboratory-prepared diets and any other factor including, supplemented metal compound (e.g. CuSO4 or CuCl2), duration of metal exposure, diet type (i.e. practical, purified or live diets), or water quality (flow rates, temperature, hardness, pH, alkalinity). For laboratory-prepared diets, dietborne Cu toxicity occurred at daily doses of >1 mg kg−1 body weight d−1 for channel catfish (Ictalurus punctatus), 1–15 mg kg−1 body weight d−1 (depending on life stage) for Atlantic salmon (Salmo salar) and 35–45 mg kg−1 body weight d−1 for rainbow trout (Oncorhynchus mykiss). We found that dietborne Zn toxicity has not yet been demonstrated in rainbow trout or turbot (Scophthalmus maximus) probably because these species have been exposed to relatively low doses of metal (<90 mg kg−1 body weight d−1) and effects on growth and reproduction have not been analyzed. However, daily doses of 9–12 mg Zn kg−1 body weight d−1 in laboratory-prepared diets were toxic to three other species, carp Cyprinus carpio, Nile tilapia Oreochromis niloticus, and guppy Poecilia reticulata. Limited research indicates that biological incorporation of Cu or Zn into a natural diet can either increase or decrease metal bioavailability, and the relationship between bioavailability and toxicity remains unclear. We have resolved the contradictory data surrounding the effect of organic chelation on metal bioavailability. Increased bioavailability of dietborne Cu and Zn is detectable when the metal is both organically chelated and provided in very low daily doses. We have summarized the information available on the effect of phosphates, phytate and calcium on dietborne Zn bioavailability. We also explored a rationale to understand the relative importance of exposure to waterborne or dietborne Cu and Zn with a view to finding an approach useful to regulatory agencies. Contrary to popular belief, the relative efficiency of Cu uptake from water and diet is very similar when daily doses are compared rather than Cu concentrations in each media. The ratio of dietborne dose:waterborne dose is a good discriminator of the relative importance of exposure to dietborne or waterborne Zn. We discuss gaps in existing data, suggest improvements for experimental design, and indicate directions for future research.
Assessing the bioavailability and risk from metal-contaminated ...
Exposure to contaminated soil and dust is an important pathway in human health risk assessment. Physical and chemical characteristics, as well as biological factors, determine the bioaccessibility/bioavailability of soil and dust contaminants. Within a single sample, contamination may arise from multiple sources of toxic elements that may exist as different forms (species) which impact bioavailability. In turn, the bioaccessibility/bioavailability of soil and dust contaminants has a direct impact on human health risk assessment and risk management practices. Novel research efforts focusing on development and application of in vitro and in vivo methods to measure the bioaccessibility/bioavailability of metal contaminated soils have advanced in the past few years. The objective of this workshop was to focus on recent developments in assessing the bioaccessibility/bioavailability of arsenic contaminated soils, metal contamination in urban residences in Canada and potential children’s exposures to toxic elements in house dust, a community-based study known as the West Oakland Residential Lead Assessment , studies of the bioavailability of soil cadmium, chromium, nickel and mercury and human exposures to contaminated Brownfield soils. These presentations covered issues related to human health and bioavailability along with the most recent studies on community participation in assessing metal contamination, studies of exposures to residential contamination, and
In Vitro Iron Bioavailability of Brazilian Food-Based by-Products.
Chiocchetti, Gabriela M; De Nadai Fernandes, Elisabete A; Wawer, Anna A; Fairweather-Tait, Susan; Christides, Tatiana
2018-05-16
Background : Iron deficiency is a public health problem in many low- and middle-income countries. Introduction of agro-industrial food by-products, as additional source of nutrients, could help alleviate this micronutrient deficiency, provide alternative sources of nutrients and calories in developed countries, and be a partial solution for disposal of agro-industry by-products. Methods : The aim of this study was to determine iron bioavailability of 5 by-products from Brazilian agro-industry (peels from cucumber, pumpkin, and jackfruit, cupuaçu seed peel, and rice bran), using the in vitro digestion/ Caco-2 cell model; with Caco-2 cell ferritin formation as a surrogate marker of iron bioavailability. Total and dialyzable Fe, macronutrients, the concentrations of iron-uptake inhibitors (phytic acid, tannins, fiber) and their correlation with iron bioavailability were also evaluated. Results : The iron content of all by-products was high, but the concentration of iron and predicted bioavailability were not related. Rice bran and cupuaçu seed peel had the highest amount of phytic acid and tannins, and lowest iron bioavailability. Cucumber peels alone, and with added extrinsic Fe, and pumpkin peels with extrinsic added iron, had the highest iron bioavailability. Conclusion : The results suggest that cucumber and pumpkin peel could be valuable alternative sources of bioavailable Fe to reduce iron deficiency in at-risk populations.
Wang, Peifang; Liu, Cui; Yao, Yu; Wang, Chao; Wang, Teng; Yuan, Ye; Hou, Jun
2017-05-01
To assess the capabilities of the different techniques in predicting Cadmium (Cd) bioavailability in Cd-contaminated soils with the addition of Zn, one in situ technique (diffusive gradients in thin films; DGT) was compared with soil solution concentration and four widely used single-step extraction methods (acetic acid, EDTA, sodium acetate and CaCl 2 ). Wheat and maize were selected as tested species. The results demonstrated that single Cd-polluted soils inhibited the growth of wheat and maize significantly compared with control plants; the shoot and root biomasses of the plants both dropped significantly (P < 0.05). The addition of Zn exhibited a strong antagonism to the physiological toxicity induced by Cd. The Pearson correlation coefficient presented positive correlations (P < 0.01, R > 0.9) between Cd concentrations in two plants and Cd bioavailability indicated by each method in soils. Consequently, the results indicated that the DGT technique could be regarded as a good predictor of Cd bioavailability to plants, comparable to soil solution concentration and the four single-step extraction methods. Because the DGT technique can offer in situ data, it is expected to be widely used in more areas.
Ghai, Damanjeet; Sinha, Vivek Ranjan
2012-07-01
To enhance the bioavailability of the poorly water-soluble drug talinolol, a self-nanoemulsifying drug delivery system (SNEDDS) comprising 5% (w/v) Brij-721 ethanolic solution (Smix), triacetin, and water, in the ratio of 40:20:40 (% w/w) was developed by constructing pseudo-ternary phase diagrams and evaluated for droplet size, polydispersity index, and surface morphology of nanoemulsions. The effect of nanodrug carriers on drug release and permeability was assessed using stripped porcine jejunum and everted rat gut sac method and compared with hydroalcoholic drug solution, oily solution, and conventional emulsion and suspension. The SNEDDS showed a significant (P < 0.001) increase in drug release, permeability, and in vivo bioavailability as compared to drug suspension. This may be attributed to increased solubility and enhanced permeability of the drug from nanosized emulsion. In this study, a self-nanoemulsifying drug delivery system was utilized to enhance the bioavailability of the poorly water-soluble beta-blocker talinolol. Significant increase in drug release, permeability, and in vivo bioavailability were demonstrated as compared to standard drug suspension. Copyright © 2012 Elsevier Inc. All rights reserved.
Flavonoid Bioavailability and Attempts for Bioavailability Enhancement
Thilakarathna, Surangi H.; Rupasinghe, H. P. Vasantha
2013-01-01
Flavonoids are a group of phytochemicals that have shown numerous health effects and have therefore been studied extensively. Of the six common food flavonoid classes, flavonols are distributed ubiquitously among different plant foods whereas appreciable amounts of isoflavones are found in leguminous plant-based foods. Flavonoids have shown promising health promoting effects in human cell culture, experimental animal and human clinical studies. They have shown antioxidant, hypocholesterolemic, anti-inflammatory effects as well as ability to modulate cell signaling and gene expression related disease development. Low bioavailability of flavonoids has been a concern as it can limit or even hinder their health effects. Therefore, attempts to improve their bioavailability in order to improve the efficacy of flavonoids are being studied. Further investigations on bioavailability are warranted as it is a determining factor for flavonoid biological activity. PMID:23989753
Chaurasia, Sundeep; Chaubey, Pramila; Patel, Ravi R; Kumar, Nagendra; Mishra, Brahmeshwar
2016-01-01
Curcumin (CUR), can inhibit proliferation and induce apoptosis of tumor cells, its extreme insolubility and limited bioavailability restricted its clinical application. An innovative polymeric nanoparticle of CUR has been developed to enhance the bioavailability and anti-cancer efficacy of CUR, in vitro and in vivo. Cationic copolymer Eudragit E 100 was selected as carrier, which can enhance properties of poor bioavailable chemotherapeutic drugs (CUR). The CUR-loaded Eudragit E 100 nanoparticles (CENPs) were prepared by emulsification-diffusion-evaporation method. The in vitro cytotoxicity study of CENPs was carried out using sulphorhodamine B assay. Pharmacokinetic and anti-cancer efficacy of CENPs was investigated in Wister rats as well as colon-26 tumor-bearing mice after oral administration. CENPs showed acceptable particle size and percent entrapment efficiency. In vitro cytotoxicity studies in terms of 50% cell growth inhibition values demonstrated ∼19-fold reduction when treated with CENPs as compared to pure CUR. ∼91-fold increase in Cmax and ∼95-fold increase in AUC0-12h were observed indicating a significant enhancement in the oral bioavailability of CUR when orally administered as CENPs compared to pure CUR. The in vivo anti-cancer study performed with CENPs showed a significant increase in efficacy compared with pure CUR, as observed by tumor volume, body weight and survival rate. The results clearly indicate that the developed polymeric nanoparticles offer a great potential to improve bioavailability and anticancer efficacy of hydrophobic chemotherapeutic drug.
Mechanisms of lower maintenance dose of tacrolimus in obese patients.
Sawamoto, Kazuki; Huong, Tran T; Sugimoto, Natsumi; Mizutani, Yuka; Sai, Yoshimichi; Miyamoto, Ken-ichi
2014-01-01
A retrospective analysis suggested that blood tacrolimus concentrations were consistent among patients with a body mass index (BMI) that was lean (<18.5), normal (≥ 18.5 and <25) or overweight/obese (≥ 25). The average maintenance dose of tacrolimus in patients with BMI ≥ 25 was significantly lower compared with that in patients with a BMI of less than 25. Lean and obese Zucker rats fed a normal diet were given tacrolimus intravenously or orally. The blood concentrations of tacrolimus in obese rats were significantly higher than those in lean rats after administration via both routes. The moment analysis has suggested that CLtot and Vdss of tacrolimus were not significantly different between lean and obese rats. The bioavailability was higher in obese rats, compared with that in lean rats. The protein expression of Cyp3a2 in the liver was significantly decreased in obese rats, compared with lean rats, while P-gp in the small intestine was also significantly decreased in obese rats. These results suggested that the steady-state trough concentration of tacrolimus in obese patients was well maintained by a relatively low dose compared with that in normal and lean patients, presumably due to increased bioavailability.
Saavedra S, Iván; Sasso A, Jaime; Quiñones S, Luis; Saavedra B, Mónica; Gaete G, Leonardo; Boza T, Ignacio; Carvajal H, Cristóbal; Soto L, Jorge
2011-07-01
The bioequivalence of different formulations of a same pharmaceutical product must be tested empirically. To evaluate the relative bioavailability for an oralformulation of mycophenolate mofetil (MMF) (Linfonex™) compared to the reference formulation (Cellcept™) to determine the bioequivalence between both formulations. A randomized, crossover, double-blind trial in 22 healthy male volunteers, who received a single oral dose of 1000 mg of Linfonex and Cellcept with a washout period of 10 days. Plasma levels of the drug were determined by high performance liquid chr ornatography. Plasma concentrations were plotted and maximum concentration, area under the plasma concentration versus time between 0 and 12 hours after administration and área under plasma concentration curve versus time after administration between 0 and infinity, were calculated for both products. The active compound, mycophenolic acid, was similarly absorbed in both formulations. No statistically significant differences were found in calculated pharmacokinetic parameters between both formulations. Linfonex™ 500 mg is bioequivalent to Cellcept™ 500 mg.
Bioavailability of Fe and Zn in selected legumes, cereals, meat and milk products consumed in Fiji.
Singh, Poonam; Prasad, Surendra; Aalbersberg, William
2016-09-15
The present study reports contents and the bioavailability of Fe and Zn from 25 selected raw and cooked food samples. The results showed highest variation of Fe content in raw food samples ranging from 2.19 ± 0.04 to 0.93 ± 0.03 mg/100g in legumes. The raw black eye bean, cheese and fish showed high Zn content up to 8.85 ± 0.01, 12.93 ± 0.26 and 172.03 ± 5.09 mg/100g, respectively. Pulses and cereals showed high level of ionizable Fe. Zn bioavailability was quite low in cereals as compared to pulses; 4.02% in yellow split to 17.40% in Bengal gram. Zn bioavailability of 17.40% is in cheese. Fe bioavailability is high in cooked rice 160.60%, white bread 428.30% and milk powder 241.67% showing that Fe bioavailability increased after cooking whereas the lowest in fish 0.84%. The multivariate and cluster analysis categorized studied foods into two main groups. Copyright © 2016 Elsevier Ltd. All rights reserved.
Eksakulkla, Sukanya; Suksom, Daroonwan; Siriviriyakul, Prasong; Patumraj, Suthiluk
2009-09-07
Several kinds of anti-oxidants have drawn a lot of intention for their benefits on vascular protection. In addition, it has been demonstrated that exercise training could improve endothelial function by up-regulating endothelial nitric oxide synthase (eNOS) protein. Therefore, the present study aims to investigate the effects of genistein, a potent phyto-antioxidant, and exercise training on age-induced endothelial dysfunction in relation to NO bioavailability using in situ NO-sensitive fluorescent dye detection. Male Wistar rats (20-22-month old) were divided into four groups: aged rats treated with corn oil, (Aged+Veh, n = 5), aged rats treated with genistein (Aged+Gen, n = 5, (0.25 mg/kg BW/day, s.c.)), aged rats with and without exercise training (Aged+Ex, n = 5, swimming 40 min/day, 5 days/week for 8 weeks) (Aged+Without-Ex, n = 5). Cremaster arterioles (15-35 micrometer) were visualized by fluorescein isothiocyanate labeled dextran (5 microgram/ml). The vascular response to acetylcholine (Ach; 10(-5)M, 5 ml/5 min) was accessed after 1-min norepinephrine preconstriction (10 micro molar). To determine NO bioavailability, the Krebs-Ringer buffer with 4, 5-diaminofluorescein-diacetate (3 micro molar DAF-2DA), and 10 micro- molar Ach saturated with 95%N2 and 5%CO2 were used. Changes of DAF-2T-intensities along the cremaster arterioles were analyzed by the Image Pro-Plus Software (Media Cybernatics, Inc, USA). Liver malondialdehyde (MDA) level was measured by thiobarbituric acid reaction and used as an indicator for oxidative stress. The results showed that means arterial blood pressure for both Aged+Gen and Aged+Ex groups were significantly reduced when compared to the Aged groups, Aged+Veh and Aged+Without-Ex (P < 0.05). Among the treated groups, Ach-induced vasodilatation were significantly increased (P < 0.05) and was associated with increased NO-associated fluorescent intensities (P < 0.05). On the other hand, MDA levels were significantly reduced (P < 0.05) when Aged+Veh was compared to Aged+Without-Ex. These findings showed that genistein and exercise training could improve age-induced endothelial dysfunction and is related to the increased NO bioavailability.
Li, Dong Xun; Jang, Ki-Young; Kang, Wonku; Bae, Kyoungjin; Lee, Mann Hyung; Oh, Yu-Kyoung; Jee, Jun-Pil; Park, Young-Joon; Oh, Dong Hoon; Seo, Youn Gee; Kim, Young Ran; Kim, Jong Oh; Woo, Jong Soo; Yong, Chul Soon; Choi, Han-Gon
2010-01-01
To develop a novel sibutramine base-loaded solid dispersion with improved solubility bioavailability, various solid dispersions were prepared with water, hydroxypropylmethyl cellulose (HPMC), poloxamer and citric acid using spray-drying technique. The effect of HPMC, poloxamer and citric acid on the aqueous solubility of sibutramine was investigated. The physicochemical properties of solid dispersion were investigated using scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and X-ray powder diffraction. The dissolution and pharmacokinetics in rats of solid dispersion were evaluated compared to the sibutramine hydrochloride monohydrate-loaded commercial product (Reductil). The sibutramine base-loaded solid dispersion gave two type forms. Like conventional solid dispersion system, one type appeared as a spherical shape with smooth surface, as the carriers and drug with relatively low melting point were soluble in water and formed it. The other appeared as an irregular form with relatively rough surface. Unlike conventional solid dispersion system, this type changed no crystalline form of drug. Our results suggested that this type was formed by attaching hydrophilic carriers to the surface of drug without crystal change, resulting from changing the hydrophobic drug to hydrophilic form. The sibutramine-loaded solid dispersion at the weight ratio of sibutramine base/HPMC/poloxamer/citric acid of 5/3/3/0.2 gave the maximum drug solubility of about 3 mg/ml. Furthermore, it showed the similar plasma concentration, area under the curve (AUC) and C(max) of parent drug, metabolite I and II to the commercial product, indicating that it might give the similar drug efficacy compared to the sibutramine hydrochloride monohydrate-loaded commercial product in rats. Thus, this solid dispersion system would be useful to deliver poorly water-soluble sibutramine base with enhanced bioavailability.
Schweiggert, Ralf M.; Kopec, Rachel E.; Villalobos-Gutierrez, Maria G.; Högel, Josef; Quesada, Silvia; Esquivel, Patricia; Schwartz, Steven J.; Carle, Reinhold
2014-01-01
Carrot, tomato and papaya represent important dietary sources of β-carotene and lycopene. The main objective of the present study was to compare the bioavailability of carotenoids from these food sources in healthy human subjects. A total of sixteen participants were recruited for a randomised cross-over study. Test meals containing raw carrots, tomatoes and papayas were adjusted to deliver an equal amount of β-carotene and lycopene. For the evaluation of bioavailability, TAG-rich lipoprotein (TRL) fractions containing newly absorbed carotenoids were analysed over 9.5 h after test meal consumption. The bioavailability of β-carotene from papayas was approximately three times higher than that from carrots and tomatoes, whereas differences in the bioavailability of β-carotene from carrots and tomatoes were insignificant. Retinyl esters appeared in the TRL fractions at a significantly higher concentration after the consumption of the papaya test meal. Similarly, lycopene was approximately 2.6 times more bioavailable from papayas than from tomatoes. Furthermore, the bioavailability of β-cryptoxanthin from papayas was shown to be 2.9 and 2.3 times higher than that of the other papaya carotenoids β-carotene and lycopene, respectively. The morphology of chromoplasts and the physical deposition form of carotenoids were hypothesised to play a major role in the differences observed in the bioavailability of carotenoids from the foods investigated. Particularly, the liquid-crystalline deposition of β-carotene and the storage of lycopene in very small crystalloids in papayas were found to be associated with their high bioavailability. In conclusion, papaya was shown to provide highly bioavailable β-carotene, β-cryptoxanthin and lycopene and may represent a readily available dietary source of provitamin A for reducing the incidence of vitamin A deficiencies in many subtropical and tropical developing countries. PMID:23931131
Allam, Ahmed N; Hamdallah, Sherif I; Abdallah, Ossama Y
2017-01-01
Nanodrug delivery systems have been widely reviewed for their use in several drug formulations to improve bioavailability, sustain effect, and decrease side effects of many candidate drugs. The objective of this study was to evaluate the potential of chitosan (CS)-coated nanosuspensions to enhance bioavailability and reduce the diarrheal side effect of diacerein (DCN) after oral administration. DCN nanosuspensions (DNS) were prepared by sonoprecipitation technique using different stabilizers at three different concentrations. The selected DNS with optimum particle size (PS), polydispersity index (PDI), and Zeta potential (ZP) was coated with three different concentrations of CS-coated DNS (CS-DNS) and screened. In vitro dissolution was performed for the selected lyophilized formulae and compared with DCN powder in addition to the assessment of drug crystallinity via scanning electron microscopy, X-ray powder diffraction, and differential scanning calorimetry. Ex vivo drug permeability using noneverted rat intestine, intraluminal content, and mucoadhesion evaluation was studied for nominated formulae in comparison to DCN suspension. Moreover, in vivo study, pharmacokinetic parameters, and evaluation of diarrheal potential were conducted after oral administration of selected formulae. Polyvinyl pyrrolidone (PVP)-stabilized DNS showed a significant increase (P≤0.05) in PS and PDI as the stabilizer concentration increased. PVP-stabilized DNS with the lowest CS concentration was protected from aggregation by lyophilization with mannitol. A remarked enhancement in dissolution parameters was observed in the nanocrystals’ formulae. Morphological examination and X-ray diffraction confirmed drug crystallinity. The intermediate permeation parameters of CS-DNS-F10, lowest rhein-to-DCN ratio in intraluminal content along with the highest percentage of mucoadhesive, could serve as a sustaining profile of coated formula. CS-DNS-F10 showed a significantly higher Cmax of 0.74±0.15 µg/mL at a delayed Tmax of 3.60±0.55 hours with a relative bioavailability of 172.1% compared to DCN suspension. CS-coated nanosuspensions could serve as promising revenue to enhance bioavailability and reduce the diarrheal side effect of DCN after oral administration. PMID:28740381
Allam, Ahmed N; Hamdallah, Sherif I; Abdallah, Ossama Y
2017-01-01
Nanodrug delivery systems have been widely reviewed for their use in several drug formulations to improve bioavailability, sustain effect, and decrease side effects of many candidate drugs. The objective of this study was to evaluate the potential of chitosan (CS)-coated nanosuspensions to enhance bioavailability and reduce the diarrheal side effect of diacerein (DCN) after oral administration. DCN nanosuspensions (DNS) were prepared by sonoprecipitation technique using different stabilizers at three different concentrations. The selected DNS with optimum particle size (PS), polydispersity index (PDI), and Zeta potential (ZP) was coated with three different concentrations of CS-coated DNS (CS-DNS) and screened. In vitro dissolution was performed for the selected lyophilized formulae and compared with DCN powder in addition to the assessment of drug crystallinity via scanning electron microscopy, X-ray powder diffraction, and differential scanning calorimetry. Ex vivo drug permeability using noneverted rat intestine, intraluminal content, and mucoadhesion evaluation was studied for nominated formulae in comparison to DCN suspension. Moreover, in vivo study, pharmacokinetic parameters, and evaluation of diarrheal potential were conducted after oral administration of selected formulae. Polyvinyl pyrrolidone (PVP)-stabilized DNS showed a significant increase ( P ≤0.05) in PS and PDI as the stabilizer concentration increased. PVP-stabilized DNS with the lowest CS concentration was protected from aggregation by lyophilization with mannitol. A remarked enhancement in dissolution parameters was observed in the nanocrystals' formulae. Morphological examination and X-ray diffraction confirmed drug crystallinity. The intermediate permeation parameters of CS-DNS-F10, lowest rhein-to-DCN ratio in intraluminal content along with the highest percentage of mucoadhesive, could serve as a sustaining profile of coated formula. CS-DNS-F10 showed a significantly higher C max of 0.74±0.15 µg/mL at a delayed T max of 3.60±0.55 hours with a relative bioavailability of 172.1% compared to DCN suspension. CS-coated nanosuspensions could serve as promising revenue to enhance bioavailability and reduce the diarrheal side effect of DCN after oral administration.
Kou, Dawen; Dwaraknath, Sudharsan; Fischer, Yannick; Nguyen, Daniel; Kim, Myeonghui; Yiu, Hiuwing; Patel, Preeti; Ng, Tania; Mao, Chen; Durk, Matthew; Chinn, Leslie; Winter, Helen; Wigman, Larry; Yehl, Peter
2017-10-02
In this study, two dissolution models were developed to achieve in vitro-in vivo relationship for immediate release formulations of Compound-A, a poorly soluble weak base with pH-dependent solubility and low bioavailability in hypochlorhydric and achlorhydric patients. The dissolution models were designed to approximate the hypo-/achlorhydric and normal fasted stomach conditions after a glass of water was ingested with the drug. The dissolution data from the two models were predictive of the relative in vivo bioavailability of various formulations under the same gastric condition, hypo-/achlorhydric or normal. Furthermore, the dissolution data were able to estimate the relative performance under hypo-/achlorhydric and normal fasted conditions for the same formulation. Together, these biorelevant dissolution models facilitated formulation development for Compound-A by identifying the right type and amount of key excipient to enhance bioavailability and mitigate the negative effect of hypo-/achlorhydria due to drug-drug interaction with acid-reducing agents. The dissolution models use readily available USP apparatus 2, and their broader utility can be evaluated on other BCS 2B compounds with reduced bioavailability caused by hypo-/achlorhydria.
Aboalnaja, Khaled Omer; Yaghmoor, Soonham; Kumosani, Taha Abdullah; McClements, David Julian
2016-09-01
The efficacy of many hydrophobic bioactives (pharmaceuticals, supplements, and nutraceuticals) is limited due to their relatively low or highly variable bioavailability. Nanoemulsions consisting of small lipid droplets (r < 100 nm) dispersed in water can be designed to improve bioavailability. The major factors limiting the oral bioavailability of hydrophobic bioactive agents are highlighted: bioaccessibility, absorption and transformation. Two nanoemulsion-based approaches to control these processes and improve bioavailability are discussed: nanoemulsion delivery systems (NDS) and nanoemulsion excipient systems (NES). In NDS, hydrophobic bioactives are dissolved within the lipid phase of oil-in-water nanoemulsions. In NES, the bioactives are present within a conventional drug, supplement, or food, which is consumed with an oil-in-water nanoemulsion. Examples of NDS and NES utilization to improve bioactive bioavailability are given. Considerable progress has been made in nanoemulsion design, fabrication, and testing. This knowledge facilitates the design of new formulations to improve the bioavailability of pharmaceuticals, supplements, and nutraceuticals. NDS and NES must be carefully designed based on the major factors limiting the bioavailability of specific bioactives. Research is still required to ensure these systems are commercially viable, and to demonstrate their safety and efficacy using animal and human feeding studies.
Saccharides enhance iron bioavailability to Southern Ocean phytoplankton
Hassler, Christel S.; Nichols, Carol Mancuso; Butler, Edward C. V.; Boyd, Philip W.
2011-01-01
Iron limits primary productivity in vast regions of the ocean. Given that marine phytoplankton contribute up to 40% of global biological carbon fixation, it is important to understand what parameters control the availability of iron (iron bioavailability) to these organisms. Most studies on iron bioavailability have focused on the role of siderophores; however, eukaryotic phytoplankton do not produce or release siderophores. Here, we report on the pivotal role of saccharides—which may act like an organic ligand—in enhancing iron bioavailability to a Southern Ocean cultured diatom, a prymnesiophyte, as well as to natural populations of eukaryotic phytoplankton. Addition of a monosaccharide (>2 nM of glucuronic acid, GLU) to natural planktonic assemblages from both the polar front and subantarctic zones resulted in an increase in iron bioavailability for eukaryotic phytoplankton, relative to bacterioplankton. The enhanced iron bioavailability observed for several groups of eukaryotic phytoplankton (i.e., cultured and natural populations) using three saccharides, suggests it is a common phenomenon. Increased iron bioavailability resulted from the combination of saccharides forming highly bioavailable organic associations with iron and increasing iron solubility, mainly as colloidal iron. As saccharides are ubiquitous, present at nanomolar to micromolar concentrations, and produced by biota in surface waters, they also satisfy the prerequisites to be important constituents of the poorly defined “ligand soup,” known to weakly bind iron. Our findings point to an additional type of organic ligand, controlling iron bioavailability to eukaryotic phytoplankton—a key unknown in iron biogeochemistry. PMID:21169217
Kumar, Nitesh; Rai, Amita; Reddy, Neetinkumar D; Raj, P Vasanth; Jain, Prateek; Deshpande, Praful; Mathew, Geetha; Kutty, N Gopalan; Udupa, Nayanabhirama; Rao, C Mallikarjuna
2014-10-01
Silymarin, a hepatoprotective agent, has poor oral bioavailability. However, the current dosage form of the drug does not target the liver and inflammatory cells selectively. The aim of the present study was to develop lecithin-based carrier system of silymarin by incorporating phytosomal-liposomal approach to increase its oral bioavailability and to make it target-specific to the liver for enhanced hepatoprotection. The formulation was prepared by film hydration method. Release of drug was assessed at pH 1.2 and 7.4. Formulation was assessed for in vitro hepatoprotection on Chang liver cells, lipopolysaccharide-induced reactive oxygen species (ROS) production by RAW 267.4 (murine macrophages), in vivo efficacy against paracetamol-induced hepatotoxicity and pharmacokinetic study by oral route in Wistar rat. The formulation showed maximum entrapment (55%) for a lecithin-cholesterol ratio of 6:1. Comparative release profile of formulation was better than silymarin at pH 1.2 and pH 7.4. In vitro studies showed a better hepatoprotection efficacy for formulation (one and half times) and better prevention of ROS production (ten times) compared to silymarin. In in vivo model, paracetamol showed significant hepatotoxicity in Wistar rats assessed through LFT, antioxidant markers and inflammatory markers. The formulation was found more efficacious than silymarin suspension in protecting the liver against paracetamol toxicity and the associated inflammatory conditions. The liposomal formulation yielded a three and half fold higher bioavailability of silymarin as compared with silymarin suspension. Incorporating the phytosomal form of silymarin in liposomal carrier system increased the oral bioavailability and showed better hepatoprotection and better anti-inflammatory effects compared with silymarin suspension. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
[Features of bemithyl pharmacokinetics upon inhalation administration].
Kurpiakova, A F; Geĭbo, D S; Bykov, V N; Nikiforov, A S
2014-01-01
A comparative study of bemithyl pharmacokinetics was carried out upon its inhalation, intragastric and intravenous administration. The main drug metabolites were identified and the pharmacokinetic parameters were calculated. The obtained results suggest that the inhalation administration of bemithyl is a promising replacement for oral administration, which is related to high bioavailability of the drug and the absence of the effect of "first pass" through the liver.
Ling, Guixia; Zhang, Peng; Zhang, Wenping; Sun, Jin; Meng, Xiaoxue; Qin, Yimeng; Deng, Yihui; He, Zhonggui
2010-12-01
To improve the encapsulation efficiency and oral bioavailability of vincristine sulfate (VCR), novel self-assembled dextran sulphate-PLGA hybrid nanoparticles (DPNs) were successfully developed using self-assembly and nanoprecipitation method. By introducing the negative polymer of dextran sulphate sodium (DS), VCR was highly encapsulated (encapsulation efficiency up to 93.6%) into DPNs by forming electrostatic complex. In vitro release of VCR solution (VCR-Sol) and VCR-loaded DPNs (VCR-DPNs) in pH 7.4 PBS showed that about 80.4% of VCR released from VCR-DPNs after 96h and burst release was effectively reduced, indicating pronounced sustained-release characteristics. In vivo pharmacokinetics in rats after oral administration of VCR-Sol and VCR-DPNs indicated that the apparent bioavailability of VCR-DPNs was increased to approximate 3.3-fold compared to that of VCR-Sol. The cellular uptake experiments were conducted by quantitative assay of VCR cellular accumulation and fluorescence microscopy imaging of fluorescent labeled DPNs in two human breast cancer cells including MCF-7 and P-glycoprotein over-expressing MCF-7/Adr cells. The relative cellular uptake of VCR-DPNs was 12.4-fold higher than that of VCR-Sol in MCF-7/Adr cells implying that P-glycoprotein-mediated drug efflux was diminished by the introduction of DPNs. The new DPNs might provide an effective strategy for oral delivery of VCR with improved encapsulation efficiency and oral bioavailability. Copyright © 2010 Elsevier B.V. All rights reserved.
Kumar, Sunny; Kesharwani, Siddharth S; Mathur, Himanshi; Tyagi, Mohit; Bhat, G Jayarama; Tummala, Hemachand
2016-01-20
Curcumin is a natural dietary compound with demonstrated potential in preventing/treating several chronic diseases in animal models. However, this success is yet to be translated to humans mainly because of its poor oral bioavailability caused by extremely low water solubility. This manuscript demonstrates that water insoluble curcumin (~1μg/ml) forms highly aqueous soluble complexes (>2mg/ml) with a safe pH sensitive polymer, poly(butyl-methacrylate-co-(2-dimethylaminoethyl) methacrylate-co-methyl-methacrylate) when precipitated together in water. The complexation process was optimized to enhance curcumin loading by varying several formulation factors. Acetone as a solvent and polyvinyl alcohol as a stabilizer with 1:2 ratio of drug to polymer yielded complexes with relatively high loading (~280μg/ml) and enhanced solubility (>2mg/ml). The complexes were amorphous in solid and were soluble only in buffers with pHs less than 5.0. Hydrogen bond formation and hydrophobic interactions between curcumin and the polymer were recorded by infrared spectroscopy and nuclear magnetic resonance spectroscopy, respectively. Molecular complexes of curcumin were more stable at various pHs compared to unformulated curcumin. In mice, these complexes increased peak plasma concentration of curcumin by 6 times and oral bioavailability by ~20 times. This is a simple, economic and safer strategy of enhancing the oral bioavailability of curcumin. Copyright © 2015 Elsevier B.V. All rights reserved.
The comparison of different daidzein-PLGA nanoparticles in increasing its oral bioavailability.
Ma, Yiran; Zhao, Xinyi; Li, Jian; Shen, Qi
2012-01-01
The aim of this research was to increase the oral bioavailability of daidzein by the formulations of poly(lactic-co-glycolic) acid (PLGA) nanoparticles loaded with daidzein. Amongst the various traditional and novel techniques of preparing daidzein-loaded PLGA nanoparticles, daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles were selected. The average drug entrapment efficiency, particle size, and zeta potential of daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles were 81.9% ± 5%, 309.2 ± 14.0 nm, -32.14 ± 2.53 mV and 83.2% ± 7.2%, 323.2 ± 4.8 nm, -18.73 ± 1.68 mV, respectively. The morphological characterization of nanoparticles was observed with scanning electron microscopy by stereological method and the physicochemical state of nanoparticles was valued by differential scanning calorimetry. The in vitro drug-release profile of both nanoparticle formulations fitted the Weibull dynamic equation. Pharmacokinetic studies demonstrated that after oral administration of daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles to rats at a dose of 10 mg/kg, relative bioavailability was enhanced about 5.57- and 8.85-fold, respectively, compared to daidzein suspension as control. These results describe an effective strategy for oral delivery of daidzein-loaded PLGA nanoparticles and might provide a fresh approach to enhancing the bioavailability of drugs with poor lipophilic and poor hydrophilic properties.
The comparison of different daidzein-PLGA nanoparticles in increasing its oral bioavailability
Ma, Yiran; Zhao, Xinyi; Li, Jian; Shen, Qi
2012-01-01
The aim of this research was to increase the oral bioavailability of daidzein by the formulations of poly(lactic-co-glycolic) acid (PLGA) nanoparticles loaded with daidzein. Amongst the various traditional and novel techniques of preparing daidzein-loaded PLGA nanoparticles, daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles were selected. The average drug entrapment efficiency, particle size, and zeta potential of daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles were 81.9% ± 5%, 309.2 ± 14.0 nm, −32.14 ± 2.53 mV and 83.2% ± 7.2%, 323.2 ± 4.8 nm, −18.73 ± 1.68 mV, respectively. The morphological characterization of nanoparticles was observed with scanning electron microscopy by stereological method and the physicochemical state of nanoparticles was valued by differential scanning calorimetry. The in vitro drug-release profile of both nanoparticle formulations fitted the Weibull dynamic equation. Pharmacokinetic studies demonstrated that after oral administration of daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles to rats at a dose of 10 mg/kg, relative bioavailability was enhanced about 5.57- and 8.85-fold, respectively, compared to daidzein suspension as control. These results describe an effective strategy for oral delivery of daidzein-loaded PLGA nanoparticles and might provide a fresh approach to enhancing the bioavailability of drugs with poor lipophilic and poor hydrophilic properties. PMID:22346351
Zidan, Ahmed S; Emam, Sherif E; Shehata, Tamer M; Ghazy, Fakhr-eldin S
2015-06-01
Pharmaceutical development was adopted in the current study to propose a pediatric rectal formulation of sulpiride as a substitute to the available oral or parenteral formulations in the management of Tourette syndrome (TS). The goal was to formulate a product that is easy to use, stable, and highly bioavailable and to achieve a rapid clinical efficacy. Towards this aim, sulpiride solid dispersion (SD) with tartaric acid at a weight ratio of 1:0.25 was incorporated into different suppository bases, namely witepsol W25, witepsol H15, witepsol E75, suppocire NA, suppocire A, glycerogelatin, and polyethylene glycols. The formulae were evaluated in vitro using different pharmacotechnical methods such as visual, melting, weight and content uniformities, drug release, differential scanning calorimetry (DSC), Fourier transform infrared (FTIR), and X-ray diffraction (XRD) analyses. In vivo bioavailability was also assessed in rabbits to compare the bioavailability of either raw sulpiride-incorporated or its SD-incorporated witepsol H15-based suppositories to its oral suspension (reference). Sulpiride SD-incorporated witepsol H15 formulation showed acceptable in vitro characteristics with a bioavailability of 117% relative to oral dosing, which excel that in humans (27% after dosing of oral product). In addition, the proposed formula not only passed the 6-month stability study but also proposed a promising scale-up approach. Hence, it showed a great potential for pediatric product development to manage TS in rural areas.
Wang, Yan-ping; Gan, Yong; Zhang, Xin-xin
2011-01-01
Aim: To develop a novel gastroretentive drug delivery system based on a self-microemulsifying (SME) lipid mixture for improving the oral absorption of the immunosuppressant tacrolimus. Methods: Liquid SME mixture, composed of Cremophor RH40 and monocaprylin glycerate, was blended with polyethylene oxide, chitosan, polyvinylpyrrolidone and mannitol, and then transformed into tablets via granulation, with ethanol as the wetting agent. The tablets were characterized in respect of swelling, bioadhesive and SME properties. In vitro dissolution was conducted using an HCl buffer at pH 1.2. Oral bioavailability of the tablets was examined in fasted beagle dogs. Results: The tablet could expand to 13.5 mm in diameter and 15 mm in thickness during the initial 20 min of contact with the HCl buffer at pH 1.2. The bioadhesive strength was as high as 0.98±0.06 N/cm2. The SME gastroretentive sustained-release tablets preserved the SME capability of the liquid SME formations under transmission electron microscope. The drug-release curve was fit to the zero-order release model, which was helpful in reducing fluctuations in blood concentration. Compared with the commercially available capsules of tacrolimus, the relative bioavailability of the SME gastroretentive sustained-release tablets was 553.4%±353.8%. Conclusion: SME gastroretentive sustained-release tablets can enhance the oral bioavailability of tacrolimus with poor solubility and a narrow absorption window. PMID:21927013
Lu, Yingnian; Wu, Kefeng; Li, Li; He, Yuhui; Cui, Liao; Liang, Nianci; Mu, Bozhong
2013-01-01
The objective of this study was to develop an oral microemulsion formulation of the antitumor diterpenoid agent, ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic-acid (henceforth referred to as 5F), to enhance its bioavailability and evaluate its hepatotoxicity. Pseudoternary phase diagrams showed that the optimal microemulsion formulation contained 45% water, 10% castor oil as the oil phase, 15% Cremophor EL as the surfactant, and 30% as a cosurfactant mixture of 1,2-propanediol and polyethylene glycol (PEG)-400 (2:1, w/w). The microemulsion preparation was characterized and its droplet diameter was within 50 nm. Release of 5F in vitro from the microemulsion was slightly increased compared with a suspension containing the same amount of active drug. Pharmacokinetic parameters in vivo indicated that bioavailability was markedly improved, with the relative bioavailability being 616.15% higher for the microemulsion than for the suspension. Toxicity tests showed that the microemulsion had no hepatotoxicity in mice. These results suggest the potential for 5F microemulsion to be administered by the oral route. PMID:23690685
Jung, Su Kyoung; Kim, Mi-Kyung; Lee, Young-Hoon; Shin, Dong Hoon; Shin, Min-Ho; Chun, Byung-Yeol; Choi, Bo Youl
2013-01-01
Background There is a proposed link between dietary zinc intake and atherosclerosis, but this relationship remains unclear. Phytate may contribute to this relationship by influencing zinc bioavailability. Objective The aim of this study is to examine the relationship between zinc bioavailability and subclinical atherosclerosis in healthy Korean adults. Materials and Methods The present cross-sectional analysis used baseline data from the Korean multi-Rural Communities Cohort Study (MRCohort), which is a part of The Korean Genome Epidemiology Study (KoGES). A total of 5,532 subjects (2,116 men and 3,416 women) aged 40 years and older were recruited from rural communities in South Korea between 2005 and 2010. Phytate:zinc molar ratio, estimated from a food-based food frequency questionnaire (FFQ) of 106 food items, was used to determine zinc bioavailability, and carotid intima media thickness (cIMT) and pulse wave velocity (PWV) were measured to calculate the subclinical atherosclerotic index. Results We found that phytate:zinc molar ratio is positively related to cIMT in men. A higher phytate:zinc molar ratio was significantly related to an increased risk of atherosclerosis in men, defined as the 80th percentile value of cIMT (5th vs. 1st quintile, OR = 2.11, 95% CI 1.42-3.15, P for trend = 0.0009), and especially in elderly men (5th vs. 1st quintile, OR = 2.58, 95% CI 1.52-4.37, P for trend = 0.0021). We found a positive relationship between phytate:zinc molar ratio and atherosclerosis risk among women aged 65 years or younger. Phytate:zinc molar ratio was not found to be related to PWV. Conclusions Lower zinc bioavailability may be related to higher atherosclerosis risk. PMID:24223217
Bedi, Gillinder; Cooper, Ziva D.; Haney, Margaret
2011-01-01
Marijuana dependence is a substantial public health problem, with existing treatments showing limited efficacy. In laboratory and clinical studies, the cannabinoid receptor 1 (CB1) agonist oral Δ9tetrahydrocannabinol (THC; dronabinol) has been shown to decrease marijuana withdrawal, but not relapse. Dronabinol has poor bioavailability, potentially contributing to its failure to decrease relapse. The synthetic THC analogue, nabilone, has better bioavailability than dronabinol. We therefore aimed to characterize nabilone's behavioral and physiological effects across a range of acute doses in current marijuana smokers, and compare these with dronabinol's effects. Participants (4F; 10M) smoking marijuana 6.6 (SD = 0.7) days/week completed this outpatient, within-subjects, double-blind, randomized protocol. Over 7 sessions, the time-dependent subjective, cognitive, and cardiovascular effects of nabilone (2, 4, 6, 8 mg), dronabinol (10, 20 mg) and placebo were assessed. Nabilone (4, 6, 8 mg) and dronabinol (10, 20 mg) increased ratings of feeling a good effect, a strong effect, and/or `high' relative to placebo; nabilone had a slower onset of peak subjective effects than dronabinol. Nabilone (6, 8 mg) modestly lowered psychomotor speed relative to placebo and dronabinol. There were dose-dependent increases in heart rate after nabilone, and nabilone (2 mg) and dronabinol (10 mg) decreased systolic blood pressure. Thus, nabilone produced sustained, dose-related increases in positive mood, few cognitive decrements, and lawful cardiovascular alterations. It had a longer time to peak effects than dronabinol and effects were more dose-related, suggesting improved bioavailability. Nabilone was well-tolerated by marijuana smokers, supporting further testing as a potential medication for marijuana dependence. PMID:22260337
Bedi, Gillinder; Cooper, Ziva D; Haney, Margaret
2013-09-01
Marijuana dependence is a substantial public health problem, with existing treatments showing limited efficacy. In laboratory and clinical studies, the cannabinoid receptor 1 agonist oral Δ9tetrahydrocannabinol (THC; dronabinol) has been shown to decrease marijuana withdrawal but not relapse. Dronabinol has poor bioavailability, potentially contributing to its failure to decrease relapse. The synthetic THC analogue, nabilone, has better bioavailability than dronabinol. We therefore aimed to characterize nabilone's behavioral and physiological effects across a range of acute doses in current marijuana smokers and compare these with dronabinol's effects. Participants (4 female; 10 male) smoking marijuana 6.6 (standard deviation = 0.7) days/week completed this outpatient, within-subjects, double-blind, randomized protocol. Over seven sessions, the time-dependent subjective, cognitive and cardiovascular effects of nabilone (2, 4, 6, 8 mg), dronabinol (10, 20 mg) and placebo were assessed. Nabilone (4, 6, 8 mg) and dronabinol (10, 20 mg) increased ratings of feeling a good effect, a strong effect and/or 'high' relative to placebo; nabilone had a slower onset of peak subjective effects than dronabinol. Nabilone (6, 8 mg) modestly lowered psychomotor speed relative to placebo and dronabinol. There were dose-dependent increases in heart rate after nabilone, and nabilone (2 mg) and dronabinol (10 mg) decreased systolic blood pressure. Thus, nabilone produced sustained, dose-related increases in positive mood, few cognitive decrements and lawful cardiovascular alterations. It had a longer time to peak effects than dronabinol, and effects were more dose-related, suggesting improved bioavailability. Nabilone was well tolerated by marijuana smokers, supporting further testing as a potential medication for marijuana dependence. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.
Microbial reporters of metal bioavailability
Magrisso, Sagi; Erel, Yigal; Belkin, Shimshon
2008-01-01
Summary When attempting to assess the extent and the implications of environmental pollution, it is often essential to quantify not only the total concentration of the studied contaminant but also its bioavailable fraction: higher bioavailability, often correlated with increased mobility, signifies enhanced risk but may also facilitate bioremediation. Genetically engineered microorganisms, tailored to respond by a quantifiable signal to the presence of the target chemical(s), may serve as powerful tools for bioavailability assessment. This review summarizes the current knowledge on such microbial bioreporters designed to assay metal bioavailability. Numerous bacterial metal‐sensor strains have been developed over the past 15 years, displaying very high detection sensitivities for a broad spectrum of environmentally significant metal targets. These constructs are based on the use of a relatively small number of gene promoters as the sensing elements, and an even smaller selection of molecular reporter systems; they comprise a potentially useful panel of tools for simple and cost‐effective determination of the bioavailability of heavy metals in the environment, and for the quantification of the non‐bioavailable fraction of the pollutant. In spite of their inherent advantages, however, these tools have not yet been put to actual use in the evaluation of metal bioavailability in a real environmental remediation scheme. For this to happen, acceptance by regulatory authorities is essential, as is a standardization of assay conditions. PMID:21261850
BIOAVAILABILITY OF CHEMICAL CONTAMINANTS IN AQUATIC SYSTEMS
Before a chemical can elicit toxicity, the animal must accumulate a dose at a target tissue of sufficient magnitude to produce a response. Bioavailability refers to the degree to which this accumulation occurs relative to the amount of chemical present in the environment, and is ...
Relative bioavailability of arsenic contaminated soils in a mouse model
Exposure to As contaminated soils compels extensive soil cleanups so that human health risks are minimized. In order to improve exposure estimates and potentially reduce remediation costs, determination of the bioavailability of As in soils is needed. The objective of this study ...
Ni, Zhaokui; Wang, Shengrui; Wang, Yuemin
2016-12-01
This study aims to establish the relative importance of sediment organic phosphorus (P o ) to the total P and the major classes of organic molecules that contribute to sediment P o , determined by measuring their susceptibility to enzymatic hydrolysis, across a suite of lakes ranging from oligotrophic to eutrophic status. The results showed that P o accounted for 21-60% of total P, and bioavailable P o accounted for 9-34% of P o in the sediments. The bioavailable P o includes mainly labile (H 2 O-P o ) and moderately labile (NaOH-P o ) P forms. For H 2 O-P o (accounting for only1.4% of P o ), 53% (average) was labile monoester P, 28% was diester P and 17% was phytate-like P. For NaOH-P o (accounting for 9-33% of P o ), 32% was labile monoester P, 33% was phytate-like P and 18% was diester P. The composition of bioavailable P o , determined by enzyme assays, was related to the lake nutrient levels, which implies that sediment bioavailable P o could act as an effective indicator for lake eutrophic status. With the increase of lake nutrient levels, bioavailable P o content and alkaline phosphatase activity in the sediment all increased, indicating that P o represents an important and bioavailable source of P that increases with eutrophication, and could contribute to internal loading and resistance of eutrophic lakes to remediation. This implies that eutrophic lakes would maintain long-term eutrophic status and algal bloom phenomena even after the external input of P was controlled and the total P concentration of water has declined. Thus, in order to reduce the release risk of sediment P more efficiently and effectively, sediment P control technique should focus not only on reducing the total P and inorganic P, but should also pay close attention to the removal of bioavailable P o . Copyright © 2016 Elsevier Ltd. All rights reserved.
Kim, Jeong Tae; Barua, Sonia; Kim, Hyeongmin; Hong, Seong-Chul; Yoo, Seung-Yup; Jeon, Hyojin; Cho, Yeongjin; Gil, Sangwon; Oh, Kyungsoo; Lee, Jaehwi
2017-07-01
In this study, the effect of particle size of genistein-loaded solid lipid particulate systems on drug dissolution behavior and oral bioavailability was investigated. Genistein-loaded solid lipid microparticles and nanoparticles were prepared with glyceryl palmitostearate. Except for the particle size, other properties of genistein-loaded solid lipid microparticles and nanoparticles such as particle composition and drug loading efficiency and amount were similarly controlled to mainly evaluate the effect of different particle sizes of the solid lipid particulate systems on drug dissolution behavior and oral bioavailability. The results showed that genistein-loaded solid lipid microparticles and nanoparticles exhibited a considerably increased drug dissolution rate compared to that of genistein bulk powder and suspension. The microparticles gradually released genistein as a function of time while the nanoparticles exhibited a biphasic drug release pattern, showing an initial burst drug release, followed by a sustained release. The oral bioavailability of genistein loaded in solid lipid microparticles and nanoparticles in rats was also significantly enhanced compared to that in bulk powders and the suspension. However, the bioavailability from the microparticles increased more than that from the nanoparticles mainly because the rapid drug dissolution rate and rapid absorption of genistein because of the large surface area of the genistein-solid lipid nanoparticles cleared the drug to a greater extent than the genistein-solid lipid microparticles did. Therefore, the findings of this study suggest that controlling the particle size of solid-lipid particulate systems at a micro-scale would be a promising strategy to increase the oral bioavailability of genistein.
Pandareesh, M D; Shrivash, M K; Naveen Kumar, H N; Misra, K; Srinivas Bharath, M M
2016-11-01
Curcumin (CUR), a dietary polyphenol has diverse pharmacologic effects, but is limited by poor bioavailability. This is probably due to decreased solubility, cellular uptake and stability. In order to enhance its solubility and bioavailability, we synthesized the CUR bioconjugate curcumin monoglucoside (CMG) and tested its bioavailability, neuroprotective and anti-apoptotic propensity against rotenone (ROT) induced toxicity in N27 dopaminergic neuronal cells and Drosophila models. Our results elucidate that CMG showed improved bioavailability than CUR in N27 cells. Pre-treatment with CMG protected against ROT neurotoxicity and exerted antioxidant effects by replenishing cellular glutathione levels and significantly decreasing reactive species. CMG pre-treatment also restored mitochondrial complex I and IV activities inhibited by ROT. ROT-induced nuclear damage was also restored by CMG as confirmed by comet assay. CMG induced anti-apoptotic effects was substantiated by decreased phosporylation of JNK3 and c-jun, which in turn decreased the cleavage of pro-caspase 3. Q-PCR analysis of redox genes showed up-regulation of NOS2 and down-regulation of NQO1 upon ROT exposure and this was attenuated by CMG pre-treatment. Studies in the Drosophila ROT model revealed that, CMG administration showed better survival rate and locomotor activity, improved antioxidant activity and dopamine content than ROT treated group and was comparable with the CUR group. Based on these data, we surmise that CMG has improved bioavailability and offered neuroprotection comparable with CUR, against ROT-induced toxicity both in dopaminergic neuronal cell line and Drosophila models, with therapeutic implications for PD.
Staab, Alexander; Schug, Barbara S; Larsimont, Véronique; Elze, Martina; Thümmler, Daniela; Mutschler, Ernst; Blume, Henning
2003-02-01
The neurotropic-musculotropic spasmolytic agent denaverine hydrochloride is used mainly in the treatment of smooth muscle spasms of the gastrointestinal and urogenital tract. Despite its commercial availability as a solution for intravenous or intramuscular administration (ampoule) and as a suppository formulation, no pharmacokinetic data in man was available to date. Therefore, the objectives of this clinical trial were to determine the basic pharmacokinetic parameters of denaverine after intravenous administration, to assess the feasibility of using the oral route of administration and to characterise the bioavailability of the suppository formulation. To achieve this, healthy subjects received 50 mg denaverine hydrochloride intravenously, orally and rectally in aqueous solutions and rectally as suppository in an open, randomised crossover design. Total body clearance, volume of distribution at steady-state and half-life of denaverine are 5.7 ml/min per kg, 7.1 l/kg and 33.8 h, respectively. The absolute bioavailability after oral administration of an aqueous solution is 37%. First-pass metabolism leading to the formation of N-monodemethyl denaverine was found to be one reason for the incomplete bioavailability after oral administration. Rectal administration of an aqueous solution of denaverine hydrochloride resulted in a decreased rate (median of C(max) ratios: 26%, difference in median t(max) values: 1.9 h) and extent (31%) of bioavailability compared to oral administration. Using the suppository formulation led to a further reduction in rate (median of C(max) ratios: 30%, difference in median t(max) values: 3 h) and extent (42%) of bioavailability compared to the rectal solution.
Wu, Chunzhen; Yan, Renjie; Zhang, Rongjin; Bai, Fan; Yang, Yifang; Wu, Zhaoyang; Wu, Anming
2013-08-26
Corydalis decumbens, a Traditional Chinese Medicine listed in Chinese Pharmacopoeia, is clinically used for the treatment of paralytic stroke, headache, rheumatic arthritis and sciatica in China. This study was aimed to compare the pharmacokinetics and bioavailability of protopine, tetrahydropalmatine, bicuculline, and egenine in three formulations prepared from the rhizomes of Corydalis decumbens. Alkaloid extract (CDAs-SFE) was prepared from the rhizomes of Corydalis decumbens by supercritical CO2 fluid extraction; CDAs-SFE/HPβCD (hydroxypropyl-β-cyclodextrin inclusion complex), and CDAs-SFE/HCl (hydrochloride freeze-dried powder) were resulted from CDAs-SFE through complexation with HPβCD and hydrochloride, respectively. An UFLC-MS/MS method was developed for quantitative analysis of protopine, tetrahydropalmatine, bicuculline and egenine simultaneously in rat plasma after oral administration. The differences of pharmacokinetics and bioavailability of the four alkaloids in three formulations were determined by pharmacokinetics analyses. The Cmax, AUC and bioavailability of protopine and tetrahydropalamatine (bioactive components) in CDAs-SFE/HCl were significantly higher than in CDAs-SFE and in CDAs-SFE/HPβCD. In contrast, in CDAs-SFE/HPβCD, AUC and bioavailability of tetrahydropalamatine were significantly lower, while those of bicuculline (toxic compound) appeared to be higher than both in CDAs-SFE and in CDAs-SFE/HCl. The results indicated that CDAs-SFE/HCl was the best beneficial formulation among the three formulations for the alkaloid extract prepared from the rhizomes of Corydalis decumbens, in which protopine and tetrahydropalamatine displayed higher bioavailability, but lower for bicuculline. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Liu, Chun; Cheng, Fenfen; Yang, Xiaoquan
2017-03-22
Curcumin is a poorly water-soluble drug, and its oral bioavailability is very low. Here, a novel self-assembly nanoparticle delivery carrier has been successfully developed by using soybean Bowman-Birk inhibitor (BBI) to improve the solubility, bioaccessibility, and oral absorption of curcumin. BBI is a unique protein, which can be resistant to the pH range and proteolytic enzymes in the gastrointestinal tract (GIT), bioavailable, and not allergenic. The encapsulation efficiencies (EE) and the loading capacities (LC) of curcumin in the curcumin-loaded BBI nanoparticles (Cur-BBI-NPs, size = 90.09 nm, PDI = 0.103) were 86.17 and 10.31%, respectively. The in vitro bioaccessibility of Cur-BBI-NPs was superior to that of curcumin-loaded sodium caseinate (SC) nanoparticles (Cur-SC-NPs) (as control). Moreover, Cur-BBI-NPs significantly enhanced the bioavailability of curcumin in rats compared with Cur-SC-NPs, and the clathrin-mediated endocytosis pathway probably contributed to the favorable bioavailability of Cur-BBI-NPs, as revealed by the cellular uptake inhibition study.
Lecithin-Based Nano-emulsification Improves the Bioavailability of Conjugated Linoleic Acid.
Heo, Wan; Kim, Jun Ho; Pan, Jeong Hoon; Kim, Young Jun
2016-02-17
In this study, we investigated the effects of lecithin-based nano-emulsification on the heat stability and bioavailability of conjugated linoleic acid (CLA) in different free fatty acid (FFA) and triglyceride (TG) forms. CLA nano-emulsion in TG form exhibited a small droplet size (70-120 nm) compared to CLA nano-emulsion in FFA form (230-260 nm). Nano-emulsification protected CLA isomers in TG form, but not in free form, against thermal decomposition during the heat treatment. The in vitro bioavailability test using monolayers of Caco-2 human intestinal cells showed that nano-emulsification increased the cellular uptake of CLA in both FFA and TG forms. More importantly, a rat feeding study showed that CLA content in small intestinal tissues or plasma was higher when CLA was emulsified, indicating an enhanced oral bioavailability of CLA by nano-emulsification. These results provide important information for development of nano-emulsion-based delivery systems that improve thermal stability and bioavailability of CLA.
Elucidating the impact of micro-scale heterogeneous bacterial distribution on biodegradation
NASA Astrophysics Data System (ADS)
Schmidt, Susanne I.; Kreft, Jan-Ulrich; Mackay, Rae; Picioreanu, Cristian; Thullner, Martin
2018-06-01
Groundwater microorganisms hardly ever cover the solid matrix uniformly-instead they form micro-scale colonies. To which extent such colony formation limits the bioavailability and biodegradation of a substrate is poorly understood. We used a high-resolution numerical model of a single pore channel inhabited by bacterial colonies to simulate the transport and biodegradation of organic substrates. These high-resolution 2D simulation results were compared to 1D simulations that were based on effective rate laws for bioavailability-limited biodegradation. We (i) quantified the observed bioavailability limitations and (ii) evaluated the applicability of previously established effective rate concepts if microorganisms are heterogeneously distributed. Effective bioavailability reductions of up to more than one order of magnitude were observed, showing that the micro-scale aggregation of bacterial cells into colonies can severely restrict the bioavailability of a substrate and reduce in situ degradation rates. Effective rate laws proved applicable for upscaling when using the introduced effective colony sizes.
Improved oral bioavailability of probucol by dry media-milling.
Li, Jia; Yang, Yan; Zhao, Meihui; Xu, Hui; Ma, Junyuan; Wang, Shaoning
2017-09-01
The polymer/probucol co-milled mixtures were prepared to improve drug dissolution rate and oral bioavailability. Probucol, a BCS II drug, was co-milled together with Copovidone (Kollidon VA64, VA64), Soluplus, or MCC using the dry media-milling process with planetary ball-milling equipment. The properties of the milled mixtures including morphology, crystal form, vitro drug dissolution and in vivo oral bioavailability in rats were evaluated. Probucol existed as an amorphous in the matrix of the co-milled mixtures containing VA64, which helped to enhance drug dissolution. The ternary mixture composed of VA64, RH40, and probucol showed increased dissolution rates in both sink and non-sink conditions. It also had a higher oral bioavailability compared to the reference formulation. Dry-media milling of binary or ternary mixtures composed of drug, polymer and surfactant possibly have wide applications to improve dissolution rate and oral bioavailability of water-insoluble drugs. Copyright © 2017 Elsevier B.V. All rights reserved.
Excipient-mediated alteration in drug bioavailability in the rat depends on the sex of the animal.
Mai, Yang; Afonso-Pereira, Francisco; Murdan, Sudaxshina; Basit, Abdul W
2017-09-30
The pharmaceutical excipient, polyethylene glycol 400 (PEG 400), unexpectedly alters the bioavailability of the BCS class III drug ranitidine in a sex-dependent manner. As ranitidine is a substrate for the efflux transporter P-glycoprotein (P-gp), we hypothesized that the sex-related influence could be due to interactions between PEG 400 and P-gp. In this study, we tested this hypothesis by: i) measuring the influence of PEG 400 on the oral bioavailability of another P-gp substrate (ampicillin) and of a non-P-gp substrate (metformin); and ii) measuring the effect of PEG 400 on drug bioavailability in the presence of a P-gp inhibitor (cyclosporine A) in male and female rats. We found that PEG 400 significantly increased (p<0.05) the bioavailability of ampicillin (the P-gp substrate) in male rats, but not in female ones. In contrast, PEG 400 had no influence on the bioavailability of the non-P-gp substrate, metformin in male or female rats. Inhibition of P-gp by oral pre-treatment with cyclosporine A increased the bioavailability of the P-gp substrates (ampicillin and ranitidine) in males and females (p<0.05), and to a greater extent in males, but had no influence on the bioavailability of metformin in either male or female rats. These results prove the hypothesis that the sex-specific effect of PEG 400 on the bioavailability of certain drugs is due to the interaction of PEG 400 with the efflux transporter P-gp. Copyright © 2017 Elsevier B.V. All rights reserved.
Ringling, Christiane
2017-01-01
Generating bioavailability data from in vivo studies is time-consuming and expensive. In vitro simulation can help to investigate factors influencing bioavailability or facilitate quantifying the impact of such factors. For folates, an efficient deconjugation of polyglutamates to the corresponding monoglutamates is crucial for bioavailability and highly dependent on the food matrix. Therefore, the bioaccessibility of folates of different foodstuffs was examined using a simulated digestion model with respect to folate stability and the efficiency of deconjugation. For realistic simulated deconjugation, porcine brush border membrane was used during the phase of the simulated digestion in the small intestine. For a better understanding of folate behaviour during digestion, single folate monoglutamates were also investigated with this in vitro digestion model. The results for bioaccessibility were compared with data from a human bioavailability study. They support the idea that both stability and deconjugation have an influence on bioaccessibility and thus on bioavailability. Tetrahydrofolate is probably lost completely or at least to a high extent and the stability of 5-methyltetrahydrofolate depends on the food matrix. Additionally, 5-methyltetrahydrofolate can be oxidised to a pyrazino-s-triazine (MeFox), whose absorption in the human intestinal tract was shown tentatively. PMID:28862677
Rectal bioavailability of delta-9-tetrahydrocannabinol from the hemisuccinate ester in monkeys.
ElSohly, M A; Stanford, D F; Harland, E C; Hikal, A H; Walker, L A; Little, T L; Rider, J N; Jones, A B
1991-10-01
Oral administration of delta-9-tetrahydrocannabinal (delta 9-THC) was shown to result in low and erratic bioavailability, while the drug showed no bioavailability from various suppository formulations. delta 9-THC-Hemisuccinate was formulated as a prodrug for delta 9-THC in suppositories using Witepsol H15 base. The bioavailability of delta 9-THC from this formulation was evaluated in monkeys. The plasma levels of delta 9-THC and its metabolite 11-nor-delta 9-THC-9-COOH were determined using GC/MS analysis. The calculated bioavailability of delta 9-THC from this formulation was found to be 13.5%. Non-compartmental analysis of the plasma concentration data using statistical moments showed the mean residence time (MRT) for delta 9-THC in the body to be 3 h following iv administration of delta 9-THC or its hemisuccinate ester (3.4 and 2.7 h, respectively), as compared with 5.8 h following rectal administration of the delta 9-THC hemisuccinate. The observed rectal bioavailability of delta 9-THC from suppositories containing the hemisuccinate ester as a prodrug is of significant importance in developing an alternative approach to oral administration of the drug.
Yang, Jie; Teng, Yanguo; Zuo, Rui; Song, Liuting
2015-06-01
The BCR sequential extraction procedure was compared with EDTA, HCl, and NaNO3 single extractions for evaluating vanadium bioavailability in alfalfa rhizosphere soil. The amounts of vanadium extracted by these methods were in the following order: BCR (bioavailable V) > EDTA ≈ HCl > NaNO3. Both correlation analysis and stepwise regression were adopted to illustrate the extractable vanadium between different reagents. The correlation coefficients between extracted vanadium and the vanadium contents in alfalfa roots were R NaNO3 = 0.948, R HCl = 0.902, R EDTA = 0.816, and R bioavailable V = 0.819. The stepwise multiple regression equation of the NaNO3 extraction was the most significant at a 95 % confidence interval. The influence of pH, total organic carbon, and cadmium content of soil to vanadium bioavailability were not definite. In summary, both the BCR sequential extraction and the single extraction methods were valid approaches for predicting vanadium bioavailability in alfalfa rhizosphere soil, especially the single extractions.
Bioavailability enhancers of herbal origin: An overview
Kesarwani, Kritika; Gupta, Rajiv
2013-01-01
Recently, the use of herbal medicines has been increased all over the world due to their therapeutic effects and fewer adverse effects as compared to the modern medicines. However, many herbal drugs and herbal extracts despite of their impressive in-vitro findings demonstrates less or negligible in-vivo activity due to their poor lipid solubility or improper molecular size, resulting in poor absorption and hence poor bioavailability. Nowadays with the advancement in the technology, novel drug delivery systems open the door towards the development of enhancing bioavailability of herbal drug delivery systems. For last one decade many novel carriers such as liposomes, microspheres, nanoparticles, transferosomes, ethosomes, lipid based systems etc. have been reported for successful modified delivery of various herbal drugs. Many herbal compounds including quercetin, genistein, naringin, sinomenine, piperine, glycyrrhizin and nitrile glycoside have demonstrated capability to enhance the bioavailability. The objective of this review is to summarize various available novel drug delivery technologies which have been developed for delivery of drugs (herbal), and to achieve better therapeutic response. An attempt has also been made to compile a profile on bioavailability enhancers of herbal origin with the mechanism of action (wherever reported) and studies on improvement in drug bioavailability, exhibited particularly by natural compounds. PMID:23620848
Ringling, Christiane; Rychlik, Michael
2017-09-01
Generating bioavailability data from in vivo studies is time-consuming and expensive. In vitro simulation can help to investigate factors influencing bioavailability or facilitate quantifying the impact of such factors. For folates, an efficient deconjugation of polyglutamates to the corresponding monoglutamates is crucial for bioavailability and highly dependent on the food matrix. Therefore, the bioaccessibility of folates of different foodstuffs was examined using a simulated digestion model with respect to folate stability and the efficiency of deconjugation. For realistic simulated deconjugation, porcine brush border membrane was used during the phase of the simulated digestion in the small intestine. For a better understanding of folate behaviour during digestion, single folate monoglutamates were also investigated with this in vitro digestion model. The results for bioaccessibility were compared with data from a human bioavailability study. They support the idea that both stability and deconjugation have an influence on bioaccessibility and thus on bioavailability. Tetrahydrofolate is probably lost completely or at least to a high extent and the stability of 5-methyltetrahydrofolate depends on the food matrix. Additionally, 5-methyltetrahydrofolate can be oxidised to a pyrazino-s-triazine (MeFox), whose absorption in the human intestinal tract was shown tentatively.
Sharma, Radhika; Kamboj, Sunil; Singh, Gursharan; Rana, Vikas
2016-03-10
The present investigation was aimed to prepare orally disintegrating films (ODFs) containing aprepitant (APT), an antiemetic drug employing pullulan as film forming agent, tamarind pectin as wetting agent and liquid glucose as plasticizer and solubiliser. The ODFs were prepared using solvent casting method. The method was optimized employing 3(2) full factorial design considering proportion of pullulan: tamarind pectin and concentration of liquid glucose as independent variables and disintegration time, wetting time, folding endurance, tensile strength and extensibility as dependent variables. The optimized ODF was evaluated for various physicochemical, mechanical, drug release kinetics and bioavailability studies. The results suggested prepared film has uniform film surface, non-sticky and disintegrated within 18s. The in-vitro release kinetics revealed more than 87% aprepitant was released from optimized ODF as compared to 85%, 49%, and 12% aprepitant release from marketed formulation Aprecap, micronized aprepitant and non micronized aprepitant, respectively. The results of animal preference study indicated that developed aprepitant loaded ODFs are accepted by rabbits as food material. Animal pharmacokinetic (PK) study showed 1.80, 1.56 and 1.36 fold enhancement in relative bioavailability for aprepitant loaded ODF, Aprecap and micronized aprepitant respectively, in comparison with non-micronized aprepitant. Overall, the solubilised aprepitant when incorporated in the form of aprepitant loaded ODF showed enhanced bioavailability as compared to micronized/non-micronized aprepitant based oral formulations. These findings suggested that aprepitant loaded ODF could be effective for antiemesis during cancer chemotherapy. Copyright © 2016 Elsevier B.V. All rights reserved.
Associations of vitamin D status and vitamin D-related polymorphisms with sex hormones in older men.
Rafiq, R; van Schoor, N M; Sohl, E; Zillikens, M C; Oosterwerff, M M; Schaap, L; Lips, P; de Jongh, R T
2016-11-01
Evidence regarding relationships of serum 25-hydroxyvitamin D (25(OH)D) with sex hormones and gonadotropin concentrations remains inconsistent. Polymorphisms in vitamin D-related genes may underly these relationships. Our aim was to examine the relationship of vitamin D status and polymorphisms in vitamin D-related genes with sex hormone and gonadotropin levels. We analysed data from the Longitudinal Aging Study Amsterdam, an ongoing population-based cohort study of older Dutch individuals (65-89 years). We included data of men with measurements of serum 25-hydroxyvitamin D (25(OH)D) (n=643) and determination of vitamin D-related gene polymorphisms (n=459). 25(OH)D concentrations were classified into four categories: <25, 25-50, 50-75 and >75nmol/L. Outcome measures were total testosterone, calculated bioavailable and free fraction testosterone, SHBG, estradiol, LH and FSH concentrations. Hypogonadism was defined as a total testosterone level <8.0nmol/L. Serum 25(OH)D was positively associated with total and bioavailable testosterone levels. After adjustments for confounders, men with serum 25(OH)D less than 25 (n=56), 25-50 (n=199) and 50-75nmol/L (n=240) had lower total testosterone levels compared to men with serum 25(OH)D higher than 75nmol/L (n=148) (β (95% confidence interval): -2.1 (-3.7 to -0.4nmol/L), -0.8 (-1.9 to 0.4nmol/L) and -1.4 (-2.4 to -0.3nmol/L), respectively). For bioavailable testosterone the association was significant only for men with serum 25(OH)D less than 25nmol/L (-0.8 (-1.4 to -0.1nmol/L)) compared to men with serum 25(OH)D >75nmol/L. Serum 25(OH)D was not related to SHBG, estradiol or gonadotropin levels. Hypogonadism (n=29) was not associated with lower serum 25(OH)D. No significant differences were found in hormone levels between the different genotypes of the vitamin D-related gene polymorphisms. Also, the polymorphisms did not modify the relationships of serum 25(OH)D with sex hormones or gonadotropins. Vitamin D status is positively associated with testosterone levels. No association was found between vitamin D-related gene polymorphisms and hormone levels. Copyright © 2015 Elsevier Ltd. All rights reserved.
Li, Chong; Zhang, Yan; Su, Tingting; Feng, Lianlian; Long, Yingying; Chen, Zhangbao
2012-01-01
We investigated flexible liposomes as a potential oral drug delivery system. However, enhanced membrane fluidity and structural deformability may necessitate liposomal surface modification when facing the harsh environment of the gastrointestinal tract. In the present study, silica-coated flexible liposomes loaded with curcumin (CUR-SLs) having poor water solubility as a model drug were prepared by a thin-film method with homogenization, followed by the formation of a silica shell by the sol-gel process. We systematically investigated the physical properties, drug release behavior, pharmacodynamics, and bioavailability of CUR-SLs. CUR-SLs had a mean diameter of 157 nm and a polydispersity index of 0.14, while the apparent entrapment efficiency was 90.62%. Compared with curcumin-loaded flexible liposomes (CUR-FLs) without silica-coatings, CUR-SLs had significantly higher stability against artificial gastric fluid and showed more sustained drug release in artificial intestinal fluid as determined by in vitro release assays. The bioavailability of CUR-SLs and CUR-FLs was 7.76- and 2.35-fold higher, respectively, than that of curcumin suspensions. Silica coating markedly improved the stability of flexible liposomes, and CUR-SLs exhibited a 3.31-fold increase in bioavailability compared with CUR-FLs, indicating that silica-coated flexible liposomes may be employed as a potential carrier to deliver drugs with poor water solubility via the oral route with improved bioavailability. PMID:23233804
Li, Chong; Zhang, Yan; Su, Tingting; Feng, Lianlian; Long, Yingying; Chen, Zhangbao
2012-01-01
We investigated flexible liposomes as a potential oral drug delivery system. However, enhanced membrane fluidity and structural deformability may necessitate liposomal surface modification when facing the harsh environment of the gastrointestinal tract. In the present study, silica-coated flexible liposomes loaded with curcumin (CUR-SLs) having poor water solubility as a model drug were prepared by a thin-film method with homogenization, followed by the formation of a silica shell by the sol-gel process. We systematically investigated the physical properties, drug release behavior, pharmacodynamics, and bioavailability of CUR-SLs. CUR-SLs had a mean diameter of 157 nm and a polydispersity index of 0.14, while the apparent entrapment efficiency was 90.62%. Compared with curcumin-loaded flexible liposomes (CUR-FLs) without silica-coatings, CUR-SLs had significantly higher stability against artificial gastric fluid and showed more sustained drug release in artificial intestinal fluid as determined by in vitro release assays. The bioavailability of CUR-SLs and CUR-FLs was 7.76- and 2.35-fold higher, respectively, than that of curcumin suspensions. Silica coating markedly improved the stability of flexible liposomes, and CUR-SLs exhibited a 3.31-fold increase in bioavailability compared with CUR-FLs, indicating that silica-coated flexible liposomes may be employed as a potential carrier to deliver drugs with poor water solubility via the oral route with improved bioavailability.
Fathallah, Anas M; Turner, Michael R; Mager, Donald E; Balu-Iyer, Sathy V
2015-03-01
The subcutaneous administration of biologics is highly desirable; however, incomplete bioavailability after s.c. administration remains a major challenge. In this work we investigated the effects of excipient dependent hyperosmolarity on lymphatic uptake and plasma exposure of rituximab as a model protein. Using Swiss Webster (SW) mice as the animal model, we compared the effects of NaCl, mannitol and O-phospho-L-serine (OPLS) on the plasma concentration of rituximab over 5 days after s.c. administration. An increase was observed in plasma concentrations in animals administered rituximab in hypertonic buffer solutions, compared with isotonic buffer. Bioavailability, as estimated by our pharmacokinetic model, increased from 29% in isotonic buffer to 54% in hypertonic buffer containing NaCl, to almost complete bioavailability in hypertonic buffers containing high dose OPLS or mannitol. This improvement in plasma exposure is due to the improved lymphatic trafficking as evident from the increase in the fraction of dose trafficked through the lymph nodes in the presence of hypertonic buffers. The fraction of the dose trafficked through the lymphatics, as estimated by the model, increased from 0.05% in isotonic buffer to 13% in hypertonic buffer containing NaCl to about 30% for hypertonic buffers containing high dose OPLS and mannitol. The data suggest that hypertonic solutions may be a viable option for improving s.c. bioavailability. Copyright © 2014 John Wiley & Sons, Ltd.
Fathallah, Anas M.; Turner, Michael R.; Balu-Iyer, Sathy V.
2015-01-01
Subcutaneous administration of biologics is highly desirable; however, incomplete bioavailability after sc administration remains a major challenge. In this work we investigated the effects of excipient dependent hyper-osmolarity on lymphatic uptake and plasma exposure of rituximab as a model protein. Using Swiss Webster (SW) mice as our animal model, we compared the effects of NaCl, mannitol and, O-Phospho-L-Serine (OPLS) on plasma concentration of rituximab over 5 days after sc administration. We observed an increase in plasma concentrations in animals administered rituximab in hypertonic buffer solutions, as compared to isotonic buffer. Bioavailability, as estimated by our pharmacokinetic model, increased from 29% in isotonic buffer to 54% in hypertonic buffer containing NaCl, to almost complete bioavailability in hypertonic buffers containing high dose OPLS or mannitol. This improvement in plasma exposure is due to improved lymphatic trafficking as evident from the increase in the fraction of dose trafficked through the lymph node in the presence of hypertonic buffers. The fraction of the dose trafficked through the lymphatic, as estimated by the model, increased from 0.05 % in isotonic buffer to 13% in hyper-tonic buffer containing NaCl to about 30% for hypertonic buffers containing high dose OPLS and mannitol. Our data suggests that hypertonic solutions may be a viable option to improve sc bioavailability. PMID:25377184
Bhattacharyya, Sauvik; Ahmmed, Sk Milan; Saha, Bishnu Pada; Mukherjee, Pulok K
2014-05-01
Mangiferin is a xanthonoid present in Mangifera indica. It has been reported for a variety of pharmacological activities, including hepatoprotection. However, the major disadvantage of mangiferin is its reduced biological activity due to poor absorption, low bioavailability and rapid elimination from the body after administration. The aim of this study was to prepare a phospholipid complex of mangiferin to overcome these limitations and to investigate the impact of the complex on hepatoprotective activity and bioavailability. The results showed that the complex has an enhanced hepatoprotective and in vivo antioxidant activity as compared to pure mangiferin at the same dose level (30 and 60 mg kg⁻¹). The complex restored the levels of serum hepatic marker enzymes and liver antioxidant enzymes with respect to carbon tetrachloride-treated animals. The complex also increased the bioavailability of mangiferin in rat serum by 9.75-fold compared to pure mangiferin at the same dose level and enhanced the elimination half-life (t(1/2 el)) from 1.71 ± 0.12 h⁻¹ to 3.52 ± 0.27 h⁻¹. The results suggested that the complexation of mangiferin with soya phospholipid enhanced the hepatoprotection and in vivo antioxidant activity, which may be due to the improved bioavailability and pharmacokinetics of mangiferin in rat serum. © 2013 Society of Chemical Industry.
Ma, Qiuping; Sun, Hongrui; Che, Erxi; Zheng, Xin; Jiang, Tongying; Sun, Changshan; Wang, Siling
2013-01-30
The central purpose of this study was to evaluate the impact of drug particle size and crystalline state on valsartan (VAL) formulations in order to improve its dissolution and bioavailability. VAL microsuspension (mean size 22 μm) and nanosuspension (30-80nm) were prepared by high speed dispersing and anti-solvent precipitation method and converted into powders through spray drying. Differential scanning calorimetry studies indicated amorphization of VAL in the spray-dried valsartan nanosuspension (SD-VAL-Nano) but recrystallization occurred after 6 months storage at room temperature. The spray-dried valsartan microsuspension (SD-VAL-Micro) conserved the crystalline form. The VAL dissolution rate and extent were markedly enhanced with both SD-VAL-Micro and SD-VAL-Nano as compared to crude VAL crystals over the pH range of 1.2-6.8. Pharmacokinetic studies in rats demonstrated a 2.5-fold increase in oral bioavailability in the case of SD-VAL-Nano compared with the commercial product while the SD-VAL-Micro provided a much less desirable pharmacokinetic profile. In conclusion, reducing particle size to the nano-scale appears to be a worthwhile and promising approach to obtain VAL products with optimum bioavailability. In addition, the impact of crystalline state on the bioavailability of nano-sized VAL might be not as big as that of particle size. Copyright © 2012 Elsevier B.V. All rights reserved.
Bioavailability of sediment-bound contaminants to marine organisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, B.; Neff, J.
1993-09-01
The bioavailability of sediment-bound contaminants to marine organisms indicates that there exists a potential for transfer of these contaminants through marine food webs to commercial fisheries products consumed by humans. However, there has been relatively little effort to combine and synthesize data on chemical/biological interactions between benthic animals and seagrasses and the sediments in which they reside on the one hand, and on the chemistry of bioaccumulation on the other. This report provides a conceptual basis for an approach to bioavailability and biomagnification of sediment-bound contaminants that reviews biological and chemical approaches.
Jain, Sanyog; Reddy, Venkata Appa; Arora, Sumit; Patel, Kamlesh
2016-10-01
Candesartan cilexetil (CC), an ester prodrug of candesartan, is BCS class II drug with extremely low aqueous solubility limiting its oral bioavailability. The present research aimed to develop a nanocrystalline formulation of CC with improved saturation solubility in gastrointestinal fluids and thereby, exhibiting enhanced oral bioavailability. CC nanocrystals were prepared using a low energy antisolvent precipitation methodology. A combination of hydroxypropyl methylcellulose (HPMC) and Pluronic® F 127 (50:50 w/w) was found to be optimum for the preparation of CC nanocrystals. The particle size, polydispersity index (PDI), and zeta potential of optimized formulation was found to be 159 ± 8.1 nm, 0.177 ± 0.043, and -23.7 ± 1.02 mV, respectively. Optimized formulation was found to possess irregular, plate-like morphology as evaluated by scanning electron microscopy and crystalline as evaluated by differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). A significant increase in saturation solubility and dissolution rate of the optimized nanosuspension was observed at all the tested pH conditions. Optimized CC nanocrystals exhibited a storage stability of more than 3 months when stored under cold and room temperature conditions. In vitro Caco-2 permeability further revealed that CC nanocrystals exhibited nearly 4-fold increase in permeation rate compared to the free CC. In vivo oral bioavailability studies of optimized CC nanocrystals in murine model revealed 3.8-fold increase in the oral bioavailability and twice the C max as compared with the free CC when administered orally. In conclusion, this study has established a crystalline nanosuspension formulation of CC with improved oral bioavailability in murine model. Graphical Abstract Antisolvent precipitation methodology for the preparation of Candesartan Cilexetil nanocrystals for enhanced solubility and oral bioavailability.
Kastury, Farzana; Smith, Euan; Juhasz, Albert L
2017-01-01
Inhalation of metal(loid)s in ambient particulate matter (APM) represents a significant exposure pathway to humans. Although exposure assessment associated with this pathway is currently based on total metal(loid) content, a bioavailability (i.e. absorption in the systemic circulation) and/or bioaccessibility (i.e. solubility in simulated lung fluid) based approach may more accurately quantify exposure. Metal(loid) bioavailability-bioaccessibility assessment from APM is inherently complex and lacks consensus. This paper reviews the discrepancies that impede the adoption of a universal protocol for the assessment of inhalation bioaccessibility. Exposure assessment approaches for in-vivo bioavailability, in-vitro cell culture and in-vitro bioaccessibility (composition of simulated lungs fluid, physico-chemical and methodological considerations) are critiqued in the context of inhalation exposure refinement. An important limitation of bioavailability and bioaccessibility studies is the use of considerably higher than environmental metal(loid) concentration, which diminishing their relevance to human exposure scenarios. Similarly, individual metal(loid) studies have been criticised due to complexities of APM metal(loid) mixtures which may impart synergistic or antagonistic effects compared to single metal(loid) exposure. Although a number of different simulated lung fluid (SLF) compositions have been used in metal(loid) bioaccessibility studies, information regarding the comparative leaching efficiency among these different SLF and comparisons to in-vivo bioavailability data is lacking. In addition, the particle size utilised is often not representative of what is deposited in the lungs while assay parameters (extraction time, solid to liquid ratio, temperature and agitation) are often not biologically relevant. Research needs are identified in order to develop robust in-vitro bioaccessibility protocols for the assessment or prediction of metal(loid) bioavailability in APM for the refinement of inhalation exposure. Copyright © 2016 Elsevier B.V. All rights reserved.
García-Villalba, R; Larrosa, M; Possemiers, S; Tomás-Barberán, F A; Espín, J C
2014-06-01
Preclinical studies suggest a potential protective effect of oleuropein in osteoporosis, and one of the proposed mechanisms is the modulation of the oxidative stress. Oleuropein bioavailability and its effect on antioxidant status in pre- and postmenopausal women are unknown. The aim of the present study was to investigate the oral bioavailability of an olive leaf extract rich in oleuropein (40 %) and its effect on antioxidant status in postmenopausal women compared to premenopausal women. Premenopausal (n = 8) and postmenopausal women (n = 8) received 250 mg of olive leaf extract, blood samples (t = 0, 1, 2, 3, 4, 6, 8, 12, 16 and 24 h) were taken, and 24-h urine divided into five fractions was collected. Olive-leaf-extract-derived metabolites were analyzed in plasma and urine by HPLC-ESI-QTOF and UPLC-ESI-QqQ, and pharmacokinetics parameters were determined. Ferric reducing antioxidant ability and malondialdehyde levels were measured in plasma. Plasma levels of hydroxytyrosol glucuronide, hydroxytyrosol sulfate, oleuropein aglycon glucuronide and oleuropein aglycon derivative 1 were higher in postmenopausal women. MDA levels were significantly decreased (32%) in postmenopausal women and inversely correlated with hydroxytyrosol sulfate levels. Postmenopausal women excreted less sulfated metabolites in urine than premenopausal women. Our results suggest that postmenopausal women could be a target population for the intake of olive phenolics in order to prevent age-related and oxidative stress-related processes such as osteoporosis.
The effects of treating contaminated soils with various soil amendments on the bioavailability of lead were assessed in the weanling rat model. The effect of treatment was assessed by comparing the adsorption of Pb of animals fed soil samples treated with (0.5%, 1% P and 2.5% Fe ...
USDA-ARS?s Scientific Manuscript database
Improved approaches are needed to rapidly and accurately assess the bioavailability of persistent, hydrophobic organic compounds in soils at contaminated sites. The performance of a thin-film solid-phase extraction (TF-SPE) assay using vials coated with ethylene vinyl acetate polymer was compared to...
Wentland, Andrew L; Artz, Nathan S; Fain, Sean B; Grist, Thomas M; Djamali, Arjang; Sadowski, Elizabeth A
2012-01-01
Magnetic resonance imaging (MRI) may be a useful adjunct to current methods of evaluating renal function. MRI is a noninvasive imaging modality that has the ability to evaluate the kidneys regionally, which is lacking in current clinical methods. Other investigators have evaluated renal function with MRI-based measurements, such as with techniques to measure cortical and medullary perfusion, oxygen bioavailability and total renal blood flow (TRBF). However, use of all three techniques simultaneously, and therefore the relationships between these MRI-derived functional parameters, have not been reported previously. To evaluate the ability of these MRI techniques to track changes in renal function, we scanned 11 swine during a state of hyperperfusion with acetylcholine and a saline bolus and subsequently scanned during a state of hypoperfusion with the prolonged use of isoflurane anesthesia. For each time point, measurements of perfusion, oxygen bioavailability and TRBF were acquired. Measurements of perfusion and oxygen bioavailability were compared with measurements of TRBF for all swine across all time points. Cortical perfusion, cortical oxygen bioavailability, medullary oxygen bioavailability and TRBF significantly increased with the acetylcholine challenge. Cortical perfusion, medullary perfusion, cortical oxygen bioavailability and TRBF significantly decreased during isoflurane anesthesia. Cortical perfusion (Spearman's correlation coefficient = 0.68; P < 1 × 10(-6)) and oxygen bioavailability (Spearman's correlation coefficient = -0.60; P < 0.0001) correlated significantly with TRBF, whereas medullary perfusion and oxygen bioavailability did not correlate with TRBF. Our results demonstrate expected changes given the pharmacologically induced changes in renal function. Maintenance of the medullary oxygen bioavailability in low blood flow states may reflect the autoregulation particular to this region of the kidney. The ability to non-invasively measure all three parameters of kidney function in a single MRI examination and to evaluate the relationships between these functional parameters is potentially useful for evaluating the state of the human kidneys in situ in future studies.
Soh, Bob
2016-01-01
Aims To test the feasibility of a novel rivastigmine nasal spray as prospective treatment for dementia. Methods A single dose, crossover absolute bioavailability and safety study was conducted with rivastigmine intravenous solution (1 mg) and nasal spray (3.126 mg) in eight healthy elderly individuals, aged 58–75 years. Results Absolute bioavailability (F) of the nasal spray was significant at 0.62 (0.15) for F > 0 (P < 0.001, n = 8). The systemic dose absorbed was 2.0 (0.6) mg, time to maximum plasma concentration was 1.1 (0.5) h and maximum plasma concentration was 6.9 (2.0) ng ml−1. The NAP226–90 to rivastigmine AUC0–∞ ratio was 0.78 (0.19). The single dose safety was good with two of five mild adverse events related to the nasal spray. Nasal and throat irritation were perceived as mild and transient, and both had resolved at 20 min post‐nasal dose. An estimated dose of two or three sprays twice‐daily with nasal spray would deliver comparable rivastigmine exposure and efficacy as a 6–9.7 mg day–1 oral dose and a 10 cm2 transdermal patch, respectively. Conclusions The rivastigmine nasal spray had superior absolute bioavailability compared to historical values for oral capsule and transdermal patch determined by other researchers. It had rapid onset of action, low NAP226–90 to rivastigmine exposure ratio and a favourable safety and tolerability profile. The ability to achieve adjustable, individual, twice‐daily dosing during waking hours has good potential to minimise undesirable cholinergic burden and sleep disturbances whilst delivering an effective dose for the treatment of dementia associated with Alzheimer's and Parkinson's disease. PMID:27639640
Choi, Jin-Seok; Kwon, Soon-Hyung; Lee, Sang-Eun; Jang, Woo Suk; Byeon, Jong Chan; Jeong, Hyeong Mo; Park, Jeong-Sook
2017-06-30
The purpose of this study is to improve the solubility, in vitro dissolution, and oral bioavailability in rats of tadalafil (TDF) by using SD technique with a weak acid and a copolymer. TDF-SD was prepared via solvent evaporation, coupled with the incorporation of an acidifier and solubilizer. Tartaric acid enhanced the solubility of TDF over 5-fold in DW, and Soluplus ® enhanced the solubility of TDF over 8.7-fold and 19.2-fold compared to that of TDF (pure) in DW and pH 1.2 for 1h, respectively. The optimal formulation of TDF-SD3 was composed of TDF vs Tartaric acid vs Soluplus ® vs Aerosil=1:1:3:3. The in vitro dissolution rate of TDF-SD3 in DW, pH 1.2 and pH 6.8 buffer (51.5%, 53.3%, and 33.2%, respectively) was significantly higher than that of the commercial product (Cialis ® ) powder (16.5%, 15.2%, and 14.8%, respectively). TDF was completely transformed to an amorphous form as shown in SEM, DSC and PXRD data. The stability of TDF-SD3 included drug contents and in vitro dissolution for 1 month were similar to those of Cialis ® , and the amorphous form of TDF-SD3 was well maintained for 6 months. The TDF-SD3 formulation improved the relative bioavailability (BA) and peak plasma concentration (C max ) compared to that of Cialis ® powder after oral administration in rats as 117.3% and 135.7%, respectively. From the results, we found that the acidifier increased the wettability of TDF, and the solubilizer improved solubility through hydrogen bonding with TDF, thereby increasing the solubility, dissolution and oral bioavailability of TDF in TDF-SD3. Copyright © 2017 Elsevier B.V. All rights reserved.
Setchell, Kenneth Dr; Zhao, Xueheng; Jha, Pinky; Heubi, James E; Brown, Nadine M
2009-10-01
The nonsteroidal estrogen equol occurs as diastereoisomers, S-(-)equol and R-(+)equol, both of which have significant biological actions. S-(-)equol, the naturally occurring enantiomer produced by 20-30% of adults consuming soy foods, has selective affinity for estrogen receptor-beta, whereas both enantiomers modulate androgen action. Little is known about the pharmacokinetics of the diastereoisomers, despite current interest in developing equol as a nutraceutical or pharmaceutical agent. The objective was to compare the pharmacokinetics of S-(-)equol and R-(+)equol by using [13C] stable-isotope-labeled tracers to facilitate the optimization of clinical studies aimed at evaluating the potential of these diastereoisomers in the prevention and treatment of estrogen- and androgen-dependent conditions. A randomized, crossover, open-label study in 12 healthy adults (6 men and 6 women) compared the plasma and urinary pharmacokinetics of orally administered enantiomeric pure forms of S-(-)[2-13C]equol, R-(+)[2-13C]equol, and the racemic mixture. Plasma and urinary [13C]R-equol and [13C]S-equol concentrations were measured by tandem mass spectrometry. Plasma [13C]equol concentration appearance and disappearance curves showed that both enantiomers were rapidly absorbed, attained high circulating concentrations, and had a similar terminal elimination half-life of 7-8 h. The systemic bioavailability and fractional absorption of R-(+)[2-13C]equol were higher than those of S-(-)[2-13C]equol or the racemate. The pharmacokinetics of racemic (+/-)[2-13C]equol were different from those of the individual enantiomers: slower absorption, lower peak plasma concentrations, and lower systemic bioavailability. The high bioavailability of both diastereoisomers contrasts with previous findings for the soy isoflavones daidzein and genistein, both of which have relatively poor bioavailability, and suggests that low doses of equol taken twice daily may be sufficient to achieve biological effects.
NASA Astrophysics Data System (ADS)
Hartman, Gideon; Richards, Mike
2014-02-01
The relative contributions of bedrock and atmospheric sources to bioavailable strontium (Sr) pools in local soils was studied in Northern Israel and the Golan regions through intensive systematic sampling of modern plants and invertebrates, to produce a map of modern bioavailable strontium isotope ratios (87Sr/86Sr) for regional reconstructions of human and animal mobility patterns. The study investigates sources of variability in bioavailable 87Sr/86Sr ratios, in particular the intra-and inter-site range of variation in plant 87Sr/86Sr ratios, the range of 87Sr/86Sr ratios of plants growing on marine sedimentary versus volcanic geologies, the differences between ligneous and non-ligneous plants with varying growth and water utilization strategies, and the relative contribution of atmospheric Sr sources from different soil and vegetation types and climatic zones. Results indicate predictable variation in 87Sr/86Sr ratios. Inter- and intra-site differences in bioavailable 87Sr/86Sr ratios average of 0.00025, while the range of 87Sr/86Sr ratios measured regionally in plants and invertebrates is 0.7090 in Pleistocene calcareous sandstone and 0.7074 in mid-Pleistocene volcanic pyroclast. The 87Sr/86Sr ratios measured in plants growing on volcanic bedrock show time dependent increases in atmospheric deposition relative to bedrock weathering. The 87Sr/86Sr ratios measured in plants growing on renzina soils depends on precipitation. The spacing between bedrock 87Sr/86Sr ratios and plants is highest in wet conditions and decreases in dry conditions. The 87Sr/86Sr ratios measured in plants growing on terra rossa soils is relatively constant (0.7085) regardless of precipitation. Ligneous plants are typically closer to bedrock 87Sr/86Sr ratios than non-ligneous plants. Since the bioavailable 87Sr/86Sr ratios currently measured in the region reflect a mix of both exogenous and endogenous sources, changes in the relative contribution of exogenous sources can cause variation over time. Precipitation, the age of the bedrock and the overall Sr concentration must to be taken into consideration when interpreting geographical variation in strontium isotopes throughout a region. Because these factors can change through time, we recommend that Sr data from time periods older than the Holocene be interpreted with caution. What is the range of variation in the 87Sr/86Sr ratios of vegetation within individual sampling locales? Are there differences in the 87Sr/86Sr ratios of ligneous (woody plants) and non-ligneous (herbaceous plants) within a single sampling location? What is the range of variability in the 87Sr/86Sr ratios of plants growing on marine sedimentary and volcanic geologies? How do the relative contributions of atmospheric Sr sources vary with geology, precipitation, distance from the sea, soil type, and vegetation type. Outlining Sr variability will enable the prediction of the Sr ratio of herbivores in various ecological niches as well as the mapping of bioavailable Sr ratios for a range of pre-Holocene landscapes.In contrast to previous mapping efforts in the region (Shewan, 2004; Perry et al., 2009), this study takes a systematic approach that examines the relative contribution of atmospherically deposited Sr and local weathered bedrock Sr sources to local bioavailable 87Sr/86Sr pools. This is based on the intensive sampling of plants and herbivorous invertebrates primarily from volcanic landscapes and marine sedimentary landscapes composed by large of limestone, dolomite, chalk and marl. The repeated sampling of individual locales, and comparisons between distinct locales of the same geological outcrops were initially planned to detemine the degree of homogeneity of bioavailable 87Sr/86Sr ratios for the purpose of regional landscape mapping. This is important due to the current lack of data on microscale variation in bioavailable sources that might limit the degree of separation between different exposures.
Andrade, Natasha A.; Centofanti, Tiziana; McConnell, Laura L.; Hapeman, Cathleen J.; Torrents, Alba; Anh, Nguyen; Beyer, W. Nelson; Chaney, Rufus L.; Novak, Jeffrey M.; Anderson, Marya O.; Cantrell, Keri B.
2014-01-01
Improved approaches are needed to assess bioavailability of hydrophobic organic compounds in contaminated soils. Performance of thin-film solid-phase extraction (TF-SPE) using vials coated with ethylene vinyl acetate was compared to earthworm bioassay (Lumbricus terrestris). A DDT and dieldrin contaminated soil was amended with four organic carbon materials to assess the change in bioavailability. Addition of organic carbon significantly lowered bioavailability for all compounds except for 4,4′-DDT. Equilibrium concentrations of compounds in the polymer were correlated with uptake by earthworms after 48d exposure (R2 = 0.97; p 40yr of aging. Results show that TF-SPE can be useful in examining potential risks associated with contaminated soils and to test effectiveness of remediation efforts.
Houghton, Christine A; Fassett, Robert G; Coombes, Jeff S
2016-01-01
The recognition that food-derived nonnutrient molecules can modulate gene expression to influence intracellular molecular mechanisms has seen the emergence of the fields of nutrigenomics and nutrigenetics. The aim of this review is to describe the properties of nutrigenomic activators of transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2), comparing the potential for sulforaphane and other phytochemicals to demonstrate clinical efficacy as complementary medicines. Broccoli-derived sulforaphane emerges as a phytochemical with this capability, with oral doses capable of favourably modifying genes associated with chemoprevention. Compared with widely used phytochemical-based supplements like curcumin, silymarin, and resveratrol, sulforaphane more potently activates Nrf2 to induce the expression of a battery of cytoprotective genes. By virtue of its lipophilic nature and low molecular weight, sulforaphane displays significantly higher bioavailability than the polyphenol-based dietary supplements that also activate Nrf2. Nrf2 activation induces cytoprotective genes such as those playing key roles in cellular defense mechanisms including redox status and detoxification. Both its high bioavailability and significant Nrf2 inducer capacity contribute to the therapeutic potential of sulforaphane-yielding supplements.
Yousaf, Abid Mehmood; Mustapha, Omer; Kim, Dong Wuk; Kim, Dong Shik; Kim, Kyeong Soo; Jin, Sung Giu; Yong, Chul Soon; Youn, Yu Seok; Oh, Yu-Kyoung; Kim, Jong Oh; Choi, Han-Gon
2016-01-01
Purpose The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate. Methods Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP) and Labrafil® M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion. Results All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1:4:0.5 resulted in a particle size of <200 nm with the drug present in the amorphous state. It demonstrated the highest solubility (32.51±2.41 μg/mL), an excellent dissolution (~85% in 10 minutes), and an oral bioavailability ~2.5-fold better than that of the free drug. It showed similar oral bioavailability compared to the conventional solid dispersion. Conclusion Electrosprayed nanospherules, which provide improved solubility and bioavailability, are promising drug delivery tools for oral administration of poorly water-soluble fenofibrate. PMID:26834471
Yousaf, Abid Mehmood; Mustapha, Omer; Kim, Dong Wuk; Kim, Dong Shik; Kim, Kyeong Soo; Jin, Sung Giu; Yong, Chul Soon; Youn, Yu Seok; Oh, Yu-Kyoung; Kim, Jong Oh; Choi, Han-Gon
2016-01-01
The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate. Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP) and Labrafil(®) M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion. All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1:4:0.5 resulted in a particle size of <200 nm with the drug present in the amorphous state. It demonstrated the highest solubility (32.51±2.41 μg/mL), an excellent dissolution (~85% in 10 minutes), and an oral bioavailability ~2.5-fold better than that of the free drug. It showed similar oral bioavailability compared to the conventional solid dispersion. Electrosprayed nanospherules, which provide improved solubility and bioavailability, are promising drug delivery tools for oral administration of poorly water-soluble fenofibrate.
Hempel, Judith; Fischer, Anja; Fischer, Monique; Högel, Josef; Bosy-Westphal, Anja; Carle, Reinhold; Schweiggert, Ralf M
2017-11-01
Carotenoid bioavailability from plant and animal food is highly variable depending on numerous factors such as the physical deposition form of carotenoids. As the carotenoid zeaxanthin is believed to play an important role in eye and brain health, we sought to compare the human bioavailability of an H-aggregated with that of a J-aggregated deposition form of zeaxanthin encapsulated into identical formulation matrices. A randomised two-way cross-over study with sixteen participants was designed to compare the post-prandial bioavailability of an H-aggregated zeaxanthin and a J-aggregated zeaxanthin dipalmitate formulation, both delivering 10 mg of free zeaxanthin. Carotenoid levels in TAG-rich lipoprotein fractions were analysed over 9·5 h after test meal consumption. Bioavailability from the J-aggregated formulation (AUC=55·9 nmol h/l) was 23 % higher than from the H-aggregated one (AUC=45·5 nmol h/l), although being only marginally significant (P=0·064). Furthermore, the same formulations were subjected to an internationally recognised in vitro digestion protocol to reveal potential strengths and weaknesses of simulated digestions. In agreement with our human study, liberation of zeaxanthin from the J-aggregated formulation into the simulated duodenal fluids was superior to that from the H-aggregated form. However, micellization rate (bioaccessibility) of the J-aggregated zeaxanthin dipalmitate was lower than that of the H-aggregated zeaxanthin, being contradictory to our in vivo results. An insufficient ester cleavage during simulated digestion was suggested to be the root cause for these observations. In brief, combining our in vitro and in vivo observations, the effect of the different aggregation forms on human bioavailability was lower than expected.
Choi, Jae-Yoon; Jin, Su-Eon; Park, Youmie; Lee, Hyo-Jong; Park, Yohan; Maeng, Han-Joo; Kim, Chong-Kook
2011-10-01
To develop the long acting nifedipine oral delivery with bioavailability enhancement, a nifedipine dry elixir (NDE) containing nifedipine ethanol solution in dextrin shell was prepared using a spray-dryer, and then coated nifedipine dry elixir (CNDE) was prepared by coating NDE with Eudragit acrylic resin. The physical characteristics and bioavailability of NDE and CNDE were evaluated, and then compared to those of nifedipine powder. NDE and CNDE, which were spherical in shape, had about 6.64 and 8.68-8.75 μm of geometric mean diameters, respectively. The amount of nifedipine dissolved from NDE for 60 min increased about 7- and 40-fold compared to nifedipine powder in pH 1.2 simulated gastric fluid and pH 6.8 simulated intestinal fluid, respectively. Nifedipine released from CNDE was retarded in both dissolution media compared with that from NDE. After oral administration of NDE, the C(max) and AUC(0→8h) of nifedipine in rat increased about 13- and 7-fold, respectively, and the Tmax of nifedipine was reduced significantly compared with those after oral administration of nifedipine powder alone. The AUC(0→8h) and T(max) of nifedipine in CNDE increased markedly and the C(max) of nifedipine in CNDE was significantly reduced compared to those in NDE. It is concluded that CNDE, which could lower the initial burst-out plasma concentration and maintain the plasma level of nifedipine over a longer period with bioavailability enhancement, might be one of potential alternatives to the marketed long acting oral delivery system for nifedipine.
Assessing arsenic bioavailability through the use of bioassays
NASA Astrophysics Data System (ADS)
Diesel, E.; Nadimpalli, M.; Hull, M.; Schreiber, M. E.; Vikesland, P.
2009-12-01
Various methods have been used to characterize the bioavailability of a contaminant, including chemical extractions from soils, toxicity tests, bioaccumulation measurements, estimation from soil properties, in vitro/in vivo tests, and microbial biossays. Unfortunately, these tests are all unique (i.e. they measure bioavailability through different mechanisms) and it is difficult to compare measurements collected using one method to those collected from another. Additionally, there are fundamental aspects of bioavailability research that require further study. In particular, changes in bioavailability over time are not well understood, as well as what the geochemical controls are on changes in bioavailability. In addition, there are no studies aimed at the integration of bioavailability measurements and potential geochemical controls. This research project seeks to find a standard set of assays and sensors that can be used to assess arsenic bioavailability at any field site, as well as to use these tools and techniques to better understand changes in, and controls on, arsenic bioavailability. The bioassays to be utilized in this research are a bioluminescent E. coli assay and a Corbicula fluminea (Asian clam) assay. Preliminary experiments to determine the suitability of the E. coli and C. fluminea assays have been completed. The E. coli assay can be utilized to analyze As(III) and As(V) with a linear standard curve between 5 and 200 ppb for As(III) and 100 ppb and 5 ppm for As(V); no bioluminescent response above background was elicited in the presence of Roxarsone, an organoarsenical. The C. fluminea assay is capable of bioaccumulating As(III), As(V), Roxarsone, and MSMA, with As(III) being the most readily accumulated, followed by As(V), Roxarsone and MSMA, respectively. Additional research will include assessing bioavailability of various arsenic species adsorbed to natural colloidal materials (i.e. clays, iron oxides, NOM) to the E. coli and C. fluminea assays, as well as with natural samples collected at an arsenic contaminated field site. Once the testing of these assays has been completed, they will be used in conjunction with an electrochemical sensor array to determine arsenic bioavailability controls and changes at a contaminated field site.
Cui, Qingling; Pan, Yingni; Yan, Xiaowei; Qu, Bao; Liu, Xiaoqiu; Xiao, Wei
2017-02-28
Isoacteoside (ISAT), a phenylethanoid glycoside that acts as the principal bioactive component in traditional Chinese medicines, possesses broad pharmacological effects such as neuroprotective, antihypertensive and hepatoprotective activities. However, its pharmaceutical development has been severely limited due to the poor oral bioavailability. It is essential and significant to investigate related hurdles leading to the poor bioavailability of isoacteoside. Whole animal metabolism studies were conducted in rats, followed by metabolic mechanism including gastrointestinal stability, intestinal flora metabolism and intestinal enzyme metabolism employing the powerful method ultrahigh-performance liquid chromatography combined with quadrupole time-of-flight tandem mass spectrometry (UPLC/QTOF-MS/MS). A simple, rapid and sensitive method has been developed which comprehensively revealed the underlying cause of poor bioavailability of ISAT in a metabolic manner. The prototype of ISAT and its combined metabolites have not been detected in plasma. Furthermore, the residual content of the parent compound in in vitro experiments was approximately 59%, 5% and barely none in intestinal bacteria, intestinal S9 and simulated intestinal juice at 6 h, respectively. The present work has demonstrated that the factors causing the poor bioavailability of isoacteoside should be attributed to the metabolism. In general, the metabolism that resulted from intestinal flora and intestinal enzymes were predominant reasons giving rise to the poor bioavailability of ISAT, which also suggested that metabolites might be responsible for the excellent pharmacological effect of ISAT. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Liu, Chengyu; Liu, Zhengsheng; Chen, Yuejie; Chen, Zhen; Chen, Huijun; Pui, Yipshu; Qian, Feng
2018-03-01
The aim of this paper was to compare the in vitro dissolution and in vivo bioavailability of three solubility enhancement technologies for β-lapachone (LPC), a poorly water soluble compound with extremely high crystallization propensity. LPC cocrystal was prepared by co-grinding LPC with resorcinol. LPC crystalline and amorphous solid dispersions (CSD and ASD) were obtained by spray drying with Poloxamer 188 and HPMC-AS, respectively. The cocrystal structure was solved by single crystal x-ray diffraction. All formulations were characterized by WAXRD, DSC, POM and SEM. USP II and intrinsic dissolution studies were used to compare the in vitro dissolution of these formulations, and a crossover dog pharmacokinetic study was used to compare their in vivo bioavailability. An 1:1 LPC-resorcinol cocrystal with higher solubility and faster dissolution rate was obtained, yet it converted to LPC crystal rapidly in solution. LPC/HPMC-AS ASD was confirmed to be amorphous and uniform, while the crystal and crystallite sizes of LPC in CSD were found to be ∼1-3 μm and around 40 nm, respectively. These formulations performed similarly during USP II dissolution, while demonstrated dramatically different oral bioavailability of ∼32%, ∼5%, and ∼1% in dogs, for CSD, co-crystal, and ASD, respectively. CSD showed the fastest intrinsic dissolution rate among the three. The three formulations showed poor IVIVC which could be due to rapid and unpredictable crystallization kinetics. Considering all the reasons, we conclude that for molecules with extremely high crystallization tendency that cannot be inhibited by any pharmaceutical excipients, size-reduction technologies such as CSD could be advantageous for oral bioavailability enhancement in vivo than technologies only generating transient but not sustained supersaturation. Copyright © 2018 Elsevier B.V. All rights reserved.
Kumar, Anil; Ahuja, Alka; Ali, Javed; Baboota, Sanjula
2016-01-01
In the present study, Curcumin (CU)-loaded nanocarrier (NC) such as nanoemulsion (NE) was developed with the objective of increasing its cytotoxicity and bioavailability through lymphatic transport by enhancing its solubility and intestinal permeability. Based on the area obtained in pseudoternary phase diagram, various % combination of Labrafac Lipophile WL 1349, Solutol HS 15, Transcutol HP and distilled water were selected. Formulations which passed physical stability studies were selected for further studies such as globule size, zeta potential, in vitro release, ex vivo permeation, in vitro lipolysis studies, bioavailability studies and cytotoxicity against glioblastoma cells (U-87). The optimized NC (NE-SB1) had small average globule diameter of 67 ± 6 nm with zeta potential of -37 ± 2.5 mv which indicated long-term dispersion stability. During in vitro lipolysis study, the digestion rate of medium chain triglycerides increased with decreased globule diameter. Statistically significant difference was found in AUC0-inf of NC formulation (p < 0.05) compared to CU suspension. The relative bioavailability of NC was found 11.88 ± 0.47 with respect to CU suspension. During cytotoxicity studies, IC50 of CU solution on U87 cells was found 24.23 µM, while for the NE- SB1 it was 16.41 µM. The optimized formulation was found to be stable during 6 months of accelerated stability. The overall results revealed that the CU-loaded NC is a very effective approach for enhancing the oral absorption of poorly water-soluble drug CU and have great potential for future clinical application.
Relative bioavailability and antioxidant potential of two coenzyme q10 preparations.
Kurowska, Elzbieta M; Dresser, George; Deutsch, Luisa; Bassoo, Errol; Freeman, David J
2003-01-01
Coenzyme Q10 (CoQ10) is synthesized by the human body and found in certain foods. Daily supplementation of CoQ10 could protect against heart disease but the bioavailability of CoQ10 supplements depends on the formulation taken. We compared the bioavailability and antioxidant properties of two commercial CoQ10 formulations, a commercial grade CoQ10 powder (commercial grade CoQ) and a new BT-CoQ10 BIO-TRANSFORMED (BT-CoQ10) obtained by fermentation of a soy-based, CoQ10-rich media with baker's yeast. Eleven healthy individuals participated in a randomized two-way crossover trial, with a 3-week washout period. Capsules containing 300 mg of either BT-CoQ10 or commercial grade CoQ10 were given daily for 1 week and multiple blood samples were taken for CoQ10, glutathione and glutathione peroxidase (GPx) determination. In 3 subjects, baseline plasma CoQ10 levels were lower prior to BT than prior to commercial grade CoQ treatment. In the remaining participants, ingestion of BT vs. commercial grade CoQ significantly increased maximum plasma CoQ10 concentration (+126%, p = 0.04) and tended to increase CoQ10 area under the curve from 0 to 24 h (+160%, p = 0.07). One week of treatment with each formulation increased plasma CoQ10 but did not alter plasma glutathione or GPx activity. The enhanced bioavailability of the BT product might be due to its predominantly reduced, hydrophilic membrane-complex form. Copyright 2003 S. Karger AG, Basel
Hou, Jian; Wang, Jing; Sun, E; Yang, Lei; Yan, Hong-Mei; Jia, Xiao-Bin; Zhang, Zhen-Hai
2016-11-01
An effective anti-cancer drug, icariside II (IS), has been used to treat a variety of cancers in vitro. However, its poor aqueous solubility and permeability lead to low oral bioavailability. The aim of this work was to use Solutol®HS15 and Pluronic F127 as surfactants to develop novel mixed micelles to enhance the oral bioavailability of IS by improving permeability and inhibiting efflux. The IS-loaded mixed micelles were prepared using the method of ethanol thin-film hydration. The physicochemical properties, dissolution property, oral bioavailability of the male SD rats, permeability and efflux of Caco-2 transport models, and gastrointestinal safety of the mixed micelles were evaluated. The optimized IS-loaded mixed micelles showed that at 4:1 ratio of Solutol®HS15 and Pluronic F127, the particle size was 12.88 nm with an acceptable polydispersity index of 0.172. Entrapment efficiency (94.6%) and drug loading (9.7%) contributed to the high solubility (11.7 mg/mL in water) of IS, which increased about 900-fold. The SF-IS mixed micelle release profile showed a better sustained release property than that of IS. In Caco-2 cell monolayer models, the efflux ratio dramatically decreased by 83.5%, and the relative bioavailability of the mixed micelles (AUC 0-∞ ) compared with that of IS (AUC 0-∞ ) was 317%, indicating potential for clinical application. In addition, a gastrointestinal safety assay also provided reliable clinical evidence for the safe use of this micelle.
Peng, Shengfeng; Li, Ziling; Zou, Liqiang; Liu, Wei; Liu, Chengmei; McClements, David Julian
2018-02-14
There is great interest in developing colloidal delivery systems to enhance the water solubility and oral bioavailability of curcumin, which is a hydrophobic nutraceutical claimed to have several health benefits. In this study, a natural emulsifier was used to form sophorolipid-coated curcumin nanoparticles. The curcumin was loaded into sophorolipid micelles using a pH-driven mechanism based on the decrease in curcumin solubility at lower pH values. The sophorolipid-coated curcumin nanoparticles formed using this mechanism were relatively small (61 nm) and negatively charged (-41 mV). The nanoparticles also had a relatively high encapsulation efficiency (82%) and loading capacity (14%) for curcumin, which was present in an amorphous state. Both in vitro and in vivo studies showed that the curcumin nanoparticles had an appreciably higher bioavailability than that of free curcumin crystals (2.7-3.6-fold), which was mainly attributed to their higher bioaccessibility. These results may facilitate the development of natural colloidal systems that enhance the oral bioavailability and bioactivity of curcumin in food, dietary supplements, and pharmaceutical products.
Summers, Jamie C.; Kurek, Joshua; Kirk, Jane L.; Muir, Derek C. G.; Wang, Xiaowa; Wiklund, Johan A.; Cooke, Colin A.; Evans, Marlene S.; Smol, John P.
2016-01-01
Freshwaters in the Athabasca Oil Sands Region (AOSR) are vulnerable to the atmospheric emissions and land disturbances caused by the local oil sands industry; however, they are also affected by climate change. Recent observations of increases in aquatic primary production near the main development area have prompted questions about the principal drivers of these limnological changes. Is the enhanced primary production due to deposition of nutrients (nitrogen and phosphorus) from local industry or from recent climatic changes? Here, we use downcore, spectrally-inferred chlorophyll-a (VRS-chla) profiles (including diagenetic products) from 23 limnologically-diverse lakes with undisturbed catchments to characterize the pattern of primary production increases in the AOSR. Our aim is to better understand the relative roles of the local oil sands industry versus climate change in driving aquatic primary production trends. Nutrient deposition maps, generated using geostatistical interpolations of spring-time snowpack measurements from a grid pattern across the AOSR, demonstrate patterns of elevated total phosphorus, total nitrogen, and bioavailable nitrogen deposition around the main area of industrial activity. However, this pattern is not observed for bioavailable phosphorus. Our paleolimnological findings demonstrate consistently greater VRS-chla concentrations compared to pre-oil sands development levels, regardless of morphological and limnological characteristics, landscape position, bioavailable nutrient deposition, and dibenzothiophene (DBT)-inferred industrial impacts. Furthermore, breakpoint analyses on VRS-chla concentrations across a gradient of DBT-inferred industrial impact show limited evidence of a contemporaneous change among lakes. Despite the contribution of bioavailable nitrogen to the landscape from industrial activities, we find no consistency in the spatial pattern and timing of VRS-chla shifts with an industrial fertilizing signal. Instead, significant positive correlations were observed between VRS-chla and annual and seasonal temperatures. Our findings suggest warmer air temperatures and likely decreased ice covers are important drivers of enhanced aquatic primary production across the AOSR. PMID:27135946
Merschel, Gila; Bau, Michael
2015-11-15
High-technology metals - such as the rare earth elements (REE) - have become emerging contaminants in the hydrosphere, yet little is known about their bioavailability. The Rhine River and the Weser River in Germany are two prime examples of rivers that are subjected to anthropogenic REE input. While both rivers carry significant loads of anthropogenic Gd, originating from contrast agents used for magnetic resonance imaging, the Rhine River also carries large amounts of anthropogenic La and lately Sm which are discharged into the river from an industrial point source. Here, we assess the bioavailability of these anthropogenic microcontaminants in these rivers by analyzing the aragonitic shells of the freshwater bivalve Corbicula fluminea. Concentrations of purely geogenic REE in shells of comparable size cover a wide range of about one order of magnitude between different sampling sites. At a given sampling site, geogenic REE concentrations depend on shell size, i.e. mussel age. Although both rivers show large positive Gd anomalies in their dissolved loads, no anomalous enrichment of Gd relative to the geogenic REE can be observed in any of the analyzed shells. This indicates that the speciations of geogenic and anthropogenic Gd in the river water differ from each other and that the geogenic, but not the anthropogenic Gd is incorporated into the shells. In contrast, all shells sampled at sites downstream of the industrial point source of anthropogenic La and Sm in the Rhine River show positive La and Sm anomalies, revealing that these anthropogenic REE are bioavailable. Only little is known about the effects of long-term exposure to dissolved REE and their general ecotoxicity, but considering that anthropogenic Gd and even La have already been identified in German tap water and that anthropogenic La and Sm are bioavailable, this should be monitored and investigated further. Copyright © 2015 Elsevier B.V. All rights reserved.
Phenazopyridine-phthalimide nano-cocrystal: Release rate and oral bioavailability enhancement.
Huang, Yu; Li, Jin-Mei; Lai, Zhi-Hui; Wu, Jun; Lu, Tong-Bu; Chen, Jia-Mei
2017-11-15
Both cocrystal and nanocrystal technologies have been widely used in the pharmaceutical development for poorly soluble drugs. However, the synergistic effects due to the integration of these two technologies have not been well investigated. The aim of this study is to develop a nano-sized cocrystal of phenazopyridine (PAP) with phthalimide (PI) to enhance the release rate and oral bioavailability of PAP. A PAP-PI nano-cocrystal with particle diameter of 21.4±0.1nm was successfully prepared via a sonochemical approach and characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and dynamic light scattering (DLS) analysis. An in vitro release study revealed a significant release rate enhancement for PAP-PI nano-cocrystal as compared to PAP-PI cocrystal and PAP hydrochloride salt. Further, a comparative oral bioavailability study in rats indicated significant improvement in C max and oral bioavailability (AUC 0-∞ ) by 1.39- and 2.44-fold, respectively. This study demonstrated that this novel nano-cocrystal technology can be a new promising option to improve release rate and absorption of poorly soluble compounds in the pharmaceutical industry. Copyright © 2017 Elsevier B.V. All rights reserved.
Abid, Nabeela; Khatoon, Asia; Maqbool, Asma; Irfan, Muhammad; Bashir, Aftab; Asif, Irsa; Shahid, Muhammad; Saeed, Asma; Brinch-Pedersen, Henrik; Malik, Kauser A
2017-02-01
Phytate is a major constituent of wheat seeds and chelates metal ions, thus reducing their bioavailability and so the nutritional value of grains. Transgenic plants expressing heterologous phytase are expected to enhance degradation of phytic acid stored in seeds and are proposed to increase the in vitro bioavailability of mineral nutrients. Wheat transgenic plants expressing Aspergillus japonicus phytase gene (phyA) in wheat endosperm were developed till T 3 generation. The transgenic lines exhibited 18-99 % increase in phytase activity and 12-76 % reduction of phytic acid content in seeds. The minimum phytic acid content was observed in chapatti (Asian bread) as compared to flour and dough. The transcript profiling of phyA mRNA indicated twofold to ninefold higher expression as compared to non transgenic controls. There was no significant difference in grain nutrient composition of transgenic and non-transgenic seeds. In vitro bioavailability assay for iron and zinc in dough and chapatti of transgenic lines revealed a significant increase in iron and zinc contents. The development of nutritionally enhanced cereals is a step forward to combat nutrition deficiency for iron and zinc in malnourished human population, especially women and children.
Kadari, Amrita; Gudem, Sagarika; Kulhari, Hitesh; Bhandi, Murali Mohan; Borkar, Roshan M; Kolapalli, Venkata Ramana Murthy; Sistla, Ramakrishna
2017-11-01
Fisetin (FST), a potent anticancer phytoconstituent, exhibits poor aqueous solubility and hence poor bioavailability. The aim of the present study is to improve the oral bioavailability of FST by encapsulating into PLGA NPs (poly-lactide-co-glycolic acid nanoparticles) as a complex of HPβCD (hydroxyl propyl beta cyclodextrin) and to assess its anti-cancer activity against breast cancer cells. FST-HPβCD inclusion complex (FHIC) was prepared and the supramolecular complex formation was characterized by FTIR, DSC, PXRD and 1 H NMR. FHIC encapsulated PLGA nanoparticles (FHIC-PNP) were prepared and were studied for in vitro anticancer activity, cellular uptake, apoptosis and reactive oxygen species generation in MCF-7 human breast cancer cells. Comparative bioavailability of FST was determined after oral administration in C57BL6 mice as pure FST and FHIC-PNP. The results revealed that FHIC-PNP not only enhanced the anti-cancer activity and apoptosis of FST against MCF-7 cells but also improved its oral bioavailability, as demonstrated by increased peak plasma concentration and total drug absorbed.
Preparation and evaluation of self-microemulsifying drug delivery system containing vinpocetine.
Cui, Shu-Xia; Nie, Shu-Fang; Li, Li; Wang, Chang-Guang; Pan, Wei-San; Sun, Jian-Ping
2009-05-01
The main purpose of current investigation is to prepare a self-microemulsifying drug delivery system (SMEDDS) to enhance the oral bioavailability of vinpocetine, a poorly water-soluble drug. Suitable vehicles were screened by determining the solubility of vinpocetine in them. Certain surfactants were selected according to their emulsifying ability with different oils. Ternary phase diagrams were used to identify the efficient self-microemulsifying region and to screen the effect of surfactant/cosurfactant ratio (K(m)). The optimized formulation for in vitro dissolution and bioavailability assessment was oil (ethyl oleate, 15%), surfactant (Solutol HS 15, 50%), and cosurfactant (Transcutol P, 35%). The release rate of vinpocetine from SMEDDS was significantly higher than that of the commercial tablet. Pharmacokinetics and bioavailability of SMEDDS were evaluated. It was found that the oral bioavailability of vinpocetine of SMEDDS was 1.72-fold higher as compared with that of the commercial tablet. These results obtained demonstrated that vinpocetine absorption was enhanced significantly by employing SMEDDS. Therefore, SMEDDS might provide an efficient way of improving oral bioavailability of poorly water-soluble drugs.
Cong, Wenjuan; Shen, Lan; Xu, Desheng; Zhao, Lijie; Ruan, Kefeng; Feng, Yi
2014-09-01
Breviscapine, one of cardiovascular drugs extracted from a Chinese herb Erigeron breviscapinus, has been frequently used to treat cardiovascular diseases such as hypertension, angina pectoris, coronary heart disease and stroke. However, its poor water solubility and low bioavailability in vivo severely restrict the clinical application. To overcome these drawbacks, breviscapine solid dispersion tablets consisting of breviscapine, polyvinylpyrrolidone K30 (PVP K30), microcrystalline cellulose and crospovidone were appropriately prepared. In vitro dissolution profiles showed that breviscapine released percentage of solid dispersion tablets reached 90 %, whereas it was only 40 % for commercial breviscapine tablets. Comparative pharmacokinetic study between solid dispersion tablets and commercial products was investigated on the normal beagle dogs after oral administration. Results showed that the bioavailability of breviscapine was greatly increased by 3.45-fold for solid dispersion tablets. The greatly improved dissolution rate and bioavailability might be attributed to intermolecular hydrogen bonding reactions between PVP K30 and scutellarin. These findings suggest that our solid dispersion tablets can greatly improve the bioavailability as well as the dissolution rate of breviscapine.
Dry elixir formulations of dexibuprofen for controlled release and enhanced oral bioavailability.
Kim, Seo-Ryung; Kim, Jin-Ki; Park, Jeong-Sook; Kim, Chong-Kook
2011-02-14
The objective of this study was to achieve an optimal formulation of dexibuprofen dry elixir (DDE) for the improvement of dissolution rate and bioavailability. To control the release rate of dexibuprofen, Eudragit(®) RS was employed on the surface of DDE resulting in coated dexibuprofen dry elixir (CDDE). Physicochemical properties of DDE and CDDE such as particle size, SEM, DSC, and contents of dexibuprofen and ethanol were characterized. Pharmacokinetic parameters of dexibuprofen were evaluated in the rats after oral administration. The DDE and CDDE were spherical particles of 12 and 19 μm, respectively. The dexibuprofen and ethanol contents in the DDE were dependent on the amount of dextrin and maintained for 90 days. The dissolution rate and bioavailability of dexibuprofen loaded in dry elixir were increased compared with those of dexibuprofen powder. Moreover, coating DDE with Eudragit(®) RS retarded the dissolution rate of dexibuprofen from DDE without reducing the bioavailability. Our results suggest that CDDE may be potential oral dosage forms to control the release and to improve the bioavailability of poorly water-soluble dexibuprofen. Copyright © 2010 Elsevier B.V. All rights reserved.
Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt.
Raiswell, Rob; Benning, Liane G; Tranter, Martyn; Tulaczyk, Slawek
2008-05-30
Productivity in the Southern Oceans is iron-limited, and the supply of iron dissolved from aeolian dust is believed to be the main source from outside the marine reservoir. Glacial sediment sources of iron have rarely been considered, as the iron has been assumed to be inert and non-bioavailable. This study demonstrates the presence of potentially bioavailable Fe as ferrihydrite and goethite in nanoparticulate clusters, in sediments collected from icebergs in the Southern Ocean and glaciers on the Antarctic landmass. Nanoparticles in ice can be transported by icebergs away from coastal regions in the Southern Ocean, enabling melting to release bioavailable Fe to the open ocean. The abundance of nanoparticulate iron has been measured by an ascorbate extraction. This data indicates that the fluxes of bioavailable iron supplied to the Southern Ocean from aeolian dust (0.01-0.13 Tg yr(-1)) and icebergs (0.06-0.12 Tg yr(-1)) are comparable. Increases in iceberg production thus have the capacity to increase productivity and this newly identified negative feedback may help to mitigate fossil fuel emissions.
Yee, Jie Yin; See, Yuen Mei; Abdul Rashid, Nur Amirah; Neelamekam, Sasi; Lee, Jimmy
2016-09-30
Total vitamin D levels had been commonly reported to be lowered in patients with chronic psychotic illnesses in countries from the higher latitudes. However, studies on patients with first episode psychosis (FEP) are limited. In this study we investigated serum concentrations of total and bioavailable vitamin D levels in FEP patients compared to healthy controls and the association between symptom severity and vitamin D components. A total of 31 FEP patients and 31 healthy controls were recruited from Institute of Mental Health, Singapore. FEP patients were identified using Structured Clinical Interview for DSM-IV Axis I disorders (SCID-1) and severity symptoms were assessed using the positive and negative syndrome scale (PANSS). Sera from participants were analyzed for total vitamin D, vitamin D-binding protein (DBP) and bioavailable vitamin D. Linear regressions were performed to examine the associations between serum total and bioavailable vitamin D and the PANSS subscales. Current study noted a significantly lower bioavailable vitamin D was in the FEP group and an association between bioavailable vitamin D and negative symptoms in FEP patients in a population with a consistent supply of sun exposure throughout the year. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
de Santiago-Martín, Ana; van Oort, Folkert; González, Concepción; Quintana, José R; Lafuente, Antonio L; Lamy, Isabelle
2015-01-01
The contribution of the nature instead of the total content of soil parameters relevant to metal bioavailability in lettuce was tested using a series of low-polluted Mediterranean agricultural calcareous soils offering natural gradients in the content and composition of carbonate, organic, and oxide fractions. Two datasets were compared by canonical ordination based on redundancy analysis: total concentrations (TC dataset) of main soil parameters (constituents, phases, or elements) involved in metal retention and bioavailability; and chemically defined reactive fractions of these parameters (RF dataset). The metal bioavailability patterns were satisfactorily explained only when the RF dataset was used, and the results showed that the proportion of crystalline Fe oxides, dissolved organic C, diethylene-triamine-pentaacetic acid (DTPA)-extractable Cu and Zn, and a labile organic pool accounted for 76% of the variance. In addition, 2 multipollution scenarios by metal spiking were tested that showed better relationships with the RF dataset than with the TC dataset (up to 17% more) and new reactive fractions involved. For Mediterranean calcareous soils, the use of reactive pools of soil parameters rather than their total contents improved the relationships between soil constituents and metal bioavailability. Such pool determinations should be systematically included in studies dealing with bioavailability or risk assessment. © 2014 SETAC.
Periphyton: an important regulator in optimizing soil phosphorus bioavailability in paddy fields.
Wu, Yonghong; Liu, Junzhuo; Lu, Haiying; Wu, Chenxi; Kerr, Philip
2016-11-01
Periphyton is ubiquitous in paddy field, but its importance in influencing the bioavailability of phosphorus (P) in paddy soil has been rarely recognized. A paddy field was simulated in a greenhouse to investigate how periphyton influences P bioavailability in paddy soil. Results showed that periphyton colonizing on paddy soil greatly reduced P content in paddy floodwater but increased P bioavailability of paddy soil. Specifically, all the contents of water-soluble P (WSP), readily desorbable P (RDP), algal-available P (AAP), and NaHCO 3 -extractable P (Olsen-P) in paddy soil increased to an extent compared to the control (without periphyton) after fertilization. In particular, Olsen-P was the most increased P species, up to 216 mg kg -1 after fertilization, accounting for nearly 60 % of total phosphorus (TP) in soil. The paddy periphyton captured P up to 1.4 mg g -1 with Ca-P as the dominant P fraction and can be a potential crop fertilizer. These findings indicated that the presence of periphyton in paddy field benefited in improving P bioavailability for crops. This study provides valuable insights into the roles of periphyton in P bioavailability and migration in a paddy ecosystem and technical support for P regulation.
Lind, Marianne; Nielsen, Kim Troensegaard; Schefe, Line Hollesen; Nørremark, Kasper; Eriksson, André Huss; Norsgaard, Hanne; Pedersen, Brian Thoning; Petersson, Karsten
2016-09-01
Previous studies have demonstrated the superior efficacy of a novel aerosol foam formulation of fixed combination calcipotriene 0.005% (Cal) and betamethasone dipropionate 0.064% (BD), compared with the ointment formulation. The aim of this study is to ascertain whether enhanced bioavailability of the active ingredients due to supersaturation and/or occlusive properties can explain the observed greater clinical efficacy. Solubility and evaporation experiments were conducted to examine the abilities of Cal/BD aerosol foam ingredients to create a supersaturated environment. Optical microscopy, Raman imaging and X-ray powder diffraction were used to examine the physical state of Cal and BD in the formulations after application, and determine whether a supersaturated state remained stable for clinically relevant time periods. In vitro skin penetration and ex vivo biomarker assays were conducted to compare the skin penetration and bioavailability of Cal and BD from the aerosol foam and ointment formulations, respectively. Occlusive properties were examined via transepidermal water loss. Solubility studies showed that Cal and BD solubility increased with increasing dimethyl ether (DME) content. Both active ingredients are completely dissolved in the final aerosol foam formulation. DME rapidly evaporates after spraying, and the amount was reduced to 0.5% of the initial amount after 2 min. This led to the formation of a supersaturated environment, where Cal and BD crystals were absent for at least 26 h after application. Cal/BD aerosol foam had significantly greater in vitro skin penetration and had increased bioavailability compared with Cal/BD ointment. Both formulations effectively occluded the skin. A stable supersaturated solution of Cal/BD in the aerosol foam leads to increased bioavailability and explains the improved clinical effect when compared to the Cal/BD ointment. The studies included in the paper are all conducted by LEO Pharma A/S or CROs on behalf of LEO Pharma A/S.
In Vitro Iron Availability from Insects and Sirloin Beef.
Latunde-Dada, Gladys O; Yang, Wenge; Vera Aviles, Mayra
2016-11-09
Interest in the consumption of insects (entomophagy) as an alternative environmentally sustainable source of protein in the diet of humans has recently witnessed a surge. Knowledge of the nutrient composition and, in particular, the bioavailability of minerals from insects is currently sparse. This study evaluated the availability of Fe, Ca, Cu, Mg, Mn, and Zn from four commonly eaten insects and compared these to sirloin beef. Soluble iron from the samples was measured by inductively coupled plasma optical emission spectrometry (ICP-OES). Iron bioavailability was determined using an in vitro simulated peptic-pancreatic digestion, followed by measurement of ferritin (a surrogate marker for iron absorption) in Caco-2 cells. Cricket and sirloin beef had comparably higher levels of Fe, Ca, and Mn than grasshopper, meal, and buffalo worms. However, iron solubility was significantly higher from the insect samples than from beef. The complementation of whole-wheat flour with insect or beef protein resulted in overall decreases in mineral content and iron solubility in the composite mixtures. Collectively, the data show that grasshopper, cricket, and mealworms contain significantly higher chemically available Ca, Cu, Mg, Mn, and Zn than sirloin. However, buffalo worms and sirloin exhibited higher iron bioavailability comparable to that of FeSO 4 . Commonly consumed insect species could be excellent sources of bioavailable iron and could provide the platform for an alternative strategy for increased mineral intake in the diets of humans.
Cooperstone, Jessica L.; Ralston, Robin A.; Riedl, Ken M.; Haufe, Thomas C.; Schweiggert, Ralf M.; King, Samantha A.; Timmers, Cynthia D.; Francis, David M.; Lesinski, Gregory B.; Clinton, Steven K.; Schwartz, Steven J.
2015-01-01
Scope Tangerine tomatoes (Solanum lycopersicum) are rich in tetra-cis-lycopene resulting from natural variation in carotenoid isomerase. Our objective was to compare the bioavailability of lycopene from tangerine to red tomato juice, and elucidate physical deposition forms of these isomers in tomatoes by light and electron microscopy. Methods and results Following a randomized crossover design, subjects (n=11, 6M/5F) consumed two meals delivering 10 mg lycopene from tangerine (94% cis) or red tomato juice (10% cis). Blood was sampled over 12 hours and triglyceride-rich lipoprotein fractions of plasma (TRLs) were isolated and analyzed using HPLC-DAD-MS/MS. Lycopene was crystalline in red tomato chromoplasts and globular in tangerine tomatoes. With tangerine tomato juice we observed a marked 8.5-fold increase in lycopene bioavailability compared to red tomato juice (P<0.001). Fractional absorption was 47.70 ± 8.81% from tangerine and 4.98 ± 1.92% from red tomato juices. Large heterogeneity was observed among subjects. Conclusions Lycopene is markedly more bioavailable from tangerine than from red tomato juice, consistent with a predominance of cis-lycopene isomers and presence in chromoplasts in a lipid dissolved globular state. These results justify using tangerine tomatoes as a lycopene source in studies examining the potential health benefits of lycopene-rich foods. PMID:25620547
Cooperstone, Jessica L; Ralston, Robin A; Riedl, Ken M; Haufe, Thomas C; Schweiggert, Ralf M; King, Samantha A; Timmers, Cynthia D; Francis, David M; Lesinski, Gregory B; Clinton, Steven K; Schwartz, Steven J
2015-04-01
Tangerine tomatoes (Solanum lycopersicum) are rich in tetra-cis-lycopene resulting from natural variation in carotenoid isomerase. Our objective was to compare the bioavailability of lycopene from tangerine to red tomato juice, and elucidate physical deposition forms of these isomers in tomatoes by light and electron microscopy. Following a randomized cross-over design, subjects (n = 11, 6 M/5 F) consumed two meals delivering 10 mg lycopene from tangerine (94% cis) or red tomato juice (10% cis). Blood was sampled over 12 h and triglyceride-rich lipoprotein fractions of plasma were isolated and analyzed using HPLC-DAD-MS/MS. Lycopene was crystalline in red tomato chromoplasts and globular in tangerine tomatoes. With tangerine tomato juice we observed a marked 8.5-fold increase in lycopene bioavailability compared to red tomato juice (p < 0.001). Fractional absorption was 47.70 ± 8.81% from tangerine and 4.98 ± 1.92% from red tomato juices. Large heterogeneity was observed among subjects. Lycopene is markedly more bioavailable from tangerine than from red tomato juice, consistent with a predominance of cis-lycopene isomers and presence in chromoplasts in a lipid dissolved globular state. These results justify using tangerine tomatoes as a lycopene source in studies examining the potential health benefits of lycopene-rich foods. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Myo-inositol soft gel capsules may prevent the risk of coffee-induced neural tube defects.
De Grazia, Sara; Carlomagno, Gianfranco; Unfer, Vittorio; Cavalli, Pietro
2012-09-01
Neural tube defects (NTDs) are classified as folate sensitive (about 70%) and folate resistant (about 30%); although folic acid is able to prevent the former, several data have shown that inositol may prevent the latter. It has recently been proposed that coffee intake might represent a risk factor for NTD, likely by interfering with the inositol signaling. In the present study, we tested the hypothesis that, beside affecting the inositol signaling pathway, coffee also interferes with inositol absorption. In order to evaluate coffee possible negative effects on inositol gastrointestinal absorption, a single-dose bioavailability trial was conducted. Pharmacokinetics (PK) parameters of myo-inositol (MI) powder and MI soft gelatin capsules swallowed with water and with a single 'espresso' were compared. PK profiles were obtained by analysis of MI plasma concentration, and the respective MI bioavailability was compared. Myo-inositol powder administration was negatively affected by coffee intake, thus suggesting an additional explanation to the interference between inositol deficiency and coffee consumption. On the contrary, the concomitant single 'espresso' consumption did not affect MI absorption following MI soft gelatin capsules administration. Furthermore, it was observed that MI soft gelatin capsule administration resulted in improved bioavailability compared to the MI powder form. Myo-inositol soft gelatin capsules should be considered for the preventive treatment of NTDs in folate-resistant subjects due to their higher bioavailability and to the capability to reduce espresso interference.
Diez-Ortiz, Maria; Lahive, Elma; George, Suzanne; Ter Schure, Anneke; Van Gestel, Cornelis A M; Jurkschat, Kerstin; Svendsen, Claus; Spurgeon, David J
2015-08-01
This study investigated if standard risk assessment hazard tests are long enough to adequately provide the worst case exposure for nanomaterials. This study therefore determined the comparative effects of the aging on the bioavailability and toxicity to earthworms of soils dosed with silver ions and silver nanoparticles (Ag NP) for 1, 9, 30 & 52 weeks, and related this to the total Ag in the soil, Ag in soil pore water and earthworm tissue Ag concentrations. For ionic Ag, a classical pattern of reduced bioavailability and toxicity with time aged in the soil was observed. For the Ag NP, toxicity increased with time apparently driven by Ag ion dissolution from the added Ag NPs. Internal Ag in the earthworms did not always explain toxicity and suggested the presence of an internalised, low-toxicity Ag fraction (as intact or transformed NPs) after shorter aging times. Our results indicate that short-term exposures, without long-term soil aging, are not able to properly assess the environmental risk of Ag NPs and that ultimately, with aging time, Ag ion and Ag NP effect will merge to a common value. Copyright © 2015 Elsevier Ltd. All rights reserved.
Nooli, Mounika; Chella, Naveen; Kulhari, Hitesh; Shastri, Nalini R; Sistla, Ramakrishna
2017-04-01
Olmesartan medoxomil (OLM) is an antihypertensive drug with low oral bioavailability (28%) resulting from poor aqueous solubility, presystemic metabolism and P-glycoprotein mediated efflux. The present investigation studies the role of lipid nanocarriers in enhancing the OLM bioavailability through oral delivery. Solid lipid nanoparticles (SLN) were prepared by solvent emulsion-evaporation method. Statistical tools like regression analysis and Pareto charts were used to detect the important factors effecting the formulations. Formulation and process parameters were then optimized using mean effect plot and contour plots. The formulations were characterized for particle size, size distribution, surface charge, percentage of drug entrapped in nanoparticles, drug-excipients interactions, powder X-ray diffraction analysis and drug release in vitro. The optimized formulation comprised glyceryl monostearate, soya phosphatidylcholine and Tween 80 as lipid, co-emulsifier and surfactant, respectively, with an average particle size of 100 nm, PDI 0.291, zeta potential of -23.4 mV and 78% entrapment efficiency. Pharmacokinetic evaluation in male Sprague Dawley rats revealed 2.32-fold enhancement in relative bioavailability of drug from SLN when compared to that of OLM plain drug on oral administration. In conclusion, SLN show promising approaches as a vehicle for oral delivery of drugs like OLM.
Zhu, Yuan; Wang, Miaomiao; Zhang, Ya; Zeng, Jin; Omari-Siaw, E; Yu, Jiangnan; Xu, Ximing
2016-10-01
Developing a promising carrier for the delivery of poorly water-soluble drugs, such as silybin, to improve oral absorption has become a very worthy of consideration. The goal of this study was to prepare a novel porous calcium phosphate microparticle using povidone-mixed micelles as template while evaluating its in vitro and in vivo properties with silybin as a model drug. The particle characterization, in vitro drug release behavior, and pharmacokinetic parameters of the prepared silybin-loaded calcium phosphate microparticle were investigated. The mean particle size was found to be 3.54 ± 0.32 μm with a rough surface porous structure. Additionally, the silybin-loaded calcium phosphate microparticle compared with the free silybin showed a prolonged 72-h release in vitro and a higher C max (418.5 ± 23.7 ng mL(-1)) with 167.5% oral relative bioavailability. A level A in vitro-in vivo correlation (IVIVC), established for the first time, demonstrated an excellent IVIVC of the formulated silybin in oral administration. In conclusion, this povidone-mixed micelle-based microparticle was successfully prepared to enhance the oral bioavailability of silybin. Therefore, application of this novel porous calcium phosphate microparticle holds a significant potential for the development of poorly water-soluble drugs.
Kulkarni, Kaustubh H.; Yang, Zhen; Tao, Niu; Hu, Ming
2014-01-01
Genistein is an active soy isoflavone with anticancer activities but it is unknown why it has a higher oral bioavailability in female than in male rats. Our study determined the effects of estrus cycle on genistein’s oral bioavailability. Female rats with various levels of estrogen were orally administered with genistein or used in a four-site rat intestinal perfusion experiment. Rats in “proestrus” group (with elevated estrogen) had significantly reduced (57% decrease, p<0.05) oral bioavailability of total genistein (aglycone+conjugates) than those in “metoestrus” group (with basal level of estrogen). Female ovariectomized rats, due to lack of estrogen, showed oral bioavailability of total genistein similar to the “metoestrus” group but higher (155% increase, p<0.05) than the “proestrus” group. Based on intestinal perfusion studies, the increased bioavailability was partially attributed to the higher (>100% increase, p<0.05) hepatic disposition via glucuronidation and possibly more efficient enterohepatic recycling of genistein in the “metoestrus” group. Furthermore, chronic exogenous supplementation of estradiol in ovariectomized rats significantly reduced (77%, p<0.05) the oral bioavailability of total genistein, mostly via increased sulfation (>10 folds) in liver, to a level comparable to those in the “proestrus” group. In conclusion, the oral bioavailability of total genistein was inversely proportional to elevated estrogen levels in female rats, which is partially mediated through the regulation of hepatic enzymes responsible disposition of genistein. PMID:22757747
He, Wanling; Shohag, M J I; Wei, Yanyan; Feng, Ying; Yang, Xiaoe
2013-12-15
The present study compared the effects of four different forms of foliar iron (Fe) fertilizers on Fe concentration, bioavailability and nutritional quality of polished rice. The results showed that foliar fertilisation at the anthesis stage was an effective way to promote Fe concentration and bioavailability of polished rice, especially in case of DTPA-Fe. Compared to the control, foliar application of DTPA-Fe increased sulphur concentration and the nutrition promoter cysteine content, whereas decreased phosphorus concentration and the antinutrient phytic acid content of polished rice, as a result increased 67.2% ferrtin formation in Caco-2 cell. Moreover, foliar DTPA-Fe application could maintain amylase, protein and minerals quality of polished rice. According to the current study, DTPA-Fe is recommended as an excellent foliar Fe form for Fe biofortification program. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chauhan, B L; Sane, S P; Revankar, S N; Rammamurthy, L; Doshi, B; Bhatt, A D; Bhate, V R; Kulkarni, R D
2000-10-01
To assess the bioavailability of clonazepam from two brands of 2 mg tablet formulations--Epitril and reference brand. A two-way randomised cross-over bioavailability study was carried out in 12 healthy male volunteers. Coded plasma samples were analysed for levels of clonazepam by high performance liquid chromatography (HPLC) method. The mean Cmax, Tmax t1/2 beta and AUC (0-48) for Epitril were: 16.31 +/- 3.07 ng/mL, 1.63 +/- 0.48 h, 46.97 +/- 12.26 h and 207.70 +/- 57.07 ng/ml.h; for reference brand were 19.75 +/- 5.95 ng/mL, 1.42 +/- 0.29 h, 46.88 +/- 11.29 h and 215.70 +/- 50.89 ng/ml.h respectively. These were comparable and the differences were not statistically significant. Based on above pharmacokinetic parameters, Epitril was bioequivalent to reference brand.
Longchamp, Mélanie; Castrec-Rouelle, Maryse; Biron, Philippe; Bariac, Thierry
2015-09-01
Quantification of selenium bioavailability from foods is a key challenge following the discovery of the antioxidant role of this micronutrient in human health. This study presents the uptake, accumulation and rate of metabolization in mature Zea mays plants grown in hydroponic solution supplemented with selenate or selenite. Selenium content was lower in plants supplemented with selenate and accumulated mainly in the leaves compared with selenite-treated plants where the selenium was retained in the roots. Selenite-treated grains accumulated more selenium. Selenate was metabolized less than selenite in whole plants, but in grains selenium was present exclusively as organic selenium compounds. For humans, the bioavailability of organic selenium was evaluated at 90% compared with only 50% for inorganic forms. Our results show that the potential for selenium bioavailability is increased with selenite treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Design of liposomal colloidal systems for ocular delivery of ciprofloxacin
Taha, Ehab I.; El-Anazi, Magda H.; El-Bagory, Ibrahim M.; Bayomi, Mohsen A.
2013-01-01
Ophthalmic drug bioavailability is limited due to protective mechanisms of the eye which require the design of a system to enhance ocular delivery. In this study several liposomal formulations containing ciprofloxacin (CPX) have been formulated using reverse phase evaporation technique with final dispersion of pH 7.4. Different types of phospholipids including Phosphatidylcholine, Dipalmitoylphosphatidylcholine and Dimyristoyl-sn-glycero-3-phosphocholine were utilized. The effect of formulation factors such as type of phospholipid, cholesterol content, incorporation of positively charging inducing agents and ultrasonication on the properties of the liposomal vesicles was studied. Bioavailability of selected liposomal formulations in rabbit eye aqueous humor has been investigated and compared with that of commercially available CPX eye drops (Ciprocin®). Pharmacokinetic parameters including Cmax, Tmax, elimination rate constant, t1/2, MRT and AUC0–∞, were determined. The investigated formulations showed more than three folds of improvement in CPX ocular bioavailability compared with the commercial product. PMID:25061409
Bankstahl, Marion; Bankstahl, Jens P; Löscher, Wolfgang
2013-10-09
In human medicine, adverse outcomes associated with switching between bioequivalent brand name and generic antiepileptic drug products is a subject of concern among clinicians. In veterinary medicine, epilepsy in dogs is usually treated with phenobarbital, either with the standard brand name formulation Luminal(®) or the veterinary products Luminal(®) vet and the generic formulation Phenoleptil(®). Luminal(®) and Luminal(®) vet are identical 100 mg tablet formulations, while Phenoleptil(®) is available in the form of 12.5 and 50 mg tablets. Following approval of Phenoleptil(®) for treatment of canine epilepsy, it was repeatedly reported by clinicians and dog owners that switching from Luminal(®) (human tablets) to Phenoleptil(®) in epileptic dogs, which were controlled by treatment with Luminal(®), induced recurrence of seizures. In the present study, we compared bioavailability of phenobarbital after single dose administration of Luminal(®) vet vs. Phenoleptil(®) with a crossover design in 8 healthy Beagle dogs. Both drugs were administered at a dose of 100 mg/dog, resulting in 8 mg/kg phenobarbital on average. Peak plasma concentrations (Cmax) following Luminal(®) vet vs. Phenoleptil(®) were about the same in most dogs (10.9 ± 0.92 vs. 10.5 ± 0.77 μg/ml), and only one dog showed noticeable lower concentrations after Phenoleptil(®) vs. Luminal(®) vet. Elimination half-life was about 50 h (50.3 ± 3.1 vs. 52.9 ± 2.8 h) without differences between the formulations. The relative bioavailability of the two products (Phenoleptil(®) vs. Luminal(®) vet.) was 0.98 ± 0.031, indicating that both formulations resulted in about the same bioavailability. Overall, the two formulations did not differ significantly with respect to pharmacokinetic parameters when mean group parameters were compared. Thus, the reasons for the anecdotal reports, if true, that switching from the brand to the generic formulation of phenobarbital may lead to recurrence of seizures are obviously not related to a generally lower bioavailability of the generic formulation, although single dogs may exhibit lower plasma levels after the generic formulation that could be clinically meaningful.
2013-01-01
Background In human medicine, adverse outcomes associated with switching between bioequivalent brand name and generic antiepileptic drug products is a subject of concern among clinicians. In veterinary medicine, epilepsy in dogs is usually treated with phenobarbital, either with the standard brand name formulation Luminal® or the veterinary products Luminal® vet and the generic formulation Phenoleptil®. Luminal® and Luminal® vet are identical 100 mg tablet formulations, while Phenoleptil® is available in the form of 12.5 and 50 mg tablets. Following approval of Phenoleptil® for treatment of canine epilepsy, it was repeatedly reported by clinicians and dog owners that switching from Luminal® (human tablets) to Phenoleptil® in epileptic dogs, which were controlled by treatment with Luminal®, induced recurrence of seizures. In the present study, we compared bioavailability of phenobarbital after single dose administration of Luminal® vet vs. Phenoleptil® with a crossover design in 8 healthy Beagle dogs. Both drugs were administered at a dose of 100 mg/dog, resulting in 8 mg/kg phenobarbital on average. Results Peak plasma concentrations (Cmax) following Luminal® vet vs. Phenoleptil® were about the same in most dogs (10.9 ± 0.92 vs. 10.5 ± 0.77 μg/ml), and only one dog showed noticeable lower concentrations after Phenoleptil® vs. Luminal® vet. Elimination half-life was about 50 h (50.3 ± 3.1 vs. 52.9 ± 2.8 h) without differences between the formulations. The relative bioavailability of the two products (Phenoleptil® vs. Luminal® vet.) was 0.98 ± 0.031, indicating that both formulations resulted in about the same bioavailability. Conclusions Overall, the two formulations did not differ significantly with respect to pharmacokinetic parameters when mean group parameters were compared. Thus, the reasons for the anecdotal reports, if true, that switching from the brand to the generic formulation of phenobarbital may lead to recurrence of seizures are obviously not related to a generally lower bioavailability of the generic formulation, although single dogs may exhibit lower plasma levels after the generic formulation that could be clinically meaningful. PMID:24107313
Flavonoids: Antioxidants Against Atherosclerosis
Grassi, Davide; Desideri, Giovambattista; Ferri, Claudio
2010-01-01
Oxidative stress results from an imbalance between excessive formation of reactive oxygen species (ROS) and/or reactive nitrogen species and limited antioxidant defences. Endothelium and nitric oxide (NO) are key regulators of vascular health. NO bioavailability is modulated by ROS that degrade NO, uncouple NO synthase, and inhibit synthesis. Cardiovascular risk conditions contribute to oxidative stress, causing an imbalance between NO and ROS, with a relative decrease in NO bioavailability. Dietary flavonoids represent a range of polyphenolic compounds naturally occurring in plant foods. Flavonoids are potentially involved in cardiovascular prevention mainly by decreasing oxidative stress and increasing NO bioavailability. PMID:22254061
Podder, Rajib; M. DellaValle, Diane; T. Tyler, Robert; P. Glahn, Raymond; Tako, Elad; Vandenberg, Albert
2018-01-01
Due to low Fe bioavailability and low consumption per meal, lentil must be fortified to contribute significant bioavailable Fe in the Bangladeshi diet. Moreover, since red lentil is dehulled prior to consumption, an opportunity exists at this point to fortify lentil with Fe. Thus, in the present study, lentil was Fe-fortified (using a fortificant Fe concentration of 2800 µg g−1) and used in 30 traditional Bangladeshi meals with broad differences in concentrations of iron, phytic acid (PA), and relative Fe bioavailability (RFeB%). Fortification with NaFeEDTA increased the iron concentration in lentil from 60 to 439 µg g−1 and resulted in a 79% increase in the amount of available Fe as estimated by Caco-2 cell ferritin formation. Phytic acid levels were reduced from 6.2 to 4.6 mg g−1 when fortified lentil was added, thereby reducing the PA:Fe molar ratio from 8.8 to 0.9. This effect was presumably due to dephytinization of fortified lentil during the fortification process. A significant (p ≤ 0.01) Pearson correlation was observed between Fe concentration and RFeB% and between RFeB% and PA:Fe molar ratio in meals with fortified lentil, but not for the meal with unfortified lentil. In conclusion, fortified lentil can contribute significant bioavailable Fe to populations at risk of Fe deficiency. PMID:29543712
Podder, Rajib; M DellaValle, Diane; T Tyler, Robert; P Glahn, Raymond; Tako, Elad; Vandenberg, Albert
2018-03-15
Due to low Fe bioavailability and low consumption per meal, lentil must be fortified to contribute significant bioavailable Fe in the Bangladeshi diet. Moreover, since red lentil is dehulled prior to consumption, an opportunity exists at this point to fortify lentil with Fe. Thus, in the present study, lentil was Fe-fortified (using a fortificant Fe concentration of 2800 µg g -1 ) and used in 30 traditional Bangladeshi meals with broad differences in concentrations of iron, phytic acid (PA), and relative Fe bioavailability (RFeB%). Fortification with NaFeEDTA increased the iron concentration in lentil from 60 to 439 µg g -1 and resulted in a 79% increase in the amount of available Fe as estimated by Caco-2 cell ferritin formation. Phytic acid levels were reduced from 6.2 to 4.6 mg g -1 when fortified lentil was added, thereby reducing the PA:Fe molar ratio from 8.8 to 0.9. This effect was presumably due to dephytinization of fortified lentil during the fortification process. A significant ( p ≤ 0.01) Pearson correlation was observed between Fe concentration and RFeB% and between RFeB% and PA:Fe molar ratio in meals with fortified lentil, but not for the meal with unfortified lentil. In conclusion, fortified lentil can contribute significant bioavailable Fe to populations at risk of Fe deficiency.
Low bioavailable testosterone levels predict future height loss in postmenopausal women.
Jassal, S K; Barrett-Connor, E; Edelstein, S L
1995-04-01
The objective of this study was to examine the relation of endogenous sex hormones to subsequent height loss in postmenopausal women, in whom height loss is usually a surrogate for osteoporotic vertebral fractures. This was a prospective, community-based study. The site chosen was Rancho Bernardo, an upper middle class community in Southern California. A total of 170 postmenopausal women participated, aged 55-80 years. None of them were taking exogenous estrogen between 1972 and 1974. Plasma was obtained for sex hormone and sex hormone-binding globulin (SHBG) assays. Estradiol/SHBG and testosterone/SHBG ratios were used to estimate biologically available hormone levels; bioavailable (non-SHBG-bound) testosterone was measured directly in 60 women. Height loss was based on height measurements taken 16 years apart. Height loss was strongly correlated with age (p = 0.001). These women lost an average 0.22 cm/year in height. Neither estrone nor estradiol levels were significantly and independently related to height loss. Both estimated bioavailable testosterone (testosterone/SHBG ratio) and measured bioavailable testosterone levels predicted future height loss (p = 0.02 and 0.08, respectively) independent of age, obesity, cigarette smoking, alcohol intake, and use of thiazides and estrogen. We conclude that bioavailable testosterone is an independent predictor of height loss in elderly postmenopausal women. The reduced height loss is compatible with a direct effect of testosterone on bone mineral density or bone remodeling.
Cai, Yafan; Wang, Jungang; Zhao, Yubin; Zhao, Xiaoling; Zheng, Zehui; Wen, Boting; Cui, Zongjun; Wang, Xiaofen
2018-09-01
Trace elements were commonly used as additives to facilitate anaerobic digestion. However, their addition is often blind because of the complexity of reaction conditions, which has impeded their widespread application. Therefore, this study was conducted to evaluate deficiencies in trace elements during anaerobic digestion by establishing relationships between changes in trace element bioavailability (the degree to which elements are available for interaction with biological systems) and digestion performance. To accomplish this, two batch experiments were conducted. In the first, sequential extraction was used to detect changes in trace element fractions and then to evaluate trace element bioavailability in the whole digestion cycle. In the second batch experiment, trace elements (Co, Fe, Cu, Zn, Mn, Mo and Se) were added to the reaction system at three concentrations (low, medium and high) and their effects were monitored. The results showed that sequential extraction was a suitable method for assessment of the bioavailability of trace elements (appropriate coefficient of variation and recovery rate). The results revealed that Se had the highest (44.2%-70.9%) bioavailability, while Fe had the lowest (1.7%-3.0%). A lack of trace elements was not directly related to their absolute bioavailability, but was instead associated with changes in their bioavailability throughout the digestion cycle. Trace elements were insufficient when their bioavailability was steady or increased over the digestion cycle. These results indicate that changes in trace element bioavailability during the digestion cycle can be used to predict their deficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gadadare, Rahul; Mandpe, Leenata; Pokharkar, Varsha
2015-08-01
The present work was undertaken with the objectives of improving the dissolution velocity, related oral bioavailability, and minimizing the fasted/fed state variability of repaglinide, a poorly water-soluble anti-diabetic active by exploring the principles of nanotechnology. Nanocrystal formulations were prepared by both top-down and bottom-up approaches. These approaches were compared in light of their ability to provide the formulation stability in terms of particle size. Soluplus® was used as a stabilizer and Kolliphor™ E-TPGS was used as an oral absorption enhancer. In vitro dissolution profiles were investigated in distilled water, fasted and fed state simulated gastric fluid, and compared with the pure repaglinide. In vivo pharmacokinetics was performed in both the fasted and fed state using Wistar rats. Oral hypoglycemic activity was also assessed in streptozotocin-induced diabetic rats. Nanocrystals TD-A and TD-B showed 19.86 and 25.67-fold increase in saturation solubility, respectively, when compared with pure repaglinide. Almost 10 (TD-A) and 15 (TD-B)-fold enhancement in the oral bioavailability of nanocrystals was observed regardless of the fasted/fed state compared to pure repaglinide. Nanocrystal formulations also demonstrated significant (p < 0.001) hypoglycemic activity with faster onset (less than 30 min) and prolonged duration (up to 8 h) compared to pure repaglinide (after 60 min; up to 4 h, respectively).
Ciccolini, Valentina; Pellegrino, Elisa; Coccina, Antonio; Fiaschi, Anna Ida; Cerretani, Daniela; Sgherri, Cristina; Quartacci, Mike Frank; Ercoli, Laura
2017-07-12
The effect of field foliar Fe and Zn biofortification on concentration and potential bioavailability of Fe and Zn and health-promoting compounds was studied in wholemeal flour of two common wheat varieties (old vs modern). Moreover, the effect of milling and bread making was studied. Biofortification increased the concentration of Zn (+78%) and its bioavailability (+48%) in the flour of the old variety, whereas it was ineffective in increasing Fe concentration in both varieties. However, the old variety showed higher concentration (+41%) and bioavailability (+26%) of Fe than the modern one. As regard milling, wholemeal flour had higher Fe, Zn concentration and health-promoting compounds compared to white flour. Bread making slightly change Fe and Zn concentration but greatly increased their bioavailability (77 and 70%, respectively). All these results are of great support for developing a production chain of enriched functional bread having a protective role against chronic cardio-vascular diseases.
Chu, Chunxia; Liu, Muhua; Wang, Dongmei; Guan, Jibin; Cai, Cuifang; Sun, Yuanpeng; Zhang, Tianhong
2014-06-01
The aim of this study was to enhance the dissolution rate and oral bioavailability of probucol. Probucol was adsorbed onto aerosils via supercritical carbon dioxide (ScCO2) and the physicochemistry properties of probucol-aerosil powder were evaluated by differential scanning calorimetry, X-ray diffraction, infrared spectroscopy and scanning electron microscopy. Tablets of the probucol-aerosil powder were prepared by direct compression method. In the dissolution test, the probucol-aerosil tablets showed a significant enhanced dissolution rate compared with commercial tablets. Bioavailability study was carried out in beagle dogs. Probucol-aerosil tablets exhibited higher AUC and Cmax than commercial tablets. The improved dissolution and bioavailability of probucol-aerosil tablets were attributed to the amorphous state and good dispersion of probucol. It is a feasible method to enhance the oral bioavailability by adsorbing probucol onto aerosils via ScCO2.
NASA Astrophysics Data System (ADS)
Shen, Yuan; Benner, Ronald; Kaiser, Karl; Fichot, Cédric G.; Whitledge, Terry E.
2018-02-01
Rapid environmental changes in the Arctic Ocean affect plankton productivity and the bioavailability of dissolved organic matter (DOM) that supports microbial food webs. We report concentrations of dissolved organic carbon (DOC) and yields of amino acids (indicators of labile DOM) in surface waters across major Arctic margins. Concentrations of DOC and bioavailability of DOM showed large pan-Arctic variability that corresponded to varying hydrological conditions and ecosystem productivity, respectively. Widespread hot spots of labile DOM were observed over productive inflow shelves (Chukchi and Barents Seas), in contrast to oligotrophic interior margins (Kara, Laptev, East Siberian, and Beaufort Seas). Amino acid yields in outflow gateways (Canadian Archipelago and Baffin Bay) indicated the prevalence of semilabile DOM in sea ice covered regions and sporadic production of labile DOM in ice-free waters. Comparing these observations with surface circulation patterns indicated varying shelf subsidies of bioavailable DOM to Arctic deep basins.
St-Jules, David E; Jagannathan, Ram; Gutekunst, Lisa; Kalantar-Zadeh, Kamyar; Sevick, Mary Ann
2016-01-01
Phosphorus bioavailability is an emerging topic of interest in the field of renal nutrition that has important research and clinical implications. Estimates of phosphorus bioavailability, based on digestibility, indicate that bioavailability of phosphorus increases from plants to animals to food additives. In this commentary, we examined the proportion of dietary phosphorus from plants, animals and food additives excreted in urine from four controlled feeding studies conducted in healthy adults and patients with chronic kidney disease. As expected, a smaller proportion of phosphorus from plant foods was excreted in urine compared to animal foods. However, contrary to expectations, phosphorus from food additives appeared to be incompletely absorbed. The apparent discrepancy between digestibility of phosphorus additives and the proportion excreted in urine suggests a need for human balance studies to determine the bioavailability of different sources of phosphorus. PMID:27810171
St-Jules, David E; Jagannathan, Ram; Gutekunst, Lisa; Kalantar-Zadeh, Kamyar; Sevick, Mary Ann
2017-03-01
Phosphorus bioavailability is an emerging topic of interest in the field of renal nutrition that has important research and clinical implications. Estimates of phosphorus bioavailability, based on digestibility, indicate that bioavailability of phosphorus increases from plants to animals to food additives. In this commentary, we examined the proportion of dietary phosphorus from plants, animals, and food additives excreted in urine from four controlled-feeding studies conducted in healthy adults and patients with chronic kidney disease. As expected, a smaller proportion of phosphorus from plant foods was excreted in urine compared to animal foods. However, contrary to expectations, phosphorus from food additives appeared to be incompletely absorbed. The apparent discrepancy between digestibility of phosphorus additives and the proportion excreted in urine suggests a need for human balance studies to determine the bioavailability of different sources of phosphorus. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Assessing nickel bioavailability in smelter-contaminated soils.
Everhart, Jeffrey L; McNear, David; Peltier, Edward; van der Lelie, Daniel; Chaney, Rufus L; Sparks, Donald L
2006-08-31
Metal contaminants in soil environments derived from industrial pollution have clearly established the need for research on bioavailability and potential health risks. Much research has been conducted on metal sorption in soils. However, there is still a need to better understand the availability of metal contaminants to plants and microbes. Such information will enhance both human health and decisions about remediation efforts. In this study, Welland Loam (Typic epiaquoll) and Quarry Muck (Terric haplohemist) Ni contaminated soils from Port Colborne (Canada) which had been treated and untreated with limestone, were employed in greenhouse and bioavailability studies. These soils varied in pH from 5.1 to 7.5, in organic matter content from 6% to 72%, and in total Ni from 63 to 22,000 mg/kg. Oat (Avena sativa), a nonhyperaccumulator, and Alyssum murale, a hyperaccumulating plant species, were grown on these soils in greenhouse studies for 45 and 120 days, respectively, to estimate Ni accumulation. A Ni specific bacterial biosensor was also used to determine Ni bioavailability, and the results were compared to those from the greenhouse studies and more conventional, indirect chemical extraction techniques (employing MgCl2 and a Sr(NO3)2). Results from the greenhouse, chemical extraction, and biosensor studies suggested that as the pH of the soil was increased with liming, Ni bioavailability decreased. However, the phytoextraction capability of A. murale increased as soil pH increased, which was not the case for A. sativa. Furthermore, the Ni specific bacterial biosensor was successful in predicting Ni bioavailability in the soils and suggested that higher Ni bioavailabilities occur in the soils at pH values of 5.1 and 6. The combination of plant growth, chemical extraction, and bacterial biosensor approaches are recommended for assessing bioavailability of toxic metals.
Xiao, Ling; Guan, Dongsheng; Peart, M R; Chen, Yujuan; Li, Qiqi; Dai, Jun
2017-10-01
A field-based study was undertaken to analyze the effects of soil bioavailable heavy metals determined by a sequential extraction procedure, and soil microbial parameters on the heavy metal accumulation in rice grain. The results showed that Cd, Cr, Cu, Ni, Pb and Zn concentrations in rice grain decreases by 65.9%, 78.9%, 32.6%, 80.5%, 61.0% and 15.7%, respectively in the sites 3 (far-away), compared with those in sites 1 (close-to). Redundancy analysis (RDA) indicated that soil catalase activity, the MBC/MBN ratio, along with bioavailable Cd, Cr and Ni could explain 68.9% of the total eigenvalue, indicating that these parameters have a great impact on the heavy metal accumulation in rice grain. The soil bioavailable heavy metals have a dominant impact on their accumulation in rice grain, with a variance contribution of 60.1%, while the MBC/MBN has a regulatory effect, with a variance contribution of 4.1%. Stepwise regression analysis showed that the MBC/MBN, urease and catalase activities are the key microbial parameters that affect the heavy metal accumulation in rice by influencing the soil bioavailable heavy metals or the translocation of heavy metals in rice. RDA showed an interactive effect between Cu, Pb and Zn in rice grain and the soil bioavailable Cd, Cr and Ni. The heavy metals in rice grain, with the exception of Pb, could be predicted by their respective soil bioavailable heavy metals. The results suggested that Pb accumulation in rice grain was mainly influenced by the multi-metal interactive effects, and less affected by soil bioavailable Pb. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Jie; Taylor, Allison; Xu, Chenye; Schlenk, Daniel; Gan, Jay
2018-07-01
Compared to the total chemical concentration, bioavailability is a better measurement of risks of hydrophobic organic contaminants (HOCs) to biota in contaminated soil or sediment. Many different bioavailability estimation methods have been introduced to assess the effectiveness of remediation treatments. However, to date the different methods have rarely been evaluated against each other, leading to confusions in method selection. In this study, four different bioavailability estimation methods, including solid phase microextraction (SPME) and polyethylene passive sampling (PE) aiming to detect free chemical concentration (C free ), and Tenax desorption and isotope dilution method (IDM) aiming to measure chemical accessibility, were used in parallel to estimate in bioavailability of DDT residues (DDXs) in a historically contaminated soil after addition of different black carbon sorbents. Bioaccumulation into earthworm (Eisenia fetida) was measured concurrently for verification. Activated carbon or biochar amendment at 0.2-2% decreased earthworm bioaccumulation of DDXs by 83.9-99.4%, while multi-walled carbon nanotubes had a limited effect (4.3-20.7%). While all methods correctly predicted changes in DDX bioavailability after black carbon amendment, passive samplers offered more accurate predictions. Predicted levels of DDXs in earthworm lipid using the estimated bioavailability and empirical BCFs matched closely with the experimentally derived tissue concentrations. However, Tenax and IDM overestimated bioavailability when the available DDX levels were low. Our findings suggested that both passive samplers and bioaccessibility methods can be used in assessing remediation efficiency, presenting flexibility in method selection. While accessibility-oriented methods offer better sensitivity and shorter sampling time, passive samplers may be more advantageous because of their better performance and computability for in situ deployment. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Vermilyea, A.; Sanders, A.; Vazquez, E.
2017-12-01
The transformation of freshwater dissolved organic carbon (DOC) can have important implications for water quality, aquatic ecosystem health, and our climate. DOC is an important nutrient for heterotrophic microorganisms near the base of the aquatic food chain and the extent of conversion of DOC to CO2 is a critical piece of the global carbon cycle. Photochemical pathways have the potential to transform recalcitrant DOC into more labile forms that can then be converted to smaller DOC molecules and eventually be completely mineralized to CO2. This may lead to a DOC pool with different bioavailability depending on the structural composition of the original DOC pool and the mechanistic pathways undergone during transformation. This study aimed to measure the changes in DOC concentration and bioavailability due solely to photochemical processes in three watersheds of northern Vermont, USA that have varied land cover, land use (LCLU) attributes. Our hypothesis was that photochemical transformations will lead to (1) an overall loss of DOC due to mineralization to CO2 and (2) a relative increase in the bioavailable fraction of DOC. Additionally, the influence of LCLU and base flow versus storm flow on both mineralization rates and changes in DOC bioavailability was investigated. Irradiation of filtered samples in quartz vessels under sunlight led to small changes in DOC concentration over time, but significant changes in DOC bioavailability. In general, fluorescence excitation-emission matrices (EEMs) showed a shift from an initially more humic-like DOC pool, to a more protein-like (bioavailable) DOC pool. Specific UV index (SUVA) along with bioavailable DOC (BDOC) incubations were also used to characterize DOC and its bioavailability. There were only small differences in the DOC transformation that took place among sites, possibly due to only small differences in the initial bioavailability and fluorescent properties between water samples. Photochemical transformation appears to play an important role in the transformation of a more recalcitrant (humic) pool of DOC into a more bioavailable DOC pool that can then be utilized by aquatic heterotrophs and ultimately be converted to CO2.
NASA Astrophysics Data System (ADS)
Folberth, Christian
2010-05-01
The in-situ Mass Distribution Quotient (iMDQ) has recently been shown to reliably describe the bioavailability and mineralization of the widely applied pesticide isoproturon in agricultural soils. It is determined by pore water extraction from previously incubated soil samples and subsequent assessment of the mass distribution between solid and liquid phase. The method was verified by comparing the bioavailability with co-metabolic mineralization in soils under optimum microbial soil conditions (water tension -15 kPa and bulk density 1.3 g cm-3). A comparison of the results with the chemical partitioning assessed by the Kd method has shown a higher accuracy of the new method. By combining the iMDQ/pore water extraction method with mineralization of the pesticide under optimum microbial conditions in the soils, further information about mineralization and degradation processes could be obtained or confirmed: a) Metabolically outstanding soils could be identified due to inconsistency between bioavailability and mineralization when compared to the co-metabolic soils. In a metabolically hampered soil, the mineralization was very low compared to the bioavailability and in a soil with metabolically IPU degrading microorganisms the mineralization was extremely high despite low bioavailability. b) Analysis of metabolite patterns in soil water fractions of a degradation experiment allowed for an additional identification of the metabolic status of the soil. In co-metabolic soils, the diversity of metabolites increased proportionally with the degree of mineralization of the parent compound, whereas in a metabolically hampered soil the metabolite pattern was very diverse despite low mineralization. c) A quite stable fractioning between total mineralization of the parent compound to CO2 and build-up of non-extractable bound residues was found. This is a hint that also during co-metabolic degradation that can up to now not be attributed to a certain group of microorganisms, very similar processes take place in different soils. d) It could be shown that soil parameters governing the bioavailability of the compound differ between soils. Although TOC and pH could again be identified as the most important factors for the sorption strength of soils towards isoproturon, the bioavailability itself was driven by a combination of water content and sorption strength that was unique for each soil sample. f) The partitioning of parent compound and primary metabolites remained quite stable during the degradation and mineralization. Further investigations focusing on the microbial side of co-metabolic degradation are in progress. In the future, the method could be used to investigate more compounds, the effectiveness of methods to increase bioavailability in-situ without the need for degradation experiments, and the identification and analysis of degradation pathways in-situ. Other processes that are important for risk assessment, like leaching, have already been investigated with similar methods.
Bioavailability of Tetracycline and Doxycycline in Fasted and Nonfasted Subjects
Welling, Peter G.; Koch, Patricia A.; Lau, Curtis C.; Craig, William A.
1977-01-01
The influence of various test meals and fluid volumes on the relative bioavailability of commercial formulations of doxycycline hyclate and tetracycline hydrochloride was studied in healthy human volunteers. Serum levels of tetracycline were uniformly reduced by approximately 50% by all test meals, whereas serum levels of doxycycline were reduced by 20%. The reduction of tetracycline serum levels will likely be of clinical significance. The bioavailability of each drug was almost identical from an oral solution and from capsules in fasted subjects. The rate of doxycycline absorption was reduced when capsules were administered with a small volume of water, but the overall efficiency of absorption of both drugs was essentially independent of co-administered fluid volume. The use of 8-h serum data provides a reliable estimate of drug bioavailability for tetracycline and, to a lesser extent, for doxycycline. PMID:856000
Development of dihydropyridone indazole amides as selective Rho-kinase inhibitors.
Goodman, Krista B; Cui, Haifeng; Dowdell, Sarah E; Gaitanopoulos, Dimitri E; Ivy, Robert L; Sehon, Clark A; Stavenger, Robert A; Wang, Gren Z; Viet, Andrew Q; Xu, Weiwei; Ye, Guosen; Semus, Simon F; Evans, Christopher; Fries, Harvey E; Jolivette, Larry J; Kirkpatrick, Robert B; Dul, Edward; Khandekar, Sanjay S; Yi, Tracey; Jung, David K; Wright, Lois L; Smith, Gary K; Behm, David J; Bentley, Ross; Doe, Christopher P; Hu, Erding; Lee, Dennis
2007-01-11
Rho kinase (ROCK1) mediates vascular smooth muscle contraction and is a potential target for the treatment of hypertension and related disorders. Indazole amide 3 was identified as a potent and selective ROCK1 inhibitor but possessed poor oral bioavailability. Optimization of this lead resulted in the discovery of a series of dihydropyridones, exemplified by 13, with improved pharmacokinetic parameters relative to the initial lead. Indazole substitution played a critical role in decreasing clearance and improving oral bioavailability.
Impact of Mucositis on Absorption and Systemic Drug Exposure of Isavuconazole.
Kovanda, Laura L; Marty, Francisco M; Maertens, Johan; Desai, Amit V; Lademacher, Christopher; Engelhardt, Marc; Lu, Qiaoyang; Hope, William W
2017-06-01
Isavuconazonium sulfate is the water-soluble prodrug of isavuconazole. Population analyses have demonstrated relatively predictable pharmacokinetic (PK) behavior in diverse patient populations. We evaluated the impact of mucositis on the oral isavuconazole exposure using population PK modeling. This study included patients treated in two phase 3 trials of isavuconazole, SECURE for treatment of invasive aspergillosis (IA) and other filamentous fungi and VITAL for patients with mucormycosis, invasive fungal disease (IFD) caused by other rare fungi, or IA and renal impairment. Mucositis was reported by site investigators and its impact on oral bioavailability was assessed. Use of the oral formulation was at the discretion of the investigator. Patients with plasma samples collected during the use of isavuconazonium sulfate were included in the construction of population PK model. Of 250 patients included, 56 patients had mucositis at therapy onset or as an adverse event during oral isavuconazole therapy. Levels of oral bioavailability were comparable, at 98.3% and 99.8%, respectively. The average drug exposures (average area under the curve [AUC ave ]) calculated from either the mean or median parameter estimates were not different between patients with and without mucositis. Mortality and overall clinical responses were similar between patients receiving oral therapy with and without mucositis. We found that isavuconazole exposures and clinical outcomes in this subset of patients with mucositis who were able to take oral isavuconazonium sulfate were comparable to those in patients without mucositis, despite the difference in oral bioavailability. Therefore, mucositis may not preclude use of the oral formulation of isavuconazonium sulfate. Copyright © 2017 Kovanda et al.
Impact of Mucositis on Absorption and Systemic Drug Exposure of Isavuconazole
Marty, Francisco M.; Maertens, Johan; Desai, Amit V.; Lademacher, Christopher; Engelhardt, Marc; Lu, Qiaoyang
2017-01-01
ABSTRACT Isavuconazonium sulfate is the water-soluble prodrug of isavuconazole. Population analyses have demonstrated relatively predictable pharmacokinetic (PK) behavior in diverse patient populations. We evaluated the impact of mucositis on the oral isavuconazole exposure using population PK modeling. This study included patients treated in two phase 3 trials of isavuconazole, SECURE for treatment of invasive aspergillosis (IA) and other filamentous fungi and VITAL for patients with mucormycosis, invasive fungal disease (IFD) caused by other rare fungi, or IA and renal impairment. Mucositis was reported by site investigators and its impact on oral bioavailability was assessed. Use of the oral formulation was at the discretion of the investigator. Patients with plasma samples collected during the use of isavuconazonium sulfate were included in the construction of population PK model. Of 250 patients included, 56 patients had mucositis at therapy onset or as an adverse event during oral isavuconazole therapy. Levels of oral bioavailability were comparable, at 98.3% and 99.8%, respectively. The average drug exposures (average area under the curve [AUCave]) calculated from either the mean or median parameter estimates were not different between patients with and without mucositis. Mortality and overall clinical responses were similar between patients receiving oral therapy with and without mucositis. We found that isavuconazole exposures and clinical outcomes in this subset of patients with mucositis who were able to take oral isavuconazonium sulfate were comparable to those in patients without mucositis, despite the difference in oral bioavailability. Therefore, mucositis may not preclude use of the oral formulation of isavuconazonium sulfate. PMID:28289034
Gautam, Abnish K; Bhargavan, Biju; Tyagi, Abdul M; Srivastava, Kamini; Yadav, Dinesh K; Kumar, Manmeet; Singh, Akanksha; Mishra, Jay S; Singh, Amar Bahadur; Sanyal, Sabyasachi; Maurya, Rakesh; Manickavasagam, Lakshmi; Singh, Sheelendra P; Wahajuddin, Wahajuddin; Jain, Girish K; Chattopadhyay, Naibedya; Singh, Divya
2011-04-01
Dietary soy isoflavones including genistein and daidzein have been shown to have favorable effects during estrogen deficiency in experimental animals and humans. We have evaluated osteogenic effect of cladrin and formononetin, two structurally related methoxydaidzeins found in soy food and other natural sources. Cladrin, at as low as 10 nM, maximally stimulated both osteoblast proliferation and differentiation by activating MEK-Erk pathway. On the other hand, formononetin maximally stimulated osteoblast differentiation at 100 nM that involved p38 MAPK pathway but had no effect on osteoblast proliferation. Unlike daidzein, these two compounds neither activated estrogen receptor in osteoblast nor had any effect on osteoclast differentiation. Daily oral administration of each of these compounds at 10.0 mg kg(-1) day(-1) dose to recently weaned female Sprague-Dawley rats for 30 consecutive days, increased bone mineral density at various anatomic positions studied. By dynamic histomorphometry of bone, we observed that rats treated with cladrin exhibited increased mineral apposition and bone formation rates compared with control, while formononetin had no effect. Cladrin had much better plasma bioavailability compared with formononetin. None of these compounds exhibited estrogen agonistic effect in uteri. Our data suggest that cladrin is more potent among the two in promoting parameters of peak bone mass achievement, which could be attributed to its stimulatory effect on osteoblast proliferation and better bioavailability. To the best of our knowledge, this is the first attempt to elucidate structure-activity relationship between the methoxylated forms of daidzein and their osteogenic effects. Copyright © 2011 Elsevier Inc. All rights reserved.
Swain, James H; Newman, Samuel M; Hunt, Janet R
2003-11-01
Foods are fortified with elemental forms of iron to reduce iron deficiency. However, the nutritional efficacy of current, commercially produced elemental iron powders has not been verified. We determined the bioavailability of six commercial elemental iron powders and examined how physicochemistry influences bioavailability. Relative biological value (RBV) of the iron powders was determined using a hemoglobin repletion/slope ratio method, treating iron-deficient rats with repletion diets fortified with graded quantities of iron powders, bakery-grade ferrous sulfate or no added iron. Iron powders were assessed physicochemically by measuring iron solubility in hydrochloric acid at pH 1.0 and 1.7, surface area by nitrogen gas adsorption and surface microstructure by electron microscopy. Bioavailability from the iron powders, based on absolute iron intake, was significantly less than from FeSO4 (100%; P < 0.05) with the following rank order: Carbonyl (64%; Ferronyl, U.S.) > Electrolytic (54%; A-131, U.S.) > Electrolytic (46%; Electrolytic Iron, India) > H-Reduced (42%; AC-325, U.S.) > Reduced (24%; ATOMET 95SP, Canada) > CO-Reduced (21%; RSI-325, Sweden). Solubility testing of the iron powders resulted in different relative rankings and better RBV predictability with increasing time at pH 1.7 (R2 = 0.65 at 150 min). The prediction was improved with less time and lower pH (R2 = 0.82, pH 1.0 at 30 min). Surface area, ranging from 90 to 370 m2/kg, was also highly predictive of RBV (R2 = 0.80). Bioavailability of iron powders is less than bakery-grade ferrous sulfate and varies up to three times among different commercial forms. Solubility at pH 1.0 and surface area were predictive of iron bioavailability in rats.
Benoit, J. M.; Gilmour, C. C.; Mason, R. P.
2001-01-01
We have previously hypothesized that sulfide inhibits Hg methylation by decreasing its bioavailability to sulfate-reducing bacteria (SRB), the important methylators of Hg in natural sediments. With a view to designing a bioassay to test this hypothesis, we investigated a number of aspects of Hg methylation by the SRB Desulfobulbus propionicus, including (i) the relationship between cell density and methylmercury (MeHg) production, (ii) the time course of Hg methylation relative to growth stage, (iii) changes in the bioavailability of an added inorganic Hg (HgI) spike over time, and (iv) the dependence of methylation on the concentration of dissolved HgI present in the culture. We then tested the effect of sulfide on MeHg production by this microorganism. These experiments demonstrated that under conditions of equal bioavailability, per-cell MeHg production was constant through log-phase culture growth. However, the methylation rate of a new Hg spike dramatically decreased after the first 5 h. This result was seen whether methylation rate was expressed as a fraction of the total added Hg or the filtered HgI concentration, which suggests that Hg bioavailability decreased through both changes in Hg complexation and formation of solid phases. At low sulfide concentration, MeHg production was linearly related to the concentration of filtered HgI. The methylation of filtered HgI decreased about fourfold as sulfide concentration was increased from 10−6 to 10−3 M. This decline is consistent with a decrease in the bioavailability of HgI, possibly due to a decline in the dissolved neutral complex, HgS0. PMID:11133427
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weston, D.P.; Mayer, L.M.
1998-05-01
The bioavailability of particle-associated contaminants was measured by a new approach that employs the digestive fluid of deposit feeders to solubilize contaminants in vitro. The proportion of contaminant solubilized by digestive fluid of the polychaete Arenicola brasiliensis was considered a measure of bioavailability and was contrasted with other, more traditional measures (i.e., uptake clearance, bioaccumulation factor, and absorption efficiency). There was generally good agreement among the four methods on the relative bioavailability of benzo[a]pyrene from six sandy sediments. Measures of phenanthrene bioavailability did not show strong correlations due to both a more limited data set and perhaps greater importance ofmore » uptake from the dissolved phase. The bioavailability of spiked polycyclic aromatic hydrocarbons (PAHs) differed from that of equivalent in situ-contaminated PAH but not in a predictable and consistent manner. By direct measurement of PAH content of recently ingested sediments collected from the foregut the authors were able to quantify the importance of particle-selective feeding in increasing PAH content of ingested material relative to the bulk, ambient sediments. In most instances, the effect of selective feeding by A. brasiliensis was minimal, increasing PAH content of ingested material <20% above the ambient sediments. Absorption efficiencies of PAH during gut passage were determined by direct measurement of PAH concentration in sediments at various points along the digestive tract. Overall digestive absorption efficiencies were similar to the extent of in vitro solubilization by digestive fluids from the same sediments. These data suggest that extent of solubilization of sediment-bound contaminants during gut passage is a critical constraint on uptake and that absorption efficiency, with respect to the solubilized fraction, approaches 100%.« less
Ramprasath, V R; Eyal, I; Zchut, S; Shafat, I; Jones, P J H
2015-11-04
Bioavailability of krill oil has been suggested to be higher than fish oil as much of the EPA and DHA in krill oil are bound to phospholipids (PL). Hence, PL content in krill oil might play an important role in incorporation of n-3 PUFA into the RBC, conferring properties that render it effective in reducing cardiovascular disease (CVD) risk. The objective of the present trial was to test the effect of different amounts of PL in krill oil on the bioavailability of EPA and DHA, assessed as the rate of increase of n-3 PUFA in plasma and RBC, in healthy volunteers. In a semi randomized crossover single blind design study, 20 healthy participants consumed various oils consisting of 1.5 g/day of low PL krill oil (LPL), 3 g/day of high PL krill oil (HPL) or 3 g/day of a placebo, corn oil, for 4 weeks each separated by 8 week washout periods. Both LPL and HPL delivered 600 mg of total n-3 PUFA/day along with 600 and 1200 mg/day of PL, respectively. Changes in plasma EPA, DPA, DHA, total n-3 PUFA, n-6:n-3 ratio and EPA + DHA concentrations between LPL and HPL krill oil supplementations were observed to be similar. Intake of both forms of krill oils increased the RBC level of EPA (p < 0.001) along with reduced n-6 PUFA (LPL: p < 0.001: HPL: p = 0.007) compared to control. HPL consumption increased (p < 0.001) RBC concentrations of EPA, DPA, total and n-3 PUFA compared with LPL. Furthermore, although LPL did not alter RBC n-6:n-3 ratio or the sum of EPA and DHA compared to control, HPL intake decreased (p < 0.001) n-6:n-3 ratio relative to control with elevated (p < 0.001) sum of EPA and DHA compared to control as well as to LPL krill oil consumption. HPL krill oil intake elevated (p < 0.005) plasma total and LDL cholesterol concentrations compared to control, while LPL krill oil did not alter total and LDL cholesterol, relative to control. The results indicate that krill oil with higher PL levels could lead to enhanced bioavailability of n-3 PUFA compared to krill oil with lower PL levels. Clinicaltrials.gov# NCT01323036.
NASA Astrophysics Data System (ADS)
McKelvie, J. R.; Wolfe, D. M.; Celejewski, M. A.; Simpson, A. J.; Simpson, M. J.
2009-05-01
At contaminated field sites, the complete removal of polycyclic aromatic hydrocarbons (PAHs) is rarely achieved since a portion of these compounds remain tightly bound to the soil matrix. The concentration of PAHs in soil typically decreases until a plateau is reached, at which point the remaining contaminant is considered non- bioavailable. Numerous soil extraction techniques, including cyclodextrin extraction, have been developed to estimate contaminant bioavailability. However, these are indirect methods that do not directly measure the response of organisms to chemical exposure in soil. Earthworm metabolomics offers a promising new way to directly evaluate the bioavailability and toxicity of contaminants in soil. Metabolomics involves the measurement of changes in small-molecule metabolites, including sugars and amino acids, in living organisms due to an external stress, such as contaminant exposure. The objective of this study was to compare cyclodextrin extraction of soil (a bioavailability proxy) and 1H NMR metabolomic analysis of aqueous earthworm tissue extracts as indicators of contaminant bioavailability. A 30 day laboratory experiment was conducted using phenanthrene-spiked sphagnum peat soil and the OECD recommended earthworm species for toxicity testing, Eisenia fetida. The initial phenanthrene concentration in the soil was 320 mg/kg. Rapid biodegradation of phenanthrene occurred and concentrations decreased to 16 mg/kg within 15 days. After 15 days, phenanthrene biodegradation slowed and cyclodextrin extraction of the soil suggested that phenanthrene was no longer bioavailable. Multivariate statistical analysis of the 1H NMR spectra for E. fetida tissue extracts indicated that the metabolic profile of phenanthrene exposed earthworms differed from control earthworms throughout the 30 day experiment. This suggests that the residual phenanthrene remaining in the soil after 15 days continued to elicit a metabolic response, even though it was not extractable using cyclodextrin. Hence, while cyclodextrin extraction may serve as a good proxy for microbial bioavailability, our results suggest that it may not serve as a good proxy for earthworm bioavailability. 1H NMR metabolomics therefore offers considerable promise as a novel, molecular-level method to directly monitor earthworm bioavailability of potentially toxic and persistent compounds in the environment.
Gopi, Sreeraj; Jacob, Joby; Varma, Karthik; Jude, Shintu; Amalraj, Augustine; Arundhathy, C A; George, Robin; Sreeraj, T R; Divya, C; Kunnumakkara, Ajaikumar B; Stohs, Sidney J
2017-12-01
Curcuminoids are the major bioactive molecules in turmeric, and poor bioavailability deters them from being the major components of many health and wellness applications. This study was conducted to assess the bioavailability of a completely natural turmeric matrix formulation (CNTMF) and compare its bioavailability with two other commercially available formulations, namely, curcumin with volatile oil (volatile oil formulation) and curcumin with phospholipids and cellulose (phospholipid formulation) in healthy human adult male subjects (15 each group) under fasting conditions. Each formulation was administrated orally as a single 500-mg dose in capsule form, and blood samples were analyzed by liquid chromatography mass spectrometry at various time intervals up to 24 h. The ingestion of the CNTMF was very well absorbed and resulted in a mean curcuminoids plasma C max of 170.14 ng/mL (T max = 4 h) compared with 47.54 ng/mL and 69.63 ng/mL for the volatile oil (T max = 3 h) and phospholipid (T max = 2.25 h) formulations, respectively. The extent of absorption of total curcuminoids in the blood for the CNTMF was 6× greater than volatile oil formulation and 5× greater than phospholipids formulation. The results of this study indicate that curcumin in a natural turmeric matrix exhibited greater bioavailability than the two comparator products. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Liu, Dunyi; Liu, Yumin; Zhang, Wei; Chen, Xinping; Zou, Chunqin
2017-01-01
Zinc (Zn) deficiency is a common disorder of humans in developing countries. The effect of Zn biofortification (via application of six rates of Zn fertilizer to soil) on Zn bioavailability in wheat grain and flour and its impacts on human health was evaluated. Zn bioavailability was estimated with a trivariate model that included Zn homeostasis in the human intestine. As the rate of Zn fertilization increased, the Zn concentration increased in all flour fractions, but the percentages of Zn in standard flour (25%) and bran (75%) relative to total grain Zn were constant. Phytic acid (PA) concentrations in grain and flours were unaffected by Zn biofortification. Zn bioavailability and the health impact, as indicated by disability-adjusted life years (DALYs) saved, increased with the Zn application rate and were greater in standard and refined flour than in whole grain and coarse flour. The biofortified standard and refined flour obtained with application of 50 kg/ha ZnSO4·7H2O met the health requirement (3 mg of Zn obtained from 300 g of wheat flour) and reduced DALYs by >20%. Although Zn biofortification increased Zn bioavailability in standard and refined flour, it did not reduce the bioavailability of iron, manganese, or copper in wheat flour. PMID:28481273
Sen Gupta, Surashree; Ghosh, Mahua
2017-10-01
Octacosanol is a lesser known nutraceutical with the potential for treatment of several inflammatory diseases, high cholesterol, Parkinson's symptoms and tumour growth along with the capacity to improve athletic performance. But its lipophilicity and large structure inhibits extended solubility in water resulting in poor absorption and a low bioavailability. In the present work, sodium salt of octacosyl sulfate was synthesized. It displayed improved water solubility. Its nanocrystals, synthesized by means of nanoprecipitation technique, enhanced diffusion velocity, antioxidant capacity, shelf-life, penetrability and bioavailability. Particle size of the nanocrystals ranged between 197 and 220nm. Both modified octacosanol and its nanocrystals displayed maximum lipid peroxidation activities at a concentration 1000ppm, but nanocrystals demonstrated higher prevention. From freeze-thaw cycles it was evident that normal octacosanol crystals were far more prone to temperature variations than the nanocrystals. A pronounced increase in release/diffusion rate and bioavailability was observed for the nanocrystals of the modified octacosanol. In vitro release kinetics, bioavailability and bioequivalence were studied. Relative bioavailability for gastric passage and pancreatic passage of nanocrystals was 2.58 times and 1.81 times that of normal crystals respectively. Furthermore the nanocrystals displayed a superior in vitro release rate, while following a non-Fickian mode. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Dunyi; Liu, Yumin; Zhang, Wei; Chen, Xinping; Zou, Chunqin
2017-05-06
Zinc (Zn) deficiency is a common disorder of humans in developing countries. The effect of Zn biofortification (via application of six rates of Zn fertilizer to soil) on Zn bioavailability in wheat grain and flour and its impacts on human health was evaluated. Zn bioavailability was estimated with a trivariate model that included Zn homeostasis in the human intestine. As the rate of Zn fertilization increased, the Zn concentration increased in all flour fractions, but the percentages of Zn in standard flour (25%) and bran (75%) relative to total grain Zn were constant. Phytic acid (PA) concentrations in grain and flours were unaffected by Zn biofortification. Zn bioavailability and the health impact, as indicated by disability-adjusted life years (DALYs) saved, increased with the Zn application rate and were greater in standard and refined flour than in whole grain and coarse flour. The biofortified standard and refined flour obtained with application of 50 kg/ha ZnSO₄·7H₂O met the health requirement (3 mg of Zn obtained from 300 g of wheat flour) and reduced DALYs by >20%. Although Zn biofortification increased Zn bioavailability in standard and refined flour, it did not reduce the bioavailability of iron, manganese, or copper in wheat flour.
Ban, Yajing; L Prates, Luciana; Yu, Peiqiang
2017-10-18
This study was conducted to (1) determine protein and carbohydrate molecular structure profiles and (2) quantify the relationship between structural features and protein bioavailability of newly developed carinata and canola seeds for dairy cows by using Fourier transform infrared molecular spectroscopy. Results showed similarity in protein structural makeup within the entire protein structural region between carinata and canola seeds. The highest area ratios related to structural CHO, total CHO, and cellulosic compounds were obtained for carinata seeds. Carinata and canola seeds showed similar carbohydrate and protein molecular structures by multivariate analyses. Carbohydrate molecular structure profiles were highly correlated to protein rumen degradation and intestinal digestion characteristics. In conclusion, the molecular spectroscopy can detect inherent structural characteristics in carinata and canola seeds in which carbohydrate-relative structural features are related to protein metabolism and utilization. Protein and carbohydrate spectral profiles could be used as predictors of rumen protein bioavailability in cows.
Patten, Glen S; Sanguansri, Luz; Augustin, Mary Ann; Abeywardena, Mahinda Y; Bird, Anthony R; Patch, Craig S; Belobrajdic, Damien P
2017-03-01
Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) may be more bioavailable from krill oil compared to fish oil due to their phospholipid structure. We tested whether a microencapsulated krill and tuna oil blend (ME-TOKO) provided greater LC n-3 PUFA bioavailability, improved blood lipid profiles and increased intestinal contractility compared to microencapsulated tuna oil (ME-TO). Rats were divided into three groups to receive isocaloric diets containing ME-TO, ME-TOKO and microencapsulated olive oil (ME-OO) at 0.3 or 2 g/100 g for 4 weeks. Final body and organ weights, feed intake and waste output were similar. ME-TOKO rats had higher plasma total LC n-3 PUFA levels compared to ME-TO, but liver LC n-3 PUFA levels and plasma triglyceride and cholesterol levels were similar in non-fasted rats. Diets containing 2% ME-TO and ME-TOKO also showed similar increases in ileal contractility. In summary, ME-TO bioavailability of LC n-3 PUFA was similar to ME-TOKO.
Zinc and selenium accumulation and their effect on iron bioavailability in common bean seeds.
de Figueiredo, Marislaine A; Boldrin, Paulo F; Hart, Jonathan J; de Andrade, Messias J B; Guilherme, Luiz R G; Glahn, Raymond P; Li, Li
2017-02-01
Common beans (Phaseolus vulgaris) are the most important legume crops. They represent a major source of micronutrients and a target for essential trace mineral enhancement (i.e. biofortification). To investigate mineral accumulation during seed maturation and to examine whether it is possible to biofortify seeds with multi-micronutrients without affecting mineral bioavailability, three common bean cultivars were treated independently with zinc (Zn) and selenium (Se), the two critical micronutrients that can be effectively enhanced via fertilization. The seed mineral concentrations during seed maturation and the seed Fe bioavailability were analyzed. Common bean seeds were found to respond positively to Zn and Se treatments in accumulating these micronutrients. While the seed pods showed a decrease in Zn and Se along with Fe content during pod development, the seeds maintained relatively constant mineral concentrations during seed maturation. Selenium treatment had minimal effect on the seed accumulation of phytic acid and polyphenols, the compounds affecting Fe bioavailability. Zinc treatment reduced phytic acid level, but did not dramatically affect the concentrations of total polyphenols. Iron bioavailability was found not to be greatly affected in seeds biofortified with Se and Zn. In contrast, the inhibitory polyphenol compounds in the black bean profoundly reduced Fe bioavailability. These results provide valuable information for Se and Zn enhancement in common bean seeds and suggest the possibility to biofortify with these essential nutrients without greatly affecting mineral bioavailability to increase the food quality of common bean seeds. Published by Elsevier Masson SAS.
Jachero, Lourdes; Leiva, Claudio; Ahumada, Inés; Richter, Pablo
2017-11-01
The bioavailability of polychlorinated biphenyls (PCBs) in soils amended with biosolids was estimated using an aqueous leaching process of the compounds combined with rotating disk sorptive extraction (RDSE), and compared with bioavailability determined through of PCB absorption in wheat plants growing in the same soil-biosolid matrix. The matrices consisted of soil amended with biosolids at doses of 30, 90, and 200 Mg/ha, which increase concomitantly the organic matter content of the matrix. Considering that PCBs were natively absent in both the biosolids and soil used, the compounds were spiked in the biosolids and aged for 10 days. For each biosolid dose, the aqueous leaching profile was studied and equilibrium time was calculated to be 33 h. The leaching fractions determined by RDSE, considering total PCBs studied, were 12, 7, and 6% and the bioavailable fractions absorbed by the wheat root were found to be 0.5, 0.3, and 0.2% for 30, 90, and 200 Mg/ha doses, respectively. Both fractions leachable and bioavailable decrease with both increasing hydrophobicity of the compound (Kow) and increasing in the biosolid dose. It was found that both fractions (leaching and bioavailable) correlated according to the bivariate least squares regression, represented by a coefficient of correlation of 0.86. Therefore, the application of the chemical method involving a leaching procedure is an alternative to estimate the bioavailable fraction of PCBs in wheat plants in a simpler and in a shorter time.
Huang, Li Hua; Xiong, Xiao Hong; Zhong, Yun Ming; Cen, Mei Feng; Cheng, Xuan Ge; Wang, Gui Xiang; Zang, Lin Quan; Wang, Su Jun
2016-06-05
Isochlorgenic acid C (IAC), one of the bioactive compounds of Lonicera japonica, exhibited diverse pharmacological effects. However, its pharmacokinetic properties and bioavailability remained unresolved. To determine the absolute bioavailability in rats and the dose proportionality on the pharmacokinetics of single oral dose of IAC. A validated HPLC-MS method was developed for the determination of IAC in rat plasma. Plasma concentration versus time data were generated following oral and intravenous dosing. The pharmacokinetic analysis was performed using DAS 3.0 software analysis. Absolute bioavailability in rats was determined by comparing pharmacokinetic data after administration of single oral (5, 10 and 25mgkg(-1)) and intravenous (5mgkg(-1)) doses of IAC. The dose proportionality of AUC(0-∞) and Cmax were analyzed by linear regression. Experimental data showed that absolute oral bioavailability of IAC in rats across the doses ranged between 14.4% and 16.9%. The regression analysis of AUC(0-∞) and Cmax at the three doses (5, 10 and 25mgkg(-1)) indicated that the equations were y=35.23x+117.20 (r=0.998) and y=121.03x+255.74 (r=0.995), respectively. A new HPLC-MS method was developed to determine the bioavailability and the dose proportionality of IAC. Bioavailability of IAC in rats was poor and both Cmax and AUC(0-∞) of IAC had a positive correlation with dose. Evaluation of the pharmacokinetics of IAC will be useful in assessing concentration-effect relationships for the potential therapeutic applications of IAC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Han, Shuping; Naito, Wataru; Masunaga, Shigeki
To assess the effects of Fe(III) and anthropogenic ligands on the bioavailability of Ni, Cu, Zn, and Pb, concentrations of bioavailable metals were measured by the DGT (diffusive gradients in thin films) method in some urban rivers, and were compared with concentrations calculated by a chemical equilibrium model (WHAM 7.0). Assuming that dissolved Fe(III) (<0.45 μm membrane filtered) was in equilibrium with colloidal iron oxide, the WHAM 7.0 model estimated that bioavailable concentrations of Ni, Cu, and Zn were slightly higher than the corresponding values estimated assuming that dissolved Fe(III) was absent. In contrast, lower levels of free Pb were predicted by the WHAM 7.0 model when dissolved Fe(III) was included. Estimates showed that most of the dissolved Pb was present as colloidal iron-Pb complex. Ethylene-diamine-tetra-acetic acid (EDTA) concentrations at sampling sites were predicted from the relationship between EDTA and the calculated bioavailable concentration of Zn. When both colloidal iron and predicted EDTA concentrations were included in the WHAM 7.0 calculations, dissolved metals showed a strong tendency to form EDTA complexes, in the order Ni > Cu > Zn > Pb. With the inclusion of EDTA, bioavailable concentrations of Ni, Cu, and Zn predicted by WHAM 7.0 were different from those predicted considering only humic substances and colloidal iron.
El-Say, Khalid M; El-Helw, Abdel-Rahim M; Ahmed, Osama A A; Hosny, Khaled M; Ahmed, Tarek A; Kharshoum, Rasha M; Fahmy, Usama A; Alsawahli, Majed
2015-01-01
The purpose was to improve the encapsulation efficiency of cetirizine hydrochloride (CTZ) microspheres as a model for water soluble drugs and control its release by applying response surface methodology. A 3(3) Box-Behnken design was used to determine the effect of drug/polymer ratio (X1), surfactant concentration (X2) and stirring speed (X3), on the mean particle size (Y1), percentage encapsulation efficiency (Y2) and cumulative percent drug released for 12 h (Y3). Emulsion solvent evaporation (ESE) technique was applied utilizing Eudragit RS100 as coating polymer and span 80 as surfactant. All formulations were evaluated for micromeritic properties and morphologically characterized by scanning electron microscopy (SEM). The relative bioavailability of the optimized microspheres was compared with CTZ marketed product after oral administration on healthy human volunteers using a double blind, randomized, cross-over design. The results revealed that the mean particle sizes of the microspheres ranged from 62 to 348 µm and the efficiency of entrapment ranged from 36.3% to 70.1%. The optimized CTZ microspheres exhibited a slow and controlled release over 12 h. The pharmacokinetic data of optimized CTZ microspheres showed prolonged tmax, decreased Cmax and AUC0-∞ value of 3309 ± 211 ng h/ml indicating improved relative bioavailability by 169.4% compared with marketed tablets.
Atsmon, Jacob; Heffetz, Daphna; Deutsch, Lisa; Deutsch, Frederic; Sacks, Hagit
2017-11-10
Cannabidiol (CBD) is the main nonpsychoactive component of the cannabis plant. It has been associated with antiseizure, antioxidant, neuroprotective, anxiolytic, anti-inflammatory, antidepressant, and antipsychotic effects. PTL101 is an oral gelatin matrix pellets technology-based formulation containing highly purified CBD embedded in seamless gelatin matrix beadlets. Study objectives were to evaluate the safety and tolerability of PTL101 containing 10 and 100 mg CBD, following single administrations to healthy volunteers and to compare the pharmacokinetic profiles and relative bioavailability of CBD with Sativex oromucosal spray (the reference product) in a randomized, crossover study design. Administration of PTL101 containing 10 CBD, led to a 1.7-fold higher C max and 1.3-fold higher AUC compared with the oromucosal spray. T max following both modes of delivery was 3-3.5 hours postdosing. CBD exhibited about a 1-hour lag in absorption when delivered via PTL101. A 10-fold increase in the dose resulted in an ∼15-fold increase in C max and AUC. Bioavailability of CBD in the 10-mg PTL101 dose was 134% relative to the reference spray. PTL101 is a pharmaceutical-grade, user-friendly oral formulation that demonstrated safe and efficient delivery of CBD and therefore could be an attractive candidate for therapeutic indications. © 2017, The American College of Clinical Pharmacology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pastorok, R.; Schoof, R.; LaTier, A.
1995-12-31
At mining and smelting sites, the bioavailability of waste-related trace elements to terrestrial wildlife is limited by mineralogy of the waste material and the geochemistry of the waste-soil mixture. For example, encapsulation of trace elements in inert mineral matrices limits the assimilation of particle-associated trace elements that are ingested by wildlife. The bioavailability of arsenic, cadmium, copper, lead, silver, and zinc at mining and smelting sites in Oklahoma and Montana was evaluated based on analysis of waste material, soil chemistry, and concentrations of trace elements in whole-body samples of key food web species. Concentrations of trace elements were generally elevatedmore » relative to reference area values for selected species of vegetation, insects, spiders, and small mammals. Soil-to-tissue bioconcentration factors derived from field data at these sites were generally low (< 1), with the exception of cadmium in vegetation. For all of the trace elements evaluated, wildlife exposure models indicate that the potential for transfer of contaminants to wildlife species of public concern and high trophic-level predators is limited. Moreover, laboratory feeding experiments conducted with cadmium and lead indicate that the assimilation of waste-related trace elements by mammals is relatively low (24--47 percent for lead in blood and bone; 22--44 percent for cadmium in kidney). The relatively low bioavailability of trace elements at mining and smelting sites should be considered when estimating exposure of ecological receptors and when deriving soil cleanup criteria based on measured or modeled ecological risk.« less
21 CFR 320.22 - Criteria for waiver of evidence of in vivo bioavailability or bioequivalence.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Criteria for waiver of evidence of in vivo bioavailability or bioequivalence. 320.22 Section 320.22 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... indication in a Drug Efficacy Study Implementation notice or which is identical, related, or similar to such...
21 CFR 320.22 - Criteria for waiver of evidence of in vivo bioavailability or bioequivalence.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Criteria for waiver of evidence of in vivo bioavailability or bioequivalence. 320.22 Section 320.22 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... indication in a Drug Efficacy Study Implementation notice or which is identical, related, or similar to such...
21 CFR 320.22 - Criteria for waiver of evidence of in vivo bioavailability or bioequivalence.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Criteria for waiver of evidence of in vivo bioavailability or bioequivalence. 320.22 Section 320.22 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... indication in a Drug Efficacy Study Implementation notice or which is identical, related, or similar to such...
21 CFR 320.22 - Criteria for waiver of evidence of in vivo bioavailability or bioequivalence.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Criteria for waiver of evidence of in vivo bioavailability or bioequivalence. 320.22 Section 320.22 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... indication in a Drug Efficacy Study Implementation notice or which is identical, related, or similar to such...
21 CFR 320.22 - Criteria for waiver of evidence of in vivo bioavailability or bioequivalence.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Criteria for waiver of evidence of in vivo bioavailability or bioequivalence. 320.22 Section 320.22 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... indication in a Drug Efficacy Study Implementation notice or which is identical, related, or similar to such...
Devi, Parmila; Saroha, Anil K
2014-06-01
The risk analysis was performed to study the bioavailability and eco-toxicity of heavy metals in biochar obtained from pyrolysis of sludge of pulp and paper mill effluent treatment plant. The sludge was pyrolyzed at different temperatures (200-700°C) and the resultant biochar were analyzed for fractionation of heavy metals by sequential extraction procedure. It was observed that all the heavy metals get enriched in biochar matrix after pyrolysis, but the bioavailability and eco-toxicity of the heavy metals in biochar were significantly reduced as the mobile and bioavailable heavy metal fractions were transformed into the relatively stable fractions. Moreover, it was observed that the leaching potential of heavy metals decreased after pyrolysis and the best results were obtained for biochar pyrolyzed at 700°C. Copyright © 2014 Elsevier Ltd. All rights reserved.
Intestinal "bioavailability" of solutes and water: we know how but not why.
Charney, A. N.
1996-01-01
Only minimal quantities of ingested and normally secreted solutes and water are excreted in the stool. This near 100% bioavailability means that the diet and kidneys are relatively more important determinants of solute, water and acid-base balance than the intestine. Intestinal bioavailability is based on excess transport capacity under normal conditions and the ability to adapt to altered or abnormal conditions. Indeed, the regulatory system of the intestine is as complex, segmented and multi factorial as in the kidney. Alterations in the rate and intestinal site of absorption reflect this regulation, and the diagnosis and treatment of various clinical abnormalities depend on the integrity of intestinal absorptive processes. However, the basis for this regulation an bioavailability are uncertain. Perhaps they had survival value for mammals, a phylogenic class that faced the twin threats of intestinal pathogens and shortages of solutes and water. PMID:9273987
Ndu, Udonna; Barkay, Tamar; Schartup, Amina Traore; Mason, Robert P; Reinfelder, John R
2016-02-01
Mercury resistant bacteria play a critical role in mercury biogeochemical cycling in that they convert methylmercury (MeHg) and inorganic mercury to elemental mercury, Hg(0). To date there are very few studies on the effects of speciation and bioavailability of MeHg in these organisms, and even fewer studies on the role that binding to cellular ligands plays on MeHg uptake. The objective of this study was to investigate the effects of thiol complexation on the uptake of MeHg by measuring the intracellular demethylation-reduction (transformation) of MeHg to Hg(0) in Hg-resistant bacteria. Short-term intracellular transformation of MeHg was quantified by monitoring the loss of volatile Hg(0) generated during incubations of bacteria containing the complete mer operon (including genes from putative mercury transporters) exposed to MeHg in minimal media compared to negative controls with non-mer or heat-killed cells. The results indicate that the complexes MeHgOH, MeHg-cysteine, and MeHg-glutathione are all bioavailable in these bacteria, and without the mer operon there is very little biological degradation of MeHg. In both Pseudomonas stutzeri and Escherichia coli, there was a pool of MeHg that was not transformed to elemental Hg(0), which was likely rendered unavailable to Mer enzymes by non-specific binding to cellular ligands. Since the rates of MeHg accumulation and transformation varied more between the two species of bacteria examined than among MeHg complexes, microbial bioavailability, and therefore microbial demethylation, of MeHg in aquatic systems likely depends more on the species of microorganism than on the types and relative concentrations of thiols or other MeHg ligands present.
Blandizzi, Corrado; Viscomi, Giuseppe Claudio; Scarpignato, Carmelo
2015-01-01
Background Rifaximin is an antibiotic, acting locally in the gastrointestinal tract, which may exist in different crystal as well as amorphous forms. The current marketed rifaximin formulation contains polymorph alpha, the systemic bioavailability of which is very limited. This study compared the pharmacokinetics of this formulation with those of the amorphous form. Methods Amorphous rifaximin was specifically prepared for the study and formulated as the marketed product. Two doses (200 mg and 400 mg) of both formulations were given to two groups of 12 healthy volunteers of either sex according to a single-blind, randomized, two-treatment, single-dose, two-period, cross-over design. Plasma and urine samples were collected at preset times (for 24 hours or 48 hours, respectively) after dosing, and assayed for rifaximin concentrations by high-performance liquid chromatography-mass spectrometry. Results For both dose levels, peak plasma concentration, area under the concentration-time curve, and cumulative urinary excretion were significantly higher after administration of amorphous rifaximin than rifaximin-α. Ninety percent confidence intervals for peak plasma concentration, area under the concentration-time curve, and urinary excretion ratios were largely outside the upper limit of the accepted (0.80–1.25) range, indicating higher systemic bioavailability of the amorphous rifaximin. The few adverse events recorded were not serious and not related to the study medications. Conclusion Rifaximin-α, a crystal polymorph, does differ from the amorphous form, the latter being systemically more bioavailable. In this regard, care must be taken when using – as a medicinal product – a formulation containing even small amounts of amorphous form, which may alter the peculiar pharmacologic properties of this poorly absorbed antibiotic. PMID:25565769
Blandizzi, Corrado; Viscomi, Giuseppe Claudio; Scarpignato, Carmelo
2015-01-01
Rifaximin is an antibiotic, acting locally in the gastrointestinal tract, which may exist in different crystal as well as amorphous forms. The current marketed rifaximin formulation contains polymorph alpha, the systemic bioavailability of which is very limited. This study compared the pharmacokinetics of this formulation with those of the amorphous form. Amorphous rifaximin was specifically prepared for the study and formulated as the marketed product. Two doses (200 mg and 400 mg) of both formulations were given to two groups of 12 healthy volunteers of either sex according to a single-blind, randomized, two-treatment, single-dose, two-period, cross-over design. Plasma and urine samples were collected at preset times (for 24 hours or 48 hours, respectively) after dosing, and assayed for rifaximin concentrations by high-performance liquid chromatography-mass spectrometry. For both dose levels, peak plasma concentration, area under the concentration-time curve, and cumulative urinary excretion were significantly higher after administration of amorphous rifaximin than rifaximin-α. Ninety percent confidence intervals for peak plasma concentration, area under the concentration-time curve, and urinary excretion ratios were largely outside the upper limit of the accepted (0.80-1.25) range, indicating higher systemic bioavailability of the amorphous rifaximin. The few adverse events recorded were not serious and not related to the study medications. Rifaximin-α, a crystal polymorph, does differ from the amorphous form, the latter being systemically more bioavailable. In this regard, care must be taken when using - as a medicinal product - a formulation containing even small amounts of amorphous form, which may alter the peculiar pharmacologic properties of this poorly absorbed antibiotic.
Macroalgal biomonitors of trace metal contamination in acid sulfate soil aquaculture ponds.
Gosavi, K; Sammut, J; Gifford, S; Jankowski, J
2004-05-25
Earthen shrimp aquaculture ponds are often impacted by acid sulfate soils (ASS), typically resulting in increased disease and mortality of cultured organisms. Production losses have been attributed to either low pH or to elevated concentrations of toxic metals, both direct products of pyrite oxidation in ASS. The standard farm management practice to minimise effects of pyrite oxidation is to maintain pH of pond waters above 5, based on the assumption that dissolved metal bioavailability is negligible at this pH. This study aimed to test the validity of this assumption, and therefore elucidate a possible role of toxic heavy metals in observed decreases in farm productivity. Metal bioaccumulation in four genera of macroalgae, Ulva sp., Enteromorpha sp., Cladophora sp. and Chaetomorpha sp., sampled from ASS-affected shrimp aquaculture ponds were measured using inductively coupled plasma-optical emission spectroscopy (ICP-OES) to assess the relative bioavailability of dissolved metals within the system. Results showed that all four genera of macroalgae accumulated appreciable quantities of Fe, Al, Zn, Cd, Cu, As and Pb. Iron and Al, the most common metals mobilised from ASS, were both accumulated in all algal genera to concentrations three orders of magnitude greater than all other metals analysed. These findings indicate that dissolved heavy metals are indeed bioavailable within the aquaculture pond system. A literature search of heavy metal bioaccumulation by these algal genera revealed concentrations recorded in this study are comparable to highly contaminated environments, such as those exposed to urban, industrial and mining pollution. The results of this study indicate that dissolved metal bioavailability in many earthen shrimp aquaculture ponds may be higher than previously thought.
NASA Astrophysics Data System (ADS)
Dang, Hao; Meng, Murtaza Hasan Weiwei; Zhao, Haiwei; Iqbal, Javed; Dai, Rongji; Deng, Yulin; Lv, Fang
2014-04-01
Luteolin (LU, 5,7,3',4'-tetrahydroxyflavone) most active compound in Chinese herbal flavones has been acting as a antimicrobial, anti-inflammatory, anti-cancer, and antimutagen. However, its poor bioavailability, hydrophobicity, and pharmacokinetics restrict clinical application. Here in this study, LU-loaded solid lipid nanoparticles have been prepared by hot-microemulsion ultrasonic technique to improve the bioavailability & pharmacokinetics of compound. LU-loaded solid lipid nanoparticle size was confirmed by particle size analyzer with range from 47 to 118 nm, having zepta potential -9.2 mV and polydisperse index 0.247, respectively. Round-shaped SLNPs were obtained by using transmission electron microscope, and encapsulation efficiency 74.80 % was calculated by using HPLC. Both in vitro and vivo studies, LC-MS/MS technique was used for quantification of Luteolin in rat. The T max value of drug with LU-SLNs after the administration was Ten times shorter than pure Luteolin suspension administration. C max value of drug after the administration of LU-SLNs was five times higher than obtained with native drug suspension. Luteolin with SLNs has increased the half-life approximately up to 2 h. Distribution and clearance of drug with SLNs were significantly decreased by 2.16-10.57 fold, respectively. In the end, the relative bioavailability of SLNs has improved about 4.89 compared to Luteolin with SLNs. From this study, it can be concluded that LU-SLNs have not only great potential for improving solubility but also increased the drug concentration in plasma. Furthermore, use of LC-MS/MS for quantification of LU-SLNs in rat plasma is reliable and of therapeutic usefulness, especially for neurodegenerative and cancerous disorders in humans.
Zhao, Danyue; Shah, Nagendra P
2016-12-01
Black tea (BT) has been positively linked to improved redox status, while its efficacy is limited due to the low bioavailability of BT flavonoids. In addition to the direct antioxidant activity, flavonoids regulate redox balance via inducing endogenous antioxidants, particularly glutathione (GSH) and GSH-dependent antioxidant enzymes. This work first examined the effect of lactic acid bacteria (LAB) and BT alone or in combination on flavonoid bioavailability and metabolism; next, the effect of LAB-fermented BT diet in attenuating oxidative stress in mice and the underlying mechanisms were studied. Phenolic profiles of plasma, urine and feces from healthy mice consuming plain yogurt, BT milk (BTM) or BT yogurt (BTY) were acquired using LC-MS/MS. Plasma antioxidant capacity, lipid peroxidation level, content of nonprotein thiols and expression of GSH-related antioxidant enzymes and Nrf2 were examined in d-galactose-treated mice. Total flavonoid content in plasma following a single dose of BTY attained 0.657 μmol/l, increased by 50% compared with the BTM group. Increased excretion of phenolic metabolite and hippuric acid in urine and feces indicated enhanced metabolism of flavonoids in BTY-fed mice. In the second study, 8-week concomitant LAB-BT treatment of oxidatively stressed mice effectively restored plasma antioxidant capacity and GSH levels, and mitigated lipid peroxidation, which were associated with significant induction of GSH-dependent antioxidant enzymes and nuclear accumulation of Nrf2. Our results demonstrated the effect of LAB fermentation in enhancing BT flavonoid bioavailability in vivo. The synergistic antioxidant efficacy of LAB-BT diet implied its therapeutic potential in enhancing antioxidant defenses and protecting organisms from oxidative damage. Copyright © 2016. Published by Elsevier Inc.
Jin, Xin; Zhang, Zhen-hai; Sun, E; Tan, Xiao-bin; Li, Song-lin; Cheng, Xu-dong; You, Ming; Jia, Xiao-bin
2013-01-01
Background 20(S)-protopanaxadiol (PPD), similar to several other anticancer agents, has low oral absorption and is extensively metabolized. These factors limit the use of PPD for treatment of human diseases. Methods In this study, we used cubic nanoparticles containing piperine to improve the oral bioavailability of PPD and to enhance its absorption and inhibit its metabolism. Cubic nanoparticles loaded with PPD and piperine were prepared by fragmentation of glyceryl monoolein (GMO)/poloxamer 407 bulk cubic gel and verified using transmission electron microscopy and differential scanning calorimetry. We evaluated the in vitro release of PPD from these nanoparticles and its absorption across the Caco-2 cell monolayer model, and subsequently, we examined the bioavailability and metabolism of PPD and its nanoparticles in vivo. Results The in vitro release of PPD from these nanoparticles was less than 5% at 12 hours. PPD-cubosome and PPD-cubosome loaded with piperine (molar ratio PPD/piperine, 1:3) increased the apical to basolateral permeability values of PPD across the Caco-2 cell monolayer from 53% to 64%, respectively. In addition, the results of a pharmacokinetic study in rats showed that the relative bioavailabilities of PPD-cubosome [area under concentration–time curve (AUC)0–∞] and PPD-cubosome containing piperine (AUC0–∞) compared to that of raw PPD (AUC0–∞) were 166% and 248%, respectively. Conclusion The increased bioavailability of PPD-cubosome loaded with piperine is due to an increase in absorption and inhibition of metabolism of PPD by cubic nanoparticles containing piperine rather than because of improved release of PPD. The cubic nanoparticles containing piperine may be a promising oral carrier for anticancer drugs with poor oral absorption and that undergo extensive metabolism by cytochrome P450. PMID:23426652
Schug, B S; Brendel, E; Chantraine, E; Wolf, D; Martin, W; Schall, R; Blume, H H
2002-06-01
The aim of this study was to investigate the effect of concomitant food intake on the bioavailability of two nifedipine containing modified release dosage forms for once daily administration. The clinical study was performed to investigate the in vivo relevance of pH-dependent differences in the in vitro release properties of the two dosage forms. This was a randomized, open, 4-way crossover study in 24 healthy, male subjects. Following an overnight fast of 12 h single doses of Adalat OROS or Slofedipine XL were administered either in the fasted state or immediately after a high fat American breakfast. Nifedipine plasma concentrations in samples obtained until 48 h after drug administration were determined using a validated LC-MS/MS method. Calculation of pharmacokinetic parameters was conducted model-independently. The two dosage forms as well as the two administration conditions were compared by calculating point estimates and 90% confidence intervals for the relevant pharmacokinetic parameters. In vitro dissolution tests were performed using a paddle apparatus 3 acc. USP, a pharmacopoeial dissolution system consisting of reciprocating cylinders in flat-bottomed glass vessels, with various buffer systems covering the entire physiological pH-range of the gastrointestinal tract. After fasted administration the extent of bioavailability of nifedipine as characterized by AUC(0,infinity) was slightly lower for Slofedipine XL compared with Adalat OROS with a point estimate of 82.3% primarily resulting from pronounced differences in nifedipine concentrations during the first 15 h after administration. Accordingly, maximum plasma concentrations were lower after administration of Slofedipine XL compared with Adalat OROS (point estimate: 84.3%). Under fed conditions the differences in bioavailability between the two products as characterized by the pharmacokinetic parameters AUC(0,tn) and Cmax were greater than after fasting conditions with point estimates of 69.6% and 81.0%, respectively. However, most striking was a pronounced delay in nifedipine absorption observed under fed conditions after administration of Slofedipine XL which resulted in lag-times of more than 15 h in 15 out of 24 subjects. Owing to this lag-time under fed conditions the relative bioavailability of nifedipine from Slofedipine XL compared with Adalat OROS was only 28% over the intended dosing interval of 24 h. In this study a dosage form-dependent food interaction was observed which, under fed conditions, resulted in pronounced differences in the relative bioavailability of nifedipine between Slofedipine XL and Adalat OROS over the intended dosing interval of 24 h. The delay in nifedipine absorption when Slofedipine XL is administered after a high-fat breakfast may be explained by the formulation properties. Slofedipine XL is an erosive tablet with an acid resistant coating whereas Adalat OROS is designed with an osmotic push-pull system. Under fed conditions drug from the single unit enteric coated dosage form exhibits a delayed absorption probably due to an extensively prolonged gastric residence time which does not allow drug release, on the other hand the osmotically driven push-pull system is not sensitive to concomitant food intake. The observed phenomenon might be of therapeutic relevance. For example a change from taking Slofedipine XL in the fed to the fasted state might result in increased systemic concentrations of nifedipine.
Meganathan, Puvaneswari; Jabir, Rafid Salim; Fuang, Ho Gwo; Bhoo-Pathy, Nirmala; Choudhury, Roma Basu; Taib, Nur Aishah; Nesaretnam, Kalanithi; Chik, Zamri
2015-09-01
Gamma and delta tocotrienols are isomers of Vitamin E with established potency in pre-clinical anti-cancer research. This single-dose, randomized, crossover study aimed to compare the safety and bioavailability of a new formulation of Gamma Delta Tocotrienol (GDT) in comparison with the existing Tocotrienol-rich Fraction (TRF) in terms of gamma and delta isomers in healthy volunteers. Subjects were given either two 300 mg GDT (450 mg γ-T3 and 150 mg δ-T3) capsules or four 200 mg TRF (451.2 mg γ-T3 &102.72 mg δ-T3) capsules and blood samples were taken at several time points over 24 hours. Plasma tocotrienol concentrations were determined using HPLC method. The 90% CI for gamma and delta tocotrienols for the ratio of log-transformation of GDT/TRF for Cmax and AUC0-∞ (values were anti-logged and expressed as a percentage) were beyond the bioequivalence limits (106.21-195.46, 154.11-195.93 and 52.35-99.66, 74.82-89.44 respectively). The Wilcoxon Signed Rank Test for Tmax did not show any significant difference between GDT and TRF for both isomers (p > 0.05). No adverse events were reported during the entire period of study. GDT was found not bioequivalent to TRF, in terms of AUC and Cmax. Gamma tocotrienol in GDT showed superior bioavailability whilst delta tocotrienol showed less bioavailability compared to TRF.
Sakan, Sanja; Popović, Aleksandar; Škrivanj, Sandra; Sakan, Nenad; Đorđević, Dragana
2016-11-01
Metals in sediments are present in different chemical forms which affect their ability to transfer. The objective of this body of work was to compare different extraction methods for the bioavailability evaluation of some elements, such as Ba, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Ni, Pb, V and Zn from Serbian river sediments. A bioavailability risk assessment index (BRAI) was used for the quantification of heavy metal bioavailability in the sediments. Actual and potential element availability was assessed by single extractions with mild (CaCl 2 and CH 3 COONH 4 ) and acidic (CH 3 COOH) extractants and complexing agents (EDTA). Aqua regia extraction was used for the determination of the pseudo-total element content in river sediments. In different single extraction tests, higher extraction of Cd, Cu, Zn and Pb was observed than for the other elements. The results of the single extraction tests revealed that there is a considerable chance of metal leaching from the sediments assessed in this study. When the BRAI was applied, the results showed a high risk of heavy metal bioavailability in Serbian river sediments.
Dai, Yunchao; Nasir, Mubasher; Zhang, Yulin; Gao, Jiakai; Lv, Yamin; Lv, Jialong
2018-01-01
Several predictive models and methods have been used for heavy metals bioavailability, but there is no universally accepted approach in evaluating the bioavailability of arsenic (As) in soil. The technique of diffusive gradients in thin-films (DGT) is a promising tool, but there is a considerable debate with respect to its suitability. The DGT method was compared with other traditional chemical extractions techniques (soil solution, NaHCO 3 , NH 4 Cl, HCl, and total As method) for estimating As bioavailability in soil based on a greenhouse experiment using Brassica chinensis grown in various soils from 15 provinces in China. In addition, we assessed whether these methods are independent of soil properties. The correlations between plant and soil As concentration measured with traditional extraction techniques were pH and iron oxide (Fe ox ) dependent, indicating that these methods are influenced by soil properties. In contrast, DGT measurements were independent of soil properties and also showed a better correlation coefficient than other traditional techniques. Thus, DGT technique is superior to traditional techniques and should be preferable for evaluating As bioavailability in different type of soils. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Minghua; Peng, Li; Yang, Fuheng; Liu, Sijia; Wang, Shengqi
2015-06-01
To evaluate the effect of Radix euphorbiae pekinensis extract on the permeability and bioavailability of paclitaxel co-administered orally. Based on Ussing Chamber and in vivo experiment, the permeability and bioavailability of paclitaxel were evaluated after oral co-administration with radix euphorbiae pekinensis in rats. The contents of paclitaxel in the permeates and the blood samples were determined using HPLC and LC-MS/MS method, respectively. In Radix euphorbiae pekinensis co-administration group, the Papp of the mucosal-to-serosal (M-S) transport or serosal-to-mucosal transport (S-M) of paclitaxel in the jejunum or ileum segment differed significantly from those in verapamil co-administration group and blank control group (P<0.05), but the Papp of S-M transport in the colon showed no significant difference from that in the blank control group. In the blank group, the average absolute bioavailability (AB%) of orally administered paclitaxel was only 2.81%, compared to that of 7.63% in radix euphorbiae pekinensis group. The average AB% in verapamil group was about 1.5 times that of the blank group. Co-administration of Radix euphorbiae pekinensis extract can increase the bioavailability of orally administered paclitaxel.
Aluminum bioavailability from tea infusion.
Yokel, Robert A; Florence, Rebecca L
2008-12-01
The objective was to estimate oral Al bioavailability from tea infusion in the rat, using the tracer (26)Al. (26)Al citrate was injected into tea leaves. An infusion was prepared from the dried leaves and given intra-gastrically to rats which received concurrent intravenous (27)Al infusion. Oral Al bioavailability (F) was calculated from the area under the (26)Al, compared to (27)Al, serum concentration x time curves. Bioavailability from tea averaged 0.37%; not significantly different from water (F=0.3%), or basic sodium aluminum phosphate (SALP) in cheese (F=0.1-0.3%), but greater than acidic SALP in a biscuit (F=0.1%). Time to maximum serum (26)Al concentration was 1.25, 1.5, 8 and 4.8h, respectively. These results of oral Al bioavailability x daily consumption by the human suggest tea can provide a significant amount of the Al that reaches systemic circulation. This can allow distribution to its target organs of toxicity, the central nervous, skeletal and hematopoietic systems. Further testing of the hypothesis that Al contributes to Alzheimer's disease may be more warranted with studies focusing on total average daily food intake, including tea and other foods containing appreciable Al, than drinking water.
Aluminum bioavailability from tea infusion
Yokel, Robert A.; Florence, Rebecca L.
2008-01-01
The objective was to estimate oral Al bioavailability from tea infusion in the rat, using the tracer 26Al. 26Al citrate was injected into tea leaves. An infusion was prepared from the dried leaves and given intra-gastrically to rats which received concurrent intravenous 27Al infusion. Oral Al bioavailability (F) was calculated from the area under the 26Al, compared to 27Al, serum concentration × time curves. Bioavailability from tea averaged 0.37%; not significantly different from water (F = 0.3%), or basic sodium aluminum phosphate (SALP) in cheese (F = 0.1 to 0.3%), but greater than acidic SALP in a biscuit (F = 0.1%). Time to maximum serum 26Al concentration was 1.25, 1.5, 8 and 4.8 h, respectively. These results of oral Al bioavailability × daily consumption by the human suggest tea can provide a significant amount of the Al that reaches systemic circulation. This can allow distribution to its target organs of toxicity, the central nervous, skeletal and hematopoietic systems. Further testing of the hypothesis that Al contributes to Alzheimer's disease may be more warranted with studies focusing on total average daily food intake, including tea and other foods containing appreciable Al, than drinking water. PMID:18848597
Pharmacokinetics of Curcumin Diethyl Disuccinate, a Prodrug of Curcumin, in Wistar Rats.
Bangphumi, Kunan; Kittiviriyakul, Chuleeporn; Towiwat, Pasarapa; Rojsitthisak, Pornchai; Khemawoot, Phisit
2016-12-01
Curcumin is the major bioactive component of turmeric, but has poor oral bioavailability that limits its clinical applications. To improve the in vitro solubility and alkaline stability, we developed a prodrug of curcumin by succinylation to obtain curcumin diethyl disuccinate, with the goal of improving the oral bioavailability of curcumin. The in vivo pharmacokinetic profile of curcumin diethyl disuccinate was compared with that of curcumin in male Wistar rats. Doses of curcumin 20 mg/kg intravenous or 40 mg/kg oral were used as standard regimens for comparison with the prodrug at equivalent doses in healthy adult rats. Blood, tissues, urine, and faeces were collected from time zero to 48 h after dosing to determine the prodrug level, curcumin level and a major metabolite by liquid chromatography-tandem spectrometry. The absolute oral bioavailability of curcumin diethyl disuccinate was not significantly improved compared with curcumin, with both compounds having oral bioavailability of curcumin less than 1 %. The major metabolic pathway of the prodrug was rapid hydrolysis to obtain curcumin, followed by glucuronidation. Interestingly, curcumin diethyl disuccinate gave superior tissue distribution with higher tissue to plasma ratio of curcumin and curcumin glucuronide in several organs after intravenous dosing at 1 and 4 h. The primary elimination route of curcumin glucuronide occurred via biliary and faecal excretion, with evidence of an entry into the enterohepatic circulation. Curcumin diethyl disuccinate did not significantly improve the oral bioavailability of curcumin due to first pass metabolism in the gastrointestinal tract. Further studies on reduction of first pass metabolism are required to optimise delivery of curcumin using a prodrug approach.
Kano, Eunice Kazue; Chiann, Chang; Fukuda, Kazuo; Porta, Valentina
2017-08-01
Bioavailability and bioequivalence study is one of the most frequently performed investigations in clinical trials. Bioequivalence testing is based on the assumption that 2 drug products will be therapeutically equivalent when they are equivalent in the rate and extent to which the active drug ingredient or therapeutic moiety is absorbed and becomes available at the site of drug action. In recent years there has been a significant growth in published papers that use in silico studies based on mathematical simulations to analyze pharmacokinetic and pharmacodynamic properties of drugs, including bioavailability and bioequivalence aspects. The goal of this study is to evaluate the usefulness of in silico studies as a tool in the planning of bioequivalence, bioavailability and other pharmacokinetic assays, e.g., to determine an appropriate sampling schedule. Monte Carlo simulations were used to define adequate blood sampling schedules for a bioequivalence assay comparing 2 different formulations of cefadroxil oral suspensions. In silico bioequivalence studies comparing different formulation of cefadroxil oral suspensions using various sampling schedules were performed using models. An in vivo study was conducted to confirm in silico results. The results of in silico and in vivo bioequivalence studies demonstrated that schedules with fewer sampling times are as efficient as schedules with larger numbers of sampling times in the assessment of bioequivalence, but only if T max is included as a sampling time. It was also concluded that in silico studies are useful tools in the planning of bioequivalence, bioavailability and other pharmacokinetic in vivo assays. © Georg Thieme Verlag KG Stuttgart · New York.
Deng, Li; Li, Yongzhi; Zhang, Xinshi; Chen, Bo; Deng, Yulin; Li, Yujuan
2015-10-10
A UPLC-MS method was developed for determination of pterostilbene (PTS) in plasma and tissues of mice. PTS was separated on Agilent Zorbax XDB-C18 column (50 × 2.1 mm, 1.8 μm) with gradient mobile phase at the flow rate of 0.2 ml/min. The detection was performed by negative ion electrospray ionization in multiple reaction monitoring mode. The linear calibration curve of PTS in mouse plasma and tissues ranged from 1.0 to 5000 and 0.50 to 500 ng/ml (r(2)>0.9979), respectively, with lowest limits of quantification (LLOQ) were between 0.5 and 2.0 ng/ml, respectively. The accuracy and precision of the assay were satisfactory. The validated method was applied to the study of bioavailability and tissue distribution of PTS in normal and Lewis lung carcinoma (LLC) bearing mice. The bioavailability of PTS (dose 14, 28 and 56 mg/kg) in normal mice were 11.9%, 13.9% and 26.4%, respectively; and the maximum level (82.1 ± 14.2 μg/g) was found in stomach (dose 28 mg/kg). The bioavailability, peak concentration (Cmax), time to peak concentration (Tmax) of PTS in LLC mice was increased compared with normal mice. The results indicated the UPLC-MS method is reliable and bioavailability and tissue distribution of PTS in normal and LLC mice were dramatically different. Copyright © 2015 Elsevier B.V. All rights reserved.
Bioavailabilities of rectal and oral methadone in healthy subjects
Dale, Ola; Sheffels, Pamela; Kharasch, Evan D
2004-01-01
Aims Rectal administration of methadone may be an alternative to intravenous and oral dosing in cancer pain, but the bioavailability of the rectal route is not known. The aim of this study was to compare the absolute rectal bioavailability of methadone with its oral bioavailability in healthy humans. Methods Seven healthy subjects (six males, one female, aged 20–39 years) received 10 mg d5-methadone-HCl rectally (5 ml in 20% glycofurol) together with either d0-methadone intravenously (5 mg) or orally (10 mg) on two separate occasions. Blood samples for the LC-MS analyses of methadone and it's metabolite EDDP were drawn for up to 96 h. Noninvasive infrared pupillometry was peformed at the same time as blood sampling. Results The mean absolute rectal bioavalability of methadone was 0.76 (0.7, 0.81), compared to 0.86 (0.75, 0.97) for oral administration (mean (95% CI)). Rectal absorption of methadone was more rapid than after oral dosing with Tmax values of 1.4 (0.9, 1.8) vs. 2.8 (1.6, 4.0) h. The extent of formation of the metabolite EDDP did not differ between routes of administration. Single doses of methadone had a duration of action of at least 10 h and were well tolerated. Conclusions Rectal administration of methadone results in rapid absorption, a high bioavailability and long duration of action. No evidence of presystemic elimination was seen. Rectal methadone has characteristics that make it a potential alternative to intravenous and oral administration, particularly in cancer pain and palliative care. PMID:15255797
Grapefruit juice reduces the oral bioavailability of fexofenadine but not desloratadine.
Banfield, Christopher; Gupta, Samir; Marino, Mark; Lim, Josephine; Affrime, Melton
2002-01-01
Certain foods, such as grapefruit juice, are known to substantially alter the bioavailability of some drugs. These effects may be mediated by interactions with enzyme systems, such as cytochrome P450, or with active transporter systems, such as P-glycoprotein and organic anion transporting polypeptides. To assess the effect of consumption of grapefruit juice on the oral bioavailability of two nonsedating antihistamines, fexofenadine and desloratadine. Non-blinded, randomised, single-dose, four-way crossover study. Twenty-four healthy adult volunteers. Single oral doses of desloratadine 5mg and fexofenadine 60mg taken without and with grapefruit juice (pretreatment with 240ml of double-strength juice three times daily for 2 days prior to administration of study drug, plus the same amount simultaneously with, and 2 hours after, the drug dose). Each treatment was separated by at least 10 days. Log-transformed pharmacokinetic parameters [peak plasma concentration (C(max)) and area under the curve (AUC)], time to maximum concentration, elimination half-life and electrocardiographic (ECG) parameters. Comparing the ratio of the pharmacokinetic parameter means (C(max) and AUC) with and without grapefruit juice (expressed as a percentage), the rate (C(max)) and extent (AUC) of absorption of fexofenadine were reduced by 30% by consumption of grapefruit juice. In contrast, the bioavailability of desloratadine was unaffected by grapefruit juice. No clinically significant changes in ECG parameters were observed following coadministration of grapefruit juice with desloratadine or fexofenadine compared with either antihistamine given alone. The bioavailability of drugs that do not undergo significant intestinal or hepatic metabolism, such as fexofenadine, may be altered when administered with agents that influence drug transport mechanisms.
Yin, Xuezhi; Daintree, Linda Sharon; Ding, Sheng; Ledger, Daniel Mark; Wang, Bing; Zhao, Wenwen; Qi, Jianping; Wu, Wei; Han, Jiansheng
2015-01-01
This research aimed to develop a supercritical fluid (SCF) technique for preparing a particulate form of itraconazole (ITZ) with good dissolution and bioavailability characteristics. The ITZ particulate solid dispersion was formulated with hydroxypropyl methylcellulose, Pluronic F-127, and L-ascorbic acid. Aggregated particles showed porous structure when examined by scanning electron microscopy. Powder X-ray diffraction and Fourier transform infrared spectra indicated an interaction between ITZ and excipients and showed that ITZ existed in an amorphous state in the composite solid dispersion particles. The solid dispersion obtained by the SCF process improved the dissolution of ITZ in media of pH 1.0, pH 4.5, and pH 6.8, compared with a commercial product (Sporanox(®)), which could be ascribed to the porous aggregated particle shape and amorphous solid state of ITZ. While the solid dispersion did not show a statistical improvement (P=0.50) in terms of oral bioavailability of ITZ compared with Sporanox(®), the C max (the maximum plasma concentration of ITZ in a pharmacokinetic curve) of ITZ was raised significantly (P=0.03) after oral administration. Thus, the SCF process has been shown to be an efficient, single step process to form ITZ-containing solid dispersion particles with good dissolution and oral bioavailability characteristics.
Jain, Sanyog; Yadav, Pooja; Swami, Rajan; Swarnakar, Nitin Kumar; Kushwah, Varun; Katiyar, Sameer S
2018-05-01
Implication of different dietary specific lipids such as phytantriol (PT) and glyceryl monooleate (GMO) on enhancing the oral bioavailability of amphotericin B (AmB) was examined. Liquid crystalline nanoparticles (LCNPs) were prepared using hydrotrope method, followed by in vitro characterization, Caco-2 cell monolayer uptake, and in vivo pharmacokinetic and toxicity evaluation. Optimized AmB-LCNPs displayed small particle size (< 210 nm) with a narrow distribution (~ 0.2), sustained drug release and high gastrointestinal stability, and reduced hemolytic toxicity. PLCNPs presented slower release, i.e., ~ 80% as compared to ~ 90% release in case of GLCNPs after 120 h. Significantly higher uptake in Caco-2 monolayer substantiated the role of LCNPs in increasing the intestinal permeability followed by increased drug titer in plasma. Pharmacokinetic studies demonstrated potential of PT in enhancing the bioavailability (approximately sixfold) w.r.t. of its native counterpart with reduced nephrotoxicity as presented by reduced nephrotoxicity biomarkers and histology studies. These studies established usefulness of PLCNPs over GLCNPs and plain drug. It can be concluded that acid-resistant lipid, PT, can be utilized efficiently as an alternate lipid for the preparation of LCNPs to enhance bioavailability and to reduce nephrotoxicity of the drug as compared to other frequently used lipid, i.e., GMO.
Comparative bioavailability of two oral formulations of ketorolac tromethamine: Dolac and Exodol.
Flores-Murrieta, F J; Granados-Soto, V; Castañeda-Hernández, G; Herrera, J E; Hong, E
1994-03-01
The bioavailability of ketorolac after administration of two oral formulations containing 10 mg of ketorolac tromethamine, Exodol and Dolac, to 12 healthy Mexican volunteers was compared. Subjects received both formulations according to a randomized crossover design and blood samples were drawn at selected times during 24 h. Ketorolac plasma concentrations were determined by HPLC and individual plasma-concentration-against-time curves were constructed. Maximal plasma concentration and AUC0-24 values were compared by analysis of variance followed by Westlake's confidence interval test. 90% confidence limits ranged from 80 to 125% for Cmax and from 85 to 118% for AUC0-24. It is concluded that the two assayed formulations are bioequivalent.
Houghton, Christine A.; Fassett, Robert G.; Coombes, Jeff S.
2016-01-01
The recognition that food-derived nonnutrient molecules can modulate gene expression to influence intracellular molecular mechanisms has seen the emergence of the fields of nutrigenomics and nutrigenetics. The aim of this review is to describe the properties of nutrigenomic activators of transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2), comparing the potential for sulforaphane and other phytochemicals to demonstrate clinical efficacy as complementary medicines. Broccoli-derived sulforaphane emerges as a phytochemical with this capability, with oral doses capable of favourably modifying genes associated with chemoprevention. Compared with widely used phytochemical-based supplements like curcumin, silymarin, and resveratrol, sulforaphane more potently activates Nrf2 to induce the expression of a battery of cytoprotective genes. By virtue of its lipophilic nature and low molecular weight, sulforaphane displays significantly higher bioavailability than the polyphenol-based dietary supplements that also activate Nrf2. Nrf2 activation induces cytoprotective genes such as those playing key roles in cellular defense mechanisms including redox status and detoxification. Both its high bioavailability and significant Nrf2 inducer capacity contribute to the therapeutic potential of sulforaphane-yielding supplements. PMID:26881038
Effect of Processed Onions on the Plasma Concentration of Quercetin in Rats and Humans.
Kashino, Yasuaki; Murota, Kaeko; Matsuda, Namiko; Tomotake, Muneaki; Hamano, Takuya; Mukai, Rie; Terao, Junji
2015-11-01
Onion is a major dietary source of the bioactive flavonoid, quercetin. Quercetin aglycone (QA) is exclusively distributed in the onion peel, although quercetin-4'-β-O-glucoside (Q4'G) is present in both the peel and the bulb, and quercetin-3,4'-β-O-diglucoside (Q3,4'diG) is present only the bulb. The bioavailability of flavonoids from fruits and vegetables is frequently affected by the manufacturing process and related conditions. The present study aimed to estimate the effect of food processing on the bioavailability of onion QA and its glucosides, Q4'G and Q3,4'diG, provided through the consumption of onion products. Rats were fed onion peel and onion bulb products-mixed meal or pure QA/Q4'G+Q3,4'diG-mixed meal at 5 mg QA equivalent/kg body weight. A comparison of the blood plasma concentrations strongly suggested that quercetin glucosides (Q4'G and Q3,4'diG) are superior or at least equal to QA in their bioavailability, when each purified compound is mixed with the meal. The intake of a peel powder-containing meal provided a significantly higher increase of plasma quercetin concentration than the peel extract, bulb powder, bulb extract, and bulb sauté containing meals at each period tested. A human ingestion study confirmed the superiority of onion peel powder to onion peel extract. The difference of log P for QA between peel powder and peel extract indicated that a food matrix improves the bioavailability of QA in onion peel products. These results demonstrated that the bioavailability of quercetin provided by not the onion bulb but the onion peel is significantly affected by food processing. Onion is a popular source of antioxidative flavonoid quercetin and its vascular function attracts considerable attention in relation to anti-atherosclerotic effect. The present study estimated the effect of food processing on the bioavailability of onion quercetin aglycone and its glucosides provided through the consumption of onion products. The intake of a peel powder-containing meal showed a significantly higher bioavailability than the peel extract, bulb powder, bulb extract, and bulb sauté containing meals. Hence, food processing of onion peel may enhance the health impact of onion quercetin by elevating its bioavailability. © 2015 Institute of Food Technologists®
Jeengar, Manish Kumar; Shrivastava, Shweta; Nair, Kala; Singareddy, Sreenivasa Reddy; Putcha, Uday Kumar; Talluri, M V N Kumar; Naidu, V G M; Sistla, Ramakrishna
2014-12-01
The purpose of the present study is to evaluate the effect of emu oil on bioavailability of curcumin when co-administered and to evaluate the property that enhances the anti-inflammatory potential of curcumin. Oral bioavailability of curcumin in combination with emu oil was determined by measuring the plasma concentration of curcumin by HPLC. The anti-inflammatory potential was evaluated in carrageenan-induced paw edema model (acute model) and in Freund's complete adjuvant (FCA)-induced arthritis model (chronic model) in male SD rats. The anti-inflammatory potential of curcumin in combination with emu oil has been significantly increased in both acute and chronic inflammatory models as evident from inhibition of increase in paw volume, arthritic score, and expression of pro-inflammatory cytokines. The increased anti-inflammatory activity in combination therapy is due to enhanced bioavailability (5.2-fold compared to aqueous suspension) of curcumin by emu oil. Finally, it is concluded that the combination of emu oil with curcumin will be a promising approach for the treatment of arthritis.
Vlčková, Klára; Hofman, Jakub
2012-01-01
The close relationship between soil organic matter and the bioavailability of POPs in soils suggests the possibility of using it for the extrapolation between different soils. The aim of this study was to prove that TOC content is not a single factor affecting the bioavailability of POPs and that TOC based extrapolation might be incorrect, especially when comparing natural and artificial soils. Three natural soils with increasing TOC and three artificial soils with TOC comparable to these natural soils were spiked with phenanthrene, pyrene, lindane, p,p'-DDT, and PCB 153 and studied after 0, 14, 28, and 56 days. At each sampling point, total soil concentration and bioaccumulation in earthworms Eisenia fetida were measured. The results showed different behavior and bioavailability of POPs in natural and artificial soils and apparent effects of aging on these differences. Hence, direct TOC based extrapolation between various soils seems to be limited. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mejdoub, Zineb; Zaid, Younes; Hmimid, Fouzia; Kabine, Mostafa
2018-07-01
The present work aims to study the metallic contamination of four sampling sites located nearby major sewage outfalls of the Casablanca coast (Morocco), using indigenous mussels Mytilus galloprovincialis as bioindicators of pollution. This research offered the opportunity to study trace metals bioaccumulation mechanisms, which represent a major factor in assessment processes of the pollution effects in coastal ecosystem health. The bioavailability and the bioaccumulation of trace metals (Cu, Zn, Ni, Pb) were evaluated in order to compare the metallic contamination in mussels' tissues and find a possible correlation with physiological parameters of this filter feeding species. Our results showed a significant spatiotemporal variation of bioaccumulation, compared to control. A significant correlation coefficient between metals (Zn and Pb) bioavailability and physiological index (CI) was revealed in mussels from the most polluted location. The seasonal variation of trace metal accumulation was also raised; the highest values recorded during the dry period. Copyright © 2018 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Sahu, Bhanu P.; Das, Malay K.
2014-04-01
Furosemide is a poorly soluble diuretic used for treatment of hypertension and edema. It has very poor or variable oral bioavailability due to its reduced solubility in gastric fluid and reduced permeability in intestinal fluid. The aim of this study was to prepare nanosuspension of furosemide to enhance its oral bioavailability by increasing its dissolution in stomach where it has better permeability. Full factorial design was used for a systematic approach of formulation and optimization. The nanosuspensions were prepared by precipitation with ultrasonication method. Polyvinyl acetate was used for sterically stabilizing the nanosuspensions. The diffusing drug concentration and stabilizer were used as the factors and the particle size, polydispersity index, and drug release were selected as dependent variables and characterized. The effect of nanoprecipitation on enhancement of oral bioavailability of furosemide nanosuspension was studied by in vitro dissolution and in vivo absorption studies in rats and compared to pure drug. Quality by design using full factorial design provided a systematic approach in optimizing nanosuspensions to produce products with desired quality. Stable nanosuspension were obtained with average size range of the precipitated nanoparticles between 150 and 300 nm and were found to be homogenous showing a narrow polydispersity index of 0.3 ± 0.1. The in vivo studies on rats revealed a significant increase in the oral absorbtion of furosemide in the nanosuspension compared to pure drug. The AUC0→24 and C max values of nanosuspension were approximately 1.38- and 1.68-fold greater than that of pure drug, respectively. Furosemide nanosuspension showed 20.06 ± 0.02 % decrease in systolic blood pressure compared to 13.37 + 0.02 % in plain furosemide suspension, respectively. The improved oral bioavailability and pharmacodynamic effect of furosemide may be due to the improved dissolution of furosemide in simulated gastric fluid which results in enhanced oral systemic absorption of furosemide from stomach region where it has better permeability.
Pharmacokinetics and Bioavailability of Inhaled Esketamine in Healthy Volunteers.
Jonkman, Kelly; Duma, Andreas; Olofsen, Erik; Henthorn, Thomas; van Velzen, Monique; Mooren, René; Siebers, Liesbeth; van den Beukel, Jojanneke; Aarts, Leon; Niesters, Marieke; Dahan, Albert
2017-10-01
Esketamine is traditionally administered via intravenous or intramuscular routes. In this study we developed a pharmacokinetic model of inhalation of nebulized esketamine with special emphasis on pulmonary absorption and bioavailability. Three increasing doses of inhaled esketamine (dose escalation from 25 to 100 mg) were applied followed by a single intravenous dose (20 mg) in 19 healthy volunteers using a nebulizer system and arterial concentrations of esketamine and esnorketamine were obtained. A multicompartmental pharmacokinetic model was developed using population nonlinear mixed-effects analyses. The pharmacokinetic model consisted of three esketamine, two esnorketamine disposition and three metabolism compartments. The inhalation data were best described by adding two absorption pathways, an immediate and a slower pathway, with rate constant 0.05 ± 0.01 min (median ± SE of the estimate). The amount of esketamine inhaled was reduced due to dose-independent and dose-dependent reduced bioavailability. The former was 70% ± 5%, and the latter was described by a sigmoid EMAX model characterized by the plasma concentration at which absorption was impaired by 50% (406 ± 46 ng/ml). Over the concentration range tested, up to 50% of inhaled esketamine is lost due to the reduced dose-independent and dose-dependent bioavailability. We successfully modeled the inhalation of nebulized esketamine in healthy volunteers. Nebulized esketamine is inhaled with a substantial reduction in bioavailability. Although the reduction in dose-independent bioavailability is best explained by retention of drug and particle exhalation, the reduction in dose-dependent bioavailability is probably due to sedation-related loss of drug into the air.
Rowell, Justine-Anne; Fillion, Marc-Alexandre; Smith, Scott; Wilkinson, Kevin J
2018-06-01
As technological interest and environmental emissions of the rare earth elements increase, it is becoming more important to assess their potential environmental impact. Samarium (Sm) is a lanthanide of intermediate molar mass that is used in numerous high-technology applications including wind turbines, solar panels, and electric vehicles. The present study relates the speciation of Sm determined in the presence of natural organic matter (NOM) to its bioavailability to the unicellular green alga Chlamydomonas reinhardtii. The free ion concentration was determined using a cation exchange resin (ion exchange technique) in dynamic mode and compared with thermodynamic modeling. Short-term biouptake experiments were performed in the presence of 4 types of NOM: Suwannee River fulvic acids, Pahokee Peat fulvic acids, Suwannee River humic acids, and a Luther Marsh dissolved organic matter isolate (90-95% humic acids). It was clearly shown that even a small amount of NOM (0.5 mg C L -1 ) resulted in a significant decrease (10 times) in the Sm internalization fluxes. Furthermore, complexation with humic acids (and the corresponding reduction in Sm bioavailability) was stronger than that with fulvic acids. The results showed that the experimentally measured (free) Sm was a better predictor of Sm internalization than either the total concentrations or the free ion concentrations obtained using thermodynamic modeling. Environ Toxicol Chem 2018;37:1623-1631. © 2018 SETAC. © 2018 SETAC.
Ahmed, Sayed M; Ahmed Ali, Adel; Ali, Ahmed Ma; Hassan, Omiya A
2016-01-01
The aim of the present study was to improve the bioavailability of itopride (ITO) and sustain its action by formulating as a floating dosage form. Sustained-release floating tablets of ITO hydrochloride (HCl) were prepared by direct compression using different hydrocolloid polymers such as hydroxypropyl methylcellulose and ethylcellulose and/or methacrylic acid polymers Eudragit RSPM and Carbopol 934P. The floating property was achieved using an effervescent mixture of sodium bicarbonate and anhydrous citric acid (1:1 mol/mol). Hardness, friability, content uniformity, and dissolution rate of the prepared floating tablets were evaluated. The formulation F 10 composed of 28.5% Eudragit RSPM, 3% NaHCO 3 , and 7% citric acid provided sustained drug release. In vitro results showed sustained release of F 10 where the drug release percentage was 96.51%±1.75% after 24 hours ( P =0.031). The pharmacokinetic results indicated that the area under the curve (AUC 0-∞ ) of the prepared sustained-release floating tablets at infinity achieved 93.69 µg·h/mL compared to 49.89 µg·h/mL for the reference formulation (Ganaton ® ) and the relative bioavailability of the sustained-release formulation F 10 increased to 187.80% ( P =0.022). The prepared floating tablets of ITO HCl (F 10 ) could be a promising drug delivery system with sustained-release action and enhanced drug bioavailability.
Morsi, Nadia M; Aboelwafa, Ahmed A; Dawoud, Marwa H S
2018-06-01
Timolol Maleate (TiM), a nonselective β-adrenergic blocker, is a potent highly effective agent for management of hypertension. The drug suffers from poor oral bioavailability (50%) due to its first pass effect and a short elimination half-life of 4 h; resulting in its frequent administration. Transdermal formulation may circumvent these problems in the form of protransfersomes. The aim of this study is to develop and optimize transdermal protransfersomal system of Timolol Maleate by film deposition on carrier method where protransfersomes were converted to transfersomes upon skin hydration following transdermal application under occlusive conditions. Two 2 3 full factorial designs were employed to investigate the influence of three formulation variables which were; phosphatidyl choline: surfactant molar ratio, carrier: mixture and the type of SAA each on particle size, drug entrapment efficiency and release rate. The optimized formulation was evaluated regarding permeation through hairless rat skin and compared with oral administration of aqueous solution on male Wistar rats. Optimized protransfersomal system had excellent permeation rate through shaved rat skin (780.69 μg/cm 2 /h) and showed six times increase in relative bioavailability with prolonged plasma profile up to 72 h. A potential protransfresomal transdermal system was successfully developed and factorial design was found to be a smart tool in its optimization.
Bedada, Satish Kumar; Appani, Ramgopal; Boga, Praveen Kumar
2017-06-01
Capsaicin is the main pungent principle present in chili peppers has been found to possess P-glycoprotein (P-gp) inhibition activity in vitro, which may have the potential to modulate bioavailability of P-gp substrates. Therefore, purpose of this study was to evaluate the effect of capsaicin on intestinal absorption and bioavailability of fexofenadine, a P-gp substrate in rats. The mechanistic evaluation was determined by non-everted sac and intestinal perfusion studies to explore the intestinal absorption of fexofenadine. These results were confirmed by an in vivo pharmacokinetic study of oral administered fexofenadine in rats. The intestinal transport and apparent permeability (P app ) of fexofenadine were increased significantly by 2.8 and 2.6 fold, respectively, in ileum of capsaicin treated rats when compared to control group. Similarly, absorption rate constant (K a ), fraction absorbed (F ab ) and effective permeability (P eff ) of fexofenadine were increased significantly by 2.8, 2.9 and 3.4 fold, respectively, in ileum of rats pretreated with capsaicin when compared to control group. In addition, maximum plasma concentration (C max ) and area under the concentration-time curve (AUC) were increased significantly by 2.3 and 2.4 fold, respectively, in rats pretreated with capsaicin as compared to control group. Furthermore, obtained results in rats pretreated with capsaicin were comparable to verapamil (positive control) treated rats. Capsaicin pretreatment significantly enhanced the intestinal absorption and bioavailability of fexofenadine in rats likely by inhibition of P-gp mediated cellular efflux, suggesting that the combined use of capsaicin with P-gp substrates may require close monitoring for potential drug interactions.
Benyahia, Farid; Embaby, Ahmed Shams
2016-01-01
This work was aimed at evaluating the relative merits of bioaugmentation, biostimulation and surfactant-enhanced bioavailability of a desert soil contaminated by crude oil through biopile treatment. The results show that the desert soil required bioaugmentation and biostimulation for bioremediation of crude oil. The bioaugmented biopile system led to a total petroleum hydrocarbon (TPH) reduction of 77% over 156 days while the system with polyoxyethylene (20) sorbitan monooleate (Tween 80) gave a 56% decrease in TPH. The biostimulated system with indigenous micro-organisms gave 23% reduction in TPH. The control system gave 4% TPH reduction. The addition of Tween 80 led to a respiration rate that peaked in 48 days compared to 88 days for the bioaugmented system and respiration declined rapidly due to nitrogen depletion. The residual hydrocarbon in the biopile systems studied contained polyaromatics (PAH) in quantities that may be considered as hazardous. Nitrogen was found to be a limiting nutrient in desert soil bioremediation. PMID:26891314
Benyahia, Farid; Embaby, Ahmed Shams
2016-02-15
This work was aimed at evaluating the relative merits of bioaugmentation, biostimulation and surfactant-enhanced bioavailability of a desert soil contaminated by crude oil through biopile treatment. The results show that the desert soil required bioaugmentation and biostimulation for bioremediation of crude oil. The bioaugmented biopile system led to a total petroleum hydrocarbon (TPH) reduction of 77% over 156 days while the system with polyoxyethylene (20) sorbitan monooleate (Tween 80) gave a 56% decrease in TPH. The biostimulated system with indigenous micro-organisms gave 23% reduction in TPH. The control system gave 4% TPH reduction. The addition of Tween 80 led to a respiration rate that peaked in 48 days compared to 88 days for the bioaugmented system and respiration declined rapidly due to nitrogen depletion. The residual hydrocarbon in the biopile systems studied contained polyaromatics (PAH) in quantities that may be considered as hazardous. Nitrogen was found to be a limiting nutrient in desert soil bioremediation.
Improved oral bioavailability in rats of SR13668, a novel anti-cancer agent.
Green, Carol E; Swezey, Robert; Bakke, James; Shinn, Walter; Furimsky, Anna; Bejugam, Naveen; Shankar, Gita N; Jong, Ling; Kapetanovic, Izet M
2011-05-01
SR13668, a bis-indole with potent activity in vitro and in vivo against various cancers and promising cancer chemopreventive activity, was found to have very low oral bioavailability, <1%, in rats during pilot pharmacokinetic studies. The objective of these studies was to better understand the source of low oral exposure and to develop a formulation that could be used in preclinical development studies. An automated screening system for determining solubility in lipid-based vehicles, singly and in combination, was used to identify formulations that might enhance absorption by improving solubility of SR13668, and these results were confirmed in vivo using Sprague-Dawley rats. Pharmacokinetics of SR13668 was then determined in male and female Sprague-Dawley rats administered 1 mg/kg iv, 1, 10, and 30 mg/kg po formulated in PEG400:Labrasol (1:1 v/v). Blood was collected at time points through 24 h and the concentration of SR13668 determined using HPLC with UV and fluorescence detection. SR13668 was found to be resistant to plasma esterases in vitro and relatively stable to rat and human liver microsomal metabolism. SR13668 concentrates in tissues as indicated by significantly higher levels in lung compared to blood, blood concentrations ~2.5-fold higher than plasma levels, and apparent volume of distribution (V) of ~5 l/kg. A marked sex difference was observed in exposure to SR13668 with area under the curve (AUC) significantly higher and clearance (CL) lower for female compared to male rats, after both iv and oral administration. The oral bioavailability (F) of SR13668 was 25.4 ± 3.8 and 27.7 ± 3.9% (30 mg/kg), for males and females, respectively. A putative metabolite (M1), molecular weight of 445 in the negative ion mode (i.e., SR13668 + 16), was identified in blood samples from both the iv and po routes, as well as in vitro microsomal samples. In summary, while SR13668 does undergo metabolism, probably by the liver, the oral bioavailability of SR13668 in rats was dramatically improved by the use of formulation that contained permeation enhancers and promoted better solubilization of the drug.
Hackl, Laura; Zimmermann, Michael B; Zeder, Christophe; Parker, Megan; Johns, Paul W; Hurrell, Richard F; Moretti, Diego
2017-03-01
Background: Extruded rice grains are often cofortified with iron and zinc. However, it is uncertain if the addition of zinc to iron-fortified rice affects iron absorption and whether this is zinc-compound specific. Objective: We investigated whether zinc, added as zinc oxide (ZnO) or zinc sulfate (ZnSO 4 ), affects human iron absorption from extruded rice fortified with ferric pyrophosphate (FePP). Methods: In 19 iron-depleted Swiss women (plasma ferritin ≤16.5 μ/L) aged between 20 and 39 y with a normal body mass index (in kg/m 2 ; 18.7-24.8), we compared iron absorption from 4 meals containing fortified extruded rice with 4 mg Fe and 3 mg Zn. Three of the meals contained extruded rice labeled with FePP ( 57 FePP): 1 ) 1 meal without added zinc ( 57 FePP-Zn), 2 ) 1 cofortified with ZnO ( 57 FePP+ZnO), and 3 ) 1 cofortified with ZnSO 4 ( 57 FePP+ZnSO 4 ). The fourth meal contained extruded rice without iron or zinc, extrinsically labeled with ferrous sulfate ( 58 FeSO 4 ) added as a solution after cooking. All 4 meals contained citric acid. Iron bioavailability was measured by isotopic iron ratios in red blood cells. We also measured relative in vitro iron solubility from 57 FePP-Zn, 57 FePP+ZnO, and 57 FePP+ZnSO 4 expressed as a fraction of FeSO 4 solubility. Results: Geometric mean fractional iron absorption (95% CI) from 57 FePP+ZnSO 4 was 4.5% (3.4%, 5.8%) and differed from 57 FePP+ZnO (2.7%; 1.8%, 4.1%) ( P < 0.03); both did not differ from 57 FePP-Zn: 4.0% (2.8%, 5.6%). Relative iron bioavailabilities compared with 58 FeSO 4 were 62%, 57%, and 38% from 57 FePP+ZnSO 4 , 57 FePP-Zn, and 57 FePP+ZnO, respectively. In vitro solubility from 57 FePP+ZnSO 4 differed from that of 57 FePP-Zn (14.3%; P < 0.02) but not from that of 57 FePP+ZnO (10.2% compared with 13.1%; P = 0.08). Conclusions: In iron-depleted women, iron absorption from FePP-fortified extruded rice cofortified with ZnSO 4 was 1.6-fold (95% CI: 1.4-, 1.9-fold) that of rice cofortified with ZnO. These findings suggest that ZnSO 4 may be the preferable zinc cofortificant for optimal iron bioavailability of iron-fortified extruded rice. This trial was registered at clinicaltrials.gov as NCT02255942. © 2017 American Society for Nutrition.
McClements, David Julian; Saliva-Trujillo, Laura; Zhang, Ruojie; Zhang, Zipei; Zou, Liqiang; Yao, Mingfei; Xiao, Hang
2016-10-01
Many highly hydrophobic bioactives, such as non-polar nutrients, nutraceuticals, and vitamins, have a relatively low or variable oral bioavailability. The poor bioavailability profile of these bioactives may be due to limited bioaccessibility, poor absorption, and/or chemical transformation within the gastrointestinal tract (GIT). The bioavailability of hydrophobic bioactives can be improved using specially designed oil-in-water emulsions consisting of lipid droplets dispersed within an aqueous phase. The bioactives may be isolated from their natural environment and then incorporated into the lipid phase of emulsion-based delivery systems. Alternatively, the bioactives may be left in their natural environment (e.g., fruits or vegetables), and then ingested with emulsion-based excipient systems. An excipient emulsion may have no inherent health benefits itself, but it boosts the biological activity of bioactive ingredients co-ingested with it by altering their bioaccessibility, absorption, and/or chemical transformation. This review discusses the design and fabrication of excipient emulsions, and gives some examples of recent research that demonstrates their potential efficacy for improving the bioavailability of hydrophobic bioactives. The concept of excipient emulsions could be used to formulate emulsion-based food products (such as excipient sauces, dressings, dips, creams, or yogurts) specifically designed to increase the bioavailability of bioactive agents in natural foods, such as fruits and vegetables. Copyright © 2015 Elsevier Ltd. All rights reserved.
Aa, Lixiang; Fei, Fei; Tan, Zhaoyi; Aa, Jiye; Wang, Guangji; Liu, Changxiao
2018-06-01
Ginkgolides are the primarily active components in Ginkgo products that are popular worldwide. However, few studies have evaluated the bioavailability of ginkgolides and the effects of food on it after oral administration of ginkgolides. In this article, pharmacokinetics and absolute bioavailability of the primary components in ginkgolide extracts were evaluated in beagle dogs. For the first time, we showed that the fed dogs had significantly increased area under the concentration-time curve and peak concentration relative to the fasted dogs based on the data from both the prototype form and total lactones of ginkgolide A (GA) and ginkgolide B (GB). In terms of the free form of the prototype ginkgolides, the absolute bioavailabilities of GA and GB were 34.8 and 5.2% in the fasted dogs, respectively, which significantly increased to an average of 78.6 and 17.0%, respectively, in the fed dogs. In terms of acidified total lactones, the absolute bioavailabilities of GA and GB were 7.5 and 14.5% in the fed dogs, and the percentages declined to 4.1 and 3.7% in the fasted dogs, respectively. It was suggested that administration of ginkgolides after meals could promote the in vivo exposure and the bioavailability of GA and GB, and hence potentially enhance therapeutic outcomes. Copyright © 2018 John Wiley & Sons, Ltd.
2016-04-05
There were differences in bioavailability depending on route and species, and the drug half-life was shorter in pigs, compared to sheep. CONCLUSIONS...expanded to human studies to further explore these alternative routes of administration of TXA. More data is needed to determine ideal dosages via these novel routes as well as the bioavailability profile during ongoing hemorrhage.
Väänänen, Kristiina; Leppänen, Matti T; Chen, XuePing; Akkanen, Jarkko
2018-01-01
Metal contamination in freshwater ecosystems is a global issue and metal discharges to aquatic environments are monitored in order to protect aquatic life and human health. Bioavailability is an important factor determining metal toxicity. In aquatic systems, metal bioavailability depends on local water and sediment characteristics, and therefore, the risks are site-specific. Environmental quality standards (EQS) are used to manage the risks of metals in aquatic environments. In the simplest form of EQSs, total concentrations of metals in water or sediment are compared against pre-set acceptable threshold levels. Now, however, the environmental administration bodies have stated the need to incorporate metal bioavailability assessment tools into environmental regulation. Scientific advances have been made in metal bioavailability assessment, including passive samplers and computational models, such as biotic ligand models (BLM). However, the cutting-edge methods tend to be too elaborate or laborious for standard environmental monitoring. We review the commonly used metal bioavailability assessment methods and introduce the latest scientific advances that might be applied to environmental management in the future. We present the current practices in environmental management in North America, Europe and China, highlighting the good practices and the needs for improvement. Environmental management has met these new challenges with varying degrees of success: the USA has implemented site-specific environmental risk assessment for water and sediment phases, and they have already implemented metal mixture toxicity evaluation. The European Union is promoting the use of bioavailability and BLMs in ecological risk assessment (ERA), but metal mixture toxicity and sediment phase are still mostly neglected. China has regulation only for total concentrations of metals in surface water. We conclude that there is a need for (1) Advanced and up-to-date guidelines and legislation, (2) New and simple scientific methods for assessing metal bioavailability and (3) Improvement of knowledge and skills of administrators. Copyright © 2017 Elsevier Inc. All rights reserved.
García-Arieta, Alfredo
2014-12-18
The aim of the present paper is to illustrate the impact that excipients may have on the bioavailability of drugs and to review existing US-FDA, WHO and EMA regulatory guidelines on this topic. The first examples illustrate that small amounts of sorbitol (7, 50 or 60mg) affect the bioavailability of risperidone, a class I drug, oral solution, in contrast to what is stated in the US-FDA guidance. Another example suggests, in contrast to what is stated in the US-FDA BCS biowaivers guideline, that a small amount of sodium lauryl sulphate (SLS) (3.64mg) affects the bioavailability of risperidone tablets, although the reference product also includes SLS in an amount within the normal range for that type of dosage form. These factors are considered sufficient to ensure that excipients do not affect bioavailability according to the WHO guideline. The alternative criterion, defined in the WHO guideline and used in the FIP BCS biowaivers monographs, that asserts that excipients present in generic products of the ICH countries do not affect bioavailability if used in normal amounts, is shown to be incorrect with an example of alendronate (a class III drug) tablets, where 4mg of SLS increases bioavailability more than 5-fold, although a generic product in the USA contains SLS. Finally, another example illustrates that a 2mg difference in SLS may affect bioavailability of a generic product of a class II drug, even if SLS is contained in the comparator product, and in all cases its amount was within the normal range. Therefore, waivers of in vivo bioequivalence studies (e.g., BCS biowaivers, waivers of certain dosage forms in solution at the time of administration and variations in the excipient composition) should be assessed more cautiously. Copyright © 2014 Elsevier B.V. All rights reserved.
Relative bioavailability of methadone hydrochloride administered in chewing gum and tablets.
Christrup, L L; Angelo, H R; Bonde, J; Kristensen, F; Rasmussen, S N
1990-01-01
Methadone administered in chewing gum in doses of 16.7-22.6 mg to seven patients in a study using an open balanced cross-over design, was compared with 20 mg of methadone given perorally as tablets. There was no significant difference in the AUC/D obtained after administration of chewing gum and tablets (p greater than 0.05). It is concluded that the chewing gum formulation should be considered for further testing with respect to suppression of abstinence syndrome in narcotic addicts.
Effectiveness of oral antibiotics for definitive therapy of Gram-negative bloodstream infections.
Kutob, Leila F; Justo, Julie Ann; Bookstaver, P Brandon; Kohn, Joseph; Albrecht, Helmut; Al-Hasan, Majdi N
2016-11-01
There is paucity of data evaluating intravenous-to-oral antibiotic switch options for Gram-negative bloodstream infections (BSIs). This retrospective cohort study examined the effectiveness of oral antibiotics for definitive treatment of Gram-negative BSI. Patients with Gram-negative BSI hospitalised for <14 days at Palmetto Health Hospitals in Columbia, SC, from 1 January 2010 through 31 December 2013 and discharged on oral antibiotics were included in this study. The cohort was stratified into three groups based on bioavailability of oral antibiotics prescribed (high, ≥95%; moderate, 75-94%; and low, <75%). Kaplan-Meier analysis and multivariate Cox proportional hazards regression were used to examine treatment failure. Among the 362 patients, high, moderate and low bioavailability oral antibiotics were prescribed to 106, 179 and 77 patients, respectively, for definitive therapy of Gram-negative BSI. Mean patient age was 63 years, 217 (59.9%) were women and 254 (70.2%) had a urinary source of infection. Treatment failure rates were 2%, 12% and 14% in patients receiving oral antibiotics with high, moderate and low bioavailability, respectively (P = 0.02). Risk of treatment failure in the multivariate Cox model was higher in patients receiving antibiotics with moderate [adjusted hazard ratio (aHR) = 5.9, 95% CI 1.6-38.5; P = 0.005] and low bioavailability (aHR = 7.7, 95% CI 1.9-51.5; P = 0.003) compared with those receiving oral antimicrobial agents with high bioavailability. These data demonstrate the effectiveness of oral antibiotics with high bioavailability for definitive therapy of Gram-negative BSI. Risk of treatment failure increases as bioavailability of the oral regimen declines. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Calcium bioavailability and kinetics of calcium ascorbate and calcium acetate in rats.
Cai, Jianwei; Zhang, Qinmin; Wastney, Meryl E; Weaver, Connie M
2004-01-01
The objective was to investigate the bioavailability and mechanism of calcium absorption of calcium ascorbate (ASC) and calcium acetate (AC). A series of studies was performed in adult Sprague-Dawley male rats. In the first study, each group of rats (n = 10/group) was assigned to one of the five test meals labeled with (45)Ca: (i) 25 mg calcium as heated ASC or (ii) unheated ASC, (iii) 25 mg calcium as unheated AC, (iv) 3.6 mg Ca as unheated ASC, or (v) unheated AC. Femur uptake indicated better calcium bioavailability from ASC than AC at both calcium loads. A 5-min heat treatment partly reduced bioavailability of ASC. Kinetic studies were performed to further investigate the mechanism of superior calcium bioavailability from ASC. Two groups of rats (n = 10/group) received oral doses of 25 mg Ca as ASC or AC. Each dose contained 20 micro Ci (45)Ca. Two additional groups of rats (n = 10/group) received an intravenous injection (iv) of 10 micro Ci (45)Ca after receiving an unlabeled oral dose of 25 mg calcium as ASC or AC. Sequential blood samples were collected over 48 hrs. Urine and fecal samples were collected every 12 hrs for 48 hrs and were analyzed for total calcium and (45)Ca content. Total calcium and (45)Ca from serum, urine, and feces were fitted by a compartment kinetics model with saturable and nonsaturable absorption pathways by WinSAAM (Windows-based Simulation Analysis and Modeling). The difference in calcium bioavailability between the two salts was due to differences in saturable rather than passive intestinal absorption and not to endogenous secretion or calcium deposition rate. The higher bioavailability of calcium ascorbate was due to a longer transit time in the small intestine compared with ASC.
Liu, Ying; Wang, Lan; Zhao, Yiqing; He, Man; Zhang, Xin; Niu, Mengmeng; Feng, Nianping
2014-12-10
Nanostructured lipid carriers and microemulsions effectively deliver poorly water-soluble drugs. However, few studies have investigated their ability and difference in improving drug bioavailability, especially the factors contributed to the difference. Thus, this study was aimed at investigating their efficiency in bioavailability enhancement based on studying two key processes that occur in NLC and ME during traverse along the intestinal tract: the solubilization process and the intestinal permeability process. The nanostructured lipid carriers and microemulsions had the same composition except that the former were prepared with solid lipids and the latter with liquid lipids; both were evaluated for particle size and zeta potential. Transmission electron microscopy, differential scanning calorimetry, and X-ray diffraction were performed to characterize their properties. Furthermore, in vitro drug release, in situ intestinal absorption, and in vitro lipolysis were studied. The bioavailability of luteolin delivered using nanostructured lipid carriers in rats was compared with that delivered using microemulsions and suspensions. The in vitro analysis revealed different release mechanisms for luteolin in nanostructured lipid carriers and microemulsions, although the in situ intestinal absorption was similar. The in vitro lipolysis data indicated that digestion speed and extent were higher for microemulsions than for nanostructured lipid carriers, and that more of the former partitioned to the aqueous phase. The in vivo bioavailability analysis in rats indicated that the oral absorption and bioavailability of luteolin delivered using nanostructured lipid carriers and microemulsions were higher than those of luteolin suspensions. Nanostructured lipid carriers and microemulsions improved luteolin's oral bioavailability in rats. The rapid lipid digestion and much more drug solubilized available for absorption in microemulsions may contribute to better absorption and higher bioavailability. Copyright © 2014 Elsevier B.V. All rights reserved.
Yu, Fei; Ao, Mingtao; Zheng, Xiao; Li, Nini; Xia, Junjie; Li, Yang; Li, Donghui; Hou, Zhenqing; Qi, Zhongquan; Chen, Xiao Dong
2017-11-01
The natural product berberine (BBR), present in various plants, arouses great interests because of its numerous pharmacological effects. However, the further development and application of BBR had been hampered by its poor oral bioavailability. In this work, we report on polymer-lipid hybrid nanoparticles (PEG-lipid-PLGA NPs) loaded with BBR phospholipid complex using a solvent evaporation method for enhancing the oral BBR efficiency. The advantage of this new drug delivery system is that the BBR-soybean phosphatidylcholine complex (BBR-SPC) could be used to enhance the liposolubility of BBR and improve the affinity with the biodegradable polymer to increase the drug-loading capacity and controlled/sustained release. The entrapment efficiency of the PEG-lipid-PLGA NPs/BBR-SPC was observed to approach approximately 89% which is more than 2.4 times compared with that of the PEG-lipid-PLGA NPs/BBR. To the best of our knowledge, this is the first report on using polymer material for effective encapsulation of BBR to improve its oral bioavailability. The prepared BBR delivery systems demonstrated a uniform spherical shape, a well-dispersed core-shell structure and a small particle size (149.6 ± 5.1 nm). The crystallographic and thermal analysis has indicated that the BBR dispersed in the PEG-lipid-PLGA NPs matrix is in an amorphous form. More importantly, the enhancement in the oral relative bioavailability of the PEG-lipid-PLGA NPs/BBR-SPC was ∼343% compared with that of BBR. These positive results demonstrated that PEG-lipid-PLGA NPs/BBR-SPC may have the potential for facilitating the oral drug delivery of BBR.
Pharmacokinetics of Scopolamine Intranasal Gel Formulation (INSCOP) During Antiorthostatic Bedrest
NASA Technical Reports Server (NTRS)
Putcha, L.; Du, B.; Daniels, V.
2010-01-01
Space Motion Sickness (SMS) is experienced during early flight days of space missions and on reduced gravity simulation flights which require treatment with medications. Oral administration of scopolamine tablets is still a common practice to prevent SMS symptoms. Bioavailability of medications taken by mouth for SMS is often low and variable. Intranasal (IN) administration of medications has been reported to achieve higher and more reliable bioavailability than from an equivalent oral dose. In this FDA reviewed phase II clinical trial, we evaluated pharmacokinetics of an investigative new drug formulation, INSCOP during ambulatory (AMB) and antiorthostatic bedrest (HBR), a ground-based microgravity analog. Twelve subjects including 6 males and 6 females received 0.2 and 0.4 mg doses of INSCOP on separate days during AMB and ABR in a randomized, double blind cross over experimental design. Blood samples were collected at regular time intervals for 24 h post dose and analyzed for free scopolamine concentrations by an LC-MS-MS method. Pharmacokinetic parameters were calculated using concentration versus time data and compared between AMB and ABR conditions. Results indicated that maximum concentration and relative bioavailability increased marginally during ABR compared to AMB; differences in PK parameters between AMB and ABR were greater with 0.2 mg than with 0.4 mg dose. Gender specific differences in PK parameters was observed both during AMB and ABR with differences higher in females between the two conditions than in males. A significant observation is that while gender differences in PK appear to exist, the differences in primary PK parameters between AMB and ABR after IN administration, unlike oral administration, are minimal and may not be clinically significant for both genders.
Röjdmark, S; Brismar, K
2001-01-01
IGF-I stimulates protein synthesis, lowers blood glucose, and affects cell differentiation. The main production site of IGF-I is the liver. One of its binding proteins, IGFBP-1, is also produced by the liver. It is well known that ethanol affects the function of the human liver. Long-term alcohol abuse may therefore not only cause considerable IGF-I and IGFBP-1 production changes, but also changes in IGF-I bioavailability, which at least in part is determined by the IGF-I/IGFBP-1 ratio. Not much is known about how the bioavailability of IGF-I is changed in alcohol abusers. Therefore, the objective of this investigation was to study that matter, and to elucidate how abstinence affects IGF-I bioavailability in man. Three study groups were formed: group N including normal non-addicted subjects, group E ethanol abusers without gross liver insufficiency, and group C alcohol abusers with liver cirrhosis and ascites. Serum concentrations of insulin, GH, IGF-1, and IGFBP-1 were determined in the morning in all participants, and the IGF-I/IGFBP-1 ratios were calculated. These values were compared in the three study groups. In group E comparison was also made between values recorded in the ethanol intoxicated and in the detoxicated states. Patients in group C had low IGF-I levels, high IGFBP-1 levels, and low IGF-I bioavailability as reflected by the IGF-I/IGFBP-1 ratios, which were several-fold reduced compared with subjects in group N (0.6+/-0.2 vs 10.2+/-2.3; p<0.001). Patients in group E had also a low IGF-I/IGFBP-1 ratio in the acute ethanol intoxicated state, which increased after detoxication (from 1.5+/-0.4 to 5.6+/-1.2; p<0.01). It is concluded that alcohol abuse lowers the hepatic production of IGF-I and increases the production of IGFBP-1. This results in a reduced IGF-I bioavailability. However, in patients with not yet clinically apparent liver damage the IGF-I bioavailability increases if the alcohol abuse is stopped. These findings could reflect an important, physiological adaptation, since hypoglycemia may be induced if the blood glucose-lowering power of IGF-I remains strong at a time of ethanol-induced inhibition of the hepatic gluconeogenesis. Chronic alcohol abuse, causing liver cirrhosis, also leads to markedly reduced IGF-I bioavailability, which appears to become permanent, since it prevails more than one week after stopping the alcohol abuse.
Nannoni, Francesco; Protano, Giuseppe
2016-10-15
A biogeochemistry field study was conducted in the Siena urban area (Italy) with the main objective of establishing the relationship between available amounts of heavy metals in soil assessed by a chemical method (soil fractionation) and bioavailability assessed by a biological method (bioaccumulation in earthworm tissues). The total content of traffic-related (Cd, Cu, Pb, Sb, Zn) and geogenic (Co, Cr, Ni, U) heavy metals in uncontaminated and contaminated soils and their concentrations in soil fractions and earthworms were used for this purpose. The bioavailability of heavy metals assessed by earthworms did not always match the availability defined by soil fractionation. Earthworms were a good indicator to assess the bioavailability of Pb and Sb in soil, while due to physiological mechanisms of regulation and excretion, Cd, Cu and Zn tissue levels in these invertebrates gave misleading estimates of their bioavailable pool. No relationship was identified between chemical and biological availability for the geogenic heavy metals, characterized by a narrow range of total contents in soil. The study highlighted that chemical and biological methods should be combined to provide more complete information about heavy element bioavailability in soils. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhu, Ying; You, Xinru; Huang, Keqing; Raza, Faisal; Lu, Xin; Chen, Yuejian; Dhinakar, Arvind; Zhang, Yuan; Kang, Yang; Wu, Jun; Ge, Liang
2018-07-27
Fast dissolving oral film is a stamp-style, drug-loaded polymer film with rapid disintegration and dissolution. This new kind of drug delivery system requires effective taste masking technology. Suspension intermediate and liposome intermediate were prepared, respectively, for the formulation of two kinds of fast dissolving oral films with the aim of studying the effect of taste masking technology on the bioavailability of oral films. Loratadine was selected as the model drug. The surface pH of the films was close to neutral, avoiding oral mucosal irritation or side effects. The thickness of a 2 cm × 2 cm suspension oral film containing 10 mg of loratadine was 100 μm. Electron microscope analysis showed that liposomes were spherical before and after re-dissolution, and drugs with obvious bitterness could be masked by the encapsulation of liposomes. Dissolution of the two films was superior to that of the commercial tablets. Rat pharmacokinetic experiments showed that the oral bioavailability of the suspension film was significantly higher than that of the commercial tablets, and the relative bioavailability of the suspension film was 175%. Liposomal film produced a certain amount of improvement in bioavailability, but lower than that of the suspension film.
NASA Astrophysics Data System (ADS)
Zhu, Ying; You, Xinru; Huang, Keqing; Raza, Faisal; Lu, Xin; Chen, Yuejian; Dhinakar, Arvind; Zhang, Yuan; Kang, Yang; Wu, Jun; Ge, Liang
2018-07-01
Fast dissolving oral film is a stamp-style, drug-loaded polymer film with rapid disintegration and dissolution. This new kind of drug delivery system requires effective taste masking technology. Suspension intermediate and liposome intermediate were prepared, respectively, for the formulation of two kinds of fast dissolving oral films with the aim of studying the effect of taste masking technology on the bioavailability of oral films. Loratadine was selected as the model drug. The surface pH of the films was close to neutral, avoiding oral mucosal irritation or side effects. The thickness of a 2 cm × 2 cm suspension oral film containing 10 mg of loratadine was 100 μm. Electron microscope analysis showed that liposomes were spherical before and after re-dissolution, and drugs with obvious bitterness could be masked by the encapsulation of liposomes. Dissolution of the two films was superior to that of the commercial tablets. Rat pharmacokinetic experiments showed that the oral bioavailability of the suspension film was significantly higher than that of the commercial tablets, and the relative bioavailability of the suspension film was 175%. Liposomal film produced a certain amount of improvement in bioavailability, but lower than that of the suspension film.
Gonzales, Gerard Bryan
2017-08-01
In vitro techniques are essential in elucidating biochemical mechanisms and for screening a wide range of possible bioactive candidates. The number of papers published reporting in vitro bioavailability and bioactivity of flavonoids and flavonoid-rich plant extracts is numerous and still increasing. However, even with the present knowledge on the bioavailability and metabolism of flavonoids after oral ingestion, certain inaccuracies still persist in the literature, such as the use of plant extracts to study bioactivity towards vascular cells. There is therefore a need to revisit, even question, these approaches in terms of their biological relevance. In this review, the bioavailability of flavonoid glycosides, the use of cell models for intestinal absorption and the use of flavonoid aglycones and flavonoid-rich plant extracts in in vitro bioactivity studies will be discussed. Here, we focus on the limitations of current in vitro systems and revisit the validity of some in vitro approaches, and not on the detailed mechanism of flavonoid absorption and bioactivity. Based on the results in the review, there is an apparent need for stricter guidelines on publishing data on in vitro data relating to the bioavailability and bioactivity of flavonoids and flavonoid-rich plant extracts.
Yin, Juntao; Xiang, Cuiyu; Wang, Peiqing; Yin, Yuyun; Hou, Yantao
2017-01-01
Baicalein (BCL) possesses high pharmacological activities but low solubility and stability in the intestinal tract. This study aimed to probe the potential of nanoemulsions (NEs) consisting of hemp oil and less surfactants in ameliorating the oral bioavailability of BCL. BCL-loaded NEs (BCL-NEs) were prepared by high-pressure homogenization technique to reduce the amount of surfactants. BCL-NEs were characterized by particle size, entrapment efficiency (EE), in vitro drug release, and morphology. Bioavailability was studied in Sprague-Dawley rats following oral administration of BCL suspensions, BCL conventional emulsions, and BCL-NEs. The obtained NEs were ~90 nm in particle size with an EE of 99.31%. BCL-NEs significantly enhanced the oral bioavailability of BCL, up to 524.7% and 242.1% relative to the suspensions and conventional emulsions, respectively. BCL-NEs exhibited excellent intestinal permeability and transcellular transport ability. The cytotoxicity of BCL-NEs was documented to be low and acceptable for oral purpose. Our findings suggest that such novel NEs and preparative process provide a promising alternative to current formulation technologies and suitable for oral delivery of drugs with bioavailability issues. PMID:28435268
Yin, Juntao; Xiang, Cuiyu; Wang, Peiqing; Yin, Yuyun; Hou, Yantao
2017-01-01
Baicalein (BCL) possesses high pharmacological activities but low solubility and stability in the intestinal tract. This study aimed to probe the potential of nanoemulsions (NEs) consisting of hemp oil and less surfactants in ameliorating the oral bioavailability of BCL. BCL-loaded NEs (BCL-NEs) were prepared by high-pressure homogenization technique to reduce the amount of surfactants. BCL-NEs were characterized by particle size, entrapment efficiency (EE), in vitro drug release, and morphology. Bioavailability was studied in Sprague-Dawley rats following oral administration of BCL suspensions, BCL conventional emulsions, and BCL-NEs. The obtained NEs were ~90 nm in particle size with an EE of 99.31%. BCL-NEs significantly enhanced the oral bioavailability of BCL, up to 524.7% and 242.1% relative to the suspensions and conventional emulsions, respectively. BCL-NEs exhibited excellent intestinal permeability and transcellular transport ability. The cytotoxicity of BCL-NEs was documented to be low and acceptable for oral purpose. Our findings suggest that such novel NEs and preparative process provide a promising alternative to current formulation technologies and suitable for oral delivery of drugs with bioavailability issues.
Timeline (Bioavailability) of Magnesium Compounds in Hours: Which Magnesium Compound Works Best?
Uysal, Nazan; Kizildag, Servet; Yuce, Zeynep; Guvendi, Guven; Kandis, Sevim; Koc, Basar; Karakilic, Aslı; Camsari, Ulas M; Ates, Mehmet
2018-04-21
Magnesium is an element of great importance functioning because of its association with many cellular physiological functions. The magnesium content of foods is gradually decreasing due to food processing, and magnesium supplementation for healthy living has become increasingly popular. However, data is very limited on the bioavailability of various magnesium preparations. The aim of this study is to investigate the bioavailability of five different magnesium compounds (magnesium sulfate, magnesium oxide, magnesium acetyl taurate, magnesium citrate, and magnesium malate) in different tissues. Following a single dose 400 mg/70 kg magnesium administration to Sprague Dawley rats, bioavailability was evaluated by examining time-dependent absorption, tissue penetration, and the effects on the behavior of the animals. Pharmacokinetically, the area under the curve calculation is highest in the magnesium malate. The magnesium acetyl taurate was found to have the second highest area under the curve calculation. Magnesium acetyl taurate was rapidly absorbed, able to pass through to the brain easily, had the highest tissue concentration level in the brain, and was found to be associated with decreased anxiety indicators. Magnesium malate levels remained high for an extended period of time in the serum. The commonly prescribed dietary supplements magnesium oxide and magnesium citrate had the lowest bioavailability when compared to our control group. More research is needed to investigate the bioavailability of magnesium malate and acetyl taurate compounds and their effects in specific tissues and on behavior.
Chen, Guanyu; Svirskis, Darren; Lu, Weiyue; Ying, Man; Huang, Yuan; Wen, Jingyuan
2018-05-10
Gemcitabine is a nucleoside analogue effective against a number of cancers. However, the full potential of this drug has not been realised, in part due to low oral bioavailability and frequent dosing requirements. This study reports the synthesis, in-vitro, ex-vivo and in-vivo evaluation of trimethyl chitosan (TMC) - CSKSSDYQC (CSK) peptide conjugates capable of enhancing the oral bioavailability of gemcitabine due to the ability to target intestinal goblet cells and promote intestinal cellular uptake. TMC was synthesized by a novel two-step methylation method to improve quanternization and yield. The CSK-TMC conjugates were prepared by ionic gelation to achieve particles sized at 173.6 ± 6.8 nm, zeta potential of +18.5 ± 0.2 mV and entrapment efficiency of 66.4 ± 0.1%, capable of sustained drug release. By encapsulating gemcitabine into CSK-TMC conjugates, an increased amount of drug permeated through porcine intestinal epithelial membranes compared with the unconjugated TMC nanoparticles (NPs). The rate of cellular uptake of drug loaded conjugates into HT29-MTX-E12 intestinal goblet cells, was time- and concentration-dependant. The conjugates underwent active transport associated with adsorptive mediated, clathrin and caveolae mediated endocytosis. In cellular transport studies, drug loaded conjugates had greater drug transport capability compared with drug solution and TMC NPs over the co-cultured Caco-2/HT29-MTX-E12 cell monolayer. The drug loaded conjugates exhibited electrostatic interaction with the intestinal epithelial cells. Both P-glycoprotein (P-gp) and multiple resistance protein-2 (MRP2) efflux affected the cellular transport of the conjugates. Importantly, during the pharmacokinetic studies, the orally administrated drug loaded into TMC NPs showed an improved oral bioavailability of 54.0%, compared with gemcitabine solution of 9.9%. Notable, the CSK-TMC conjugates further improved oral bioavailability to 60.1% and reduced the tumour growth rate in a BALB/c nude mouse model, with a 5.1-fold and 3.3-fold reduction compare with the non-treated group and gemcitabine solution group. Furthermore, no major evidence of toxicity was discernible on histologic studies of selected organs. In conclusion, the presented CSK-TMC conjugates and TMC nanoparticles both significantly improve the oral bioavailability of gemcitabine and have the potential for the treatment of breast cancer. Copyright © 2018 Elsevier B.V. All rights reserved.
Assessing the relative bioavailability of DOC in regional groundwater systems
Chapelle, Francis H.; Bradley, Paul M.; Journey, Celeste A.; McMahon, Peter B.
2013-01-01
It has been hypothesized that the degree to which a hyperbolic relationship exists between concentrations of dissolved organic carbon (DOC) and dissolved oxygen (DO) in groundwater may indicate the relative bioavailability of DOC. This hypothesis was examined for 73 different regional aquifers of the United States using 7745 analyses of groundwater compiled by the National Water Assessment (NAWQA) program of the U.S. Geological Survey. The relative reaction quotient (RRQ), a measure of the curvature of DOC concentrations plotted versus DO concentrations and regressed to a decaying hyperbolic equation, was used to assess the relative bioavailability of DOC. For the basalt aquifer of Oahu, Hawaii, RRQ values were low (0.0013 mM−2), reflecting a nearly random relationship between DOC and DO concentrations. In contrast, on the island of Maui, treated sewage effluent injected into a portion of the basalt aquifer resulted in pronounced hyperbolic DOC-DO behavior and a higher RRQ (142 mM−2). RRQ values for the 73 aquifers correlated positively with mean concentrations of ammonia, dissolved iron, and manganese, and correlated negatively with mean pH. This indicates that greater RRQ values are associated with greater concentrations of the final products of microbial reduction reactions. RRQ values and DOC concentrations were negatively correlated with the thickness of the unsaturated zone (UNST) and depth to the top of the screened interval. Finally, RRQ values were positively correlated with mean annual precipitation (MAP), and the highest observed RRQ values were associated with aquifers receiving MAP rates ranging between 900 and 1300 mm/year. These results are uniformly consistent with the hypothesis that the hyperbolic behavior of DOC-DO plots, as quantified by the RRQ metric, can be an indicator of relative DOC bioavailability in groundwater systems.
Mitchell, Ulrike H; Burton, Samantha; Gordon, Christopher; Mack, Gary W
2017-01-01
Objective: To test the hypothesis that long- term aerobically trained elderly individuals have a greater amount of bioavailable nitric oxide (NO) and have a larger cutaneous vasodilation during local heat stress compared to their inactive elderly counterparts. Methods: Eight aerobically trained and 8 inactive older men (>60 years old) participated in this study. NO bioavailability in blood and intradermal dialysate were measured with an ozone based chemiluminescence NO analyzer. Cutaneous vasodilator response to local heating was obtained using laser Doppler velocimetry. Results: Whole blood NO were similar in older- trained and inactive subjects (0.75 ± 0.56 and 0.38 ± 0.32 μM, respectively; Mann-Whitney, p = 0.153), as was intradermal dialysate NO before (7.82 ± 6.32 and 4.18 ± 1.89 μM, respectively) and after local heating (7.16 ± 6.27 and 5.88 ± 3.97 μM, respectively, p = 0.354). The cutaneous vasodilator response of the older- inactive group was smaller than the older- trained group [Group-Time interaction, F (24, 264) = 12.0, p < 0.0001]. When compared to a young group the peak vasodilator response of the older- trained subjects was similar. However, the time to initial dilation was 3.1 and 2.2 times longer ( p < 0.05) in older- inactive and older- trained subjects, respectively, compared to young subjects. Conclusions: Our data support the hypothesis that the age-related reductions in cutaneous vasodilation can possibly be restored by maintaining an aerobic training regimen (at least 3 years). However, some residual effects of aging remain, specifically a delayed cutaneous vasodilator response to local heating is still present in active older adults. We found no evidence for an increase in systemic or local NO-bioavailability with an extended commitment to aerobic fitness.
Nair, Krishnapillai Madhavan; Brahmam, Ginnela N.V.; Radhika, Madhari S.; Dripta, Roy Choudhury; Ravinder, Punjal; Balakrishna, Nagalla; Chen, Zhensheng; Hawthorne, Keli M.; Abrams, Steven A.
2013-01-01
Assessing the bioavailability of non-heme iron and zinc is essential for recommending diets that meet the increased growth-related demand for these nutrients. We studied the bioavailability of iron and zinc from a rice-based meal in 16 adolescent boys and girls, 13–15 y of age, from 2 government-run residential schools. Participants were given a standardized rice meal (regular) and the same meal with 100 g of guava fruit (modified) with 57Fe on 2 consecutive days. A single oral dose of 58Fe in orange juice was given at a separate time as a reference dose. Zinc absorption was assessed by using 70Zn, administered intravenously, and 67Zn given orally with meals. The mean hemoglobin concentration was similar in girls (129 ± 7.8 g/L) and boys (126 ± 7.1 g/L). There were no sex differences in the indicators of iron and zinc status except for a higher hepcidin concentration in boys (P < 0.05). The regular and modified meals were similar in total iron (10–13 mg/meal) and zinc (2.7 mg/meal) content. The molar ratio of iron to phytic acid was >1:1, but the modified diet had 20 times greater ascorbic acid content. The absorption of 57Fe from the modified meal, compared with regular meal, was significantly (P < 0.05) greater in both girls (23.9 ± 11.2 vs. 9.7 ± 6.5%) and boys (19.2 ± 8.4 vs. 8.6 ± 4.1%). Fractional zinc absorption was similar between the regular and modified meals in both sexes. Hepcidin was found to be a significant predictor of iron absorption (standardized β = −0.63, P = 0.001, R2 = 0.40) from the reference dose. There was no significant effect of sex on iron and zinc bioavailability from meals. We conclude that simultaneous ingestion of guava fruit with a habitual rice-based meal enhances iron bioavailability in adolescents. PMID:23596161
Childs, Scott L; Kandi, Praveen; Lingireddy, Sreenivas Reddy
2013-08-05
Cocrystals have become an established and adopted approach for creating crystalline solids with improved physical properties, but incorporating cocrystals into enabling pre-clinical formulations suitable for animal dosing has received limited attention. The dominant approach to in vivo evaluation of cocrystals has focused on deliberately excluding additional formulation in favor of "neat" aqueous suspensions of cocrystals or loading neat cocrystal material into capsules. However, this study demonstrates that, in order to take advantage of the improved solubility of a 1:1 danazol:vanillin cocrystal, a suitable formulation was required. The neat aqueous suspension of the danazol:vanillin cocrystal had a modest in vivo improvement of 1.7 times higher area under the curve compared to the poorly soluble crystal form of danazol dosed under identical conditions, but the formulated aqueous suspension containing 1% vitamin E-TPGS (TPGS) and 2% Klucel LF Pharm hydroxypropylcellulose improved the bioavailability of the cocrystal by over 10 times compared to the poorly soluble danazol polymorph. In vitro powder dissolution data obtained under non-sink biorelevant conditions correlate with in vivo data in rats following 20 mg/kg doses of danazol. In the case of the danazol:vanillin cocrystal, using a combination of cocrystal, solubilizer, and precipitation inhibitor in a designed supersaturating drug delivery system resulted in a dramatic improvement in the bioavailability. When suspensions of neat cocrystal material fail to return the anticipated bioavailability increase, a supersaturating formulation may be able to create the conditions required for the increased cocrystal solubility to be translated into improved in vivo absorption at levels competitive with existing formulation approaches used to overcome solubility limited bioavailability.
Yang, Zhiwen; Yu, Songlin; Fu, Dahua
2010-02-01
The purpose of this study was to enhance the absorption of zedoary turmeric oil (ZTO) in vivo and develop new formulations of a water-insoluble oily drug. This study described a method for preparing ZTO liposomes, which involved freeze-drying (FD) of liposomes with TBA/water cosolvent systems. The TBA/water cosolvent systems were used to investigate a feasible method of liposomes manufacture; the two factors, sugar/lipid mass ratio and TBA content (concentration), of the preparation process were evaluated in this study. The results showed that the addition of TBA content could significantly enhance the sublimation of ice resulting in short FD cycles time, and reduce the entrapment efficiency of liposomes. In addition, the residual TBA solvents levels were determined to be less than 0.37% under all optimum formulations and processing conditions. Several physical properties of liposomes were examined by H-600 transmission electron microscope (TEM) and zetamaster analyser system. The results revealed that the liposomes were smooth and spherical with an average particle size of 457 +/- 7.8 nm and the zeta potential was more than 3.65 Mv. The bioavailability of the liposomes was evaluated in rabbits, compared with the conventional self-emulsifying formulation for oral administration. Compared with the conventional self-emulsifying formulation, the plasma concentration-time profiles with improved sustained-release characteristics were achieved after oral administration of the liposomes with a bioavailability of 257.7% (a good strategy for improving the bioavailability of an oily drug). In conclusion, the present experimental findings clearly demonstrated the usefulness of ZTO liposome vesicles in improving therapeutic efficacy by enhancing oral bioavailability. Our study offered an alternative method for designing sustained-release preparations of oily drugs.
Vaz-Tostes, Maria das Graças; Verediano, Thaisa Agrizzi; de Mejia, Elvira Gonzalez; Brunoro Costa, Neuza Maria
2016-03-15
Biofortified beans have been produced with higher nutrient concentrations. The objective was to evaluate the in vitro and in vivo iron and zinc bioavailability of common beans Pontal (PO), targeted for biofortification, compared with conventional Perola (PE) and their effects on the iron and zinc nutritional status of preschool children. In Caco-2 cells, PO and PE beans did not show differences in ferritin (PO, 13.1 ± 1.4; PE, 13.6 ± 1.4 ng mg(-1) protein) or zinc uptake (PO, 15.9 ± 1.5; PE, 15.5 ± 3.5 µmol mg(-1) protein). In the rat, PO and PE beans presented high iron bioavailability (PO, 109.6 ± 29.5; PE, 110.7 ± 13.9%). In preschool children, no changes were observed in iron and zinc nutritional status comparing before and after PO consumption (ferritin, 41.2 ± 23.2 and 28.9 ± 40.4 µg L(-1) ; hemoglobin, 13.7 ± 2.2 and 13.1 ± 3.2 g dL(-1) ; plasma zinc, 119.2 ± 24.5 and 133.9 ± 57.7 µg dL(-1) ; erythrocyte zinc, 53.5 ± 13.8 and 59.4 ± 17.1 µg g(-1) hemoglobin). Iron and zinc bioavailability in PO and PE beans was not statistically different using either cell culture, animal or human models. Efforts should focus on increasing mineral bioavailability of beans targeted for biofortification. © 2015 Society of Chemical Industry.
Pandaran Sudheeran, Subash; Jacob, Della; Natinga Mulakal, Johannah; Gopinathan Nair, Gopakumar; Maliakel, Abhilash; Maliakel, Balu; Kuttan, Ramadasan; Im, Krishnakumar
2016-06-01
Drug delivery systems capable of delivering free (unconjugated) curcuminoids is of great therapeutic significance, since the absorption of bioactive and permeable form plays a key factor in mediating the efficacy of a substance which undergoes rapid biotransformation. Considering the recent understanding on the relatively high bioactivities and blood-brain-barrier permeability of free curcuminoids over their conjugated metabolites, the present human study investigated the safety, antioxidant efficacy, and bioavailability of CurQfen (curcumagalactomannoside [CGM]), a food-grade formulation of natural curcumin with fenugreek dietary fiber that has shown to possess improved blood-brain-barrier permeability and tissue distribution in rats. In this randomized double-blinded and placebo-controlled trial, 60 subjects experiencing occupational stress-related anxiety and fatigue were randomized to receive CGM, standard curcumin, and placebo for 30 days (500 mg twice daily). The study demonstrated the safety, tolerance, and enhanced efficacy of CGM in comparison with unformulated standard curcumin. A significant improvement in the quality of life (P < 0.05) with considerable reduction in stress (P < 0.001), anxiety (P < 0.001), and fatigue (P < 0.001) was observed among CGM-treated subjects as compared with the standard curcumin group, when monitored by SF-36, Perceived Stress Scale with 14 items, and Beck Anxiety Inventory scores. Improvement in the quality of life was further correlated with the significant enhancement in endogenous antioxidant markers (P < 0.01) and reduction in lipid peroxidation (P < 0.001). Further comparison of the free curcuminoids bioavailability after a single-dose (500 mg once per day) and repeated-dose (500 mg twice daily for 30 days) oral administration revealed enhanced absorption and improved pharmacokinetics of CGM upon both single- (30.7-fold) and repeated-dose (39.1-fold) administrations.
Jann, M W; ZumBrunnen, T L; Tenjarla, S N; Ward, E S; Weidler, D J
1998-01-01
To compare the relative bioavailability of two 16-mg extemporaneously prepared suppository formulations with that of an 8-mg commercially available oral tablet. Prospective, crossover bioavailability study. Inpatient clinical research center. Sixteen young, nonsmoking, healthy volunteers. Blood samples were obtained 24 and 48 hours after administration of an 8-mg oral ondansetron tablet and 16-mg suppository, respectively. Two 16-mg suppository formulations were compounded using commercially available Fattibase and Polybase. Ondansetron was well absorbed by both routes of administration. The following pharmacokinetic parameters (mean+/-SEM) were obtained for the 8-mg tablet, 16-mg Fattibase suppository, and 16-mg Polybase suppository, respectively: area under the curve (AUC) in men 154.2+/-21.77, 253.4+/-72.3, 304.8+/-62.2 ng x hr/ml; AUC in women 353.6+/-32.7, 561.6+/-103.6, and 768.7+/-117.9 ng x hr/ml; maximum concentration (Cmax) in men 45.5+/-7.0, 40.6+/-10.4, and 51.2+/-6.7 ng/ml; Cmax in women 51.4+/-.8, 47.1+/-3.9, and 82.9+/-6.6 ng/ml. Times to Cmax (Tmax; mean+/-SEM) for men were 1.5+/-0.3, 4.4+/-0.5, and 2.9+/-0.3 hours; Tmax for women were 1.8+/-0.3, 4.1+/-0.4, and 4.4+/-0.6 hours for the three formulations, respectively. Women had a consistently higher AUC for all three formulations than men (p<0.05). With the exception of the 16-mg Polybase formulation in women, the two suppositories closely approximated the pharmacokinetics of the 8-mg oral tablet. These results suggest that gender may be a significant factor in ondansetron's disposition.
Plasma pharmacokinetics of catechin metabolite 4'-O-Me-EGC in healthy humans.
Renouf, Mathieu; Redeuil, Karine; Longet, Karin; Marmet, Cynthia; Dionisi, Fabiola; Kussmann, Martin; Williamson, Gary; Nagy, Kornél
2011-10-01
Tea is an infusion of the leaves of the Camellia sinensis plant and is the most widely consumed beverage in the world after water. Green tea contains significant amounts of polyphenol catechins and represents a promising dietary component to maintain health and well-being. Epidemiological studies indicate that polyphenol intake may have potential health benefits, such as, reducing the incidence of coronary heart disease, diabetes and cancer. While bioavailability of green tea bioactives is fairly well understood, some gaps still remain to be filled, especially the identification and quantification of conjugated metabolites in plasma, such as, sulphated, glucuronidated or methylated compounds. In the present study, we aimed to quantify the appearance of green tea catechins in plasma with particular emphasis on their methylated forms. After feeding 400 mL of green tea, 1.25% infusion to 9 healthy subjects, we found significant amounts of EC, EGC and EGCg in plasma as expected. EGC was the most bioavailable catechin, and its methylated form (4'-O-Me-EGC) was also present in quantifiable amounts. Its kinetics followed that of its parent compound. However, the relative amount of the methylated form of EGC was lower than that of the parent compound, an important aspect which, in the literature, has been controversial so far. The quantitative results presented in our study were confirmed by co-chromatography and accurate mass analysis of the respective standards. We show that the relative abundance of 4'-O-Me-EGC is ~40% compared to the parent EGC. 4'-O-Me-EGC is an important metabolite derived from catechin metabolism. Its presence in significant amounts should not be overlooked when assessing human bioavailability of green tea.
Almqvist, Erik G; Becker, Charlotte; Bondeson, Anne-Greth; Bondeson, Lennart; Svensson, Johan
2006-01-01
The recovery of bone mineral density (BMD) after surgical cure of primary hyperparathyroidism (PHPT) seems to be multifactorial and not just dependent on declining PTH. The aim of the present study was to evaluate the role of sex steroids in this context. Thirty-six postmenopausal women with PHPT were examined before and 1 year after curative parathyroidectomy. Their mean age at inclusion in the study was 71.7 +/- 1.1 years (range 54-83). BMD was measured in hip and lumbar spine using dual energy X-ray absorptiometry. No patient received any replacement therapy with sex hormones or treatment with corticosteroids, oestrogen receptor modulators or bisphosphonates. Serum concentrations of oestradiol, testosterone, androstenedione, dehydroepiandrosterone sulphate, SHBG, PTH and calcium. Postoperative increase of free (bioavailable) testosterone was positively correlated to the change of BMD in the hip (P < 0.01), whereas the change of PTH in serum correlated to the change of BMD in the lumbar spine (P < 0.05). Multiple regression analysis showed that bioavailable testosterone was the most important determinant of change in BMD in both spine and hip (femoral neck: P < 0.05; Ward's triangle: P < 0.001; trochanter: P < 0.01; lumbar spine: P < 0.05). The increase of bioavailable testosterone after curative parathyroidectomy was related to declining SHBG. An increase of bioavailable testosterone following surgical cure of PHPT is related to improvement of hip and lumbar spine BMD in postmenopausal women. This previously unknown hormonal interaction may also be important to other aspects of hyperparathyroidism.
Kumar, Krishan; Dhawan, Neha; Sharma, Harshita; Patwal, Pramod S; Vaidya, Shubha; Vaidya, Bhuvaneshwar
2015-01-01
Metoprolol succinate is a very potent drug for the treatment of hypertension but suffers from poor bioavailability due to its erratic absorption in lower GI tract. Therefore, in the present study, it was hypothesized that by formulating mucoadhesive particles, the residence time in the GIT and release of drug may be prolonged that will enhance the bioavailability of metoprolol succinate. Metoprolol succinate loaded chitosan microparticles were prepared by ionic gelation method. The optimized microparticles were coated with sodium alginate to form a layer over chitosan microparticles to increase the mucoadhesive strength and to release the drug in controlled manner. Coated and uncoated microparticles were evaluated for particle size, zeta potential, morphology, entrapment efficiency, drug loading and in vitro drug release. The coated microparticles showed comparatively less drug release in the 0.1 N HCl while sustained release in PBS (pH 6.8) as compared to uncoated microparticles. The in vivo study on albino rats demonstrated an increase in bioavailability of the coated microparticles as compared to marketed formulation. From the study it can be concluded that alginate coated chitosan microparticles could be a useful carrier for the oral delivery of metoprolol succinate.
High Bioavailability of Bisphenol A from Sublingual Exposure
Gayrard, Véronique; Lacroix, Marlène Z.; Collet, Séverine H.; Viguié, Catherine; Bousquet-Melou, Alain; Picard-Hagen, Nicole
2013-01-01
Background: Bisphenol A (BPA) risk assessment is currently hindered by the rejection of reported higher-than-expected plasma BPA concentrations in humans after oral ingestion. These are deemed incompatible with the almost complete hepatic first-pass metabolism of BPA into its inactive glucurono-conjugated form, BPA glucuronide (BPAG). Objectives: Using dogs as a valid model, we compared plasma concentrations of BPA over a 24-hr period after intravenous, orogastric, and sublingual administration in order to establish the absolute bioavailability of BPA administered sublingually and to compare it with oral bioavailability. Methods: Six dogs were sublingually administered BPA at 0.05 mg/kg and 5 mg/kg. We compared the time course of plasma BPA concentrations with that obtained in the same dogs after intravenous administration of the same BPA doses and after a 20-mg/kg BPA dose administrated by orogastric gavage. Results: The data indicated that the systemic bioavailability of BPA deposited sublingually was high (70–90%) and that BPA transmucosal absorption from the oral cavity led to much higher BPA internal exposure than obtained for BPA absorption from the gastrointestinal tract. The concentration ratio of BPAG to BPA in plasma was approximately 100-fold lower following sublingual administration than after orogastric dosing, distinguishing the two pathways of absorption. Conclusions: Our findings demonstrate that BPA can be efficiently and very rapidly absorbed through the oral mucosa after sublingual exposure. This efficient systemic entry route of BPA may lead to far higher BPA internal exposures than known for BPA absorption from the gastrointestinal tract. PMID:23761051
Meganathan, Puvaneswari; Jabir, Rafid Salim; Fuang, Ho Gwo; Bhoo-Pathy, Nirmala; Choudhury, Roma Basu; Taib, Nur Aishah; Nesaretnam, Kalanithi; Chik, Zamri
2015-01-01
Gamma and delta tocotrienols are isomers of Vitamin E with established potency in pre-clinical anti-cancer research. This single-dose, randomized, crossover study aimed to compare the safety and bioavailability of a new formulation of Gamma Delta Tocotrienol (GDT) in comparison with the existing Tocotrienol-rich Fraction (TRF) in terms of gamma and delta isomers in healthy volunteers. Subjects were given either two 300 mg GDT (450 mg γ-T3 and 150 mg δ-T3) capsules or four 200 mg TRF (451.2 mg γ-T3 & 102.72 mg δ-T3) capsules and blood samples were taken at several time points over 24 hours. Plasma tocotrienol concentrations were determined using HPLC method. The 90% CI for gamma and delta tocotrienols for the ratio of log-transformation of GDT/TRF for Cmax and AUC0–∞ (values were anti-logged and expressed as a percentage) were beyond the bioequivalence limits (106.21–195.46, 154.11–195.93 and 52.35–99.66, 74.82–89.44 respectively). The Wilcoxon Signed Rank Test for Tmax did not show any significant difference between GDT and TRF for both isomers (p > 0.05). No adverse events were reported during the entire period of study. GDT was found not bioequivalent to TRF, in terms of AUC and Cmax. Gamma tocotrienol in GDT showed superior bioavailability whilst delta tocotrienol showed less bioavailability compared to TRF. PMID:26323969
Chen, Li; Liu, Chang-Shun; Chen, Qing-Zhen; Wang, Sen; Xiong, Yong-Ai; Jing, Jing; Lv, Jia-Jia
2017-03-30
The purpose of this study was to develop a self-microemulsifying drug delivery system (SMEDDS) to improve the oral bioavailability of Chlorogenic acid (CA), an important bioactive compound from Lonicerae Japonicae Flos with poor permeability. SMEDDS was prepared and characterized by self-emulsifying rate, morphological observation, droplet size determination, stability, in vitro release, in vivo bioavailability and tissue distribution experiments. Results shown that the SMEDDS of CA has a high self-emulsifying rate (>98%) in the dissolution media, and its microemulsion exhibits small droplet size (16.37nm) and good stability. In vitro release test showed a complete release of CA from SMEDDS in 480min. After oral administration in mice, significantly enhanced bioavailability of CA was achieved through SMEDDS (249.4% relative to the CA suspension). Interestingly, SMEDDS significantly changed the tissue distribution of CA and showed a better targeting property to the kidney (2.79 of the relative intake efficiency). It is suggested that SMEDDS improves the oral bioavailability of CA may mainly through increasing its absorption and slowing the metabolism of absorbed CA via changing its distribution from the liver to the kidney. In conclusion, it is indicated that SMEDDS is a promising carrier for the oral delivery of CA. Copyright © 2017 Elsevier B.V. All rights reserved.
Fares, Ahmed R; ElMeshad, Aliaa N; Kassem, Mohamed A A
2018-11-01
This study aims at preparing and optimizing lacidipine (LCDP) polymeric micelles using thin film hydration technique in order to overcome LCDP solubility-limited oral bioavailability. A two-factor three-level central composite face-centered design (CCFD) was employed to optimize the formulation variables to obtain LCDP polymeric micelles of high entrapment efficiency and small and uniform particle size (PS). Formulation variables were: Pluronic to drug ratio (A) and Pluronic P123 percentage (B). LCDP polymeric micelles were assessed for entrapment efficiency (EE%), PS and polydispersity index (PDI). The formula with the highest desirability (0.959) was chosen as the optimized formula. The values of the formulation variables (A and B) in the optimized polymeric micelles formula were 45% and 80%, respectively. Optimum LCDP polymeric micelles had entrapment efficiency of 99.23%, PS of 21.08 nm and PDI of 0.11. Optimum LCDP polymeric micelles formula was physically characterized using transmission electron microscopy. LCDP polymeric micelles showed saturation solubility approximately 450 times that of raw LCDP in addition to significantly enhanced dissolution rate. Bioavailability study of optimum LCDP polymeric micelles formula in rabbits revealed a 6.85-fold increase in LCDP bioavailability compared to LCDP oral suspension.
Yanfei, Miao; Guoguang, Chen; Lili, Ren; Pingkai, Ouyang
2017-03-01
The purpose of this study was to develop a new formulation to enhance the bioavailability simultaneously with controlled release of glaucocalyxin A (GLA). In this study, controlled release of GLA was achieved by the osmotic release strategy taking advantage of the bioavailability enhancing capacity of self-nanoemulsifying drug delivery systems (SNEDDS). The formulation of GLA-SNEDDS was selected by the solubility and pseudoternary-phase diagrams studies. The prepared GLA-SNEDDS formulations were characterized for self-emulsification time, effect of pH and robustness to dilution, droplet size analysis and zeta potential. The optimized GLA-SNEDDS were used to prepare GLA-SNEDDS osmotic pump tablet via direct powder compression method. The effect of formulation variables on the release characteristic was investigated. GLA-SNEDDS osmotic pump tablets were administered to beagle dogs and their pharmacokinetics were compared to GLA and GLA-SNEDDS as a control. In vitro drug release studies indicated that the GLA-SNEDDS osmotic pump tablet showed sustained release profiles with 90% released within 12 h. Pharmacokinetic study showed steady blood GLA with prolonged T max and mean residence time (MRT), and enhanced bioavailability for GLA-SNEDDS osmotic pump tablet. It was concluded that simultaneous controlling on GLA release and enhanced bioavailability had been achieved by a combination of osmotic pump tablet and SNEDDS.
Pereira-Caro, Gema; Polyviou, Thelma; Ludwig, Iziar A; Nastase, Ana-Maria; Moreno-Rojas, José Manuel; Garcia, Ada L; Malkova, Dalia; Crozier, Alan
2017-09-01
Background: Physical exercise has been reported to increase the bioavailability of citrus flavanones. Objective: We investigated the bioavailability of orange juice (OJ) (poly)phenols in endurance-trained males before and after cessation of training for 7 d. Design: Ten fit, endurance-trained males, with a mean ± SD maximal oxygen consumption of 58.2 ± 5.3 mL · kg -1 · min -1 , followed a low (poly)phenol diet for 2 d before drinking 500 mL of OJ containing 398 μmol of (poly)phenols, of which 330 μmol was flavanones. After the volunteers stopped training for 7 d the feeding study was repeated. Urine samples were collected 12 h pre- and 24 h post-OJ consumption. Bioavailability was assessed by the quantitative analysis of urinary flavanone metabolites and (poly)phenol catabolites with the use of high-pressure liquid chromatography-high resolution mass spectrometry. Results: During training, 0-24-h urinary excretion of flavanone metabolites, mainly hesperetin-3'- O -glucuronide, hesperetin-3'-sulfate, naringenin-4'- O -glucuronide, naringenin-7- O -glucuronide, was equivalent to 4.2% of OJ flavanone intake. This increased significantly to 5.2% when OJ was consumed after the volunteers stopped training for 7 d. Overall, this trend, although not significant, was also observed with OJ-derived colonic catabolites, which, after supplementation in the trained state, were excreted in amounts equivalent to 51% of intake compared with 59% after cessation of training. However, urinary excretion of 3 colonic catabolites of bacterial origin, most notably, 3-(3'-hydroxy-4'-methoxyphenyl)hydracrylic acid, did increase significantly when OJ was consumed postcessation compared with precessation of training. Data were also obtained on interindividual variations in flavanone bioavailability. Conclusions: A 7-d cessation of endurance training enhanced, rather than reduced, the bioavailability of OJ flavanones. The biological significance of these differences and whether they extend to the bioavailability of other dietary (poly)phenols remain to be determined. Hesperetin-3'- O -glucuronide and the colonic microbiota-derived catabolite 3-(3'-hydroxy-4'-methoxyphenyl)hydracrylic acid are key biomarkers of the consumption of hesperetin- O -glycoside-containing OJ and other citrus products. This trial was registered at clinicaltrials.gov as NCT02627547. © 2017 American Society for Nutrition.
Shi, Lingna; Wang, Lijun; Zhang, Tao; Li, Jianfa; Huang, Xiaoyi; Cai, Jing; Lü, Jinhong; Wang, Yue
2017-10-01
For the purpose of safe disposal of biomass contaminated by biosorption of heavy metals, phosphate-assisted pyrolysis of water hyacinth biomass contaminated by lead (Pb) was tried to reduce the bioavailability and leaching potential of Pb, using direct pyrolysis without additive as a control method. Direct pyrolysis of the contaminated biomass at low temperatures (300 and 400°C) could reduce the bioavailability of Pb, but the leaching potential of Pb was increased with the rising pyrolysis temperature. While phosphate-assisted pyrolysis significantly enhanced the recovery and stability of Pb in the char. Specifically, the percentages of bioavailable Pb and leachable Pb in the chars obtained by phosphate-assisted pyrolysis at low temperatures were reduced to less than 5% and 7%, respectively. The sequential extraction test indicated the transformation of Pb into more stable fractions after phosphate-assisted pyrolysis, which was related to the formation of Pb phosphate minerals including pyromorphite and lead-substituted hydroxyapatite. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ullah, Faheem; Liang, Andy; Rangel, Alejandra; Gyengesi, Erika; Niedermayer, Garry; Münch, Gerald
2017-04-01
Neuroinflammation is a pathophysiological process present in a number of neurodegenerative disorders, such as Alzheimer's disease, Huntington's disease, Parkinson's disease, stroke, traumatic brain injury including chronic traumatic encephalopathy and other age-related CNS disorders. Although there is still much debate about the initial trigger for some of these neurodegenerative disorders, during the progression of disease, broad range anti-inflammatory drugs including cytokine suppressive anti-inflammatory drugs (CSAIDs) might be promising therapeutic options to limit neuroinflammation and improve the clinical outcome. One of the most promising CSAIDs is curcumin, which modulates the activity of several transcription factors (e.g., STAT, NF-κB, AP-1) and their pro-inflammatory molecular signaling pathways. However, normal curcumin preparations demonstrate low bioavailability in vivo. To increase bioavailability, preparations of high bioavailability curcumin have been introduced to achieve therapeutically relevant concentrations in target tissues. This literature review aims to summarize the pharmacokinetic and toxicity profile of different curcumin formulations.