NASA Astrophysics Data System (ADS)
Fehre, K.; Trojanowskaja, D.; Gatzke, J.; Kunitski, M.; Trinter, F.; Zeller, S.; Schmidt, L. Ph. H.; Stohner, J.; Berger, R.; Czasch, A.; Jagutzki, O.; Jahnke, T.; Dörner, R.; Schöffler, M. S.
2018-04-01
Modern momentum imaging techniques allow for the investigation of complex molecules in the gas phase by detection of several fragment ions in coincidence. For these studies, it is of great importance that the single-particle detection efficiency ɛ is as high as possible, as the overall efficiency scales with ɛn, i.e., the power of the number of detected particles. Here we present measured absolute detection efficiencies for protons of several micro-channel plates (MCPs), including efficiency enhanced "funnel MCPs." Furthermore, the relative detection efficiency for two-, three-, four-, and five-body fragmentation of CHBrClF has been examined. The "funnel" MCPs exhibit an efficiency of approximately 90%, gaining a factor of 24 (as compared to "normal" MCPs) in the case of a five-fold ion coincidence detection.
Absolute calibration of a multichannel plate detector for low energy O, O-, and O+
NASA Astrophysics Data System (ADS)
Stephen, T. M.; Peko, B. L.
2000-03-01
Absolute detection efficiencies of a commercial multichannel plate detector have been measured for O, O+, and O-, impacting at normal incidence for energies ranging from 30-1000 eV. In addition, the detection efficiencies for O relative to its ions are presented, as they may have a more universal application. The absolute detection efficiencies are strongly energy dependent and significant differences are observed for the various charge states at lower energies. The detection efficiencies for the different charge states appear to converge at higher energies. The strongest energy dependence is for O+; the detection efficiency varies by three orders of magnitude across the energy range studied. The weakest dependence is for O-, which varies less than one order of magnitude.
Aerosol detection efficiency in inductively coupled plasma mass spectrometry
NASA Astrophysics Data System (ADS)
Hubbard, Joshua A.; Zigmond, Joseph A.
2016-05-01
An electrostatic size classification technique was used to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Size-segregated particles were counted with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized by the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10- 5 to 10- 11. Free molecular heat and mass transfer theory was applied, but evaporative phenomena were not sufficient to explain the dependence of aerosol detection on particle diameter. Additional work is needed to correlate experimental data with theory for metal-oxides where thermodynamic property data are sparse relative to pure elements. Lastly, when matrix effects and the diffusion of ions inside the plasma were considered, mass loading was concluded to have had an effect on the dependence of detection efficiency on particle diameter.
Evaluation of species-dependent detection efficiencies in the aerosol mass spectrometer
USDA-ARS?s Scientific Manuscript database
Mass concentrations of chemical species calculated from the aerosol mass spectrometer (AMS) depend on two factors: particle collection efficiency (CE) and relative ionization efficiency (RIE, relative to the primary calibrant ammonium nitrate). While previous studies have characterized CE, RIE is re...
Aerosol detection efficiency in inductively coupled plasma mass spectrometry
Hubbard, Joshua A.; Zigmond, Joseph A.
2016-03-02
We used an electrostatic size classification technique to segregate particles of known composition prior to being injected into an inductively coupled plasma mass spectrometer (ICP-MS). Moreover, we counted size-segregated particles with a condensation nuclei counter as well as sampled with an ICP-MS. By injecting particles of known size, composition, and aerosol concentration into the ICP-MS, efficiencies of the order of magnitude aerosol detection were calculated, and the particle size dependencies for volatile and refractory species were quantified. Similar to laser ablation ICP-MS, aerosol detection efficiency was defined as the rate at which atoms were detected in the ICP-MS normalized bymore » the rate at which atoms were injected in the form of particles. This method adds valuable insight into the development of technologies like laser ablation ICP-MS where aerosol particles (of relatively unknown size and gas concentration) are generated during ablation and then transported into the plasma of an ICP-MS. In this study, we characterized aerosol detection efficiencies of volatile species gold and silver along with refractory species aluminum oxide, cerium oxide, and yttrium oxide. Aerosols were generated with electrical mobility diameters ranging from 100 to 1000 nm. In general, it was observed that refractory species had lower aerosol detection efficiencies than volatile species, and there were strong dependencies on particle size and plasma torch residence time. Volatile species showed a distinct transition point at which aerosol detection efficiency began decreasing with increasing particle size. This critical diameter indicated the largest particle size for which complete particle detection should be expected and agreed with theories published in other works. Aerosol detection efficiencies also displayed power law dependencies on particle size. Aerosol detection efficiencies ranged from 10 -5 to 10 -11. Free molecular heat and mass transfer theory was applied, but evaporative phenomena were not sufficient to explain the dependence of aerosol detection on particle diameter. Additional work is needed to correlate experimental data with theory for metal-oxides where thermodynamic property data are sparse relative to pure elements. Finally, when matrix effects and the diffusion of ions inside the plasma were considered, mass loading was concluded to have had an effect on the dependence of detection efficiency on particle diameter.« less
A method to calculate the gamma ray detection efficiency of a cylindrical NaI (Tl) crystal
NASA Astrophysics Data System (ADS)
Ahmadi, S.; Ashrafi, S.; Yazdansetad, F.
2018-05-01
Given a wide range application of NaI(Tl) detector in industrial and medical sectors, computation of the related detection efficiency in different distances of a radioactive source, especially for calibration purposes, is the subject of radiation detection studies. In this work, a 2in both in radius and height cylindrical NaI (Tl) scintillator was used, and by changing the radial, axial, and diagonal positions of an isotropic 137Cs point source relative to the detector, the solid angles and the interaction probabilities of gamma photons with the detector's sensitive area have been calculated. The calculations present the geometric and intrinsic efficiency as the functions of detector's dimensions and the position of the source. The calculation model is in good agreement with experiment, and MCNPX simulation.
Moyer, Katherine R.
2016-01-01
Portable antennas have become an increasingly common technique for tracking fish marked with passive integrated transponder (PIT) tags. We used logistic regression to evaluate how species, fish length, and physical habitat characteristics influence portable antenna detection efficiency in stream-dwelling brown trout (Salmo trutta), bull trout (Salvelinus confluentus), and redband trout (Oncorhynchus mykiss newberrii) marked with 12-mm PIT tags. We redetected 56% (20/36) of brown trout, 34% (68/202) of bull trout, and 33% (20/61) of redband trout after a recovery period of 21 to 46 hours. Models indicate support for length and species and minor support for percent boulder, large woody debris, and percent cobble as parameters important for describing variation in detection efficiency, although 95% confidence intervals for estimates were large. The odds of detecting brown trout (1.5 ± 2.2 [mean ± SE]) are approximately four times as high as bull trout (0.4 ± 1.6) or redband trout (0.3 ± 1.8) and species-specific differences may be related to length. Our reported detection efficiency for brown trout falls within the range of other studies, but is the first reported for bull trout and redband trout. Portable antennas may be a relatively unbiased way of redetecting varying sizes of all three salmonid species. PMID:26901317
Banish, Nolan P.; Burdick, Summer M.; Moyer, Katherine R.
2016-01-01
Portable antennas have become an increasingly common technique for tracking fish marked with passive integrated transponder (PIT) tags. We used logistic regression to evaluate how species, fish length, and physical habitat characteristics influence portable antenna detection efficiency in stream-dwelling brown trout (Salmo trutta), bull trout (Salvelinus confluentus), and redband trout (Oncorhynchus mykiss newberrii) marked with 12-mm PIT tags. We redetected 56% (20/36) of brown trout, 34% (68/202) of bull trout, and 33% (20/61) of redband trout after a recovery period of 21 to 46 hours. Models indicate support for length and species and minor support for percent boulder, large woody debris, and percent cobble as parameters important for describing variation in detection efficiency, although 95% confidence intervals for estimates were large. The odds of detecting brown trout (1.5 ± 2.2 [mean ± SE]) are approximately four times as high as bull trout (0.4 ± 1.6) or redband trout (0.3 ± 1.8) and species-specific differences may be related to length. Our reported detection efficiency for brown trout falls within the range of other studies, but is the first reported for bull trout and redband trout. Portable antennas may be a relatively unbiased way of redetecting varying sizes of all three salmonid species.
Ion generation and CPC detection efficiency studies in sub 3-nm size range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kangasluoma, J.; Junninen, H.; Sipilae, M.
2013-05-24
We studied the chemical composition of commonly used condensation particle counter calibration ions with a mass spectrometer and found that in our calibration setup the negatively charged ammonium sulphate, sodium chloride and tungsten oxide are the least contaminated whereas silver on both positive and negative and the three mentioned earlier in positive mode are contaminated with organics. We report cut-off diameters for Airmodus Particle Size Magnifier (PSM) 1.1, 1.3, 1.4, 1.6 and 1.6-1.8 nm for negative sodium chloride, ammonium sulphate, tungsten oxide, silver and positive organics, respectively. To study the effect of sample relative humidity on detection efficiency of themore » PSM we used different humidities in the differential mobility analyzer sheath flow and found that with increasing relative humidity also the detection efficiency of the PSM increases.« less
Behavior of pharmaceuticals in waste water treatment plant in Japan.
Matsuo, H; Sakamoto, H; Arizono, K; Shinohara, R
2011-07-01
The fate of pharmaceuticals in a wastewater treatment plant (WWTP) in Kumamoto, Japan with activated sludge treatment is reported. Selected pharmaceuticals were detected in influent. Results from the present study confirmed that Acetaminophen, Amoxicillin, Ampicillin and Famotidine were removed at a high rate (>90% efficiency). In contrast, removal efficiency of Ketoprofen, Losartan, Oseltamivir, Carbamazepine, and Diclofenac was relatively low (<50%). The selected pharmaceuticals were also detected in raw sludge. In digestive process, Indomethacin, Atenolol, Famotidine, Trimethoprim and Cyclofosamide were removed at a high (>70% efficiency). On the other hand, removal of Carbamazepine, Ketoprofen and Diclofenac was not efficient (<50%).
NASA Astrophysics Data System (ADS)
Peko, B. L.; Stephen, T. M.
2000-12-01
Measured absolute detection efficiencies are presented for H, H - and H n+ ( n=1,2,3) impacting a commercially available, dual multichannel plate (MCP) electron multiplier at kinetic energies ranging from 30 to 1000 eV. Measurements involving isotopic substitutions (D, D -, D n+) and Ar + are also presented. In addition, atomic hydrogen detection efficiencies relative to those of H + and H - are given, as they may have a more universal application. For the three charge states, H, H + and H -, the absolute detection efficiencies are markedly different at low energies and converge to a nearly uniform value of ˜70% with increasing projectile energy. The energy dependence is strongest for H +, varying nearly three orders of magnitude over the energy range studied, and weakest for H -, varying by less than one order of magnitude. In general, for the low energy positive ions at a given energy, the lighter the incident particle mass, the greater the probability of its detection.
Bannerman, J A; Costamagna, A C; McCornack, B P; Ragsdale, D W
2015-06-01
Generalist natural enemies play an important role in controlling soybean aphid, Aphis glycines (Hemiptera: Aphididae), in North America. Several sampling methods are used to monitor natural enemy populations in soybean, but there has been little work investigating their relative bias, precision, and efficiency. We compare five sampling methods: quadrats, whole-plant counts, sweep-netting, walking transects, and yellow sticky cards to determine the most practical methods for sampling the three most prominent species, which included Harmonia axyridis (Pallas), Coccinella septempunctata L. (Coleoptera: Coccinellidae), and Orius insidiosus (Say) (Hemiptera: Anthocoridae). We show an important time by sampling method interaction indicated by diverging community similarities within and between sampling methods as the growing season progressed. Similarly, correlations between sampling methods for the three most abundant species over multiple time periods indicated differences in relative bias between sampling methods and suggests that bias is not consistent throughout the growing season, particularly for sticky cards and whole-plant samples. Furthermore, we show that sticky cards produce strongly biased capture rates relative to the other four sampling methods. Precision and efficiency differed between sampling methods and sticky cards produced the most precise (but highly biased) results for adult natural enemies, while walking transects and whole-plant counts were the most efficient methods for detecting coccinellids and O. insidiosus, respectively. Based on bias, precision, and efficiency considerations, the most practical sampling methods for monitoring in soybean include walking transects for coccinellid detection and whole-plant counts for detection of small predators like O. insidiosus. Sweep-netting and quadrat samples are also useful for some applications, when efficiency is not paramount. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Reith, S; Hoy, S
2018-02-01
Efficient detection of estrus is a permanent challenge for successful reproductive performance in dairy cattle. In this context, comprehensive knowledge of estrus-related behaviors is fundamental to achieve optimal estrus detection rates. This review was designed to identify the characteristics of behavioral estrus as a necessary basis for developing strategies and technologies to improve the reproductive management on dairy farms. The focus is on secondary symptoms of estrus (mounting, activity, aggressive and agonistic behaviors) which seem more indicative than standing behavior. The consequences of management, housing conditions and cow- and environmental-related factors impacting expression and detection of estrus as well as their relative importance are described in order to increase efficiency and accuracy of estrus detection. As traditional estrus detection via visual observation is time-consuming and ineffective, there has been a considerable advancement of detection aids during the last 10 years. By now, a number of fully automated technologies including pressure sensing systems, activity meters, video cameras, recordings of vocalization as well as measurements of body temperature and milk progesterone concentration are available. These systems differ in many aspects regarding sustainability and efficiency as keys to their adoption for farm use. As being most practical for estrus detection a high priority - according to the current research - is given to the detection based on sensor-supported activity monitoring, especially accelerometer systems. Due to differences in individual intensity and duration of estrus multivariate analysis can support herd managers in determining the onset of estrus. Actually, there is increasing interest in investigating the potential of combining data of activity monitoring and information of several other methods, which may lead to the best results concerning sensitivity and specificity of detection. Future improvements will likely require more multivariate detection by data and systems already existing on farms.
Efficient surveillance for healthcare-associated infections spreading between hospitals
Ciccolini, Mariano; Donker, Tjibbe; Grundmann, Hajo; Bonten, Marc J. M.; Woolhouse, Mark E. J.
2014-01-01
Early detection of new or novel variants of nosocomial pathogens is a public health priority. We show that, for healthcare-associated infections that spread between hospitals as a result of patient movements, it is possible to design an effective surveillance system based on a relatively small number of sentinel hospitals. We apply recently developed mathematical models to patient admission data from the national healthcare systems of England and The Netherlands. Relatively short detection times are achieved once 10–20% hospitals are recruited as sentinels and only modest reductions are seen as more hospitals are recruited thereafter. Using a heuristic optimization approach to sentinel selection, the same expected time to detection can be achieved by recruiting approximately half as many hospitals. Our study provides a robust evidence base to underpin the design of an efficient sentinel hospital surveillance system for novel nosocomial pathogens, delivering early detection times for reduced expenditure and effort. PMID:24469791
NASA Astrophysics Data System (ADS)
Srivastava, Abhay; Tian, Ye; Qie, Xiushu; Wang, Dongfang; Sun, Zhuling; Yuan, Shanfeng; Wang, Yu; Chen, Zhixiong; Xu, Wenjing; Zhang, Hongbo; Jiang, Rubin; Su, Debin
2017-11-01
The performances of Beijing Lightning Network (BLNET) operated in Beijing-Tianjin-Hebei urban cluster area have been evaluated in terms of detection efficiency and relative location accuracy. A self-reference method has been used to show the detection efficiency of BLNET, for which fast antenna waveforms have been manually examined. Based on the fast antenna verification, the average detection efficiency of BLNET is 97.4% for intracloud (IC) flashes, 73.9% for cloud-to-ground (CG) flashes and 93.2% for the total flashes. Result suggests the CG detection of regional dense network is highly precise when the thunderstorm passes over the network; however it changes day to day when the thunderstorms are outside the network. Further, the CG stroke data from three different lightning location networks across Beijing are compared. The relative detection efficiency of World Wide Lightning Location Network (WWLLN) and Chinese Meteorology Administration - Lightning Detection Network (CMA-LDN, also known as ADTD) are approximately 12.4% (16.8%) and 36.5% (49.4%), respectively, comparing with fast antenna (BLNET). The location of BLNET is in middle, while WWLLN and CMA-LDN average locations are southeast and northwest, respectively. Finally, the IC pulses and CG return stroke pulses have been compared with the S-band Doppler radar. This type of study is useful to know the approximate situation in a region and improve the performance of lightning location networks in the absence of ground truth. Two lightning flashes occurred on tower in the coverage of BLNET show that the horizontal location error was 52.9 m and 250 m, respectively.
Tang, F; Xiong, Y; Zhang, H; Wu, K; Xiang, Y; Shao, J-B; Ai, H-W; Xiang, Y-P; Zheng, X-L; Lv, J-R; Sun, H; Bao, L-S; Zhang, Z; Hu, H-B; Zhang, J-Y; Chen, L; Lu, J; Liu, W-Y; Mei, H; Ma, Y; Xu, C-F; Fang, A-Y; Gu, M; Xu, C-Y; Chen, Y; Chen, Z; Sun, Z-Y
2016-03-01
To detect Salmonella more efficiently and isolate strains more easily, a novel and simple detection method that uses an enrichment assay and two chromogenic reactions on a chromatography membrane was developed. Grade 3 chromatography paper is used as functionalized solid phase support (SPS), which contains specially optimized medium. One reaction for screening is based on the sulfate-reducing capacity of Salmonella. Hydrogen sulfide (H2S) generated by Salmonella reacts with ammonium ferric citrate to produce black colored ferrous sulfide. Another reaction is based on Salmonella C8 esterase that is unique for Enterobacteriaceae except Serratia and interacts with 4-methylumbelliferyl caprylate (MUCAP) to produce fluorescent umbelliferone, which is visible under ultraviolet light. A very low detection limit (10(1) CFU ml(-1)) for Salmonella was achieved on the background of 10(5) CFU ml(-1) Escherichia coli. More importantly, testing with more than 1,000 anal samples indicated that our method has a high positive detection rate and is relatively low cost, compared with the traditional culture-based method. It took only 1 day for the preliminary screening and 2 days to efficiently isolate the Salmonella cells, indicating that the new assay is specific, rapid, and simple for Salmonella detection. In contrast to the traditional culture-based method, this method can be easily used to screen and isolate targeted strains with the naked eye. The results of quantitative and comparative experiments showed that the visual detection technique is an efficient alternative method for the screening of Salmonella spp. in many applications of large-sized samples related to public health surveillance.
Bomb swab: Can trace explosive particle sampling and detection be improved?
Fisher, Danny; Zach, Raya; Matana, Yossef; Elia, Paz; Shustack, Shiran; Sharon, Yarden; Zeiri, Yehuda
2017-11-01
The marked increase in international terror in recent years requires the development of highly efficient methods to detect trace amounts of explosives at airports, border crossings and check points. The preferred analytical method worldwide is the ion mobility spectrometry (IMS) that is capable of detecting most explosives at the nano-gram level. Sample collection for the IMS analysis is based on swabbing of a passenger's belongings to collect possible explosive residues. The present study examines a wide range of issues related to swab-based particle collection and analysis, in the hope of gaining deeper understanding into this technique that will serve to improve the detection process. The adhesion of explosive particles to three typical materials, plastic, metal and glass, were measured using atomic force microscopy (AFM). We found that a strong contribution of capillary forces to adhesion on glass and metal surfaces renders these substrates more promising materials upon which to find and collect explosive residues. The adhesion of explosives to different swipe materials was also examined. Here we found that Muslin, Nomex ® and polyamide membrane surfaces are the most promising materials for use as swipes. Subsequently, the efficiency of multiple swipe use - for collecting explosive residues from a glass surface using Muslin, Nomex ® and Teflon™ swipes - was examined. The study suggests that swipes used in about 5-10 "sampling and analysis cycles" have higher efficiency as compared to new unused swipes. The reason for this behavior was found to be related to the increased roughness of the swipe surface following a few swab measurements. Lastly, GC-MS analysis was employed to examine the nature of contaminants collected by the three types of swipe. The relative amounts of different contaminants are reported. The existence and interference of these contaminants have to be considered in relation to the detection efficiency of the various explosives by the IMS. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischetti, Sebastian; Cadonati, Laura; Mohapatra, Satyanarayan R. P.
Recent years have witnessed tremendous progress in numerical relativity and an ever improving performance of ground-based interferometric gravitational wave detectors. In preparation for the Advanced Laser Interferometer Gravitational Wave Observatory (Advanced LIGO) and a new era in gravitational wave astronomy, the numerical relativity and gravitational wave data analysis communities are collaborating to ascertain the most useful role for numerical relativity waveforms in the detection and characterization of binary black hole coalescences. In this paper, we explore the detectability of equal mass, merging black hole binaries with precessing spins and total mass M{sub T}(set-membership sign)[80,350]M{sub {center_dot}}, using numerical relativity waveforms andmore » templateless search algorithms designed for gravitational wave bursts. In particular, we present a systematic study using waveforms produced by the MayaKranc code that are added to colored, Gaussian noise and analyzed with the Omega burst search algorithm. Detection efficiency is weighed against the orientation of one of the black-hole's spin axes. We find a strong correlation between the detection efficiency and the radiated energy and angular momentum, and that the inclusion of the l=2, m={+-}1, 0 modes, at a minimum, is necessary to account for the full dynamics of precessing systems.« less
Efficiency of the human observer detecting random signals in random backgrounds
Park, Subok; Clarkson, Eric; Kupinski, Matthew A.; Barrett, Harrison H.
2008-01-01
The efficiencies of the human observer and the channelized-Hotelling observer relative to the ideal observer for signal-detection tasks are discussed. Both signal-known-exactly (SKE) tasks and signal-known-statistically (SKS) tasks are considered. Signal location is uncertain for the SKS tasks, and lumpy backgrounds are used for background uncertainty in both cases. Markov chain Monte Carlo methods are employed to determine ideal-observer performance on the detection tasks. Psychophysical studies are conducted to compute human-observer performance on the same tasks. Efficiency is computed as the squared ratio of the detectabilities of the observer of interest to the ideal observer. Human efficiencies are approximately 2.1% and 24%, respectively, for the SKE and SKS tasks. The results imply that human observers are not affected as much as the ideal observer by signal-location uncertainty even though the ideal observer outperforms the human observer for both tasks. Three different simplified pinhole imaging systems are simulated, and the humans and the model observers rank the systems in the same order for both the SKE and the SKS tasks. PMID:15669610
Efficient Means of Detecting Neutral Atoms in Space
NASA Astrophysics Data System (ADS)
Zinicola, W. N.
2006-12-01
This summer, The Society of Physics Students granted me the opportunity to participate in an internship for The National Aeronautics and Space Administration (NASA) and The University of Maryland. Our chief interest was analyzing low energy neutral atoms that were created from random interactions of ions in space plasma. From detecting these neutrals one can project a image of what the plasma's composition is, and how this plasma changes through interactions with the solar wind. Presently, low energy neutral atom detectors have poor efficiency, typically in the range of 1%. Our goal was to increase this efficiency. To detect low energy neutrals we must first convert them from neutral molecules to negatively charged ions. Once converted, these "new" negatively charged ions can be easily detected and completely analyzed giving us information about their energy, mass, and instantaneous direction. The efficiency of the detector is drastically affected by the surface used for converting these neutrals. My job was first to create thin metal conversion surfaces. Then, using an X-ray photoelectron spectrometer, analyze atomic surface composition and gather work function values. Once the work function values were known we placed the surfaces in our neutral detector and measured their conversion efficiencies. Finally, a relation between the work function of the metal surface an its conversion efficiency was generated. With this relationship accurately measured one could use this information to help give suggestions on what surface would be the best to increase our detection efficiency. If we could increase the efficiency of these low energy neutral atom detectors by even 1% we would be able to decrease the size of the detector therefore making it cheaper and more applicable for space exploration.* * A special thanks to Dr. Michael Coplan of the University of Maryland for his support and guidance through all my research.
TERMA Framework for Biomedical Signal Analysis: An Economic-Inspired Approach.
Elgendi, Mohamed
2016-11-02
Biomedical signals contain features that represent physiological events, and each of these events has peaks. The analysis of biomedical signals for monitoring or diagnosing diseases requires the detection of these peaks, making event detection a crucial step in biomedical signal processing. Many researchers have difficulty detecting these peaks to investigate, interpret and analyze their corresponding events. To date, there is no generic framework that captures these events in a robust, efficient and consistent manner. A new method referred to for the first time as two event-related moving averages ("TERMA") involves event-related moving averages and detects events in biomedical signals. The TERMA framework is flexible and universal and consists of six independent LEGO building bricks to achieve high accuracy detection of biomedical events. Results recommend that the window sizes for the two moving averages ( W 1 and W 2 ) have to follow the inequality ( 8 × W 1 ) ≥ W 2 ≥ ( 2 × W 1 ) . Moreover, TERMA is a simple yet efficient event detector that is suitable for wearable devices, point-of-care devices, fitness trackers and smart watches, compared to more complex machine learning solutions.
Lin, Shu; Wein, Samuel; Gonzales-Cope, Michelle; Otte, Gabriel L.; Yuan, Zuo-Fei; Afjehi-Sadat, Leila; Maile, Tobias; Berger, Shelley L.; Rush, John; Lill, Jennie R.; Arnott, David; Garcia, Benjamin A.
2014-01-01
To facilitate accurate histone variant and post-translational modification (PTM) quantification via mass spectrometry, we present a library of 93 synthetic peptides using Protein-Aqua™ technology. The library contains 55 peptides representing different modified forms from histone H3 peptides, 23 peptides representing H4 peptides, 5 peptides representing canonical H2A peptides, 8 peptides representing H2A.Z peptides, and peptides for both macroH2A and H2A.X. The PTMs on these peptides include lysine mono- (me1), di- (me2), and tri-methylation (me3); lysine acetylation; arginine me1; serine/threonine phosphorylation; and N-terminal acetylation. The library was subjected to chemical derivatization with propionic anhydride, a widely employed protocol for histone peptide quantification. Subsequently, the detection efficiencies were quantified using mass spectrometry extracted ion chromatograms. The library yields a wide spectrum of detection efficiencies, with more than 1700-fold difference between the peptides with the lowest and highest efficiencies. In this paper, we describe the impact of different modifications on peptide detection efficiencies and provide a resource to correct for detection biases among the 93 histone peptides. In brief, there is no correlation between detection efficiency and molecular weight, hydrophobicity, basicity, or modification type. The same types of modifications may have very different effects on detection efficiencies depending on their positions within a peptide. We also observed antagonistic effects between modifications. In a study of mouse trophoblast stem cells, we utilized the detection efficiencies of the peptide library to correct for histone PTM/variant quantification. For most histone peptides examined, the corrected data did not change the biological conclusions but did alter the relative abundance of these peptides. For a low-abundant histone H2A variant, macroH2A, the corrected data led to a different conclusion than the uncorrected data. The peptide library and detection efficiencies presented here may serve as a resource to facilitate studies in the epigenetics and proteomics fields. PMID:25000943
DOT National Transportation Integrated Search
2017-10-06
Adverse weather conditions have a significant impact on the safety, mobility, and efficiency of highway networks. Annually, 24 percent of all crashes, more than 7,400 roadway fatalities, and over 673,000 crash related injuries were caused by adverse ...
García-Gordillo, Miguel Ángel; del Pozo-Cruz, Borja; Adsuar, José Carmelo; Sánchez-Martínez, Fernando Ignacio; Abellán-Perpiñán, José María
2014-05-01
To contribute to the ongoing discussion on the choice of a preference-based health-related quality of life (HRQoL) instrument to be used in cost-effectiveness analysis by studying and comparing the validity, sensitivity and relative efficiency of 15-D and EuroQol 5D 5L (EQ-5D-5L) in a Spanish Parkinson's disease (PD) population sample. One hundred and thirty-three volunteers were asked to complete an interview using 15-D and EQ-5D-5L. Spearman's rank correlation coefficient (r) was used to test the convergent validity of these instruments with specific PD measures. Sensitivity and efficiency were compared using receiver operating characteristic (ROC) curves and relative efficiency statistic, respectively. A strong correlation (r > 0.65; p < 0.001) was found between both 15-D and EQ-5D-5L utilities with the summary score of the PDQ-8, and a strong correlation (r > 0.50; p < 0.001) was found between 15-D and EQ-5D-5L utilities with the EQ-VAS. The areas under the ROC of both instruments all exceeded 0.5 (p < 0.001). The 15-D instrument was 4.1-29.8 % less efficient at detecting differences between patients with optimal HRQoL, while this instrument was 11 % more efficient at detecting differences between patients at mild and moderate to strong severity of the PD symptoms. 15-D and EQ-5D-5L are showed to be valid and sensitivity generic HRQoL measures in Spanish PD patients with both instruments showing similar HRQoL dimension coverage and ceiling/floor effects. The 15-D has better efficiency and greater sensitivity to detect clinical changes in PD severity of the symptoms meanwhile the EQ-5D-5L is better to detect clinical HRQoL changes. Additionally, the EQ-5D-5L questionnaire requires less time than 15-D to be administered, and it might be more appropriate for studies conducted in Spain, since a country-specific "value set" is available for this instrument and not for the 15-D.
Boscolo, Danilo; Metzger, Jean Paul; Vielliard, Jacques M E
2006-12-01
Playback of bird songs is a useful technique for species detection; however, this method is usually not standardized. We tested playback efficiency for five Atlantic Forest birds (White-browed Warbler Basileuterus leucoblepharus, Giant Antshrike Batara cinerea, Swallow-tailed Manakin Chiroxiphia caudata, Whiteshouldered Fire-eye Pyriglena leucoptera and Surucua Trogon Trogon surrucura) for different time of the day, season of the year and species abundance at the Morro Grande Forest Reserve (South-eastern Brazil) and at thirteen forest fragments in a nearby landscape. Vocalizations were broadcasted monthly at sunrise, noon and sunset, during one year. For B. leucoblepharus, C. caudata and T. surrucura, sunrise and noon were more efficient than sunset. Batara cinerea presented higher efficiency from July to October. Playback expanded the favourable period for avifaunal surveys in tropical forest, usually restricted to early morning in the breeding season. The playback was efficient in detecting the presence of all species when the abundance was not too low. But only B. leucoblepharus and T. surrucura showed abundance values significantly related to this efficiency. The present study provided a precise indication of the best daily and seasonal periods and a confidence interval to maximize the efficiency of playback to detect the occurrence of these forest species.
Bhaumik, Basabi
2016-01-01
A novel algorithm based on forward search is developed for real-time electrocardiogram (ECG) signal processing and implemented in application specific integrated circuit (ASIC) for QRS complex related cardiovascular disease diagnosis. The authors have evaluated their algorithm using MIT-BIH database and achieve sensitivity of 99.86% and specificity of 99.93% for QRS complex peak detection. In this Letter, Physionet PTB diagnostic ECG database is used for QRS complex related disease detection. An ASIC for cardiovascular disease detection is fabricated using 130-nm CMOS high-speed process technology. The area of the ASIC is 0.5 mm2. The power dissipation is 1.73 μW at the operating frequency of 1 kHz with a supply voltage of 0.6 V. The output from the ASIC is fed to their Android application that generates diagnostic report and can be sent to a cardiologist through email. Their ASIC result shows average failed detection rate of 0.16% for six leads data of 290 patients in PTB diagnostic ECG database. They also have implemented a low-leakage version of their ASIC. The ASIC dissipates only 45 pJ with a supply voltage of 0.9 V. Their proposed ASIC is most suitable for energy efficient telemetry cardiovascular disease detection system. PMID:27284458
Jain, Sanjeev Kumar; Bhaumik, Basabi
2016-03-01
A novel algorithm based on forward search is developed for real-time electrocardiogram (ECG) signal processing and implemented in application specific integrated circuit (ASIC) for QRS complex related cardiovascular disease diagnosis. The authors have evaluated their algorithm using MIT-BIH database and achieve sensitivity of 99.86% and specificity of 99.93% for QRS complex peak detection. In this Letter, Physionet PTB diagnostic ECG database is used for QRS complex related disease detection. An ASIC for cardiovascular disease detection is fabricated using 130-nm CMOS high-speed process technology. The area of the ASIC is 0.5 mm(2). The power dissipation is 1.73 μW at the operating frequency of 1 kHz with a supply voltage of 0.6 V. The output from the ASIC is fed to their Android application that generates diagnostic report and can be sent to a cardiologist through email. Their ASIC result shows average failed detection rate of 0.16% for six leads data of 290 patients in PTB diagnostic ECG database. They also have implemented a low-leakage version of their ASIC. The ASIC dissipates only 45 pJ with a supply voltage of 0.9 V. Their proposed ASIC is most suitable for energy efficient telemetry cardiovascular disease detection system.
10 CFR 1.12 - Office of the Inspector General.
Code of Federal Regulations, 2010 CFR
2010-01-01
... General § 1.12 Office of the Inspector General. The Office of the Inspector General— (a) Develops policies... impact on economy and efficiency in the administration of NRC's programs and operations; (g) Keeps the... matters relating to the promotion of economy and efficiency and the detection of fraud and abuse in...
NASA Astrophysics Data System (ADS)
Tan, Y.; Yuan, H.; Kearfott, K. J.
2018-04-01
CR-39 detectors are widely used to measure environmental levels of Rn-222, Rn-220 and their progeny. Prior research reported the CR-39 detection efficiency for alpha particles from Rn-222, Rn-220 and their progeny under a variety of etching conditions. This paper provides an explanation for interesting observations included in that work, namely that the critical incidence angle decreases with the increasing particle energy and the detection efficiency for 8.78 MeV alpha particles is zero. This paper explains these phenomena from a consideration of the interaction of alpha particles with the CR-39 detectors and the physics of etching dynamics. The proposed theory provides a rationale for an approach to optimizing the etching conditions of CR-39 detector for measuring Rn-222, Rn-220 and their progenies.
Park, Subok; Gallas, Bradon D; Badano, Aldo; Petrick, Nicholas A; Myers, Kyle J
2007-04-01
A previous study [J. Opt. Soc. Am. A22, 3 (2005)] has shown that human efficiency for detecting a Gaussian signal at a known location in non-Gaussian distributed lumpy backgrounds is approximately 4%. This human efficiency is much less than the reported 40% efficiency that has been documented for Gaussian-distributed lumpy backgrounds [J. Opt. Soc. Am. A16, 694 (1999) and J. Opt. Soc. Am. A18, 473 (2001)]. We conducted a psychophysical study with a number of changes, specifically in display-device calibration and data scaling, from the design of the aforementioned study. Human efficiency relative to the ideal observer was found again to be approximately 5%. Our variance analysis indicates that neither scaling nor display made a statistically significant difference in human performance for the task. We conclude that the non-Gaussian distributed lumpy background is a major factor in our low human-efficiency results.
Wang, Jixiang; Qiu, Hao; Shen, Hongqiang; Pan, Jianming; Dai, Xiaohui; Yan, Yongsheng; Pan, Guoqing; Sellergren, Börje
2016-11-15
Molecularly imprinted fluorescent polymers have shown great promise in biological or chemical separations and detections, due to their high stability, selectivity and sensitivity. In this work, molecularly imprinted fluorescent hollow nanoparticles, which could rapidly and efficiently detect λ-cyhalothrin (a toxic insecticide) in water samples, was reported. The molecularly imprinted fluorescent sensor showed excellent sensitivity (the limit of detection low to 10.26nM), rapid detection rate (quantitative detection of λ-cyhalothrin within 8min), regeneration ability (maintaining good fluorescence properties after 8 cycling operation) and appreciable selectivity over several structural analogs. Moreover, the fluorescent sensor was further used to detect λ-cyhalothrin in real samples form the Beijing-Hangzhou Grand Canal Water. Despite the relatively complex components of the environmental water, the molecularly imprinted fluorescent hollow nanosensor still showed good recovery, clearly demonstrating the potential value of this smart sensor nanomaterial in environmental monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.
3D Silicon Coincidence Avalanche Detector (3D-SiCAD) for charged particle detection
NASA Astrophysics Data System (ADS)
Vignetti, M. M.; Calmon, F.; Pittet, P.; Pares, G.; Cellier, R.; Quiquerez, L.; Chaves de Albuquerque, T.; Bechetoille, E.; Testa, E.; Lopez, J.-P.; Dauvergne, D.; Savoy-Navarro, A.
2018-02-01
Single-Photon Avalanche Diodes (SPADs) are p-n junctions operated in Geiger Mode by applying a reverse bias above the breakdown voltage. SPADs have the advantage of featuring single photon sensitivity with timing resolution in the picoseconds range. Nevertheless, their relatively high Dark Count Rate (DCR) is a major issue for charged particle detection, especially when it is much higher than the incoming particle rate. To tackle this issue, we have developed a 3D Silicon Coincidence Avalanche Detector (3D-SiCAD). This novel device implements two vertically aligned SPADs featuring on-chip electronics for the detection of coincident avalanche events occurring on both SPADs. Such a coincidence detection mode allows an efficient discrimination of events related to an incoming charged particle (producing a quasi-simultaneous activation of both SPADs) from dark counts occurring independently on each SPAD. A 3D-SiCAD detector prototype has been fabricated in CMOS technology adopting a 3D flip-chip integration technique, and the main results of its characterization are reported in this work. The particle detection efficiency and noise rejection capability for this novel device have been evaluated by means of a β- strontium-90 radioactive source. Moreover the impact of the main operating parameters (i.e. the hold-off time, the coincidence window duration, the SPAD excess bias voltage) over the particle detection efficiency has been studied. Measurements have been performed with different β- particles rates and show that a 3D-SiCAD device outperforms single SPAD detectors: the former is indeed capable to detect particle rates much lower than the individual DCR observed in a single SPAD-based detectors (i.e. 2 to 3 orders of magnitudes lower).
Wang, Jixiang; Wang, Yunyun; Qiu, Hao; Sun, Lin; Dai, Xiaohui; Pan, Jianming; Yan, Yongsheng
2017-01-01
Fluorescent molecularly imprinted polymers have shown great promise in biological or chemical separations and detection, due to their high stability, selectivity and sensitivity. In this work, fluorescent molecularly imprinted microsphere was synthesized via precipitation polymerization, which could separate efficiently and rapidly detect τ-fluvalinate (a toxic insecticide) in water samples, was reported. The fluorescent imprinted sensor showed excellent stability, outstanding selectivity and the limit of detection low to 12.14 nM, good regeneration ability which still kept good sensitivity after 8 cycling experiments and fluorescence quenching mechanism was illustrated in details. In addition, the fluorescent sensor was further used to detect τ-fluvalinate in real samples from Taihu Lake. Despite the relatively complex components of the environment water, the fluorescent imprinted microspheres sitll showed good recovery, clearly demonstrating the potental value of this smart sensor nanomaterial in environment monitoring. PMID:28485402
TERMA Framework for Biomedical Signal Analysis: An Economic-Inspired Approach
Elgendi, Mohamed
2016-01-01
Biomedical signals contain features that represent physiological events, and each of these events has peaks. The analysis of biomedical signals for monitoring or diagnosing diseases requires the detection of these peaks, making event detection a crucial step in biomedical signal processing. Many researchers have difficulty detecting these peaks to investigate, interpret and analyze their corresponding events. To date, there is no generic framework that captures these events in a robust, efficient and consistent manner. A new method referred to for the first time as two event-related moving averages (“TERMA”) involves event-related moving averages and detects events in biomedical signals. The TERMA framework is flexible and universal and consists of six independent LEGO building bricks to achieve high accuracy detection of biomedical events. Results recommend that the window sizes for the two moving averages (W1 and W2) have to follow the inequality (8×W1)≥W2≥(2×W1). Moreover, TERMA is a simple yet efficient event detector that is suitable for wearable devices, point-of-care devices, fitness trackers and smart watches, compared to more complex machine learning solutions. PMID:27827852
Detection of hepatitis "C" virus in formalin-fixed liver tissue by nested polymerase chain reaction.
Sallie, R; Rayner, A; Portmann, B; Eddleston, A L; Williams, R
1992-08-01
Interpretation of antibody to hepatitis C virus (HCV) in patients with liver disease is difficult due to false-positive reactivity in some conditions. To evaluate the feasibility of HCV in archival material, HCV was sought in formalin-fixed, paraffin-embedded liver biopsy specimens. Nested polymerase chain reaction was used to detect hepatitis C virus in formalin-fixed, paraffin-embedded liver biopsy specimens after total RNA was extracted from tissue by proteinase K digestion and phenol/chloroform purification. The relative efficiency of amplification of HCV RNA from formalin-fixed material was estimated semiquantitatively by serial dilution of cDNA synthesised from RNA extracted from fresh and formalin-fixed sections from the same liver. Although HCV RNA could be detected in formalin-fixed liver tissue by nested PCR in 5/5 cases in which HCV was detected in serum, amplification was approximately 5-fold less efficient than when HCV was amplified from fresh tissue. Nevertheless, nested PCR of HCV from formalin-fixed liver tissue represents a useful technique in addressing some important questions related to the pathogenesis of liver disease.
NASA Astrophysics Data System (ADS)
Kwon, Yong-Seok; Naeem, Khurram; Jeon, Min Yong; Kwon, Il-bum
2017-04-01
We analyze the relations of parameters in moving average method to enhance the event detectability of phase sensitive optical time domain reflectometer (OTDR). If the external events have unique frequency of vibration, then the control parameters of moving average method should be optimized in order to detect these events efficiently. A phase sensitive OTDR was implemented by a pulsed light source, which is composed of a laser diode, a semiconductor optical amplifier, an erbium-doped fiber amplifier, a fiber Bragg grating filter, and a light receiving part, which has a photo-detector and high speed data acquisition system. The moving average method is operated with the control parameters: total number of raw traces, M, number of averaged traces, N, and step size of moving, n. The raw traces are obtained by the phase sensitive OTDR with sound signals generated by a speaker. Using these trace data, the relation of the control parameters is analyzed. In the result, if the event signal has one frequency, then the optimal values of N, n are existed to detect the event efficiently.
Li, Qiuying; Pham, Hoang
2017-01-01
In this paper, we propose a software reliability model that considers not only error generation but also fault removal efficiency combined with testing coverage information based on a nonhomogeneous Poisson process (NHPP). During the past four decades, many software reliability growth models (SRGMs) based on NHPP have been proposed to estimate the software reliability measures, most of which have the same following agreements: 1) it is a common phenomenon that during the testing phase, the fault detection rate always changes; 2) as a result of imperfect debugging, fault removal has been related to a fault re-introduction rate. But there are few SRGMs in the literature that differentiate between fault detection and fault removal, i.e. they seldom consider the imperfect fault removal efficiency. But in practical software developing process, fault removal efficiency cannot always be perfect, i.e. the failures detected might not be removed completely and the original faults might still exist and new faults might be introduced meanwhile, which is referred to as imperfect debugging phenomenon. In this study, a model aiming to incorporate fault introduction rate, fault removal efficiency and testing coverage into software reliability evaluation is developed, using testing coverage to express the fault detection rate and using fault removal efficiency to consider the fault repair. We compare the performance of the proposed model with several existing NHPP SRGMs using three sets of real failure data based on five criteria. The results exhibit that the model can give a better fitting and predictive performance.
Electrical detection of nuclear spin-echo signals in an electron spin injection system
NASA Astrophysics Data System (ADS)
Lin, Zhichao; Rasly, Mahmoud; Uemura, Tetsuya
2017-06-01
We demonstrated spin echoes of nuclear spins in a spin injection device with a highly polarized spin source by nuclear magnetic resonance (NMR). Efficient spin injection into GaAs from a half-metallic spin source of Co2MnSi enabled efficient dynamic nuclear polarization (DNP) and sensitive detection of NMR signals even at a low magnetic field of ˜0.1 T and a relatively high temperature of 4.2 K. The intrinsic coherence time T2 of 69Ga nuclear spins was evaluated from the spin-echo signals. The relation between T2 and the decay time of the Rabi oscillation suggests that the inhomogeneous effects in our system are not obvious. This study provides an all-electrical NMR system for nuclear-spin-based qubits.
NASA Astrophysics Data System (ADS)
Kraffert, Felix; Bahro, Daniel; Meier, Christoph; Denne, Maximilian; Colsmann, Alexander; Behrends, Jan
2017-09-01
Tandem solar cells constitute the most successful organic photovoltaic devices with power conversion efficiencies comparable to thin-film silicon solar cells. Especially their high open-circuit voltage - only achievable by a well-adjusted layer stacking - leads to their high efficiencies. Nevertheless, the microscopic processes causing the lossless recombination of charge carriers within the recombination zone are not well understood yet. We show that advanced pulsed electrically detected magnetic resonance techniques such as electrically detected (ED)-Rabi nutation measurements and electrically detected hyperfine sublevel correlation (ED-HYSCORE) spectroscopy help to understand the role of triplet excitons in these microscopic processes. We investigate fully working miniaturised organic tandem solar cells and detect current-influencing doublet states in different layers as well as triplet excitons located on the fullerene-based acceptor. We apply ED-HYSCORE in order to study the nuclear spin environment of the relevant electron/hole spins and detect a significant amount of the low abundant 13C nuclei coupled to the observer spins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryzhikov, V.; Grinyov, B.; Piven, L.
It is known that solid-state scintillators can be used for detection of both gamma radiation and neutron flux. In the past, neutron detection efficiencies of such solid-state scintillators did not exceed 5-7%. At the same time it is known that the detection efficiency of the gamma-neutron radiation characteristic of nuclear fissionable materials is by an order of magnitude higher than the efficiency of detection of neutron fluxes alone. Thus, an important objective is the creation of detection systems that are both highly efficient in gamma-neutron detection and also capable of exhibiting high gamma suppression for use in the role ofmore » detection of neutron radiation. In this work, we present the results of our experimental and theoretical studies on the detection efficiency of fast neutrons from a {sup 239}Pu-Be source by the heavy oxide scintillators BGO, GSO, CWO and ZWO, as well as ZnSe(Te, O). The most probable mechanism of fast neutron interaction with nuclei of heavy oxide scintillators is the inelastic scattering (n, n'γ) reaction. In our work, fast neutron detection efficiencies were determined by the method of internal counting of gamma-quanta that emerge in the scintillator from (n, n''γ) reactions on scintillator nuclei with the resulting gamma energies of ∼20-300 keV. The measured efficiency of neutron detection for the scintillation crystals we considered was ∼40-50 %. The present work included a detailed analysis of detection efficiency as a function of detector and area of the working surface, as well as a search for new ways to create larger-sized detectors of lower cost. As a result of our studies, we have found an unusual dependence of fast neutron detection efficiency upon thickness of the oxide scintillators. An explanation for this anomaly may involve the competition of two factors that accompany inelastic scattering on the heavy atomic nuclei. The transformation of the energy spectrum of neutrons involved in the (n, n'γ) reactions towards lower energies and the isotropic character of scattering of the secondary neutrons may lead to the observed limitation of the length of effective interaction, since a fraction of the secondary neutrons that propagate in the forward direction are not subject to further inelastic scattering because of their substantially lower energy. At these reduced energies, it is the capture cross-section (n, γ) that becomes predominant, resulting in lower detection efficiency. Based on these results, several types of detectors have been envisioned for application in detection systems for nuclear materials. The testing results for one such detector are presented in this work. We have studied the possibility of creation of a composite detector with scintillator granules placed inside a transparent polymer material. Because of the low transparency of such a dispersed scintillator, better light collection conditions are ensured by incorporation of a light guide between the scintillator layers. This guide is made of highly transparent polymer material. The use of a high-transparency hydrogen-containing polymer material for light guides not only ensures optimum conditions of light collection in the detector, but also allows certain deceleration of neutron radiation, increasing its interaction efficiency with the composite scintillation panels; accordingly, the detector signal is increased by 5-8%. When fast neutrons interact with the scintillator material, the resulting inelastic scattering gamma-quanta emerge, having different energies and different delay times with respect to the moment of the neutron interaction with the nucleus of the scintillator material (delay times ranging from 1x10{sup -9} to 1.3x10{sup -6} s). These internally generated gamma-quanta interact with the scintillator, and the resulting scintillation light is recorded by the photo-receiver. Since neutron sources are also strong sources of low-energy gamma-radiation, the use of dispersed ZnSe(Te) scintillator material provides high gamma-radiation detection efficiency in that energy range. This new type of gamma-neutron detector is based on a 'sandwich' structure using a ZnSe composite film and light guide with a fast neutron detection efficiency of about 6%. Its high detection efficiency of low-energy gamma-radiation allows a substantial increase (by an order of magnitude) in the efficiency of detection of neutron sources and transuranic materials by means of simultaneous detection of accompanying gamma-radiation. The design and fabrication technology of this detector allows the creation of gamma-neutron detectors characterized by high sensitivity at relatively low costs (as compared with analogs using oxide scintillators) for portable inspection systems. The sandwich structure can be comprised of any number of plates, with no limitations on thickness or area.« less
Wu, Ling-Ling; Wen, Cong-Ying; Hu, Jiao; Tang, Man; Qi, Chu-Bo; Li, Na; Liu, Cui; Chen, Lan; Pang, Dai-Wen; Zhang, Zhi-Ling
2017-08-15
Detecting viable circulating tumor cells (CTCs) without disruption to their functions for in vitro culture and functional study could unravel the biology of metastasis and promote the development of personalized anti-tumor therapies. However, existing CTC detection approaches commonly include CTC isolation and subsequent destructive identification, which damages CTC viability and functions and generates substantial CTC loss. To address the challenge of efficiently detecting viable CTCs for functional study, we develop a nanosphere-based cell-friendly one-step strategy. Immunonanospheres with prominent magnetic/fluorescence properties and extraordinary stability in complex matrices enable simultaneous efficient magnetic capture and specific fluorescence labeling of tumor cells directly in whole blood. The collected cells with fluorescent tags can be reliably identified, free of the tedious and destructive manipulations from conventional CTC identification. Hence, as few as 5 tumor cells in ca. 1mL of whole blood can be efficiently detected via only 20min incubation, and this strategy also shows good reproducibility with the relative standard deviation (RSD) of 8.7%. Moreover, due to the time-saving and gentle processing and the minimum disruption of immunonanospheres to cells, 93.8±0.1% of detected tumor cells retain cell viability and proliferation ability with negligible changes of cell functions, capacitating functional study on cell migration, invasion and glucose uptake. Additionally, this strategy exhibits successful CTC detection in 10/10 peripheral blood samples of cancer patients. Therefore, this nanosphere-based cell-friendly one-step strategy enables viable CTC detection and further functional analyses, which will help to unravel tumor metastasis and guide treatment selection. Copyright © 2017 Elsevier B.V. All rights reserved.
Goldstein, Alisa M; Dondon, Marie-Gabrielle; Andrieu, Nadine
2006-08-01
A design combining both related and unrelated controls, named the case-combined-control design, was recently proposed to increase the power for detecting gene-environment (GxE) interaction. Under a conditional analytic approach, the case-combined-control design appeared to be more efficient and feasible than a classical case-control study for detecting interaction involving rare events. We now propose an unconditional analytic strategy to further increase the power for detecting gene-environment (GxE) interactions. This strategy allows the estimation of GxE interaction and exposure (E) main effects under certain assumptions (e.g. no correlation in E between siblings and the same exposure frequency in both control groups). Only the genetic (G) main effect cannot be estimated because it is biased. Using simulations, we show that unconditional logistic regression analysis is often more efficient than conditional analysis for detecting GxE interaction, particularly for a rare gene and strong effects. The unconditional analysis is also at least as efficient as the conditional analysis when the gene is common and the main and joint effects of E and G are small. Under the required assumptions, the unconditional analysis retains more information than does the conditional analysis for which only discordant case-control pairs are informative leading to more precise estimates of the odds ratios.
Gao, Pin; Ding, Yunjie; Li, Hui; Xagoraraki, Irene
2012-06-01
Occurrence and removal efficiencies of fifteen pharmaceuticals were investigated in a conventional municipal wastewater treatment plant in Michigan. Concentrations of these pharmaceuticals were determined in both wastewater and sludge phases by a high-performance liquid chromatograph coupled to a tandem mass spectrometer. Detailed mass balance analysis was conducted during the whole treatment process to evaluate the contributing processes for pharmaceutical removal. Among the pharmaceuticals studied, demeclocycline, sulfamerazine, erythromycin and tylosin were not detected in the wastewater treatment plant influent. Other target pharmaceuticals detected in wastewater were also found in the corresponding sludge phase. The removal efficiencies of chlortetracycline, tetracycline, sulfamerazine, acetaminophen and caffeine were >99%, while doxycycline, oxytetracycline, sulfadiazine and lincomycin exhibited relatively lower removal efficiencies (e.g., <50%). For sulfamethoxazole, the removal efficiency was approximately 90%. Carbamazepine manifested a net increase of mass, i.e. 41% more than the input from the influent. Based on the mass balance analysis, biotransformation is believed to be the predominant process responsible for the removal of pharmaceuticals (22% to 99%), whereas contribution of sorption to sludge was relatively insignificant (7%) for the investigated pharmaceuticals. Copyright © 2012 Elsevier Ltd. All rights reserved.
Selecting Power-Efficient Signal Features for a Low-Power Fall Detector.
Wang, Changhong; Redmond, Stephen J; Lu, Wei; Stevens, Michael C; Lord, Stephen R; Lovell, Nigel H
2017-11-01
Falls are a serious threat to the health of older people. A wearable fall detector can automatically detect the occurrence of a fall and alert a caregiver or an emergency response service so they may deliver immediate assistance, improving the chances of recovering from fall-related injuries. One constraint of such a wearable technology is its limited battery life. Thus, minimization of power consumption is an important design concern, all the while maintaining satisfactory accuracy of the fall detection algorithms implemented on the wearable device. This paper proposes an approach for selecting power-efficient signal features such that the minimum desirable fall detection accuracy is assured. Using data collected in simulated falls, simulated activities of daily living, and real free-living trials, all using young volunteers, the proposed approach selects four features from a set of ten commonly used features, providing a power saving of 75.3%, while limiting the error rate of a binary classification decision tree fall detection algorithm to 7.1%.Falls are a serious threat to the health of older people. A wearable fall detector can automatically detect the occurrence of a fall and alert a caregiver or an emergency response service so they may deliver immediate assistance, improving the chances of recovering from fall-related injuries. One constraint of such a wearable technology is its limited battery life. Thus, minimization of power consumption is an important design concern, all the while maintaining satisfactory accuracy of the fall detection algorithms implemented on the wearable device. This paper proposes an approach for selecting power-efficient signal features such that the minimum desirable fall detection accuracy is assured. Using data collected in simulated falls, simulated activities of daily living, and real free-living trials, all using young volunteers, the proposed approach selects four features from a set of ten commonly used features, providing a power saving of 75.3%, while limiting the error rate of a binary classification decision tree fall detection algorithm to 7.1%.
Palacio-Bielsa, Ana; Cubero, Jaime; Cambra, Miguel A; Collados, Raquel; Berruete, Isabel M; López, María M
2011-01-01
Xanthomonas arboricola pv. pruni, the causal agent of bacterial spot disease of stone fruit, is considered a quarantine organism by the European Union and the European and Mediterranean Plant Protection Organization (EPPO). The bacterium can undergo an epiphytic phase and/or be latent and can be transmitted by plant material, but currently, only visual inspections are used to certify plants as being X. arboricola pv. pruni free. A novel and highly sensitive real-time TaqMan PCR detection protocol was designed based on a sequence of a gene for a putative protein related to an ABC transporter ATP-binding system in X. arboricola pv. pruni. Pathogen detection can be completed within a few hours with a sensitivity of 10(2) CFU ml(-1), thus surpassing the sensitivity of the existing conventional PCR. Specificity was assessed for X. arboricola pv. pruni strains from different origins as well as for closely related Xanthomonas species, non-Xanthomonas species, saprophytic bacteria, and healthy Prunus samples. The efficiency of the developed protocol was evaluated with field samples of 14 Prunus species and rootstocks. For symptomatic leaf samples, the protocol was very efficient even when washed tissues of the leaves were directly amplified without any previous DNA extraction. For samples of 117 asymptomatic leaves and 285 buds, the protocol was more efficient after a simple DNA extraction, and X. arboricola pv. pruni was detected in 9.4% and 9.1% of the 402 samples analyzed, respectively, demonstrating its frequent epiphytic or endophytic phase. This newly developed real-time PCR protocol can be used as a quantitative assay, offers a reliable and sensitive test for X. arboricola pv. pruni, and is suitable as a screening test for symptomatic as well as asymptomatic plant material.
Li, Qiuying; Pham, Hoang
2017-01-01
In this paper, we propose a software reliability model that considers not only error generation but also fault removal efficiency combined with testing coverage information based on a nonhomogeneous Poisson process (NHPP). During the past four decades, many software reliability growth models (SRGMs) based on NHPP have been proposed to estimate the software reliability measures, most of which have the same following agreements: 1) it is a common phenomenon that during the testing phase, the fault detection rate always changes; 2) as a result of imperfect debugging, fault removal has been related to a fault re-introduction rate. But there are few SRGMs in the literature that differentiate between fault detection and fault removal, i.e. they seldom consider the imperfect fault removal efficiency. But in practical software developing process, fault removal efficiency cannot always be perfect, i.e. the failures detected might not be removed completely and the original faults might still exist and new faults might be introduced meanwhile, which is referred to as imperfect debugging phenomenon. In this study, a model aiming to incorporate fault introduction rate, fault removal efficiency and testing coverage into software reliability evaluation is developed, using testing coverage to express the fault detection rate and using fault removal efficiency to consider the fault repair. We compare the performance of the proposed model with several existing NHPP SRGMs using three sets of real failure data based on five criteria. The results exhibit that the model can give a better fitting and predictive performance. PMID:28750091
Efficient detection of a CW signal with a linear frequency drift
NASA Technical Reports Server (NTRS)
Swarztrauber, Paul N.; Bailey, David H.
1989-01-01
An efficient method is presented for the detection of a continuous wave (CW) signal with a frequency drift that is linear in time. Signals of this type occur in transmissions between any two locations that are accelerating relative to one another, e.g., transmissions from the Voyager spacecraft. We assume that both the frequency and the drift are unknown. We also assume that the signal is weak compared to the Gaussian noise. The signal is partitioned into subsequences whose discrete Fourier transforms provide a sequence of instantaneous spectra at equal time intervals. These spectra are then accumulated with a shift that is proportional to time. When the shift is equal to the frequency drift, the signal to noise ratio increases and detection occurs. Here, we show how to compute these accumulations for many shifts in an efficient manner using a variety of Fast Fourier Transformations (FFT). Computing time is proportional to L log L where L is the length of the time series.
Absolute and angular efficiencies of a microchannel-plate position-sensitive detector
NASA Technical Reports Server (NTRS)
Gao, R. S.; Gibner, P. S.; Newman, J. H.; Smith, K. A.; Stebbings, R. F.
1984-01-01
This paper presents a characterization of a commercially available position-sensitive detector of energetic ions and neutrals. The detector consists of two microchannel plates followed by a resistive position-encoding anode. The work includes measurement of absolute efficiencies of H(+), He(+), and O(+) ions in the energy range between 250 and 5000 eV, measurement of relative detection efficiencies as a function of particle impact angle, and a simple method for accurate measurement of the time at which a particle strikes the detector.
Wu, Qian; Gong, Li-Xiu; Li, Yang; Cao, Cheng-Fei; Tang, Long-Cheng; Wu, Lianbin; Zhao, Li; Zhang, Guo-Dong; Li, Shi-Neng; Gao, Jiefeng; Li, Yongjin; Mai, Yiu-Wing
2018-01-23
Design and development of smart sensors for rapid flame detection in postcombustion and early fire warning in precombustion situations are critically needed to improve the fire safety of combustible materials in many applications. Herein, we describe the fabrication of hierarchical coatings created by assembling a multilayered graphene oxide (GO)/silicone structure onto different combustible substrate materials. The resulting coatings exhibit distinct temperature-responsive electrical resistance change as efficient early warning sensors for detecting abnormal high environmental temperature, thus enabling fire prevention below the ignition temperature of combustible materials. After encountering a flame attack, we demonstrate extremely rapid flame detection response in 2-3 s and excellent flame self-extinguishing retardancy for the multilayered GO/silicone structure that can be synergistically transformed to a multiscale graphene/nanosilica protection layer. The hierarchical coatings developed are promising for fire prevention and protection applications in various critical fire risk and related perilous circumstances.
Ma, Youlong; Teng, Feiyue; Libera, Matthew
2018-06-05
Solid-phase oligonucleotide amplification is of interest because of possible applications to next-generation sequencing, multiplexed microarray-based detection, and cell-free synthetic biology. Its efficiency is, however, less than that of traditional liquid-phase amplification involving unconstrained primers and enzymes, and understanding how to optimize the solid-phase amplification process remains challenging. Here, we demonstrate the concept of solid-phase nucleic acid sequence-based amplification (SP-NASBA) and use it to study the effect of tethering density on amplification efficiency. SP-NASBA involves two enzymes, avian myeloblastosis virus reverse transcriptase (AMV-RT) and RNase H, to convert tethered forward and reverse primers into tethered double-stranded DNA (ds-DNA) bridges from which RNA - amplicons can be generated by a third enzyme, T7 RNA polymerase. We create microgels on silicon surfaces using electron-beam patterning of thin-film blends of hydroxyl-terminated and biotin-terminated poly(ethylene glycol) (PEG-OH, PEG-B). The tethering density is linearly related to the PEG-B concentration, and biotinylated primers and molecular beacon detection probes are tethered to streptavidin-activated microgels. While SP-NASBA is very efficient at low tethering densities, the efficiency decreases dramatically with increasing tethering density due to three effects: (a) a reduced hybridization efficiency of tethered molecular beacon detection probes; (b) a decrease in T7 RNA polymerase efficiency; (c) inhibition of T7 RNA polymerase activity by AMV-RT.
Wang, Jie; Dun, Xiaoling; Shi, Jiaqin; Wang, Xinfa; Liu, Guihua; Wang, Hanzhong
2017-01-01
As the major determinant for nutrient uptake, root system architecture (RSA) has a massive impact on nitrogen use efficiency (NUE). However, little is known the molecular control of RSA as related to NUE in rapeseed. Here, a rapeseed recombinant inbred line population (BnaZNRIL) was used to investigate root morphology (RM, an important component for RSA) and NUE-related traits under high-nitrogen (HN) and low-nitrogen (LN) conditions by hydroponics. Data analysis suggested that RM-related traits, particularly root size had significantly phenotypic correlations with plant dry biomass and N uptake irrespective of N levels, but no or little correlation with N utilization efficiency (NUtE), providing the potential to identify QTLs with pleiotropy or specificity for RM- and NUE-related traits. A total of 129 QTLs (including 23 stable QTLs, which were repeatedly detected at least two environments or different N levels) were identified and 83 of them were integrated into 22 pleiotropic QTL clusters. Five RM-NUE, ten RM-specific and three NUE-specific QTL clusters with same directions of additive-effect implied two NUE-improving approaches (RM-based and N utilization-based directly) and provided valuable genomic regions for NUE improvement in rapeseed. Importantly, all of four major QTLs and most of stable QTLs (20 out of 23) detected here were related to RM traits under HN and/or LN levels, suggested that regulating RM to improve NUE would be more feasible than regulating N efficiency directly. These results provided the promising genomic regions for marker-assisted selection on RM-based NUE improvement in rapeseed. PMID:29033971
de Miguel, Marina; Cabezas, José-Antonio; de María, Nuria; Sánchez-Gómez, David; Guevara, María-Ángeles; Vélez, María-Dolores; Sáez-Laguna, Enrique; Díaz, Luis-Manuel; Mancha, Jose-Antonio; Barbero, María-Carmen; Collada, Carmen; Díaz-Sala, Carmen; Aranda, Ismael; Cervera, María-Teresa
2014-06-12
Understanding molecular mechanisms that control photosynthesis and water use efficiency in response to drought is crucial for plant species from dry areas. This study aimed to identify QTL for these traits in a Mediterranean conifer and tested their stability under drought. High density linkage maps for Pinus pinaster were used in the detection of QTL for photosynthesis and water use efficiency at three water irrigation regimes. A total of 28 significant and 27 suggestive QTL were found. QTL detected for photochemical traits accounted for the higher percentage of phenotypic variance. Functional annotation of genes within the QTL suggested 58 candidate genes for the analyzed traits. Allele association analysis in selected candidate genes showed three SNPs located in a MYB transcription factor that were significantly associated with efficiency of energy capture by open PSII reaction centers and specific leaf area. The integration of QTL mapping of functional traits, genome annotation and allele association yielded several candidate genes involved with molecular control of photosynthesis and water use efficiency in response to drought in a conifer species. The results obtained highlight the importance of maintaining the integrity of the photochemical machinery in P. pinaster drought response.
A lightweight QRS detector for single lead ECG signals using a max-min difference algorithm.
Pandit, Diptangshu; Zhang, Li; Liu, Chengyu; Chattopadhyay, Samiran; Aslam, Nauman; Lim, Chee Peng
2017-06-01
Detection of the R-peak pertaining to the QRS complex of an ECG signal plays an important role for the diagnosis of a patient's heart condition. To accurately identify the QRS locations from the acquired raw ECG signals, we need to handle a number of challenges, which include noise, baseline wander, varying peak amplitudes, and signal abnormality. This research aims to address these challenges by developing an efficient lightweight algorithm for QRS (i.e., R-peak) detection from raw ECG signals. A lightweight real-time sliding window-based Max-Min Difference (MMD) algorithm for QRS detection from Lead II ECG signals is proposed. Targeting to achieve the best trade-off between computational efficiency and detection accuracy, the proposed algorithm consists of five key steps for QRS detection, namely, baseline correction, MMD curve generation, dynamic threshold computation, R-peak detection, and error correction. Five annotated databases from Physionet are used for evaluating the proposed algorithm in R-peak detection. Integrated with a feature extraction technique and a neural network classifier, the proposed ORS detection algorithm has also been extended to undertake normal and abnormal heartbeat detection from ECG signals. The proposed algorithm exhibits a high degree of robustness in QRS detection and achieves an average sensitivity of 99.62% and an average positive predictivity of 99.67%. Its performance compares favorably with those from the existing state-of-the-art models reported in the literature. In regards to normal and abnormal heartbeat detection, the proposed QRS detection algorithm in combination with the feature extraction technique and neural network classifier achieves an overall accuracy rate of 93.44% based on an empirical evaluation using the MIT-BIH Arrhythmia data set with 10-fold cross validation. In comparison with other related studies, the proposed algorithm offers a lightweight adaptive alternative for R-peak detection with good computational efficiency. The empirical results indicate that it not only yields a high accuracy rate in QRS detection, but also exhibits efficient computational complexity at the order of O(n), where n is the length of an ECG signal. Copyright © 2017 Elsevier B.V. All rights reserved.
Robidoux, P Y; Choucri, A; Bastien, C; Sunahara, G I; López-Gastey, J
2001-01-01
Septic tank sludge is regularly hauled to the Montreal Urban Community (MUC) wastewater treatment plant. It is then discharged and mixed with the wastewater inflow before entering the primary chemical treatment process. An ecotoxicological procedure integrating chemical and toxicological analyses has been recently developed and applied to screen for the illicit discharge of toxic substances in septic sludge. The toxicity tests used were the Microtox, the bacterial-respiration, and the lettuce (Lactuca sativa) root elongation tests. In order to validate the applicability of the proposed procedure, a two-year interlaboratory study was carried out. In general, the results obtained by two independent laboratories (MUC and the Centre d'expertise en analyse environnementale du Quebec) were comparable and reproducible. Some differences were found using the Microtox test. Organic (e.g., phenol and formaldehyde) and inorganic (e.g., nickel and cyanide) spiked septic sludge were detected with good reliability and high efficiency. The relative efficiency to detect spiked substances was > 70% and confirms the results of previous studies. In addition, the respiration test was the most efficient toxicological tool to detect spiked substances, whereas the Microtox was the least efficient (< 15%). Efficiencies to detect spiked contaminants were also similar for both laboratories. These results support previous data presented earlier and contribute to the validation of the ecotoxicological procedure used by the MUC to screen toxicity in septic sludge.
Efficient RPG detection in noisy 3D image data
NASA Astrophysics Data System (ADS)
Pipitone, Frank
2011-06-01
We address the automatic detection of Ambush weapons such as rocket propelled grenades (RPGs) from range data which might be derived from multiple camera stereo with textured illumination or by other means. We describe our initial work in a new project involving the efficient acquisition of 3D scene data as well as discrete point invariant techniques to perform real time search for threats to a convoy. The shapes of the jump boundaries in the scene are exploited in this paper, rather than on-surface points, due to the large error typical of depth measurement at long range and the relatively high resolution obtainable in the transverse direction. We describe examples of the generation of a novel range-scaled chain code for detecting and matching jump boundaries.
ERIC Educational Resources Information Center
Turk-Browne, Nicholas B.; Scholl, Brian J.; Chun, Marvin M.; Johnson, Marcia K.
2009-01-01
Our environment contains regularities distributed in space and time that can be detected by way of statistical learning. This unsupervised learning occurs without intent or awareness, but little is known about how it relates to other types of learning, how it affects perceptual processing, and how quickly it can occur. Here we use fMRI during…
Zehetleitner, Michael; Proulx, Michael J; Müller, Hermann J
2009-11-01
In efficient search for feature singleton targets, additional singletons (ASs) defined in a nontarget dimension are frequently found to interfere with performance. All search tasks that are processed via a spatial saliency map of the display would be predicted to be subject to such AS interference. In contrast, dual-route models, such as feature integration theory, assume that singletons are detected not via a saliency map, but via a nonspatial route that is immune to interference from cross-dimensional ASs. Consistent with this, a number of studies have reported absent interference effects in detection tasks. However, recent work suggests that the failure to find such effects may be due to the particular frequencies at which ASs were presented, as well as to their relative saliency. These two factors were examined in the present study. In contrast to previous reports, cross-dimensional ASs were found to slow detection (target-present and target-absent) responses, modulated by both their frequency of occurrence and saliency (relative to the target). These findings challenge dual-route models and support single-route models, such as dimension weighting and guided search.
Digital signal processing techniques for coherent optical communication
NASA Astrophysics Data System (ADS)
Goldfarb, Gilad
Coherent detection with subsequent digital signal processing (DSP) is developed, analyzed theoretically and numerically and experimentally demonstrated in various fiber-optic transmission scenarios. The use of DSP in conjunction with coherent detection unleashes the benefits of coherent detection which rely on the preservaton of full information of the incoming field. These benefits include high receiver sensitivity, the ability to achieve high spectral-efficiency and the use of advanced modulation formats. With the immense advancements in DSP speeds, many of the problems hindering the use of coherent detection in optical transmission systems have been eliminated. Most notably, DSP alleviates the need for hardware phase-locking and polarization tracking, which can now be achieved in the digital domain. The complexity previously associated with coherent detection is hence significantly diminished and coherent detection is once gain considered a feasible detection alternative. In this thesis, several aspects of coherent detection (with or without subsequent DSP) are addressed. Coherent detection is presented as a means to extend the dispersion limit of a duobinary signal using an analog decision-directed phase-lock loop. Analytical bit-error ratio estimation for quadrature phase-shift keying signals is derived. To validate the promise for high spectral efficiency, the orthogonal-wavelength-division multiplexing scheme is suggested. In this scheme the WDM channels are spaced at the symbol rate, thus achieving the spectral efficiency limit. Theory, simulation and experimental results demonstrate the feasibility of this approach. Infinite impulse response filtering is shown to be an efficient alternative to finite impulse response filtering for chromatic dispersion compensation. Theory, design considerations, simulation and experimental results relating to this topic are presented. Interaction between fiber dispersion and nonlinearity remains the last major challenge deterministic effects pose for long-haul optical data transmission. Experimental results which demonstrate the possibility to digitally mitigate both dispersion and nonlinearity are presented. Impairment compensation is achieved using backward propagation by implementing the split-step method. Efficient realizations of the dispersion compensation operator used in this implementation are considered. Infinite-impulse response and wavelet-based filtering are both investigated as a means to reduce the required computational load associated with signal backward-propagation. Possible future research directions conclude this dissertation.
Sivakumar, B; Bhalaji, N; Sivakumar, D
2014-01-01
In mobile ad hoc networks connectivity is always an issue of concern. Due to dynamism in the behavior of mobile nodes, efficiency shall be achieved only with the assumption of good network infrastructure. Presence of critical links results in deterioration which should be detected in advance to retain the prevailing communication setup. This paper discusses a short survey on the specialized algorithms and protocols related to energy efficient load balancing for critical link detection in the recent literature. This paper also suggests a machine learning based hybrid power-aware approach for handling critical nodes via load balancing.
Sivakumar, B.; Bhalaji, N.; Sivakumar, D.
2014-01-01
In mobile ad hoc networks connectivity is always an issue of concern. Due to dynamism in the behavior of mobile nodes, efficiency shall be achieved only with the assumption of good network infrastructure. Presence of critical links results in deterioration which should be detected in advance to retain the prevailing communication setup. This paper discusses a short survey on the specialized algorithms and protocols related to energy efficient load balancing for critical link detection in the recent literature. This paper also suggests a machine learning based hybrid power-aware approach for handling critical nodes via load balancing. PMID:24790546
Practical results from a mathematical analysis of guard patrols
DOE Office of Scientific and Technical Information (OSTI.GOV)
Indusi, Joseph P.
1978-12-01
Using guard patrols as a primary detection mechanism is not generally viewed as a highly efficient detection method when compared to electronic means. Many factors such as visibility, alertness, and the space-time coincidence of guard and adversary presence all have an effect on the probability of detection. Mathematical analysis of the guard patrol detection problem is related to that of classical search theory originally developed for naval search operations. The results of this analysis tend to support the current practice of using guard forces to assess and respond to previously detected intrusions and not as the primary detection mechanism. 6more » refs.« less
NASA Astrophysics Data System (ADS)
Acharya, R.; Swain, K. K.; Reddy, A. V. R.
2010-10-01
Three synthetic multielement standards (SMELS I, II and III) and two reference materials (RMs), SL-3 and Soil-7 of IAEA were analyzed for validation of the k0-based internal monostandard neutron activation analysis (IM-NAA) method utilizing in-situ relative detection efficiency. The internal monostandards used in SMELS and RMs were Au and Sc, respectively. The samples were irradiated in Apsara and Dhruva reactors, BARC and radioactive assay was carried out using a 40% relative efficiency HPGe detector coupled to an 8 k MCA. Concentrations of 23 elements were determined in both SMELS and RMs. In the case of RMs, concentrations of a few elements, whose certified values are not available, could also be determined. The % deviations for the elements determined in SMELS with respect to the assigned values and RMs with respect to certified values were within ±8%. The Z-score values at 95% confidence level for most of the elements in both the materials were within ±1.
FORTE Compact Intra-cloud Discharge Detection parameterized by Peak Current
NASA Astrophysics Data System (ADS)
Heavner, M. J.; Suszcynsky, D. M.; Jacobson, A. R.; Heavner, B. D.; Smith, D. A.
2002-12-01
The Los Alamos Sferic Array (EDOT) has recorded over 3.7 million lightning-related fast electric field change data records during April 1 - August 31, 2001 and 2002. The events were detected by three or more stations, allowing for differential-time-of-arrival location determination. The waveforms are characterized with estimated peak currents as well as by event type. Narrow Bipolar Events (NBEs), the VLF/LF signature of Compact Intra-cloud Discharges (CIDs), are generally isolated pulses with identifiable ionospheric reflections, permitting determination of event source altitudes. We briefly review the EDOT characterization of events. The FORTE satellite observes Trans-Ionospheric Pulse Pairs (TIPPs, the VHF satellite signature of CIDs). The subset of coincident EDOT and FORTE CID observations are compared with the total EDOT CID database to characterize the VHF detection efficiency of CIDs. The NBE polarity and altitude are also examined in the context of FORTE TIPP detection. The parameter-dependent detection efficiencies are extrapolated from FORTE orbit to GPS orbit in support of the V-GLASS effort (GPS based global detection of lightning).
Characterization benches for neutrino telescope Optical Modules at the APC laboratory
NASA Astrophysics Data System (ADS)
Avgitas, Theodore; Creusot, Alexandre; Kouchner, Antoine
2016-04-01
As has been demonstrated by the first generation of neutrino telescopes Antares and IceCube, precise knowledge of the photon detection efficiency of optical modules is of fundamental importance for the understanding of the instrument and accurate event reconstruction. Dedicated test benches have been developed to measure all related quantities for the Digital Optical Modules of the KM3NeT neutrino telescope being currently deployed in the Mediterranean sea. The first bench is a black box with robotic arms equipped with a calibrated single photon source or laser which enable a precise mapping of the detection efficiency at arbitrary incident angles as well as precise measurements of the time delays induced by the photodetection chain. These measurement can be incorporated and compared to full GEANT MonteCarlo simulations of the optical modules. The second bench is a 2 m×2 m ×2 m water tank equipped with muon hodoscopes on top and bottom. It enables to study and measure the angular dependence of the DOM's detection efficiency of the Cherenkov light produced in water by relativistic muons, thus reproducing in situ detection conditions. We describe these two benches and present their first results and status.
Observer efficiency in free-localization tasks with correlated noise.
Abbey, Craig K; Eckstein, Miguel P
2014-01-01
The efficiency of visual tasks involving localization has traditionally been evaluated using forced choice experiments that capitalize on independence across locations to simplify the performance of the ideal observer. However, developments in ideal observer analysis have shown how an ideal observer can be defined for free-localization tasks, where a target can appear anywhere in a defined search region and subjects respond by localizing the target. Since these tasks are representative of many real-world search tasks, it is of interest to evaluate the efficiency of observer performance in them. The central question of this work is whether humans are able to effectively use the information in a free-localization task relative to a similar task where target location is fixed. We use a yes-no detection task at a cued location as the reference for this comparison. Each of the tasks is evaluated using a Gaussian target profile embedded in four different Gaussian noise backgrounds having power-law noise power spectra with exponents ranging from 0 to 3. The free localization task had a square 6.7° search region. We report on two follow-up studies investigating efficiency in a detect-and-localize task, and the effect of processing the white-noise backgrounds. In the fixed-location detection task, we find average observer efficiency ranges from 35 to 59% for the different noise backgrounds. Observer efficiency improves dramatically in the tasks involving localization, ranging from 63 to 82% in the forced localization tasks and from 78 to 92% in the detect-and- localize tasks. Performance in white noise, the lowest efficiency condition, was improved by filtering to give them a power-law exponent of 2. Classification images, used to examine spatial frequency weights for the tasks, show better tuning to ideal weights in the free-localization tasks. The high absolute levels of efficiency suggest that observers are well-adapted to free-localization tasks.
Observer efficiency in free-localization tasks with correlated noise
Abbey, Craig K.; Eckstein, Miguel P.
2014-01-01
The efficiency of visual tasks involving localization has traditionally been evaluated using forced choice experiments that capitalize on independence across locations to simplify the performance of the ideal observer. However, developments in ideal observer analysis have shown how an ideal observer can be defined for free-localization tasks, where a target can appear anywhere in a defined search region and subjects respond by localizing the target. Since these tasks are representative of many real-world search tasks, it is of interest to evaluate the efficiency of observer performance in them. The central question of this work is whether humans are able to effectively use the information in a free-localization task relative to a similar task where target location is fixed. We use a yes-no detection task at a cued location as the reference for this comparison. Each of the tasks is evaluated using a Gaussian target profile embedded in four different Gaussian noise backgrounds having power-law noise power spectra with exponents ranging from 0 to 3. The free localization task had a square 6.7° search region. We report on two follow-up studies investigating efficiency in a detect-and-localize task, and the effect of processing the white-noise backgrounds. In the fixed-location detection task, we find average observer efficiency ranges from 35 to 59% for the different noise backgrounds. Observer efficiency improves dramatically in the tasks involving localization, ranging from 63 to 82% in the forced localization tasks and from 78 to 92% in the detect-and- localize tasks. Performance in white noise, the lowest efficiency condition, was improved by filtering to give them a power-law exponent of 2. Classification images, used to examine spatial frequency weights for the tasks, show better tuning to ideal weights in the free-localization tasks. The high absolute levels of efficiency suggest that observers are well-adapted to free-localization tasks. PMID:24817854
System and method for automated object detection in an image
Kenyon, Garrett T.; Brumby, Steven P.; George, John S.; Paiton, Dylan M.; Schultz, Peter F.
2015-10-06
A contour/shape detection model may use relatively simple and efficient kernels to detect target edges in an object within an image or video. A co-occurrence probability may be calculated for two or more edge features in an image or video using an object definition. Edge features may be differentiated between in response to measured contextual support, and prominent edge features may be extracted based on the measured contextual support. The object may then be identified based on the extracted prominent edge features.
Abbey, Craig K.; Zemp, Roger J.; Liu, Jie; Lindfors, Karen K.; Insana, Michael F.
2009-01-01
We investigate and extend the ideal observer methodology developed by Smith and Wagner to detection and discrimination tasks related to breast sonography. We provide a numerical approach for evaluating the ideal observer acting on radio-frequency (RF) frame data, which involves inversion of large nonstationary covariance matrices, and we describe a power-series approach to computing this inverse. Considering a truncated power series suggests that the RF data be Wiener-filtered before forming the final envelope image. We have compared human performance for Wiener-filtered and conventional B-mode envelope images using psychophysical studies for 5 tasks related to breast cancer classification. We find significant improvements in visual detection and discrimination efficiency in four of these five tasks. We also use the Smith-Wagner approach to distinguish between human and processing inefficiencies, and find that generally the principle limitation comes from the information lost in computing the final envelope image. PMID:16468454
Apparatus for molecular weight separation
Smith, Richard D.; Liu, Chuanliang
2001-01-01
The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations (0-2.5 mM NH4OAc) of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, (4) conducting a two-stage separation or (5) any combination of (1), (2), (3) and (4).
Microdialysis unit for molecular weight separation
Smith, Richard D.; Liu, Chuanliang
1999-01-01
The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations (0-2.5 mM NH4OAc) of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, or (4) any combination of (1), (2), and (3).
Tracking photosynthetic efficiency with narrow-band spectroradiometry
NASA Technical Reports Server (NTRS)
Gamon, John A.; Field, Christopher B.
1992-01-01
Narrow-waveband spectroradiometry presents the possibility of detecting subtle signals closely related to the current physiological state of vegetation. One such signal related to the epoxidation state of the xanthophyll cycle pigments, violaxanthin, antheraxanthin, and zeaxanthin is discussed. Recent advances in plant ecophysiology demonstrated a close relationship between these pigments and the regulatory state of photosystem 2 in photosynthesis. Our recent field studies of sunflower (Helianthus annuus) and oak (Quercus agrifolia) demonstrated that a 'xanthophyll signal' can be isolated from the diurnal reflectance spectra of intact canopies. Furthermore, the xanthophyll signal can be used to derive a 'physiological reflectance index' (PRI) that closely correlates with the actual photosynthetic efficiency (defined as the photosynthetic rate divided by the incident PAR) in closed canopies. If these signals were detectable in Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) images, they could lead to improved remote estimates of photosynthetic fluxes.
Comparison of acoustic recorders and field observers for monitoring tundra bird communities
Vold, Skyler T.; Handel, Colleen M.; McNew, Lance B.
2017-01-01
Acoustic recorders can be useful for studying bird populations but their efficiency and accuracy should be assessed in pertinent ecological settings before use. We investigated the utility of an acoustic recorder for monitoring abundance of tundra‐breeding birds relative to point‐count surveys in northwestern Alaska, USA, during 2014. Our objectives were to 1) compare numbers of birds and species detected by a field observer with those detected simultaneously by an acoustic recorder; 2) evaluate how detection probabilities for the observer and acoustic recorder varied with distance of birds from the survey point; and 3) evaluate whether avian guild‐specific detection rates differed between field observers and acoustic recorders relative to habitat. Compared with the observer, the acoustic recorder detected fewer species (βMethod = −0.39 ± 0.07) and fewer individuals (βMethod = −0.56 ± 0.05) in total and for 6 avian guilds. Discrepancies were attributed primarily to differences in effective area surveyed (91% missed by device were >100 m), but also to nonvocal birds being missed by the recorder (55% missed <100 m were silent). The observer missed a few individuals and one species detected by the device. Models indicated that relative abundance of various avian guilds was associated primarily with maximum shrub height and less so with shrub cover and visual obstruction. The absence of a significant interaction between survey method (observer vs. acoustic recorder) and any habitat characteristic suggests that traditional point counts and acoustic recorders would yield similar inferences about ecological relationships in tundra ecosystems. Pairing of the 2 methods could increase survey efficiency and allow for validation and archival of survey results.
Synthetic aperture radar target detection, feature extraction, and image formation techniques
NASA Technical Reports Server (NTRS)
Li, Jian
1994-01-01
This report presents new algorithms for target detection, feature extraction, and image formation with the synthetic aperture radar (SAR) technology. For target detection, we consider target detection with SAR and coherent subtraction. We also study how the image false alarm rates are related to the target template false alarm rates when target templates are used for target detection. For feature extraction from SAR images, we present a computationally efficient eigenstructure-based 2D-MODE algorithm for two-dimensional frequency estimation. For SAR image formation, we present a robust parametric data model for estimating high resolution range signatures of radar targets and for forming high resolution SAR images.
Improvements in the MGA Code Provide Flexibility and Better Error Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruhter, W D; Kerr, J
2005-05-26
The Multi-Group Analysis (MGA) code is widely used to determine nondestructively the relative isotopic abundances of plutonium by gamma-ray spectrometry. MGA users have expressed concern about the lack of flexibility and transparency in the code. Users often have to ask the code developers for modifications to the code to accommodate new measurement situations, such as additional peaks being present in the plutonium spectrum or expected peaks being absent. We are testing several new improvements to a prototype, general gamma-ray isotopic analysis tool with the intent of either revising or replacing the MGA code. These improvements will give the user themore » ability to modify, add, or delete the gamma- and x-ray energies and branching intensities used by the code in determining a more precise gain and in the determination of the relative detection efficiency. We have also fully integrated the determination of the relative isotopic abundances with the determination of the relative detection efficiency to provide a more accurate determination of the errors in the relative isotopic abundances. We provide details in this paper on these improvements and a comparison of results obtained with current versions of the MGA code.« less
Learning to detect and combine the features of an object
Suchow, Jordan W.; Pelli, Denis G.
2013-01-01
To recognize an object, it is widely supposed that we first detect and then combine its features. Familiar objects are recognized effortlessly, but unfamiliar objects—like new faces or foreign-language letters—are hard to distinguish and must be learned through practice. Here, we describe a method that separates detection and combination and reveals how each improves as the observer learns. We dissociate the steps by two independent manipulations: For each step, we do or do not provide a bionic crutch that performs it optimally. Thus, the two steps may be performed solely by the human, solely by the crutches, or cooperatively, when the human takes one step and a crutch takes the other. The crutches reveal a double dissociation between detecting and combining. Relative to the two-step ideal, the human observer’s overall efficiency for unconstrained identification equals the product of the efficiencies with which the human performs the steps separately. The two-step strategy is inefficient: Constraining the ideal to take two steps roughly halves its identification efficiency. In contrast, we find that humans constrained to take two steps perform just as well as when unconstrained, which suggests that they normally take two steps. Measuring threshold contrast (the faintness of a barely identifiable letter) as it improves with practice, we find that detection is inefficient and learned slowly. Combining is learned at a rate that is 4× higher and, after 1,000 trials, 7× more efficient. This difference explains much of the diversity of rates reported in perceptual learning studies, including effects of complexity and familiarity. PMID:23267067
ERIC Educational Resources Information Center
Mattli, Florentina; Zollig, Jacqueline; West, Robert
2011-01-01
The efficiency of prospective memory (PM) typically increases from childhood to young adulthood and then decreases in later adulthood. The current study used event-related brain potentials (ERPs) to examine the development of the neural correlates of processes associated with the detection of a PM cue, switching from the ongoing activity to the…
HPV detection rate in saliva may depend on the immune system efficiency.
Adamopoulou, Maria; Vairaktaris, Eleftherios; Panis, Vassilis; Nkenke, Emeka; Neukam, Friedreich W; Yapijakis, Christos
2008-01-01
Human papilloma virus (HPV) has been established as a major etiological factor of anogenital cancer. In addition, HPV has also been implicated in oral carcinogenesis but its detection rates appear to be highly variable, depending on the patient population tested, the molecular methodology used, as well as the type of oral specimen investigated. For example, saliva is an oral fluid that may play a role in HPV transmission, although the detection rates of the virus are lower than tissue. Recent evidence has indicated that HPV-related pathology is increased in the oral cavity of human immunodeficiency virus (HIV)-positive individuals. In order to investigate whether the presence of different HPV types in saliva depends on immune system efficiency, oral fluid samples of patients with oral cancer and without any known immune deficiency were compared with those of HIV-positive individuals. Saliva samples were collected from 68 patients with oral squamous cell carcinoma and 34 HIV seropositive individuals. HPV DNA sequences were detected by L1 concensus polymerase chain reaction (PCR), followed by restriction fragment length polymorphism (RFLP) analysis and DNA sequencing for HPV typing. HPV DNA was detected in 7/68 (10.3%) of the oral cancer patients and in 12/34 (35.3%) of the HIV-positive individuals, a highly significant difference (p = 0.006; odds ratio 4.753; 95% confidence interval 1.698-13.271). Among HPV-positive samples, the prevalence of HPV types associated with high oncogenic risk was similar in oral cancer and HIV-positive cases (71.4% and 66.7%, respectively). In both groups, the most common HPV type was high-risk 16 (50% and 42.8%, respectively). Although a similar pattern of HPV high-risk types was detected in oral cancer and HIV-positive cases, the quantitative detection of HPV in saliva significantly depended on immune system efficiency. Furthermore, the significantly increased detection rates of HPV in saliva of HIV-positive individuals may be associated with high risk for development of HPV-related oral lesions, including malignancy.
NASA Astrophysics Data System (ADS)
Liang, Sheng-Fu; Chen, Yi-Chun; Wang, Yu-Lin; Chen, Pin-Tzu; Yang, Chia-Hsiang; Chiueh, Herming
2013-08-01
Objective. Around 1% of the world's population is affected by epilepsy, and nearly 25% of patients cannot be treated effectively by available therapies. The presence of closed-loop seizure-triggered stimulation provides a promising solution for these patients. Realization of fast, accurate, and energy-efficient seizure detection is the key to such implants. In this study, we propose a two-stage on-line seizure detection algorithm with low-energy consumption for temporal lobe epilepsy (TLE). Approach. Multi-channel signals are processed through independent component analysis and the most representative independent component (IC) is automatically selected to eliminate artifacts. Seizure-like intracranial electroencephalogram (iEEG) segments are fast detected in the first stage of the proposed method and these seizures are confirmed in the second stage. The conditional activation of the second-stage signal processing reduces the computational effort, and hence energy, since most of the non-seizure events are filtered out in the first stage. Main results. Long-term iEEG recordings of 11 patients who suffered from TLE were analyzed via leave-one-out cross validation. The proposed method has a detection accuracy of 95.24%, a false alarm rate of 0.09/h, and an average detection delay time of 9.2 s. For the six patients with mesial TLE, a detection accuracy of 100.0%, a false alarm rate of 0.06/h, and an average detection delay time of 4.8 s can be achieved. The hierarchical approach provides a 90% energy reduction, yielding effective and energy-efficient implementation for real-time epileptic seizure detection. Significance. An on-line seizure detection method that can be applied to monitor continuous iEEG signals of patients who suffered from TLE was developed. An IC selection strategy to automatically determine the most seizure-related IC for seizure detection was also proposed. The system has advantages of (1) high detection accuracy, (2) low false alarm, (3) short detection latency, and (4) energy-efficient design for hardware implementation.
Kueseng, Pamornrat; Pawliszyn, Janusz
2013-11-22
A new thin-film, carboxylated multiwalled carbon nanotubes/polydimethylsiloxane (MWCNTs-COOH/PDMS) coating was developed for 96-blade solid-phase microextraction (SPME) system followed by high performance liquid chromatography with ultraviolet detection (HPLC-UV). The method provided good extraction efficiency (64-90%) for three spiked levels, with relative standard deviations (RSD)≤6%, and detection limits between 1 and 2 μg/L for three phenolic compounds. The MWCNTs-COOH/PDMS 96-blade SPME system presents advantages over traditional methods due to its simplicity of use, easy coating preparation, low cost and high sample throughput (2.1 min per sample). The developed coating is reusable for a minimum of 110 extractions with good extraction efficiency. The coating provided higher extraction efficiency (3-8 times greater) than pure PDMS coatings. Copyright © 2013 Elsevier B.V. All rights reserved.
Joint forensics and watermarking approach for video authentication
NASA Astrophysics Data System (ADS)
Thiemert, Stefan; Liu, Huajian; Steinebach, Martin; Croce-Ferri, Lucilla
2007-02-01
In our paper we discuss and compare the possibilities and shortcomings of both content-fragile watermarking and digital forensics and analyze if the combination of both techniques allows the identification of more than the sum of all manipulations identified by both techniques on their own due to synergetic effects. The first part of the paper discusses the theoretical possibilities offered by a combined approach, in which forensics and watermarking are considered as complementary tools for data authentication or deeply combined together, in order to reduce their error rate and to enhance the detection efficiency. After this conceptual discussion the paper proposes some concrete examples in which the joint approach is applied to video authentication. Some specific forensics techniques are analyzed and expanded to handle efficiently video data. The examples show possible extensions of passive-blind image forgery detection to video data, where the motion and time related characteristics of video are efficiently exploited.
NASA Astrophysics Data System (ADS)
Tuna, G.; Örenbaş, H.; Daş, R.; Kogias, D.; Baykara, M.; K, K.
2016-03-01
Wireless Sensor Networks (WSNs) when combined with various energy harvesting solutions managing to prolong the overall lifetime of the system and enhanced capabilities of the communication protocols used by modern sensor nodes are efficiently used in are efficiently used in Smart Grid (SG), an evolutionary system for the modernization of existing power grids. However, wireless communication technology brings various types of security threats. In this study, firstly the use of WSNs for SG applications is presented. Second, the security related issues and challenges as well as the security threats are presented. In addition, proposed security mechanisms for WSN-based SG applications are discussed. Finally, an easy- to-implement and simple attack detection framework to prevent attacks directed to sink and gateway nodes with web interfaces is proposed and its efficiency is proved using a case study.
NASA Astrophysics Data System (ADS)
Kuroda, Chiaki; Ohki, Yoshimichi; Ashiba, Hiroki; Fujimaki, Makoto; Awazu, Koichi; Makishima, Makoto
2017-03-01
With the aim of developing a sensor for rapidly detecting viruses in a drop of blood, in this study, we analyze the shape of a hole in a microfluidic channel in relation to the efficiency of sedimentation of blood cells. The efficiency of sedimentation is examined on the basis of our calculation and experimental results for two types of sedimentation hole, cylindrical and truncated conical holes, focusing on the Boycott effect, which can promote the sedimentation of blood cells from a downward-facing wall. As a result, we demonstrated that blood cells can be eliminated with an efficiency of 99% or higher by retaining a diluted blood sample of about 30 µL in the conical hole for only 2 min. Moreover, we succeeded in detecting the anti-hepatitis B surface antigen antibody in blood using a waveguide-mode sensor equipped with a microfluidic channel having the conical sedimentation hole.
Research on the self-absorption corrections for PGNAA of large samples
NASA Astrophysics Data System (ADS)
Yang, Jian-Bo; Liu, Zhi; Chang, Kang; Li, Rui
2017-02-01
When a large sample is analysed with the prompt gamma neutron activation analysis (PGNAA) neutron self-shielding and gamma self-absorption affect the accuracy, the correction method for the detection efficiency of the relative H of each element in a large sample is described. The influences of the thickness and density of the cement samples on the H detection efficiency, as well as the impurities Fe2O3 and SiO2 on the prompt γ ray yield for each element in the cement samples, were studied. The phase functions for Ca, Fe, and Si on H with changes in sample thickness and density were provided to avoid complicated procedures for preparing the corresponding density or thickness scale for measuring samples under each density or thickness value and to present a simplified method for the measurement efficiency scale for prompt-gamma neutron activation analysis.
gmos: Rapid Detection of Genome Mosaicism over Short Evolutionary Distances.
Domazet-Lošo, Mirjana; Domazet-Lošo, Tomislav
2016-01-01
Prokaryotic and viral genomes are often altered by recombination and horizontal gene transfer. The existing methods for detecting recombination are primarily aimed at viral genomes or sets of loci, since the expensive computation of underlying statistical models often hinders the comparison of complete prokaryotic genomes. As an alternative, alignment-free solutions are more efficient, but cannot map (align) a query to subject genomes. To address this problem, we have developed gmos (Genome MOsaic Structure), a new program that determines the mosaic structure of query genomes when compared to a set of closely related subject genomes. The program first computes local alignments between query and subject genomes and then reconstructs the query mosaic structure by choosing the best local alignment for each query region. To accomplish the analysis quickly, the program mostly relies on pairwise alignments and constructs multiple sequence alignments over short overlapping subject regions only when necessary. This fine-tuned implementation achieves an efficiency comparable to an alignment-free tool. The program performs well for simulated and real data sets of closely related genomes and can be used for fast recombination detection; for instance, when a new prokaryotic pathogen is discovered. As an example, gmos was used to detect genome mosaicism in a pathogenic Enterococcus faecium strain compared to seven closely related genomes. The analysis took less than two minutes on a single 2.1 GHz processor. The output is available in fasta format and can be visualized using an accessory program, gmosDraw (freely available with gmos).
gmos: Rapid Detection of Genome Mosaicism over Short Evolutionary Distances
Domazet-Lošo, Mirjana; Domazet-Lošo, Tomislav
2016-01-01
Prokaryotic and viral genomes are often altered by recombination and horizontal gene transfer. The existing methods for detecting recombination are primarily aimed at viral genomes or sets of loci, since the expensive computation of underlying statistical models often hinders the comparison of complete prokaryotic genomes. As an alternative, alignment-free solutions are more efficient, but cannot map (align) a query to subject genomes. To address this problem, we have developed gmos (Genome MOsaic Structure), a new program that determines the mosaic structure of query genomes when compared to a set of closely related subject genomes. The program first computes local alignments between query and subject genomes and then reconstructs the query mosaic structure by choosing the best local alignment for each query region. To accomplish the analysis quickly, the program mostly relies on pairwise alignments and constructs multiple sequence alignments over short overlapping subject regions only when necessary. This fine-tuned implementation achieves an efficiency comparable to an alignment-free tool. The program performs well for simulated and real data sets of closely related genomes and can be used for fast recombination detection; for instance, when a new prokaryotic pathogen is discovered. As an example, gmos was used to detect genome mosaicism in a pathogenic Enterococcus faecium strain compared to seven closely related genomes. The analysis took less than two minutes on a single 2.1 GHz processor. The output is available in fasta format and can be visualized using an accessory program, gmosDraw (freely available with gmos). PMID:27846272
Owens, Max; Koster, Ernst H W; Derakshan, Nazanin
2013-03-01
Impaired filtering of irrelevant information from working memory is thought to underlie reduced working memory capacity for relevant information in dysphoria. The current study investigated whether training-related gains in working memory performance on the adaptive dual n-back task could result in improved inhibitory function. Efficacy of training was monitored in a change detection paradigm allowing measurement of a sustained event-related potential asymmetry sensitive to working memory capacity and the efficient filtering of irrelevant information. Dysphoric participants in the training group showed training-related gains in working memory that were accompanied by gains in working memory capacity and filtering efficiency compared to an active control group. Results provide important initial evidence that behavioral performance and neural function in dysphoria can be improved by facilitating greater attentional control. Copyright © 2013 Society for Psychophysiological Research.
Antibody biosensors for spoilage yeast detection based on impedance spectroscopy.
Tubía, I; Paredes, J; Pérez-Lorenzo, E; Arana, S
2018-04-15
Brettanomyces is a yeast species responsible for wine and cider spoilage, producing volatile phenols that result in off-odors and loss of fruity sensorial qualities. Current commercial detection methods for these spoilage species are liable to frequent false positives, long culture times and fungal contamination. In this work, an interdigitated (IDE) biosensor was created to detect Brettanomyces using immunological reactions and impedance spectroscopy analysis. To promote efficient antibody immobilization on the electrodes' surface and to decrease non-specific adsorption, a Self-Assembled Monolayer (SAM) was developed. An impedance spectroscopy analysis, over four yeast strains, confirmed our device's increased efficacy. Compared to label-free sensors, antibody biosensors showed a higher relative impedance. The results also suggested that these biosensors could be a promising method to monitor some spoilage yeasts, offering an efficient alternative to the laborious and expensive traditional methods. Copyright © 2017 Elsevier B.V. All rights reserved.
Kim, Eunjin; Kang, Hyunook; Choi, Insung; Song, Jihyeon; Mok, Hyejung; Jung, Woong; Yeo, Woon-Seok
2018-05-09
Detection and quantitation of flavonoids are relatively difficult compared to those of other small-molecule analytes because flavonoids undergo rapid metabolic processes, resulting in their elimination from the body. Here, we report an efficient enrichment method for facilitating the analysis of vicinal-diol-containing flavonoid molecules using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. In our strategy, boronic-acid-functionalized polyacrylamide particles were used, where boronic acids bound to vicinal diols to form boronate monoesters at basic pH. This complex remained intact during the enrichment processes, and the vicinal-diol-containing flavonoids were easily separated by centrifugation and subsequent acidic treatments. The selectivity and limit of detection of our strategy were confirmed by mass spectrometry analysis, and the validity was assessed by performing the detection and quantitation of quercetin in mouse organs.
Farajzadeh, Mir Ali; Afshar Mogaddam, Mohammad Reza; Alizadeh Nabil, Ali Akbar
2015-12-01
In present study, a simultaneous derivatization and air-assisted liquid-liquid microextraction method combined with gas chromatography-nitrogen phosphorous detection has been developed for the determination of some phenolic compounds in biological samples. The analytes are derivatized and extracted simultaneously by a fast reaction with 1-flouro-2,4-dinitrobenzene under mild conditions. Under optimal conditions low limits of detection in the range of 0.05-0.34 ng mL(-1) are achievable. The obtained extraction recoveries are between 84 and 97% and the relative standard deviations are less than 7.2% for intraday (n = 6) and interday (n = 4) precisions. The proposed method was demonstrated to be a simple and efficient method for the analysis of phenols in biological samples. Copyright © 2015 John Wiley & Sons, Ltd.
A density-based clustering model for community detection in complex networks
NASA Astrophysics Data System (ADS)
Zhao, Xiang; Li, Yantao; Qu, Zehui
2018-04-01
Network clustering (or graph partitioning) is an important technique for uncovering the underlying community structures in complex networks, which has been widely applied in various fields including astronomy, bioinformatics, sociology, and bibliometric. In this paper, we propose a density-based clustering model for community detection in complex networks (DCCN). The key idea is to find group centers with a higher density than their neighbors and a relatively large integrated-distance from nodes with higher density. The experimental results indicate that our approach is efficient and effective for community detection of complex networks.
Location of Biomarkers and Reagents within Agarose Beads of a Programmable Bio-nano-chip
Jokerst, Jesse V.; Chou, Jie; Camp, James P.; Wong, Jorge; Lennart, Alexis; Pollard, Amanda A.; Floriano, Pierre N.; Christodoulides, Nicolaos; Simmons, Glennon W.; Zhou, Yanjie; Ali, Mehnaaz F.
2012-01-01
The slow development of cost-effective medical microdevices with strong analytical performance characteristics is due to a lack of selective and efficient analyte capture and signaling. The recently developed programmable bio-nano-chip (PBNC) is a flexible detection device with analytical behavior rivaling established macroscopic methods. The PBNC system employs ≈300 μm-diameter bead sensors composed of agarose “nanonets” that populate a microelectromechanical support structure with integrated microfluidic elements. The beads are an efficient and selective protein-capture medium suitable for the analysis of complex fluid samples. Microscopy and computational studies probe the 3D interior of the beads. The relative contributions that the capture and detection of moieties, analyte size, and bead porosity make to signal distribution and intensity are reported. Agarose pore sizes ranging from 45 to 620 nm are examined and those near 140 nm provide optimal transport characteristics for rapid (<15 min) tests. The system exhibits efficient (99.5%) detection of bead-bound analyte along with low (≈2%) nonspecific immobilization of the detection probe for carcinoembryonic antigen assay. Furthermore, the role analyte dimensions play in signal distribution is explored, and enhanced methods for assay building that consider the unique features of biomarker size are offered. PMID:21290601
The MetaTelescope, a System for the Detection of Objects in Low and Higher Earth Orbits
NASA Astrophysics Data System (ADS)
Boer, M.
We present an original design involving several telescopes for the detection of mobiles in space over a very wide field of view. The system uses relatively simple and cheap telescopes associated with commercial CCD cameras that can be placed either in a single location or in relatively close (100m - 10km) locations. This last set-up opens the possibility of detecting parallaxes, but sky conditions should remain almost identical. Areas on the order of 800 square degrees can be surveyed. The system is versatile, i.e. it can detect and follow up objects either in the LEO or higher orbits. We will present the system, how it can be operated in order to have a more efficient setup while using even less telescopes, and possible implementations for space surveillance activities.
Research and Design of Rootkit Detection Method
NASA Astrophysics Data System (ADS)
Liu, Leian; Yin, Zuanxing; Shen, Yuli; Lin, Haitao; Wang, Hongjiang
Rootkit is one of the most important issues of network communication systems, which is related to the security and privacy of Internet users. Because of the existence of the back door of the operating system, a hacker can use rootkit to attack and invade other people's computers and thus he can capture passwords and message traffic to and from these computers easily. With the development of the rootkit technology, its applications are more and more extensive and it becomes increasingly difficult to detect it. In addition, for various reasons such as trade secrets, being difficult to be developed, and so on, the rootkit detection technology information and effective tools are still relatively scarce. In this paper, based on the in-depth analysis of the rootkit detection technology, a new kind of the rootkit detection structure is designed and a new method (software), X-Anti, is proposed. Test results show that software designed based on structure proposed is much more efficient than any other rootkit detection software.
Extreme ultraviolet quantum efficiency of opaque alkali halide photocathodes on microchannel plates
NASA Technical Reports Server (NTRS)
Siegmund, O. H. W.; Everman, E.; Vallerga, J. V.; Lampton, M.
1988-01-01
Comprehensive measurements are presented for the quantum detection efficiency (QDE) of the microchannel plate materials CsI, KBr, KCl, and MgF2, over the 44-1800 A wavelength range. QDEs in excess of 40 percent are achieved by several materials in specific wavelength regions of the EUV. Structure is noted in the wavelength dependence of the QDE that is directly related to the valence-band/conduction-band gap energy and the onset of atomic-like resonant transitions. A simple photocathode model allows interpretation of these features, together with the QDE efficiency variation, as a function of illumination angle.
Foraging efficiency of a predator flock for randomly moving prey: A simulation study
NASA Astrophysics Data System (ADS)
Lee, Sang-Hee; Kwon, Ohsung
2016-03-01
Flocking behavior of animals is highly advantageous for taking food resources. The degree of the advantage is related to the ability of flock members to detect their prey and the mobility of prey individuals. In this study, to explore the relation, we constructed a model to simulate a predator flock and its randomly moving prey. The predator members have the prey detection ability, which was characterized as sensing distance, R, and a sensing angle, θ. The mobility of the prey individuals was characterized as the maximum traveling distance of an iteration time step, L. The relative flock foraging efficiency, ɛ, was defined as ɛ = 1 - (Td/Tup). Tup and Td represent the spent time for the flock to eat all prey individuals and to uptake the last remaining 10% prey, respectively. Simulation results showed that ɛ increased, maximized, and decreased with the increase of R, regardless of L. As the number of prey, N, increased, the tendency of the increasing and decreasing was diluted. The result was briefly discussed in relation to the flock foraging behavior and the development of the model toward applications for real ecosystems.
Swallowing disorders in Parkinson's disease.
Mamolar Andrés, Sandra; Santamarina Rabanal, María Liliana; Granda Membiela, Carla María; Fernández Gutiérrez, María José; Sirgo Rodríguez, Paloma; Álvarez Marcos, César
Parkinson's disease is a type of chronic neurodegenerative pathology with a typical movement pattern, as well as different, less studied symptoms such as dysphagia. Disease-related disorders in efficacy or safety in the process of swallowing usually lead to malnutrition, dehydration or pneumonias. The aim of this study was identifying and analyzing swallowing disorders in Parkinson's disease. The initial sample consisted of 52 subjects with Parkinson's disease to whom the specific test for dysphagia SDQ was applied. Nineteen participants (36.5%) with some degree of dysphagia in the SDQ test were selected to be evaluated by volume-viscosity clinical exploration method and fiberoptic endoscopic evaluation of swallowing. Disorders in swallowing efficiency and safety were detected in 94.7% of the selected sample. With regards to efficiency, disorders were found in food transport (89.5%), insufficient labial closing (68.4%) and oral residues (47.4%), relating to duration of ingestion. Alterations in security were also observed: pharynx residues (52.7%), coughing (47.4%), penetration (31.64%), aspiration and decrease of SaO 2 (5.3%), relating to the diagnosis of respiratory pathology in the previous year. The SDQ test detected swallowing disorders in 36.5% of the subjects with Parkinson's disease. Disorders in swallowing efficiency and safety were demonstrated in 94.7% of this subset. Disorders of efficiency were more frequent than those of safety, establishing a relationship with greater time in ingestion and the appearance of respiratory pathology and pneumonias. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.
An on-board pedestrian detection and warning system with features of side pedestrian
NASA Astrophysics Data System (ADS)
Cheng, Ruzhong; Zhao, Yong; Wong, ChupChung; Chan, KwokPo; Xu, Jiayao; Wang, Xin'an
2012-01-01
Automotive Active Safety(AAS) is the main branch of intelligence automobile study and pedestrian detection is the key problem of AAS, because it is related with the casualties of most vehicle accidents. For on-board pedestrian detection algorithms, the main problem is to balance efficiency and accuracy to make the on-board system available in real scenes, so an on-board pedestrian detection and warning system with the algorithm considered the features of side pedestrian is proposed. The system includes two modules, pedestrian detecting and warning module. Haar feature and a cascade of stage classifiers trained by Adaboost are first applied, and then HOG feature and SVM classifier are used to refine false positives. To make these time-consuming algorithms available in real-time use, a divide-window method together with operator context scanning(OCS) method are applied to increase efficiency. To merge the velocity information of the automotive, the distance of the detected pedestrian is also obtained, so the system could judge if there is a potential danger for the pedestrian in the front. With a new dataset captured in urban environment with side pedestrians on zebra, the embedded system and its algorithm perform an on-board available result on side pedestrian detection.
Evolutionary method for finding communities in bipartite networks.
Zhan, Weihua; Zhang, Zhongzhi; Guan, Jihong; Zhou, Shuigeng
2011-06-01
An important step in unveiling the relation between network structure and dynamics defined on networks is to detect communities, and numerous methods have been developed separately to identify community structure in different classes of networks, such as unipartite networks, bipartite networks, and directed networks. Here, we show that the finding of communities in such networks can be unified in a general framework-detection of community structure in bipartite networks. Moreover, we propose an evolutionary method for efficiently identifying communities in bipartite networks. To this end, we show that both unipartite and directed networks can be represented as bipartite networks, and their modularity is completely consistent with that for bipartite networks, the detection of modular structure on which can be reformulated as modularity maximization. To optimize the bipartite modularity, we develop a modified adaptive genetic algorithm (MAGA), which is shown to be especially efficient for community structure detection. The high efficiency of the MAGA is based on the following three improvements we make. First, we introduce a different measure for the informativeness of a locus instead of the standard deviation, which can exactly determine which loci mutate. This measure is the bias between the distribution of a locus over the current population and the uniform distribution of the locus, i.e., the Kullback-Leibler divergence between them. Second, we develop a reassignment technique for differentiating the informative state a locus has attained from the random state in the initial phase. Third, we present a modified mutation rule which by incorporating related operations can guarantee the convergence of the MAGA to the global optimum and can speed up the convergence process. Experimental results show that the MAGA outperforms existing methods in terms of modularity for both bipartite and unipartite networks.
Efficient species-level monitoring at the landscape scale.
Noon, Barry R; Bailey, Larissa L; Sisk, Thomas D; McKelvey, Kevin S
2012-06-01
Monitoring the population trends of multiple animal species at a landscape scale is prohibitively expensive. However, advances in survey design, statistical methods, and the ability to estimate species presence on the basis of detection-nondetection data have greatly increased the feasibility of species-level monitoring. For example, recent advances in monitoring make use of detection-nondetection data that are relatively inexpensive to acquire, historical survey data, and new techniques in genetic evaluation. The ability to use indirect measures of presence for some species greatly increases monitoring efficiency and reduces survey costs. After adjusting for false absences, the proportion of sample units in a landscape where a species is detected (occupancy) is a logical state variable to monitor. Occupancy monitoring can be based on real-time observation of a species at a survey site or on evidence that the species was at the survey location sometime in the recent past. Temporal and spatial patterns in occupancy data are related to changes in animal abundance and provide insights into the probability of a species' persistence. However, even with the efficiencies gained when occupancy is the monitored state variable, the task of species-level monitoring remains daunting due to the large number of species. We propose that a small number of species be monitored on the basis of specific management objectives, their functional role in an ecosystem, their sensitivity to environmental changes likely to occur in the area, or their conservation importance. ©2012 Society for Conservation Biology.
2013-01-01
Background Intraoperative detection of 18F-FDG-avid tissue sites during 18F-FDG-directed surgery can be very challenging when utilizing gamma detection probes that rely on a fixed target-to-background (T/B) ratio (ratiometric threshold) for determination of probe positivity. The purpose of our study was to evaluate the counting efficiency and the success rate of in situ intraoperative detection of 18F-FDG-avid tissue sites (using the three-sigma statistical threshold criteria method and the ratiometric threshold criteria method) for three different gamma detection probe systems. Methods Of 58 patients undergoing 18F-FDG-directed surgery for known or suspected malignancy using gamma detection probes, we identified nine 18F-FDG-avid tissue sites (from amongst seven patients) that were seen on same-day preoperative diagnostic PET/CT imaging, and for which each 18F-FDG-avid tissue site underwent attempted in situ intraoperative detection concurrently using three gamma detection probe systems (K-alpha probe, and two commercially-available PET-probe systems), and then were subsequently surgical excised. Results The mean relative probe counting efficiency ratio was 6.9 (± 4.4, range 2.2–15.4) for the K-alpha probe, as compared to 1.5 (± 0.3, range 1.0–2.1) and 1.0 (± 0, range 1.0–1.0), respectively, for two commercially-available PET-probe systems (P < 0.001). Successful in situ intraoperative detection of 18F-FDG-avid tissue sites was more frequently accomplished with each of the three gamma detection probes tested by using the three-sigma statistical threshold criteria method than by using the ratiometric threshold criteria method, specifically with the three-sigma statistical threshold criteria method being significantly better than the ratiometric threshold criteria method for determining probe positivity for the K-alpha probe (P = 0.05). Conclusions Our results suggest that the improved probe counting efficiency of the K-alpha probe design used in conjunction with the three-sigma statistical threshold criteria method can allow for improved detection of 18F-FDG-avid tissue sites when a low in situ T/B ratio is encountered. PMID:23496877
NASA Technical Reports Server (NTRS)
Hoge, F. E.; Swift, R. N.
1983-01-01
Airborne lidar oil spill experiments carried out to determine the practicability of the AOFSCE (absolute oil fluorescence spectral conversion efficiency) computational model are described. The results reveal that the model is suitable over a considerable range of oil film thicknesses provided the fluorescence efficiency of the oil does not approach the minimum detection sensitivity limitations of the lidar system. Separate airborne lidar experiments to demonstrate measurement of the water column Raman conversion efficiency are also conducted to ascertain the ultimate feasibility of converting such relative oil fluorescence to absolute values. Whereas the AOFSCE model is seen as highly promising, further airborne water column Raman conversion efficiency experiments with improved temporal or depth-resolved waveform calibration and software deconvolution techniques are thought necessary for a final determination of suitability.
Culzoni, María J; Aucelio, Ricardo Q; Escandar, Graciela M
2012-08-31
Based on green analytical chemistry principles, an efficient approach was applied for the simultaneous determination of galantamine, a widely used cholinesterase inhibitor for the treatment of Alzheimer's disease, and its major metabolites in serum samples. After a simple serum deproteinization step, second-order data were rapidly obtained (less than 6 min) with a chromatographic system operating in the isocratic regime using ammonium acetate/acetonitrile (94:6) as mobile phase. Detection was made with a fast-scanning spectrofluorimeter, which allowed the efficient collection of data to obtain matrices of fluorescence intensity as a function of retention time and emission wavelength. Successful resolution was achieved in the presence of matrix interferences in serum samples using multivariate curve resolution-alternating least-squares (MCR-ALS). The developed approach allows the quantification of the analytes at levels found in treated patients, without the need of applying either preconcentration or extraction steps. Limits of detection in the range between 8 and 11 ng mL(-1), relative prediction errors from 7 to 12% and coefficients of variation from 4 to 7% were achieved. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Bohler, Christof; Hill, Aubrey R., Jr.; Orgel, Leslie E.
1996-01-01
Treatment of relatively concentrated aqueous solutions of 0-phospho-serine (50 mM), aspartic acid (100 mM) or glutamic acid (100 mM) with carbonyldiimidazole leads to the formation of an activated intermediate that oligomerizes efficiently. When the concentration of amino acid is reduced tenfold, few long oligomers can be detected. Positively-charged cetyltrimethyl ammonium bromide micelles concentrate the negatively-charged activated intermediates of the amino acids at their surfaces and catalyze efficient oligomerization even from dilute solutions.
NASA Technical Reports Server (NTRS)
Boehler, Christof; Hill, Aubrey R., Jr.; Orgel, Leslie E.
1996-01-01
Treatment of relatively concentrated aqueous solutions of O-phospho-serine (50 mM), aspartic acid (100 mM) or glutamic acid (100 mM) with carbonyldiimidazole leads to the formation of an activated intermediate that oligomerizes efficiently. When the concentration of amino acid is reduced tenfold, few long oligomers can be detected. Positively-charged cetyltrimethyl ammonium bromide micelles concentrate the negatively-charged activated intermediates of the amino acids at their surfaces and catalyze efficient oligomerization even from dilute solutions.
Effects of antenna length and material on output power and detection of miniature radio transmitters
Beeman, J.W.; Bower, N.; Juhnke, S.; Dingmon, L.; Van Den, Tillaart; Thomas, T.
2007-01-01
The optimal antenna of transmitters used in small aquatic animals is often a compromise between efficient radio wave propagation and effects on animal behavior. Radio transmission efficiency generally increases with diameter and length of the conductor, but increased antenna length or weight can adversely affect animal behavior. We evaluated the effects of changing antenna length and material on the subsequent tag output power, reception, and detection of tagged fish. In a laboratory, we compared the relative signal strengths in water of 150 MHz transmitters over a range of antenna lengths (from 6 to 30 cm) and materials (one weighing about half of the other). The peak relative signal strengths were at 20 and 22 cm, which are approximately one wavelength underwater at the test frequency. The peak relative signal strengths at these lengths were approximately 50% greater than those of 30 cm antennas, a length commonly used in fisheries research. Few significant differences were present in distances for the operator to hear or the telemetry receiver to decode transmitters from a boat-mounted receiving system based on antenna length, but the percent of tagged fish detected passing a hydroelectric dam fitted with an array of receiving systems was significantly greater at the antenna length with peak output power in laboratory tests. This study indicates careful choice of antenna length and material of small transmitters can be used to reduce weight and possible antenna effects on animal behavior, to maximize tag output power and detection, or to balance these factors based on the needs of the application. ?? 2007 Springer Science+Business Media B.V.
Blood doping: risks to athletes' health and strategies for detection.
Oliveira, Carolina Dizioli Rodrigues de; Bairros, André Valle de; Yonamine, Mauricio
2014-07-01
Blood doping has been defined as the misuse of substances or certain techniques to optimize oxygen delivery to muscles with the aim to increase performance in sports activities. It includes blood transfusion, administration of erythropoiesis-stimulating agents or blood substitutes, and gene manipulations. The main reasons for the widespread use of blood doping include: its availability for athletes (erythropoiesis-stimulating agents and blood transfusions), its efficiency in improving performance, and its difficult detection. This article reviews and discusses the blood doping substances and methods used for in sports, the adverse effects related to this practice, and current strategies for its detection.
Efficient search for a face by chimpanzees (Pan troglodytes).
Tomonaga, Masaki; Imura, Tomoko
2015-07-16
The face is quite an important stimulus category for human and nonhuman primates in their social lives. Recent advances in comparative-cognitive research clearly indicate that chimpanzees and humans process faces in a special manner; that is, using holistic or configural processing. Both species exhibit the face-inversion effect in which the inverted presentation of a face deteriorates their perception and recognition. Furthermore, recent studies have shown that humans detect human faces among non-facial objects rapidly. We report that chimpanzees detected chimpanzee faces among non-facial objects quite efficiently. This efficient search was not limited to own-species faces. They also found human adult and baby faces--but not monkey faces--efficiently. Additional testing showed that a front-view face was more readily detected than a profile, suggesting the important role of eye-to-eye contact. Chimpanzees also detected a photograph of a banana as efficiently as a face, but a further examination clearly indicated that the banana was detected mainly due to a low-level feature (i.e., color). Efficient face detection was hampered by an inverted presentation, suggesting that configural processing of faces is a critical element of efficient face detection in both species. This conclusion was supported by a simple simulation experiment using the saliency model.
Efficient search for a face by chimpanzees (Pan troglodytes)
Tomonaga, Masaki; Imura, Tomoko
2015-01-01
The face is quite an important stimulus category for human and nonhuman primates in their social lives. Recent advances in comparative-cognitive research clearly indicate that chimpanzees and humans process faces in a special manner; that is, using holistic or configural processing. Both species exhibit the face-inversion effect in which the inverted presentation of a face deteriorates their perception and recognition. Furthermore, recent studies have shown that humans detect human faces among non-facial objects rapidly. We report that chimpanzees detected chimpanzee faces among non-facial objects quite efficiently. This efficient search was not limited to own-species faces. They also found human adult and baby faces-but not monkey faces-efficiently. Additional testing showed that a front-view face was more readily detected than a profile, suggesting the important role of eye-to-eye contact. Chimpanzees also detected a photograph of a banana as efficiently as a face, but a further examination clearly indicated that the banana was detected mainly due to a low-level feature (i.e., color). Efficient face detection was hampered by an inverted presentation, suggesting that configural processing of faces is a critical element of efficient face detection in both species. This conclusion was supported by a simple simulation experiment using the saliency model. PMID:26180944
Optimization of Contrast Detection Power with Probabilistic Behavioral Information
Cordes, Dietmar; Herzmann, Grit; Nandy, Rajesh; Curran, Tim
2012-01-01
Recent progress in the experimental design for event-related fMRI experiments made it possible to find the optimal stimulus sequence for maximum contrast detection power using a genetic algorithm. In this study, a novel algorithm is proposed for optimization of contrast detection power by including probabilistic behavioral information, based on pilot data, in the genetic algorithm. As a particular application, a recognition memory task is studied and the design matrix optimized for contrasts involving the familiarity of individual items (pictures of objects) and the recollection of qualitative information associated with the items (left/right orientation). Optimization of contrast efficiency is a complicated issue whenever subjects’ responses are not deterministic but probabilistic. Contrast efficiencies are not predictable unless behavioral responses are included in the design optimization. However, available software for design optimization does not include options for probabilistic behavioral constraints. If the anticipated behavioral responses are included in the optimization algorithm, the design is optimal for the assumed behavioral responses, and the resulting contrast efficiency is greater than what either a block design or a random design can achieve. Furthermore, improvements of contrast detection power depend strongly on the behavioral probabilities, the perceived randomness, and the contrast of interest. The present genetic algorithm can be applied to any case in which fMRI contrasts are dependent on probabilistic responses that can be estimated from pilot data. PMID:22326984
Goeman, Valerie R; Tinkler, Stacy H; Hammac, G Kenitra; Ruple, Audrey
2018-04-01
Environmental surveillance for Salmonella enterica can be used for early detection of contamination; thus routine sampling is an integral component of infection control programs in hospital environments. At the Purdue University Veterinary Teaching Hospital (PUVTH), the technique regularly employed in the large animal hospital for sample collection uses sterile gauze sponges for environmental sampling, which has proven labor-intensive and time-consuming. Alternative sampling methods use Swiffer brand electrostatic wipes for environmental sample collection, which are reportedly effective and efficient. It was hypothesized that use of Swiffer wipes for sample collection would be more efficient and less costly than the use of gauze sponges. A head-to-head comparison between the 2 sampling methods was conducted in the PUVTH large animal hospital and relative agreement, cost-effectiveness, and sampling efficiency were compared. There was fair agreement in culture results between the 2 sampling methods, but Swiffer wipes required less time and less physical effort to collect samples and were more cost-effective.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chejanovsky, N.; Sharoni, A., E-mail: amos.sharoni@biu.ac.il
2014-08-21
Lateral spin valves (LSVs) are efficient structures for characterizing spin currents in spintronics devices. Most LSVs are based on ferromagnetic (FM) electrodes for spin-injection and detection. While there are advantages for using perpendicular magnetic anisotropy (PMA) FM, e.g., stability to nano-scaling, these have almost not been studied. This is mainly due to difficulties in fabricating PMA FMs in a lateral geometry. We present here an efficient method, based on ion-milling through an AlN mask, for fabrication of LSVs with multi-layered PMA FMs such as Co/Pd and Co/Ni. We demonstrate, using standard permalloy FMs, that the method enables efficient spin injection.more » We show the multi-layer electrodes retain their PMA properties as well as spin injection and detection in PMA LSVs. In addition, we find a large asymmetric voltage signal which increases with current. We attribute this to a Nernst-Ettingshausen effect caused by local Joule heating and the perpendicular magnetic easy axis.« less
NASA Astrophysics Data System (ADS)
Pommé, S.
2009-06-01
An analytical model is presented to calculate the total detection efficiency of a well-type radiation detector for photons, electrons and positrons emitted from a radioactive source at an arbitrary position inside the well. The model is well suited to treat a typical set-up with a point source or cylindrical source and vial inside a NaI well detector, with or without lead shield surrounding it. It allows for fast absolute or relative total efficiency calibrations for a wide variety of geometrical configurations and also provides accurate input for the calculation of coincidence summing effects. Depending on its accuracy, it may even be applied in 4π-γ counting, a primary standardisation method for activity. Besides an accurate account of photon interactions, precautions are taken to simulate the special case of 511 keV annihilation quanta and to include realistic approximations for the range of (conversion) electrons and β -- and β +-particles.
Detection of Unknown LEO Satellite Using Radar Measurements
NASA Astrophysics Data System (ADS)
Kamensky, S.; Samotokhin, A.; Khutorovsky, Z.; Alfriend, T.
While processing of the radar information aimed at satellite catalog maintenance some measurements do not correlate with cataloged and tracked satellites. These non-correlated measurements participate in the detection (primary orbit determination) of new (not cataloged) satellites. The satellite is considered newly detected when it is missing in the catalog and the primary orbit determination on the basis of the non-correlated measurements provides the accuracy sufficient for reliable correlation of future measurements. We will call this the detection condition. One non-correlated measurement in real conditions does not have enough accuracy and thus does not satisfy the detection condition. Two measurements separated by a revolution or more normally provides orbit determination with accuracy sufficient for selection of other measurements. However, it is not always possible to say with high probability (close to 1) that two measurements belong to one satellite. Three measurements for different revolutions, which are included into one orbit, have significantly higher chances to belong to one satellite. Thus the suggested detection (primary orbit determination) algorithm looks for three uncorrelated measurements in different revolutions for which we can determine the orbit inscribing them. The detection procedure based on search for the triplets is rather laborious. Thus only relatively high efficiency can be the reason for its practical implementation. The work presents the detailed description of the suggested detection procedure based on the search for triplets of uncorrelated measurements (for radar measurements). The break-ups of the tracked satellites provide the most difficult conditions for the operation of the detection algorithm and reveal explicitly its characteristics. The characteristics of time efficiency and reliability of the detected orbits are of maximum interest. Within this work we suggest to determine these characteristics using simulation of break-ups with further acquisition of measurements generated by the fragments. In particular, using simulation we can not only evaluate the characteristics of the algorithm but adjust its parameters for certain conditions: the orbit of the fragmented satellite, the features of the break-up, capabilities of detection radars etc. We describe the algorithm performing the simulation of radar measurements produced by the fragments of the parent satellite. This algorithm accounts of the basic factors affecting the characteristics of time efficiency and reliability of the detection. The catalog maintenance algorithm includes two major components detection and tracking. These are two processes permanently interacting with each other. This is actually in place for the processing of real radar data. The simulation must take this into account since one cannot obtain reliable characteristics of detection procedure simulating only this process. Thus we simulated both processes in their interaction. The work presents the results of simulation for the simplest case of a break-up in near-circular orbit with insignificant atmospheric drag. The simulations show rather high efficiency. We demonstrate as well that the characteristics of time efficiency and reliability of determined orbits essentially depend on the density of the observed break-up fragments.
Cost efficient environmental survey paths for detecting continuous tracer discharges
NASA Astrophysics Data System (ADS)
Alendal, G.
2017-07-01
Designing monitoring programs for detecting potential tracer discharges from unknown locations is challenging. The high variability of the environment may camouflage the anticipated anisotropic signal from a discharge, and there are a number of discharge scenarios. Monitoring operations may also be costly, constraining the number of measurements taken. By assuming that a discharge is active, and a prior belief on the most likely seep location, a method that uses Bayes' theorem combined with discharge footprint predictions is used to update the probability map. Measurement locations with highest reduction in the overall probability of a discharge to be active can be identified. The relative cost between reallocating and measurements can be taken into account. Three different strategies are suggested to enable cost efficient paths for autonomous vessels.
Techniques of EMG signal analysis: detection, processing, classification and applications
Hussain, M.S.; Mohd-Yasin, F.
2006-01-01
Electromyography (EMG) signals can be used for clinical/biomedical applications, Evolvable Hardware Chip (EHW) development, and modern human computer interaction. EMG signals acquired from muscles require advanced methods for detection, decomposition, processing, and classification. The purpose of this paper is to illustrate the various methodologies and algorithms for EMG signal analysis to provide efficient and effective ways of understanding the signal and its nature. We further point up some of the hardware implementations using EMG focusing on applications related to prosthetic hand control, grasp recognition, and human computer interaction. A comparison study is also given to show performance of various EMG signal analysis methods. This paper provides researchers a good understanding of EMG signal and its analysis procedures. This knowledge will help them develop more powerful, flexible, and efficient applications. PMID:16799694
What's ahead in automated lumber grading
D. Earl Kline; Richard Conners; Philip A. Araman
1998-01-01
This paper discusses how present scanning technologies are being applied to automatic lumber grading. The presentation focuses on 1) what sensing and scanning devices are needed to measure information for accurate grading feature detection, 2) the hardware and software needed to efficiently process this information, and 3) specific issues related to softwood lumber...
Ju, Feng; Lee, Hyo Kyung; Yu, Xinhua; Faris, Nicholas R; Rugless, Fedoria; Jiang, Shan; Li, Jingshan; Osarogiagbon, Raymond U
2017-12-01
The process of lung cancer care from initial lesion detection to treatment is complex, involving multiple steps, each introducing the potential for substantial delays. Identifying the steps with the greatest delays enables a focused effort to improve the timeliness of care-delivery, without sacrificing quality. We retrospectively reviewed clinical events from initial detection, through histologic diagnosis, radiologic and invasive staging, and medical clearance, to surgery for all patients who had an attempted resection of a suspected lung cancer in a community healthcare system. We used a computer process modeling approach to evaluate delays in care delivery, in order to identify potential 'bottlenecks' in waiting time, the reduction of which could produce greater care efficiency. We also conducted 'what-if' analyses to predict the relative impact of simulated changes in the care delivery process to determine the most efficient pathways to surgery. The waiting time between radiologic lesion detection and diagnostic biopsy, and the waiting time from radiologic staging to surgery were the two most critical bottlenecks impeding efficient care delivery (more than 3 times larger compared to reducing other waiting times). Additionally, instituting surgical consultation prior to cardiac consultation for medical clearance and decreasing the waiting time between CT scans and diagnostic biopsies, were potentially the most impactful measures to reduce care delays before surgery. Rigorous computer simulation modeling, using clinical data, can provide useful information to identify areas for improving the efficiency of care delivery by process engineering, for patients who receive surgery for lung cancer.
Geostationary microwave imagers detection criteria
NASA Technical Reports Server (NTRS)
Stacey, J. M.
1986-01-01
Geostationary orbit is investigated as a vantage point from which to sense remotely the surface features of the planet and its atmosphere, with microwave sensors. The geometrical relationships associated with geostationary altitude are developed to produce an efficient search pattern for the detection of emitting media and metal objects. Power transfer equations are derived from the roots of first principles and explain the expected values of the signal-to-clutter ratios for the detection of aircraft, ships, and buoys and for the detection of natural features where they are manifested as cold and warm eddies. The transport of microwave power is described for modeled detection where the direction of power flow is explained by the Zeroth and Second Laws of Thermodynamics. Mathematical expressions are derived that elucidate the detectability of natural emitting media and metal objects. Signal-to-clutter ratio comparisons are drawn among detectable objects that show relative detectability with a thermodynamic sensor and with a short-pulse radar.
Eco-Efficiency Analysis of biotechnological processes.
Saling, Peter
2005-07-01
Eco-Efficiency has been variously defined and analytically implemented by several workers. In most cases, Eco-Efficiency is taken to mean the ecological optimization of overall systems while not disregarding economic factors. Eco-Efficiency should increase the positive ecological performance of a commercial company in relation to economic value creation--or to reduce negative effects. Several companies use Eco-Efficiency Analysis for decision-making processes; and industrial examples of best practices in developing and implementing Eco-Efficiency have been reviewed. They clearly demonstrate the environmental and business benefits of Eco-Efficiency. An instrument for the early recognition and systematic detection of economic and environmental opportunities and risks for production processes in the chemical industry began use in 1997, since when different new features have been developed, leading to many examples. This powerful Eco-Efficiency Analysis allows a feasibility evaluation of existing and future business activities and is applied by BASF. In many cases, decision-makers are able to choose among alternative processes for making a product.
MPGD for breast cancer prevention: a high resolution and low dose radiation medical imaging
NASA Astrophysics Data System (ADS)
Gutierrez, R. M.; Cerquera, E. A.; Mañana, G.
2012-07-01
Early detection of small calcifications in mammograms is considered the best preventive tool of breast cancer. However, existing digital mammography with relatively low radiation skin exposure has limited accessibility and insufficient spatial resolution for small calcification detection. Micro Pattern Gaseous Detectors (MPGD) and associated technologies, increasingly provide new information useful to generate images of microscopic structures and make more accessible cutting edge technology for medical imaging and many other applications. In this work we foresee and develop an application for the new information provided by a MPGD camera in the form of highly controlled images with high dynamical resolution. We present a new Super Detail Image (S-DI) that efficiently profits of this new information provided by the MPGD camera to obtain very high spatial resolution images. Therefore, the method presented in this work shows that the MPGD camera with SD-I, can produce mammograms with the necessary spatial resolution to detect microcalcifications. It would substantially increase efficiency and accessibility of screening mammography to highly improve breast cancer prevention.
Enzyme-free detection and quantification of double-stranded nucleic acids.
Feuillie, Cécile; Merheb, Maxime Mohamad; Gillet, Benjamin; Montagnac, Gilles; Hänni, Catherine; Daniel, Isabelle
2012-08-01
We have developed a fully enzyme-free SERRS hybridization assay for specific detection of double-stranded DNA sequences. Although all DNA detection methods ranging from PCR to high-throughput sequencing rely on enzymes, this method is unique for being totally non-enzymatic. The efficiency of enzymatic processes is affected by alterations, modifications, and/or quality of DNA. For instance, a limitation of most DNA polymerases is their inability to process DNA damaged by blocking lesions. As a result, enzymatic amplification and sequencing of degraded DNA often fail. In this study we succeeded in detecting and quantifying, within a mixture, relative amounts of closely related double-stranded DNA sequences from Rupicapra rupicapra (chamois) and Capra hircus (goat). The non-enzymatic SERRS assay presented here is the corner stone of a promising approach to overcome the failure of DNA polymerase when DNA is too degraded or when the concentration of polymerase inhibitors is too high. It is the first time double-stranded DNA has been detected with a truly non-enzymatic SERRS-based method. This non-enzymatic, inexpensive, rapid assay is therefore a breakthrough in nucleic acid detection.
Photon-number-resolving SSPDs with system detection efficiency over 50% at telecom range
NASA Astrophysics Data System (ADS)
Zolotov, P.; Divochiy, A.; Vakhtomin, Yu.; Moshkova, M.; Morozov, P.; Seleznev, V.; Smirnov, K.
2018-02-01
We used technology of making high-efficiency superconducting single-photon detectors as a basis for improvement of photon-number-resolving devices. By adding optical cavity and using an improved NbN superconducting film, we enhanced previously reported system detection efficiency at telecom range for such detectors. Our results show that implementation of optical cavity helps to develop four-section device with quantum efficiency over 50% at 1.55 µm. Performed experimental studies of detecting multi-photon optical pulses showed irregularities over defining multi-photon through single-photon quantum efficiency.
A General theory of Signal Integration for Fault-Tolerant Dynamic Distributed Sensor Networks
1993-10-01
related to a) the architecture and fault- tolerance of the distributed sensor network, b) the proper synchronisation of sensor signals, c) the...Computational complexities of the problem of distributed detection. 5) Issues related to recording of events and synchronization in distributed sensor...Intervals for Synchronization in Real Time Distributed Systems", Submitted to Electronic Encyclopedia. 3. V. G. Hegde and S. S. Iyengar "Efficient
Remote detection of single emitters via optical waveguides
NASA Astrophysics Data System (ADS)
Then, Patrick; Razinskas, Gary; Feichtner, Thorsten; Haas, Philippe; Wild, Andreas; Bellini, Nicola; Osellame, Roberto; Cerullo, Giulio; Hecht, Bert
2014-05-01
The integration of lab-on-a-chip technologies with single-molecule detection techniques may enable new applications in analytical chemistry, biotechnology, and medicine. We describe a method based on the reciprocity theorem of electromagnetic theory to determine and optimize the detection efficiency of photons emitted by single quantum emitters through truncated dielectric waveguides of arbitrary shape positioned in their proximity. We demonstrate experimentally that detection of single quantum emitters via such waveguides is possible, confirming the predicted behavior of the detection efficiency. Our findings blaze the trail towards efficient lensless single-emitter detection compatible with large-scale optofluidic integration.
Towards radiation hard converter material for SiC-based fast neutron detectors
NASA Astrophysics Data System (ADS)
Tripathi, S.; Upadhyay, C.; Nagaraj, C. P.; Venkatesan, A.; Devan, K.
2018-05-01
In the present work, Geant4 Monte-Carlo simulations have been carried out to study the neutron detection efficiency of the various neutron to other charge particle (recoil proton) converter materials. The converter material is placed over Silicon Carbide (SiC) in Fast Neutron detectors (FNDs) to achieve higher neutron detection efficiency as compared to bare SiC FNDs. Hydrogenous converter material such as High-Density Polyethylene (HDPE) is preferred over other converter materials due to the virtue of its high elastic scattering reaction cross-section for fast neutron detection at room temperature. Upon interaction with fast neutrons, hydrogenous converter material generates recoil protons which liberate e-hole pairs in the active region of SiC detector to provide a detector signal. The neutron detection efficiency offered by HDPE converter is compared with several other hydrogenous materials viz., 1) Lithium Hydride (LiH), 2) Perylene, 3) PTCDA . It is found that, HDPE, though providing highest efficiency among various studied materials, cannot withstand high temperature and harsh radiation environment. On the other hand, perylene and PTCDA can sustain harsh environments, but yields low efficiency. The analysis carried out reveals that LiH is a better material for neutron to other charge particle conversion with competent efficiency and desired radiation hardness. Further, the thickness of LiH has also been optimized for various mono-energetic neutron beams and Am-Be neutron source generating a neutron fluence of 109 neutrons/cm2. The optimized thickness of LiH converter for fast neutron detection is found to be ~ 500 μm. However, the estimated efficiency for fast neutron detection is only 0.1%, which is deemed to be inadequate for reliable detection of neutrons. A sensitivity study has also been done investigating the gamma background effect on the neutron detection efficiency for various energy threshold of Low-Level Discriminator (LLD). The detection efficiency of a stacked structure concept has been explored by juxtaposing several converter-detector layers to improve the efficiency of LiH-SiC-based FNDs . It is observed that approximately tenfold efficiency improvement has been achieved—0.93% for ten layers stacked configuration vis-à-vis 0.1% of single converter-detector layer configuration. Finally, stacked detectors have also been simulated for different converter thicknesses to attain the efficiency as high as ~ 3.25% with the help of 50 stacked layers.
Big Data Clustering via Community Detection and Hyperbolic Network Embedding in IoT Applications.
Karyotis, Vasileios; Tsitseklis, Konstantinos; Sotiropoulos, Konstantinos; Papavassiliou, Symeon
2018-04-15
In this paper, we present a novel data clustering framework for big sensory data produced by IoT applications. Based on a network representation of the relations among multi-dimensional data, data clustering is mapped to node clustering over the produced data graphs. To address the potential very large scale of such datasets/graphs that test the limits of state-of-the-art approaches, we map the problem of data clustering to a community detection one over the corresponding data graphs. Specifically, we propose a novel computational approach for enhancing the traditional Girvan-Newman (GN) community detection algorithm via hyperbolic network embedding. The data dependency graph is embedded in the hyperbolic space via Rigel embedding, allowing more efficient computation of edge-betweenness centrality needed in the GN algorithm. This allows for more efficient clustering of the nodes of the data graph in terms of modularity, without sacrificing considerable accuracy. In order to study the operation of our approach with respect to enhancing GN community detection, we employ various representative types of artificial complex networks, such as scale-free, small-world and random geometric topologies, and frequently-employed benchmark datasets for demonstrating its efficacy in terms of data clustering via community detection. Furthermore, we provide a proof-of-concept evaluation by applying the proposed framework over multi-dimensional datasets obtained from an operational smart-city/building IoT infrastructure provided by the Federated Interoperable Semantic IoT/cloud Testbeds and Applications (FIESTA-IoT) testbed federation. It is shown that the proposed framework can be indeed used for community detection/data clustering and exploited in various other IoT applications, such as performing more energy-efficient smart-city/building sensing.
Big Data Clustering via Community Detection and Hyperbolic Network Embedding in IoT Applications
Sotiropoulos, Konstantinos
2018-01-01
In this paper, we present a novel data clustering framework for big sensory data produced by IoT applications. Based on a network representation of the relations among multi-dimensional data, data clustering is mapped to node clustering over the produced data graphs. To address the potential very large scale of such datasets/graphs that test the limits of state-of-the-art approaches, we map the problem of data clustering to a community detection one over the corresponding data graphs. Specifically, we propose a novel computational approach for enhancing the traditional Girvan–Newman (GN) community detection algorithm via hyperbolic network embedding. The data dependency graph is embedded in the hyperbolic space via Rigel embedding, allowing more efficient computation of edge-betweenness centrality needed in the GN algorithm. This allows for more efficient clustering of the nodes of the data graph in terms of modularity, without sacrificing considerable accuracy. In order to study the operation of our approach with respect to enhancing GN community detection, we employ various representative types of artificial complex networks, such as scale-free, small-world and random geometric topologies, and frequently-employed benchmark datasets for demonstrating its efficacy in terms of data clustering via community detection. Furthermore, we provide a proof-of-concept evaluation by applying the proposed framework over multi-dimensional datasets obtained from an operational smart-city/building IoT infrastructure provided by the Federated Interoperable Semantic IoT/cloud Testbeds and Applications (FIESTA-IoT) testbed federation. It is shown that the proposed framework can be indeed used for community detection/data clustering and exploited in various other IoT applications, such as performing more energy-efficient smart-city/building sensing. PMID:29662043
Recurrent neural network based virtual detection line
NASA Astrophysics Data System (ADS)
Kadikis, Roberts
2018-04-01
The paper proposes an efficient method for detection of moving objects in the video. The objects are detected when they cross a virtual detection line. Only the pixels of the detection line are processed, which makes the method computationally efficient. A Recurrent Neural Network processes these pixels. The machine learning approach allows one to train a model that works in different and changing outdoor conditions. Also, the same network can be trained for various detection tasks, which is demonstrated by the tests on vehicle and people counting. In addition, the paper proposes a method for semi-automatic acquisition of labeled training data. The labeling method is used to create training and testing datasets, which in turn are used to train and evaluate the accuracy and efficiency of the detection method. The method shows similar accuracy as the alternative efficient methods but provides greater adaptability and usability for different tasks.
Detecting event-related changes in organizational networks using optimized neural network models.
Li, Ze; Sun, Duoyong; Zhu, Renqi; Lin, Zihan
2017-01-01
Organizational external behavior changes are caused by the internal structure and interactions. External behaviors are also known as the behavioral events of an organization. Detecting event-related changes in organizational networks could efficiently be used to monitor the dynamics of organizational behaviors. Although many different methods have been used to detect changes in organizational networks, these methods usually ignore the correlation between the internal structure and external events. Event-related change detection considers the correlation and could be used for event recognition based on social network modeling and supervised classification. Detecting event-related changes could be effectively useful in providing early warnings and faster responses to both positive and negative organizational activities. In this study, event-related change in an organizational network was defined, and artificial neural network models were used to quantitatively determine whether and when a change occurred. To achieve a higher accuracy, Back Propagation Neural Networks (BPNNs) were optimized using Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO). We showed the feasibility of the proposed method by comparing its performance with that of other methods using two cases. The results suggested that the proposed method could identify organizational events based on a correlation between the organizational networks and events. The results also suggested that the proposed method not only has a higher precision but also has a better robustness than the previously used techniques.
Detecting event-related changes in organizational networks using optimized neural network models
Sun, Duoyong; Zhu, Renqi; Lin, Zihan
2017-01-01
Organizational external behavior changes are caused by the internal structure and interactions. External behaviors are also known as the behavioral events of an organization. Detecting event-related changes in organizational networks could efficiently be used to monitor the dynamics of organizational behaviors. Although many different methods have been used to detect changes in organizational networks, these methods usually ignore the correlation between the internal structure and external events. Event-related change detection considers the correlation and could be used for event recognition based on social network modeling and supervised classification. Detecting event-related changes could be effectively useful in providing early warnings and faster responses to both positive and negative organizational activities. In this study, event-related change in an organizational network was defined, and artificial neural network models were used to quantitatively determine whether and when a change occurred. To achieve a higher accuracy, Back Propagation Neural Networks (BPNNs) were optimized using Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO). We showed the feasibility of the proposed method by comparing its performance with that of other methods using two cases. The results suggested that the proposed method could identify organizational events based on a correlation between the organizational networks and events. The results also suggested that the proposed method not only has a higher precision but also has a better robustness than the previously used techniques. PMID:29190799
NASA Astrophysics Data System (ADS)
Marchetti, E.; Ripepe, M.; Ulivieri, G.; Kogelnig, A.
2015-11-01
Avalanche risk management is strongly related to the ability to identify and timely report the occurrence of snow avalanches. Infrasound has been applied to avalanche research and monitoring for the last 20 years but it never turned into an operational tool to identify clear signals related to avalanches. We present here a method based on the analysis of infrasound signals recorded by a small aperture array in Ischgl (Austria), which provides a significant improvement to overcome this limit. The method is based on array-derived wave parameters, such as back azimuth and apparent velocity. The method defines threshold criteria for automatic avalanche identification by considering avalanches as a moving source of infrasound. We validate the efficiency of the automatic infrasound detection with continuous observations with Doppler radar and we show how the velocity of a snow avalanche in any given path around the array can be efficiently derived. Our results indicate that a proper infrasound array analysis allows a robust, real-time, remote detection of snow avalanches that is able to provide the number and the time of occurrence of snow avalanches occurring all around the array, which represent key information for a proper validation of avalanche forecast models and risk management in a given area.
Assessing the severity of sleep apnea syndrome based on ballistocardiogram
Zhou, Xingshe; Zhao, Weichao; Liu, Fan; Ni, Hongbo; Yu, Zhiwen
2017-01-01
Background Sleep Apnea Syndrome (SAS) is a common sleep-related breathing disorder, which affects about 4-7% males and 2-4% females all around the world. Different approaches have been adopted to diagnose SAS and measure its severity, including the gold standard Polysomnography (PSG) in sleep study field as well as several alternative techniques such as single-channel ECG, pulse oximeter and so on. However, many shortcomings still limit their generalization in home environment. In this study, we aim to propose an efficient approach to automatically assess the severity of sleep apnea syndrome based on the ballistocardiogram (BCG) signal, which is non-intrusive and suitable for in home environment. Methods We develop an unobtrusive sleep monitoring system to capture the BCG signals, based on which we put forward a three-stage sleep apnea syndrome severity assessment framework, i.e., data preprocessing, sleep-related breathing events (SBEs) detection, and sleep apnea syndrome severity evaluation. First, in the data preprocessing stage, to overcome the limits of BCG signals (e.g., low precision and reliability), we utilize wavelet decomposition to obtain the outline information of heartbeats, and apply a RR correction algorithm to handle missing or spurious RR intervals. Afterwards, in the event detection stage, we propose an automatic sleep-related breathing event detection algorithm named Physio_ICSS based on the iterative cumulative sums of squares (i.e., the ICSS algorithm), which is originally used to detect structural breakpoints in a time series. In particular, to efficiently detect sleep-related breathing events in the obtained time series of RR intervals, the proposed algorithm not only explores the practical factors of sleep-related breathing events (e.g., the limit of lasting duration and possible occurrence sleep stages) but also overcomes the event segmentation issue (e.g., equal-length segmentation method might divide one sleep-related breathing event into different fragments and lead to incorrect results) of existing approaches. Finally, by fusing features extracted from multiple domains, we can identify sleep-related breathing events and assess the severity level of sleep apnea syndrome effectively. Conclusions Experimental results on 136 individuals of different sleep apnea syndrome severities validate the effectiveness of the proposed framework, with the accuracy of 94.12% (128/136). PMID:28445548
Adaptation of a military FTS to civilian air toxics measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engel, J.R.; Dorval, R.K.
1994-12-31
In many ways, the military problem of chemical agent detection is similar to the civilian problem of toxic and related air pollutants detection. A recent program to design a next generation Fourier transform spectrometer (FTS) based chemical agent detection system has been funded by the US Army. This program has resulted in an FTS system that has a number of characteristics that make it suitable for applications to the civilian measurement problem. Low power, low weight, and small size lead to low installation, operating and maintenance costs. Innovative use of diode lasers in place of HeNe reference sources leads tomore » long lifetimes and high reliability. Absolute scan position servos allow for highly efficient offset scanning. This paper will relate the performance of this system to present air monitoring requirements.« less
Dobrovolsky, Vasily N.
2013-01-01
Clastogens are potential human carcinogens whose detection by genotoxicity assays is important for safety assessment. Although some endogenous genes are sensitive to the mutagenicity of clastogens, many genes that are used as reporters for in vivo mutation (e.g. transgenes) are not. In this study, we have compared responses in the erythrocyte Pig-a gene mutation assay with responses in a gene mutation assay that is relatively sensitive to clastogens, the lymphocyte Hprt assay, and in the reticulocyte micronucleus (MN) assay, which provides a direct measurement of clastogenicity. Male F344 rats were treated acutely with X-rays, cyclophosphamide (CP) and Cis-platin (Cis-Pt), and the frequency of micronucleated reticulocytes (MN RETs) in peripheral blood was measured 1 or 2 days later. The frequencies of CD59-deficient Pig-a mutant erythrocytes and 6-thioguanine-resistant Hprt mutant T-lymphocytes were measured at several times up to 16 weeks after the exposure. All three clastogens induced strong increases in the frequency of MN RETs, with X-rays and Cis-Pt producing near linear dose responses. The three agents also were positive in the two gene mutation assays although the assays detected them with different efficiencies. The Pig-a assay was more efficient in detecting the effect of Cis-Pt treatment, whereas the Hprt assay was more efficient for X-rays and CP. The results indicate that the erythrocyte Pig-a assay can detect the in vivo mutagenicity of clastogens although its sensitivity is variable in comparison with the lymphocyte Hprt assay. PMID:23677247
Automatic Seizure Detection in Rats Using Laplacian EEG and Verification with Human Seizure Signals
Feltane, Amal; Boudreaux-Bartels, G. Faye; Besio, Walter
2012-01-01
Automated detection of seizures is still a challenging problem. This study presents an approach to detect seizure segments in Laplacian electroencephalography (tEEG) recorded from rats using the tripolar concentric ring electrode (TCRE) configuration. Three features, namely, median absolute deviation, approximate entropy, and maximum singular value were calculated and used as inputs into two different classifiers: support vector machines and adaptive boosting. The relative performance of the extracted features on TCRE tEEG was examined. Results are obtained with an overall accuracy between 84.81 and 96.51%. In addition to using TCRE tEEG data, the seizure detection algorithm was also applied to the recorded EEG signals from Andrzejak et al. database to show the efficiency of the proposed method for seizure detection. PMID:23073989
Sensitivity of photoacoustic microscopy
Yao, Junjie; Wang, Lihong V.
2014-01-01
Building on its high spatial resolution, deep penetration depth and excellent image contrast, 3D photoacoustic microscopy (PAM) has grown tremendously since its first publication in 2005. Integrating optical excitation and acoustic detection, PAM has broken through both the optical diffusion and optical diffraction limits. PAM has 100% relative sensitivity to optical absorption (i.e., a given percentage change in the optical absorption coefficient yields the same percentage change in the photoacoustic amplitude), and its ultimate detection sensitivity is limited only by thermal noise. Focusing on the engineering aspects of PAM, this Review discusses the detection sensitivity of PAM, compares the detection efficiency of different PAM designs, and summarizes the imaging performance of various endogenous and exogenous contrast agents. It then describes representative PAM applications with high detection sensitivity, and outlines paths to further improvement. PMID:25302158
Lesniak, Anna; Walczak, Marta; Jezierski, Tadeusz; Sacharczuk, Mariusz; Gawkowski, Maciej; Jaszczak, Kazimierz
2008-01-01
The outstanding sensitivity of the canine olfactory system has been acknowledged by using sniffer dogs in military and civilian service for detection of a variety of odors. It is hypothesized that the canine olfactory ability is determined by polymorphisms in olfactory receptor (OR) genes. We investigated 5 OR genes for polymorphic sites which might affect the olfactory ability of service dogs in different fields of specific substance detection. All investigated OR DNA sequences proved to have allelic variants, the majority of which lead to protein sequence alteration. Homozygous individuals at 2 gene loci significantly differed in their detection skills from other genotypes. This suggests a role of specific alleles in odor detection and a linkage between single-nucleotide polymorphism and odor recognition efficiency.
Column-coupling strategies for multidimensional electrophoretic separation techniques.
Kler, Pablo A; Sydes, Daniel; Huhn, Carolin
2015-01-01
Multidimensional electrophoretic separations represent one of the most common strategies for dealing with the analysis of complex samples. In recent years we have been witnessing the explosive growth of separation techniques for the analysis of complex samples in applications ranging from life sciences to industry. In this sense, electrophoretic separations offer several strategic advantages such as excellent separation efficiency, different methods with a broad range of separation mechanisms, and low liquid consumption generating less waste effluents and lower costs per analysis, among others. Despite their impressive separation efficiency, multidimensional electrophoretic separations present some drawbacks that have delayed their extensive use: the volumes of the columns, and consequently of the injected sample, are significantly smaller compared to other analytical techniques, thus the coupling interfaces between two separations components must be very efficient in terms of providing geometrical precision with low dead volume. Likewise, very sensitive detection systems are required. Additionally, in electrophoretic separation techniques, the surface properties of the columns play a fundamental role for electroosmosis as well as the unwanted adsorption of proteins or other complex biomolecules. In this sense the requirements for an efficient coupling for electrophoretic separation techniques involve several aspects related to microfluidics and physicochemical interactions of the electrolyte solutions and the solid capillary walls. It is interesting to see how these multidimensional electrophoretic separation techniques have been used jointly with different detection techniques, for intermediate detection as well as for final identification and quantification, particularly important in the case of mass spectrometry. In this work we present a critical review about the different strategies for coupling two or more electrophoretic separation techniques and the different intermediate and final detection methods implemented for such separations.
Efficiency transfer using the GEANT4 code of CERN for HPGe gamma spectrometry.
Chagren, S; Tekaya, M Ben; Reguigui, N; Gharbi, F
2016-01-01
In this work we apply the GEANT4 code of CERN to calculate the peak efficiency in High Pure Germanium (HPGe) gamma spectrometry using three different procedures. The first is a direct calculation. The second corresponds to the usual case of efficiency transfer between two different configurations at constant emission energy assuming a reference point detection configuration and the third, a new procedure, consists on the transfer of the peak efficiency between two detection configurations emitting the gamma ray in different energies assuming a "virtual" reference point detection configuration. No pre-optimization of the detector geometrical characteristics was performed before the transfer to test the ability of the efficiency transfer to reduce the effect of the ignorance on their real magnitude on the quality of the transferred efficiency. The obtained and measured efficiencies were found in good agreement for the two investigated methods of efficiency transfer. The obtained agreement proves that Monte Carlo method and especially the GEANT4 code constitute an efficient tool to obtain accurate detection efficiency values. The second investigated efficiency transfer procedure is useful to calibrate the HPGe gamma detector for any emission energy value for a voluminous source using one point source detection efficiency emitting in a different energy as a reference efficiency. The calculations preformed in this work were applied to the measurement exercise of the EUROMET428 project. A measurement exercise where an evaluation of the full energy peak efficiencies in the energy range 60-2000 keV for a typical coaxial p-type HpGe detector and several types of source configuration: point sources located at various distances from the detector and a cylindrical box containing three matrices was performed. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gemayel, Rachel; Hellebust, Stig; Temime-Roussel, Brice; Hayeck, Nathalie; Van Elteren, Johannes T.; Wortham, Henri; Gligorovski, Sasho
2016-05-01
Hyphenated laser ablation-mass spectrometry instruments have been recognized as useful analytical tools for the detection and chemical characterization of aerosol particles. Here we describe the performances of a laser ablation aerosol particle time-of-flight mass spectrometer (LAAP-ToF-MS) which was designed for aerodynamic particle sizing using two 405 nm scattering lasers and characterization of the chemical composition of single aerosol particle via ablation/ionization by a 193 nm excimer laser and detection in a bipolar time-of-flight mass spectrometer with a mass resolving power of m/Δm > 600.
We describe a laboratory based optimization strategy for the development of an analytical methodology for characterization of atmospheric particles using the LAAP-ToF-MS instrument in combination with a particle generator, a differential mobility analyzer and an optical particle counter. We investigated the influence of particle number concentration, particle size and particle composition on the detection efficiency. The detection efficiency is a product of the scattering efficiency of the laser diodes and the ionization efficiency or hit rate of the excimer laser. The scattering efficiency was found to vary between 0.6 and 1.9 % with an average of 1.1 %; the relative standard deviation (RSD) was 17.0 %. The hit rate exhibited good repeatability with an average value of 63 % and an RSD of 18 %. In addition to laboratory tests, the LAAP-ToF-MS was used to sample ambient air during a period of 6 days at the campus of Aix-Marseille University, situated in the city center of Marseille, France. The optimized LAAP-ToF-MS methodology enables high temporal resolution measurements of the chemical composition of ambient particles, provides new insights into environmental science, and a new investigative tool for atmospheric chemistry and physics, aerosol science and health impact studies.
Optimization and Characterization of a Novel Self Powered Solid State Neutron Detector
NASA Astrophysics Data System (ADS)
Clinton, Justin
There is a strong interest in detecting both the diversion of special nuclear material (SNM) from legitimate, peaceful purposes and the transport of illicit SNM across domestic and international borders and ports. A simple solid-state detector employs a planar solar-cell type p-n junction and a thin conversion layer that converts incident neutrons into detectable charged particles, such as protons, alpha-particles, and heavier ions. Although simple planar devices can act as highly portable, low cost detectors, they have historically been limited to relatively low detection efficiencies; ˜10% and ˜0.2% for thermal and fast detectors, respectively. To increase intrinsic detection efficiency, the incorporation of 3D microstructures into p-i-n silicon devices was proposed. In this research, a combination of existing and new types of detector microstructures were investigated; Monte Carlo models, based on analytical calculations, were constructed and characterized using the GEANT4 simulation toolkit. The simulation output revealed that an array of etched hexagonal holes arranged in a honeycomb pattern and filled with either enriched (99% 10B) boron or parylene resulted in the highest intrinsic detection efficiencies of 48% and 0.88% for thermal and fast neutrons, respectively. The optimal parameters corresponding to each model were utilized as the basis for the fabrication of several prototype detectors. A calibrated 252Cf spontaneous fission source was utilized to generate fast neutrons, while thermal neutrons were created by placing the 252Cf in an HDPE housing designed and optimized using the MCNP simulation software. Upon construction, thermal neutron calibration was performed via activation analysis of gold foils and measurements from a 6Li loaded glass scintillator. Experimental testing of the prototype detectors resulted in maximum intrinsic efficiencies of 4.5 and 0.12% for the thermal and fast devices, respectively. The prototype thermal device was filled with natural (19% 10B) boron; scaling the response to 99% 10B enriched boron resulted in an intrinsic efficiency of 22.5%, one of the highest results in the literature. A comparison of simulated and experimental detector responses demonstrated a high degree of correlation, validating the conceptual models.
EPR spin trapping of oxygen radicals in plants: a methodological overview.
Bacić, Goran; Mojović, Milos
2005-06-01
We present a brief account of the difficulties involved in detection of oxygen free radicals in plants and give a rationale for using the EPR spin trapping technique in such studies. Comparative analysis of characteristics of different spin traps is given, having in mind their suitability in trapping oxygen-centered free radicals. Certain technical aspects of EPR experiments related to successful trapping of free radicals are discussed. Previous studies of trapping of oxygen radicals in plants are reviewed in terms of how efficient the experimental approach employed has been in their detection and how this influences conclusions about the mechanisms of their production. In addition, we analyze the potential of spin labels in the analysis of free radical production in plants and demonstrate that the combination of EPR spin traps and spin labels is extremely efficient for this purpose.
An enhanced ability to efficiently detect large maintenance related emissions is required to ensure sustainable oil and gas development. To help achieve this goal, a new remote inspection method, Other Test Method (OTM) 33A, was developed and utilized to quantify short-term metha...
USDA-ARS?s Scientific Manuscript database
Locating buried agricultural drainage pipes is a difficult problem confronting farmers and land improvement contractors, especially in the Midwest U.S., where the removal of excess soil water using subsurface drainage systems is a common farm practice. Enhancing the efficiency of soil water removal ...
Mehdinia, Ali; Ghassempour, Alireza; Rafati, Hasan; Heydari, Rouhollah
2007-03-21
A headspace solid-phase microextraction and gas chromatography-nitrogen-phosphorous detection (HS-SPME-GC-NPD) method using polypyrrole (PPy) fibers has been introduced to determine two derivatives of pyrrolidone; N-vinyl-2-pyrrolidone (NVP) and N-methyl-2-pyrrolidone (NMP). Two types of PPy fibers, prepared using organic and aqueous media, were compared in terms of extraction efficiency and thermal stability. It was found that PPy film prepared using organic medium (i.e. acetonitrile) had higher extraction efficiency and more thermal stability compared to the film prepared in aqueous medium. To enhance the sensitivity of HS-SPME, the effects of pH, ionic strength, extraction time, extraction temperature and the headspace volume on the extraction efficiency were optimized. Using the results of this research, high sensitivity and selectivity had been achieved due to the combination of the high extraction efficiency of PPy film prepared in organic medium and the high sensitivity and selectivity of nitrogen-phosphorous detection. Linear range of the analytes was found to be between 1.0 and 1000 microg L(-1) with regression coefficients (R(2)) of 0.998 and 0.997 for NVP and NMP, consequently. Limits of detection (LODs) were 0.074 and 0.081 microg L(-1) for NVP and NMP, respectively. Relative standard deviation (R.S.D.) for five replications of analyses was found to be less than 6.0%. In real samples the mean recoveries were 94.81% and 94.15% for NVP and NMP, respectively. The results demonstrated the suitability of the HS-SPME technique for analyzing NVP and NMP in two different pharmaceutical matrices. In addition, the method was used for simultaneous detection of NVP, 2-pyrrolidone (2-Pyr), gamma-butyrolactone (GBL) and ethanolamine (EA) compounds.
Quigley, W W; Ecker, S T; Vahey, P G; Synovec, R E
1999-10-01
The development of liquid chromatography with a commercially available cyano propyl stationary phase and a 100% water mobile phase is reported. Separations were performed at ambient temperature, simplifying instrumental requirements. Excellent separation efficiency using a water mobile phase was achieved, for example N=18 800, or 75 200 m(-1), was obtained for resorcinol, at a retention factor of k'=4.88 (retention time of 9.55 min at 1 ml min(-1) for a 25 cmx4.6 mm i.d. column, packed with 5 mum diameter particles with the cyano propyl stationary phase). A separation via reversed phase liquid chromatography (RP-LC) with a 100% water mobile phase of six phenols and related compounds was compared to a separation of the same compounds by traditional RP-LC, using octadecylsilane (ODS), i.e. C18, bound to silica and an aqueous mobile phase modified with acetonitrile. Nearly identical analysis time was achieved for the separation of six phenols and related compounds using the cyano propyl stationary phase with a 100% water mobile phase, as compared to traditional RP-LC requiring a relatively large fraction of organic solvent modifier in the mobile phase (25% acetonitrile:75% water). Additional understanding of the retention mechanism with the 100% water mobile phase was obtained by relating measured retention factors of aliphatic alcohols, phenols and related compounds, and chlorinated hydrocarbons to their octanol:water partition coefficients. The retention mechanism is found to be consistent with a RP-LC mechanism coupled with an additional retention effect due to residual hydroxyl groups on the cyano propyl stationary phase. Advantages due to a 100% water mobile phase for the chemical analysis of alcohol mixtures and chlorinated hydrocarbons are reported. By placing an absorbance detector in-series and preceding a novel drop interface to a flame ionization detector (FID), selective detection of a separated mixture of phenols and related compounds and aliphatic alcohols is achieved. The compound class of aliphatic alcohols is selectively and sensitively detected by the drop interface/FID, and the phenols and related compounds are selectively and sensitively detected by absorbance detection at 200 nm. The separation and detection of chlorinated hydrocarbons in a water sample matrix further illustrated the advantages of this methodology. The sensitivity and selectivity of the FID signal for the chlorinated hydrocarbons are significantly better than absorbance detection, even at 200 nm. This methodology is well suited to continuous and automated monitoring of water samples. The applicability of samples initially in an organic solvent matrix is explored, since an organic sample matrix may effect retention and efficiency. Separations in acetonitrile and isopropyl alcohol sample matrices compared well to separations with a water sample matrix.
NASA Astrophysics Data System (ADS)
Tian, Yuexin; Gao, Kun; Liu, Ying; Han, Lu
2015-08-01
Aiming at the nonlinear and non-Gaussian features of the real infrared scenes, an optimal nonlinear filtering based algorithm for the infrared dim target tracking-before-detecting application is proposed. It uses the nonlinear theory to construct the state and observation models and uses the spectral separation scheme based Wiener chaos expansion method to resolve the stochastic differential equation of the constructed models. In order to improve computation efficiency, the most time-consuming operations independent of observation data are processed on the fore observation stage. The other observation data related rapid computations are implemented subsequently. Simulation results show that the algorithm possesses excellent detection performance and is more suitable for real-time processing.
Automatic temporal segment detection via bilateral long short-term memory recurrent neural networks
NASA Astrophysics Data System (ADS)
Sun, Bo; Cao, Siming; He, Jun; Yu, Lejun; Li, Liandong
2017-03-01
Constrained by the physiology, the temporal factors associated with human behavior, irrespective of facial movement or body gesture, are described by four phases: neutral, onset, apex, and offset. Although they may benefit related recognition tasks, it is not easy to accurately detect such temporal segments. An automatic temporal segment detection framework using bilateral long short-term memory recurrent neural networks (BLSTM-RNN) to learn high-level temporal-spatial features, which synthesizes the local and global temporal-spatial information more efficiently, is presented. The framework is evaluated in detail over the face and body database (FABO). The comparison shows that the proposed framework outperforms state-of-the-art methods for solving the problem of temporal segment detection.
Li, Hao; Xu, Qun; Wang, Xuzhe; Liu, Wei
2018-06-07
Surface-enhanced Raman spectroscopy (SERS) based on plasmonic semiconductive material has been proved to be an efficient tool to detect trace of substances, while the relatively weak plasmon resonance compared with noble metal materials restricts its practical application. Herein, for the first time a facile method to fabricate amorphous H x MoO 3 quantum dots with tunable plasmon resonance is developed by a controlled oxidization route. The as-prepared amorphous H x MoO 3 quantum dots show tunable plasmon resonance in the region of visible and near-infrared light. Moreover, the tunability induced by SC CO 2 is analyzed by a molecule kinetic theory combined with a molecular thermodynamic model. More importantly, the ultrahigh enhancement factor of amorphous H x MoO 3 quantum dots detecting on methyl blue can be up to 9.5 × 10 5 with expending the limit of detection to 10 -9 m. Such a remarkable porperty can also be found in this H x MoO 3 -based sensor with Rh6G and RhB as probe molecules, suggesting that the amorphous H x MoO 3 quantum dot is an efficient candidate for SERS on molecule detection in high precision. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrari, Simone; Kahl, Oliver; Kovalyuk, Vadim
We investigate single- and multi-photon detection regimes of superconducting nanowire detectors embedded in silicon nitride nanophotonic circuits. At near-infrared wavelengths, simultaneous detection of up to three photons is observed for 120 nm wide nanowires biased far from the critical current, while narrow nanowires below 100 nm provide efficient single photon detection. A theoretical model is proposed to determine the different detection regimes and to calculate the corresponding internal quantum efficiency. The predicted saturation of the internal quantum efficiency in the single photon regime agrees well with plateau behavior observed at high bias currents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diercks, David R., E-mail: ddiercks@mines.edu; Gorman, Brian P.; Kirchhofer, Rita
2013-11-14
The field evaporation behavior of c-axis GaN nanowires was explored in two different laser-pulsed atom probe tomography (APT) instruments. Transmission electron microscopy imaging before and after atom probe tomography analysis was used to assist in reconstructing the data and assess the observed evaporation behavior. It was found that the ionic species exhibited preferential locations for evaporation related to the underlying crystal structure of the GaN and that the species which evaporated from these locations was dependent on the pulsed laser energy. Additionally, the overall stoichiometry measured by APT was significantly correlated with the energy of the laser pulses. At themore » lowest laser energies, the apparent composition was nitrogen-rich, while higher laser energies resulted in measurements of predominantly gallium compositions. The percent of ions detected (detection efficiency) for these specimens was found to be considerably below that shown for other materials, even for laser energies which produced the expected Ga:N ratio. The apparent stoichiometry variation and low detection efficiency appear to be a result of evaporation of Ga ions between laser pulses at the lowest laser energies and evaporation of neutral N{sub 2} species at higher laser energies. All of these behaviors are tied to the formation of nitrogen-nitrogen bonds on the tip surface, which occurred under all analysis conditions. Similar field evaporation behaviors are therefore expected for other materials where the anionic species readily form a strong diatomic bond.« less
Time Series Discord Detection in Medical Data using a Parallel Relational Database
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodbridge, Diane; Rintoul, Mark Daniel; Wilson, Andrew T.
Recent advances in sensor technology have made continuous real-time health monitoring available in both hospital and non-hospital settings. Since data collected from high frequency medical sensors includes a huge amount of data, storing and processing continuous medical data is an emerging big data area. Especially detecting anomaly in real time is important for patients’ emergency detection and prevention. A time series discord indicates a subsequence that has the maximum difference to the rest of the time series subsequences, meaning that it has abnormal or unusual data trends. In this study, we implemented two versions of time series discord detection algorithmsmore » on a high performance parallel database management system (DBMS) and applied them to 240 Hz waveform data collected from 9,723 patients. The initial brute force version of the discord detection algorithm takes each possible subsequence and calculates a distance to the nearest non-self match to find the biggest discords in time series. For the heuristic version of the algorithm, a combination of an array and a trie structure was applied to order time series data for enhancing time efficiency. The study results showed efficient data loading, decoding and discord searches in a large amount of data, benefiting from the time series discord detection algorithm and the architectural characteristics of the parallel DBMS including data compression, data pipe-lining, and task scheduling.« less
Time Series Discord Detection in Medical Data using a Parallel Relational Database [PowerPoint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodbridge, Diane; Wilson, Andrew T.; Rintoul, Mark Daniel
Recent advances in sensor technology have made continuous real-time health monitoring available in both hospital and non-hospital settings. Since data collected from high frequency medical sensors includes a huge amount of data, storing and processing continuous medical data is an emerging big data area. Especially detecting anomaly in real time is important for patients’ emergency detection and prevention. A time series discord indicates a subsequence that has the maximum difference to the rest of the time series subsequences, meaning that it has abnormal or unusual data trends. In this study, we implemented two versions of time series discord detection algorithmsmore » on a high performance parallel database management system (DBMS) and applied them to 240 Hz waveform data collected from 9,723 patients. The initial brute force version of the discord detection algorithm takes each possible subsequence and calculates a distance to the nearest non-self match to find the biggest discords in time series. For the heuristic version of the algorithm, a combination of an array and a trie structure was applied to order time series data for enhancing time efficiency. The study results showed efficient data loading, decoding and discord searches in a large amount of data, benefiting from the time series discord detection algorithm and the architectural characteristics of the parallel DBMS including data compression, data pipe-lining, and task scheduling.« less
NASA Astrophysics Data System (ADS)
Gerist, Saleheh; Maheri, Mahmoud R.
2016-12-01
In order to solve structural damage detection problem, a multi-stage method using particle swarm optimization is presented. First, a new spars recovery method, named Basis Pursuit (BP), is utilized to preliminarily identify structural damage locations. The BP method solves a system of equations which relates the damage parameters to the structural modal responses using the sensitivity matrix. Then, the results of this stage are subsequently enhanced to the exact damage locations and extents using the PSO search engine. Finally, the search space is reduced by elimination of some low damage variables using micro search (MS) operator embedded in the PSO algorithm. To overcome the noise present in structural responses, a method known as Basis Pursuit De-Noising (BPDN) is also used. The efficiency of the proposed method is investigated by three numerical examples: a cantilever beam, a plane truss and a portal plane frame. The frequency response is used to detect damage in the examples. The simulation results demonstrate the accuracy and efficiency of the proposed method in detecting multiple damage cases and exhibit its robustness regarding noise and its advantages compared to other reported solution algorithms.
Rodrigues, João Fabrício Mota; Coelho, Marco Túlio Pacheco
2016-01-01
Sampling the biodiversity is an essential step for conservation, and understanding the efficiency of sampling methods allows us to estimate the quality of our biodiversity data. Sex ratio is an important population characteristic, but until now, no study has evaluated how efficient are the sampling methods commonly used in biodiversity surveys in estimating the sex ratio of populations. We used a virtual ecologist approach to investigate whether active and passive capture methods are able to accurately sample a population's sex ratio and whether differences in movement pattern and detectability between males and females produce biased estimates of sex-ratios when using these methods. Our simulation allowed the recognition of individuals, similar to mark-recapture studies. We found that differences in both movement patterns and detectability between males and females produce biased estimates of sex ratios. However, increasing the sampling effort or the number of sampling days improves the ability of passive or active capture methods to properly sample sex ratio. Thus, prior knowledge regarding movement patterns and detectability for species is important information to guide field studies aiming to understand sex ratio related patterns.
Rodrigues, João Fabrício Mota; Coelho, Marco Túlio Pacheco
2016-01-01
Sampling the biodiversity is an essential step for conservation, and understanding the efficiency of sampling methods allows us to estimate the quality of our biodiversity data. Sex ratio is an important population characteristic, but until now, no study has evaluated how efficient are the sampling methods commonly used in biodiversity surveys in estimating the sex ratio of populations. We used a virtual ecologist approach to investigate whether active and passive capture methods are able to accurately sample a population’s sex ratio and whether differences in movement pattern and detectability between males and females produce biased estimates of sex-ratios when using these methods. Our simulation allowed the recognition of individuals, similar to mark-recapture studies. We found that differences in both movement patterns and detectability between males and females produce biased estimates of sex ratios. However, increasing the sampling effort or the number of sampling days improves the ability of passive or active capture methods to properly sample sex ratio. Thus, prior knowledge regarding movement patterns and detectability for species is important information to guide field studies aiming to understand sex ratio related patterns. PMID:27441554
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagstrom, D.J.; Snow, K.; Yuan, Z.
1994-09-01
For single gene defects in which there are a variety of mutations with significant frequencies, it is a challenge to find an efficient and sensitive method for mutation detection. For example, although 70% to 75% of CF chromosomes in a North American Caucasian population have the mutation {delta}F508, more than 400 mutations (mostly single base pair substitutions) are represented on the remaining chromosomes. SSCP analysis is a relatively straightforward procedure and therefore suitable for routine use in a clinical laboratory. However, previous reports have demonstrated suboptimal sensitivity rates in screening for mutations. We have developed a novel set of conditionsmore » which greatly enhances sensitivity and efficiency of SSCP. Our protocol incorporates multiplex PCR, stepping of wattages during electrophoresis and increased salt concentration at the anode relative to the gel. To screen for mutations in the CFTR gene, three multiplex PCR reactions are performed using identical thermocycler parameters. Sizes of PCR products range from 441 bp to 196 bp: size differences of > 30 bp are necessary to ensure separation during electrophoresis. All PCR products are separated by electrophoresis at room temperature on a single gel containing 8% (37.5:1) polyacrylamide, 5% glycerol and 1x TBE. Using an anode buffer with increased salt (2x TBE) sharpens smaller sized bands, and stepping watts from 5W to 20W during electrophoresis enhances sensitivity. Positive controls were used to demonstrate that mutations could be detected. Other mutations or polymorphisms were verified by cycle sequencing of PCR products or by alternative PCR-based assays for the more common mutations. Thus, using 3 PCR reactions per patient and one gel condition, we are able to achieve a CF mutation detection rate of approximately 90% in a North American Caucasian population.« less
Augmenting groundwater monitoring networks near landfills with slurry cutoff walls.
Hudak, Paul F
2004-01-01
This study investigated the use of slurry cutoff walls in conjunction with monitoring wells to detect contaminant releases from a solid waste landfill. The 50 m wide by 75 m long landfill was oriented oblique to regional groundwater flow in a shallow sand aquifer. Computer models calculated flow fields and the detection capability of six monitoring networks, four including a 1 m wide by 50 m long cutoff wall at various positions along the landfill's downgradient boundaries and upgradient of the landfill. Wells were positioned to take advantage of convergent flow induced downgradient of the cutoff walls. A five-well network with no cutoff wall detected 81% of contaminant plumes originating within the landfill's footprint before they reached a buffer zone boundary located 50 m from the landfill's downgradient corner. By comparison, detection efficiencies of networks augmented with cutoff walls ranged from 81 to 100%. The most efficient network detected 100% of contaminant releases with four wells, with a centrally located, downgradient cutoff wall. In general, cutoff walls increased detection efficiency by delaying transport of contaminant plumes to the buffer zone boundary, thereby allowing them to increase in size, and by inducing convergent flow at downgradient areas, thereby funneling contaminant plumes toward monitoring wells. However, increases in detection efficiency were too small to offset construction costs for cutoff walls. A 100% detection efficiency was also attained by an eight-well network with no cutoff wall, at approximately one-third the cost of the most efficient wall-augmented network.
Vibrations Detection in Industrial Pumps Based on Spectral Analysis to Increase Their Efficiency
NASA Astrophysics Data System (ADS)
Rachid, Belhadef; Hafaifa, Ahmed; Boumehraz, Mohamed
2016-03-01
Spectral analysis is the key tool for the study of vibration signals in rotating machinery. In this work, the vibration analysis applied for conditional preventive maintenance of such machines is proposed, as part of resolved problems related to vibration detection on the organs of these machines. The vibration signal of a centrifugal pump was treated to mount the benefits of the approach proposed. The obtained results present the signal estimation of a pump vibration using Fourier transform technique compared by the spectral analysis methods based on Prony approach.
There is at present no comprehensive early-detection monitoring for exotic species in the Great Lakes, despite their continued arrival and impacts and recognition that early detection is key to effective management. We evaluated strategies for efficient early-detection monitorin...
Evaluation of Long-Range Lightning Detection Networks Using TRMM/LIS Observations
NASA Technical Reports Server (NTRS)
Rudlosky, Scott D.; Holzworth, Robert H.; Carey, Lawrence D.; Schultz, Chris J.; Bateman, Monte; Cecil, Daniel J.; Cummins, Kenneth L.; Petersen, Walter A.; Blakeslee, Richard J.; Goodman, Steven J.
2011-01-01
Recent advances in long-range lightning detection technologies have improved our understanding of thunderstorm evolution in the data sparse oceanic regions. Although the expansion and improvement of long-range lightning datasets have increased their applicability, these applications (e.g., data assimilation, atmospheric chemistry, and aviation weather hazards) require knowledge of the network detection capabilities. Toward this end, the present study evaluates data from the World Wide Lightning Location Network (WWLLN) using observations from the Lightning Imaging Sensor (LIS) aboard the Tropical Rainfall Measurement Mission (TRMM) satellite. The study documents the WWLLN detection efficiency and location accuracy relative to LIS observations, describes the spatial variability in these performance metrics, and documents the characteristics of LIS flashes that are detected by WWLLN. Improved knowledge of the WWLLN detection capabilities will allow researchers, algorithm developers, and operational users to better prepare for the spatial and temporal coverage of the upcoming GOES-R Geostationary Lightning Mapper (GLM).
Capture-recapture survival models taking account of transients
Pradel, R.; Hines, J.E.; Lebreton, J.D.; Nichols, J.D.
1997-01-01
The presence of transient animals, common enough in natural populations, invalidates the estimation of survival by traditional capture- recapture (CR) models designed for the study of residents only. Also, the study of transit is interesting in itself. We thus develop here a class of CR models to describe the presence of transients. In order to assess the merits of this approach we examme the bias of the traditional survival estimators in the presence of transients in relation to the power of different tests for detecting transients. We also compare the relative efficiency of an ad hoc approach to dealing with transients that leaves out the first observation of each animal. We then study a real example using lazuli bunting (Passerina amoena) and, in conclusion, discuss the design of an experiment aiming at the estimation of transience. In practice, the presence of transients is easily detected whenever the risk of bias is high. The ad hoc approach, which yields unbiased estimates for residents only, is satisfactory in a time-dependent context but poorly efficient when parameters are constant. The example shows that intermediate situations between strict 'residence' and strict 'transience' may exist in certain studies. Yet, most of the time, if the study design takes into account the expected length of stay of a transient, it should be possible to efficiently separate the two categories of animals.
Hansman, Jan; Mrdja, Dusan; Slivka, Jaroslav; Krmar, Miodrag; Bikit, Istvan
2015-05-01
The activity of environmental samples is usually measured by high resolution HPGe gamma spectrometers. In this work a set-up with a 9in.x9in. NaI well-detector with 3in. thickness and a 3in.×3in. plug detector in a 15-cm-thick lead shielding is considered as an alternative (Hansman, 2014). In spite of its much poorer resolution, it requires shorter measurement times and may possibly give better detection limits. In order to determine the U-238, Th-232, and K-40 content in the samples by this NaI(Tl) detector, the corresponding photopeak efficiencies must be known. These efficiencies can be found for certain source matrix and geometry by Geant4 simulation. We found discrepancy between simulated and experimental efficiencies of 5-50%, which can be mainly due to effects of light collection within the detector volume, an effect which was not taken into account by simulations. The influence of random coincidence summing on detection efficiency for radionuclide activities in the range 130-4000Bq, was negligible. This paper describes also, how the efficiency in the detector depends on the position of the radioactive point source. To avoid large dead time, relatively weak Mn-54, Co-60 and Na-22 point sources of a few kBq were used. Results for single gamma lines and also for coincidence summing gamma lines are presented. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevan, L.
1984-05-01
The structural aspects controlling charge separation in molecular photoionization reactions in organized molecular assemblies involving micelles and vesicles are being studied by optical and electron magnetic resonance techniques including the time domain technique of electron spin echo modulation (ESEM). Photoionization of N,N,N',N'-tetramethylbenzidine (TMB) to give the cation radical has been carried out in both liquid and frozen micellar and vesicular solutions. Cation-water interactions have been detected by ESEM analysis and indicate that the cation is localized asymmetrically within these organized molecular assemblies. x-Doxylstearic acid spin probes have been used to determine that the neutral TMB molecule before photoionization is alsomore » localized asymmetrically within such organized molecular assemblies. Electron spin echo detection of laser photogenerated TMB cation in liquid micellar solutions gives a direct measurement of the phase memory magnetic relaxation time which gives additional structural information. The photoionization efficiency has been related to cation-water interactions measured by ESEM. The photoionization efficiency is also dependent on surface charge and is about twofold greater in cationic micelles and vesicles compared to anionic micelles and vesicles. TMB is in a less polar environment in vesicles compared to micelles consistent with ESEM results. The preferential adsorption of metal species at micellar surfaces has been detected by ESEM. Modifications in the micelle surface have been effected by added salts and varying counterions which have been related to cation-water interactions and to the TMB photoionization efficiency. Corresponding changes in the surface and internal micellar structure have been investigated by x-doxylstearic acid spin probes and specifically deuterated surfactants. The decay kinetics of TMB cations in micelles have been interpreted in terms of a time dependent rate constant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardenas, Jose Patricio Nahuel; Filho, Tufic Madi; Pereira, Maria da Conceicao Costa
2015-07-01
The Nuclear and Energy Research Institute - IPEN, offers post-graduate programs, namely: Nuclear Technology - Applications (TNA), Nuclear Technology - Materials (TNM), Nuclear Technology - Reactors (TNR). The Institute programs mission is to form expert technicians, physicists and engineers with a strong knowledge in their discipline to work in the nuclear area. The course: 'Theoretical Fundamentals and Practices of the Instrumentation used in Nuclear Data Acquisition' covers the use of laboratory nuclear instrumentation and the accomplishment of experiments to obtain nuclear parameters. One of these experimental exercises is object of this work: 'Study of influence of plastic scintillators to detectmore » Beta particles and Gamma radiation by means of spectral analysis of {sup 90}Sr, {sup 90}Y and {sup 137}Cs sources'. The use of scintillators plastic for the detection has the advantage of low cost, high mechanical strength, is not hygroscopic and can be manufactured in large volumes. This work aims to present the analysis of relative efficiency of detection of plastic scintillators of various thicknesses for beta particles and gamma radiation by the spectrum of {sup 137}Cs and {sup 90}Sr. Due to lack of resolution of the detectors plastic scintillators we worked with relative efficiency. The evaluation was done by reading deposited energy, using the software MAESTRO, for each detector thickness. For beta particles was observed an ideal thickness around 3 mm and the better photon efficiency was observed with increasing the thickness of the detector. The present experiment does not intend to establish a new technique for this subject: it solely aims student's practical exercises in nuclear properties of elements and detectors being part of the nuclear experimental course. (authors)« less
Infrared Signal Detection by Upconversion Technique
NASA Technical Reports Server (NTRS)
Wong, Teh-Hwa; Yu, Jirong; Bai, Yingxin; Johnson, William E.
2014-01-01
We demonstrated up-conversion assisted detection of a 2.05-micron signal by using a bulk periodically poled Lithium niobate crystal. The 94% intrinsic up-conversion efficiency and 22.58% overall detection efficiency at pW level of 2.05-micron was achieved.
Efficient Thread Labeling for Monitoring Programs with Nested Parallelism
NASA Astrophysics Data System (ADS)
Ha, Ok-Kyoon; Kim, Sun-Sook; Jun, Yong-Kee
It is difficult and cumbersome to detect data races occurred in an execution of parallel programs. Any on-the-fly race detection techniques using Lamport's happened-before relation needs a thread labeling scheme for generating unique identifiers which maintain logical concurrency information for the parallel threads. NR labeling is an efficient thread labeling scheme for the fork-join program model with nested parallelism, because its efficiency depends only on the nesting depth for every fork and join operation. This paper presents an improved NR labeling, called e-NR labeling, in which every thread generates its label by inheriting the pointer to its ancestor list from the parent threads or by updating the pointer in a constant amount of time and space. This labeling is more efficient than the NR labeling, because its efficiency does not depend on the nesting depth for every fork and join operation. Some experiments were performed with OpenMP programs having nesting depths of three or four and maximum parallelisms varying from 10,000 to 1,000,000. The results show that e-NR is 5 times faster than NR labeling and 4.3 times faster than OS labeling in the average time for creating and maintaining the thread labels. In average space required for labeling, it is 3.5 times smaller than NR labeling and 3 times smaller than OS labeling.
Optimization of single photon detection model based on GM-APD
NASA Astrophysics Data System (ADS)
Chen, Yu; Yang, Yi; Hao, Peiyu
2017-11-01
One hundred kilometers high precision laser ranging hopes the detector has very strong detection ability for very weak light. At present, Geiger-Mode of Avalanche Photodiode has more use. It has high sensitivity and high photoelectric conversion efficiency. Selecting and designing the detector parameters according to the system index is of great importance to the improvement of photon detection efficiency. Design optimization requires a good model. In this paper, we research the existing Poisson distribution model, and consider the important detector parameters of dark count rate, dead time, quantum efficiency and so on. We improve the optimization of detection model, select the appropriate parameters to achieve optimal photon detection efficiency. The simulation is carried out by using Matlab and compared with the actual test results. The rationality of the model is verified. It has certain reference value in engineering applications.
[Impact of the funding reform of teaching hospitals in Brazil].
Lobo, M S C; Silva, A C M; Lins, M P E; Fiszman, R
2009-06-01
To assess the impact of funding reform on the productivity of teaching hospitals. Based on the Information System of Federal University Hospitals of Brazil, 2003 and 2006 efficiency and productivity were measured using frontier methods with a linear programming technique, data envelopment analysis, and input-oriented variable returns to scale model. The Malmquist index was calculated to detect changes during the study period: 'technical efficiency change,' or the relative variation of the efficiency of each unit; and 'technological change' after frontier shift. There was 51% mean budget increase and improvement of technical efficiency of teaching hospitals (previously 11, 17 hospitals reached the empirical efficiency frontier) but the same was not seen for the technology frontier. Data envelopment analysis set benchmark scores for each inefficient unit (before and after reform) and there was a positive correlation between technical efficiency and teaching intensity and dedication. The reform promoted management improvements but there is a need of further follow-up to assess the effectiveness of funding changes.
Al-Sadi, A M; Al-Mazroui, S S; Phillips, A J L
2015-08-01
Potting media and organic fertilizers (OFs) are commonly used in agricultural systems. However, there is a lack of studies on the efficiency of culture-based techniques in assessing the level of fungal diversity in these products. A study was conducted to investigate the efficiency of seven culture-based techniques and pyrosequencing for characterizing fungal diversity in potting media and OFs. Fungal diversity was evaluated using serial dilution, direct plating and baiting with carrot slices, potato slices, radish seeds, cucumber seeds and cucumber cotyledons. Identity of all the isolates was confirmed on the basis of the internal transcribed spacer region of the ribosomal RNA (ITS rRNA) sequence data. The direct plating technique was found to be superior over other culture-based techniques in the number of fungal species detected. It was also found to be simple and the least time consuming technique. Comparing the efficiency of direct plating with 454 pyrosequencing revealed that pyrosequencing detected 12 and 15 times more fungal species from potting media and OFs respectively. Analysis revealed that there were differences between potting media and OFs in the dominant phyla, classes, orders, families, genera and species detected. Zygomycota (52%) and Chytridiomycota (60%) were the predominant phyla in potting media and OFs respectively. The superiority of pyrosequencing over cultural methods could be related to the ability to detect obligate fungi, slow growing fungi and fungi that exist at low population densities. The evaluated methods in this study, especially direct plating and pyrosequencing, may be used as tools to help detect and reduce movement of unwanted fungi between countries and regions. © 2015 The Society for Applied Microbiology.
Izanloo, Maryam; Esrafili, Ali; Behbahani, Mohammad; Ghambarian, Mahnaz; Reza Sobhi, Hamid
2018-02-01
Herein, a new dispersive solid-phase extraction method using a nano magnetic titanium dioxide graphene-based sorbent in conjunction with high-performance liquid chromatography and ultraviolet detection was successfully developed. The method was proved to be simple, sensitive, and highly efficient for the trace quantification of sulfacetamide, sulfathiazole, sulfamethoxazole, and sulfadiazine in relatively large volume of aqueous media. Initially, the nano magnetic titanium dioxide graphene-based sorbent was successfully synthesized and subsequently characterized by scanning electron microscopy and X-ray diffraction. Then, the sorbent was used for the sorption and extraction of the selected sulfonamides mainly through π-π stacking hydrophobic interactions. Under the established conditions, the calibration curves were linear over the concentration range of 1-200 μg/L. The limit of quantification (precision of 20%, and accuracy of 80-120%) for the detection of each sulfonamide by the proposed method was 1.0 μg/L. To test the extraction efficiency, the method was applied to various fortified real water samples. The average relative recoveries obtained from the fortified samples varied between 90 and 108% with the relative standard deviations of 5.3-10.7%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cross-Neutralization between Human and African Bat Mumps Viruses.
Katoh, Hiroshi; Kubota, Toru; Ihara, Toshiaki; Maeda, Ken; Takeda, Makoto; Kidokoro, Minoru
2016-04-01
Recently, a new paramyxovirus closely related to human mumps virus (MuV) was detected in bats. We generated recombinant MuVs carrying either or both of the fusion and hemagglutinin-neuraminidase bat virus glycoproteins. These viruses showed replication kinetics similar to human MuV in cultured cells and were neutralized efficiently by serum from healthy humans.
USDA-ARS?s Scientific Manuscript database
Locating buried drainage pipes is a difficult task confronting farmers and land improvement contractors, especially in the Midwest U.S., where the removal of excess soil water using subsurface drainage systems is a common farm practice. Enhancing the efficiency of soil water removal on land containi...
Damage detection based on acceleration data using artificial immune system
NASA Astrophysics Data System (ADS)
Chartier, Sandra; Mita, Akira
2009-03-01
Nowadays, Structural Health Monitoring (SHM) is essential in order to prevent damages occurrence in civil structures. This is a particularly important issue as the number of aged structures is increasing. Damage detection algorithms are often based on changes in the modal properties like natural frequencies, modal shapes and modal damping. In this paper, damage detection is completed by using Artificial Immune System (AIS) theory directly on acceleration data. Inspired from the biological immune system, AIS is composed of several models like negative selection which has a great potential for this study. The negative selection process relies on the fact that T-cells, after their maturation, are sensitive to non self cells and can not detect self cells. Acceleration data were provided by using the numerical model of a 3-story frame structure. Damages were introduced, at particular times, by reduction of story's stiffness. Based on these acceleration data, undamaged data (equivalent to self data) and damaged data (equivalent to non self data) can be obtained and represented in the Hamming shape-space with a binary representation. From the undamaged encoded data, detectors (equivalent to T-cells) are derived and are able to detect damaged encoded data really efficiently by using the rcontiguous bits matching rule. Indeed, more than 95% of detection can be reached when efficient combinations of parameters are used. According to the number of detected data, the localization of damages can even be determined by using the differences between story's relative accelerations. Thus, the difference which presents the highest detection rate, generally up to 89%, is directly linked to the location of damage.
Motivation in vigilance - Effects of self-evaluation and experimenter-controlled feedback.
NASA Technical Reports Server (NTRS)
Warm, J. S.; Kanfer, F. H.; Kuwada, S.; Clark, J. L.
1972-01-01
Vigilance experiments have been performed to study the relative efficiency of feedback operations in enhancing vigilance performance. Two feedback operations were compared - i.e., experimenter-controlled feedback in the form of knowledge of results (KR) regarding response times to signal detections, and subject-controlled feedback in the form of self-evaluation (SE) of response times to signal detections. The subjects responded to the aperiodic offset of a visual signal during a 1-hr vigil. Both feedback operations were found to enhance performance efficiency: subjects in the KR and SE conditions had faster response times than controls receiving no evaluative feedback. Moreover, the data of the KR and SE groups did not differ significantly from each other. The results are discussed in terms of the hypothesis that self-evaluation is a critical factor underlying the incentive value of KR in vigilance tasks.
Characteristic evaluation of a Lithium-6 loaded neutron coincidence spectrometer.
Hayashi, M; Kaku, D; Watanabe, Y; Sagara, K
2007-01-01
Characteristics of a (6)Li-loaded neutron coincidence spectrometer were investigated from both measurements and Monte Carlo simulations. The spectrometer consists of three (6)Li-glass scintillators embedded in a liquid organic scintillator BC-501A, which can detect selectively neutrons that deposit the total energy in the BC-501A using a coincidence signal generated from the capture event of thermalised neutrons in the (6)Li-glass scintillators. The relative efficiency and the energy response were measured using 4.7, 7.2 and 9.0 MeV monoenergetic neutrons. The measured ones were compared with the Monte Carlo calculations performed by combining the neutron transport code PHITS and the scintillator response calculation code SCINFUL. The experimental light output spectra were in good agreement with the calculated ones in shape. The energy dependence of the detection efficiency was reproduced by the calculation. The response matrices for 1-10 MeV neutrons were finally obtained.
Query-Based Outlier Detection in Heterogeneous Information Networks.
Kuck, Jonathan; Zhuang, Honglei; Yan, Xifeng; Cam, Hasan; Han, Jiawei
2015-03-01
Outlier or anomaly detection in large data sets is a fundamental task in data science, with broad applications. However, in real data sets with high-dimensional space, most outliers are hidden in certain dimensional combinations and are relative to a user's search space and interest. It is often more effective to give power to users and allow them to specify outlier queries flexibly, and the system will then process such mining queries efficiently. In this study, we introduce the concept of query-based outlier in heterogeneous information networks, design a query language to facilitate users to specify such queries flexibly, define a good outlier measure in heterogeneous networks, and study how to process outlier queries efficiently in large data sets. Our experiments on real data sets show that following such a methodology, interesting outliers can be defined and uncovered flexibly and effectively in large heterogeneous networks.
Query-Based Outlier Detection in Heterogeneous Information Networks
Kuck, Jonathan; Zhuang, Honglei; Yan, Xifeng; Cam, Hasan; Han, Jiawei
2015-01-01
Outlier or anomaly detection in large data sets is a fundamental task in data science, with broad applications. However, in real data sets with high-dimensional space, most outliers are hidden in certain dimensional combinations and are relative to a user’s search space and interest. It is often more effective to give power to users and allow them to specify outlier queries flexibly, and the system will then process such mining queries efficiently. In this study, we introduce the concept of query-based outlier in heterogeneous information networks, design a query language to facilitate users to specify such queries flexibly, define a good outlier measure in heterogeneous networks, and study how to process outlier queries efficiently in large data sets. Our experiments on real data sets show that following such a methodology, interesting outliers can be defined and uncovered flexibly and effectively in large heterogeneous networks. PMID:27064397
Tutorial on X-ray photon counting detector characterization.
Ren, Liqiang; Zheng, Bin; Liu, Hong
2018-01-01
Recent advances in photon counting detection technology have led to significant research interest in X-ray imaging. As a tutorial level review, this paper covers a wide range of aspects related to X-ray photon counting detector characterization. The tutorial begins with a detailed description of the working principle and operating modes of a pixelated X-ray photon counting detector with basic architecture and detection mechanism. Currently available methods and techniques for charactering major aspects including energy response, noise floor, energy resolution, count rate performance (detector efficiency), and charge sharing effect of photon counting detectors are comprehensively reviewed. Other characterization aspects such as point spread function (PSF), line spread function (LSF), contrast transfer function (CTF), modulation transfer function (MTF), noise power spectrum (NPS), detective quantum efficiency (DQE), bias voltage, radiation damage, and polarization effect are also remarked. A cadmium telluride (CdTe) pixelated photon counting detector is employed for part of the characterization demonstration and the results are presented. This review can serve as a tutorial for X-ray imaging researchers and investigators to understand, operate, characterize, and optimize photon counting detectors for a variety of applications.
Optimum efficiency lidar sensing of multilayer hydrometeors through a turbid atmosphere
NASA Astrophysics Data System (ADS)
Evgenieva, Ts T.; Gurdev, L. L.
2018-03-01
The detected lidar return power is a basic factor determining the brightness of the detected lidar images and the signal-to-noise ratio (SNR) of a given measurement. At equal other characteristics, the laser radiation wavelength should influence the lidar return signal and assume an optimum value depending on the specificity of the objects investigated. As such a problem had not been considered systematically, we recently began developing a modeling approach to solving it, based on evaluating the mean and the noisy lidar profiles and the SNR profile of the measurement along the lidar line of sight by using the lidar equation and well known realistic models of the atmospheric objects and background. The main purpose of the present work is to estimate by numerical modeling the detectability of the lidar return from different distances and multilayer cirrus clouds, depending on the laser radiation wavelengths. The results obtained confirm the expectations that at a higher atmospheric turbidity, a relatively higher sensing efficiency (return power) is achievable by longer-wavelength laser radiation, within the NIR range.
Optimization of Collision Detection in Surgical Simulations
NASA Astrophysics Data System (ADS)
Custură-Crăciun, Dan; Cochior, Daniel; Neagu, Corneliu
2014-11-01
Just like flight and spaceship simulators already represent a standard, we expect that soon enough, surgical simulators should become a standard in medical applications. A simulations quality is strongly related to the image quality as well as the degree of realism of the simulation. Increased quality requires increased resolution, increased representation speed but more important, a larger amount of mathematical equations. To make it possible, not only that we need more efficient computers, but especially more calculation process optimizations. A simulator executes one of the most complex sets of calculations each time it detects a contact between the virtual objects, therefore optimization of collision detection is fatal for the work-speed of a simulator and hence in its quality
NASA Astrophysics Data System (ADS)
Monnin, P.; Verdun, F. R.; Bosmans, H.; Rodríguez Pérez, S.; Marshall, N. W.
2017-07-01
This work proposes a method for assessing the detective quantum efficiency (DQE) of radiographic imaging systems that include both the x-ray detector and the antiscatter device. Cascaded linear analysis of the antiscatter device efficiency (DQEASD) with the x-ray detector DQE is used to develop a metric of system efficiency (DQEsys); the new metric is then related to the existing system efficiency parameters of effective DQE (eDQE) and generalized DQE (gDQE). The effect of scatter on signal transfer was modelled through its point spread function (PSF), leading to an x-ray beam transfer function (BTF) that multiplies with the classical presampling modulation transfer function (MTF) to give the system MTF. Expressions are then derived for the influence of scattered radiation on signal-difference to noise ratio (SDNR) and contrast-detail (c-d) detectability. The DQEsys metric was tested using two digital mammography systems, for eight x-ray beams (four with and four without scatter), matched in terms of effective energy. The model was validated through measurements of contrast, SDNR and MTF for poly(methyl)methacrylate thicknesses covering the range of scatter fractions expected in mammography. The metric also successfully predicted changes in c-d detectability for different scatter conditions. Scatter fractions for the four beams with scatter were established with the beam stop method using an extrapolation function derived from the scatter PSF, and validated through Monte Carlo (MC) simulations. Low-frequency drop of the MTF from scatter was compared to both theory and MC calculations. DQEsys successfully quantified the influence of the grid on SDNR and accurately gave the break-even object thickness at which system efficiency was improved by the grid. The DQEsys metric is proposed as an extension of current detector characterization methods to include a performance evaluation in the presence of scattered radiation, with an antiscatter device in place.
Miler, Krzysztof; Kuszewska, Karolina; Zuber, Gabriela; Woyciechowski, Michal
2018-05-14
Recently, antlion larvae with greater behavioural asymmetry were shown to have improved learning abilities. However, a major evolutionary question that remained unanswered was why this asymmetry does not increase in all individuals during development. Here, we show that a trade-off exists between learning ability of larvae and their hunting efficiency. Larvae with greater asymmetry learn better than those with less, but the latter are better able to sense vibrational signals used to detect prey and can capture prey more quickly. Both traits, learning ability and hunting efficiency, present obvious fitness advantages; the trade-off between them may explain why behavioural asymmetry, which presumably stems from brain lateralization, is relatively rare in natural antlion populations.
Beyond Scale-Free Small-World Networks: Cortical Columns for Quick Brains
NASA Astrophysics Data System (ADS)
Stoop, Ralph; Saase, Victor; Wagner, Clemens; Stoop, Britta; Stoop, Ruedi
2013-03-01
We study to what extent cortical columns with their particular wiring boost neural computation. Upon a vast survey of columnar networks performing various real-world cognitive tasks, we detect no signs of enhancement. It is on a mesoscopic—intercolumnar—scale that the existence of columns, largely irrespective of their inner organization, enhances the speed of information transfer and minimizes the total wiring length required to bind distributed columnar computations towards spatiotemporally coherent results. We suggest that brain efficiency may be related to a doubly fractal connectivity law, resulting in networks with efficiency properties beyond those by scale-free networks.
Cyclodextrin-enhanced extraction and energy transfer of carcinogens in complex oil environments.
Serio, Nicole; Chanthalyma, Chitapom; Prignano, Lindsey; Levine, Mindy
2013-11-27
Reported herein is the use of γ-cyclodextrin for two tandem functions: (a) the extraction of carcinogenic polycyclic aromatic hydrocarbons (PAHs) from oil samples into aqueous solution and (b) the promotion of highly efficient energy transfer from the newly extracted PAHs to a high-quantum-yield fluorophore. The extraction proceeded in moderate to good efficiencies, and the resulting cyclodextrin-promoted energy transfer led to a new, brightly fluorescent signal in aqueous solution. The resulting dual-function system (extraction followed by energy transfer) has significant relevance in the environmental detection and cleanup of oil-spill-related carcinogens.
NASA Astrophysics Data System (ADS)
Noda, Masafumi; Takahashi, Tomokazu; Deguchi, Daisuke; Ide, Ichiro; Murase, Hiroshi; Kojima, Yoshiko; Naito, Takashi
In this study, we propose a method for detecting road markings recorded in an image captured by an in-vehicle camera by using a position-dependent classifier. Road markings are symbols painted on the road surface that help in preventing traffic accidents and in ensuring traffic smooth. Therefore, driver support systems for detecting road markings, such as a system that provides warning in the case when traffic signs are overlooked, and supporting the stopping of a vehicle are required. It is difficult to detect road markings because their appearance changes with the actual traffic conditions, e. g. the shape and resolution change. The variation in these appearances depend on the positional relation between the vehicle and the road markings, and on the vehicle posture. Although these variations are quite large in an entire image, they are relatively small in a local area of the image. Therefore, we try to improve the detection performance by taking into account the local variations in these appearances. We propose a method in which a position-dependent classifier is used to detect road markings recorded in images captured by an in-vehicle camera. Further, to train the classifier efficiently, we propose a generative learning method that takes into consideration the positional relation between the vehicle and road markings, and also the vehicle posture. Experimental results showed that the detection performance when the proposed method was used was better than when a method involving a single classifier was used.
Long, Ju
2016-05-01
In China, -(SEA), -α(3.7) and -α(4.2) are common deletional α-thalassemia alleles. Gap-PCR is the currently used detection method for these alleles, whose disadvantages include time-consuming procedure and increased potential for PCR product contamination. Therefore, this detection method needs to be improved. Based on identical-primer homologous fragments, a qPCR system was developed for deletional α-thalassemia genotyping, which was composed of a group of quantitatively-related primers and their corresponding probes plus two groups of qualitatively-related primers and their corresponding probes. In order to verify the accuracy of the qPCR system, known genotype samples and random samples are employed. The standard curve result demonstrated that designed primers and probes all yielded good amplification efficiency. In the tests of known genotype samples and random samples, sample detection results were consistent with verification results. In detecting αα, -(SEA), -α(3.7) and -α(4.2) alleles, deletional α-thalassemia alleles are accurately detected by this method. In addition, this method is provided with a wider detection range, greater speed and reduced PCR product contamination risk when compared with current common gap-PCR detection reagents. Copyright © 2016 Elsevier B.V. All rights reserved.
Yuan, Su-Fen; Liu, Ze-Hua; Lian, Hai-Xian; Yang, Chuang-Tao; Lin, Qing; Yin, Hua; Lin, Zhang; Dang, Zhi
2018-02-01
A fast and reliable method was developed for simultaneous trace determination of nine odorous and estrogenic chloro- and bromo-phenolic compounds (CPs and BPs) in water samples using solid-phase extraction (SPE) coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS). For sample preparation, the extraction efficiencies of two widely applied cartridges Oasis HLB and Sep-Pak C18 were compared, and the Oasis HLB cartridge showed much better extraction performance; pH of water sample also plays important role on extraction, and pH = 2-3 was found to be most appropriate. For separation of the target compounds, small addition of ammonium hydroxide can obviously improve the detection sensitivity, and the optimized addition concentration was determined as 0.2%. The developed efficient method was validated and showed excellent linearity (R 2 > 0.995), low limit of detection (LOD, 1.9-6.2 ng/L), and good recovery efficiencies of 57-95% in surface and tap water with low relative standard deviation (RSD, 1.3-17.4%). The developed method was finally applied to one tap and one surface water samples and most of these nine targets were detected, but all of them were below their odor thresholds, and their estrogen equivalent (EEQ) were also very low.
Sensitive Infrared Signal Detection by Upconversion Technique
NASA Technical Reports Server (NTRS)
Wong, Teh-Hwa; Yu, Jirong; Bai, Yingxin; Johnson, William; Chen, Songsheng; Petros, Mulugeta; Singh, Upendra N.
2014-01-01
We demonstrated upconversion assisted detection of a 2.05-micron signal by sum frequency generation to generate a 700-nm light using a bulk periodically poled lithium niobate crystal. The achieved 94% intrinsic upconversion efficiency and 22.58% overall detection efficiency at a pW level of 2.05 micron pave the path to detect extremely weak infrared (IR) signals for remote sensing applications.
Supramolecular control over recognition and efficient detection of picric acid.
Béreau, Virginie; Duhayon, Carine; Sutter, Jean-Pascal
2014-10-18
Bimetallic Schiff-base Al(3+) complexes bearing ester functions at the periphery of the ligands are shown to be efficient fluorescent chemosensors for picric acid detection. The prominent role of an association between the chemosensor and the picric acid in the detection process is demonstrated. The detection of picric acid in water is achieved with the sensor deposited on paper.
Carbon "Quantum" Dots for Fluorescence Labeling of Cells.
Liu, Jia-Hui; Cao, Li; LeCroy, Gregory E; Wang, Ping; Meziani, Mohammed J; Dong, Yiyang; Liu, Yuanfang; Luo, Pengju G; Sun, Ya-Ping
2015-09-02
The specifically synthesized and selected carbon dots of relatively high fluorescence quantum yields were evaluated in their fluorescence labeling of cells. For the cancer cell lines, the cellular uptake of the carbon dots was generally efficient, resulting in the labeling of the cells with bright fluorescence emissions for both one- and two-photon excitations from predominantly the cell membrane and cytoplasm. In the exploration on labeling the live stem cells, the cellular uptake of the carbon dots was relatively less efficient, though fluorescence emissions could still be adequately detected in the labeled cells, with the emissions again predominantly from the cell membrane and cytoplasm. This combined with the observed more efficient internalization of the same carbon dots by the fixed stem cells might suggest some significant selectivity of the stem cells toward surface functionalities of the carbon dots. The needs and possible strategies for more systematic and comparative studies on the fluorescence labeling of different cells, including especially live stem cells, by carbon dots as a new class of brightly fluorescent probes are discussed.
Si, Xingfeng; Kays, Roland
2014-01-01
Camera traps is an important wildlife inventory tool for estimating species diversity at a site. Knowing what minimum trapping effort is needed to detect target species is also important to designing efficient studies, considering both the number of camera locations, and survey length. Here, we take advantage of a two-year camera trapping dataset from a small (24-ha) study plot in Gutianshan National Nature Reserve, eastern China to estimate the minimum trapping effort actually needed to sample the wildlife community. We also evaluated the relative value of adding new camera sites or running cameras for a longer period at one site. The full dataset includes 1727 independent photographs captured during 13,824 camera days, documenting 10 resident terrestrial species of birds and mammals. Our rarefaction analysis shows that a minimum of 931 camera days would be needed to detect the resident species sufficiently in the plot, and c. 8700 camera days to detect all 10 resident species. In terms of detecting a diversity of species, the optimal sampling period for one camera site was c. 40, or long enough to record about 20 independent photographs. Our analysis of evaluating the increasing number of additional camera sites shows that rotating cameras to new sites would be more efficient for measuring species richness than leaving cameras at fewer sites for a longer period. PMID:24868493
NASA Astrophysics Data System (ADS)
Hu, Yuanyuan; Xu, Yingying; Hao, Qun; Hu, Yao
2013-12-01
The tubing internal thread plays an irreplaceable role in the petroleum equipment. The unqualified tubing can directly lead to leakage, slippage and bring huge losses for oil industry. For the purpose of improving efficiency and precision of tubing internal thread detection, we develop a new non-contact tubing internal thread measurement system based on the laser triangulation principle. Firstly, considering that the tubing thread had a small diameter and relatively smooth surface, we built a set of optical system with a line structured light to irradiate the internal thread surface and obtain an image which contains the internal thread profile information through photoelectric sensor. Secondly, image processing techniques were used to do the edge detection of the internal thread from the obtained image. One key method was the sub-pixel technique which greatly improved the detection accuracy under the same hardware conditions. Finally, we restored the real internal thread contour information on the basis of laser triangulation method and calculated tubing thread parameters such as the pitch, taper and tooth type angle. In this system, the profile of several thread teeth can be obtained at the same time. Compared with other existing scanning methods using point light and stepper motor, this system greatly improves the detection efficiency. Experiment results indicate that this system can achieve the high precision and non-contact measurement of the tubing internal thread.
Visu-Petra, George; Varga, Mihai; Miclea, Mircea; Visu-Petra, Laura
2013-01-01
The possibility to enhance the detection efficiency of the Concealed Information Test (CIT) by increasing executive load was investigated, using an interference design. After learning and executing a mock crime scenario, subjects underwent three deception detection tests: an RT-based CIT, an RT-based CIT plus a concurrent memory task (CITMem), and an RT-based CIT plus a concurrent set-shifting task (CITShift). The concealed information effect, consisting in increased RT and lower response accuracy for probe items compared to irrelevant items, was evidenced across all three conditions. The group analyses indicated a larger difference between RTs to probe and irrelevant items in the dual-task conditions, but this difference was not translated in a significantly increased detection efficiency at an individual level. Signal detection parameters based on the comparison with a simulated innocent group showed accurate discrimination for all conditions. Overall response accuracy on the CITMem was highest and the difference between response accuracy to probes and irrelevants was smallest in this condition. Accuracy on the concurrent tasks (Mem and Shift) was high, and responses on these tasks were significantly influenced by CIT stimulus type (probes vs. irrelevants). The findings are interpreted in relation to the cognitive load/dual-task interference literature, generating important insights for research on the involvement of executive functions in deceptive behavior. PMID:23543918
Myasthenia Gravis Impairment Index: Responsiveness, meaningful change, and relative efficiency.
Barnett, Carolina; Bril, Vera; Kapral, Moira; Kulkarni, Abhaya V; Davis, Aileen M
2017-12-05
To study responsiveness and meaningful change of the Myasthenia Gravis Impairment Index (MGII) and its relative efficiency compared to other measures. We enrolled 95 patients receiving prednisone, IV immunoglobulin (IVIg), or plasma exchange (PLEX) and 54 controls. Patients were assessed with the MGII and other measures-including the Quantitative Myasthenia Gravis Score, Myasthenia Gravis Composite, and Myasthenia Gravis Activities of Daily Living-at baseline and 3-4 weeks after treatment. Statistical markers of responsiveness included between-groups and within-group differences, and we estimated the relative efficiency of the MGII compared to other measures. Patient-meaningful change was assessed with an anchor-based method, using the patient's impression of change. We determined the minimal detectable change (MDC) and the minimal important difference (MID) at the group and individual level. Treated patients had a higher change in MGII scores than controls (analysis of covariance p < 0.001). The ocular domain changed more with prednisone than with IVIg/PLEX (effect size 0.67 and 0.13, analysis of covariance p = 0.001). The generalized domain changed more with IVIg/PLEX than with prednisone (effect size 0.50 and 0.22, analysis of covariance p = 0.07). For the total MGII score, the individual MDC95 was 9.1 and the MID was 5.5 for individuals and 8.1 for groups. Relative efficiency ratios were >1 favoring the MGII. The MGII demonstrated responsiveness to prednisone, IVIg, and PLEX in patients with myasthenia. There is a differential response in ocular and generalized symptoms to type of therapy. The MGII has higher relative efficiency than comparison measures and is viable for use in clinical trials. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
NASA Astrophysics Data System (ADS)
Sibczynski, P.; Kownacki, J.; Moszyński, M.; Iwanowska-Hanke, J.; Syntfeld-Każuch, A.; Gójska, A.; Gierlik, M.; Kaźmierczak, Ł.; Jakubowska, E.; Kędzierski, G.; Kujawiński, Ł.; Wojnarowicz, J.; Carrel, F.; Ledieu, M.; Lainé, F.
2015-09-01
In the present study ⌀ 5''× 3'' and ⌀ 2''× 2'' EJ-313 liquid fluorocarbon as well as ⌀ 2'' × 3'' BaF2 scintillators were exposed to neutrons from a 252Cf neutron source and a Sodern Genie 16GT deuterium-tritium (D+T) neutron generator. The scintillators responses to β- particles with maximum endpoint energy of 10.4 MeV from the n+19F reactions were studied. Response of a ⌀ 5'' × 3'' BC-408 plastic scintillator was also studied as a reference. The β- particles are the products of interaction of fast neutrons with 19F which is a component of the EJ-313 and BaF2 scintillators. The method of fast neutron detection via fluorine activation is already known as Threshold Activation Detection (TAD) and was proposed for photofission prompt neutron detection from fissionable and Special Nuclear Materials (SNM) in the field of Homeland Security and Border Monitoring. Measurements of the number of counts between 6.0 and 10.5 MeV with a 252Cf source showed that the relative neutron detection efficiency ratio, defined as epsilonBaF2 / epsilonEJ-313-5'', is 32.0% ± 2.3% and 44.6% ± 3.4% for front-on and side-on orientation of the BaF2, respectively. Moreover, the ⌀ 5'' EJ-313 and side-on oriented BaF2 were also exposed to neutrons from the D+T neutron generator, and the relative efficiency epsilonBaF2 / epsilonEJ-313-5'' was estimated to be 39.3%. Measurements of prompt photofission neutrons with the BaF2 detector by means of data acquisition after irradiation (out-of-beam) of nuclear material and between the beam pulses (beam-off) techniques were also conducted on the 9 MeV LINAC of the SAPHIR facility.
Comparing distinct ground-based lightning location networks covering the Netherlands
NASA Astrophysics Data System (ADS)
de Vos, Lotte; Leijnse, Hidde; Schmeits, Maurice; Beekhuis, Hans; Poelman, Dieter; Evers, Läslo; Smets, Pieter
2015-04-01
Lightning can be detected using a ground-based sensor network. The Royal Netherlands Meteorological Institute (KNMI) monitors lightning activity in the Netherlands with the so-called FLITS-system; a network combining SAFIR-type sensors. This makes use of Very High Frequency (VHF) as well as Low Frequency (LF) sensors. KNMI has recently decided to replace FLITS by data from a sub-continental network operated by Météorage which makes use of LF sensors only (KNMI Lightning Detection Network, or KLDN). KLDN is compared to the FLITS system, as well as Met Office's long-range Arrival Time Difference (ATDnet), which measures Very Low Frequency (VLF). Special focus lies on the ability to detect Cloud to Ground (CG) and Cloud to Cloud (CC) lightning in the Netherlands. Relative detection efficiency of individual flashes and lightning activity in a more general sense are calculated over a period of almost 5 years. Additionally, the detection efficiency of each system is compared to a ground-truth that is constructed from flashes that are detected by both of the other datasets. Finally, infrasound data is used as a fourth lightning data source for several case studies. Relative performance is found to vary strongly with location and time. As expected, it is found that FLITS detects significantly more CC lightning (because of the strong aptitude of VHF antennas to detect CC), though KLDN and ATDnet detect more CG lightning. We analyze statistics computed over the entire 5-year period, where we look at CG as well as total lightning (CC and CG combined). Statistics that are considered are the Probability of Detection (POD) and the so-called Lightning Activity Detection (LAD). POD is defined as the percentage of reference flashes the system detects compared to the total detections in the reference. LAD is defined as the fraction of system recordings of one or more flashes in predefined area boxes over a certain time period given the fact that the reference detects at least one flash, compared to the total recordings in the reference dataset. The reference for these statistics is taken to be either another dataset, or a dataset consisting of flashes detected by two datasets. Extreme thunderstorm case evaluation shows that the weather alert criterion for severe thunderstorm is reached by FLITS when this is not the case in KLDN and ATD, suggesting the need for KNMI to modify that weather alert criterion when using KLDN.
[Early detection of breast and cervical cancer among indigenous communities in Morelos, Mexico].
Campero, Lourdes; Atienzo, Erika E; Marín, Eréndira; de la Vara-Salazar, Elvia; Pelcastre-Villafuerte, Blanca; González, Guillermo
2014-01-01
To analyze the perception in relation to when and how to perform actions for the early detection of breast and cervical cancer among women and health care providers in communities with a high percentage of indigenous population in Morelos, Mexico. Ten health providers and 58 women users of health services were interviewed which have a first level of attention in five communities. The analysis was developed under the approach of the Grounded Theory. Providers are poorly informed about current regulations and specific clinical indications for the detection of cervical and breast cancer. Few practice health literacy under intercultural sensitization. The users have imprecise or wrong notions of the early detection. The need for training in adherence to norms is evident. It is urgent to assume a culturally relevant approach to enable efficient communication and promote health literacy for early detection of these two cancers.
NASA Astrophysics Data System (ADS)
Kuo, Ju-Nan; Chen, Wei-Lun; Jywe, Wen-Yuh
2009-08-01
We present a bio-detection system integrated with an adjustable micro-concave mirror. The bio-detection system consists of an adjustable micro-concave mirror, micro flow cytometer chip and optical detection module. The adjustable micro-concave mirror can be fabricated with ease using commercially available MEMS foundry services (such as multiuser MEMS processes, MUMPs) and its curvature can be controlled utilizing thermal or electrical effects. Experimental results show that focal lengths of the micro-concave mirror ranging from 313.5 to 2275.0 μm are achieved. The adjustable micro-concave mirror can be used to increase the efficiency of optical detection and provide a high signal-to-noise ratio. The developed micro-concave mirror is integrated with a micro flow cytometer for cell counting applications. Successful counting of fluorescent-labeled beads is demonstrated using the developed method.
Chemical complexity induced by efficient ice evaporation in the Barnard 5 molecular cloud
NASA Astrophysics Data System (ADS)
Taquet, V.; Wirström, E. S.; Charnley, S. B.; Faure, A.; López-Sepulcre, A.; Persson, C. M.
2017-10-01
Cold gas-phase water has recently been detected in a cold dark cloud, Barnard 5 located in the Perseus complex, by targeting methanol peaks as signposts for ice mantle evaporation. Observed morphology and abundances of methanol and water are consistent with a transient non-thermal evaporation process only affecting the outermost ice mantle layers, possibly triggering a more complex chemistry. Here we present the detection of the complex organic molecules (COMs) acetaldehyde (CH3CHO) and methyl formate (CH3OCHO), as well as formic acid (HCOOH) and ketene (CH2CO), and the tentative detection of di-methyl ether (CH3OCH3) towards the "methanol hotspot" of Barnard 5 located between two dense cores using the single dish OSO 20 m, IRAM 30 m, and NRO 45 m telescopes. The high energy cis-conformer of formic acid is detected, suggesting that formic acid is mostly formed at the surface of interstellar grains and then evaporated. The detection of multiple transitions for each species allows us to constrain their abundances through LTE and non-LTE methods. All the considered COMs show similar abundances between 1 and 10% relative to methanol depending on the assumed excitation temperature. The non-detection of glycolaldehyde, an isomer of methyl formate, with a [glycolaldehyde]/[methyl formate] abundance ratio lower than 6%, favours gas phase formation pathways triggered by methanol evaporation. According to their excitation temperatures derived in massive hot cores, formic acid, ketene, and acetaldehyde have been designated as "lukewarm" COMs whereas methyl formate and di-methyl ether were defined as "warm" species. Comparison with previous observations of other types of sources confirms that lukewarm and warm COMs show similar abundances in low-density cold gas whereas the warm COMs tend to be more abundant than the lukewarm species in warm protostellar cores. This abundance evolution suggests either that warm COMs are indeed mostly formed in protostellar environments and/or that lukewarm COMs are efficiently depleted by increased hydrogenation efficiency around protostars.
Improved separability criteria via some classes of measurements
NASA Astrophysics Data System (ADS)
Shen, Shu-Qian; Li, Ming; Li-Jost, Xianqing; Fei, Shao-Ming
2018-05-01
The entanglement detection via local measurements can be experimentally implemented. Based on mutually unbiased measurements and general symmetric informationally complete positive-operator-valued measures, we present separability criteria for bipartite quantum states, which, by theoretical analysis, are stronger than the related existing criteria via these measurements. Two detailed examples are supplemented to show the efficiency of the presented separability criteria.
Controlled biological and biomimetic systems for landmine detection.
Habib, Maki K
2007-08-30
Humanitarian demining requires to accurately detect, locate and deactivate every single landmine and other buried mine-like objects as safely and as quickly as possible, and in the most non-invasive manner. The quality of landmine detection affects directly the efficiency and safety of this process. Most of the available methods to detect explosives and landmines are limited by their sensitivity and/or operational complexities. All landmines leak with time small amounts of their explosives that can be found on surrounding ground and plant life. Hence, explosive signatures represent the robust primary indicator of landmines. Accordingly, developing innovative technologies and efficient techniques to identify in real-time explosives residue in mined areas represents an attractive and promising approach. Biological and biologically inspired detection technology has the potential to compete with or be used in conjunction with other artificial technology to complement performance strengths. Biological systems are sensitive to many different scents concurrently, a property that has proven difficult to replicate artificially. Understanding biological systems presents unique opportunities for developing new capabilities through direct use of trained bio-systems, integration of living and non-living components, or inspiring new design by mimicking biological capabilities. It is expected that controlled bio-systems, biotechnology and microbial techniques will contribute to the advancement of mine detection and other application domains. This paper provides directions, evaluation and analysis on the progress of controlled biological and biomimetic systems for landmine detection. It introduces and discusses different approaches developed, underlining their relative advantages and limitations, and highlighting trends, safety and ecology concern, and possible future directions.
Razu, Md Enayet; Kim, Jungkyu; Stockton, Amanda M.; Turin, Paul; Butterworth, Anna
2017-01-01
Abstract Enceladus presents an excellent opportunity to detect organic molecules that are relevant for habitability as well as bioorganic molecules that provide evidence for extraterrestrial life because Enceladus' plume is composed of material from the subsurface ocean that has a high habitability potential and significant organic content. A primary challenge is to send instruments to Enceladus that can efficiently sample organic molecules in the plume and analyze for the most relevant molecules with the necessary detection limits. To this end, we present the scientific feasibility and engineering design of the Enceladus Organic Analyzer (EOA) that uses a microfluidic capillary electrophoresis system to provide sensitive detection of a wide range of relevant organic molecules, including amines, amino acids, and carboxylic acids, with ppm plume-detection limits (100 pM limits of detection). Importantly, the design of a capture plate that effectively gathers plume ice particles at encounter velocities from 200 m/s to 5 km/s is described, and the ice particle impact is modeled to demonstrate that material will be efficiently captured without organic decomposition. While the EOA can also operate on a landed mission, the relative technical ease of a fly-by mission to Enceladus, the possibility to nondestructively capture pristine samples from deep within the Enceladus ocean, plus the high sensitivity of the EOA instrument for molecules of bioorganic relevance for life detection argue for the inclusion of EOA on Enceladus missions. Key Words: Lab-on-a-chip—Organic biomarkers—Life detection—Planetary exploration. Astrobiology 17, 902–912. PMID:28915087
NASA Astrophysics Data System (ADS)
Zhu, Feng; Hu, Xiaofeng; He, Xiaoyuan; Guo, Rui; Li, Kaiming; Yang, Lu
2017-11-01
In the military field, the performance evaluation of early-warning aircraft deployment or construction is always an important problem needing to be explored. As an effective approach of enterprise management and performance evaluation, Balanced Score Card (BSC) attracts more and more attentions and is studied more and more widely all over the world. It can also bring feasible ideas and technical approaches for studying the issue of the performance evaluation of the deployment or construction of early-warning aircraft which is the important component in early-warning detection system of systems (SoS). Therefore, the deep explored researches are carried out based on the previously research works. On the basis of the characteristics of space exploration and aerial detection effectiveness of early-warning detection SoS and the cardinal principle of BSC are analyzed simply, and the performance evaluation framework of the deployment or construction of early-warning aircraft is given, under this framework, aimed at the evaluation issue of aerial detection effectiveness of early-warning detection SoS with the cooperation efficiency factors of the early-warning aircraft and other land based radars, the evaluation indexes are further designed and the relative evaluation model is further established, especially the evaluation radar chart being also drawn to obtain the evaluation results from a direct sight angle. Finally, some practical computer simulations are launched to prove the validity and feasibility of the research thinking and technologic approaches which are proposed in the paper.
Rosenberg, M. J.; Séguin, F. H.; Waugh, C. J.; ...
2014-04-14
CR-39 solid-state nuclear track detectors are widely used in physics and in many inertial confinement fusion (ICF) experiments, and under ideal conditions these detectors have 100% detection efficiency for ~0.5–8 MeV protons. When the fluence of incident particles becomes too high, the overlap of particle tracks leads to under-counting at typical processing conditions (5h etch in 6N NaOH at 80°C). Short etch times required to avoid overlap can cause under-counting as well, as tracks are not fully developed. Experiments have determined the minimum etch times for 100% detection of 1.7–4.3-MeV protons and established that for 2.4-MeV protons, relevant for detectionmore » of DD protons, the maximum fluence that can be detected using normal processing techniques is ≲3 ×10 6 cm -2. A CR-39-based proton detector has been developed to mitigate issues related to high particle fluences on ICF facilities. Using a pinhole and scattering foil several mm in front of the CR-39, proton fluences at the CR-39 are reduced by more than a factor of ~50, increasing the operating yield upper limit by a comparable amount.« less
NASA Astrophysics Data System (ADS)
Niazi, M. Khalid Khan; Beamer, Gillian; Gurcan, Metin N.
2017-03-01
Accurate detection and quantification of normal lung tissue in the context of Mycobacterium tuberculosis infection is of interest from a biological perspective. The automatic detection and quantification of normal lung will allow the biologists to focus more intensely on regions of interest within normal and infected tissues. We present a computational framework to extract individual tissue sections from whole slide images having multiple tissue sections. It automatically detects the background, red blood cells and handwritten digits to bring efficiency as well as accuracy in quantification of tissue sections. For efficiency, we model our framework with logical and morphological operations as they can be performed in linear time. We further divide these individual tissue sections into normal and infected areas using deep neural network. The computational framework was trained on 60 whole slide images. The proposed computational framework resulted in an overall accuracy of 99.2% when extracting individual tissue sections from 120 whole slide images in the test dataset. The framework resulted in a relatively higher accuracy (99.7%) while classifying individual lung sections into normal and infected areas. Our preliminary findings suggest that the proposed framework has good agreement with biologists on how define normal and infected lung areas.
Junlong, Liu; Li, Youquan; Liu, Aihong; Guan, Guiquan; Xie, Junren; Yin, Hong; Luo, Jianxun
2015-07-01
Aim to construct a simple and efficient diagnostic assay for Theileria annulata and Theileria sergenti, a multiplex polymerase chain reaction (PCR) method was developed in this study. Following the alignment of the related sequences, two primer sets were designed specific targeting on T. annulata cytochrome b (COB) gene and T. sergenti internal transcribed spacer (ITS) sequences. It was found that the designed primers could react in one PCR system and generating amplifications of 818 and 393 base pair for T. sergenti and T. annulata, respectively. The standard genomic DNA of both species Theileria was serial tenfold diluted for testing the sensitivity, while specificity test confirmed both primer sets have no cross-reaction with other Theileria and Babesia species. In addition, 378 field samples were used for evaluation of the utility of the multiplex PCR assay for detection of the pathogens infection. The detection results were compared with the other two published PCR methods which targeting on T. annulata COB gene and T. sergenti major piroplasm surface protein (MPSP) gene, respectively. The developed multiplex PCR assay has similar efficient detection with COB and MPSP PCR, which indicates this multiplex PCR may be a valuable assay for the epidemiological studies for T. annulata and T. sergenti.
NASA Astrophysics Data System (ADS)
Yang, Ji; Lin, Zheng-Zhong; Nur, A.-Zha; Lu, Yan; Wu, Ming-Hui; Zeng, Jun; Chen, Xiao-Mei; Huang, Zhi-Yong
2018-02-01
A novel fluorescence-based sensor combining synchronous fluorescence spectroscopy (SFS) with molecularly imprinted polymers (MIPs) was fabricated with reverse microemulsion method. Tetracycline (TC), (3-aminopropyl) triethoxysilane (APTES), tetraethyl orthosilicate (TEOS) and carbon quantum dots (CDs) were used as template, functional monomer, cross-linker and signal sources respectively in the probe preparation. A synchronous fluorescence emission (λem) at 355 nm was observed for the prepared MIP-coated CDs (MIP@CDs) particles when the wavelength interval (Δλ) was set as 70 nm, and the synchronous fluorescence intensity could be rapidly and efficiently quenched by TC based on inner filter effect (IFE). The quenching efficiencies of synchronous fluorescence intensity was linearly fitted with tetracycline (TC) concentrations ranging from 0.1 to 50 μmol L- 1 with a detection limit (DL) of 9 nmol L- 1 (3σ, n = 9). The MIP@CDs was used as a probe to detect TC in fish samples with the recoveries ranging from 98.4% to 103.1% and the relative standard deviation less than 6.0%. The results illustrated that the as-prepared MIP@CDs could be applied to the detection of trace TC in fish samples with rapidity, high sensitivity and accuracy.
Improving HVAC operational efficiency in small-and medium-size commercial buildings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Woohyun; Katipamula, Srinivas; Lutes, Robert
Small- and medium-size (<100,000 sf) commercial buildings (SMBs) represent over 95% of the U.S. commercial building stock and consume over 60% of total site energy consumption. Many of these buildings use rudimentary controls that are mostly manual, with limited scheduling capability, no monitoring, or failure management. Therefore, many of these buildings are operated inefficiently and consume excess energy. SMBs typically use packaged rooftop units (RTUs) that are controlled by an individual thermostat. There is increased urgency to improve the operating efficiency of existing commercial building stock in the United States for many reasons, chief among them being to mitigate themore » climate change impacts. Studies have shown that managing set points and schedules of the RTUs will result in up to 20% energy and cost savings. Another problem associated with RTUs is short cycling, when an RTU goes through ON and OFF cycles too frequently. Excessive cycling can lead to excessive wear and to premature failure of the compressor or its components. Also, short cycling can result in a significantly decreased average efficiency (up to 10%), even if there are no physical failures in the equipment. Ensuring correct use of the zone set points and eliminating frequent cycling of RTUs thereby leading to persistent building operations can significantly increase the operational efficiency of the SMBs. A growing trend is to use low-cost control infrastructure that can enable scalable and cost-effective intelligent building operations. The work reported in this paper describes two algorithms for detecting the zone set point temperature and RTU cycling rate that can be deployed on the low-cost infrastructure. These algorithms only require the zone temperature data for detection. The algorithms have been tested and validated using field data from a number of RTUs from six buildings in different climate locations. Overall, the algorithms were successful in detecting the set points and ON/OFF cycles accurately using the peak detection technique. The paper describes the two algorithms, results from testing the algorithms using field data, how the algorithms can be used to improve SMBs efficiency, and presents related conclusions.« less
Flock Foraging Efficiency in Relation to Food Sensing Ability and Distribution: a Simulation Study
NASA Astrophysics Data System (ADS)
Lee, Sang-Hee
2013-08-01
Flocking may be an advantageous strategy for acquiring food resources. The degree of advantage is related to two factors: the ability of flock members to detect food resources and patterns of food distribution in the environment. To understand foraging efficiency as a function of these factors, I constructed a two-dimensional (2D) flocking model incorporating the two factors. At the start of the simulation, food particles were heterogeneously distributed. The heterogeneity, H, was characterized as a value ranging from 0.0 to 1.0. For each flock member, food sensing ability was defined by two variables: sensing distance, R and sensing angle, θ. Foraging efficiency of a flock was defined as the time, τ, required for a flock to consume all the available food resources. Simulation results showed that flock foraging is most efficient when individuals had an intermediate sensing ability (R = 60), but decreased for low (R < 60) and high (R > 60) sensing ability. When R > 60, patterns in foraging efficiency with increasing sensing distance and food resource aggregation were less consistent. This inconsistency was due to instability of the flock and a higher rate of individuals failing to capture target food resources. In addition, I briefly discuss the benefits obtained by foraging in flocks from an evolutionary perspective.
NASA Astrophysics Data System (ADS)
Marin, Sergio; Merkoçi, Arben
2009-02-01
Electrochemical detection of a cadmium sulfide quantum dots (CdS QDs)-DNA complex connected to paramagnetic microbeads (MB) was performed without the need for chemical dissolving. The method is based on dropping 20 µl of CdS QD-DNA-MB suspension on the surface of a screen-printed electrode. It is followed by magnetic collection on the surface of the working electrode and electrochemical detection using square-wave voltammetry (SWV), giving a well-shaped and sensitive analytical signal. A cystic-fibrosis-related DNA sequence was sandwiched between the two DNA probes. One DNA probe is linked via biotin-streptavidin bonding with MB and the other one via thiol groups with the CdS QD used as tags. Nonspecific signals of DNA were minimized using a blocking agent and the results obtained were successfully employed in a model DNA sensor with an interest in future applications in the clinical field. The developed nanoparticle biosensing system may offer numerous opportunities in other fields where fast, low cost and efficient detection of small volume samples is required.
Korves, T M; Piceno, Y M; Tom, L M; Desantis, T Z; Jones, B W; Andersen, G L; Hwang, G M
2013-02-01
Air travel can rapidly transport infectious diseases globally. To facilitate the design of biosensors for infectious organisms in commercial aircraft, we characterized bacterial diversity in aircraft air. Samples from 61 aircraft high-efficiency particulate air (HEPA) filters were analyzed with a custom microarray of 16S rRNA gene sequences (PhyloChip), representing bacterial lineages. A total of 606 subfamilies from 41 phyla were detected. The most abundant bacterial subfamilies included bacteria associated with humans, especially skin, gastrointestinal and respiratory tracts, and with water and soil habitats. Operational taxonomic units that contain important human pathogens as well as their close, more benign relatives were detected. When compared to 43 samples of urban outdoor air, aircraft samples differed in composition, with higher relative abundance of Firmicutes and Gammaproteobacteria lineages in aircraft samples, and higher relative abundance of Actinobacteria and Betaproteobacteria lineages in outdoor air samples. In addition, aircraft and outdoor air samples differed in the incidence of taxa containing human pathogens. Overall, these results demonstrate that HEPA filter samples can be used to deeply characterize bacterial diversity in aircraft air and suggest that the presence of close relatives of certain pathogens must be taken into account in probe design for aircraft biosensors. A biosensor that could be deployed in commercial aircraft would be required to function at an extremely low false alarm rate, making an understanding of microbial background important. This study reveals a diverse bacterial background present on aircraft, including bacteria closely related to pathogens of public health concern. Furthermore, this aircraft background is different from outdoor air, suggesting different probes may be needed to detect airborne contaminants to achieve minimal false alarm rates. This study also indicates that aircraft HEPA filters could be used with other molecular techniques to further characterize background bacteria and in investigations in the wake of a disease outbreak. © 2012 John Wiley & Sons A/S.
Advances in Significance Testing for Cluster Detection
NASA Astrophysics Data System (ADS)
Coleman, Deidra Andrea
Over the past two decades, much attention has been given to data driven project goals such as the Human Genome Project and the development of syndromic surveillance systems. A major component of these types of projects is analyzing the abundance of data. Detecting clusters within the data can be beneficial as it can lead to the identification of specified sequences of DNA nucleotides that are related to important biological functions or the locations of epidemics such as disease outbreaks or bioterrorism attacks. Cluster detection techniques require efficient and accurate hypothesis testing procedures. In this dissertation, we improve upon the hypothesis testing procedures for cluster detection by enhancing distributional theory and providing an alternative method for spatial cluster detection using syndromic surveillance data. In Chapter 2, we provide an efficient method to compute the exact distribution of the number and coverage of h-clumps of a collection of words. This method involves defining a Markov chain using a minimal deterministic automaton to reduce the number of states needed for computation. We allow words of the collection to contain other words of the collection making the method more general. We use our method to compute the distributions of the number and coverage of h-clumps in the Chi motif of H. influenza.. In Chapter 3, we provide an efficient algorithm to compute the exact distribution of multiple window discrete scan statistics for higher-order, multi-state Markovian sequences. This algorithm involves defining a Markov chain to efficiently keep track of probabilities needed to compute p-values of the statistic. We use our algorithm to identify cases where the available approximation does not perform well. We also use our algorithm to detect unusual clusters of made free throw shots by National Basketball Association players during the 2009-2010 regular season. In Chapter 4, we give a procedure to detect outbreaks using syndromic surveillance data while controlling the Bayesian False Discovery Rate (BFDR). The procedure entails choosing an appropriate Bayesian model that captures the spatial dependency inherent in epidemiological data and considers all days of interest, selecting a test statistic based on a chosen measure that provides the magnitude of the maximumal spatial cluster for each day, and identifying a cutoff value that controls the BFDR for rejecting the collective null hypothesis of no outbreak over a collection of days for a specified region.We use our procedure to analyze botulism-like syndrome data collected by the North Carolina Disease Event Tracking and Epidemiologic Collection Tool (NC DETECT).
Event-related potential evidence for the processing efficiency theory.
Murray, N P; Janelle, C M
2007-01-15
The purpose of this study was to examine the central tenets of the processing efficiency theory using psychophysiological measures of attention and effort. Twenty-eight participants were divided equally into either a high or low trait anxiety group. They were then required to perform a simulated driving task while responding to one of four target light-emitting diodes. Cortical activity and dual task performance were recorded under two conditions -- baseline and competition -- with cognitive anxiety being elevated in the competitive session by an instructional set. Although driving speed was similar across sessions, a reduction in P3 amplitude to cue onset in the light detection task occurred for both groups during the competitive session, suggesting a reduction in processing efficiency as participants became more state anxious. Our findings provide more comprehensive and mechanistic evidence for processing efficiency theory, and confirm that increases in cognitive anxiety can result in a reduction of processing efficiency with little change in performance effectiveness.
Efficiency and credit ratings: a permutation-information-theory analysis
NASA Astrophysics Data System (ADS)
Fernandez Bariviera, Aurelio; Zunino, Luciano; Belén Guercio, M.; Martinez, Lisana B.; Rosso, Osvaldo A.
2013-08-01
The role of credit rating agencies has been under severe scrutiny after the subprime crisis. In this paper we explore the relationship between credit ratings and informational efficiency of a sample of thirty nine corporate bonds of US oil and energy companies from April 2008 to November 2012. For this purpose we use a powerful statistical tool, relatively new in the financial literature: the complexity-entropy causality plane. This representation space allows us to graphically classify the different bonds according to their degree of informational efficiency. We find that this classification agrees with the credit ratings assigned by Moody’s. In particular, we detect the formation of two clusters, which correspond to the global categories of investment and speculative grades. Regarding the latter cluster, two subgroups reflect distinct levels of efficiency. Additionally, we also find an intriguing absence of correlation between informational efficiency and firm characteristics. This allows us to conclude that the proposed permutation-information-theory approach provides an alternative practical way to justify bond classification.
NASA Technical Reports Server (NTRS)
Taylor, R. C.; Hettrick, M. C.; Malina, R. F.
1983-01-01
High quantum efficiency and two-dimensional imaging capabilities make the microchannel plate (MCP) a suitable detector for a sky survey instrument. The Extreme Ultraviolet Explorer satellite, to be launched in 1987, will use MCP detectors. A feature which limits MCP efficiency is related to the walls of individual channels. The walls are of finite thickness and thus form an interchannel web. Under normal circumstances, this web does not contribute to the detector's quantum efficiency. Panitz and Foesch (1976) have found that in the case of a bombardment with ions, electrons were ejected from the electrode material coating the web. By applying a small electric field, the electrons were returned to the MCP surface where they were detected. The present investigation is concerned with the enhancement of quantum efficiencies in the case of extreme UV wavelengths. Attention is given to a model and a computer simulation which quantitatively reproduce the experimental results.
El-Assaad, Atlal; Dawy, Zaher; Nemer, Georges; Hajj, Hazem; Kobeissy, Firas H
2017-01-01
Degradomics is a novel discipline that involves determination of the proteases/substrate fragmentation profile, called the substrate degradome, and has been recently applied in different disciplines. A major application of degradomics is its utility in the field of biomarkers where the breakdown products (BDPs) of different protease have been investigated. Among the major proteases assessed, calpain and caspase proteases have been associated with the execution phases of the pro-apoptotic and pro-necrotic cell death, generating caspase/calpain-specific cleaved fragments. The distinction between calpain and caspase protein fragments has been applied to distinguish injury mechanisms. Advanced proteomics technology has been used to identify these BDPs experimentally. However, it has been a challenge to identify these BDPs with high precision and efficiency, especially if we are targeting a number of proteins at one time. In this chapter, we present a novel bioinfromatic detection method that identifies BDPs accurately and efficiently with validation against experimental data. This method aims at predicting the consensus sequence occurrences and their variants in a large set of experimentally detected protein sequences based on state-of-the-art sequence matching and alignment algorithms. After detection, the method generates all the potential cleaved fragments by a specific protease. This space and time-efficient algorithm is flexible to handle the different orientations that the consensus sequence and the protein sequence can take before cleaving. It is O(mn) in space complexity and O(Nmn) in time complexity, with N number of protein sequences, m length of the consensus sequence, and n length of each protein sequence. Ultimately, this knowledge will subsequently feed into the development of a novel tool for researchers to detect diverse types of selected BDPs as putative disease markers, contributing to the diagnosis and treatment of related disorders.
ERIC Educational Resources Information Center
Wu, Chung-Hsien; Su, Hung-Yu; Liu, Chao-Hong
2013-01-01
This study presents an efficient approach to personalized mispronunciation detection of Taiwanese-accented English. The main goal of this study was to detect frequently occurring mispronunciation patterns of Taiwanese-accented English instead of scoring English pronunciations directly. The proposed approach quickly identifies personalized…
Entanglement criterion for tripartite systems based on local sum uncertainty relations
NASA Astrophysics Data System (ADS)
Akbari-Kourbolagh, Y.; Azhdargalam, M.
2018-04-01
We propose a sufficient criterion for the entanglement of tripartite systems based on local sum uncertainty relations for arbitrarily chosen observables of subsystems. This criterion generalizes the tighter criterion for bipartite systems introduced by Zhang et al. [C.-J. Zhang, H. Nha, Y.-S. Zhang, and G.-C. Guo, Phys. Rev. A 81, 012324 (2010), 10.1103/PhysRevA.81.012324] and can be used for both discrete- and continuous-variable systems. It enables us to detect the entanglement of quantum states without having a complete knowledge of them. Its utility is illustrated by some examples of three-qubit, qutrit-qutrit-qubit, and three-mode Gaussian states. It is found that, in comparison with other criteria, this criterion is able to detect some three-qubit bound entangled states more efficiently.
Contextual cueing of pop-out visual search: when context guides the deployment of attention.
Geyer, Thomas; Zehetleitner, Michael; Müller, Hermann J
2010-05-01
Visual context information can guide attention in demanding (i.e., inefficient) search tasks. When participants are repeatedly presented with identically arranged ('repeated') displays, reaction times are faster relative to newly composed ('non-repeated') displays. The present article examines whether this 'contextual cueing' effect operates also in simple (i.e., efficient) search tasks and if so, whether there it influences target, rather than response, selection. The results were that singleton-feature targets were detected faster when the search items were presented in repeated, rather than non-repeated, arrangements. Importantly, repeated, relative to novel, displays also led to an increase in signal detection accuracy. Thus, contextual cueing can expedite the selection of pop-out targets, most likely by enhancing feature contrast signals at the overall-salience computation stage.
Measuring Theta_13 at Daya Bay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Kwong
2014-03-14
We measured the neutrino mixing angle, theta13, presumably related to the preponderance of matter over antimatter in our universe with high precision. We determined theta13 by measuring the disappearance of neutrinos from a group of six nuclear reactors. The target, located inside a mountain at about 2 km from the reactors, is 80 tons of liquid scintillator doped with trace amount of Gadolinium to increase its neutron detection efficiency. The neutrino flux is measured by the inverse beta-decay reaction where the final-state particles are detected by the liquid scintillator. The measured value of theta13, based on data collected over 3more » years, is large, around 8 degrees, rendering the measurement of the parameter related to matter-antimatter asymmetry in future long baseline neutrino experiments easier.« less
Chang, Zhi-Min; Wang, Zheng; Shao, Dan; Yue, Juan; Xing, Hao; Li, Li; Ge, Mingfeng; Li, Mingqiang; Yan, Huize; Hu, Hanze; Xu, Qiaobing; Dong, Wen-Fei
2018-04-04
Magnetic mesoporous silica nanoparticles (M-MSNs) are attractive candidates for the immunomagnetic isolation and detection of circulating tumor cells (CTCs). Understanding of the interactions between the effects of the shape of M-MSNs and CTCs is crucial to maximize the binding capacity and capture efficiency as well as to facilitate the sensitivity and efficiency of detection. In this work, fluorescent M-MSNs were rationally designed with sphere and rod morphologies while retaining their robust fluorescence and uniform surface functionality. After conjugation with the antibody of epithelial cell adhesion molecule (EpCAM), both of the differently shaped M-MSNs-EpCAM obtained achieved efficient enrichment of CTCs and fluorescent-based detection. Importantly, rodlike M-MSNs exhibited faster immunomagnetic isolation as well as better performance in the isolation and detection of CTCs in spiked cells and real clinical blood samples than those of their spherelike counterparts. Our results showed that shape engineering contributes positively toward immunomagnetic isolation, which might open new avenues to the rational design of magnetic-fluorescent nanoprobes for the sensitive and efficient isolation and detection of CTCs.
NASA Astrophysics Data System (ADS)
Li, Jia; Wang, Qiang; Yan, Wenjie; Shen, Yi
2015-12-01
Cooperative spectrum sensing exploits the spatial diversity to improve the detection of occupied channels in cognitive radio networks (CRNs). Cooperative compressive spectrum sensing (CCSS) utilizing the sparsity of channel occupancy further improves the efficiency by reducing the number of reports without degrading detection performance. In this paper, we firstly and mainly propose the referred multi-candidate orthogonal matrix matching pursuit (MOMMP) algorithms to efficiently and effectively detect occupied channels at fusion center (FC), where multi-candidate identification and orthogonal projection are utilized to respectively reduce the number of required iterations and improve the probability of exact identification. Secondly, two common but different approaches based on threshold and Gaussian distribution are introduced to realize the multi-candidate identification. Moreover, to improve the detection accuracy and energy efficiency, we propose the matrix construction based on shrinkage and gradient descent (MCSGD) algorithm to provide a deterministic filter coefficient matrix of low t-average coherence. Finally, several numerical simulations validate that our proposals provide satisfactory performance with higher probability of detection, lower probability of false alarm and less detection time.
Pure sources and efficient detectors for optical quantum information processing
NASA Astrophysics Data System (ADS)
Zielnicki, Kevin
Over the last sixty years, classical information theory has revolutionized the understanding of the nature of information, and how it can be quantified and manipulated. Quantum information processing extends these lessons to quantum systems, where the properties of intrinsic uncertainty and entanglement fundamentally defy classical explanation. This growing field has many potential applications, including computing, cryptography, communication, and metrology. As inherently mobile quantum particles, photons are likely to play an important role in any mature large-scale quantum information processing system. However, the available methods for producing and detecting complex multi-photon states place practical limits on the feasibility of sophisticated optical quantum information processing experiments. In a typical quantum information protocol, a source first produces an interesting or useful quantum state (or set of states), perhaps involving superposition or entanglement. Then, some manipulations are performed on this state, perhaps involving quantum logic gates which further manipulate or entangle the intial state. Finally, the state must be detected, obtaining some desired measurement result, e.g., for secure communication or computationally efficient factoring. The work presented here concerns the first and last stages of this process as they relate to photons: sources and detectors. Our work on sources is based on the need for optimized non-classical states of light delivered at high rates, particularly of single photons in a pure quantum state. We seek to better understand the properties of spontaneous parameteric downconversion (SPDC) sources of photon pairs, and in doing so, produce such an optimized source. We report an SPDC source which produces pure heralded single photons with little or no spectral filtering, allowing a significant rate enhancement. Our work on detectors is based on the need to reliably measure single-photon states. We have focused on optimizing the detection efficiency of visible light photon counters (VLPCs), a single-photon detection technology that is also capable of resolving photon number states. We report a record-breaking quantum efficiency of 91 +/- 3% observed with our detection system. Both sources and detectors are independently interesting physical systems worthy of study, but together they promise to enable entire new classes and applications of information based on quantum mechanics.
Hashimoto, Yuichiro
2017-01-01
The development of a robust ionization source using the counter-flow APCI, miniature mass spectrometer, and an automated sampling system for detecting explosives are described. These development efforts using mass spectrometry were made in order to improve the efficiencies of on-site detection in areas such as security, environmental, and industrial applications. A development team, including the author, has struggled for nearly 20 years to enhance the robustness and reduce the size of mass spectrometers to meet the requirements needed for on-site applications. This article focuses on the recent results related to the detection of explosive materials where automated particle sampling using a cyclone concentrator permitted the inspection time to be successfully reduced to 3 s. PMID:28337396
Baker, Laurie L.; Jonsen, Ian D.; Mills Flemming, Joanna E.; Lidgard, Damian C.; Bowen, William D.; Iverson, Sara J.; Webber, Dale M.
2014-01-01
Understanding the nature of inter-specific and conspecific interactions in the ocean is challenging because direct observation is usually impossible. The development of dual transmitter/receivers, Vemco Mobile Transceivers (VMT), and satellite-linked (e.g. GPS) tags provides a unique opportunity to better understand between and within species interactions in space and time. Quantifying the uncertainty associated with detecting a tagged animal, particularly under varying field conditions, is vital for making accurate biological inferences when using VMTs. We evaluated the detection efficiency of VMTs deployed on grey seals, Halichoerus grypus, off Sable Island (NS, Canada) in relation to environmental characteristics and seal behaviour using generalized linear models (GLM) to explore both post-processed detection data and summarized raw VMT data. When considering only post-processed detection data, only about half of expected detections were recorded at best even when two VMT-tagged seals were estimated to be within 50–200 m of one another. At a separation of 400 m, only about 15% of expected detections were recorded. In contrast, when incomplete transmissions from the summarized raw data were also considered, the ratio of complete transmission to complete and incomplete transmissions was about 70% for distances ranging from 50–1000 m, with a minimum of around 40% at 600 m and a maximum of about 85% at 50 m. Distance between seals, wind stress, and depth were the most important predictors of detection efficiency. Access to the raw VMT data allowed us to focus on the physical and environmental factors that limit a transceiver’s ability to resolve a transmitter’s identity. PMID:24892286
Englund, Erin K; Rodgers, Zachary B; Langham, Michael C; Mohler, Emile R; Floyd, Thomas F; Wehrli, Felix W
2016-10-01
To compare calf skeletal muscle perfusion measured with pulsed arterial spin labeling (PASL) and pseudo-continuous arterial spin labeling (pCASL) methods, and to assess the variability of pCASL labeling efficiency in the popliteal artery throughout an ischemia-reperfusion paradigm. At 3T, relative pCASL labeling efficiency was experimentally assessed in five subjects by measuring the signal intensity of blood in the popliteal artery just distal to the labeling plane immediately following pCASL labeling or control preparation pulses, or without any preparation pulses throughout separate ischemia-reperfusion paradigms. The relative label and control efficiencies were determined during baseline, hyperemia, and recovery. In a separate cohort of 10 subjects, pCASL and PASL sequences were used to measure reactive hyperemia perfusion dynamics. Calculated pCASL labeling and control efficiencies did not differ significantly between baseline and hyperemia or between hyperemia and recovery periods. Relative to the average baseline, pCASL label efficiency was 2 ± 9% lower during hyperemia. Perfusion dynamics measured with pCASL and PASL did not differ significantly (P > 0.05). Average leg muscle peak perfusion was 47 ± 20 mL/min/100g or 50 ± 12 mL/min/100g, and time to peak perfusion was 25 ± 3 seconds and 25 ± 7 seconds from pCASL and PASL data, respectively. Differences of further metrics parameterizing the perfusion time course were not significant between pCASL and PASL measurements (P > 0.05). No change in pCASL labeling efficiency was detected despite the almost 10-fold increase in average blood flow velocity in the popliteal artery. pCASL and PASL provide precise and consistent measurement of skeletal muscle reactive hyperemia perfusion dynamics. J. MAGN. RESON. IMAGING 2016;44:929-939. © 2016 International Society for Magnetic Resonance in Medicine.
Connolly, Patrick J.; Wolf, Keith; O'Neal, Jennifer S.
2010-01-01
With increasing use of passive integrated transponder (PIT) tags and reliance on stationary PIT tag interrogation systems to monitor fish populations, guidelines are offered to inform users how best to use limited funding and human resources to create functional systems that maximize a desired level of detection and precision. The estimators of detection efficiency and their variability as described by Connolly et al. (2008) are explored over a span of likely performance metrics. These estimators were developed to estimate detection efficiency without relying on a known number of fish passing the system. I present graphical displays of the results derived from these estimators to show the potential efficiency and precision to be gained by adding an array or by increasing the number of PIT-tagged fish expected to move past an interrogation system.
Guidelines for calculating and enhancing detection efficiency of PIT tag interrogation systems
Connolly, Patrick J.
2010-01-01
With increasing use of passive integrated transponder (PIT) tags and reliance on stationary PIT tag interrogation systems to monitor fish populations, guidelines are offered to inform users how best to use limited funding and human resources to create functional systems that maximize a desired level of detection and precision. The estimators of detection efficiency and their variability as described by Connolly et al. (2008) are explored over a span of likely performance metrics. These estimators were developed to estimate detection efficiency without relying on a known number of fish passing the system. I present graphical displays of the results derived from these estimators to show the potential efficiency and precision to be gained by adding an array or by increasing the number of PIT-tagged fish expected to move past an interrogation system.
NASA Astrophysics Data System (ADS)
Zhang, Bin; Chen, Cheng; Han, Junbo; Jin, Chuan; Chen, Jianxin; Wang, Xingjun
2018-04-01
The effect of the thermal annealing on the optical and spin properties in GaAs0.44Sb0.56 epilayers grown on InP was investigated via photoreflectance, power-dependent and time-resolved photoluminescence spectroscopy as well as optical orientation measurement. The carrier's localization and the optical spin detection efficiency increase with an increase of annealing temperature up to 600 °C. The enhancement of the spin detection efficiency is attributed to both the shortening of the electron lifetime and the prolonging of the spin lifetime as a result of the enhanced carriers' localization induced by the annealing process. Our results provided an approach to enhance spin detection efficiency of GaAsSb with its PL emission in the 1.55 μm region.
Cassette, Philippe
2016-03-01
In Liquid Scintillation Counting (LSC), the scintillating source is part of the measurement system and its detection efficiency varies with the scintillator used, the vial and the volume and the chemistry of the sample. The detection efficiency is generally determined using a quenching curve, describing, for a specific radionuclide, the relationship between a quenching index given by the counter and the detection efficiency. A quenched set of LS standard sources are prepared by adding a quenching agent and the quenching index and detection efficiency are determined for each source. Then a simple formula is fitted to the experimental points to define the quenching curve function. The paper describes a software package specifically devoted to the determination of quenching curves with uncertainties. The experimental measurements are described by their quenching index and detection efficiency with uncertainties on both quantities. Random Gaussian fluctuations of these experimental measurements are sampled and a polynomial or logarithmic function is fitted on each fluctuation by χ(2) minimization. This Monte Carlo procedure is repeated many times and eventually the arithmetic mean and the experimental standard deviation of each parameter are calculated, together with the covariances between these parameters. Using these parameters, the detection efficiency, corresponding to an arbitrary quenching index within the measured range, can be calculated. The associated uncertainty is calculated with the law of propagation of variances, including the covariance terms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Horowitz-Kraus, Tzipi
2016-05-01
The error-detection mechanism aids in preventing error repetition during a given task. Electroencephalography demonstrates that error detection involves two event-related potential components: error-related and correct-response negativities (ERN and CRN, respectively). Dyslexia is characterized by slow, inaccurate reading. In particular, individuals with dyslexia have a less active error-detection mechanism during reading than typical readers. In the current study, we examined whether a reading training programme could improve the ability to recognize words automatically (lexical representations) in adults with dyslexia, thereby resulting in more efficient error detection during reading. Behavioural and electrophysiological measures were obtained using a lexical decision task before and after participants trained with the reading acceleration programme. ERN amplitudes were smaller in individuals with dyslexia than in typical readers before training but increased following training, as did behavioural reading scores. Differences between the pre-training and post-training ERN and CRN components were larger in individuals with dyslexia than in typical readers. Also, the error-detection mechanism as represented by the ERN/CRN complex might serve as a biomarker for dyslexia and be used to evaluate the effectiveness of reading intervention programmes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Contextual knowledge reduces demands on working memory during reading.
Miller, Lisa M Soederberg; Cohen, Jason A; Wingfield, Arthur
2006-09-01
An experiment is reported in which young, middle-aged, and older adults read and recalled ambiguous texts either with or without the topic title that supplied contextual knowledge. Within each of the age groups, the participants were divided into those with high or low working memory (WM) spans, with available WM capacity further manipulated by the presence or absence of an auditory target detection task concurrent with the reading task. Differences in reading efficiency (reading time per proposition recalled) between low WM span and high WM span groups were greater among readers who had access to contextual knowledge relative to those who did not, suggesting that contextual knowledge reduces demands on WM capacity. This position was further supported by the finding that increased age and attentional demands, two factors associated with reduced WM capacity, exaggerated the benefits of contextual knowledge on reading efficiency. The relative strengths of additional potential predictors of reading efficiency (e.g., interest, effort, and memory beliefs), along with knowledge, WM span, and age, are reported. Findings showed that contextual knowledge was the strongest predictor of reading efficiency even after controlling for the effects of all of the other predictors.
Collaborative Indoor Access Point Localization Using Autonomous Mobile Robot Swarm.
Awad, Fahed; Naserllah, Muhammad; Omar, Ammar; Abu-Hantash, Alaa; Al-Taj, Abrar
2018-01-31
Localization of access points has become an important research problem due to the wide range of applications it addresses such as dismantling critical security threats caused by rogue access points or optimizing wireless coverage of access points within a service area. Existing proposed solutions have mostly relied on theoretical hypotheses or computer simulation to demonstrate the efficiency of their methods. The techniques that rely on estimating the distance using samples of the received signal strength usually assume prior knowledge of the signal propagation characteristics of the indoor environment in hand and tend to take a relatively large number of uniformly distributed random samples. This paper presents an efficient and practical collaborative approach to detect the location of an access point in an indoor environment without any prior knowledge of the environment. The proposed approach comprises a swarm of wirelessly connected mobile robots that collaboratively and autonomously collect a relatively small number of non-uniformly distributed random samples of the access point's received signal strength. These samples are used to efficiently and accurately estimate the location of the access point. The experimental testing verified that the proposed approach can identify the location of the access point in an accurate and efficient manner.
Collaborative Indoor Access Point Localization Using Autonomous Mobile Robot Swarm
Awad, Fahed; Naserllah, Muhammad; Omar, Ammar; Abu-Hantash, Alaa; Al-Taj, Abrar
2018-01-01
Localization of access points has become an important research problem due to the wide range of applications it addresses such as dismantling critical security threats caused by rogue access points or optimizing wireless coverage of access points within a service area. Existing proposed solutions have mostly relied on theoretical hypotheses or computer simulation to demonstrate the efficiency of their methods. The techniques that rely on estimating the distance using samples of the received signal strength usually assume prior knowledge of the signal propagation characteristics of the indoor environment in hand and tend to take a relatively large number of uniformly distributed random samples. This paper presents an efficient and practical collaborative approach to detect the location of an access point in an indoor environment without any prior knowledge of the environment. The proposed approach comprises a swarm of wirelessly connected mobile robots that collaboratively and autonomously collect a relatively small number of non-uniformly distributed random samples of the access point’s received signal strength. These samples are used to efficiently and accurately estimate the location of the access point. The experimental testing verified that the proposed approach can identify the location of the access point in an accurate and efficient manner. PMID:29385042
NASA Astrophysics Data System (ADS)
Tang, Feng; Pang, Dai-Wen; Chen, Zhi; Shao, Jian-Bo; Xiong, Ling-Hong; Xiang, Yan-Ping; Xiong, Yan; Wu, Kai; Ai, Hong-Wu; Zhang, Hui; Zheng, Xiao-Li; Lv, Jing-Rui; Liu, Wei-Yong; Hu, Hong-Bing; Mei, Hong; Zhang, Zhen; Sun, Hong; Xiang, Yun; Sun, Zi-Yong
2016-02-01
It is a great challenge in nanotechnology for fluorescent nanobioprobes to be applied to visually detect and directly isolate pathogens in situ. A novel and visual immunosensor technique for efficient detection and isolation of Salmonella was established here by applying fluorescent nanobioprobes on a specially-designed cellulose-based swab (a solid-phase enrichment system). The selective and chromogenic medium used on this swab can achieve the ultrasensitive amplification of target bacteria and form chromogenic colonies in situ based on a simple biochemical reaction. More importantly, because this swab can serve as an attachment site for the targeted pathogens to immobilize and immunologically capture nanobioprobes, our mAb-conjugated QD bioprobes were successfully applied on the solid-phase enrichment system to capture the fluorescence of targeted colonies under a designed excitation light instrument based on blue light-emitting diodes combined with stereomicroscopy or laser scanning confocal microscopy. Compared with the traditional methods using 4-7 days to isolate Salmonella from the bacterial mixture, this method took only 2 days to do this, and the process of initial screening and preliminary diagnosis can be completed in only one and a half days. Furthermore, the limit of detection can reach as low as 101 cells per mL Salmonella on the background of 105 cells per mL non-Salmonella (Escherichia coli, Proteus mirabilis or Citrobacter freundii, respectively) in experimental samples, and even in human anal ones. The visual and efficient immunosensor technique may be proved to be a favorable alternative for screening and isolating Salmonella in a large number of samples related to public health surveillance.It is a great challenge in nanotechnology for fluorescent nanobioprobes to be applied to visually detect and directly isolate pathogens in situ. A novel and visual immunosensor technique for efficient detection and isolation of Salmonella was established here by applying fluorescent nanobioprobes on a specially-designed cellulose-based swab (a solid-phase enrichment system). The selective and chromogenic medium used on this swab can achieve the ultrasensitive amplification of target bacteria and form chromogenic colonies in situ based on a simple biochemical reaction. More importantly, because this swab can serve as an attachment site for the targeted pathogens to immobilize and immunologically capture nanobioprobes, our mAb-conjugated QD bioprobes were successfully applied on the solid-phase enrichment system to capture the fluorescence of targeted colonies under a designed excitation light instrument based on blue light-emitting diodes combined with stereomicroscopy or laser scanning confocal microscopy. Compared with the traditional methods using 4-7 days to isolate Salmonella from the bacterial mixture, this method took only 2 days to do this, and the process of initial screening and preliminary diagnosis can be completed in only one and a half days. Furthermore, the limit of detection can reach as low as 101 cells per mL Salmonella on the background of 105 cells per mL non-Salmonella (Escherichia coli, Proteus mirabilis or Citrobacter freundii, respectively) in experimental samples, and even in human anal ones. The visual and efficient immunosensor technique may be proved to be a favorable alternative for screening and isolating Salmonella in a large number of samples related to public health surveillance. Electronic supplementary information (ESI) available: One additional figure (Fig. S1), two additional tables (Tables S1 and S2) and additional information. See DOI: 10.1039/c5nr07424j
On-chip detection of non-classical light by scalable integration of single-photon detectors
Najafi, Faraz; Mower, Jacob; Harris, Nicholas C.; Bellei, Francesco; Dane, Andrew; Lee, Catherine; Hu, Xiaolong; Kharel, Prashanta; Marsili, Francesco; Assefa, Solomon; Berggren, Karl K.; Englund, Dirk
2015-01-01
Photonic-integrated circuits have emerged as a scalable platform for complex quantum systems. A central goal is to integrate single-photon detectors to reduce optical losses, latency and wiring complexity associated with off-chip detectors. Superconducting nanowire single-photon detectors (SNSPDs) are particularly attractive because of high detection efficiency, sub-50-ps jitter and nanosecond-scale reset time. However, while single detectors have been incorporated into individual waveguides, the system detection efficiency of multiple SNSPDs in one photonic circuit—required for scalable quantum photonic circuits—has been limited to <0.2%. Here we introduce a micrometer-scale flip-chip process that enables scalable integration of SNSPDs on a range of photonic circuits. Ten low-jitter detectors are integrated on one circuit with 100% device yield. With an average system detection efficiency beyond 10%, and estimated on-chip detection efficiency of 14–52% for four detectors operated simultaneously, we demonstrate, to the best of our knowledge, the first on-chip photon correlation measurements of non-classical light. PMID:25575346
Liaparinos, Panagiotis F; Kandarakis, Ioannis S; Cavouras, Dionisis A; Delis, Harry B; Panayiotakis, George S
2007-05-01
Lu2SiO5: Ce (LSO) scintillator is a relatively new luminescent material which has been successfully applied in positron emission tomography systems. Since it has been recently commercially available in powder form, it could be of value to investigate its performance for use in x-ray projection imaging as both physical and scintillating properties indicate a promising material for such applications. In the present study, a custom and validated Monte Carlo simulation code was used in order to examine the performance of LSO, under diagnostic radiology (mammography and general radiography) conditions. The Monte Carlo code was based on a model using Mie scattering theory for the description of light attenuation. Imaging characteristics, related to image brightness, spatial resolution and noise of LSO screens were predicted using only physical parameters of the phosphor. The overall performance of LSO powder phosphor screens was investigated in terms of the: (i) quantum detection efficiency (ii) emitted K-characteristic radiation (iii) luminescence efficiency (iv) modulation transfer function (v) Swank factor and (vi) zero-frequency detective quantum efficiency [DQE(0)]. Results were compared to the traditional rare-earth Gd2O2S:Tb (GOS) phosphor material. The relative luminescence efficiency of LSO phosphor was found inferior to that of GOS. This is due to the lower intrinsic conversion efficiency of LSO (0.08 instead of 0.15 of GOS) and the relatively high light extinction coefficient mext of this phosphor (0.239 mircom(-1) instead of 0.218 /microm(-1) for GOS). However, the property of increased light extinction combined with the rather sharp angular distribution of scattered light photons (anisotropy factor g=0.624 for LSO instead of 0.494 for GOS) reduce lateral light spreading and improve spatial resolution. In addition, LSO screens were found to exhibit better x-ray absorption as well as higher signal to noise transfer properties in the energy range from 18 keV up to 50.2 keV (e.g. DQE(0)=0.62 at 18 keV and for 34 mg/cm2, instead of 0.58 for GOS). The results indicate that certain optical properties of LSO (optical extinction coefficient, scattering anisotropy factor) combined with the relatively high x-ray coefficients, make this material a promising phosphor which, under appropriate conditions, could be considered for use in x-ray projection imaging detectors.
Quan, Ji; Hu, Zeshu
2018-01-01
Food safety issues closely related to human health have always received widespread attention from the world society. As a basic food source, wheat is the fundamental support of human survival; therefore, the detection of pesticide residues in wheat is very necessary. In this work, the ultrasonic-assisted ionic liquid-dispersive liquid-liquid microextraction (DLLME) method was firstly proposed, and the extraction and analysis of three organophosphorus pesticides were carried out by combining high-performance liquid chromatography (HPLC). The extraction efficiencies of three ionic liquids with bis(trifluoromethylsulfonyl)imide (Tf2N) anion were compared by extracting organophosphorus in wheat samples. It was found that the use of 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([OMIM][Tf2N]) had both high enrichment efficiency and appropriate extraction recovery. Finally, the method was used for the determination of three wheat samples, and the recoveries of them were 74.8–112.5%, 71.8–104.5%, and 83.8–115.5%, respectively. The results show that the method proposed is simple, fast, and efficient, which can be applied to the extraction of organic matters in wheat samples. PMID:29854562
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Yanbao; Mathematical and Computational Sciences Division, National Institute of Standards and Technology, Boulder, Colorado, 80305; Knill, Emanuel
2010-03-15
Because of the fundamental importance of Bell's theorem, a loophole-free demonstration of a violation of local realism (LR) is highly desirable. Here, we study violations of LR involving photon pairs. We quantify the experimental evidence against LR by using measures of statistical strength related to the Kullback-Leibler (KL) divergence, as suggested by van Dam et al.[W. van Dam, R. D. Gill, and P. D. Grunwald, IEEE Trans. Inf. Theory. 51, 2812 (2005)]. Specifically, we analyze a test of LR with entangled states created from two independent polarized photons passing through a polarizing beam splitter. We numerically study the detection efficiencymore » required to achieve a specified statistical strength for the rejection of LR depending on whether photon counters or detectors are used. Based on our results, we find that a test of LR free of the detection loophole requires photon counters with efficiencies of at least 89.71%, or photon detectors with efficiencies of at least 91.11%. For comparison, we also perform this analysis with ideal unbalanced Bell states, which are known to allow rejection of LR with detector efficiencies above 2/3.« less
The relationship between visual search and categorization of own- and other-age faces.
Craig, Belinda M; Lipp, Ottmar V
2018-03-13
Young adult participants are faster to detect young adult faces in crowds of infant and child faces than vice versa. These findings have been interpreted as evidence for more efficient attentional capture by own-age than other-age faces, but could alternatively reflect faster rejection of other-age than own-age distractors, consistent with the previously reported other-age categorization advantage: faster categorization of other-age than own-age faces. Participants searched for own-age faces in other-age backgrounds or vice versa. Extending the finding to different other-age groups, young adult participants were faster to detect young adult faces in both early adolescent (Experiment 1) and older adult backgrounds (Experiment 2). To investigate whether the own-age detection advantage could be explained by faster categorization and rejection of other-age background faces, participants in experiments 3 and 4 also completed an age categorization task. Relatively faster categorization of other-age faces was related to relatively faster search through other-age backgrounds on target absent trials but not target present trials. These results confirm that other-age faces are more quickly categorized and searched through and that categorization and search processes are related; however, this correlational approach could not confirm or reject the contribution of background face processing to the own-age detection advantage. © 2018 The British Psychological Society.
A New Parameter for Cardiac Efficiency Analysis
NASA Astrophysics Data System (ADS)
Borazjani, Iman; Rajan, Navaneetha Krishnan; Song, Zeying; Hoffmann, Kenneth; MacMahon, Eileen; Belohlavek, Marek
2014-11-01
Detecting and evaluating a heart with suboptimal pumping efficiency is a significant clinical goal. However, the routine parameters such as ejection fraction, quantified with current non-invasive techniques are not predictive of heart disease prognosis. Furthermore, they only represent left-ventricular (LV) ejection function and not the efficiency, which might be affected before apparent changes in the function. We propose a new parameter, called the hemodynamic efficiency (H-efficiency) and defined as the ratio of the useful to total power, for cardiac efficiency analysis. Our results indicate that the change in the shape/motion of the LV will change the pumping efficiency of the LV even if the ejection fraction is kept constant at 55% (normal value), i.e., H-efficiency can be used for suboptimal cardiac performance diagnosis. To apply H-efficiency on a patient-specific basis, we are developing a system that combines echocardiography (echo) and computational fluid dynamics (CFD) to provide the 3D pressure and velocity field to directly calculate the H-efficiency parameter. Because the method is based on clinically used 2D echo, which has faster acquisition time and lower cost relative to other imaging techniques, it can have a significant impact on a large number of patients. This work is partly supported by the American Heart Association.
Incidental recall on WAIS-R digit symbol discriminates Alzheimer's and Parkinson's diseases.
Demakis, G J; Sawyer, T P; Fritz, D; Sweet, J J
2001-03-01
The purpose of this study was to examine how Alzheimer's (n = 37) and Parkinson's (n = 21) patients perform on the incidental recall adaptation to the Digit Symbol of the Wechsler Adult Intelligence Scale-Revised (WAIS-R) and how such performance is related to established cognitive efficiency and memory measures. This adaptation requires the examinee to complete the entire subtest and then, without warning, to immediately recall the symbols associated with each number. Groups did not differ significantly on standard Digit Symbol administration (90 seconds), but on recall Parkinson's patients recalled significantly more symbols and symbol-number pairs than Alzheimer's patients. Using only the number of symbols recalled, discriminate function analysis correctly classified 76% of these patients. Correlations between age-corrected scaled score, symbols incidentally recalled, and established measures of cognitive efficiency and memory provided evidence of convergent and divergent validity. Age-corrected scaled scores were more consistently and strongly related to cognitive efficiency, whereas symbols recalled were more consistently and strongly related to memory measures. These findings suggest that the Digit Symbol recall adaptation is actually assessing memory and that it can be another useful way to detect memory impairment. Copyright 2001 John Wiley & Sons, Inc.
NASA Astrophysics Data System (ADS)
Cibinel, A.; Daddi, E.; Bournaud, F.; Sargent, M. T.; le Floc'h, E.; Magdis, G. E.; Pannella, M.; Rujopakarn, W.; Juneau, S.; Zanella, A.; Duc, P.-A.; Oesch, P. A.; Elbaz, D.; Jagannathan, P.; Nyland, K.; Wang, T.
2017-08-01
We present deep ALMA CO(5-4) observations of a main-sequence, clumpy galaxy at z = 1.5 in the HUDF. Thanks to the ˜0{^''.}5 resolution of the ALMA data, we can link stellar population properties to the CO(5-4) emission on scales of a few kiloparsec. We detect strong CO(5-4) emission from the nuclear region of the galaxy, consistent with the observed LIR-L^' }_CO(5-4) correlation and indicating ongoing nuclear star formation. The CO(5-4) gas component appears more concentrated than other star formation tracers or the dust distribution in this galaxy. We discuss possible implications of this difference in terms of star formation efficiency and mass build-up at the galaxy centre. Conversely, we do not detect any CO(5-4) emission from the UV-bright clumps. This might imply that clumps have a high star formation efficiency (although they do not display unusually high specific star formation rates) and are not entirely gas dominated, with gas fractions no larger than that of their host galaxy (˜50 per cent). Stellar feedback and disc instability torques funnelling gas towards the galaxy centre could contribute to the relatively low gas content. Alternatively, clumps could fall in a more standard star formation efficiency regime if their actual star formation rates are lower than generally assumed. We find that clump star formation rates derived with several different, plausible methods can vary by up to an order of magnitude. The lowest estimates would be compatible with a CO(5-4) non-detection even for main-sequence like values of star formation efficiency and gas content.
Luiz Oenning, Anderson; Lopes, Daniela; Neves Dias, Adriana; Merib, Josias; Carasek, Eduardo
2017-11-01
In this study, the viability of two membrane-based microextraction techniques for the determination of endocrine disruptors by high-performance liquid chromatography with diode array detection was evaluated: hollow fiber microporous membrane liquid-liquid extraction and hollow-fiber-supported dispersive liquid-liquid microextraction. The extraction efficiencies obtained for methylparaben, ethylparaben, bisphenol A, benzophenone, and 2-ethylhexyl-4-methoxycinnamate from aqueous matrices obtained using both approaches were compared and showed that hollow fiber microporous membrane liquid-liquid extraction exhibited higher extraction efficiency for most of the compounds studied. Therefore, a detailed optimization of the extraction procedure was carried out with this technique. The optimization of the extraction conditions and liquid desorption were performed by univariate analysis. The optimal conditions for the method were supported liquid membrane with 1-octanol for 10 s, sample pH 7, addition of 15% w/v of NaCl, extraction time of 30 min, and liquid desorption in 150 μL of acetonitrile/methanol (50:50 v/v) for 5 min. The linear correlation coefficients were higher than 0.9936. The limits of detection were 0.5-4.6 μg/L and the limits of quantification were 2-16 μg/L. The analyte relative recoveries were 67-116%, and the relative standard deviations were less than 15.5%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Schlosser, D. M.; Hartmann, R.; Kalok, D.; Bechteler, A.; Abboud, A.; Shokr, M.; Çonka, T.; Pietsch, U.; Strüder, L.
2017-04-01
By combining a low noise fully depleted pnCCD detector with a columnar CsI(Tl) scintillator an energy dispersive spatial resolving detector can be realized with a high quantum efficiency in the range from below 0.5 keV to above 150 keV. The used scintillator system increases the pulse height of gamma-rays converted in the CsI(Tl), due to focusing properties of the columnar scintillator structure by reducing the event size in indirect detection mode (conversion in the scintillator). In case of direct detection (conversion in the silicon of the pnCCD) the relative energy resolution is 0.7% at 122 keV (FWHM = 850 eV) and the spatial resolution is less than 75 μm. In case of indirect detection the relative energy resolution, integrated over all event sizes is about 9% at 122 keV with an expected spatial precision of below 75 μm.
Hydrogen Research for Spaceport and Space-Based Applications: Hydrogen Sensors and Systems. Part 2
NASA Technical Reports Server (NTRS)
Anderson, Tim; Balaban, Canan
2008-01-01
The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Sensor systems research was focused on hydrogen leak detection and smart sensors with adaptive feedback control for fuel cells. The goal was to integrate multifunction smart sensors, low-power high-efficiency wireless circuits, energy harvesting devices, and power management circuits in one module. Activities were focused on testing and demonstrating sensors in a realistic environment while also bringing them closer to production and commercial viability for eventual use in the actual operating environment.
Multi-thresholds for fault isolation in the presence of uncertainties.
Touati, Youcef; Mellal, Mohamed Arezki; Benazzouz, Djamel
2016-05-01
Monitoring of the faults is an important task in mechatronics. It involves the detection and isolation of faults which are performed by using the residuals. These residuals represent numerical values that define certain intervals called thresholds. In fact, the fault is detected if the residuals exceed the thresholds. In addition, each considered fault must activate a unique set of residuals to be isolated. However, in the presence of uncertainties, false decisions can occur due to the low sensitivity of certain residuals towards faults. In this paper, an efficient approach to make decision on fault isolation in the presence of uncertainties is proposed. Based on the bond graph tool, the approach is developed in order to generate systematically the relations between residuals and faults. The generated relations allow the estimation of the minimum detectable and isolable fault values. The latter is used to calculate the thresholds of isolation for each residual. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chang, Chun; Huang, Benxiong; Xu, Zhengguang; Li, Bin; Zhao, Nan
2018-02-01
Three soft-input-soft-output (SISO) detection methods for dual-polarized quadrature duobinary (DP-QDB), including maximum-logarithmic-maximum-a-posteriori-probability-algorithm (Max-log-MAP)-based detection, soft-output-Viterbi-algorithm (SOVA)-based detection, and a proposed SISO detection, which can all be combined with SISO decoding, are presented. The three detection methods are investigated at 128 Gb/s in five-channel wavelength-division-multiplexing uncoded and low-density-parity-check (LDPC) coded DP-QDB systems by simulations. Max-log-MAP-based detection needs the returning-to-initial-states (RTIS) process despite having the best performance. When the LDPC code with a code rate of 0.83 is used, the detecting-and-decoding scheme with the SISO detection does not need RTIS and has better bit error rate (BER) performance than the scheme with SOVA-based detection. The former can reduce the optical signal-to-noise ratio (OSNR) requirement (at BER=10-5) by 2.56 dB relative to the latter. The application of the SISO iterative detection in LDPC-coded DP-QDB systems makes a good trade-off between requirements on transmission efficiency, OSNR requirement, and transmission distance, compared with the other two SISO methods.
Evaluation of seven aquatic sampling methods for amphibians and other aquatic fauna
Gunzburger, M.S.
2007-01-01
To design effective and efficient research and monitoring programs researchers must have a thorough understanding of the capabilities and limitations of their sampling methods. Few direct comparative studies exist for aquatic sampling methods for amphibians. The objective of this study was to simultaneously employ seven aquatic sampling methods in 10 wetlands to compare amphibian species richness and number of individuals detected with each method. Four sampling methods allowed counts of individuals (metal dipnet, D-frame dipnet, box trap, crayfish trap), whereas the other three methods allowed detection of species (visual encounter, aural, and froglogger). Amphibian species richness was greatest with froglogger, box trap, and aural samples. For anuran species, the sampling methods by which each life stage was detected was related to relative length of larval and breeding periods and tadpole size. Detection probability of amphibians varied across sampling methods. Box trap sampling resulted in the most precise amphibian count, but the precision of all four count-based methods was low (coefficient of variation > 145 for all methods). The efficacy of the four count sampling methods at sampling fish and aquatic invertebrates was also analyzed because these predatory taxa are known to be important predictors of amphibian habitat distribution. Species richness and counts were similar for fish with the four methods, whereas invertebrate species richness and counts were greatest in box traps. An effective wetland amphibian monitoring program in the southeastern United States should include multiple sampling methods to obtain the most accurate assessment of species community composition at each site. The combined use of frogloggers, crayfish traps, and dipnets may be the most efficient and effective amphibian monitoring protocol. ?? 2007 Brill Academic Publishers.
NASA Technical Reports Server (NTRS)
Trejo, Leonard J.; Shensa, Mark J.; Remington, Roger W. (Technical Monitor)
1998-01-01
This report describes the development and evaluation of mathematical models for predicting human performance from discrete wavelet transforms (DWT) of event-related potentials (ERP) elicited by task-relevant stimuli. The DWT was compared to principal components analysis (PCA) for representation of ERPs in linear regression and neural network models developed to predict a composite measure of human signal detection performance. Linear regression models based on coefficients of the decimated DWT predicted signal detection performance with half as many f ree parameters as comparable models based on PCA scores. In addition, the DWT-based models were more resistant to model degradation due to over-fitting than PCA-based models. Feed-forward neural networks were trained using the backpropagation,-, algorithm to predict signal detection performance based on raw ERPs, PCA scores, or high-power coefficients of the DWT. Neural networks based on high-power DWT coefficients trained with fewer iterations, generalized to new data better, and were more resistant to overfitting than networks based on raw ERPs. Networks based on PCA scores did not generalize to new data as well as either the DWT network or the raw ERP network. The results show that wavelet expansions represent the ERP efficiently and extract behaviorally important features for use in linear regression or neural network models of human performance. The efficiency of the DWT is discussed in terms of its decorrelation and energy compaction properties. In addition, the DWT models provided evidence that a pattern of low-frequency activity (1 to 3.5 Hz) occurring at specific times and scalp locations is a reliable correlate of human signal detection performance.
NASA Technical Reports Server (NTRS)
Trejo, L. J.; Shensa, M. J.
1999-01-01
This report describes the development and evaluation of mathematical models for predicting human performance from discrete wavelet transforms (DWT) of event-related potentials (ERP) elicited by task-relevant stimuli. The DWT was compared to principal components analysis (PCA) for representation of ERPs in linear regression and neural network models developed to predict a composite measure of human signal detection performance. Linear regression models based on coefficients of the decimated DWT predicted signal detection performance with half as many free parameters as comparable models based on PCA scores. In addition, the DWT-based models were more resistant to model degradation due to over-fitting than PCA-based models. Feed-forward neural networks were trained using the backpropagation algorithm to predict signal detection performance based on raw ERPs, PCA scores, or high-power coefficients of the DWT. Neural networks based on high-power DWT coefficients trained with fewer iterations, generalized to new data better, and were more resistant to overfitting than networks based on raw ERPs. Networks based on PCA scores did not generalize to new data as well as either the DWT network or the raw ERP network. The results show that wavelet expansions represent the ERP efficiently and extract behaviorally important features for use in linear regression or neural network models of human performance. The efficiency of the DWT is discussed in terms of its decorrelation and energy compaction properties. In addition, the DWT models provided evidence that a pattern of low-frequency activity (1 to 3.5 Hz) occurring at specific times and scalp locations is a reliable correlate of human signal detection performance. Copyright 1999 Academic Press.
Evaluation of ion-implanted-silicon detectors for use in intraoperative positron-sensitive probes.
Raylman, R R; Wahl, R L
1996-11-01
The continuing development of probes for use with beta (positron and electron) emitting radionuclides may result in more complete excision of tracer-avid tumors. Perhaps one of the most promising radiopharmaceuticals for this task is 18F-labeled-Fluoro-2-Deoxy-D-Glucose (FDG). This positron-emitting agent has been demonstrated to be avidly and rapidly absorbed by many human cancers. We have investigated the use of ion-implanted-silicon detectors in intraoperative positron-sensitive surgical probes for use with FDG. These detectors possess very high positron detection efficiency, while the efficiency for 511 keV photon detection is low. The spatial resolution, as well as positron and annihilation photon detection sensitivity, of an ion-implanted-silicon detector used with 18F was measured at several energy thresholds. In addition, the ability of the device to detect the presence of relatively small amounts of FDG during surgery was evaluated by simulating a surgical field in which some tumor was left intact following lesion excision. The performance of the ion-implanted-silicon detector was compared to the operating characteristics of a positron-sensitive surgical probe which utilizes plastic scintillator. In all areas of performance the ion-implanted-silicon detector proved superior to the plastic scintillator-based probe. At an energy threshold of 14 keV positron sensitivity measured for the ion-implanted-silicon detector was 101.3 cps/kBq, photon sensitivity was 7.4 cps/kBq. In addition, spatial resolution was found to be relatively unaffected by the presence of distant sources of annihilation photon flux. Finally, the detector was demonstrated to be able to localize small amounts of FDG in a simulated tumor bed; indicating that this device has promise as a probe to aid in FDG-guided surgery.
Neutron Detection in the A2 Collaboration Experiment on Neutral Pion Photo-production on Neutron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulychjov, S. A.; Kudryavtsev, A. E.; Kulikov, V. V.
Neutron detection is of crucial importance for the neutral pion photo-production study on a neutron target that now is in progress at MAMI. Two electro-magnetic calorimeters, based on NaI and BaF 2 crystals, are used in the A2 experiment. While these calorimeters are optimized for pion decay photon detection, they have a reason able efficiency for neutron detection also. The paper describes the method, which has been used to measure this efficiency using the same data taken for pion photo-production study on deuterium target with tagged photon been of 800 MeV maximal energy. As a result, the detection efficiency ismore » a rising function of neutron momentum that reaches 40% near 1 GeV/c.« less
Neutron Detection in the A2 Collaboration Experiment on Neutral Pion Photo-production on Neutron
Bulychjov, S. A.; Kudryavtsev, A. E.; Kulikov, V. V.; ...
2018-04-09
Neutron detection is of crucial importance for the neutral pion photo-production study on a neutron target that now is in progress at MAMI. Two electro-magnetic calorimeters, based on NaI and BaF 2 crystals, are used in the A2 experiment. While these calorimeters are optimized for pion decay photon detection, they have a reason able efficiency for neutron detection also. The paper describes the method, which has been used to measure this efficiency using the same data taken for pion photo-production study on deuterium target with tagged photon been of 800 MeV maximal energy. As a result, the detection efficiency ismore » a rising function of neutron momentum that reaches 40% near 1 GeV/c.« less
[Quant efficiency of the detection as a quality parameter of the visualization equipment].
Morgun, O N; Nemchenko, K E; Rogov, Iu V
2003-01-01
The critical parameter of notion "quant efficiency of detection" is defined in the paper. Different methods of specifying the detection quant efficiency (DQE) are under discussion. Thus, techniques of DQE determination for a whole unit and means of DQE finding at terminal space frequency are addressed. The notion of DQE at zero frequency is in the focus of attention. Finally, difficulties occurring in determining the above parameter as well as its disadvantages (as a parameter characterizing the quality of X-ray irradiation visualizing systems) are also discussed.
Multi-Stage System for Automatic Target Recognition
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin; Lu, Thomas T.; Ye, David; Edens, Weston; Johnson, Oliver
2010-01-01
A multi-stage automated target recognition (ATR) system has been designed to perform computer vision tasks with adequate proficiency in mimicking human vision. The system is able to detect, identify, and track targets of interest. Potential regions of interest (ROIs) are first identified by the detection stage using an Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter combined with a wavelet transform. False positives are then eliminated by the verification stage using feature extraction methods in conjunction with neural networks. Feature extraction transforms the ROIs using filtering and binning algorithms to create feature vectors. A feedforward back-propagation neural network (NN) is then trained to classify each feature vector and to remove false positives. The system parameter optimizations process has been developed to adapt to various targets and datasets. The objective was to design an efficient computer vision system that can learn to detect multiple targets in large images with unknown backgrounds. Because the target size is small relative to the image size in this problem, there are many regions of the image that could potentially contain the target. A cursory analysis of every region can be computationally efficient, but may yield too many false positives. On the other hand, a detailed analysis of every region can yield better results, but may be computationally inefficient. The multi-stage ATR system was designed to achieve an optimal balance between accuracy and computational efficiency by incorporating both models. The detection stage first identifies potential ROIs where the target may be present by performing a fast Fourier domain OT-MACH filter-based correlation. Because threshold for this stage is chosen with the goal of detecting all true positives, a number of false positives are also detected as ROIs. The verification stage then transforms the regions of interest into feature space, and eliminates false positives using an artificial neural network classifier. The multi-stage system allows tuning the detection sensitivity and the identification specificity individually in each stage. It is easier to achieve optimized ATR operation based on its specific goal. The test results show that the system was successful in substantially reducing the false positive rate when tested on a sonar and video image datasets.
Designing efficient surveys: spatial arrangement of sample points for detection of invasive species
Ludek Berec; John M. Kean; Rebecca Epanchin-Niell; Andrew M. Liebhold; Robert G. Haight
2015-01-01
Effective surveillance is critical to managing biological invasions via early detection and eradication. The efficiency of surveillance systems may be affected by the spatial arrangement of sample locations. We investigate how the spatial arrangement of sample points, ranging from random to fixed grid arrangements, affects the probability of detecting a target...
Toward achieving flexible and high sensitivity hexagonal boron nitride neutron detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maity, A.; Grenadier, S. J.; Li, J.
Hexagonal boron nitride (h-BN) detectors have demonstrated the highest thermal neutron detection efficiency to date among solid-state neutron detectors at about 51%. We report here the realization of h-BN neutron detectors possessing one order of magnitude enhancement in the detection area but maintaining an equal level of detection efficiency of previous achievement.
Toward achieving flexible and high sensitivity hexagonal boron nitride neutron detectors
Maity, A.; Grenadier, S. J.; Li, J.; ...
2017-07-17
Hexagonal boron nitride (h-BN) detectors have demonstrated the highest thermal neutron detection efficiency to date among solid-state neutron detectors at about 51%. We report here the realization of h-BN neutron detectors possessing one order of magnitude enhancement in the detection area but maintaining an equal level of detection efficiency of previous achievement.
Analysis of the restricting factors of laser countermeasure active detection technology
NASA Astrophysics Data System (ADS)
Zhang, Yufa; Sun, Xiaoquan
2016-07-01
The detection effect of laser active detection system is affected by various kinds of factors. In view of the application requirement of laser active detection, the influence factors for laser active detection are analyzed. The mathematical model of cat eye target detection distance has been built, influence of the parameters of laser detection system and the environment on detection range and the detection efficiency are analyzed. Various parameters constraint detection performance is simulated. The results show that the discovery distance of laser active detection is affected by the laser divergence angle, the incident angle and the visibility of the atmosphere. For a given detection range, the laser divergence angle and the detection efficiency are mutually restricted. Therefore, in view of specific application environment, it is necessary to select appropriate laser detection parameters to achieve optimal detection effect.
ERIC Educational Resources Information Center
Rosset, Delphine; Santos, Andreia; Da Fonseca, David; Rondan, Cecilie; Poinso, Francois; Deruelle, Christine
2011-01-01
The angry superiority effect refers to more efficient way individuals detect angry relative to happy faces in a crowd. Given their socio-emotional deficits, children with autism spectrum disorders (ASD) may be impervious to this effect. Thirty children with ASD and 30 matched-typically developing children were presented with a visual search task,…
Evaluating point count efficiency relative to territory mapping in cropland birds
Andre Cyr; Denis Lepage; Kathryn Freemark
1995-01-01
Species richness, composition, and abundance of farmland birds were compared between point counts (50-m, 100-m, and 150-m radius half circles) and territory mapping on three 40-ha plots in Québec, Canada. Point counts of smaller radii tended to have larger density estimates than counts of larger radii. Territory mapping detected 10 species more than 150-m...
Efficient human face detection in infancy.
Jakobsen, Krisztina V; Umstead, Lindsey; Simpson, Elizabeth A
2016-01-01
Adults detect conspecific faces more efficiently than heterospecific faces; however, the development of this own-species bias (OSB) remains unexplored. We tested whether 6- and 11-month-olds exhibit OSB in their attention to human and animal faces in complex visual displays with high perceptual load (25 images competing for attention). Infants (n = 48) and adults (n = 43) passively viewed arrays containing a face among 24 non-face distractors while we measured their gaze with remote eye tracking. While OSB is typically not observed until about 9 months, we found that, already by 6 months, human faces were more likely to be detected, were detected more quickly (attention capture), and received longer looks (attention holding) than animal faces. These data suggest that 6-month-olds already exhibit OSB in face detection efficiency, consistent with perceptual attunement. This specialization may reflect the biological importance of detecting conspecific faces, a foundational ability for early social interactions. © 2015 Wiley Periodicals, Inc.
Efficiency of prompt quarantine measures on a susceptible-infected-removed model in networks.
Hasegawa, Takehisa; Nemoto, Koji
2017-08-01
This study focuses on investigating the manner in which a prompt quarantine measure suppresses epidemics in networks. A simple and ideal quarantine measure is considered in which an individual is detected with a probability immediately after it becomes infected and the detected one and its neighbors are promptly isolated. The efficiency of this quarantine in suppressing a susceptible-infected-removed (SIR) model is tested in random graphs and uncorrelated scale-free networks. Monte Carlo simulations are used to show that the prompt quarantine measure outperforms random and acquaintance preventive vaccination schemes in terms of reducing the number of infected individuals. The epidemic threshold for the SIR model is analytically derived under the quarantine measure, and the theoretical findings indicate that prompt executions of quarantines are highly effective in containing epidemics. Even if infected individuals are detected with a very low probability, the SIR model under a prompt quarantine measure has finite epidemic thresholds in fat-tailed scale-free networks in which an infected individual can always cause an outbreak of a finite relative size without any measure. The numerical simulations also demonstrate that the present quarantine measure is effective in suppressing epidemics in real networks.
Efficiency of prompt quarantine measures on a susceptible-infected-removed model in networks
NASA Astrophysics Data System (ADS)
Hasegawa, Takehisa; Nemoto, Koji
2017-08-01
This study focuses on investigating the manner in which a prompt quarantine measure suppresses epidemics in networks. A simple and ideal quarantine measure is considered in which an individual is detected with a probability immediately after it becomes infected and the detected one and its neighbors are promptly isolated. The efficiency of this quarantine in suppressing a susceptible-infected-removed (SIR) model is tested in random graphs and uncorrelated scale-free networks. Monte Carlo simulations are used to show that the prompt quarantine measure outperforms random and acquaintance preventive vaccination schemes in terms of reducing the number of infected individuals. The epidemic threshold for the SIR model is analytically derived under the quarantine measure, and the theoretical findings indicate that prompt executions of quarantines are highly effective in containing epidemics. Even if infected individuals are detected with a very low probability, the SIR model under a prompt quarantine measure has finite epidemic thresholds in fat-tailed scale-free networks in which an infected individual can always cause an outbreak of a finite relative size without any measure. The numerical simulations also demonstrate that the present quarantine measure is effective in suppressing epidemics in real networks.
Entropy in DNA Double-Strand Break, Detection and Signaling
NASA Astrophysics Data System (ADS)
Zhang, Yang; Schindler, Christina; Heermann, Dieter
2014-03-01
In biology, the term entropy is often understood as a measure of disorder - a restrictive interpretation that can even be misleading. Recently it has become clearer and clearer that entropy, contrary to conventional wisdom, can help to order and guide biological processes in living cells. DNA double-strand breaks (DSBs) are among the most dangerous lesions and efficient damage detection and repair is essential for organism viability. However, what remains unknown is the precise mechanism of targeting the site of damage within billions of intact nucleotides and a crowded nuclear environment, a process which is often referred to as recruitment or signaling. Here we show that the change in entropy associated with inflicting a DSB facilitates the recruitment of damage sensor proteins. By means of computational modeling we found that higher mobility and local chromatin structure accelerate protein association at DSB ends. We compared the effect of different chromatin architectures on protein dynamics and concentrations in the vicinity of DSBs, and related these results to experiments on repair in heterochromatin. Our results demonstrate how entropy contributes to a more efficient damage detection. We identify entropy as the physical basis for DNA double-strand break signaling.
Damage Detection in Composite Structures with Wavenumber Array Data Processing
NASA Technical Reports Server (NTRS)
Tian, Zhenhua; Leckey, Cara; Yu, Lingyu
2013-01-01
Guided ultrasonic waves (GUW) have the potential to be an efficient and cost-effective method for rapid damage detection and quantification of large structures. Attractive features include sensitivity to a variety of damage types and the capability of traveling relatively long distances. They have proven to be an efficient approach for crack detection and localization in isotropic materials. However, techniques must be pushed beyond isotropic materials in order to be valid for composite aircraft components. This paper presents our study on GUW propagation and interaction with delamination damage in composite structures using wavenumber array data processing, together with advanced wave propagation simulations. Parallel elastodynamic finite integration technique (EFIT) is used for the example simulations. Multi-dimensional Fourier transform is used to convert time-space wavefield data into frequency-wavenumber domain. Wave propagation in the wavenumber-frequency domain shows clear distinction among the guided wave modes that are present. This allows for extracting a guided wave mode through filtering and reconstruction techniques. Presence of delamination causes spectral change accordingly. Results from 3D CFRP guided wave simulations with delamination damage in flat-plate specimens are used for wave interaction with structural defect study.
Efficient screening for COPD using three steps: a cross-sectional study in Mexico City.
Franco-Marina, Francisco; Fernandez-Plata, Rosario; Torre-Bouscoulet, Luis; García-Sancho, Cecilia; Sanchez-Gallen, Elisa; Martinez, David; Perez-Padilla, Rogelio
2014-05-20
Underdiagnosis of chronic obstructive pulmonary disease (COPD) in primary care can be improved by a more efficient screening strategy. To evaluate a three-step method of screening for COPD consisting of an initial short questionnaire followed by measurement of forced expiratory volume in 1s/forced expiratory volume in 6s (FEV1/FEV6) using an inexpensive pocket spirometer in those with high risk, and diagnostic quality spirometry in those with a low FEV1/FEV6. We analysed two related Mexico City cross-sectional samples. The 2003 Mexico City PLATINO survey (n=542) was used to develop a short questionnaire to determine the risk of COPD and a 2010 survey (n=737) additionally used a pocket spirometer. The discriminatory power of the two instruments was assessed with receiver operator characteristic (ROC) curves using three COPD definitions. The developed COPD scale included two variables from a simple questionnaire and, in ROC analysis, an area under the curve (AUC) between 0.64 and 0.77 was found to detect COPD. The pocket spirometer had an AUC between 0.85 and 0.88 to detect COPD. Using the COPD scale as a first screening step excluded 35-48% of the total population from further testing at the cost of not detecting 8-18% of those with COPD. Using the pocket spirometer and sending those with a FEV1/FEV6<0.80 for diagnostic quality spirometry is very efficient, and substantially improved the positive predictive value at the cost of not detecting one-third of COPD cases. A three-step screening strategy for COPD substantially reduces the need for spirometry testing when only a COPD scale is used for screening.
Tanaka, Y T; Yoshikawa, I; Yoshioka, K; Terasawa, T; Saito, Y; Mukai, T
2007-03-01
A microchannel plate (MCP) assembly has been used as an ion detector in the low energy particle (LEP) instrument onboard the magnetospheric satellite GEOTAIL. Recently the MCP assembly has detected gamma rays emitted from an astronomical object and has been shown to provide unique information of gamma rays if they are intense enough. However, the detection efficiency for gamma rays was not measured before launch, and therefore we could not analyze the LEP data quantitatively. In this article, we report the gamma-ray detection efficiency of the MCP assembly. The measured efficiencies are 1.29%+/-0.71% and 0.21%+/-0.14% for normal incidence 60 and 662 keV gamma rays, respectively. The incident angle dependence is also presented. Our calibration is crucial to study high energy astrophysical phenomena by using the LEP.
Misdaq, M A; Aitnouh, F; Khajmi, H; Ezzahery, H; Berrazzouk, S
2001-08-01
A Monte Carlo computer code for determining detection efficiencies of the CR-39 and LR-115 II solid-state nuclear track detectors (SSNTD) for alpha-particles emitted by the uranium and thorium series inside different natural material samples was developed. The influence of the alpha-particle initial energy on the SSNTD detection efficiencies was investigated. Radon (222Rn) and thoron (220Rn) alpha-activities per unit volume were evaluated inside and outside the natural material samples by exploiting data obtained for the detection efficiencies of the SSNTD utilized for the emitted alpha-particles, and measuring the resulting track densities. Results obtained were compared to those obtained by other methods. Radon emanation coefficients have been determined for some of the considered material samples.
Saraji, Mohammad; Jafari, Mohammad Taghi; Mossaddegh, Mehdi
2016-01-15
A high efficiency solid-phase microextraction (SPME) fiber coated with porous carbon nanotubes-silicon dioxide (CNTs-SiO2) nanohybrids was synthesized and applied for the determination of some organophosphorus pesticides (OPPs) in vegetables, fruits and water samples. Gas chromatography-corona discharge ion mobility spectrometry was used as the detection system. Glucose, as a biocompatible compound, was used for connecting CNT and SiO2 during a hydrothermal process. The electrospinning technique was also applied for the fiber preparation. The parameters affecting the efficiency of extraction, including stirring rate, salt effect, extraction temperature, extraction time, desorption temperature and desorption time, were investigated and optimized. The developed CNTs@SiO2 fiber presented better extraction efficiency than the commercial SPME fibers (PA, PDMS, and PDMS-DVB). The intra- and inter-day relative standard deviations were found to be lower than 6.2 and 9.0%, respectively. For water samples, the limits of detection were in the range of 0.005-0.020 μg L(-1) and the limits of quantification were between 0.010 and 0.050 μg L(-1). The results showed a good linearity in the range of 0.01-3.0 μg L(-1) for the analytes. The spiking recoveries ranged from 79 (± 9) to 99 (± 8). The method was successfully applied for the determination of OPPs in real samples. Copyright © 2015 Elsevier B.V. All rights reserved.
The Use of Fast Neutron Detection for Materials Accountability
NASA Astrophysics Data System (ADS)
Nakae, L. F.; Chapline, G. F.; Glenn, A. M.; Kerr, P. L.; Kim, K. S.; Ouedraogo, S. A.; Prasad, M. K.; Sheets, S. A.; Snyderman, N. J.; Verbeke, J. M.; Wurtz, R. E.
2014-02-01
For many years at LLNL, we have been developing time-correlated neutron detection techniques and algorithms for applications such as Arms Control, Threat Detection and Nuclear Material Assay. Many of our techniques have been developed specifically for the relatively low efficiency (a few percent) inherent in man-portable systems. Historically, thermal neutron detectors (mainly 3He) were used, taking advantage of the high thermal neutron interaction cross-sections, but more recently we have been investigating the use of fast neutron detection with liquid scintillators, inorganic crystals, and in the near future, pulse-shape discriminating plastics that respond over 1000 times faster (nanoseconds versus tens of microseconds) than thermal neutron detectors. Fast neutron detection offers considerable advantages, since the inherent nanosecond production timescales of fission and neutron-induced fission are preserved and measured instead of being lost in the thermalization of thermal neutron detectors. We are now applying fast neutron technology to the safeguards regime in the form of high efficiency counters. Faster detector response times and sensitivity to neutron momentum show promise in measuring, differentiating, and assaying samples that have modest to very high count rates, as well as mixed neutron sources (e.g., Pu oxide or Mixed Cm and Pu). Here we report on measured results with our existing liquid scintillator array and promote the design of a nuclear material assay system that incorporates fast neutron detection, including the surprising result that fast liquid scintillator becomes competitive and even surpasses the precision of 3He counters measuring correlated pairs in modest (kg) samples of plutonium.
Bagán, Héctor; Tarancón, Alex; Ye, Lei; García, José F
2014-12-10
The measurement of radioactive solutions containing organic or aggressive media may cause stability problems in liquid and plastic scintillation (PS) techniques. In the case of PS, this can be overcome by adding a crosslinker to the polymer structure. The objectives of this study are to synthesise a suitable crosslinked plastic scintillator (C-PS) for radioactivity determination in organic and aggressive media. The results indicated that an increase in the crosslinker content reduces the detection efficiency and a more flexible crosslinker yields higher detection efficiency. For the polymer composition studied, 2,5-diphenyloxazole (PPO) is the most adequate fluorescent solute and an increase in its concentration causes little change in the detection efficiency. The inclusion of a secondary fluorescent solute 1,4-bis-2-(5-phenyloxazolyl) benzene (POPOP) improves the C-PS radiometrical characteristics. For the final composition chosen, the synthesis of the C-PS exhibits good reproducibility with elevated yield. The obtained C-PS also displays high stability in different organic (toluene, hydrotreated vegetable oil (HVO) and methanol) and aggressive media (hydrochloric acid, nitric acid and hydrogen peroxide). Finally, the C-PS exhibits high detection efficiency both in water and in aggressive media and can also be applied in organic media showing similar or even higher detection efficiency values. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Weiguo; Zou, Yake; Yan, Jinwu; Liu, Jing; Chen, Huixiong; Li, Shan; Zhang, Lei
2018-03-01
In this paper, an ultrasensitive colorimetric biosensor for human chorionic gonadotrophin (hCG) detection was designed from bottom-up method based on the dual catalysis of the horseradish peroxidase (HRP) and Au@Pt nanoparticles (NPs) relative to H2O2-TEM system. HRP and monoclonal mouse anti-hCG antibody (β-submit, mAb1) were co-immobilized onto the Au@Pt NP surface to improve catalytic efficiency and specificity, which formed a dual functionalized Au@Pt-HRP probe with the mean size of 42.8 nm (D50). The colorimetric immunoassay was developed for the hCG detection, and the Au@Pt-HRP probe featured a higher sensitivity in the concentration range of 0.4-12.8 IU L- 1 with a low limit of detection (LOD) of 0.1 IU L- 1 compared with the LODs of 0.8 IU L- 1 for BA-ELISA and of 2.0 IU L- 1 for Au@Pt, which indicated that the Au@Pt-HRP probe possessed higher catalytic efficiency with 2.8-fold increase over Au@Pt and 33.8-fold increase over HRP. Also, the Au@Pt-HRP probe exhibited good precision and reproducibility, high specificity and acceptable accuracy with CV being less than 15%. The dual functionalized Au@Pt-HRP probe as a type of signal amplified method was firstly applied in the colorimetric immunoassay for the hCG detection.
Online in-tube microextractor coupled with UV-Vis spectrophotometer for bisphenol A detection.
Poorahong, Sujittra; Thammakhet, Chongdee; Thavarungkul, Panote; Kanatharana, Proespichaya
2013-01-01
A simple and high extraction efficiency online in-tube microextractor (ITME) was developed for bisphenol A (BPA) detection in water samples. The ITME was fabricated by a stepwise electrodeposition of polyaniline, polyethylene glycol and polydimethylsiloxane composite (CPANI) inside a silico-steel tube. The obtained ITME coupled with UV-Vis detection at 278 nm was investigated. By this method, the extraction and pre-concentration of BPA in water were carried out in a single step. Under optimum conditions, the system provided a linear dynamic range of 0.1 to 100 μM with a limit of detection of 20 nM (S/N ≥3). A single in-tube microextractor had a good stability of more than 60 consecutive injections for 10.0 μM BPA with a relative standard deviation of less than 4%. Moreover, a good tube-to-tube reproducibility and precision were obtained. The system was applied to detect BPA in water samples from six brands of baby bottles and the results showed good agreement with those obtained from the conventional GC-MS method. Acceptable percentage recoveries from the spiked water samples were obtained, ranging from 83-102% for this new method compared with 73-107% for the GC-MS standard method. This new in-tube CPANI microextractor provided an excellent extraction efficiency and a good reproducibility. In addition, it can also be easily applied for the analysis of other polar organic compounds contaminated in water sample.
Performance Improvement of Power Analysis Attacks on AES with Encryption-Related Signals
NASA Astrophysics Data System (ADS)
Lee, You-Seok; Lee, Young-Jun; Han, Dong-Guk; Kim, Ho-Won; Kim, Hyoung-Nam
A power analysis attack is a well-known side-channel attack but the efficiency of the attack is frequently degraded by the existence of power components, irrelative to the encryption included in signals used for the attack. To enhance the performance of the power analysis attack, we propose a preprocessing method based on extracting encryption-related parts from the measured power signals. Experimental results show that the attacks with the preprocessed signals detect correct keys with much fewer signals, compared to the conventional power analysis attacks.
A surface-associated activity trap for capturing water surface and aquatic invertebrates in wetlands
Hanson, Mark A.; Roy, Christiane C.; Euliss, Ned H.; Zimmer, Kyle D.; Riggs, Michael R.; Butler, Malcolm G.
2000-01-01
We developed a surface-associated activity trap (SAT) for sampling aquatic invertebrates in wetlands. We compared performance of this trap with that of a conventional activity trap (AT) based on non-detection rates and relative abundance estimates for 13 taxa of common wetland invertebrates and for taxon richness using data from experiments in constructed wetlands. Taxon-specific non-detection rates for ATs generally exceeded those of SATs, and largest improvements using SATs were for Chironomidae and Gastropoda. SATs were efficient at capturing cladocera, Chironomidae, Gastropoda, total Crustacea, and multiple taxa (taxon richness) but were only slightly better than ATs at capturing Dytiscidae. Temporal differences in capture rates were observed only for cladocera, Chironomidae, Dytiscidae, and total Crustacea, with capture efficiencies of SATs usually decreasing from mid-June through mid-July for these taxa. We believe that SATs may be useful for characterizing wetland invertebrate communities and for developing improved measures of prey available to foraging waterfowl and other aquatic birds.
A surface-associated activity trap for capturing water-surface and aquatic invertebrates in wetlands
Hanson, M.A.; Roy, C.C.; Euliss, N.H.; Zimmer, K.D.; Riggs, M.R.; Butler, Malcolm G.
2000-01-01
We developed a surface-associated activity trap (SAT) for sampling aquatic invertebrates in wetlands. We compared performance of this trap with that of a conventional activity trap (AT) based on non-detection rates and relative abundance estimates for 13 taxa of common wetland invertebrates and for taxon richness using data from experiments in constructed wetlands. Taxon-specific non-detection rates for ATs generally exceeded those of SATs, and largest improvements using SATs were for Chironomidae and Gastropoda. SATs were efficient at capturing cladocera, Chironomidae, Gastropoda, total Crustacea, and multiple taxa (taxon richness) but were only slightly better than ATs at capturing Dytiscidae. Temporal differences in capture rates were observed only for cladocera, Chironomidae, Dytiscidae, and total Crustacea, with capture efficiencies of SATs usually decreasing from mid-June through mid-July for these taxa. We believe that SATs may be useful for characterizing wetland invertebrate communities and for developing improved measures of prey available to foraging waterfowl and other aquatic birds.
Optimising the neutron environment of Radiation Portal Monitors: A computational study
NASA Astrophysics Data System (ADS)
Gilbert, Mark R.; Ghani, Zamir; McMillan, John E.; Packer, Lee W.
2015-09-01
Efficient and reliable detection of radiological or nuclear threats is a crucial part of national and international efforts to prevent terrorist activities. Radiation Portal Monitors (RPMs), which are deployed worldwide, are intended to interdict smuggled fissile material by detecting emissions of neutrons and gamma rays. However, considering the range and variety of threat sources, vehicular and shielding scenarios, and that only a small signature is present, it is important that the design of the RPMs allows these signatures to be accurately differentiated from the environmental background. Using Monte-Carlo neutron-transport simulations of a model 3He detector system we have conducted a parameter study to identify the optimum combination of detector shielding, moderation, and collimation that maximises the sensitivity of neutron-sensitive RPMs. These structures, which could be simply and cost-effectively added to existing RPMs, can improve the detector response by more than a factor of two relative to an unmodified, bare design. Furthermore, optimisation of the air gap surrounding the helium tubes also improves detector efficiency.
2015-06-01
INVESTIGATION OF HEAVY OXIDE AND ALKALI-HALIDE SCINTILLATORS FOR POTENTIAL USE IN NEUTRON AND GAMMA DETECTION SYSTEMS by Jeremy S. Cadiente June...AND ALKALI- HALIDE SCINTILLATORS FOR POTENTIAL USE IN NEUTRON AND GAMMA DETECTION SYSTEMS 5. FUNDING NUMBERS 6. AUTHOR(S) Jeremy S. Cadiente 7...fast neutron detection efficiencies well over 40%, were investigated for potential use as highly efficient gamma- neutron radiation detectors. The
NASA Technical Reports Server (NTRS)
Ward, Jennifer G.; Cummins, Kenneth L.; Krider, E. Philip
2007-01-01
The NASA Kennedy Space Center (KSC) and Air Force Eastern Range (ER) use data from two cloud-to-ground lightning detection networks, CGLSS and NLDN, during ground and launch operations at the KSC-ER. For these applications, it is very important to understand the location accuracy and detection efficiency of each network near the KSC-ER. If a cloud-to-ground (CG) lightning strike is missed or mis-located by even a small amount, the result could have significant safety implications, require expensive retests, or create unnecessary delays or scrubs in launches. Therefore, it is important to understand the performance of each lightning detection system in considerable detail. To evaluate recent upgrades in the CGLSS sensors in 2000 and the entire NLDN in 2002- 2003, we have compared. measurements provided by these independent networks in the summers of 2005 and 2006. Our analyses have focused on the fraction of first strokes reported individually and in-common by each network (flash detection efficiency), the spatial separation between the strike points reported by both networks (relative location accuracy), and the values of the estimated peak current, Ip, reported by each network. The results within 100 km of the KSC-ER show that the networks produce very similar values of Ip (except for a small scaling difference) and that the relative location accuracy is consistent with model estimates that give median values of 200-300m for the CGLSS and 600-700m for the NLDN in the region of the KSC-ER. Because of differences in the network geometries and sensor gains, the NLDN does not report 10-20% of the flashes that have a low Ip (2 kA < |Ip| < 16 kA), both networks report 99 % of the flashes that have intermediate values of Ip (16< |Ip| < 50 kA), and the CGLSS fails to report 20-30% of the high-current events (|Ip| >=0 kA).
Relationships Between Long-Range Lightning Networks and TRMM/LIS Observations
NASA Technical Reports Server (NTRS)
Rudlosky, Scott D.; Holzworth, Robert H.; Carey, Lawrence D.; Schultz, Chris J.; Bateman, Monte; Cummins, Kenneth L.; Cummins, Kenneth L.; Blakeslee, Richard J.; Goodman, Steven J.
2012-01-01
Recent advances in long-range lightning detection technologies have improved our understanding of thunderstorm evolution in the data sparse oceanic regions. Although the expansion and improvement of long-range lightning datasets have increased their applicability, these applications (e.g., data assimilation, atmospheric chemistry, and aviation weather hazards) require knowledge of the network detection capabilities. The present study intercompares long-range lightning data with observations from the Lightning Imaging Sensor (LIS) aboard the Tropical Rainfall Measurement Mission (TRMM) satellite. The study examines network detection efficiency and location accuracy relative to LIS observations, describes spatial variability in these performance metrics, and documents the characteristics of LIS flashes that are detected by the long-range networks. Improved knowledge of relationships between these datasets will allow researchers, algorithm developers, and operational users to better prepare for the spatial and temporal coverage of the upcoming GOES-R Geostationary Lightning Mapper (GLM).
Air Coupled Acoustic Thermography (ACAT) Inspection Technique
NASA Technical Reports Server (NTRS)
Zalameda, Joseph; Winfree, William P.; Yost, William T.
2007-01-01
The scope of this effort is to determine the viability of a new heating technique using a noncontact acoustic excitation source. Because of low coupling between air and the structure, a synchronous detection method is employed. Any reduction in the out of plane stiffness improves the acoustic coupling efficiency and as a result, defective areas have an increase in temperature relative to the surrounding area. Hence a new measurement system, based on air-coupled acoustic energy and synchronous detection is presented. An analytical model of a clamped circular plate is given, experimentally tested, and verified. Repeatability confirms the technique with a measurement uncertainty of plus or minus 6.2 percent. The range of frequencies used was 800-2,000 Hertz. Acoustic excitation and consequent thermal detection of flaws in a helicopter blade is examined and results indicate that air coupled acoustic excitation enables the detection of core damage in sandwich honeycomb structures.
NASA Astrophysics Data System (ADS)
Dutta, Tanoy; Chandra, Falguni; Koner, Apurba L.
2018-02-01
A ;naked-eye; detection of health hazardous bisulfite (HSO3-) and hypochlorite (ClO-) using an indicator dye (Quinaldine Red, QR) in a wide range of pH is demonstrated. The molecule contains a quinoline moiety linked to an N,N-dimethylaniline moiety with a conjugated double bond. Treatment of QR with HSO3- and ClO-, in aqueous solution at near-neutral pH, resulted in a colorless product with high selectivity and sensitivity. The detection limit was 47.8 μM and 0.2 μM for HSO3- and ClO- respectively. However, ClO- was 50 times more sensitive and with 2 times faster response compared to HSO3-. The detail characterization and related analysis demonstrate the potential of QR for a rapid, robust and highly efficient colorimetric sensor for the practical applications to detect hypochlorite in water samples.
Cheng, Yongqiang; Guo, Cuilian; Zhao, Bin; Yang, Li
2017-04-01
A fast and effective method was developed to detect domoic acid based upon microchip electrophoresis combined with laser-induced fluorescence detection. Through study of the gated injection process on the cross channel of the microchip, the low-voltage mode with relatively longer sample loading time was adopted to reduce the sample discrimination and improve the signal sensitivity. Fluorescein isothiocyanate was used as the derivatizing reagent for domoic acid. Under the optimized conditions, domoic acid was completely separated in 60 s with separation efficiency of 1.35 × 10 5 m -1 . The calibration curve was obtained in the range of 1.0 × 10 -9 to 1.0 × 10 -7 mol/L, and the detection limit reached 2.8 × 10 -10 mol/L. This developed method was successfully applied to analyze domoic acid in real samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Measurement of the length of pedestrian crossings and detection of traffic lights from image data
NASA Astrophysics Data System (ADS)
Shioyama, Tadayoshi; Wu, Haiyuan; Nakamura, Naoki; Kitawaki, Suguru
2002-09-01
This paper proposes a method for measurement of the length of a pedestrian crossing and for the detection of traffic lights from image data observed with a single camera. The length of a crossing is measured from image data of white lines painted on the road at a crossing by using projective geometry. Furthermore, the state of the traffic lights, green (go signal) or red (stop signal), is detected by extracting candidates for the traffic light region with colour similarity and selecting a true traffic light from them using affine moment invariants. From the experimental results, the length of a crossing is measured with an accuracy such that the maximum relative error of measured length is less than 5% and the rms error is 0.38 m. A traffic light is efficiently detected by selecting a true traffic light region with an affine moment invariant.
Shih, Chien-Ju; Smith, Emily A
2009-10-27
Raman spectroscopy has been used for the quantitative determination of the conversion efficiency at each step in the production of ethanol from biomass. The method requires little sample preparation; therefore, it is suitable for screening large numbers of biomass samples and reaction conditions in a complex sample matrix. Dilute acid or ammonia-pretreated corn stover was used as a model biomass for these studies. Ammonia pretreatment was suitable for subsequent measurements with Raman spectroscopy, but dilute acid-pretreated corn stover generated a large background signal that surpassed the Raman signal. The background signal is attributed to lignin, which remains in the plant tissue after dilute acid pretreatment. A commercial enzyme mixture was used for the enzymatic hydrolysis of corn stover, and glucose levels were measured with a dispersive 785 nm Raman spectrometer. The glucose detection limit in hydrolysis liquor by Raman spectroscopy was 8 g L(-1). The mean hydrolysis efficiency for three replicate measurements obtained with Raman spectroscopy (86+/-4%) was compared to the result obtained using an enzymatic reaction with UV-vis spectrophotometry detection (78+/-8%). The results indicate good accuracy, as determined using a Student's t-test, and better precision for the Raman spectroscopy measurement relative to the enzymatic detection assay. The detection of glucose in hydrolysis broth by Raman spectroscopy showed no spectral interference, provided the sample was filtered to remove insoluble cellulose prior to analysis. The hydrolysate was further subjected to fermentation to yield ethanol. The detection limit for ethanol in fermentation broth by Raman spectroscopy was found to be 6 g L(-1). Comparison of the fermentation efficiencies measured by Raman spectroscopy (80+/-10%) and gas chromatography-mass spectrometry (87+/-9%) were statistically the same. The work demonstrates the utility of Raman spectroscopy for screening the entire conversion process to generate lignocellulosic ethanol.
Key parameters design of an aerial target detection system on a space-based platform
NASA Astrophysics Data System (ADS)
Zhu, Hanlu; Li, Yejin; Hu, Tingliang; Rao, Peng
2018-02-01
To ensure flight safety of an aerial aircraft and avoid recurrence of aircraft collisions, a method of multi-information fusion is proposed to design the key parameter to realize aircraft target detection on a space-based platform. The key parameters of a detection wave band and spatial resolution using the target-background absolute contrast, target-background relative contrast, and signal-to-clutter ratio were determined. This study also presented the signal-to-interference ratio for analyzing system performance. Key parameters are obtained through the simulation of a specific aircraft. And the simulation results show that the boundary ground sampling distance is 30 and 35 m in the mid- wavelength infrared (MWIR) and long-wavelength infrared (LWIR) bands for most aircraft detection, and the most reasonable detection wavebands is 3.4 to 4.2 μm and 4.35 to 4.5 μm in the MWIR bands, and 9.2 to 9.8 μm in the LWIR bands. We also found that the direction of detection has a great impact on the detection efficiency, especially in MWIR bands.
Performance comparison of NE213 detectors for their application in moisture measurement
Naqvi; Nagadi; Rehman; Kidwai
2000-10-01
The pulse shape discrimination (PSD) characteristic and neutron detection efficiency of NE213 detectors have been measured for their application in moisture measurements using 252Cf and 241Am-Be sources. In PSD studies, neutron peak to valley (Pn/V) ratio and figure of merit M were measured at four different bias values for cylindrical 50, 125 and 250 mm diameter NE213 detectors. The result of this study has shown that better PSD performance with the NE213 detector can be achieved with a smaller volume detector in conjunction with a neutron source with smaller gamma-ray/neutron ratio. The neutron detection efficiency of the 125 mm diameter NE213 detector for 241Am-Be and 252Cf source spectra was determined at 0.85, 1.25 and 1.75 MeV bias energies using the experimental neutron detection efficiency data of the same detector over 0.1-10 MeV energy range. Due to different energy spectra of the 241Am-Be and 252Cf sources, integrated efficiency of the 125 mm diameter NE213 detector for the two sources shows bias dependence. At smaller bias, 252Cf source has larger efficiency but as the bias is increased, the detector has larger efficiency for 241Am-Be source. This study has revealed that NE213 detector has better performance (such as PSD and neutron detection efficiency) in simultaneous detection of neutron and gamma-rays in moisture measurements, if it is used in conjunction with 241Am-Be source at higher detector bias.
An intelligent advisory system for pre-launch processing
NASA Technical Reports Server (NTRS)
Engrand, Peter A.; Mitchell, Tami
1991-01-01
The shuttle system of interest in this paper is the shuttle's data processing system (DPS). The DPS is composed of the following: (1) general purpose computers (GPC); (2) a multifunction CRT display system (MCDS); (3) mass memory units (MMU); and (4) a multiplexer/demultiplexer (MDM) and related software. In order to ensure the correct functioning of shuttle systems, some level of automatic error detection has been incorporated into all shuttle systems. For the DPS, error detection equipment has been incorporated into all of its subsystems. The automated diagnostic system, (MCDS) diagnostic tool, that aids in a more efficient processing of the DPS is described.
Johnson, Paul V; Hodyss, Robert; Beauchamp, J L
2014-11-01
Laser desorption is an attractive technique for in situ sampling of organics on Mars given its relative simplicity. We demonstrate that under simulated Martian conditions (~2.5 Torr CO(2)) laser desorption of neutral species (e.g., polycyclic aromatic hydrocarbons), followed by ionization with a simple ultraviolet light source such as a discharge lamp, offers an effective means of sampling organics for detection and identification with a mass spectrometer. An electrodynamic ion funnel is employed to provide efficient ion collection in the ambient Martian environment. This experimental methodology enables in situ sampling of Martian organics with minimal complexity and maximum flexibility.
System and Method for Outlier Detection via Estimating Clusters
NASA Technical Reports Server (NTRS)
Iverson, David J. (Inventor)
2016-01-01
An efficient method and system for real-time or offline analysis of multivariate sensor data for use in anomaly detection, fault detection, and system health monitoring is provided. Models automatically derived from training data, typically nominal system data acquired from sensors in normally operating conditions or from detailed simulations, are used to identify unusual, out of family data samples (outliers) that indicate possible system failure or degradation. Outliers are determined through analyzing a degree of deviation of current system behavior from the models formed from the nominal system data. The deviation of current system behavior is presented as an easy to interpret numerical score along with a measure of the relative contribution of each system parameter to any off-nominal deviation. The techniques described herein may also be used to "clean" the training data.
Detection of generalized synchronization using echo state networks
NASA Astrophysics Data System (ADS)
Ibáñez-Soria, D.; Garcia-Ojalvo, J.; Soria-Frisch, A.; Ruffini, G.
2018-03-01
Generalized synchronization between coupled dynamical systems is a phenomenon of relevance in applications that range from secure communications to physiological modelling. Here, we test the capabilities of reservoir computing and, in particular, echo state networks for the detection of generalized synchronization. A nonlinear dynamical system consisting of two coupled Rössler chaotic attractors is used to generate temporal series consisting of time-locked generalized synchronized sequences interleaved with unsynchronized ones. Correctly tuned, echo state networks are able to efficiently discriminate between unsynchronized and synchronized sequences even in the presence of relatively high levels of noise. Compared to other state-of-the-art techniques of synchronization detection, the online capabilities of the proposed Echo State Network based methodology make it a promising choice for real-time applications aiming to monitor dynamical synchronization changes in continuous signals.
NASA Astrophysics Data System (ADS)
Li, H.; Kusky, T. M.; Peng, S.; Zhu, M.
2012-12-01
Thermal infrared (TIR) remote sensing is an important technique in the exploration of geothermal resources. In this study, a geothermal survey is conducted in Tengchong area of Yunnan province in China using multi-temporal MODIS LST (Land Surface Temperature). The monthly night MODIS LST data from Mar. 2000 to Mar. 2011 of the study area were collected and analyzed. The 132 month average LST map was derived and three geothermal anomalies were identified. The findings of this study agree well with the results from relative geothermal gradient measurements. Finally, we conclude that TIR remote sensing is a cost-effective technique to detect geothermal anomalies. Combining TIR remote sensing with geological analysis and the understanding of geothermal mechanism is an accurate and efficient approach to geothermal area detection.
Zhang, Ying; Hu, Miao; Li, Pengfei; Wang, Xin; Meng, Qingjuan
2015-11-01
The study reported the upflow anaerobic sludge blanket (UASB) reactor performance in treating wastewater containing trichloroethylene (TCE) and characterized variations of bacteria composition and structure by changing the pH from 6.0 to 8.0. A slightly acidic environment (pH < 7.0) had a greater impact on the TCE removal. Illumina pyrosequencing was applied to investigate the bacterial community changes in response to pH shifts. The results demonstrated that pH greatly influenced the dominance and presence of specific populations. The potential TCE degradation pathway in the UASB reactor was proposed. Importantly, the genus Dehalobacter which was capable of reductively dechlorinating TCE was detected, and it was not found at pH of 6.0, which presumably is the reason why the removal efficiency of TCE was the lowest (80.73 %). Through Pearson correlation analyses, the relative abundance of Dehalobacter positively correlated with TCE removal efficiency (R = 0.912). However, the relative abundance of Lactococcus negatively correlated with TCE removal efficiency according to the results from Pearson correlation analyses and redundancy analysis (RDA).
Efficient FIR Filter Implementations for Multichannel BCIs Using Xilinx System Generator.
Ghani, Usman; Wasim, Muhammad; Khan, Umar Shahbaz; Mubasher Saleem, Muhammad; Hassan, Ali; Rashid, Nasir; Islam Tiwana, Mohsin; Hamza, Amir; Kashif, Amir
2018-01-01
Background . Brain computer interface (BCI) is a combination of software and hardware communication protocols that allow brain to control external devices. Main purpose of BCI controlled external devices is to provide communication medium for disabled persons. Now these devices are considered as a new way to rehabilitate patients with impunities. There are certain potentials present in electroencephalogram (EEG) that correspond to specific event. Main issue is to detect such event related potentials online in such a low signal to noise ratio (SNR). In this paper we propose a method that will facilitate the concept of online processing by providing an efficient filtering implementation in a hardware friendly environment by switching to finite impulse response (FIR). Main focus of this research is to minimize latency and computational delay of preprocessing related to any BCI application. Four different finite impulse response (FIR) implementations along with large Laplacian filter are implemented in Xilinx System Generator. Efficiency of 25% is achieved in terms of reduced number of coefficients and multiplications which in turn reduce computational delays accordingly.
Measured and simulated performance of Compton-suppressed TIGRESS HPGe clover detectors
NASA Astrophysics Data System (ADS)
Schumaker, M. A.; Hackman, G.; Pearson, C. J.; Svensson, C. E.; Andreoiu, C.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Boston, A. J.; Chakrawarthy, R. S.; Churchman, R.; Drake, T. E.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hyland, B.; Jones, B.; Maharaj, R.; Morton, A. C.; Phillips, A. A.; Sarazin, F.; Scraggs, H. C.; Smith, M. B.; Valiente-Dobón, J. J.; Waddington, J. C.; Watters, L. M.
2007-01-01
Tests of the performance of a 32-fold segmented HPGe clover detector coupled to a 20-fold segmented Compton-suppression shield, which form a prototype element of the TRIUMF-ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS), have been made. Peak-to-total ratios and relative efficiencies have been measured for a variety of γ-ray energies. These measurements were used to validate a GEANT4 simulation of the TIGRESS detectors, which was then used to create a simulation of the full 12-detector array. Predictions of the expected performance of TIGRESS are presented. These predictions indicate that TIGRESS will be capable, for single 1 MeV γ rays, of absolute detection efficiencies of 17% and 9.4%, and peak-to-total ratios of 54% and 61% for the "high-efficiency" and "optimized peak-to-total" configurations of the array, respectively.
NASA Technical Reports Server (NTRS)
Timothy, J. G.; Bybee, R. L.
1978-01-01
The paper describes a new type of continuous channel multiplier (CEM) fabricated from a low-resistance glass to produce a high-conductivity channel section and thereby obtain a high count-rate capability. The flat-cone cathode configuration of the CEM is specifically designed for the detection of astigmatic exit images from grazing-incidence spectrometers at the optimum angle of illumination for high detection efficiencies at XUV wavelengths. Typical operating voltages are in the range of 2500-2900 V with stable counting plateau slopes in the range 3-6% per 100-V increment. The modal gain at 2800 V was typically in the range (50-80) million. The modal gain falls off at count rates in excess of about 20,000 per sec. The detection efficiency remains essentially constant to count rates in excess of 2 million per sec. Higher detection efficiencies (better than 20%) are obtained by coating the CEM with MgF2. In life tests of coated CEMs, no measurable change in detection efficiency was measured to a total accumulated signal of 2 times 10 to the 11th power counts.
Towards Loophole-Free Optical Bell Test of CHSH Inequality
NASA Astrophysics Data System (ADS)
Tan, Yong-gang; Li, Hong-wei
2016-09-01
Bell test had been suggested to end the long-standing debate on the EPR paradox, while the imperfections of experimental devices induce some loopholes in Bell test experiments and hence the assumption of local reality by EPR cannot be excluded with current experimental results. In optical Bell test experiments, the locality loophole can be closed easily, while the attempt of closing detection loophole requires very high efficiency of single photon detectors. Previous studies showed that the violation of Clauser-Horne-Shimony-Holt (CHSH) inequality with maximally entangled states requires the detection efficiency to be higher than 82.8 %. In this paper, we raise a modified CHSH inequality that covers all measurement events including the efficient and inefficient detections in the Bell test and prove that all local hidden models can be excluded when the inequality is violated. We find that, when non-maximally entangled states are applied to the Bell test, the lowest detection efficiency for violation of the present inequality is 66.7 %. This makes it feasible to close the detection loophole and the locality loophole simultaneously in optical Bell test of CHSH inequality.
Flash memory management system and method utilizing multiple block list windows
NASA Technical Reports Server (NTRS)
Chow, James (Inventor); Gender, Thomas K. (Inventor)
2005-01-01
The present invention provides a flash memory management system and method with increased performance. The flash memory management system provides the ability to efficiently manage and allocate flash memory use in a way that improves reliability and longevity, while maintaining good performance levels. The flash memory management system includes a free block mechanism, a disk maintenance mechanism, and a bad block detection mechanism. The free block mechanism provides efficient sorting of free blocks to facilitate selecting low use blocks for writing. The disk maintenance mechanism provides for the ability to efficiently clean flash memory blocks during processor idle times. The bad block detection mechanism provides the ability to better detect when a block of flash memory is likely to go bad. The flash status mechanism stores information in fast access memory that describes the content and status of the data in the flash disk. The new bank detection mechanism provides the ability to automatically detect when new banks of flash memory are added to the system. Together, these mechanisms provide a flash memory management system that can improve the operational efficiency of systems that utilize flash memory.
Development of a novel gamma probe for detecting radiation direction
NASA Astrophysics Data System (ADS)
Pani, R.; Pellegrini, R.; Cinti, M. N.; Longo, M.; Donnarumma, R.; D'Alessio, A.; Borrazzo, C.; Pergola, A.; Ridolfi, S.; De Vincentis, G.
2016-01-01
Spatial localization of radioactive sources is currently a main issue interesting different fields, including nuclear industry, homeland security as well as medical imaging. It is currently achieved using different systems, but the development of technologies for detecting and characterizing radiation is becoming important especially in medical imaging. In this latter field, radiation detection probes have long been used to guide surgery, thanks to their ability to localize and quantify radiopharmaceutical uptake even deep in tissue. Radiolabelled colloid is injected into, or near to, the tumor and the surgeon uses a hand-held radiation detector, the gamma probe, to identify lymph nodes with radiopharmaceutical uptkake. The present work refers to a novel scintigraphic goniometric probe to identify gamma radiation and its direction. The probe incorporates several scintillation crystals joined together in a particular configuration to provide data related to the position of a gamma source. The main technical characteristics of the gamma locator prototype, i.e. sensitivity, spatial resolution and detection efficiency, are investigated. Moreover, the development of a specific procedure applied to the images permits to retrieve the source position with high precision with respect to the currently used gamma probes. The presented device shows a high sensitivity and efficiency to identify gamma radiation taking a short time (from 30 to 60 s). Even though it was designed for applications in radio-guided surgery, it could be used for other purposes, as for example homeland security.
Rapid and efficient detection of single chromophore molecules in aqueous solution
NASA Astrophysics Data System (ADS)
Li, Li-Qiang; Davis, Lloyd M.
1995-06-01
The first experiments on the detection of single fluorescent molecules in a flowing stream of an aqueous solution with high total efficiency are reported. A capillary injection system for sample delivery causes all the dye molecules to pass in a diffusion-broadened stream within a fast-moving sheath flow, through the center of the tightly focused laser excitation beam. Single-molecule detection with a transit time of approximately 1 ms is accomplished with a high-quantum-efficiency single-photon avalanche diode and a low dead-time time-gating circuit for discrimination of Raman-scattered light from the solvent.
Pigment network-based skin cancer detection.
Alfed, Naser; Khelifi, Fouad; Bouridane, Ahmed; Seker, Huseyin
2015-08-01
Diagnosing skin cancer in its early stages is a challenging task for dermatologists given the fact that the chance for a patient's survival is higher and hence the process of analyzing skin images and making decisions should be time efficient. Therefore, diagnosing the disease using automated and computerized systems has nowadays become essential. This paper proposes an efficient system for skin cancer detection on dermoscopic images. It has been shown that the statistical characteristics of the pigment network, extracted from the dermoscopic image, could be used as efficient discriminating features for cancer detection. The proposed system has been assessed on a dataset of 200 dermoscopic images of the `Hospital Pedro Hispano' [1] and the results of cross-validation have shown high detection accuracy.
Pernice, W.H.P.; Schuck, C.; Minaeva, O.; Li, M.; Goltsman, G.N.; Sergienko, A.V.; Tang, H.X.
2012-01-01
Ultrafast, high-efficiency single-photon detectors are among the most sought-after elements in modern quantum optics and quantum communication. However, imperfect modal matching and finite photon absorption rates have usually limited their maximum attainable detection efficiency. Here we demonstrate superconducting nanowire detectors atop nanophotonic waveguides, which enable a drastic increase of the absorption length for incoming photons. This allows us to achieve high on-chip single-photon detection efficiency up to 91% at telecom wavelengths, repeatable across several fabricated chips. We also observe remarkably low dark count rates without significant compromise of the on-chip detection efficiency. The detectors are fully embedded in scalable silicon photonic circuits and provide ultrashort timing jitter of 18 ps. Exploiting this high temporal resolution, we demonstrate ballistic photon transport in silicon ring resonators. Our direct implementation of a high-performance single-photon detector on chip overcomes a major barrier in integrated quantum photonics. PMID:23271658
Barhoum, Erek; Johnston, Richard; Seibel, Eric
2005-09-19
An optical model of an ultrathin scanning fiber endoscope was constructed using a non-sequential ray tracing program and used to study the relationship between fiber deflection and collection efficiency from tissue. The problem of low collection efficiency of confocal detection through the scanned single-mode optical fiber was compared to non-confocal cladding detection. Collection efficiency is 40x greater in the non-confocal versus the confocal geometry due to the majority of rays incident on the core being outside the numerical aperture. Across scan angles of 0 to 30o, collection efficiency decreases from 14.4% to 6.3% for the non-confocal design compared to 0.34% to 0.10% for the confocal design. Non-confocality provides higher and more uniform collection efficiencies at larger scan angles while sacrificing the confocal spatial filter.
Jiang, Liying; Zhu, Runye; Mao, Yubo; Chen, Jianmeng; Zhang, Liang
2015-01-01
The combination of chemical oxidation methods with biotechnology to removal recalcitrant VOCs is a promising technology. In this paper, the aim was to identify the role of key process parameters and biodegradability of the degradation products using a dielectric barrier discharge (DBD) reactor, which provided the fundamental data to evaluate the possibilities of the combined system. Effects of various technologic parameters like initial concentration of mixtures, residence time and relative humidity on the decomposition and the degradation products were examined and discussed. It was found that the removal efficiency of mixed VOCs decreased with increasing initial concentration. The removal efficiency reached the maximum value as relative humidity was approximately 40%–60%. Increasing the residence time resulted in increasing the removal efficiency and the order of destruction efficiency of VOCs followed the order styrene > o-xylene. Compared with the single compounds, the removal efficiency of styrene and o-xylene in the mixtures of VOCs decreased significantly and o-xylene decreased more rapidly. The degradation products were analyzed by gas chromatography and gas chromatography-mass spectrometry, and the main compounds detected were O3, COx and benzene ring derivatives. The biodegradability of mixed VOCs was improved and the products had positive effect on biomass during plasma application, and furthermore typical results indicated that the biodegradability and biotoxicity of gaseous pollutant were quite depending on the specific input energy (SIE). PMID:25629961
Kadkhodayan, S; Sadat, S M; Irani, S; Fotouhi, F; Bolhassani, A
2016-01-01
Different types of lipid- and polymer-based vectors have been developed to deliver proteins into cells, but these methods showed relatively poor efficiency. Recently, a group of short, highly basic peptides known as cell-penetrating peptides (CPPs) were used to carry polypeptides and proteins into cells. In this study, expression and purification of GFP protein was performed using the prokaryotic pET expression system. We used two amphipathic CPPs (Pep-1 and CADY-2) as a novel delivery system to transfer the GFP protein into cells. The morphological features of the CPP/GFP complexes were studied by scanning electron microscopy (SEM), Zetasizer, and SDS-PAGE. The efficiency of GFP transfection using Pep-1 and CADY-2 peptides and TurboFect reagent was compared with FITC-antibody protein control delivered by these transfection vehicles in the HEK-293T cell line. SEM data confirmed formation of discrete nanoparticles with a diameter of below 300 nm. Moreover, formation of the complexes was detected using SDS-PAGE as two individual bands, indicating non-covalent interaction. The size and homogeneity of Pep-1/GFP and CADY-2/GFP complexes were dependent on the ratio of peptide/cargo formulations, and responsible for their biological efficiency. The cells transfected by Pep-1/GFP and CADY-2/GFP complexes at a molar ratio of 20 : 1 demonstrated spreading green regions using fluorescent microscopy. Flow cytometry results showed that the transfection efficiency of Pep-based nanoparticles was similar to CADY-based nanoparticles and comparable with TurboFect-protein complexes. These data open an efficient way for future therapeutic purposes.
Exploring Damped Ly Alpha System Host Galaxies Using Gamma-Ray Bursts
NASA Technical Reports Server (NTRS)
Toy, Vicki L.; Cucchiara, Antonino; Veilleux, Sylvain; Fumagalli, Michele; Rafelski, Marc; Rahmati, Alireza; Cenko, S. Bradley; Capone, John I.; Pasham, Dheeraj R.
2016-01-01
We present a sample of 45 Damped Ly-Alpha system [DLA; H I-N is greater than or equal to 2 x 10(exp. 20) cm(exp. -2)] counterparts (33 detections, 12 upper limits) which host gamma-ray bursts (GRB-DLAs) in order to investigate star formation and metallicity within galaxies hosting DLAs. Our sample spans z is approx. 2 - 6 and is nearly three times larger than any previously detected DLA counterparts survey based on quasar line-of-sight searches (QSO-DLAs). We report star formation rates (SFRs) from rest-frame UV photometry and spectral energy distribution modeling. We find that DLA counterpart SFRs are not correlated with either redshift or H I column density. Thanks to the combination of Hubble Space Telescope and ground-based observations, we also investigate DLA host star formation efficiency. Our GRB-DLA counterpart sample spans both higher efficiency and low efficiency star formation regions compared to the local Kennicutt-Schmidt relation, local star formation laws, and z is approximately 3 cosmological simulations. We also compare the depletion times of our DLA hosts sample to other objects in the local universe; our sample appears to deviate from the star formation efficiencies measured in local spiral and dwarf galaxies. Furthermore, we find similar efficiencies as local inner disks, SMC, and Lyman-break galaxy outskirts. Finally, our enrichment time measurements show a spread of systems with under- and over-abundance of metals, which may suggest that these systems had episodic star formation and a metal enrichment/depletion as a result of strong stellar feedback and/or metal inflow/outflow.
Thermodynamic framework to assess low abundance DNA mutation detection by hybridization.
Willems, Hanny; Jacobs, An; Hadiwikarta, Wahyu Wijaya; Venken, Tom; Valkenborg, Dirk; Van Roy, Nadine; Vandesompele, Jo; Hooyberghs, Jef
2017-01-01
The knowledge of genomic DNA variations in patient samples has a high and increasing value for human diagnostics in its broadest sense. Although many methods and sensors to detect or quantify these variations are available or under development, the number of underlying physico-chemical detection principles is limited. One of these principles is the hybridization of sample target DNA versus nucleic acid probes. We introduce a novel thermodynamics approach and develop a framework to exploit the specific detection capabilities of nucleic acid hybridization, using generic principles applicable to any platform. As a case study, we detect point mutations in the KRAS oncogene on a microarray platform. For the given platform and hybridization conditions, we demonstrate the multiplex detection capability of hybridization and assess the detection limit using thermodynamic considerations; DNA containing point mutations in a background of wild type sequences can be identified down to at least 1% relative concentration. In order to show the clinical relevance, the detection capabilities are confirmed on challenging formalin-fixed paraffin-embedded clinical tumor samples. This enzyme-free detection framework contains the accuracy and efficiency to screen for hundreds of mutations in a single run with many potential applications in molecular diagnostics and the field of personalised medicine.
Narang, Jagriti; Malhotra, Nitesh; Singhal, Chaitali; Mathur, Ashish; Pn, Anoop Krishna; Pundir, C S
2017-11-01
We present results of the studies relating to fabrication of a microfluidic biosensor chip based on urchin like Ag@ Pd shell nano-hybrids that is capable of sensing alprazolam through electrochemical detection. Using this chip we demonstrate, with high reliability and in a time efficient manner, the detection of alprazolam present in buffer solutions at clinically relevant concentrations. Methylene blue (MB) was also doped as redox transition substance for sensing alprazolam. Nano-hybrids modified EμPAD showed wide linear range 1-300ng/ml and low detection limit of 0.025ng/l. Low detection limit can further enhance its suitability for forensic application. Nano-hybrids modified EμPAD was also employed for determination of drug in real samples such as human urine. Reported facile lab paper approach integrated with urchin like Ag@ Pd shell nano-hybrids could be well applied for the determination of serum metabolites. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Wilson, Edward (Inventor)
2008-01-01
The present invention is a method for detecting and isolating fault modes in a system having a model describing its behavior and regularly sampled measurements. The models are used to calculate past and present deviations from measurements that would result with no faults present, as well as with one or more potential fault modes present. Algorithms that calculate and store these deviations, along with memory of when said faults, if present, would have an effect on the said actual measurements, are used to detect when a fault is present. Related algorithms are used to exonerate false fault modes and finally to isolate the true fault mode. This invention is presented with application to detection and isolation of thruster faults for a thruster-controlled spacecraft. As a supporting aspect of the invention, a novel, effective, and efficient filtering method for estimating the derivative of a noisy signal is presented.
Detection of an enigmatic plethodontid Salamander using Environmental DNA
Pierson, Todd W.; Mckee, Anna; Spear, Stephen F.; Maerz, John C.; Camp, Carlos D.; Glenn, Travis C.
2016-01-01
The isolation and identification of environmental DNA (eDNA) offers a non-invasive and efficient method for the detection of rare and secretive aquatic wildlife, and it is being widely integrated into inventory and monitoring efforts. The Patch-Nosed Salamander (Urspelerpes brucei) is a tiny, recently discovered species of plethodontid salamander known only from headwater streams in a small region of Georgia and South Carolina. Here, we present results of a quantitative PCR-based eDNA assay capable of detecting Urspelerpes in more than 75% of 33 samples from five confirmed streams. We deployed the method at 31 additional streams and located three previously undocumented populations of Urspelerpes. We compare the results of our eDNA assay with our attempt to use aquatic leaf litterbags for the rapid detection of Urspelerpes and demonstrate the relative efficacy of the eDNA assay. We suggest that eDNA offers great potential for use in detecting other aquatic and semi-aquatic plethodontid salamanders.
Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit
NASA Astrophysics Data System (ADS)
Pan, Weicheng; Wu, Haodi; Luo, Jiajun; Deng, Zhenzhou; Ge, Cong; Chen, Chao; Jiang, Xiaowei; Yin, Wan-Jian; Niu, Guangda; Zhu, Lujun; Yin, Lixiao; Zhou, Ying; Xie, Qingguo; Ke, Xiaoxing; Sui, Manling; Tang, Jiang
2017-11-01
Sensitive X-ray detection is crucial for medical diagnosis, industrial inspection and scientific research. The recently described hybrid lead halide perovskites have demonstrated low-cost fabrication and outstanding performance for direct X-ray detection, but they all contain toxic Pb in a soluble form. Here, we report sensitive X-ray detectors using solution-processed double perovskite Cs2AgBiBr6 single crystals. Through thermal annealing and surface treatment, we largely eliminate Ag+/Bi3+ disordering and improve the crystal resistivity, resulting in a detector with a minimum detectable dose rate as low as 59.7 nGyair s-1, comparable to the latest record of 0.036 μGyair s-1 using CH3NH3PbBr3 single crystals. Suppressed ion migration in Cs2AgBiBr6 permits relatively large external bias, guaranteeing efficient charge collection without a substantial increase in noise current and thus enabling the low detection limit.
Zarei, Ali Reza; Nedaei, Maryam; Ghorbanian, Sohrab Ali
2018-06-08
In this work, for the first time, ferrofluid of magnetic montmorillonite nanoclay and deep eutectic solvent was prepared and coupled with directly suspended droplet microextraction. Incorporation of ferrofluid in a miniaturized sample preparation technique resulted in achieving high extraction efficiency while developing a green analytical method. The prepared ferrofluid has strong sorbing properties and hydrophobic characteristics. In this method, a micro-droplet of ferrofluid was suspended into the vortex of a stirring aqueous solution and after completing the extraction process, was easily separated from the solution by a magnetic rod without any operational problems. The predominant experimental variables affecting the extraction efficiency of explosives were evaluated. Under optimal conditions, the limits of detection were in the range 0.22-0.91 μg L -1 . The enrichment factors were between 23 and 93 and the relative standard deviations were <10%. The relative recoveries were ranged from 88 to 104%. This method was successfully applied for the extraction and preconcentration of explosives in water and soil samples, followed their determination by high performance liquid chromatography with ultraviolet detection (HPLC-UV). Copyright © 2018 Elsevier B.V. All rights reserved.
Diao, Wei; Tang, Min; Ding, Shijia; Li, Xinmin; Cheng, Wenbin; Mo, Fei; Yan, Xiaoyu; Ma, Hongmin; Yan, Yurong
2018-02-15
Early detection, diagnosis and treatment of human immune deficiency virus (HIV) infection is the key to reduce acquired immunodeficiency syndrome (AIDS) mortality. In our research, an innovative surface plasmon resonance (SPR) biosensing strategy has been developed for highly sensitive detection of HIV-related DNA based on entropy-driven strand displacement reactions (ESDRs) and double-layer DNA tetrahedrons (DDTs). ESDRs as enzyme-free and label-free signal amplification circuit can be specifically triggered by target DNA, leading to the cyclic utilization of target DNA and the formation of plentiful double-stranded DNA (dsDNA) products. Subsequently, the dsDNA products bind to the immobilized hairpin capture probes and further combine with DDTs nanostructures. Due to the high efficiency of ESDRs and large molecular weight of DDTs, the SPR response signal was enhanced dramatically. The proposed SPR biosensor could detect target DNA sensitively and specifically in a linear range from 1pM to 150nM with a detection limit of 48fM. In addition, the whole detecting process can be accomplished in 60min with high accuracy and duplicability. In particular, the developed SPR biosensor was successfully used to analyze target DNA in complex biological sample, indicating that the developed strategy is promising for rapid and early clinical diagnosis of HIV infection. Copyright © 2017 Elsevier B.V. All rights reserved.
Two-photon in vivo flow cytometry using a fiber probe
NASA Astrophysics Data System (ADS)
Chang, Yu-Chung; Ye, Jing Yong; Thomas, Thommey P.; Cao, Zhengyi; Kotlyar, Alina; Tkaczyk, Eric R.; Baker, James R., Jr.; Norris, Theodore B.
2009-02-01
We have demonstrated the use of a double-clad fiber probe to conduct two-photon excited flow cytometry in vitro and in vivo. We conducted two-channel detection to measure fluorescence at two distinct wavelengths simultaneously. Because the scattering and absorption problems from whole blood were circumvented by the fiber probe, the detected signal strength from the cells were found to be similar in PBS and in whole blood. We achieved the same detection efficiency of the membrane-binding lipophilic dye DiD labeled cells in PBS and in whole blood. High detection efficiency of green fluorescent protein (GFP)-expressing cells in whole blood was demonstrated. DiD-labeled untransfected and GFP-transfected cells were injected into live mice and the circulation dynamics of the externally injected cells were monitored. The detection efficiency of GFP-expressing cells in vivo was consistent with that observed in whole blood.
Efficient and robust quantum random number generation by photon number detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Applegate, M. J.; Cavendish Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE; Thomas, O.
2015-08-17
We present an efficient and robust quantum random number generator based upon high-rate room temperature photon number detection. We employ an electric field-modulated silicon avalanche photodiode, a type of device particularly suited to high-rate photon number detection with excellent photon number resolution to detect, without an applied dead-time, up to 4 photons from the optical pulses emitted by a laser. By both measuring and modeling the response of the detector to the incident photons, we are able to determine the illumination conditions that achieve an optimal bit rate that we show is robust against variation in the photon flux. Wemore » extract random bits from the detected photon numbers with an efficiency of 99% corresponding to 1.97 bits per detected photon number yielding a bit rate of 143 Mbit/s, and verify that the extracted bits pass stringent statistical tests for randomness. Our scheme is highly scalable and has the potential of multi-Gbit/s bit rates.« less
Dias, João Carlos T; Silva, Cláudio M; Mounteer, Ann H; Passos, Flavia M L; Linardi, Valter R
2003-01-01
An evaluation of the efficiency of treatment of kraft mill foul condensates in a membrane bioreactor was carried out in the laboratory. Efficiency and rate of methanol removal were quantified at operating temperatures of 35, 45 and 55 degrees C. The structure of the bacterial community present in the reactor biomass at the different operating temperatures was evaluated by in situ hybridization of the biomass samples with fluorescently-labelled probes (FISH) targeting the Eubacteria, the alpha, beta and gamma subclasses of the Proteobacteria, the low G + C content Gram-positive bacteria (Bacillus spp.), while community function was evaluated by in situ hybridization with a methanol dehydrogenase gene (mxaF) probe. Methanol removal efficiency decreased from 99.4 to 92%, and removal rate from 2.69 mg MeOH/l x min to 2.49 mg MeOH/l x min when the operating temperature was increased from 35 to 55 degrees C. This decrease in methanol removal was accompanied by a decrease (from 58% to 42%) in the relative proportion of cells that hybridized with the mxaF probe. The relative proportion of Bacillus spp. increased from 5 to 20% while the proportion of members of the alpha subclass of Proteobacteria decreased from 16% to 6% when the bioreactor operating temperature was raised from 35 to 55 degrees C. The relative proportions of bacteria belonging to the beta (22-25%) and gamma (18-20%) subclasses of the Proteobacteria remained relatively constant regardless of operating temperature. Proteobacteria (alpha, beta and gamma subclasses) and Bacillus spp. represented 61, 67 and 71% of the Eubacteria in the biomass sampled at 35, 45 and 55 degrees C, respectively. The FISH technique was shown to be an efficient method for detection of both structural and functional changes in the bacterial communities that could be related to efficiency of methanol removal in a membrane bioreactor operating at different temperatures.
Lee, Kam L; Bernardo, Michael; Ireland, Timothy A
2016-06-01
This is part two of a two-part study in benchmarking system performance of fixed digital radiographic systems. The study compares the system performance of seven fixed digital radiography systems based on quantitative metrics like modulation transfer function (sMTF), normalised noise power spectrum (sNNPS), detective quantum efficiency (sDQE) and entrance surface air kerma (ESAK). It was found that the most efficient image receptors (greatest sDQE) were not necessarily operating at the lowest ESAK. In part one of this study, sMTF is shown to depend on system configuration while sNNPS is shown to be relatively consistent across systems. Systems are ranked on their signal-to-noise ratio efficiency (sDQE) and their ESAK. Systems using the same equipment configuration do not necessarily have the same system performance. This implies radiographic practice at the site will have an impact on the overall system performance. In general, systems are more dose efficient at low dose settings.
NASA Technical Reports Server (NTRS)
Janesick, J. R.; Elliott, T.; Collins, S.; Marsh, H.; Blouke, M. M.
1984-01-01
Since the first introduction of charge-coupled devices (CCDs) in 1970, CCDs have been considered for applications related to memories, logic circuits, and the detection of visible radiation. It is pointed out, however, that the mass market orientation of CCD development has left largely untapped the enormous potential of these devices for advanced scientific instrumentation. The present paper has, therefore, the objective to introduce the CCD characteristics to the scientific community, taking into account prospects for further improvement. Attention is given to evaluation criteria, a summary of current CCDs, CCD performance characteristics, absolute calibration tools, quantum efficiency, aspects of charge collection, charge transfer efficiency, read noise, and predictions regarding the characteristics of the next generation of silicon scientific CCD imagers.
When is a cow in estrus? Clinical and practical aspects.
Roelofs, J; López-Gatius, F; Hunter, R H F; van Eerdenburg, F J C M; Hanzen, Ch
2010-08-01
Good detection of estrus is critically important in dairy husbandry. Incorrect detection of estrus is related to loss of profit due to extended calving intervals, milk loss, veterinary costs, etc. Detection of estrus remains a major problem despites enormous progress in the knowledge of reproductive physiology of the cow and in development of estrus detection aids. To achieve good estrus detection, many factors have to be taken into account. On one hand a cow has to express estrus and on the other hand the farmer has to detect it. Combined action of several hormones causes physiological changes that lead to ovulation and an environment in the uterus that allows sperm to fertilize the egg. Besides these internal actions, a number of external changes can be observed. When using visual observations, time of the day and time spend on observation have a great impact on detection rates. Many devices are available to aid in estrus detection, such as pedometers, mount devices, temperature, and hormone measurements. Expression of estrus can be influenced by many factors. Heritability, number of days postpartum, lactation number, milk production, and health are known to influence estrus expression. Environmental factors like nutrition, season, housing, herd size, etc. also play a role in estrus expression. To evaluate estrus detection, record keeping is very important; a number of formulas can be used to assess detection efficiency. Besides the farmer, the veterinarian and inseminator can play an important role in estrus confirmation and good insemination strategy. In the end, the time of ovulation and the age of the egg at sperm penetration is critical for conception. Therefore, emphasis in research needs to be on the timing of insemination relative to ovulation, and thus on the detection of ovulation. Copyright 2010 Elsevier Inc. All rights reserved.
Li, Rongxia; Stewart, Brock; Weintraub, Eric
2016-01-01
The self-controlled case series (SCCS) and self-controlled risk interval (SCRI) designs have recently become widely used in the field of post-licensure vaccine safety monitoring to detect potential elevated risks of adverse events following vaccinations. The SCRI design can be viewed as a subset of the SCCS method in that a reduced comparison time window is used for the analysis. Compared to the SCCS method, the SCRI design has less statistical power due to fewer events occurring in the shorter control interval. In this study, we derived the asymptotic relative efficiency (ARE) between these two methods to quantify this loss in power in the SCRI design. The equation is formulated as [Formula: see text] (a: control window-length ratio between SCRI and SCCS designs; b: ratio of risk window length and control window length in the SCCS design; and [Formula: see text]: relative risk of exposed window to control window). According to this equation, the relative efficiency declines as the ratio of control-period length between SCRI and SCCS methods decreases, or with an increase in the relative risk [Formula: see text]. We provide an example utilizing data from the Vaccine Safety Datalink (VSD) to study the potential elevated risk of febrile seizure following seasonal influenza vaccine in the 2010-2011 season.
Incremental k-core decomposition: Algorithms and evaluation
Sariyuce, Ahmet Erdem; Gedik, Bugra; Jacques-SIlva, Gabriela; ...
2016-02-01
A k-core of a graph is a maximal connected subgraph in which every vertex is connected to at least k vertices in the subgraph. k-core decomposition is often used in large-scale network analysis, such as community detection, protein function prediction, visualization, and solving NP-hard problems on real networks efficiently, like maximal clique finding. In many real-world applications, networks change over time. As a result, it is essential to develop efficient incremental algorithms for dynamic graph data. In this paper, we propose a suite of incremental k-core decomposition algorithms for dynamic graph data. These algorithms locate a small subgraph that ismore » guaranteed to contain the list of vertices whose maximum k-core values have changed and efficiently process this subgraph to update the k-core decomposition. We present incremental algorithms for both insertion and deletion operations, and propose auxiliary vertex state maintenance techniques that can further accelerate these operations. Our results show a significant reduction in runtime compared to non-incremental alternatives. We illustrate the efficiency of our algorithms on different types of real and synthetic graphs, at varying scales. Furthermore, for a graph of 16 million vertices, we observe relative throughputs reaching a million times, relative to the non-incremental algorithms.« less
Necessary detection efficiencies for secure quantum key distribution and bound randomness
NASA Astrophysics Data System (ADS)
Acín, Antonio; Cavalcanti, Daniel; Passaro, Elsa; Pironio, Stefano; Skrzypczyk, Paul
2016-01-01
In recent years, several hacking attacks have broken the security of quantum cryptography implementations by exploiting the presence of losses and the ability of the eavesdropper to tune detection efficiencies. We present a simple attack of this form that applies to any protocol in which the key is constructed from the results of untrusted measurements performed on particles coming from an insecure source or channel. Because of its generality, the attack applies to a large class of protocols, from standard prepare-and-measure to device-independent schemes. Our attack gives bounds on the critical detection efficiencies necessary for secure quantum key distribution, which show that the implementation of most partly device-independent solutions is, from the point of view of detection efficiency, almost as demanding as fully device-independent ones. We also show how our attack implies the existence of a form of bound randomness, namely nonlocal correlations in which a nonsignalling eavesdropper can find out a posteriori the result of any implemented measurement.
Remote monitoring of fish in small streams: A unified approach using PIT tags
Zydlewski, G.B.; Horton, G.; Dubreuil, T.; Letcher, B.; Casey, S.; Zydlewski, Joseph D.
2006-01-01
Accurate assessments of fish populations are often limited by re-observation or recapture events. Since the early 1990s, passive integrated transponders (PIT tags) have been used to understand the biology of many fish species. Until recently, PIT applications in small streams have been limited to physical recapture events. To maximize recapture probability, we constructed PIT antenna arrays in small streams to remotely detect individual fish. Experiences from two different laboratories (three case studies) allowed us to develop a unified approach to applying PIT technology for enhancing data assessments. Information on equipment, its installation, tag considerations, and array construction is provided. Theoretical and practical definitions are introduced to standardize metrics for assessing detection efficiency. We demonstrate how certain conditions (stream discharge, vibration, and ambient radio frequency noise) affect the detection efficiency and suggest that by monitoring these conditions, expectations of efficiency can be modified. We emphasize the importance of consistently estimating detection efficiency for fisheries applications.
Zhang, Liding; Wei, Qiujiang; Han, Qinqin; Chen, Qiang; Tai, Wenlin; Zhang, Jinyang; Song, Yuzhu; Xia, Xueshan
2018-01-01
Shigella is an important human food-borne zoonosis bacterial pathogen, and can cause clinically severe diarrhea. There is an urgent need to develop a specific, sensitive, and rapid methodology for detection of this pathogen. In this study, loop-mediated isothermal amplification (LAMP) combined with magnetic immunocapture assay (IC-LAMP) was first developed for the detection of Shigella in pure culture, artificial milk, and clinical stool samples. This method exhibited a detection limit of 8.7 CFU/mL. Compared with polymerase chain reaction, IC-LAMP is sensitive, specific, and reliable for monitoring Shigella. Additionally, IC-LAMP is more convenient, efficient, and rapid than ordinary LAMP, as it is more efficiently enriches pathogen cells without extraction of genomic DNA. Under isothermal conditions, the amplification curves and the green fluorescence were detected within 30 min in the presence of genomic DNA template. The overall analysis time was approximately 1 h, including the enrichment and lysis of the bacterial cells, a significantly short detection time. Therefore, the IC-LAMP methodology described here is potentially useful for the efficient detection of Shigella in various samples. PMID:29467730
Design of stepwise screening for prediabetes and type 2 diabetes based on costs and cases detected.
de Graaf, Gimon; Postmus, Douwe; Bakker, Stephan J L; Buskens, Erik
2015-09-01
To provide insight into the trade-off between cost per case detected (CPCD) and the detection rate in questionnaire-based stepwise screening for impaired fasting glucose and undiagnosed type 2 diabetes. We considered a stepwise screening in which individuals whose risk score exceeds a predetermined cutoff value are invited for further blood glucose testing. Using individual patient data to determine questionnaire sensitivity and specificity and external sources to determine screening costs and patient response rates, we rolled back a decision tree to estimate the CPCD and the detection rate for all possible cutoffs on the questionnaire. We found a U-shaped relation between CPCD and detection rate, with high costs per case detected at very low and very high detection rates. Changes in patient response rates had a large impact on both the detection rate and the CPCD, whereas screening costs and questionnaire accuracy mainly impacted the CPCD. Our applied method makes it possible to identify a range of efficient cutoffs where higher detection rates can be achieved at an additional cost per detected patient. This enables decision makers to choose an optimal cutoff based on their willingness to pay for additional detected patients. Copyright © 2015 Elsevier Inc. All rights reserved.
Comparison of Two Methods for Detecting Alternative Splice Variants Using GeneChip® Exon Arrays
Fan, Wenhong; Stirewalt, Derek L.; Radich, Jerald P.; Zhao, Lueping
2011-01-01
The Affymetrix GeneChip Exon Array can be used to detect alternative splice variants. Microarray Detection of Alternative Splicing (MIDAS) and Partek® Genomics Suite (Partek® GS) are among the most popular analytical methods used to analyze exon array data. While both methods utilize statistical significance for testing, MIDAS and Partek® GS could produce somewhat different results due to different underlying assumptions. Comparing MIDAS and Partek® GS is quite difficult due to their substantially different mathematical formulations and assumptions regarding alternative splice variants. For meaningful comparison, we have used the previously published generalized probe model (GPM) which encompasses both MIDAS and Partek® GS under different assumptions. We analyzed a colon cancer exon array data set using MIDAS, Partek® GS and GPM. MIDAS and Partek® GS produced quite different sets of genes that are considered to have alternative splice variants. Further, we found that GPM produced results similar to MIDAS as well as to Partek® GS under their respective assumptions. Within the GPM, we show how discoveries relating to alternative variants can be quite different due to different assumptions. MIDAS focuses on relative changes in expression values across different exons within genes and tends to be robust but less efficient. Partek® GS, however, uses absolute expression values of individual exons within genes and tends to be more efficient but more sensitive to the presence of outliers. From our observations, we conclude that MIDAS and Partek® GS produce complementary results, and discoveries from both analyses should be considered. PMID:23675234
Ohata, Hiroshi; Oka, Masashi; Yanaoka, Kimihiko; Shimizu, Yasuhito; Mukoubayashi, Chizu; Mugitani, Kouichi; Iwane, Masataka; Nakamura, Hideya; Tamai, Hideyuki; Arii, Kenji; Nakata, Hiroya; Yoshimura, Noriko; Takeshita, Tetsuya; Miki, Kazumasa; Mohara, Osamu; Ichinose, Masao
2005-10-01
With the aim of developing more efficient gastric cancer screening programs for use in Japan, we studied a new screening program that combines serum pepsinogen (PG) testing and barium digital radiography (DR). A total of 17 647 middle-aged male subjects underwent workplace screening over a 7-year period using a combination of PG testing and DR. This program's effectiveness, as well as other characteristics of the program, was analyzed. Forty-nine cases of gastric cancer were detected (comprising 88% early cancer cases). The detection rate was 0.28%, and the positive predictive value was 0.85%. The PG test detected 63.3% of cases, DR detected 69.4% of cases, and both tests were positive in 32.7% of cancer cases. The two methods were almost equally effective, and were considerably more effective than conventional screening using photofluorography. Each screening method detected a distinct gastric cancer subgroup; the PG test efficiently detected asymptomatic small early cancer with intestinal type histology, while DR was efficient at detecting cancers with depressed or ulcerated morphology and diffuse type histology. The cost for the detection of a single cancer was much less than that for conventional screening. In fact, it is possible to further reduce the cost of detecting a single cancer to a cost comparable to that of surgically resecting a single gastric cancer. Thus, it is probable that a highly efficient gastric cancer screening system can be implemented by combining the two screening methods. Such a screening program would be beneficial in a population at high risk for gastric cancer.
Molecular origins of scintillation in organic scintillators (Conference Presentation)
NASA Astrophysics Data System (ADS)
Feng, Patrick; Mengesha, Wondwosen; Myllenbeck, Nicholas
2016-09-01
Organic-based scintillators are indispensable materials for radiation detection owing to their high sensitivity to fast neutrons, low cost, and tailorable properties. There has been a recent resurgence of interest in organic scintillators due to exciting discoveries related to neutron discrimination and gamma-ray spectroscopy, which represent capabilities previously thought not possible in these materials. I will discuss our development of crystalline and polymer-based scintillators for these applications. Structure-property relationships related to intermolecular interactions and host-guest electronic exchange will be discussed in the context of energy-transfer pathways relevant to scintillation. An emphasis will be placed on the rational design of these materials, as guided by first principles and DFT calculations. Two related topics will be discussed: 1) Incorporation of organometallic triplet-harvesting additives to plastic scintillator matrices to confer a 'two-state' (singlet and triplet) luminescence signature to different types of ionizing radiation. This approach relies upon energetic and spatial overlap between the donor and acceptor excited states for efficient electronic exchange. Key considerations also include synthetic modification of the luminescence spectra and kinetics, as well as the addition of secondary additives to increase the recombination efficiency. 2) Design of organotin-containing plastic scintillators as a route towards gamma-ray spectroscopy. Organometallic compounds were selected on the basis of distance-dependent quenching relationships, phase compatibility with the polymer matrix, and the gamma-ray cross sections. This approach is guided by molecular modeling and radiation transport modeling to achieve the highest possible detection sensitivity luminescence intensity.
Design and application of a data-independent precursor and product ion repository.
Thalassinos, Konstantinos; Vissers, Johannes P C; Tenzer, Stefan; Levin, Yishai; Thompson, J Will; Daniel, David; Mann, Darrin; DeLong, Mark R; Moseley, M Arthur; America, Antoine H; Ottens, Andrew K; Cavey, Greg S; Efstathiou, Georgios; Scrivens, James H; Langridge, James I; Geromanos, Scott J
2012-10-01
The functional design and application of a data-independent LC-MS precursor and product ion repository for protein identification, quantification, and validation is conceptually described. The ion repository was constructed from the sequence search results of a broad range of discovery experiments investigating various tissue types of two closely related mammalian species. The relative high degree of similarity in protein complement, ion detection, and peptide and protein identification allows for the analysis of normalized precursor and product ion intensity values, as well as standardized retention times, creating a multidimensional/orthogonal queryable, qualitative, and quantitative space. Peptide ion map selection for identification and quantification is primarily based on replication and limited variation. The information is stored in a relational database and is used to create peptide- and protein-specific fragment ion maps that can be queried in a targeted fashion against the raw or time aligned ion detections. These queries can be conducted either individually or as groups, where the latter affords pathway and molecular machinery analysis of the protein complement. The presented results also suggest that peptide ionization and fragmentation efficiencies are highly conserved between experiments and practically independent of the analyzed biological sample when using similar instrumentation. Moreover, the data illustrate only minor variation in ionization efficiency with amino acid sequence substitutions occurring between species. Finally, the data and the presented results illustrate how LC-MS performance metrics can be extracted and utilized to ensure optimal performance of the employed analytical workflows.
High efficiency processing for reduced amplitude zones detection in the HRECG signal
NASA Astrophysics Data System (ADS)
Dugarte, N.; Álvarez, A.; Balacco, J.; Mercado, G.; Gonzalez, A.; Dugarte, E.; Olivares, A.
2016-04-01
Summary - This article presents part of a more detailed research proposed in the medium to long term, with the intention of establishing a new philosophy of electrocardiogram surface analysis. This research aims to find indicators of cardiovascular disease in its early stage that may go unnoticed with conventional electrocardiography. This paper reports the development of a software processing which collect some existing techniques and incorporates novel methods for detection of reduced amplitude zones (RAZ) in high resolution electrocardiographic signal (HRECG).The algorithm consists of three stages, an efficient processing for QRS detection, averaging filter using correlation techniques and a step for RAZ detecting. Preliminary results show the efficiency of system and point to incorporation of techniques new using signal analysis with involving 12 leads.
The light output and the detection efficiency of the liquid scintillator EJ-309.
Pino, F; Stevanato, L; Cester, D; Nebbia, G; Sajo-Bohus, L; Viesti, G
2014-07-01
The light output response and the neutron and gamma-ray detection efficiency are determined for liquid scintillator EJ-309. The light output function is compared to those of previous studies. Experimental efficiency results are compared to predictions from GEANT4, MCNPX and PENELOPE Monte Carlo simulations. The differences associated with the use of different light output functions are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
HADES RV Programme with HARPS-N at TNG. II. Data treatment and simulations
NASA Astrophysics Data System (ADS)
Perger, M.; García-Piquer, A.; Ribas, I.; Morales, J. C.; Affer, L.; Micela, G.; Damasso, M.; Suárez-Mascareño, A.; González-Hernández, J. I.; Rebolo, R.; Herrero, E.; Rosich, A.; Lafarga, M.; Bignamini, A.; Sozzetti, A.; Claudi, R.; Cosentino, R.; Molinari, E.; Maldonado, J.; Maggio, A.; Lanza, A. F.; Poretti, E.; Pagano, I.; Desidera, S.; Gratton, R.; Piotto, G.; Bonomo, A. S.; Martinez Fiorenzano, A. F.; Giacobbe, P.; Malavolta, L.; Nascimbeni, V.; Rainer, M.; Scandariato, G.
2017-02-01
Context. The distribution of exoplanets around low-mass stars is still not well understood. Such stars, however, present an excellent opportunity for reaching down to the rocky and habitable planet domains. The number of current detections used for statistical purposes remains relatively modest and different surveys, using both photometry and precise radial velocities, are searching for planets around M dwarfs. Aims: Our HARPS-N red dwarf exoplanet survey is aimed at the detection of new planets around a sample of 78 selected stars, together with the subsequent characterization of their activity properties. Here we investigate the survey performance and strategy. Methods: From 2700 observed spectra, we compare the radial velocity determinations of the HARPS-N DRS pipeline and the HARPS-TERRA code, calculate the mean activity jitter level, evaluate the planet detection expectations, and address the general question of how to define the strategy of spectroscopic surveys in order to be most efficient in the detection of planets. Results: We find that the HARPS-TERRA radial velocities show less scatter and we calculate a mean activity jitter of 2.3 m s-1 for our sample. For a general radial velocity survey with limited observing time, the number of observations per star is key for the detection efficiency. In the case of an early M-type target sample, we conclude that approximately 50 observations per star with exposure times of 900 s and precisions of approximately 1 ms-1 maximizes the number of planet detections. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG), operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias (IAC).
NASA Astrophysics Data System (ADS)
Kangasluoma, Juha; Hering, Susanne; Picard, David; Lewis, Gregory; Enroth, Joonas; Korhonen, Frans; Kulmala, Markku; Sellegri, Karine; Attoui, Michel; Petäjä, Tuukka
2017-06-01
In this study we characterized the performance of three new particle counters able to detect particles smaller than 3 nm during the Helsinki condensation particle counter (CPC) workshop in summer 2016: the Aerosol Dynamics Inc. (ADI; Berkeley, USA) versatile water condensation particle counter (vWCPC), TSI 3777 nano enhancer (TSI Inc., Shoreview, USA) and modified and boosted TSI 3010-type CPC from Université Blaise Pascal called a B3010. The performance of all CPCs was first measured with charged tungsten oxide test particles at temperature settings which resulted in supersaturation low enough to not detect any ions produced by a radioactive source. Due to similar measured detection efficiencies, additional comparison between the 3777 and vWCPC were conducted using electrically neutral tungsten oxide test particles and with positively charged tetradodecylammonium bromide. Furthermore, the detection efficiencies of the 3777 and vWCPC were measured with boosted temperature settings yielding supersaturation which was at the onset of homogeneous nucleation for the 3777 or confined within the range of liquid water for the ADI vWCPC. Finally, CPC-specific tests were conducted to probe the response of the 3777 to various inlet flow relative humidities, of the B3010 to various inlet flow rates and of the vWCPC to various particle concentrations. For the 3777 and vWCPC the measured 50 % detection diameters (d50s) were in the range of 1.3-2.4 nm for the tungsten oxide particles, depending on the particle charging state and CPC temperature settings, between 2.5 and 3.3 nm for the organic test aerosol, and in the range of 3.2-3.4 nm for tungsten oxide for the B3010.
USDA-ARS?s Scientific Manuscript database
Chemical mutagenesis efficiently generates phenotypic variation in otherwise homogeneous genetic backgrounds, enabling functional analysis of genes. Advances in mutation detection have brought the utility of induced mutant populations on par with those produced by insertional mutagenesis, but system...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Woohyun; Katipamula, Srinivas; Lutes, Robert G.
Small- and medium-sized (<100,000 sf) commercial buildings (SMBs) represent over 95% of the U.S. commercial building stock and consume over 60% of total site energy consumption. Many of these buildings use rudimentary controls that are mostly manual, with limited scheduling capability, no monitoring or failure management. Therefore, many of these buildings are operated inefficiently and consume excess energy. SMBs typically utilize packaged rooftop units (RTUs) that are controlled by an individual thermostat. There is increased urgency to improve the operating efficiency of existing commercial building stock in the U.S. for many reasons, chief among them is to mitigate the climatemore » change impacts. Studies have shown that managing set points and schedules of the RTUs will result in up to 20% energy and cost savings. Another problem associated with RTUs is short-cycling, where an RTU goes through ON and OFF cycles too frequently. Excessive cycling can lead to excessive wear and lead to premature failure of the compressor or its components. The short cycling can result in a significantly decreased average efficiency (up to 10%), even if there are no physical failures in the equipment. Also, SMBs use a time-of-day scheduling is to start the RTUs before the building will be occupied and shut it off when unoccupied. Ensuring correct use of the zone set points and eliminating frequent cycling of RTUs thereby leading to persistent building operations can significantly increase the operational efficiency of the SMBs. A growing trend is to use low-cost control infrastructure that can enable scalable and cost-effective intelligent building operations. The work reported in this report describes three algorithms for detecting the zone set point temperature, RTU cycling rate and occupancy schedule detection that can be deployed on the low-cost infrastructure. These algorithms only require the zone temperature data for detection. The algorithms have been tested and validated using field data from a number of RTUs from six buildings in different climate locations. Overall, the algorithms were successful in detecting the set points and ON/OFF cycles accurately using the peak detection technique and occupancy schedule using symbolic aggregate approximation technique. The report describes the three algorithms, results from testing the algorithms using field data, how the algorithms can be used to improve SMBs efficiency, and presents related conclusions.« less
Actuation of chitosan-aptamer nanobrush borders for pathogen sensing.
Hills, Katherine D; Oliveira, Daniela A; Cavallaro, Nicholas D; Gomes, Carmen L; McLamore, Eric S
2018-03-26
We demonstrate a sensing mechanism for rapid detection of Listeria monocytogenes in food samples using the actuation of chitosan-aptamer nanobrush borders. The bio-inspired soft material and sensing strategy mimic natural symbiotic systems, where low levels of bacteria are selectively captured from complex matrices. To engineer this biomimetic system, we first develop reduced graphene oxide/nanoplatinum (rGO-nPt) electrodes, and characterize the fundamental electrochemical behavior in the presence and absence of chitosan nanobrushes during actuation (pH-stimulated osmotic swelling). We then characterize the electrochemical behavior of the nanobrush when receptors (antibodies or DNA aptamers) are conjugated to the surface. Finally, we test various techniques to determine the most efficient capture strategy based on nanobrush actuation, and then apply the biosensors in a food product. Maximum cell capture occurs when aptamers conjugated to the nanobrush bind cells in the extended conformation (pH < 6), followed by impedance measurement in the collapsed nanobrush conformation (pH > 6). The aptamer-nanobrush hybrid material was more efficient than the antibody-nanobrush material, which was likely due to the relatively high adsorption capacity for aptamers. The biomimetic material was used to develop a rapid test (17 min) for selectively detecting L. monocytogenes at concentrations ranging from 9 to 107 CFU mL-1 with no pre-concentration, and in the presence of other Gram-positive cells (Listeria innocua and Staphylococcus aureus). Use of this bio-inspired material is among the most efficient for L. monocytogenes sensing to date, and does not require sample pretreatment, making nanobrush borders a promising new material for rapid pathogen detection in food.
Geiger-mode avalanche photodiode focal plane arrays for three-dimensional imaging LADAR
NASA Astrophysics Data System (ADS)
Itzler, Mark A.; Entwistle, Mark; Owens, Mark; Patel, Ketan; Jiang, Xudong; Slomkowski, Krystyna; Rangwala, Sabbir; Zalud, Peter F.; Senko, Tom; Tower, John; Ferraro, Joseph
2010-09-01
We report on the development of focal plane arrays (FPAs) employing two-dimensional arrays of InGaAsP-based Geiger-mode avalanche photodiodes (GmAPDs). These FPAs incorporate InP/InGaAs(P) Geiger-mode avalanche photodiodes (GmAPDs) to create pixels that detect single photons at shortwave infrared wavelengths with high efficiency and low dark count rates. GmAPD arrays are hybridized to CMOS read-out integrated circuits (ROICs) that enable independent laser radar (LADAR) time-of-flight measurements for each pixel, providing three-dimensional image data at frame rates approaching 200 kHz. Microlens arrays are used to maintain high fill factor of greater than 70%. We present full-array performance maps for two different types of sensors optimized for operation at 1.06 μm and 1.55 μm, respectively. For the 1.06 μm FPAs, overall photon detection efficiency of >40% is achieved at <20 kHz dark count rates with modest cooling to ~250 K using integrated thermoelectric coolers. We also describe the first evalution of these FPAs when multi-photon pulses are incident on single pixels. The effective detection efficiency for multi-photon pulses shows excellent agreement with predictions based on Poisson statistics. We also characterize the crosstalk as a function of pulse mean photon number. Relative to the intrinsic crosstalk contribution from hot carrier luminescence that occurs during avalanche current flows resulting from single incident photons, we find a modest rise in crosstalk for multi-photon incident pulses that can be accurately explained by direct optical scattering.
Ungvári, Tamás; Gogolák, Péter; Bagdány, Miklós; Damjanovich, László; Bene, László
2016-04-01
Dual laser flow cytometric energy transfer (FCET)--elaborated by Trón et al. in 1984--is an efficient and rapid way of measuring FRET on large cell populations. FRET efficiency and the donor and acceptor concentrations are determined from one donor and two acceptor signals. In this communication this method is extended towards the domain of receptor dynamics by the detection of polarized components of the three intensities. By enabling a complete description of the proximity and dynamics of FRET-systems, the new measuring scheme allows a more refined description of both the structure and dynamics of cell surface receptor clusters at the nano-scale and beyond. Associated donor fraction, limiting anisotropy and rotational correlation time of the donor, acceptor anisotropy and cell-by-cell estimation of the orientation factor for FRET (κ2) are available in the steady state on a single FRET sample in a very rapid and statistically efficient way offered by flow cytometry. For a more sensitive detection of conformational changes the "polarized FRET indices"--quantities composed from FRET efficiency and anisotropies--are proposed. The method is illustrated by measurements on a FRET system with changing FRET-fraction and on a two donor-one acceptor-system, when the existence of receptor trimers are proven by the detection of "hetero-FRET induced homo-FRET relief", i.e. the diminishing of homo-FRET between the two donors in the presence of a donor quencher. The method also offers higher sensitivity for assessing conformational changes at the nano-scale, due to its capability for the simultaneous detection of changes of proximity and relative orientations of the FRET donor and acceptor. Although the method has been introduced in the context of FRET, it is more general: It can be used for monitoring triple-anisotropy correlations also in those cases when FRET actually does not occur, e.g. for interactions occuring beyond the Förster-distance R0. Interpretation of κ2 has been extended. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dumazert, Jonathan; Coulon, Romain; Carrel, Frédérick; Corre, Gwenolé; Normand, Stéphane; Méchin, Laurence; Hamel, Matthieu
2016-08-01
Neutron detection forms a critical branch of nuclear-related issues, currently driven by the search for competitive alternative technologies to neutron counters based on the helium-3 isotope. The deployment of plastic scintillators shows a high potential for efficient detectors, safer and more reliable than liquids, more easily scalable and cost-effective than inorganic. In the meantime, natural gadolinium, through its 155 and mostly 157 isotopes, presents an exceptionally high interaction probability with thermal neutrons. This paper introduces a dual system including a metal gadolinium core inserted at the center of a high-scale plastic scintillator sphere. Incident fast neutrons are thermalized by the scintillator shell and then may be captured with a significant probability by gadolinium 155 and 157 nuclei in the core. The deposition of a sufficient fraction of the capture high-energy prompt gamma signature inside the scintillator shell will then allow discrimination from background radiations by energy threshold, and therefore neutron detection. The scaling of the system with the Monte Carlo MCNPX2.7 code was carried out according to a tradeoff between the moderation of incident fast neutrons and the probability of slow neutron capture by a moderate-cost metal gadolinium core. Based on the parameters extracted from simulation, a first laboratory prototype for the assessment of the detection method principle has been synthetized. The robustness and sensitivity of the neutron detection principle are then assessed by counting measurement experiments. Experimental results confirm the potential for a stable, highly sensitive, transportable and cost-efficient neutron detector and orientate future investigation toward promising axes.
Automated Weight-Window Generation for Threat Detection Applications Using ADVANTG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosher, Scott W; Miller, Thomas Martin; Evans, Thomas M
2009-01-01
Deterministic transport codes have been used for some time to generate weight-window parameters that can improve the efficiency of Monte Carlo simulations. As the use of this hybrid computational technique is becoming more widespread, the scope of applications in which it is being applied is expanding. An active source of new applications is the field of homeland security--particularly the detection of nuclear material threats. For these problems, automated hybrid methods offer an efficient alternative to trial-and-error variance reduction techniques (e.g., geometry splitting or the stochastic weight window generator). The ADVANTG code has been developed to automate the generation of weight-windowmore » parameters for MCNP using the Consistent Adjoint Driven Importance Sampling method and employs the TORT or Denovo 3-D discrete ordinates codes to generate importance maps. In this paper, we describe the application of ADVANTG to a set of threat-detection simulations. We present numerical results for an 'active-interrogation' problem in which a standard cargo container is irradiated by a deuterium-tritium fusion neutron generator. We also present results for two passive detection problems in which a cargo container holding a shielded neutron or gamma source is placed near a portal monitor. For the passive detection problems, ADVANTG obtains an O(10{sup 4}) speedup and, for a detailed gamma spectrum tally, an average O(10{sup 2}) speedup relative to implicit-capture-only simulations, including the deterministic calculation time. For the active-interrogation problem, an O(10{sup 4}) speedup is obtained when compared to a simulation with angular source biasing and crude geometry splitting.« less
Hata, Akihiko; Katayama, Hiroyuki; Kojima, Keisuke; Sano, Shoichi; Kasuga, Ikuro; Kitajima, Masaaki; Furumai, Hiroaki
2014-01-15
Rainfall events can introduce large amount of microbial contaminants including human enteric viruses into surface water by intermittent discharges from combined sewer overflows (CSOs). The present study aimed to investigate the effect of rainfall events on viral loads in surface waters impacted by CSO and the reliability of molecular methods for detection of enteric viruses. The reliability of virus detection in the samples was assessed by using process controls for virus concentration, nucleic acid extraction and reverse transcription (RT)-quantitative PCR (qPCR) steps, which allowed accurate estimation of virus detection efficiencies. Recovery efficiencies of poliovirus in river water samples collected during rainfall events (<10%) were lower than those during dry weather conditions (>10%). The log10-transformed virus concentration efficiency was negatively correlated with suspended solid concentration (r(2)=0.86) that increased significantly during rainfall events. Efficiencies of DNA extraction and qPCR steps determined with adenovirus type 5 and a primer sharing control, respectively, were lower in dry weather. However, no clear relationship was observed between organic water quality parameters and efficiencies of these two steps. Observed concentrations of indigenous enteric adenoviruses, GII-noroviruses, enteroviruses, and Aichi viruses increased during rainfall events even though the virus concentration efficiency was presumed to be lower than in dry weather. The present study highlights the importance of using appropriate process controls to evaluate accurately the concentration of water borne enteric viruses in natural waters impacted by wastewater discharge, stormwater, and CSOs. © 2013.
Anomaly Detection Based on Sensor Data in Petroleum Industry Applications
Martí, Luis; Sanchez-Pi, Nayat; Molina, José Manuel; Garcia, Ana Cristina Bicharra
2015-01-01
Anomaly detection is the problem of finding patterns in data that do not conform to an a priori expected behavior. This is related to the problem in which some samples are distant, in terms of a given metric, from the rest of the dataset, where these anomalous samples are indicated as outliers. Anomaly detection has recently attracted the attention of the research community, because of its relevance in real-world applications, like intrusion detection, fraud detection, fault detection and system health monitoring, among many others. Anomalies themselves can have a positive or negative nature, depending on their context and interpretation. However, in either case, it is important for decision makers to be able to detect them in order to take appropriate actions. The petroleum industry is one of the application contexts where these problems are present. The correct detection of such types of unusual information empowers the decision maker with the capacity to act on the system in order to correctly avoid, correct or react to the situations associated with them. In that application context, heavy extraction machines for pumping and generation operations, like turbomachines, are intensively monitored by hundreds of sensors each that send measurements with a high frequency for damage prevention. In this paper, we propose a combination of yet another segmentation algorithm (YASA), a novel fast and high quality segmentation algorithm, with a one-class support vector machine approach for efficient anomaly detection in turbomachines. The proposal is meant for dealing with the aforementioned task and to cope with the lack of labeled training data. As a result, we perform a series of empirical studies comparing our approach to other methods applied to benchmark problems and a real-life application related to oil platform turbomachinery anomaly detection. PMID:25633599
Determination of a Limited Scope Network's Lightning Detection Efficiency
NASA Technical Reports Server (NTRS)
Rompala, John T.; Blakeslee, R.
2008-01-01
This paper outlines a modeling technique to map lightning detection efficiency variations over a region surveyed by a sparse array of ground based detectors. A reliable flash peak current distribution (PCD) for the region serves as the technique's base. This distribution is recast as an event probability distribution function. The technique then uses the PCD together with information regarding: site signal detection thresholds, type of solution algorithm used, and range attenuation; to formulate the probability that a flash at a specified location will yield a solution. Applying this technique to the full region produces detection efficiency contour maps specific to the parameters employed. These contours facilitate a comparative analysis of each parameter's effect on the network's detection efficiency. In an alternate application, this modeling technique gives an estimate of the number, strength, and distribution of events going undetected. This approach leads to a variety of event density contour maps. This application is also illustrated. The technique's base PCD can be empirical or analytical. A process for formulating an empirical PCD specific to the region and network being studied is presented. A new method for producing an analytical representation of the empirical PCD is also introduced.
Automatic EEG spike detection.
Harner, Richard
2009-10-01
Since the 1970s advances in science and technology during each succeeding decade have renewed the expectation of efficient, reliable automatic epileptiform spike detection (AESD). But even when reinforced with better, faster tools, clinically reliable unsupervised spike detection remains beyond our reach. Expert-selected spike parameters were the first and still most widely used for AESD. Thresholds for amplitude, duration, sharpness, rise-time, fall-time, after-coming slow waves, background frequency, and more have been used. It is still unclear which of these wave parameters are essential, beyond peak-peak amplitude and duration. Wavelet parameters are very appropriate to AESD but need to be combined with other parameters to achieve desired levels of spike detection efficiency. Artificial Neural Network (ANN) and expert-system methods may have reached peak efficiency. Support Vector Machine (SVM) technology focuses on outliers rather than centroids of spike and nonspike data clusters and should improve AESD efficiency. An exemplary spike/nonspike database is suggested as a tool for assessing parameters and methods for AESD and is available in CSV or Matlab formats from the author at brainvue@gmail.com. Exploratory Data Analysis (EDA) is presented as a graphic method for finding better spike parameters and for the step-wise evaluation of the spike detection process.
Unmanned Aerial Vehicles for Alien Plant Species Detection and Monitoring
NASA Astrophysics Data System (ADS)
Dvořák, P.; Müllerová, J.; Bartaloš, T.; Brůna, J.
2015-08-01
Invasive species spread rapidly and their eradication is difficult. New methods enabling fast and efficient monitoring are urgently needed for their successful control. Remote sensing can improve early detection of invading plants and make their management more efficient and less expensive. In an ongoing project in the Czech Republic, we aim at developing innovative methods of mapping invasive plant species (semi-automatic detection algorithms) by using purposely designed unmanned aircraft (UAV). We examine possibilities for detection of two tree and two herb invasive species. Our aim is to establish fast, repeatable and efficient computer-assisted method of timely monitoring, reducing the costs of extensive field campaigns. For finding the best detection algorithm we test various classification approaches (object-, pixel-based and hybrid). Thanks to its flexibility and low cost, UAV enables assessing the effect of phenological stage and spatial resolution, and is most suitable for monitoring the efficiency of eradication efforts. However, several challenges exist in UAV application, such as geometrical and radiometric distortions, high amount of data to be processed and legal constrains for the UAV flight missions over urban areas (often highly invaded). The newly proposed UAV approach shall serve invasive species researchers, management practitioners and policy makers.
Efficient hemodynamic event detection utilizing relational databases and wavelet analysis
NASA Technical Reports Server (NTRS)
Saeed, M.; Mark, R. G.
2001-01-01
Development of a temporal query framework for time-oriented medical databases has hitherto been a challenging problem. We describe a novel method for the detection of hemodynamic events in multiparameter trends utilizing wavelet coefficients in a MySQL relational database. Storage of the wavelet coefficients allowed for a compact representation of the trends, and provided robust descriptors for the dynamics of the parameter time series. A data model was developed to allow for simplified queries along several dimensions and time scales. Of particular importance, the data model and wavelet framework allowed for queries to be processed with minimal table-join operations. A web-based search engine was developed to allow for user-defined queries. Typical queries required between 0.01 and 0.02 seconds, with at least two orders of magnitude improvement in speed over conventional queries. This powerful and innovative structure will facilitate research on large-scale time-oriented medical databases.
Shrink-induced silica multiscale structures for enhanced fluorescence from DNA microarrays.
Sharma, Himanshu; Wood, Jennifer B; Lin, Sophia; Corn, Robert M; Khine, Michelle
2014-09-23
We describe a manufacturable and scalable method for fabrication of multiscale wrinkled silica (SiO2) structures on shrink-wrap film to enhance fluorescence signals in DNA fluorescence microarrays. We are able to enhance the fluorescence signal of hybridized DNA by more than 120 fold relative to a planar glass slide. Notably, our substrate has improved detection sensitivity (280 pM) relative to planar glass slide (11 nM). Furthermore, this is accompanied by a 30-45 times improvement in the signal-to-noise ratio (SNR). Unlike metal enhanced fluorescence (MEF) based enhancements, this is a far-field and uniform effect based on surface concentration and photophysical effects from the nano- to microscale SiO2 structures. Notably, the photophysical effects contribute an almost 2.5 fold enhancement over the concentration effects alone. Therefore, this simple and robust method offers an efficient technique to enhance the detection capabilities of fluorescence based DNA microarrays.
Shrink-Induced Silica Multiscale Structures for Enhanced Fluorescence from DNA Microarrays
2015-01-01
We describe a manufacturable and scalable method for fabrication of multiscale wrinkled silica (SiO2) structures on shrink-wrap film to enhance fluorescence signals in DNA fluorescence microarrays. We are able to enhance the fluorescence signal of hybridized DNA by more than 120 fold relative to a planar glass slide. Notably, our substrate has improved detection sensitivity (280 pM) relative to planar glass slide (11 nM). Furthermore, this is accompanied by a 30–45 times improvement in the signal-to-noise ratio (SNR). Unlike metal enhanced fluorescence (MEF) based enhancements, this is a far-field and uniform effect based on surface concentration and photophysical effects from the nano- to microscale SiO2 structures. Notably, the photophysical effects contribute an almost 2.5 fold enhancement over the concentration effects alone. Therefore, this simple and robust method offers an efficient technique to enhance the detection capabilities of fluorescence based DNA microarrays. PMID:25191785
Detection of Cardiopulmonary Activity and Related Abnormal Events Using Microsoft Kinect Sensor.
Al-Naji, Ali; Chahl, Javaan
2018-03-20
Monitoring of cardiopulmonary activity is a challenge when attempted under adverse conditions, including different sleeping postures, environmental settings, and an unclear region of interest (ROI). This study proposes an efficient remote imaging system based on a Microsoft Kinect v2 sensor for the observation of cardiopulmonary-signal-and-detection-related abnormal cardiopulmonary events (e.g., tachycardia, bradycardia, tachypnea, bradypnea, and central apnoea) in many possible sleeping postures within varying environmental settings including in total darkness and whether the subject is covered by a blanket or not. The proposed system extracts the signal from the abdominal-thoracic region where cardiopulmonary activity is most pronounced, using a real-time image sequence captured by Kinect v2 sensor. The proposed system shows promising results in any sleep posture, regardless of illumination conditions and unclear ROI even in the presence of a blanket, whilst being reliable, safe, and cost-effective.
Detection of Cardiopulmonary Activity and Related Abnormal Events Using Microsoft Kinect Sensor
Chahl, Javaan
2018-01-01
Monitoring of cardiopulmonary activity is a challenge when attempted under adverse conditions, including different sleeping postures, environmental settings, and an unclear region of interest (ROI). This study proposes an efficient remote imaging system based on a Microsoft Kinect v2 sensor for the observation of cardiopulmonary-signal-and-detection-related abnormal cardiopulmonary events (e.g., tachycardia, bradycardia, tachypnea, bradypnea, and central apnoea) in many possible sleeping postures within varying environmental settings including in total darkness and whether the subject is covered by a blanket or not. The proposed system extracts the signal from the abdominal-thoracic region where cardiopulmonary activity is most pronounced, using a real-time image sequence captured by Kinect v2 sensor. The proposed system shows promising results in any sleep posture, regardless of illumination conditions and unclear ROI even in the presence of a blanket, whilst being reliable, safe, and cost-effective. PMID:29558414
Using pattern analysis methods to do fast detection of manufacturing pattern failures
NASA Astrophysics Data System (ADS)
Zhao, Evan; Wang, Jessie; Sun, Mason; Wang, Jeff; Zhang, Yifan; Sweis, Jason; Lai, Ya-Chieh; Ding, Hua
2016-03-01
At the advanced technology node, logic design has become extremely complex and is getting more challenging as the pattern geometry size decreases. The small sizes of layout patterns are becoming very sensitive to process variations. Meanwhile, the high pressure of yield ramp is always there due to time-to-market competition. The company that achieves patterning maturity earlier than others will have a great advantage and a better chance to realize maximum profit margins. For debugging silicon failures, DFT diagnostics can identify which nets or cells caused the yield loss. But normally, a long time period is needed with many resources to identify which failures are due to one common layout pattern or structure. This paper will present a new yield diagnostic flow, based on preliminary EFA results, to show how pattern analysis can more efficiently detect pattern related systematic defects. Increased visibility on design pattern related failures also allows more precise yield loss estimation.
The solar cycle variation of the rates of CMEs and related activity
NASA Technical Reports Server (NTRS)
Webb, David F.
1991-01-01
Coronal mass ejections (CMEs) are an important aspect of the physics of the corona and heliosphere. This paper presents results of a study of occurrence frequencies of CMEs and related activity tracers over more than a complete solar activity cycle. To properly estimate occurrence rates, observed CME rates must be corrected for instrument duty cycles, detection efficiencies away from the skyplane, mass detection thresholds, and geometrical considerations. These corrections are evaluated using CME data from 1976-1989 obtained with the Skylab, SMM and SOLWIND coronagraphs and the Helios-2 photometers. The major results are: (1) the occurrence rate of CMEs tends to track the activity cycle in both amplitude and phase; (2) the corrected rates from different instruments are reasonably consistent; and (3) over the long term, no one class of solar activity tracer is better correlated with CME rate than any other (with the possible exception of type II bursts).
Strategies to Improve Efficiency and Specificity of Degenerate Primers in PCR.
Campos, Maria Jorge; Quesada, Alberto
2017-01-01
PCR with degenerate primers can be used to identify the coding sequence of an unknown protein or to detect a genetic variant within a gene family. These primers, which are complex mixtures of slightly different oligonucleotide sequences, can be optimized to increase the efficiency and/or specificity of PCR in the amplification of a sequence of interest by the introduction of mismatches with the target sequence and balancing their position toward the primers 5'- or 3'-ends. In this work, we explain in detail examples of rational design of primers in two different applications, including the use of specific determinants at the 3'-end, to: (1) improve PCR efficiency with coding sequences for members of a protein family by fully degeneration at a core box of conserved genetic information, with the reduction of degeneration at the 5'-end, and (2) optimize specificity of allelic discrimination of closely related orthologous by 5'-end degenerate primers.
Efficiency of Cathodoluminescence Emission by Nitrogen-Vacancy Color Centers in Nanodiamonds.
Zhang, Huiliang; Glenn, David R; Schalek, Richard; Lichtman, Jeff W; Walsworth, Ronald L
2017-06-01
Correlated electron microscopy and cathodoluminescence (CL) imaging using functionalized nanoparticles is a promising nanoscale probe of biological structure and function. Nanodiamonds (NDs) that contain CL-emitting color centers are particularly well suited for such applications. The intensity of CL emission from NDs is determined by a combination of factors, including particle size, density of color centers, efficiency of energy deposition by electrons passing through the particle, and conversion efficiency from deposited energy to CL emission. This paper reports experiments and numerical simulations that investigate the relative importance of each of these factors in determining CL emission intensity from NDs containing nitrogen-vacancy (NV) color centers. In particular, it is found that CL can be detected from NV-doped NDs with dimensions as small as ≈40 nm, although CL emission decreases significantly for smaller NDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Worldwide Emerging Environmental Issues Affecting the U.S. Military. March 2010
2010-03-01
typical vibrations in the human body. Both piezoelectric and electromagnetic induction types have been tested and are claimed to be more efficient...than previous devices with vibrations that are non-periodic and occur at low frequencies. [Related item: “Energy Harvesting ” Offers Possibilities for...polarization http://www.nature.com/nnano/ journal /vaop/ncurrent/abs/nnano.2010.34.html 6.2 New Detection and Cleanup Techniques 6.2.1 New Polymer
Tomkins, Matthew Robert; Liao, David Shiqi; Docoslis, Aristides
2015-01-08
A detection method that combines electric field-assisted virus capture on antibody-decorated surfaces with the "fingerprinting" capabilities of micro-Raman spectroscopy is demonstrated for the case of M13 virus in water. The proof-of-principle surface mapping of model bioparticles (protein coated polystyrene spheres) captured by an AC electric field between planar microelectrodes is presented with a methodology for analyzing the resulting spectra by comparing relative peak intensities. The same principle is applied to dielectrophoretically captured M13 phage particles whose presence is indirectly confirmed with micro-Raman spectroscopy using NeutrAvidin-Cy3 as a labeling molecule. It is concluded that the combination of electrokinetically driven virus sampling and micro-Raman based signal transduction provides a promising approach for time-efficient and in situ detection of viruses.
NASA Astrophysics Data System (ADS)
Li, De Z.; Wang, Wilson; Ismail, Fathy
2017-11-01
Induction motors (IMs) are commonly used in various industrial applications. To improve energy consumption efficiency, a reliable IM health condition monitoring system is very useful to detect IM fault at its earliest stage to prevent operation degradation, and malfunction of IMs. An intelligent harmonic synthesis technique is proposed in this work to conduct incipient air-gap eccentricity fault detection in IMs. The fault harmonic series are synthesized to enhance fault features. Fault related local spectra are processed to derive fault indicators for IM air-gap eccentricity diagnosis. The effectiveness of the proposed harmonic synthesis technique is examined experimentally by IMs with static air-gap eccentricity and dynamic air-gap eccentricity states under different load conditions. Test results show that the developed harmonic synthesis technique can extract fault features effectively for initial IM air-gap eccentricity fault detection.
Enhanced explosive sensing based on bis(methyltetraphenyl)silole nanoaggregate
NASA Astrophysics Data System (ADS)
Shin, Bomina; Sohn, Honglae
2018-01-01
New photoluminescent bis(methyltetraphenyl)silole nanoaggregates for the detection of trinitrotoluene (TNT) were developed by using aggregation-induced emission property. Bis(methyltetraphenyl)silole nanoaggregates exhibited that photoluminescence (PL) intensity was increased when the water fraction was increased to 90% by volume. Relative PL efficiency of bis(methyltetraphenyl)silole nanoaggregates was exponentially increased to the percent of water fraction and particle diameter was dependent on solvent composition. Particle size of bis(methyltetraphenyl)silole nanoaggregates was tuned by controlling the water fraction by volume. Absolute quantum yield of bis(methyltetraphenyl)silole nanoaggregates in 90% water volume fraction were 32.4%, which increases by about 40 times. Detection of TNT was achieved from the quenching PL measurement of bis(methyltetraphenyl)silole nanoaggregates by adding the TNT. A linear Stern-Volmer relationship was observed for the detection of TNT.
Posture recognition based on fuzzy logic for home monitoring of the elderly.
Brulin, Damien; Benezeth, Yannick; Courtial, Estelle
2012-09-01
We propose in this paper a computer vision-based posture recognition method for home monitoring of the elderly. The proposed system performs human detection prior to the posture analysis; posture recognition is performed only on a human silhouette. The human detection approach has been designed to be robust to different environmental stimuli. Thus, posture is analyzed with simple and efficient features that are not designed to manage constraints related to the environment but only designed to describe human silhouettes. The posture recognition method, based on fuzzy logic, identifies four static postures and is robust to variation in the distance between the camera and the person, and to the person's morphology. With an accuracy of 74.29% of satisfactory posture recognition, this approach can detect emergency situations such as a fall within a health smart home.
Tomkins, Matthew Robert; Liao, David Shiqi; Docoslis, Aristides
2015-01-01
A detection method that combines electric field-assisted virus capture on antibody-decorated surfaces with the “fingerprinting” capabilities of micro-Raman spectroscopy is demonstrated for the case of M13 virus in water. The proof-of-principle surface mapping of model bioparticles (protein coated polystyrene spheres) captured by an AC electric field between planar microelectrodes is presented with a methodology for analyzing the resulting spectra by comparing relative peak intensities. The same principle is applied to dielectrophoretically captured M13 phage particles whose presence is indirectly confirmed with micro-Raman spectroscopy using NeutrAvidin-Cy3 as a labeling molecule. It is concluded that the combination of electrokinetically driven virus sampling and micro-Raman based signal transduction provides a promising approach for time-efficient and in situ detection of viruses. PMID:25580902
Davies, Stephen R; Alamgir, Mahiuddin; Chan, Benjamin K H; Dang, Thao; Jones, Kai; Krishnaswami, Maya; Luo, Yawen; Mitchell, Peter S R; Moawad, Michael; Swan, Hilton; Tarrant, Greg J
2015-10-01
The purity determination of organic calibration standards using the traditional mass balance approach is described. Demonstrated examples highlight the potential for bias in each measurement and the need to implement an approach that provides a cross-check for each result, affording fit for purpose purity values in a timely and cost-effective manner. Chromatographic techniques such as gas chromatography with flame ionisation detection (GC-FID) and high-performance liquid chromatography with UV detection (HPLC-UV), combined with mass and NMR spectroscopy, provide a detailed impurity profile allowing an efficient conversion of chromatographic peak areas into relative mass fractions, generally avoiding the need to calibrate each impurity present. For samples analysed by GC-FID, a conservative measurement uncertainty budget is described, including a component to cover potential variations in the response of each unidentified impurity. An alternative approach is also detailed in which extensive purification eliminates the detector response factor issue, facilitating the certification of a super-pure calibration standard which can be used to quantify the main component in less-pure candidate materials. This latter approach is particularly useful when applying HPLC analysis with UV detection. Key to the success of this approach is the application of both qualitative and quantitative (1)H NMR spectroscopy.
Zhao, Qi; Ding, Jie; Jin, Haiyan; Ding, Lan; Ren, Nanqi
2013-04-01
A method based on cloud point extraction (CPE) coupled with high-performance liquid chromatography separation and ultraviolet (UV) detection was developed to determine andrographolide and dehydroandrographolide in human plasma. The nonionic surfactant Triton X-114 was chosen as the extraction medium. Variable parameters affecting the CPE efficiency were evaluated and optimized, such as concentrations of Triton X-114 and NaCl, pH, equilibration temperature and equilibration time. A Zorbax SB C18 column (250 × 4.6 mm i.d., 5 µm) was used for separation of the two analytes at 30°C. The UV detection was performed at 254 nm. Under the optimum conditions, the limits of detection of andrographolide and dehydroandrographolide are 0.032 and 0.019 µg/mL, respectively. The intra-day and inter-day precisions expressed as relative standard deviation ranged from 3.2 to 7.3% and from 2.9 and 8.6%. The recoveries of andrographolide and dehydroandrographolide were in the range of 76.8-98.6% at three fortified concentrations of 0.1, 0.5 and 1.0 µg/mL. This method was efficient, environmentally friendly, rapid and inexpensive for the extraction and determination of andrographolide and dehydroandrographolide in human plasma.
Erami, Roghayeh Sadeghi; Ovejero, Karina; Meghdadi, Soraia; Filice, Marco; Amirnasr, Mehdi; Rodríguez-Diéguez, Antonio; De La Orden, María Ulagares; Gómez-Ruiz, Santiago
2018-06-14
Functionalized magnetite nanoparticles (FMNPs) and functionalized mesoporous silica nanoparticles (FMSNs) were synthesized by the conjugation of magnetite and mesoporous silica with the small and fluorogenic benzothiazole ligand, that is, 2(2-hydroxyphenyl)benzothiazole ( hpbtz ). The synthesized fluorescent nanoparticles were characterized by FTIR, XRD, XRF, 13 C CP MAS NMR, BET, and TEM. The photophysical behavior of FMNPs and FMSNs in ethanol was studied using fluorescence spectroscopy. The modification of magnetite and silica scaffolds with the highly fluorescent benzothiazole ligand enabled the nanoparticles to be used as selective and sensitive optical probes for zinc ion detection. Moreover, the presence of hpbtz in FMNPs and FMSNs induced efficient cell viability and zinc ion uptake, with desirable signaling in the normal human kidney epithelial (Hek293) cell line. The significant viability of FMNPs and FMSNs (80% and 92%, respectively) indicates a potential applicability of these nanoparticles as in vitro imaging agents. The calculated limit of detections (LODs) were found to be 2.53 × 10 −6 and 2.55 × 10 −6 M for Fe₃O₄-H@hpbtz and MSN-Et₃N-IPTMS-hpbtz-f1, respectively. FMSNs showed more pronounced zinc signaling relative to FMNPs, as a result of the more efficient penetration into the cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. James Clayton, Ph.D., Varian Medical Systems-Security & Inspection Products; Dr. Emma Regentova, Ph.D, University of Nevada Las Vegas; Dr. Evangelos Yfantis, Ph.D., University of Nevada, Las Vegas
The UNLV Research Foundation, as the primary award recipient, teamed with Varian Medical Systems-Security & Inspection Products and the University of Nevada Las Vegas (UNLV) for the purpose of conducting research and engineering related to a "next-generation" mega-voltage imaging (MVCI) system for inspection of cargo in large containers. The procurement and build-out of hardware for the MVCI project has been completed. The K-9 linear accelerator and an optimized X-ray detection system capable of efficiently detecting X-rays emitted from the accelerator after they have passed through the device is under test. The Office of Science financial assistance award has made possiblemore » the development of a system utilizing a technology which will have a profound positive impact on the security of U.S. seaports. The proposed project will ultimately result in critical research and development advances for the "next-generation" Linatron X-ray accelerator technology, thereby providing a safe, reliable and efficient fixed and mobile cargo inspection system, which will very significantly increase the fraction of cargo containers undergoing reliable inspection as the enter U.S. ports. Both NNSA/NA-22 and the Department of Homeland Security's Domestic Nuclear Detection Office are collaborating with UNLV and its team to make this technology available as soon as possible.« less
O'Maille, Grace; Go, Eden P.; Hoang, Linh; ...
2008-01-01
Comprehensive detection and quantitation of metabolites from a biological source constitute the major challenges of current metabolomics research. Two chemical derivatization methodologies, butylation and amination, were applied to human serum for ionization enhancement of a broad spectrum of metabolite classes, including steroids and amino acids. LC-ESI-MS analysis of the derivatized serum samples provided a significant signal elevation across the total ion chromatogram to over a 100-fold increase in ionization efficiency. It was also demonstrated that derivatization combined with isotopically labeled reagents facilitated the relative quantitation of derivatized metabolites from individual as well as pooled samples.
NASA Astrophysics Data System (ADS)
Srivastava, A.; Tian, Y.; Wang, D.; Yuan, S.; Chen, Z.; Sun, Z.; Qie, X.
2016-12-01
Scientists have developed the regional and worldwide lightning location network to study the lightning physics and locating the lightning stroke. One of the key issue in all the networks; to recognize the performance of the network. The performance of each network would be different based on the regional geographic conditions and the instrumental limitation. To improve the performance of the network. it is necessary to know the ground truth of the network and to discuss about the detection efficiency (DE) and location accuracy (LA). A comparative study has been discussed among World Wide Lightning Location Network (WWLLN), ADvanced TOA and Direction system (ADTD) and Beijing Lightning NETwork (BLNET) lightning detection network in Beijing area. WWLLN locate the cloud to ground (CG) and strong inter cloud (IC) globally without demonstrating any differences. ADTD locate the CG strokes in the entire China as regional. Both these networks are long range detection system that does not provide the focused details of a thunderstorm. BLNET can locate the CG and IC and is focused on thunderstorm detection. The waveform of fast antenna checked manually and the relative DE among the three networks has been obtained based on the CG strokes. The relative LA has been obtained using the matched flashes among these networks as well as LA obtained using the strike on the tower. The relative DE of BLNET is much higher than the ADTD and WWLLN as these networks has approximately similar relative DE. The relative LA of WWLLN and ADTD location is eastward and northward respectively from the BLNET. The LA based on tower observation is relatively high-quality in favor of BLNET. The ground truth of WWLLN, ADTD and BLNET has been obtained and found the performance of BLNET network is much better. This study is helpful to improve the performance of the networks and to provide a belief of LA that can follow the thunderstorm path with the prediction and forecasting of thunderstorm and lightning.
Abdalhai, Mandour H; Fernandes, António Maximiano; Xia, Xiaofeng; Musa, Abubakr; Ji, Jian; Sun, Xiulan
2015-05-27
The electrochemical genosensor is one of the most promising methods for the rapid and reliable detection of pathogenic bacteria. In a previous work, we performed an efficient electrochemical genosensor detection of Staphylococcus aureus by using lead sulfide nanoparticles (PbSNPs). As a continuation of this study, in the present work, the electrochemical genosensor was used to detect Escherichia coli O157:H7. The primer and probes were designed using NCBI database and Sigma-Aldrich primer and probe software. The capture and signalizing probes were modified by thiol (SH) and amine (NH2), respectively. Then, the signalizing probe was connected using cadmium sulfide nanoparticles (CdSNPs), which showed well-defined peaks after electrochemical detection. The genosensor was prepared by immobilization of complementary DNA on the gold electrode surface, which hybridizes with a specific fragment gene from pathogenic to make a sandwich structure. The conductivity and sensitivity of the sensor were increased by using multiwalled carbon nanotubes (MWCNT) that had been modified using chitosan deposited as a thin layer on the glass carbon electrode (GCE) surface, followed by a deposit of bismuth. The peak currents of E. coli O157:H7 correlated in a linear fashion with the concentration of tDNA. The detection limit was 1.97 × 10(-14) M, and the correlation coefficient was 0.989. A poorly defined current response was observed as the negative control and baseline. Our results showed high sensitivity and selectivity of the electrochemical DNA biosensor to the pathogenic bacteria E. coli O157:H7. The biosensor was also used to evaluate the detection of pathogen in real beef samples contaminated artificially. Compared with other electrochemical DNA biosensors, we conclude that this genosensor provides for very efficient detection of pathogenic bacteria. Therefore, this method may have potential application in food safety and related fields.
Impact of Aerosol Dust on xMAP Multiplex Detection of Different Class Pathogens
Kleymenov, Denis A.; Gushchin, Vladimir A.; Gintsburg, Alexander L.; Tkachuk, Artem P.
2017-01-01
Environmental or city-scale bioaerosol surveillance can provide additional value for biodefense and public health. Efficient bioaerosol monitoring should rely on multiplex systems capable of detecting a wide range of biologically hazardous components potentially present in air (bacteria, viruses, toxins and allergens). xMAP technology from LuminexTM allows multiplex bead-based detection of antigens or nucleic acids, but its use for simultaneous detection of different classes of pathogens (bacteria, virus, toxin) is questionable. Another problem is the detection of pathogens in complex matrices, e.g., in the presence of dust. In the this research, we developed the model xMAP multiplex test-system aiRDeTeX 1.0, which enables detection of influenza A virus, Adenovirus type 6 Salmonella typhimurium, and cholera toxin B subunit representing RNA virus, DNA virus, gram-negative bacteria and toxin respectively as model organisms of biologically hazardous components potentially present in or spreadable through the air. We have extensively studied the effect of matrix solution (PBS, distilled water), environmental dust and ultrasound treatment for monoplex and multiplex detection efficiency of individual targets. All targets were efficiently detectable in PBS and in the presence of dust. Ultrasound does not improve the detection except for bacterial LPS. PMID:29238328
Xu, Yan; Liu, Biao; Ding, Fengan; Zhou, Xiaodie; Tu, Pin; Yu, Bo; He, Yan; Huang, Peilin
2017-06-01
Circulating tumor cells (CTCs), isolated as a 'liquid biopsy', may provide important diagnostic and prognostic information. Therefore, rapid, reliable and unbiased detection of CTCs are required for routine clinical analyses. It was demonstrated that negative enrichment, an epithelial marker-independent technique for isolating CTCs, exhibits a better efficiency in the detection of CTCs compared with positive enrichment techniques that only use specific anti-epithelial cell adhesion molecules. However, negative enrichment techniques incur significant cell loss during the isolation procedure, and as it is a method that uses only one type of antibody, it is inherently biased. The detection procedure and identification of cell types also relies on skilled and experienced technicians. In the present study, the detection sensitivity of using negative enrichment and a previously described unbiased detection method was compared. The results revealed that unbiased detection methods may efficiently detect >90% of cancer cells in blood samples containing CTCs. By contrast, only 40-60% of CTCs were detected by negative enrichment. Additionally, CTCs were identified in >65% of patients with stage I/II lung cancer. This simple yet efficient approach may achieve a high level of sensitivity. It demonstrates a potential for the large-scale clinical implementation of CTC-based diagnostic and prognostic strategies.
Gruber, Andreas R; Bernhart, Stephan H; Lorenz, Ronny
2015-01-01
The ViennaRNA package is a widely used collection of programs for thermodynamic RNA secondary structure prediction. Over the years, many additional tools have been developed building on the core programs of the package to also address issues related to noncoding RNA detection, RNA folding kinetics, or efficient sequence design considering RNA-RNA hybridizations. The ViennaRNA web services provide easy and user-friendly web access to these tools. This chapter describes how to use this online platform to perform tasks such as prediction of minimum free energy structures, prediction of RNA-RNA hybrids, or noncoding RNA detection. The ViennaRNA web services can be used free of charge and can be accessed via http://rna.tbi.univie.ac.at.
Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating.
Seol, Yeonee; Carpenter, Amanda E; Perkins, Thomas T
2006-08-15
Gold nanoparticles appear to be superior handles in optical trapping assays. We demonstrate that relatively large gold particles (R(b)=50 nm) indeed yield a sixfold enhancement in trapping efficiency and detection sensitivity as compared to similar-sized polystyrene particles. However, optical absorption by gold at the most common trapping wavelength (1064 nm) induces dramatic heating (266 degrees C/W). We determined this heating by comparing trap stiffness from three different methods in conjunction with detailed modeling. Due to this heating, gold nanoparticles are not useful for temperature-sensitive optical-trapping experiments, but may serve as local molecular heaters. Also, such particles, with their increased detection sensitivity, make excellent probes for certain zero-force biophysical assays.
Approximation of Nash equilibria and the network community structure detection problem
2017-01-01
Game theory based methods designed to solve the problem of community structure detection in complex networks have emerged in recent years as an alternative to classical and optimization based approaches. The Mixed Nash Extremal Optimization uses a generative relation for the characterization of Nash equilibria to identify the community structure of a network by converting the problem into a non-cooperative game. This paper proposes a method to enhance this algorithm by reducing the number of payoff function evaluations. Numerical experiments performed on synthetic and real-world networks show that this approach is efficient, with results better or just as good as other state-of-the-art methods. PMID:28467496
Nanostructure and Corresponding Quenching Efficiency of Fluorescent DNA Probes.
Guo, Wenjuan; Wei, Yanhong; Dai, Zhao; Chen, Guangping; Chu, Yuanyuan; Zhao, Yifei
2018-02-09
Based on the fluorescence resonance energy transfer (FRET) mechanism, fluorescent DNA probes were prepared with a novel DNA hairpin template method, with SiO₂ coated CdTe (CdTe/SiO₂) core/shell nanoparticles used as the fluorescence energy donors and gold (Au) nanoparticles (AuNPs) as the energy acceptors. The nanostructure and energy donor/acceptor ratio in a probe were controlled with this method. The relationship between the nanostructure of the probes and FRET efficiency (quenching efficiency) were investigated. The results indicated that when the donor/acceptor ratios were 2:1, 1:1, and 1:2; the corresponding FRET efficiencies were about 33.6%, 57.5%, and 74.2%, respectively. The detection results indicated that the fluorescent recovery efficiency of the detecting system was linear when the concentration of the target DNA was about 0.0446-2.230 nmol/L. Moreover, the probes showed good sensitivity and stability in different buffer conditions with a low detection limit of about 0.106 nmol/L.
Nanostructure and Corresponding Quenching Efficiency of Fluorescent DNA Probes
Guo, Wenjuan; Wei, Yanhong; Dai, Zhao; Chen, Guangping; Chu, Yuanyuan; Zhao, Yifei
2018-01-01
Based on the fluorescence resonance energy transfer (FRET) mechanism, fluorescent DNA probes were prepared with a novel DNA hairpin template method, with SiO2 coated CdTe (CdTe/SiO2) core/shell nanoparticles used as the fluorescence energy donors and gold (Au) nanoparticles (AuNPs) as the energy acceptors. The nanostructure and energy donor/acceptor ratio in a probe were controlled with this method. The relationship between the nanostructure of the probes and FRET efficiency (quenching efficiency) were investigated. The results indicated that when the donor/acceptor ratios were 2:1, 1:1, and 1:2; the corresponding FRET efficiencies were about 33.6%, 57.5%, and 74.2%, respectively. The detection results indicated that the fluorescent recovery efficiency of the detecting system was linear when the concentration of the target DNA was about 0.0446–2.230 nmol/L. Moreover, the probes showed good sensitivity and stability in different buffer conditions with a low detection limit of about 0.106 nmol/L. PMID:29425163
Application of a prediction model for work-related sensitisation in bakery workers.
Meijer, E; Suarthana, E; Rooijackers, J; Grobbee, D E; Jacobs, J H; Meijster, T; de Monchy, J G R; van Otterloo, E; van Rooy, F G B G J; Spithoven, J J G; Zaat, V A C; Heederik, D J J
2010-10-01
Identification of work-related allergy, particularly work-related asthma, in a (nationwide) medical surveillance programme among bakery workers requires an effective and efficient strategy. Bakers at high risk of having work-related allergy were indentified by use of a questionnaire-based prediction model for work-related sensitisation. The questionnaire was applied among 5,325 participating bakers. Sequential diagnostic investigations were performed only in those with an elevated risk. Performance of the model was evaluated in 674 randomly selected bakers who participated in the medical surveillance programme and the validation study. Clinical investigations were evaluated in the first 73 bakers referred at high risk. Overall 90% of bakers at risk of having asthma could be identified. Individuals at low risk showed 0.3-3.8% work-related respiratory symptoms, medication use or absenteeism. Predicting flour sensitisation by a simple questionnaire and score chart seems more effective at detecting work-related allergy than serology testing followed by clinical investigation in all immunoglobulin E class II-positive individuals. This prediction based stratification procedure appeared effective in detecting work-related allergy among bakers and can accurately be used for periodic examination, especially in small enterprises where delivery of adequate care is difficult. This approach may contribute to cost reduction.
The Acid Phosphatase-Encoding Gene GmACP1 Contributes to Soybean Tolerance to Low-Phosphorus Stress
Hao, Derong; Wang, Hui; Kan, Guizhen; Jin, Hangxia; Yu, Deyue
2014-01-01
Phosphorus (P) is essential for all living cells and organisms, and low-P stress is a major factor constraining plant growth and yield worldwide. In plants, P efficiency is a complex quantitative trait involving multiple genes, and the mechanisms underlying P efficiency are largely unknown. Combining linkage analysis, genome-wide and candidate-gene association analyses, and plant transformation, we identified a soybean gene related to P efficiency, determined its favorable haplotypes and developed valuable functional markers. First, six major genomic regions associated with P efficiency were detected by performing genome-wide associations (GWAs) in various environments. A highly significant region located on chromosome 8, qPE8, was identified by both GWAs and linkage mapping and explained 41% of the phenotypic variation. Then, a regional mapping study was performed with 40 surrounding markers in 192 diverse soybean accessions. A strongly associated haplotype (P = 10−7) consisting of the markers Sat_233 and BARC-039899-07603 was identified, and qPE8 was located in a region of approximately 250 kb, which contained a candidate gene GmACP1 that encoded an acid phosphatase. GmACP1 overexpression in soybean hairy roots increased P efficiency by 11–20% relative to the control. A candidate-gene association analysis indicated that six natural GmACP1 polymorphisms explained 33% of the phenotypic variation. The favorable alleles and haplotypes of GmACP1 associated with increased transcript expression correlated with higher enzyme activity. The discovery of the optimal haplotype of GmACP1 will now enable the accurate selection of soybeans with higher P efficiencies and improve our understanding of the molecular mechanisms underlying P efficiency in plants. PMID:24391523
Design and fabrication of a novel self-powered solid-state neutron detector
NASA Astrophysics Data System (ADS)
LiCausi, Nicholas
There is a strong interest in intercepting special nuclear materials (SNM) at national and international borders and ports for homeland security applications. Detection of SNM such as U and Pu is often accomplished by sensing their natural or induced neutron emission. Such detector systems typically use thermal neutron detectors inside a plastic moderator. In order to achieve high detection efficiency gas filled detectors are often used; these detectors require high voltage bias for operation, which complicates the system when tens or hundreds of detectors are deployed. A better type of detector would be an inexpensive solid-state detector that can be mass-produced like any other computer chip. Research surrounding solid-state detectors has been underway since the late 1990's. A simple solid-state detector employs a planar solar-cell type p-n junction and a thin conversion material that converts incident thermal neutrons into detectable alpha-particles and 7Li ions. Existing work has typically used 6LiF or 10B as this conversion layer. Although a simple planar detector can act as a highly portable, low cost detector, it is limited to relatively low detection efficiency (˜10%). To increase the efficiency, 3D perforated p-i-n silicon devices were proposed. To get high efficiency, these detectors need to be biased, resulting in increased leakage current and hence detector noise. In this research, a new type of detector structure was proposed, designed and fabricated. Among several detector structures evaluated, a honeycomb-like silicon p-n structure was selected, which is filled with natural boron as the neutron converter. A silicon p+-n diode formed on the thin silicon wall of the honeycomb structure detects the energetic alpha-particles emitted from the boron conversion layer. The silicon detection layer is fabricated to be fully depleted with an integral step during the boron filling process. This novel feature results in a simplified fabrication process. Three key advantages of the novel devices are theoretical neutron detection efficiency of ˜48%, a self-passivating structure that reduces leakage current and detector operation with no bias resulting in extremely low device noise. Processes required to fabricate the 3D type detector were explored and developed in this thesis. The detector capacitance and processing steps have been simulated with MEDICI and TSuprem-4, respectively. Lithography masks were then designed using Cadence. The fabrication process development was conducted in line with standard CMOS grade integrated circuit processing to allow for simple integration with existing fabrication facilities. A number of new processes were developed including the low pressure chemical vapor deposition of conformal boron films using diborane on very high aspect-ratio trenches and holes. Development also included methods for "wet" chemical etching and "dry" reactive ion etching of the deposited boron films. Fabricated detectors were characterized with the transmission line method, 4-point probe, I-V measurements and C-V measurements. Finally the detector response to thermal neutrons was studied. Characterization has shown significant reduction in reverse leakage current density to ˜8x10-8 A/cm2 (nearly 4 orders of magnitude over the previously published data). Results show that the fabrication process developed is capable of producing efficient (˜22.5%) solid-state thermal neutron detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stavis, Samuel M; Edel, Joshua B; Samiee, Kevan T
A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidicmore » channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.« less
NASA Technical Reports Server (NTRS)
Bateman, Monte; Mach, Douglas; Blakeslee, Richard J.; Koshak, William
2018-01-01
As part of the calibration/validation (cal/val) effort for the Geostationary Lightning Mapper (GLM) on GOES-16, we need to assess instrument performance (detection efficiency and accuracy). One major effort is to calculate the detection efficiency of GLM by comparing to multiple ground-based systems. These comparisons will be done pair-wise between GLM and each other source. A complication in this process is that the ground-based systems sense different properties of the lightning signal than does GLM (e.g., RF vs. optical). Also, each system has a different time and space resolution and accuracy. Preliminary results indicate that GLM is performing at or above its specification.
A community detection algorithm based on structural similarity
NASA Astrophysics Data System (ADS)
Guo, Xuchao; Hao, Xia; Liu, Yaqiong; Zhang, Li; Wang, Lu
2017-09-01
In order to further improve the efficiency and accuracy of community detection algorithm, a new algorithm named SSTCA (the community detection algorithm based on structural similarity with threshold) is proposed. In this algorithm, the structural similarities are taken as the weights of edges, and the threshold k is considered to remove multiple edges whose weights are less than the threshold, and improve the computational efficiency. Tests were done on the Zachary’s network, Dolphins’ social network and Football dataset by the proposed algorithm, and compared with GN and SSNCA algorithm. The results show that the new algorithm is superior to other algorithms in accuracy for the dense networks and the operating efficiency is improved obviously.
NASA Astrophysics Data System (ADS)
Bandeira, Lourenço; Ding, Wei; Stepinski, Tomasz F.
2012-01-01
Counting craters is a paramount tool of planetary analysis because it provides relative dating of planetary surfaces. Dating surfaces with high spatial resolution requires counting a very large number of small, sub-kilometer size craters. Exhaustive manual surveys of such craters over extensive regions are impractical, sparking interest in designing crater detection algorithms (CDAs). As a part of our effort to design a CDA, which is robust and practical for planetary research analysis, we propose a crater detection approach that utilizes both shape and texture features to identify efficiently sub-kilometer craters in high resolution panchromatic images. First, a mathematical morphology-based shape analysis is used to identify regions in an image that may contain craters; only those regions - crater candidates - are the subject of further processing. Second, image texture features in combination with the boosting ensemble supervised learning algorithm are used to accurately classify previously identified candidates into craters and non-craters. The design of the proposed CDA is described and its performance is evaluated using a high resolution image of Mars for which sub-kilometer craters have been manually identified. The overall detection rate of the proposed CDA is 81%, the branching factor is 0.14, and the overall quality factor is 72%. This performance is a significant improvement over the previous CDA based exclusively on the shape features. The combination of performance level and computational efficiency offered by this CDA makes it attractive for practical application.
An efficient repeating signal detector to investigate earthquake swarms
NASA Astrophysics Data System (ADS)
Skoumal, Robert J.; Brudzinski, Michael R.; Currie, Brian S.
2016-08-01
Repetitive earthquake swarms have been recognized as key signatures in fluid injection induced seismicity, precursors to volcanic eruptions, and slow slip events preceding megathrust earthquakes. We investigate earthquake swarms by developing a Repeating Signal Detector (RSD), a computationally efficient algorithm utilizing agglomerative clustering to identify similar waveforms buried in years of seismic recordings using a single seismometer. Instead of relying on existing earthquake catalogs of larger earthquakes, RSD identifies characteristic repetitive waveforms by rapidly identifying signals of interest above a low signal-to-noise ratio and then grouping based on spectral and time domain characteristics, resulting in dramatically shorter processing time than more exhaustive autocorrelation approaches. We investigate seismicity in four regions using RSD: (1) volcanic seismicity at Mammoth Mountain, California, (2) subduction-related seismicity in Oaxaca, Mexico, (3) induced seismicity in Central Alberta, Canada, and (4) induced seismicity in Harrison County, Ohio. In each case, RSD detects a similar or larger number of earthquakes than existing catalogs created using more time intensive methods. In Harrison County, RSD identifies 18 seismic sequences that correlate temporally and spatially to separate hydraulic fracturing operations, 15 of which were previously unreported. RSD utilizes a single seismometer for earthquake detection which enables seismicity to be quickly identified in poorly instrumented regions at the expense of relying on another method to locate the new detections. Due to the smaller computation overhead and success at distances up to ~50 km, RSD is well suited for real-time detection of low-magnitude earthquake swarms with permanent regional networks.
Pan, Xiaoming; Zhang, Yanfang; Sha, Xuejiao; Wang, Jing; Li, Jing; Dong, Ping; Liang, Xingguo
2017-03-28
White spot syndrome virus (WSSV) is a major threat to the shrimp farming industry and so far there is no effective therapy for it, and thus early diagnostic of WSSV is of great importance. However, at the early stage of infection, the extremely low-abundance of WSSV DNA challenges the detection sensitivity and accuracy of PCR. To effectively detect low-abundance WSSV, here we developed a pre-amplification PCR (pre-amp PCR) method to amplify trace amounts of WSSV DNA from massive background genomic DNA. Combining with normal specific PCR, 10 copies of target WSSV genes were detected from ~10 10 magnitude of backgrounds. In particular, multiple target genes were able to be balanced amplified with similar efficiency due to the usage of the universal primer. The efficiency of the pre-amp PCR was validated by nested-PCR and quantitative PCR, and pre-amp PCR showed higher efficiency than nested-PCR when multiple targets were detected. The developed method is particularly suitable for the super early diagnosis of WSSV, and has potential to be applied in other low-abundance sample detection cases.
Hernandez-Sanabria, Emma; Goonewardene, Laksiri A.; Wang, Zhiquan; Durunna, Obioha N.; Moore, Stephen S.
2012-01-01
Limited knowledge of the structure and activities of the ruminal bacterial community prevents the understanding of the effect of population dynamics on functional bacterial groups and on host productivity. This study aimed to identify particular bacteria associated with host feed efficiency in steers with differing diets and residual feed intake (RFI) using culture-independent methods: PCR-denaturing gradient gel electrophoresis (DGGE) and quantitative real-time PCR analysis. PCR-DGGE profiles were generated from the ruminal fluid of 55 steers fed a low-energy-density diet and then switched to a high-energy-density diet. Bacterial profile comparisons by multivariate statistical analysis showed a trend only for RFI-related clusters on the high-energy diet. When steers (n = 19) belonging to the same RFI group under both diets were used to identify specific bacterial phylotypes related to feed efficiency traits, correlations were detected between dry matter intake, average daily gain, and copy numbers of the 16S rRNA gene of Succinivibrio sp. in low-RFI (efficient) steers, whereas correlations between Robinsoniella sp. and RFI (P < 0.05) were observed for high-RFI (inefficient) animals. Eubacterium sp. differed significantly (P < 0.05) between RFI groups that were only on the high-energy diet. Our work provides a comprehensive framework to understand how particular bacterial phylotypes contribute to differences in feed efficiency and ultimately influence host productivity, which may either depend on or be independent from diet factors. PMID:22156428
Langone, Michela; Ferrentino, Roberta; Cadonna, Maria; Andreottola, Gianni
2016-12-01
A laboratory-scale sequencing batch reactor (SBR) performing partial nitritation - anammox and denitrification was used to treat anaerobic digester effluents. The SBR cycle consisted of a short mixing filling phase followed by oxic and anoxic reaction phases. Working at 25 °C, an ammonium conversion efficiency of 96.5%, a total nitrogen removal efficiency of 88.6%, and an organic carbon removal efficiency of 63.5% were obtained at a nitrogen loading rate of 0.15 kg N m -3 d -1 , and a biodegradable organic carbon to nitrogen ratio of 0.37. The potential contribution of each biological process was evaluated by using a stoichiometric model. The nitritation contribution decreased as the temperature decreased, while the contribution from anammox depended on the wastewater type and soluble carbon to nitrogen ratio. Denitrification improved the total nitrogen removal efficiency, and it was influenced by the biodegradable organic carbon to nitrogen ratio. The characteristic patterns of conductivity, oxidation-reduction potential (ORP) and pH in the SBR cycle were well related to biological processes. Conductivity profiles were found to be directly related to the decreasing profiles of ammonium. Positive ORP values at the end of the anoxic phases were detected for total nitrogen removal efficiency of lower than 85%, and the occurrence of bending points on the ORP curves during the anoxic phases was associated with nitrite depletion by the anammox process. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thermodynamic framework to assess low abundance DNA mutation detection by hybridization
Willems, Hanny; Jacobs, An; Hadiwikarta, Wahyu Wijaya; Venken, Tom; Valkenborg, Dirk; Van Roy, Nadine; Vandesompele, Jo; Hooyberghs, Jef
2017-01-01
The knowledge of genomic DNA variations in patient samples has a high and increasing value for human diagnostics in its broadest sense. Although many methods and sensors to detect or quantify these variations are available or under development, the number of underlying physico-chemical detection principles is limited. One of these principles is the hybridization of sample target DNA versus nucleic acid probes. We introduce a novel thermodynamics approach and develop a framework to exploit the specific detection capabilities of nucleic acid hybridization, using generic principles applicable to any platform. As a case study, we detect point mutations in the KRAS oncogene on a microarray platform. For the given platform and hybridization conditions, we demonstrate the multiplex detection capability of hybridization and assess the detection limit using thermodynamic considerations; DNA containing point mutations in a background of wild type sequences can be identified down to at least 1% relative concentration. In order to show the clinical relevance, the detection capabilities are confirmed on challenging formalin-fixed paraffin-embedded clinical tumor samples. This enzyme-free detection framework contains the accuracy and efficiency to screen for hundreds of mutations in a single run with many potential applications in molecular diagnostics and the field of personalised medicine. PMID:28542229
Depth-color fusion strategy for 3-D scene modeling with Kinect.
Camplani, Massimo; Mantecon, Tomas; Salgado, Luis
2013-12-01
Low-cost depth cameras, such as Microsoft Kinect, have completely changed the world of human-computer interaction through controller-free gaming applications. Depth data provided by the Kinect sensor presents several noise-related problems that have to be tackled to improve the accuracy of the depth data, thus obtaining more reliable game control platforms and broadening its applicability. In this paper, we present a depth-color fusion strategy for 3-D modeling of indoor scenes with Kinect. Accurate depth and color models of the background elements are iteratively built, and used to detect moving objects in the scene. Kinect depth data is processed with an innovative adaptive joint-bilateral filter that efficiently combines depth and color by analyzing an edge-uncertainty map and the detected foreground regions. Results show that the proposed approach efficiently tackles main Kinect data problems: distance-dependent depth maps, spatial noise, and temporal random fluctuations are dramatically reduced; objects depth boundaries are refined, and nonmeasured depth pixels are interpolated. Moreover, a robust depth and color background model and accurate moving objects silhouette are generated.
Comparison of 32 x 128 and 32 x 32 Geiger-mode APD FPAs for single photon 3D LADAR imaging
NASA Astrophysics Data System (ADS)
Itzler, Mark A.; Entwistle, Mark; Owens, Mark; Patel, Ketan; Jiang, Xudong; Slomkowski, Krystyna; Rangwala, Sabbir; Zalud, Peter F.; Senko, Tom; Tower, John; Ferraro, Joseph
2011-05-01
We present results obtained from 3D imaging focal plane arrays (FPAs) employing planar-geometry InGaAsP/InP Geiger-mode avalanche photodiodes (GmAPDs) with high-efficiency single photon sensitivity at 1.06 μm. We report results obtained for new 32 x 128 format FPAs with 50 μm pitch and compare these results to those obtained for 32 x 32 format FPAs with 100 μm pitch. We show excellent pixel-level yield-including 100% pixel operability-for both formats. The dark count rate (DCR) and photon detection efficiency (PDE) performance is found to be similar for both types of arrays, including the fundamental DCR vs. PDE tradeoff. The optical crosstalk due to photon emission induced by pixel-level avalanche detection events is found to be qualitatively similar for both formats, with some crosstalk metrics for the 32 x 128 format found to be moderately elevated relative to the 32 x 32 FPA results. Timing jitter measurements are also reported for the 32 x 128 FPAs.
Preparation, applications, and digital simulation of carbon interdigitated array electrodes.
Liu, Fei; Kolesov, Grigory; Parkinson, B A
2014-08-05
Carbon interdigitated array (IDA) electrodes with features sizes down to 1.2 μm were fabricated by controlled pyrolysis of patterned photoresist. Cyclic voltammetry of reversible redox species produced the expected steady-state currents. The collection efficiency depends on the IDA electrode spacing, which ranged from around 2.7 to 16.5 μm, with the smaller dimensions achieving higher collection efficiencies of up to 98%. The signal amplification because of redox cycling makes it possible to detect species at relatively low concentrations (10(-5) molar) and the small spacing allows detection of transient electrogenerated species with much shorter lifetimes (submillisecond). Digital simulation software that accounts for both the width and height of electrode elements as well as the electrode spacing was developed to model the IDA electrode response. The simulations are in quantitative agreement with experimental data for both a simple fast one electron redox reaction and an electron transfer with a following chemical reaction at the IDAs with larger gaps whereas currents measured for the smallest IDA electrodes, that were larger than the simulated currents, are attributed to convection from induced charge electrokinetic flow.
Processing of transparent polycrystalline AlON:Ce 3+ scintillators
Chen, Ching -Fong; Yang, Pin; King, Graham; ...
2015-10-23
A new polycrystalline ceramic scintillator is reported for potential use in radiation detection and medical imaging applications. The goal was to develop cerium-activated aluminum oxynitride (AlON:Ce 3+) ceramics, which can be produced using ceramic processes in comparison to the high-cost, low-yield single-crystal growth technique. A phase pure AlON:Ce 3+ powder with cubic symmetry was successfully synthesized at high temperature under a reducing atmosphere to convert Ce 4+ to Ce 3+ in the solid solution. We explored two different activator concentrations (0.5 and 1.0 mol%). Fully dense and transparent AlON:Ce 3+ ceramics were produced by a liquid-phase-assisted pressureless sintering. The crystalmore » field splitting around the Ce 3+ activator in the AlON was comparable to the splitting induced by Br₋ and the Cl₋ ligands, which produced an emission spectrum perfectly matching the maximum quantum efficiency range of the photomultiplier tube for radiation detection. Both optical excitation and radiation ionizations in AlON:Ce 3+ were demonstrated. Lastly, challenges and mechanisms related to the radioluminescence efficiency are discussed.« less
NASA Technical Reports Server (NTRS)
Siegmund, Oswald H. W.; Everman, Elaine; Hull, Jeff; Vallerga, John V.; Lampton, Michael
1988-01-01
The quantum detection efficiency (QDE) of KCl photocathodes in the 44-1460 A range was investigated. An opaque layer of KCl, about 15,000-A-thick, was evaporated and applied the surface of a microchannel plate (MCP), and the contribution of the photocathode material in the channels (and on the interchannel web) to the QDE was measured using a Z stack MCP detector. It is shown that KCl is a relatively stable photocathode material, with the QDE equal to 30-40 percent in the EUV. At wavelengths above 200 A, the QDE is slightly better than the QDE of CsI, as reported by Siegmund et al. (1986). While the shape of the QDE curve as a function of wavelength is similar to those reported for CsI and KBr, KCl was found to lack the high QDE peak found in the curves of CsI and KBr at about 100 A. A simple QDE model is described, the predictions of which were found to agree with the measurements on the KCl photocathode.
Pebdani, Arezou Amiri; Shabani, Ali Mohammad Haji; Dadfarnia, Shayesteh; Talebianpoor, Mohammad Sharif; Khodadoust, Saeid
2016-05-01
In this work, a fast, easy, and efficient dispersive liquid-liquid microextraction method based on solidification of floating organic drop followed by high-performance liquid chromatography with UV detection was developed for the separation/preconcentration and determination of the drug valsartan. Experimental design was applied for the optimization of the effective variables (such as volume of extracting and dispersing solvents, ionic strength, and pH) on the extraction efficiency of valsartan from urine samples. The optimized values were 250.0 μL ethanol, 65.0 μL 1-dodecanol, 4.0% w/v NaCl, pH 3.8, 1.0 min extraction time, and 4.0 min centrifugation at 4000 rpm min(-1) . The linear response (r(2) = 0.997) was obtained in the range of 0.013-10.0 μg mL(-1) with a limit of detection of 4.0 ng mL(-1) and relative standard deviations of less than 5.0 % (n = 6). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
VirusDetect: An automated pipeline for efficient virus discovery using deep sequencing of small RNAs
USDA-ARS?s Scientific Manuscript database
Accurate detection of viruses in plants and animals is critical for agriculture production and human health. Deep sequencing and assembly of virus-derived siRNAs has proven to be a highly efficient approach for virus discovery. However, to date no computational tools specifically designed for both k...
NASA Astrophysics Data System (ADS)
Meigo, S.
1997-02-01
For neutrons 25, 30 and 65 MeV, the response functions and detection efficiencies of an NE213 liquid scintillator were measured. Quasi-monoenergetic neutrons produced by the 7Li(p,N 0.1) reaction were employed for the measurement and the absolute flux of incident neutrons was determined within 4% accuracy using a proton recoil telescope. Response functions and detection efficiencies calculated with the Monte Carlo codes, CECIL and SCINFUL, were compared with the measured data. It was found that response functions calculated with SCINFUL agreed better with experimental ones than those with CECIL, however, the deuteron light output used in SCINFUL was too low. The response functions calculated with a revised SCINFUL agreed with the experimental ones quite well even for the deuteron bump and peak due to the C(n,d 0) reaction. It was confirmed that the detection efficiencies calculated with the original and the revised SCINFULs agreed with the experimental data within the experimental error, while those with CECIL were about 20% higher in the energy region above 30 MeV.
Whole exome resequencing distinguishes cystic kidney diseases from phenocopies in renal ciliopathies
Gee, Heon Yung; Otto, Edgar A.; Hurd, Toby W.; Ashraf, Shazia; Chaki, Moumita; Cluckey, Andrew; Vega-Warner, Virginia; Saisawat, Pawaree; Diaz, Katrina A.; Fang, Humphrey; Kohl, Stefan; Allen, Susan J.; Airik, Rannar; Zhou, Weibin; Ramaswami, Gokul; Janssen, Sabine; Fu, Clementine; Innis, Jamie L.; Weber, Stefanie; Vester, Udo; Davis, Erica E.; Katsanis, Nicholas; Fathy, Hanan M.; Jeck, Nikola; Klaus, Gunther; Nayir, Ahmet; Rahim, Khawla A.; Attrach, Ibrahim Al; Hassoun, Ibrahim Al; Ozturk, Savas; Drozdz, Dorota; Helmchen, Udo; O’Toole, John F.; Attanasio, Massimo; Nürnberg, Gudrun; Nürnberg, Peter; Washburn, Joseph; MacDonald, James; James, Jeffrey W.; Levy, Shawn; Hildebrandt, Friedhelm
2013-01-01
Rare single-gene disorders cause chronic disease. However, half of the 6,000 recessive single gene causes of disease are still unknown. Because recessive disease genes can illuminate, at least in part, disease pathomechanism, their identification offers direct opportunities for improved clinical management and potentially treatment. Rare diseases comprise the majority of chronic kidney disease (CKD) in children but are notoriously difficult to diagnose. Whole exome resequencing facilitates identification of recessive disease genes. However, its utility is impeded by the large number of genetic variants detected. We here overcome this limitation by combining homozygosity mapping with whole exome resequencing in 10 sib pairs with a nephronophthisis-related ciliopathy, which represents the most frequent genetic cause of CKD in the first three decades of life. In 7 of 10 sib-ships with a histologic or ultrasonographic diagnosis of nephronophthisis-related ciliopathy we detect the causative gene. In six sib-ships we identify mutations of known nephronophthisis-related ciliopathy genes, while in two additional sib-ships we found mutations in the known CKD-causing genes SLC4A1 and AGXT as phenocopies of nephronophthisis-related ciliopathy. Thus whole exome resequencing establishes an efficient, non-invasive approach towards early detection and causation-based diagnosis of rare kidney diseases. This approach can be extended to other rare recessive disorders, thereby providing accurate diagnosis and facilitating the study of disease mechanisms. PMID:24257694
Gee, Heon Yung; Otto, Edgar A; Hurd, Toby W; Ashraf, Shazia; Chaki, Moumita; Cluckey, Andrew; Vega-Warner, Virginia; Saisawat, Pawaree; Diaz, Katrina A; Fang, Humphrey; Kohl, Stefan; Allen, Susan J; Airik, Rannar; Zhou, Weibin; Ramaswami, Gokul; Janssen, Sabine; Fu, Clementine; Innis, Jamie L; Weber, Stefanie; Vester, Udo; Davis, Erica E; Katsanis, Nicholas; Fathy, Hanan M; Jeck, Nikola; Klaus, Gunther; Nayir, Ahmet; Rahim, Khawla A; Al Attrach, Ibrahim; Al Hassoun, Ibrahim; Ozturk, Savas; Drozdz, Dorota; Helmchen, Udo; O'Toole, John F; Attanasio, Massimo; Lewis, Richard A; Nürnberg, Gudrun; Nürnberg, Peter; Washburn, Joseph; MacDonald, James; Innis, Jeffrey W; Levy, Shawn; Hildebrandt, Friedhelm
2014-04-01
Rare single-gene disorders cause chronic disease. However, half of the 6000 recessive single gene causes of disease are still unknown. Because recessive disease genes can illuminate, at least in part, disease pathomechanism, their identification offers direct opportunities for improved clinical management and potentially treatment. Rare diseases comprise the majority of chronic kidney disease (CKD) in children but are notoriously difficult to diagnose. Whole-exome resequencing facilitates identification of recessive disease genes. However, its utility is impeded by the large number of genetic variants detected. We here overcome this limitation by combining homozygosity mapping with whole-exome resequencing in 10 sib pairs with a nephronophthisis-related ciliopathy, which represents the most frequent genetic cause of CKD in the first three decades of life. In 7 of 10 sibships with a histologic or ultrasonographic diagnosis of nephronophthisis-related ciliopathy, we detect the causative gene. In six sibships, we identify mutations of known nephronophthisis-related ciliopathy genes, while in two additional sibships we found mutations in the known CKD-causing genes SLC4A1 and AGXT as phenocopies of nephronophthisis-related ciliopathy. Thus, whole-exome resequencing establishes an efficient, noninvasive approach towards early detection and causation-based diagnosis of rare kidney diseases. This approach can be extended to other rare recessive disorders, thereby providing accurate diagnosis and facilitating the study of disease mechanisms.
Welby, S; van Schaik, G; Veldhuis, A; Brouwer-Middelesch, H; Peroz, C; Santman-Berends, I M; Fourichon, C; Wever, P; Van der Stede, Y
2017-12-01
Quick detection and recovery of country's freedom status remain a constant challenge in animal health surveillance. The efficacy and cost efficiency of different surveillance components in proving the absence of infection or (early) detection of bluetongue serotype 8 in cattle populations within different countries (the Netherlands, France, Belgium) using surveillance data from years 2006 and 2007 were investigated using an adapted scenario tree model approach. First, surveillance components (sentinel, yearly cross-sectional and passive clinical reporting) within each country were evaluated in terms of efficacy for substantiating freedom of infection. Yearly cross-sectional survey and passive clinical reporting performed well within each country with sensitivity of detection values ranging around 0.99. The sentinel component had a sensitivity of detection around 0.7. Secondly, how effective the components were for (early) detection of bluetongue serotype 8 and whether syndromic surveillance on reproductive performance, milk production and mortality data available from the Netherlands and Belgium could be of added value were evaluated. Epidemic curves were used to estimate the timeliness of detection. Sensitivity analysis revealed that expected within-herd prevalence and number of herds processed were the most influential parameters for proving freedom and early detection. Looking at the assumed direct costs, although total costs were low for sentinel and passive clinical surveillance components, passive clinical surveillance together with syndromic surveillance (based on reproductive performance data) turned out most cost-efficient for the detection of bluetongue serotype 8. To conclude, for emerging or re-emerging vectorborne disease that behaves such as bluetongue serotype 8, it is recommended to use passive clinical and syndromic surveillance as early detection systems for maximum cost efficiency and sensitivity. Once an infection is detected and eradicated, cross-sectional screening for substantiating freedom of infection and sentinel for monitoring the disease evolution are recommended. © 2016 Blackwell Verlag GmbH.
On-chip immunomagnetic separation of bacteria by in-flow dynamic manipulation of paramagnetic beads
NASA Astrophysics Data System (ADS)
Ahmed, Shakil; Noh, Jong Wook; Hoyland, James; de Oliveira Hansen, Roana; Erdmann, Helmut; Rubahn, Horst-Günter
2016-11-01
Every year, millions of people all over the world fall ill due to the consumption of unsafe food, where consumption of contaminated and spoiled animal origin product is the main cause for diseases due to bacterial growth. This leads to an intense need for efficient methods for detection of food-related bacteria. In this work, we present a method for integration of immunomagnetic separation of bacteria into microfluidic technology by applying an alternating magnetic field, which manipulates the paramagnetic beads into a sinusoidal path across the whole microchannel, increasing the probability for bacteria capture. The optimum channel geometry, flow rate and alternating magnetic field frequency were investigated, resulting in a capture efficiency of 68 %.
Bukara, Katarina; Drvenica, Ivana; Ilić, Vesna; Stančić, Ana; Mišić, Danijela; Vasić, Borislav; Gajić, Radoš; Vučetić, Dušan; Kiekens, Filip; Bugarski, Branko
2016-12-20
The objective of our study was to develop controlled drug delivery system based on erythrocyte ghosts for amphiphilic compound sodium diclofenac considering the differences between erythrocytes derived from two readily available materials - porcine slaughterhouse and outdated transfusion human blood. Starting erythrocytes, empty erythrocyte ghosts and diclofenac loaded ghosts were compared in terms of the encapsulation efficiency, drug releasing profiles, size distribution, surface charge, conductivity, surface roughness and morphology. The encapsulation of sodium diclofenac was performed by an osmosis based process - gradual hemolysis. During this process sodium diclofenac exerted mild and delayed antihemolytic effect and increased potassium efflux in porcine but not in outdated human erythrocytes. FTIR spectra revealed lack of any membrane lipid disorder and chemical reaction with sodium diclofenac in encapsulated ghosts. Outdated human erythrocyte ghosts with detected nanoscale damages and reduced ability to shrink had encapsulation efficiency of only 8%. On the other hand, porcine erythrocyte ghosts had encapsulation efficiency of 37% and relatively slow drug release rate. More preserved structure and functional properties of porcine erythrocytes related to their superior encapsulation and release performances, define them as more appropriate for the usage in sodium diclofenac encapsulation process. Copyright © 2016 Elsevier B.V. All rights reserved.
Characterizations of BC501A and BC537 liquid scintillator detectors.
Qin, Jianguo; Lai, Caifeng; Ye, Bangjiao; Liu, Rong; Zhang, Xinwei; Jiang, Li
2015-10-01
Two 2″×2″ liquid scintillator detectors BC537 and BC501A have been characterized for their responses and efficiencies to γ-ray detection. Light output resolution and response functions were derived by least-squares minimization of a simulated response function, fitted to experimental data. The γ-ray response matrix and detection efficiency were simulated with Monte Carlo (MC) methods and validated. For photon energies below 2.4 MeVee, the resolution, as well as the efficiency, of BC501A is better than BC537 scintillator. The situation is reversed when the energy is higher than 2.4 MeVee. BC537 has higher γ-ray detection efficiency than BC501A if the impinging photon energy is more than 2 MeV due to different ratios of C to H/D atoms. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kahl, Oliver; Ferrari, Simone; Kovalyuk, Vadim; Goltsman, Gregory N.; Korneev, Alexander; Pernice, Wolfram H. P.
2015-01-01
Superconducting nanowire single-photon detectors (SNSPDs) provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, compatibility with an integrated optical platform is a crucial requirement for applications in emerging quantum photonic technologies. Here we present SNSPDs embedded in nanophotonic integrated circuits which achieve internal quantum efficiencies close to unity at 1550 nm wavelength. This allows for the SNSPDs to be operated at bias currents far below the critical current where unwanted dark count events reach milli-Hz levels while on-chip detection efficiencies above 70% are maintained. The measured dark count rates correspond to noise-equivalent powers in the 10−19 W/Hz−1/2 range and the timing jitter is as low as 35 ps. Our detectors are fully scalable and interface directly with waveguide-based optical platforms. PMID:26061283
Kahl, Oliver; Ferrari, Simone; Kovalyuk, Vadim; Goltsman, Gregory N; Korneev, Alexander; Pernice, Wolfram H P
2015-06-10
Superconducting nanowire single-photon detectors (SNSPDs) provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, compatibility with an integrated optical platform is a crucial requirement for applications in emerging quantum photonic technologies. Here we present SNSPDs embedded in nanophotonic integrated circuits which achieve internal quantum efficiencies close to unity at 1550 nm wavelength. This allows for the SNSPDs to be operated at bias currents far below the critical current where unwanted dark count events reach milli-Hz levels while on-chip detection efficiencies above 70% are maintained. The measured dark count rates correspond to noise-equivalent powers in the 10(-19) W/Hz(-1/2) range and the timing jitter is as low as 35 ps. Our detectors are fully scalable and interface directly with waveguide-based optical platforms.
Source detection at 100 meter standoff with a time-encoded imaging system
NASA Astrophysics Data System (ADS)
Brennan, J.; Brubaker, E.; Gerling, M.; Marleau, P.; Monterial, M.; Nowack, A.; Schuster, P.; Sturm, B.; Sweany, M.
2018-01-01
We present the design, characterization, and testing of a laboratory prototype radiological search and localization system. The system, based on time-encoded imaging, uses the attenuation signature of neutrons in time, induced by the geometrical layout and motion of the system. We have demonstrated the ability to detect a ∼ 1mCi252Cf radiological source at 100m standoff with 90% detection efficiency and 10% false positives against background in 12min. This same detection efficiency is met at 15s for a 40m standoff, and 1 . 2s for a 20m standoff.
Lim, Dong-Gyun; Park, Youn-Hee; Kim, Sung-Eun; Jeong, Seong-Hee; Kim, Song-Cheol
2013-08-01
The efficient development of tolerance-inducing therapies and safe reduction of immunosuppression should be supported by early diagnosis and prediction of tolerance in transplantation. Using mouse models of donor-specific tolerance to allogeneic skin and islet grafts we tested whether measurement of tolerance-related gene expression in their alloantigen-reactive peripheral T cell fraction efficiently reflected the tolerance status of recipients. We found that Foxp3, Nrn1, and Klrg1 were preferentially expressed in conditions of tolerance compared with rejection or unmanipulated controls if their expression is measured in CD69(+) T cells prepared from coculture of recipient peripheral T cells and donor antigen-presenting cells. The same pattern of gene expression was observed in recipients grafted with either skin or islets, recipients of different genetic origins, and even those taking immunosuppressive drugs. These findings suggest that the expression of tolerance-related genes in the alloantigen-reactive T cell fraction could be used to detect tolerance in the clinic. Copyright © 2013 Elsevier Inc. All rights reserved.
Mall, Jonathan T; Morey, Candice C; Wolff, Michael J; Lehnert, Franziska
2014-10-01
Selective attention and working memory capacity (WMC) are related constructs, but debate about the manner in which they are related remains active. One elegant explanation of variance in WMC is that the efficiency of filtering irrelevant information is the crucial determining factor, rather than differences in capacity per se. We examined this hypothesis by relating WMC (as measured by complex span tasks) to accuracy and eye movements during visual change detection tasks with different degrees of attentional filtering and allocation requirements. Our results did not indicate strong filtering differences between high- and low-WMC groups, and where differences were observed, they were counter to those predicted by the strongest attentional filtering hypothesis. Bayes factors indicated evidence favoring positive or null relationships between WMC and correct responses to unemphasized information, as well as between WMC and the time spent looking at unemphasized information. These findings are consistent with the hypothesis that individual differences in storage capacity, not only filtering efficiency, underlie individual differences in working memory.
Detection of adverse events in general surgery using the " Trigger Tool" methodology.
Pérez Zapata, Ana Isabel; Gutiérrez Samaniego, María; Rodríguez Cuéllar, Elías; Andrés Esteban, Eva María; Gómez de la Cámara, Agustín; Ruiz López, Pedro
2015-02-01
Surgery is one of the high-risk areas for the occurrence of adverse events (AE). The purpose of this study is to know the percentage of hospitalisation-related AE that are detected by the «Global Trigger Tool» methodology in surgical patients, their characteristics and the tool validity. Retrospective, observational study on patients admitted to a general surgery department, who underwent a surgical operation in a third level hospital during the year 2012. The identification of AE was carried out by patient record review using an adaptation of «Global Trigger Tool» methodology. Once an AE was identified, a harm category was assigned, including the grade in which the AE could have been avoided and its relation with the surgical procedure. The prevalence of AE was 36,8%. There were 0,5 AE per patient. 56,2% were deemed preventable. 69,3% were directly related to the surgical procedure. The tool had a sensitivity of 86% and a specificity of 93,6%. The positive predictive value was 89% and the negative predictive value 92%. Prevalence of AE is greater than the estimate of other studies. In most cases the AE detected were related to the surgical procedure and more than half were also preventable. The adapted «Global Trigger Tool» methodology has demonstrated to be highly effective and efficient for detecting AE in surgical patients, identifying all the serious AE with few false negative results. Copyright © 2014 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.
Age-Related Differences in Working Memory Performance in A 2-Back Task
Wild-Wall, Nele; Falkenstein, Michael; Gajewski, Patrick D.
2011-01-01
The present study aimed to elucidate the neuro-cognitive processes underlying age-related differences in working memory. Young and middle-aged participants performed a two-choice task with low and a 2-back task with high working memory load. The P300, an event-related potential reflecting controlled stimulus–response processing in working memory, and the underlying neuronal sources of expected age-related differences were analyzed using sLORETA. Response speed was generally slower for the middle-aged than the young group. Under low working memory load the middle-aged participants traded speed for accuracy. The middle-aged were less efficient in the 2-back task as they responded slower while the error rates did not differ for groups. An age-related decline of the P300 amplitude and characteristic topographical differences were especially evident in the 2-back task. A more detailed analysis of the P300 in non-target trials revealed that amplitudes in the young but not middle-aged group differentiate between correctly detected vs. missed targets in the following trial. For these trials, source analysis revealed higher activation for the young vs. middle-aged group in brain areas which support working memory processes. The relationship between P300 and overt performance was validated by significant correlations. To sum up, under high working memory load the young group showed an increased neuronal activity before a successful detected target, while the middle-aged group showed the same neuronal pattern regardless of whether a subsequent target will be detected or missed. This stable memory trace before detected targets was reflected by a specific activation enhancement in brain areas which orchestrate maintenance, update, storage, and retrieval of information in working memory. PMID:21909328
NASA Astrophysics Data System (ADS)
Budzan, Sebastian
2018-04-01
In this paper, the automatic method of grain detection and classification has been presented. As input, it uses a single digital image obtained from milling process of the copper ore with an high-quality digital camera. The grinding process is an extremely energy and cost consuming process, thus granularity evaluation process should be performed with high efficiency and time consumption. The method proposed in this paper is based on the three-stage image processing. First, using Seeded Region Growing (SRG) segmentation with proposed adaptive thresholding based on the calculation of Relative Standard Deviation (RSD) all grains are detected. In the next step results of the detection are improved using information about the shape of the detected grains using distance map. Finally, each grain in the sample is classified into one of the predefined granularity class. The quality of the proposed method has been obtained by using nominal granularity samples, also with a comparison to the other methods.
Nine-analyte detection using an array-based biosensor
NASA Technical Reports Server (NTRS)
Taitt, Chris Rowe; Anderson, George P.; Lingerfelt, Brian M.; Feldstein, s. Mark. J.; Ligler, Frances S.
2002-01-01
A fluorescence-based multianalyte immunosensor has been developed for simultaneous analysis of multiple samples. While the standard 6 x 6 format of the array sensor has been used to analyze six samples for six different analytes, this same format has the potential to allow a single sample to be tested for 36 different agents. The method described herein demonstrates proof of principle that the number of analytes detectable using a single array can be increased simply by using complementary mixtures of capture and tracer antibodies. Mixtures were optimized to allow detection of closely related analytes without significant cross-reactivity. Following this facile modification of patterning and assay procedures, the following nine targets could be detected in a single 3 x 3 array: Staphylococcal enterotoxin B, ricin, cholera toxin, Bacillus anthracis Sterne, Bacillus globigii, Francisella tularensis LVS, Yersiniapestis F1 antigen, MS2 coliphage, and Salmonella typhimurium. This work maximizes the efficiency and utility of the described array technology, increasing only reagent usage and cost; production and fabrication costs are not affected.
Chen, Ming-Jen; Liu, Ya-Ting; Lin, Chiao-Wen; Ponnusamy, Vinoth Kumar; Jen, Jen-Fon
2013-03-12
This paper describes the development of a novel, simple and efficient in-tube based ultrasound-assisted salt-induced liquid-liquid microextraction (IT-USA-SI-LLME) technique for the rapid determination of triclosan (TCS) in personal care products by high performance liquid chromatography-ultraviolet (HPLC-UV) detection. IT-USA-SI-LLME method is based on the rapid phase separation of water-miscible organic solvent from the aqueous phase in the presence of high concentration of salt (salting-out phenomena) under ultrasonication. In the present work, an indigenously fabricated home-made glass extraction device (8-mL glass tube inbuilt with a self-scaled capillary tip) was utilized as the phase separation device for USA-SI-LLME. After the extraction, the upper extractant layer was narrowed into the self-scaled capillary tip by pushing the plunger plug; thus, the collection and measurement of the upper organic solvent layer was simple and convenient. The effects of various parameters on the extraction efficiency were thoroughly evaluated and optimized. Under optimal conditions, detection was linear in the concentration range of 0.4-100ngmL(-1) with correlation coefficient of 0.9968. The limit of detection was 0.09ngmL(-1) and the relative standard deviations ranged between 0.8 and 5.3% (n=5). The applicability of the developed method was demonstrated for the analysis of TCS in different commercial personal care products and the relative recoveries ranged from 90.4 to 98.5%. The present method was proven to be a simple, sensitive, less organic solvent consuming, inexpensive and rapid procedure for analysis of TCS in a variety of commercially available personal care products or cosmetic preparations. Copyright © 2013 Elsevier B.V. All rights reserved.
Seismic tomography as a tool for measuring stress in mines
Scott, Douglas F.; Williams, T.J.; Denton, D.K.; Friedel, M.J.
1999-01-01
Spokane Research Center personnel have been investigating the use of seismic tomography to monitor the behavior of a rock mass, detect hazardous ground conditions and assess the mechanical integrity of a rock mass affected by mining. Seismic tomography can be a valuable tool for determining relative stress in deep, >1,220-m (>4,000-ft), underground pillars. If high-stress areas are detected, they can be destressed prior to development or they can be avoided. High-stress areas can be monitored with successive seismic surveys to determine if stress decreases to a level where development can be initiated safely. There are several benefits to using seismic tomography to identify high stress in deep underground pillars. The technique is reliable, cost-effective, efficient and noninvasive. Also, investigators can monitor large rock masses, as well as monitor pillars during the mining cycle. By identifying areas of high stress, engineers will be able to assure that miners are working in a safer environment.Spokane Research Center personnel have been investigating the use of seismic tomography to monitor the behavior of a rock mass, detect hazardous ground conditions and assess the mechanical integrity of a rock mass affected by mining. Seismic tomography can be a valuable tool for determining relative stress in deep, >1,200-m (>4,000-ft), underground pillars. If high-stress areas are detected, they can be destressed prior to development or they can be avoided. High-stress areas can be monitored with successive seismic surveys to determine if stress decreases to a level where development can be initiated safely. There are several benefits to using seismic tomography to identify high stress in deep underground pillars. The technique is reliable, cost-effective, efficient and noninvasive. Also, investigators can monitor large rock masses, as well as monitor pillars during the mining cycle. By identifying areas of high stress. engineers will be able to assure that miners are working in a safer environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedorov, G. E., E-mail: gefedorov@mail.ru; Stepanova, T. S.; Gazaliev, A. Sh.
Various asymmetric detecting devices based on carbon nanotubes (CNTs) are studied. The asymmetry is understood as inhomogeneous properties along the conducting channel. In the first type of devices, an inhomogeneous morphology of the CNT grid is used. In the second type of devices, metals with highly varying work functions are used as the contact material. The relation between the sensitivity and detector configuration is analyzed. Based on the data obtained, approaches to the development of an efficient detector of terahertz radiation, based on carbon nanotubes are proposed.
Pohlmann, Anne; Starick, Elke; Harder, Timm; Grund, Christian; Höper, Dirk; Globig, Anja; Staubach, Christoph; Dietze, Klaas; Strebelow, Günter; Ulrich, Reiner G; Schinköthe, Jan; Teifke, Jens P; Conraths, Franz J; Mettenleiter, Thomas C; Beer, Martin
2017-04-01
In November 2016, an influenza A(H5N8) outbreak caused deaths of wild birds and domestic poultry in Germany. Clade 2.3.4.4 virus was closely related to viruses detected at the Russia-Mongolia border in 2016 but had new polymerase acidic and nucleoprotein segments. These new strains may be more efficiently transmitted to and shed by birds.
Characteristics of square pore and low noise microchannel plate stacks. [for x-ray astronomy
NASA Technical Reports Server (NTRS)
Siegmund, Oswald H. W.; Marsh, Daniel; Stock, Joseph; Gaines, Geoffrey
1992-01-01
An evaluation is conducted of several square-pore microchannel plates (MCPs) with either 25- or 85-micron diameter pores and 80:1 or 50:1 channel length/diameter ratio. Flat field measurements show that the 25-micron-pored MCPs, unlike those with 85-micron pores, exhibit periodic modulation; this may be due to the MCP stacking configurations. Attention is given to the relative quantum detection efficiency advantages of the two MCPs.
Countering Botnets: Anomaly-Based Detection, Comprehensive Analysis, and Efficient Mitigation
2011-05-01
our network prophylactic for ISPs. Using DNSRBL lists to identify address to provide specific routes into a network device that does further deep ...Notos is resilient to changes in the zone classes we selected. Services like CDNs and major web sites can add new IPs or adjust domain formats, and...less good domain names, such as file-sharing, porn -related websites, etc., most of which are not run in a professional way and have disputable
Computer systems for automatic earthquake detection
Stewart, S.W.
1974-01-01
U.S Geological Survey seismologists in Menlo park, California, are utilizing the speed, reliability, and efficiency of minicomputers to monitor seismograph stations and to automatically detect earthquakes. An earthquake detection computer system, believed to be the only one of its kind in operation, automatically reports about 90 percent of all local earthquakes recorded by a network of over 100 central California seismograph stations. The system also monitors the stations for signs of malfunction or abnormal operation. Before the automatic system was put in operation, all of the earthquakes recorded had to be detected by manually searching the records, a time-consuming process. With the automatic detection system, the stations are efficiently monitored continuously.
Entanglement verification with detection efficiency mismatch
NASA Astrophysics Data System (ADS)
Zhang, Yanbao; Lütkenhaus, Norbert
Entanglement is a necessary condition for secure quantum key distribution (QKD). When there is an efficiency mismatch between various detectors used in the QKD system, it is still an open problem how to verify entanglement. Here we present a method to address this problem, given that the detection efficiency mismatch is characterized and known. The method works without assuming an upper bound on the number of photons going to each threshold detector. Our results suggest that the efficiency mismatch affects the ability to verify entanglement: the larger the efficiency mismatch is, the smaller the set of entangled states that can be verified becomes. When there is no mismatch, our method can verify entanglement even if the method based on squashing maps [PRL 101, 093601 (2008)] fails.
The technology on noise reduction of the APD detection circuit
NASA Astrophysics Data System (ADS)
Wu, Xue-ying; Zheng, Yong-chao; Cui, Jian-yong
2013-09-01
The laser pulse detection is widely used in the field of laser range finders, laser communications, laser radar, laser Identification Friend or Foe, et al, for the laser pulse detection has the advantage of high accuracy, high sensitivity and strong anti-interference. The avalanche photodiodes (APD) has the advantage of high quantum efficiency, high response speed and huge gain. The APD is particularly suitable for weak signal detection. The technology that APD acts as the photodetector for weak signal reception and amplification is widely used in laser pulse detection. The APD will convert the laser signal to weak electrical signal. The weak signal is amplified, processed and exported by the circuit. In the circuit design, the optimal signal detection is one key point in photoelectric detection system. The issue discusses how to reduce the noise of the photoelectric signal detection circuit and how to improve the signal-to-noise ratio, related analysis and practice included. The essay analyzes the mathematical model of the signal-to-noise ratio for photoelectric conversion and the noise of the APD photoelectric detection system. By analysis the bandwidth of the detection system is determined, and the circuit devices are selected that match the APD. In the circuit design separated devices with low noise are combined with integrated operational amplifier for the purpose of noise reduction. The methods can effectively suppress the noise, and improve the detection sensitivity.
Maximum likelihood pedigree reconstruction using integer linear programming.
Cussens, James; Bartlett, Mark; Jones, Elinor M; Sheehan, Nuala A
2013-01-01
Large population biobanks of unrelated individuals have been highly successful in detecting common genetic variants affecting diseases of public health concern. However, they lack the statistical power to detect more modest gene-gene and gene-environment interaction effects or the effects of rare variants for which related individuals are ideally required. In reality, most large population studies will undoubtedly contain sets of undeclared relatives, or pedigrees. Although a crude measure of relatedness might sometimes suffice, having a good estimate of the true pedigree would be much more informative if this could be obtained efficiently. Relatives are more likely to share longer haplotypes around disease susceptibility loci and are hence biologically more informative for rare variants than unrelated cases and controls. Distant relatives are arguably more useful for detecting variants with small effects because they are less likely to share masking environmental effects. Moreover, the identification of relatives enables appropriate adjustments of statistical analyses that typically assume unrelatedness. We propose to exploit an integer linear programming optimisation approach to pedigree learning, which is adapted to find valid pedigrees by imposing appropriate constraints. Our method is not restricted to small pedigrees and is guaranteed to return a maximum likelihood pedigree. With additional constraints, we can also search for multiple high-probability pedigrees and thus account for the inherent uncertainty in any particular pedigree reconstruction. The true pedigree is found very quickly by comparison with other methods when all individuals are observed. Extensions to more complex problems seem feasible. © 2012 Wiley Periodicals, Inc.
Preparation of paper scintillator for detecting 3H contaminant.
Miyoshi, Hirokazu; Ikeda, Toshiji
2013-09-01
Liquid scintillator (LS)-encapsulated silica was prepared by the sol-gel method and then was added dropwise onto a wipe paper to form a paper scintillator. First, the efficiencies of wipe were determined for both the paper scintillator and the wipe paper using a liquid scintillation counter (LSC). The efficiencies of wipe using the paper scintillator and the wipe paper were 88 and 36 %, respectively. The detection efficiencies were 5.5 % for the paper scintillator, 46 % for the wipe paper using an LS and 0.08 % for the (3)H/(14)C survey meter, respectively, compared with that of a melt-on scintillator of 47 %. Second, an (3)H contaminant on the paper scintillator was successfully detected using a photomultiplier without an LSC or an (3)H/(14)C survey meter. Finally, the paper scintillator was able to detect beta rays of the (3)H contaminant easily without an LS.
NASA Astrophysics Data System (ADS)
Dilley, Daniel; Chitambar, Eric
2018-06-01
It is well-known that in certain scenarios weakly entangled states can generate stronger nonlocal effects than their maximally entangled counterparts. In this paper, we consider violations of the Clauser-Horne-Shimony-Holt (CHSH) inequality when one party has inefficient detectors, a scenario known as an asymmetric Bell experiment. For any fixed detection efficiency, we derive a simple upper bound on the entanglement needed to violate the inequality by more than some specified amount κ ≥0 . When κ =0 , the amount of entanglement in all states violating the inequality goes to zero as the detection efficiency approaches 50 % from above. We finally consider the scenario in which detection inefficiency arises for only one choice of local measurement. In this case, it is shown that the CHSH inequality can always be violated for any nonzero detection efficiency and any choice of noncommuting measurements.
Crack Damage Detection Method via Multiple Visual Features and Efficient Multi-Task Learning Model.
Wang, Baoxian; Zhao, Weigang; Gao, Po; Zhang, Yufeng; Wang, Zhe
2018-06-02
This paper proposes an effective and efficient model for concrete crack detection. The presented work consists of two modules: multi-view image feature extraction and multi-task crack region detection. Specifically, multiple visual features (such as texture, edge, etc.) of image regions are calculated, which can suppress various background noises (such as illumination, pockmark, stripe, blurring, etc.). With the computed multiple visual features, a novel crack region detector is advocated using a multi-task learning framework, which involves restraining the variability for different crack region features and emphasizing the separability between crack region features and complex background ones. Furthermore, the extreme learning machine is utilized to construct this multi-task learning model, thereby leading to high computing efficiency and good generalization. Experimental results of the practical concrete images demonstrate that the developed algorithm can achieve favorable crack detection performance compared with traditional crack detectors.
Automated identification of retained surgical items in radiological images
NASA Astrophysics Data System (ADS)
Agam, Gady; Gan, Lin; Moric, Mario; Gluncic, Vicko
2015-03-01
Retained surgical items (RSIs) in patients is a major operating room (OR) patient safety concern. An RSI is any surgical tool, sponge, needle or other item inadvertently left in a patients body during the course of surgery. If left undetected, RSIs may lead to serious negative health consequences such as sepsis, internal bleeding, and even death. To help physicians efficiently and effectively detect RSIs, we are developing computer-aided detection (CADe) software for X-ray (XR) image analysis, utilizing large amounts of currently available image data to produce a clinically effective RSI detection system. Physician analysis of XRs for the purpose of RSI detection is a relatively lengthy process that may take up to 45 minutes to complete. It is also error prone due to the relatively low acuity of the human eye for RSIs in XR images. The system we are developing is based on computer vision and machine learning algorithms. We address the problem of low incidence by proposing synthesis algorithms. The CADe software we are developing may be integrated into a picture archiving and communication system (PACS), be implemented as a stand-alone software application, or be integrated into portable XR machine software through application programming interfaces. Preliminary experimental results on actual XR images demonstrate the effectiveness of the proposed approach.
NASA Astrophysics Data System (ADS)
Arkwright, J. W.; Blenman, N. G.; Underhill, I. D.; Maunder, S. A.; Spencer, N. J.; Costa, M.; Brooks, S. J.; Szczesniak, M. M.; Dinning, P. G.
2010-09-01
Diagnostic catheters based on fibre Bragg gratings (FBG's) are proving to be highly effective for measurement of the muscular activity associated with peristalsis in the human gut. The primary muscular contractions that generate peristalsis are circumferential in nature; however, it has long been known that there is also a component of longitudinal contractility present, acting in harmony with the circumferential component to improve the overall efficiency of material movement. To date, there have been relatively few reports on the measurement or inference of longitudinal contractions in humans and all have been limited to detection at a single location only. This is due to the lack of a viable recording technique suitable for real-time in-vivo measurement of this type of activity over extended lengths of the gut. We report the detection of longitudinal motion in lengths of excised mammalian colon using an FBG technique that should be viable for similar detection in humans. The longitudinal sensors have been combined with our previously reported FBG pressure sensing elements to form a composite catheter that allows the relative phase between the two components to be detected. The catheter output has been validated using digital video mapping in an ex-vivo animal preparation using lengths of rabbit ileum.
Jaroenram, Wansadaj; Owens, Leigh
2014-11-01
Penaeus stylirostris densovirus (PstDV) is an important shrimp pathogen that causes mortality in P. stylirostris and runt deformity syndrome (RDS) in Penaeus vannamei and Penaeus monodon. Recently, PstDV-related sequences were found in the genome of P. monodon and P. vannamei. This led to false positive results by PCR-based detection system. Here, a more efficient detection platform based on recombinase polymerase amplification (RPA) and a lateral flow dipstick (LFD) was developed for detecting PstDV. Under the optimal conditions, 30 min at 37°C for RPA followed by 5 min at room temperature for LFD, the protocol was 10 times more sensitive than the Saksmerphrome et al's interim 3-tube nested PCR and showed no cross-reaction with other shrimp viruses. It also reduced false positive results arising from viral inserts to ∼5% compared to 76-78% by the IQ2000™ nested PCR kit and the 309F/R PCR protocol currently recommended by World Organization for Animal Health (OIE) for PstDV detection. Together with simplicity and portability, the protocol serves as an alternative tool to PCR for primarily screening PstDV, which is suitable for both laboratory and field application. Copyright © 2014 Elsevier B.V. All rights reserved.
Explosives detection and identification using surface plasmon-coupled emission
NASA Astrophysics Data System (ADS)
Ja, Shiou-Jyh
2012-06-01
To fight against the explosives-related threats in defense and homeland security applications, a smarter sensing device that not only detects but differentiates multiple true threats from false positives caused by environmental interferents is essential. A new optical detection system is proposed to address these issues by using the temporal and spectroscopic information generated by the surface plasmon coupling emission (SPCE) effect. Innovative SPCE optics have been designed using Zemax software to project the fluorescence signal into clear "rainbow rings" on a CCD with subnanometer wavelength resolution. The spectroscopic change of the fluorescence signal and the time history of such changes due to the presence of a certain explosive analyte are unique and can be used to identify explosives. Thanks to high optical efficiency, reporter depositions as small as 160-μm in diameter can generate a sufficient signal, allowing a dense array of different reporters to be interrogated with wavelength multiplexing and detect a wide range of explosives. We have demonstrated detection and classification of explosives, such as TNT, NT, NM, RDX, PETN, and AN, with two sensing materials in a prototype.
Ding, Xiaojie; Qu, Lingbo; Yang, Ran; Zhou, Yuchen; Li, Jianjun
2015-06-01
Cysteamine (CA)-capped CdTe quantum dots (QDs) (CA-CdTe QDs) were prepared by the reflux method and utilized as an efficient nano-sized fluorescent sensor to detect mercury (II) ions (Hg(2+) ). Under optimum conditions, the fluorescence quenching effect of CA-CdTe QDs was linear at Hg(2+) concentrations in the range of 6.0-450 nmol/L. The detection limit was calculated to be 4.0 nmol/L according to the 3σ IUPAC criteria. The influence of 10-fold Pb(2+) , Cu(2+) and Ag(+) on the determination of Hg(2+) was < 7% (superior to other reports based on crude QDs). Furthermore, the detection sensitivity and selectivity were much improved relative to a sensor based on the CA-CdTe QDs probe, which was prepared using a one-pot synthetic method. This CA-CdTe QDs sensor system represents a new feasibility to improve the detection performance of a QDs sensor by changing the synthesis method. Copyright © 2014 John Wiley & Sons, Ltd.
Hexagonal boron nitride neutron detectors with high detection efficiencies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maity, A.; Grenadier, S. J.; Li, J.
Here, neutron detectors fabricated from 10B enriched hexagonal boron nitride (h- 10BN or h-BN) epilayers have demonstrated the highest thermal neutron detection efficiency among solid-state neutron detectors to date at about 53%. In this work, photoconductive-like vertical detectors with a detection area of 1 × 1 mm 2 were fabricated from 50 μm thick free-standing h-BN epilayers using Ni/Au and Ti/Al bilayers as ohmic contacts. Leakage currents, mobility-lifetime (μτ) products under UV photoexcitation, and neutron detection efficiencies have been measured for a total of 16 different device configurations. The results have unambiguously identified that detectors incorporating the Ni/Au bilayer onmore » both surfaces as ohmic contacts and using the negatively biased top surface for neutron irradiation are the most desired device configurations. It was noted that high growth temperatures of h- 10BN epilayers on sapphire substrates tend to yield a higher concentration of oxygen impurities near the bottom surface, leading to a better device performance by the chosen top surface for irradiation than by the bottom. Preferential scattering of oxygen donors tends to reduce the mobility of holes more than that of electrons, making the biasing scheme with the ability of rapidly extracting holes at the irradiated surface while leaving the electrons to travel a large average distance inside the detector at a preferred choice. When measured against a calibrated 6LiF filled micro-structured semiconductor neutron detector, it was shown that the optimized configuration has pushed the detection efficiency of h-BN neutron detectors to 58%. These detailed studies also provided a better understanding of growth-mediated impurities in h-BN epilayers and their effects on the charge collection and neutron detection efficiencies.« less
Hexagonal boron nitride neutron detectors with high detection efficiencies
NASA Astrophysics Data System (ADS)
Maity, A.; Grenadier, S. J.; Li, J.; Lin, J. Y.; Jiang, H. X.
2018-01-01
Neutron detectors fabricated from 10B enriched hexagonal boron nitride (h-10BN or h-BN) epilayers have demonstrated the highest thermal neutron detection efficiency among solid-state neutron detectors to date at about 53%. In this work, photoconductive-like vertical detectors with a detection area of 1 × 1 mm2 were fabricated from 50 μm thick free-standing h-BN epilayers using Ni/Au and Ti/Al bilayers as ohmic contacts. Leakage currents, mobility-lifetime (μτ) products under UV photoexcitation, and neutron detection efficiencies have been measured for a total of 16 different device configurations. The results have unambiguously identified that detectors incorporating the Ni/Au bilayer on both surfaces as ohmic contacts and using the negatively biased top surface for neutron irradiation are the most desired device configurations. It was noted that high growth temperatures of h-10BN epilayers on sapphire substrates tend to yield a higher concentration of oxygen impurities near the bottom surface, leading to a better device performance by the chosen top surface for irradiation than by the bottom. Preferential scattering of oxygen donors tends to reduce the mobility of holes more than that of electrons, making the biasing scheme with the ability of rapidly extracting holes at the irradiated surface while leaving the electrons to travel a large average distance inside the detector at a preferred choice. When measured against a calibrated 6LiF filled micro-structured semiconductor neutron detector, it was shown that the optimized configuration has pushed the detection efficiency of h-BN neutron detectors to 58%. These detailed studies also provided a better understanding of growth-mediated impurities in h-BN epilayers and their effects on the charge collection and neutron detection efficiencies.
Hexagonal boron nitride neutron detectors with high detection efficiencies
Maity, A.; Grenadier, S. J.; Li, J.; ...
2018-01-23
Here, neutron detectors fabricated from 10B enriched hexagonal boron nitride (h- 10BN or h-BN) epilayers have demonstrated the highest thermal neutron detection efficiency among solid-state neutron detectors to date at about 53%. In this work, photoconductive-like vertical detectors with a detection area of 1 × 1 mm 2 were fabricated from 50 μm thick free-standing h-BN epilayers using Ni/Au and Ti/Al bilayers as ohmic contacts. Leakage currents, mobility-lifetime (μτ) products under UV photoexcitation, and neutron detection efficiencies have been measured for a total of 16 different device configurations. The results have unambiguously identified that detectors incorporating the Ni/Au bilayer onmore » both surfaces as ohmic contacts and using the negatively biased top surface for neutron irradiation are the most desired device configurations. It was noted that high growth temperatures of h- 10BN epilayers on sapphire substrates tend to yield a higher concentration of oxygen impurities near the bottom surface, leading to a better device performance by the chosen top surface for irradiation than by the bottom. Preferential scattering of oxygen donors tends to reduce the mobility of holes more than that of electrons, making the biasing scheme with the ability of rapidly extracting holes at the irradiated surface while leaving the electrons to travel a large average distance inside the detector at a preferred choice. When measured against a calibrated 6LiF filled micro-structured semiconductor neutron detector, it was shown that the optimized configuration has pushed the detection efficiency of h-BN neutron detectors to 58%. These detailed studies also provided a better understanding of growth-mediated impurities in h-BN epilayers and their effects on the charge collection and neutron detection efficiencies.« less
Efficient detection of dangling pointer error for C/C++ programs
NASA Astrophysics Data System (ADS)
Zhang, Wenzhe
2017-08-01
Dangling pointer error is pervasive in C/C++ programs and it is very hard to detect. This paper introduces an efficient detector to detect dangling pointer error in C/C++ programs. By selectively leave some memory accesses unmonitored, our method could reduce the memory monitoring overhead and thus achieves better performance over previous methods. Experiments show that our method could achieve an average speed up of 9% over previous compiler instrumentation based method and more than 50% over previous page protection based method.
Trained neurons-based motion detection in optical camera communications
NASA Astrophysics Data System (ADS)
Teli, Shivani; Cahyadi, Willy Anugrah; Chung, Yeon Ho
2018-04-01
A concept of trained neurons-based motion detection (TNMD) in optical camera communications (OCC) is proposed. The proposed TNMD is based on neurons present in a neural network that perform repetitive analysis in order to provide efficient and reliable motion detection in OCC. This efficient motion detection can be considered another functionality of OCC in addition to two traditional functionalities of illumination and communication. To verify the proposed TNMD, the experiments were conducted in an indoor static downlink OCC, where a mobile phone front camera is employed as the receiver and an 8 × 8 red, green, and blue (RGB) light-emitting diode array as the transmitter. The motion is detected by observing the user's finger movement in the form of centroid through the OCC link via a camera. Unlike conventional trained neurons approaches, the proposed TNMD is trained not with motion itself but with centroid data samples, thus providing more accurate detection and far less complex detection algorithm. The experiment results demonstrate that the TNMD can detect all considered motions accurately with acceptable bit error rate (BER) performances at a transmission distance of up to 175 cm. In addition, while the TNMD is performed, a maximum data rate of 3.759 kbps over the OCC link is obtained. The OCC with the proposed TNMD combined can be considered an efficient indoor OCC system that provides illumination, communication, and motion detection in a convenient smart home environment.
NASA Astrophysics Data System (ADS)
Ryzhikov, Volodymir D.; Opolonin, Oleksandr D.; Galkin, Serhiy M.; Voronkin, Yevheniy F.; Lysetska, Olena K.; Kostyukevych, Serhiy A.
2009-08-01
Detection of X-ray radiation by digital radiographic systems (DRS) is realized using multi-element detector arrays of scintillator-photodiode (S-PD) type. Accounting for our experience in development of X-ray introscopy systems, possibilities can be found for improvement of DRS detection efficiency. Namely, a more efficient use of the dynamic range of the analog-to-digit converter by means of instrumental compensation of scatter of detector characteristics and smaller apertures of individual detection channels. However, smaller apertures lead to lower levels of useful signals, and a problem emerges of signal interference over neighboring channels, which is related to optical separation of the scintillation elements. Also, more compact arrangement of electronic components of preamplifiers is achieved. The latter problem is solved by using multi-channel (from 32 to 1024 channels) photoreceiving devices (PRD). PRD has a set of photosensitive elements formed on one crystal, as well as shift registers ensuring preliminary amplification of signals and series connection to one outlet. The work envisages creation of receiving-detecting circuit (RDC) with improved spatial resolution (ISR) with the aim of producing advanced DRS with improved characteristics: density resolution better than 0.9%, and detecting ability allowing detection of θ 0.5 mm steel wire behind 6 mm steel. The work will result in the development of RDC with ISR (800-200 microns). In combination with various ionizing radiation sources and scanning mechanisms this will allow creation of DRS for many tasks of non-destructive testing (NDT) and technical diagnostics (TD), in particular, for check-up of pipelines, objects of oil and gas industries, etc. This work was supported by the Ministry of Education and Science of Ukraine, the U.S. Civilian Research and Development Foundation (CRDF), and by the NATO Science for Peace and Security Program (Project SfP-982823).
Designing occupancy studies when false-positive detections occur
Clement, Matthew
2016-01-01
1.Recently, estimators have been developed to estimate occupancy probabilities when false-positive detections occur during presence-absence surveys. Some of these estimators combine different types of survey data to improve estimates of occupancy. With these estimators, there is a tradeoff between the number of sample units surveyed, and the number and type of surveys at each sample unit. Guidance on efficient design of studies when false positives occur is unavailable. 2.For a range of scenarios, I identified survey designs that minimized the mean square error of the estimate of occupancy. I considered an approach that uses one survey method and two observation states and an approach that uses two survey methods. For each approach, I used numerical methods to identify optimal survey designs when model assumptions were met and parameter values were correctly anticipated, when parameter values were not correctly anticipated, and when the assumption of no unmodelled detection heterogeneity was violated. 3.Under the approach with two observation states, false positive detections increased the number of recommended surveys, relative to standard occupancy models. If parameter values could not be anticipated, pessimism about detection probabilities avoided poor designs. Detection heterogeneity could require more or fewer repeat surveys, depending on parameter values. If model assumptions were met, the approach with two survey methods was inefficient. However, with poor anticipation of parameter values, with detection heterogeneity, or with removal sampling schemes, combining two survey methods could improve estimates of occupancy. 4.Ignoring false positives can yield biased parameter estimates, yet false positives greatly complicate the design of occupancy studies. Specific guidance for major types of false-positive occupancy models, and for two assumption violations common in field data, can conserve survey resources. This guidance can be used to design efficient monitoring programs and studies of species occurrence, species distribution, or habitat selection, when false positives occur during surveys.
Shin, Jung-Hun; Kim, Byung-Chun; Choi, Okkyoung; Kim, Hyunook; Sang, Byoung-In
2015-10-01
Two hollow fiber membrane biofilm reactors (HF-MBfRs) were operated for autotrophic nitrification and hydrogenotrophic denitrification for over 300 days. Oxygen and hydrogen were supplied through the hollow fiber membrane for nitrification and denitrification, respectively. During the period, the nitrogen was removed with the efficiency of 82-97% for ammonium and 87-97% for nitrate and with the nitrogen removal load of 0.09-0.26 kg NH4(+)-N/m(3)/d and 0.10-0.21 kg NO3(-)-N/m(3)/d, depending on hydraulic retention time variation by the two HF-MBfRs for autotrophic nitrification and hydrogenotrophic denitrification, respectively. Biofilms were collected from diverse topological positions in the reactors, each at different nitrogen loading rates, and the microbial communities were analyzed with partial 16S rRNA gene sequences in denaturing gradient gel electrophoresis (DGGE). Detected DGGE band sequences in the reactors were correlated with nitrification or denitrification. The profile of the DGGE bands depended on the NH4(+) or NO3(-) loading rate, but it was hard to find a major strain affecting the nitrogen removal efficiency. Nitrospira-related phylum was detected in all biofilm samples from the nitrification reactors. Paracoccus sp. and Aquaspirillum sp., which are an autohydrogenotrophic bacterium and an oligotrophic denitrifier, respectively, were observed in the denitrification reactors. The distribution of microbial communities was relatively stable at different nitrogen loading rates, and DGGE analysis based on 16S rRNA (341f /534r) could successfully detect nitrate-oxidizing and hydrogen-oxidizing bacteria but not ammonium-oxidizing bacteria in the HF-MBfRs.
NASA Astrophysics Data System (ADS)
Liao, J.; Middlebrook, A. M.; Welti, A.; Sueper, D.; Murphy, D. M.
2014-12-01
Single particles in the eastern US were characterized by a light scattering module coupled to a time-of-flight aerosol mass spectrometer (LS-ToF-AMS) onboard the NOAA P-3 aircraft during the Southeastern Nexus (SENEX) campaign. Single particle data were collected for 30 seconds every 5 minutes. Aerosols larger than 200-300 nm in vacuum aerodynamic diameter can be optically detected by the 405 nm crystal laser and trigger the saving of single particle mass spectra. The measured single particles are internally-mixed as expected. The single particles were classified as prompt, delayed, and null based on the chemical ion signal arrival time difference between prediction from the light scattering signal and measurement by mass spectrometer and the presence or absence of a mass spectrum. On average the number fraction of particles detected as prompt, delayed, and null (no spectrum) is about 30%, 10%, and 60%. The number fraction of these three particle types varied with aerosol size, chemical composition and the investigation region and will be discussed in detail. For example, the number fraction of prompt particles was significantly higher for the flight to the Pennsylvania natural gas shale region on July 6, 2013, which is probably related to the chemical composition (more acidic) and phase of the ambient particles. These particle types and detection efficiency are related to the bouncing effect on the vaporizer and may provide insight into the non-unit AMS collection efficiency. Moreover, most of the particles larger than 800 nm in vacuum aerodynamic diameter sized with the traditional AMS PToF mode are delayed particles and their mass spectral signals appear to be affected by this process.
Kiarostami, Vahid; Rouini, Mohamad-Reza; Mohammadian, Razieh; Lavasani, Hoda; Ghazaghi, Mehri
2014-02-03
Tramadol is an opioid, synthetic analog of codeine and has been used for the treatment of acute or chronic pain may be abused. In this work, a developed Dispersive liquid liquid microextraction (DLLME) as binary solvents-based dispersive liquid-liquid microextraction (BS-DLLME) combined with high performance liquid chromatography (HPLC) with fluorescence detection (FD) was employed for determination of tramadol in the urine samples. This procedure involves the use of an appropriate mixture of binary extraction solvents (70 μL CHCl3 and 30 μL ethyl acetate) and disperser solvent (600 μL acetone) for the formation of cloudy solution in 5 ml urine sample comprising tramadol and NaCl (7.5%, w/v). After centrifuging, the small droplets of extraction solvents were precipitated. In the final step, the HPLC with fluorescence detection was used for determination of tramadol in the precipitated phase. Various factors on the efficiency of the proposed procedure were investigated and optimized. The detection limit (S/N = 3) and quantification limit (S/N = 10) were found 0.2 and 0.9 μg/L, respectively. The relative standard deviations (RSD) for the extraction of 30 μg L of tramadol was found 4.1% (n = 6). The relative recoveries of tramadol from urine samples at spiking levels of 10, 30 and 60 μg/L were in the range of 95.6 - 99.6%. Compared with other methods, this method provides good figures of merit such as good repeatability, high extraction efficiency, short analysis time, simple procedure and can be used as microextraction technique for routine analysis in clinical laboratories.
Ramkumar, Abilasha; Ponnusamy, Vinoth Kumar; Jen, Jen-Fon
2012-08-15
The present study demonstrates a simple, rapid and efficient method for the determination of chlorinated anilines (CAs) in environmental water samples using ultrasonication assisted emulsification microextraction technique based on solidification of floating organic droplet (USAEME-SFO) coupled with high performance liquid chromatography-ultraviolet (HPLC-UV) detection. In this extraction method, 1-dodecanol was used as extraction solvent which is of lower density than water, low toxicity, low volatility, and low melting point (24 °C). After the USAEME, extraction solvent could be collected easily by keeping the extraction tube in ice bath for 2 min and the solidified organic droplet was scooped out using a spatula and transferred to another glass vial and allowed to thaw. Then, 10 μL of extraction solvent was diluted with mobile phase (1:1) and taken for HPLC-UV analysis. Parameters influencing the extraction efficiency, such as the kind and volume of extraction solvent, volume of sample, ultrasonication time, pH and salt concentration were thoroughly examined and optimized. Under the optimal conditions, the method showed good linearity in the concentration range of 0.05-500 ng mL(-1) with correlation coefficients ranging from 0.9948 to 0.9957 for the three target CAs. The limit of detection based on signal to noise ratio of 3 ranged from 0.01 to 0.1 ng mL(-1). The relative standard deviations (RSDs) varied from 2.1 to 6.1% (n=3) and the enrichment factors ranged from 44 to 124. The proposed method has also been successfully applied to analyze real water samples and the relative recoveries of environmental water samples ranged from 81.1 to 116.9%. Copyright © 2012 Elsevier B.V. All rights reserved.
2014-01-01
Background Tramadol is an opioid, synthetic analog of codeine and has been used for the treatment of acute or chronic pain may be abused. In this work, a developed Dispersive liquid liquid microextraction (DLLME) as binary solvents-based dispersive liquid-liquid microextraction (BS-DLLME) combined with high performance liquid chromatography (HPLC) with fluorescence detection (FD) was employed for determination of tramadol in the urine samples. This procedure involves the use of an appropriate mixture of binary extraction solvents (70 μL CHCl3 and 30 μL ethyl acetate) and disperser solvent (600 μL acetone) for the formation of cloudy solution in 5 ml urine sample comprising tramadol and NaCl (7.5%, w/v). After centrifuging, the small droplets of extraction solvents were precipitated. In the final step, the HPLC with fluorescence detection was used for determination of tramadol in the precipitated phase. Results Various factors on the efficiency of the proposed procedure were investigated and optimized. The detection limit (S/N = 3) and quantification limit (S/N = 10) were found 0.2 and 0.9 μg/L, respectively. The relative standard deviations (RSD) for the extraction of 30 μg L of tramadol was found 4.1% (n = 6). The relative recoveries of tramadol from urine samples at spiking levels of 10, 30 and 60 μg/L were in the range of 95.6 – 99.6%. Conclusions Compared with other methods, this method provides good figures of merit such as good repeatability, high extraction efficiency, short analysis time, simple procedure and can be used as microextraction technique for routine analysis in clinical laboratories. PMID:24495475
Quantum dot conjugates in a sub-micrometer fluidic channel
Stavis, Samuel M.; Edel, Joshua B.; Samiee, Kevan T.; Craighead, Harold G.
2010-04-13
A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.
Quantum dot conjugates in a sub-micrometer fluidic channel
Stavis, Samuel M [Ithaca, NY; Edel, Joshua B [Brookline, MA; Samiee, Kevan T [Ithaca, NY; Craighead, Harold G [Ithaca, NY
2008-07-29
A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.
Flexibility in data interpretation: effects of representational format.
Braithwaite, David W; Goldstone, Robert L
2013-01-01
Graphs and tables differentially support performance on specific tasks. For tasks requiring reading off single data points, tables are as good as or better than graphs, while for tasks involving relationships among data points, graphs often yield better performance. However, the degree to which graphs and tables support flexibility across a range of tasks is not well-understood. In two experiments, participants detected main and interaction effects in line graphs and tables of bivariate data. Graphs led to more efficient performance, but also lower flexibility, as indicated by a larger discrepancy in performance across tasks. In particular, detection of main effects of variables represented in the graph legend was facilitated relative to detection of main effects of variables represented in the x-axis. Graphs may be a preferable representational format when the desired task or analytical perspective is known in advance, but may also induce greater interpretive bias than tables, necessitating greater care in their use and design.
Systematic cloning of human minisatellites from ordered array charomid libraries.
Armour, J A; Povey, S; Jeremiah, S; Jeffreys, A J
1990-11-01
We present a rapid and efficient method for the isolation of minisatellite loci from human DNA. The method combines cloning a size-selected fraction of human MboI DNA fragments in a charomid vector with hybridization screening of the library in ordered array. Size-selection of large MboI fragments enriches for the longer, more variable minisatellites and reduces the size of the library required. The library was screened with a series of multi-locus probes known to detect a large number of hypervariable loci in human DNA. The gridded library allowed both the rapid processing of positive clones and the comparative evaluation of the different multi-locus probes used, in terms of both the relative success in detecting hypervariable loci and the degree of overlap between the sets of loci detected. We report 23 new human minisatellite loci isolated by this method, which map to 14 autosomes and the sex chromosomes.
Orthology detection combining clustering and synteny for very large datasets.
Lechner, Marcus; Hernandez-Rosales, Maribel; Doerr, Daniel; Wieseke, Nicolas; Thévenin, Annelyse; Stoye, Jens; Hartmann, Roland K; Prohaska, Sonja J; Stadler, Peter F
2014-01-01
The elucidation of orthology relationships is an important step both in gene function prediction as well as towards understanding patterns of sequence evolution. Orthology assignments are usually derived directly from sequence similarities for large data because more exact approaches exhibit too high computational costs. Here we present PoFF, an extension for the standalone tool Proteinortho, which enhances orthology detection by combining clustering, sequence similarity, and synteny. In the course of this work, FFAdj-MCS, a heuristic that assesses pairwise gene order using adjacencies (a similarity measure related to the breakpoint distance) was adapted to support multiple linear chromosomes and extended to detect duplicated regions. PoFF largely reduces the number of false positives and enables more fine-grained predictions than purely similarity-based approaches. The extension maintains the low memory requirements and the efficient concurrency options of its basis Proteinortho, making the software applicable to very large datasets.
Orthology Detection Combining Clustering and Synteny for Very Large Datasets
Lechner, Marcus; Hernandez-Rosales, Maribel; Doerr, Daniel; Wieseke, Nicolas; Thévenin, Annelyse; Stoye, Jens; Hartmann, Roland K.; Prohaska, Sonja J.; Stadler, Peter F.
2014-01-01
The elucidation of orthology relationships is an important step both in gene function prediction as well as towards understanding patterns of sequence evolution. Orthology assignments are usually derived directly from sequence similarities for large data because more exact approaches exhibit too high computational costs. Here we present PoFF, an extension for the standalone tool Proteinortho, which enhances orthology detection by combining clustering, sequence similarity, and synteny. In the course of this work, FFAdj-MCS, a heuristic that assesses pairwise gene order using adjacencies (a similarity measure related to the breakpoint distance) was adapted to support multiple linear chromosomes and extended to detect duplicated regions. PoFF largely reduces the number of false positives and enables more fine-grained predictions than purely similarity-based approaches. The extension maintains the low memory requirements and the efficient concurrency options of its basis Proteinortho, making the software applicable to very large datasets. PMID:25137074
NASA Astrophysics Data System (ADS)
Zuo, Zewen; Zhu, Kai; Ning, Lixin; Cui, Guanglei; Qu, Jun; Cheng, Ying; Wang, Junzhuan; Shi, Yi; Xu, Dongsheng; Xin, Yu
2015-01-01
Wafer-scale three-dimensional (3D) surface enhancement Raman scattering (SERS) substrates were prepared using the plasma etching and ion sputtering methods that are completely compatible with well-established silicon device technologies. The substrates are highly sensitive with excellent uniformity and reproducibility, exhibiting an enhancement factor up to 1012 with a very low relative standard deviation (RSD) around 5%. These are attributed mainly to the uniform-distributed, multiple-type high-density hot spots originating from the structural characteristics of Ag nanoparticles (NPs) decorated Si nanocone (NC) arrays. We demonstrate that the trace dimethyl phthalate (DMP) at a concentration of 10-7 M can be well detected using this SERS substrate, showing that the AgNPs-decorated SiNC arrays can serve as efficient SERS substrates for phthalate acid esters (PAEs) detection with high sensitivity.
Weak Fault Feature Extraction of Rolling Bearings Based on an Improved Kurtogram.
Chen, Xianglong; Feng, Fuzhou; Zhang, Bingzhi
2016-09-13
Kurtograms have been verified to be an efficient tool in bearing fault detection and diagnosis because of their superiority in extracting transient features. However, the short-time Fourier Transform is insufficient in time-frequency analysis and kurtosis is deficient in detecting cyclic transients. Those factors weaken the performance of the original kurtogram in extracting weak fault features. Correlated Kurtosis (CK) is then designed, as a more effective solution, in detecting cyclic transients. Redundant Second Generation Wavelet Packet Transform (RSGWPT) is deemed to be effective in capturing more detailed local time-frequency description of the signal, and restricting the frequency aliasing components of the analysis results. The authors in this manuscript, combining the CK with the RSGWPT, propose an improved kurtogram to extract weak fault features from bearing vibration signals. The analysis of simulation signals and real application cases demonstrate that the proposed method is relatively more accurate and effective in extracting weak fault features.
Observation of Squeezed Light in the 2 μ m Region
NASA Astrophysics Data System (ADS)
Mansell, Georgia L.; McRae, Terry G.; Altin, Paul A.; Yap, Min Jet; Ward, Robert L.; Slagmolen, Bram J. J.; Shaddock, Daniel A.; McClelland, David E.
2018-05-01
We present the generation and detection of squeezed light in the 2 μ m wavelength region. This experiment is a crucial step in realizing the quantum noise reduction techniques that will be required for future generations of gravitational-wave detectors. Squeezed vacuum is generated via degenerate optical parametric oscillation from a periodically poled potassium titanyl phosphate crystal, in a dual resonant cavity. The experiment uses a frequency stabilized 1984 nm thulium fiber laser, and squeezing is detected using balanced homodyne detection with extended InGaAs photodiodes. We have measured 4.0 ±0.1 dB of squeezing and 10.5 ±0.5 dB of antisqueezing relative to the shot noise level in the audio frequency band, limited by photodiode quantum efficiency. The inferred squeezing level directly after the optical parametric oscillator, after accounting for known losses and phase noise, is 10.7 dB.
Kumar, Suveen; Kumar, Saurabh; Tiwari, Sachchidanand; Srivastava, Saurabh; Srivastava, Manish; Yadav, Birendra Kumar; Kumar, Saroj; Tran, Thien Toan; Dewan, Ajay Kumar; Mulchandani, Ashok; Sharma, Jai Gopal; Maji, Sagar
2015-01-01
Results of the studies are reported relating to application of the silanized nanostructured zirconia, electrophoretically deposited onto indium tin oxide (ITO) coated glass for covalent immobilization of the monoclonal antibodies (anti‐CYFRA‐21‐1). This biosensing platform has been utilized for a simple, efficient, noninvasive, and label‐free detection of oral cancer via cyclic voltammetry technique. The results of electrochemical response studies conducted on bovine serum albumin (BSA)/anti‐CYFRA‐21‐1/3‐aminopropyl triethoxy silane (APTES)/ZrO2/ITO immunoelectrode reveal that this immunoelectrode can be used to measure CYFRA‐21‐1 (oral cancer biomarker) concentration in saliva samples, with a high sensitivity of 2.2 mA mL ng−1, a linear detection range of 2–16 ng mL−1, and stability of six weeks. The results of these studies have been validated via enzyme‐linked immunosorbent assay. PMID:27980963
Farrow, Blake; Hsueh, Connie L.; Deyle, Kaycie M.; Kim, Jocelyn T.; Lai, Bert T.; Heath, James R.
2013-01-01
We report on a method to improve in vitro diagnostic assays that detect immune response, with specific application to HIV-1. The inherent polyclonal diversity of the humoral immune response was addressed by using sequential in situ click chemistry to develop a cocktail of peptide-based capture agents, the components of which were raised against different, representative anti-HIV antibodies that bind to a conserved epitope of the HIV-1 envelope protein gp41. The cocktail was used to detect anti-HIV-1 antibodies from a panel of sera collected from HIV-positive patients, with improved signal-to-noise ratio relative to the gold standard commercial recombinant protein antigen. The capture agents were stable when stored as a powder for two months at temperatures close to 60oC. PMID:24116098
Aubert, D; Villena, I
2009-03-01
Water is a vehicle for disseminating human and veterinary toxoplasmosis due to oocyst contamination. Several outbreaks of toxoplasmosis throughout the world have been related to contaminated drinking water. We have developed a method for the detection of Toxoplasma gondii oocysts in water and we propose a strategy for the detection of multiple waterborne parasites, including Cryptosporidium spp. and Giardia. Water samples were filtered to recover Toxoplasma oocysts and, after the detection of Cryptosporidium oocysts and Giardia cysts by immunofluorescence, as recommended by French norm procedure NF T 90-455, the samples were purified on a sucrose density gradient. Detection of Toxoplasma was based on PCR amplification and mouse inoculation to determine the presence and infectivity of recovered oocysts. After experimental seeding assays, we determined that the PCR assay was more sensitive than the bioassay. This strategy was then applied to 482 environmental water samples collected since 2001. We detected Toxoplasma DNA in 37 environmental samples (7.7%), including public drinking water; however, none of them were positive by bioassay. This strategy efficiently detects Toxoplasma oocysts in water and may be suitable as a public health sentinel method. Alternative methods can be used in conjunction with this one to determine the infectivity of parasites that were detected by molecular methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, G. V.; Beiersdorfer, P.; Goddard, R.
2001-01-01
We have mounted 1 {mu}m thick aluminized polyimide windows onto the position sensitive proportional counters employed by the wide-band flat crystal spectrometers at the Lawrence Livermore National Laboratory electron beam ion trap experiment. The aluminized polyimide, supported by thin wires across the short axis of the window, is used to isolate the detection chamber of the proportional counters, which operate at a pressure of 760 Torr, from the vacuum chamber of the spectrometer. The windows are modified versions of those developed for the proportional counters which were used during ground calibration of the Chandra X-ray Observatory. The transmission properties ofmore » these windows are, therefore, well known. The increased transmission efficiency of the polyimide windows relative to the 4 {mu}m thick polypropylene window material previously employed by our proportional counters has extended the useful range of the spectrometer from roughly 20 to 30 Aa at energies below the carbon edge, as well as increasing detection efficiency at wavelengths beyond the carbon edge. Using an octadecyl hydrogen maleate crystal with 2d=63.5Aa, we demonstrate the increased wavelength coverage by measuring the resonance, intercombination, and forbidden lines in helium-like NVII in two different density regimes. The thin polyimide windows have also increased the efficiency of the spectrometers entire wavelength range. To demonstrate the increased efficiency we compare the FeXVII spectrum in the 15--17 Aa band measured with the 1 {mu}m aluminized polyimide windows to the 4 {mu}m aluminized polypropylene windows. The comparison shows an average increase in efficiency of {approx}40%. The polyimide windows have a significantly lower leak rate than the polypropylene windows making it possible to achieve approximately an order of magnitude lower pressure in the spectrometer vacuum chamber which reduces the gas load on the trap region.« less
Entropic Profiler – detection of conservation in genomes using information theory
Fernandes, Francisco; Freitas, Ana T; Almeida, Jonas S; Vinga, Susana
2009-01-01
Background In the last decades, with the successive availability of whole genome sequences, many research efforts have been made to mathematically model DNA. Entropic Profiles (EP) were proposed recently as a new measure of continuous entropy of genome sequences. EP represent local information plots related to DNA randomness and are based on information theory and statistical concepts. They express the weighed relative abundance of motifs for each position in genomes. Their study is very relevant because under or over-representation segments are often associated with significant biological meaning. Findings The Entropic Profiler application here presented is a new tool designed to detect and extract under and over-represented DNA segments in genomes by using EP. It allows its computation in a very efficient way by recurring to improved algorithms and data structures, which include modified suffix trees. Available through a web interface and as downloadable source code, it allows to study positions and to search for motifs inside the whole sequence or within a specified range. DNA sequences can be entered from different sources, including FASTA files, pre-loaded examples or resuming a previously saved work. Besides the EP value plots, p-values and z-scores for each motif are also computed, along with the Chaos Game Representation of the sequence. Conclusion EP are directly related with the statistical significance of motifs and can be considered as a new method to extract and classify significant regions in genomes and estimate local scales in DNA. The present implementation establishes an efficient and useful tool for whole genome analysis. PMID:19416538
Jiang, Qiong; Liu, Qin; Chen, Qiliang; Zhao, Wenjie; Xiang, Guoqiang; He, Lijun; Jiang, Xiuming; Zhang, Shusheng
2016-08-01
Magnetic particles modified with a dicationic polymeric ionic liquid are described as a new adsorbent in magnetic solid-phase extraction. They were obtained through the copolymerization of a 1,8-di(3-vinylimidazolium)octane-based ionic liquid with vinyl-modified SiO2 @Fe3 O4 , and were characterized by FTIR spectroscopy, X-ray diffraction, and vibrating sample magnetometry. The modified magnetic particles are effective in the extraction of organophosphate pesticides and polycyclic aromatic hydrocarbons. Also, they can provide different extraction performance for the selected analytes including fenitrothion, parathion, fenthion, phoxim, phenanthrene, and fluoranthene, where the extraction efficiency is found to be in agreement with the hydrophobicity of analytes. Various factors influencing the extraction efficiency, such as, the amount of adsorbent, extraction, and desorption time, and type and volume of the desorption solvent, were optimized. Under the optimized conditions, a good linearity ranging from 1-100 μg/L is obtained for all analytes, except for parathion (2-200 μg/L), where the correlation coefficients varied from 0.9960 to 0.9998. The limits of detection are 0.2-0.8 μg/L, and intraday and interday relative standard deviations are 1.7-7.4% (n = 5) and 3.8-8.0% (n = 3), respectively. The magnetic solid-phase extraction combined with high-performance liquid chromatography can be applied for the detection of trace targets in real water samples with satisfactory relative recoveries and relative standard deviations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bell experiments with random destination sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sciarrino, Fabio; Mataloni, Paolo; Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche
2011-03-15
It is generally assumed that sources randomly sending two particles to one or two different observers, random destination sources (RDSs), cannot be used for genuine quantum nonlocality tests because of the postselection loophole. We demonstrate that Bell experiments not affected by the postselection loophole may be performed with (i) an RDS and local postselection using perfect detectors, (ii) an RDS, local postselection, and fair sampling assumption with any detection efficiency, and (iii) an RDS and a threshold detection efficiency required to avoid the detection loophole. These results allow the adoption of RDS setups which are simpler and more efficient formore » long-distance free-space Bell tests, and extend the range of physical systems which can be used for loophole-free Bell tests.« less
Wang, Yichao; Zhang, Bumei; Sun, Yan; Liu, Yunde; Gu, Yajun
2017-12-20
Mycoplasma-related vaginitis gradually has been growing as a threat in adults-genitourinary infection contributes to funisitis, spontaneous abortion, and low birth weight. Until now, use of loop-mediated isothermal amplification (LAMP) to detect Ureaplasma urealyticum (UU), Mycoplasma hominis (MH), or Mycoplasma genitalium (MG) has been reported by some researchers. However, previous studies focused on purified DNA as the template for LAMP assay, which is usually extracted via commercial kit. We developed a LAMP assay for rapid detection of UU, MH, and MG genital mycoplasmas using a simple boiling method for DNA extraction, in a cohort of pregnant women with mycoplasma-related vaginitis. We monitored amplicons with the naked eye using SYBR Green I. The cohort in our study showed a prevalence of 22.6% in pregnant women, as detected by UU-LAMP assay. Compared to the polymerase chain reaction (PCR) test with purified DNA, the sensitivity of the UU-LAMP in clinical specimens with crude DNA was 87.5% (95% confidence interval [CI], 64.6%->99.9). For crude DNA specimens, UU-LAMP was more sensitive and reliable than PCR, with a higher agreement rate (96.8%) and Youden index value (0.88). As a point-of-care test, LAMP is a useful, specific, and efficient way to detect genital mycoplasmas in resource-limited settings, especially for crude DNA. © American Society for Clinical Pathology 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Saraji, Mohammad; Jafari, Mohammad Taghi; Mossaddegh, Mehdi
2016-07-05
Halloysite nanotubes-titanium dioxide (HNTs-TiO2) as a biocompatible environmentally friendly solid-phase microextraction (SPME) fiber coating was prepared. HNTs-TiO2 was chemically coated on the surface of a fused-silica fiber using a sol-gel process. Parathion as an organophosphorus pesticide was selected as a model compound to investigate the extraction efficiency of the fiber. The extracted analyte was detected by negative corona discharge-ion mobility spectrometer (NCD-IMS). The effective parameters on the extraction efficiency, such as salt effect, extraction temperature and extraction time were investigated and optimized. The extraction efficiency of HNTs-TiO2 fiber was compared with bare-silica (sol-gel based coating without HNTs-TiO2), HNTs, carbon nanotubes and commercial SPME fibers (PA, PDMS, and PDMS-DVB). The HNTs-TiO2 fiber showed highest extraction efficiency among the studied fibers. The intra- and inter-day relative standard deviations were found to be 4.3 and 6.3%, respectively. The limit of detection and limit of quantification values were 0.03 and 0.1 μg L(-1), respectively. The dynamic range of the method was in the range of 0.1-25 μg L(-1). The spiking recoveries were between 85 (±9) and 97 (±6). The SPME-HNTs-TiO2 combined with NCD-IMS was successfully applied for the determination of parathion in apple, strawberry, celery and water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Han, Chunyu; Chan, Zhulong; Yang, Fan
2015-01-01
Comparative efficiency of three extraction solutions, including the universal sodium phosphate buffer (USPB), the Tris-HCl buffer (UTHB), and the specific buffers, were compared for assays of soluble protein, free proline, superoxide radical (O2∙-), hydrogen peroxide (H2O2), and the antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX), glutathione peroxidase (GPX), and glutathione reductase (GR) in Populus deltoide. Significant differences for protein extraction were detected via sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional electrophoresis (2-DE). Between the two universal extraction buffers, the USPB showed higher efficiency for extraction of soluble protein, CAT, GR, O2∙-, GPX, SOD, and free proline, while the UTHB had higher efficiency for extraction of APX, POD, and H2O2. When compared with the specific buffers, the USPB showed higher extraction efficiency for measurement of soluble protein, CAT, GR, and O2∙-, parallel extraction efficiency for GPX, SOD, free proline, and H2O2, and lower extraction efficiency for APX and POD, whereas the UTHB had higher extraction efficiency for measurement of POD and H2O2. Further comparisons proved that 100 mM USPB buffer showed the highest extraction efficiencies. These results indicated that USPB would be suitable and efficient for extraction of soluble protein, CAT, GR, GPX, SOD, H2O2, O2∙-, and free proline.
An area and power-efficient analog li-ion battery charger circuit.
Do Valle, Bruno; Wentz, Christian T; Sarpeshkar, Rahul
2011-04-01
The demand for greater battery life in low-power consumer electronics and implantable medical devices presents a need for improved energy efficiency in the management of small rechargeable cells. This paper describes an ultra-compact analog lithium-ion (Li-ion) battery charger with high energy efficiency. The charger presented here utilizes the tanh basis function of a subthreshold operational transconductance amplifier to smoothly transition between constant-current and constant-voltage charging regimes without the need for additional area- and power-consuming control circuitry. Current-domain circuitry for end-of-charge detection negates the need for precision-sense resistors in either the charging path or control loop. We show theoretically and experimentally that the low-frequency pole-zero nature of most battery impedances leads to inherent stability of the analog control loop. The circuit was fabricated in an AMI 0.5-μm complementary metal-oxide semiconductor process, and achieves 89.7% average power efficiency and an end voltage accuracy of 99.9% relative to the desired target 4.2 V, while consuming 0.16 mm(2) of chip area. To date and to the best of our knowledge, this design represents the most area-efficient and most energy-efficient battery charger circuit reported in the literature.
Liang, Xiaotong; Liu, Shengquan; Zhu, Rong; Xiao, Lixia; Yao, Shouzhuo
2016-07-01
In this work, novel cellulose/zeolitic imidazolate frameworks-8 composite microspheres have been successfully fabricated and utilized as sorbent for environmental polycyclic aromatic hydrocarbons efficient extraction and sensitive analysis. The composite microspheres were synthesized through the in situ hydrothermal growth of zeolitic imidazolate frameworks-8 on cellulose matrix, and exhibited favorable hierarchical structure with chemical composition as assumed through scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction patterns, and Brunauer-Emmett-Teller surface areas characterization. A robust and highly efficient method was then successfully developed with as-prepared composite microspheres as novel solid-phase extraction sorbent with optimum extraction conditions, such as sorbent amount, sample volume, extraction time, desorption conditions, volume of organic modifier, and ionic strength. The method exhibited high sensitivity with low limit of detection down to 0.1-1.0 ng/L and satisfactory linearity with correlation coefficients ranging from 0.9988 to 0.9999, as well as good recoveries of 66.7-121.2% with relative standard deviations less than 10% for environmental polycyclic aromatic hydrocarbons analysis. Thus, our method was convenient and efficient for polycyclic aromatic hydrocarbons extraction and detection, potential for future environmental water samples analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Faith, M S; Rose, E; Matz, P E; Pietrobelli, A; Epstein, L H
2006-10-01
To illustrate the use and potential efficiency of the co-twin control design for testing behavioral economic theories of child nutrition. Co-twin control design, in which participating twins ate an ad libitum lunch on two laboratory visits. At visit 1, child food choices were not reinforced. On visit 2, twins were randomized to conditions such that one twin was reinforced for each fruit and vegetable serving consumed during lunch ('contingent') while his co-twin was reinforced irrespective of food intake ('non-contingent'). Six male twins, 5 years old, from three monozygotic twin pairs. Ad libitum intake of total energy (kcals), fat (kcals), and fruits and vegetables (servings) from the protocol test meals on the two visits. Compared to twins receiving non-contingent reinforcement, twins receiving contingent reinforcement increased fruit and vegetable intake by 2.0 servings, reduced fat intake 106.3 kcals, and reduced total energy intake by 112.7 kcals. The relative efficiency of the co-twin control design compared to a conventional between-groups design of unrelated children was most powerful for detecting 'substitution effects' (i.e., reduced total energy and fat intake) more so than for detecting increased fruit and vegetable intake. Genetically informative studies, including the co-twin control design, can provide conceptually elegant and efficient strategies for testing environmental theories of child nutrition and obesity.
Basheer, Chanbasha
2018-04-01
An efficient on-site extraction technique to determine carcinogenic heterocyclic aromatic amines in seawater has been reported. A micro-solid-phase extraction device placed inside a portable battery-operated pump was used for the on-site extraction of seawater samples. Before on-site applications, parameters that influence the extraction efficiency (extraction time, type of sorbent materials, suitable desorption solvent, desorption time, and sample volume) were investigated and optimized in the laboratory. The developed method was then used for the on-site sampling of heterocyclic aromatic amines determination in seawater samples close to distillation plant. Once the on-site extraction completed, the small extraction device with the analytes was brought back to the laboratory for analysis using high-performance liquid chromatography with fluorescence detection. Based on the optimized conditions, the calibration curves were linear over the concentration range of 0.05-20 μg/L with correlation coefficients up to 0.996. The limits of detection were 0.004-0.026 μg/L, and the reproducibility values were between 1.3 and 7.5%. To evaluate the extraction efficiency, a comparison was made with conventional solid-phase extraction and it was applied to various fortified real seawater samples. The average relative recoveries obtained from the spiked seawater samples varied in the range 79.9-95.2%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Food Safety Informatics: A Public Health Imperative
Tucker, Cynthia A.; Larkin, Stephanie N.; Akers, Timothy A.
2011-01-01
To date, little has been written about the implementation of utilizing food safety informatics as a technological tool to protect consumers, in real-time, against foodborne illnesses. Food safety outbreaks have become a major public health problem, causing an estimated 48 million illnesses, 128,000 hospitalizations, and 3,000 deaths in the U.S. each year. Yet, government inspectors/regulators that monitor foodservice operations struggle with how to collect, organize, and analyze data; implement, monitor, and enforce safe food systems. Currently, standardized technologies have not been implemented to efficiently establish “near-in-time” or “just-in-time” electronic awareness to enhance early detection of public health threats regarding food safety. To address the potential impact of collection, organization and analyses of data in a foodservice operation, a wireless food safety informatics (FSI) tool was pilot tested at a university student foodservice center. The technological platform in this test collected data every six minutes over a 24 hour period, across two primary domains: time and temperatures within freezers, walk-in refrigerators and dry storage areas. The results of this pilot study briefly illustrated how technology can assist in food safety surveillance and monitoring by efficiently detecting food safety abnormalities related to time and temperatures so that efficient and proper response in “real time” can be addressed to prevent potential foodborne illnesses. PMID:23569605
NASA Astrophysics Data System (ADS)
Moon, Kiwon; Lee, Eui Su; Lee, Il-Min; Park, Dong Woo; Park, Kyung Hyun
2018-01-01
Time-domain and frequency-domain terahertz (THz) spectroscopy systems often use materials fabricated with exotic and expensive methods that intentionally introduce defects to meet short carrier lifetime requirements. In this study, we demonstrate the development of a nano-photomixer that meets response speed requirements without using defect-incorporated, low-temperature-grown (LTG) semiconductors. Instead, we utilized a thin InGaAs layer grown on a semi-insulating InP substrate by metal-organic chemical vapor deposition (MOCVD) combined with nano-electrodes to manipulate local ultrafast photo-carrier dynamics via a carefully designed field-enhancement and plasmon effect. The developed nano-structured photomixer can detect continuous-wave THz radiation up to a frequency of 2 THz with a peak carrier collection efficiency of 5%, which is approximately 10 times better than the reference efficiency of 0.4%. The better efficiency results from the high carrier mobility of the MOCVD-grown InGaAs thin layer with the coincidence of near-field and plasmon-field distributions in the nano-structure. Our result not only provides a generally applicable methodology for manipulating ultrafast carrier dynamics by means of nano-photonic techniques to break the trade-off relation between the carrier lifetime and mobility in typical LTG semiconductors but also contributes to mass-producible photo-conductive THz detectors to facilitate the widespread application of THz technology.
Li, Meng-Jie; Zheng, Ying-Ning; Liang, Wen-Bin; Yuan, Ruo; Chai, Ya-Qin
2017-12-06
Ultrasensitive and rapid quantification of the universal energy currency adenosine triphosphate (ATP) is an extremely critical mission in clinical applications. In this work, a "signal-off" photoelectrochemical (PEC) biosensor was designed for ultrasensitive ATP detection based on a fullerene (C 60 )-decorated Au nanoparticle@MoS 2 (C 60 -Au NP@MoS 2 ) composite material as a signal indicator and a p-type PbS quantum dot (QD) as an efficient signal quencher. Modification of wide band gap C 60 with narrow band gap MoS 2 to form an ideal PEC signal indicator was proposed, which could significantly improve photocurrent conversion efficiency, leading to a desirable PEC signal. In the presence of p-type PbS QDs, the PEC signal of n-type C 60 -Au NP@MoS 2 was effectively quenched because p-type PbS QDs could compete with C 60 -Au NP@MoS 2 to consume light energy and electron donor. Besides, the conversion of a limited amount of target ATP into an amplified output PbS QD-labeled short DNA sequence (output S 1 ) was achieved via target-mediated aptazyme cycling amplification strategy, facilitating ultrasensitive ATP detection. The proposed signal-off PEC strategy exhibited a wide linear range from 1.00 × 10 -2 pM to 100 nM with a low detection limit of 3.30 fM. Importantly, this proposed strategy provides a promising platform to detect ATP at ultralow levels and has potential applications, including diagnosis of ATP-related diseases, monitoring of diseases progression and evaluation of prognosis.
High-frequency acoustic spectrum analyzer based on polymer integrated optics
NASA Astrophysics Data System (ADS)
Yacoubian, Araz
This dissertation presents an acoustic spectrum analyzer based on nonlinear polymer-integrated optics. The device is used in a scanning heterodyne geometry by zero biasing a Michelson interferometer. It is capable of detecting vibrations from DC to the GHz range. Initial low frequency experiments show that the device is an effective tool for analyzing an acoustic spectrum even in noisy environments. Three generations of integrated sensors are presented, starting with a very lossy (86 dB total insertion loss) initial device that detects vibrations as low as λ/10, and second and third generation improvements with a final device of 44 dB total insertion loss. The sensor was further tested for detecting a pulsed laser-excited vibration and resonances due to the structure of the sample. The data are compared to the acoustic spectrum measured using a low loss passive fiber interferometer detection scheme which utilizes a high speed detector. The peaks present in the passive detection scheme are clearly visible with our sensor data, which have a lower noise floor. Hybrid integration of GHz electronics is also investigated in this dissertation. A voltage controlled oscillator (VCO) is integrated on a polymer device using a new approach. The VCO is shown to operate as specified by the manufacturer, and the RF signal is efficiently launched onto the micro-strip line used for EO modulation. In the future this technology can be used in conjunction with the presented sensor to produce a fully integrated device containing high frequency drive electronics controlled by low DC voltage. Issues related to device fabrication, loss analysis, RF power delivery to drive circuitry, efficient poling of large area samples, and optimizing poling conditions are also discussed throughout the text.
Roberts, T; Mugford, M; Piercy, J
1998-09-01
To compare the cost effectiveness of different programmes of routine antenatal ultrasound screening to detect four key fetal anomalies: serious cardiac anomalies, spina bifida, Down's syndrome and lethal anomalies, using existing evidence. Decision analysis was used based on the best data currently available, including expert opinion from the Royal College of Obstetricians and Gynaecologists, Working Party and secondary data from the literature, to predict the likely outcomes in terms of malformations detected by each screening programme. Results applicable in clinics, hospitals or GP practices delivering antenatal screening. The number of cases with a 'target' malformation correctly detected antenatally. There was substantial overlap between the cost ranges of each screening programme demonstrating considerable uncertainty about the relative economic efficiency of alternative programmes for ultrasound screening. The cheapest, but not the most effective, screening programme consisted of one second trimester ultrasound scan. The cost per target anomaly detected (cost effectiveness) for this programme was in the range 5,000 pound silver-109,000, pound silver but in any 1000 women it will also fail to detect between 3.6 and 4.7 target anomalies. The range of uncertainty in the costs did not allow selection of any one programme as a clear choice for NHS purchasers. The results suggested that the overall allocation of resources for routine ultrasound screening in the UK is not currently economically efficient, but that certain scenarios for ultrasound screening are potentially within the range of cost effectiveness reached by other, possibly competing, screening programmes. The model highlighted the weakness of available evidence and demonstrated the need for more information both about current practice and costs.
NASA Technical Reports Server (NTRS)
Lapson, L. B.; Timothy, J. G.
1976-01-01
Detection efficiencies of channel electron multipliers (CEM) with opaque MgF2 photocathodes obtained in the extreme ultraviolet (XUV), 44 A to 990 A, are reported. A stable highly efficient response is reported for that interval, with no adverse effects on CEM performance. Efficiencies twice those of uncoated CEMs are obtained for 50 A to 350 A. The Mullard B419BL and Galileo 4510WL single-stage cone-cathode CEMs were used in the experiments. A rare-gas double ionization chamber was employed as absolute standard detector for 406 A to 990 A, and a flow Geiger counter filled with 96% argon and 4% isobutane for 44 A to 256 A. Absolute detection efficiencies are 10% higher from 67 A to 990 A when photocathodes are illuminated at an angle of incidence 45 deg. The photocathodes suffered no loss of response in storage (in vacuum or air) after an initial aging period. Effects of scattered UV radiation are greatly reduced when MgF2-coated CEMs are used in the XUV.
Infrared photodetectors based on graphene van der Waals heterostructures
NASA Astrophysics Data System (ADS)
Ryzhii, V.; Ryzhii, M.; Svintsov, D.; Leiman, V.; Mitin, V.; Shur, M. S.; Otsuji, T.
2017-08-01
We propose and evaluate the graphene layer (GL) infrared photodetectors (GLIPs) based on the van der Waals (vdW) heterostructures with the radiation absorbing GLs. The operation of the GLIPs is associated with the electron photoexcitation from the GL valence band to the continuum states above the inter-GL barriers (either via tunneling or direct transitions to the continuum states). Using the developed device model, we calculate the photodetector characteristics as functions of the GL-vdW heterostructure parameters. We show that due to a relatively large efficiency of the electron photoexcitation and low capture efficiency of the electrons propagating over the barriers in the inter-GL layers, GLIPs should exhibit the elevated photoelectric gain and detector responsivity as well as relatively high detectivity. The possibility of high-speed operation, high conductivity, transparency of the GLIP contact layers, and the sensitivity to normally incident IR radiation provides additional potential advantages in comparison with other IR photodetectors. In particular, the proposed GLIPs can compete with unitravelling-carrier photodetectors.
Tiwari, Sachchidanand; Gupta, Pramod K; Bagbi, Yana; Sarkar, Tamal; Solanki, Pratima R
2017-03-15
In this paper, we present the result of studies related to the in situ synthesis of amino acid (L-Cysteine) capped lanthanum hydroxide nanoparticles [Cys-La(OH) 3 NPs] towards the fabrication of efficient immunosensor for non-invasive detection of oral cancer. The characterization of Cys-La(OH) 3 NPs was carried out by different techniques including X-ray diffraction, scanning electron microscopy, transmission electron microscopy, fourier transform infrared spectroscopy and electrochemical techniques. These Cys-La(OH) 3 NPs were electrophoretically deposited onto an indium-tin-oxide glass substrate and used for immobilization of anti-cytokeratin fragment-21-1 (anti-Cyfra-21-1) for the electrochemical detection of Cyfra-21-1. This immunosensor shows a broad detection range of 0.001-10.2ngmL -1 , the low detection limit of 0.001ngmL -1 , and high sensitivity of 12.044µA (ng per mL cm -2 ) -1 with a response time of 5min. This immunosensor was found to be more advanced in terms of high sensitivity and low detection limit as compared to previously reported biosensors and commercially available ELISA kit (Kinesis DX). Copyright © 2016 Elsevier B.V. All rights reserved.
An information-theoretic approach to the gravitational-wave burst detection problem
NASA Astrophysics Data System (ADS)
Katsavounidis, E.; Lynch, R.; Vitale, S.; Essick, R.; Robinet, F.
2016-03-01
The advanced era of gravitational-wave astronomy, with data collected in part by the LIGO gravitational-wave interferometers, has begun as of fall 2015. One potential type of detectable gravitational waves is short-duration gravitational-wave bursts, whose waveforms can be difficult to predict. We present the framework for a new detection algorithm - called oLIB - that can be used in relatively low-latency to turn calibrated strain data into a detection significance statement. This pipeline consists of 1) a sine-Gaussian matched-filter trigger generator based on the Q-transform - known as Omicron -, 2) incoherent down-selection of these triggers to the most signal-like set, and 3) a fully coherent analysis of this signal-like set using the Markov chain Monte Carlo (MCMC) Bayesian evidence calculator LALInferenceBurst (LIB). We optimally extract this information by using a likelihood-ratio test (LRT) to map these search statistics into a significance statement. Using representative archival LIGO data, we show that the algorithm can detect gravitational-wave burst events of realistic strength in realistic instrumental noise with good detection efficiencies across different burst waveform morphologies. With support from the National Science Foundation under Grant PHY-0757058.
Bayır, Şafak
2016-01-01
With the advances in the computer field, methods and techniques in automatic image processing and analysis provide the opportunity to detect automatically the change and degeneration in retinal images. Localization of the optic disc is extremely important for determining the hard exudate lesions or neovascularization, which is the later phase of diabetic retinopathy, in computer aided eye disease diagnosis systems. Whereas optic disc detection is fairly an easy process in normal retinal images, detecting this region in the retinal image which is diabetic retinopathy disease may be difficult. Sometimes information related to optic disc and hard exudate information may be the same in terms of machine learning. We presented a novel approach for efficient and accurate localization of optic disc in retinal images having noise and other lesions. This approach is comprised of five main steps which are image processing, keypoint extraction, texture analysis, visual dictionary, and classifier techniques. We tested our proposed technique on 3 public datasets and obtained quantitative results. Experimental results show that an average optic disc detection accuracy of 94.38%, 95.00%, and 90.00% is achieved, respectively, on the following public datasets: DIARETDB1, DRIVE, and ROC. PMID:27110272
A simple rhodamine hydrazide-based turn-on fluorescent probe for HOCl detection.
Zhang, Zhen; Zou, Yuan; Deng, Chengquan; Meng, Liesu
2016-06-01
Hypochlorous acid (HOCl) plays a crucial role in daily life and mediates a variety of physiological processes, however, abnormal levels of HOCl have been associated with numerous human diseases. It is therefore of significant interest to establish a simple, selective, rapid and sensitive fluorogenic method for the detection of HOCl in environmental and biological samples. A hydrazide-containing fluorescent probe based on a rhodamine scaffold was facilely developed that could selectively detect HOCl over other biologically relevant reactive oxygen species, reactive nitrogen species and most common metal ions in vitro. Via an irreversible oxidation-hydrolysis mechanism, and upon HOCl-triggered opening of the intramolecular spirocyclic ring during detection, the rhodamine hydrazide-based probe exhibited large fluorescence enhancement in the emission spectra with a fast response, low detection limit and comparatively wide pH detection range in aqueous media. The probe was further successfully applied to monitoring trace HOCl in tap water and imaging both exogenous and endogenous HOCl within living cells. It is anticipated that this simple and useful probe might be an efficient tool with which to facilitate more HOCl-related chemical and biological research. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Mo, Changyeun; Kim, Giyoung; Kim, Moon S.; Lim, Jongguk; Lee, Seung Hyun; Lee, Hong-Seok; Cho, Byoung-Kwan
2017-09-01
The rapid detection of biological contaminants such as worms in fresh-cut vegetables is necessary to improve the efficiency of visual inspections carried out by workers. Multispectral imaging algorithms were developed using visible-near-infrared (VNIR) and near-infrared (NIR) hyperspectral imaging (HSI) techniques to detect worms in fresh-cut lettuce. The optimal wavebands that can detect worms in fresh-cut lettuce were investigated for each type of HSI using one-way ANOVA. Worm-detection imaging algorithms for VNIR and NIR imaging exhibited prediction accuracies of 97.00% (RI547/945) and 100.0% (RI1064/1176, SI1064-1176, RSI-I(1064-1173)/1064, and RSI-II(1064-1176)/(1064+1176)), respectively. The two HSI techniques revealed that spectral images with a pixel size of 1 × 1 mm or 2 × 2 mm had the best classification accuracy for worms. The results demonstrate that hyperspectral reflectance imaging techniques have the potential to detect worms in fresh-cut lettuce. Future research relating to this work will focus on a real-time sorting system for lettuce that can simultaneously detect various defects such as browning, worms, and slugs.
Tang, Jason H; Chia, David
2015-01-01
Non-small cell lung cancer (NSCLC) still dominates cancer-related deaths in America. Despite this, new discoveries and advancements in technology are helping with the detection and treatment of NSCLC. The discovery of circulating tumor DNA in blood and other biofluids is essential for the creation of a DNA biomarker. Limitations in technology and sequencing have stunted assay development, but with recent advancements in the next-generation sequencing, droplet digital PCR, and EFIRM, the detection of mutations in biofluids has become possible with reasonable sensitivity and specificity. These methods have been applied to the detection of mutations in NSCLC by measuring the levels of circulating tumor DNA. ALK fusion genes along with mutations in EGFR and KRAS have been shown to correlate to tumor size and metastasis. These methods allow for noninvasive, affordable, and efficient diagnoses of oncogenic mutations that overcome the issues of traditional biopsies. These issues include tumor heterogeneity and early detection of cancers with asymptomatic early stages. Early detection and treatment remain the best way to ensure survival. This review aims to describe these new technologies along with their application in mutation detection in NSCLC in order to proactively utilize targeted anticancer therapy.
NASA Astrophysics Data System (ADS)
Yücel, M.; Emirhan, E.; Bayrak, A.; Ozben, C. S.; Yücel, E. Barlas
2015-11-01
Design and production of a simple and low cost X-ray imaging system that can be used for light industrial applications was targeted in the Nuclear Physics Laboratory of Istanbul Technical University. In this study, production, transmission and detection of X-rays were simulated for the proposed imaging device. OX/70-P dental tube was used and X-ray spectra simulated by Geant4 were validated by comparison with X-ray spectra measured between 20 and 35 keV. Relative detection efficiency of the detector was also determined to confirm the physics processes used in the simulations. Various time optimization tools were performed to reduce the simulation time.
Testing for entanglement with periodic coarse graining
NASA Astrophysics Data System (ADS)
Tasca, D. S.; Rudnicki, Łukasz; Aspden, R. S.; Padgett, M. J.; Souto Ribeiro, P. H.; Walborn, S. P.
2018-04-01
Continuous-variable systems find valuable applications in quantum information processing. To deal with an infinite-dimensional Hilbert space, one in general has to handle large numbers of discretized measurements in tasks such as entanglement detection. Here we employ the continuous transverse spatial variables of photon pairs to experimentally demonstrate entanglement criteria based on a periodic structure of coarse-grained measurements. The periodization of the measurements allows an efficient evaluation of entanglement using spatial masks acting as mode analyzers over the entire transverse field distribution of the photons and without the need to reconstruct the probability densities of the conjugate continuous variables. Our experimental results demonstrate the utility of the derived criteria with a success rate in entanglement detection of ˜60 % relative to 7344 studied cases.
Development of a High-Resolution, Single-Photon X-Ray Detector
NASA Technical Reports Server (NTRS)
Seidel, George M.
1996-01-01
Research on the development of a low-temperature, magnetic bolometer for x-ray detection is reported. The principal accomplishments during the first phase of this research are as follows. (1) We have constructed SQUID magnetometers and detected both 122 keV and 6 keV x-rays in relatively larger metallic samples with high quantum efficiency. (2) The magnetic properties of a metal sample with localized paramagnetic spins have been measured and found to agree with theoretical expectations. (3) The size of the magnetic response of the sample to x-rays is in agreement with predictions based on the properties of the sample and sensitivity of the magnetometer, supporting the prediction that a resolution of 1 eV at 10 keV should be achievable.
Derivatization of peptides as quaternary ammonium salts for sensitive detection by ESI-MS.
Cydzik, Marzena; Rudowska, Magdalena; Stefanowicz, Piotr; Szewczuk, Zbigniew
2011-06-01
A series of model peptides in the form of quaternary ammonium salts at the N-terminus was efficiently prepared by the solid-phase synthesis. Tandem mass spectrometric analysis of the peptide quaternary ammonium derivatives was shown to provide sequence confirmation and enhanced detection. We designed the 2-(1,4-diazabicyclo[2.2.2] octylammonium)acetyl quaternary ammonium group which does not suffer from neutral losses during MS/MS experiments. The presented quaternization of 1,4-diazabicyclo[2.2.2]octane (DABCO) by iodoacetylated peptides is relatively easy and compatible with standard solid-phase peptide synthesis. This methodology offers a novel sensitive approach to analyze peptides and other compounds. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.
Development of Pulsar Detection Methods for a Galactic Center Search
NASA Astrophysics Data System (ADS)
Thornton, Stephen; Wharton, Robert; Cordes, James; Chatterjee, Shami
2018-01-01
Finding pulsars within the inner parsec of the galactic center would be incredibly beneficial: for pulsars sufficiently close to Sagittarius A*, extremely precise tests of general relativity in the strong field regime could be performed through measurement of post-Keplerian parameters. Binary pulsar systems with sufficiently short orbital periods could provide the same laboratories with which to test existing theories. Fast and efficient methods are needed to parse large sets of time-domain data from different telescopes to search for periodicity in signals and differentiate radio frequency interference (RFI) from pulsar signals. Here we demonstrate several techniques to reduce red noise (low-frequency interference), generate signals from pulsars in binary orbits, and create plots that allow for fast detection of both RFI and pulsars.
Feng, Zhenhua; Xu, Liang; Wu, Qiong; Tang, Ming; Fu, Songnian; Tong, Weijun; Shum, Perry Ping; Liu, Deming
2017-03-20
Towards 100G beyond large-capacity optical access networks, wavelength division multiplexing (WDM) techniques incorporating with space division multiplexing (SDM) and affordable spectrally efficient advanced modulation formats are indispensable. In this paper, we proposed and experimentally demonstrated a cost-efficient multicore fiber (MCF) based hybrid WDM-SDM optical access network with self-homodyne coherent detection (SHCD) based downstream (DS) and direct detection optical filter bank multi carrier (DDO-FBMC) based upstream (US). In the DS experiments, the inner core of the 7-core fiber is used as a dedicated channel to deliver the local oscillator (LO) lights while the other 6 outer cores are used to transmit 4 channels of wavelength multiplexed 200-Gb/s PDM-16QAM-OFDM signals. For US transmission, 4 wavelengths with channel spacing of 100 GHz are intensity modulated with 30 Gb/s 32-QAM-FBMC and directly detected by a ~7 GHz bandwidth receiver after transmission along one of the outer core. The results show that a 4 × 6 × 200-Gb/s DS transmission can be realized over 37 km 7-core fiber without carrier frequency offset (CFO) and phase noise (PN) compensation even using 10 MHz linewidth DFB lasers. The SHCD based on MCF provides a compromise and cost efficient scheme between conventional intradyne coherent detection and intensity modulation and direct detection (IM/DD) schemes. Both US and DS have acceptable BER performance and high spectral efficiency.
NASA Astrophysics Data System (ADS)
Ren, Xiaoqiang; Yan, Jiaqi; Mo, Yilin
2018-03-01
This paper studies binary hypothesis testing based on measurements from a set of sensors, a subset of which can be compromised by an attacker. The measurements from a compromised sensor can be manipulated arbitrarily by the adversary. The asymptotic exponential rate, with which the probability of error goes to zero, is adopted to indicate the detection performance of a detector. In practice, we expect the attack on sensors to be sporadic, and therefore the system may operate with all the sensors being benign for extended period of time. This motivates us to consider the trade-off between the detection performance of a detector, i.e., the probability of error, when the attacker is absent (defined as efficiency) and the worst-case detection performance when the attacker is present (defined as security). We first provide the fundamental limits of this trade-off, and then propose a detection strategy that achieves these limits. We then consider a special case, where there is no trade-off between security and efficiency. In other words, our detection strategy can achieve the maximal efficiency and the maximal security simultaneously. Two extensions of the secure hypothesis testing problem are also studied and fundamental limits and achievability results are provided: 1) a subset of sensors, namely "secure" sensors, are assumed to be equipped with better security countermeasures and hence are guaranteed to be benign, 2) detection performance with unknown number of compromised sensors. Numerical examples are given to illustrate the main results.
Efficient exploration of chemical space by fragment-based screening.
Hall, Richard J; Mortenson, Paul N; Murray, Christopher W
2014-01-01
Screening methods seek to sample a vast chemical space in order to identify starting points for further chemical optimisation. Fragment based drug discovery exploits the superior sampling of chemical space that can be achieved when the molecular weight is restricted. Here we show that commercially available fragment space is still relatively poorly sampled and argue for highly sensitive screening methods to allow the detection of smaller fragments. We analyse the properties of our fragment library versus the properties of X-ray hits derived from the library. We particularly consider properties related to the degree of planarity of the fragments. Copyright © 2014 Elsevier Ltd. All rights reserved.
Source detection at 100 meter standoff with a time-encoded imaging system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennan, J.; Brubaker, E.; Gerling, M.
Here, we present the design, characterization, and testing of a laboratory prototype radiological search and localization system. The system, based on time-encoded imaging, uses the attenuation signature of neutrons in time, induced by the geometrical layout and motion of the system. We have demonstrated the ability to detect a ~1 mCi 252 Cf radiological source at 100 m standoff with 90% detection efficiency and 10% false positives against background in 12 min. As a result, this same detection efficiency is met at 15 s for a 40 m standoff, and 1.2 s for a 20 m standoff.
Source detection at 100 meter standoff with a time-encoded imaging system
Brennan, J.; Brubaker, E.; Gerling, M.; ...
2017-09-28
Here, we present the design, characterization, and testing of a laboratory prototype radiological search and localization system. The system, based on time-encoded imaging, uses the attenuation signature of neutrons in time, induced by the geometrical layout and motion of the system. We have demonstrated the ability to detect a ~1 mCi 252 Cf radiological source at 100 m standoff with 90% detection efficiency and 10% false positives against background in 12 min. As a result, this same detection efficiency is met at 15 s for a 40 m standoff, and 1.2 s for a 20 m standoff.
How noise affects quantum detector tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Q., E-mail: wang@physics.leidenuniv.nl; Renema, J. J.; Exter, M. P.van
2015-10-07
We determine the full photon number response of a NbN superconducting nanowire single photon detector via quantum detector tomography, and the results show the separation of linear, effective absorption efficiency from the internal detection efficiencies. In addition, we demonstrate an error budget for the complete quantum characterization of the detector. We find that for short times, the dominant noise source is shot noise, while laser power fluctuations limit the accuracy for longer timescales. The combined standard uncertainty of the internal detection efficiency derived from our measurements is about 2%.
Jaszczur, Marek; Teneta, Janusz; Styszko, Katarzyna; Hassan, Qusay; Burzyńska, Paulina; Marcinek, Ewelina; Łopian, Natalia
2018-04-20
The maximisation of the efficiency of the photovoltaic system is crucial in order to increase the competitiveness of this technology. Unfortunately, several environmental factors in addition to many alterable and unalterable factors can significantly influence the performance of the PV system. Some of the environmental factors that depend on the site have to do with dust, soiling and pollutants. In this study conducted in the city centre of Kraków, Poland, characterised by high pollution and low wind speed, the focus is on the evaluation of the degradation of efficiency of polycrystalline photovoltaic modules due to natural dust deposition. The experimental results that were obtained demonstrated that deposited dust-related efficiency loss gradually increased with the mass and that it follows the exponential. The maximum dust deposition density observed for rainless exposure periods of 1 week exceeds 300 mg/m 2 and the results in efficiency loss were about 2.1%. It was observed that efficiency loss is not only mass-dependent but that it also depends on the dust properties. The small positive effect of the tiny dust layer which slightly increases in surface roughness on the module performance was also observed. The results that were obtained enable the development of a reliable model for the degradation of the efficiency of the PV module caused by dust deposition. The novelty consists in the model, which is easy to apply and which is dependent on the dust mass, for low and moderate naturally deposited dust concentration (up to 1 and 5 g/m 2 and representative for many geographical regions) and which is applicable to the majority of cases met in an urban and non-urban polluted area can be used to evaluate the dust deposition-related derating factor (efficiency loss), which is very much sought after by the system designers, and tools used for computer modelling and system malfunction detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zotova, A. N., E-mail: zotova@imp.sci-nnov.ru
2016-05-15
The contribution of bends and constrictions by a superconducting film to the detection by a single photon superconducting detector is investigated. It has been shown that, for currents smaller than the minimal detection current of a straight film, the detection efficiency of a film with a constriction attains saturation upon an increase in the current, which coincides qualitatively with the behavior of this dependence observed in the experiment. It has also been found that the effect of bends in the film and the external magnetic field on the detection efficiency for low-energy photons is essential, while for high-energy photons nomore » such influence is observed.« less
Neutron detection with a NaI spectrometer using high-energy photons
NASA Astrophysics Data System (ADS)
Holm, Philip; Peräjärvi, Kari; Sihvonen, Ari-Pekka; Siiskonen, Teemu; Toivonen, Harri
2013-01-01
Neutrons can be indirectly detected by high-energy photons. The performance of a 4″×4″×16″ NaI portal monitor was compared to a 3He-based portal monitor with a comparable cross-section of the active volume. Measurements were performed with bare and shielded 252Cf and AmBe sources. With an optimum converter and moderator structure for the NaI detector, the detection efficiencies and minimum detectable activities of the portal monitors were similar. The NaI portal monitor preserved its detection efficiency much better with shielded sources, making the method very interesting for security applications. For heavily shielded sources, the NaI detector was 2-3 times more sensitive than the 3He-based detector.
Fiber-optic multiphoton flow cytometry in whole blood and in vivo
NASA Astrophysics Data System (ADS)
Chang, Yu-Chung; Ye, Jing Yong; Thomas, Thommey P.; Cao, Zhengyi; Kotlyar, Alina; Tkaczyk, Eric R.; Baker, James R.; Norris, Theodore B.
2010-07-01
Circulating tumor cells in the bloodstream are sensitive indicators for metastasis and disease prognosis. Circulating cells have usually been monitored via extraction from blood, and more recently in vivo using free-space optics; however, long-term intravital monitoring of rare circulating cells remains a major challenge. We demonstrate the application of a two-photon-fluorescence optical fiber probe for the detection of cells in whole blood and in vivo. A double-clad fiber was used to enhance the detection sensitivity. Two-channel detection was employed to enable simultaneous measurement of multiple fluorescent markers. Because the fiber probe circumvents scattering and absorption from whole blood, the detected signal strength from fluorescent cells was found to be similar in phosphate-buffered saline (PBS) and in whole blood. The detection efficiency of cells labeled with the membrane-binding dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindoldicarbocyanine, 4-chlorobenzenesulfonate (DiD) was demonstrated to be the same in PBS and in whole blood. A high detection efficiency of green fluorescent protein (GFP)-expressing cells in whole blood was also demonstrated. To characterize in vivo detection, DiD-labeled untransfected and GFP-transfected cells were injected into live mice, and the cell circulation dynamics was monitored in real time. The detection efficiency of GFP-expressing cells in vivo was consistent with that observed ex vivo in whole blood.
Kilpatrick, David R.; Nakamura, Tomofumi; Burns, Cara C.; Bukbuk, David; Oderinde, Soji B.; Oberste, M. Steven; Kew, Olen M.; Pallansch, Mark A.; Shimizu, Hiroyuki
2014-01-01
Laboratory diagnosis has played a critical role in the Global Polio Eradication Initiative since 1988, by isolating and identifying poliovirus (PV) from stool specimens by using cell culture as a highly sensitive system to detect PV. In the present study, we aimed to develop a molecular method to detect PV directly from stool extracts, with a high efficiency comparable to that of cell culture. We developed a method to efficiently amplify the entire capsid coding region of human enteroviruses (EVs) including PV. cDNAs of the entire capsid coding region (3.9 kb) were obtained from as few as 50 copies of PV genomes. PV was detected from the cDNAs with an improved PV-specific real-time reverse transcription-PCR system and nucleotide sequence analysis of the VP1 coding region. For assay validation, we analyzed 84 stool extracts that were positive for PV in cell culture and detected PV genomes from 100% of the extracts (84/84 samples) with this method in combination with a PV-specific extraction method. PV could be detected in 2/4 stool extract samples that were negative for PV in cell culture. In PV-positive samples, EV species C viruses were also detected with high frequency (27% [23/86 samples]). This method would be useful for direct detection of PV from stool extracts without using cell culture. PMID:25339406
NASA Astrophysics Data System (ADS)
Gagnon, Daniel
Detection of sulfur by optical emission spectroscopy generally presents difficulties because the strongest lines are in the vacuum ultraviolet and therefore are readily absorbed by oxygen molecules in air. A novel concept for a low cost and efficient system to detect sulfur using near infrared lines by Laser-Induced Breakdown Spectroscopy is proposed in this thesis. The concept proposes to use customized thick holographic gratings, also referred as Volume Bragg Grating, for spectral filtering of the plasma light, and built-in custom electronics that amplify and integrate photodiodes output signals. In this work, the optomechanical design, manufacturing and trials of a multiband sensor's prototype is reviewed. Preliminary results has been presented at NASLIBS 2011 and showed a limit of detection comparable to that of a conventional high-end system. An article describing the concept and results has been published in a special issue of the Applied Optics journal. To turn this newly patented concept into commercial success, the management of the innovation has been performed by proposing strategic and tactic alliances for commercialisation purposes applied to strategic business positioning structured along the 3 axis Technology -- Product -- Market. Open innovation is here acting as the paradigm to efficiently reach the market. Discussion relative to strategic and tactic alliance is actually taking place for deployment of the LIBS multiband sensor in the mining industry.
Laser-Induced Photofragmentation Fluorescence Imaging of Alkali Compounds in Flames.
Leffler, Tomas; Brackmann, Christian; Aldén, Marcus; Li, Zhongshan
2017-06-01
Laser-induced photofragmentation fluorescence has been investigated for the imaging of alkali compounds in premixed laminar methane-air flames. An ArF excimer laser, providing pulses of wavelength 193 nm, was used to photodissociate KCl, KOH, and NaCl molecules in the post-flame region and fluorescence from the excited atomic alkali fragment was detected. Fluorescence emission spectra showed distinct lines of the alkali atoms allowing for efficient background filtering. Temperature data from Rayleigh scattering measurements together with simulations of potassium chemistry presented in literature allowed for conclusions on the relative contributions of potassium species KOH and KCl to the detected signal. Experimental approaches for separate measurements of these components are discussed. Signal power dependence and calculated fractions of dissociated molecules indicate the saturation of the photolysis process, independent on absorption cross-section, under the experimental conditions. Quantitative KCl concentrations up to 30 parts per million (ppm) were evaluated from the fluorescence data and showed good agreement with results from ultraviolet absorption measurements. Detection limits for KCl photofragmentation fluorescence imaging of 0.5 and 1.0 ppm were determined for averaged and single-shot data, respectively. Moreover, simultaneous imaging of KCl and NaCl was demonstrated using a stereoscope with filters. The results indicate that the photofragmentation method can be employed for detailed studies of alkali chemistry in laboratory flames for validation of chemical kinetic mechanisms crucial for efficient biomass fuel utilization.
Perceptual integration of motion and form information: evidence of parallel-continuous processing.
von Mühlenen, A; Müller, H J
2000-04-01
In three visual search experiments, the processes involved in the efficient detection of motion-form conjunction targets were investigated. Experiment 1 was designed to estimate the relative contributions of stationary and moving nontargets to the search rate. Search rates were primarily determined by the number of moving nontargets; stationary nontargets sharing the target form also exerted a significant effect, but this was only about half as strong as that of moving nontargets; stationary nontargets not sharing the target form had little influence. In Experiments 2 and 3, the effects of display factors influencing the visual (form) quality of moving items (movement speed and item size) were examined. Increasing the speed of the moving items (> 1.5 degrees/sec) facilitated target detection when the task required segregation of the moving from the stationary items. When no segregation was necessary, increasing the movement speed impaired performance: With large display items, motion speed had little effect on target detection, but with small items, search efficiency declined when items moved faster than 1.5 degrees/sec. This pattern indicates that moving nontargets exert a strong effect on the search rate (Experiment 1) because of the loss of visual quality for moving items above a certain movement speed. A parallel-continuous processing account of motion-form conjunction search is proposed, which combines aspects of Guided Search (Wolfe, 1994) and attentional engagement theory (Duncan & Humphreys, 1989).
Shafiee, Mohammad Javad; Chung, Audrey G; Khalvati, Farzad; Haider, Masoom A; Wong, Alexander
2017-10-01
While lung cancer is the second most diagnosed form of cancer in men and women, a sufficiently early diagnosis can be pivotal in patient survival rates. Imaging-based, or radiomics-driven, detection methods have been developed to aid diagnosticians, but largely rely on hand-crafted features that may not fully encapsulate the differences between cancerous and healthy tissue. Recently, the concept of discovery radiomics was introduced, where custom abstract features are discovered from readily available imaging data. We propose an evolutionary deep radiomic sequencer discovery approach based on evolutionary deep intelligence. Motivated by patient privacy concerns and the idea of operational artificial intelligence, the evolutionary deep radiomic sequencer discovery approach organically evolves increasingly more efficient deep radiomic sequencers that produce significantly more compact yet similarly descriptive radiomic sequences over multiple generations. As a result, this framework improves operational efficiency and enables diagnosis to be run locally at the radiologist's computer while maintaining detection accuracy. We evaluated the evolved deep radiomic sequencer (EDRS) discovered via the proposed evolutionary deep radiomic sequencer discovery framework against state-of-the-art radiomics-driven and discovery radiomics methods using clinical lung CT data with pathologically proven diagnostic data from the LIDC-IDRI dataset. The EDRS shows improved sensitivity (93.42%), specificity (82.39%), and diagnostic accuracy (88.78%) relative to previous radiomics approaches.
Leslie, E; Cowled, B; Graeme Garner, M; Toribio, J-A L M L; Ward, M P
2014-10-01
Early disease detection and efficient methods of proving disease freedom can substantially improve the response to incursions of important transboundary animal diseases in previously free regions. We used a spatially explicit, stochastic disease spread model to simulate the spread of classical swine fever in wild pigs in a remote region of northern Australia and to assess the performance of disease surveillance strategies to detect infection at different time points and to delineate the size of the resulting outbreak. Although disease would likely be detected, simple random sampling was suboptimal. Radial and leapfrog sampling improved the effectiveness of surveillance at various stages of the simulated disease incursion. This work indicates that at earlier stages, radial sampling can reduce epidemic length and achieve faster outbreak delineation and control, but at later stages leapfrog sampling will outperform radial sampling in relation to supporting faster disease control with a less-extensive outbreak area. Due to the complexity of wildlife population dynamics and group behaviour, a targeted approach to surveillance needs to be implemented for the efficient use of resources and time. Using a more situation-based surveillance approach and accounting for disease distribution and the time period over which an epidemic has occurred is the best way to approach the selection of an appropriate surveillance strategy. © 2013 Blackwell Verlag GmbH.
Okada, Sachiko; Nagase, Keisuke; Ito, Ayako; Ando, Fumihiko; Nakagawa, Yoshiaki; Okamoto, Kazuya; Kume, Naoto; Takemura, Tadamasa; Kuroda, Tomohiro; Yoshihara, Hiroyuki
2014-01-01
Comparison of financial indices helps to illustrate differences in operations and efficiency among similar hospitals. Outlier data tend to influence statistical indices, and so detection of outliers is desirable. Development of a methodology for financial outlier detection using information systems will help to reduce the time and effort required, eliminate the subjective elements in detection of outlier data, and improve the efficiency and quality of analysis. The purpose of this research was to develop such a methodology. Financial outliers were defined based on a case model. An outlier-detection method using the distances between cases in multi-dimensional space is proposed. Experiments using three diagnosis groups indicated successful detection of cases for which the profitability and income structure differed from other cases. Therefore, the method proposed here can be used to detect outliers. Copyright © 2013 John Wiley & Sons, Ltd.